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Preface

Objective

The main objective of this monograph is to provide an overview of Fault-Tolerance
Techniques for High-Performance Computing (HPC). Resilience has already
become a prominent issue on current large-scale platforms. The advent of exascale
computers with millions of cores and billion-parallelism is only going to worsen the
scenario. The capacity to deal with errors and faults will be a critical factor for HPC
applications to be deployed efficiently.

While there are many research papers available on this hot and important topic,
there was no comprehensive and easy-to-access reference available in the literature.
The purpose of this monograph is to fill the gap, and to provide a detailed pre-
sentation and analysis of the various fault tolerance methods for HPC applications.

The first part of the book is made of a single survey chapter that introduces
checkpoint protocols and scheduling algorithms, prediction, replication, silent error
detection, and correction, together with some application-specific techniques such
as Algorithm-Based Fault Tolerance (ABFT). A key feature of this survey chapter
is the importance given to analytical performance models. As future extreme-scale
platforms are not yet available (by definition!), a refined (and publicly available)
performance model is the key to assess any resilience technique without bias nor
a-priori. Various scenarios can be instantiated through selecting one’s preferred
model parameters, and further explored through simulations. The emphasis given to
performance models explains the unusual amount of mathematical equations in the
chapter, but let the reader be comforted: (i) every method is first described infor-
mally; (ii) the mathematical derivations are detailed and complemented with
examples; and (iii) it is always possible to skip some proof and be back to it during
a second reading.

The second part of the book is composed of four chapters, each dedicated to
further investigating one topic. Chapter 2 surveys the various sources for error and
faults in real large-scale systems, details their characteristics, and focuses on
detection and prediction. Chapter 3 presents the spectrum of techniques that can be
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applied to design a fault-tolerant MPI, i.e., to enable MPI application recovery
using either fully automatic or completely user-driven techniques. Chapter 4
investigates replication (coupled with checkpointing) and compares two approa-
ches. In the first approach, entire application instances are replicated, while in the
second one, each process in a single application instance is (transparently) repli-
cated. Finally, Chap. 5 addresses the challenge of energy consumption related to
fault tolerance in extreme-scale systems, and proposes a methodology to estimate
the energy consumption of fault-tolerant protocols used in HPC.

The best way to read the book is to start with the overview chapter in Part I, and
then to move on to the more specialized chapters of Part II. However, experienced
readers may want to read a single specific chapter in Part II. To ease this approach,
we have made each chapter independent of the others, at the price of some
redundant information throughout the book. Cross-references between related
sections of different chapters and index terms have been provided to help navigate
across chapters whenever needed.

Thanks

This monograph is the follow-up of a tutorial that we gave at ICS’13. We were
approached by Springer Verlag and invited to write this monograph, a task that we
eventually succeeded to complete after … some delay.

We would like to thank all chapter authors for their contribution. All of them are
colleagues and Ph.D. students with whom we worked on various topics during the
past few years, and all of us share many ideas on resilience for HPC. Hopefully, the
reader will sense a common perspective while reading the monograph!

The tutorial that George Bosilca, Aurélien Bouteiller, and the two of us gave at
SC’14 came one year after the one given at ISC’13. At that point the monograph
was far from ready, and intense discussions when preparing the SC’14 tutorial have
greatly influenced the overview chapter. We thank them for this.

Finally, we would like to thank Jack Dongarra and ICL for providing a unique
place to collaborate and work on HPC-related research, from linear algebra to
resilience and more.

Knoxville Thomas Herault
Lyon Yves Robert
April 2015
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Part I
General Overview



Chapter 1
Fault Tolerance Techniques
for High-Performance Computing

Jack Dongarra, Thomas Herault and Yves Robert

Abstract This chapter provides an introduction to resiliencemethods. The emphasis
is on checkpointing, the de-facto standard technique for resilience in High Perfor-
mance Computing. We present the main two protocols, namely coordinated check-
pointing and hierarchical checkpointing. Thenwe introduce performancemodels and
use them to assess the performance of theses protocols. We cover the Young/Daly
formula for the optimal period andmuchmore! Next we explain how the efficiency of
checkpointing can be improved via fault prediction or replication. Then we move to
application-specific methods, such as ABFT. We conclude the chapter by discussing
techniques to cope with silent errors (or silent data corruption).

1.1 Introduction

This chapter provides an overview of fault tolerance techniques for High
Performance Computing (HPC). We present scheduling algorithms to cope with
faults on large-scale parallel platforms. We start with a few general considerations
on resilience at scale (Sect. 1.1.1) before introducing standard failure probability
distributions (Sect. 1.1.2). The main topic of study is checkpointing, the de-facto
standard technique for resilience in HPC. We present the main protocols, coordi-
nated and hierarchical, in Sect. 1.2. We introduce probabilistic performance models
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4 J. Dongarra et al.

to assess these protocols in Sect. 1.3. In particular, we show how to compute the
optimal checkpointing period (the famous Young/Daly formula [25, 69]) and derive
several extensions. Then Sect. 1.4 explains how to combine checkpointing with fault
prediction, and discuss how the optimal period is modified when this combination is
used (Sect. 1.4.1). We follow the very same approach for the combination of check-
pointing with replication (Sect. 1.4.2).

While checkpointing (possibly coupled with fault prediction or replication) is a
general-purpose method, there exist many application-specific methods. In Sect. 1.5,
we present middleware adaptations to enable application-specific fault tolerance,
and illustrate their use on one of the most important one, ABFT, which stands for
Algorithm based Fault Tolerance, in Sect. 1.5.

The last technical section of this chapter (Sect. 1.6) is devoted to techniques to
cope with silent errors (or silent data corruption). Section1.7 concludes the chapter
with final remarks.

1.1.1 Resilience at Scale

For HPC applications, scale is a major opportunity. Massive parallelism with
100,000+ nodes is the most viable path to achieving sustained Petascale perfor-
mance. Future platforms will enroll even more computing resources to enter the
Exascale era. Current plans refer to systems eitherwith 100,000 nodes, each equipped
with 10,000 cores (the fat node scenario), or with 1,000,000 nodes, each equipped
with 1,000 cores (the slim node scenario) [27].

Unfortunately, scale is also a major threat, because resilience becomes a big
challenge. Even if each node provides an individual MTBF (Mean Time Between
Failures) of, say, one century, a machine with 100,000 such nodes will encounter a
failure every 9 hours in average, which is larger than the execution time of many
HPC applications. Worse, a machine with 1,000,000 nodes (also with a one-century
MTBF) will encounter a failure every 53min in average.1 Note that a one-century
MTBF per node is an optimistic figure, given that each node is composed of several
hundreds or thousands of cores.

To further darken the picture, several types of errors need to be considered when
computing at scale. In addition to classical fail-stop errors (such as hardware failures),
silent errors (a.k.a silent data corruptions) must be taken into account. Contrary
to fail-stop failures, silent errors are not detected immediately, but instead after
some arbitrary detection latency, which complicates methods to cope with them.
See Sect. 1.6 for more details.

1See Sect. 1.3.2.1 for a detailed explanation on how these values (9h or 53min) are computed.
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1.1.2 Faults and Failures

There are many types of errors, faults, or failures. Some are transient, others are
unrecoverable. Some cause a fatal interruption of the application as soon as they
strike, others may corrupt the data in a silent way and will manifest only after an
arbitrarily long delay. We refer to Chap.2 for a detailed classification and analysis
of error sources.

In this chapter, we mainly deal with fail-stop failures, which are unrecoverable
failures that interrupt the execution of the application. These include all hardware
faults, and some software ones. We use the terms fault and failure interchangeably.
Again, silent errors are addressed at the end of the chapter, in Sect. 1.6.

Regardless of the fault type, the first question is to quantify the rate or frequency
at which these faults strike. For that purpose, one uses probability distributions, and
more specifically, Exponential probability distributions. The definition of Exp(λ),
the Exponential distribution law of parameter λ, goes as follows:

• The probability density function is f (t) = λe−λt dt for t ≥ 0;
• The cumulative distribution function is F(t) = 1 − e−λt for t ≥ 0;
• The mean is μ = 1

λ
.

Consider a process executing in a fault-prone environment. The time-steps at
which fault strike are nondeterministic, meaning that they vary from one execution
to another. To model this, we use I.I.D. (Independent and Identically Distributed)
random variables X1, X2, X3, . . . . Here X1 is the delay until the first fault, X2 is
the delay between the first and second faults, X3 is the delay between the second
and third faults, and so on. All these random variables obey the same probability
distribution Exp(λ). We write Xi ∼ Exp(λ) to express that Xi obeys an Exponential
distribution Exp(λ).

