
Chapter 1
Overview of Rotating Flows

1.1 Applications of Rotating Flows

Rotating flows can be often met in different industrial applications. Rotating flows
include [1] (i) flows caused by system rotation, (ii) swirl flows caused by swirl
generators, and (iii) curvilinear flows in turns and bends. Common for these rotating
flows is the emergence of volume forces (i.e., centrifugal and Coriolis forces)
affecting the flow patterns, though the nature of these forces is different.

A large part of this work is devoted to rotating flows caused by system rotation.
These include several types of rotating-disk systems, as well as straight pipes
rotating about a parallel axis. Swirl flows are considered as applied to some of the
rotating configurations mentioned above. Curvilinear flow effects are studied in
detail while investigating different geometries of two-pass ribbed and smooth
channels with 180° bends.

Rotating-disk systems are typically employed in gas turbine design, electro-
chemistry (rotating-disk electrodes), bio- and chemical reactors, transport engi-
neering (automobile breaks), rotating-disk cleaners, etc. This work incorporates
results of investigations for free rotating disks or disks placed in a fluid subjected to
radial acceleration or rotating as a solid body (Fig. 1.1a), as well as impingement
cooling of a rotating disk (Fig. 1.1b).

Flows between a cone and a disk with the cone apex touching the disk surface
are used in medical equipment, viscosimetry, etc. Results of simulations for con-
figurations where the disk and the cone rotate independently (Fig. 1.2a) and sta-
tionary conical diffusers with swirl flows in them (Fig. 1.2b) are outlined in this
work.

Straight pipes rotating about a parallel axis (Fig. 1.3a) represent air cooling
channels of electric motors. Configuration and location of such pipes and rotation
effects on fluid flow and heat transfer in them are investigated in the present work.

Two-pass ribbed and smooth channels with 180° bends (Fig. 1.3b) are typical
geometries of internal cooling channels of gas turbine blades. Effect of the aspect
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ratios of the inlet and outlet passes of such channels, design of the bend region
itself, location and height of the ribs on fluid flow, and heat transfer are also studied
in detail in this work.

1.2 Volume Forces and Their Description

Fluid particles are subject to effects of volume forces and surface forces [3].
Volume forces affect each elementary volume of fluid (fluid particle). Inertia,
gravity, magnetic, electric forces, etc. are classified as volume forces. Surface forces
act on elementary surface segments. Pressure and frictional (viscous) forces are
examples of surface forces.

Global gravity of the Earth engenders gravitational forces. Acceleration/
deceleration of the configuration, where fluid flows, causes inertia forces. For
instance, system rotation, as well as rotation of a fluid in a stationary configuration,
also results in inertia forces. A study of effects of electromagnetic forces is not an
objective of the present work.

Fig. 1.1 Rotating-disk systems: a a free rotating disk and a disk placed in a rotating fluid,
b impingement cooling of a rotating disk [2]

Fig. 1.2 Rotating flow between a rotating disk and/or a cone (a), and b swirl flow in a stationary
conical diffuser [2]

Fig. 1.3 Pipe rotating about a parallel axis (a); two-pass ribbed channel with a 180° bend (b)
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In rotating systems, inertia forces are caused by the motion of the configuration
itself and peculiarities of fluid flow. Inertia forces can also result from streamline
curvature in rotating flows in a stationary configuration (for instance, swirl or
curvilinear flows). In this case, the direction and strength of the inertia forces are
determined by counteraction of the velocity field with pressure and viscous forces.

Inertia and gravity forces can be described by an expression

F ¼ jq; ð1:1Þ

where j is a volume force acceleration. For example, on the Earth surface, j = g for
gravity force. Volume forces are reduced here (and throughout this chapter) to a
unit of volume; boldface symbols denote vectors.

Centrifugal forces are caused by system rotation or streamline curvature and are
directed outwards and orthogonal to the axis of rotation

Fc ¼ qx� ðx� RÞ ¼ �qx � R � xð Þ þ qRx2: ð1:2Þ

Here the local radius vector R of a fluid particle is counted relative to the rotation
axis; the symbol × stands for a vector product. Vectors R and ω are perpendicular to
each other, therefore the scalar product R � x is equal to zero. System rotation is
absent in curvilinear or swirl flows, hence a local rotation velocity at each location
can be written as ω = V/R, and Eq. (1.2) reduces to

Fc ¼ qR V=Rð Þ2¼ qV2=R; ð1:3Þ

where V is the relative velocity, i.e., fluid velocity relative to the considered
configuration.

