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Preface

This monograph was conceived as an overview of the potential and achievements
of the analytical and numerical modelling of convective heat and mass transfer in
different types of rotating flows. Flow rotation can be a consequence of (i) system
rotation, (ii) flow swirl imposed by so-called swirl generators and (iii) curvature of
surfaces or larger segments of the geometry such as turns, bends, curved connec-
tions, etc. Rotation, swirl or curvature-induced volume forces often referred to as
centrifugal and Coriolis forces can significantly affect the flow pattern, as well as
the heat and mass transfer rate.

Rotating flows arise in numerous scientific and engineering applications. As
practical examples one can mention turbomachinery, energy systems, automotive
engineering, aerospace engineering, medical equipment, processing engineering
and many others. One of the important scientific applications is a rotating disk
electrode involved in experimental determination of the diffusion coefficient in
electrolytes. A cone-plate or a cone-disk device, which includes a fixed disk and a
rotating cone that touches the disk by its apex, is widely known in measurements
of the viscosity coefficient of liquids.

One can mention several books, which elucidate many aspects of the physics and
provide quantification for many parameters of rotating flows. These are classical
books of L.A. Dorfman “Hydrodynamic Resistance and the Heat Loss of Rotating
Solids” (Oliver and Boyd, Edinburgh, UK, 1963) and V.G. Levich
“Physicochemical Hydrodynamics” (Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1962), which for many decades were desktop books for specialists in the fields of
convective heat and mass transfer in rotating disk systems. The fundamental review
monograph of J.M. Owen & R.H. Rogers “Flow and Heat Transfer in Rotating-Disc
Systems” (Research Studies Press Ltd., UK, 1989 & 1995) summarized results of
experimental investigations and theoretical modelling in the area of secondary air
cooling systems of gas turbines, including rotor−stator systems and rotating cavities
formed by parallel co-rotating disks. The book “Heat Transfer and Fluid Flow in
Rotating Coolant Channels” (Research Studies Press, J. Wiley and Sons, 1981) by
W.D. Morris is devoted mostly to experimental investigations of the hydraulic
resistance and average heat transfer in channels rotating about a parallel axis. In the
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recent book “Rotating flow” (Elsevier Inc., Amsterdam etc., 2011), P.R.N. Childs
shed light on the basic theory of rotating flows and contributed to the development
of the integral methods for rotating-disk systems, including rotor-stator configu-
rations and rotating cavities.

During the past decades, methods of experimental and theoretical investigations
of scientific and practical problems of convective heat and mass transfer, which the
aforementioned books deal with, have made considerable progress. This resulted in
obtaining new accurate experimental and numerical results for a series of rotating
geometries studied before and emerging during the past years. As a result, the
analysis and generalizations of the experimental and numerical data provided in the
aforementioned books are often insufficient. Integral methods have been rather
successfully applied to several rotating-disk geometries. However, theoretical
model assumptions underlying the known integral methods demonstrated their
restricted capabilities in light of the newly obtained experimental and numerical
data. A powerful modelling technique based on the exact self-similar solutions
of the Navier–Stokes and energy equations appeared to be insufficiently developed
for a few rotating disk geometries, where appropriate self-similar forms of the
solutions have not been derived. In addition, a few important scientific and practical
problems were not touched in the above-mentioned books: (a) transient conjugate
heat transfer; (b) uniform orthogonal flow impingement onto a disk; (c) fluid flow,
heat and mass transfer in a small gap between a rotating disk and/or a cone that
touches the disk by its apex; (d) convective heat and mass transfer at Prandtl and
Schmidt numbers, both moderately larger than unity with the application to the
experimental technique based on naphthalene sublimation in air, and much larger
than unity with the application in electrochemistry.

All said, the above became an incentive for me to undertake investigations that
were summarized in the form of a book by Shevchuk I.V. “Convective Heat and
Mass Transfer in Rotating Disk Systems (Springer Verlag, Berlin, Heidelberg,
2009). Since then, I have conducted new studies on the subject of rotating flows
published as a series of research papers. In the same time, the international scientific
community has also contributed much to this research area, which provided valu-
able material for validation and corroboration of the models and numerical results
presented in my book.

In comparison with the previous book, my new monograph outlines the further
progress in the integral methods, self-similar and analytical solutions for the
problems of convective heat and mass transfer in rotating-disk systems validated
through extensive comparisons with the experimental data including those that have
been published during the past six years. Most part of the new monograph is
devoted to system rotation-induced fluid flows and deals with several rotating-disk
geometries. Swirl flows were also modelled in some of these geometries. In addi-
tion, the scope of the new monograph was extended to cover other types of rotating
flows such as those in (a) the channels rotating around a parallel axis, and (b) the
two-pass ribbed channels with 180° bends. These studies provide examples of
design optimization of air cooling systems of the rotors of electrical motors and gas
turbine blades, respectively.
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The present book consists of nine chapters. The book is mainly focused on
convective heat transfer in air flow, with the exception of Chap. 6, which deals with
heat and mass transfer at Prandtl or Schmidt numbers larger than unity.

Chapter 1 depicts geometries studied in this book, outlines forces influencing the
flow and presents a general mathematical description in the form of momentum,
continuity, energy and convective diffusion equations written in a vector form,
Cartesian and cylindrical polar coordinate systems.

In Chap. 2, the general mathematical description is adapted to rotating disk
systems. The chapter contains also an overview of the existing methods of solution,
the integral method developed by the author, and a general analytical solution for
the turbulent boundary layer flow and heat transfer in rotating-disk systems
obtained using this method.

Chapter 3 is devoted to steady-state and unsteady heat transfer of a single
rotating disk. As demonstrated here, the present integral method is significantly
more accurate and incorporates a wider variety of thermal boundary conditions than
other integral methods. Chapter 3 critically overviews the most reliable experi-
mental data for transitional flow, provides recommendations for the calculation of
average heat transfer of an entire disk and briefly outlines some important aspects
of laminar transient heat transfer.

In Chap. 4, results of the analytical and numerical modelling of external flow
over a rotating disk and outward flow between parallel co-rotating disks are
described and compared with experimental data. In particular, Chap. 4 presents
solutions for the cases of (a) disk rotation in a fluid subject to solid-body rotation,
(b) accelerating non-rotating radial flow and (c) centrifugal swirling radial flow in a
gap between parallel co-rotating disks.

Chapter 5 focuses on laminar flow, heat and mass transfer between a disk and a
cone that touches the disk with its apex. It comprises such geometries as “rotating
cone—stationary disk”, “rotating disk—stationary cone”, “co-rotating or
contra-rotating disk and cone” and “non-rotating conical diffuser”. Novel is the
section describing effects of the Prandtl and Schmidt numbers, as well as a review
of the relevant recently published works.

In Chap. 6, results of different authors for the problems of convective heat and
mass transfer for the Prandtl and Schmidt numbers larger than unity are critically
analysed and generalized. Chapter 6 presents original theoretical models of the
author developed for naphthalene sublimation in air and electrochemical problems.
In the integral method of the author, effects of large Prandtl and Schmidt numbers
are taken into account.

Chapter 7 describes results of the CDF modelling of convective heat transfer in
pipes rotating around a parallel axis including effects of the flow angle of attack at
the inlet to the pipe, as well as influence of the cross-section geometry (circular or
elliptic pipes).

In Chap. 8, original results of the simulation and optimization of convective heat
transfer in the varying aspect ratio two-pass internal ribbed cooling channels with
180° bends are outlined and analysed from a single viewpoint.

Chapter 9 presents overall conclusions to the material presented in the book.
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Nomenclature

a Thermal diffusivity; (m2/s)
a Radial velocity gradient on the outer boundary

of the boundary layer, Eq. (2.27); (1/s)
a Semi-major axis of an ellipse; (m)
A ¼ adj=Vj Non-dimensional radial velocity gradient on the

outer boundary of the boundary layer; (–)
AR = H/W Aspect ratio; (–)
b Outer radius of a disk; (m)
b Semi-minor axis of an ellipse; (m)
Bi1 ¼ a1 b=kw Biot number at a cylindrical surface of a disk; (–)
Bi ¼ 0:5as=kw Biot number at a flat surface of a disk; (–)
Bi2 ¼ 0:5a2s=kw Biot number at a flat surface of a disk; (–)
C Concentration; (mol/m3)
cf=2 ¼ sw

�ðqV�Þ2 Surface friction coefficient; (–)

CM ¼ 4M
�ðqx2b5Þ Moment coefficient of two flat sides of a rotating

disk; (–)
cp Isobaric specific heat; (J/(kg K))
Cw ¼ _m=ðlbÞ Non-dimensional radial mass flowrate through a

cavity between two rotating disks; (–)
c0� ¼ ðTw;i � T1Þn�¼0 Constant temperature difference on the surface with

Tw,i = const. and T∞ = const.; (K)
D Disk diameter; (m)
D Diameter of the circular pipe; (m)
Dj Nozzle diameter; (m)
Dm Diffusion coefficient; (m2/s)
Dh ¼ 4S=Pe Hydraulic diameter (arbitrary cross-section); (m)

Dh ¼ 2HW
H þW

Hydraulic diameter (rectangular channel); (m)

De ¼
ffiffiffiffiffiffiffiffiffiffi
4S=p

p
Equivalent diameter; (m)

e Rib height; (m)

xv
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F Mass force per unit volume (boldface denotes
vector parameter); (N/m3)

Fx, Fy, Fz Mass force components in Cartesian coordinates
(per unit volume); (N/m3)

Fr, Fφ, Fz Mass force components in cylindrical polar coor-
dinates (per unit volume); (N/m3)

F, G, H, P Self-similar functions, Eq. (2.26); (–)
F0, G0, H0 Self-similar velocity components, free rotating disk

(subscript “0”), Eq. (2.26) at β = 0, N = 0; (–)
Fo ¼ 4awt=s2 Fourier number; (–)

FtðtÞ ¼ Twðt; rÞ � T1
Tw;iðrÞ � T1

Non-dimensional disk surface temperature in the
unsteady heat transfer problem; (–)

f ¼ DpDh=ð0:5q�V2LÞ Friction factor in a single channel/pipe; (–)
f ¼ DpDhi=ð0:5qU2

i LÞ Friction factor in a two-pass channel; (–)
f0 Friction factor, Blasius Eq. (7.11) or McAdams

Eq. (8.1) (–)
g Acceleration of gravity; (m/s2)
h = r tgγ Height of a conical gap; (m)
hj Nozzle-to-disk distance; (m)
H ¼ b=ð0:5sÞ Parameter in Eq. (4.21); (–)
H Eccentricity; (m)
H Height of a rectangular channel, m; (m)
I Turbulence intensity; (–)
j Acceleration of a mass force; (m/s2)
k Turbulent kinetic energy per unit mass; (m2/s2)

KH ¼
R dT
0 vr T � T1ð Þ dz
Tw � T1ð Þ R dT

0 vrdz

Shape-factor of the temperature profile; (–)

Km ¼ d�1 R d
0

vr
xrdz

Non-dimensional radial mass flow rate through the
boundary layer; (–)

KV ¼
R1
0 vrðvu � vu;1Þdz

ðx r � vu;1Þ R1
0 vrdz

Shape-factor of the velocity profile; (–)

L Length of a single channel/pipe; (m)
L Characteristic length in a two-pass channel; (m)

M ¼ �2p
Rb
0
r2swudr

Moment of one side of a rotating disk; (Pa m3)

_m Total radial mass flowrate through the cavity
between two rotating disks; (kg/s)

_m Mass flowrate through a pipe/channel; (kg/s)

_md ¼ 2prq
Rd
0
vrdz

Mass flowrate through the momentum boundary
layer over a rotating disk; (kg/s)

_md;T ¼ 2prq
RdT
0
vrdz

Mass flowrate through the thermal boundary layer
over a rotating disk; (kg/s)
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n Exponent in the power-law approximation of the
velocity profiles; (–)

nT Exponent in the power-law approximation of the
temperature profiles; (–)

n* Exponent in the power-law approximation of the
surface temperature, Eqs. (2.29)–(2.31); (–)

N = vr,∞/(ωr) Non-dimensional radial velocity in potential flow
outside of the boundary layer; (–)

Nu ¼ qwr
kðTw � T1Þ

Local Nusselt number for a rotating disk; (–)

Nu ¼ aDh=k Local Nusselt number, single pipe/channel; (–)
Nu ¼ aDe=k Local Nusselt number, single pipe/channel; (–)
Nu ¼ aDhi=k Local Nusselt number in a two-pass channel; (–)
Nu ¼ �aDh=k Average Nusselt number, single pipe/channel; (–)
Nu ¼ �aDe=k Average Nusselt number, single pipe/channel; (–)
Nu0 Average Nusselt number, standard conditions

(smooth straight pipe/channel, no rotation); (–)
Nu ¼ �aDhi=k Average Nusselt number, two-pass channel; (–)
Nust Average Nusselt number, straight smooth channel,

CFD simulations; (–)
Nu0 Nusselt number, Dittus-Boelter Eq. (7.10); (–)
Nu1 Nusselt number, Eq. (8.2); (–)

Nub ¼ qwb
kðTw � T1Þ

Nusselt number based on the outer radius of a
rotating disk; (–)

NuD ¼ qwD
kðTw � T1Þ

Local Nusselt number based on the diameter of a
rotating disk; (–)

NuDj ¼ qwDj

kðTw � T1Þ
Local Nusselt number at flow impingement onto a
rotating disk; (–)

Nuav ¼ qw:avb
kðTw � T1Þav

Average Nusselt number for a rotating disk; (–)

Nuav ¼
b
R b
0 NuðTw � T1ÞdrR b
0 ðTw � T1Þrdr

Average Nusselt number for a rotating disk; (–)

p Static pressure; (Pa)
p Pitch between ribs; (m)
Pe Perimeter of the pipe/channel; (m)
Pr ¼ lcp=k Prandtl number; (–)
q Heat flux per unit area; (W/m2)

qw ¼ �k dT
dz

� �
z¼0

Wall heat flux per unit area; (W/m2)

qw;av ¼
R b
0 qwrdr

�R b
0 rdr

Surface-averaged wall value of the heat flux per
unit area; (W/m2)

RaH ¼ x2H3DhbDT
2km

Rayleigh number for a rotating pipe; (–)

Rea = aD2/ν Reynolds number in radial flow over a disk; (–)
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Reω = ωr2/ν Local rotational Reynolds number for a rotating
disk; (–)

Rex ¼ xD2
h=m Rotational Reynolds number for a rotating pipe; (–)

ReωD = ωD2/ν Rotational Reynolds number based on the disk
diameter; (–)

Rexj ¼ xD2
j =m Rotational Reynolds number based on the nozzle

diameter of an impinging jet; (–)
ReΩ = Ωr2/ν Local rotational Reynolds number for rotating

cones in cone-disk systems; (–)
Reφ = ωb2/ν Rotational Reynolds number at the outer radius of a

disk; (–)
Rej = VjDj/ν Reynolds number based on an impingement

velocity; (–)
ReV� ¼ V�d=m Reynolds number based on the velocity V*; (–)

Re��T ¼ x rd��T
m

Enthalpy Reynolds number; (–)

Re ¼ ReX g21=12, Reynolds number, cone-and-plate systems; (–)
Re ¼ Rexg21=12 Reynolds number, cone-disk systems; (–)
Re ¼ �VDh=m Axial Reynolds number in a pipe; (–)
Re ¼ UiDhi=m Axial Reynolds number, two-pass channel; (–)
Ro ¼ xD=�V Rossby number in a rotating pipe; (–)
r, φ, z Cylindrical polar coordinates; (m or rad)
s Spacing (height) between rotating disks; (m)
s Thickness of a disk in the problem of unsteady

conjugate heat transfer; (m)
S Cross-section area of a pipe/channel; (m2)
S Contact surface; (m2)
Sc = ν/Dm Schmidt number; (–)
Sh ¼ amr=Dm Sherwood number for a rotating disk; (–)
Shav ¼ am;avb=Dm Average Sherwood number for a rotating disk; (–)

St ¼ qw
q cpV� ðTw � T1Þ

Stanton number; (–)

t Time; (s)
T Temperature; (K)
TB Bulk fluid temperature; (K)
Ti Inlet temperature in a pipe/channel; (K)
Tw Stationary/instantaneous wall temperature; (K)
Tw,i Initial value of the wall temperature in unsteady

heat transfer; (K)
T∞ Temperature in potential flow outside of the

boundary layer; (K)
Tref Reference temperature; (K)

Tm�out ¼ 1
_m

Z
s

Td _m
Temperature of mixing at the pipe outlet; (K)
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T+ = (Tw − T)ρ∞Vτ/qw Local temperature in wall coordinates; (K)

tanu ¼ vr
x r � vu

Tangent of the flow swirl angle; (–)

V ¼ v2r þ ðvu � x rÞ2
h i 1=2 Total velocity; (m/s)

V+ = V/Vτ Total velocity in wall coordinates; (m/s)
Vτ = (τw/ρ)

1/2 Friction velocity; (m/s)
vr, vφ, vz Velocity components in cylindrical coordinates;

(m/s)

vr ¼ vr
x r � vu;1

Non-dimensional radial velocity; (–)

vu ¼ vu � x r
vu;1 � x r

Non-dimensional tangential velocity; (–)

V� ¼ x r b� 1j jð1þ a2Þ1=2 Characteristic velocity; (m/s)

Vj Axial flow velocity at infinity or at the outlet of a
nozzle; (m/s)

�V Mean axial velocity in the pipe; (m/s)
u, v, w Velocity components in Cartesian coordinates;

(m/s)
U Velocity in a two-pass channel; (m/s)
Ub Bulk-averaged velocity, two-pass channel; (m/s)
Ui Channel mean axial velocity at the inlet of a

two-pass channel; (m/s)
W Width of a rectangular channel; (m)
Win Width of the inlet pass, two-pass channel; (m)
Wout Width of the outlet pass, two-pass channel; (m)
Wel Tip wall distance from the divider wall; (m)
Wweb Divider wall thickness; (m)
x, y, z Cartesian coordinates; (m)
x = r/b Non-dimensional radial coordinate; (–)
y = z/(0.5s) Non-dimensional axial coordinate in the problem of

heat conduction inside a disk; (–)
~z ¼ z=h Non-dimensional coordinate in conical gaps; (–)
z+ = zVτ/ν Wall-law coordinate; (–)
z� ¼ z=Dh Dimensionless axial coordinate in a pipe; (–)
a ¼ �swr=swu Tangent of the flow swirl angle on the wall; (–)
α Heat transfer coefficient; (W/(m2 K))
α S Overall cooling efficiency; (W/K)
αm Mass transfer coefficient; (m/s)

am;av ¼ 2
b2

Zb

0

amrdr
Surface-averaged mass transfer coefficient; (m/s)
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β = vφ,∞/(ωr) Parameter of flow swirl, i.e. Dimensionless tan-
gential velocity component in potential flow out-
side of the boundary layer; (–)

β Angle of attack at the inlet in a rotating pipe; (°)
γ Angle of conicity between a cone and a disk; (°)
δ Thickness of a momentum boundary layer; (m)
�d ¼ d=b Non-dimensional thickness of a momentum

boundary layer; (–)
δT Thickness of a thermal boundary layer; (m)
Δ = δT/δ Relative thickness of a thermal/diffusion boundary

layer; (–)
ε Dissipation rate of k per unit mass: (m2/s3)
δ* Displacement thickness; (m)
δ** Momentum thickness; (m)

d��T ¼
ZdT
0

vr
x r

T � T1
Tw � T1

dz
Enthalpy thickness; (m)

d
��
T ¼ d��T =d Non-dimensional enthalpy thickness; (–)

DP� ¼ Dp=ð0:5qU2
i Þ Relative pressure drop; (–)

DT ¼ Tw � T1 Temperature difference on a surface; (K)

DTav ¼
R b
0 ðTw � T1ÞrdrR b

0 rdr

Surface-averaged temperature difference; (K)

DTi ¼ Tw;iðrÞ � T1 Surface temperature difference at the initial moment
of time t = 0 in unsteady conditions; (K)

DTtðt; rÞ ¼ Twðt; rÞ � T1 Instantaneous temperature difference on a surface in
unsteady heat transfer; (K)

DTx¼1 Temperature difference on a surface at x = 1; (K)
DT ¼ DT=DTx¼1 Relative non-dimensional temperature difference on

a surface; (–)
ζ Self-similar variable, Eq. (2.26); (–)

H ¼ T � Tw
T1 � Tw

Non-dimensional temperature; (–)

h ¼ T � T1
Tw � T1

Non-dimensional temperature; (–)

#ðt; r; zÞ ¼ ðT � T1Þ=c0� Non-dimensional temperature inside a disk for
unsteady heat transfer; (–)

j ¼ tanu1 ¼ vr;1
x r � vu;1

Tangent of the flow swirl angle, potential flow; (–)

λ Thermal conductivity; (W/(m K))
μ Dynamic viscosity; (Pa s)
ν Kinematic viscosity; (m2/s)
νT Turbulent kinematic viscosity; (m2/s)
ξ = z/δ Non-dimensional coordinate; (–)
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nT ¼ z=dT Non-dimensional coordinate; (–)
ρ Density; (kg/m3)
τ Shear stress; (Pa)

sw ¼ ðs2wr þ s2wuÞ1=2 Total shear stress on the wall; (Pa)

swr ¼ lðdvr=dzÞz¼0 Radial shear stress on the wall; (Pa)
swu ¼ lðdvu=dzÞz¼0 Tangential shear stress on the wall; (Pa)

uw ¼ arctan
vr

x r � vu

� �
z¼0

Swirl angle at the wall of a rotating disk; (Pa)

uw ¼ arctan
vr

X r � vu

� �
z¼0

Swirl angle at the wall of a stationary disk; (Pa)

χ Reynolds analogy parameter, Eq. (2.52); (–)
ω Angular velocity of rotation of a disk (or

co-rotating disks); (1/s)
ω Angular velocity of rotation of a pipe; (1/s)
ω Specific dissipation rate of k (1/s)
Ω Angular velocity of rotation of a fluid in

rotating-disk systems; (1/s)
Ω Angular velocity of rotation of a cone in cone-disk

systems. (1/s)

Subscripts

av Average value
c Centrifugal forces (accelerations)
Cor Coriolis forces (accelerations)
E Ekman layers
i Initial moment of time
i Inlet to a cavity
in Inlet to a channel
j Impinging jet
lam Laminar flow
max Value at a point of maximum
ref Reference value
t Turbulent parameters
t Transient/instantaneous value of a parameter
turb Turbulent flow
T Parameters of a thermal boundary layer
tr Parameters at the point of abrupt transition from laminar to turbulent

flow
tr1 Parameters at the point of the beginning of transition from laminar to

turbulent flow
tr2 Parameters at the point of the end of transition from laminar to turbulent

flow
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tran Transitional flow
w Wall value (at z = 0)
w Thermophysical properties of the wall material
0 Standard conditions

(a) free rotating disk at vr,∞ = 0 and vφ,∞ = 0
(b) smooth non-rotating pipe/channel of a circular cross-section

1 Boundary of the viscous/heat conduction layer
1 Outer cylindrical surface of a disk
2 Flat surface of a disk in unsteady heat transfer
∞ Potential flow outside of a boundary layer
u0v0 Time-averaged pulsation turbulent values

Mathematical Symbols

r2 ¼ @2

@r2
þ 1

r
@

@r
þ 1
r2

@2

@u2 þ
@2

@z2

� 	
Operator Nabla

Acronyms

CFD Computational fluid dynamics
DES Detached-Eddy simulation
LES Large-Eddy simulation
RANS Reynolds-averaged Navier–Stokes (equations)
RSM Reynolds stress model
TLC Thermochromic liquid crystals
1D One-dimensional
2D Two-dimensional
3D Three-dimensional

xxii Nomenclature



Chapter 1
Overview of Rotating Flows

1.1 Applications of Rotating Flows

Rotating flows can be often met in different industrial applications. Rotating flows
include [1] (i) flows caused by system rotation, (ii) swirl flows caused by swirl
generators, and (iii) curvilinear flows in turns and bends. Common for these rotating
flows is the emergence of volume forces (i.e., centrifugal and Coriolis forces)
affecting the flow patterns, though the nature of these forces is different.

A large part of this work is devoted to rotating flows caused by system rotation.
These include several types of rotating-disk systems, as well as straight pipes
rotating about a parallel axis. Swirl flows are considered as applied to some of the
rotating configurations mentioned above. Curvilinear flow effects are studied in
detail while investigating different geometries of two-pass ribbed and smooth
channels with 180° bends.

Rotating-disk systems are typically employed in gas turbine design, electro-
chemistry (rotating-disk electrodes), bio- and chemical reactors, transport engi-
neering (automobile breaks), rotating-disk cleaners, etc. This work incorporates
results of investigations for free rotating disks or disks placed in a fluid subjected to
radial acceleration or rotating as a solid body (Fig. 1.1a), as well as impingement
cooling of a rotating disk (Fig. 1.1b).

Flows between a cone and a disk with the cone apex touching the disk surface
are used in medical equipment, viscosimetry, etc. Results of simulations for con-
figurations where the disk and the cone rotate independently (Fig. 1.2a) and sta-
tionary conical diffusers with swirl flows in them (Fig. 1.2b) are outlined in this
work.

Straight pipes rotating about a parallel axis (Fig. 1.3a) represent air cooling
channels of electric motors. Configuration and location of such pipes and rotation
effects on fluid flow and heat transfer in them are investigated in the present work.

Two-pass ribbed and smooth channels with 180° bends (Fig. 1.3b) are typical
geometries of internal cooling channels of gas turbine blades. Effect of the aspect

© Springer International Publishing Switzerland 2016
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in Rotating Flows, Mathematical Engineering, DOI 10.1007/978-3-319-20961-6_1
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ratios of the inlet and outlet passes of such channels, design of the bend region
itself, location and height of the ribs on fluid flow, and heat transfer are also studied
in detail in this work.

1.2 Volume Forces and Their Description

Fluid particles are subject to effects of volume forces and surface forces [3].
Volume forces affect each elementary volume of fluid (fluid particle). Inertia,
gravity, magnetic, electric forces, etc. are classified as volume forces. Surface forces
act on elementary surface segments. Pressure and frictional (viscous) forces are
examples of surface forces.

Global gravity of the Earth engenders gravitational forces. Acceleration/
deceleration of the configuration, where fluid flows, causes inertia forces. For
instance, system rotation, as well as rotation of a fluid in a stationary configuration,
also results in inertia forces. A study of effects of electromagnetic forces is not an
objective of the present work.

Fig. 1.1 Rotating-disk systems: a a free rotating disk and a disk placed in a rotating fluid,
b impingement cooling of a rotating disk [2]

Fig. 1.2 Rotating flow between a rotating disk and/or a cone (a), and b swirl flow in a stationary
conical diffuser [2]

Fig. 1.3 Pipe rotating about a parallel axis (a); two-pass ribbed channel with a 180° bend (b)
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In rotating systems, inertia forces are caused by the motion of the configuration
itself and peculiarities of fluid flow. Inertia forces can also result from streamline
curvature in rotating flows in a stationary configuration (for instance, swirl or
curvilinear flows). In this case, the direction and strength of the inertia forces are
determined by counteraction of the velocity field with pressure and viscous forces.

Inertia and gravity forces can be described by an expression

F ¼ jq; ð1:1Þ

where j is a volume force acceleration. For example, on the Earth surface, j = g for
gravity force. Volume forces are reduced here (and throughout this chapter) to a
unit of volume; boldface symbols denote vectors.

Centrifugal forces are caused by system rotation or streamline curvature and are
directed outwards and orthogonal to the axis of rotation

Fc ¼ qx� ðx� RÞ ¼ �qx � R � xð Þ þ qRx2: ð1:2Þ

Here the local radius vector R of a fluid particle is counted relative to the rotation
axis; the symbol × stands for a vector product. Vectors R and ω are perpendicular to
each other, therefore the scalar product R � x is equal to zero. System rotation is
absent in curvilinear or swirl flows, hence a local rotation velocity at each location
can be written as ω = V/R, and Eq. (1.2) reduces to

Fc ¼ qR V=Rð Þ2¼ qV2=R; ð1:3Þ

where V is the relative velocity, i.e., fluid velocity relative to the considered
configuration.

Coriolis forces emerge in rotating systems, where the vectors of the relative
velocity V and angular velocity of rotation ω are not parallel to each other. In a
rotating coordinate system [2, 4, 5], Coriolis force is written as

FCor ¼ �2qx� V: ð1:4Þ

Coriolis force is orthogonal to a surface, where the vectors ω and V are located.
If the origins of the vectors FCor, ω, and V are matched, the Coriolis force is
directed toward the point from which the shortest turn from ω to V would be seen
counterclockwise.

Volume forces being often a main cause of a particular type of flow can also
(a) engender secondary flows (in form of vortex or recirculation flows) or (b) render
a stabilizing/destabilizing effect on the fluid. The latter effects can exhibit them-
selves only if volume forces undergo spatial variation in frames of the given
configuration. An excessive volume force is a difference of the volume forces
between two points of the configuration

DF ¼ F2 � F1 ¼ q2 j2 � q1 j1: ð1:5Þ
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Nonuniformity in the distribution of density and/or volume force acceleration in
the configuration engender the excessive volume force.

Shchukin [5] wrote that “the character of fluid flow can be affected only by the
volume forces, whose value is different from the pressure gradient caused by these
volume forces and counteracting with them.” In other words, the difference between
the volume force and pressure gradient simultaneously acting in the configuration is
in reality the excessive volume force affecting the flow.

All physical processes on the Earth are subject to the gravitational field said to be
simple. If volume forces of different nature act simultaneously in the system, the
field of volume forces is complex. As compared to inertia forces, the gravitational
force is very often insignificant being therefore neglected in physical models.

The surface restricting the flow pattern can be located at different angles with
respect to the volume force vector. Also, volume force fields can be steady and
unsteady. If the inequality grad|F| > 0 characterizes the volume force field, its
effects on fluid flow are conservative (stabilizing the flow, suppressing turbulence,
or sporadic perturbations). Once grad|F| < 0, effects of the volume forces on fluid
flow are active (disturbing it, causing secondary flows and increasing turbulence)
[2, 5].

1.3 Differential Equations of Continuity, Momentum,
and Heat Transfer

Mathematical modeling of any physical process requires stating a boundary prob-
lem. In frames of the methodology used in the present work, this means writing
differential equations describing momentum and heat/mass transfer, continuity
equation, equation of state, as well as proper boundary and initial conditions.

In a rotating coordinate system, for incompressible subsonic flow of a fluid with
constant physical properties and negligible viscous dissipation effects, the equations
of momentum transfer and continuity can be written in a vector form [2, 4, 6]

q
DV
Dt

¼ q
@V
@t

�
|fflffl{zfflffl}

I

þ Vgradð ÞV
�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
II

¼ qF|{z}
III

� grad p|fflffl{zfflffl}
IV

þ divP|fflffl{zfflffl}
V

� 2qx� V|fflfflfflfflffl{zfflfflfflfflffl}
VI

� qx� x� Rð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
VII

; ð1:6Þ

divðqVÞ ¼ 0: ð1:7Þ

The value D/Dt in Eq. (1.6) is the total derivative incorporating local and con-
vective derivatives, i.e., terms I and II, respectively (where term I is zero for steady
state processes). Term III stands for the volume forces except for centrifugal and
Coriolis forces. Terms IV and V represent pressure and friction effects,
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respectively. Here П is the stress tensor including viscous and turbulent stresses.
Terms VI and VII denote Coriolis FCor and centrifugal FC forces, respectively. As
above, the relative velocity vector V denotes flow velocity with respect to the
coordinate system associated with the rotating configuration.

The tensor of stresses П in Eqs. (1.1) and (1.6) has the following form:

P ¼
s11 s21 s31
s21 s22 s23
s31 s23 s33

0
@

1
A; ð1:8Þ

where τik are stress components including viscous and turbulent stresses.
In a nonrotating coordinate system, the vector V in Eqs. (1.6) and (1.7) denotes

the absolute velocity, and terms VI and VII are neglected. In doing so, Lamé
coefficients in a curvilinear coordinate system and turbulent viscosity model
account for the centrifugal force effects.

For the volume force field F = grad A representing the potential A, one can
introduce a so-called modified (reduced) pressure

p� ¼ pþ qA� 1
2
qðx� RÞðx� RÞ2; ð1:9Þ

and Eq. (1.6) can be rewritten as

@V
@t

þ ðVgradÞV þ 2qx� V ¼ qF� 1
q
grad p� � 1

q
divP: ð1:10Þ

In a Cartesian coordinate system, Navier–Stokes, continuity and energy equa-
tions for incompressible turbulent flow with constant fluid properties with account
for the volume forces can be written as [6]

q
@u
@t

þ u
@u
@x

þ v
@u
@y

þ w
@u
@z

� �
¼ Fx � @p

@x
þ l

@2u
@x2

þ @2u
@y2

þ @2u
@z2

� �

� q
@u02

@x
þ @u0v0

@y
þ @u0w0

@z

 !
; ð1:11Þ

q
@v
@t

þ u
@v
@x

þ v
@v
@y

þ w
@v
@z

� �
¼ Fy � @p

@y
þ l

@2v
@x2

þ @2v
@y2

þ @2v
@z2

� �

� q
@v02

@y
þ @u0v0

@x
þ @v0w0

@z

 !
; ð1:12Þ
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q
@w
@t

þ u
@w
@x

þ v
@w
@y

þ w
@w
@z

� �
¼ Fz � @p

@z
þ l

@2w
@x2

þ @2w
@y2

þ @2w
@z2

� �

� q
@w02

@z
þ @u0w0

@x
þ @v0w0

@y

 !
; ð1:13Þ

@u
@x

þ @v
@y

þ @w
@z

¼ 0; ð1:14Þ

@T
@t

þ u
@T
@x

þ v
@T
@y

þ w
@T
@z

¼ a
@2T
@x2

þ @2T
@y2

þ @2T
@z2

� �

� @u0T 0

@x
þ @v0T 0

@y
þ @w0T 0

@z

� �
: ð1:15Þ

In a cylindrical polar coordinate system, Navier–Stokes, continuity and energy
equations for incompressible turbulent flow with constant fluid properties including
volume forces can be written as [2, 7, 8]

q
@vr
@t

þ vr
@vr
@r

þ vu
r
@vr
@u

� v2u
r
þ vz

@vr
@z

 !
¼ Fr � @p

@r
þ l r2vr � vr

r2
� 2
r2
@vu
@u

� �

� q
1
r
@

@r
rv02r
� �

þ 1
r
@

@u
v0rv0u
� ��

þ @

@z
qv0rv0z
	 
� 1

r
v02u
� ��

;
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q
@vu
@t

þ vr
@vu
@r

þ vu
r
@vu
@/

þ vrvu
r

þ vz
@vu
@z

� �
¼ Fu � @p

@u
þ l r2vu þ 2

r2
@vr
@u

� vu
r2

� �

� q
1
r2

@

@r
r2v0rv0u
� ��

þ 1
r
@

@u
v02u
� �

þ @

@z
v0uv0z
� ��

;

ð1:17Þ

q
@vz
@t

þ vr
@vz
@r

þ vu
r
@vz
@u

þ vz
@vz
@z

� �
¼ Fz � @p

@z
þ l r2vz
	 


� q
1
r
@

@r
rv0rv0z
	 
�

þ 1
r
@

@u
v0uv0z
� �

þ @

@z
v02z
� ��

; ð1:18Þ
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@ðrvrÞ
@r

þ 1
r
@ðrvuÞ
@u

þ @ðrvzÞ
@z

¼ 0; ð1:19Þ

@T
@t

þ vr
@T
@r

þ vu
r
@T
@u

þ vz
@T
@z

¼ 1
r
@

@r
r a

@T
@r

� v0rT 0
� �� �

þ 1
r2

@

@u
a
@T
@u

� rv0uT 0
� �

þ @

@z
a
@T
@z

� v0zT 0
� �

:

ð1:20Þ

If the fluid flow is steady state and axisymmetric, while heat transfer is unsteady,
all derivatives with respect to the φ-coordinate, as well as derivatives with respect to
time in Eqs. (1.16)–(1.18) are equal to zero: @=@u � @=@t � 0. As a consequence,
Eqs. (1.16)–(1.20) can be rewritten as

vr
@vr
@r

� v2u
r
þ vz

@vr
@z

¼ 1
q
Fr � 1

q
@p
@r

þ m
@2vr
@r2

þ 1
r
@vr
@r

� vr
r2

þ @2vr
@z2

� �

� 1
r
@

@r
rv02r
� �

þ @

@z
qv0rv0z
	 
� 1

r
v02u
� �� �

; ð1:21Þ

vr
@vu
@r

þ vrvu
r

þ vz
@vu
@z

¼ 1
q
Fu þ m

@2vu
@r2

þ 1
r
@vu
@r

� vu
r2

þ @2vu
@z2

� �

� 1
r2

@

@r
r2v0rv0u
� �

þ @

@z
v0uv0z
� �� �

; ð1:22Þ

vr
@vz
@r

þ vz
@vz
@z

¼ 1
q
Fz � 1

q
@p
@z

þ m
@2vz
@r2

þ 1
r
@vz
@r

þ @2vz
@z2

� �

� 1
r
@

@r
rv0rv0z
	 
þ @

@z
v02z
� �� �

; ð1:23Þ

@ðrvrÞ
@r

þ @ðrvzÞ
@z

¼ 0; ð1:24Þ

@T
@t

þ vr
@T
@r

þ vz
@T
@z

¼ 1
r
@

@r
r a

@T
@r

� v0rT 0
� �� �

þ @

@z
a
@T
@z

� v0zT 0
� �

: ð1:25Þ

For laminar flow, all terms including fluctuating velocity/temperature compo-
nents in Eqs. (1.11)–(1.25) are zero.

Equations (1.11)–(1.25) will be transformed to a rotating coordinate system in
the subsequent chapters individually for each rotating configuration.

1.3 Differential Equations of Continuity, Momentum, and Heat Transfer 7



1.4 Differential Equation of Convective Diffusion

The differential equation describing convective diffusion in a fluid looks analogous
to the energy equation. The difference consists in that the concentration C in the
equation substitutes the temperature, while the diffusion coefficient Dm replaces the
thermal diffusivity coefficient. Convective diffusion equations in Cartesian and
cylindrical polar coordinate systems are written below.

In the Cartesian coordinate system, the convective diffusion equation for
incompressible turbulent flow with constant physical properties of the substance
taking part in the convective diffusion process has the following form:

@C
@t

þ u
@C
@x

þ v
@C
@y

þ w
@C
@z

¼ Dm
@2C
@x2

þ @2C
@y2

þ @2C
@z2

� �

� @u0C0

@x
þ @v0C0

@y
þ @w0C0

@z

� �
: ð1:26Þ

In a cylindrical polar coordinate system, the convective diffusion equation for
incompressible turbulent flow with constant physical properties of the substance
looks as follows:

@C
@t

þ vr
@C
@r

þ vu
r
@C
@u

þ vz
@C
@z

¼ 1
r
@

@r
r Dm

@C
@r

� v0rC0
� �� �

þ 1
r2

@

@u
Dm

@C
@u

� rv0uC0
� �

þ @

@z
Dm

@C
@z

� v0zC0
� �

:

ð1:27Þ

Once the fluid flow is steady state and axisymmetric, whereas mass transfer is
unsteady, all φ-derivatives in Eq. (1.27) are equal to zero.

@C
@t

þ vr
@C
@r

þ vz
@C
@z

¼ 1
r
@

@r
r Dm

@C
@r

� v0rC0
� �� �

þ @

@z
Dm

@C
@z

� v0zC0
� �

: ð1:28Þ

Again, for laminar flow, terms containing only fluctuating velocity/concentration
components in Eqs. (1.26)–(1.28) are zero.

The convective diffusion equation is employed in Chap. 6 while modeling
convective heat/mass transfer for the Prandtl or Schmidt numbers larger than unity.
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Chapter 2
Mathematical Modeling of Convective
Heat Transfer in Rotating-Disk Systems

2.1 Differential and Integral Equations

2.1.1 Navier–Stokes and Energy Equations in Differential
Form

A schematic of a stationary axisymmetric problem of convective heat transfer over
rotating disks, whose axis of symmetry serves as the axis z of a stationary cylin-
drical coordinate system with the point z = 0 placed on the disk surface, is depicted
in Fig. 2.1. The angular velocity is high, so that gravitational effects are negligible,
i.e., Fr = Fφ = Fz = 0.

Thus, Eqs. (1.21)–(1.25) are reduced [1–3] to

vr
@vr
@r

þ vz
@vr
@z

� v2u
r
¼ � 1

q
@p
@r

þ m r2vr � vr
r2

� �
� 1

r
@

@r
rv02r
� �

þ @

@z
qv0rv0z
� �� 1

r
v02u
� �� �

; ð2:1Þ
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@vu
@r

þ vrvu
r

þ vz
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¼ m
@2vu
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þ 1
r
@vu
@r

� vu
r2

þ @2vu
@z2

� 	

� 1
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@
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r2v0rv0u
� �

þ @

@z
v0uv0z
� �� �

; ð2:2Þ
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@vz
@r

þ vz
@vz
@z

¼ � 1
q
@p
@z

þ m
@2vz
@r2

þ 1
r
@vz
@r

þ @2vz
@z2

� 	
� 1

r
@

@r
rv0rv0z
� �þ @

@z
v02z
� �� �

;

ð2:3Þ
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@vr
@r

þ vr
r
þ @vz

@z
¼ 0; ð2:4Þ

@T
@t

þ vr
@T
@r

þ vz
@T
@z

¼ 1
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@

@r
r a

@T
@r

� v0rT 0
� 	� �

þ @

@z
a
@T
@z

� v0zT 0
� 	

: ð2:5Þ

One can assign the coordinate system in Fig. 2.1 to be rotating together with the
disk. In doing so, Eqs. (2.1)–(2.3) for laminar flow can be re-written as [1–3]

vr
@vr
@r

þ vz
@vr
@z

� v2u
r
� 2xvu � x2r ¼ � 1

q
@p
@r

þ m
@2vr
@r2

þ 1
r
@vr
@r

� vr
r2

þ @2vr
@z2

� 	
;

ð2:6Þ

vr
@vu
@r

þ vz
@vu
@z

þ vrvu
r

þ 2xvr ¼ m
@2vu
@r2

þ 1
r
@vu
@r

� vu
r2

þ @2vu
@z2

� 	
; ð2:7Þ

vr
@vz
@r

þ vz
@vz
@z

¼ � 1
q
@p
@z

þ m
@2vz
@r2

þ 1
r
@vz
@r

þ @2vz
@z2

� 	
: ð2:8Þ

The terms 2ωvφ and 2ωvr stand for the r- and φ-components of the Coriolis
force, respectively. The term x2r is the r-component of the centrifugal force (all
divided by ρ). Equations (2.1)–(2.2) for turbulent flow can be derived in analogy to
Eqs. (2.6)–(2.8) [1].

Fig. 2.1 Geometrical arrangement and main parameters of the problem of fluid flow and heat
transfer over a rotating disk in still air [3]
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2.1.2 Differential Equations of the Boundary Layer

To simplify Eqs. (2.1)–(2.5) for boundary layers, the following assumptions are
made [1, 2, 4]:

(a) velocity components vr and vφ are an order of magnitude larger than the vz-
velocity;

(b) velocity and temperature vary in the z-direction much more significantly than
they do in the r-direction; and

(c) variation of the static pressure in z-direction is negligible.

The equation of continuity, Eq. (2.4), does not undergo any change. As a result,
Eqs. (2.1)–(2.5) reduce to the following final form [1, 2, 4]:

vr
@vr
@r

þ vz
@vr
@z

� v2u
r
¼ � 1

q
@p
@r

þ 1
q
@sr
@z

; ð2:9Þ

vr
@vu
@r

þ vz
@vu
@z

þ vrvu
r

¼ 1
q
@su
@z

; ð2:10Þ

1
q
@p
@z

¼ 0; ð2:11Þ

@T
@t

þ vr
@T
@r

þ vz
@T
@z

¼ � 1
qcp

@q
@z

; ð2:12Þ

sr ¼ l
@vr
@z

� qv0rv0z; ð2:13Þ

su ¼ l
@vu
@z

� qv0uv0z; ð2:14Þ

q ¼ � k
@T
@z

� qcpT 0v0z

� 	
: ð2:15Þ

The pressure across the boundary layer is constant and equal to the pressure in
the potential flow region, i.e., p = p∞. Equations (2.13)–(2.15) include only the
most significant turbulent shear stress and heat flux components.

For a stationary thermal boundary layer, the term @T=@t in Eq. (2.12) vanishes.
Equations (2.9)–(2.15) are closed with an equation of potential flow, where

functions vr,∞, vφ,∞, and p∞ do not vary in the z-direction:

1
2

dv2r;1
dr

� v2u;1
r

¼ � 1
q
dp1
dr

: ð2:16Þ
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2.1.3 Integral Equations of the Boundary Layer

For steady-state conditions, Eqs. (2.9)–(2.11), (2.13)–(2.20) with allowance for
Eqs. (2.4) and (2.16) can be re-written in an integral form [1, 2, 4]:

d
dr

r
Zd
0

vr vr;1 � vr
� �

dz

2
4

3
5þ r

dvr;1
dr

Zd
0

vr;1 � vr
� �

dz�
Zd
0

v2u;1 � v2u
� �

dz

¼ rswr=q, ð2:17Þ

d
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r2
Zd
0

vr vu � vu;1
� �

dz

2
4

3
5þ _md

2pq
d
dr

rvu;1
� � ¼ �r2swu=q, ð2:18Þ

or
d
dr

r2
Zd
0

vrvudz

2
4

3
5þ rvu;1

d
dr

_md

2pq

� 	
¼ �r2swu=q; ð2:19Þ

d
dr

r
ZdT
0

vr T � T1ð Þdz
2
4

3
5þ dT1

dr
� _md;T

2pq
¼ rqw=ðqcpÞ: ð2:20Þ

Another notation of Eqs. (2.17), (2.18) and (2.20) looks as [1, 2, 4, 5]

d
dr

v2r;1rdd
��
r

� �
þ vr;1rd

dvr;1
dr

d
�
r � v2u;1dd

��
u ¼ rswr=q; ð2:21Þ

d
dr

dr2ðxrÞ2d��ur
h i

þ _md

2pq
d
dr

ðrvu;1Þ ¼ �r2swu=q; ð2:22Þ

d
dr

xr2dd
��
T ðTw � T1Þ

h i
þ dT1

dr
� _md;T

2pq
¼ rqw=ðqcpÞ; ð2:23Þ

where

d
�
r ¼

Z1
0

1� ~vrð Þdn; d
��
r ¼

Z1
0

~vr 1� ~vrð Þdn; d
��
u ¼

Z1
0

1� v2u
v2u;1

 !
dn;

ð2:24Þ

d
��
ur ¼

Z1
0

vrðvu � vu;1Þ
ðxrÞ2 dn; ~vr ¼ vr=vr;1: ð2:25Þ

14 2 Mathematical Modeling of Convective Heat Transfer …



2.2 Methods of Solution

2.2.1 Self-similar Solution

Exact solutions of the Navier–Stokes and energy equations were found for a free
rotating disk subject to laminar flow [1, 2, 4, 6–12]. For this purpose, self-similar
variables F, G, H, P, and ζ were employed:

vr ¼ ðaþ xÞrFðfÞ; vu ¼ ðaþ xÞrGðfÞ; vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ xÞmp

HðfÞ;
p ¼ �qmxPðfÞ; h ¼ ðT � T1Þ=ðTw � T1Þ; f ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ xÞ=mp
:

ð2:26Þ

The respective boundary conditions had the following form:

f ! 1: vr;1 ¼ ar; vz;1 ¼ �2az; vu;1 ¼ Xr; b ¼ X=x ¼ const:; h ¼ 0;

ð2:27Þ

f ¼ 0: F ¼ H ¼ 0; G ¼ 1; h ¼ 1; ð2:28Þ

f ¼ 0: Tw ¼ Tref þ c0wr
n� ; T1 ¼ Tref þ c01rn� or T1 ¼ Tref þ bc0wr

n� : ð2:29Þ

Here, c0, c0w, c0∞, and n* are the empirical constants. Equation (2.29) can be
re-written as

DT ¼ Tw � T1 ¼ c0r
n� ðfor c0 ¼ c0w � c01Þ; ð2:30Þ

or DT ¼ c0wð1� bÞrn� : ð2:31Þ

Equations (2.1)–(2.4) and (2.12) (for @T=@t ¼ 0), with allowance for Eq. (2.16),
reduce to a self-similar form:

F2 � G2 þ F0H ¼ N2 � b2

ð1þ NÞ2 þ F00; ð2:32Þ

2FGþ G0H ¼ G00; ð2:33Þ

HH0 ¼ P0 þ H00; ð2:34Þ

2F þ H0 ¼ 0; ð2:35Þ

h00 � Pr n�Fhþ Hh0ð Þ ¼ 0: ð2:36Þ

Here, N = a/ω = const. A solution of Eqs. (2.32)–(2.35) for simultaneously
non-zero values of β and N does not exist. However, such a solution can be found
either for N ≠ 0 and β = 0, or for β ≠ 0 and N = 0.
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Equations (2.32)–(2.36) have been often solved with the help of so-called
in-house computer codes using a spectral collocation method based on the
Chebyshev polynomials [13–18], Keller box [19] or quasi-linearization method
[20], expansions in power/exponential series [9, 21], finite difference schemes [22],
shooting methods [1, 8, 10, 12, 23], etc. Computer mathematics softwares like
Mathcad, Mathlab, Mathematica, etc. enable solving Eqs. (2.32)–(2.36) via user
interface programing options [3, 20].

A self-similar energy equation involving dissipation terms allows using only one
value of the exponent n* = 2 in the boundary conditions (2.29)–(2.31) [1, 2, 4]. At
subsonic flow of air, dissipation effects, as well as radial heat conduction, are
negligible. Therefore, we neglected the respective terms in Eq. (2.36) of the thermal
boundary layer, which enabled us using arbitrary values of the parameter n*.

Exact solutions of Eqs. (2.32)–(2.36) serve as benchmark datasets used in val-
idations of experiments or CFD models developed for more complicated problems.
Based on the self-similar solutions, it is also possible to develop approximate
analytical solutions of problems, whose boundary conditions differ from
Eqs. (2.27)–(2.31).

2.2.2 Approximate Analytical Methods for Laminar Flow

Laminar impingement flow over a single rotating disk at N = const. and β = 0 was
simulated using an approximate mathematical method of Slezkin-Targ in [4].
Velocity components were approximated by sixth-order polynomials. A polynomial
of third order resulted in an inaccuracy in the surface friction of up to *25 % at
N = 5. This inaccuracy increases fast for higher values of N. Should the author [4]
extend this method to model heat transfer? This would yield a cumbersome solution
for the Nusselt number.

A complex combination of exponential and logarithmic functions resulted in an
approximate solution for laminar flow over a single rotating disk [24]. The heat
transfer problem was not solved. Such an extension of the method [24] would,
however, yield even more inconvenient and cumbersome relations for the Nusselt
number than in [4].

For porous injection through a rotating disk, an approximate solution was pre-
sented as a combined expansion in power and exponential series. It is obvious that
this approach has the same deficiencies as the aforementioned methods [4, 24].

Analytical solutions [19] were obtained for a stretching disk for (a) a case of no
rotation and (b) infinitely large stretching rate. Both situations have very limiting
application; a general analytical solution for a stretching rotating disk does not exist.

Based on the above, one can conclude that a search for an exact analytical
solution for the velocity, pressure, and temperature profiles in laminar flow over a
rotating disk is a very complicated and inexpedient mathematical task.
Alternatively, as demonstrated below, a match of an integral method and a
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self-similar solution yields a transparent and accurate approximate analytical
solution for fluid flow and heat transfer characteristics.

2.2.3 Numerical Methods

At early stages, finite difference methods implemented in in-house codes were used
by different authors [25–38] to simulate laminar/turbulent fluid flow and heat
transfer in rotating cavities formed by parallel co-rotating disks using algebraic [39]
or low-Reynolds-number k-ε turbulence models [40–42]. A finite difference method
was employed by the author [43] to simulate a 3D air flow in a rotating-disk grinder
of solid particles with the RANS approach with a k-ε turbulence model [44].

Commercial CFD codes (e.g., FLUENT, CFX, Phoenics, etc.) using RANS
approaches have been widely used by different authors to simulate fluid flow in
rotating-disk systems [33, 36, 45–52]. Turbulence was modeled using closure with
standard and realizable k-ε models, RNG k-ε model, k-ω SST model, Spalart–
Allmaras model, and others.

The LES approach was employed by [53] to simulate a stationary turbulent flow
over a rotating disk. The LES approach was also used in [54–58] to simulate tur-
bulent flow and heat transfer over a single disk in air flow parallel to the disk surface.

Numerical simulation using in-house or commercial CFD codes is the most
widely used universal tool for problems with arbitrary geometry and boundary
conditions to be performed in academic and especially applied/industrial research.
Given a proper mesh, accuracy of results depends here on the selection of the
turbulence model, which is to be performed individually for each problem to be
solved.

A disadvantage of CFD modeling is that it provides only an array of numerical
data, which is often an inconvenience in comparison with analytical solutions.
Therefore, methods delivering exact or approximate analytical solutions are
advantageous for relatively simple geometries and boundary conditions.

2.3 Integral Methods

2.3.1 Momentum Boundary Layer

In frames of an integral method, Eqs. (2.17)–(2.23) are solved accompanied with
models for (a) velocity/temperature profiles (or enthalpy thickness), as well as
(b) shear stresses on the wall (velocity boundary layer) and wall heat flux (thermal
boundary layer).

To briefly outline a history of the integral methods for rotating-disk systems,
fundamentals of them were laid by von Karman [9] and Dorfman [4]. Further
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development of model assumptions for integral methods was done in the works
[1, 2, 48, 59]. An important feature of the method [1, 2] further elaborated in the
present work consists in the use of the same mathematical form of the models for
laminar or turbulent flow, which differ from each other only by numerical values of
certain parameters. In fact, this confirms the idea of Loytsyanskiy [60], who said
that there exists “an analogy between basic characteristics of laminar and turbulent
boundary layers.”

The radial vr and tangential vφ velocity components in the boundary layer are
interrelated in accordance with the equation [61]

�vr ¼ �vu tanu: ð2:37Þ

In case where potential flow in the r-direction is negligible, i.e., vr,∞ = 0,
approximations of the velocity profiles were written by the authors [1, 2] in the
following form:

�vu ¼ 1� gðnÞ; �vr ¼ af ðnÞ; ð2:38Þ

where the functions g(ξ) and f(ξ) of the variable ξ = z/δ were set to be independent
of the coordinate r. For laminar flow,

gðnÞ ¼ G0ðnÞ; f ðnÞ ¼ F0ðnÞ=a0: ð2:39Þ

The functions G0(ξ) and F0(ξ) are a solution of Eqs. (2.32)–(2.35) for a free
rotating disk, i.e., for N = 0 and β = 0 [1, 2, 4].

For turbulent flow, power-law profiles were employed:

gðnÞ ¼ 1� nn; ð2:40Þ

f ðnÞ ¼ nnð1� nÞ; tanu ¼ að1� nÞ; ð2:41Þ

where n = 1/5–1/10 [1, 2, 4, 9, 48, 59, 62–64]. Approximations (2.40) and (2.41)
were formulated for the first time by von Karman [9]. The characteristic Reynolds
number determines the value of the exponent n (see Figs. 2.2, 2.3 and 2.4).

A more accurate approximation for f(ξ) in turbulent flow is [65–68]

f ðnÞ ¼ nnð1� nÞ2; tanu ¼ að1� nÞ2: ð2:42Þ

Nevertheless, Eq. (2.42) has been rarely used apparently due to the some-
what more complicated form of expressions resulting from the integration of
Eqs. (2.17)–(2.19).

More elaborate power-law profiles were used by the authors [69]
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f ðnÞ ¼ nnð1� nn=mÞ; tanu ¼ að1� nn=mÞ; ð2:43Þ

with exponents n and m independent from each other. The authors [69] have not
further developed their model, apparently because of its excessively complicated
structure.

A trigonometric function approximating the function tan φ in Eq. (2.37)

tanu ¼ a½ð1� sinbðcnÞ� ð2:44Þ

was used by [76, 77]. The values of the constants b = 0.7, c = 0.12 at n = 1/7, and
b = 0.697, c = 0.117 at n = 1/8 mentioned in [76] are, however, erroneous.

For instance, for b = 0.7 at n = 1/7, one must use a value of c = 1.2 (Figs. 2.3 and
2.4). The model [76, 77] is more complicated than the von Karman’s approach.
Expressions for the Nusselt number that could have been obtained (but actually
have not been obtained!) on the base of the model (2.44) would have been again too
cumbersome.

For N = const., the following relations were used in [78] and [79–81],
respectively:

tanu ¼ aþ N � að Þn; ð2:45Þ

tanu ¼ a 1� nð Þ þ j; ð2:46Þ
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Fig. 2.4 Correlation between the radial and tangential velocity components in the boundary layer
[3]. Calculation by Eq. (2.59) at L = 2 (curves 1–4) or L = 1 (curve 5) [61]: 1—n = 1/7, 2—1/8,
3—1/9, 4—1/10, 5—1/7, von Karman’s method [9], 6—1/7, Eq. (2.44) for b = 0.7, c = 1.2,
α = 0.2003. Experiments: 7—Reω = 0.4 × 106, 8—0.65 × 106, 9—0.94 × 106, 10—1.6 × 106 [70],
11—0.4 × 106, 12—0.6 × 106, 13—1.0 × 106 [71], 14—2.0 × 106 [75]
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where j ¼ _m= 2pqsrð1� bÞxr½ �. Equation (2.46) is least justified, since it does not
agree with the condition tanuw ¼ a and complicates the solution of Eqs. (2.17) and
(2.18).