In particular, each Xi has the same mean E (Xi ) = μ. This amounts to say that,
in average, a fault will strike every μ seconds. This is why μ is called the MTBF of
the process, where MTBF stands for Mean Time Between Faults: one can show (see
Sect. 1.3.2.1 for a proof) that the expected number of faults Nfaults(T ) that will strike
during T seconds is such that

lim
T →∞

Nfaults(T )

T
= 1

μ
(1.1)

Why are Exponential distribution laws so important? This is because of their
memoryless property, which writes: if X ∼ Exp(λ), then P (X ≥ t + s | X ≥ s ) =
P (X ≥ t) for all t, s ≥ 0. This equation means that at any instant, the delay until the
next fault does not depend upon the time that has elapsed since the last fault. The
memoryless property is equivalent to saying that the fault rate is constant. The fault
rate at time t , rate(t), is defined as the (instantaneous) rate of fault for the survivors
to time t , during the next instant of time:

http://dx.doi.org/10.1007/978-3-319-20943-2_2
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rate(t) = lim
Δ→0

F(t + Δ) − F(t)

Δ
× 1

1 − F(t)
= f (t)

1 − F(t)
= λ = 1

μ

The fault rate is sometimes called a conditional fault rate since the denominator
1− F(t) is the probability that no fault has occurred until time t , hence converts the
expression into a conditional rate, given survival past time t .

We have discussed Exponential laws above, but other probability laws could be
used. For instance, it may not be realistic to assume that the fault rate is constant:
indeed, computers, like washing machines, suffer from a phenomenon called infant
mortality: the probability of fault is higher in the first weeks than later on. In other
words, the fault rate is not constant but instead decreasing with time. Well, this is
true up to a certain point, where another phenomenon called aging takes over: your
computer, like your car, becomes more and more subject to faults after a certain
amount of time: then the fault rate increases! However, after a few weeks of service
and before aging, there are a few years during which it is a good approximation
to consider that the fault rate is constant, and therefore to use an Exponential law
Exp(λ) to model the occurrence of faults. The key parameter is the MTBF μ = 1

λ
.

Weibull distributions are a good example of probability distributions that account
for infant mortality, and they are widely used to model failures on computer plat-
forms [39, 42, 43, 54, 67]. The definition of Weibull(λ), theWeibull distribution law
of shape parameter k and scale parameter λ, goes as follows:

• The probability density function is f (t) = kλ(tλ)k−1e−(λt)k
dt for t ≥ 0;

• The cumulative distribution function is F(t) = 1 − e−(λt)k
;

• The mean is μ = 1
λ
Γ (1 + 1

k ).

If k = 1, we retrieve an Exponential distribution Exp(λ) and the failure rate is
constant. But if k < 1, the failure rate decreases with time, and the smaller k, the
more important the decreasing. Values used in the literature are k = 0.7 or k = 0.5
[39, 54, 67].

1.2 Checkpoint and Rollback Recovery

Designing a fault-tolerant system can be done at different levels of the software stack.
We call general-purpose the approaches that detect and correct the failures at a given
level of that stack, masking them entirely to the higher levels (and ultimately to the
end-user, who eventually see a correct result, despite the occurrence of failures).
General-purpose approaches can target specific types of failures (e.g., message loss,
or message corruption), and let other types of failures hit higher levels of the software
stack. In this section,we discuss a set ofwell-known and recently developed protocols
to provide general-purpose fault tolerance for a large set of failure types, at different
levels of the software stack, but always below the application level.

These techniques are designed to work in spite of the application behavior. When
developing a general-purpose fault-tolerant protocol, two adversaries must be taken
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into account: the occurrence of failures, that hit the system at unpredictablemoments,
and the behavior of the application, that is designed without taking into account the
risk of failure, or the fault-tolerant protocol. All general-purpose fault tolerance
technique rely on the same idea: introduce automatically computed redundant infor-
mation, and use this redundancy to mask the occurrence of failures to the higher level
application.

The general-purpose technique most widely used in HPC relies on checkpointing
and rollback recovery: parts of the execution are lost when processes are subject to
failures (either because the corresponding data is lost when the failure is a crash, or
because it is corrupted due to a silent error), and the fault-tolerant protocol, when
catching such errors, uses past checkpoints to restore the application in a consistent
state, and recomputes the missing parts of the execution. We first discuss the tech-
niques available to build and store process checkpoints, and then give an overview
of the most common protocols using these checkpoints in a parallel application.

1.2.1 Process Checkpointing

The goal of process checkpointing is to save the current state of a process. In current
HPC applications, a process consists of many user-level or system-level threads,
making it a parallel application by itself. Process checkpointing techniques generally
use a coarse-grain locking mechanism to interrupt momentarily the execution of all
the threads of the process, giving them a global view of its current state, and reducing
the problem of saving the process state to a sequential problem.

Independently of the tool used to create the checkpoint, we distinguish three
parameters to characterize a process checkpoint:

• At what level of the software stack it is created;
• How it is generated;
• How it is stored.

Level of the software stack. Many process checkpointing frameworks are avail-
able: they can rely on an operating system extension [41], on dynamic libraries,2

on compilers [50, 53, 62, 63], on a user-level API [5], or on a user-defined routine
that will create an application-specific checkpoint [47]. The different approaches
provide different levels of transparency and efficiency. At the lowest level, operating
system extensions, like BLCR [41], provide a completely transparent checkpoint of
the whole process. Such a checkpoint can be restored on the same hardware, with
the same software environment (operating system, dynamic libraries, etc.). Since
the entire state is saved (from CPU registers to the virtual memory map), the func-
tion call stack is also saved and restored automatically. From a programmatic point
of view, the checkpoint routine returns with a different error code, to let the caller
know if this calls returns from a successful checkpoint or from a successful restart.

2See https://code.google.com/p/cryopid/.

https://code.google.com/p/cryopid/
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System-level checkpointing requires to save the entire memory (although an API
allows to explicitly exclude pages from being saved into the checkpoint, in which
case the pages are reallocated at restore time, but filled with 0), and thus the cost of
checkpointing is directly proportional to the memory footprint of the process. The
checkpoint routine is entirely preemptive: it can be called at any point during the
execution, from any thread of the application (as long as another thread is not inside
the checkpoint routine already).

At the highest level, user-defined application-specific routines are functions that
a fault-tolerant protocol can call, to create a serialized view of the application, that
another user-defined application-specific routine can load to restore a meaningful
state of the process. Such an approach does not belong to general-purpose tech-
niques, since it is application dependent. It is worth noting, however, that some
resilient communication middleware propose this option to implement an efficient
generic rollback-recovery protocol at the parallel application level. Indeed, as we
will see later in the chapter, time to checkpoint is a critical parameter of the overall
efficiency of a rollback-recovery technique. User-defined process checkpoints are
often orders of magnitude smaller than the process memory footprint, because inter-
mediary data, or data that is easily reconstructed from other critical data, do not
need to be saved. User-defined checkpoints also benefit from a more diverse use than
solely fault tolerance: they allow to do a post-mortem analysis of the application
progress; they permit to restart the computation at intermediary steps, and change
the behavior of the application. For these reasons, many applications provide such
routines, which is the reason why fault-tolerant protocols try to also benefit from
them. It is however difficult to implement a preemptive user-defined routine, capable
of saving the process state at any time during the execution, which makes the use
of such approach sometimes incompatible with some parallel application resilient
protocols that demand to take process checkpoints at arbitrary times.

A note should be made about opened files: most existing tools to checkpoint a
process do not provide an automatic way to save the content of the files opened for
writing at the time of checkpoint. Files that are opened in read mode are usually
reopened at the same position during the restoration routine; files that are opened in
append mode can be easily truncated where the file pointer was located at the time
of checkpoint during the restore; files that are opened in read/write mode, however,
or files that are accessed through a memory map in read/write, must be copied at the
time of checkpoint, and restored at the time of rollback. Among the frameworks that
are cited above, none of them provide an automatic way of restoring the files, which
remains the responsibility of the resilient protocol implementation.

How checkpoints are generated. The checkpoint routine, provided by the check-
pointing framework, is usually a blocking call that terminates once the serial file
representing the process checkpoint is complete. It is often beneficial, however, to
be able to save the checkpoint in memory, or to allow the application to continue
its progress in parallel with the I/O intensive part of the checkpoint routine. To do
so, generic techniques, like process duplication at checkpoint time can be used, if
enough memory is available on the node: the checkpoint can be made asynchronous
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by duplicating the entire process, and letting the parent process continue its execution,
while the child process checkpoints and exits. This technique relies on the copy-on-
write pages duplication capability of modern operating systems to ensure that if the
parent process modifies a page, the child will get its own private copy, keeping the
state of the process at the time of entering the checkpoint routine. Depending on the
rate at which the parent process modifies its memory, and depending on the amount
of available physical memory on the machine, overlapping between the checkpoint
creation and the application progress can thus be achieved, or not.

How checkpoints are stored. A process checkpoint can be considered as completed
once it is stored in a non-corruptible space. Depending on the type of failures con-
sidered, the available hardware, and the risk taken, this non-corruptible space can
be located close to the original process, or very remote. For example, when deal-
ing with low probability memory corruption, a reasonable risk consists of simply
keeping a copy of the process checkpoint in the same physical memory; at the other
extreme, the process checkpoint can be stored in a remote redundant file system,
allowing any other node compatible with such a checkpoint to restart the process,
even in case of machine shutdown. Current state-of-the-art libraries provide trans-
parent multiple storage points, along a hierarchy of memory: [57], or [5], implement
in-memory double-checkpointing strategies at the closest level, disk-less checkpoint-
ing, NVRAMcheckpointing, and remote file system checkpointing, to feature a com-
plete collection of storage techniques. Checkpoint transfers happen asynchronously
in the background, making the checkpoints more reliable as transfers progress.