Coriolis forces emerge in rotating systems, where the vectors of the relative
velocity V and angular velocity of rotation ω are not parallel to each other. In a
rotating coordinate system [2, 4, 5], Coriolis force is written as

FCor ¼ �2qx� V: ð1:4Þ

Coriolis force is orthogonal to a surface, where the vectors ω and V are located.
If the origins of the vectors FCor, ω, and V are matched, the Coriolis force is
directed toward the point from which the shortest turn from ω to V would be seen
counterclockwise.

Volume forces being often a main cause of a particular type of flow can also
(a) engender secondary flows (in form of vortex or recirculation flows) or (b) render
a stabilizing/destabilizing effect on the fluid. The latter effects can exhibit them-
selves only if volume forces undergo spatial variation in frames of the given
configuration. An excessive volume force is a difference of the volume forces
between two points of the configuration

DF ¼ F2 � F1 ¼ q2 j2 � q1 j1: ð1:5Þ
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Nonuniformity in the distribution of density and/or volume force acceleration in
the configuration engender the excessive volume force.

Shchukin [5] wrote that “the character of fluid flow can be affected only by the
volume forces, whose value is different from the pressure gradient caused by these
volume forces and counteracting with them.” In other words, the difference between
the volume force and pressure gradient simultaneously acting in the configuration is
in reality the excessive volume force affecting the flow.

All physical processes on the Earth are subject to the gravitational field said to be
simple. If volume forces of different nature act simultaneously in the system, the
field of volume forces is complex. As compared to inertia forces, the gravitational
force is very often insignificant being therefore neglected in physical models.

The surface restricting the flow pattern can be located at different angles with
respect to the volume force vector. Also, volume force fields can be steady and
unsteady. If the inequality grad|F| > 0 characterizes the volume force field, its
effects on fluid flow are conservative (stabilizing the flow, suppressing turbulence,
or sporadic perturbations). Once grad|F| < 0, effects of the volume forces on fluid
flow are active (disturbing it, causing secondary flows and increasing turbulence)
[2, 5].

1.3 Differential Equations of Continuity, Momentum,
and Heat Transfer

Mathematical modeling of any physical process requires stating a boundary prob-
lem. In frames of the methodology used in the present work, this means writing
differential equations describing momentum and heat/mass transfer, continuity
equation, equation of state, as well as proper boundary and initial conditions.

In a rotating coordinate system, for incompressible subsonic flow of a fluid with
constant physical properties and negligible viscous dissipation effects, the equations
of momentum transfer and continuity can be written in a vector form [2, 4, 6]

q
DV
Dt

¼ q
@V
@t

�
|fflffl{zfflffl}

I

þ Vgradð ÞV
�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
II

¼ qF|{z}
III

� grad p|fflffl{zfflffl}
IV

þ divP|fflffl{zfflffl}
V

� 2qx� V|fflfflfflfflffl{zfflfflfflfflffl}
VI

� qx� x� Rð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
VII

; ð1:6Þ

divðqVÞ ¼ 0: ð1:7Þ

The value D/Dt in Eq. (1.6) is the total derivative incorporating local and con-
vective derivatives, i.e., terms I and II, respectively (where term I is zero for steady
state processes). Term III stands for the volume forces except for centrifugal and
Coriolis forces. Terms IV and V represent pressure and friction effects,
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respectively. Here П is the stress tensor including viscous and turbulent stresses.
Terms VI and VII denote Coriolis FCor and centrifugal FC forces, respectively. As
above, the relative velocity vector V denotes flow velocity with respect to the
coordinate system associated with the rotating configuration.