Thus, Eqs. (2.43)–(2.46) demonstrate lower accuracy than models (2.37)–(2.45).
Integration of Eqs. (2.17) and (2.18) in view of Eqs. (2.37)–(2.45) yields

ordinary differential equations with the unknown variables α(r) and δ(r) for a
pre-set function of β(r), or α(r) and β(r) for a pre-set function δ(r). In view of an
assumption N = const. or β = const., the parameter α becomes constant as well. In
this case, δ = const. in laminar flow, or δ * rm in turbulent flow [1, 2, 4].

Given the velocity profiles in the form of power-law functions, shear stresses τwr
and τwφ on the right-hand sides of Eqs. (2.17)–(2.19) can be written as [1, 2, 4]

swr ¼ �aswu; swu ¼ �sgnð1� bÞswð1þ a2Þ1=2; ð2:47Þ

cf ¼ C�2=ðnþ1Þ
n Re�2n=ðnþ1Þ

V� ; ð2:48Þ

Cn ¼ 2:28þ 0:924=n: ð2:49Þ

Equation (2.49) was proposed in [69]. The constant Cn takes the values 8.74,
9.71, 10.6, and 11.5 for n = 1/7, 1/8, 1/9, and 1/10, accordingly [1, 2, 4, 9, 69].

In frames of logarithmic models of the velocity profiles [82], their near-wall
approximations look as

vr ¼ axr þ 2:5aVs

ð1þ a2Þ1=2
lnðnÞ; vu ¼ � 2:5Vs

ð1þ a2Þ1=2
lnðnÞ: ð2:50Þ

A validation of the logarithmic model has been performed only for a free disk,
with the heat transfer problem being not modeled. The moment coefficient CM is
given by a transcendental algebraic equation (see Sect. 3.3) [82]. Inconvenience and
complexity prevented further development and use of the logarithmic approach [82].

The integral method described in the work [48] and references includes special
arrangements for rotor–stator systems, which fall out of the scope of the present
work.

2.3.2 Thermal Boundary Layer

Heat transfer modeling in the frames of integral methods performed in the majority
of the known works [1, 2, 4, 9, 48, 64, 68, 79–81, 83–89] was based on a “theory of
local modelling” (which is a direct translation of the name used in the Russian
language literature) that stems from the method of Loytsyanskiy [60] (see also
[90]). This theory was for the first time applied to rotating-disk systems by Dorfman
[4], who postulated a so-called heat transfer law for the Stanton number:
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St ¼ MsRe
���r
T Pr�ns : ð2:51Þ

Universal constants Ms, σ, and ns do not depend on the disk surface temperature
Tw and the Prandtl number. These constants take the values σ = 0.25, ns = 0.5, and
Ms = 7.246 × 10−3 for turbulent flow, and σ = 1.0, ns = 1.0, and Ms = 0.07303 for
laminar flow [1–4]. Equation (2.51) is substituted into the thermal boundary layer
Eq. (2.23). In doing so, the only remaining unknown parameter is d��T .

In the books [1, 2], the Reynolds analogy parameter χ was involved in the
integral method instead of the enthalpy thickness d��T

qw
sw/

¼ v
cpðT1 � TwÞ
xrð1� bÞ : ð2:52Þ

The unknown parameter χ was found as a result of the solution of Eq. (2.23) by
the authors [1, 2] based on the models (2.51) and (2.52).

A power-law temperature profile in turbulent flow regime at nT = 1/5

H ¼ T � Tw
T1 � Tw

¼ nnTT ; h ¼ T � T1
Tw � T1

¼ 1�H ¼ 1� nnTT ð2:53Þ

was employed in the work [63], which for a long time had been the only one that
used the model (2.53). An additional assumption D ¼ dT=d ¼ 6 at Tw = const. used
in the work [63] is apparently erroneous and must be replaced with a model that
enables finding the parameter Δ and its dependence on the other factors (like the
model described in Sect. 2.4).

2.4 Improved Integral Method

2.4.1 Structure of the Method

Original results of the studies of fluid flow and heat transfer in rotating-disk con-
figurations outlined here stem from the investigations performed using an improved
integral method developed by the author of this work and described in the publi-
cations [3, 5, 61, 91–109]. Throughout this work, this methodology is always
named as the present integral method.

The basic statements of the present integral method are

(a) the system of Eqs. (2.17)–(2.23);
(b) turbulent velocity and temperature profiles given by improved approximations;
(c) a novel enthalpy thickness model for laminar/turbulent flow;
(d) power-law model for shear stresses and heat fluxes on the wall; and
(e) specified disk temperature distribution, together with the boundary conditions

for the temperature and velocity in inviscid (i.e., potential) flow.
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The present integral method employs the bedrock assumption that the same
mathematical model can be used for modeling laminar and turbulent boundary
layers, where the difference is made by numerical values of the certain empirical
constants of the model. This model is a mathematical expression of the analogy
between the basic characteristics of the laminar and turbulent flow under the same
boundary conditions [60]. Authors [1, 2, 4, 9] have already validated this idea with
respect to convective heat transfer in rotating-disk systems. However, the imperfect
mathematical model used in these works caused noticeable inaccuracy in the
simulation of heat transfer under certain thermal boundary conditions (see Sect. 3.2
of Chap. 3).

In the present integral method, we do not attempt to use power-law approxi-
mations of the velocity/temperature profiles in laminar flow, which involve poly-
nomials of seventh order or higher and result in cumbersome equations for the
friction coefficient and the Nusselt number. We wish to make use of simple and
transparent power-law relations for the friction coefficient and the Nusselt number
derived using power-law models of the velocity/temperature profiles for turbulent
flow. Mathematical expressions for these parameters for turbulent flow can be
extended onto laminar flow with particular constants remaining unknowns to be
found empirically via validations against the exact solution.

Consequently, the logic of the method is following: firstly, an integral method
for turbulent boundary layer is created and validated against experiments; and
secondly, the mathematical form of the integral method is elaborated and validated
for laminar flow.

2.4.2 Turbulent Flow: Velocity and Temperature Profiles

Velocity profiles are approximated using power-law models, Eq. (2.37) for vr, as
well as the first of Eqs. (2.38) and (2.40) for vφ. A quadratic polynomial approx-
imates the tangent of the flow swirl angle tanφ. The coefficients a, b, and c must
comply with the boundary conditions at the wall and at the outer edge of the
boundary layer

tanu ¼ aþ bnþ cn2; ð2:54Þ

n ¼ 0; tanu ¼ tanuw ¼ a; ð2:55Þ

n ¼ 1; tanu ¼ tanu1 ¼ vr;1=ðxr � vu;1Þ ¼ N=ð1� bÞ ¼ j; ð2:56Þ

n ¼ 1; dðtanuÞ=dn ¼ 0: ð2:57Þ
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Conditions (2.54)–(2.57) yield

a ¼ a; b ¼ �2ða� jÞ; c ¼ a� j; ðtanu� jÞ=ða� jÞ ¼ ð1� nÞ2:
ð2:58Þ

Figures 2.2 and 2.3 show profiles of the radial and tangential velocity compo-
nents for a free rotating disk (κ = 0) calculated by Eqs. (2.37) and (2.58).

The present integral method enabled finding wall values of the tangent of the
flow swirl angle α presented in Table 3.4 of Chap. 3 in comparison with α values
obtained by von Karman’s method [9]. Power-law profiles for the �vr and �vu jointly
with a quadratic Eq. (2.58) for tan φ agree well with experiments in the outer part of
the boundary layer. Here, the profiles at n = 1/9 agree with the experiments [70, 71]
(Figs. 2.2 and 2.3). The same trend demonstrates Fig. 2.4, where velocity com-
ponents �vr on �vu are interconnected via an equation resulting from Eqs. (2.37),
(2.38), (2.40), and (2.58) [61]:

�vr ¼ a�vuð1� �v1=nu ÞL: ð2:59Þ

Here, L = 2 in the present method and L = 1 in the method [9]. In the vicinity of the
wall, the value of the exponent n = 1/7–1/8 yields, however, the best agreement
with experiments. Based on Eq. (2.59) [61], a maximum in the dependence of �vr on
�vu is observed at

�vu;max ¼ nnmax; nmax ¼ n=ðnþ LÞ: ð2:60Þ

In frames of the present integral method, temperature distributions in the
boundary layer are approximated with Eq. (2.53). This appears to be in a good
agreement with the experimental data of different authors depicted in Fig. 2.5.

2.4.3 Surface Friction and Heat Transfer

Shear stresses τwφ, τwr and wall heat flux qw can be expressed with the help of a
two-layer model of the velocity and temperature profiles non-dimensionalized using
the law of the wall. Power-law profiles (2.40) and (2.53) can be re-written in wall
coordinates as

Vþ ¼ nn=
ffiffiffiffiffiffiffiffiffi
cf =2

q
; Tþ ¼ nnTT

ffiffiffiffiffiffiffiffiffi
cf =2

q
=St: ð2:61Þ

These relations are not valid in the viscous sub-layer; therefore, their place is
taken here by the linear equations
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Vþ ¼ zþ; Tþ ¼ Pr zþ: ð2:62Þ

Equations (2.61) and (2.62) must be spliced at the boundary zþ1 of the viscous
sub-layer and at the boundary zþ1T of the heat conduction sub-layer, accordingly. In
doing so, one can come to relations for the friction coefficient and the Stanton
number:

cf =2 ¼ ðzþ1 Þ2ðn�1Þ=ðnþ1Þ Re�2n=ðnþ1Þ
V� ; ð2:63Þ

St ¼ ðzþ1 ÞnT�1Re�nT
V� ðcf =2Þ 1�nTð Þ=2D�nT ðzþ1T

�
zþ1 ÞnT�1Pr�nT : ð2:64Þ

Instead of the coordinate zþ1 , its modification Cn ¼ ðzþ1 Þ1�n is often used. Cn is a
constant whose dependence on the exponent n is clarified in the comments to
Eq. (2.49). The constant zþ1 takes the values 12.54, 13.44, 14.23, and 15.09 for
n = 1/7, 1/8, 1/9, and 1/10, respectively. Based on Eq. (2.47), shear stresses τw, τwφ,
and τwr are mutually related as

swr=q ¼ C�2=ðnþ1Þ
n sgnð1� bÞðm=dÞ2n=ðn�1Þðxr 1� bj jÞ2=ðn�1Það1þ a2Þ0:5ð1�nÞ=ð1þnÞ;

sw/=q ¼ �C�2=ðnþ1Þ
n sgnð1� bÞðm=dÞ2n=ðn�1Þðxr 1� bj jÞ2=ðn�1Þ

� ð1þ a2Þ0:5ð1�nÞ=ð1þnÞ:
ð2:65Þ

In Eq. (2.64), the unknown Δ to be found is a function of the Prandtl number Pr,
as well as the distribution of Tw(r). The ratio ðzþ1T

�
zþ1 Þ depends on the Pr number
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Fig. 2.5 Profiles of the non-dimensional temperature θ in the turbulent boundary layer over a free
rotating disk [3]. Experiments [72], qw = const., Reω = 1.0 × 106: 1—inner heater on, 2—inner
heater off. Calculations by Eq. (2.53): 3—nT = 1/5, 4—1/4
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only. One can denote ðzþ1T
�
zþ1 ÞnT�1Pr�nT ¼ Pr�np , with the exponent пp remaining

so far unknown.
A condition пT = n will be often employed below, which leads to a simplification

of the expressions for the Stanton number and the Nusselt number:

St ¼ ðcf =2ÞD�nPr�np ; ð2:66Þ

Nu ¼ St
V�r
m

Pr ¼ St RexPr b� 1j jð1þ a2Þ1=2: ð2:67Þ

2.4.3.1 Integral Equations

Having integrated Eqs. (2.17) and (2.18) with respect to the z-coordinate in view of
Eqs. (2.37)–(2.40), (2.58), one can derive the following ordinary differential
equations [61]:

d
dr

drðxrÞ2 1� bð Þ2 j A1aþ A2jð Þ � B1a
2 þ B2ajþ B3j

2
� �� 
n o

þ dxr2ð1� bÞ d Nxrð Þ
dr

j� A1aþ A2jð Þ½ �
þ qd xrð Þ2 C1 þ C2bþ C3b

2� � ¼ rswr=q; ð2:68Þ

d
dr

dx2r4ð1� bÞ aðD1 þ bD2Þ þ j D3 þ bD4ð Þ½ �� �
� xrð Þ2b d

dr
dxr2ð1� bÞðA1aþ A2jÞ
� 
 ¼ �r2swu=q; ð2:69Þ

where

A1 ¼ 1=ðnþ 1Þ � A2; A2 ¼ 2=ðnþ 2Þ � 1=ðnþ 3Þ;
B1 ¼ 1=ð2nþ 1Þ � 2=ðnþ 1Þ þ 6=ð2nþ 3Þ � 2=ðnþ 2Þ þ 1= 2nþ 5ð Þ;
B2 ¼ 2=ðnþ 1Þ � 10= 2nþ 3ð Þ þ 4=ðnþ 2Þ � 2=ð2nþ 5Þ;
B3 ¼ 4=ð2nþ 3Þ � 2=ðnþ 2Þ þ 1=ð2nþ 5Þ;
C1 ¼ 1� 2=ðnþ 1Þ þ 1=ð2nþ 1Þ;
C2 ¼ �2 1=ð2nþ 1Þ � 1=ðnþ 1Þð Þ;
C3 ¼ �1þ 1= 2nþ 1ð Þ;
D1 ¼ A1 �D2;

D2 ¼ 1=ð2nþ 1Þ � D4;

D3 ¼ A2 �D4;

D4 ¼ 1=ðnþ 1Þ � 1=ð2nþ 3Þ:

26 2 Mathematical Modeling of Convective Heat Transfer …



Equation (2.20) for the thermal boundary layer integrated with respect to z and
account for Eqs. (2.37), (2.38), (2.40), (2.53), and (2.58) can be written as

d
dr

dxr2 1� bð ÞF1 T1 � Twð Þ� 
þ dT1
dr

dxr2 1� bð ÞF2

¼ �St �rD�nT Pr�nP T1 � Twð Þ; ð2:70Þ

where

F1 ¼ E1; F2 ¼ E2 at D� 1; F1 ¼ E3; F2 ¼ E4 at D� 1;

E1 ¼ Dnþ1ðaa�T þ bb�TDþ cc�TD2Þ;
a�T ¼ 1=ð1þ nþ nTÞ � 1=ð1þ nÞ;
b�T ¼ 1=ð2þ nþ nTÞ � 1=ð2þ nÞ;
c�T ¼ 1=ð3þ nþ nTÞ � 1=ð3þ nÞ;
E2 ¼ Dnþ1½a=ðnþ 1Þ þ bD=ðnþ 2Þ þ cD2�ðnþ 3Þ�;
E3 ¼ E5 þ jE6;

E4 ¼ aA1 þ jðD� 1Þ þ jA2;

E5 ¼ að�A1 þ D�nTD2TÞ;
D2T ¼ 1= 1þ nþ nTð Þ � D4T ;

E6 ¼ ðD� D�nT Þ=ðnT þ 1Þ � Dþ 1� A2þD�nTD4T ;

D4T ¼ 2=ð2þ nþ nTÞ � 1=ð3þ nþ nTÞ:

The mass flow rate through the boundary layer can be expressed as

_md
�ðqxr3Þ ¼ 2pð1� bÞðA1aþ A2jÞd=r: ð2:71Þ

Equations (2.68)–(2.70) involve three unknowns:

(a) in the entraining boundary layers: α, δ, and Δ for specified β, as well as T∞;
and

(b) in the Ekman-type boundary layers: α, β for a specified mass flowrate _md ¼
const: (i.e., specified distribution of δ), as well as unknown T∞ for a specified
Δ = const.

In case (a), Eqs. (2.68)–(2.70) can be solved analytically at the boundary con-
ditions (2.27)–(2.31) (and N = const.), assumptions α = const. and Δ = const. and a
power law for the radial distribution of the boundary layer thickness δ * rm. If the
boundary conditions are approximated with arbitrary functions, Eqs. (2.68)–(2.70)
are to be solved numerically being re-written to a notation that enables using the
Runge–Kutta method [92, 96]:
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a0 ¼ U1U4 þ U2ð Þ= 1� U1U3ð Þ;
�d0 ¼ U2U3 þ U4ð Þ= 1� U1U3ð Þ;

(
ð2:72Þ

D0 ¼ S1 � S2 � S3ð Þ=S4: ð2:73Þ

Here,

U2 ¼ f½sgnð1� bÞ cfr
�
2

�� ���r3Re2V�=
�d2 � Z1�d

� G1
�d� G2�=ð�d�rÞ � Q2�r

2g=Q1;

U4 ¼ f�sgnð1� bÞ cfu
�
2

�� ���r2Re2V�=
�d2 � �d½aQ0

3 þ �Q0
4

þ ðbRexÞ0ðaQ5 þ Q6Þ�=Q7g;
U1 ¼ �Z1=ð�dQ1Þ; U3 ¼ ��dQ3=Q7;

Z1 ¼ Re2xð1� bÞ2½�B1a
2 þ ajðA1 � B2Þ þ j2ðA2 � B3Þ�;

G1 ¼ Re2xðC1 þ C2bþ C3b
2Þ;

G2 ¼ Re2xð1� bÞ�d½�A1aþ jð1� A2Þ��v0r;1;

Q1 ¼ Re2xð1� bÞ2½�2aB1 þ jðA1 � B2Þ�; Q3 ¼ �Re2xð1� bÞ2D1

Q2 ¼ Re2xif�a2B1½�r2ð1� bÞ2�0
þ aðA1 � B2Þ½�r 1� bð Þ�vr;1�0 þ ðA2 � B3Þð�v2r;1Þ0g;

Q4 ¼ �Re2xð1� bÞ�vr;1D3=�r; Q5 ¼ �Rexð1� bÞA1;

Q6 ¼ �Rexi�r�vr;1A2; Q7 ¼ aQ3 þ Q4;

�vr;1 ¼ vr;1 =vr;1 xað Þ; Rexi ¼ xr2i =m; cfr=2
�� �� ¼ ðcf =2Þa=ð1þ a2Þ1=2;

cfu=2
�� �� ¼ ðcf =2Þ=ð1þ a2Þ1=2; �d ¼ d=ri; �r ¼ r=ri:

Given Δ ≤ 1 in Eq. (2.73), we have

S1 ¼ �Rex 1� bj jð1þ a2Þ1=2Stð�T1 � �TwÞ;
S2 ¼ �T 0

1�dRexD
nþ1½að1� bÞ=ðnþ 1Þ � 2Dðað1� bÞ � NÞ=ðnþ 2Þ

þ D2ðað1� bÞ � NÞ=ðnþ 3Þ�;
S3 ¼ Dnþ1L01 þ Dnþ2L02 þ Dnþ3L03; S4 ¼ L1ðnþ 1ÞDn þ L2ðnþ 2ÞDnþ1 þ L3ðnþ 3ÞDnþ2;

L1 ¼ L0a�Tað1� bÞ; L2 ¼ L0b�Tð�2Þ½að1� bÞ � N�; L3 ¼ L0c�T ½að1� bÞ � N�;
L0 ¼ �dRexð�T1 � �TwÞ; �T ¼ T=Tref :
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The function S1 has the identical form for Δ ≥ 1 and Δ ≤ 1.

ForD� 1 : S2 ¼ �T 0
1�dRex a 1� bð ÞA1 þ NA2 þ N D� 1ð Þ½ �;

S3 ¼ L01�C
�
6T þ L02�C

�
7T ;

S4 ¼ �nTD
�nT�1D2TL1� þ ½ð1þ nTD

�nT�1Þ=ðnT þ 1Þ
� D4TnTD

�nT�1 � 1�L2�;
L1� ¼ L0 1� bð Þa;
L2� ¼ L0N;

C�
6T ¼ �A1 þ D�nTD2T ;

C�
7T ¼ ðD� D�nT Þ=ðnT þ 1Þ � Dþ 1� A2 þ D4TD

�nT :

Derivatives with respect to the radial coordinate d=d�r are denoted here with
primes; ri is a characteristic radius (for instance, the inlet radius that is used here).

In case (b), i.e., in the Ekman-type layers

a0 ¼ cf
2 aðb� 1ÞRexð1þ a2Þ1=2 4pA1ri

B1Cwb
þ db

d�r
a

b�1 � C3½bþn=ðnþ1Þ�
�rðb�1ÞaB1

� a
�r ;

b0 ¼ � cf
2 ð1� bÞ2Rexð1þ a2Þ1=2 4pA1ri

D1Cwb
� 2

�r b 1� A1
D1

� �
� 1

h in o.
1� A1

D1

� � ;
8<
:

ð2:74Þ

d�T1
d�r

¼ St
V�r
m

2p
0:5Cw

ri
b

1
KH

�T1 � �Twð Þ þ d�Tw
d�r

� �
KH

KH � 1
: ð2:75Þ

In the Ekman-type layers, authors [1, 2] recommended to assign the parameter
KH to be constant [92, 95, 97]:

KH ¼ 1� ðD2T=A1ÞD�nT ¼ const: or D ¼ const: ð2:76Þ

2.5 Disk Rotation in a Fluid Rotating as a Solid Body
and Simultaneous Accelerating Imposed Radial Flow

We will consider here flows where β = const., N = const., and κ > 0. The
assumption β = const. outlines the solid-body rotation case that occurs in rotor–
stator geometries. The assumption N = const. describes the case of accelerating
radial flow, which occurs around the stagnation point of flow impinging onto a
perpendicular plate. If κ > 0, fluid flow over a rotating disk never exhibits recir-
culation [1, 2, 68]. Given these assumptions, one can solve Eqs. (2.68) and (2.69)
analytically. This solution can be written as [3]
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d ¼ Cdr
m; Cd ¼ cðx=mÞ�2n=ð3nþ1Þ; d=r ¼ cRe�2n=ð3nþ1Þ

x ; ð2:77Þ

a = const:; m ¼ ð1� nÞ=ð3nþ 1Þ; ð2:78Þ

c ¼ c� 1� bj jð1�nÞ=ð3nþ1Þ; ð2:79Þ

CM ¼ eMRe
�2n=ð3nþ1Þ
u ; ð2:80Þ

_md=ðlrÞ ¼ emRe
ðnþ1Þ=ð3nþ1Þ
x ; ð2:81Þ

cf =2 ¼ AcRe
�2n=ð3nþ1Þ
x ; ð2:82Þ

a ¼ �H2=2H3 þ ½ðH2=2H3Þ2 � H1=H3�1=2; ð2:83Þ

c� ¼ C�2=ð3nþ1Þ
n ð1þ a2Þ0:5ð1�nÞ=ð3nþ1ÞH�ðnþ1Þ=ð3nþ1Þ

9 ; ð2:84Þ

em ¼ e�m 1� bj j2ðnþ1Þ=ð3nþ1Þ; e�m ¼ 2pcðA1aþ A2jÞsgnð1� bÞ; ð2:85Þ

eM ¼ 8p
5� 4n=ð3nþ 1ÞC

� 2
nþ1

n c
2n
nþ1� 1� bj j2ðn�1Þ

3nþ1 ð1þ a2Þ 1�n
2ðnþ1Þsgnð1� bÞ; ð2:86Þ

Ac ¼ C�2=ðnþ1Þ
n c�2n=ðnþ1Þð1þ a2Þ�n=ðnþ1Þ b� 1j j�2n=ðnþ1Þ; ð2:87Þ

where

H1 ¼ C3ðb� C5Þ þ ðb� 1Þj2H4; H2 ¼ jðbH5 þ H6Þ;
H3 ¼ bH7 þ H8;

H4 ¼ 1þ ð2þ mÞA2 � ð3þ mÞB3; H5 ¼ A1ð2þ mÞ
� B2ð3þ mÞ þ D4ðmþ 4Þ � A2ð2þ mÞ;

H6 ¼ �A1ð2þ mÞ þ B2ð3þ mÞ þ D3ð4þ mÞ;
H7 ¼ �ð3þ mÞB1 þ ð4þ mÞD2 � ð2þ mÞA1;

H8 ¼ ð3þ mÞB1 þ ð4þ mÞD1;C5 ¼ C1=C3;

H9 ¼ a½ðD1 þ bD2Þð4þ mÞ � bð2þ mÞA1�
þ j½ðD3 þ bD4Þð4þ mÞ � bA2ð2þ mÞ�:

ð2:88Þ

Equation (2.70) can be solved analytically at the boundary conditions (2.29)–
(2.31) provided that Δ = const., Pr = const., and n = nT. An additional condition is
D2T = D2 and D4T = D4.

Equation (2.70) is to be solved jointly with Eq. (2.69), in view of Eqs. (2.31),
(2.67), (2.77) and (2.78). As a result, one can derive [91]
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F1 2þ mþ n�ð Þ þ bn�
b� 1

F2

� �
DnPrnp ¼ ð4þ mÞC4 þ 2b

b� 1
C5: ð2:89Þ

Functions F1 and F2 are clarified in explanations to Eq. (2.70);
C4 ¼ �ðaD1 þ jD2Þ, C5 ¼ 1=ðnþ 1Þ þ 1=ðnþ 2Þ þ 1=ðnþ 3Þ. Solutions of
Eq. (2.89) for the cases Δ ≥ 1 and Δ ≤ 1 are different (which is manifested via
different mathematical expressions for F1 and F2 at Δ ≥ 1 and Δ ≤ 1). Heat transfer
conditions at Δ ≥ 1 can be observed for gases at Pr ≤ 1. Conditions with Δ ≤ 1 take
place at heat transfer in liquids for Pr ≥ 1 (see Chap. 6).

Given simultaneously non-zero values of β and N, the algebraic Eq. (2.89) is
transcendental. At N = 0 and Δ ≥ 1, there exists an explicit solution for the
parameter Δ. The exponent np for flow over the free rotating disk is specified below.

Nusselt and Stanton numbers are given by the following equations:

St ¼ AcRe
�2n=ð3nþ1Þ
x D�nPr�np ; ð2:90Þ

Nu ¼ Acð1þ a2Þ1=2 1� bj jReðnþ1Þ=ð3nþ1Þ
x D�nPr1�np : ð2:91Þ

The present integral method is thoroughly validated for turbulent air flow and
extended to laminar flow in Chaps. 3 and 4. Simulations for a free rotating disk
(β = 0, N = 0) are described in detail in Chap. 3. Cases of a rotating disk in a fluid
that (a) co-rotates as a solid body (β = const., N = 0), and (b) is uniformly accel-
erating and non-rotating (β = 0, N = const.), as well as for the case of turbulent
through flow between parallel co-rotating disks are analyzed in Chap. 4.
A description of an extension of the integral method for gases and liquids at Prandtl
or Schmidt numbers larger than unity is documented in Chap. 6.
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Chapter 3
Free Rotating Disk

3.1 Laminar Flow

A flow and heat transfer pattern over a single rotating disk is schematically depicted
in Fig. 2.1. Self-similar velocity and temperature profiles, F0, G0, H0 and θ, com-
puted numerically using the Mathcad software as a solution of Eqs. (2.32)–(2.36)
for β = 0, N = 0 [1] agree well with computations [2–5] and experiments [6–8]
(Fig. 3.1). Derivatives of the F0 and G0profiles at the disk wall, as well as the mass
flow rate in the boundary layer are given by the following relations [3, 4]

G0
0w ¼ dG0=df0ð Þf¼0 = � 0:6159; F0

0w ¼ dF0=df0ð Þf¼0¼ 0:5102; ð3:1Þ

a0 ¼ �F0
0w=G

0
0w ¼ 0:8284; _md=ðlrÞ ¼ 0:8845Re1=2x : ð3:2Þ

In laminar flow, the boundary layer over a rotating disk has a constant thickness
δ0. Assuming G0 = 0.01 at the outer edge of the boundary layer, one can obtain
δ0 = 5.5(ω/v)1/2 [3]. The numerical coefficient is higher for smaller values of G0

defining the location of δ0, which, however, is unimportant in the integral method
approach [1, 3].

For a single rotating disk, the moment coefficient of CM is given by [2]

CM ¼ 3:87Re�1=2
u : ð3:3Þ

Equation (3.3) agrees with experiments [9] and differs modestly from the data
[10, 11] (Fig. 3.2), which might be attributed to a poorer accuracy of the
measurements.

Generally, the heat transfer rate over rotating disks follows the relations

Nu ¼ K1Re
nR
x ; Nuav ¼ K2Re

nR
u : ð3:4Þ

© Springer International Publishing Switzerland 2016
I.V. Shevchuk, Modelling of Convective Heat and Mass Transfer
in Rotating Flows, Mathematical Engineering, DOI 10.1007/978-3-319-20961-6_3

37

http://dx.doi.org/10.1007/978-3-319-20961-6_2
http://dx.doi.org/10.1007/978-3-319-20961-6_2
http://dx.doi.org/10.1007/978-3-319-20961-6_2


Flow regime, Prandtl number and function of the wall temperature determine
coefficients K1 and K2 in Eq. (3.4). The constant nR is determined by the flow
regime. For instance, K1 = K2, nR = 1/2 in laminar flow [2–4, 6]. For an isothermal
rotating disk at Pr = 0.71–0.72 (air), the most reliable experiments yield K1 = 0.32–
0.34 [3, 4, 6, 15–25] (Fig. 3.3).

Values of the constant K1 obtained by the author [1] are presented in Table 3.1.
They result from a solution of Eqs. (2.32)–(2.36) for β = 0, N = 0 under

condition (2.30)
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Computations: 1—F0, 2—G0, 3—(−H0), 4—θ for n* = 0, Pr = 0.71. Experiments: 5—F0 [7],
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K1 ¼ �h0f¼0: ð3:5Þ

For Tw = const. and qw = const., the exponent in Eq. (2.30) for laminar flow is
the same: n* = 0. The constant K1 in an increasing function of the parameter n*: e.g.
for air at Pr = 0.71, the value of K1 grows up by 313 % with n* increasing from −1
to 3 (see Table 3.1). For non-isothermal disks and smaller values of the Pr number,
there are no experimental data in literature that would enable validation of the
constant K1.

5.0 5.2 5.4 5.6 5.8 6.0 6.2

2.0

2.5

3.0

10

 - 1
 - 2

9

8

7

6

4
3

5

lg
(N

u)

lg(Re )
ω

Fig. 3.3 Local Nusselt numbers on a rotating disk [1]. Experiments [6]: 1—qw = const.; 2—
Tw ≈ const. 3–10—calculations, Eq. (3.4). Turbulent flow, nR = 0.8: 3—K1 = 0.0169 [26]; 4—
K1 = 0.0163 [6]; 5—K1 = 0.0187 [26]. Laminar flow, nR = 0.5: 6—K1 = 0.34 [6]. Transitional
flow: 7—nR = 4, K1 = 10.0 × 10−20 [23]; 8—nR = 4, K1 = 2.65 × 10−20 [6]; 9—nR = 2.8,
K1 = 8.01 × 10−14 [27, 28]; 10—nR = 2.8, K1 = 1.2 × 10−13 [1]

Table 3.1 Constant K1 according to the exact solution of Eqs. (2.32)–(2.36) [1, 29, 30]

Pr n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

1.0 0.0 0.1305 0.2352 0.3221 0.3963 0.5180 0.6159 0.6982 0.7693

0.9 0.0 0.1217 0.2204 0.3029 0.3737 0.4905 0.5849 0.6643 0.7331

0.8 0.0 0.1124 0.2046 0.2824 0.3495 0.4608 0.5513 0.6276 0.6939

0.72 0.0 0.1045 0.1911 0.2647 0.3286 0.4352 0.5223 0.5959 0.6599

0.71 0.0 0.1035 0.1893 0.2624 0.3259 0.4319 0.5185 0.5918 0.6555

0.6 0.0 0.0917 0.1691 0.2358 0.2943 0.3929 0.4742 0.5433 0.6036

0.5 0.0 0.0802 0.1490 0.2091 0.2623 0.3531 0.4287 0.4935 0.5502

0.4 0.0 0.0675 0.1267 0.1792 0.2263 0.3078 0.3767 0.4362 0.4887

0.3 0.0 0.0536 0.1017 0.1452 0.1849 0.2550 0.3153 0.3682 0.4153

0.2 0.0 0.0381 0.0732 0.1058 0.1362 0.1912 0.2400 0.2838 0.3234

0.1 0.0 0.0204 0.0399 0.0586 0.0766 0.1104 0.1417 0.1709 0.1981
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The first known approximate solution valid for gases was derived by Dorfman [2]

K1 ¼ K2 ¼ 0:308 n� þ 2ð Þ1=2Pr1=2: ð3:6Þ

Values of K1 predicted by Eq. (3.6) by 34–238 % surpass the data from
Table 3.1 for n* = −1.5–0. These deviations are magnified with decreasing Pr
number.

For the conditions of Tw = const. and Pr = 0–∞, the following theoretical
solutions for the constant K1 were derived in the works [31, 32], respectively

K1 ¼ 0:6109Pr=ð0:5301þ 0:3996Pr1=2 þ PrÞ2=3; ð3:7Þ

K1 ¼ 0:6Pr=ð0:56þ 0:26Pr1=2 þ PrÞ2=3: ð3:8Þ

Predictions by Eqs. (3.7) and (3.8) divert from the data in Table 3.1 by maxi-
mum 4 and 5 %, accordingly. In the limit at Pr → 0, Eqs. (3.7) and (3.8) tend to a
relation K1 * Pr that conforms to the asymptotic equation K1=Pr ¼ 0:885 derived
in [33]. For Pr → ∞, Eqs. (3.7) and (3.8) reduce to a relation K1 � 0:62Pr1=3,
which coincides with that obtained in the work [33]. Validity of Eqs. (3.7) and (3.8)
is restricted by the case of n* = 0.

3.2 Transition to Turbulent Flow

Increasing the angular velocity of the disk rotation causes instability of laminar flow
and set up of spiral vortices followed by a development of turbulence. Authors [34]
detected 32 spiral waves over a rotating disk, with the angle ε between a perpen-
dicular to the spiral and the radial direction being about 14°. Visualization [35] by
means of a thin layer of Kaolin on the surface of a disk revealed simultaneous
co-existence of the regions of laminar flow, laminar flow with 28–31 spiral vortices
and turbulent flow. The number of spiral vortices is a function of the local Reynolds
number Reω [36–40]. For instance, 14–16 vortices with the angle ε = 20° were
detected in [37]. The number of vortices nv can be predicted by an empirical
equation [40]

nv ¼ 0:0698 � Re1=2x : ð3:9Þ

Equation (3.9) is confirmed by experimental data [37, 40, 41].
Detailed theoretical investigations of instabilities emerging in flow over a

rotating disk were performed in [8, 42–54]. At the onset of instability, the predicted

value Re1=2x ¼ 286 conforms to the experimental values [40]. Averaging of the
Reynolds number at the onset of transition to turbulent regime yields the value

Re1=2x ¼ 513 [42].
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Experimental data of different authors summarizing the Reynolds numbers at the
onset of instability, beginning and end of transition to turbulent flow are docu-
mented in Table 3.2. Table 3.3 lists results of averaging within every sub-group of
techniques (heat and mass transfer techniques; thermo-anemometry; visualization
and acoustics).

Table 3.2 Values of the Reynolds number at the onset of instability, beginning and end of
transition to turbulent flow [1]

No. Experimental technique Values of the Reynolds number Reω
Onset of
instability

Beginning of
transition

End of transition

1 Thermoanemometer [34] 2.1 × 105 3.1 × 105

2 Thermoanemometer [56] 8.8 × 104 2.5 × 105 3.2 × 105

3 Thermoanemometer [40] 8.6 × 104 (2.6–2.8) × 105

4 Thermoanemometer [41] 9 × 104 (2.95–3.1) × 105

5 Thermoanemometer/visualization
[57]

(2.4–2.63) × 105

6 Thermoanemometer [38, 39] (2.4–2.6) × 105

7 Thermoanemometer [8] (2.5–2.64) × 105

8 Thermoanemometer [7] 2.5 × 105

9 Thermoanemometer [54, 58] 9.5 × 104 3.4 × 105

10 Acoustic measurements [59] 1.35 × 105 2.55 × 105 2.75 × 105

11 Visualization (Kaolin) [35] 1.8 × 105 3.0 × 105

12 Visualization (naphthalene)
and acoustic measurements [37]

1.5 × 105

(0.33–1.9) × 105
2.65 × 105

13 Visualization in water [60] (2.8–2.86) × 105 (3.2–4.6) × 105

14 Heat transfer coefficient [17] 2.0 × 105 2.4 × 105

15 Heat transfer coefficient [6] 2.9 × 105 3.6 × 105

16 Heat transfer coefficient [23] 1.95 × 105 2.5 × 105

17 Heat transfer coefficient [27, 28] 2.5 × 105 3.2 × 105

18 Heat transfer coefficient [61] 2.4 × 105

19 Heat transfer coefficient [62] 2.4 × 105

20 Heat transfer coefficient [63] 2.2 × 105 3.4 × 105

21 Mass transfer coefficient
(naphthalene sublimation) [18]

2.7 × 105

22 Mass transfer coefficient
(naphthalene sublimation) [16]

1.9 × 105 2.75 × 105

23 Mass transfer coefficient
(naphthalene sublimation) [64]

1.8 × 105

24 Mass transfer coefficient
(naphthalene sublimation) [20]

2.0 × 105

25 Mass transfer coefficient
(electrochemistry) [42]

1.7 × 105 2.6 × 105 3.5 × 105

26 Mass transfer coefficient
(electro-chemistry) [65–67]

2.3 × 105 2.9 × 105

27 Mass transfer coefficient
(electrochemistry) [68]

2.2 × 105 3.0 × 105
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Different criteria for determining the critical values of Reω apparently entailed
inconsistency of experimental data. In spite of the setup of spiral vortices already
for Reω = (1.14–1.4) × 105, surface heat and mass transfer rates deviate from the
laminar flow data at larger Reynolds numbers Reω = 1.85 × 105. Also, disagreement
between experiments may have been resulted from possible vibrations, different
roughness etc. The ratio of the Reynolds numbers at the setup and end of the
transition to turbulent flow yields the value 1.21; this agrees with the respective
ratio 1.3 for a flat plate flow [55].

The heat/mass transfer rate measured in the transitional flow regime at the same
local Reynolds number Reω was different in various experiments

Nu ¼ 10:0� 10�20 � Re4x for Rex ¼ 1:95�2:5ð Þ � 105 Ref. 23½ �; ð3:10Þ

Nu ¼ 2:65� 10�20 � Re4x for Rex ¼ 2:9�3:6ð Þ � 105 Ref. 6½ �; ð3:11Þ

Nu ¼ 8:01� 10�14 � Re2:8x for Rex ¼ 2:6�3:2ð Þ � 105 Ref. 27; 28½ �; ð3:12Þ

Sh ¼ 20:0� 10�20 � Re4x for Rex ¼ 2:0�2:5ð Þ � 105 Ref. 16½ �; ð3:13Þ

Sh ¼ 3:4� 10�14 � Re3xSc1=3 for Rex ¼ 2:0�3:0ð Þ � 105 Ref. 67½ �: ð3:14Þ

In fact, Eqs. (3.11) and (3.12) from one side, and Eqs. (3.10), (3.13) and (3.14)
from the other side form two different groups that suggest the different ranges of the
Reynolds numbers Reω for transitional flow, which is in line with the data from
Table 3.2.

Equation (3.12) does not follow the original experiments [27, 28]. Corrected
coefficient K1 = 1.2 × 10−13 (with the end of transition to turbulent flow at
Reω = 3.7 × 105) [1] is consistent with experiments [6, 27, 28] and Eq. (3.11)
(Fig. 3.3). Equation (3.10) is in disagreement with Eqs. (3.12) and (3.13) for
Reω = (2.5–2.9) × 105 (Fig. 3.3).

Equation (3.13) conforms to the experiments [16], though its validity should be
modified to the range Reω = (1.9–2.75) × 105 [1]. Equation (3.14) deduced for large
Schmidt numbers Sc = 1192–2465 is in a good consistency with Eq. (3.13) for
Sc = 2.28.

Table 3.3 Averaged Reω numbers for boundaries of flow regimes over a rotating disk [1]

No. Experimental technique Values of the Reynolds number Reω
Onset of
instability

Beginning of
transition

End of
transition

1 Thermoanemometer 1.14 × 105 2.54 × 105 3.15 × 105

2 Visualization and acoustic
measurements

1.4 × 105 3.08 × 105 3.3 × 105

3 Methods of heat and mass
transfer

1.85 × 105 2.3 × 105 3.1 × 105

4 Average value 1.46 × 105 2.64 × 105 3.18 × 105
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Roughness of the disk surface may provoke earlier transition to turbulent flow in
comparison with a smooth disk. In laminar flow, surface roughness does not
influence heat transfer. In experiments for Reω > 5.6 × 104 [19, 69, 70], heat transfer
increased very moderately at the expense of the enlarged surface area of a rough
disk.

Surface roughness noticeably affects the boundaries of the flow regimes. The
Reynolds number at onset of the spiral vortices (whose number diminished from 32
to 25) decreased from Reω = 0.95 × 105 on a smooth disk to Reω = 0.5 × 105 on a
rough disk [58].

In experiments [57] on a rough disk, the onset of transition to turbulence began
at Reω = (0.23–1.23) × 105 (on a smooth disk, at Reω = (2.4–2.63 × 105). The
boundary of the end of transition also shifted down to Reω = 2.55 × 105 on a rough
disk in comparison with Reω = 3.4 × 105 on the smooth disk in [58]. In the paper
[18], the end of transition shifted down to Reω = 2.0 × 105 on a rough disk as
compared to Reω = 2.7 × 105 on a smooth disk.

At the beginning of the transition to turbulent flow, the heat and mass transfer
rate in the experiments [18] on a rough disk was by 34 % higher in comparison with
a smooth disk over the range of the Reynolds numbers studied in that work.

3.3 Turbulent Flow

3.3.1 Parameters of the Boundary Layer

Tangential vφ and radial vr velocity components described by the power-law
function (2.40) and the quadratic Eq. (2.58), respectively, are in a good agreement
with the experiments [7, 12] (see Figs. 2.2, 2.3 and 2.4). In addition, Eq. (2.58)
conforms to the experimental data in the outer part of the boundary layer better than
Eq. (2.41) (Fig. 2.4).

Temperature profiles θ approximated by the power-law Eq. (2.53) at nT = 1/4–1/5
match well to the profiles measured in the work [6] for qw = const. (see Fig. 2.5).

This chapter represents a validation of the present integral method (described in
Chap. 2) in comparison with the von Karman’s method, Eq. (2.41), often incor-
porated in many integral methods. On the basis of Eqs. (2.40) and (2.41) [71], the
rest of boundary layer parameters can be written as Eqs. (2.77)–(2.81) with their
constants expressed as [3, 4]

a2 ¼ 4ð2þ 3=nÞð1þ 2=nÞð3þ 1=nÞ
ð16n�3 þ 85n�2 þ 145n�1 þ 66Þ=n2 ; ð3:15Þ

cð3nþ1Þ=ðnþ1Þ ¼ C�2=ðnþ1Þ
n

2ðnþ 1Þð2nþ 2Þð3nþ 1Þðnþ 2Þð1þ a2Þð1�nÞ=½2ðnþ1Þ�

3ð11nþ 5Þan ;

ð3:16Þ
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em ¼ 2pac
ð1þ nÞð2þ nÞ ; eM ¼ 6pac

�
n2

ð1þ 1=nÞð2þ 1=nÞð1þ 2=nÞ : ð3:17Þ

Constants α, γ, εm and εM computed by Eqs. (2.83)–(2.86) (present integral
method) and (3.15)–(3.17) (von Karman’s method) are listed in Table 3.4.
Computed values for γ, and εM are practically identical for both methods at the same
values of n, while the constants α and εm representing the approximation of vr are
noticeably different.

Values of the flow swirl angle α = tanφw from Table 3.4 are plotted in Fig. 3.4
together with experiments [6, 7] and predictions by other models [72, 76].
Experimental data for the parameter α behave as a decreasing function of the
Reynolds number Reω within the limits suggested by Eq. (2.83) at n = 1/7 (upper)
and n = 1/9 (lower). The exponent n diminishes for larger Reω [2, 3], which is
followed with a decrease in the α values (like in the experiments). The highest
magnitude of α = 0.162 (at n = 1/7) by von Karman’s Eq. (3.15) matches to the
lowest level of α found experimentally [6, 7, 72].

Table 3.4 Constants of the solution for a free disk [1]

Coefficient Equation, source n = 1/7 n = 1/8 n = 1/9 n = 1/10

Cn (2.49), [71] 8.74 9.71 10.6 11.5

α (2.83), [73] 0.2087 0.1842 0.1649 0.1493

α (3.15), [3] 0.162 0.143 0.128 0.116

γ (2.84), [73] 0.5299 0.4977 0.4773 0.4597

γ (3.16), [3] 0.526 0.497 0.479 0.463

εm (2.85), [73] 0.1806 0.1542 0.1355 0.1204

εm (3.17), [3] 0.219 0.187 0.164 0.146

εM (2.86), [73] 0.1466 0.1127 0.0901 0.0734

εM (3.17), [3] 0.1458 0.1122 0.0896 0.073
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Fig. 3.4 Tangent α of the flow swirl angle at the wall [1]. Present integral method [1, 74, 75],
Eq. (3.15): 1—n = 1/7; 2—1/9 (or 1/7, von Karman [71]). 3—model [72]; 4—Eq. (2.44) [76],
α = 0.2003 for n = 1/7, b = 0.7, c = 1.2; 5—model [77]. Experiments: 6—[7]; 7—[6]
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As it can be seen from Fig. 3.5, for Reω ≥ 0.75 × 106, the dimensionless mass
flow rate predicted by Eq. (2.85) for n = 1/9 (the present integral method) is in good
agreement with experiments [6, 72, 78] and predictions by the von Karman’s
method for n = 1/7. For n = 1/7–1/8 and Reω = (0.5–0.75) × 106, Eq. (2.85) also
reasonably estimates the mass flow rate, although it incorrectly predicts the func-
tional dependence of _md

�ðq1xr3Þ on Reω. At the same time, approach [71] yields
inaccurate predictions for Reω = (0.5–0.75) × 106.

Equation (2.42) for α = 0.18 for n = 1/7 was employed in [77]. The value α = 0.
18 insignificantly differs from the values by the present integral method given in
Table 3.4.

In the work [79], velocity profiles did not exhibit self-similarity in turbulent flow
over the range Reω ≈ (3.1–6.64) × 105, whereas the wall value α increased together
with Reω (or r/b). The rather complicated integral method based on Eq. (2.43) and
original experiments [79] tried to model this phenomenon. However, because of its
excessive complexity, the method [79] was not developed further to include a
model for heat transfer.

The work [72] also employed Eq. (2.42) together with an empirical equation for
the mass flow rate in the boundary layer. However, the accuracy of this integral
method did not exceed that of the von Karman’s method [71].

To conclude, the present integral method, Chap. 2, enables a more accurate
prediction of the radial velocity distributions, values of α and mass flow rate in the
boundary layer than other integral methods. The values of the parameter n must be
selected based on Figs. 2.2, 2.3, 2.4, 3.5 and 3.6, as well as the data for the Nusselt
number presented below.

Predictions of the moment coefficient CM by Eq. (2.80) for n = 1/7 are in good
agreement with the experiments in Fig. 3.2 for Reφ < 2.0 × 106. For larger values
of Reφ, predictions by Eq. (2.80) lie below the experiments. Values n = 1/8–1/10
used in Eq. (2.80) shift the predictions close to experiments at Reφ ≥ 3.0 × 106

(see Fig. 3.2).
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Fig. 3.5 Dimensionless mass flow rate through the boundary layer [1]. Equation (2.85): 1—n =
1/7; 2—1/8; 3—1/9; 4—1/10; 5—1/7, von Karman’s method (3.17) [71]. Experiments: 6—[72]; 7
—[78]; 8—Shevchuk based on experimental data of [6]; 9—[79]
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Logarithmic velocity profiles yield in the end the following equations for CM

C�1=2
M ¼ 1:97 lg Reu

ffiffiffiffiffiffi
cM

p� �þ 0:03; ð3:18Þ

CM ¼ 0:982 lgReu
� ��2:58

: ð3:19Þ

Equation (3.19) of Dorfman [2] yields the best overall match with the experi-
ments, while Eq. (3.18) [80] sets the upper level restriction for the experimental
data in Fig. 3.2.

In the paper [14] also employing a logarithmic model, the following approxi-
mation for the coefficient CM was derived, which is valid over the range
Reφ ≈ 4.0 × 105–2.0 × 106

CM ¼ 0:13Re�0:185
u : ð3:20Þ

Equation (3.20) agrees well with the experiments [12, 13] re-evaluated in [14],
though it is by 5–10 % higher than the data of other authors for Reφ ≥ 2.0 × 106 (see
Fig. 3.2).

Logarithmic velocity profiles entail noticeable complications of mathematical
models; therefore they were practically rarely used in integral methods.

3.3.2 Surface Heat Transfer: Different Experiments
and Solutions

The integral method of Dorfman [2], applied together with the boundary condition
(2.30) and nR = 0.8, yielded known solutions for the coefficients K1 and K2 in Eq.
(3.4)

K1 ¼ 0:0197 n� þ 2:6ð Þ0:2Pr0:6; ð3:21Þ

K2 ¼ K1 n� þ 2ð Þ= n� þ 2:6ð Þ: ð3:22Þ

The multiplier Pr0.6 was obtained by the authors [3, 4].
Table 3.5 represents results for the coefficients K1 and K2 depending on n* and

computed by Eqs. (3.21) and (3.22) together with experimental data from different
sources. Measurements [17, 61, 81–83] for Tw = const. (or n* = 0) made mainly in
1950th and 1960th are in good agreement with Eqs. (3.21) and (3.22). However, the
modern accurate measurements for K1 are lower than the Dorfman’s predictions in
Table 3.5: by 4.4 % [6, 15, 23, 62, 63] and 9.5 % [84]. Experimental values [62, 63]
are estimations made by the author of the present work based on the published data.

For the thermal boundary condition qw = const. (or n* = −0.6), the coefficient K1

in measurements [6, 27, 28] was by 14.1 % smaller than the estimation by
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Eq. (3.21) (Table 3.5). CFD simulations [85] for qw = const. are approximated by
Eq. (3.4) at nR = 0.83 and K1 = 0.0111, K2 = 0.0086. Authors [81] obtained the
same value K2 = 0.015 for the cases qw = const. and Tw = const., which does not
look trustworthy.

For n* = −0.2, predictions by Eqs. (3.21) and (3.22) by up to 10 % surpass the
Nusselt numbers measured in [86, 87]. Empirical values of the coefficient K1 were
not estimated in [86, 87], apparently because the Tw distribution did not comply
with Eq. (2.30).

The so called theory of local modelling [2–4, 88] (see Sect. 2.3.2) yields a
solution for the Nusselt number for the situation, where Eq. (2.30) does not hold.
This solution proved to be insufficiently accurate and has therefore not been further
developed.

Average Nusselt number for an entire disk. Average Nusselt numbers Nuav for
an entire disk, where laminar, transitional and turbulent flows co-exist simulta-
neously, are often of interest in technical applications.

It was assumed in the model [61] that transition to turbulence takes place
abruptly at the Reynolds number Reω,tr calculated at a coordinate rtr. Following this
assumption, one can present Nuav (see its definition in Nomenclature) as follows

Nuav ¼
b
R tr
0 NulamðTw � T1Þdr þ R b

tr NuturbðTw � T1Þdr
h i

R b
tr ðTw � T1Þrdr

: ð3:23Þ

The Nusselt numbers to be substituted in Eq. (3.23) are defined by Eq. (3.4) for
Nu, where the constants are K1,lam, nR = 1/2 for laminar flow, and K1,turb, nR for
turbulent flow.

If the disk temperature is described by Eq. (2.30), this yields [1]

Nuav ¼ K1;lamRe
1=2
x;tr

Rex;tr
Reu

� �n�=2þ1=2

þ 2þ n�
2nR þ 1þ n�

K1;turbRe
nR
u 1� Rex;tr

Reu

� �n�=2þnRþ1=2
" #

:

ð3:24Þ

Table 3.5 Values of the constants K1 and K2 for nR = 0.8 and Pr = 0.72 [1]

Coefficient Source or equation n* = −0.6 n* = 0 n* = 2 n* = 6

K2 [17, 61, 81, 82] 0.015

K1 [83] 0.0194

K1 [84] 0.0179

K2 [84] 0.0138

K1 [6, 15, 23, 62, 63] 0.0188

K2 [23, 62] 0.0145

K1 [6, 27, 28] 0.0163

K1 Dorfman, Eq. (3.21) 0.0186 0.0196 0.022 0.0249

K2 Dorfman, Eq. (3.22) 0.013 0.0151 0.0191 0.0231
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For Tw = const. (or n* = 0), Eq. (3.24) simplifies to [1]

Nuav ¼ K1;lamRe
1=2
x;tr

Rex;tr
Reu

� �1=2

þ 2
2nR þ 1

K1;turbRe
nR
u 1� Rex;tr

Reu

� �nRþ1=2
" #

:

ð3:25Þ

Equation (3.24) holds, if Reu �Rex;tr. Given Reu\Rex;tr, the second term in
Eq. (3.24) vanishes. Asymptotically at Reu 	 Rex;tr , the turbulent flow fully
occupies a disk, and Eq. (3.24) turns into Eq. (3.4) for Nuav, where [1]

K2;turb ¼ 2þ n�
2nR þ 1þ n�

K1;turb: ð3:26Þ

Once nR = 0.8, Eqs. (3.22) and (3.26) become identical.
In Fig. 3.6, curve 4 is based on Eq. (3.25) for the case Tw = const. and the values

nR = 0.8, 2K1;turb=ð2nR þ 1Þ ¼ 0:015, K1,lam = 0.4, Reω,tr = 2.4 × 105 [61]. Curve 4
lies by 15 % lower than the original experimental data [61] for Reω ≤ 6.5 × 105.
A smaller value of Reω,tr = 2.0 × 105 (curve 5) provides a better match of Eq. (3.25)
with experiments [1].

3.3.3 Effect of Approximation of the Radial Velocity Profile

Effect of the tangent of the flow swirl angle was taken into account via a model

tanu ¼ að1� nÞr: ð3:27Þ
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Fig. 3.6 Average Nusselt numbers of an entire disk rotating in still air [1]. Experiments: 1—[61].
Calculations by Eq. (8.4): 2—developed turbulent flow, nR = 0.8, K2 = 0.015 (Table 3.5) [61];
3—laminar flow, nR = 1/2, K1 = 0.4 [61]. Calculation of Nuav for an entire disk: 4—Eq. (3.25) at
Reω,tr = 2.4 × 105 [61]; 5—Eq. (3.25) at Reω,tr = 2.0 × 105 [1]
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For the constant σ, the values σ = 2, 1 and 0 were selected, which enabled
undertaking parametric studies, whereas the value σ = 2 remained the major one in
the present integral method. In the end, solutions for the parameters in Eqs. (2.77)–
(2.87) look as

a ¼ C1

ð3þ mÞB0 þ ð4þ mÞD0

� 	1=2
; ð3:28Þ

H9 ¼ aD0ð4þ mÞ; ð3:29Þ

eM ¼ 8pacD0: ð3:30Þ

Here B0 = B1 and D0 = D1 for σ = 2; D0 = 1/(n + 1) − 1/(n + 2) − 1/(2n + 1) +
1/(2n + 2) and B0 = D2 for σ = 1; B0 = 1/(2n + 1) and D0 = 1/(n + 1) − 1/(2n + 1) for
σ = 0 [1]. The case with σ = 2 coincides with Eqs. (2.83)–(2.87) at κ = 0, β = 0.

The effect of the exponent σ on the radial velocity profiles is elucidated in
Fig. 3.7.

Table 3.6 lists numerical data for the constants α, γ and εM computed by
Eqs. (3.28)–(3.30) (data for σ = 1 and 2 partially repeat those from Table 3.4).

In Fig. 3.7, the radial velocity profile for σ = 0 is qualitatively and quantitatively
different from the other vr profiles. Anyway, in spite of this, the deviation of the
calculated CM values for σ = 0 from the basic case of σ = 2 is 5 % at maximum
(Table 3.6).
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Fig. 3.7 Profiles of the radial velocity component in the turbulent boundary layer over a free
rotating disk [1]. 1—n = 1/7, 2—1/8, 3—1/9. Equation (2.41), [71]: 4—n = 1/7. Equation (2.44):
5—σ = 0, n = 1/7. Experiments: 6—Reω = 0.4 × 106, 7—0.65 × 106, 8—0.94 × 106, 9—1.6 × 106

[12], 10—0.6 × 106, 11—1.0 × 106 [7]
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Equation (2.70), complemented with Eqs. (3.27)–(3.30), can be analytically
solved only for the condition D� 1 [75, 89]. For σ = 2, such a solution degenerates
to Eqs. (2.89)–(2.91) at N = 0 and β = 0.