1.2.2 Coordinated Checkpointing

Distributed checkpointing protocols use process checkpointing and message passing
to design rollback-recovery procedures at the parallel application level. Among them
the first approach was proposed in 1984 by Chandy and Lamport, to build a possible
global state of a distributed system [20]. The goal of this protocol is to build a
consistent distributed snapshot of the distributed system. A distributed snapshot is
a collection of process checkpoints (one per process), and a collection of in-flight
messages (an ordered list of messages for each point to point channel). The protocol
assumes ordered loss-less communication channel; for a given application, messages
can be sent or received after or before a process took its checkpoint. A message from
process p to process q that is sent by the application after the checkpoint of process p
but received before process q checkpointed is said to be an orphan message. Orphan
messages must be avoided by the protocol, because they are going to be regenerated
by the application, if it were to restart in that snapshot. Similarly, a message from
process p to process q that is sent by the application before the checkpoint of process
p but received after the checkpoint of process q is said to be missing. That message
must belong to the list of messages in channel p to q, or the snapshot is inconsistent.
A snapshot that includes no orphan message, and for which all the saved channel
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Time

orphan
orphan

missing

C S S S

S R C R R

R S R C S

Fig. 1.1 Orphan and missing messages

messages are missing messages is consistent, since the application can be started
from that state and pursue its computation correctly.

To build such snapshots, the protocol of Chandy and Lamport works as follows
(see Fig. 1.1): any process may decide to trigger a checkpoint wave by taking its
local process checkpoint (we say the process entered the checkpoint wave), and by
notifying all other processes to participate to this wave (it sends them a notifica-
tion message). Because channels are ordered, when a process receives a checkpoint
wave notification, it can separate what messages belong to the previous checkpoint
wave (messages received before the notification in that channel), and what belong to
the new one (messages received after the notification). Messages that belong to the
current checkpoint wave are appended to the process checkpoint, to complete the
state of the distributed application with the content of the in-flight messages, during
the checkpoint. Upon reception of a checkpoint wave notification for the first time,
a process takes it local checkpoint, entering the checkpoint wave, and notifies all
others that it did so. Once a notification per channel is received, the local checkpoint
is complete, since no message can be left in flight, and the checkpoint wave is locally
complete. Once all processes have completed their checkpoint wave, the checkpoint
is consistent, and can be used to restart the application in a state that is consistent
with its normal behavior.

Different approaches have been used to implement this protocol. They are dis-
cussed in detail in the case of the Message Passing Interface (MPI) in Chap.3. The
main difference is on how the content of the (virtual) communication channels is
saved. A simple approach, called Blocking Coordinated Checkpointing, consists in
delaying the emission of applicationmessages after entering the checkpointingwave,
and moving the process checkpointing at the end of that wave, when the process is
ready to leave it (see Fig. 1.3). That way, the state of communication channels is saved
within the process checkpoint itself, at the cost of delaying the execution of the appli-
cation. The other approach, called Non-Blocking Coordinated Checkpointing, is a
more straightforward implementation of the algorithm by Chandy and Lamport: in-
flight messages are added, as they are discovered, in the process checkpoint of the
receiver, and reinjected in order in the “unexpected” messages queues, when loading
the checkpoint (see Fig. 1.2).

http://dx.doi.org/10.1007/978-3-319-20943-2_3
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Fig. 1.2 Non-blocking coordinated rollback recovery protocol
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Fig. 1.3 Blocking coordinated rollback recovery protocol

At the application level, resilient application developers have often taken a very
simple approach to ensure the consistency of the snapshot: since the protocol is
designed knowing the application, a couple of synchronizing barriers can be used,
before and after taking the process checkpoints, to guarantee that no application in-
flight messages are present at the time of triggering the checkpoint wave, and thus
the causal ordering of communications inside the application is used to avoid the
issue entirely.

1.2.3 Uncoordinated Checkpointing

Blocking or non-blocking, the coordinated checkpointing protocols require that all
processes rollback to the last valid checkpoint wave, when a failure occurs. This
ensures a global consistency, at the cost of scalability: as the size of the system grows,
the probability of failures increase, and the minimal cost to handle such failures also
increase. Indeed, consider only the simple issue of notifying all processes that a
rollback is necessary: this can hardly be achieved in constant time, independent
of the number of living processes in the system. Chapter 3 will present in further

http://dx.doi.org/10.1007/978-3-319-20943-2_3
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details how uncoordinated checkpointing can be implemented in an MPI library (see
Sect. 3.2), but we present here the general approach to compare it with the other
protocols.

To reduce the inherent costs of coordinated checkpointing, uncoordinated check-
pointing protocols have thus been proposed. On the failure-free part of the execution,
the main idea is to remove the coordination of checkpointing, targeting a reduction
of the I/O pressure when checkpoints are stored on shared space, and the reduction of
delays or increased network usage when coordinating the checkpoints. Furthermore,
uncoordinated protocols aim at forcing the restart of a minimal set of processes when
a failure happens. Ideally, only the processes subject to a failure should be restarted.
However, this requires additional steps.

Consider, for example, a naive protocol, that will let processes checkpoint their
local state at any time, without coordination, and in case of failures will try to find a
consistent checkpoint wave (in the sense of the Chandy-Lamport algorithm) from a
set of checkpoints taken at random times. Even if we assume that all checkpoints are
kept until the completion of the execution (which is unrealistic from a storage point of
view), finding a consistentwave from randomcheckpointsmight prove impossible, as
illustrated by Fig. 1.4. Starting from the last checkpoint (C1) of process p, all possible
waves that include checkpointC2 of process q will cross themessagem, thus creating
another missing message. It is thus necessary to consider a previous checkpoint for
p. But all waves including the checkpoint C3 for p and the checkpoint C2 for q will
cross the message m′, creating a missing message. A previous checkpoint must thus
be considered for q. This effect, that will invalidate all checkpoint taken randomly,
forcing the application to restart from scratch, is called the domino effect. To avoid
it, multiple protocols have been considered, taking additional assumptions about the
application into account.

1.2.3.1 Piecewise Deterministic Assumption

One such assumption is thePiecewiseDeterministicAssumption (PWD). It states that
a sequential process is an alternate sequence of a nondeterministic choices followed
by a set of deterministic steps. As such, the PWD is not really an assumption: it

Time

m m
p S C3 R S C1

q S C6 R S C2 R R

r C5 R S C4 S

Fig. 1.4 Optimistic uncoordinated protocol: Illustration of the domino effect

http://dx.doi.org/10.1007/978-3-319-20943-2_3
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is a way to describe a possible execution of a sequential program. The assumption
resides in the fact that these nondeterministic choices can be captured and their effect
replayed. Thus, under the PWD assumption, the behavior of a sequential process can
be entirely guided from a given state to another deterministic state by forcing each
nondeterministic choice between these two states.

Translated in the HPC world, and especially under the Message Passing Interface
(MPI) paradigm, the sources of nondeterminism are rather small. Indeed, all actions
that depend upon the input data (environment or user options) are not nondetermin-
istic only in the sense of the PWD assumption: starting from the same state, the same
action will follow. Pseudo-random generators fall also in this category of determin-
istic actions. So, in an MPI application, the only source of nondeterminism comes
from time-sensitive decisions, point-to-point message reception order (and request
completion order), and related actions (like probe). All these actions are captured by
the MPI library (assuming the program relies only on MPI routines to measure time,
if its state is time dependent), that is also capable of replaying any value that was
returned by a previous call.

In most modern architectures, processes whose state depend on timing have non-
deterministic actions, since with modern CPUs and network, an instruction can take
a varying time, depending on the actions of other processes sharing the machine, or
the operating system, and a misplaced message reception can change significantly
this timing measurement. Many MPI operations have a deterministic behavior (e.g.,
sending a message does not change the state of the sending process; participating to a
broadcast operation, seen as an atomic operation, will have a deterministic effect on
the state of all processes participating to it, etc...). However,MPI allows the program-
mer to reorder message receptions, or to not specify an order on the messages recep-
tion (usingwildcard reception tags, likeMPI_ANY_TAG, orMPI_ANY_SOURCE),
that enables the library to deliver the messages in an order that is the most efficient,
and thus execution-dependent. These actions are then necessarily nondeterministic,
since the state of the process between such two receptions depends on what reception
actually happened.

Then, consider a parallel application built of sequential processes that use MPI
to communicate and synchronize. In case of failure, by replaying the sequence of
messages and test/probe with the same result that the process that failed obtained
in the initial execution (from the last checkpoint), one can guide the execution of a
process to its exact state just before the failure.

