
Chapter 2
Mathematical Modeling of Convective
Heat Transfer in Rotating-Disk Systems

2.1 Differential and Integral Equations

2.1.1 Navier–Stokes and Energy Equations in Differential
Form

A schematic of a stationary axisymmetric problem of convective heat transfer over
rotating disks, whose axis of symmetry serves as the axis z of a stationary cylin-
drical coordinate system with the point z = 0 placed on the disk surface, is depicted
in Fig. 2.1. The angular velocity is high, so that gravitational effects are negligible,
i.e., Fr = Fφ = Fz = 0.

Thus, Eqs. (1.21)–(1.25) are reduced [1–3] to
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One can assign the coordinate system in Fig. 2.1 to be rotating together with the
disk. In doing so, Eqs. (2.1)–(2.3) for laminar flow can be re-written as [1–3]
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The terms 2ωvφ and 2ωvr stand for the r- and φ-components of the Coriolis
force, respectively. The term x2r is the r-component of the centrifugal force (all
divided by ρ). Equations (2.1)–(2.2) for turbulent flow can be derived in analogy to
Eqs. (2.6)–(2.8) [1].

Fig. 2.1 Geometrical arrangement and main parameters of the problem of fluid flow and heat
transfer over a rotating disk in still air [3]
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2.1.2 Differential Equations of the Boundary Layer

To simplify Eqs. (2.1)–(2.5) for boundary layers, the following assumptions are
made [1, 2, 4]:

(a) velocity components vr and vφ are an order of magnitude larger than the vz-
velocity;

(b) velocity and temperature vary in the z-direction much more significantly than
they do in the r-direction; and

(c) variation of the static pressure in z-direction is negligible.

The equation of continuity, Eq. (2.4), does not undergo any change. As a result,
Eqs. (2.1)–(2.5) reduce to the following final form [1, 2, 4]:
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The pressure across the boundary layer is constant and equal to the pressure in
the potential flow region, i.e., p = p∞. Equations (2.13)–(2.15) include only the
most significant turbulent shear stress and heat flux components.

For a stationary thermal boundary layer, the term @T=@t in Eq. (2.12) vanishes.
Equations (2.9)–(2.15) are closed with an equation of potential flow, where

functions vr,∞, vφ,∞, and p∞ do not vary in the z-direction:
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2.1.3 Integral Equations of the Boundary Layer

For steady-state conditions, Eqs. (2.9)–(2.11), (2.13)–(2.20) with allowance for
Eqs. (2.4) and (2.16) can be re-written in an integral form [1, 2, 4]:
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Another notation of Eqs. (2.17), (2.18) and (2.20) looks as [1, 2, 4, 5]
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2.2 Methods of Solution

2.2.1 Self-similar Solution

Exact solutions of the Navier–Stokes and energy equations were found for a free
rotating disk subject to laminar flow [1, 2, 4, 6–12]. For this purpose, self-similar
variables F, G, H, P, and ζ were employed:

vr ¼ ðaþ xÞrFðfÞ; vu ¼ ðaþ xÞrGðfÞ; vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ xÞmp

HðfÞ;
p ¼ �qmxPðfÞ; h ¼ ðT � T1Þ=ðTw � T1Þ; f ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ xÞ=mp
:

ð2:26Þ

The respective boundary conditions had the following form:

f ! 1: vr;1 ¼ ar; vz;1 ¼ �2az; vu;1 ¼ Xr; b ¼ X=x ¼ const:; h ¼ 0;

ð2:27Þ

f ¼ 0: F ¼ H ¼ 0; G ¼ 1; h ¼ 1; ð2:28Þ

f ¼ 0: Tw ¼ Tref þ c0wr
n� ; T1 ¼ Tref þ c01rn� or T1 ¼ Tref þ bc0wr

n� : ð2:29Þ

Here, c0, c0w, c0∞, and n* are the empirical constants. Equation (2.29) can be
re-written as

DT ¼ Tw � T1 ¼ c0r
n� ðfor c0 ¼ c0w � c01Þ; ð2:30Þ

or DT ¼ c0wð1� bÞrn� : ð2:31Þ

Equations (2.1)–(2.4) and (2.12) (for @T=@t ¼ 0), with allowance for Eq. (2.16),
reduce to a self-similar form:

F2 � G2 þ F0H ¼ N2 � b2

ð1þ NÞ2 þ F00; ð2:32Þ

2FGþ G0H ¼ G00; ð2:33Þ

HH0 ¼ P0 þ H00; ð2:34Þ

2F þ H0 ¼ 0; ð2:35Þ

h00 � Pr n�Fhþ Hh0ð Þ ¼ 0: ð2:36Þ

Here, N = a/ω = const. A solution of Eqs. (2.32)–(2.35) for simultaneously
non-zero values of β and N does not exist. However, such a solution can be found
either for N ≠ 0 and β = 0, or for β ≠ 0 and N = 0.
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Equations (2.32)–(2.36) have been often solved with the help of so-called
in-house computer codes using a spectral collocation method based on the
Chebyshev polynomials [13–18], Keller box [19] or quasi-linearization method
[20], expansions in power/exponential series [9, 21], finite difference schemes [22],
shooting methods [1, 8, 10, 12, 23], etc. Computer mathematics softwares like
Mathcad, Mathlab, Mathematica, etc. enable solving Eqs. (2.32)–(2.36) via user
interface programing options [3, 20].