Thus, for D� 1, the coefficients in Eq. (3.4) can be written as

nR ¼ ðnþ 1Þ=ð3nþ 1Þ; ð3:31Þ

K1 ¼ K3D
�nPr1�np ; ð3:32Þ

D�n ¼ 4þ m
2þ mþ n�

KVPr
�np þ ð1� KVÞ

� 	�1

; ð3:33Þ

K1 ¼ K3Pr
4þ m

2þ mþ n�
KV þ ð1� KVÞPrnp

� 	�1

; ð3:34Þ

K2 ¼ K1 n� þ 2ð Þ= 2þ n� þ mð Þ; ð3:35Þ

K3 ¼ Acð1þ a2Þ1=2 ¼ C�2=ðnþ1Þ
n c�2n=ðnþ1Þð1þ a2Þ0:5ð1�nÞ=ðnþ1Þ; ð3:36Þ

Table 3.6 Constants in Eqs. (2.77)–(2.80), (3.28) and (3.30)–(3.41) at different σ [1, 89]

Coefficient n = 1/7 n = 1/8 n = 1/9 n = 1/10

α, σ = 2 0.2087 0.1842 0.1649 0.1493

α, σ = 1 0.162 0.143 0.128 0.116

α, σ = 0 0.0925 0.0818 0.0733 0.0664

γ, σ = 2 0.530 0.4977 0.4773 0.4597

γ, σ = 1 0.526 0.497 0.479 0.463

γ, σ = 0 0.616 0.588 0.571 0.556

εM, σ = 2 0.1466 0.1127 0.0901 0.0734

εM, σ = 1 0.146 0.112 0.09 0.073

εM, σ = 0 0.139 0.107 0.086 0.0704

KV, σ = 2 0.203 0.183 0.1661 0.1523

KV, σ = 1 0.167 0.15 0.1364 0.125

KV, σ = 0 0.111 0.10 0.0909 0.0833

K3, σ = 2 0.02683 0.02079 0.01673 0.0137

K3, σ = 1 0.0267 0.0207 0.0166 0.0136

K3, σ = 0 0.0255 0.0198 0.016 0.0131

nR 0.8 0.8182 0.8333 0.8462

m 0.6 0.6363 0.6667 0.6923

np, σ = 2 0.5018 0.4894 0.4797 0.4719

np, σ = 1 0.48 0.471 0.463 0.457

np, σ = 0 0.45 0.444 0.44 0.436
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KV ¼ 1� D2�=A1�: ð3:37Þ

In Eq. (3.37), the constants are defined as [1]: D2* = D2 and A1* = A1 for σ = 2;
D2* = 1/(2n + 1) − 1/(2n + 2) and A1* = 1/(n + 1) − 1/(n + 2) for σ = 1; D2* = 1/
(2n + 1) and A1* = 1/(n + 1) for σ = 0. Parameters K3 and KV presented in Table 3.6
do not depend on n*. In view of the relation 2nR ¼ 1þ m [which follows from
Eqs. (2.78) and (3.31)], Eqs. (3.35) and (3.26) become identical.

Let us denote G ¼ Prnp 2þ mþ n�ð Þ= 4þ mð Þ, use the Taylor’s series expansion
of the entire term in brackets in Eq. (3.34) for Pr → 1, n* → 2 in the neighborhood
of G = 1 and neglect summands of an infinitesimal order. As a result, one can obtain
[74, 75, 89]

Nu ¼ K3
2þ mþ n�

4þ m

� �KV

RenRx Pr1�np 1�KVð Þ: ð3:38Þ

Let us further consider a solution for the most widely used value n = 1/7 and
round down: KV = 0.2. In doing so, Eq. (3.38) becomes identical to the Dorfman’s
solution (3.21), if one sets the overall exponent for the Pr number equal to 0.6 and
keeps this unchanged and independent of n. Based on this, the unknown parameter
np can be determined as

np ¼ 0:4=ð1� KV Þ: ð3:39Þ

Table 3.6 contains numerical values of the parameter np calculated by Eq. (3.39).
Equation (3.38) coincides with Eq. (3.34) solely for Pr → 1 and n* → 2.
A mathematical interpretation of this fact is that Eq. (3.38) represents a particular
case of Eq. (3.34).

For D
 1 and N = 0 and β = 0 (a single rotating disk), Eq. (2.89) remains
transcendental

D2nþ1 a� � 2b�Dþ c�D2� � ¼ 4þ m
2þ mþ n�

a� � 2b� þ c�ð ÞPr�np : ð3:40Þ

In Eq. (3.40), пT = n has been set and the subscript “T” at the coefficients a*, b*
and c* has been omitted. Equation (3.40) holds for the case Pr ≥ 1 (or Sc ≥ 1):
naphthalene sublimation in air, flows of liquids etc. Therefore, an analysis of
Eq. (3.40) is relegated to Chap. 6.

Table 3.7 and Fig. 3.8 illustrate the influence of the parameter σ on the coeffi-
cients K1 and K2 in Eqs. (3.34) and (3.35) [as compared to Eqs. (3.21) and (3.22)] in
a form of a dependence on the parameter n* for Pr numbers 0.72 (air) and 1.0.
Equation (3.34) at σ = 2 demonstrates the best agreement with experiments,
especially for n* ≤ 0, which confirms the choice of the value σ = 2 as a major one
in the present integral method.
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Data in Tables 3.5 and 3.7 elucidate also inaccuracies of the
Dorfman’s Eqs. (3.21) and (3.22), which amplify as soon as the Prandtl number
diverges from unity.

Figure 3.3 demonstrates that the local Nusselt numbers by Eq. (3.34) at
K1 = 0.0169 for qw = const. and K1 = 0.0187 for Tw = const. agree well with
experiments [6].

Using the definition of the Nu number and Eq. (3.4), one can determine the
exponent n* in Eq. (2.30) for the boundary condition qw = const. [26]

Table 3.7 Constants in Eqs. (3.34) and (3.35) for different values σ [75, 89]

Coefficient Equation n* = −0.6 n* = 0 n* = 2 n* = 6

Calculation for Pr = 0.72

K1 Equation (3.34), σ = 2 0.0169 0.0187 0.022 0.0246

K2 Equation (3.35), σ = 2 0.0118 0.0144 0.0191 0.0229

K1 Equation (3.34), σ = 1 0.0176 0.0191 0.0219 0.0240

K1 Equation (3.34), σ = 0 0.0180 0.0191 0.0209 0.0222

Calculation for Pr = 1

K1 Dorfman, Eq. (3.21) 0.0226 0.0238 0.0267 0.0303

K2 Dorfman, Eq. (3.22) 0.0158 0.0183 0.0232 0.0282

K1 Equation (3.34), σ = 2 0.0212 0.0232 0.0268 0.0296

K2 Equation (3.35), σ = 2 0.0149 0.0178 0.0233 0.02755

K1 Equation (3.34), σ = 1 0.0219 0.0237 0.0267 0.0289

K1 Equation (3.34), σ = 0 0.0222 0.0235 0.0255 0.0269
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Fig. 3.8 Effect of the exponents n* and σ on the constant K1 in turbulent air flow (Pr = 0.72) [1].
Experiments: 1—[6, 27, 28]; 2—[15, 23, 62, 63]; 3—[84]; 4—[83]; 5—[85], K1, lower limit;
6—[85], K1, upper limit; 7—[2, 3, 4]. Calculations: 8—Eq. (3.21) [2]; 9—Eq. (3.34), σ = 2;
10—Eq. (3.34), σ = 1; 11—Eq. (3.34), σ = 0
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Tw � T1
T1

¼ qwb
kT1K1

Re�ðnþ1Þ=ð3nþ1Þ
u xðn�1Þ=ð3nþ1Þ: ð3:41Þ

For the case qw = const., Eq. (3.41) yields the value n* = (n − 1)/
(3n + 1) = −m [26]. Table 3.6 summarizes the values of the parameter m calculated
at different values of n.

Experimental disk temperature distributions measured in [6] are depicted in
Fig. 3.9. Flow was turbulent at Reω > 3.6 × 105 [6]. For Reφ = 1.6 × 106 illustrated
in Fig. 3.9, the turbulent region was localized over the span x = 0.474–1.0. The disk
itself comprised three annular regions [6]: an unheated region at x = 0–0.15; regions
x = 0.15–0.4 and 0.4–0.96 heated via two separate heaters having the same power.
Data 1 and 2 correspond to the cases with both heaters or only the external one
switched on, respectively.

For the case 1, calculations have only been performed for the region x > 0.5,
where the disk temperature predicted by Eq. (3.41) at qw = const. (i.e. n* = −0.6)
fairly well matches the measurements. Here the experimental data are: K1 = 0.0163,
qw = 710 W/m3, T∞ = 298.9 K, Reφ = 1.6 × 106, b = 0.5 m; λ = 0.02624 W/(m K)
for air at T∞ ≈ 300 K [90].

The wall temperature distribution in the heated region x > 0.5 in case 2 (internal
heater off) was practically constant (see Fig. 3.9).

Thus, for the case qw = const. (or n* = −0.6), the constant K1 = 0.0169 calculated
by Eq. (3.34) at n = 1/7, nR = 0.8 and σ = 2 differs from the measured value
K1 = 0.0163 [6, 27, 28] by only 3.7 %. Dorfman’s constant K1 = 0.0186 by
Eq. (3.21) diverts from the measurements by 14.1 %. For 1/n = 8.7647 and
nR = 0.83, Eq. (3.34) yields the value K1 = 0.0115, which means only 3.6 %
mismatch to the value K1 = 0.0111 obtained in simulations [85].

For the case Tw = const. (or n* = 0), the value K1 = 0.0187 (Tw = const.)
calculated by Eq. (3.4) at n = 1/7, nR = 0.8 and σ = 2 much better than K1 = 0.0196
by Dorfman’s formula (3.21) agrees with experimental value K1 = 0.0188 [6, 15,
23, 62, 63] (deviation 0.5 %).
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Fig. 3.9 Experimental temperature distribution [6] and its computation over the surface of a
rotating disk [1]. 1—qw = const.; 2—Tw ≈ const. Computation [26]: 3—Eq. (3.41)

3.3 Turbulent Flow 53



3.3.4 Arbitrary Distribution of the Wall Temperature

The disk temperature distributions Tw measured in experiments [86, 87], Fig. 3.10,
do not agree with the analytical approximations by Eqs. (2.29) and (2.30).
Reliability of these experimental data was proved in [50] by a numerical solution of
the differential Eqs. (2.9)–(2.15) using the Cebeci–Smith model of turbulence [90].
A numerical version of Dorfman’s method (n = 1/7) was employed in [86, 87] to
model these experimental conditions. Numerically computed Nusselt numbers,
similarly to those obtained by the analytical Dorfman’s method, agreed well with
the experiments for dTw/dr > 0 and noticeably exceeded them for dTw/dr ≈ 0 and
dTw/dr < 0 [86, 87].

The numerical version of the present integral method, Eqs. (2.72) and (2.73),
was used by the author [91] to simulate the experimental conditions [86, 87].

Experimental disk temperature distributions were divided in [86, 87] into four
groups complying with Eq. (2.30) at positive (n* = 0.4 and 0.6), approximately
constant (n* = 0.1), and negative (n* = −0.2) gradients of the wall temperature Tw.
Scatter of the distributions of Tw within each group was less than 10–15 % for
different values of Reφ.

Agreement of Eq. (2.30) with the measurements at the n* values mentioned
above is rather conventional. Obviously, Eq. (2.30) does not assume maxima,
minima and inflection points visible in curves depicted in Fig. 3.10 within the
region of determination of Tw. However, for convenience, this classification was left
unchanged here.

Computed local Nusselt numbers are depicted in Figs. 3.11, 3.12 and 3.13.
Experimental distributions of Tw used as the boundary conditions were
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Fig. 3.10 Disk temperature variation: symbols—experiments [87], lines—polynomial approxi-
mations of the experiments by [1]. 1—n* = 0.1, Reφ = 1.135 × 106; 2—n* = 0.1 and
Reφ = 1.19 × 106; 3—n* = 0.1 and Reφ = 3.2 × 106; 4—n* = −0.2 and Reφ = 2.65 × 106;
5—n* = 0.4 and Reφ = 2.67 × 106; 6—n* = 0.4 and Reφ = 3.14 × 106; 7—n* = 0.6 and
Reφ = 1.59 × 106; x = r/b
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approximated by a 7th-order polynomial, see Fig. 3.10 [1, 91]. Comparisons of the
simulations with the experimental data enabled developing hints for the choice of
the n and nT values.

Results for the case n* = 0.1 are plotted in Fig. 3.11 [1, 91]. Computations and
experiments for Reφ = 1.08 × 106–3.2 × 106 match well for n = nT = 1/6, though
values n = nT = 1/5 provide a better agreement for the smaller value
Reφ = 0.819 × 106.
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Fig. 3.11 Variation of the Nusselt number for n* = 0.1: symbols 1–7—experiments [87]. Lines—
simulations [1, 91]: 8—n = nT = 1/5; 9—n = 1/6, nT = 1/5; 10–16—n = nT = 1/6. 1, 8, 10—
Reφ = 0.819 × 106; 2, 9, 11—Reφ = 1.08 × 106; 3, 12—Reφ = 1.35 × 106; 4, 13—Reφ = 1.6 × 106;
5, 14—Reφ = 1.88 × 106; 6, 15—Reφ = 2.14 × 106; 7, 16—Reφ = 3.2 × 106; x = r/b
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Fig. 3.12 Radial variation of the Nusselt number [1]. Case n* = 0.6: 1, 2—experiments [87];
5, 6—calculations, n = nT = 1/6.5; 7—calculation, n = nT = 1/7. Case n* = 0.4: 3, 4—experiments
[87]; 8, 10—calculations, n = nT = 1/6; 9, 11—calculations, n = nT = 1/7. Reynolds numbers Reφ:
1, 5—1.59 × 106; 2, 6, 7—1.71 × 106. 3, 8, 9—2.67 × 106; 4, 10, 11—3.14 × 106
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Figure 3.12 depicts calculations for similar cases n* = 0.4 and n* = 0.6 [1, 91]. At
smaller Reynolds numbers Reφ < 1.71 × 106, a better agreement with experiments is
yield using the exponents n = nT = 1/6.5. For the larger values Reφ = 2.67 × 106 and
3.14 × 106, exponents n = nT = 1/6 and 1/7, respectively, are required. Exponents
n and nT for the simulations in Fig. 3.12 are slightly smaller as compared to the case
n* = 0.1, where dTw/dr ≈ 0 (Fig. 3.11).

In Fig. 3.13, for the negative wall temperature gradient dTw/dr < 0 (n* = −0.2),
the values of nT = 1/4 and n = 1/6 were needed for Reφ = (0.548–1.08) × 106.
Exponents nT = 1/5 and n = 1/6 were used for a larger value Reφ = 2.65 × 106. Thus,
for the same value of the Reynolds number Reφ, the negative gradient dTw/dr < 0
entails the need to use a larger value nT, whereas the value n = 1/6 remains the same
(in comparison with the data in Fig. 3.11).

Profiles of the velocity and temperature were not obtained in the measurements
[86, 87]. Because of this, an estimation of the exponents n and nT is made based on
the distribution of the Nusselt number. The lower rate of the radial variation in the
Nu numbers in Fig. 3.13 (case n* = −0.2) results in a smaller value of the exponent
nR in Eq. (3.4) and, hence, larger exponents n and nT. Numerical simulations
confirm this trend. The experimental investigation [6], among other results,
revealed that temperature profiles for qw = const. (dTw/dr < 0, n* ≈ −0.6) and
Reω = 106 were characterized by the exponents nT = 1/4–1/5 (see Fig. 2.5). These
exponents correlate with our simulations for the case of n* = −0.2.

To conclude, in case of an arbitrary variation of the disk temperature, predictions
of turbulent heat transfer of a rotating disk using a numerical version of the present
integral method match well with the experiments [87], whereas the exponent nT in
the temperature profile approximation depends on the thermal boundary conditions.
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Fig. 3.13 Radial variation of the Nusselt number [1]. Case n* = −0.2: 1–3—experiments [87].
Calculations [91]: solid lines 4, 5—n = 1/6, nT = 1/4; dashed lines 5, 6—1/6 and 1/5; dash-dotted
lines 5, 6—both 1/6. Reynolds numbers Reφ: 1, 4—0.548 × 106; 2, 5—1.08 × 106; 3, 6—
2.65 × 106

56 3 Free Rotating Disk

http://dx.doi.org/10.1007/978-3-319-20961-6_2


3.4 Generalized Analytical Solution for Laminar
and Turbulent Flow

As said above, Dorfman’s Eq. (3.6) for the Nusselt number in laminar regime at
Pr = 1–0.1 by up to 238 % exceeds the self-similar solution, Table 3.1. The more
accurate Eqs. (3.7) and (3.8) [31, 32] are valid only for Tw = const. (n* = 0). To
improve this situation, an approximate solution for the Nusselt number valid over
the range Pr = 1–0.1 and possessing significantly higher accuracy than Eq. (3.6)
was derived in [1, 29, 30].

Equation (2.18) of the velocity boundary layer and Eq. (2.20) of the thermal
boundary layer were rewritten as

d
dr

r4dKVKm

 � ¼ cf

2
r4ð1þ a2Þ1=2; ð3:42Þ

d
dr

r2dKHKm Tw � T1ð Þ
 � ¼ vcf
2
r2ð1þ a2Þ1=2ðTw � T1Þ: ð3:43Þ

Here χ is the Reynolds analogy parameter defined by Eq. (2.52).
The parameters for the turbulent boundary layer are given by Eqs. (2.77)–(2.82);

additional conditions are KV = const. and Km = const. The majority of the constants
in Eqs. (2.77)–(2.82) for turbulent flow are listed in Sect. 2.5, while Km = αA1,
KV ¼ 1� D2=A1.

By setting n = 1 and m = 0, Eqs. (2.77)–(2.82) can be used also for laminar flow.
The constants in Eqs. (2.77)–(2.82) for laminar flow were first obtained in [3, 4] by
solving and integrating the self-similar Eqs. (2.32)–(2.35)

a ¼ 0:8284; KV ¼ 0:3482; Km ¼ I1a

dðx=mÞ1=2
¼ I1a

c
; ð3:44Þ

I1 ¼ a�1
Z1

0

vr
xr

dðz
ffiffiffiffiffiffiffiffi
x=m

p
Þ ¼ 0:5338;Ac ¼ 0:6159ð1þ a2Þ�1=2: ð3:45Þ

If boundary condition (2.30) holds, the dimensionless temperature θ and
shape-factor of the temperature profile KH are also self-similar, i.e. independent of
the coordinate r. Substituting Eqs. (2.30), (2.77)–(2.82), (3.44) and (3.45) into Eqs.
(3.42) and (3.43) yields

ð4þ mÞcKVKm ¼ Acð1þ a2Þ1=2; ð3:46Þ

ð2þ mþ n�ÞcKHKm ¼ vAcð1þ a2Þ1=2: ð3:47Þ

Equation (3.47) contains two unknown quantities: KH and χ, which can be
connected by Eq. (2.51) of Dorfman [2]. The present integral method for turbulent
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flow validated in Sect. 3.3 enables elaborating a novel model linking KH and χ,
which is much more accurate than Eq. (2.51) and originates automatically from our
boundary layer model [29]

b2KH ¼ 1� vPrnpð1� KV Þb1: ð3:48Þ

Correction multipliers b1 and b2 take account of laminar flow. These multipliers
are equal to unity for turbulent flow, and the exponent np is defined by Eq. (3.39).

Solving Eq. (3.47) with account for Eq. (2.52), one can assure that the first of
Eq. (3.4) again describes the Nusselt number at nR ¼ ðnþ 1Þ=ð3nþ 1Þ and

K1 ¼ ð2þ mþ n�ÞcKHKmPr: ð3:49Þ

If one equates the relations for χ resulting from Eqs. (3.47) and (3.48), derives
KH from this equation and substitutes it into Eq. (3.49), this yields

K1 ¼ Acð1þ a2Þ1=2Pr 4þ m
2þ mþ n�

KVb2 þ ð1� KV ÞPrnpb1
� 	�1

; ð3:50Þ

K3 ¼ Acð1þ a2Þ1=2: ð3:51Þ

Equations (3.50) and (3.34) coincide for turbulent flow, where b1 = 1 and b2 = 1.
Setting n = 1, m = 0, nR ¼ 1=2 for laminar flow, one can obtain from Eq. (3.45) for
Ac

Acð1þ a2Þ1=2 ¼ 0:6159: ð3:52Þ

In the asymptotic case of Pr → 0, Eq. (3.50) reduces to its asymptotic form,
which looks for b2 = 1 identically to the solution derived in [3]

K1 ¼ 0:6159Prð2þ n�Þ=ð4KVÞ: ð3:53Þ

Comparing Eq. (3.50) with the self-similar solution, Table 3.1, one can find the
coefficients b1 and b2. To satisfy Eq. (3.53), b1 must be finite and b2 = 1 at Pr → 0.
Let us set

b2 ¼ 1þ b3Pr
np1 ; b1 ¼ const:; b3 ¼ const: ð3:54Þ

The coefficients b1 and b3 are independent of the Prandtl number and are
determined at Pr = 1. Further, exponents np1 and np were found separately for every
Pr number from Table 3.1. In this procedure, the coefficient K1 from the self-similar
solution has been substituted into Eq. (3.50) for n* = 0 and n* = 2. Finally, we
obtained [29]
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b1 ¼ 0:6827; b3 ¼ 0:5939; ð3:55Þ

whereas the values of the exponents are listed in Table 3.8.
For computational purposes, the exponents np1 и np were described as

polynomials

np1 ¼
X7
0

aiPr
i; np ¼

X7
0

ciPr
i; ð3:56Þ

where a0 = 1, a1 = −0.008073, a2 = −0.3558, a3 = 0.5485, a4 = 1.799, a5 = −6.432,
a6 = 7.354, a7 = −2.915, c0 = 0.925, c1 = −1.171, c2 = 3.532, c3 = −3.376,
c4 = −5.725, c5 = 15.59, c6 = −12.28, c7 = 3.208.

The coefficient K1 computed by Eq. (3.50) is presented in Table 3.9. It diverges
from the self-similar solution, Table 3.1, by maximum 3.1 % (for n* = −1.5 and
Pr = 1); the errors become negligible for Pr ≤ 0.1 [1, 29, 30].

On both sides of Eq. (3.43), the exponents for the r-coordinate must be the same,
which yields the expression 1þ mþ n� ¼ 1 for qw = const. For laminar flow,
m = 0, hence, n* = 0. Therefore, the Nusselt number for laminar flow for qw = const.
is exactly the same as that for Tw = const. In turbulent flow, as shown above,
n* = −m for qw = const.

To conclude, as can be seen from Fig. 3.14, the exact and approximate solutions
for air (Pr = 0.72) are in good agreement with each other as well as with experi-
mental results.

Table 3.8 Values of np and np1 depending on the Prandtl number [1, 29, 30]

Pr 0.9 0.8 0.72 0.71 0.6 0.5 0.4 0.3 0.2 0.1 0.01

np 0.7290 0.7349 0.7436 0.7435 0.7529 0.7608 0.7721 0.7860 0.8036 0.8338 0.9156

np1 0.9349 0.9354 0.9316 0.9334 0.9366 0.9439 0.9519 0.9602 0.9765 0.9893 0.999

Table 3.9 Values of the constant K1 by Eqs. (3.50) and (3.54)–(3.56) [1]

Pr n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

1.0 0.0 0.1261 0.2311 0.3199 0.3961 0.5197 0.6159 0.6928 0.7557

0.72 0.0 0.1019 0.1887 0.2635 0.3286 0.4365 0.5223 0.5921 0.6500

0.71 0.0 0.1009 0.187 0.2612 0.3259 0.4332 0.5185 0.5880 0.6457

0.5 0.0 0.0788 0.1477 0.2084 0.2623 0.3539 0.4287 0.4910 0.5437

0.1 0.0 0.0204 0.0399 0.0586 0.0766 0.1104 0.1417 0.1707 0.1977

0.01 0.0 0.00219 0.00438 0.00655 0.00871 0.01301 0.01726 0.02148 0.02565
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3.5 Finding a Wall Temperature Distribution
for Arbitrary Nusselt Numbers

3.5.1 Solution of the Problem

Usually the thermal boundary layer equation is solved as a direct problem of
searching the Nusselt number at a given wall temperature, Eq. (2.30), or in a
modified form

DT ¼ xn� ; ð3:57Þ

where DT ¼ DT=DTx¼1 is the relative non-dimensional temperature difference on a
surface.

The solution for the Nusselt number (3.4) found in such a way can be rewritten
as

Nu ¼ K1Re
ðnþ1Þ=ð3nþ1Þ
u x2ðnþ1Þ=ð3nþ1Þ

¼ K1Re
ðnþ1Þ=ð3nþ1Þ
u x1þm; 2ðnþ 1Þ=ð3nþ 1Þ ¼ 1þ m:

ð3:58Þ

An inverse problem searches for a distribution of ΔT, if the Nusselt number is
given

Nu ¼ K1Re
ðnþ1Þ=ð3nþ1Þ
u xmx ; Nub ¼ K1Re

ðnþ1Þ=ð3nþ1Þ
u xmx�1; ð3:59Þ

where mx = const. is an arbitrarily selected exponent not equal to 1þ m as in
Eq. (3.58). An application in practice is e.g. a transient technique of experimental
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Fig. 3.14 Effect of the exponent n* on the constant K1 in Eq. (3.4) for laminar flow at Pr = 0.72
[1]. 1—Exact solution [29, 30], 2—Eq. (3.50), 3—Eq. (3.6). Experiments for n* = 0: 4—0.335
[6, 18, 22], 5—0.33 [15, 17, 23], 6—0.32 [16]
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finding of time-independent Nusselt numbers, whereas the measured distributions
of ΔT are unsteady. Here a steady-state distribution of ΔT may be found only via
solving an inverse problem.

To solve this problem [1, 92], the thermal boundary layer Eq. (3.43) in the
integral form can be transformed to

d
dx

Rex�dKHKmDT

 � ¼ Nu

Pr
DT: ð3:60Þ

Equation (2.77) can be presented in the form valid for laminar and turbulent flow

�d ¼ C�
dx

m; C�
d ¼ cRe�2n=ð3nþ1Þ

u : ð3:61Þ

To remind, in laminar flow m = 1 and Km
�d ¼ I1aRe�1=2

u [see Eq. (3.44)].
Equation (2.52) can be used to evaluate the Reynolds analogy parameter v

v ¼ Nu
Cf

2Rexð1þ a2Þ1=2Pr
¼ Cvx

mx�m�1; ð3:62Þ

Cv ¼ K1

Acð1þ a2Þ1=2Pr
: ð3:63Þ

Let us use the notation

m�
x ¼ mx � m: ð3:64Þ

In terms of Eq. (3.64), one can make sure that Eq. (3.58) holds at
m�

x ¼ 1;mx ¼ 1þ m:
In view of Eqs. (3.62)–(3.64), one can rewrite Eq. (3.48) such as

KH ¼ a� þ b�xm
�
x�1; ð3:65Þ

a� ¼ 1
b2

; b� ¼ �Prnpð1� KVÞ b1b2 Cv: ð3:66Þ

An integration of Eq. (3.60) in view of Eqs. (3.61)–(3.66) yields [1]

DT ¼ a� þ b�
a� þ b�xm

�
x�1 x

�2�m a�x1�m�
x þ b�

a� þ b�

� � 1
1�m�x

x�1

" #� K1
PrKmc b�

ð3:67Þ

DT ¼ KH

KHx¼1

� 	� K1
PrKmc b�ð1�m�x Þ

�1

x�2�m: ð3:68Þ
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3.5.2 The Limiting Case of the Solution

For m�
x ! 1, Eq. (3.68) degenerates to [1]

DT ¼ x
K1

PrKmcða�þb�Þ�2�m: ð3:69Þ

Equations (3.57) and (3.69), being combined and transformed, yield

n� ¼ K1

PrKmcða� þ b�Þ � 2� m: ð3:70Þ

Specifying the value of n* and keeping in mind that a� þ b� ¼ KH at m�
x ¼ 1,

one can obtain Eq. (3.50) for K1 valid under the conditions (2.30) or (3.57). In
doing so, Eq. (3.57) can be treated as a specific case of Eq. (3.68) at m�

x ¼ 1.

3.5.3 Properties of the Solution for the Temperature
Difference on the Wall

The point of extremum xext of the Eq. (3.68) for DT is located at [1, 93]

xext ¼
K1

PrKmc
� b�ðmx þ 1Þ
a�ð2þ mÞ

" # 1
1�m�x

: ð3:71Þ

Expression v ¼ D�nPr�np and Eq. (3.62) for the Reynolds analogy parameter χ
yield a relation for the normalized thermal boundary layer thickness D [1]

D ¼ ðvPrnpÞ�1=n ¼ ðCvx
m�

x�1PrnpÞ�1=n ¼ ðCvPr
npÞ�1=nxð1�m�

x Þ=n: ð3:72Þ

For the boundary condition (3.57) with m�
x ¼ 1, Eq. (3.72) results in the relation

Δ = const. The function Δ(x) is increasing or decreasing at m�
x\1 or m�

x [ 1,
respectively.

In view of its physical nature, parameter KH may be only positive.
Equation (3.65) for KH exhibits a limiting point where KH = 0, whose parameters are

vcrit ¼
1

b1Prnpð1� KVÞ ; ð3:73Þ

Dcrit ¼ ðvcritPrnpÞ�1=n ¼ 1
b1ð1� KV Þ

� 	�1=n

; ð3:74Þ
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xcrit ¼ vcrit
Cv

� 	1=ðm�
x�1Þ

: ð3:75Þ

Equations (3.71)–(3.75) can be used in the analysis of the behavior of DT .

3.5.4 Analysis of the Solution

The novel solution described above in Sect. 3.5 holds for a much wider range of
thermal boundary conditions at the wall and incorporates previously known
solutions as a specific case, provided that one of the parameters degenerates to
unity [1, 92].

Indeed, Eq. (3.67) [or (3.68)] for the temperature difference and Eq. (3.59) for
the Nusselt number contain two independent parameters: K1 and mx. At mx ¼ 1þ m
(or m�

x = 1), Eqs. (3.67), (3.68) and (3.59) reduce to the known Eq. (3.57) for DT
and Eq. (3.58) [or (3.4)] for Nu with only one independent parameter: K1 or n*.
Equations (3.57), (3.67) and (3.68) for DT do not depend on the Reynolds number
Reφ.

Both one-parameter Eq. (3.58) [or (3.4)] and two-parameter Eq. (3.59) represent
monotonic distributions of the Nusselt number, i.e. the sign of the derivative
dNu=dx is constant over the entire range of variation of the radial coordinate x.

At m�
x = 1, the sign of the derivative dDT=dx in Eq. (3.57) is also constant. On

the contrary, at m�
x ≠ 1, functions of DT given by Eq. (3.67) or (3.68) are

non-monotonic and enable predicting curves of DT exhibiting points of maxima
and minima.

Application to laminar flow. For validation of the model, experiments [94–96]
(laminar air flow for Reφ = 53500, Pr = 0.71) were chosen. Let us assume that the
temperature difference DT is determined by one-parameter Eq. (3.57) at n* = −1,
while the Nusselt number Nub is constant and determined by Eq. (3.58) with
K1 = 0.187 (here m = 0, m�

x ¼ mx).
Setting the value K1 = 0.187 and replacing mx = 1 by mx = 0.6 in Eq. (3.59)

yields a radial dependence for Nub starting at infinity at x → 0 and further
monotonically subsiding (curve 1 in Fig. 3.15). Based on Eq. (3.68), the temper-
ature difference DT is a non-linear function of the coordinate x being zero at x = 0,
having a maximum DT = 2.55 at x ≈ 0.2 and further diminishing as a function
similar to x�1 (curve 1 in Fig. 3.16). Obviously, DT = 1 at x = 1. At the point of
maximum, Eqs. (3.73)–(3.75) hold.

If n* = 2 in Eq. (3.57), the function DT(x) is increasing; at the same time, the
Nusselt number Nub is constant with K1 = 0.5185 (and mx = 1). Provided that
K1 = 0.5185 and mx = 1.6 in Eq. (3.59), the function Nub(x) is monotonically
increasing.
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Given this combination of K1 and mx, the temperature difference decreases from
DT ! 1 and reaches a point of minimum at x ≈ 0.4 with DT = 0.4075. Further at
x > 0.4, the function DT demonstrates a trend of increase as a function similar to x2.

Curves 3 and 4 in Figs. 3.15 and 3.16 were plotted to outline the heat transfer
regimes situated between the cases 1 and 2 discussed above.

Application to turbulent flow. For our analysis, we selected the experiments
[86, 87], while the equality n = nT was always held while using Eqs. (3.59) and
(3.68) [93, 97]. The results of simulations for the case n* = 0.1 (performed at
n = nT = 1/6) are shown in Figs. 3.17 and 3.18. In the region x ≈ 0.3–0.85, an
approximation DT ¼ c0�xn� at n* = 0.06, c0� = 1.16 for Reφ = (1.08–1.35) × 106 and
at n* = 0.06, c0� = 1.26 for Reφ = (2.14–3.2) × 106 locally correlates with exper-
imentally measured function DT .
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Fig. 3.16 Radial distribution of the temperature difference DT ¼ ðTw � T1Þ=ðTw � T1Þx¼1 by
Eq. (3.68) for laminar flow (m = 0) at Reφ = 53500, Pr = 0.71 [1]. 1—mx = 0.6, K1 = 0.187; 2—
mx = 1.6, K1 = 0.5185; 3—mx = 1.1, K1 = 0.4; 4—mx = 0.9, K1 = 0.3
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Fig. 3.15 Radial distribution of the Nusselt number Nub by Eq. (3.59) for laminar flow (m = 0) at
Reφ = 53,500, Pr = 0.71 [1]. 1—mx = 0.6, K1 = 0.187; 2—mx = 1.6, K1 = 0.5185; 3—mx = 1.1,
K1 = 0.4; 4—mx = 0.9, K1 = 0.3
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As a result, calculations by Eq. (3.58) [with K1 given by Eq. (3.34)] agree well
with measured Nu numbers over the same range of x (here the exact value c0* is
unimportant).

At the same time, for x > (0.7–0.85) experimental temperature difference DT
diminishes, while the predicted DT continues increasing. Owing to this, predicted
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Fig. 3.17 Radial variation of the temperature difference DT for Pr = 0.72, case conventionally
n* = 0.1 [1]. Experiments [87]: 1—Reφ = 1.08 × 106; 2—1.6 × 106; 3—1.88 × 106; 4—2.14 × 106;
5—3.2 × 106. Calculations by Eq. (3.68) for n = 1/6: 6—K1 = 0.0232 and mx = 1.48; 7—0.0229
and 1.43; 8—0.0224 and 1.38. Approximation DT ¼ c0�xn� : 9—c0� = 1.16 and n* = 0.06;
10—c0� = 1.25 and n* = 0.06
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Fig. 3.18 Radial variation of the Nusselt number, case conventionally n* = 0.1 [1]: 1–5—
experiments [87]; 6–11—calculations by Eqs. (3.58) and (3.59) for n = nT = 1/6. Solid lines,
Eq. (3.59): 6, 7—K1 = 0.0232, mx = 1.48; 8–10—K1 = 0.0224, mx = 1.38. Dashed lines 6–10—
Eq. (3.58), K1 = 0.0232, nR = 0.778, mx = 1.556. Dash-dotted lines 11–13—Dorfman’s Eq. (3.21)
for n* = 0.1. 1, 6, 13—Reφ = 1.08 × 106; 2, 7—1.6 × 106; 3, 8—1.88 × 106; 4, 9, 12—2.14 × 106; 5,
10, 11—3 × 106
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Nusselt numbers surpass the experimental data. This tendency becomes more
noticeable at larger Reynolds numbers Reφ. Dorfman’s Eq. (3.21) at n* = 0.1,
n = nT = 1/7 (see curves 11–13 in Fig. 3.18 and explanations to them) diverges from
experiments even more noticeably.

Using Eq. (3.59) for the Nusselt number, Fig. 3.18, and Eq. (3.68) for DT can
provide a better agreement between simulations and experiments (see Fig. 3.17).
While Eq. (3.57) ensures a positive sign of dDT=dx for any x, Eq. (3.68), on the
contrary, enables rather flexible modeling of the sign of the derivative dDT=dx,
which changes here from “plus” to “minus” with increasing x. This ensures a more
close agreement between the computed and measured values of the Nusselt number
(Fig. 3.18).

Predictions for the case n* = −0.2 (performed for n = nT = 1/6) are depicted in
Figs. 3.19 and 3.20. A fair consistency of the computed and measured functions of
DT is evident for x ≥ 0.6 (Fig. 3.19). Qualitative agreement of the sign of the
predicted and measured function dDT=dx demonstrates only curve 4 over the range
x = 0.35–0.45. Important is that the approximation DT ¼ c0�xn� correlates with the
experiments for x > 0.6 only for n* = −1.5 (and c0* = 1.14), though the value
suggested in [86, 87] is n* = −0.2 (curve 6).

The Nusselt numbers in Fig. 3.20 were computed for two different values of the
Reynolds numbers. Experimental data 1 and upper lines 3–6 relate to the value
Reφ = 2.65 × 106, whereas experiments 2 and lower lines 3–6 correspond to
Reφ = 1.08 × 106. Curves for the Nu number depend noticeably on the values for K1

and mx.
The lower curve 4 of the Nu number in Fig. 3.20 computed by Eq. (3.58) for

Reφ = 1.08 × 106 conforms to the experiments 2. Nevertheless, at x ≈ 0.4 the flow is
laminar, thus an agreement with it testifies that the computed curve 4 lies lower than
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Fig. 3.19 Radial variation of the temperature difference DT ¼ ðTw � T1Þ=ðTw � T1Þx¼1 for
Pr = 0.72, n* = −0.2 [1]. Experiments [87]: 1—Reφ = 1.08 × 106; 2–2.65 × 106. Calculations by
Eq. (3.68) for n = 1/6: 3—K1 = 0.0157, mx = 1.3; 4—K1 = 0.0137, mx = 0.775. Approximation
DT ¼ c0�xn� : 5—c0* = 1.14, n* = −1.5; 6—c0* = 1.0, n* = −0.2
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it should be expected. Therefore, for Reφ = 2.65 × 106 experimental points 1
significantly exceed the upper curve 4 at x ≤ 0.7, where turbulent flow is developed.

Using Eq. (3.59) with DT predicted by Eq. (3.68), one can attain a good
agreement with the experiments for the Nu number, if the coefficients K1 and mx are
properly selected.

Dorfman’s Eq. (3.21) at n* = −0.2 predicts much too high Nusselt numbers as
compared to the experimental data (curves 6 in Fig. 3.20).

Predictions and measurements for n* = 0.4 and n* = 0.6 are depicted in Figs. 3.21
and 3.22. Values n = nT = 1/6.5 and n = nT = 1/6 were used for Reφ = 1.59 × 106 and
2.67 × 106, accordingly. The value n* = 0.6 in Eq. (3.57) indeed conforms to the
experiments at x = 0.3–0.6 and Reφ = 1.59 × 106 (Fig. 3.21). However, experiments
for Reφ = 2.67 × 106 can be better simulated with n* = 0.7 rather than with n* = 0.4
[87].

In addition, Eq. (3.68) ensures a variation of the absolute value of dDT=dx in the
radial direction and a wide range of selection of the parameters K1 and mx

(Fig. 3.21).
The local Nusselt numbers in Fig. 3.22 show that Eqs. (3.59) and (3.68) with

carefully selected values K1 and mx enable a better agreement with experiments than
Eqs. (3.57) and (3.58), which can be seen for the larger value Reφ = 2.67 × 106. As
the curves 6 and 7 in Fig. 3.22 prove, the deviation of the Dorfman’s Eq. (3.21) is
not significant.

Thus, Eqs. (3.59) and (3.68) essentially expand the possibilities for analytical
predictions of heat transfer over a rotating disk subject to arbitrary thermal
boundary conditions.
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Fig. 3.20 Variation of the Nusselt number, n* = −0.2 [1]: 1, 2—experiments [87]; 3–5—
Eq. (3.58), n = nT = 1/6; 6—Dorfman’s Eq. (3.21), n* = −0.2. Lower lines 3–6 and symbol
1—Reφ = 1.08 × 106; upper lines 3–6 and symbol 2—Reφ = 2.65 × 106. Lower line 3—Eq. (3.59),
K1 = 0.0157, mx = 1.3; upper line 3—Eq. (3.59), K1 = 0.0137, mx = 0.775. Lines 4—Eq. (3.58),
K1 = 0.0156, nR = 0.778, mx = 1.556, n* = −1.5. Lines 5—numerical modelling (see Fig. 3.13)
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Fig. 3.21 Radial variation of the temperature difference DT ¼ ðTw � T1Þ=ðTw � T1Þx¼1 for
Pr = 0.72, cases n* = 0.4 (data 1, 2, 6, 8) and n* = 0.6 (data 3, 4, 5, 7) [1]. Experiments [87]:
1—Reφ = 2.67 × 106; 2–3.14 × 106; 3—0.615 × 106; 4—1.71 × 106. Calculations by Eq. (3.68):
5—K1 = 0.0219, mx = 1.48, n = 1/6.5; 6—K1 = 0.0249, mx = 1.34, n = 1/6. Calculations by
Eq. (3.57): 7—n* = 0.6, 8—n* = 0.7
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Fig. 3.22 Radial variation of the Nusselt number [1]. 1, 2—experiments [87]. 3—numerical
modelling (Fig. 3.12). Case n* = 0.4 (upper group of lines, Reφ = 2.67 × 106), calculations at
n = nT = 1/6: 4—Eq. (3.59), mx = 1.34, K1 = 0.0249; 5—Eq. (3.58), n* = 0.7, K1 = 0.0262,
nR = 0.778, mx = 1.556. Case n* = 0.6 (lower group of lines, Reφ = 1.59 × 106), calculations at
n = nT = 1/6.5: 4—Eq. (3.59), mx = 1.48, K1 = 0.0219; 5—Eq. (3.58), mx = 1.58, K1 = 0.02265,
nR = 0.7896, n* = 0.6. Line 6—Dorfman’s Eq. (3.21), n* = 0.4; line 7—Eq. (3.21), n* = 0.6
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3.6 Theory of Local Modelling

The bedrock of the theory of local modelling is Eq. (2.51) at Ms = const. and n* = 2
(see Sect. 2.3.2), which results in the Dorfman’s solutions (3.6) and (3.21).
An improvement of this model can be attained via setting a variable value of Ms

dependent on the parameter n* [1]. Let us rewrite the thermal boundary layer
Eq. (3.60) such as

1
DT

d
dr

Re��T rDT

 � ¼ Nu=Pr: ð3:76Þ

Let us further substitute Eq. (2.51) and boundary condition (2.30) into Eq. (3.76).
As a result, the Nusselt number can be expressed as

Nu ¼ M
1

1þr
s ð2nR þ n� þ 1Þ r

1þrð1þ a2Þ 1
2ð1þrÞRe

1
1þr
x Pr

1þr�ns
1þr : ð3:77Þ

We wish to elucidate just the basic features of the theory; hence, listed below are
the solutions for only a single value Pr = 0.72. As a result, Eq. (3.34), together with
the equations for Ms and St for turbulent flow (n = 1/7) can be written as

1
K1

¼ 34:99þ 48:33
2:6þ n�

; ð3:78Þ

Ms ¼ 1:252

34:99þ 48:33=ð2:6þ n�Þð Þ1:25 2:6þ n�ð Þ0:25 ; ð3:79Þ

St ¼ 1:475 � Re���0:25
T

34:99þ 48:33=ð2:6þ n�Þð Þ1:25 2:6þ n�ð Þ0:25 : ð3:80Þ

For laminar flow, the constant K1 given by Eq. (3.50) and the Stanton number
for Pr = 0.72 can be expressed as

K1 ¼ 0:4435
0:3486þ 2:002=ð2þ n�Þ ; ð3:81Þ

St ¼ 0:2922 � Re���1:0
T

2þ n�ð Þ 0:3486þ 2:002=ð2þ n�Þð Þ2 : ð3:82Þ

To conclude, Eqs. (3.80) and (3.82) essentially improve agreement with
experiments, however, at the expense of ignoring the basic postulate of the theory:
Ms = const. The mathematical formulation of Eqs. (3.80) and (3.82) was suggested
in analogy to Eq. (3.34) obtained by means of a fundamentally different theoretical
model.
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3.7 Unsteady Heat Transfer

3.7.1 Transient Experimental Technique

Thermochromic liquid crystals are used for experimental measurements of
steady-state heat transfer rate over a surface using a transient technique. The fol-
lowing physical phenomenon lies behind this technique: after a short time from the
onset of unsteady heating/cooling, the heat transfer coefficient accepts a
time-independent value equivalent to that for steady-state heat transfer subject to
identical thermal boundary conditions.

Experimental data reduction operates by employing a one-dimensional heat
conduction solution for a semi-infinite wall subject to a convective boundary
condition for a step change in the fluid temperature T∞ [98–105]

FtðtÞ ¼ TwðtÞ � T1
Tw;i � T1

¼ expðc2Þ � erfc(cÞ; c ¼ a
ffiffiffiffiffiffiffi
awt

p
=kw ð3:83Þ

where Tw,i and T∞ are constants; aw and λw denote the thermal diffusivity and
conductivity of the body, accordingly. Given a measured curve of the surface
temperature Tw(t), Eq. (3.83) can be solved to find the heat transfer coefficient α.
The semi-infinite-plate model holds, if conduction heat transfer does not penetrate
deeply into the body.

A solution for a plate with a thickness s having identical heat transfer coefficients
at both sides [13, 106] replaces Eq. (3.83), if a plate is relatively thin

FtðtÞ ¼ #ðt; y ¼ 1Þ; #ðt; yÞ ¼
X1
m¼1

Em cosðlmyÞ expð�l2mFoÞ; ð3:84Þ

Em ¼ 2 sinðlmÞ
lm þ sinðlmÞ cosðlmÞ

; cotðlmÞ ¼ lm=Bi; ð3:85Þ

where Eq. (3.85) defines eigenvalues μn; #ðt; yÞ ¼ ðTðt; yÞ � T1Þ=ðTw;i � T1Þ;
y = z/(0.5s).

It will be shown below that the transient technique for measurements of surface
heat transfer coefficients described above can be applied for a Plexiglas® disk
subject to even very strongly non-uniform initial temperature distribution. A disk
made of aluminium is not usable for this purpose [1], because of strong radial heat
conduction effects.
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3.7.2 Self-similar Equations for Unsteady Convective Heat
Transfer

Self-similar functions and independent variables for unsteady heat transfer in
stationary flow over a rotating disk were obtained in [1, 107, 108]. As a result,
Eq. (2.12) of the thermal boundary layer and the boundary condition (2.29) take the
form

h00 ¼ Pr g�hþ h0ðH � g=2Þ þ n�Fh½ �; ð3:86Þ

g ¼ z
.
ðmtÞ1=2;HðgÞ ¼ vzðt=mÞ1=2 ð3:87Þ

g� ¼ t
Ft

dFt

dt
; ð3:88Þ

h ¼ 1 for g ¼ 0 and h ¼ 0 for g ! 1: ð3:89Þ

Here primes denote derivatives with respect to the similarity variable η.
The solution of Eq. (3.86) requires specifying the function H(η). For this pur-

pose, the time-independent Eqs. (2.32)–(2.35) (for N = 0, β = 0) must be
non-dimensionalized and solved with respect to the similarity variable η instead of
f ¼ z

ffiffiffiffiffiffiffiffi
x=m

p
. As a result, at the non-dimensionalization of the velocity components

and the static pressure in Eq. (2.26), parameter 1/t replaces the angular velocity ω

FðgÞ ¼ vrr=t;GðgÞ ¼ vut=r; and PðgÞ ¼ �pt=ðqmÞ; ð3:90Þ

whereas Eqs. (2.32)–(2.35) and functions F, G, H and P still do not depend on time.
As soon as vu ¼ xr at z ¼ 0, the new function GðgÞ ¼ xt at g ¼ 0. Therefore,

the boundary conditions (2.27) and (2.28) can be finally rewritten to a new
self-similar form

g ¼ 0: F ¼ H ¼ 0; G ¼ xt; ð3:91Þ

g ! 1: G ¼ F ¼ 0: ð3:92Þ

To calculate the Nusselt number Nub, the following relations are used

Nub ¼ K1Re
1=2
u ; K1 ¼ � dh

df

� �
f¼0

¼ 1ffiffiffiffiffi
xt

p dh
dg

� �
g¼0

: ð3:93Þ

The new non-dimensional parametric variable ωt arises in Eqs. (3.91) and (3.93).
Equations (3.87) and (3.90) were derived with the help of the group theory [90].

Authors of the work [31] employed self-similar functions almost identical to
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Eqs. (3.87) and (3.90) with a difference to within a constant; however, this model
was not formally grounded from the mathematical point of view.

3.7.3 Cooling of an Isothermal Rotating Disk

Mathcad software was used to numerically solve Eqs. (3.86) and (2.32)–(2.35) [in
view of Eqs. (3.90)–(3.92)] for the condition Tw = const. (or n* = 0) [1, 107, 108].

Equation (3.88) with account for Eq. (3.83) transforms to

g� ¼ c2 � c=ðp1=2FtÞ; c ¼ K1Pr
�1=2 aw=að Þ1=2 k=kwð Þ ffiffiffiffiffi

xt
p

: ð3:94Þ

In simulations, physical properties and geometric parameters were: for
Plexiglas® [96] λw = 0.19 W/(m2 K), aw = 1.086 × 10−7 m2/s; for air [90]
λ = 0.02624 W/(m2 K), a = 2.216 × 10−5 m2/s; Pr = 0.71; thickness of the disk
s = 0.01 m; Reφ = 5.35 × 104 that means ω = 52.36 1/s (500 r.p.m.) [96]. The value
of K1 = 0.326 at Tw = const. was used in calculation of the Biot number in
Eq. (3.84) and parameter γ that gives c ¼ 0:0768

ffiffiffiffiffi
xt

p
, Bi = 0.395.

The constant K1, together with the Nusselt number Nub, become very fast
time-independent (see Fig. 3.23): at ωt ≈ 130 or t ≈ 2.5 s (setting 1 % deviation
from the steady-state as a threshold), whereas Ft(t) ≈ 0.96 [1]. The curves for
K1(t) predicted using Eqs. (3.83) and (3.84) practically coincide (see Fig. 3.23).

If heat transfer coefficients of an isothermal disk of a thickness s (Fig. 2.1) are
identical at z = 0 and z = −s, solution (3.84) testifies that already for Fo = 0.3 (or t =
69 s) the function Ft(t) with an inaccuracy of 0.37 % is represented by just the first
term of Eq. (3.84). In other words, a so-called regular regime of heat transfer [106]
is established.

As seen in Fig. 3.23, during the initial time period, dimensionless surface
temperatures Ft(t) calculated by Eqs. (3.83) and (3.84) practically coincide and start
diverging at Fo = 0.456, when the process of cooling involves the entire thickness
of the thin disk, which afterwards cools down much faster than the disk with a
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Fig. 3.23 Variation of K1 and
Ft with time [1]. 1—K1;
2—Ft(t), Eq. (3.83); 3—FtðtÞ,
Eq. (3.84)
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semi-infinite thickness. In [109, 110], this limiting Fourier number equals to 0.25
and 1.0, respectively.

The problem of unsteady cooling of a finite-thickness disk considered here was
simulated also as a conjugate problem using the commercial CFD software CFX-5
[111]. The temporal curve of the cooling rate of the disk surface obtained from the
CFD simulations and presented in Fig. 3.24 agrees rather well with that predicted
by Eq. (3.84).

3.7.4 Unsteady Two-Dimensional Heat Conduction
in a Non-uniformly Heated Disk

Differential equation of unsteady 2D heat conduction in the plate together with the
boundary conditions can be written as [108]

@#

@Fo
¼ 1

H2

@2#

@x2
þ 1

x
@#

@x

� �
þ @2#

@y2
; ð3:95Þ

Fo ¼ 0: # ¼ xn� ; ð3:96Þ

x ¼ 0:
@#

@x
¼ 0; x ¼ 1:

@#

@x

� �
x¼1

¼ �Bi1#x¼1; ð3:97Þ

y ¼ 0:
@#

@y
¼ 0; y ¼ 1:

@#

@y

� �
y¼1

¼ �Bi2#y¼1; ð3:98Þ

Fig. 3.24 Variation of the parameters K1 and Ft in time according to the self-similar solution and
simulations using the CFX-5 [111]. 1—K1, self-similar solution; 2—K1, CFX-5; 3—Ft(t),
Eq. (3.83); 4—Ft(t), Eq. (3.84); 5—Ft(t), CFX-5
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where x = r/b and y = z/(0.5s). In fact, Eq (3.96) is Eq. (2.30) reformatted with the
help of the new variables. Here the Biot numbers Bi1 and Bi2 characterize con-
vective heat transfer from the cylindrical and flat surfaces of the disk, respectively.

The method of separation of variables was used to solve Eqs. (3.95)–(3.98)
analytically [108], where the final solution can be presented as

#ðFo; x; yÞ ¼
X1
n¼1

X1
m¼1

DnEmJ0ðlxnxÞ cosðlymyÞ exp �ðl2xn=H2 þ l2ymÞFo
h i

; ð3:99Þ

Dn ¼ 1F2ð1þ n�=2; 1; 2þ n�=2;�l2xn=4Þ=ð2þ n�Þ
0:5½J20ðlxnÞ þ J21 ðlxnÞ�

; ð3:100Þ

J1ðlxnÞ
J0ðlxnÞ

¼ Bi1
lxn

: ð3:101Þ

Here, Em and μym are defined by Eq. (3.85); J0 and 102 are Bessel functions of
the first kind and zero/first order, accordingly. Ignoring radial heat conduction,
Eq. (3.99) simplifies to Eq. (3.84). In Eq. (3.100), 1F2 is a hypergeometric function
of �l2xn=4 [112].

Figures 3.25 and 3.26 depict radial variations of the disk temperature in cases
with n* = −1 and 2, where n* is strongly different from zero. Figures 3.25 and 3.26
demonstrate that during cooling of a Plexiglas® disk the surface temperature
#w=#wðx ¼ 1Þ in fact repeats the initial functions (3.96) over practically entire disk
surface.

Strictly saying, Eq. (3.96) contradicts with the steady-state boundary conditions
(3.97) for x = 0 and x = 1. Hence, time-dependent distributions #w=#wðx ¼ 1Þ are
distorted in the neighborhood of the locations x = 0 and x = 1; therefore the
behavior of the heat transfer coefficient α2,t is studied within a region of x = 0.2–0.9.

To conclude, the transient technique for measurements of surface heat transfer
can be used together with a Plexiglas® disk subject to any initial temperature
distribution.

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

 - 1

 - 2

 - 3

 - 4

x

υ w
/ υ

w
( x

=1
)

Fig. 3.25 Variation of the
function #w=#wðx ¼ 1Þ with
x according to Eq. (3.99) at
n* = −1 [1]. 1—Eq. (3.96);
2—Fo = 0.00652;
3—Fo = 0.869;
5—Fo = 2.607
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Chapter 4
Forced External Flow Over a Rotating
Disk

4.1 Rotating Disk in a Fluid Rotating as a Solid Body

4.1.1 Turbulent Flow

Disks rotating with an angular velocity ω in a fluid corotating with a different
velocity Ω may be found in many technical applications: swirling flows over
rotating disks, disks corotating at different angular speeds, etc. [1–4]. If ω > Ω (in
other words, β = vφ,∞/(ωr) < 1), disk rotation engenders centrifugal fluid flow (see
Fig. 4.1) qualitatively similar to the flow caused by a single rotating disk at β = 0.

If ω < Ω (or β > 1), disk rotation causes centripetal flow. For β → ∞, fluid
rotates over a stationary surface [2, 4, 5]; this case is outside of the scope of the
present work.

Radial variation of the parameter β is different in different problems. Two fre-
quently studied cases are solid body rotation, where β = Ω/ω = const. (2.27), and
free vortex law, where β = const./r2 or vφ,∞ = (vφ,∞r)i/r.

Other forms of the radial distribution of the parameter β were studied, e.g., in the
works [2, 3, 7].

For laminar flow, β = const. and N = 0, one can find an exact solution of the
self-similar Navier–Stokes and energy Eqs. (2.32)–(2.36) (see Sect. 4.1.2).
For turbulent flow, a solution of the boundary layer equations can be derived
using an integral method at β = const. and N = 0. Such a solution has the form of
Eqs. (2.77)–(2.87).

The von Karman’s integral method [8], based on Eqs. (2.40) and (2.41) for n =
1/7, yields a solution for the parameters α, γ*, εm, and εM to be substituted into
Eqs. (2.77)–(2.81) [2, 9]

a2 ¼ 2300 1þ 8bð Þ
49 1789� 409bð Þ ; c� ¼

81 1þ a2ð Þ3=8
49 23þ 37bð Þa

" #4=5
; ð4:1Þ
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em ¼ 49p
60

sgn 1� bð Þ 1� bj j8=5ac�;

eM ¼ 49p
4140

sgn 1� bð Þ 1� bj j8=5 23þ 73bð Þac�: ð4:2Þ

An integral method [4] employing Eqs. (2.40) and (2.42) for n = 1/7 yields

a2 ¼ 0:2222 bþ 0:125ð Þ
0:6374� 0:1176

; c� ¼ 0:04809ð1þ a2Þ3=10 a 0:2425þ 0:2772bð Þ½ ��4=5;

ð4:3Þ

em ¼ 1:6332a 1� bð Þc�; eM ¼ 0:123 1þ a2
� �0:375

c�0:25
� b� 1j j1:75: ð4:4Þ

The present integral method results in a solution, which for β = const. and N = 0
(or κ = 0) has a form of Eqs. (2.77)–(2.87) for the velocity boundary layer, and Eqs.
(2.89)–(2.91) for the thermal boundary layer (in fact, Eqs. (4.3) and (4.4) [4] are the
same as Eqs. (2.77)–(2.87) simplified for the conditions where N = 0 and n = 1/7).

According to Eq. (2.83), a solution for N = 0 (or κ = 0) is valid just at
C5 ≤ β ≤ H8/H7 [10], where C5 = −0.125, H8/H7 = 4.412 for n = 1/7, and C5 = −0.1,
H8/H7 = 6.026 for n = 1/9 (in [2], C5 = −0.125 and H8/H7 = 4.374 for n = 1/7). The
constants α, γ, e�m, and εM in Eqs. (2.83)–(2.86) [4, 10] along with their values
computed by Eqs. (4.1) and (4.2) [2] are specified in Table 4.1. Values α by the
present integral method exceed those obtained in the work [2]; however, this
practically does not affect the moment coefficient. Coefficients e�m (mass flow rate)
predicted by both methods for 0.6 < β < 3 practically coincide.