1.2.3.2 Message Logging

This leads to the concept of Message Logging (ML). The goal of message logging,
in this context, is to provide a tool to capture and replay the most frequent of nonde-
terministic events: message receptions. To be able to reproduce a message reception,
one needs to deliver it in the right order, and with the appropriate content. Message
logging thus features two essential parts: a log of the event itself, and a log of the
content of the message.
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Events Identifiers. Events are usually identified by a few counters: based on the
same idea as logical clocks of Lamport [52], these identifiers define a partial order
that is sufficient to ensure the consistency of the distributed system by capturing the
causality of the nondeterministic events. Inmost implementations, a nondeterministic
message identifier consists of a 4-tuple: identifier of the message emitter, sequence
number of emission in that channel, identifier of the message receiver, sequence
number of delivery of that message.

The first two counters uniquely identify an outgoing message at the sender. They
are used to connect that event identifier with the corresponding payload log. The
second two counters make the delivery deterministic. They can only be assigned
once the message is delivered by the receiver during the first execution.

A collection of event logs builds the history of a distributed application. If all
event logs with the same message receiver identifier are considered, the execution
of the receiver is made deterministic up to the end of the log: that process knows
exactly what messages it must receive, and in which order they must be delivered.

In some applications, other nondeterministic events may be interleaved between
message receptions, and the global ordering of these events on that process must
be kept (as well as all information needed to replay these events). For example, in
the MPI case, the evaluation of a routine like MPI_Probe() is nondeterministic:
the routine will return true or false depending upon the internal state of the
library, that depends itself upon the reception of messages. A simple event logging
strategy is to remember the return value of each MPI_Probe(), associated with an
internal event sequence number, to augment the message log with the same internal
event sequence number to remember the global ordering of process-specific internal
events, and to store these events in the same place as the message logs. To replay the
execution, one then needs to have these routines return the same value as during the
initial execution, whatever the internal state of the library, and deliver the messages
in the order specified by the history. As a result, the library may have to introduce
delays, reorder messages, or wait for the arrival of messages that were supposed to
be delivered but are not available yet. But the process will be guided to the exact
state it reached when the log was interrupted, which is the goal of message logging.

Payload Logging. To deliver messages in replay mode, the receiving process needs
to have access to the message payload: its event log is not sufficient. The most widely
used approach to provide this payload is to keep a copy at the sender. This is called
sender-based message logging (although this is a slight abuse of language, as events
can be stored at a separate place different from the sender).

The advantage of sender-based payload logging is that the local copy can be made
in parallel with the network transfer, trying to minimize the impact on a failure-free
execution. Its main drawback is its usage of node memory. The amount of message
payload log is a function of the message throughput of the application, and memory
can be exhausted quickly, so, a sender-based payload logging protocol must feature
mechanisms for control flow and garbage collection.

To understand how the garbage collection mechanism works, one needs to under-
stand first that the sender-based payload log belongs to the state of the sender process:
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at any point, a receiver process may request to send back the content of previously
sent messages. If the sender process was subject to a failure, and restarted somewhere
in its past, it still may need to provide the payload of messages that were sent even
further back in its history. Hence, when taking independent checkpoints, the message
payload log must be included in the process checkpoint, as any other element of the
process state.

Checkpoints, however, provide a guarantee to senders: when a receiver check-
points, all the processes that sent it messages have the guarantee that the payload of
messages delivered before that checkpoint will never be requested again. They can
thus be removed from the state of the process, creating a trade-off between processes:
taking a checkpoint of a process will relieve memory of processes that sent messages
to it, while imposing to save all the data sent by it. In the worst case, memory can
become exhausted, and remote checkpoints of sender processes must be triggered
before more messages can be sent and logged by processes.

Event Logging. The last element of a Message Logging strategy has probably been
the most studied: how to log the events. As described above, to replay its execution,
a process needs to collect the history of all events between the restore point and
the last nondeterministic event that happened during the initial execution. Since the
memory of the process is lost when it is hit by a failure, this history must be saved
somewhere. There are three main strategies to save the events log, called optimistic,
pessimistic, and causal.

Optimistic message logging consists in sending the history to a remote event
logger. That event logger must be a reliable process, either by assumption (the risk
that the failure hits that specific process is inversely proportional to the number
of processes in the system), or through replication. The protocol is said optimistic
because while event logs are in transfer between the receiver process (that completed
the event identifier when it delivered the message to the application) and the event
logger, the application may send messages, and be subject to a failure.

If a failure hits the application precisely at this time, the event log might be lost.
However, themessage thatwas just sent by the applicationmight be correctly received
and delivered anyway. That message, its content, its existence, might depend on the
reception whose log was lost. During a replay, the process will not find the event log,
and if that reception was nondeterministic, might make a different choice, sending
out a message (or doing another action), inconsistent with the rest of the application
state.

The natural extension to optimistic message logging is pessimistic message
logging: when a process does a nondeterministic action (like a reception), it sends
the event log to the event logger, and waits for an acknowledge of logging from the
event logger before it is allowed to take any action that may impact the state of the
application. This removes the race condition found in optimistic message logging
protocols, to the cost of introducing delays in the failure-free execution, as the latency
of logging safely the event and waiting for the acknowledge must be added to every
nondeterministic event.



16 J. Dongarra et al.

To mitigate this issue, causal event logging protocols were designed: in a causal
event logging protocol, messages carry part of the history of events that lead to their
emission. When a process does a nondeterministic action, it sends the event log
to the event logger, appends it to a local history slice, and without waiting for an
acknowledge, continues its execution. If an acknowledge comes before any message
is sent, that event log is removed from the local history slice. If the process sends a
message, however, the local history slice is piggybacked to the outgoing message.
That way, at least the receiving process knows of the events that may not be logged
and that lead to the emission of this message.

The history slice coming with a message must be added to the history slice of
a receiver process, since it is part of the history to bring the receiving process in
its current state. This leads to a snowballing effect, where the local history slice of
processes grows with messages, and the overhead on messages also grows with time.
Multiple strategies have been devised to bound that increase, by garbage collecting
events that are safely logged in the event logger from all history slices, and by
detecting cycles in causality to trim redundant information from these slices.

Uncoordinated Checkpointing with Message Logging and Replay. Putting all the
pieces together, all uncoordinated checkpointing with message logging and replay
protocols behave similarly: processes log nondeterministic events andmessages pay-
load as they proceed along the initial execution; without strong coordination, they
checkpoint their state independently; in case of failure, the failed process restarts
from its last checkpoint, it collects all its log history, and enters the replay mode.
Replay consists in following the log history, enforcing all nondeterministic events
to produce the same effect they had during the initial execution. Message payload
must be re-provided to this process for this purpose. If multiple failures happen, the
multiple replaying processes may have to reproduce the messages to provide the
payload for other replaying processes, but since they follow the path determined
by the log history, these messages, and their contents, will be regenerated as any
deterministic action. Once the history has been entirely replayed, by the piecewise
deterministic assumption, the process reaches a state that is compatible with the state
of the distributed application, that can continue its progress from this point on.

1.2.4 Hierarchical Checkpointing

Over modern architectures, that feature many cores on the same computing node,
message logging becomes an unpractical solution. Indeed, any interaction between
two threads introduces the potential for a nondeterministic event that must be logged.
Shared memory also provides an efficient way to implement zero copy communica-
tion, and logging the payload of such “messages” introduces a high overhead that
make this solution intractable.

In fact, if a thread fails, current operating systems will abort the entire process.
If the computing node is subject to a hardware failure, all processes running on that
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machine fail together. Failures are then often tightly correlated, forcing all processes
/ threads running on that node to restart together because they crashed together. These
two observations lead to the development of Hierarchical Checkpointing Protocols.
Hierarchical Checkpointing tries to combine coordinated checkpoint and rollback
together with uncoordinated checkpointing with message logging, keeping the best
of both approaches.

The idea of Hierarchical Checkpointing is rather simple: processes are distrib-
uted in groups; processes belonging to the same group coordinate their checkpoints
and rollbacks; uncoordinated checkpointing with message logging is used between
groups. However, the state of a single process depends upon the interactions between
groups, but also upon the interactions with other processes inside the group. Coor-
dinated rollback guarantees that the application restarts in a consistent state; it does
not guarantee that the application, if restarting from that consistent state, will reach
the same state as in the initial execution, which is a condition for uncoordinated
checkpointing to work. A nondeterministic group (a group of processes whose state
depend upon the reception order of messages exchanged inside the group for exam-
ple) cannot simply restart from the last group-coordinated checkpoint and hope that
it will maintain its state globally consistent with the rest of the application.

Thus, Hierarchical Checkpointing Protocols remain uncoordinated checkpointing
protocols with message logging: nondeterministic interactions between processes of
the same group must be saved, but the message payload can be spared, because all
processes of that group will restart and regenerate the missing message payloads, if
a failure happens. Section3.6 presents in deeper details how a specific hierarchical
protocol works. In this overview, we introduce a general description of hierarchical
protocols to allow for a model-based comparison of the different approaches.

Reducing the logging. There are many reasons to reduce the logging (events and
payload): intragroup interactions are numerous, and treating all of them as nondeter-
ministic introduces significant computing slowdown if using a pessimistic protocol,
or memory consumption and message slowdown if using a causal protocol; inter-
group interactions are less sensitive to event logging, but payload logging augments
the checkpoint size, and consumes user memory.