The tensor of stresses П in Eqs. (1.1) and (1.6) has the following form:

P ¼
s11 s21 s31
s21 s22 s23
s31 s23 s33

0
@

1
A; ð1:8Þ

where τik are stress components including viscous and turbulent stresses.
In a nonrotating coordinate system, the vector V in Eqs. (1.6) and (1.7) denotes

the absolute velocity, and terms VI and VII are neglected. In doing so, Lamé
coefficients in a curvilinear coordinate system and turbulent viscosity model
account for the centrifugal force effects.

For the volume force field F = grad A representing the potential A, one can
introduce a so-called modified (reduced) pressure

p� ¼ pþ qA� 1
2
qðx� RÞðx� RÞ2; ð1:9Þ

and Eq. (1.6) can be rewritten as

@V
@t

þ ðVgradÞV þ 2qx� V ¼ qF� 1
q
grad p� � 1

q
divP: ð1:10Þ

In a Cartesian coordinate system, Navier–Stokes, continuity and energy equa-
tions for incompressible turbulent flow with constant fluid properties with account
for the volume forces can be written as [6]

q
@u
@t

þ u
@u
@x

þ v
@u
@y

þ w
@u
@z

� �
¼ Fx � @p

@x
þ l

@2u
@x2

þ @2u
@y2

þ @2u
@z2

� �

� q
@u02

@x
þ @u0v0

@y
þ @u0w0

@z

 !
; ð1:11Þ

q
@v
@t

þ u
@v
@x

þ v
@v
@y

þ w
@v
@z

� �
¼ Fy � @p

@y
þ l

@2v
@x2

þ @2v
@y2

þ @2v
@z2

� �

� q
@v02

@y
þ @u0v0

@x
þ @v0w0

@z

 !
; ð1:12Þ
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q
@w
@t

þ u
@w
@x

þ v
@w
@y

þ w
@w
@z

� �
¼ Fz � @p

@z
þ l

@2w
@x2

þ @2w
@y2

þ @2w
@z2

� �

� q
@w02

@z
þ @u0w0

@x
þ @v0w0

@y

 !
; ð1:13Þ

@u
@x

þ @v
@y

þ @w
@z

¼ 0; ð1:14Þ

@T
@t

þ u
@T
@x

þ v
@T
@y

þ w
@T
@z

¼ a
@2T
@x2

þ @2T
@y2

þ @2T
@z2

� �

� @u0T 0

@x
þ @v0T 0

@y
þ @w0T 0

@z

� �
: ð1:15Þ

In a cylindrical polar coordinate system, Navier–Stokes, continuity and energy
equations for incompressible turbulent flow with constant fluid properties including
volume forces can be written as [2, 7, 8]

q
@vr
@t

þ vr
@vr
@r

þ vu
r
@vr
@u

� v2u
r
þ vz

@vr
@z

 !
¼ Fr � @p

@r
þ l r2vr � vr

r2
� 2
r2
@vu
@u

� �

� q
1
r
@

@r
rv02r
� �

þ 1
r
@

@u
v0rv0u
� ��

þ @

@z
qv0rv0z
	 
� 1

r
v02u
� ��

;

ð1:16Þ

q
@vu
@t

þ vr
@vu
@r

þ vu
r
@vu
@/

þ vrvu
r

þ vz
@vu
@z

� �
¼ Fu � @p

@u
þ l r2vu þ 2

r2
@vr
@u

� vu
r2

� �

� q
1
r2

@

@r
r2v0rv0u
� ��

þ 1
r
@

@u
v02u
� �

þ @

@z
v0uv0z
� ��

;

ð1:17Þ

q
@vz
@t

þ vr
@vz
@r

þ vu
r
@vz
@u

þ vz
@vz
@z

� �
¼ Fz � @p

@z
þ l r2vz
	 


� q
1
r
@

@r
rv0rv0z
	 
�

þ 1
r
@

@u
v0uv0z
� �

þ @

@z
v02z
� ��

; ð1:18Þ
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@ðrvrÞ
@r

þ 1
r
@ðrvuÞ
@u

þ @ðrvzÞ
@z

¼ 0; ð1:19Þ

@T
@t

þ vr
@T
@r

þ vu
r
@T
@u

þ vz
@T
@z

¼ 1
r
@

@r
r a

@T
@r

� v0rT 0
� �� �

þ 1
r2

@

@u
a
@T
@u

� rv0uT 0
� �

þ @

@z
a
@T
@z

� v0zT 0
� �

:

ð1:20Þ

If the fluid flow is steady state and axisymmetric, while heat transfer is unsteady,
all derivatives with respect to the φ-coordinate, as well as derivatives with respect to
time in Eqs. (1.16)–(1.18) are equal to zero: @=@u � @=@t � 0. As a consequence,
Eqs. (1.16)–(1.20) can be rewritten as

vr
@vr
@r

� v2u
r
þ vz

@vr
@z

¼ 1
q
Fr � 1

q
@p
@r

þ m
@2vr
@r2

þ 1
r
@vr
@r

� vr
r2

þ @2vr
@z2

� �

� 1
r
@

@r
rv02r
� �

þ @

@z
qv0rv0z
	 
� 1

r
v02u
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; ð1:21Þ

vr
@vu
@r

þ vrvu
r

þ vz
@vu
@z

¼ 1
q
Fu þ m

@2vu
@r2

þ 1
r
@vu
@r

� vu
r2

þ @2vu
@z2

� �

� 1
r2

@

@r
r2v0rv0u
� �

þ @

@z
v0uv0z
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; ð1:22Þ

vr
@vz
@r

þ vz
@vz
@z

¼ 1
q
Fz � 1

q
@p
@z

þ m
@2vz
@r2

þ 1
r
@vz
@r

þ @2vz
@z2

� �

� 1
r
@

@r
rv0rv0z
	 
þ @

@z
v02z
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; ð1:23Þ

@ðrvrÞ
@r

þ @ðrvzÞ
@z

¼ 0; ð1:24Þ

@T
@t

þ vr
@T
@r

þ vz
@T
@z

¼ 1
r
@

@r
r a

@T
@r

� v0rT 0
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þ @

@z
a
@T
@z

� v0zT 0
� �

: ð1:25Þ

For laminar flow, all terms including fluctuating velocity/temperature compo-
nents in Eqs. (1.11)–(1.25) are zero.

Equations (1.11)–(1.25) will be transformed to a rotating coordinate system in
the subsequent chapters individually for each rotating configuration.
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1.4 Differential Equation of Convective Diffusion

The differential equation describing convective diffusion in a fluid looks analogous
to the energy equation. The difference consists in that the concentration C in the
equation substitutes the temperature, while the diffusion coefficient Dm replaces the
thermal diffusivity coefficient. Convective diffusion equations in Cartesian and
cylindrical polar coordinate systems are written below.

In the Cartesian coordinate system, the convective diffusion equation for
incompressible turbulent flow with constant physical properties of the substance
taking part in the convective diffusion process has the following form:

@C
@t

þ u
@C
@x

þ v
@C
@y

þ w
@C
@z

¼ Dm
@2C
@x2

þ @2C
@y2

þ @2C
@z2

� �

� @u0C0

@x
þ @v0C0

@y
þ @w0C0

@z

� �
: ð1:26Þ

In a cylindrical polar coordinate system, the convective diffusion equation for
incompressible turbulent flow with constant physical properties of the substance
looks as follows:

@C
@t

þ vr
@C
@r

þ vu
r
@C
@u

þ vz
@C
@z

¼ 1
r
@

@r
r Dm

@C
@r

� v0rC0
� �� �

þ 1
r2

@

@u
Dm

@C
@u

� rv0uC0
� �

þ @

@z
Dm

@C
@z

� v0zC0
� �

:

ð1:27Þ

Once the fluid flow is steady state and axisymmetric, whereas mass transfer is
unsteady, all φ-derivatives in Eq. (1.27) are equal to zero.

@C
@t

þ vr
@C
@r

þ vz
@C
@z

¼ 1
r
@

@r
r Dm

@C
@r

� v0rC0
� �� �

þ @

@z
Dm

@C
@z

� v0zC0
� �

: ð1:28Þ

Again, for laminar flow, terms containing only fluctuating velocity/concentration
components in Eqs. (1.26)–(1.28) are zero.

The convective diffusion equation is employed in Chap. 6 while modeling
convective heat/mass transfer for the Prandtl or Schmidt numbers larger than unity.
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