The present integral method yields a relation for the enthalpy thickness [11]

d
��
T ¼ � 1� bð Þa �A1 þ vPrnpD2ð Þ: ð4:5Þ

Equation (2.89) for the thermal boundary layer for Δ ≤ 1 and N = 0 remains
transcendental, whereas the constants E1, E2, C4, and C5 are accordingly simplified.

Fig. 4.1 Schematic outline of velocity and temperature profiles on a disk rotating in a rotating
fluid for β < 1 [6]. Tangential velocity component vφ is turned 90°
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For the case of air flow, where Δ ≥ 1, Eq. (2.89) yields a relation for Δ [valid under
the boundary condition (2.31)] [10]

D�n ¼ 4þ mð ÞKVPr�np þ 2þ mþ n�ð Þ 1� KVð Þ � Pr�np2b= b� 1ð Þ
2þ mþ n�ð Þ � n�b= b� 1ð Þ

� ��1

: ð4:6Þ

In Eq. (4.6), the parameter KV is defined by Eq. (3.37). Equations (2.90) and
(2.91) for the Stanton and Nusselt numbers remain the same.

Comparing Eqs. (2.52) and (2.66), one can obtain expressions for the Reynolds
analogy parameter χ and the coefficient K1 [11] given by

v ¼ D�nPr�np ; K1 ¼ vAc 1þ a2
� �1=2

1� bð ÞPr; ð4:7Þ

v ¼ 2þ mþ n�ð Þ þ n�b= 1� bð Þ
2þ mþ n�ð ÞPrnp 1� KVð Þ þ 4þ mð ÞKV þ 2b= 1� bð Þ : ð4:8Þ

For the boundary condition (2.30) mainly used here, Eq. (4.8) yields [11]

v ¼ 2þ mþ n�
2þ mþ n�ð Þ 1� KVð ÞPrnp þ 4þ mð ÞKV þ 2b= 1� bð Þ : ð4:9Þ

The dependence of the Reynolds analogy parameter χ on the swirl parameter β
for turbulent flow is elucidated in Fig. 4.2.

Data for the constant K1 for Pr = 0.71 and 1.0, at n* varying over the range of
−2.6 ≤ n* ≤ 4 are documented in Tables 4.2 and 4.3. As one can see from these
tables, heat transfer rate diminishes for higher values of β because of decreasing
shear of the tangential velocity. Heat transfer rate enhances with increased values of
the exponent n* [11].

Table 4.1 Constants in Eqs. (2.77)–(2.81) for β = const., N = 0 [6]

β Solution (2.83)–(2.86) [4, 10], n = 1/7 Solution (4.1), (4.2) [2], n = 1/7

α γ e�m εM α γ e�m εM

0 0.2087 0.5299 0.1806 0.1466 0.162 0.526 0.219 0.146

0.2 0.343 0.3084 0.1727 0.1205 0.267 0.286 0.196 0.1208

0.4 0.4445 0.2232 0.162 0.0845 0.348 0.197 0.1766 0.085

0.6 0.5331 0.1754 0.1527 0.0482 0.42 0.149 0.1603 0.0486

0.8 0.6151 0.1443 0.1449 0.0165 0.487 0.119 0.1446 0.0172

1 0.6936 0.1224 0.1386 0 0.553 0.0983 0.1395 0

2 1.084 0.0683 −0.1208 0.322 0.907 0.0498 0.116 0.326

3 1.564 0.046 −0.1175 1.28 1.445 0.031 −0.1151 1.356

4 2.348 0.0335 −0.1285 3.368 3.182 0.02 −0.1629 4.682
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4.1.2 Laminar Flow

Exact solution. The self-similar Eqs. (2.32)–(2.36) for N = 0 and β < 1 were solved
in [11] by using the Mathcad software under the following boundary conditions:

f ¼ 0: F ¼ H ¼ 0;G ¼ 1; h ¼ 1;
f ! 1: G ¼ b;F ¼ 0;H ! const.; h ¼ 0:

ð4:10Þ

The velocity components F, G, H and dimensionless temperature θ parametri-
cally depending on β are depicted in Figs. 4.3, 4.4, 4.5, and 4.6. The radial velocity
F has a form typical for wall jets (Fig. 4.3). The axial velocity H is directed toward
the disk surface (Fig. 4.5) and, hence, is negative. The shear of the tangential
velocity G (Fig. 4.4) is the driving force of the flow. Increasing the swirl parameter
β (or fluid’s angular speed of rotation Ω) results in the diminishing shear of the
tangential velocity G, suppresses the radial and axial flow, and reduces the tem-
perature gradient in the vicinity of the disk (Figs. 4.3, 4.4, 4.5, and 4.6) [11].

Tables 4.4 and 4.5 list the constants used to calculate the following quantities:

swu= qx2r2
� � ¼ �G0

wRe
�1=2
x ; swr= qx2r2

� � ¼ F0
wRe

�1=2
x ;

_md= lrð Þ ¼ �pH1Re1=2x ; CM ¼ �2pG0
wRe

�1=2
u :

ð4:11Þ

As follows from the discussion above, higher values of the swirl parameter β are
accompanied with lower values of the wall shear stress and a reduced mass flow
rate through the boundary layer. Tables 4.4 and 4.5 complement similar archival
data presented in [2, 3] (factor β−3/2 is discarded in the first line of Table 4.5).

Equation (3.4) for nR = 1/2 and Eq. (3.5) define the Nusselt numbers and the
constant K1, accordingly. Thus increasing the swirl parameter β deteriorates the heat
transfer (details see below).

Integral method: fluid flow. In frames of the integral method, the modified form
of the solution for turbulent flow is used for laminar flow. In doing so, selected
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Fig. 4.2 Effect of the swirl
parameter β on the Reynolds
analogy parameter χ in
turbulent flow for Pr = 0.71
[6]. 1—n* = −0.6; 2—n* = 1;
3—n* = 2; 4—n* = 3
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coefficients are made free parameters to be defined empirically via matching them
with the exact solution [11]. For laminar and turbulent flow, the integral Eqs. (2.17)
and (2.18) for the velocity boundary layer are completed with the models for the
velocity profiles [11]

vu ¼ 1� g; vr ¼ a
a0

f : ð4:12Þ

Here g and f are functions of the variable ξ; the parameter α is the tangent of the
flow swirl angle at the wall: α0 = 0.8284 for a single rotating disk. Equation (4.12)
yields

g ¼ b� G
b� 1

; f ¼ a0F
a 1� bð Þ : ð4:13Þ

In [2, 3], the functions g and f are independent of β and have been calculated
using the profiles for a single rotating disk. This assumption entails noticeable
deviations from the exact solution. Account for the effect of β on the functions
g and f is a principal difference of the present integral method from the method of
the authors [2, 3].

An important assumption of the present integral method is that the velocity
profiles g and f plotted versus the coordinate ξ = z/δ depend only on β. Unknowns δ

Table 4.4 Parameters for
laminar flow for N = 0 and
β ≤ 1 [6]

β F0
w �G0

w α τwφ/τwφ0 −H∞

0.0 0.5102 0.6159 0.8284 1.0 0.8845

0.1 0.5134 0.6016 0.8535 0.9767 0.9176

0.3 0.4769 0.5305 0.8989 0.8614 0.7687

0.5 0.3908 0.4177 0.9357 0.6782 0.5457

0.7 0.2622 0.2716 0.9654 0.4409 0.3178

0.9 0.09594 0.09695 0.9895 0.1574 0.1020

1.0 0.0 0.0 1.0 0.0 0.0

Table 4.5 Parameters for
laminar flow for N = 0 and
β ≥ 1 [6]

β−1 �b�3=2F0
w b�3=2G0

w
α −τwφ/τwφ0 b�3=2H1

0.0 0.9420 0.7729 1.2188 1.2549 1.3696

0.1 0.8449 0.7184 1.1761 36.8861 0.1199

0.3 0.6602 0.5931 1.1132 4.8601 0.2633

0.5 0.4776 0.4469 1.0688 2.0522 0.2935

0.7 0.2915 0.2814 1.0359 0.7800 0.2307

0.9 0.09901 0.09798 1.0106 0.1863 0.07778

1.0 0.0 0.0 1.0 0.0 0.0
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and α are to be found by solving the integral equations. Equations (2.17) and (2.18),
being integrated in view of Eq. (4.12), yield

d
dr

dx2r3 1� bð Þ2 �B1a
2� �n o

þ d xrð Þ2 b� 1ð ÞC3 b� C5ð Þ ¼ rswr=q; ð4:14Þ

d
dr

dx2r4ðb� 1Þð1� bÞaD1
� �þ dxr2ðb� 1ÞaA1

d
dr

bxr2
� � ¼ r2swu=q; ð4:15Þ

where

A1 ¼ 1
a0

Z1
0

f dn; A3 ¼
Z1
0

g dn; B1 ¼ 1
a20

Z1
0

f 2 dn; ð4:16Þ

C1 ¼
Z1
0

g2 dn; D1 ¼ 1
a0

Z1
0

f g dn; ð4:17Þ

C3 ¼ C1 � 2A3; C5 ¼ C1=C3: ð4:18Þ

Equations (4.14) and (4.15) hold for laminar and turbulent flows. In the latter
case,

g ¼ 1� nn; f ¼ a0n
nð1� nÞ2 ð4:19Þ

are functions independent of r and β [the first of them coincides with Eq. (2.40), the
second is a modified Eq. (2.42)]. For turbulent flow, coefficients and shear stresses
in Eqs. (4.14) and (4.15) are described in Sect. 2.4.

For laminar flow, an integration of the solution of the self-similar Eqs. (2.32)–
(2.35) and the further use of Eq. (4.13) gives the values of the constants in Eqs.
(4.16)–(4.18)

a1d
d0

¼ A1fd ¼
Zfd
0

F
1� bð Þadf;

b1d
d0

¼ B1fd ¼
Zfd
0

F2

1� bð Þ2a2df;

a3d
d0

¼ A3fd ¼
Zfd
0

b� G
b� 1

df;
c1d
d0

¼ C1fd ¼
Zfd
0

b� Gð Þ2
b� 1ð Þ2 df;

d1d
d0

¼ D1fd ¼
Zfd
0

F G� bð Þ
b� 1ð Þ2adf;

ð4:20Þ
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where fd ¼ d
ffiffiffiffiffiffiffiffi
x=m

p
, fd0 ¼ d0

ffiffiffiffiffiffiffiffi
x=m

p
. The integrals in Eq. (4.20) are constant for

any β.
Shear stress components are given by the following relations:

swu ¼ lxr
d

� dg
dn

	 

n¼0

¼ lxr
x
m

� �1=2
� dG

df

	 

f¼0

; ð4:21Þ

swr ¼ lxr
d

� df
dn

	 

n¼0

¼ lxr
x
m

� �1=2
� dF

df

	 

f¼0

; ð4:22Þ

swr
swu

¼ df
dn

	 

n¼0

,
dg
dn

	 

n¼0

¼ dF
df

	 

f¼0

,
dG
df

	 

f¼0

¼ �a: ð4:23Þ

Here dg=dnð Þn¼0 ¼ const. is independent of β. For β = 0, Eq. (3.1) yields
dG=dfð Þf¼0 ¼ �0:6159 and dF=dfð Þf¼0 ¼ 0:5102. Hence, Eqs. (4.21) and (4.22)
result in

dF=dfð Þf¼0 ¼ 0:5102swr=swr0 ¼ 0:5102 a=a0ð Þ swu


swu0

� �
; ð4:24Þ

dG=dfð Þf¼0 ¼ �0:6159swu


swu0 ¼ �0:6159d0=d; ð4:25Þ

Given that α = const., δ = const., one can solve Eqs. (4.14) and (4.15), which
results in

a ¼ �c3 b� c5ð Þ= bh7 þ h8ð Þ½ �1=2; ð4:26Þ

h7 ¼ �3b1 � 4d1 þ 2a1; h8 ¼ 3b1 þ 4d1; ð4:27Þ

d=d0 ¼ swu0


swu; ð4:28Þ

swu
swu0

¼ d0
d
¼ 1� bð Þ a

a0
� d1 þ b 0:5a1 � d1ð Þ

d1;0

� �1=2
: ð4:29Þ

The values of α and τwφ/τwφ0 shown in Table 4.6 were found by using Eqs. (4.23),
(4.25); coefficients a1, a3, b1, c1, and d1 result from Eqs. (4.20) and (4.28).

Constants a1, a3, b1, c1, and d1 were approximated by the fourth-order
polynomials

a1 ¼
X4
0

a1;ib
i; a3 ¼

X4
0

a3;ib
i; b1 ¼

X4
0

b1;ib
i; c1 ¼

X4
0

c1;ib
i;

d1 ¼
X4
0

d1;ib
i: ð4:30Þ
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The polynomial coefficients are: a1,i = 0.5338, 0.6936, −3.0692, 2.7371,
−0.8952; a3,i = 1.2715, −2.1025, 1.3781, −0.7233, 0.1761; b1,i = 0.07887, 0.2204,
−0.5981, 0.4228, −0.1239; c1,i = 0.6726, −0.8612, 0.3994, −0.2969, 0.08607;
d1,i = 0.1859, −0.03277, −0.4271, 0.4124, −0.1384 for i = 0, 1, 2, 3, 4, accordingly.

Constants predicted by Eq. (4.30), values α by Eq. (4.26) and τwφ/τwφ0 by
Eq. (4.29) given in Table 4.6 in boldface divert from the exact values by not more
than 1 %.

Depicted in Fig. 4.7 is a zeroth-order solution for α and τwφ/τwφ0, Eqs. (4.26),
(4.29), whereas the profiles of g and f are independent of β, with coefficients a1, a3,
b1, c1, and d1 computed by Eqs. (4.30) using just the first terms of the power series
(at i = 0). Deviation of this solution from the exact solution is high and reaches
34 % for α and 42 % for τwφ/τwφ0 for β ≤ 0.5; for β → 1 this deviation is equal to
54.3 % for α and 3200 % for τwφ/τwφ0. Thus the significant variation of the constants
a1, a3, b1, c1, and d1 with β must be taken into account in accurate modeling of the
functions α, τwφ/τwφ0, and others.

Integral method: heat transfer. The transformed Eq. (4.15) hat to be solved
together with Eq. (2.70) of the thermal boundary layer [6]

4þ mð Þ 1� bð ÞaD1d=r þ 2baA1d=r ¼ Cf

2
1� bð Þ 1þ a2

� �1=2
; ð4:31Þ

d
dr

r2dd
��
T Tw � T1ð Þ

h i
þ dT1

dr
dr2
Z1
0

vr
xr

dn ¼ v
Cf

2
r2 1� bð Þ 1þ a2

� �1=2
Tw � T1ð Þ:

ð4:32Þ

For laminar flow, a generalization of the “turbulent” Eq. (4.5) brings [11]

d
��
T ¼ � 1� bð Þa �A1=b2 þ vPrnpD2b1=b2ð Þ: ð4:33Þ

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.4

0.8

1.2

1.6

3

2

4

1

w w

Fig. 4.7 Effect of the swirl
parameter β on functions α
(curves 1 and 2) and τwφ/τwφ0
(curves 3 and 4). Exact
solution: curves 1 and 3.
Approximate zeroth-order
solution: curves 2 and 4 [6]
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For the boundary condition (2.31), Eqs. (4.31), (4.32), and (4.33) yield [11]

v ¼ ð2þ mþ n�Þ þ b2n�b=ð1� bÞ�
ð2þ mþ n�ÞPrnpð1� KVÞb1 þ ð4þ mÞKVb2 þ b22b=ð1� bÞ ; ð4:34Þ

For the boundary condition (2.30), Eq. (4.34) reduces to

v ¼ 2þ mþ n�
ð2þ mþ n�ÞPrnpð1� KVÞb1 þ ð4þ mÞKVb2 þ b22b=ð1� bÞ : ð4:35Þ

For turbulent flow b1 = b2 = 1 and Eqs. (4.34), (4.35) reduce to Eqs. (4.8), (4.9),
accordingly. For laminar flow: m = 0 and KV ¼ 1� D2=A1 ¼ 1� d2=a1 (see
Eq. (3.37)).

The constant b1 is independent of the Prandtl number, while the functions b2(Pr)
and np(Pr) are identical to those for a single rotating disk [Sect. 3.4, Eqs. (3.54)–
(3.56)].

The dependence of b1 and b2 on β is found in the following way. Based on the
exact solution and on Eqs. (2.47), (3.5), and (4.21), the Reynolds analogy parameter
χ is given as

v ¼ �K1 1� bð Þ Pr dG=dfð Þf¼0

h i�1
: ð4:36Þ

Equating Eqs. (4.35) and (4.36) for any β at Pr = 1, n* = 0, and n* = 2, one can
find the values of the coefficients b1 and b2. These values can be approximated as
[11]

b1 ¼
X4
0

b1;ib
i; b2 ¼ b2;0 1þ

X4
1

b2;ib
i

 !
; ð4:37Þ

where: b1,0 = 0.6827, b1,1 = 0.1694, b1,2 = 0.1115, b1,3 = 0.7931, and
b1,4 = −0.7569. Equation (3.54) brings the value of b2,0 for β = 0, while b2,1 =
0.2866, b2,2 = −2.5420, b2,3 = 2.7414, and b2,4 = −0.8586. At β = 0.999, the
asymptotic values were b1 = 1 and b2 = 1.

As soon as the χ is known from Eq. (4.35), the coefficient K1 can be calculated as

K1 ¼ 0:6159
swu
swu0

v
Pr

1� b
: ð4:38Þ

The function τwφ/τwφ0 is given by Eq. (4.29). The parameters K1 and χ for Pr = 1
and 0.71 computed using the integral method and the self-similar solution,
Eqs. (4.38) and (4.35), are listed in Tables 4.7, 4.8, 4.9, and 4.10.
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The dependence of the constant K1 on the swirl parameter β has a maximum for
β = 0.1. Authors [12] experimentally detected that at a stagnation point of a swirling
jet impinging onto a stationary surface the Nu number also exhibits a maximum at
small β.

For larger values of β, the constant K1 decreases together with the absolute shear
of the tangential velocity vz. For β ≥ 0.8, the exact solution is dominated by heat
conduction with K1 ¼ �h0f¼0 ¼ 1=f1 (independently of the values of Pr and n*),
where ζ∞ is the coordinate at which θ = 0. Accepted asymptotic values b1 = b2 = 1
for β = 0.999 are valid at ζ∞ = ∞. The exact solution (Tables 4.7, 4.8, 4.9, and
4.10) obtained for ζ∞ = 7.05 and β = 0.999, and for ζ∞ = 9.93 and β = 0.99 is in a
good agreement with the integral method.

The exact and approximate solutions, Tables 4.7, 4.8, 4.9, and 4.10, are in a
good agreement with each other for β ≤ 0.7. For β = 0.7, inaccuracy of the
approximate solution reduces with increasing n* and (a) reach maximum 4.6 % for
Pr = 1 and 13.2 % for Pr = 0.71 at n* = −1.5 (hardly observed in practice); (b) does
not go beyond 1.6 % for Pr = 1 and 2.5 % for Pr = 0.71 over the range β = 0 to 0.7
and n* = −1 to 4. For β = 0.8, the approximate solution demonstrates 10.6 %
inaccuracy for n* = −0.5, which reduces to 1.5 % at n* = 4. For β = 0.9, the integral
method performs well only for n* = 1 to 4, whereas for β > 0.9 convective heat
transfer is negligible compared to heat conduction, which makes the integral
method inapplicable [11].

Thus, in the present section a self-similar solution and an integral method for
convective heat transfer over a disk rotating in a corotating fluid with β < 1 were
obtained and validated.

Table 4.7 Constant K1 for Pr = 1.0: exact solution and integral method (bold font) [6]

β n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 0.5 n* = 1 n* = 2 n* = 4

0.0 0.0 0.1305 0.2352 0.3221 0.3962 0.4608 0.5180 0.6159 0.7693

0.0 0.1261 0.2311 0.3199 0.3961 0.4620 0.5197 0.6159 0.7557

0.1 0.0 0.1333 0.2396 0.3275 0.4022 0.4672 0.5246 0.6228 0.7764

0.0 0.1287 0.2354 0.3254 0.4022 0.4686 0.5266 0.6228 0.7622

0.3 0.0 0.1123 0.2243 0.3086 0.3809 0.4442 0.5003 0.5967 0.7479

0.0 0.1198 0.2205 0.3064 0.3804 0.445 0.5017 0.5969 0.7367

0.5 0.0 0.1013 0.1868 0.2607 0.3255 0.3832 0.4351 0.5253 0.6688

0.0 0.0998 0.1858 0.2607 0.3264 0.3847 0.4366 0.5253 0.6591

0.7 0.0 0.0721 0.1319 0.1861 0.2356 0.2811 0.323 0.3983 0.5229

0.0 0.0683 0.1297 0.1852 0.2356 0.2816 0.3237 0.3983 0.5174

0.9 0.0 0.0643 0.0314 0.1065 0.1266 0.1461 0.1649 0.2009 0.2670

0.0 0.0247 0.0484 0.0712 0.0933 0.1145 0.1350 0.1739 0.2443

0.999 0.0 0.1417 0.1418 0.1421 0.1423 0.1424 0.1426 0.1429 0.1437

0.0 0.0003 0.0005 0.0008 0.0010 0.0012 0.0015 0.0020 0.0030
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4.2 Flow Impingement onto an Orthogonal Disk

4.2.1 Experimental and Computational Data of Different
Authors

One of the high-performance techniques used for heating/cooling of bodies, for
instance, endwall surfaces of gas turbine rotors, is impingement cooling [1, 4, 13–17].

Table 4.8 Value χ for Pr = 1.0 from the exact solution and integral method (bold font) [6]

β n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 0.5 n* = 1 n* = 2 n* = 4

0.0 0.0 0.2119 0.3818 0.5230 0.6433 0.7482 0.8410 1.0 1.1335

0.0 0.2047 0.3752 0.5195 0.6431 0.7502 0.8439 1.0 1.1249

0.1 0.0 0.1995 0.3585 0.49 0.6018 0.699 0.7849 0.9318 1.055

0.0 0.193 0.353 0.4879 0.6031 0.7027 0.7895 0.9339 1.049

0.3 0.0 0.1632 0.296 0.4072 0.5026 0.586 0.6601 0.7873 0.8943

0.0 0.1577 0.2903 0.4033 0.5008 0.5858 0.6605 0.7858 0.8867

0.5 0.0 0.1213 0.2236 0.312 0.3897 0.4587 0.5208 0.6288 0.7206

0.0 0.1192 0.2219 0.3113 0.3899 0.4595 0.5215 0.6274 0.7144

0.7 0.0 0.0796 0.1457 0.2056 0.2603 0.3105 0.3569 0.4400 0.5129

0.0 0.0756 0.1436 0.2051 0.2609 0.3119 0.3586 0.4411 0.5118

0.9 0.0 0.0664 0.0885 0.1099 0.1306 0.1507 0.1701 0.2073 0.2423

0.0 0.0255 0.0501 0.0737 0.0965 0.1185 0.1397 0.1800 0.2176

0.999 0.0 0.1417 0.1419 0.1421 0.1423 0.1424 0.1426 0.143 0.1434

0.0 0.00025 0.0005 0.00075 0.0010 0.0012 0.0015 0.0020 0.0025

Table 4.9 Constant K1 for Pr = 0.71: exact solution and integral method (bold font) [6]

β n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 0.5 n* = 1 n* = 2 n* = 4

0.0 0.0 0.1035 0.1893 0.2624 0.3259 0.3818 0.4319 0.5185 0.6555

0.0 0.1009 0.187 0.2612 0.3259 0.3828 0.4332 0.5185 0.6457

0.1 0.0 0.1060 0.1934 0.2675 0.3316 0.3881 0.4384 0.5254 0.6627

0.0 0.1031 0.1906 0.2658 0.3312 0.3885 0.4392 0.5248 0.6518

0.3 0.0 0.0971 0.1789 0.2493 0.3108 0.3654 0.4145 0.4997 0.6350

0.0 0.0958 0.1782 0.2498 0.3125 0.3680 0.4174 0.5015 0.6281

0.5 0.0 0.0795 0.1469 0.2067 0.2605 0.3091 0.3535 0.4320 0.5594

0.0 0.0797 0.1497 0.2117 0.2670 0.3165 0.3613 0.4387 0.5585

0.7 0.0 0.0616 0.1065 0.1481 0.1869 0.2231 0.2572 0.3195 0.4257

0.0 0.0544 0.1039 0.1493 0.1910 0.2295 0.2651 0.3288 0.4328

0.9 0.0 0.0668 0.0821 0.0970 0.1116 0.1258 0.1397 0.1667 0.2172

0.0 0.0195 0.0385 0.0568 0.0745 0.0916 0.1083 0.1401 0.1983

0.999 0.0 0.1417 0.1418 0.1420 0.1421 0.1422 0.1424 0.1426 0.1432

0.0 0.0002 0.0004 0.0006 0.00079 0.00099 0.0012 0.0016 0.0024

4.2 Flow Impingement onto an Orthogonal Disk 95



Main approaches to simulations of axisymmetric laminar flows orthogonally
impinging onto a stationary flat surface or a disk (Fig. 4.8), e.g., a well-known the-
oretical solution for this case, are well described in the works [5, 18–20].

Authors of the works [5, 13, 21–23] investigated single axisymmetric jets
impinging onto a stationary surface/disk of a diameter D. Detailed investigations of
axisymmetric air jets impinging onto rotating disks were performed in the works
[12, 19, 24–40]. These studies demonstrated that a constant-thickness boundary
layer develops in the immediate neighborhood of the stagnation point, whereas
Eq. (2.27) describe the behavior of the radial vr,∞ and axial vz,∞ velocity compo-
nents in potential flow.

If a disk is placed perpendicular to a potential uniform flow, whose velocity at
infinity is Vj, the coefficient a in Eq. (2.27) is given by the expression [19]

a ¼ VjA=Dj ¼ 2Vj=ðpbÞ; A ¼ 4=p: ð4:39Þ

Table 4.10 Value χ for Pr = 0.71: exact solution and integral method (bold font) [6]

β n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 0.5 n* = 1 n* = 2 n* = 4

0.0 0.0 0.2366 0.4330 0.6001 0.7452 0.8732 0.9876 1.1856 1.3533

0.0 0.2308 0.4276 0.5973 0.7453 0.8753 0.9906 1.1857 1.3446

0.1 0.0 0.2233 0.4076 0.5637 0.6988 0.8177 0.9238 1.1071 1.2619

0.0 0.2177 0.4025 0.5614 0.6995 0.8206 0.9276 1.1084 1.2551

0.3 0.0 0.1805 0.3325 0.4632 0.5776 0.6791 0.7702 0.9286 1.0630

0.0 0.1777 0.3304 0.4631 0.5794 0.6823 0.7738 0.9298 1.0577

0.5 0.0 0.1340 0.2476 0.3486 0.4391 0.5212 0.596 0.7284 0.8426

0.0 0.1341 0.2519 0.3561 0.4491 0.5325 0.6077 0.7381 0.8471

0.7 0.0 0.0959 0.1656 0.2304 0.2908 0.3472 0.4002 0.4971 0.5839

0.0 0.0848 0.1621 0.2329 0.2980 0.3580 0.4135 0.5129 0.5993

0.9 0.0 0.0970 0.1192 0.1409 0.1621 0.1828 0.2030 0.2421 0.2796

0.0 0.0285 0.0561 0.0827 0.1086 0.1336 0.1579 0.2042 0.2479

0.999 0.0 0.1997 0.1998 0.2000 0.2002 0.2004 0.2006 0.2009 0.2013

0.0 0.00029 0.00056 0.00084 0.0011 0.0014 0.0017 0.0022 0.0028

Fig. 4.8 Fluid flow and heat
transfer between a rotating
disk and a uniform flow
perpendicular to it [6]
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Once the flow impinges onto an entire disk, Dj = D in the definition of
A ¼ aDj=Vj. On a disk, the local stagnation pressure ps can be written in two
different ways

ps ¼ pðrÞ þ ð1=2Þqv2r;1; ð4:40Þ

ps ¼ p1 þ ð1=2ÞqV2
j : ð4:41Þ

The potential flow velocity vr,∞ is given by Eqs. (2.27), (4.39). Consequently,
[41]

p� p1
ð1=2ÞqV2

j
¼ 1� 2

p

	 
2 r
b

� �2
: ð4:42Þ

Experiments [41] for the case where flow impinges onto the entire disk agree
well with the theoretical Eq. (4.42) up to a radial location r/b = 0.85. This confirms
the validity of Eqs. (2.27) and (4.39) modeling the radial velocity vr,∞. Flow
separation at the outer rim of the disk is a reason of the deviation of Eq. (4.42) from
experiments [41] at r/b > 0.85.

If a disk is subject to the impingement of a single perpendicular jet, the coef-
ficient a in Eq. (2.27) is practically constant in the neighborhood of the stagnation
point. Further, as the velocity vr,∞ tends to its maximum for increasing r, the
parameter a decreases. Having passed the point of maximum, velocity vr,∞
diminishes. Here starts a region of a turbulent wall jet not investigated in the present
work. In [13], one can find empirical equations predicting all parameters of the
point of maximum of vr,∞.

The jet-to-disk diameter ratio Dj/D and dimensionless jet-to-disk distance hj/Dj

are important parameters of real impinging jets. Here, the value of A deviates from
4/π (see Eq. (4.39)) and becomes a function of hj/Dj (as well as of the turbulence
level and the shape of the velocity profile at nozzle outlet). Different experimental
investigations suggest different dependences of A on hj/Dj. We will follow the
findings of [21], where the parameter A together with the stagnation Nusselt number
diminish at high values of Rej, while the parameter hj/Dj increases over the range
2 ≤ hj/Dj ≤ 6

A ¼ 1:5 hj=Dj
� ��0:22

; ð4:43Þ

valid for laminar flow with a uniform velocity profile at nozzle outlet.
Experimental investigations [12, 24, 26, 28, 32–34, 42] outline results for heat and

mass transfer of jets impinging onto a perpendicular wall, whereas [19, 27, 29, 35, 38,
39] represent results of theoretical studies. For heat transfer at uniform flow
impingement onto an orthogonal disk, authors [29] obtained a self-similar solution
for Pr = 0.7, 1, 10 and Tw = const. For mass transfer in the same geometrical con-
figuration, a self-similar solution was investigated at Sc = 0.2, 3.0 in the paper [35].
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The self-similar Eqs. (2.32)–(2.36) for β = 0 and boundary conditions (2.27)–
(2.30) describe the problem considered here. As a result, for a stationary disk, the
Nusselt numbers may be described by the following relations [13]:

NuD ¼ K1 � Re1=2a ; NuD ¼ 0:763 � Re1=2j � Pr0:4 � A1=2: ð4:44Þ

For a disk placed in the uniform flow, the second of Eq. (4.44) holds, provided
that Rea ¼ RejA, Dj = D, and Tw = const.

Laminar flow and heat transfer at a uniform perpendicular air impingement
onto a single rotating disk and Tw = const. were investigated experimentally and
theoretically in [41, 43–45] for a wide range of the parameter 0 ≤ a/ω ≤ ∞ (ratio of
the impingement velocity and angular velocity of rotation). The Nu numbers
obtained from the self-similar solution agree well with the experiments [41, 43]
(see Sect. 3.2.3).

A self-similar solution for mass transfer of a rotating disk subject to an
orthogonal impingement at Cw = const. was approximated by the following relation
[27]:

Sh

Re2a þ Re2x
� �1=4
" #m

¼ b1=4
Sha
Re1=2a

" #m
þ 1þ bð Þ1=4 Shx

Re1=2x

" #m
; ð4:45Þ

which is valid for the Schmidt numbers Sc = 0…∞. Here m = 2.65 for Sc = 0.1–1.0
or m = 3.85 for Sc = 1–10,000. For a single rotating disk, Sherwood numbers Shω
are represented by Eq. (3.4) (for nR = 1/2) and Eq. (3.7), where Nu is replaced by
Sh, and Pr by Sc, respectively. For a stationary disk placed in a uniform flow, the
Sherwood number Sha is described by the following relation [27]:

Sha=Re
1=2
a ¼ K1 ¼ 0:65693Sc1=2= 0:3098þ 1:015Sc1=2 þ Sc

� �1=6
: ð4:46Þ

In [27], it is said that deviation of Eq. (4.45) from the self-similar solution is less
than 7.55 % for Sc = 0.1–1.0 and 3.85 % for Sc = 1–10,000. Our analysis indicated,
however, the deviation of Eq. (4.45) from the self-similar solution reaches 12 % for
Sc = 1.

Experimental data [12, 33, 34] demonstrate that both jet impingement and disk
rotation engender heat transfer enhancement. A comparison of the data [12, 33, 34]
with the self-similar solution is outlined below. Average heat transfer and average
mass transfer in naphthalene sublimation in air for an entire disk subject to jet
impingement were measured in experiments [24, 32] and [26, 28], respectively.

For turbulent flow, [46] obtained a solution of Eqs. (2.17), (2.18) together with
Eqs. (2.37)–(2.41) for β = 0, N = const., n = 1/7 and boundary conditions (2.27).
The authors of [2] translated this solution for arbitrary values of n in the following
equations:
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a2 þ RaN ¼ Sþ TN2; c ¼ K
nþ1
3nþ1

3nþ 1ð Þ 1þ a2ð Þ0:5ð1�nÞ=ð1þnÞ

5þ 11nð Þ Gaþ HNð Þ

" #ðnþ1Þ=ð3nþ1Þ
;

ð4:47Þ

CM ¼ c Gaþ HNð ÞRe�2n=ð3nþ1Þ
u : ð4:48Þ

The authors of [2] tabulated the functions R, S, T, G, H, and K. The most
important parameters of this solution are presented in Table 4.11 [2]. These data are
compared below with the results predicted by the present integral method (see
Chap. 2).

4.2.2 Turbulent Flow

A study of turbulent flow at N = const. is applicable to cases of converging channels
[2, 19, 46]. The constants α, γ, εm, and εM calculated by Eqs. (2.83)–(2.86) with the
help of the present integral method for n = 1/7, as well as by Eqs. (4.47), (4.48)
[2, 46] are listed in Table 4.11. Both solutions approach each other with increasing
N; in fact, values α and εm by both models merge already for N > 0.4.

The thermal boundary layer Eq. (2.89) for β = 0 can be reduced to the following
form:

d
��
T

aA1
¼ � �1þ vPrnp 1� KV0ð Þð Þ þ j

a
�A2

A1
þ vPrnp

D4

A1

	 
� �

� j
a
1
A1

vPrnpð Þ�1=n�vPrnp

nþ 1
� vPrnpð Þ�1=nþ1

 !
:

ð4:49Þ

Table 4.11 Constants in Eqs. (2.77)–(2.81) for N = const., β = 0 [6]

N Solution (2.83)–(2.86) [10], n = 1/7 Solution (4.47), (4.48) [2, 46], n = 1/7

α γ εm εM α γ εm εM
0 0.2087 0.5299 0.1806 0.1466 0.162 0.526 0.219 0.146

0.2 0.2818 0.2892 0.3566 0.1727 0.2587 0.2918 0.3648 0.172

0.6 0.6408 0.1484 0.4994 0.2255 0.6288 0.1486 0.5010 0.224

1 1.037 0.1122 0.6236 0.2794 1.026 0.1122 0.6242 0.278

2 2.046 0.0853 0.9446 0.422 2.033 0.0853 0.9448 0.42

4 4.073 0.0708 1.567 0.699 4.056 0.0708 1.568 0.696
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This yields a transcendental equation for χ

� 1þ vPrnpð1� KV0Þ þ j
a

�A2

A1
þ vPrnp

D4

A1

	 


� j
a
1
A1

�nðvPrnpÞ�1=n � vPrnp

nþ 1
þ 1

 !
¼ v

4þ m
2þ mþ n�

KV0 1þ j
a

B5

D1
� 1

	 
� �
:

ð4:50Þ

Here KV0 ¼ 1� D2=A1, B5 ¼ D1 þ D3; Eq. (4.7) connects the parameters χ
and Δ.

Equation (4.50) is transcendental, and its analytical solution can be only

approximate. For Pr = 0.5–1, one can assume vPrnp � 1 and vPrnpð Þ�1=n 6¼ 1,
which gives

v ¼ Pr�np 1� nþ 1
n

a
j
D1 þ D3

� �
1� Pr�np 4þ m

2þ mþ n�

	 
� ��n

: ð4:51Þ

In case of small values of Pr, one can derive another approximate solution of

Eq. (4.50). Setting vPrnp ! 0 and vPrnpð Þ�1=n! 1, one can deduce

v ¼ Pr�np nþ 1
n

Pr�np a
j
D1 þ D3

� � 4þ m
2þ mþ n�

� � �n
nþ1

: ð4:52Þ

Numerical data for the parameters K1 and χ for Pr = 0.71 (air) are listed in
Tables 4.12 and 4.13 and enable making the following important conclusions.

Table 4.12 Values of the constant K1 according to a numerical solution of Eq. (4.50) and its
approximate solutions (4.51) and (4.52) for turbulent flow and Pr = 0.71 [6]

κ = a/ω κ/α n* = −1.5 n* = −1 n* = −0.6 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

0.0 (4.50) 0.0125 0.0152 0.0167 0.0185 0.0205 0.0218 0.0227 0.0234

0.1 (4.50) 0.4491 0.0197 0.0207 0.0213 0.0221 0.0231 0.0239 0.0246 0.0251

0.1 (4.51) 0.0189 0.0200 0.0207 0.0216 0.0227 0.0237 0.0246 0.0254

0.1 (4.52) 0.0194 0.0203 0.0209 0.0216 0.0225 0.0232 0.0238 0.0243

0.2 (4.50) 0.7098 0.0219 0.0229 0.0236 0.0243 0.0253 0.0261 0.0267 0.0273

0.2 (4.51) 0.0213 0.0225 0.0232 0.0241 0.0252 0.0260 0.0267 0.0273

0.2 (4.52) 0.0220 0.0230 0.0237 0.0244 0.0255 0.0262 0.0269 0.0275

1.0 (4.50) 0.9649 0.0359 0.0375 0.0385 0.0397 0.0412 0.0423 0.0433 0.0441

1.0 (4.51) 0.0352 0.0370 0.0381 0.0394 0.0411 0.0423 0.0433 0.0441

1.0 (4.52) 0.0363 0.0381 0.0392 0.0405 0.0422 0.0435 0.0445 0.0455

4.0 (4.50) 0.9813 0.1068 0.1116 0.1145 0.1180 0.1224 0.1258 0.1286 0.1310

4.0 (4.51) 0.1048 0.1102 0.1134 0.1173 0.1221 0.1257 0.1286 0.1309

4.0 (4.52) 0.1082 0.1134 0.1166 0.1204 0.1255 0.1294 0.1326 0.1353
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First, an increase in the parameter κ results in the growing values of the constant

K1 caused by the increase in the coefficient Ac 1þ a2ð Þ1=2 in accordance with
Eq. (4.7).

Second, within the range κ = 0−∞, the Reynolds analogy parameter χ preserves
the same order of magnitude. Variation of χ is most significant (33.5 %) for
n* = −1.5, and smallest (1.5 %) for n* = 4.

Third, parameter χ remains constant to within four meaningful digits for κ > 5;
within 2 % deviation, χ = const. already for κ = 0.2. Thus, a turbulent thermal
boundary layer adapts itself very fast to a negative pressure gradient.

Fourth, both variants of approximate solutions, Eqs. (4.51) and (4.52), deviate
by not more than 2 % from the exact numerical solution of the transcendental
Eq. (4.50).

4.2.2.1 Laminar Flow

Exact solution. The self-similar solution of Eqs. (2.32)–(2.36) at N = const. and
β = 0 was obtained in [47–50]. The following boundary conditions have been used:

f ! 0: F ¼ H ¼ 0;G ¼ 1=ð1þ jÞ; h ¼ 1;
f ! 1: G ¼ 0;F ¼ j=ð1þ jÞ; h ¼ 0;

ð4:53Þ

where j ¼ N ¼ a=x. The Nusselt number can be calculated by the relations

NuD ¼ K1 RexD þ Reað Þ1=2; K1 ¼ �h0f¼0: ð4:54Þ

Table 4.13 Values of the Reynolds analogy parameter χ according to a numerical solution of
Eq. (4.50) and its approximate Eqs. (4.51) and (4.52) for turbulent flow and Pr = 0.71 [6]

κ = a/ω κ/α n* = −1.5 n* = −1 n* = −0.6 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

0.0 (4.50) 0 0.6580 0.7971 0.8788 0.9707 1.0747 1.144 1.193 1.231

0.1 (4.50) 0.4491 0.954 1.004 1.035 1.072 1.122 1.160 1.192 1.218

0.1 (4.51) 0.916 0.970 1.004 1.046 1.104 1.151 1.193 1.231

0.1 (4.52) 0.941 0.986 1.014 1.048 1.091 1.125 1.153 1.177

0.2 (4.50) 0.7098 0.976 1.022 1.051 1.085 1.129 1.163 1.191 1.215

0.2 (4.51) 0.950 1.002 1.033 1.072 1.122 1.160 1.192 1.218

0.2 (4.52) 0.978 1.025 1.054 1.089 1.134 1.170 1.197 1.224

1.0 (4.50) 0.9649 0.989 1.033 1.060 1.092 1.133 1.165 1.191 1.213

1.0 (4.51) 0.969 1.019 1.050 1.086 1.131 1.164 1.191 1.213

1.0 (4.52) 1.001 1.048 1.078 1.114 1.160 1.196 1.226 1.252

4.0 (4.50) 0.9813 0.989 1.033 1.060 1.093 1.133 1.165 1.191 1.213

4.0 (4.51) 0.970 1.020 1.050 1.086 1.131 1.164 1.191 1.212

4.0 (4.52) 1.002 1.050 1.079 1.115 1.162 1.198 1.228 1.253
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In fact, Eqs. (3.4) and (4.44) are the limiting cases of Eq. (4.54).
One can transform Eqs. (2.32)–(2.36) to the case of axisymmetric orthogonal

flow onto a nonrotating wall [5, 18] by setting φ = −H/2 and limiting transition
a/ω → ∞.

Equations (2.32)–(2.36) were solved using a Mathcad code. Figures 4.9, 4.10,
4.11, and 4.12 show profiles of the velocity components F, G, H and temperature θ.

With increasing values of κ (in fact, already for κ > 0.5), the radial velocity
profiles reshape themselves from distributions typical for flow over a rotating disk
to boundary layer profiles (Fig. 4.9). This reshaping engenders significant changes
in the heat transfer rate described below. Contrary to that, the shapes of the axial
and tangential velocity, as well as the temperature profiles, remain qualitatively
unchanged (see Figs. 4.10, 4.11, and 4.12). For larger values of κ, the boundary
layer becomes thinner, whereas tangential shear stresses increase.

Listed in Table 4.14 are computed values of the ζ-derivatives of the radial and
tangential velocity components and relative tangential shear stresses at the wall
(subscript “0” denotes a single disk).
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Fig. 4.9 Radial velocity profiles for laminar coaxial uniform orthogonal flow impingement onto a
rotating disk [6]. 1—κ = 0; 2—κ = 0.1; 3—κ = 2; 4—κ = 4000
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Fig. 4.10 Tangential velocity profiles for laminar coaxial uniform orthogonal flow impingement
onto a rotating disk [6]. 1—κ = 0; 2—κ = 0.1; 3—κ = 2; 4—κ = 4000
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Tables 4.15 and 4.16 contain numerical data for the constant K1 in Eq. (4.54) for
the Nusselt number depending on the parameters κ = a/ω and n* for Pr = 0.71 and
1.0. In the asymptotical case of κ → ∞ at n* = 0 (i.e., Tw = const.), the constant K1

coincides with Eq. (4.44) [13]. For another asymptotic case of κ = a/ω = 0, the
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Fig. 4.11 Axial velocity profiles for laminar coaxial uniform orthogonal flow impingement onto a
rotating disk [6]. 1—κ = 0; 2—κ = 0.1; 3—κ = 2; 4—κ = 4000
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Fig. 4.12 Temperature profiles for laminar uniform orthogonal flow impingement onto a rotating
disk, Pr = 0.71 (air) and n* = 1 [6]. 1—κ = 0; 2—κ = 0.1; 3—κ = 2; 4—κ = 4000

Table 4.14 Values of
constants of the exact
self-similar solution of the
Navier–Stokes equations for
uniform flow impingement
onto a rotating disk [6]

κ = a/ω α = −F0
w /G0

w τwφ/τwφ0, F0
w −G0

w

0.0 0.8284 1.0 0.5102 0.6159

0.1 0.8127 1.0438 0.4529 0.5573

0.4 0.8939 1.2834 0.4266 0.4772

1.0 1.4180 1.8022 0.5565 0.3924

2.0 2.5440 2.4888 0.7505 0.2950

4.0 6.1454 3.9070 1.0062 0.1637

10.0 12.229 4.5195 1.1395 0.0932

50 61.043 12.338 1.2736 0.0209

100 122.08 17.448 1.2925 0.0106

4 × 103 4883.1 110.35 1.3114 0.00027
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coefficient K1 from Tables 4.15 and 4.16 fully agrees with data for a free rotating
disk (see Chap. 3).

In [41, 43, 51] the authors compared the original experimental data with the exact
solution for a single disk rotating in quiescent air at Tw = const. within a wide range
of definition of the parameter a/ω = 0 … ∞. Equation (4.54) can be rewritten as

NuD=NuD;a¼0 ¼ K1 1þ jð Þ1=2=K1;a¼0 or NuD=NuD;x¼0 ¼ K1 1þ j�1ð Þ1=2=K1;x¼0.
Figures 4.13 and 4.14 demonstrate that the self-similar solution agrees well with

the experiments. The experimental data were averaged over the radial span of a disk
r/b ≤ 0.8, where the boundary conditions for the radial velocity vr,∞, Eqs. (2.27)
and (4.39), held with a reasonable level of accuracy [see also comments to Eqs.
(4.40)–(4.42)].

Table 4.15 Values of K1 according to the exact self-similar solution for Pr = 0.71 [6]

κ = a/ω n* = −2 n* = −1.5 n* = −1 n* = 0 n* = 0.5 n* = 1 n* = 2 n* = 3 n* = 4

0.0 0.0 0.1035 0.1893 0.3259 0.3818 0.4319 0.5185 0.5918 0.6555

0.1 0.0 0.1174 0.2078 0.3429 0.3964 0.4436 0.5246 0.5927 0.6519

0.3 0.0 0.1424 0.2425 0.3826 0.4360 0.4825 0.5612 0.6269 0.6836

0.5 0.0 0.1612 0.2705 0.4194 0.4752 0.5236 0.6049 0.6723 0.7305

0.7 0.0 0.1752 0.2922 0.4498 0.5084 0.5590 0.6439 0.7141 0.7745

1.0 0.0 0.1905 0.3165 0.4847 0.547 0.6007 0.6905 0.7646 0.8283

3.0 0.0 0.2304 0.3812 0.5811 0.6546 0.7179 0.8235 0.9106 0.9853

4.0 0.0 0.2426 0.4013 0.6114 0.6887 0.7551 0.8661 0.9575 1.0359

10 0.0 0.2533 0.4189 0.6381 0.7187 0.788 0.9037 0.9991 1.0808

50 0.0 0.2630 0.4349 0.6624 0.7462 0.8181 0.9382 1.0372 1.122

1000 0.0 0.2654 0.4390 0.6687 0.7532 0.8258 0.9471 1.0469 1.1331

Table 4.16 Values of K1 according to the exact self-similar solution for Pr = 1 [6]

κ = a/ω n* = −2 n* = −1.5 n* = −1 n* = 0 n* = 0.5 n* = 1 n* = 2 n* = 3 n* = 4

0.0 0.0 0.1305 0.2352 0.3963 0.4608 0.5180 0.6159 0.6982 0.7693

0.1 0.0 0.1414 0.2483 0.4055 0.4669 0.5209 0.6130 0.6901 0.7568

0.3 0.0 0.1663 0.2821 0.4426 0.5034 0.5562 0.6453 0.7195 0.7836

0.5 0.0 0.1867 0.3121 0.4815 0.5447 0.5993 0.6910 0.7670 0.8324

0.7 0.0 0.2023 0.3361 0.5147 0.5809 0.6379 0.7334 0.8123 0.8801

1.0 0.0 0.2196 0.3633 0.5536 0.6237 0.6840 0.7849 0.8681 0.9395

3.0 0.0 0.2652 0.4368 0.6622 0.7449 0.8159 0.9343 1.0318 1.1154

4.0 0.0 0.2792 0.4597 0.6966 0.7835 0.8580 0.9824 1.0848 1.1726

10 0.0 0.2915 0.4798 0.7270 0.8176 0.8953 1.0250 1.1318 1.2233

50 0.0 0.3026 0.4981 0.7547 0.8488 0.9295 1.0641 1.1749 1.2699

1000 0.0 0.3055 0.5028 0.7619 0.8568 0.9383 1.0741 1.1860 1.2819
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The expression (4.54) for the Nusselt number can be transformed as follows:

NuD ¼ K1 1þ x=að Þ1=2Re1=2a : ð4:55Þ

The product K1� ¼ K1 1þ x=að Þ1=2 presented in Table 4.17 for Pr = 0.71 is
almost constant for κ = 1.5–∞. Thus, when κ = a/ω trespasses a threshold value, the
heat transfer of a rotating disk is determined only by flow impingement. In other
words, under conditions of flow impingement, rotation causes an increase in heat
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Fig. 4.13 Effect of the parameter κ = a/ω on the heat transfer rate at orthogonal uniform air flow
impingement onto an isothermal rotating disk (Pr = 0.71, Tw = const.) [6]. 1—Self-similar solution,
Table 4.15. Experiments: 2—b = 74.3 mm [41]; 3—b = 25 mm [41]; 4—[43]
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Fig. 4.14 Effect of the parameter κ−1 = ω/a on the heat transfer rate at orthogonal uniform air flow
impingement onto an isothermal rotating disk (Pr = 0.71, Tw = const.) [6]. 1—Self-similar solution,
Table 4.15. Experiments: 2—b = 74.3 mm [41]; 3—b = 25 mm [41]; 4—[43]
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transfer for the same values Rea only if the values of κ are smaller than a threshold
point. The constant K1* is useful to compare computations with experiments
(excluding the point κ = 0).

Computed values of the Reynolds analogy parameter χ, Eq. (4.7), for Pr = 1 and
0.71 at β = 0 are listed in Tables 4.18 and 4.19. The function χ(κ) varies much
weaker than the function K1(κ). For Pr = 0.71, the most significant (32 %) increase
in χ occurs at n* = −1.5, whereas a weak decrease of χ (0.9 %) takes place at n* = 4.
Also variation of the function χ(κ) in laminar flow is weaker than that in turbulent
flow; however, this variation stretches over a much larger span of the parameter κ.
For practical purposes, χ may be considered constant already for κ = 1.5–∞ for all
values of n* and both Prandtl numbers (see Tables 4.18 and 4.19).

Comparisons with experiments for coaxial orthogonal single jet impingement
onto a rotating disk. As known from the literature [5, 18–20], the stagnation region
of a single jet (see Fig. 4.15) is similar to a uniform orthogonal flow over a single
disk studied above. Non-coaxial jet impingement studied experimentally in [25]
dominated over the disk rotation effects under the following conditions:

Table 4.17 Values of K1� ¼ K1 1þ x=að Þ1=2, self-similar solution for Pr = 0.71 [6, 48, 49]

κ = a/ω n* = −2 n* = −1.5 n* = −1 n* = 0 n* = 0.5 n* = 1 n* = 2 n* = 3 n* = 4

0.0 0.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

0.1 0.0 0.3896 0.6891 1.1373 1.3147 1.4714 1.7398 1.9657 2.1620

0.2 0.0 0.3199 0.5531 0.8881 1.0176 1.1310 1.3240 1.4856 1.6257

0.3 0.0 0.2965 0.5048 0.7965 0.9076 1.0044 1.1683 1.3049 1.4231

0.5 0.0 0.2793 0.4685 0.7265 0.8231 0.9069 1.0477 1.1645 1.2652

1.0 0.0 0.2694 0.4476 0.6855 0.7736 0.8495 0.9765 1.0813 1.1714

1.5 0.0 0.2674 0.4431 0.6766 0.7628 0.8369 0.9608 1.063 1.1508

2.0 0.0 0.2666 0.4414 0.6733 0.7588 0.8323 0.9551 1.0563 1.1432

10 0.0 0.2657 0.4393 0.6692 0.7538 0.8265 0.9478 1.0478 1.1336

100. 0.0 0.2656 0.4392 0.669 0.7536 0.8262 0.9475 1.0475 1.1332

Table 4.18 Values of χ, self-similar solution and the present integral method for Pr = 1 [6]

κ = a/ω n* = −2 n* = −1.5 n* = −1 n* = 0 n* = 0.5 n* = 1 n* = 2 n* = 3 n* = 4

0.0 0.0 0.2119 0.3818 0.6433 0.7482 0.8410 1.0000 1.1335 1.2490

0.0 0.0 0.2047 0.3752 0.6431 0.7502 0.8439 1.0000 1.1249 1.2270

0.5 0.0 0.2701 0.4516 0.6968 0.7882 0.8673 1.0000 1.1099 1.2046

0.5 0.0 0.2704 0.4454 0.6975 0.7920 0.8719 1.0000 1.0981 1.1756

1.5 0.0 0.2823 0.4656 0.7074 0.7962 0.8726 1.0000 1.1050 1.1951

1.5 0.0 0.2822 0.4584 0.7075 0.7995 0.8770 1.0000 1.0934 1.1668

50. 0.0 0.2844 0.4681 0.7093 0.7976 0.8735 1.0000 1.1041 1.1934

50. 0.0 0.2844 0.4608 0.7093 0.8009 0.8779 1.0000 1.0926 1.1653
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Rej=Reri ¼ VjDj=xr
2
i [ 0:125; ð4:56Þ

a=x[ 0:125A ri=Dj
� �2

; ð4:57Þ

where the impingement radius ri is a characteristic length in Reri ¼ xr2i =m.
The jet domination regime arises also at coaxial impingement. However,

Eqs. (4.56) and (4.57) are inapplicable for ri = 0. Alternatively, replacing ri with
b (because the jets in [25] impinged near the outer radius of the disk), one can replace
Eq. (4.57) with a relation a/ω > 0.03125A(D/Dj)

2. Using Eq. (4.43), one can estimate
the parameter A in the experiments [12, 34] (where Dj/D = 0.09): A = 1.0–1.29.
The onset of the regime of impinging jet domination occurred at a/ω > 3.86–4. Thus,
Eq. (4.56) predicts the beginning of this regime fairly close to our suggestion
(a/ω > 1.5).

Table 4.19 Parameter χ, self-similar solution and present integral method, Pr = 0.71 [6, 50]

κ = a/ω n* = −2 n* = −1.5 n* = −1 n* = 0 n* = 0.5 n* = 1 n* = 2 n* = 3 n* = 4

0.0 0.0 0.2366 0.4330 0.7452 0.8732 0.9876 1.1856 1.3533 1.4990

0.0 0.0 0.2308 0.4276 0.7453 0.8753 0.9906 1.1857 1.3446 1.4766

0.5 0.0 0.3286 0.5513 0.8549 0.9687 1.0672 1.2329 1.3704 1.4889

2 0.5 0.0 0.3276 0.5421 0.8540 0.9717 1.0717 1.2326 1.3563 1.4546

1.5 0.0 0.3453 0.5721 0.8736 0.9848 1.0805 1.2405 1.3725 1.4857

1.5 0.0 0.3449 0.5630 0.8733 0.9885 1.0856 1.2404 1.3583 1.4510

50. 0.0 0.3481 0.5757 0.8768 0.9876 1.0829 1.2418 1.3728 1.4852

50. 0.0 0.3481 0.5668 0.8768 0.9916 1.0882 1.2418 1.3586 1.4504

Fig. 4.15 Geometric
arrangement, fluid flow and
heat transfer of a single
impinging round jet
perpendicular to and coaxial
with a rotating disk [6, 48]
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If the diameter Dj of the coaxial jet is significantly smaller than the disk diameter
D, the exact solution holds only near the stagnation point for r ≤ Dj/2. For these
conditions, Eq. (4.55) should be replaced with

NuDj ¼ K1�Re
1=2
j A1=2; Nub ¼ NuDjðb=DjÞ: ð4:58Þ

In experiments [12, 34], the ratio Dj=D ¼ 0:09 was constant, and the disk sur-
face in the stagnation region was practically isothermal (n* = 0). Using the defi-
nition of the parameter A, experimental data [12, 34] can be recalculated to find out
the parameter κ

j ¼ AVj

xDj
¼ A

Rej
Rex j

; ð4:59Þ

where Rex j ¼ Reu � b2=D2
j ¼ 0:25ReuðD=DjÞ2:

Equation (4.43) predicts the values of the parameter A equal to 1.29, 1.14, and
1.01 for hj/Dj = 2, 4, and 6, accordingly. As seen from Fig. 4.16, this provides a
good agreement of the simulations with experiments [12, 34] for the parameter K1*

at Rej = 24,700. For Rej = 6800, experiments contradict to the tendency of decrease
in K1* at larger values of hj/Dj. Value A = 1.12 independent of hj/Dj enables
attaining the best coincidence with the experimental data for Rej = 6800.