Over the years, many works have proposed to integrate more application knowl-
edge in the fault-tolerant middleware: few HPC applications use message ordering
or timing information to take decisions; many receptions inMPI are in fact determin-
istic, since the source, tag, type and size, and the assumption of ordered transmission
in the virtual channel make the matching of messages unique from the application
level. In all these cases, logging can be avoided entirely. For other applications,
although the reception is nondeterministic, the ordering of receptions will temporar-
ily influence the state of the receiving process, but not its emissions. For example,
this happens in a reduce operation written over point to point communications: if a
node in the reduction receives first from its left child then from its right one, or in
the other order, the state of the process after two receptions stays the same, and the
message it sends up to its parent is always the same. Based on this observation, the
concept of send determinism has been introduced [36], in which many events may
be avoided to log.

http://dx.doi.org/10.1007/978-3-319-20943-2_3
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MPI provides also a large set of collective operations. Treating these operations
at the point-to-point level introduces a lot of nondeterminism, while the high-level
operation itself remains deterministic. This fact is used in [14] to reduce the amount
of events log.

HierarchicalCheckpointing reduces the need for coordination, allowing a loadbal-
ancing policy to store the checkpoints; size of the checkpoints, however are dependent
on the application message throughput and checkpointing policy (if using sender-
based payload logging, as inmost cases); the speed of replay, the overhead of logging
the events (in message size or in latency) are other critical parameters to decide when
a checkpoint must done.

In the following section, we discuss how the different checkpointing protocols can
be optimized by carefully selecting the interval between checkpoints. To implement
this optimization, it is first necessary to provide a model of performance for these
protocols.

1.3 Probabilistic Models for Checkpointing

This section deals with probabilistic models to assess the performance of various
checkpointing protocols. We start with the simplest scenario, with a single resource,
in Sect. 1.3.1, and we show how to compute the optimal checkpointing period.
Section1.3.2 shows that dealing with a single resource and dealing with coordi-
nated checkpointing on a parallel platform are similar problems, provided that we
can compute the MTBF of the platform from that of its individual components.
Section1.3.3 deals with hierarchical checkpointing. Things get more complicated,
because many parameters must be introduced in the model to account for this com-
plex checkpointing protocol. Finally, Sect. 1.3.4 provides a model for in-memory
checkpointing, a variant of coordinated checkpointing where checkpoints are kept
in the memory of other processors rather than on stable storage, in order to reduce
the cost of checkpointing.

1.3.1 Checkpointing with a Single Resource

We state the problem formally as follows. Let Timebase be the base time of the
application, without any overhead (neither checkpoints nor faults). Assume that the
resource is subject to faults with MTBF μ. Note that we deal with arbitrary failure
distributions here, and only assume knowledge of the MTBF.

The time to take a checkpoint is C seconds (the time to upload the checkpoint
file onto stable storage). We say that the checkpointing period is T seconds when a
checkpoint is done each time the application has completed T − C seconds of work.
When a fault occurs, the time between the last checkpoint and the fault is lost. This
includes useful work as well as potential fault tolerance techniques. After the fault,
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Time

fault

period Tlost

p C T -C C T -C C T -C C D R T -C C . . .

Fig. 1.5 An execution

there is a downtime of D seconds to account for the temporary unavailability of the
resource (for example rebooting, or migrating to a spare). Finally, in order to be able
to resume the work, the content of the last checkpoint needs to be recovered which
takes a time of R seconds (e.g., the checkpoint file is read from stable storage). The
sum of the time lost after the fault, of the downtime and of the recovery time is
denoted Tlost. All these notations are depicted in Fig. 1.5.

To avoid introducing several conversion parameters, all model parameters are
expressed in seconds. The failure inter-arrival times, the duration of a downtime,
checkpoint, or recovery are all expressed in seconds. Furthermore, we assume
(without loss of generality) that one work unit is executed in one second. One work-
unit may correspond to any relevant application-specific quantity.

The difficulty of the problem is to trade-off between the time spent checkpointing,
and the time lost in case of a fault. Let Timefinal(T ) be the expectation of the total
execution time of an application of size Timebase with a checkpointing period of
size T . The optimization problem is to find the period T minimizing Timefinal(T ).
However, for the sake of convenience, we rather aim at minimizing

Waste(T ) = Timefinal(T ) − Timebase

Timefinal(T )
.

This objective is called the waste because it corresponds to the fraction of the exe-
cution time that does not contribute to the progress of the application (the time
wasted). Of course minimizing the ratioWaste is equivalent to minimizing the total
time Timefinal, because we have

(1 − Waste(T )) Timefinal(T ) = Timebase,

but using the waste is more convenient. The waste varies between 0 and 1. When
the waste is close to 0, it means that Timefinal(T ) is very close to Timebase (which
is good), whereas, if the waste is close to 1, it means that Timefinal(T ) is very large
compared to Timebase (which is bad). There are two sources of waste, which we
analyze below.

First source of waste. Consider a fault-free execution of the applicationwith periodic
checkpointing. By definition, during each period of length T we take a checkpoint,
which lasts for C time units, and only T − C units of work are executed. Let TimeFF
be the execution time of the application in this setting. The fault-free execution time
TimeFF is equal to the time needed to execute the whole application, Timebase, plus
the time taken by the checkpoints:
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TimeFF = Timebase + NckptC,

where Nckpt is the number of checkpoints taken. Additionally, we have

Nckpt =
⌈
Timebase

T − C

⌉
≈ Timebase

T − C
.

To discard the ceiling function, we assume that the execution time Timebase is large
with respect to the period or, equivalently, that there are many periods during the
execution. Plugging back the (approximated) value Nckpt = Timebase

T −C , we derive that

TimeFF = T

T − C
Timebase. (1.2)

Similar to the Waste, we define WasteFF, the waste due to checkpointing in
a fault-free execution, as the fraction of the fault-free execution time that does not
contribute to the progress of the application:

WasteFF = TimeFF − Timebase

TimeFF
⇔ (

1 − WasteFF
)
TimeFF = Timebase. (1.3)

Combining Eqs. (1.2) and (1.3), we get:

WasteFF = C

T
. (1.4)

This result is quite intuitive: every T seconds, we waste C for checkpointing. This
calls for a very large period in a fault-free execution (even an infinite period, meaning
no checkpoint at all). However, a large period also implies that a large amount of
work is lost whenever a fault strikes, as we discuss now.

Second source of waste. Consider the entire execution (with faults) of the appli-
cation. Let Timefinal denote the expected execution time of the application in the
presence of faults. This execution time can be divided into two parts: (i) the execu-
tion of chunks of work of size T − C followed by their checkpoint; and (ii) the time
lost due to the faults. This decomposition is illustrated in Fig. 1.6. The first part of
the execution time is equal to TimeFF. Let Nfaults be the number of faults occurring
during the execution, and let Tlost be the average time lost per fault. Then,

Timefinal = TimeFF + NfaultsTlost. (1.5)

In average, during a time Timefinal, Nfaults = Timefinal
μ

faults happen (recall
Eq. (1.1)). We need to estimate Tlost. A natural estimation for the moment when
the fault strikes in the period is T

2 (see Fig. 1.5). Intuitively, faults strike anywhere
in the period, hence in average they strike in the middle of the period. The proof of
this result for Exponential distribution laws can be found in [25]. We conclude that
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TIMEFF =TIMEFinal (1-WASTEFail) TIMEFinal WASTEFail

TIMEFinal

T -C C T -C C T -C C T -C C T -C C

T -C C T -C C T -C C T -C C T -C C

Fig. 1.6 An execution (top), and its reordering (bottom), to illustrate both sources of waste. Black-
ened intervals correspond to time lost due to faults: downtime, recoveries, and re-execution of work
that has been lost

Tlost = T
2 + D + R, because after each fault there is a downtime and a recovery. This

leads to:

Timefinal = TimeFF + Timefinal

μ

(
D + R + T

2

)
.

LetWastefault be the fraction of the total execution time that is lost because of faults:

Wastefault = Timefinal − TimeFF

Timefinal
⇔ (

1 − Wastefault
)
Timefinal = TimeFF

We derive:

Wastefault = 1

μ

(
D + R + T

2

)
. (1.6)

Equations (1.4) and (1.6) show that each source of waste calls for a different period:
a large period forWasteFF, as already discussed, but a small period forWastefault,
to decrease the amount of work to re-execute after each fault. Clearly, a trade-off is
to be found. Here is how. By definition we have

Waste = 1 − Timebase

Timefinal

= 1 − Timebase

TimeFF

TimeFF

Timefinal

= 1 − (1 − WasteFF)(1 − Wastefault).

Altogether, we derive the final result:

Waste = WasteFF + Wastefault − WasteFFWastefault (1.7)

= C

T
+
(
1 − C

T

)
1

μ

(
D + R + T

2

)
. (1.8)

The two sources of waste do not add up, but we have:

(1 − Waste) = (1 − WasteFF)(1 − Wastefault),



22 J. Dongarra et al.

just as for discount percentages in a sale: two successive 50% rebates do not make
the product free, but the final price reduction is the product of the two successive
ones.