A self-similar energy equation involving dissipation terms allows using only one
value of the exponent n* = 2 in the boundary conditions (2.29)–(2.31) [1, 2, 4]. At
subsonic flow of air, dissipation effects, as well as radial heat conduction, are
negligible. Therefore, we neglected the respective terms in Eq. (2.36) of the thermal
boundary layer, which enabled us using arbitrary values of the parameter n*.

Exact solutions of Eqs. (2.32)–(2.36) serve as benchmark datasets used in val-
idations of experiments or CFD models developed for more complicated problems.
Based on the self-similar solutions, it is also possible to develop approximate
analytical solutions of problems, whose boundary conditions differ from
Eqs. (2.27)–(2.31).

2.2.2 Approximate Analytical Methods for Laminar Flow

Laminar impingement flow over a single rotating disk at N = const. and β = 0 was
simulated using an approximate mathematical method of Slezkin-Targ in [4].
Velocity components were approximated by sixth-order polynomials. A polynomial
of third order resulted in an inaccuracy in the surface friction of up to *25 % at
N = 5. This inaccuracy increases fast for higher values of N. Should the author [4]
extend this method to model heat transfer? This would yield a cumbersome solution
for the Nusselt number.

A complex combination of exponential and logarithmic functions resulted in an
approximate solution for laminar flow over a single rotating disk [24]. The heat
transfer problem was not solved. Such an extension of the method [24] would,
however, yield even more inconvenient and cumbersome relations for the Nusselt
number than in [4].

For porous injection through a rotating disk, an approximate solution was pre-
sented as a combined expansion in power and exponential series. It is obvious that
this approach has the same deficiencies as the aforementioned methods [4, 24].

Analytical solutions [19] were obtained for a stretching disk for (a) a case of no
rotation and (b) infinitely large stretching rate. Both situations have very limiting
application; a general analytical solution for a stretching rotating disk does not exist.

Based on the above, one can conclude that a search for an exact analytical
solution for the velocity, pressure, and temperature profiles in laminar flow over a
rotating disk is a very complicated and inexpedient mathematical task.
Alternatively, as demonstrated below, a match of an integral method and a
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self-similar solution yields a transparent and accurate approximate analytical
solution for fluid flow and heat transfer characteristics.

2.2.3 Numerical Methods

At early stages, finite difference methods implemented in in-house codes were used
by different authors [25–38] to simulate laminar/turbulent fluid flow and heat
transfer in rotating cavities formed by parallel co-rotating disks using algebraic [39]
or low-Reynolds-number k-ε turbulence models [40–42]. A finite difference method
was employed by the author [43] to simulate a 3D air flow in a rotating-disk grinder
of solid particles with the RANS approach with a k-ε turbulence model [44].

Commercial CFD codes (e.g., FLUENT, CFX, Phoenics, etc.) using RANS
approaches have been widely used by different authors to simulate fluid flow in
rotating-disk systems [33, 36, 45–52]. Turbulence was modeled using closure with
standard and realizable k-ε models, RNG k-ε model, k-ω SST model, Spalart–
Allmaras model, and others.

The LES approach was employed by [53] to simulate a stationary turbulent flow
over a rotating disk. The LES approach was also used in [54–58] to simulate tur-
bulent flow and heat transfer over a single disk in air flow parallel to the disk surface.

Numerical simulation using in-house or commercial CFD codes is the most
widely used universal tool for problems with arbitrary geometry and boundary
conditions to be performed in academic and especially applied/industrial research.
Given a proper mesh, accuracy of results depends here on the selection of the
turbulence model, which is to be performed individually for each problem to be
solved.

A disadvantage of CFD modeling is that it provides only an array of numerical
data, which is often an inconvenience in comparison with analytical solutions.
Therefore, methods delivering exact or approximate analytical solutions are
advantageous for relatively simple geometries and boundary conditions.

2.3 Integral Methods

2.3.1 Momentum Boundary Layer

In frames of an integral method, Eqs. (2.17)–(2.23) are solved accompanied with
models for (a) velocity/temperature profiles (or enthalpy thickness), as well as
(b) shear stresses on the wall (velocity boundary layer) and wall heat flux (thermal
boundary layer).

To briefly outline a history of the integral methods for rotating-disk systems,
fundamentals of them were laid by von Karman [9] and Dorfman [4]. Further
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development of model assumptions for integral methods was done in the works
[1, 2, 48, 59]. An important feature of the method [1, 2] further elaborated in the
present work consists in the use of the same mathematical form of the models for
laminar or turbulent flow, which differ from each other only by numerical values of
certain parameters. In fact, this confirms the idea of Loytsyanskiy [60], who said
that there exists “an analogy between basic characteristics of laminar and turbulent
boundary layers.”