Integral method: fluid flow. A further application of the integral method for the
considered problem was performed in [47, 48, 50]. Integral Eqs. (2.21)–(2.25) for
vφ,∞ = 0 (or β = 0) were used. Velocity profiles were approximated as

vu= xrð Þ ¼ g; vr= xrð Þ ¼ 1� g�ð Þ tanu; ð4:60Þ

tanu� jð Þ= a� jð Þ ¼ T: ð4:61Þ
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Fig. 4.16 Effect of the parameter κ = a/ω on the constant K1� for Pr = 0.71 [6]. Experiments [12,
34]: 1—Rej = 24,700, Reb = 214,000, hj/Dj = 2, 4, and 6; 2—Rej = 6800, Reb = 396,000, hj/Dj = 2,
4, and 6; 3—Rej = 6800, Reb = 53,500, 107,000, 200,000, and 353,000, hj/Dj = 2; 4—Rej = 24,700,
Reb = 2000 and 396,000, hj/Dj = 2. Experiments [13, 52]: 5—n* = 0, various Rej and hj/Dj.
Predictions: 6—n* = 0; 7—n* = 1; 8—n* = −1; 9—n* = −0.5; 10—n* = 0.4
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Given Κ = 0, these velocity profiles reduce to

vr=ðxrÞ½ �j¼0 ¼ a0 1� g�ð ÞP ¼ f ; ð4:62Þ

vr=vr;1 ¼ 1� g�ð Þjþ a� jð Þf =a0: ð4:63Þ

Here profiles of g, g*, f, tan φ, and Π depend only on the variable ξ.
This yields the expressions for the integral parameters

d
�
r ¼ A4 � A1X; d

��
r ¼ B7 þ B8X � B1X

2; ð4:64Þ

d
��
u r ¼ j B6 þ D1Xð Þ ¼ aD1 þ j B6 � D1ð Þ;

Z1
0

v2udn ¼ x rð Þ2C1; ð4:65Þ

A4 ¼
Z1
0

g� dn; B6 ¼
Z1
0

1� g�ð Þg dn; B7 ¼
Z1
0

1� g�ð Þg� dn; ð4:66Þ

B8 ¼ �A1 þ 2D5; D5 ¼ 1
a0

Z1
0

f g� dn; X ¼ a=j� 1: ð4:67Þ

whereas constants A1, B1, C1, D1 are described by Eqs. (4.16)–(4.18). For both flow
regimes, Eqs. (4.60)–(4.67) hold. For laminar flow, g*, tan φ, and Π are unknown;
functions g ¼ G0 ¼ Ga¼0 and f ¼ F0 ¼ Fa¼0 are taken from the exact solution
for a single disk (subscript “0”, κ = 0); α = tan φw; α0 = 0.8284. For turbulent
flow, Eq. (4.19) for velocity components with g ¼ g� are valid; constants

A2, A3 ¼ 1� A1 � A2, B2, B3, B4 ¼ �A1 þ 2D1, B5 ¼
R 1
0 1� gð Þgdn, D2, D3,

and D4 are seen in Sects. 2.4 and 2.5; B8 ≡ B4, B6 ≡ B7 ≡ B4.

The constants (4.66), (4.67) are the same for a particular flow regime. The
integral parameters d

�
r , d

��
r , and d

��
u r depend solely on the variable X.

For laminar flow, functions f and g (and g*), like in Sect. 4.1.2, were integrated
numerically with respect to the self-similar coordinate ζ with an accuracy of four
significant digits. Thus, Eq. (4.20) for laminar flow are valid accompanied with
relations for the other constants, which do not depend on κ

A4 ¼ a4=fd0; B6 ¼ b6=fd0; B7 ¼ b7=fd0; B8 ¼ b8=fd0; D5 ¼ d5=fd0;

ð4:68Þ

a4 ¼
Zfd0
0

g� df0; b6 ¼
Zfd0
0

1� g�ð Þg df0; b7 ¼
Zfd0
0

1� g�ð Þg�df0: ð4:69Þ
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b8 ¼ �a1 þ 2d5; d5 ¼ 1
a0

Zfd0
0

f g�df0: ð4:70Þ

In accordance with Table 4.6 for β = 0, the constants a1, b1, c1, and d1 take the
values

a1 ¼ 0:5338; b1 ¼ 0:07887; c1 ¼ 0:6726; d1 ¼ 0:18587: ð4:71Þ

The constants (4.71) conform with earlier calculations [2]. The shear stresses are
given by Eqs. (4.21)–(4.23) accompanied with the following relations:

swr ¼ lvr;1
d

dvr
dn

	 

n¼0

;
dvr
dn

	 

n¼0

¼ � dg�
dn

	 

n¼0

þ X
a

df
dn

	 

n¼0

;

df
dn

	 

n¼0

¼ df
dn

	 

n¼0

�nd0;
dg�
dn

	 

n¼0

¼ dg�
dn0

	 

n¼0

�nd0:

Values dg�=df0ð Þf¼0 and df =df0ð Þf¼0 are given by Eqs. (3.1) (single disk).
Assuming α = const., δ = const., and X = const., Equations (2.21) and (2.22) can

be reduced to

a2d 3 B7 þ B8X � B1X
2� �þ A4 � A1X

� �þ dx2C1

¼ ma
d

� dg�
d
n

	 

n¼0

þ X
a0

df
dn

	 

n¼0

" #
;

4ad B6 þ D1X½ � ¼ � m
d

dg
dn

	 

n¼0

:

ð4:72Þ

The analysis of the exact solution shows that dg�=dnð Þn¼0¼ dg=dnð Þn¼0. In view
of this, Eq. (4.72) transform to a quadratic equation, whose solution is

X ¼ Xs1 þ Xs2 þ Xs3=j
2

� �1=2
; ð4:73Þ

a ¼ Xs1 þ 1ð Þjþ Xs2j
2 þ Xs3

� �1=2
; ð4:74Þ

Xs1 ¼ �h2= 2h3ð Þ; Xs2 ¼ X2
s1 � h4=h3; Xs3 ¼ �c1=h3: ð4:75Þ

h3 ¼ �3b1 � 4d1; h2 ¼ 3b8 � a1 � 4b6 � 4d1; ð4:76Þ

h1 ¼ h4 þ c1=j
2; h4 ¼ 3b7 þ a4 � 4b6: ð4:77Þ

Matching Eqs. (4.73)–(4.75) with the exact solution gives the unknown con-
stants. As constants Xs3 and h3 result from the free disk solution, Eq. (4.74)
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automatically agrees with the conditions for κ = 0. An assumption that Eqs. (4.73)–
(4.75) must merge with the self-similar solution at κ = 4000 (a nonrotating disk) and
κ = 1.65 (empirical value), yields

h2 ¼ �2:79818; h3 ¼ �0:98009; h4 ¼ 0:66556; ð4:78Þ

Xs1 ¼ �1:42751; Xs2 ¼ 2:71687; Xs3 ¼ 0:68625: ð4:79Þ

Rearranging Eq. (4.72) for the function g and splicing it with the exact solution
gives

swu
swu0

¼ d0
d
¼ aþ j b6=d1 � 1ð Þ

a0

� �1=2
: ð4:80Þ

b6 ¼ 0:42776; b6=d1 ¼ 2:30137: ð4:81Þ

Equation (4.64) for d
�
r at κ = 4000 enables finding the constant a4.

Equations (4.69), (4.70), and (4.77) yield the rest of the constants b7, b8, and d5

a4 ¼ d
�
rf d0=dð Þ 1þ jð Þ�1=2; where d

�
rf ¼

Z1
0

1� F
1þ j
j

	 

df: ð4:82Þ

a4 ¼ 1:11052; b7 ¼ 0:42202; b8 ¼ 0:063373; d5 ¼ 0:29859: ð4:83Þ

Table 4.20 contains numerical values of fluid flow parameters computed by the
self-similar solution and the integral method, which agree with each other very well.

Table 4.20 Hydrodynamic parameters of the problem by the data of the exact solution and the
integral method [6]

κ = a/ω d
�
rf , exact d

�
rf d

��
rf , exact d

��
rf

α, exact α τwφ/τwφ0, exact τwφ/τwφ0

0.2 0.0290 −0.4896 −0.1604 −0.1064 0.8172 0.8061 1.1124 1.1346

0.3 0.4849 0.1461 0.2281 0.2652 0.8452 0.8365 1.1947 1.2170

0.4 0.6491 0.4171 0.3207 0.3467 0.8939 0.8877 1.2834 1.3038

0.5 0.7150 0.5499 0.3459 0.3646 0.9591 0.9548 1.3741 1.3921

1.0 0.7399 0.6931 0.3340 0.3394 1.4180 1.4172 1.8022 1.8116

2.0 0.6821 0.6708 0.2999 0.3012 2.5440 2.5441 2.4888 2.4926

6.0 0.6130 0.6119 0.2672 0.2673 7.3593 7.3593 4.2781 4.2790

10 0.5962 0.5958 0.2597 0.2597 12.229 12.229 5.5197 5.5201

50 0.5746 0.5745 0.2501 0.2501 61.043 61.033 12.338 12.338

100. 0.5717 0.5717 0.2489 0.2489 122.08 122.06 17.449 17.449

1000 0.5692 0.5692 0.2478 0.2478 1220.8 1220.8 54.178 54.178

4000 0.5690 0.5690 0.2477 0.2477 4883.1 4883.1 110.36 110.36
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The maximal deviation between both solutions is 1.7 % and diminishes with
increasing κ.

Integral method: heat transfer. The thermal boundary layer Eq. (2.23) together
with the rewritten Eq. (2.22) can be transformed similar to Eqs. (3.42), (3.43). This
results in

d
dr

r4dd
��
u r

h i
¼ Cf

2
r4ð1þ a2Þ1=2; ð4:84Þ

d
dr

r2dd
��
T Tw � T1ð Þ

h i
¼ v

Cf

2
r2ð1þ a2Þ1=2 Tw � T1ð Þ: ð4:85Þ

Equations (4.84) and (4.85), subject to the condition (2.30), can be rearranged as

2þ mþ n�ð Þ d
��
T

aA1
¼ v 4þ mð Þ d

��
u r

aA1
; ð4:86Þ

2þ mþ n�ð Þ d
��
T

aA1
¼ v 4þ mð ÞKV0 1þ j

a
b6
d1

� 1
	 
� �

: ð4:87Þ

In doing this, Eqs. (2.77)–(2.82) and (4.64)–(4.72) were involved. Here KV0 ¼
0:3482 (Eq. (3.44)) for the laminar regime. In the turbulent regime, KV0 ¼
1� D2=A1 (Eq. (3.37)), while B5=D1 (where as B5 ¼ C2=2 ¼ D1 þ D3) is
employed in place of b6=d1.

The model relation for d
��
T in laminar flow (where n = 1) is based on Eq. (4.49)

developed for turbulent flow in Sect. 4.2.2

d
��
T

aA1
¼ 1

b2
� vPrnp 1� KV0ð Þ b1

b2
þ j

a
e1v

�1 þ e2vþ e3
� �

: ð4:88Þ

Here the coefficient b1 (not to confuse with Eq. (4.71)), b2, and np are presented
by Eqs. (3.54)–(3.56). Hence Eq. (4.87) for the laminar flow regime results in

1
b2

� vPrnp 1� KV0ð Þ b1
b2

þ j
a

e1v
�1 þ e2vþ e3

� �
¼ v

4
2þ n�

KV0 1þ j
a

b6
d1

� 1
	 
� �

:

ð4:89Þ

The constants e1, e2, and e3 are depending on the Prandtl number only. Splicing
the parameter χ in Eq. (4.89) and the self-similar solution at the points n* = −1.5; 0
and 2 yields values e1, e2, and e3 listed in Table 4.21. Parameter χ by the self-similar
solution is given as
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v ¼ �K1 1þ jð ÞPr dG=dfð Þf¼0

h i�1
: ð4:90Þ

Having obtained the coefficients e1, e2, and e3, one can rewrite Eq. (4.89) as a
quadratic equation, whose solution has the following form:

v ¼ ð�f2 � D1=2Þ=ð2f1Þ; D ¼ f 22 � 4f1f3; ð4:91Þ

where

f1 ¼ j
a
e2 � 4

2þ n�
KV0 1þ j

a
b6
d1

� 1
	 
� �

� Prnp 1� KV0ð Þ b1
b2

;

f2 ¼ 1
b2

þ j
a
e3; f3 ¼ j

a
e1:

Having calculated the parameter χ, one can estimate the constants K1 and K1*

with the help of the expressions

K1 ¼ �v
swu
swu0

dg
df0

	 

f¼0

1þ jð Þ�1=2Pr; ð4:92Þ

K1� ¼ �v
swu
swu0

dg
df0

	 

f¼0

j�1=2Pr; ð4:93Þ

which take into account Eqs. (3.1) and (4.80).
As seen from Tables 4.18 and 4.19, the maximal deviation of the parameter χ,

predicted by Eq. (4.91), as compared to the self-similar solution is less than 2.4 %.
This estimate is valid also for K1* for Pr = 0.1 − 1 (see Tables 4.17 and 4.22).

Values of the parameter K1* from the self-similar solution and the integral
method for a nonrotating disk (κ ≥ 50) are listed in Table 4.23. In particular, for
Pr = 0.71

K1� ¼ K1 ¼ 0:763v; v ¼ �1:8205� 3:8863þ 1:9253=ðn� þ 2Þ½ � 1=2
�1:7102þ 5:7551=ðn� þ 2Þ : ð4:94Þ

Table 4.21 Values of the
coefficients e1, e2, and e3
[6, 47, 48, 50]

Pr e1 e2 e3
1 0.1426 −0.7227 1.0333

0.72 0.2007 −0.7495 1.3556

0.71 0.2042 −0.7497 1.3696

0.5 0.2957 −0.7733 1.8104

0.1 1.4528 −0.8052 4.7291
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Apparently, the deviations of the data in Table 4.23 predicted by the integral
method are less than 2.4 % for any value of Pr.

To conclude, in this section an approximate analytical solution by means of the
present integral method was derived, whose maximal deviation with respect to the
self-similar solution are less than 2.4 % for values of the Prandtl number in the
range Pr = 0.1–1.

4.3 Forced Outward Flow Between Corotating Disks

4.3.1 Ekman Layers

If fluid rotates with a velocity close to that of the disk, i.e., β → 1 and vr,∞ = 0,
Ekman layers emerge on the disk, where the tangential velocity ωr is by an order of

Table 4.22 Values of K1*, integral method for Pr = 0.71 (the first line represents K1) [6]

κ = a/ω n* = −2 n* = −1.5 n* = −1 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

0.0 0.0 0.1009 0.187 0.3259 0.4332 0.5185 0.5880 0.6457

0.1 0.0 0.3957 0.6933 1.1562 1.5007 1.7671 1.9793 2.1524

0.2 0.0 0.3266 0.5569 0.9055 1.1582 1.3499 1.5004 1.6217

0.3 0.0 0.3015 0.5063 0.8106 1.0273 1.1897 1.3159 1.4169

0.5 0.0 0.2821 0.4667 0.7352 0.9226 1.0611 1.1677 1.2523

1.0 0.0 0.2704 0.4426 0.6887 0.8578 0.9814 1.0757 1.1500

1.5 0.0 0.2678 0.4371 0.6781 0.8430 0.9632 1.0547 1.1268

2.0 0.0 0.2669 0.4351 0.6742 0.8376 0.9565 1.0470 1.1181

10. 0.0 0.2657 0.4326 0.6692 0.8306 0.9479 1.0371 1.1071

50. 0.0 0.2656 0.4325 0.6690 0.8303 0.9475 1.0366 1.1067

Table 4.23 Values of K1* the data of the exact solution (boldface) and the integral method for
different values of Pr and κ ≥ 50 for a stationary disk [6]

Pr n* = −2 n* = −1.5 n* = −1 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

1.0 0.0 0.3057 0.5031 0.7622 0.9387 1.0747 1.1866 1.2825
0.0 0.3056 0.4952 0.7623 0.9434 1.0747 1.1742 1.2523

0.72 0.0 0.2671 0.4417 0.6726 0.8306 0.9525 1.0529 1.139
0.0 0.2671 0.4349 0.6726 0.8347 0.9524 1.0419 1.1123

0.5 0.0 0.2295 0.3812 0.5839 0.7235 0.8314 0.9203 0.9967
0.0 0.2295 0.3755 0.5839 0.7269 0.8314 0.9110 0.9737

0.1 0.0 0.1124 0.1911 0.3015 0.3802 0.4421 0.4936 0.5381
0.0 0.1124 0.1886 0.3015 0.3819 0.4420 0.4888 0.5262
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magnitude larger than the velocities vr, vz, and (vφ − ωr) [2, 3]. The boundary layer
equations are simplified to the following form:

�2qxðvu � vu;1Þ ¼ @sr
@z

; 2qxvr ¼ @su
@z

; ð4:95Þ

2xqd
Z1
0

vu � vu;1
� �

dn ¼ swr; 2xqd
Z1
0

vrdn ¼ �swu: ð4:96Þ

A solution of Eqs. (4.95) and (4.96) for laminar flow is [3]

vr ¼ xrð1� bÞ expð�fÞ sinðfÞ; vu � vu;1 ¼ xrð1� bÞ expð�fÞ cosðfÞ;
ð4:97Þ

_md=ðlrÞ ¼ pð1� bÞRe1=2x ; d=r ¼ pRe1=2x ; ð4:98Þ

swr=ðqx2r2Þ ¼ ð1� bÞRe�1=2
x ; aE ¼ 0; f ¼ z

ffiffiffiffiffiffiffiffi
x=m

p
: ð4:99Þ

For turbulent Ekman layers [3], obtained with the help of an integral method a
solution that looks similar to Eqs. (2.77)–(2.81), (2.85), and (5.2), whose coeffi-
cients αE = 0.553, γ*E = 0.0983, and e�mE ¼ 0:1395 coincide with the data obtained
by Eqs. (5.1) at N = 0 and β = 1.

The author of [10] obtained an analogous solution for the turbulent Ekman layers
with the help of the present integral method, which looks as

aE ¼ A�1
1 n=ðnþ 1Þ� � 1=2

; ð4:100Þ

swr


q ¼ 2n=ðnþ 1Þ½ �ð1� bÞx2rd; ð4:101Þ

swu


q ¼ 2A1aEð1� bÞx2rd: ð4:102Þ

The functions δ/r, _md

ðqxr3Þ and CM for the turbulent Ekman layers obtained in

[10] also follow Eqs. (2.77)–(2.81), (2.84)–(2.86) for N = 0, where H9 is replaced
by 2A1αE.

The constants αE, γE, and e�mE by Eqs. (4.100)–(4.102) for the turbulent Ekman
layers (see Table 4.24) have the same values as those for N = 0 and β = 1 (Sect. 4.1).

Table 4.24 Constants αE, γE,
and e�mE for Ekman layers
[6, 10]

Coefficient n = 1/7 n = 1/8 n = 1/9 n = 1/10

αE 0.6936 0.6442 0.604 0.5705

γE 0.1224 0.0978 0.0807 0.0677

e�mE 0.1386 0.106 0.084 0.0678
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The value e�mE ¼ 0:1386 at n = 1/7 listed in Table 4.24 agrees well with e�mE ¼
0:1395 reported in [2], although the constants αE from both sources are different by
25 %.

The Ekman layer model yields a noticeably simpler solution than that resulting
from the complete boundary layer model at N = 0 and β = const. In spite of this, the
Ekman layer model enables predicting fluid flow parameters over the range
0.5 ≤ β ≤ 2, whose accuracy suffices practical needs. It is important that the radial
variation β(r) can be arbitrary.

4.3.2 Flow Structure in Forced Outward Flow Between
Corotating Disks

End walls of gas turbine rotors are often cooled using secondary air [1–4, 31,
53–69]. Compressed cooling air is delivered in a gap between two rotating disks,
moves in the direction of larger radii, and afterwards leaves the gap (Figs. 4.17 and
4.18).

We consider here cases of the radial/axial inlet into the gap with nonmerging
boundary layers over the disks, and arbitrary distributions of the surface tempera-
ture Tw.

For the purely radial inlet into the cavity and swirl parameters less than unity
(βi ≤ 1), the flow pattern according to experimental results of [3] looks as shown in
Fig. 4.17. Starting at the radial position ri and up to a location re, centrifugal radial
flow occupies the entire gap, where boundary layers emerge on the walls and
entrain air from the core flow (so-called source region).

Fig. 4.17 Structure of
outward flow in a rotating
cavity for β ≤ 1 and a uniform
radial inlet [3]. 1—Source
region; 2—entraining
boundary layer; 3—Ekman-
type layer; 4—internal core
(no radial flow); 5—region of
the outlet. Subscript “i”: inlet
into the cavity
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Flow in the source region develops as a free vortex

v/;1 ¼ v/;1r
� �

i=r: ð4:103Þ

Flow fed into the cavity axially (Fig. 4.18) impinges first onto a downstream disk
and moves close to it toward the larger radii. However, at the radial coordinate
r = re, a part of air is released to the source region and entrained by the upstream
disk’s boundary layer.

At r > re, air is fully entrained into the Ekman-type layers [3].
Here the mass flow rate _md ¼ 0:5 _m ¼ const: both for the radial and axial inlets

into the cavity [3]. Rotation of disks causes the swirl parameter to increase in the
core flow.

4.3.3 Radial Variation of the Swirl Parameter

The numerical version of the present integral method was involved in simulations
described below. Equation (2.72) and/or Eq. (2.74) were solved using the Runge–
Kutta method [6, 70, 71]. The local swirl parameter β(r) was validated in Fig. 4.19.

In the unshrouded cavity (Fig. 4.19), experiments [55] revealed air ingress from
the atmosphere near the center plane of the gap (z = s/2), which causes the mass
flow rate in the boundary layers near the periphery to increase with the coordinate
r (instead of being constant as in the Ekman-type layers). This entails a decrease in
the swirl parameter β not modeled by the present integral method. Curve 4 for
Cw ¼ _m=ðlbÞ ¼ 2963 and 6173 correlates fairly well with the experiments [55] up
to the point of the maximum of β. Lines A for Cw = 1111 exhibit a reduced

Fig. 4.18 Schematic of
streamlines in a rotating
cavity for β ≤ 1 and axial inlet
[3]. 1—Source region;
2—entraining boundary layer;
3—Ekman-type layer;
4—internal core (no radial
flow); 5—region of the outlet;
6—upstream disk;
7—downstream disk
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accuracy, because the flow near the radial location r/ri = 2.1 is transitional, which is
not properly captured by the present integral method [55].

A perforated shroud at the periphery prevents the air ingress from the atmo-
sphere. Curves 4 and 5 in Fig. 4.20 obtained with the present integral method agree
well with the experiments [2]. With an increase in the Reynolds number ReV� or r/b,
turbulence becomes fully developed, which improves the agreement with the
experiments. Curves for n = 1/7 and n = 1/9 lie close to each other.

0.0
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r/r
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1.0 1.5 2.0 2.5 3.0 3.5

Fig. 4.19 Local swirl parameter β in the cavity open to atmosphere at Reφ = 4.97 × 105, βi = 1, s/
b = 0.068, ri/b = 0.285, and b = 0.1 m [6]. 1–3—Experiments [55]; 4—present integral method
[71], Eqs. (2.72) and (2.74), n = 1/7; 5—“erroneous” Eq. (4.106) [55]; 6—corrected Eq. (4.106);
7—Eq. (4.105) [4]. Lines A and experiments 1—Cw = 1111; B and 2—2963; C and 3—6173
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Fig. 4.20 Local swirl parameter β in a cavity with a perforated shroud at Cw = 2500, βi = 1,
s/b = 0.1, and ri/b = 0.1 [6]. 1–3—Experiments [3]. Present integral method: 4—n = 1/7 [71];
5—1/9. Lines 6—Ekman-type layer model (4.104), n = 1/7; lines 7—Eq. (4.105) [4]. Lines A and
experiments 1—Reφ = 1.1 × 106; B and 2—6.177 × 105; C and 3—5.47 × 105
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The Ekman layer model yields a relation for the mass flow rate through the
boundary layer _md and, given _md= _m ¼ 0:5, for the swirl parameter β

_md=ðl rÞ ¼ e�m sgn 1� bð Þ 1� bj j2ðnþ1Þ=ð3nþ1ÞReðnþ1Þ=ð3nþ1Þ
x :

b ¼ 1� ebY
�0:5ð5nþ1Þ=ðnþ1Þ;

ð4:104Þ

where Y ¼ xk�ð3nþ1Þ=ð5nþ3Þ
T , kT ¼ CwRe�ðnþ1Þ=ð3nþ1Þ

u . The coefficient eb ¼
ð0:5
e�mÞ0:5ð2nþ1Þ=ðnþ1Þ for n = 1/7; 1/8; 1/9; 1/10 takes the values εβ = 2.23; 2.581;
2.916; 3.256, respectively. The authors [2] obtained that εβ = 2.21 for n = 1/7.
Curves of β calculated by Eq. (4.104) for n = 1/7 and depicted in Fig. 4.20 (curve 6)
noticeably deviate from the experimental data at the boundary between the source
region and the Ekman-type layers. However, curve 6 for larger x-coordinates
merges with the curves predicted by the integral method.

In [4], the differential equation for β has been derived

db
dx

¼ � 2b
x
þ 2Ax1:6 1� bð Þ1:2; ð4:105Þ

where A ¼ 0:0274 � 2p � Re0:8u =Cw. In [55], another differential equation has been
proposed

db
dx

¼ � 2b
x
þ 0:6c1 1� bð Þc2 c3 1� bð Þ þ b½ �Reðnþ1Þ=ð3nþ1Þ

u x2ðnþ1Þ=ð3nþ1Þ

0:5Cwb=ri � c1 1� bð Þc2Reðnþ1Þ=ð3nþ1Þ
u xð5nþ3Þ=ð3nþ1Þ ; ð4:106Þ

where c1 ¼ 0:2054pe�0:175=n, c2 ¼ 0:753n�0:424, c3 ¼ 1:543n0:625, n = 1/5.
Erroneously, the first term 0:5Cwb=r on the right-hand side of Eq. (4.106) in [55]
was multiplied by ρ.

Close to the end of the Ekman-type layers region (curve 7 in Fig. 4.20), and in
the initial part of the source region (curve 7 in Fig. 4.19), Eq. (4.105) agrees well
with the experimental data. Between these two regions, deviations of Eq. (4.105)
are significant.

Equation (4.106) agrees well with the original experiments [55] (curves 5, 6 in
Fig. 4.19). However, as shown in [6], Eq. (4.106) diverts noticeably from the data
[3] for the well-developed Ekman-type layers. Thus, both Eqs. (4.105) and (4.106)
are far less accurate and universal than the present integral method [6].

4.3.4 Local Nusselt Numbers

In the experiments [59] for βi = 1, Tw = const. and an axial inlet into the cavity, solely
the source region existed. Measured local Nusselt numbers (data 1 and empirical
curve 2 in Figs. 4.11 and 6.9) were approximated by the empirical equations
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Nu ¼ 0:024Re0:8x Pr0:6VM; ð4:107Þ

VM ¼ 2:461þ 0:128�r2 þ 0:122�r


Ni þ 0:02N�2

i

� 0:858�r � 0:392=Ni; �r ¼ 1:2�2
ð4:108Þ

VM ¼ 1:08N0:07
i ; �r ¼ 2�3: ð4:109Þ

Here Ni = vr,i/(ωri) = 0.1667–0.5, �r ¼ r=ri, Rex ¼ 6� 104�106, Tw = const.
Experiments [59] surpass Eq. (4.107) (see curve 3 in Fig. 4.21) by 10–20 %,

because heaters glued over the disk surface caused a turbulization effect [59].
For Reω ≥ 1.6 × 105, computations by the present integral method practically

merge with curve 3 by Eq. (4.107) in Fig. 4.21. A proper selection of the initial
value αi, as a boundary condition of the present integral method, enables to account
for the heat transfer enhancement near the axial inlet into the cavity (see Fig. 4.21),
while Eqs. (4.108) and (4.109) do not provide such an opportunity and also fail to
perform for Ni = 0.1667 [6].

In the experimental investigations for βi = 0 [65, 66], the outer core temperature
is T∞ = Ti = const. in the region of the entraining boundary layers. The cold air
from the flow’s core is not entrained into the Ekman-type layers, which start to
release heat back to the flow’s core. As a result, the temperature T∞ increases and
becomes itself an unknown.

Therefore, the Nusselt number is redefined as Nu ¼ qwr=½kðTw � TiÞ� using a
known temperature Ti instead of the unknown T∞, which brings [3]
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Fig. 4.21 Variation of the local Nusselt numbers versus Reω for βi = 1, Ni = 0.3333, ri/b = 0.245,
s/ri = 0.18, Tw = const., and Reωi = 6 × 104 [6]. 1, 2—Experiments and their approximation [59];
3—Eq. (4.107) [59]; 4—present integral method, upper curve for αi = 6.5, lower curve for αi = 4.4
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Nu ¼ St ReV�rPr
Tw � T1
Tw � Ti

; ð4:110Þ

where ReV�r ¼ V�r=m. Experiments [65, 66] and simulations using the present
integral method (see Fig. 4.22) demonstrate that in the source region, given T∞ = Ti,
the Nu values grow up like in Fig. 4.21. In the Ekman-type layers, the temperature
T∞ (predicted by Eq. (2.75)) increases, while the last factor in Eq. (4.110) decreases
together with the Nusselt number. Predictions at Cw = 2800 are consistent with
experiments [65, 66], while at Cw = 13,000, when the near-inlet region is dominated
by an impinging jet, noticeable differences are observed (like in [2, 65]).

In Fig. 4.22, a relation vr,∞ = (vr,∞r)i/r was used in the beginning of the source
region followed with a relation vr,∞ = 0 over the remaining length. Splicing took
place at the coordinate, where a condition of _md ¼ k _m was attained with alterna-
tively k = 0.03, 0.25, or 0.5. Curves for the Nusselt number in Fig. 4.22 predicted
for different values of the coefficient k are nevertheless close to each other for the
same values of Cw.

4.3.5 Effect of the Radial Distribution of the Disk
Temperature

To employ experimental distributions of thewall temperature Tw(r) obtained in [3, 65]
for an upstream disk, they were approximated by [72] by a seventh-order polynomial
(Fig. 4.23). Experiments [3, 65] were performed for βi = 0, Reφ = (3.2–3.3) × 106,
ri/b = 0.103, s/b = 0.138, b = 0.428 m, Cw = 7000.
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Fig. 4.22 Radial variation of the Nusselt numbers for Reφ = 1.9 × 106, βi = 0, ri/b = 0.103, s/
b = 0.138, b = 0.428 m, dTw/dr > 0 [6, 70]. 1, 2—Experiments [65, 66]. Present integral method,
n = 1/7: 3—k = 0.5; 4—0.25; 5—0.03. Lines A and experiments 1—Cw = 13,000; B and 2—2800
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Center plane temperature T∞ and Nusselt numbers for positive, approximately
constant and negative distributions of dTw/dr are depicted in Figs. 4.23 and 4.24.

Most of the simulations were performed for n = 1/10 in agreement with high Reφ
numbers measured in experiments. A larger value of n = 1/7 causes a larger
deviation from the experiments (see Fig. 4.24). Temperature profiles are less sen-
sitive to the effect of Reφ; this entailed selection of the value nT = 1/7 [72].

Both experiments and computations indicate that at dTw/dr ≈ 0 and dTw/dr < 0
the Nusselt numbers are negative in the area of larger radii. This arises from the fast
drop of the wall temperature Tw and the simultaneous rise of the center plane
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Fig. 4.23 Wall temperature Tw/Ti: solid curves 1–3—are experiments [65] approximated in [70].
Center plane temperature T∞/Ti: curves 4–6—computed by the present integral method, nT = 1/7
and 1/10 [6, 70]. 1, 4—dTw/dr > 0; 2, 5—dTw/dr ≈ 0; 3, 6—dTw/dr < 0. A—n = 1/7; B—n = 1/10
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Fig. 4.24 Nusselt numbers in a cavity (Reφ = 3.2 × 106 for cases 1, 4; Reφ = 3.3 × 106 for cases 2, 3,
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temperature T∞, which leads to a region where T∞ is higher than Tw (Fig. 4.23). As
a result, the sign of the heat flux on the disk surface changes: air heats up the disk
rather than the reverse.

To conclude, it was demonstrated in this section that the present integral method
provides a good match of the simulations with known experimental data [3, 59, 65,
66] for rotation cavities. In comparison with the integral method developed in [3],
the present integral method possesses higher accuracy at the expense of more
accurate approximation of the radial velocity and temperature profiles in the
boundary layer, as well as the possibility to vary the power exponents in these
profiles.
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Chapter 5
Heat and Mass Transfer in Rotating
Cone-and-Disk Systems for Laminar
Flows

5.1 General Characterization of the Problem

In the past, non-rotating conical diffusers (Fig. 5.1) were modeled using simplified
Navier–Stokes equations without flow pre-swirl at the inlet [1]. Flow pre-swirl
effects on the heat transfer were for the first time studied by the author of this
work [2].

Cone-and-plate devices, where flow develops in a gap with small angles
γ = 1…0.5° between a rotating cone and a stationary plate (Fig. 5.2), are used in
viscosimetry [3–5]. Medicine employs such devices for nurturing endothelial cells
that grow as a monolayer on the non-rotating plate, whereas a cone rotates slowly to
renew the feeding fluid and simultaneously not to damage the cells [6–8].

Flow regimes in cone-and-plate devices were studied experimentally [8], sim-
ulated using CFD codes [3, 8] and using perturbation techniques [5–7]. Self-similar
Navier–Stokes and energy equations were derived and solved by the author of this
work [2, 9–11].

Convective heat transfer in cone-and-disk configurations, with one of them
rotating or both co-rotating/contra-rotating, along with a stationary conical diffuser,
depends strongly on the radial temperature distribution on the disk [2, 9, 10].
Simulations were done mostly for air (Pr = 0.71); new phenomena in heat and mass
transfer for other values of the Prandtl and Schmidt numbers were first investigated
by the author in [11].

For the small angle γ, the Navier–Stokes Eqs. (2.1)–(2.3) can be simplified [5–7]
for the considered laminar flow
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¼ 0: ð5:3Þ

A perturbation solution of Eqs. (5.1)–(5.3) by the method of expansion in the
small parameter Re ¼ ReXg21=12 (where g1 ¼ h=r) yields [5]

vr=ðXrÞ ¼ Reð1:8~z2 � ~z4 � 0:8~zÞ; ð5:4Þ

vu
�ðXrÞ ¼ ~zþ Re2ð�83~zþ 70~z4 þ 63~z5 � 50~z7Þ=175; ð5:5Þ

vz=ðXrÞ ¼ Reg1ð~z2 � ~z3Þ: ð5:6Þ

Based on Eqs. (5.4) and (5.5), one can derive expressions for the flow swirl
angle on the surface of a stationary disk φw, whereas a cone is rotating

uw ¼ arctan[0:8Re
�ð1� 83Re2=175Þ� for Re ¼ 0� 1:452; ð5:7Þ

uw ¼ arctanð0:8ReÞ for Re � 1: ð5:8Þ

Fig. 5.2 Schematic of fluid
flow in a gap with a rotating
cone and a stationary disk [9]

Fig. 5.1 Schematic of
swirling flow in a stationary
conical diffuser [9]
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Equation (5.7) agrees well with measurements [5] and Eq. (5.8) just for Re ≤ 0.5
(Fig. 5.3). Equation (5.8) that formally holds just for Re � 1 correlates nevertheless
with the measurements up to Re = 2. Authors [5] deduced only Eq. (5.8), whereas
Eq. (5.7) automatically stemming from Eqs. (5.4) and (5.5) was ignored in [5]. At
Re = 1.452, Eq. (5.7) predicts the value φw = 90°, whereas the expression in
brackets of the function arctan tends effectively to infinity; this contradicts to the
physics of the problem.

A series expansion in the small parameter Re, with up to 70 terms, were used
also in the works [6, 7] to solve Eqs. (5.1)–(5.3). However, the parameter φw
predicted by the authors [6, 7] deviated from experiments [5] at Re = 0.5–1 more
noticeably than Eq. (5.8). In addition, the parameter φw predicted in [6, 7] at
Re = 1.2928 exhibits an asymptotical trend to infinity contradictive to the physics of
the problem.

This chapter summarizes results of simulations of convective heat transfer in the
geometries “stationary conical diffuser” (Fig. 5.1) and “rotating cone-and-disk”
without initial flow swirl (Fig. 5.2). Such pioneering studies based on full
self-similar forms of the Navier–Stokes equations together with the thermal
boundary layer equation have been for the first time performed by the author of the
present work [2, 9–11].

5.2 Self-similar Navier–Stokes and Energy Equations

Considering a steady-state axisymmetric laminar flow and heat transfer, we will
solve the Navier–Stokes Eqs. (2.1)–(2.3) and the reduced Eqs. (5.1)–(5.3) together
with the energy Eq. (2.12) for laminar flow. For the configurations “rotating
cone-and-disk” without initial swirl, the boundary conditions are given by
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Fig. 5.3 Flow swirl angle on the surface of a stationary disk with a rotating cone [9].
Computations: 1—Eq. (5.7); 2—Eq. (5.8) [5]; 3—self-similar Eqs. (5.19)–(5.22) [10];
4—self-similar Eqs. (5.24)–(5.26) [10]. Data 5—experiments [5]
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z ¼ 0: vr ¼ 0; vz ¼ 0; vu ¼ xr; Tw � T1 ¼ c0r
n� ; ð5:9Þ

z ¼ h: vr ¼ 0; vz ¼ 0; vu ¼ Xr; T ¼ T1: ð5:10Þ

For the geometry “stationary conical diffuser,” the boundary conditions are
given by

z ¼ 0: vr ¼ vu ¼ vz ¼ 0; Tw � T1 ¼ c0r
n� ; ð5:11Þ

z ¼ z1 ¼ h=2: vr ¼ vr1; vu ¼ vu1; dvr=dz ¼ 0; T ¼ T1: ð5:12Þ

Here, c0 and n* are the constants, while the conditions at z ¼ z1 ¼ h=2 are
denoted with a subscript “1.” We will study convective heat transfer of a disk (but
not a cone) under the wall boundary conditions (5.9) and (5.11) that match with
Eq. (2.30) for a single disk.

The exponent n* in Eqs. (5.9) and (5.11) takes negative, zero, or positive values
−2 ≤ n* ≤ 4. Cone heat/mass transfer is unimportant for the current study; therefore,
the temperature T∞ and the concentration C∞ on the surface of the cone are
assumed to be constant and equal to those of the fluid at infinity. In case of
convective diffusion in bioengineering applications, the boundary concentration on
the plate/disk Cw is lower than that on the cone/infinity C∞, because endothelial
cells digest feeding culture from the fluid.

The boundary layer equation for the temperature is used instead of the full
energy equation; this model assumption is justified above in Chaps. 2–4.

Self-similar variables and functions enable simplifying partial differential
Eqs. (2.1)–(2.3), (5.1)–(5.3) and (2.12) and translating them to ordinary non-linear
differential equations to be solved numerically with the help of the software like
Mathcad [1, 12–17].

Self-similar variables and functions can be derived with the help of group theory
[2, 9, 10]. Let us enter a linear transformation of differential equations

r ¼ Aa1r; z ¼ Aa2z; vr ¼ Aa3vr;

vu ¼ Aa4vu; vz ¼ Aa5vz; p ¼ Aa6p;
ð5:13Þ

with αk (k = 1, …, 6) and the parameter of transformation A being constants [12].
Transformations (5.13) are substituted into Eqs. (2.1)–(2.3), (5.1)–(5.3) and (2.12).
If the exponents at the constant A are identical for every summand, this means that
the non-transformed and transformed equations are invariant, which yields

a1 ¼ a2 ¼ a; a3 ¼ a4 ¼ a5 ¼ �a; a6 ¼ �2a; ð5:14Þ

A ¼ r
r

� �1=a
¼ z

z

� �1=a

¼ vr
vr

� �1=a

¼ vu
vu

� �1=a

¼ vz
vz

� �1=a

¼ p
p

� �1=ð2aÞ
; ð5:15Þ
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z=z ¼ r=r; vrr ¼ vrr; vur ¼ vur; vzr ¼ vzr; p � r2 ¼ p � r2: ð5:16Þ

Morgan’s theorem states [12] that Eq. (5.16) serve as similarity variables, if the
boundary conditions are independent of the coordinate r.

The self-similar variables and functions were formulated using Eqs. (5.15) and
(5.16)

g ¼ z=r; F ¼ vrr=m; G ¼ vur
�
m; H ¼ vzr=m; ð5:17Þ

P ¼ pr2
�ðqm2Þ; h ¼ ðT � T1Þ=ðTw � T1Þ: ð5:18Þ

Function θ does not change its form because of the linearity of the energy
equation. Substituting Eqs. (5.17) and (5.18) into Eqs. (2.1)–(2.3) and (2.12), one
can deduce

F2 þ G2 þ 2Pþ F0Lþ gP0 þ F00M ¼ 0; ð5:19Þ

G0Lþ G00M ¼ 0; ð5:20Þ

P0 � Hð1þ FÞ � H0L� H00M ¼ 0; ð5:21Þ

H0 � gF00 ¼ 0; ð5:22Þ

h00 ¼ Pr n�Fhþ h0ðH � gFÞ½ �: ð5:23Þ

Here, M ¼ 1þ g2 and L ¼ 3gþ gF � H. In ordinary differential Eqs. (5.19)–
(5.23), primes denote derivatives with respect to the η-coordinate.

A substitution of Eqs. (5.17) and (5.18) into Eqs. (5.1)–(5.3) gives

G2 þ 2Pþ gP0 þ F00 ¼ 0; ð5:24Þ

G0 gF � Hð Þ þ G00 ¼ 0; ð5:25Þ

P0 ¼ H00: ð5:26Þ

Boundary conditions (5.9) and (5.10) can be rewritten as

g ¼ 0: F ¼ H ¼ 0; G ¼ G0; h ¼ 1; ð5:27Þ

g ¼ g1: F ¼ H ¼ 0; G ¼ G1; h ¼ 0; ð5:28Þ

with g1 ¼ h=r; G0 ¼ Rex ¼ xr2=m; G1 ¼ ReX ¼ Xr2=m.
Boundary conditions (5.11) and (5.12) can be rearranged as

g ¼ 0: F ¼ G ¼ H ¼ 0; h ¼ 1; ð5:29Þ

5.2 Self-similar Navier–Stokes and Energy Equations 131

http://dx.doi.org/10.1007/978-3-319-20961-6_2
http://dx.doi.org/10.1007/978-3-319-20961-6_2
http://dx.doi.org/10.1007/978-3-319-20961-6_2


g ¼ g1: G ¼ G1; F ¼ F1; F0 ¼ 0; h ¼ 0: ð5:30Þ

Here, g1 ¼ 0:5h=r, and subscripts “0” and “1” denote functions at η = 0 and
η = η1, accordingly.

Boundary conditions (5.27) and (5.28) for the functions G0 ¼ Rex and G1 ¼
ReX are r-dependent and do not comply with the self-similarity requirements that
the self-similar functions must be constant at the boundaries. Self-similar fuctions
are Eq. (5.29) (G0 = 0) for a stationary disk and Eq. (5.30) with G1 = const.,
F1 = const., which imply the free vortex laws for the velocity components vr and vφ
in the middle of the stationary conical diffuser

ðvuÞg¼g1
¼ G1m=r; ðvrÞg¼g1

¼ F1m=r: ð5:31Þ

We treat here Eqs. (5.27) and (5.28) as locally self-similar, with G0 and G1 being
parameters at each specific r-coordinate [2, 10]. As demonstrated beneath, this
model yields the results that are in good agreement with experiments and theoretical
predictions.

5.3 Rotating Disk and/or Cone

5.3.1 Numerical Values of Parameters in the Computations

The Mathcad software has been used to obtain a numerical solution of
Eqs. (5.19)–(5.26). Angles of conicity for the simulations were γ = 4° (small
η1 = 0.0698) and γ = 45° (relatively large η1 = 1). The value of η1 varying over the
span of γ = 1–5° was shown to have no influence on the results of simulations.

Values of the Prandtl and Schmidt numbers were Pr = Sc = 0.1–100 for a
configuration with a rotating cone and a stationary disk, Pr = Sc = 0.1–800 for a
stationary cone and a rotating disk, and Pr = Sc = 0.71 for the rest of the geometries.
In the simulations, the value of Re ¼ Rexg21=12 (or Re ¼ ReXg21=12) was set to be
unity, which yields ReΩ = 12, Reω = 12 at η1 = 1, and Reω = 2463, ReΩ = 2463 at
η1 = 0.0698. The exponent n* in Eq. (5.23) took negative, zero, or positive values
−2 ≤ n* ≤ 4 that enable modeling different radially decreasing, constant, or
increasing distributions of Tw on the disk surface.

5.3.2 Rotating Cone and Stationary Disk

Figures 5.4, 5.5, and 5.6 depict velocity profiles predicted in [9] for Re = 1
(Reω = 2463) by Eqs. (5.19)–(5.22), (5.24)–(5.26) and those computed in the work
[5] with a help of the method of expansion in the small parameter Re.
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Fig. 5.4 Profiles of the radial velocity component in a gap between a rotating cone and a
stationary disk [9]. 1—Eqs. (5.19)–(5.22); 2—Eqs. (5.24)–(5.26); 3—Eq. (5.4) [5]
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Fig. 5.5 Profiles of the axial velocity component in a gap between a rotating cone and a stationary
disk [9]. 1—Eqs. (5.19)–(5.22); 2—Eqs. (5.24)–(5.26); 3—Eq. (5.6) [5]
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Fig. 5.6 Profiles of the tangential velocity component (1, 2) and temperature θ (3–5) in a gap
between a rotating cone and a stationary disk [9]. 1—Eqs. (5.19)–(5.22) and (5.24)–(5.26);
2—Eq. (5.5) [5]; 3—Eqs. (5.19)–(5.23) at n* = 2; 4—(5.19)–(5.23) at n* = 0; 5—(5.19)–(5.23) at
n* = −1
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The axial velocity component (Fig. 5.5) is an order of magnitude smaller than
the radial velocity component (Fig. 5.4), which, in turn, is an order of magnitude
smaller than the tangential velocity component (Fig. 5.6). Curves predicted by
Eqs. (5.19)–(5.22) and (5.24)–(5.26) practically merge, which certifies validity of
the simplified Eqs. (5.24)–(5.26) for small angles of conicity γ. Data of [5] for the
radial velocity vr agree well with the simulations in Fig. 5.4; however, discrepancies
between the data of [5] and the simulations for components vz and vφ are more
distinct (Figs. 5.5 and 5.6).

To validate the accuracy of the simulations of the tangential velocity, experi-
mental data [5] and predictions [9] for the flow swirl angle on the disk surface
uw ¼ arctan[vr

�ðXr � vuÞ�z¼0 ¼ arctanð�F0
w

�
G0

wÞ were compared. Predictions
and experiments correlate for the Reynolds number depicted in Fig. 5.3. It can be
also concluded that the velocity profiles in Figs. 5.4, 5.5, and 5.6 predicted by
Eqs. (5.19)–(5.22) and (5.24)–(5.28) model the flow in the gap more realistically
than those by Eqs. (5.4)–(5.8) [5].

Figure 5.6 shows temperature profiles in the gap computed at for Pr = 0.71. The
temperature curves demonstrate the decreasing trend from unity at the disk surface
to zero at the cone wall. The form of the curves is affected by the value of n*. Near
the disk, derivatives of the θ profiles diminish with increasing n*.

To compute the local Nusselt number, the following expression was used:

Nu ¼ qwr
kðTw � T1Þ ¼ �h0g¼0: ð5:32Þ

To enable comparisons with Eqs. (3.4) and (3.5) for the rotating disks, the
Nusselt number may be rearranged using a derivative with respect to the variable
f ¼ z

ffiffiffiffiffiffiffiffi
X=m

p

Nu ¼ K1Re
1=2
X ð5:33Þ

K1 ¼
�ðdh=dgÞg¼0

Re1=2X

¼ � dh
df

� �
f¼0

: ð5:34Þ

Based on these expressions, it was calculated at η1 = 0.0698 (or ReΩ = 2463) that
Nu = 15.28, 13.40, 9.35 and K1 = 0.308, 0.270, 0.188 at n* = −1, 0, 2, accordingly.
These values of the coefficient K1 match fairly well with those for a single rotating
disk (see Table 3.8). For larger values of n*, the coefficient K1 diminishes, which
is observed in centripetal flow over a stationary disk imposed by a rotating cone
(to compare, an increase in the coefficient K1 together with n* occurs in centrifugal
flow over a rotating disk, see Chaps. 3 and 4).

Given η1 = 1 and Re = 1 (or ReΩ = 12), the Nusselt numbers are Nu = 1.047,
0.954, 0.760 with K1 = 0.302, 0.275, 0.219 for the same exponents n*. One can
conclude that the coefficient K1 is conservative and only weakly dependent on the
conicity angle γ.
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5.3.3 Rotating Disk and Stationary Cone

Radial flow pattern here is opposite to that considered above: the flow is centripetal
over the cone, and centrifugal over the disk (Fig. 5.7).

The tangential velocity vφ demonstrates a trend linearly subsiding from a disk
toward a cone, while the profile of axial velocity component vz looks
mirror-symmetrical as compared to the vz profile in Fig. 5.5. The temperature profile
θ in Fig. 5.7 for Pr = 0.71 almost merges with the vφ/(ωr) curve.

To compute the Nusselt number at the disk, Eqs. (5.32)–(5.34) are again
employed; as Ω = 0, it must be replaced with ω while defining the Re number and
coordinate ζ. Based on this, the calculated Nusselt numbers for η1 = 0.0698, Re = 1
(Reω = 2463) are Nu = 13.33, 15.35, 19.13 and K1 = 0.269, 0.309, 0.386 at Pr = 0.71,
and n* = −1, 0, 2, accordingly. It is evident that the coefficient K1 is an increasing
function of n*. However, the rate of increase is lower than that for a single rotating
disk, where K1 = 0.189, 0.326, 0.519 for the identical values n* (Table 3.1). Given
η1 = 1 and Re = 1 (Reω = 12), the computed Nusselt numbers are Nu = 0.96, 1.041, 1.
197 and K1 = 0.277, 0.301, 0.345 for identical exponents n* and Pr = 0.71. Thus, the
coefficient K1 is again very weakly dependent on the conicity angle γ.

5.3.4 Effects of Prandtl and Schmidt Numbers

Effects of the Prandtl or Schmidt numbers are considered for the geometries with a
rotating disk and stationary cone or a stationary disk and a rotating cone [11].

Rotating disk and stationary cone. As the Pr numbers increase, curves of the
temperature profiles θ for n* = 0 and n* = −1 shift downward exhibiting a non-linear
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Fig. 5.7 Velocity and temperature profiles in the gap between a rotating disk and a stationary cone
at Re = 1 (Reω = 2463) and η1 = 0.0698 [9]. 1—vr/(ωr); 2—vφ/(ωr); 3—20vz/(ωr); 4—θ(Pr = 0.71,
n* = 0)
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trend of variation due to diminished heat conduction, whereas the function θ at
Pr ≥ 100 becomes zero inside the gap between the cone and the disk (Figs. 5.8 and
5.9). For n* ≥ 0, curves of θ demonstrate qualitatively analogous trend. With
respect to the profiles of θ for n* = −1, the condition dθ/dη → 0 in the vicinity of
the cone is attained already at Pr ≥ 20 (Fig. 5.9).

Over the range 0 ≤ n* ≤ 4, the constant K1 increases with the Prandtl number
(Table 5.1); the trend persists also at n* = −0.5, i.e., when negative gradient dTw/
dr is weak.

As seen from Table 5.1, signs of vr and dTw/dr become different and coefficient
K1 diminishes for larger Prandtl numbers, when the wall temperature gradient dTw/
dr is strongly negative (n* = −1). Let us write the coefficient K1 at n* = 0 as follows:
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Fig. 5.8 Temperature profiles θ in the gap for n* = 0 [11]. Solid lines rotating disk and stationary
cone. Dash-dot lines stationary disk and rotating cone. 1—Pr = 0.71; 2—Pr = 10; 3—Pr = 100
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Fig. 5.9 Temperature profiles θ in the gap for n* = −1 [11]. Dashed lines rotating disk and
stationary cone. Solid lines stationary disk and rotating cone. 1—Pr = 0.71; 2—Pr = 10;
3—Pr = 100
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K1 ¼ K1;Pr¼1Pr
mp ; ð5:35Þ

where K1,Pr=1 = 0.318. This enables determining a function for the exponent mp(Pr)
presented in Table 5.2, whose asymptotic limit is mp = 0.372 for high Prandtl
numbers. To compare, this limit for a single rotating disk is mp = 1/3 at Pr→∞ [9]
(see Chap. 6).

Rotating cone and stationary disk. Profiles of θ for n* = 0 and n* = −1 at
Pr = 0.71 span practically linear between unity on the disk surface and zero on the
cone wall; further, for larger Prandtl numbers, profiles of θ shift upward demon-
strating a non-linear trend of variation owing to reduced heat conduction (Figs. 5.8
and 5.9). For Pr ≥ 100, the derivative dθ/dη in the vicinity of the disk exhibits zero
values.

For n* > 0, Pr ≤ 1 and n* = −1, Pr ≤ 1, curves of θ practically merge with the
profile predicted for Pr = 0.71, n* = 0. Curves of θ demonstrate a S-shape at n* = −1
and Pr = 1–10 (Fig. 5.9). Profiles of θ become non-physical at Pr > 1, n* > 0 and
Pr > 10, n* = −1.

For larger Pr numbers and n* < 0, the constant K1 increases (because signs of vr
and dTw/dr are the same); at n* ≥ 0, the coefficient K1 diminishes due to the
opposite signs of vr and dTw/dr (Table 5.3).

Application to the cone-and-plate devices. The results described in Sect. 5.3.4
become applicable to mass transfer upon replacement of T, Pr, Nu with C, Sc, Sh,

Table 5.1 Coefficient K1, for rotating disk and stationary cone [11]

Pr(Sc) n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 4

0.1 0.2858 0.2887 0.2915 0.2972 0.3029 0.3141

0.5 0.2745 0.2890 0.3032 0.3309 0.3579 0.4094

0.71 0.2687 0.2892 0.3094 0.3483 0.3855 0.4556

1.0 0.2607 0.2898 0.3180 0.3718 0.4225 0.5155

5.0 0.1650 0.3155 0.4447 0.6552 0.8172 0.9048

10.0 0.0842 0.3829 0.6082 0.9265 0.9860 1.5737

50 0.00008 0.8744 1.3572 1.9492 2.3432 2.8986

100 0.0 1.1745 1.7882 2.5295 3.0225 3.7184

400 0.0 2.0005 2.9876 4.1627 4.9419 6.0423

800 0.0 2.5742 3.8435 5.3051 6.2862 7.6717

Table 5.2 Exponent mp in Eq. (5.35) at Tw = const., rotating disk, and stationary cone [11]

Pr(Sc) 0.71 0.9 1.1 2 2.28 2.4 2.5 10

mp 0.0805 0.0901 0.0978 0.1319 0.1409 0.1446 0.1476 0.2817

Pr(Sc) 100 200 400 600 800

mp 0.375 0.3752 0.3739 0.3729 0.3724

5.3 Rotating Disk and/or Cone 137

http://dx.doi.org/10.1007/978-3-319-20961-6_6


respectively. Here, data for K1 at n* = 0 from Tables 5.1, 5.2, and 5.3 are to be used,
since the wall boundary condition for mass transfer is Cw = const. [9]. It is evident
that the coefficients K1 for a stationary disk and a rotating cone are always smaller
than the K1 values for a rotating disk and a stationary cone. This difference becomes
more pronounced at larger Schmidt numbers and is equal to 14.6 % at Sc = 0.71;
2.6 times at Sc = 5; 46.1 times at Sc = 20, and asymptotically tends to infinity in the
limit at infinite Schmidt numbers.

Thus, one can enhance efficiency of a cone-and-plate device used in bioengi-
neering for nurturing endothelial cells spread on the plate via assigning the disk to
rotate and fixing the cone instead of the currently used devices “rotating cone—
stationary plate.”

5.3.5 Co-rotating Disk and Cone

Here, the ratio between the ReΩ and Reω numbers makes a crucial influence on the
flow pattern. If ReΩ > Reω (cone revolves faster), fluid flow over the cone is
centrifugal, and centripetal over the disk. If ReΩ < Reω (disk revolves faster), a
reverse flow pattern emerges. Equations (5.32)–(5.34) (reference angular speed Ω)
were used to compute the Nusselt number for Pr = 0.71. A situation with
approximately the same angular speeds of a disk and a cone was considered. Given
Reω = 1.01ReΩ, Eqs. (5.32)–(5.34) yield Nu = 14.31, 14.35, 14.43 and K1 = 0.288,
0.289, 0.291; given Reω = 0.99Reω, one can obtain Nu = 14.35, 14.31, 14.23 and
K1 = 0.289, 0.288, 0.287 at n* = −1, 0, 2, accordingly. In both cases, we pre-set
Re = 1 and η1 = 0.0698 (ReΩ = 2463). The computed Nusselt numbers were
Nu = 0.999, 1.001, 1.004 and K1 = 0.288, 0.289, 0.290 at Reω = 1.01ReΩ, Re = 1
and η1 = 1 (ReΩ = 12).

Table 5.3 Coefficient K1, rotating cone, and stationary disk [11]

Pr(Sc) n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 4

0.1 0.2913 0.2887 0.2860 0.2807 0.2752 0.2643

0.5 0.3021 0.2889 0.2755 0.2479 0.2193 0.1587

0.71 0.3078 0.2892 0.2700 0.2302 0.1883 0.0971

0.9 0.3130 0.2894 0.2651 0.2140 0.1593 0.0373

1.0 0.3158 0.2896 0.2625 0.2054 0.1436 0.0040

2.0 0.3436 0.2924 0.2375

10.0 0.5712 0.3679 0.0895

50 0.0001

100 0.0
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The coefficient K1 is practically the same for all considered cases. For larger
values of n*, Nusselt numbers increase in centrifugal flow over the disk and
decrease in centripetal flow. Variation of the conical spacing practically does not
affect the coefficient K1.