We obtainWaste = u
T + v + wT , where u = C

(
1− D+R

μ

)
, v = D+R−C/2

μ
, and

w = 1
2μ . It is easy to see that Waste is minimized for T =

√
u
w . The first-order

(FO) formula for the optimal period is thus:

TFO = √2(μ − (D + R))C . (1.9)

and the optimal waste is WasteFO = 2
√

uw + v, therefore

WasteFO =
√
2C

μ

(
1 − D + R

μ

)+ D + R − C/2

μ
. (1.10)

In 1974, Young [69] obtained a different formula, namely TFO = √
2μC +

C . Thirty years later, Daly [25] refined Young’s formula and obtained TFO =√
2(μ + R)C + C . Equation (1.9) is yet another variant of the formula, which we

have obtained through the computation of the waste. There is no mystery, though.
None of the three formulas is correct! They represent different first-order approxi-
mations, which collapse into the beautiful formula TFO = √

2μC when μ is large
in front of the resilience parameters D, C and R. Below, we show that this latter
condition is the key to the accuracy of the approximation.

First-order approximation of TFO. It is interesting to point out why the value of
TFO given by Eq. (1.9) is a first-order approximation, even for large jobs. Indeed,
there are several restrictions for the approach to be valid:

• We have stated that the expected number of faults during execution is Nfaults =
Timefinal

μ
, and that the expected time lost due to a fault is Tlost = T

2 + D + R. Both
statements are true individually, but the expectation of a product is the product of
the expectations only if the random variables are independent, which is not the
case here because Timefinal depends upon the fault inter-arrival times.

• In Eq. (1.4), we have to enforce C ≤ T in order to have WasteFF ≤ 1.
• In Eq. (1.6), we have to enforce D + R ≤ μ in order to have Wastefault ≤ 1. In
addition, we must cap the period to enforce this latter constraint. Intuitively, we
need μ to be large enough for Eq. (1.6) to make sense (see the word of caution at
the end of Sect. 1.3.2.1).

• Equation (1.6) is accurate only when two or more faults do not take place within
the same period. Although unlikely when μ is large in front of T , the possible
occurrence of many faults during the same period cannot be eliminated.

To ensure that the condition of having at most a single fault per period is met with
a high probability, we cap the length of the period: we enforce the condition T ≤ ημ,
where η is some tuning parameter chosen as follows. The number of faults during a
period of length T can be modeled as a Poisson process of parameter β = T

μ
. The



1 Fault Tolerance Techniques for High-Performance Computing 23

probability of having k ≥ 0 faults is P(X = k) = βk

k! e−β , where X is the random
variable showing the number of faults. Hence the probability of having two or more
faults is π = P(X ≥ 2) = 1− (P(X = 0) + P(X = 1)) = 1− (1+ β)e−β . To get
π ≤ 0.03, we can choose η = 0.27, providing a valid approximation when bounding
the period range accordingly. Indeed, with such a conservative value for η, we have
overlapping faults for only 3% of the checkpointing segments in average, so that the
model is quite reliable. For consistency, we also enforce the same type of bound on
the checkpoint time, and on the downtime and recovery: C ≤ ημ and D + R ≤ ημ.
However, enforcing these constraints may lead to use a suboptimal period: it may
well be the case that the optimal period

√
2(μ − (D + R))C of Eq. (1.9) does not

belong to the admissible interval [C, ημ]. In that case, the waste is minimized for
one of the bounds of the admissible interval. This is because, as seen from Eq. (1.8),
the waste is a convex function of the period.

We conclude this discussion on a positive note. While capping the period, and
enforcing a lower bound on the MTBF, is mandatory for mathematical rigor, simula-
tions in [4] show that actual job executions can always use the value from Eq. (1.9),
accounting for multiple faults whenever they occur by re-executing the work until
success. The first-order model turns out to be surprisingly robust!

Let us formulate our main result as a theorem:

Theorem 1.1 The optimal checkpointing period is TFO = √
2μC + o(

√
μ) and the

corresponding waste is WasteFO =
√

2C
μ

+ o(
√

1
μ
).

Theorem 1.1 has a wide range of applications. We discuss several of them in
the following sections. Before that, we explain how to compute the optimal period
accurately, in the special case where failures follow an Exponential distribution law.

Optimal value of TFO for Exponential distributions. There is a beautiful method to
compute the optimal value of TFO accurately when the failure distribution is Exp(λ).
First, we show how to compute the expected time E(Time(T − C, C, D, R, λ)) to
execute a work of duration T − C followed by a checkpoint of duration C , given the
values of C , D, and R, and a fault distribution Exp(λ). Recall that if a fault interrupts
a given trial before success, there is a downtime of duration D followed by a recovery
of length R. We assume that faults can strike during checkpoint and recovery, but
not during downtime.

Proposition 1.1

E(Time(T − C, C, D, R, λ)) = eλR
(
1

λ
+ D

)
(eλT − 1).

Proof For simplification, we write Time instead of Time(T − C, C, D, R, λ) in the
proof below. Consider the following two cases:



24 J. Dongarra et al.

(i) Either there is no fault during the execution of the period, then the time needed
is exactly T ;

(ii) Or there is one fault before successfully completing the period, then some addi-
tional delays are incurred.More specifically, as seen for thefirst order approxima-
tion, there are two sources of delays: the time spent computing by the processors
before the fault (accounted for by variable Tlost), and the time spent for downtime
and recovery (accounted for by variable Trec). Once a successful recovery has
been completed, there still remain T − C units of work to execute.

Thus Time obeys the following recursive equation:

Time =
{

T if there is no fault
Tlost + Trec + Time otherwise

(1.11)

Tlost denotes the amount of time spent by the processors before thefirst fault, knowing
that this fault occurs within the next T units of time. In other terms, it is the
time that is wasted because computation and checkpoint were not successfully
completed (the corresponding value in Fig. 1.5 is Tlost − D − R, because for
simplification Tlost and Trec are not distinguished in that figure).

Trec represents the amount of time needed by the system to recover from the fault
(the corresponding value in Fig. 1.5 is D + R).

The expectation of Time can be computed from Eq. (1.11) by weighting each case
by its probability to occur:

E(Time) = P (no fault) · T + P (a fault strikes) · E (Tlost + Trec + Time)

= e−λT T + (1 − e−λT ) (E(Tlost) + E(Trec) + E(Time)) ,

which simplifies into:

E(T ) = T + (eλT − 1) (E(Tlost) + E(Trec)) (1.12)

We have E(Tlost) = ∫∞
0 xP(X = x |X < T )dx = 1

P(X<T )

∫ T
0 e−λx dx , and

P(X < T ) = 1 − e−λT . Integrating by parts, we derive that

E(Tlost) = 1

λ
− T

eλT − 1
(1.13)

Next, the reasoning to computeE(Trec), is very similar toE(Time) (note that there
can be no fault during D but there can be during R):

E(Trec) = e−λR(D + R) + (1 − e−λR)(D + E(Rlost ) + E(Trec))

Here, Rlost is the amount of time lost to executing the recovery before a fault happens,
knowing that this fault occurs within the next R units of time. Replacing T by R in



1 Fault Tolerance Techniques for High-Performance Computing 25

Eq. (1.13), we obtain E(Rlost ) = 1
λ
− R

eλR−1
. The expression for E(Trec) simplifies to

E(Trec) = DeλR + 1

λ
(eλR − 1)

Plugging the values of E(Tlost) and E(Trec) into Eq. (1.12) leads to the desired
value:

E(Time(T − C, C, D, R, λ)) = eλR
(
1

λ
+ D

)
(eλT − 1)

Proposition 1.1 is the key to proving that the optimal checkpointing strategy (with
an Exponential distribution of faults) is periodic. Indeed, consider an application of
duration Timebase, and divide the execution into periods of different lengths Ti , each
with a checkpoint at the end. The expectation of the total execution time is the sum
of the expectations of the time needed for each period. Proposition 1.1 shows that
the expected time for a period is a convex function of its length, hence all periods
must be equal and Ti = T for all i .

There remains to find the best number of periods, or equivalently, the size of
each work chunk before checkpointing. With k periods of length T = Timebase

k ,
we have to minimize a function that depends on k. Assuming k rational, one can
find the optimal value kopt by differentiation (and prove uniqueness using another
differentiation). Unfortunately, we have to use the (implicit) Lambert function L,
defined as L(z)eL(z) = z), to express the value of kopt , but we can always compute
this value numerically. In the end, the optimal number of periods is either �kopt�
or kopt�, thereby determining the optimal period Topt. As a sanity check, the first-
order term in the Taylor expansion of Topt is indeed TFO, which is kind of comforting.
See [12] for all details.

1.3.2 Coordinated Checkpointing

In this section we introduce a simple model for coordinated checkpointing. Con-
sider an application executing on a parallel platform with N processors, and using
coordinated checkpointing for resilience. What is the optimal checkpointing period?
We show how to reduce the optimization problem with N processors to the pre-
vious problem with only one processor. Most high performance applications are
tightly-coupled applications, where each processor is frequently sending messages
to, and receiving messages from the other processors. This implies that the execution
can progress only when all processors are up and running. When using coordinated
checkpointing, this also implies that when a fault strikes one processor, the whole
application must be restarted from the last checkpoint. Indeed, even though the other
processors are still alive, they will very soon need some information from the faulty
processor. But to catch up, the faulty processor must re-execute the work that it has
lost, during which it had received messages from the other processors. But these
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Tlost
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C T -C C T -C C T -C C R T -C C . . .