The radial vr and tangential vφ velocity components in the boundary layer are
interrelated in accordance with the equation [61]

�vr ¼ �vu tanu: ð2:37Þ

In case where potential flow in the r-direction is negligible, i.e., vr,∞ = 0,
approximations of the velocity profiles were written by the authors [1, 2] in the
following form:

�vu ¼ 1� gðnÞ; �vr ¼ af ðnÞ; ð2:38Þ

where the functions g(ξ) and f(ξ) of the variable ξ = z/δ were set to be independent
of the coordinate r. For laminar flow,

gðnÞ ¼ G0ðnÞ; f ðnÞ ¼ F0ðnÞ=a0: ð2:39Þ

The functions G0(ξ) and F0(ξ) are a solution of Eqs. (2.32)–(2.35) for a free
rotating disk, i.e., for N = 0 and β = 0 [1, 2, 4].

For turbulent flow, power-law profiles were employed:

gðnÞ ¼ 1� nn; ð2:40Þ

f ðnÞ ¼ nnð1� nÞ; tanu ¼ að1� nÞ; ð2:41Þ

where n = 1/5–1/10 [1, 2, 4, 9, 48, 59, 62–64]. Approximations (2.40) and (2.41)
were formulated for the first time by von Karman [9]. The characteristic Reynolds
number determines the value of the exponent n (see Figs. 2.2, 2.3 and 2.4).

A more accurate approximation for f(ξ) in turbulent flow is [65–68]

f ðnÞ ¼ nnð1� nÞ2; tanu ¼ að1� nÞ2: ð2:42Þ

Nevertheless, Eq. (2.42) has been rarely used apparently due to the some-
what more complicated form of expressions resulting from the integration of
Eqs. (2.17)–(2.19).

More elaborate power-law profiles were used by the authors [69]
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f ðnÞ ¼ nnð1� nn=mÞ; tanu ¼ að1� nn=mÞ; ð2:43Þ

with exponents n and m independent from each other. The authors [69] have not
further developed their model, apparently because of its excessively complicated
structure.

A trigonometric function approximating the function tan φ in Eq. (2.37)

tanu ¼ a½ð1� sinbðcnÞ� ð2:44Þ

was used by [76, 77]. The values of the constants b = 0.7, c = 0.12 at n = 1/7, and
b = 0.697, c = 0.117 at n = 1/8 mentioned in [76] are, however, erroneous.

For instance, for b = 0.7 at n = 1/7, one must use a value of c = 1.2 (Figs. 2.3 and
2.4). The model [76, 77] is more complicated than the von Karman’s approach.
Expressions for the Nusselt number that could have been obtained (but actually
have not been obtained!) on the base of the model (2.44) would have been again too
cumbersome.

For N = const., the following relations were used in [78] and [79–81],
respectively:

tanu ¼ aþ N � að Þn; ð2:45Þ

tanu ¼ a 1� nð Þ þ j; ð2:46Þ
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Fig. 2.4 Correlation between the radial and tangential velocity components in the boundary layer
[3]. Calculation by Eq. (2.59) at L = 2 (curves 1–4) or L = 1 (curve 5) [61]: 1—n = 1/7, 2—1/8,
3—1/9, 4—1/10, 5—1/7, von Karman’s method [9], 6—1/7, Eq. (2.44) for b = 0.7, c = 1.2,
α = 0.2003. Experiments: 7—Reω = 0.4 × 106, 8—0.65 × 106, 9—0.94 × 106, 10—1.6 × 106 [70],
11—0.4 × 106, 12—0.6 × 106, 13—1.0 × 106 [71], 14—2.0 × 106 [75]
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where j ¼ _m= 2pqsrð1� bÞxr½ �. Equation (2.46) is least justified, since it does not
agree with the condition tanuw ¼ a and complicates the solution of Eqs. (2.17) and
(2.18).

Thus, Eqs. (2.43)–(2.46) demonstrate lower accuracy than models (2.37)–(2.45).
Integration of Eqs. (2.17) and (2.18) in view of Eqs. (2.37)–(2.45) yields

ordinary differential equations with the unknown variables α(r) and δ(r) for a
pre-set function of β(r), or α(r) and β(r) for a pre-set function δ(r). In view of an
assumption N = const. or β = const., the parameter α becomes constant as well. In
this case, δ = const. in laminar flow, or δ * rm in turbulent flow [1, 2, 4].

Given the velocity profiles in the form of power-law functions, shear stresses τwr
and τwφ on the right-hand sides of Eqs. (2.17)–(2.19) can be written as [1, 2, 4]

swr ¼ �aswu; swu ¼ �sgnð1� bÞswð1þ a2Þ1=2; ð2:47Þ

cf ¼ C�2=ðnþ1Þ
n Re�2n=ðnþ1Þ

V� ; ð2:48Þ

Cn ¼ 2:28þ 0:924=n: ð2:49Þ

Equation (2.49) was proposed in [69]. The constant Cn takes the values 8.74,
9.71, 10.6, and 11.5 for n = 1/7, 1/8, 1/9, and 1/10, accordingly [1, 2, 4, 9, 69].

In frames of logarithmic models of the velocity profiles [82], their near-wall
approximations look as

vr ¼ axr þ 2:5aVs

ð1þ a2Þ1=2
lnðnÞ; vu ¼ � 2:5Vs

ð1þ a2Þ1=2
lnðnÞ: ð2:50Þ

A validation of the logarithmic model has been performed only for a free disk,
with the heat transfer problem being not modeled. The moment coefficient CM is
given by a transcendental algebraic equation (see Sect. 3.3) [82]. Inconvenience and
complexity prevented further development and use of the logarithmic approach [82].