5.3.6 Counter-Rotating Disk and Cone

The most complex flow pattern emerges here with centrifugal flow over a disk and a
cone and centripetal flow in the center of the conical cavity (Fig. 5.10). The axial
velocity vz is negative in the vicinity of the walls and positive in the center of the
gap; the tangential velocity vφ/(Ωr) behaves as a linear function increasing between
−1 and 1, whereas the temperature function θ at Pr = 0.71 monotonically dimin-
ishes from unity to zero.

Given η1 = 0.0698, Re = 1, and Reω = −ReΩ = 2463, profile of vr is symmetrical
relative to the center of the gap (curve 2, Fig. 5.10).

Equations (5.32)–(5.34) (reference velocity Ω) were used to compute the Nusselt
number for Pr = 0.71. Nusselt number increases with n* over the disk surface:
Nu = 14.21, 14.44, 14.85 and K1 = 0.286, 0.201, 0.299 at n* = −1, 0, 2. The
conditions η1 = 1, Re = 1, Reω = 12, and ReΩ = −12 yield a non-symmetrical radial
velocity profile vr, since the radial flow is stronger near the cone (curve 4, Fig. 5.8).
As a result, increasing n* is accompanied with a decreasing Nusselt number on the
disk: Nu = 1.011, 0.989, 0.942 and K1 = 0.292, 0.285, 0.272, given the same set of
the n* values as that used above.

Thus, here heat transfer is almost insensitive to the value and sign of dTw/dr on the
disk surface. Variation of the conical gap spacing and revolution speeds of a cone and
a disk influence on the vr profile and qualitative trend of the dependence of Nu on n*.
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Fig. 5.10 Counter-rotating disk and a cone at Re = 1 [9]: 1—vφ/(ωr); 2, 4—10vr/(ωr); 3—100vz/
(ωr); 5—θ (Pr = 0.71, n* = 0). Here 1–3—Reω = −ReΩ = 2463 and η1 = 0.0698;
4—Reω = −ReΩ = 12 and g1 ¼ 1
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5.4 Radially Outward Swirling Flow in a Stationary
Conical Diffuser

A non-rotating diffuser with conicity of γ = 35° or η1 = 0.35 was studied here
(Fig. 5.2). The physical interpretation of Eqs. (5.30) and (5.31) is that they describe
a free vortex expanding along the centerline of the gap. In practice, potential flow in
the form of a free vortex spans over a significant height of the conical gap pushing
the boundary layers toward the walls. Hence, Eqs. (5.30) and (5.31) describe a
somewhat idealized vortex flow pattern.

Simulations demonstrated that non-swirling purely radial flow (G1 = 0) does not
undergo separation from the walls at F1 < 63. Separation starts at F1 ≈ 63, whereas
at F1 > 63, a pronounced recirculation flow region is visible over the disk
(Fig. 5.11).

Responsible for the onset of separation is the large conicity of the diffuser: a
reduced conicity η1 = 0.035 shifts the separation value of F1 to about 7500. Flow
swirl (G1 = 97.96, Re ¼ G1g21=12 ¼ 1) causes accentuated recirculation region over
the disk (Fig. 5.11).

Given a zero radial velocity F1 = 0 at the inlet to the diffuser, the radial velocity
vr becomes negative over the entire gap height excluding the point η = η1 (curve 6
in Fig. 5.11; |F|max relates to the minimum point of the plot of F/|F|max at η/η1 ≈ 0.4,
i.e., Fmax = −24.28). For larger values of F1, the recirculation area reduces, whereas
the centrifugal flow area near the center of the conical gap grows up. The tangential
velocity G/G1 shows a linear distribution between 0 at η = 0 (disk) and 1 (cone) for
η = η1 (curve 1 in Fig. 5.12).

The diffuser is used to restore the static pressure, which grows with r as the
velocity components ðvrÞg¼g1

and ðvuÞg¼g1
decrease. To ensure self-similarity of the

function P in Eq. (5.18), the quantity P must denote the excess pressure p–p∞,
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Fig. 5.11 Profiles of the radial velocity F/F1 (1–4) or F/|F|max (5, 6) in a gap between a disk and a
cone [9]. G1 = 0: 1—F1 = 2; 2—F1 = 63; 3—F1 = 90. G1 = 97.96: 4—F1 = 20; 5—F1 = 10,
|F|max = 20.66; 6—F1 = 0, |F|max = 24.28
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where p = p∞ = const. for r → r∞. Thus, the parameter P shows the pressure
recovery level; in non-swirling flow (G1 = 0), P increases with F1 (Fig. 5.13).

Flow swirl G1 = 97.96 entails noticeable additional augmentation of the pressure
recovery parameter P, whereas the contribution of F1 in the range F1 = 0–20 is
rather insignificant. As can be seen from Fig. 5.14, curves Nu(F1) computed by
Eq. (5.32) for F1 = 50–63 demonstrate maxima at n* = 2 and 0 and minima at
n* = −1.

For non-swirling flow (G1 = 0) and non-zero inlet radial velocity F1, the Nusselt
numbers increase together with the exponent n* (curves 1–3, Fig. 5.14).

If the exponent n* remains within the range n* = 0–2 and the radial velocity F1

increases, the Nusselt numbers (a) demonstrate a trend of augmentation under the
conditions of non-separating centrifugal flow, (b) stay practically constant, if the
function F1 approaches the onset of separation, and (c) show a reduction for cen-
tripetal secondary flow over the disk (curves 1 and 2 in Fig. 5.14). These trends
become rather insignificant at n* = 0.
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Fig. 5.12 Profiles of the tangential velocity component G/G1 and temperature θ in the gap
between a cone and a disk [9]. 1—G/G1 for F1 = 30, G1 = 97.96; 2—θ for G1 = 97.96 and F1 = 10;
3—θ for G1 = 97.96 and F1 = 30; 4—θ for G1 = 97.96 and F1 = 60 (Pr = 0.71, n* = 2)
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Flow with initial swirl G1 = 97.96 demonstrates different signs of vr and dTw/
dr accompanied with reduced Nusselt numbers at n* = 2 and 0 (curves 4 and 5 in
Fig. 5.14) as compared to the flow without swirl. Given n* = −1, signs of vr and
dTw/dr become the same, accompanied with increased Nusselt numbers (curve 6 in
Fig. 5.14) as compared to non-swirling fluid. Although, for G1 = 97.96 and
increasing F1, the radially inward flow persists in the vicinity of the disk, the shapes
of the curves 4, 5, and 6 for Nu(F1) are analogous to curves 1, 2, and 3 plotted for
non-swirling flow for the same values of n* (see Fig. 5.14).

Temperature profiles 2 and 3 in Fig. 5.12 for swirling flow (G1 = 97.96) and
n* = 2 show a decreasing behavior at F1 > 21. For F1 ≤ 21, the temperature curve 4
in Fig. 5.11 exhibits a maximum near the wall, if fluid flows centripetally in the
direction of the decrease in Tw. This causes the Nusselt number curve 4 in Fig. 5.14
to become negative: the disk is heated by the fluid (whereas positive Nu numbers
mean fluid heated by a disk).

To conclude, in this chapter, self-similar solutions of the Navier–Stokes and
energy equations were derived for fluid flow in a conical gap depicted in Figs. 5.1
and 5.2. Simulations were performed for the cases “rotating cone–stationary disk,”
“rotating disk–stationary cone,” “co-rotating or contra-rotating disk and cone,” and
“non-rotating conical diffuser.” Effects of the boundary conditions and various
Prandtl/Schmidt numbers on the pressure, velocity, and temperature pattern, as well
as on the Nusselt/Sherwood numbers, were studied.
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Chapter 6
Heat and Mass Transfer of a Rotating Disk
for Large Prandtl and Schmidt Numbers

6.1 Laminar Flow

Convective heat and mass transfer over a single disk rotating in fluid with high
Prandtl or Schmidt numbers can be found in many practical and research appli-
cations. For instance, in electrochemistry, where the Schmidt numbers are several
orders of magnitude larger than unity, rotating disk electrode is involved in mea-
surements of the convective diffusion coefficient [1–14]. Another example is
naphthalene sublimation technique often used to measure mass transfer coefficients
αm [15–29].

The differential Eq. (1.28) of convective diffusion, including the time-averaged
fluctuating components, is analogous to the energy Eq. (2.5), provided that the
temperature T and the thermal diffusivity a are replaced by the concentration C and
the diffusion coefficient Dm, respectively. The Navier–Stokes and continuity
equations hold, if constant fluid properties are assumed.

If the Schmidt number Sc replaces the Prandtl number, and the nondimensional
function θ is written as

h ¼ ðC � C1Þ=ðCw � C1Þ; ð6:1Þ

then the self-similar Eqs. (2.32)–(2.36) for steady-state axisymmetric laminar flow
become valid for convective mass transfer.

Surface concentration on the disk does not vary; thus Cw ¼ const. Therefore,
rewritten convective diffusion Eq. (2.36) reduces to

h00 � ScHh0 ¼ 0: ð6:2Þ

The following equations (analogous to Eq. (3.4)) can be used for estimation of
the Sherwood number
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Sh ¼ K1Re
nR
x ; Shav ¼ K2Re

nR
u : ð6:3Þ

The constants K1 and K2 in Eq. (6.3) are affected by the boundary conditions,
flow type (laminar, transitional, or turbulent) and the Schmidt numbers. The
exponent nR is affected by the flow type, whereas K1 = K2 and nR = 1/2 in a laminar
flow regime.

Thus, the aforementioned analogy between convective heat and mass transfer,
enables the use of theoretical solutions or empirical experimental equations simply
via replacing C, Sc and Sh with of T, Pr and Nu (or vice versa), accordingly.

For laminar flow, Eqs. (2.32)–(2.36) for Pr > 1 and Sc > 1 at N = 0 and β = 0
were solved numerically using Mathcad [30]. Table 6.1 shows that the calculated
coefficient K1 is increasing with growing Pr or Sc numbers.

For the same Prandtl number, the constant K1 is an increasing function of the
exponent n*: the value of K1 at Pr = 0.71, 2.0 and 106 becomes 3.3, 2.73 and 2.2
times larger, respectively, if the constant n* changes from −1 to 3. Thus, at
increased Prandtl numbers, the influence of the exponent n* on the constant K1 gets
less pronounced.

The approximate Eq. (3.6) for the coefficient K1 for the boundary condition
(2.30), Pr ≥ 1 and nonzero values n* was derived by Dorfman [31]. Values of K1

by Eq. (3.6) surpass the exact solution. Equation (3.6) deviates from the exact
solution at n* ≤ 0 by 16–40 % even for Pr = 1. For n* = 0 and Pr = 1–3, this
deviation reaches 10–11 %. For larger exponents n* and Pr = 1–3, the deviation of

Table 6.1 Values of the constant K1, exact solution of Eqs. (2.32)–(2.36) for Pr > 1 [30]

Pr (Sc) n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

1.0 0.0 0.1305 0.2352 0.3221 0.3963 0.5180 0.6159 0.6982 0.7693

1.5 0.0 0.1682 0.2979 0.4028 0.4906 0.6324 0.7450 0.8389 0.9199

2.0 0.0 0.1989 0.3482 0.4669 0.5653 0.7226 0.8466 0.9498 1.0386

2.28 0.0 0.2140 0.3728 0.4982 0.6016 0.7663 0.8960 1.0036 1.0963

2.5 0.0 0.2251 0.3907 0.5209 0.6280 0.7982 0.9319 1.0428 1.1383

3.0 0.0 0.2480 0.4279 0.5680 0.6826 0.8640 1.0061 1.1238 1.2251

5.0 0.0 0.3206 0.5445 0.7153 0.8533 1.0697 1.2382 1.3774 1.4971

10.0 0.0 0.4410 0.7368 0.9577 1.1341 1.4083 1.6206 1.7957 1.9460

15.0 0.0 0.5254 0.8710 1.1268 1.3300 1.6446 1.8877 2.0880 2.2599

20.0 0.0 0.5924 0.9776 1.2610 1.4855 1.8323 2.0999 2.3203 2.5095

50 0.0 0.8536 1.3925 1.7835 2.0909 2.5635 2.9269 3.2260 3.4825

100 0.0 1.1108 1.8009 2.2979 2.6871 3.2840 3.7422 4.1190 4.4421

500 0.0 1.9943 3.2033 4.0644 4.7351 5.7596 6.5442 7.1888 7.7413

1000 0.0 2.5467 4.0802 5.1691 6.0162 7.3083 8.2972 9.1096 9.8057

104 0.0 5.6363 8.9846 11.348 13.181 15.971 18.104 19.855 21.356

105 0.0 12.291 19.548 24.657 28.613 34.632 39.230 43.003 46.236

106 0.0 26.626 42.304 53.328 61.860 74.834 84.742 92.873 99.838
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Eq. (3.6) from the exact solution is smaller (1–6 %). However, at Pr → ∞, the
inaccuracy of Eq. (3.6) abruptly increases [30].

The functional dependence of the constant K1 on the Schmidt (or Prandtl)
number according to Dorfman’s Eq. (3.6) and the exact solution for n* = 0 (Tw =
const. or Cw = const.) is depicted in Fig. 6.1. The inaccuracies of Eq. (3.6) make it
unusable already for Sc = 1–3.

Equations (3.7) and (3.8) can be rewritten for mass transfer for Sc = 0–∞,
respectively

K1 ¼ 0:6109Sc=ð0:5301þ 0:3996Sc1=2 þ ScÞ2=3; ð6:4Þ

K1 ¼ 0:6Sc=ð0:56þ 0:26Sc1=2 þ ScÞ2=3: ð6:5Þ

Equations (6.4) and (6.5) result nearly in the same values. Maximal deviation of
them from the exact solution is 4 and 5 %, respectively, for Sc = 5–20 (Fig. 6.1).
For higher Schmidt numbers, inaccuracies of Eqs. (6.4) and (6.5) tend to zero
(Table 6.2).

Another expression was derived in the work [13]

K1 ¼ 0:621Sc=ð1þ 0:298Sc�1=3 þ 0:14514Sc�2=3Þ: ð6:6Þ
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Fig. 6.1 Constant K1 in Eq. (6.3), laminar flow at Cw = const. [30]. 1—Exact solution; 2—
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At the expense of a larger deviation from the exact solution for Sc = 1–2 (8 %
at Sc = 1 and 4 % already at Sc = 2) Eq. (6.6) ensures only deviations of less than
1–3 % at higher Prandtl or Schmidt numbers (Fig. 6.1; Table 6.2).

For Sc → 0, Eqs. (6.4)–(6.6) reduce to the asymptotic relation K1/Sc = 0.885
[32]. For Sc → ∞, they ensure agreement with another asymptotic K1 ¼ 0:62Sc1=3

[11, 32].
One more relation for K1 for Pr = 0−∞ was designed as a combination of

asymptotic solutions for the cases Pr → 0 and Pr → ∞ [2]. Rewritten, using Sc
number, this results in

K1 ¼ ð0:88447ScÞ�1:077 þ ð0:62048Sc1=3Þ�1:077
h i�1=1:077

: ð6:7Þ

For Sc = 2, Eq. (6.7) merges with the self-similar solution. Deviation of Eq. (6.7)
from the exact solution grows up to 3.2 % at Sc = 2.5, exhibits a maximum of 5.6 %
at Sc ≈ 20 and, for larger Schmidt numbers, diminishes to 2.7 % at Sc = 1000 and
0.6 % at Sc = 105.

Over the range of Sc < 2, deviation of Eq. (6.7) from the exact solution changes
its sign, and increases in absolute values being 3.4 % at Sc = 1 and 8.2 % at Sc = 0.1
(Table 6.2).

To conclude, preference should be rendered to that of Eqs. (6.4)–(6.7) that
ensures the lowest inaccuracy at the Schmidt numbers specific for the problem is to
be solved.

Application to electrochemistry problems. Levich [11] derived an asymptotic
solution for convective diffusion for very large Schmidt numbers Sc � 1

Table 6.2 Constant K1 by Eqs. (6.4)–(6.8), a rotating disk for Cw = const. or Tw = const. [30]

Pr (Sc) Exact (6.4) [33] (6.5) [34] (6.6) [13] (6.7) [2] (6.8) [11]

1.0 0.3963 0.3941 0.4025 0.4303 0.3827 0.62

2.0 0.5653 0.5753 0.5864 0.5892 0.5664 0.7812

2.28 0.6016 0.6144 0.6257 0.6238 0.6065 0.816

2.5 0.6280 0.6430 0.6543 0.6491 0.6358 0.8415

5.0 0.8533 0.8839 0.8946 0.8676 0.8855 1.0602

20.0 1.4855 1.5414 1.5414 1.4924 1.5688 1.6829

50 2.0909 2.1552 2.1424 2.0958 2.2019 2.2841

100 2.6871 2.753 2.7278 2.6915 2.8147 2.8778

500 4.7351 4.7885 4.7222 4.7400 4.8890 4.9209

1000 6.0162 6.056 5.9651 6.0218 6.1773 6.2000

104 13.181 13.126 12.904 13.192 13.3565 13.358

105 28.613 28.332 27.834 28.639 28.7954 28.7779

106 61.860 61.074 59.990 61.915 62.0461 62.000
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K1 ¼ 0:62Sc1=3: ð6:8Þ

It coincides with the asymptotic solution for heat transfer for Pr � 1 given in
[32].

Table 6.2 elucidates that Eq. (6.8) correlates well with the exact solution at
Sc > 500 (deviation for Sc = 500 is 3.9 % and reduces to zero for Sc → ∞).
Equation (6.8) overruns the exact solution by 7.1 % at Sc = 100 and by 56.7 % at
Sc = 1. Levich’s Eq. (6.8) was successfully validated in experimental studies [4, 5,
7, 8, 12, 14] at high Schmidt numbers.

Rotating disk electrodes are intensively employed in experimental electro-
chemical investigations [1, 11]. Convective diffusion, which displays itself as the
diffusion of the electrical current on the electrode, is modeled by Eq. (1.28).

For this case, Eq. (6.3) for laminar flow in view of Eq. (6.8) is usually rewritten
as [1, 11]

iL ¼ 0:62nFCFC1D2=3
m m�1=6x1=2; ð6:9Þ

where iL is the limiting diffusion current of electrons to the surface of a rotating disk
electrode; n is the number of electrons that are involved in the current; F is the disk
area; CF is the Faraday constant (96,485 C/mol); C∞ is the concentration at infinity,
mol/m3. Based on this, one can ascertain that the mass transfer coefficient can be
written as am ¼ iL=ðnFCFC0Þ, while Eq. (6.9) translates into Eq. (6.8).

In practice, the following tasks are actual: (1) searching a functional dependence
of iL on ω; (2) finding the diffusion coefficient Dm, whereas the value of iL is
measured; and (3) measurements of Volt–Ampere characteristics using a rotating
disk electrode.

Naphthalene sublimation technique for experimental determination of the
mass and heat transfer coefficients. Convective heat transfer from a surface to air
is analogous to convective mass transfer in naphthalene sublimation to air.
Naphthalene sublimation has been often employed to measure the average mass
transfer of an entire disk weighted before and after the measurement to determine
the amount of naphthalene lost by the disk as a result of experiments [19–21,
25–27]. Currently, accurate instrumentation is available for local pointwise scan-
ning of the naphthalene layer thickness and subsequent calculation of local mass
transfer coefficients for laminar, transitional, and turbulent flow [15–18, 22, 24, 28].
In frames of the analogy between the surface heat and mass transfer, constants K1 in
Eq. (3.4) for the Nusselt number and Eq. (6.3) for the Sherwood number can be
expressed as [23]

K1 ¼ C Prmp ; ð6:10Þ

K1 ¼ C Scmp ; ð6:11Þ
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where the coefficient C is identical in both equations. The effects of the Prandtl and
Schmidt numbers are described by respective multipliers in Eqs. (6.10) and (6.11).

Equations (6.10) and (6.11) are used for the Prandtl and Schmidt numbers
moderately diverging from unity: Pr = 0.7–0.74 for air, whereas Sc = 2.28–2.5 for
naphthalene sublimation in air. Therefore, the constant C is assigned to be equal to
the coefficient K1 at Sc = 1 and Pr = 1 at Tw = const. or Cw = const. (see Table 6.1),
i.e., C = 0.3963.

Authors [15–19, 24, 28] used the naphthalene sublimation technique to measure
rotating disk mass transfer and set the exponent mp to be the same for all values of
Pr and Sc, which yields a relation between the Nu and Sh numbers

Nu=Sh ¼ ðPr=ScÞmp : ð6:12Þ

The scatter of the values of the exponent mp in the literature amounted up to
45 %: mp = 1/3 [17], mp = 0.4 [15, 17, 18, 20], mp = 0.53 [19], and mp = 0.58 [24].

Erroneous values mp entail fallacious results of post-processing of the experi-
mental data from the naphthalene sublimation technique aimed at estimation of heat
transfer in air. An analysis and recommendation of the proper value mp were made
by the author [23].

Exponent mp can be detected from the self-similar solution of the problem
(Tables 3.1 and 6.1). Table 6.3 lists exponents mp for the Prandtl/Schmidt numbers
moderately deviating from unity [23]. It is evident from here that the function
mp(Pr) exhibits a decreasing trend and varies from mp = 0.5723 to mp = 0.5024, if
the Prandtl/Schmidt numbers grow from 0.7 up to 2.5. Consequently, the effective
exponent mp = 0.53 suggested in [19] is practically the average mp value weighted
over the range Pr = 0.7–2.5.

Figure 6.1 depicts different experimental data for the constant K1 in naphthalene
sublimation in air. These data agree well with the self-similar solution (see
Table 6.2); only the too large value K1 = 0.69 for Sc = 2.5 [24] falls out from the
overall picture.

Table 6.3 Value mp in Eqs. (6.10), (6.11) and (6.12) based on the exact solution of Eqs. (2.32)–
(2.36) for laminar flow [23, 30]

Pr (Sc) 0.5 0.6 0.7 0.71 0.72 0.8 0.9 0.95 0.99

mp 0.5954 0.5827 0.5723 0.5714 0.5705 0.5638 0.5571 0.5551 0.5632

Pr (Sc) 1.05 1.1 1.5 2 2.28 2.4 2.5 3 4

mp 0.5438 0.5424 0.5264 0.5123 0.5064 0.5041 0.5024 0.4949 0.4841

Pr (Sc) 5 10 20 50

mp 0.4765 0.4566 0.4411 0.4251
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Post-processing [23] of the measured results using Eq. (6.12) at mp = 0.53 to
reduce them to conditions of heat transfer at Pr = 0.71 yields the values K1 = 0.325
[17], K1 = 0.328 [20, 21, 26], K1 = 0.331 [19], K1 = 0.321 [25], K1 = 0.322 [22] that
agree well with the exact value K1 = 0.326 for Pr = 0.71 and Tw = const. (see
Table 3.1) and reliable experimental data (see Chap. 3). Falling out of the overall
good conformance are (a) the constant K1 = 0.318 resulting from the low value
K1 = 0.59 in naphthalene sublimation at Sc = 2.28 measured in [15], and (b) the
constant K1 = 0.354 stemming from the high experimental value K1 = 0.69 in
naphthalene sublimation obtained in [24] (see Fig. 6.1).

The use of the value mp = 0.4 suggested in [15, 17, 18, 20] and widely used
throughout the literature brings for the heat transfer in air at Pr = 0.71 [23]:
K1 = 0.37 [15]; K1 = 0.379 [17]; K1 = 0.384 [20, 21, 26]; K1 = 0.388 [19];
K1 = 0.378 [25]; K1 = 0.380 [22]; K1 = 0.417 [24]. All these recalculated data are
too large as compared to the exact value K1 = 0.326.

Taking the exponent mp = 1/3 [17], one can obtain for Pr = 0.71 [23] the
constants K1 = 0.4 [15]; K1 = 0.409 [17]; K1 = 0.416 [20, 21, 26]; K1 = 0.421 [19];
K1 = 0.411 [25]; K1 = 0.413 [22]; K1 = 0.454 [24]. They surpass the exact value
K1 = 0.326 to an even larger extent.

Involvement of the exponent mp = 0.58 [24] yields for Pr = 0.71 the values
K1 = 0.3 [15], K1 = 0.307 [17], K1 = 0.308 [20, 21, 26], K1 = 0.311 [19], K1 = 0.301
[25], K1 = 0.303 [22], that are too small [23]. Only the value K1 = 0.332 [24] is
acceptable, which is due to the high value mp = 0.58 chosen by the authors [24] to
agree with the exact solution K1 = 0.326. However, it is clear that the too large
exponent mp = 0.58 results from the too large value K1 = 0.69 in naphthalene
sublimation measured in [24], which is discordant with the measurements of the
other researchers.

Authors [25] rearranged Eq. (6.12) in the following way

Nu=ShSc¼2:5 ¼ f ðPrÞPr1=3: ð6:13Þ

The value K1 = 0.625 at Sc = 2.5 and function f(Pr) = 0.576, 0.634, 0.737, 0.842
and 0.926 at Pr = 0.1, 1, 2.5, 10 and 100, respectively, yield jointly the values
K1 = 0.321, 0.396, 0.625, 1.134 and 2.686 at the Prandtl numbers mentioned above.
This is fully consistent with the self-similar solution at Tw = const. (Table 6.1,
n* = 0). The correction function f(Pr) can be recast to incorporate the multiplier
Pr1/3. Use of Eq. (6.13) ensures higher accuracy than that conveyed by approaches
operating with a single value of mp, though Eq. (6.13) is less practical as Eq. (6.12),
because of the involvement of a tabulated function.

To conclude, Eq. (6.12) with the exponent mp = 0.53 [19] can be suggested as
the most accurate and practical one for post-processing of the measured laminar
mass transfer coefficients of a rotating disk in naphthalene sublimation in air in
order to recalculate it to laminar heat transfer in air. As an alternative, Eq. (6.13)
(or its modification) can be used.
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6.2 Transitional and Turbulent Flow for the Prandtl
and Schmidt Numbers Moderately Different
from Unity

Values of Pr ≤ 5 and Sc ≤ 5 are considered here as those moderately deviating from
unity. The objective is again a validation of the experimental technique dealing with
sublimation of naphthalene from a rotating disk in air at Sc = 2.28–2.5 [23].

Local Sherwood numbers in naphthalene sublimation experiments in air in
transitional and turbulent flow obtained in the recent works [15, 18] together with
the data for laminar flow and different empirical approximations are depicted in
Fig. 6.2. Recast Eq. (3.13) [15] for transitional flow (corrected range of validity)
and empirical equations [15, 18] for turbulent flow look as follows [15, 18]

Sh ¼ 2:0� 10�19Re4x for Rex ¼ ð1:9�2:75Þ � 105 (Ref. [15]); ð6:14Þ

Sh ¼ 0:0512Re0:8x for Rex � 2:75� 105 (Ref. [15]); ð6:15Þ

Sh ¼ 0:0518Re0:8x for Rex � 2:5� 105 (Ref. [18]): ð6:16Þ
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Fig. 6.2 Local Sherwood numbers for naphthalene sublimation in air [23, 30]. Experiments:
1—Sc = 2.28 [15]; 2—Sc = 2.4 [21]; 3—Sc = 2.4 [26]; 4—Sc = 2.44 [19]; 5—Sc not mentioned
[18]. Empirical approximations, Eq. (6.3): 6—laminar flow, nR = 1/2, K1 = 0.625 [20, 21, 25, 26];
7—laminar flow, nR = 1/2, K1 = 0.604 [17]; 8—transitional flow, nR = 4, K1 = 2 × 10−19,
Eq. (6.14) [15]; 9—turbulent flow, nR = 0.8, K1 = 0.0512, Eq. (6.15) [15]

152 6 Heat and Mass Transfer of a Rotating Disk …

http://dx.doi.org/10.1007/978-3-319-20961-6_3


In practice, one often needs to estimate average Sherwood numbers Shav
(or average Nusselt numbers Nuav) of an entire disk, where areas occupied by
laminar/transitional flow or laminar/transitional/turbulent flow emerge at the same
time. For instance, only surface-averaged mass transfer coefficients of an entire disk
were measured in [19–21, 25, 26].

Measurements of the average Sherwood number over an entire disk covered
with areas of laminar, transitional and turbulent flow were performed by [19–21,
25, 26]. Reynolds analogy between mass transfer and fluid flow was involved to
derive a quite inconvenient theoretical solution for Shav for an entire disk [21, 26]
incorporating parameters, which were rather difficult to determine by means of the
used approach. More promising is the model for Shav first used in the paper [7] and
further generalized by the author of the present work [23, 30], which enables
verifications of the recent measurements of the local Sherwood numbers by means
of comparisons with the vast database for the average Sherwood numbers for an
entire disk.

The author [7] assumed that laminar-turbulent transition sets on instantly at a
radial coordinate rtr corresponding to the Reynolds number Reω,tr. Subsequently,
the value Shav for an entire disk can be found using the following integral

Shav ¼ 2
b

Zrtr
0

Shlamdr þ
Zb

rtr

Shturbdr

2
4

3
5: ð6:17Þ

Sherwood numbers are presented by Eq. (6.3) accompanied with the constants
K1,lam and nR = 1/2 for laminar flow, and K1,turb and nR = 0.8 for turbulent flow.

An integration of Eq. (6.17) yields

Shav ¼ K1;lamRe
1=2
x;tr

Rex;tr
Reu

� �1=2

þ 2
2nR þ 1

K1;turbRe
nR
u 1� Rex;tr

Reu

� �nRþ1=2
" #

:

ð6:18Þ

If Reu\Rex;tr , the second summand in Eq. (6.18) must be discarded.
Asymptotically at Reu � Rex;tr , Eq. (6.18) degenerates to Eq. (6.3) for turbulent
flow with

K2;turb ¼ 2
2nR þ 1

K1;turb: ð6:19Þ

Given n* = 0, which effectively means Tw = const. and Cw = const.,
Equation (6.18) translates into Eq. (3.25), while Eq. (6.19) turns to Eq. (3.35) in
view of the relation 2nR ¼ 1þ m resulting from Eqs. (2.78) and (3.31).

In [12] it is suggested taking into account regions of laminar, transitional and
turbulent flow separately. If the transition sets on at the radial location rtr1 (or at
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Reω,tr1) and ends at the radial location rtr2 (or Reω,tr2), a definite integral for Shav can
be written as

Shav ¼ 2
b

Zrtr1
0

Shlamdr þ
Zrtr2
rtr1

Shtrandr þ
Zb

rtr2

Shturbdr

2
4

3
5: ð6:20Þ

The transitional Sherwood number Shtran is specified by the first of Eq. (6.3)
complemented with experimental values of K1,tran and nR,tran for transitional flow.
Integration of Eq. (6.20) results in

Shav ¼ K1;lamRe
1=2
x;tr1

Rex;tr1
Reu

� �1=2

þ 2
2nR;tran þ 1

K1;tranRe
nR;tran
x;tr2

Rex;tr2
Reu

� �1=2

� 1� Rex;tr1
Rex;tr2

� �nR;tranþ1=2
" #

þ 2
2nR þ 1

K1;turbRe
nR
u 1� Rex;tr2

Reu

� �nRþ1=2
" #

:

ð6:21Þ

Equation (6.21) holds at Reu �Rex;tr2. If Reu\Rex;tr2, the last term in Eq. (6.21)
is discarded, whereas the second summand turns to

Shav ¼ K1;lamRe
1=2
x;tr1

Rex;tr1
Reu

� �1=2

þ 2
2nR;tran þ 1

K1;tranRe
nR;tran
u 1� Rex;tr1

Reu

� �nR;tranþ1=2
" #

: ð6:22Þ

Asymptotically for Reu � Rex;tr2, Eq. (6.21) transforms to the second of
Eq. (6.3), whereas the constant K2,turb is given by Eq. (6.19). A solution derived in
[12] is a particular case of Eq. (6.21), whose empirical constants resulting from
experiments [12] at high Sc numbers are fixed numerical values. Hence, the solution
[12] as it is can not be used to describe the experimental data for naphthalene
sublimation.

Substitution of numerical values of the constants resulting from measurements at
naphthalene sublimation in air [15] (see Eqs. (6.14), (6.15) and caption to Fig. 6.1)
into the general Eqs. (6.18)–(6.22) yields

(a) applied to Eq. (6.18)

Shav ¼ 0:59Re1=2x;tr
Rex;tr
Reu

� �1=2

þ 2
2:6

0:512Re0:8u 1� Rex;tr
Reu

� �1:3
" #

; ð6:23Þ
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(b) applied to Eq. (6.19)

K2;turb ¼ 2
2:6

K1;turb ¼ 0:0394; ð6:24Þ

(c) applied to Eq. (6.21)

Shav ¼ 0:59� 1:9� 105 � Re�1=2
u þ 4

9
10�19ð2:75� 105Þ4:5

� Re�1=2
u 1� 1:9� 105

2:75� 105

� �4:5
" #

þ 0:0394Re0:8u 1� 2:75� 105

Reu

� �1:3
" #

; Reu � 2:75� 105; ð6:25Þ

(d) applied to Eq. (6.22)

Shav ¼ 0:59� 1:9� 105 � Re�1=2
u þ 4

9
10�19Re4u 1� 1:9� 105

Reu

� �4:5
" #

;

Reu ¼ 1:9�2:75ð Þ � 105:

ð6:26Þ

The Reynolds number Reω,tr (instant transition to turbulence) in Eq. (6.23)
remains a free parameter to be tuned for a better agreement with particular
experiments.

Figure 6.3 shows validations of Eqs. (6.23)–(6.28) by comparison with experi-
mental data. Experimental data 1, 5 and curve 6 for Shav for purely turbulent flow
stem from the works [23, 30] and result from reprocessing of the measured data
[15, 18] and Eq. (6.15) using Eq. (6.24). For laminar flow, we have K2,lam = K1,lam

(curves 7 and 8). Curve 9 combining Eqs. (6.25), (6.26) and incorporating
boundaries of transitional flow conforms to experiments [19, 21, 26] for Shav for an
entire disk depicted in Fig. 6.3.

In Fig. 6.3, experimental data 1 for Shav for an entire disk were calculated in [23]
using Eqs. (6.25), (6.26) and measurements [15] for laminar, transitional and tur-
bulent flow. These data points go beyond curve 9 at respective values of the
argument Reφ.

The replacement of the Reynolds number Reω,tr in Eq. (6.23) (instant transition
to turbulence) with its values at the onset and end of transition (i.e., 1.9 × 105 and
2.75 × 105) yields curves 10 and 11 lying above and below curve 9, respectively.
Reynolds number of the instant transition to turbulence Reω,tr = 2.35 × 105, an
arithmetic mean of values Reω,tr1 and Reω,tr2, substituted into Eq. (6.23) conveyed
curve 12, which agrees with curve 9.
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In the asymptotic case of Reφ → ∞, lines 9–12 coincide with curve 6 valid for
purely turbulent flow.

Thus, Eqs. (6.21) and (6.22) incorporating terms accounting for the coexistence
of laminar, transitional and turbulent flow areas ensure the best agreement with
experiments for the Shav number for an entire disk. Equation (6.18) resulting from a
simpler model [7] ensures the efficiency similar to that of Eqs. (6.21) and (6.22), if
an “effective” Reynolds number Reω,tr of the instant transition to turbulent flow is
chosen correctly.

Application to the naphthalene sublimation technique. Again, a recalculation
of the mass transfer to heat transfer data is performed using Eq. (3.4) and (6.3), with
the constants K1 defined in Eqs. (6.10) and (6.11), accordingly [23]. The factor C is
equal to the constant K1 for Sc = 1, Pr = 1 under conditions Tw = const. or Cw =
const.

Authors [15, 18] used the constant mp = 0.4 for a turbulent flow regime and
Pr = Sc = 0.7–2.5. Equation (6.12) at mp = 0.4 yields the value K1 = 0.0323 for heat
transfer in air at Tw = const. and Pr = 0.72, starting from the values K1 = 0.0512–
0.0518 (see Eqs. (6.15) and (6.16)) for Sc = 2.28 as a base for the recalculation. But,
in reality, experiments [35–37] (see Table 3.5) conveyed the value of the constant
K1 = 0.0188 at Tw = const. and Pr = 0.72. The theoretical model [38, 39] gave the

10
5

10
6

200

300

400

500
600
700
800
900

2000

6

11

10

9

7

8

12

 - 1

 - 2

 - 3

 - 4

 - 5

Shav

Reϕ

Fig. 6.3 Average Sherwood numbers, naphthalene sublimation in air [23, 30]. Experiments:
1—Sc = 2.28 [15]; 2—Sc = 2.4 [21]; 3—Sc = 2.4 [26]; 4—Sc = 2.44 [19]; 5—Sc not mentioned
[18]. Calculation, Eq. (6.3): 6—turbulent flow, nR = 0.8, K2 = 0.0394, Eq. (6.24) [15]; 7—laminar
flow, nR = 1/2, K1 = 0.625 [20, 21, 25, 26]; 8—laminar flow, nR = 1/2, K1 = 0.59 [15]. Calculation
of Shav for the entire disk: 9—Eqs. (6.25) and (6.26); 10—Eq. (6.23) at Reω,tr = 1.9 × 105;
11—Eq. (6.23) at Reω,tr = 2.75 × 105; 12—Eq. (6.23) at Reω,tr = 2.35 × 105
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value K1 = 0.0187 for the same conditions. Thus, also for turbulent flow, an
erroneous value mp leads to fallacious translation of the naphthalene sublimation
data to heat transfer in air.

Equations (6.10), (6.11) are to be used for the Prandtl and Schmidt numbers
moderately diverging from unity: Pr = 0.7–0.74 for air; Sc = 2.28–2.5 for naph-
thalene sublimation. Hence, the constant C in Eqs. (6.10), (6.11) must be equal to
the coefficient K1 ¼ 0:0232 in turbulent flow at Sc = 1, Pr = 1 and conditions
Tw = const., Cw = const. (Table 3.7).

Detecting of the exponent mp for turbulent flow is performed using experimental
data. Only experimental Eqs. (6.15) and (6.16) [15, 18] can serve for this purpose.
Based on Eq. (6.15) as well as the values C = 0.0232, K1 = 0.0188 (at Tw = const.
and Pr = 0.72) [35–37], one can transform Eqs. (6.10) and (6.11) as follows

K1 ¼ 0:0232Pr0:64 for Pr� 1; ð6:27Þ

K1 ¼ 0:0232Sc0:96 for Sc� 1: ð6:28Þ

This means that the exponent mp for turbulent flow is not universal being a
function of the Prandtl and Schmidt numbers, which apparently results from dif-
ferent effects of the Pr or Sc larger and smaller than unity. Equations (6.27) and
(6.28) yield as a result

Nu=Sh ¼ Pr0:64=Sc0:96: ð6:29Þ

Using the idea of a correction function, Eq. (6.13), one can transform Eq. (6.29)
as

Nu=ShSc¼2:28 ¼ f ðPrÞ: ð6:30Þ

At Pr = 0.72, the correction function f(Pr) takes the value f(Pr) = 0.367.
As an alternative, one can use an effective value of the exponent mp so that

Nu=Sh ¼ ðPr=ScÞ0:87: ð6:31Þ

The exponent mp = 0.87 in Eq. (6.31) is more than twice larger than the value 0.4
mistakenly recommended in [15, 18]. Nevertheless, the value mp = 0.87 must not be
used in Eqs. (6.27) and (6.28) to avoid significant errors in predictions of the
constant K1.

The empirical Eq. (3.10) [37] for transitional flow at Tw = const. and Pr = 0.72 is
the most appropriate to be used jointly with Eq. (6.14) for transitional flow at Cw =
const. Thus, Eq. (6.12) should be recast in view of Eqs. (3.10) and (6.14) as follows

Nu=Sh ¼ ðPr=ScÞ0:6: ð6:32Þ
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Equation (3.10) is valid for Reω = 1.95 × 105–2.5 × 105, while Eq. (6.14) holds
at Reω = 1.9 × 105–2.75 × 105. These differences are though rather insignificant.

To conclude, Eqs. (6.29)–(6.31) should be employed to recalculate the data for
turbulent mass transfer for naphthalene sublimation in air to the conditions of heat
transfer in air. Equation (6.32) should be applied for transitional flow for the same
purpose [23].

6.3 Transitional and Turbulent Flow at High Schmidt
Numbers

High values of the Schmidt numbers can be encountered in electrochemistry
problems: Sc = 34–10,320 [4, 5, 7, 8, 12]. Main objectives of this section are
validation and development of recommendations for the further use of the experi-
mental and theoretical data of different authors [40].

Experimental data [7] for average Sherwood numbers for an entire disk at
Reφ = 0.278 × 106–1.8 × 106, Sc = 930–10,320 were described by a relation

Shav ¼ Sc1=3Re�1=2
u ½0:62Rex;tr þ 1:08� 10�2ðRe1:37u � Re10:37x;tr Þ�: ð6:33Þ

Here, Eq. (6.18) at K1,lam = 0.62Sc1/3, K1,turb = 0.0148Sc1/3, Reω,tr = 2.78 × 105

and nR = 0.87 was taken into account. In the transitional region at Reω = 2.3 × 105–
2.9 × 105, Eq. (6.33) lies below the experimental data [7] (in analogy to curve 12 in
Fig. 6.3), which results from simplifications incorporated in model (6.18) and
mentioned in Sect. 6.2.

A reduced form of Eq. (6.33) for purely turbulent flow [7] and an equation for
the local Sherwood numbers derived in [30, 40] have the following form

Shav ¼ 1:08� 10�2Re0:87u Sc1=3; ð6:34Þ

Sh ¼ 1:48� 10�2Re0:87x Sc1=3: ð6:35Þ

Measurements [4] of the average Sherwood numbers for an entire disk per-
formed at Reφ = 5 × 104–1.8 × 106, Sc = 345–6450 (transition at Reφ = 2.3 × 105–
2.9 × 105) for the region of turbulent flow were described by the relation

Shav ¼ 0:0725Re0:9u Sc0:33: ð6:36Þ

The authors [5] measured local Sh and average Shav numbers at laminar, tran-
sitional, and turbulent flow for Reω = 4 × 104–2.2 × 106, Sc = 680–7200 (transition
at Reω = 2.2 × 105–3.0 × 105). Sherwood numbers for the turbulent flow [5] and
average values for an entire disk (approximated in [30]) are given by the following
relations, respectively
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Sh ¼ 1:09� 10�2Re0:91x Sc1=3; ð6:37Þ

Shav ¼ 7:67� 10�3Re0:91u Sc1=3; ð6:38Þ

Shav ¼ Sc1=3Re�1=2
u ½0:62Rex;tr þ 7:67� 10�3ðRe1:41u � Re1:41x;tr Þ�; ð6:39Þ

where the Reynolds number of the abrupt transition was Reω,tr = 2.78 × 105 [7].
Experiments [8] for Shav for an entire disk were performed at Reφ = 104–

1.18 × 107, Sc = 34–1400. For purely turbulent flow at Reφ = 8.9 × 105–1.18 × 107,
authors [8] obtained

Shav ¼ 1:17� 10�2Re0:896u Sc0:249: ð6:40Þ

Experiments for the local Sherwood numbers in transitional flow at
Reω = 2.0 × 105–3.0 × 105 and Sc = 1192–2465 were described by the empirical
Eq. (3.14) [12].

The authors [12] deduced empirical equations for Shav for turbulent flow (based
on experiments [4]), simultaneous existence of laminar and transitional flow, as
well as simultaneous existence of laminar, transitional and turbulent flow,
respectively

Shav ¼ 7:8� 10�3Re0:9u Sc1=3; ð6:41Þ

Shav ¼ Sc1=3Re�1=2
u ½0:89� 105 þ 9:7� 10�15Re3:5u �; ð6:42Þ

Shav ¼ Sc1=3Re�1=2
u ½7:8� 10�3Re1:4u � 1:3� 105�: ð6:43Þ

Equations (6.42) and (6.43) are particular cases of Eqs. (6.22) and (6.21),
accordingly, with Eq. (6.8) used for laminar, Eq. (3.14) for transitional and Eq. (6.
41) for turbulent flow.

Theoretical solutions for the local turbulent Sherwood numbers at high Schmidt
numbers derived in [9, 41] can be presented as follows, respectively,

Shav ¼ 7:07� 10�3Re0:9u Sc1=3; ð6:44Þ

Shav ¼ 5:93� 10�3Re0:91u Sc0:34: ð6:45Þ

A theoretical solution obtained in [10] coincides with Eq. (6.41). The solution
obtained in [42] has a form of Eq. (6.41) with the coefficient changed to
6.43 × 10−3.

In [43] a theoretical solution claimed to be valid for Sc = 0.72–∞ has been
proposed, however, as demonstrated in [30, 40], this relation is inaccurate.

Some of the theoretical and empirical relations for the Sherwood numbers for
purely turbulent flow, as well as for average Shav numbers for an entire disk
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simultaneously occupied by laminar, transitional, and turbulent flow areas agree
well with each other. Curves by Eqs. (6.34), (6.36), (6.44), and (6.45) practically
merge (see Fig. 6.4). Equation (6.41) significantly surpasses original experiments
[4]; corrected coefficient 6.43 × 10−3 [42] shifts predictions by Eq. (6.41) 9 %
below those by Eq. (6.44). Empirical Eqs. (6.34) and (6.36) practically coincide,
which corroborates the reliability of these experiments.

Equation (6.38) for turbulent flow and Eq. (6.39) for an entire disk significantly
surpass Eqs. (6.33) and (6.34), respectively (see Fig. 6.5). Only in Eq. (6.40) [8],
exponent 0.249 at the Schmidt number is not equal to 1/3. The large scatter of
experiments around the approximation curve [8] is rather an evidence that the
exponent 0.249 is erroneous. As demonstrated in [30, 40], differences between the

curves by Eq. (6.40) plotted in the relation Shav=Sc
1=3 versus Reφ for different Sc

values revealed in experiments [8] is rather significant. Hence, Eq. (6.40) should be
discarded as too inaccurate.

The exponent for the Reynolds number Reφ in Eq. (6.35) diverges from those in
Eqs. (6.15) and (6.16). Equation (6.35) can be recast to make the exponent for Reφ
equal to 0.8. This yields for the entire disk [30, 40]

ShavSc
�1=3 ¼ 0:62Re1=2x;tr

Rex;tr
Reu

� �1=2

þ 2
20:6

0:0365Re0:8u 1� Rex;tr
Reu

� �1:3
" #

:

ð6:46Þ
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Fig. 6.4 Average Sherwood
numbers at high Schmidt
numbers [30]. Approximation
of experiments: 1—laminar
flow, Levich’s Eq. (6.8);
2—Eq. (6.33) for an entire
disk [7]; 3—Eq. (6.34) [7];
4—Eq. (6.36) [4];
5—Eq. (6.41) [10, 12].
Theoretical solution:
6—Eq. (6.44) [9]
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Figure 6.5 depicts curves 2 and 4 plotted by Eqs. (6.33) and (6.46), respectively.
Here again Reω,tr = 2.78 × 105, like in Eq. (6.33). Curves 2 and 4 in fact merge for
Reφ ≤ 9.0 × 105; deviations start to become visible for Reφ > 9.0 × 105.

For purely turbulent flow, Eq. (6.46) reduces asymptotically to the relations

Sh ¼ 3:65� 10�2Re0:8x Sc1=3; ð6:47Þ

Shav ¼ 3:65� 10�2 2
2:6

Re0:8u Sc1=3 ¼ 2:81� 10�2Re0:8u Sc1=3: ð6:48Þ

Figure 6.6 demonstrates that Eq. (6.35) [7] used at Sc = 2.28 predicts Sherwood
numbers close to the experiments [15, 18] for naphthalene sublimation in air and
their approximation Eq. (6.15). Equations (6.35) (curve 10) and (6.15) (curve 9)
correlate well at larger Reynolds numbers Reω = 0.6 × 106–2.0 × 106. Curve 11,
Eq. (6.47), lies in the vicinity of curve 10 at smaller Reynolds numbers
Reω ≤ 0.7 × 106. Equation (6.47) yields K1 = 0.048 at Sc = 2.28, which is only
6.7 % below the value K1 = 0.0512 in Eq. (6.15). Curve 12 by Eq. (6.37) goes
noticeably beyond experiments and approximation curve 9 in Fig. 6.6.

Dependence 13 in Fig. 6.6 plotted by experimental Eq. (3.14) [12] for transi-
tional flow at Sc = 2.28 conforms well to Eq. (6.14) and experiments [15].

To conclude, the most reliable empirical relations for developed turbulent flow
and an entire disk relying on the analysis made above are Eqs. (6.33)–(6.36).
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6.4 An Integral Method for Pr and Sc Numbers Much
Larger Than Unity

Model with a constant value D � 1: The thickness of the thermal (or diffusion)
boundary layer at very high Pr or Sc numbers is much smaller than the thickness of
the velocity boundary layer (i.e., D � 1:). Hence, in Eq. (3.40) obtained for Δ =
const. and Tþ 	 TþðyþÞ, all summands in the parentheses in its left-hand part but
a* tend to zero

D2nþ1a
 ¼ 4þ m
4þ mþ n


ða
 � 2b
 þ c
ÞPr�np : ð6:49Þ

Relying on Eq. (6.49), one can derive analytical solutions for constants Δ and K1

D ¼ 4þ m
4þ mþ n


1� 2D3

C2

� �� � 1
2nþ1

Pr�
np

2nþ1; ð6:50Þ

105 106

200

300

400

500

600
700
800
900

1000

2000

10

9

11
12

13

8

6

7

Sh

Reω

 - 1 

 - 2 

 - 3 

 - 4

 - 5 

Fig. 6.6 Local Sherwood numbers for naphthalene sublimation [30]. Experiments: 1—Sc = 2.28
[15]; 2—Sc = 2.4 [21]; 3—Sc = 2.4 [26]; 4—Sc = 2.44 [19]; 5—Sc not mentioned [18]. Empirical
Eq. (6.3): 6—laminar flow, nR = 1/2, K1 = 0.625 [20, 25, 26]; 7—laminar flow, nR = 1/2,
K1 = 0.604 [17]; 8—transitional flow, nR = 4, K1 = 2 × 10−19 [15]; 9—turbulent flow, nR = 0.8,
K1 = 0.0512 [15]. Developed turbulent flow, Sc = 2.28: 10—Eq. (6.35) [7]; 11—Eq. (6.47);
12—Eq. (6.37) [5]. Transitional flow, Sc = 2.28: 13—Eq. (3.14) [12]
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K1 ¼ K3
4þ m

4þ mþ n

1� 2D3

C2

� �� � �n
2nþ1

Pr1þnp n
2nþ1�1ð Þ; ð6:51Þ

where the coefficients C2 and D3 are described in the comments to Eqs. (2.68) and
(2.69).

The cumulative exponent at the Prandtl number in Eq. (6.51) for Pr ≫ 1 must be
equal to 1/3 (see Sect. 6.3), which yields the following expression for пp

np ¼ 2
3
� 2nþ 1
nþ 1

: ð6:52Þ

As a result, the constants K1 and K2 in view of Eq. (3.35) can be written as

K1 ¼ K3
4þ m

4þ mþ n

1� 2D3

C2

� �� � �n
2nþ1

Pr1=3; ð6:53Þ

K2 ¼ K3
4þ m

4þ mþ n

1� 2D3

C2

� �� � �n
2nþ1 n
 þ 2

2þ n
 þ m
Pr1=3: ð6:54Þ

To enable validations against electrochemical experiments, let us further treat the
Sherwood numbers rather than the Nusselt numbers and replace Pr with Sc.

In Fig. 6.7, Eq. (6.54) for Shav (at n* = 0) is validated against the empirical
Eq. (6.34) [7] and theoretical Eq. (6.44) [9]. Curves 5 and 6 predicted by Eq. (6.54)
at n = 1/7 and 1/9 lie 20–30 % below the curves 3 and 4 suggested by Eqs. (6.34)
and (6.44), accordingly. Such a discrepancy between theory and measurements is
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too high. In addition, the slope of the curves 5 and 6 (exponents at Reφ being 0.8
and 0.833, constants K2 being 0.0207 and 0.0126, accordingly) distinctly deviates
from the slope of curves 3 and 4 (exponents at Reφ being 0.87 and 0.9, constants K2

being 0.0207 and 0.126, accordingly). Therefore, some model approaches incor-
porated in the present integral method partially fail at high Pr and Sc numbers and
need to be improved. In Eq. (3.32) for the coefficient K1, the total exponent at the
Reynolds number can be increased, provided that the relative thickness Δ is
assigned to be a decreasing function of the local Reynolds number Reω.

Model with a variable value of Δ. The present integral method incorporates a
model, in frames of which a boundary layer consists two parts. In the vicinity of the
wall, a viscous and heat conduction sub-layers emerge, where the velocity and
temperature profiles are described by Eq. (2.62). In the main part of the boundary
layer (outside of the viscous sub-layer), velocity components are described by the
power-law functions (see Chaps. 2 and 3). If Prandtl and Schmidt numbers are
slightly different from unity, the thermal/diffusion and velocity boundary layers
have a thickness of the same order of magnitude [30, 40]. Hence, integration of
Eq. (2.23) for the thermal boundary layer has been performed over the entire
velocity boundary layer. Viscous and heat conduction sub-layers are not taken into
account in this integration, because they are negligibly thin in comparison with the
overall boundary layer thickness. Velocity profiles in Eqs. (2.17)–(2.19) are inte-
grated in the same way [31, 38, 39, 44, 45].

At very high Prandtl and Schmidt numbers, the boundary layer structure changes
drastically. A very thin thermal/diffusion boundary layer is fully incorporated inside
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Fig. 6.8 Radial velocity profiles in the turbulent boundary layer over a free rotating disk [30].
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the viscous sub-layer of the velocity boundary layer; here the radial velocity profile
varies linearly depending on the coordinate z (curve 4 in Fig. 6.8). This fact is taken
into account in theoretical models [5, 9–11, 32, 42] for large Pr and Sc numbers.

Next to the wall, the radial velocity vr varies as a linear function

vr ¼ swr
l

z ¼ swa

lð1þ a2Þ1=2
z ¼ qV2


a

lð1þ a2Þ1=2
cf
2
z ¼ að1þ a2Þ1=2xAcRe

nR
x z: ð6:55Þ

Here the constant пR is defined in Eq. (3.31).
The coordinate of the boundary of the viscous sub-layer zþ1 , where the linear

model (6.55) holds, can be written as

z1
d
¼ zþ1

cð1þ a2Þ1=2A1=2
c Re1=ð1þ3nÞ

x

; ð6:56Þ

where zþ1 = 12.54; 13.44; 14.23 and 15.09 for n = 1/7; 1/8; 1/9 and 1/10, respec-
tively (see Chap. 2). According to Eq. (6.56), this corresponds to z1/δ = 0.01–0.02.
Figure 6.8 confirms the validity of the model (6.55) up to z=d

u ¼ 0:2, z=d ¼ 0:02,
or D ¼ dT=d ¼ 0:02.

In the power-law model, the Stanton number is given by Eq. (2.64). In Sect. 2.4.3,

the model assumption zþ1T
�
zþ1

� �nT�1
Pr�nT ¼ Pr�np completes Eq. (2.64), whereas

validations of this model against experiments deliver the value of the exponent пp.
At high Prandtl or Schmidt numbers, the entire thermal/diffusion boundary layer

is included inside the viscous sub-layer of the velocity boundary layer. Hence, one
can assume that the relation between the coordinates zþ1 and zþ1T (viscous and heat
conduction sub-layer) can be recast as

ðzþ1T=zþ1 ÞnT�1Pr�nT ¼ KaPr
�np : ð6:57Þ

Validations of the model (6.57) against experiments for the Nu or Sh numbers
enable finding the coefficient Kα and exponent пp. Consequently, given n = nT,
Eqs. (2.66) and (2.67) turn to

St ¼ ðcf=2ÞD�nPr�npKa ¼ AcRe
�2n=ð3nþ1Þ
x D�nPr�npKa; ð6:58Þ

Nu ¼ StRexPrð1þ a2Þ1=2 ¼ Acð1þ a2Þ1=2RenRx D�nPr1�npKa: ð6:59Þ

Substituting Eqs. (2.53), (6.55), (6.58) and (6.59) into Eq. (2.20), one can
transform the latter to the following notation:

n
2ðnþ 2Þ ax

d
dr

rd2D2RenRx DT
	 
 ¼ KaD

�nPr�npRenRx mDT ; ð6:60Þ

where Eq. (2.77) determines the boundary layer thickness δ, while DT ¼ Tw � T1.
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The condition Δ = const. is inapplicable to Eq. (6.60), otherwise the exponents at
the variable r on the left- and right-hand sides of Eq. (6.60) are not equal to each
other.

Let us assume the parameter Δ to be a power-law function

DðrÞ ¼ CDr
k: ð6:61Þ

Substituting Eq. (6.61) into Eq. (6.60) and keeping in mind Eqs. (2.30), (2.77),
(2.78) and (3.31), one can finally obtain

D ¼ CD
Rek=2x ; ð6:62Þ

CD
 ¼ CD

Pr�np=ð2þnÞ; ð6:63Þ

CD

 ¼ Ka2ðnþ 2Þ=n
ac2ð1� nk þ n
 þ 2nRÞ

� �1=ðnþ2Þ
; ð6:64Þ

k ¼ �2m=ð2þ nÞ: ð6:65Þ

Equation (6.59) for the Nu number and the expression for Nuav can be written as
follows:

Nu ¼ K1Re
nR

x ; ð6:66Þ

Nuav ¼ K2Re
nR

u ; ð6:67Þ

nR
 ¼ nR þ mn=ð2þ nÞ; ð6:68Þ

K1 ¼ KaK3C
�n
D

Pr

1=3; ð6:69Þ

K2 ¼ 2K1=ð2nR
 þ 1Þ; ð6:70Þ

np ¼ ð2þ nÞ=3: ð6:71Þ

Equation (6.71) takes into account the fact that the total exponent at the Pr
number in Eq. (6.69) must be equal to 1/3.

Thus, in Eqs. (6.66) and (6.67), the total exponent nR* at the Reynolds number is
larger than that in Eq. (3.31) due to the additional term mn=ð2þ nÞ (see Eq. (6.68)).
This summand emerges as a result of the model with the variable parameter Δ
being a subsiding function of the coordinate r or, in other words, local Reω (see Eq.
(6.62)).