Fig. 1.7 Behavior for a tightly coupled application with coordinated checkpointing

messages are no longer available. This is why all processors have to recover from the
last checkpoint and re-execute the work in parallel. On the contrary, with hierarchical
checkpointing, only the group of the faulty processor must recover and re-execute
(see Sect. 1.3.3 for a model of this complicated protocol).

Figure1.7 provides an illustration of coordinated checkpointing. Each time a fault
strikes somewhere on the platform, the application stops, all processors perform a
downtime and a recovery, and they re-execute the work during a time Tlost. This is
exactly the same pattern as with a single resource.We can see the whole platform as a
single super-processor, very powerful (its speed is N times that of individual proces-
sors) but also very prone to faults: all the faults strike this super-processor! We can
apply Theorem 1.1 to the super-processor and determine the optimal checkpointing
period as TFO = √

2μC +o(
√

μ), whereμ now is theMTBF of the super-processor.
How can we compute this MTBF? The answer is given in the next section.

1.3.2.1 Platform MTBF

With Fig. 1.8, we see that the super-processor is hit by faults N timesmore frequently
than the individual processors. We should then conclude that its MTBF is N times
smaller than that of each processor. We state this result formally:

Proposition 1.2 Consider a platform with N identical processors, each with MTBF
μind. Let μ be the MTBF of the platform. Then

μ = μind

N
(1.14)

Time

Time

p1

p2

p3

t

p

t

(a)

(b)

Fig. 1.8 Intuition of the proof of Proposition 1.2. a If three processors have around 20 faults during
a time t (μind = t

20 )... b...during the same time, the equivalent processor has around 60 faults
(μ = t

60 )
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Proof We first prove the proposition when the inter-arrival times of the faults on
each individual processor are I.I.D. random variables with distributionExp(λ), where
λ = 1

μind
. Recall that I.I.D. means Independent and Identically Distributed. In that

simple case, the inter-arrival times of the faults on the super-processor are I.I.D.
randomvariableswith distributionExp(Nλ),whichproves that itsMTBF isμ = μind

N .
To see this, the reasoning is the following:

• The arrival time of the first fault on the super-processor is a random variable
Y1 ∼ Exp(λ). This is because Y1 is the minimum of X (1)

1 , X (2)
1 …, X (N )

1 , where

X (i)
1 is the arrival time of the first fault on processor Pi . But X (i)

1 ∼ Exp(λ) for all
i , and the minimum of N random variables following an Exponential distribution
Exp(λi ) is a random variable following an Exponential distribution Exp(

∑N
i=1 λi )

(see [64, p. 288]).
• Thememoryless property of Exponential distributions is the key to the result for the
delay between the first and second fault on the super-processor. Knowing that first
fault occurred on processor P1 at time t , what is the distribution of random variable
for the occurrence of the first fault on processor P2? The only new information
if that P2 has been alive for t seconds. The memoryless property states that the
distribution of the arrival time of the first fault on P2 is not changed at all when
given this information! It is still an exponential distribution Exp(λ). Of course
this holds true not only for P2, but for each processor. And we can use the same
minimum trick as for the first fault.

• Finally, the reasoning is the same for the third fault, and so on.

This concludes the proof for exponential distributions.
We now give another proof of Proposition 1.2 that applies to any continuous prob-

ability distribution with bounded (nonzero) expectation, not just Exponential laws.
Consider a single processor, say processor Pq . Let Xi , i ≥ 0 denote the I.I.D. random
variables for the fault inter-arrival times on Pq , and assume that Xi ∼ DX , where DX

is a continuous probability distribution with bounded (nonzero) expectation μind. In
particular, E (Xi ) = μind for all i . Consider a fixed time bound F . Let nq(F) be the
number of faults on Pq until time F . More precisely, the (nq(F) − 1)-th fault is the
last one to happen strictly before time F , and the nq(F)-th fault is the first to happen
at time F or after. By definition of nq(F), we have

nq (F)−1∑
i=1

Xi ≤ F ≤
nq (F)∑
i=1

Xi .

Using Wald’s equation [64, p. 420], with nq(F) as a stopping criterion, we derive:

(E
(
nq(F)

)− 1)μind ≤ F ≤ E
(
nq(F)

)
μind,

and we obtain:

lim
F→+∞

E
(
nq(F)

)
F

= 1

μind
. (1.15)
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Now consider a platform with N identical processors, whose fault inter-arrival
times are I.I.D. random variables that follow the distribution DX . Unfortunately,
if DX is not an Exponential law, then the inter-arrival times of the faults of the
whole platform, i.e., of the super-processor introduced above, are no longer I.I.D.
The minimum trick used in the proof of Proposition 1.2 works only for the first
fault. For the following ones, we need to remember the history of the previous faults,
and things get too complicated. However, we could still define the MTBF μ of the
super-processor using Eq. (1.15): this value μ must satisfy

lim
F→+∞

E (n(F))

F
= 1

μ
,

where n(F) be the number of faults on the super-processor until time F . But does
the limit always exist? and if yes, what is its value?

The answer to both questions is not difficult. Let Yi , i ≥ 1 denote the random
variables for fault inter-arrival times on the super-processor. Consider a fixed time
bound F as before. Let n(F) be the number of faults on the whole platform until
time F , and let mq(F) be the number of these faults that strike component number q.
Of course we have n(F) = ∑N

q=1 mq(F). By definition, except for the component
hit by the last fault, mq(F) + 1 is the number of faults on component q until time
F is exceeded, hence nq(F) = mq(F) + 1 (and this number is mq(F) = nq(F)

on the component hit by the last fault). From Eq. (1.15) again, we have for each
component q:

lim
F→+∞

E
(
mq(F)

)
F

= 1

μind
.

Since n(F) =∑N
q=1 mq(F), we also have:

lim
F→+∞

E (n(F))

F
= N

μind

which answers both questions at the same time and concludes the proof.
Note that the random variables Yi are not I.I.D., and they do not necessarily have

the same expectation, which explains why we resort to Eq. (1.15) to define theMTBF
of the super-processor. Another possible asymptotic definition of the MTBFμ of the
platform could be given by the equation

μ = lim
n→+∞

∑n
i=1 E (Yi )

n
.

Kella and Stadje (Theorem 4, [49]) prove that this limit indeed exists and that is
also equal to μind

N , if in addition the distribution function of the Xi is continuous (a
requirement always met in practice).
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Proposition 1.2 shows that scale is the enemy of fault tolerance. If we double
up the number of components in the platform, we divide the MTBF by 2, and the
minimum waste automatically increases by a factor

√
2 ≈ 1.4 (see Eq. (1.10)).

And this assumes that the checkpoint time C remains constant. With twice as many
processors, there is twicemore data to write onto stable storage, hence the aggregated
I/O bandwidth of the platform must be doubled to match this requirement.

We conclude this section with a word of caution: the formula μ = μind
N expresses

the fact that the MTBF of a parallel platform will inexorably decrease as the number
of its components increases, regardless how reliable each individual component could
be. Mathematically, the expression of the waste in Eq. (1.8) is a valid approximation
only if μ is large in front of the other resilience parameters. This will obviously be
no longer true when the number of resources gets beyond some threshold.

1.3.2.2 Execution Time for a Parallel Application

In this section, we explain how to use Proposition 1.2 to compute the expected
execution time of a parallel application using N processors. We consider the follow-
ing relevant scenarios for checkpoint/recovery overheads and for parallel execution
times.

Checkpoint/recovery overheads—With coordinated checkpointing, checkpoints
are synchronized over all processors. We use C(N ) and R(N ) to denote the time
for saving a checkpoint and for recovering from a checkpoint on N processors,
respectively (we assume that the downtime D does not depend on N ). Assume that
the application’smemory footprint isMem, and bio represents the available I/O band-
width. bytes, with each processor holding Mem

N bytes. We envision two scenarios:

• Proportional overhead: C(N ) = R(N ) = Mem
Nbio

. This is representative of cases
in which the bandwidth of the network card/link at each processor is the I/O
bottleneck. In such cases, processors checkpoint their data in parallel.

• Constant overhead: C(N ) = R(N ) = Mem
bio

, which is representative of cases in
which the bandwidth to/from the resilient storage system is the I/O bottleneck. In
such cases, processors checkpoint their data in sequence.

Parallel work—Let W (N ) be the time required for a failure-free execution on N
processors. We use three models:

• Embarrassingly parallel jobs: W (N ) = W/N . Here W represents the sequential
execution time of the application.

• Generic parallel jobs: W (N ) = W/N + γ W . As in Amdahl’s law [1], γ < 1 is
the fraction of the work that is inherently sequential.