The integral method described in the work [48] and references includes special
arrangements for rotor–stator systems, which fall out of the scope of the present
work.

2.3.2 Thermal Boundary Layer

Heat transfer modeling in the frames of integral methods performed in the majority
of the known works [1, 2, 4, 9, 48, 64, 68, 79–81, 83–89] was based on a “theory of
local modelling” (which is a direct translation of the name used in the Russian
language literature) that stems from the method of Loytsyanskiy [60] (see also
[90]). This theory was for the first time applied to rotating-disk systems by Dorfman
[4], who postulated a so-called heat transfer law for the Stanton number:
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St ¼ MsRe
���r
T Pr�ns : ð2:51Þ

Universal constants Ms, σ, and ns do not depend on the disk surface temperature
Tw and the Prandtl number. These constants take the values σ = 0.25, ns = 0.5, and
Ms = 7.246 × 10−3 for turbulent flow, and σ = 1.0, ns = 1.0, and Ms = 0.07303 for
laminar flow [1–4]. Equation (2.51) is substituted into the thermal boundary layer
Eq. (2.23). In doing so, the only remaining unknown parameter is d��T .

In the books [1, 2], the Reynolds analogy parameter χ was involved in the
integral method instead of the enthalpy thickness d��T

qw
sw/

¼ v
cpðT1 � TwÞ
xrð1� bÞ : ð2:52Þ

The unknown parameter χ was found as a result of the solution of Eq. (2.23) by
the authors [1, 2] based on the models (2.51) and (2.52).

A power-law temperature profile in turbulent flow regime at nT = 1/5

H ¼ T � Tw
T1 � Tw

¼ nnTT ; h ¼ T � T1
Tw � T1

¼ 1�H ¼ 1� nnTT ð2:53Þ

was employed in the work [63], which for a long time had been the only one that
used the model (2.53). An additional assumption D ¼ dT=d ¼ 6 at Tw = const. used
in the work [63] is apparently erroneous and must be replaced with a model that
enables finding the parameter Δ and its dependence on the other factors (like the
model described in Sect. 2.4).

2.4 Improved Integral Method

2.4.1 Structure of the Method

Original results of the studies of fluid flow and heat transfer in rotating-disk con-
figurations outlined here stem from the investigations performed using an improved
integral method developed by the author of this work and described in the publi-
cations [3, 5, 61, 91–109]. Throughout this work, this methodology is always
named as the present integral method.

The basic statements of the present integral method are

(a) the system of Eqs. (2.17)–(2.23);
(b) turbulent velocity and temperature profiles given by improved approximations;
(c) a novel enthalpy thickness model for laminar/turbulent flow;
(d) power-law model for shear stresses and heat fluxes on the wall; and
(e) specified disk temperature distribution, together with the boundary conditions

for the temperature and velocity in inviscid (i.e., potential) flow.
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The present integral method employs the bedrock assumption that the same
mathematical model can be used for modeling laminar and turbulent boundary
layers, where the difference is made by numerical values of the certain empirical
constants of the model. This model is a mathematical expression of the analogy
between the basic characteristics of the laminar and turbulent flow under the same
boundary conditions [60]. Authors [1, 2, 4, 9] have already validated this idea with
respect to convective heat transfer in rotating-disk systems. However, the imperfect
mathematical model used in these works caused noticeable inaccuracy in the
simulation of heat transfer under certain thermal boundary conditions (see Sect. 3.2
of Chap. 3).

In the present integral method, we do not attempt to use power-law approxi-
mations of the velocity/temperature profiles in laminar flow, which involve poly-
nomials of seventh order or higher and result in cumbersome equations for the
friction coefficient and the Nusselt number. We wish to make use of simple and
transparent power-law relations for the friction coefficient and the Nusselt number
derived using power-law models of the velocity/temperature profiles for turbulent
flow. Mathematical expressions for these parameters for turbulent flow can be
extended onto laminar flow with particular constants remaining unknowns to be
found empirically via validations against the exact solution.

Consequently, the logic of the method is following: firstly, an integral method
for turbulent boundary layer is created and validated against experiments; and
secondly, the mathematical form of the integral method is elaborated and validated
for laminar flow.

2.4.2 Turbulent Flow: Velocity and Temperature Profiles

Velocity profiles are approximated using power-law models, Eq. (2.37) for vr, as
well as the first of Eqs. (2.38) and (2.40) for vφ. A quadratic polynomial approx-
imates the tangent of the flow swirl angle tanφ. The coefficients a, b, and c must
comply with the boundary conditions at the wall and at the outer edge of the
boundary layer

tanu ¼ aþ bnþ cn2; ð2:54Þ

n ¼ 0; tanu ¼ tanuw ¼ a; ð2:55Þ

n ¼ 1; tanu ¼ tanu1 ¼ vr;1=ðxr � vu;1Þ ¼ N=ð1� bÞ ¼ j; ð2:56Þ

n ¼ 1; dðtanuÞ=dn ¼ 0: ð2:57Þ
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Conditions (2.54)–(2.57) yield

a ¼ a; b ¼ �2ða� jÞ; c ¼ a� j; ðtanu� jÞ=ða� jÞ ¼ ð1� nÞ2:
ð2:58Þ

Figures 2.2 and 2.3 show profiles of the radial and tangential velocity compo-
nents for a free rotating disk (κ = 0) calculated by Eqs. (2.37) and (2.58).