The values of the exponent nR* are: nR* = 0.84 at n = 1/7, and nR* = 0.868 at
n = 1/9. The latter agrees well with the exponent 0.87 at the Reφ number in the
experiment-based Eq. (6.35) [7]. To bring Eq. (8.73) at nR* = 0.868 into agreement
with Eq. (6.35), the constant Kα must be equal to Kα = 1.254, which yields at n* = 0
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Nu ¼ 1:52� 10�2Re0:868x Pr1=3; ð6:72Þ

Nuav ¼ 1:11� 10�2Re0:868u Pr1=3; ð6:73Þ

D ¼ 18:31Re�0:3158
x Pr�1=3: ð6:74Þ

In Fig. 6.7, curve 7 by Eq. (6.73) and curve 3 by Eq. (6.34) merge.
Equations (6.72) and (6.35) are also practically identical.

The parameter range in experiments [7] is Reφ = 0.278 × 106–1.8 × 106,
Sc = 930–10,320. At minimal values Sc = 930 and Reω = 0.278 × 106 [7], Eq. (6.74)
yields Δ = 0.036. Parameter Δ is a decreasing function of the Schmidt and Reynolds
numbers. Thus Δ = 0.015 at Sc = 10,320 and Reω = 0.278 × 106, whereas Δ = 0.02
at Sc = 930 and Reω = 1.8 × 106. This conforms to the limit D� 0:02 restricting
validity of the linear model of the radial velocity profile.

Model with variable Δ and profile T+ depending on Reω. In the theoretical
works [9–11, 42], the Nusselt number at high Pr values is described by a relation

Nu ¼ KNð1þ a2Þ1=2ðcf=2Þ1=2RexPr1=3; ð6:75Þ

where KN is an empirical constant; Eq. (2.82) at n = 1/7 was used for cf/2. Local and
average Nusselt numbers take a form of Eqs. (6.66) and (6.67), respectively, with

K1 ¼ KNð1þ a2Þ1=2A1=2
c Pr1=3; ð6:76Þ

nR
 ¼ ð2nþ 1Þ=ð3nþ 1Þ; ð6:77Þ

while the constants K1 and K2 are related with Eq. (6.70). At n = 1/7, Eq. (6.77)
brings nR* = 0.9.

Matching Eqs. (6.44) and (6.75) in view of Eq. (6.70), one can obtain
KN = 0.05986.

Substitution of Eq. (6.61) into the thermal boundary layer equation yields again
Eq. (6.62) for Δ with

CD
 ¼ CD

Pr�1=3; ð6:78Þ

CD

 ¼ KN2ðnþ 2Þ=n
ac2ð1þ 2mþ 2k þ n
 þ 2nRÞA1=2

c

" #1=ðnþ2Þ
; ð6:79Þ

k ¼ ð2n� 1Þ=ð3nþ 1Þ: ð6:80Þ

Setting the values n = 1/7 and n* = 0 into Eqs. (6.62), (6.78)–(6.80) one can
obtain
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D ¼ 12:54Re�1=4
x Pr�1=3: ð6:81Þ

At the lower experimental limit of Sc = 930 and Reω = 0.278 × 106 [7], the value
of Δ in view of Eq. (6.81) reduces to Δ = 0.037. For the conditions Sc = 10,320 and
Reω = 0.278 × 106: Δ = 0.016. For Sc = 930 and Reω = 1.8 × 106: Δ = 0.023. These
values for Δ conform to the data obtained by Eq. (6.74) and the upper limiting
boundary D� 0:02 of the validity of the linear model for the radial velocity.

According to the models with a constant and variable value of Δ, the function T+

in wall coordinates, defined by the power-law Eq. (2.23) at n = nT does not depend
on the Reynolds number, which is consistent with the results presented in [48, 49].

Model incorporating Eq. (6.75) results in the profile of T+ being a function of
Reω

Tþ ¼ ðzþÞnð1þ a2Þ�n=2c�nA�n=2
c C�n

D
K
�1
N Pr2=3Re�0:5ð2n2þnÞ=ð3nþ1Þ

x : ð6:82Þ

To conclude, a novel methodology for simulations of temperature/concentration
profiles for the values of Pr and Sc much larger than unity was outlined in this
section. An original integral method enabled evaluating a relative thickness Δ of
the thermal/diffusion boundary layers that has not been attained by the other
investigators. It was demonstrated that the model with a subsiding function Δ(r)
yields a new summand in the expression for the exponent at the Reynolds number,
which determines functional dependence of Nu or Sh numbers on the local radius
r. Consequently, theoretical relations obtained for Nusselt and Sherwood numbers
are in a good consistency with the selected empirical equations.
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Chapter 7
Convective Heat Transfer in a Pipe
Rotating Around a Parallel Axis

7.1 Experiments and Simulations of Different Authors

Introduction. Rotors of electrical machines used in railway transport, electric
generators, etc., are subject to internal heating due to high electromagnetic losses.
This involves installation of internal air cooling systems incorporating rotating
straight pipes [1–4]. This chapter is based on the results of the CFD simulations of
such a cooling geometry published in [5]. Cross sections of the studied electric
motor and respective CFD model are schematically depicted in Fig. 7.1.

Channels of an air cooling configuration are uniformly installed along the cir-
cumference inside the rotor (see Fig. 7.1a, b). Rotation of the pipes causes sec-
ondary flows, which are absent in non-rotating channels, provided that the inlet and
thermal boundary conditions are the same. Consequently, heat transfer and
hydraulic resistance cannot be predicted with the help of standard correlations used
for non-rotating pipes.

The geometrical configuration employed in [5] is shown in Fig. 7.1c. In channels
rotating parallel to the rotation axis, centrifugal buoyancy, and Coriolis forces
emerge [1, 3, 4, 6]. The Coriolis force is defined as a vector product of the absolute
flow velocity and the angular velocity of a rotating channel [3, 6, 7]. Non-collinear
vectors result in nonzero Coriolis forces, whose absolute value is defined by the
magnitudes of the flow velocity and angular velocity vectors, as well as angles
between them [3, 6, 7]. If flow develops through the entrance hydrodynamic length
of a pipe, velocity profiles are non-stabilized with rather high-velocity components
perpendicular to the vector of the angular velocity (and channel walls) resulting in
rather high Coriolis forces. In case where centrifugal buoyancy is negligible and
channel flow attains a fully hydrodynamically developed state, the streamwise
velocity component by far surpasses the radial and tangential components. Thus,
the axial and angular velocity vectors become collinear (Fig. 7.1c), whereas the
Coriolis force defined by their vector product tends to zero. An account for cen-
trifugal buoyancy is needed, if centrifugal acceleration and wall heat flux are
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sufficiently large to cause macro-vortex flow occupying the entire channel cross
section, with Coriolis forces only distorting the main secondary flow.

Rotation effects in the considered configuration are described by four similarity
criteria: (1) Rossby number Ro ¼ xD=�V , a ratio of the Coriolis forces (manifested
by the angular velocity ω) to inertia forces (represented by the average streamwise
flow velocity in the channel �V), while a characteristic length is the pipe diameter D;
(2) rotational Reynolds number Rex ¼ xD2

h=m; (3) eccentricity parameter H/Dh;
and (4) Rayleigh number RaH ¼ x2H3DhbDT=ð2kmÞ that stands for centrifugal
buoyancy. Channel cross section (circular, square, rectangular, or elliptic) also
makes a noticeable influence on fluid flow and heat transfer [3, 5–15]. For relatively
low Rayleigh numbers, buoyancy effects were vanishingly small. The coolant in
experiments considered in this chapter was air.

Circular pipes. In the work [6], heat transfer in turbulent flow over the initial
length of the pipe was investigated at ω = 280–2200 rpm and Re = 5000–20,000.
Experiments demonstrated that the local Nusselt number increased with increasing
x2H.

Experimental data [14] collapsed to an empirical relation (scatter ±14 %)

Nu ¼ 0:19Re0:56Re0:1x ; ð7:1Þ

Fig. 7.1 Studied electrical motor: a side view; b front view; c schematic representation of the
problem; d mesh at the inlet surface [5]
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where L/D = 19.3, H/D = 25.19, Re = 5500–33,000, Reω = 600–4000, Ro ≤ 0.75,
and ω = 280–2200 rpm. In the non-rotating pipe of the same geometry [14],
obtained that Nu0 ¼ 0:031Re0:79, which together with Eq. (7.1) yields [3]

Nu=Nu0 ¼ 6:129Re�0:23Re0:11x : ð7:2Þ

Experiments [12] were described by an equation (scatter ±12 %)

Nu ¼ 0:015Re0:78ðRex=8Þm; ð7:3Þ

with m = 0.25. However, authors [3] revealed that an exponent m = 0.2 ensures
better agreement with experiments [12]. Here, H/D = 24.02, L/D = 36.65 or
H/D = 48.03, L/D = 69.03, Re = 5000–20,000, and Reω = 120–1200 (ω = 0–
1000 rpm) with Ro ≤ 0.14.

Experimental data [9] were approximated by an empirical equation

Nu ¼ 0:018Re0:8 1� 2D=Lð Þ 1þ 0:6RoH=Dð Þ; ð7:4Þ

with H/D = 23.3, Re = (1–4.8) × 104, RoH/D ≤ 1.6, Ro ≤ 0.07, ωH = 0–30 m/s, and
ω = 0–18.33 s−1.

Equations (7.2) and (7.3) for Ro ≤ 0.14 were generalized in the following
form [3]

Nu ¼ Nu0ð1þ 28RoÞ0:5: ð7:5Þ

Experiments of Baudoin [8] yield the following empirical equations

Nu=Nu0 ¼ 1þ 0:46ðRoH=DÞ1:24; ð7:6Þ

Nu0 ¼ 0:023Pr1=3Re0:8 1þ ðD=LÞ0:7
� �

; ð7:7Þ

where H/D = 3, L/D = 11.6, Re = 3000–25,000, ω = 0–150 s−1, and Tref ¼
ðTi þ Tm�outÞ=2. With a 14 % increase in the eccentricity, heat transfer increased in
experiments by 7 % [8].

Square, rectangular, and elliptic pipes. In [13], experiments have been per-
formed in a square channel, which were described by an empirical equation
(scatter ±14 %)

Nu ¼ 0:011Re0:78Re0:11x ; ð7:8Þ

where L/Dh = 48, H/Dh = 32–48, Reω = 100–1000, and Re ≤ 2500. Equation (7.8)
predicts noticeably lower heat transfer rates than the one in a circular pipe, Eq. (7.3)
[12]. The exponent 0.78 for the Reynolds number in the range Re = 100–1000 is an
evidence of an earlier transition to turbulence excited by the rotation effects.
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Eccentricity effect was studied experimentally by Mori et al. [11] in a rectangular
channel. Eccentricity was equal to 6 in a fully heated channel and to 30 or 60 in a
channel with only a half cross section heated. Angular velocity was set to vary from
800 to 3000 rpm. At the eccentricity parameter equal to 6, Mori et al. [11] obtained
an empirical equation for the mean Nusselt number

Nu ¼ 2:1Re0:11x ReðDh=LÞ1:6
h i0:43

Ra0:021H ; ð7:9Þ

where Re = 2000–10,000 and RaH = 108–2.0 × 1010. The effect of the centrifugal
buoyancy was very weak. Mori et al. [11] assert that Eq. (7.9) agrees well with
experiments [6].

The 3D fluid flow and heat transfer were numerically modeled in the works of
[1, 4, 6, 10, 15] in channels with circular, square, rectangular, and elliptic cross
sections with the help of different CFD codes and RANS turbulence models. In
simulations of Mahadevappa et al. [10], the highest heat transfer enhancement was
attained in circular pipes, while elliptic channels are in an intermediate standing
between circular and rectangular channels.

To conclude, the empirical equations considered above quite noticeably disagree
with each other. The effect of the eccentricity parameter H/D was considered only in
the works of [8, 9], where values of H/D were very different, H/D = 23.3 in [9] and
H/D = 3 in [8]. Maximal angular velocity ω = 18.33 s−1 in [9] was by a factor of 8
smaller than ω = 150 s−1 in [8]. To compare, maximal angular velocity was 50 s−1 in
[15] and much lower in the rest of the referenced works. Thus, the only experiments
[8] were performed under conditions close to those studied in our CFD investigation
[5]. Also, perspectives of heat transfer enhancement at the expense of morphing of
the pipe cross section to fit into a real electrical motor remained not elucidated.

Therefore, the objective of the study presented here was to use the CFD meth-
odology to investigate the effects of the pipe cross-sectional design on the con-
vective heat transfer in airflow in the channels rotating parallel to a rotation axis.
Two types of pipes were studied having an elliptic cross section located radially or
circumferentially with respect to the rotation radius. A separate study was per-
formed on the effect of the flow angle of attack at the pipe inlet never investigated in
the published literature. Experiments of Baudoin [8] were employed to validate the
results of the numerical simulations.

7.2 Computational Model

Dimensions of the circular or elliptic pipe depicted in Fig. 7.1c are similar to a real
design of a railway transportation motor [5]. Air is fed into the pipe at a given mass
flow rate _m and inlet temperature Ti < Tw (Ti is equal to the ambient temperature).
The distance between the rotation and the pipe axes stands for the eccentricity,
denoted as H.
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7.2.1 Simulation Parameters

The pipe geometry was meshed using the preprocessor GAMBIT. The volume mesh
incorporated a 10-cell prism layer at the pipe wall, quad surface cells outside of the
boundary layer (Fig. 7.1d), and hexahedral cells forming the volume mesh. Having
validated four different volume meshes of 100,000–500,000 elements by way of
simulating the average surface heat transfer, it was proved that mesh independence
was attained with the mesh size of about 350,000 elements, consisting of 250 cells in
the axial, 17 cells in the radial, and 80 cells in the tangential (angular) direction.

In case if the interaction between stationary and rotating parts of geometry is
weak, it is suggested by FLUENT [16] to use a rotating reference frame approach.
In the new frame, the pipe becomes non-rotating, while Coriolis and centrifugal
terms emerge explicitly in the Navier–Stokes equations. This approach was used in
the present work.

Turbulence properties were constant at the inlet cross section and set to 10 % for
turbulence intensity and 10 for the turbulent viscosity ratio (see definitions in [16]).
These values were suggested by previous simulations of the entire motor [5]. Lower
levels of the turbulence properties cause underestimated values of theNusselt number.

The air temperature Ti at the inlet to the pipe and the wall temperature Tw were
constant: Ti = 323 K and Tw = 473 K. The mass flow rate _m was chosen based on
the measured data for a real engine (see below). Flow velocity at the inlet was
mostly normal to the inlet face. A non-normal inlet velocity was assigned while
investigating effects of the angle of attack. The range of variation of the angular
velocity of rotation was 0 ≤ ω ≤ 145 s−1.

Magnetic flux in the electric motor exhibits a strongly non-uniform 3D distri-
bution that results in a nonuniform surface distribution of the heat flux per unit area
qw in the cooling channels. If the longitudinal distribution of the wall temperature
Tw in straight channels used in the air cooling systems is moderately different from
the condition Tw = const., the cross-sectional averaged Nusselt number is close to
that for Tw = const. (see, e.g., [17]). This phenomenon is widely used both in
experimental measurements of the local Nu numbers by means of TLCs at arbitrary
variation of the local surface temperature (see [18, 19]) and in the CFD or analytical
modeling of heat transfer at the boundary condition Tw = const. (see [18, 20]).

Rayleigh numbers were estimated as RaH = 2 × 108, which in view of the
Reynolds number Re = 3500 in the present investigation delivers conditions with
vanishingly small centrifugal buoyancy effects [7, 11].

At the pipe outlet, a boundary condition of mass flow conservation was assigned.

7.2.2 Choice and Validation of the Turbulence Model

Five different turbulence models implemented in FLUENT were investigated in the
present study:
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• k-ε model with an enhanced wall treatment,
• k-ε RNG model with an enhanced wall treatment,
• realizable k-ε model with an enhanced wall treatment,
• standard k-ω model, and
• k-ω SST model.

All five models require a mesh with the first mesh point very close to the wall
(y+ *1). The mesh with 350,000 elements resulted in the wall values 0.5 ≤ y + ≤5
for all turbulence models [5].

The geometry used for the turbulence model testing was close to that used by
Baudoin [8]. Geometrical parameters, mass flow rate, and angular velocity of
rotation for our and Baudoin’s [8] configurations are specified in Table 7.1.

In our simulations [5], Ro number varied from 0.008 to 0.35 at Re = 14,000.
Calculations in order to select an appropriate turbulence model were made at
Ro = 0.088. In Table 7.2, the mean Nusselt numbers obtained from the simulations
are compared with the value 56.4 from Baudoin’s Eq. (7.6). The best agreement
delivered the standard k–ω turbulence model with a relative error not exceeding
10 %. Use of the rest of the models entailed much more significant deviations from
experiments (up to 60 % in the worst case). Hence, the standard k–ω turbulence
model was selected for further simulations.

As seen from Fig. 7.2, simulations based on the standard k–ω turbulence model
correlate well with Baudoin’s empirical Eq. (7.6) [8]. This enabled further use of
the developed CFD model in simulations of the effects of the pipe geometry and
inlet boundary conditions stated above in the objectives of the present research.

Table 7.1 Geometrical setup
in the benchmark experiments
and the validation tests [5]

Baudoin [8] Present configuration

D (mm) 24 25

H (mm) 72 82.5

L (mm) 280 285

_m (kg/s) 0.006 0.0066

ω s−1 0–150 0–145

L/D 11.66 11.4

H/D 3 3.3

Table 7.2 Mean Nusselt
numbers in simulations [5]
and experiments [8] for the
circular pipe

Nu Difference (%)

Baudoin [8] 56.4 –

k-ε standard 90.9 60.6

k-ε RNG 86.8 53.9

k-ε realizable 80.2 42.2

k-ω standard 51.8 −8.2

k-ω SST 66.1 17.2
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7.3 Circular Pipe: Effect of the Angle of Attack

Parameters of the model. The circular pipe involved in Sect. 7.2.2 in the simula-
tions (see Table 7.1) was employed also here as a reference pipe at Re = 3500 and
Ro = 2.24. This value of the Re number can be recalculated to a total mass flow rate
of _m ¼ 0:018 kg/s in 12 pipes with D = 0.025 m (i.e., _m ¼ 0:0015 kg/s in each
pipe) and an angular velocity of 2200 rpm chosen in conformance with specifica-
tions for an industrial motor prototype. Temperature boundary conditions were
Ti = 323 K and Tw = 473 K. Results for the reference case (velocity profile
orthogonal to the inlet) were juxtaposed against simulations of the cases with
different flow angle of attack or morphed cross-sectional shape.

Different angles of attack. This part of the study elucidates the effects of dif-
ferent inlet velocity profiles (Fig. 7.3) at the same total mass flow rate for all studied
cases.

Fig. 7.2 Mean Nusselt numbers versus the Rossby number, simulations using the standard k–ω
model (points) and Baudoin’s empirical Eqs. (7.6) and (7.7) (line) [5]

Fig. 7.3 Definition of the angle of attack; a negative angles; b positive angles [5]
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If the velocity of rotation of air is smaller than that of the pipes, the flow angle of
attack at the inlet is negative (Fig. 7.3). Axial vz and tangential vφ velocity com-
ponents of the airflow in the simulations were constant at the inlet cross section,
with the angle of attack β defined as vu ¼ vz tanðbÞ, vz ¼ 4 _m=qpD2. Six different
angles of attack were used: −80°, −58°, −28°, 28°, 58°, and 80°. An angle of 0°
means an orthogonally entering flow. Negative angles denote that the flow at the
inlet is contra-rotating with respect to the pipe.

Consequently, the axial velocity component at pipe inlet was calculated as

vz=ðxHÞ ¼ 0:134, while the resulting velocity Vtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2z þ v2u

q
¼ vz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2b

p
varied over the range Vtot ¼ 2:54�14:63 m s−1.

If an electrical motor is rotating, airflow fed to the cooling system is
non-orthogonal to the inlet of the rotating channels. The flow angle of attack (i.e.,
the shape of the velocity profile) influences the heat transfer inside the pipe either
enhancing or suppressing it.

Table 7.3 represents a comparison of the mean Nusselt numbers predicted for the
conditions with different inlet velocity profiles. As seen from Table 7.3, heat
transfer is enhanced only if the air at the inlet to the pipe is contra-rotating with
respect to the pipe wall (negative angle of attack). An increase in the mean Nusselt
numbers reached 31 % for the largest negative angle of attack −80°. When the
incoming flow and the pipe were corotating, mean heat transfer reduced in com-
parison with the reference case of β = 0°.

Figure 7.4a depicts the local cross-sectional averaged Nusselt numbers as a
function of the axial coordinate z� ¼ z=Dh in the rotating pipe (for the highest and
lowest angle of attack) and the stationary reference pipe. Variation of turbulence
intensity (also cross section averaged) in the streamwise direction is outlined in
Fig. 7.4b. Figure 7.4c represents results for the relative Nusselt number ðNu�
NurefÞ=Nuref for both angles of attack.

Turbulence intensity and local Nusselt numbers demonstrate similar trends:
Plotted against the reference case of β = 0°, they are augmented at negative and
decreased at positive angles of attack β (see Fig. 7.4). For the positive value β = 80°,
the local Nusselt number at z* > 1 demonstrates a rather weak variation, which
differs from the curves for the other values of β. For the negative angle β = −80° at
z* = 0–3.6 (initial hydrodynamic length), the Nusselt number is high and goes
beyond the stabilized value by up to 100 %.

Table 7.3 Influence of the
angle of attack on mean heat
transfer in the circular pipe [5]

Angle β Nu Difference (%)

−80° 53.1 31.1

−58° 45.8 13.1

−28° 43.7 7.9

Reference case 0° 40.5 –

28° 39.3 −2.9

58° 38.1 −5.9

80° 29.3 −27.7
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For all angles of attack, the Nusselt number noticeably decreased and reached for
z* > 6 nearly constant values of about 10–12. The FLUENT code predicts the
Nusselt number Nu0 = 9.5 at the end of a non-rotating pipe (zero rotation reference
case in Fig. 7.4a). One can conclude from here that rotation still causes a weak
effect on convective heat transfer at the end of the rotating pipe, whose length is
insufficient to ensure independency of the local Nusselt number from rotation,
which is otherwise expected to collapse to the non-rotating pipe value Nu0 = 9.5.
Dittus-Boelter equation for the developed flow in a non-rotating pipe [21]

Nu0 ¼ 0:023Re0:8Pr0:4 ð7:10Þ

predicts the value Nu0 = 14, which is about 47 % higher than Nu0 = 9.5 by
FLUENT. Authors [20] also noticed that the Nusselt number resulting from the
simulations with the help of FLUENT is smaller than those predicted by Eq. (7.10).

As seen from Fig. 7.4, once the flow reaches a certain axial location z*, it turns to
be quasi-stabilized, i.e., independent of the inlet velocity profile, with all the curves

Fig. 7.4 Effect of the angle of attack: a local Nusselt number; b turbulence intensity; c relative
difference of the Nusselt number with the reference case [5]
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asymptotically tending to a constant level lying still above the correspondent values
for a non-rotating pipe for identical Re numbers.

Quasi-stabilized flow with zero angle of attack at the inlet is subject to internal
swirl in the end of the pipe (see Fig. 7.5) that is apparently the reason for the
Nusselt number to surpass its benchmark value in the reference non-rotating pipe.

Only the initial length of the pipe is subject to tangible effects of rotation.
Figure 7.4b reveals high turbulence intensity levels for the negative angle β = −80°
right after the inlet to the pipe. The reason for this phenomenon is strong shear
stresses engendered by collision of the flow and the pipe wall due to their
contra-rotation at the pipe inlet.

Having passed the location z* = 6, the flow turns to be quasi-stabilized and
attains practically the same turbulence intensity levels for all cases depicted in
Fig. 7.4b. This testifies that the Rayleigh number (i.e., centrifugal buoyancy) has no
effect on convective heat transfer in the rotating pipe considered in the present
work.

Figure 7.6 depicts perspective and longitudinal views of the surface heat flux
distributions in the pipe for the reference and extreme cases of β = 80° and −80°. As
seen from Fig. 7.6, the heat transfer enhancement next to the inlet of the pipe lies
behind the overall heat transfer enhancement in the pipe. This conclusion conforms
to [6, 12], who believed that namely the flow pattern immediately downstream of
the pipe inlet determines overall peculiarities of convective heat transfer in the pipe.
The effect of the angle of attack on heat transfer in comparison with the reference
case exhibits itself only next to the pipe inlet, where local heat transfer rates are
highest.

Fig. 7.5 Flow at the outlet of the rotating circular pipe with β = 0° (reference case):
a quasi-stabilized swirling flow, b temperature distribution [5]
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Strong variation of the local surface heat transfer seen in the cases with β = −80°
and 0° disappears in the case with β = 80° representing the worst cooling case
(Fig. 7.6).

Positive angle of attack β (corotating flow and pipe wall) entails noticeable
diminution of the local heat transfer next to the pipe inlet, because of the much
weaker flow impingement onto the pipe wall. The difference in the circumferential
velocities of the air and pipe wall next to the inlet is rather small, which causes
small shear stresses and heat transfer on the pipe wall. On the contrary, a negative
angle of attack β (contra-rotating flow and pipe wall) causes stronger air
impingement onto the pipe wall and higher heat transfer.

Fig. 7.6 Influence of the angle of attack on the local surface heat transfer [5]
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To conclude, the efficiency of the pipe cooling is significantly affected by the
angle of attack of the flow fed into the pipe. The incoming flow and the pipe itself
must be contra-rotating to boost the impingement effects that entail shear stress and
heat transfer augmentation next to the pipe inlet. In doing so, heat transfer enhances
by 30 % at the largest angle of attack of β = −80° of those studied in this work. In
practice, contra-rotation of flow and pipe at the inlet can be ensured via installing
flow deflectors.

7.4 Elliptic Pipe

Convective heat transfer in a cooling system can be enhanced by replacing the
circular cross section of the pipe with an elliptic one. Elliptic cross section was
positioned circumferentially or radially, i.e., perpendicular or aligned with the
rotation radius (Fig. 7.7), with the hydraulic or equivalent diameter of the pipe
retained unchanged.

Fig. 7.7 Schematics of the circular and both elliptic cross sections (a); path lines at the pipe outlet
of elliptic pipes with the fixed hydraulic diameter for the circumferential pipe (b) and radial pipe
(c) [5]
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7.4.1 Fixed Hydraulic Diameter

It was assumed that an elliptic pipe and the reference circular pipe (Table 7.1) have
the same hydraulic diameter, which in the elliptic pipe was defined as
Dh ¼ 4S=Pe ¼ 25 mm. Two basic dimensions of the ellipse a and b, shown in
Fig. 7.7a, were assigned to be a = D = Dh = 25 mm and b = 9.45 mm. If the
hydraulic diameter Dh remains unchanged, the elliptic area S ¼ pab, as compared
to circular area S ¼ pa2=4, enlarged by a factor of 4b=a ¼ 1:512. As a result, the
elliptic perimeter (representing the contact surface between the flow and the pipe)
P ¼ 4S=Dh ¼ 4S=a ¼ 4pb also enlarged compared to the circular pipe perimeter
P ¼ pD ¼ pa by a factor of 4b=a ¼ 1:512. In a single pipe, the total mass flow rate
was the same 0.0015 kg/s. The eccentricity parameter also remained unchanged
H = 82.5 mm (Table 7.1).

Streamwise distributions of the local cross-sectional averaged Nusselt numbers
and turbulence intensity in the elliptic pipes are plotted in Fig. 7.8a, b, c against

Fig. 7.8 Comparisons between the two ellipses and the reference case of the circular pipe, with
the hydraulic diameter fixed: a local Nusselt numbers; b turbulence intensity; c relative difference
from the reference case [5]
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those in the reference circular pipe. It is evident that in elliptic pipes, the flow at
z* > 9 turns to be quasi-stabilized, which occurs at a larger distance from the inlet
than in circular pipes. All curves flatten asymptotically to constant levels that are
larger than those in circular pipes.

The functions of the local Nusselt numbers in Fig. 7.8a, c in both elliptic pipes
look differently from those in the reference circular pipe. Next to the pipe inlet, the
turbulence intensity is rather high (Fig. 7.8b). The highest turbulence intensity can
be observed at z* > 3 in the pipe with a circumferential elliptic cross section.

As mentioned above in the introduction, over the entrance length of a pipe, the
radial and tangential velocities are rather large because of the initial flow swirl,
which engenders large Coriolis forces.

Streamlines and temperature fields at the outlets of circumferential and radial
elliptic pipes are shown in Figs. 7.7 and 7.9. Approaching the outlet of the elliptic
rotating pipes flow turns to be quasi-stabilized and is accompanied with secondary
flows caused by Coriolis forces. The nearly constant Nusselt number and turbulence
intensity here are larger than those in stationary pipes. Mixing is better in the
circumferential elliptic pipe (Fig. 7.7b), and air is in good contact with the pipe. On
the contrary, three contra-rotating vortices emerge in the radial elliptic pipe with the
middle vortex isolated (Fig. 7.7c). Therefore, air temperature fields are more uni-
form in Fig. 7.9a than in Fig. 7.9b, where air is involved in a closed circulation loop
in the center of the channel. In the radial elliptic pipe, shear stresses are smaller due
to the effects of three contra-rotating vortices [5].

Fig. 7.9 Temperature distributions at the pipe outlet in elliptic pipes with the fixed hydraulic
diameter: a circumferential pipe; b radial pipe [5]

184 7 Convective Heat Transfer in a Pipe Rotating Around …



As seen from Table 7.4, the mean Nusselt number increased in both circum-
ferential and radial elliptic pipes in comparison with the circular reference pipe.
However, the circumferential elliptic pipes increased the heat transfer by 10.0 %,
i.e., more efficiently, than the radial elliptic pipes, which provide only 2.8 % heat
transfer enhancement.

The overall heat transfer depends on a product of the heat transfer coefficient α
and a channel surface S contacting the flow. In the case of an elliptic pipe, the
contact surface is enlarged by 51.2 % as compared to the circular pipe. Hence, the
product α · S presented in Table 7.4 demonstrates 54.8–66.4 % increase in the radial
and circumferential elliptic pipes, respectively, (compared to the circular pipe). This
increase entails improvement of the entire cooling system efficiency.

However, the use of the elliptic pipes of the enlarged cross section instead of the
circular pipes complicates their packaging in a motor in view of the necessity to
ensure acceptable mechanical strength and electromagnetic flux distribution. As a
result, only eight elliptic pipes can be installed in a real rotor instead of 12 circular
pipes. Table 7.4 presents the data for overall amount of heat, in which cooling
systems of 12 circular, 8 radial, and 8 circumferential elliptic pipes are able to
remove from the rotor. As compared to the cooling system of 12 circular pipes,
overall heat removal increases by only 3.1 % for the arrangement with 8 radial
elliptic pipes and by 10.8 % for the configuration of 8 circumferential pipes. To
remind, the mass flow rate _m ¼ 0:0015 kg/s in a single elliptic pipe remained
identical to that in the circular pipe. Thus, in the cooling configuration of 12 circular
pipes, the total mass flow rate was _m ¼ 0:018 kg/s in contrast to _m ¼ 0:012 kg/s in
the cooling configuration consisting of 8 elliptic pipes.

To correctly estimate the performance of the cooling configuration with 8 elliptic
pipes, the overall mass flow rate through them must be enlarged also to
_m ¼ 0:018 kg/s, i.e., to _m ¼ 0:00225 kg/s through a single pipe. Table 7.5 shows

Table 7.4 Cross-sectional geometry effect on heat transfer (hydraulic diameter fixed) [5]

Mean
Nu

Difference
in Nu (%)

h Contact
surface S

h · S Difference in
h · S (%)

Circular pipe 40.5 – 38.7 0.0224 0.87 –

Circumferential ellipse 44.5 +10 42.6 0.0338 1.44 +66.4

Radial ellipse 41.6 +2.8 39.7 0.0338 1.34 +54.8

Total heat transfer, 12
circular pipes

38.7 0.2688 10.40 –

Total heat transfer, 8
circumferential ellipses

42.6 0.2704 11.52 +10.8

Total heat transfer, 8 radial
ellipses

39.7 0.2704 10.72 +3.1
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that for the mass flow rate _m ¼ 0:00225 kg/s in a single pipe, the heat transfer
enhancement was 99 % in the circumferential and 79.3 % in the radial elliptic pipe
in contrast to the circular pipe with _m ¼ 0:0015 kg/s. The total cooling efficiency in
the configuration with 8 elliptic pipes at _m ¼ 0:018 kg/s (whose cumulative heat
transfer surface is practically the same as that in the configuration of 12 circular
pipes) is 32.6 % for circumferential and 19.3 % for radial elliptic pipes.

To recall, in an elliptic pipe, the cross-sectional area S is 1.512 times larger than
that in a circular pipe. In view of the fact that the mass flow rate _m ¼
q�VS ¼ 0:00225 kg/s in an elliptic pipe is 1.5 times larger than _m ¼ 0:0015 kg/s in a
circular pipe, one can conclude that the mean axial velocity �V is identical in both
pipe geometries. Hence, the axial Reynolds number Re = 3500 is also identical,
since the hydraulic diameter and the mean axial velocity remain the same.
Therefore, one can expect that the pressure losses in a circular pipe with
_m ¼ 0:0015 kg/s must be equal to those in an elliptic pipe with _m ¼ 0:00225 kg/s.
The Blasius equation for the friction factor for fully developed flow in stationary

pipes valid for Re = 3000–100,000 [22]

f0 ¼ 0:316Re�0:25 ð7:11Þ

delivers the value f = 0.041 for _m ¼ 0:0015 kg/s. CFD simulations yield f = 0.047
for the stationary circular pipe with _m ¼ 0:0015 kg/s, and f = 0.049 for the sta-
tionary elliptic pipe with _m ¼ 0:00225 kg/s, which results in an only 4 % different
value.

Thus, a calculation of the cooling system with 8 elliptic pipes having 51.2 %
enlarged cross section disclosed the following disadvantages as compared to the
reference configuration of 12 circular pipes: (a) reduced mechanical strength;
(b) packaging problems, as elliptic pipes occupy locally more space; (c) larger
nonuniformity of the circumferential temperature variation; and (d) deteriorated
environment for magnetic flux circulation.

Table 7.5 Heat transfer in the elliptic pipes with the increased mass flow rate _m ¼ 0:00225 kg/s
providing the same pressure drop [5]

Mean
Nu

Difference
in Nu (%)

α Contact
surface S

α · S Difference in
h · S (%)

Circumferential ellipse 53.3 +31.6 51 0.0338 6.05 +99.0

Radial ellipse 48 +18.5 45.9 0.0338 5.45 +79.3

Total mass flow rate, 8
circumferential ellipses

51 0.2704 13.8 +32.6

Total mass flow rate, 8
radial ellipses

45.9 0.2704 12.4 +19.3
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7.4.2 Fixed Equivalent Diameter

Drawbacks of the cooling configuration with 8 elliptic pipes mentioned above served
as a motivation for an investigation of a cooling system with 12 elliptic pipes, whose
cross-sectional area is identical to that of the reference circular pipe. This means
keeping the equivalent diameter of the pipe De ¼

ffiffiffiffiffiffiffiffiffiffi
4S=p

p
unchanged and morphing

it from a circular to an elliptic shape. Keeping in mind that the circular and the
elliptic cross-sectional areas must be equal S ¼ pD2=4 ¼ p0:0252=4 ¼ pab, the
characteristic dimensions a and b of the ellipse (Fig. 7.7a) were chosen to be
a = 16 mm and b = 9.77 mm.

Elliptic pipes were located circumferentially and radially, and the mass flow rate
was set to be _m ¼ 0:0015 kg/s. The elliptic cross section of the pipe being the same
as that of a reference circular pipe provides a 6 % larger perimeter (i.e., the contact
surface).

Figure 7.10a–c depicts functions of the local cross-sectional averaged Nusselt
numbers in both elliptic pipes and the reference circular pipe. One can conclude

Fig. 7.10 Comparisons between two elliptic and reference circular pipes of the same equivalent
diameter; a local Nusselt numbers; b turbulence intensity; c relative difference from the reference
case [5]. Nusselt number is based on the equivalent diameter De
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again that the higher turbulence intensity in the circumferential elliptic pipe ensures
better performance than that in the radial elliptic pipe for z* > 2.7. The Nusselt
numbers level off to quasi-stabilized values near to the pipe outlet.

Path lines and temperature fields projected to the outlet of circumferential and
radial elliptic pipes are shown in Figs. 7.11 and 7.12. Distinct secondary flows
persist again over the span of the quasi-stabilized flow that sets on near to the outlet
of the elliptic rotating pipes, which cause the Nusselt numbers and turbulence
intensity to surpass those in non-rotating pipes though at a constant quasi-stabilized
level.

Contrary to flow pattern in Fig. 7.7, only a single vortex in the cross sections of
circumferential and radial elliptic pipes is visible in Fig. 7.11, because the
cross-sectional shapes in Fig. 7.11 are closer to circular than those in Fig. 7.7.

In the circumferential elliptic pipe (Fig. 7.12a), the temperature field at the outlet
cross section is more uniform than that of the vertical elliptic pipe (Fig. 7.12b),
which is more symmetrically distributed than that in Fig. 7.9b. This phenomenon is
apparently caused by the origin of a single vortex in Fig. 7.11b and three vortices in
Fig. 7.7c.

Fig. 7.11 Path lines at the pipe outlet of the elliptic pipes with the fixed equivalent diameter:
a circumferential pipe; b radial pipe [5]

Fig. 7.12 Temperature distributions at the pipe outlet of elliptic pipes with the fixed equivalent
diameter: a circumferential pipe; b radial pipe [5]
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Computations of the mean Nusselt number and the product of the heat transfer
coefficient α and the wetted surface S are listed in Table 7.6 for the circular and both
elliptic channels. With a fixed equivalent diameter, elliptic geometry brings larger
improvement of heat transfer, than in the circular one.

A circumferential elliptic pipe displays again the best performance: 29.6 %
enhancement of Nu and 44.8 % for the total cooling efficiency α · S. The radial
elliptic pipe yields only 7.9 % enhancement of Nu and 20.7 % of α · S. The rate of
enhancement of the total heat transfer α · S in a single pipe stays in force also for the
entire cooling configuration (as all of them consist of 12 pipes).

The pressure losses in the elliptic and circular pipe are the same, once the
equivalent diameter and the mass flow rate do not change [22]. CFD simulations
yield the friction factor of f = 0.049 in a non-rotating elliptic pipe for
_m ¼ 0:0015 kg/s (Table 7.7). This deviates from the value of f = 0.047 in a
non-rotating circular pipe (Table 7.7) by 4 %. Thus, the pressure losses in the
considered pipe geometries depend only on the mass flow rate.

From the point of view of the packaging, the cooling system configuration with
12 elliptic pipes, whose cross section has undergone only morphing and is equal to
that of the reference circular pipes, is advantageous. These elliptic pipes can be
installed in the same locations inside the real rotor, which helps to avoid the
problems described above. To conclude, the use of elliptic pipes instead of the

Table 7.6 Effect of a cross-sectional shape on heat transfer (equivalent diameter fixed) [5]

Mean
Nu

Difference
in Nu (%)

α Contact
surface S

α · S Difference in
α · S (%)

Circular pipe 40.5 – 38.7 0.0224 0.87 –

Circumferential
ellipse

52.5 +29.6 53.3 0.0237 1.26 +44.8

Radial ellipse 43.7 +7.9 44.3 0.0237 1.05 +20.7

Table 7.7 Calculated friction factors [5]

Configuration Friction factor f

Stationary circular pipe ( _m ¼ 0:0015 kg/s) 0.047

Rotating circular pipe ( _m ¼ 0:0015 kg/s) 0.24

Fixed Dh, stationary ellipse ( _m ¼ 0:0015 kg/s) 0.060

Fixed Dh, rotating circumferential ellipse ( _m ¼ 0:0015 kg/s) 0.788

Fixed Dh, rotating radial ellipse ( _m ¼ 0:0015 kg/s) 0.516

Fixed Dh, stationary ellipse ( _m ¼ 0:00225 kg/s) 0.049

Fixed Dh, rotating circumferential ellipse ( _m ¼ 0:00225 kg/s) 0.408

Fixed Dh, rotating radial ellipse ( _m ¼ 0:00225 kg/s) 0.289

Fixed De, stationary ellipse ( _m ¼ 0:0015 kg/s) 0.049

Fixed De, rotating circumferential ellipse ( _m ¼ 0:0015 kg/s) 0.362

Fixed De, rotating radial ellipse ( _m ¼ 0:0015 kg/s) 0.276
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circular pipes is beneficial in terms of the cooling system efficiency. From the
technological point of view, the most efficient configuration is a circumferential
elliptic pipe, whose equivalent diameter equals to that of a reference circular pipe.

7.4.3 Friction Factor in Rotating Pipes

Computed friction factors in circular and elliptic pipes of both types, rotating and
non-rotating, are listed in Table 7.7. Based on these results, one can draw the
following important conclusions.

It was proved above that the friction factor remained practically unchanged, once
the cross section was subject to morphing (circular toward elliptic) and the axial
Reynolds number (based on the hydraulic/equivalent diameter and average axial
flow velocity) was kept identical Re = 3500: f = 0.047 for _m ¼ 0:0015 kg/s in a
non-rotating circular pipe, f = 0.049 for _m ¼ 0:00225 kg/s in a non-rotating elliptic
pipe with the same Dh and f = 0.049 for _m ¼ 0:0015 kg/s in a non-rotating elliptic
pipe with the same De.

In a non-rotating elliptic pipe with the same Dh and _m ¼ 0:0015 kg/s, the friction
factor exhibits an increased value f = 0.06, which can be explained in the following
way. According to the Blasius Eq. (7.11), the friction factor f0 (not the dimensional
pressure losses) behaves as an increasing function for the decreased Reynolds
number Re = 2333, which corresponds to the elliptic pipes with the same Dh and
_m ¼ 0:0015 kg/s. The friction factor is defined as f ¼ DPDh=ð0:5q�V2LÞ; for the
compared cases, Dh and L are identical, while the ratio of the mean axial velocities
�V in the elliptic and circular pipe is 2333/3500 = 0.667 (Reynolds numbers are
Re = 2333 and 3500, respectively). Hence, the ratio of the absolute pressure losses
is DPRe¼2333=DPRe¼3500 ¼ ð0:06=0:047Þ � 0:6672 ¼ 0:567.

Table 7.7 shows that the friction factor drastically grows up in a rotating pipe. In
a circular rotating pipe and _m ¼ 0:0015 kg/s, the friction factor f is 5.1 larger as
compared to a non-rotating pipe.

In elliptic pipes with the same Dh and unchanged Reynolds number Re = 3500
(in other words, for a larger cross section and _m ¼ 0:00225 kg/s), the friction factor
is 6.1 time larger in radial elliptic pipes and 8.7 times larger in circumferential
elliptic pipes as compared to non-rotating circular pipes.

An analogous trend demonstrates elliptic pipes with the same De. In comparison
with non-rotating circular pipes, the friction factor is 5.9 times larger for radial
elliptic pipes and 7.7 times larger for the circumferential elliptic pipes.

To conclude, in a cooling system with 12 elliptic pipes obtained via morphing of
the reference circular pipe and keeping the cross-sectional area unchanged, for the
given Reynolds number Re = 3500 more preferable circumferential elliptic pipes
ensured 45 % of the total heat transfer augmentation, which is the highest among all
studied geometries. The friction factor in radial rotating elliptic pipes increased up
to maximum 20 % larger than that in circular rotating pipes. Respective growth of
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the friction factor in the circumferential rotating elliptic pipes was from 51 % (for
the same De) to 70 % (for the same Dh) larger than that in circular rotating pipes.
This confirms the tendency of the highest heat transfer augmentation exhibited by
the circumferential elliptic rotating pipes. The heat transfer augmentation in rotating
pipes is accompanied with the growth of the pressure losses. At the same axial
Reynolds number and rotation rate, the circumferential elliptic rotating pipe for the
same De exhibited a friction factor growth by 11.3 % smaller than that in the
circumferential elliptic rotating pipe for the same Dh (in radial rotating elliptic pipes
for the same De and the same Dh, this difference is equal to 4.4 %).
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Chapter 8
Varying Aspect Ratio Two-Pass Internal
Ribbed Cooling Channels with 180° Bends

8.1 Experiments and Simulations of Different Authors

Curvilinear flows in turns and bends represent a particular class of rotating flows,
where the emergence of centrifugal and Coriolis forces, resulting from streamline
curvature in a stationary configuration, increases heat transfer and pressure losses.
Ribs installed in such channels cause an additional increase in the heat transfer and
pressure losses. A schematic of a typical air cooling system of the gas turbine
blades including ribbed two-pass channels is depicted in Fig. 8.1. This chapter
elucidates the ways of optimization of such channels and describes the materials
published in [1–6] from a unified position.

The increase in the thermodynamic efficiency and specific power is a permanent
trend in modern gas turbine development. This requires establishing very high
pressures and temperatures at the inlet to a gas turbine. As a result, the melting point
of the turbine blade material is far below the gas temperatures in the hot pass.
Because of this, internal cooling systems involving ribbed multi-pass channels and
180° bends are used to protect the material of the blades. Ribs are installed in the
cooling passages under 30°–90° with respect to the main flow. Packaging restric-
tions inside the blade cause the height-to-width aspect ratio of a cooling channel to
vary from 1:4 to 4:1, often being different in the neighboring passes of the channel.
A schematic of a typical ribbed two-pass cooling channel including its geometrical
parameters is depicted in Fig. 8.2.

All deviations of the cooling geometry from a smooth straight channel with a
constant quadratic aspect ratio cause a significant increase in the pressure losses.

Flows in multi-pass smooth channels demonstrate emergence of impingement,
recirculation, and flow separation zones induced by 180° bends, which lead to high
thermal gradients and increased pressure losses. Authors [7–21] revealed significant
heat/mass transfer augmentation in the bend and entrance region of the outlet pass
due to secondary flows induced by centrifugal force.
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In the ribbed multi-pass channels, rib location affects flow pattern, heat transfer
rate, and pressure losses. The flow undergoes separation and reattachment after a
rib. Strong secondary flows look as macro-vortex pairs and emerge behind the ribs
inclined 30°–70° toward the main flow. Secondary flows noticeably augment the
heat transfer; however, pressure losses grow even more significantly.

In sufficiently long ribbed channels, three-dimensional periodic fluid flow, and
heat transfer patterns emerge, which repeat themselves over subsequent conven-
tional one-rib periodic segments [1, 2, 22–27], etc.

Experiments [28–30] revealed that 45° and 60° ribs ensure higher thermohy-
draulic performance than 30° and 90° ribs, whereas the optimum rib spacing is
p/e = 10 (see Fig. 8.2). There exists an optimal rib height providing rather high heat
transfer augmentation together with acceptable rise in the pressure loss [31–33].
Having analyzed experiments of different authors and original simulations,
Shevchuk et al. [3] recommended the rib height e/Dh = 0.1 as optimal for the aspect
ratios H/W = 4:1 to 1:1, which conforms with conclusions of other authors.

A channel with the aspect ratio H/W = 4:1 demonstrates the best performance,
which decreases with the aspect ratio [3, 34]. In [3, 7, 34–39] it has been dem-
onstrated that thermal efficiency is a decreasing function of the Reynolds number,

Fig. 8.1 Air cooling
configuration of a gas turbine
blade including ribbed
two-pass channels (modified
Fig. 1.25 from [60])

Fig. 8.2 Geometrical
parameters of a ribbed
two-pass channel [2]

194 8 Varying Aspect Ratio Two-Pass Internal Ribbed …



whereas the developed relations for the Nusselt number and friction factor depend
on the parameters p/e, e/Dh, and Re.

In the bend region, centrifugal effects cause a radial pressure gradient, whereas
the static pressure is higher close to the tip wall. Centrifugal forces do not com-
pensate the radial pressure gradient in the boundary layers over the top and bottom
walls, where the fluid flows toward the divider wall separating the inlet and outlet
passes. To close the vortex circulation trajectory, the fluid near the center plane
flows back to the tip wall (see, e.g., the PIV measurements [10, 14, 18]). These
vortices were named Dean vortices. Both in smooth and ribbed channels, Dean
vortices entail regions of very high heat/mass transfer in the bend and the entrance
to the outlet pass, see, for example, the experiments [40–42]. Local flow
impingement causes high heat/mass transfer also on the tip wall (90° turn) and on
the external sidewall next to the bend (180° turn).

Experiments in a two-pass ribbed channel (in-line ribs inclined to the outer wall
in the inlet pass and to the inner wall in the outlet pass) [40] revealed that the spots
of high heat/mass transfer on the tip and outer sidewall shrink, since the Dean
vortices conflict with the rib-induced macro-vortices emerging in the inlet pass. On
the contrary, ribs at the entrance to the outlet pass reinforce Dean vortices.
Nevertheless, downstream of the entrance rib effects destroy the Dean vortices
rather fast. Hence, the curvature influence in the bend must be subtracted from the
total heat transfer augmentation to clarify the net effects of the ribs.

Channels with different cross sections of the inlet and outlet passes have been
less intensively studied in the past. Iacovides et al. [41] performed measurements,
while Lucci et al. [43] carried out CFD simulations in a smooth channel with a 180°
bend, an inlet pass with H/W = 1:1 (30 mm × 30 mm) and an outlet pass with
H/W = 1:2 (30 mm × 60 mm). Though all physical effects here are similar to those
in a channel with a constant cross section, doubled cross section in the outlet pass
causes strong flow deceleration and more distinct separation and an extended
recirculation zone over the divider wall at the entrance to the outlet pass.

The distance Wel from the tip to the divider wall severely affects the fluid flow
and heat transfer pattern in the bend and in the entrance to the outlet pass. In
experimental and numerical investigations in a smooth two-pass channel with
H/W = 4:1, the distance Wel varied over a rather wide range. Increase in the distance
Wel up to a point W/Wel = 1.25 results in reduced overall pressure losses owing to
more unrestrained thoroughfare conditions for the flow in the bend. A further
increase in Wel constitutes favorable conditions for emergence of a recirculation
region near the tip wall, which results in a new trend of the increase in the pressure
loss accompanied subsequent heat transfer augmentation. Joint effects of the
varying channel’s cross section and the tip wall distance were first investigated in
[2, 4–6] are described below.

Many authors performed CFD simulations of convective heat transfer in
two-pass channels with 180° bends. Authors [43] simulated the experimental
conditions [41] for Re = 100,000. Low Reynolds number k-ε, nonlinear k-ω, and
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RSM turbulence models used in [41] performed similarly and yielded results
deviating from experiments by 10–100 % in different regions of the channel. In
[44], the authors successfully employed an unsteady RANS approach for
Re = 150,000. The steady RANS approach used in [3, 16] jointly with the realizable
k-ε turbulence model and an enhanced wall treatment demonstrated good perfor-
mance in smooth and 45° ribbed channels at Re = 100,000. High- and
low-Reynolds number k-ε models, and V2F k-ε model provided good results in a
rectangular 90° bend [45]. DES and LES approaches employed in [46, 47] are
complicated and require enormous computing capacities as compared to RANS
models and currently enable simulations for Re < 30,000, whereas in the modern
cooling systems for heavy duty gas turbines the Reynolds numbers reach up to
Re = 200,000 and higher.

The choice of the channel aspect is defined by packaging conditions, i.e., the
channel location in the blade: a channel with a high aspect ratio H/W is placed in the
leading edge or mid-chord of the blade, while a low aspect ratio channel is placed in
the trailing edge (see Fig. 8.1). It is therefore important to study the effect of
different aspect ratios of the multi-pass cooling channels on heat transfer and
pressure drop, as well as the effect of the reduction in the hydraulic diameter of the
inlet pass on heat transfer in the outlet pass.

The first objective of the investigation presented in this chapter was to simulate
the flow field and heat transfer in a ribbed periodic segment of different aspect ratios
H/W = 4:1, 2:1 and 1:1 [3]. The second objective was a simulation of a two-pass
channel with a 180° bend, the inlet pass having H/W = 2:1 [4] or H/W = 3:1 [5, 6],
the outlet pass having H/W = 1:1, with 45° ribs with e/Dh = 0.1 and p/e = 10 in both
passes, and to validate numerical results against experimental data [1, 2]. The study
also sought to (a) analyze effects of the Dean vortices and flow acceleration in the
bend in a smooth channel separately from the effects of the ribs and (b) study the
effect of changing the tip wall distance on the pressure loss and surface heat transfer
to find an optimal value of Wel.

8.2 Single Periodic Ribbed Segment with H/W = 4:1, 2:1
and 1:1

The objectives of the study [3] described below, were to simulate:

(a) Convective heat transfer in a single periodic segment of the channel to validate
in detail a CFD model via comparisons with experiments of different authors.

(b) Aspect ratios of H/W = 4:1, 2:1 and 1:1 at Re = 100,000, e/H = 0.025 to 0.1,
p/e = 10 and 5 with square 45° ribs installed in-line on the top and bottom
walls of a channel.

(c) Effects of the rib height and pitch.
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8.2.1 Geometry and Flow Parameters

Two geometries of a periodic segment were investigated in the simulations with an
inlet cross section (a) perpendicular to the sidewalls (Fig. 8.3a and b) aligned with
45° ribs (Fig. 8.3b). Structured grids were generated for the geometry in Fig. 8.3b,
and hybrid grids for both geometries in Fig. 8.3. Detailed variant simulations
proved that analogous grids in both geometries delivered results of similar quality.

In-line setup of the ribs on the top and bottom walls enabled modeling just a half
of the computational volume and setting the upper surface to be a symmetry plane
(Fig. 8.3).

In case of the H/W = 4:1 aspect ratio, dimensions of the periodic segment were
W = 42 mm, H = 168 mm, H* = H/2 = 84 mm, Dh = (8/5)W = 67.2 mm, relative rib
heights e/H = 0.025, 0.03, 0.04, 0.05, and 0.1 or e/Dh = 0.0625, 0.075, 0.1, 0.125,
and 0.25. Such a channel was investigated experimentally in [48, 49].

In case of the H/W = 2:1 aspect ratio, the periodic segment had dimensions
W = 75 mm, H = 150 mm, H* = H/2 = 75 mm, Dh = 100 mm and the relative rib
heights e/H = 0.027, 0.045, 0.067, 0.08, and 0.1 or e/Dh = 0.04, 0.067, 0.1, 0.12,
and 0.15.

For the H/W = 1:1 aspect ratio, the channel dimensions were W = 150 mm,
H = 150 mm, H* = H/2 = 75 mm, Dh = 150 mm, together with relative rib heights
e/H = e/Dh = 0.027, 0.045, 0.067, 0.1, and 0.15. The relative pitch was p/e = 10,
with some computations for H/W = 4:1 performed at p/e = 5. The Reynolds number
was Re = 100,000.

To match the thermal boundary conditions in the transient experiments using
thermochromic liquid crystals (TLC) [49], the boundary conditionTw=350K= const.
was set on all walls. The inlet temperature was prescribed to be Ti = 310 K = const.

Referring to the transient experiments, the assumption of isothermal walls is
valid because the test section has a constant temperature when the experiments start,
whereas the TLC indication is read for the same temperature value for each

Fig. 8.3 Configurations of the periodic channel’s segment with the inlet cross section a orthogonal
to the sidewalls and b aligned with the rib [3]
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coordinate. Spatial and temporal bulk-temperature variation can be well modeled
assuming timewise isothermal walls [49, 50]. In addition, the effects of a slightly
changing wall temperature for an air flow for high Re numbers are negligible (see
[51]).

8.2.2 Numerical Methodology

All geometries and structured grids were created using the software GAMBIT.
Further, CENTAUR® grid generator (see the work [52]) imported
GAMBIT-created geometry to generate a hybrid grid. The grid sizes ensuring the
necessary near-wall grid resolution amounted from 500,000 to 700,000 cells.
Numerous grid-independency studies disclosed that both types of grids delivered
practically the same results.

Simulations were performed using two different turbulence models. The first was
a realizable k-ε model with enhanced wall treatment and a two-layer approach for
wall modeling (known to accurately predict separating flows behind inclined ribs).
The second was the SST k-ω model. Both models were used as they are imple-
mented in the FLUENT code [53]. The realizable k-ε model always provided
convergent solutions, while simulations using the k-ω SST model have not con-
verged in a number of cases. All used grids fulfilled a requirement of the k-ε model
with an enhanced wall treatment for the “y+-coordinate” (“wall-law coordinate”
perpendicular to the wall) to be yþ1 � 1 in the first grid point. In the reality, the
condition yþ1 � 1 was practically always fulfilled for all grids, while the number of
prismatic layers was ≥20. The k-ω SST turbulence model has similar requirements.
In doing so, the usage of both turbulence models is justified.

Inlet and outlet of the periodic segment were connected through a periodic
boundary condition. A mass flow rate corresponding to Re = 100,000 was assigned
as the inlet boundary condition of the periodic segment. A solution was believed
converged, once the scaled residuals were less than 10−6 or 10−9 for the continuity
or energy equation, respectively.

All simulations were performed for air, Pr = 0.72. Computed average Nusselt
number Nu and friction factor f were evaluated against their values in a smooth
channel (subscript “0”). The friction factor f0 was calculated from McAdams
equation valid for Re = 3 × 104–2 × 106 [54–56]

f0 ¼ 0:184Re�1=5: ð8:1Þ

The Nusselt number Nu0 was estimated using the Dittus–Boelter Eq. (7.10).
Multiple simulations proved that the cross-sectional averaged temperature is
practically invariable (with an inaccuracy of 0.4 %) in the streamwise x-direction of
the ribbed segment. Therefore, as a reference temperature to calculate the Nusselt
number, a volume-averaged temperature for each computed case was employed.
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8.2.3 Comparative Flow Pattern

The velocity vector field obtained in the simulations of the periodic ribbed segment
displays essential flow deceleration right before the rib, acceleration immediately
above, and the onset of a separation bubble behind the rib (Fig. 8.4). Having
overcome the separation region, flow reattaches to the channel’s bottom at a
location shifted to approximately two rib heights downstream of the rib, which
agrees with the PIV measurements [18].