The present integral method enabled finding wall values of the tangent of the
flow swirl angle α presented in Table 3.4 of Chap. 3 in comparison with α values
obtained by von Karman’s method [9]. Power-law profiles for the �vr and �vu jointly
with a quadratic Eq. (2.58) for tan φ agree well with experiments in the outer part of
the boundary layer. Here, the profiles at n = 1/9 agree with the experiments [70, 71]
(Figs. 2.2 and 2.3). The same trend demonstrates Fig. 2.4, where velocity com-
ponents �vr on �vu are interconnected via an equation resulting from Eqs. (2.37),
(2.38), (2.40), and (2.58) [61]:

�vr ¼ a�vuð1� �v1=nu ÞL: ð2:59Þ

Here, L = 2 in the present method and L = 1 in the method [9]. In the vicinity of the
wall, the value of the exponent n = 1/7–1/8 yields, however, the best agreement
with experiments. Based on Eq. (2.59) [61], a maximum in the dependence of �vr on
�vu is observed at

�vu;max ¼ nnmax; nmax ¼ n=ðnþ LÞ: ð2:60Þ

In frames of the present integral method, temperature distributions in the
boundary layer are approximated with Eq. (2.53). This appears to be in a good
agreement with the experimental data of different authors depicted in Fig. 2.5.

2.4.3 Surface Friction and Heat Transfer

Shear stresses τwφ, τwr and wall heat flux qw can be expressed with the help of a
two-layer model of the velocity and temperature profiles non-dimensionalized using
the law of the wall. Power-law profiles (2.40) and (2.53) can be re-written in wall
coordinates as

Vþ ¼ nn=
ffiffiffiffiffiffiffiffiffi
cf =2

q
; Tþ ¼ nnTT

ffiffiffiffiffiffiffiffiffi
cf =2

q
=St: ð2:61Þ

These relations are not valid in the viscous sub-layer; therefore, their place is
taken here by the linear equations
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Vþ ¼ zþ; Tþ ¼ Pr zþ: ð2:62Þ

Equations (2.61) and (2.62) must be spliced at the boundary zþ1 of the viscous
sub-layer and at the boundary zþ1T of the heat conduction sub-layer, accordingly. In
doing so, one can come to relations for the friction coefficient and the Stanton
number:

cf =2 ¼ ðzþ1 Þ2ðn�1Þ=ðnþ1Þ Re�2n=ðnþ1Þ
V� ; ð2:63Þ

St ¼ ðzþ1 ÞnT�1Re�nT
V� ðcf =2Þ 1�nTð Þ=2D�nT ðzþ1T

�
zþ1 ÞnT�1Pr�nT : ð2:64Þ

Instead of the coordinate zþ1 , its modification Cn ¼ ðzþ1 Þ1�n is often used. Cn is a
constant whose dependence on the exponent n is clarified in the comments to
Eq. (2.49). The constant zþ1 takes the values 12.54, 13.44, 14.23, and 15.09 for
n = 1/7, 1/8, 1/9, and 1/10, respectively. Based on Eq. (2.47), shear stresses τw, τwφ,
and τwr are mutually related as

swr=q ¼ C�2=ðnþ1Þ
n sgnð1� bÞðm=dÞ2n=ðn�1Þðxr 1� bj jÞ2=ðn�1Það1þ a2Þ0:5ð1�nÞ=ð1þnÞ;

sw/=q ¼ �C�2=ðnþ1Þ
n sgnð1� bÞðm=dÞ2n=ðn�1Þðxr 1� bj jÞ2=ðn�1Þ

� ð1þ a2Þ0:5ð1�nÞ=ð1þnÞ:
ð2:65Þ

In Eq. (2.64), the unknown Δ to be found is a function of the Prandtl number Pr,
as well as the distribution of Tw(r). The ratio ðzþ1T

�
zþ1 Þ depends on the Pr number
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Fig. 2.5 Profiles of the non-dimensional temperature θ in the turbulent boundary layer over a free
rotating disk [3]. Experiments [72], qw = const., Reω = 1.0 × 106: 1—inner heater on, 2—inner
heater off. Calculations by Eq. (2.53): 3—nT = 1/5, 4—1/4
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only. One can denote ðzþ1T
�
zþ1 ÞnT�1Pr�nT ¼ Pr�np , with the exponent пp remaining

so far unknown.
A condition пT = n will be often employed below, which leads to a simplification

of the expressions for the Stanton number and the Nusselt number:

St ¼ ðcf =2ÞD�nPr�np ; ð2:66Þ

Nu ¼ St
V�r
m

Pr ¼ St RexPr b� 1j jð1þ a2Þ1=2: ð2:67Þ

2.4.3.1 Integral Equations

Having integrated Eqs. (2.17) and (2.18) with respect to the z-coordinate in view of
Eqs. (2.37)–(2.40), (2.58), one can derive the following ordinary differential
equations [61]:

d
dr

drðxrÞ2 1� bð Þ2 j A1aþ A2jð Þ � B1a
2 þ B2ajþ B3j

2
� �� n o

þ dxr2ð1� bÞ d Nxrð Þ
dr

j� A1aþ A2jð Þ½ �
þ qd xrð Þ2 C1 þ C2bþ C3b

2� � ¼ rswr=q; ð2:68Þ

d
dr

dx2r4ð1� bÞ aðD1 þ bD2Þ þ j D3 þ bD4ð Þ½ �� �
� xrð Þ2b d

dr
dxr2ð1� bÞðA1aþ A2jÞ
�  ¼ �r2swu=q; ð2:69Þ

where

A1 ¼ 1=ðnþ 1Þ � A2; A2 ¼ 2=ðnþ 2Þ � 1=ðnþ 3Þ;
B1 ¼ 1=ð2nþ 1Þ � 2=ðnþ 1Þ þ 6=ð2nþ 3Þ � 2=ðnþ 2Þ þ 1= 2nþ 5ð Þ;
B2 ¼ 2=ðnþ 1Þ � 10= 2nþ 3ð Þ þ 4=ðnþ 2Þ � 2=ð2nþ 5Þ;
B3 ¼ 4=ð2nþ 3Þ � 2=ðnþ 2Þ þ 1=ð2nþ 5Þ;
C1 ¼ 1� 2=ðnþ 1Þ þ 1=ð2nþ 1Þ;
C2 ¼ �2 1=ð2nþ 1Þ � 1=ðnþ 1Þð Þ;
C3 ¼ �1þ 1= 2nþ 1ð Þ;
D1 ¼ A1 �D2;

D2 ¼ 1=ð2nþ 1Þ � D4;

D3 ¼ A2 �D4;

D4 ¼ 1=ðnþ 1Þ � 1=ð2nþ 3Þ:
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Equation (2.20) for the thermal boundary layer integrated with respect to z and
account for Eqs. (2.37), (2.38), (2.40), (2.53), and (2.58) can be written as

d
dr

dxr2 1� bð ÞF1 T1 � Twð Þ� þ dT1
dr

dxr2 1� bð ÞF2

¼ �St �rD�nT Pr�nP T1 � Twð Þ; ð2:70Þ

where

F1 ¼ E1; F2 ¼ E2 at D� 1; F1 ¼ E3; F2 ¼ E4 at D� 1;

E1 ¼ Dnþ1ðaa�T þ bb�TDþ cc�TD2Þ;
a�T ¼ 1=ð1þ nþ nTÞ � 1=ð1þ nÞ;
b�T ¼ 1=ð2þ nþ nTÞ � 1=ð2þ nÞ;
c�T ¼ 1=ð3þ nþ nTÞ � 1=ð3þ nÞ;
E2 ¼ Dnþ1½a=ðnþ 1Þ þ bD=ðnþ 2Þ þ cD2�ðnþ 3Þ�;
E3 ¼ E5 þ jE6;

E4 ¼ aA1 þ jðD� 1Þ þ jA2;

E5 ¼ að�A1 þ D�nTD2TÞ;
D2T ¼ 1= 1þ nþ nTð Þ � D4T ;

E6 ¼ ðD� D�nT Þ=ðnT þ 1Þ � Dþ 1� A2þD�nTD4T ;

D4T ¼ 2=ð2þ nþ nTÞ � 1=ð3þ nþ nTÞ:

The mass flow rate through the boundary layer can be expressed as

_md
�ðqxr3Þ ¼ 2pð1� bÞðA1aþ A2jÞd=r: ð2:71Þ

Equations (2.68)–(2.70) involve three unknowns:

(a) in the entraining boundary layers: α, δ, and Δ for specified β, as well as T∞;
and

(b) in the Ekman-type boundary layers: α, β for a specified mass flowrate _md ¼
const: (i.e., specified distribution of δ), as well as unknown T∞ for a specified
Δ = const.

In case (a), Eqs. (2.68)–(2.70) can be solved analytically at the boundary con-
ditions (2.27)–(2.31) (and N = const.), assumptions α = const. and Δ = const. and a
power law for the radial distribution of the boundary layer thickness δ * rm. If the
boundary conditions are approximated with arbitrary functions, Eqs. (2.68)–(2.70)
are to be solved numerically being re-written to a notation that enables using the
Runge–Kutta method [92, 96]:
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a0 ¼ U1U4 þ U2ð Þ= 1� U1U3ð Þ;
�d0 ¼ U2U3 þ U4ð Þ= 1� U1U3ð Þ;

(
ð2:72Þ

D0 ¼ S1 � S2 � S3ð Þ=S4: ð2:73Þ

Here,

U2 ¼ f½sgnð1� bÞ cfr
�
2

�� ���r3Re2V�=
�d2 � Z1�d

� G1
�d� G2�=ð�d�rÞ � Q2�r

2g=Q1;