Figure 8.5 depicts the vector fields describing the secondary flow in the y–z cross
section perpendicular to the channel sidewalls and crossing the rib in the middle of
its length. The secondary flow has a vortex form: fluid flows lengthwise over the rib
from the inner to outer sidewalls (right to left in Fig. 8.5), impinges onto the outer
sidewall, turns upwards to the symmetry plane, diverts again backwards (left to
right in Fig. 8.5) in the neighborhood of the symmetry plane, and finally flows

Fig. 8.4 Velocity vectors in the channel vertical x–z mid-plane (parallel to the sidewalls) for the
aspect ratio H/W = 2:1 and p/e = 10 [3]

H/W=4:1 H/W=2:1 H/W=1:1

Fig. 8.5 Velocity vectors in the channel y–z cross section orthogonal to the sidewalls for different
aspect ratios H/W = 4:1, 2:1 and 1:1, p/e = 10 [3]
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downwards to the channel’s bottom along the inner sidewall to close the circulation
loop (Fig. 8.5). One can also discern the separation bubble behind the rib in
Fig. 8.5. Separated and reattached secondary flow immediately after the rib spans
over a narrower area for H/W = 4:1 as compared to H/W = 1:1, since for H/W = 4:1
ribs take up a smaller fragment of the channel perimeter (Fig. 8.5). This observation
conforms to the findings of [34].

8.2.4 Heat Transfer and Pressure Drop: H/W = 4:1

It is inherent for numerical simulations to deliver information on the local Nusselt
numbers over all surfaces of the channel including the rib. Only a few experimental
studies, e.g., [31, 33], performed measurements of the Nusselt numbers over four
channel walls, whereas the majority took care of heat/mass transfer only at the
unribbed bottom.

Figure 8.6a shows the static pressure distribution on the walls of the periodic
segment. Flow impinges on the rib and partially diverts to the outer sidewall;
therefore a high-pressure region arises in front of the rib. A low-pressure region
emerges on the upper facet of the rib and on the bottom right after the rib due to the
flow acceleration and subsequent recirculation. Pressure increase is observed on the
bottom, where flow reattaches.

Figure 8.6b depicts surface heat transfer distributions in the channel. High heat
transfer spots arise over the upper face of the rib due to the flow acceleration, as
well as on the bottom and the outer sidewall owing to flow impingement. Heat
transfer is low in front of the rib due to flow separation and behind the rib within the
recirculation area.

Experimental and numerical maps of the local heat transfer coefficient over the
unribbed bottom (Fig. 8.7) demonstrate somewhat better performance of the k-ω

Fig. 8.6 Pressure coefficient Cp a and local Nusselt number Nu b over the external sidewall, rib,
and unribbed bottom for H/W = 4:1, p/e = 10. Here Cp ¼ ðP� PrefÞ=ð0:5qu2bÞ [3]
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model in capturing the place and magnitude of the heat transfer maximum after the
rib. In turn, the k-ε model somewhat better captures the overall local heat transfer
distribution over the unribbed bottom until the next rib.

Figure 8.8 displays that the predicted average values of the Nusselt number are
in good agreement with experimental data [48, 49] (obtained only for the unribbed
bottom wall) despite the evident mismatch in the local maps. Figure 8.8 elucidates
the effect of the rib’s relative height e/Dh (or e/H) on the average heat transfer at the
channel bottom. As can be seen from Fig. 8.8, the average Nusselt number Nu=Nu0
normalized by the Dittus–Boelter Eq. (7.10) varies nonlinearly as a function of the
relative rib height e/Dh within the range Nu=Nu0 ¼ 1:6�1:8. This is accompanied

k-ωω model k-ε model Experiment

Fig. 8.7 Experimental and numerical data for local distributions of the heat transfer coefficient
α < t at the bottom wall of the channel between the ribs at H/W = 4:1, p/e = 10, e/Dh = 0.125. Color
range: α = 10–250 W/(m2 K) [3]
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Fig. 8.8 Variation of Nu=Nu0 with f/f0 for different rib heights, H/W = 4:1 [3]. Experiments
[48, 49]. Both turbulence models yield similar results. Here Re = 100,000
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with an increase in the relative pressure drop f/f0 from f/f0 = 4 to 10. Over the span
of e/Dh = 0.0625−0.25, the function Nu=Nu0 exhibits a maximum at e/Dh = 0.125
(or e/H = 0.05).

For e/Dh = 0.125, the function Nu=Nu0 increased by 80 %. Taslim and Liu [32]
revealed a maximum of heat transfer at e/Dh = 0.15 for H/W = 1:1 and deterioration
of the heat transfer rate for a further enlarged blockage ratio. An interpretation of
this phenomenon suggested in [32] is that the flow fails to reattach to the bottom
between the large ribs as efficiently, as it does in case of the smaller ribs. Span of
the recirculation area between the larger ribs also enlarges. For larger aspect ratios,
e.g., H/W = 4:1, the heat transfer maximum is offset to a smaller value of
e/Dh = 0.125. Measurements [34] corroborate this statement demonstrating that the
heat transfer for H/W = 4:1 is less sensitive to the rib height effect than at smaller
aspect ratios H/W. For H/W = 4:1 and the same e/Dh, the rib blockage affects the
flow in a smaller extent. Below e/Dh = 0.125, a smaller relative rib height entails a
rather marginal decrease in the heat transfer rate and fast reduction of the pressure
loss.

Another influencing parameter is the relative pitch, i.e., the ratio of the spacing
between adjacent ribs and the rib height p/e. Figure 8.8 demonstrates that a smaller
relative rib pitch p/e = 5 entails a 10 % heat transfer augmentation in comparison
with the case p/e = 10 considered above. This is accompanied with larger pressure
losses, which behave as an increasing function of the rib height and reach 19 % at
maximum.

8.2.5 Heat Transfer: H/W = 2:1 and 1:1

Fluid flow and heat transfer in periodic segments with the aspect ratios H/W = 2:1
and 1:1, including the Nusselt number and static pressure distributions, are quali-
tatively analogous to those in the case of H/W = 4:1. Figure 8.5 depicts vector fields
in y–z cross section, which turn out to be similar for the three aspect ratios
H/W = 4:1, 2:1, and 1:1.

Figures 8.9 and 8.10 outline functions of the normalized Nusselt numbers
Nu=Nu0, which increase depending on the rib height over the range e/Dh = 0.027–
0.15. Both k-ε and k-ω turbulence models yield results for the function Nu=Nu0,
which agree well with each other and experiments [31] for Re = 50,000 plotted in
Fig. 8.10. To additionally verify the CFD model against experiments [31], a sim-
ulation was run at Re = 50,000 using the k-ε model and resulted in the same
magnitude of Nu=Nu0 ¼ 2:04 for the unribbed bottom at a smaller normalized
friction factor f/f0 = 11.05.

Figures 8.9b and 8.10b exhibit that heat transfer augmentation on the rib surface
itself exceeds by 15–20 % (for H/W = 2:1) and 30–40 % (for H/W = 1:1) that on the
unribbed bottom wall. The overall average heat transfer augmentation taken into
account exceeds by 10 % that for the unribbed bottom. Ribs also give rise to heat
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transfer over the outer sidewall subject to rib-induced flow impingement, which in
simulations amounted to Nu=Nu0 ¼ 1:99 and 1.96 for Re = 100,000 and 50,000,
accordingly. This agrees well the experimental value Nu=Nu0 ¼ 2:25 at
Re = 50,000 and e/Dh = 0.1 [31].

Thus, simulations [3] in a periodic ribbed segment of a channel presented above
resulted in the following conclusions:

1. Realizable k-ε model of turbulence (enhanced wall treatment) and SST k-ω
model jointly with hybrid grids with 500,000–700,000 cells enable reliable
simulations of convective heat transfer in a periodic segment, whose results are
conformant with experiments

2. Local distributions of the computed Nusselt numbers evidently mismatch with
experiments for H/W = 4:1. However, the averaged values agreed well with
experimental data.

(a) (b)

Fig. 8.10 Variation of Nu=Nu0 with f/f0 for different rib heights, H/W = 1:1, p/e = 10: a unribbed
bottom; b unribbed bottom, rib, and total “rib + unribbed bottom” [3]
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bottom; b unribbed bottom, rib, and total “rib + unribbed bottom” [3]
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3. For H/W = 4:1, Re = 100,000, and an angle of attack of 45°, most beneficial are
the ribs with e/Dh = 0.075–0.125. The best efficiency at H/W = 2:1 and 1:1 was
attained at e/Dh = 0.1 to 0.15. Rib heights exceeding the optimal values entail a
faster increase in the pressure loss accompanied with very minor increase in heat
transfer rate. The tendency holds independently of the Reynolds number.

8.3 Rectangular Ribbed Channel with H/W = 2:1 Inlet,
H/W = 1:1 Outlet

8.3.1 Geometry and Flow Parameters

Section 8.3 is based on the CFD simulations published in my own paper [4]. The
model geometry shown in Fig. 8.11 partially reproduces that used in the experi-
mental study [2]. The inlet and outlet passes were of identical height of H = 0.15 m.
Channel width and hydraulic diameter, as well as the rib height wereWin = 0.075 m,
Dh = 0.1 m, and e = 0.01 m in the inlet pass; Wout = 0.15 m, Dh = 0.15 m, and
e = 0.015 m in the outlet pass; rib pitch p/e = 10. To make sure that the condition
e/Dh = 0.1 = const. holds, ribs in the inlet and outlet passes were manufactured with,
respectively, different heights. The inlet and outlet faces were designed perpen-
dicular to the bottom/symmetry and sidewalls (Fig. 8.11).

Because the ribs were installed in-line on the bottom and top faces, we simulated
only a half-height of the geometry, whereas the upper face of the domain was set to
be a symmetry plane (Fig. 8.11). The wall dividing the inlet and outlet passes was
Wweb = 0.02 m thick, whose edge in the bend was rounded with a radius
Rw = 0.01 m.

The other geometrical parameters in the simulations were Wel = 0.075 m−0.15 m
or Wel/Win = 1.0−2.0 in the smooth channel and Wel = 0.075 m−0.174 m or
Wel/Win = 1.0−2.32 in the ribbed channel.

Velocity, temperature, and turbulence distributions from the outlet of a periodic
segment (see Sect. 8.2 above) were translated to the inlet of the geometry in

Fig. 8.11 Schematic of the channel geometry in simulations [4]: half-height of the channel of [2],
symmetry boundary condition on the upper surface
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Fig. 8.11. This modeled experimental conditions [2], where measurements were
performed after 13–15 ribbed segments in the inlet pass counting from the inlet to
ensure periodical flow pattern right before the entrance to the end.

To evaluate the magnitude of curvature effects in the bend, a smooth channel
configuration having the same dimensions as in Fig. 8.11 was additionally
simulated.

Like in Sect. 8.2, the boundary condition Tw = 350 K = const. was assigned on
all walls of the model geometry. TLC measurements [2] were employed in the work
[4] for validations of the CFD model. All simulations were done with air at
Pr = 0.72. The Reynolds number Re = 100,000 incorporating the hydraulic
diameter and bulk velocity at the inlet was used in all simulations.

8.3.2 Numerical Methodology

The geometry in Fig. 8.11 and its modifications were built with the help of
GAMBIT software. CENTAUR® software [52] (see also Sect. 8.2) was used for the
hybrid grid generation. A grid-independency investigation carried out using a
coarse mesh of*1.1 million cells, a medium mesh of 1.9 million cells, a finer mesh
of 3.2 million cells, and a very fine mesh of 3.65 million to 3.91 million cells
revealed that namely the very fine mesh ensured the sufficient near-wall grid res-
olution and grid independency for the ribbed channel, while for the smooth channel
a grid with 1.15–1.3 million cells was needed. This conforms to the grid sizes of
500,000 to 700,000 cells for the periodic segments employed in the studies [3] (see
Sect. 8.2) confirmed also by [16, 57], etc. The second-order CFD solver with
double precision was used for all differential equations.

Following Sect. 8.2, a realizable k-ε model with enhanced wall treatment
(two-layer approach) at all default values of the constants was involved in the
modeling. All grids fulfilled the enhanced wall treatment condition yþ1 � 1 (see
Sect. 8.2) in the first volume cell over the surface. In fact, y+-values varied mostly
over the range yþ1 ¼ 1�1:8, with the number of prismatic layers ≥20. Convergence
criteria set in the simulations were scaled residuals’ levels smaller than 10−6 for the
continuity and 10−9 for the energy equation.

8.3.3 Smooth Channel

Baseline values: straight channel. In the engineering practice, Eqs. (7.10) and
(8.1) are employed to represent the so-called standard conditions, i.e., a straight
smooth channel. Strictly saying, Eqs. (7.10) and (8.1) are valid for a circular pipe;
hence, it makes sense to model first a smooth channel with identical cross section as
that of the ribbed channel and use further the average Nusselt numbers and friction
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factors from this smooth channel as more realistic standard conditions for the
validations purposes. Consequently, a smooth straight segment with H/W = 2:1 and
periodic conditions at the inlet and outlet faces were modeled before the main
simulations started. As a result, the averaged Nusselt number for the entire smooth
segment (total average) obtained in simulations was Nust ¼ 173:5 (Table 8.1) with
the friction factor for the same segment rated as f/f0 = 0.9. The value Nu0 = 201.7
for Re = 100,000 suggested by the Dittus–Boelter Eq. (7.10) evidently surpasses the
Nust.

In the TLC experiments [2], heat transfer in a long smooth inlet pass averaged
over a bottom and one sidewall yielded a value Nust=Nu0 ¼ 0:82. Identically
averaging the results of the CFD, we obtained the value Nust=Nu0 ¼ 0:83 corre-
lating well with the experiments. Analogous averaging for a smooth periodic
segment with H/W = 1:1 resulted in the values Nust=Nu0 ¼ 0:86 and f/f0 = 0.89,
which practically repeat the data for the aspect ratio H/W = 2:1. An essentially
better trade-off of the Nust values from simulations yields a relation for turbulent
flow in an isothermal tube given in [51]

Nu1 ¼ 0:021Re0:8Pr0:5; ð8:2Þ

Equation (8.2) suggests the value Nu1 = 178.2 for Re = 100,000; hence,
Nust=Nu1 = 0.94, which agrees with experiments [57] in a H/W = 2:1 channel. In the
experiments [16] in a H/W = 4:1 channel, the average Nusselt number was
Nust=Nu1 = 0.92.

Values Nust instead of Eq. (7.10) were referred as Nu0 also by Xie et al. [58].
Two-pass channel with constant H/W = 2:1 (Fig. 8.12). Figures 8.12 and 8.13

show the conventional splitting and numbering of the channel into different parts
used in the work [4] which enables treating them separately.

Heat transfer coefficients were evaluated with the help of single values of the
reference bulk temperature TB computed separately for the local sub-volumes of the
simulated geometry: inlet pass (faces 1a, 2, and 7), bend (faces 1b, 3, 4, and 6b) and
outlet pass (faces 5, 6a, and 8), which enables more accurate comparisons with the
experiments.

In the inlet pass in Fig. 8.12 (bottom 2, sidewalls 1a and 7), the value Nu ¼
Nust ¼ 174:2 is practically equal to that in a periodic smooth segment, though the
backward effect of the bend moderately distorts the local Nusselt number distri-
butions. In the bend region (bottom 3, tip wall 4, sidewalls 1b and 6b), the nor-
malized Nusselt number is as large as Nu=Nust ¼ 1:94. The length of the outlet pass
is 2.95Dh (bottom 5, sidewalls 6a and 8); here the normalized Nusselt number
magnitude is Nu=Nust ¼ 2:61.

Table 8.1 Average Nusselt number in a smooth straight channel with H/W = 2:1 [4]

Channel part Bottom Sidewalls Total average

Nust=Nu0 0.74 0.93 0.86
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Two-pass channel with varying H/W = 2:1 to H/W = 1:1 (Fig. 8.13).
Figure 8.13 elucidates that the heat transfer in the inlet pass and the bend area of the
varying aspect ratio channel is consistent with that in the channel with H/W = 2:1,
and essentially reduced in the outlet pass owing to channel expansion and sub-
sequent flow deceleration and recirculation over the inner wall (see also work [41]).
Figure 8.13 displays also spots of augmented heat transfer due to the Dean vortices
(bend bottom 3), and impingement onto three faces: tip wall (4), outlet channel
bottom (5), and outer sidewall (6).

Figure 8.14 describes the tip wall distance effect on the average Nusselt numbers
for different channel parts. As expected, Nu=Nust ¼ 1 in the inlet pass. In the bend,
Nu=Nust behaves similarly to that in Fig. 8.12, though somewhat reduces at
Wel/Win = 2.0. In the outlet pass, Nu=Nust is linearly decreasing.

In the bend, simulation results exceed experimental data by 22 %. In the outlet
pass, both simulations and experiments demonstrate the decreased heat transfer as

Fig. 8.12 Heat transfer distribution over the bottom, tip, external, and internal (smaller sketch)
sidewalls of the smooth channel with constant H/W = 2:1 (simulations [4])

Fig. 8.13 Local heat transfer over the bottom, tip, external, and internal (smaller sketch) sidewalls
of the smooth channel with varying aspect ratio of H/Win = 2:1 (inlet) and H/Wout = 1:1 (outlet),
Wel = 112.5 mm (simulations [4])
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compared to that in the bend; here the discrepancy between the experiments and
simulations is only 4 %.

To conclude, the CFD model described in Sect. 8.3.2 can simulate fluid flow and
heat transfer in a two-pass smooth channel with acceptable accuracy.

8.3.4 Ribbed Channel: Fluid Flow

Figure 8.15 demonstrates that flow in the ribbed two-pass channel is subject to
effects of both bend curvature and the ribs. Impingement spots arise on the tip wall
and on the outer sidewall in the outlet pass. On the opposite inner wall of the outlet
pass, flow separates and entrains into an intensive recirculation vortex. The through
flow at the entrance to the outlet pass is squeezed in the direction of the outer
sidewall. Velocity vector fields predicted in the simulations agree with PIV mea-
surements. The sharp turn of the flow near the divider wall (shown by a red arrow in

1.0 1.2 1.4 1.6 1.8 2.0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

comp exp
 inlet

 bend
 outlet 

N
u/

N
u

st

W
el
/W

in

Fig. 8.14 Effect of the Wel on
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inlet pass (faces 1a and 2),
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H/Wout = 1:1 [4]

Fig. 8.15 Comparisons of the simulated and measured velocity vector fields in the symmetry
plane at Wel = 150 mm [4]
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Fig. 8.15), the span of the recirculation vortex, and the location of the second
impingement area over the outer sidewall are well captured by simulations.

Dean vortices arose regardless of the tip wall distance [4], which however
affected the shape and the number of the vortices. For the narrowest tip wall
distance Wel = 75 mm, the main Dean vortex is pushed down to the bottom of the
bend and is accompanied with the second smaller counter-rotating Dean vortex
(Fig. 8.16).

A much larger tip wall distance Wel = 150 mm ensures emergence of just one
Dean vortex occupying the entire cross section (Fig. 8.16). An outlook and
parameters of the Dean vortex predicted in the simulations are in a good consis-
tency with the PIV measurements, which is again indicative that the CFD model
described in Sect. 8.3.2 performs well and reliably simulates the complex 3D flow
pattern. Hence, this CFD model may be further used for simulations of local and
average fluid flow and heat transfer parameters.

With the enlarged tip wall distance Wel, the impingement spot arising on the tip
wall migrates from the area opposite to the inlet pass to the region opposite to the
outlet pass (Fig. 8.17). It is accompanied with an increase of the span of the
recirculation vortex on the inner sidewall at the entrance to the outlet pass.

The relative pressure drop ΔP* curve plotted in Fig. 8.18 using the total
(“inlet-to-outlet”) difference of the averaged static pressures in the model two-pass
channel is compared with experimental data for ΔP* measured at the bottom cen-
terline in the sub-volume of the real test channel corresponding to the geometry in
Fig. 8.11.

Figure 8.18 shows that the curves of the relative pressure drop ΔP* have minima
atWel/Win = 1.75 in simulations andWel/Win = 2.0 in experiments. Hence, having an

Fig. 8.16 Dean vortices in the bend region for different tip wall distances Wel = 75 mm (upper)
and Wel = 150 mm (lower), both simulations and PIV [4]
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objective to minimize the pressure losses, it is expedient to increase the tip wall
distance only up to point of minimum of the function ΔP*. Maximal discrepancy of
the simulations and experiments lies within 15 %.

8.3.5 Ribbed Channel: Heat Transfer

Figures 8.19 and 8.20 depict normalized local Nusselt numbers Nu/Nu0 in the
ribbed two-pass channel obtained in simulations and experiments, respectively.

The following reference values were used for normalization of the results:

(a) average Nusselt numbers NuWel¼75 at the minimum tip wall distance
Wel = 75 mm to physically analyze the effect of the increasing Wel;

(b) the value of Nu0 = 201.7 by the Dittus–Boelter Eq. (7.10).

Fig. 8.17 Effect of the Wel on
the velocity vector field in the
symmetry plane (simulations
[4])
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In doing so in the ribbed channel, the effects of the bend and ribs are considered
as a joint influence.

Spots of high impingement-induced heat transfer can be seen behind the ribs.
The Dean vortices cannot cause this heat transfer enhancement, since Dean vortices
arise only at the entrance to the bend (face 3 in Figs. 8.12 and 8.13).

The joint influence of the bend and ribs results in the overall heat transfer
augmentation in the bend sub-volume, e.g., over the tip wall and the outer sidewall
(face 7, Fig. 8.19), which agrees with the TLC measurements in Fig. 8.20.

Fig. 8.19 Local heat transfer over the bottom, tip, external, and internal (smaller sketch) sidewalls
in the ribbed channel with varying aspect ratio of H/Win = 2:1 in the inlet and H/Wout = 1:1 in the
outlet, Wel = 112.5 mm (simulations) [4]

Fig. 8.20 Local heat transfer over the bottom, tip, and external sidewalls of the ribbed channel
with varying aspect ratio of H/Win = 2:1 in the inlet and H/Wout = 1:1 in the outlet, Wel = 112.5 mm
(TLC experiments for Nu/Nu0) [2, 4]
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Figures 8.21 and 8.22 elucidate the influence of the tip wall distance.
Normalized Nusselt number Nu=NuWel¼75 on the tip wall (Fig. 8.21) and the bend
bottom (Fig. 8.22) decreases linearly with the tip wall distance Wel, which is
confirmed also by experiments. The normalization was performed using the values
of NuWel¼75 estimated individually for the tip wall (Nu=Nu0 ¼ 2:25 in experiments,
Nu=Nu0 ¼ 2:28 in computations) and for the bottom bend (Nu=Nu0 ¼ 2:11 in
experiments, Nu=Nu0 ¼ 1:87 in computations). The higher distinction for the bend
bottom arouse from a worse performance of the realizable k-ε turbulence model in
capturing the complex flow pattern in this region. Nevertheless, the tendency
demonstrated in the simulations conforms to the experimental trend.

The bend has no backward effect on the heat transfer over the face 2 of the inlet
pass, whose magnitude Nu=Nu0 ¼ 1:8 was the same in the simulations and the
experiments (Fig. 8.23).

In Fig. 8.24, the function Nu=Nu0 (a) is linearly decreasing (by about 30 %) over
the inlet sidewall (face 1), (b) over faces 5 and 7 of the outlet pass it is at first
linearly decreasing and finally flattening off at the level equal to 85 % of that for the
smallest tip wall distance. Face 6 between the second and third ribs in the outlet
pass is practically not influenced by the effect ofWel/Win, whereas Nu=Nu0 becomes
7 % smaller and levels off at Wel/Win = 1.5.
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Fig. 8.21 Effect of Wel on
average heat transfer on the
tip wall (face 4) in the ribbed
channel, varying H/Win = 2:1
to H/Wout = 1:1 [4]
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Fig. 8.22 Effect of Wel on
average heat transfer on the
bend bottom (face 3) in the
ribbed channel, varying
H/Win = 2:1 to
H/Wout = 1:1 [4]

212 8 Varying Aspect Ratio Two-Pass Internal Ribbed …



Thus fluid flow and heat transfer in the outlet pass are not influenced by variation
of the tip wall distance, once Wel/Win goes beyond 1.75. Simulations follow the
trends revealed in TLC measurements and lie below the experimental data by only
7 % at the entrance to the downstream pass (face 7).

It makes also sense to evaluate heat transfer over the rib surface and its share in
the overall heat transfer predicted in simulations (and almost never measured in
experiments). Over the first rib surface in the outlet pass, the heat transfer aug-
mentation goes by 12–16 % beyond that of the unribbed bottom, face 5 (Fig. 8.25).
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Fig. 8.23 Effect of Wel on average heat transfer on the upstream bottom (face 2), bend bottom
(face 3), and tip wall (face 4) in the ribbed channel, varying H/Win = 2:1 to H/Wout = 1:1
(simulations [4])
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Fig. 8.24 Effect ofWel on average heat transfer on the inlet pass sidewall (face 1), bottom between
the first and second ribs in the outlet pass (face 5), bottom between the second and third ribs in the
outlet pass (face 6) and outlet pass sidewall (face 7) in the ribbed channel, varying H/Win = 2:1 to
H/Wout = 1:1 [4]
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Total heat transfer augmentation due to the rib (face 5 + rib) is 4–5 % higher than
that over face 5.

Aerothermal efficiency is a function that enables a combined estimation of the
pressure losses, which accompany attaining a needed rate of the heat transfer
augmentation

g ¼ Nu=Nu0

ðf =f0Þ1=3
: ð8:3Þ

Figure 8.26 depicts the aerothermal efficiency over the bottom bend (face 3) and
tip wall (face 4). The characteristic length L involved in estimating f was the total
length of the inlet and outlet pass with an addition of a span of the centreline in the
bend (Fig. 8.11).

In spite of the increased pressure loss in the channel with the smallest tip wall
distance Win = 75 mm (Fig. 8.18), it exhibits the highest efficiency due to the high
heat transfer in the bend area (see Figs. 8.21, 8.22, 8.23, 8.24, 8.25) although the
trend is quite flat until about Wel/Win = 1.5, where the drop-off increases.
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Fig. 8.25 Effect of the Wel on average heat transfer in the outlet pass over the bottom between
ribs 1 and 2, (face 5), rib 1, and total of face 5 and rib 1 in the ribbed channel, varying H/Win = 2:1
to H/Wout = 1:1 (simulations [4])
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Fig. 8.26 Effect of the Wel on
aerothermal efficiency η
(simulations [4])
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Thus, results of the CFD calculations described in Sect. 8.3.2 and their com-
parisons with experiments [2, 4] for the average heat transfer and pressure loss
through a ribbed two-pass channel with a 180° bend are overall satisfactory.
The RANS approach enables simulating the cases with high Re numbers [2, 4] in a
sufficiently fast and effective way to investigate numerically a much wider span of
parameters than it is possible in experiments.

Simulations enabled making the following conclusions:

1. The bend geometry increases heat transfer because of the flow acceleration,
impingement on the walls and Dean vortices. The ratio Nu=Nust in the smooth
channel with H/W = 2:1 increases almost 2 times in the bend and 2.6 times in the
outlet pass. The magnitude of the function Nu=Nust in the varying aspect ratio
channel reaches the levels of 2.3–2.4 in the bend and behaves as a linearly
subsiding function: from 2.3 to 1.5 with the parameter Wel/Win increasing from
1.0 to 2.0.

2. In the ribbed channel, at smaller value Wel/Win = 1.0, two pairs of the Dean
vortices arose in the bend, and only a single pair for Wel/Win = 2.0. Relative
pressure drop ΔP* in the entire geometry (Fig. 8.11) behaves as a nonlinear
function with a distinct minimum at Wel/Win = 1.75, which overall conforms to
experiments (deviations within 15 %).

3. In the ribbed channel, the normalized Nusselt number linearly diminishes on the
tip wall and bend bottom. Once the parameter Wel/Win exceeds 1.75, heat
transfer in the outlet pass becomes practically insensitive to the tip wall distance
influence. Simulations overall correlate well to experiments.

4. The rib itself in the outlet pass has a heat transfer value of nearly 12–16 % larger
than the unribbed bottom, which adds 4–5 % to the total heat transfer
augmentation.

5. Aerothermal efficiency is maximal at Wel/Win = 1.0–1.5.

8.4 Rectangular Smooth Channel with H/W = 3:1 Inlet,
H/W = 1:1 Outlet

8.4.1 Geometry and Flow Parameters

Section 8.4 is based on the CFD simulations published in the paper [5]. The
objective of this study was to simulate heat transfer and fluid flow in a two-pass
smooth channel depicted in Fig. 8.27, with an aspect ratio of the inlet pass
H/Win = 3:1 and the rest dimensions being the same as those of the channel with
H/Win = 2:1 (Sect. 8.3.1). Therefore, the width of the inlet pass with H/Win = 3:1
was reduced to Win = 0.05 m, with the hydraulic diameter equal to Dhi = 0.075 m.
The tip wall distance Wel was varied from 0.05 to 0.15 m. As the geometry was
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symmetrical, only half-height of the model was simulated. This channel aspect ratio
has been never studied before.

Boundary conditions. Thermal and regime boundary conditions, as well as
physical properties of air were identical to those in Sect. 8.3.1.

8.4.2 Numerical Methodology

Overview. ANSYS ICEMCFD was used to design the geometry and to generate
the structured mesh, and ANSYS FLUENT was employed as solver. Like in
Sect. 8.3.2, the realizable k-ε turbulence model with enhanced wall treatment was
used in the frame of a RANS approach. The first y+ value in the near-wall cell
remained in the range yþ1 ¼ 1�3 for all simulated cases. Convergence criteria were
the same as in Sect. 8.3.2 [5].

Nusselt numbers used for normalization. Nusselt numbers were normalized
by Eqs. (7.10) and (8.2). In addition, the correlation of Petukhov et al. [59] was
used

NuPe ¼ ðf =8ÞRePr
1:07þ 12:7ðf =8Þ0:5ðPr2=3 � 1Þ ; ð8:4Þ

f ¼ ð0:79 ln Re� 1:64Þ�2: ð8:5Þ

Definition of the reference temperature. The channel in Fig. 8.27 was con-
ventionally split into three regions, i.e., inlet pass, bend, and outlet pass. In each of

Fig. 8.27 Schematic view of the smooth two-pass channel with H/Win = 3:1 in the inlet pass and
H/Wout = 1:1 in the outlet pass [5]
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them, planes were placed perpendicular to the main flow at equal distances from
each other. Cross section averaged Nusselt numbers plotted in Fig. 8.28 were
calculated based on the (a) volume-averaged temperature of each region denoted
“Volume avg.” (as in Sect. 8.3 [4]), area average temperature of each plane denoted
“Plane Area” (like in experiments [2]), and centerline temperatures of the selected
planes denoted “Center Line”.

Fig. 8.28 Comparison of
three different methods to
calculate Nusselt numbers in
three different regions of the
channel with Re = 100,000,
H/Win = 2:1, H/Wout = 1:1,
Wel/Win = 1.5 [5]
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As seen in Fig. 8.28, at the inlet and outlet passes approach “Volume avg.”
yields results practically coinciding with the approach “Plane Area” with a maxi-
mum discrepancy of about 5 %, although, in the bend region this discrepancy
reached 13 %. The “Center Line” approach may be justified only in the outlet pass.
In the inlet pass, the centerline temperature is obviously incapable of representing
the local bulk temperature. However, calculating the center plane average tem-
perature at each streamwise location requires relatively much effort. Therefore,
based on Fig. 8.28, it was decided to follow the approach [4] (used in Sect. 8.3) to
further use single values of the volume-averaged temperature at the inlet pass, bend,
and outlet pass as a reference temperature.

Grid independence. This study was performed for the case with Wel/Win = 1.5.
Three structured grids were compared with 950,000 (coarse), 1,700,000 (fine),

and 2,600,000 (finest) cells, respectively. The near-wall y+ values were close to
unity. All three grids provided similar results for the Nusselt numbers with the
maximum scatter of 0.88 %. Therefore, the most economical coarse grid was
selected for the rest of the simulations.

Validation for the case H/Win = 2:1 and H/Wout = 1:1. The CFD model [5]
described above was validated against experiments [2] and simulations [4] for
Re = 100,000, H/Win = 2:1 and H/Wout = 1:1, Wel/Win = 1.5, and different tip wall
distances. Local Nusselt numbers obtained in the simulations [5] agree well with
those presented in Fig. 8.13 [4] and experiments [2].

Figure 8.29 representing average Nusselt numbers for different regions of the
two-pass channel replicates Fig. 8.14 from Sect. 8.3 with computations [5] plotted
for comparisons. Simulations [5] again agree well with the results [4]. Therefore,
the CFD model used in Sect. 8.4.2 was accepted as a baseline model for further
investigations in a two-pass smooth channel with H/Win = 3:1 and H/Wout = 1:1.
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Fig. 8.29 Effect ofWel on the average heat transfer in the inlet pass (faces 1a and 2), bend (faces 3
and 4), and outlet pass (faces 6a and 5) for the channel with H/Win = 2:1, H/Wout = 1:1 as predicted
in simulations [4, 5]. Symbols 1 [4]; 2 [5]
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8.4.3 Smooth Periodic Segment

A smooth periodic segment with H/Win = 3:1 was simulated to find out normalizing
values Nust given in Table 8.2. Outlet velocity, temperature, and turbulence profiles
from the periodic segment were used as inlet profiles in the main computational
domain.

The value Nust=Nu0 ¼ 0:82 for faces “bottom + wall” is in a good agreement
with the values 0.83 in the simulations [4] and 0.82 in the experiments [2] for
H/Win = 2:1 (Sect. 8.3). Value Nust=Nu1 ¼ 0:92 [5] agrees with experiments for
H/Win = 4:1 [16].

For the bottom alone, the value Nust=Nu0 ¼ 0:62 for H/Win = 3:1 is much
smaller than the value 0.74 for H/Win = 2:1. However, larger share of the sidewalls
(whose average Nust=Nu0 ¼ 0:95 is almost the same for H/Win = 3:1 and 2:1) yields
Nust=Nu0 ¼ 0:87 as a total average for H/Win = 3:1 that correlates with the value
0.86 for H/Win = 2:1 (Table 8.1).

This indicates that the Nusselt number averaged over one sidewall and bottom,
as well as the total average, is very weakly affected by the aspect ratio of the
channel.

8.4.4 Two-Pass Smooth Channel: Fluid Flow and Heat
Transfer

Velocity and temperature fields. Fluid flow and heat transfer patterns in the
two-pass smooth channel [5] are analogous to those discussed in Sect. 8.3 for
H/Win = 2:1. In the short inlet pass, bend effects manifest themselves via strong
acceleration near the divider wall and deceleration near the outer wall [5]; right
upstream of the outlet pass, fluid accelerates near the outer sidewall, and strongly
decelerates near the divider wall [5] (analogous to Figs. 8.15 and 8.17). In the center
of the bend, one can see a distinct Dean vortex [5] (similar to that in Fig. 8.16).

Pressure drop and heat transfer. As seen in Fig. 8.30, in the channels with
H/Win = 3:1 and H/Win = 2:1 the static pressure drop ΔP* is a nonlinear increasing
function of Wel/Win. With the decrease in the aspect ratio from H/Win = 3:1–2:1 the

Table 8.2 Average Nusselt numbers in a smooth straight channel with H/Win = 3:1 in simulations
[5] normalized with Eqs. (7.10), (8.2), and (8.4)

Bottom Sidewalls Total average Bottom + wall

Nust 125 192 175 165

Nust=Nu0 0.62 0.95 0.87 0.82

Nust=Nu1 0.70 1.07 0.98 0.92

Nust=Nupe 0.73 1.13 1.03 0.97
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pressure drop increases. As the tip wall distance Wel/Win grows, the effect of the
channel aspect ratio H/Win on the pressure drop ΔP* practically vanishes. For
H/Win = 3:1, the curve for ΔP* apparently reaches its minimum (extremum) point at
Wel/Win = 3.0; however, results of simulations are insufficient to detect the mini-
mum point for the aspect ratio H/Win = 2:1.

For the heat transfer analysis, the channel was divided into three regions in
accordance with Fig. 8.13: the inlet pass (faces 1a and 2), the bend (faces 1b, 3, 6b,
and 4), and the outlet pass (faces 5 and 6a). Faces 7 and 8 were not taken into
consideration. The Nusselt number was defined using a volume (bulk) average
temperature for each region separately. The effects of the tip wall distance on the
averaged Nusselt number for the channels with H/Win = 3:1 [5] and H/Win = 2:1 [4]
are shown in Fig. 8.31. It is evident that with an increase in the inlet aspect ratio
from 2:1 to 3:1 the heat transfer rate in the bend and in the outlet pass decreases,
because of the more strongly expressed flow deceleration.

In the inlet pass, the heat transfer rate remains at the level of Nu=Nust ¼ 1.
In the bend region, in the channel with H/Win = 3:1 the Nusselt number first

decreases with the increasing tip wall distance, but afterwards increases and levels
off to a constant value at Wel/Win = 3.0. The reason for such a behavior in Fig. 8.31,
“Bend” is the noticeable enlargement of the enhanced heat transfer area over the tip
wall (4) and the bend bottom (3) in the vicinity of the tip wall following the increase
in Wel/Win [5]. For the smallest tip wall distances the flow in the bend region makes
a 90° turn and causes the strongest impingement over the outer sidewall in the bend
region and beginning of the outlet pass followed with the accordingly strongest heat
transfer enhancement. For the medium and especially largest tip wall distances,
flow in the bend region has enough space to produce the most significant
impingement and heat transfer enhancement on the tip wall and the bend bottom

Fig. 8.30 Effect of Wel/Win

on the relative pressure drop
ΔP* for two-pass smooth
channels with H/Win = 3:1 or
H/Win = 2:1 and H/Wout = 1:1
[5]
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next to it before it makes the 90° turn, which entails much weaker impingement
onto the outer sidewall. For the channel with H/Win = 2:1, the red line in Fig. 8.31,
“Bend” demonstrates a maximum at Wel/Win = 1.5 and decreased Nusselt numbers
for the further increased Wel/Win, because the effect of enlargement of the bend
region space downstream of the inlet pass is expressed weaker than that in the
channel with H/Win = 3:1. This trend can be expected to appear in the H/Win = 3:1
channel, if Wel/Win > 3.0.

In the outlet pass region, in both channels with H/Win = 3:1 and H/Win = 2:1, the
heat transfer constantly decreases with the increased tip wall distance.

Thus, the CFD simulations described in Sect. 8.4 enable making the following
conclusions:

1. With an increase in the Wel/Win ratio for H/Win = 3:1, the relative pressure drop
ΔP* decreased nonlinearly up to a point of minimum. The static pressure drop
ΔP* is larger for H/Win = 2:1; differences between two aspect ratios practically

Fig. 8.31 Effects of the Wel/Win (or Wel/H) on the average heat transfer in the inlet pass (faces 1a
and 2), bend (faces 3 and 4), and the outlet pass (faces 5 and 6a) of the two-pass channels with
H/Wout = 1:1, and H/Win = 3:1 or H/Win = 2:1 [4, 5]
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vanish for Wel/Win > 1.75. Nondimensionalization of the tip wall distance in
order to consider its effect on the pressure drop and heat transfer must be done
using the parameter Wel/Win rather than Wel/H.

2. An analysis of the average heat transfer revealed that:

(a) in the inlet pass, the heat transfer rate remains at the level of Nu=Nust ¼ 1.
(b) in the bend region, in the channel with H/Win = 3:1 heat transfer first

decreases with the increasing Wel/Win, but afterwards increases and levels
off to a constant value.

(c) in the outlet pass, in both channels with H/Win = 3:1 and H/Win = 2:1, heat
transfer constantly decreases with the increased tip wall distance.

8.5 Rectangular Ribbed Channels with H/W = 3:1 Inlet,
H/W = 1:1 Outlet

8.5.1 Geometry and Flow Parameters

Section 8.5 is based on the results published in the paper [6]. The objective of this
investigation was to undertake a CFD simulation of fluid flow and heat transfer in a
two-pass channel of the same dimensions as those depicted in Fig. 8.27. Channel
walls are roughened with 45° ribs at e/Dh = 0.1 and p/e = 10 throughout the channel
(Fig. 8.32).

Tip wall distance Wel varied from 0.075 to 0.15 m. The ribs were installed in a
parallel mode (i.e., in-line) on the top and bottom; therefore, a half-height of the
domain was modeled with its upper surface being a symmetry plane. To prevent the
back flow, the outlet pass was extruded to a distance equal to its hydraulic diameter.

Boundary conditions. Thermal and regime boundary conditions, as well as
physical properties of air were identical to those in Sect. 8.3.1

Fig. 8.32 Schematic view of the ribbed two-pass channel with H/Win = 3:1 in the inlet and
H/Wout = 1:1 in outlet pass and a symmetry boundary condition on the upper surface [6]
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8.5.2 Numerical Methodology

Overview. Geometries and structured meshes were created using ANSYS
ICEMCFD; ANSYS FLUENT was used as solver. Like in Sects. 8.3.2 and 8.4.2,
turbulence modeling was performed using a RANS approach employing the real-
izable k-ε turbulence model with enhanced wall treatment. The y+ value in first
near-wall cell was equal to yþ1 ¼ 1�3 for all simulated cases. Convergence criteria
were the same as in Sects. 8.3.2 and 8.4.2 [5].

Nusselt numbers used for normalization. Nusselt numbers were normalized by
the Dittus–Boelter Eq. (7.10). Faces of the two-pass channel were numbered as
shown in Fig. 8.32. As a characteristic length in the Nusselt number, the inlet
hydraulic diameter Dhi was used at the bend bottom (face 3) and the tip wall (face
4), while the outlet hydraulic diameter Dho was utilized for the outlet bottom (face
5 + 6 + 7) and the sidewall (face 8).

Grid independence. This study was performed for the geometry with
Wel = 131.25 mm (i.e., Wel/H = 0.88 or Wel/Win = 2.64). Three structured grids were
investigated with 3.5 (coarse), 4.6 (fine), and 5.7 (very fine) million cells. For all
faces except for face 3, results for the averaged normalized Nusselt numbers
Nu=Nu0 with the fine grid were coincident with those for the very fine grid. Over
face 3, differences were about 4 %. Therefore, the fine grid was selected for the
further analysis and also for all other tip wall distances Wel/Win.

Validation for the case of H/Win = 2:1 and H/Wout = 1:1. Figure 8.33 shows
local distributions of the Nusselt number Nu=Nu0. An agreement between the
simulations [6] and measurements [2] is overall good.

Fig. 8.33 Local Nusselt
number distribution by
experimental (left) [2] and
numerical (right) results [6]
for H/Win = 2:1, H/Wout = 1:1,
Wel = 121.5 mm, and
Re = 100,000
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It was found that the average Nusselt numbers obtained in simulations differed
by maximum 12 % from the experiments over almost all surfaces. However, at the
bend bottom (3) and the tip wall (4), the discrepancy reached 27 %, obviously,
owing to spots with low heat transfer rates observed locally in these regions. Thus
these validations are within the same limits of discrepancy as reported in the lit-
erature and hence are plausible.

8.5.3 Ribbed Periodic Segment

A ribbed periodic segment of the aspect ratio H/Win = 3:1 was simulated in order to
compute velocity, turbulence, and temperature profiles to be mapped at the inlet of a
two-pass ribbed channel. Local velocity, temperature, pressure, and heat transfer
distributions for H/Win = 3:1 periodic segment presented in [6] are analogous to
those presented in Sect. 8.2 for periodic segments with H/Win = 1:1, 2:1 and 4:1.

Table 8.3 presents average values of Nu=Nu0 for different faces of the segment
predicted in the work [4, 6]. These data testify that an increase in the aspect ratio
from 2:1 to 3:1 entails lower rates of the heat transfer augmentation.

8.5.4 Two-Pass Ribbed Channel: Fluid Flow and Heat
Transfer

Velocity and temperature fields. Fluid flow and heat transfer in the two-pass ribbed
channel with H/Win = 3:1 [6] are analogous to those discussed in Sect. 8.3 for
H/Win = 2:1. The velocity profile at the inlet to the bend shows acceleration of the
flow near the inner divider wall, deceleration near the outer sidewall, and a large
vortex resulting from the last rib upstream of the bend (like in Fig. 8.17). At the
center of the bend, a Dean vortex emerges similar to that observed in the simula-
tions and the experiments for the two-pass channel with H/Win = 2:1, Fig. 8.16 [4].
Immediately upstream of the outlet pass, the flow shows a strong acceleration near
the outer sidewall and a strong deceleration near the divider wall. Near the divider
wall, a region of separation and recirculation with very low flow velocity emerges

Table 8.3 Average Nusselt number in the ribbed straight periodic segments with H/Win = 3:1 and
H/Win = 2:1 as predicted in the simulations [4, 6]

Nu=Nu0
Bottom Rib Total

Simulation for H/Win = 3:1 [6] 1.72 1.94 1.79

Simulation for H/Win = 2:1 [4] 1.83 2.12 1.93

Difference, % −6.1 −8.3 −7.5
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as a result of a sharp turn similar to that depicted in Fig. 8.17 for the two-pass
channel with H/Win = 2:1 [4]. Somewhat abated Dean vortex persists in the vicinity
of the outer sidewall. Further downstream, a rib-induced large channel vortex arises
and rotates in counterclockwise direction. After the third rib, flow tends to establish
again a periodic pattern peculiar to sufficiently long straight ribbed channels.

Pressure drop and heat transfer. Relative pressure drop ΔP* was calculated
based on the difference of the average static pressure at the inlet and a cross section
placed immediately at the end of the fourth rib in the outlet pass. With an increase
in Wel/H the pressure drop curves for aspect ratios H/Win = 2:1 to H/Win = 3:1 first
decrease and then level off to constant values (Fig. 8.34).

Increasing the aspect ratio from H/Win = 2:1 to H/Win = 3:1 caused a significant
reduction of the pressure drop ΔP*, which agrees with the data for the smooth
two-pass channel in Fig. 8.30 [5]. However, the pressure loss in the channel with
H/Win = 3:1 are not so much lower in comparison with the channel with
H/Win = 2:1. As said in Sect. 8.4.4, the static pressure-based parameters ΔP* and
f in the channels with H/Win = 3:1 and H/Win = 2:1 [4, 5] are affected by the
different ratios of the inlet and outlet cross sections.

Typical local heat transfer distribution in a two-pass channel with H/Win = 3:1
look qualitatively analogous to Figs. 8.19 and 8.20.

Figure 8.35 depicts normalized averaged Nusselt numbers over the bend bottom
(face 3), and the bottom areas between the first and the second ribs (face 5), the
second and the third rib (face 6), and the third and the fourth rib (face 7) in the
outlet pass. The highest heat transfer level is observed at the bend bottom; further
downstream the Nusselt numbers decrease and finally level off. It can be seen from
Fig. 8.35 that for smaller tip wall distances Wel/H periodicity tends to set on already

Fig. 8.34 Effect of Wel/H on the relative pressure drop ΔP* for a two-pass ribbed channel. Data
for H/Win = 3:1—simulations [6]; data for H/Win = 2:1—simulations [4]
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after the first rib, but for larger tip wall distances the onset of periodicity drifts
downstream and arises for the first time after the second rib [6].

Figures 8.36 and 8.37 represent a comparative analysis of the effect of the tip
wall distance Wel/H on the average heat transfer over the bend bottom (face 3) and
tip wall (face 4), respectively, for the channels with H/Win = 3:1 and H/Win = 2:1.
Area-averaged Nusselt numbers were normalized with the Nusselt number value
taken atWel/H = 0.5. For H/Win = 2:1, a trend of linear decrease is evident, while for
H/Win = 3:1 the Nusselt number diminishes nonlinearly and tends to level off
for larger tip wall distances. It is worth noting that for larger Wel/H the curves for
H/Win = 3:1 lie higher than those for H/Win = 2:1.

In Fig. 8.38, the data from Figs. 8.36 and 8.37 are normalized with the value
Nu0. For the channel with H/Win = 2:1, the average Nusselt numbers are higher than

Fig. 8.35 Average Nusselt
numbers (normalized by the
Dittus–Boelter value Nu0) in
different regions of the
two-pass ribbed channel with
H/Win = 3:1 and H/Wout = 1:1
[6]

Fig. 8.36 Effect of the tip
wall distance Wel/H on the
average heat transfer over the
bend bottom (face 3) in the
ribbed channels. Data for
H/Win = 3:1—simulations [6];
data for H/Win = 2:1—
simulations [4]
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those for H/Win = 3:1, the trend being however changing to the opposite for face 4
at Wel/H = 1.0.

In Fig. 8.39, in the ribbed channel with H/Win = 3:1, the Nusselt number over
faces 5 + 6 + 7 (the outlet bottom) increases slowly together with Wel/H and
apparently tends to an asymptotic constant value. For the outer sidewall 8, the heat
transfer rate behaves as a diminishing function of the tip wall distance Wel/H.

Fig. 8.37 Effect of the tip wall distanceWel/H on the average heat transfer over the tip wall (face 4) in
the ribbed channels. Data for H/Win = 3:1—simulations [6]; data for H/Win = 2:1—simulations [4]

Fig. 8.38 Effect of the tip wall distance Wel/H on the average heat transfer over the bend bottom
(face 3) and tip wall (face 4) in the ribbed channels. Data for H/Win = 3:1—simulations [6]; data
for H/Win = 2:1—simulations [4]
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Both these trends can be attributed to the effect of the bend: for larger tip wall
distances the area with the highest heat transfer shifts from the outer sidewall to the
tip wall and bend bottom including the bottom upstream of the first rib comprised in
face 3.

Thus, the major conclusions drawn from the results presented above are as
follows:

1. The overall static pressure drop decreases with the increase in tip wall distance
and is noticeably less in the geometry with H/Win = 3:1 than in the case of
H/Win = 2:1. This results from different ratios of the inlet and outlet cross
sections of these two channels.

2. The average heat transfer rate over the tip wall and the bend bottom is smaller
for the aspect ratio H/Win = 3:1 than for the channel with H/Win = 2:1.

3. For H/Win = 3:1, the average heat transfer over the tip wall, bend bottom, and
outer sidewall is a subsiding function of the tip wall distance. However, the heat
transfer over the outlet bottom slightly increases and tends to flatten at a constant
level.

4. 3D flow and heat transfer periodicity tends to set on already after the first or
second rib in the outlet pass (depending on Wel/H).
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Chapter 9
Summary and Conclusions

This monograph presents results of the analytical and numerical modeling of
convective heat and mass transfer in different rotating flows caused by (i) system
rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns
and bends. Volume forces (i.e., centrifugal and Coriolis forces), which influence the
flow pattern, emerge in all of these rotating flows. The main part of this work deals
with rotating flows caused by system rotation, which includes several rotating disk
configurations and straight pipes rotating about a parallel axis. Swirl flows were
studied in some of the configurations mentioned above. Curvilinear flows were
investigated in different geometries of two-pass ribbed and smooth channels with
180° bends.

Chapter 1 includes a mathematical description of the studied problems in the
form of momentum, continuity, energy and convective diffusion equations in a
vector form, Cartesian and cylindrical polar coordinates. Forces affecting the flow
are also discussed in detail.

In Chap. 2, the aforementioned general mathematical description is customized
for the rotating disk configurations. The chapter overviews in brief the existing
mathematical methodology applicable to modeling the convective heat and mass
transfer in such configurations, describes in detail the integral method developed by
myself (referred to as “the present integral method” in this book), and gives a
general analytical solution for turbulent boundary layer flow and heat transfer
derived with the help of this method.

Chapter 3 represents a validation of the present integral method for the case of a
single rotating disk. It was shown that the present integral method is essentially
more accurate and enables modeling a wider range of the thermal boundary con-
ditions than the methods of other authors. The novel analytical solution for tem-
perature difference depending on two parameters provides a much better agreement
of the Nusselt number with the experiments, and significantly expands possibilities
for analytical predictions of heat transfer rates over a rotating disk subject to
arbitrary thermal boundary conditions. Chapter 3 delivers also a critical overview of
the most important experimental results for transitional flow, recommendations for
estimation of average heat transfer of an entire disk, and briefly outlines some
aspects of transient heat transfer over a single rotating disk.
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Chapter 4 outlines the solutions obtained with the help of the self-similar
equations and the present integral method for the cases of (a) disk rotation in a fluid
rotating as a solid body, (b) accelerating nonrotating radial flow, and (c) swirling
outward radial flow in a cavity between parallel corotating disks. For laminar flow,
the resulting novel approximate analytical solution based on the improved model
for the modified enthalpy thickness deviates from the exact self-similar solution by
not more than 3.1 %. An exact self-similar solution for orthogonal flow impinge-
ment onto a rotating disk testifies that in spite of the rotation, a solely impingement
dominated regime of flow and heat transfer can emerge over the disk; the bound-
aries of this regime were pinpointed. Overall, the simulations correlate well with
reliable experimental data for a stagnation point of a single impinging jet. For
turbulent flow, the novel approximate analytical solution based on the present
integral method agrees well with experiments. The present integral method dem-
onstrates a higher accuracy at the expense of more accurate approximation of the
radial velocity and temperature profiles in the boundary layer, and provides also a
good match of the simulations with known experimental data for rotation cavities.
For negative or approximately constant radial distributions of the wall temperature,
negative Nusselt numbers (wall heat flux direction opposite to that in the source
region) can emerge in the area of the Ekman-type layers.

In Chap. 5, self-similar solutions of the Navier–Stokes and energy equations
were obtained for fluid flow in a conical gap for the configurations “rotating cone—
stationary disk”, “rotating disk—stationary cone”, “corotating or contra-rotating
disk and cone”, and “nonrotating conical diffuser”. The influence of the boundary
conditions and various Prandtl/Schmidt numbers on the pressure, velocity, and
temperature profiles, as well as on the Nusselt/Sherwood numbers was revealed.

Chapter 6 presents revised more accurate equations, which should be employed
to recalculate the data for turbulent mass transfer for naphthalene sublimation in air
to the conditions of heat transfer in air. Chapter 6 outlines also a novel methodology
for simulations of temperature/concentration profiles for the Prandtl and Schmidt
numbers much larger than unity. The present integral method further developed in
this chapter enabled evaluating a relative thickness Δ of the thermal/diffusion
boundary layers, which has not been performed by other investigators. It was
demonstrated that the model with a decreasing function Δ(r) yields a new summand
in the expression for the exponent at the Reynolds number, which determines
functional dependence of Nusselt or Sherwood numbers. Consequently, theoretical
relations obtained for the Nusselt and Sherwood numbers are in a good consistency
with the selected empirical equations.

In Chap. 7, the commercial code FLUENT was used to simulate convective heat
transfer in a pipe rotating about a parallel axis. Two factors were studied: (1) inlet
angle of attack and (2) cross-section shape (circular/elliptic pipes). The elliptic
pipes had (a) the same hydraulic diameter (i.e., 51.2 % increased cross-section
area), and (b) the same cross-section area as that of the reference circular pipe and
were installed radially (aligned with the radius of rotation) or circumferentially
(perpendicular to the radius of rotation).
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The heat transfer augmentation was observed only for the contra-rotating
incoming air and the pipe. Elliptic pipes are preferable for heat transfer augmen-
tation. In a cooling system with elliptic pipes obtained via morphing of the refer-
ence circular pipe and keeping the cross-section area unchanged, 12 elliptic pipes
were packaged in a rotor in place of 12 circular pipes. More preferable circum-
ferential elliptic pipes ensured 45 % of the total heat transfer augmentation in the
entire cooling configuration, which is the highest among all the studied geometries.
This was accompanied with 11.3 % smaller increase in pressure losses due to
rotation than that in the configuration with 8 circumferential elliptic pipes with the
enlarged cross-section (i.e., the same hydraulic diameter).

Chapter 8 is devoted to simulation and optimization of convective heat transfer
in the varying aspect ratio two-pass internal ribbed cooling channels with 180°
bends.

For a periodic ribbed segment of the channel, the averaged Nusselt numbers
agreed well with experimental data. For Re = 100,000 and an angle of attack of 45°,
most beneficial are the ribs with e/Dh = 0.075–0.125 for the aspect ratio H/W = 4:1,
and with e/Dh = 0.1–0.15 for the aspect ratio H/W = 2:1 and 1:1. Rib heights
exceeding the optimum entail a faster increase in the pressure loss and a very minor
increase in the heat transfer rate.

In the ribbed two-pass channel, the bend geometry increases heat transfer
because of the flow acceleration, impingement on the walls, and Dean vortices. The
Nusselt number in the smooth channel with H/W = 2:1 increases almost 2 times in
the bend and 2.6 times in the outlet pass. The Nusselt number in the varying aspect
ratio channel reaches the levels of 2.3–2.4 in the bend. Relative pressure drop in the
entire geometry behaves as a nonlinear function at Wel/Win with a distinct minimum
at Wel/Win = 1.75, which overall conforms to experiments (deviations within 15 %).
The aerothermal efficiency is maximal at Wel/Win = 1.0–1.5. In the geometry with
H/Win = 3:1, the overall static pressure drop is noticeably smaller than in the case of
H/Win = 2:1. The average heat transfer rate over the tip wall and the bend bottom is
smaller for the aspect ratio H/Win = 3:1 than for H/Win = 2:1.

To conclude, it was demonstrated in this book that the complex phenomena of
fluid flow and convective heat transfer in rotating flows can be successfully sim-
ulated using not only the universal CFD methodology, but in certain cases by
means of the integral methods, self-similar, and analytical solutions. The results of
simulations presented in the book are in good agreement with experimental data
available in the literature.
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