U4 ¼ f�sgnð1� bÞ cfu
�
2

�� ���r2Re2V�=
�d2 � �d½aQ0

3 þ �Q0
4

þ ðbRexÞ0ðaQ5 þ Q6Þ�=Q7g;
U1 ¼ �Z1=ð�dQ1Þ; U3 ¼ ��dQ3=Q7;

Z1 ¼ Re2xð1� bÞ2½�B1a
2 þ ajðA1 � B2Þ þ j2ðA2 � B3Þ�;

G1 ¼ Re2xðC1 þ C2bþ C3b
2Þ;

G2 ¼ Re2xð1� bÞ�d½�A1aþ jð1� A2Þ��v0r;1;

Q1 ¼ Re2xð1� bÞ2½�2aB1 þ jðA1 � B2Þ�; Q3 ¼ �Re2xð1� bÞ2D1

Q2 ¼ Re2xif�a2B1½�r2ð1� bÞ2�0
þ aðA1 � B2Þ½�r 1� bð Þ�vr;1�0 þ ðA2 � B3Þð�v2r;1Þ0g;

Q4 ¼ �Re2xð1� bÞ�vr;1D3=�r; Q5 ¼ �Rexð1� bÞA1;

Q6 ¼ �Rexi�r�vr;1A2; Q7 ¼ aQ3 þ Q4;

�vr;1 ¼ vr;1 =vr;1 xað Þ; Rexi ¼ xr2i =m; cfr=2
�� �� ¼ ðcf =2Þa=ð1þ a2Þ1=2;

cfu=2
�� �� ¼ ðcf =2Þ=ð1þ a2Þ1=2; �d ¼ d=ri; �r ¼ r=ri:

Given Δ ≤ 1 in Eq. (2.73), we have

S1 ¼ �Rex 1� bj jð1þ a2Þ1=2Stð�T1 � �TwÞ;
S2 ¼ �T 0

1�dRexD
nþ1½að1� bÞ=ðnþ 1Þ � 2Dðað1� bÞ � NÞ=ðnþ 2Þ

þ D2ðað1� bÞ � NÞ=ðnþ 3Þ�;
S3 ¼ Dnþ1L01 þ Dnþ2L02 þ Dnþ3L03; S4 ¼ L1ðnþ 1ÞDn þ L2ðnþ 2ÞDnþ1 þ L3ðnþ 3ÞDnþ2;

L1 ¼ L0a�Tað1� bÞ; L2 ¼ L0b�Tð�2Þ½að1� bÞ � N�; L3 ¼ L0c�T ½að1� bÞ � N�;
L0 ¼ �dRexð�T1 � �TwÞ; �T ¼ T=Tref :
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The function S1 has the identical form for Δ ≥ 1 and Δ ≤ 1.

ForD� 1 : S2 ¼ �T 0
1�dRex a 1� bð ÞA1 þ NA2 þ N D� 1ð Þ½ �;

S3 ¼ L01�C
�
6T þ L02�C

�
7T ;

S4 ¼ �nTD
�nT�1D2TL1� þ ½ð1þ nTD

�nT�1Þ=ðnT þ 1Þ
� D4TnTD

�nT�1 � 1�L2�;
L1� ¼ L0 1� bð Þa;
L2� ¼ L0N;

C�
6T ¼ �A1 þ D�nTD2T ;

C�
7T ¼ ðD� D�nT Þ=ðnT þ 1Þ � Dþ 1� A2 þ D4TD

�nT :

Derivatives with respect to the radial coordinate d=d�r are denoted here with
primes; ri is a characteristic radius (for instance, the inlet radius that is used here).

In case (b), i.e., in the Ekman-type layers

a0 ¼ cf
2 aðb� 1ÞRexð1þ a2Þ1=2 4pA1ri

B1Cwb
þ db

d�r
a

b�1 � C3½bþn=ðnþ1Þ�
�rðb�1ÞaB1

� a
�r ;

b0 ¼ � cf
2 ð1� bÞ2Rexð1þ a2Þ1=2 4pA1ri

D1Cwb
� 2

�r b 1� A1
D1

� �
� 1

h in o.
1� A1

D1

� � ;
8<
:

ð2:74Þ

d�T1
d�r

¼ St
V�r
m

2p
0:5Cw

ri
b

1
KH

�T1 � �Twð Þ þ d�Tw
d�r

� �
KH

KH � 1
: ð2:75Þ

In the Ekman-type layers, authors [1, 2] recommended to assign the parameter
KH to be constant [92, 95, 97]:

KH ¼ 1� ðD2T=A1ÞD�nT ¼ const: or D ¼ const: ð2:76Þ

2.5 Disk Rotation in a Fluid Rotating as a Solid Body
and Simultaneous Accelerating Imposed Radial Flow

We will consider here flows where β = const., N = const., and κ > 0. The
assumption β = const. outlines the solid-body rotation case that occurs in rotor–
stator geometries. The assumption N = const. describes the case of accelerating
radial flow, which occurs around the stagnation point of flow impinging onto a
perpendicular plate. If κ > 0, fluid flow over a rotating disk never exhibits recir-
culation [1, 2, 68]. Given these assumptions, one can solve Eqs. (2.68) and (2.69)
analytically. This solution can be written as [3]
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d ¼ Cdr
m; Cd ¼ cðx=mÞ�2n=ð3nþ1Þ; d=r ¼ cRe�2n=ð3nþ1Þ

x ; ð2:77Þ

a = const:; m ¼ ð1� nÞ=ð3nþ 1Þ; ð2:78Þ

c ¼ c� 1� bj jð1�nÞ=ð3nþ1Þ; ð2:79Þ

CM ¼ eMRe
�2n=ð3nþ1Þ
u ; ð2:80Þ

_md=ðlrÞ ¼ emRe
ðnþ1Þ=ð3nþ1Þ
x ; ð2:81Þ

cf =2 ¼ AcRe
�2n=ð3nþ1Þ
x ; ð2:82Þ

a ¼ �H2=2H3 þ ½ðH2=2H3Þ2 � H1=H3�1=2; ð2:83Þ

c� ¼ C�2=ð3nþ1Þ
n ð1þ a2Þ0:5ð1�nÞ=ð3nþ1ÞH�ðnþ1Þ=ð3nþ1Þ

9 ; ð2:84Þ

em ¼ e�m 1� bj j2ðnþ1Þ=ð3nþ1Þ; e�m ¼ 2pcðA1aþ A2jÞsgnð1� bÞ; ð2:85Þ

eM ¼ 8p
5� 4n=ð3nþ 1ÞC

� 2
nþ1

n c
2n
nþ1� 1� bj j2ðn�1Þ

3nþ1 ð1þ a2Þ 1�n
2ðnþ1Þsgnð1� bÞ; ð2:86Þ

Ac ¼ C�2=ðnþ1Þ
n c�2n=ðnþ1Þð1þ a2Þ�n=ðnþ1Þ b� 1j j�2n=ðnþ1Þ; ð2:87Þ

where

H1 ¼ C3ðb� C5Þ þ ðb� 1Þj2H4; H2 ¼ jðbH5 þ H6Þ;
H3 ¼ bH7 þ H8;

H4 ¼ 1þ ð2þ mÞA2 � ð3þ mÞB3; H5 ¼ A1ð2þ mÞ
� B2ð3þ mÞ þ D4ðmþ 4Þ � A2ð2þ mÞ;

H6 ¼ �A1ð2þ mÞ þ B2ð3þ mÞ þ D3ð4þ mÞ;
H7 ¼ �ð3þ mÞB1 þ ð4þ mÞD2 � ð2þ mÞA1;

H8 ¼ ð3þ mÞB1 þ ð4þ mÞD1;C5 ¼ C1=C3;

H9 ¼ a½ðD1 þ bD2Þð4þ mÞ � bð2þ mÞA1�
þ j½ðD3 þ bD4Þð4þ mÞ � bA2ð2þ mÞ�:

ð2:88Þ

Equation (2.70) can be solved analytically at the boundary conditions (2.29)–
(2.31) provided that Δ = const., Pr = const., and n = nT. An additional condition is
D2T = D2 and D4T = D4.

Equation (2.70) is to be solved jointly with Eq. (2.69), in view of Eqs. (2.31),
(2.67), (2.77) and (2.78). As a result, one can derive [91]
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F1 2þ mþ n�ð Þ þ bn�
b� 1

F2

� �
DnPrnp ¼ ð4þ mÞC4 þ 2b

b� 1
C5: ð2:89Þ

Functions F1 and F2 are clarified in explanations to Eq. (2.70);
C4 ¼ �ðaD1 þ jD2Þ, C5 ¼ 1=ðnþ 1Þ þ 1=ðnþ 2Þ þ 1=ðnþ 3Þ. Solutions of
Eq. (2.89) for the cases Δ ≥ 1 and Δ ≤ 1 are different (which is manifested via
different mathematical expressions for F1 and F2 at Δ ≥ 1 and Δ ≤ 1). Heat transfer
conditions at Δ ≥ 1 can be observed for gases at Pr ≤ 1. Conditions with Δ ≤ 1 take
place at heat transfer in liquids for Pr ≥ 1 (see Chap. 6).

Given simultaneously non-zero values of β and N, the algebraic Eq. (2.89) is
transcendental. At N = 0 and Δ ≥ 1, there exists an explicit solution for the
parameter Δ. The exponent np for flow over the free rotating disk is specified below.

Nusselt and Stanton numbers are given by the following equations:

St ¼ AcRe
�2n=ð3nþ1Þ
x D�nPr�np ; ð2:90Þ

Nu ¼ Acð1þ a2Þ1=2 1� bj jReðnþ1Þ=ð3nþ1Þ
x D�nPr1�np : ð2:91Þ

The present integral method is thoroughly validated for turbulent air flow and
extended to laminar flow in Chaps. 3 and 4. Simulations for a free rotating disk
(β = 0, N = 0) are described in detail in Chap. 3. Cases of a rotating disk in a fluid
that (a) co-rotates as a solid body (β = const., N = 0), and (b) is uniformly accel-
erating and non-rotating (β = 0, N = const.), as well as for the case of turbulent
through flow between parallel co-rotating disks are analyzed in Chap. 4.
A description of an extension of the integral method for gases and liquids at Prandtl
or Schmidt numbers larger than unity is documented in Chap. 6.
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