• Numerical kernels: W (N ) = W/N + γ W 2/3/
√

N . This is representative of a
matrix product (or LU/QR factorization) of size n on a 2D-processor grid, where
W = O(n3). In the algorithm in [7], N = p2 and each processor receives 2p
matrix blocks of size n/p. Here γ is the communication-to-computation ratio of
the platform.
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We assume that the parallel job is tightly coupled, meaning that all N processors
operate synchronously throughout the job execution. These processors execute the
same amount of work W (N ) in parallel, period by period. Inter-processor messages
are exchanged throughout the computation, which can only progress if all processors
are available. When a failure strikes a processor, the application is missing one
resource for a certain period of time of length D, the downtime. Then the application
recovers from the last checkpoint (recovery timeof length R(N )) before it re-executes
the work done since that checkpoint and up to the failure. Therefore, we can compute
the optimal period and the optimal waste Waste as in Theorem 1.1 with μ = μind

N

and C = C(N ). The (expected) parallel execution time is Time[final] = Timebase
1−Waste

,
where Timebase = W (N ).

Altogether, we have designed a variety of scenarios, some more optimistic than
others, to model the performance of a parallel tightly-coupled application with coor-
dinated checkpointing. We point out that many scientific applications are tightly-
coupled, such as iterative applications with a global synchronization point at the end
of each iteration. However, the fact that inter-processor information is exchanged
continuously or at given synchronization steps (as in BSP-like models) is irrelevant:
in steady-state mode, all processors must be available concurrently for the execution
to actually progress.While the tightly-coupled assumptionmay seem very constrain-
ing, it captures the fact that processes in the application depend on each other and
exchange messages at a rate exceeding the periodicity of checkpoints, preventing
independent progress.

1.3.3 Hierarchical Checkpointing

As discussed in Sect. 1.2.4, and presented in deeper details in Sect. 3.6 later in this
book, hierarchical checkpointing algorithms are capable of partial coordination of
checkpoints to decrease the cost of logging, while retaining message logging capa-
bilities to remove the need for a global restart. These hierarchical schemes parti-
tion the application processes in groups. Each group checkpoints independently,
but processes belonging to the same group coordinate their checkpoints and recov-
ery. Communications between groups continue to incur payload logging. However,
because processes belonging to a same group follow a coordinated checkpointing
protocol, the payload of messages exchanged between processes within the same
group is not required to be logged.

The optimizations driving the choice of the size and shape of groups are varied.
A simple heuristic is to checkpoint as many processes as possible, simultaneously,
without exceeding the capacity of the I/O system. In this case, groups do not check-
point in parallel. Groups can also be formed according to hardware proximity or
communication patterns. In such approaches, there may be opportunity for several
groups to checkpoint concurrently.

The design and analysis of a refinedmodel for hierarchical checkpointing requires
to introduce many new parameters. First, we have to account for non-blocking

http://dx.doi.org/10.1007/978-3-319-20943-2_3
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checkpointing, i.e., the possibility to continue execution (albeit at a reduced rate)
while checkpointing. Then message logging has three consequences, two negative
and one positive:

• performance degradation in a fault-free execution (negative effect)
• re-execution speed-up after a failure (positive effect)
• checkpoint size increase to store logged messages (negative effect)

The last item is the most important, because intergroup messages may rapidly
increase the total size of the checkpoint as the execution progresses, thereby imposing
to cap the length of the checkpointing period (see Sect. 1.2.4). The model proposed
in this section captures all these additional parameters for a variety of platforms
and applications, and provides formulas to compute (and compare) the waste of
each checkpointing protocol and application/platform scenario. However, the curious
reader must be advised that derivation of the waste becomes much more complicated
than in Sects. 1.3.1 and 1.3.2.

1.3.3.1 Instantiating the Model

In this section, we detail the main parameters of the model. We consider a tightly-
coupled application that executes on N processors. As before, all model parameters
are expressed in seconds. However, in the previous models, one work unit was exe-
cuted in one second, because we assumed that processors were always computing
at full rate. However, with hierarchical checkpointing, when a processor is slowed-
down by another activity related to fault tolerance (writing checkpoints to stable
storage, logging messages, etc.), one work-unit takes longer than a second to com-
plete. Also, recall that after the striking of a failure under a hierarchical scenario, the
useful work resumes only when the faulty group catches up with the overall state of
the application at failure time.

Blocking or non-blocking checkpoint. There are various scenarios to model the
cost of checkpointing in hierarchical checkpointing protocols, so we use a flexible
model, with several parameters to specify. The first question is whether checkpoints
are blocking or not. On some architectures, we may have to stop executing the
application before writing to the stable storage where the checkpoint data is saved;
in that case checkpoint is fully blocking. On other architectures, checkpoint data
can be saved on the fly into a local memory before the checkpoint is sent to the
stable storage, while computation can resume progress; in that case, checkpoints can
be fully overlapped with computations. To deal with all situations, we introduce a
slow-down factor α: during a checkpoint of duration C , the work that is performed
is αC work units, instead of C work-units if only computation takes place. In other
words, (1 − α)C work-units are wasted due to checkpoint jitters perturbing the
progress of computation. Here, 0 ≤ α ≤ 1 is an arbitrary parameter. The case α = 0
corresponds to a fully blocking checkpoint, while α = 1 corresponds to a fully
overlapped checkpoint, and all intermediate situations can be represented. Note that
we have resorted to fully blocking models in Sects. 1.3.1 and 1.3.2.
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Periodic checkpointing strategies. Just as before, we focus on periodic scheduling
strategies where checkpoints are taken at regular intervals, after some fixed amount
of work-units have been performed. The execution is partitioned into periods of
duration T = W + C , where W is the amount of time where only computations take
place, while C corresponds to the amount of time where checkpoints are taken. If
not slowed down for other reasons by the fault-tolerant protocol (see Sect. 1.3.3.4),
the total amount of work units that are executed during a period of length T is thus
Work = W + αC (recall that there is a slow-down due to the overlap).

The equations that define the waste are the same as in Sect. 1.3.1. We reproduce
them below for convenience:

(1 − WasteFF)TimeFF = Timebase
(1 − Wastefail)Timefinal = TimeFF
Waste = 1 − (1 − WasteFF)(1 − Wastefail)

(1.16)

We derive easily that

WasteFF = T − Work

T
= (1 − α)C

T
(1.17)

As expected, if α = 1 there is no overhead, but if α < 1 (actual slowdown, or
even blocking if α = 0), we retrieve a fault-free overhead similar to that of coordi-
nated checkpointing. For the time being, we do not further quantify the length of a
checkpoint, which is a function of several parameters. Instead, we proceed with the
abstract model. We envision several scenarios in Sect. 1.3.3.5, only after setting up
the formula for the waste in a general context.

Processor groups. As mentioned above, we assume that the platform is partitioned
into G groups of the same size. Each group contains q processors, hence N = Gq.
When G = 1, we speak of a coordinated scenario, and we simply write C , D and R
for the duration of a checkpoint, downtime and recovery. When G ≥ 1, we speak of
a hierarchical scenario. Each group of q processors checkpoints independently and
sequentially in time C(q). Similarly, we use D(q) and R(q) for the duration of the
downtime and recovery. Of course, if we set G = 1 in the (more general) hierarchical
scenario, we retrieve the value of the waste for the coordinated scenario. As already
mentioned, we derive a general expression for the waste for both scenarios, before
further specifying the values of C(q), D(q), and R(q) as a function of q and the
various architectural parameters under study.

1.3.3.2 Waste for the Coordinated Scenario (G = 1)

The goal of this section is to quantify the expected waste in the coordinated scenario
where G = 1. Recall that we write C , D, and R for the checkpoint, downtime, and
recovery using a single group of N processors. The platform MTBF is μ. We obtain
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Fig. 1.9 Coordinated checkpoint: illustrating the waste when a failure occurs. a during the work
phase; and b during the checkpoint phase

the following equation for the waste, which we explain briefly below and illustrate
with Fig. 1.9:

WasteFF = (1 − α)C

T
(1.18)

Wastefail = 1

μ

(
R + D+

T − C

T

[
αC + T − C

2

]

+C

T

[
αC + T − C + C

2

])
(1.19)

• Equation (1.18) is the portion of the execution lost in checkpointing, even during
a fault-free execution, see Eq. (1.17).

• The second part of Eq. (1.19) is the overhead of the execution time due to a failure
during work interval T − C (see Fig. 1.9a).

• The last part of Eq. (1.19) is the overhead due to a failure during a checkpoint (see
Fig. 1.9b).

After simplification of Eqs. (1.18) and (1.19), we get:

Wastefail = 1

μ

(
D + R + T

2
+ αC

)
(1.20)
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Plugging this value back into Eq. (1.16) leads to:

Wastecoord = 1 −
(
1 − (1 − α)C

T

)(
1 − 1

μ

(
D + R + T

2
+ αC

))
(1.21)

The optimal checkpointing period Topt that minimizes the expected waste in
Eq. (1.21) is

Topt = √2(1 − α)(μ − (D + R + αC))C (1.22)

This value is in accordance with the first-order expression of TFO in Eq. (1.9) when
α = 0 and, by construction, must be greater than C . Of course, just as before, this
expression is valid only if all resilience parameters are small in front of μ.

1.3.3.3 Waste for the Hierarchical Scenario (G ≥ 1)

In this section, we compute the expected waste for the hierarchical scenario.We have
G groups of q processors, and we let C(q), D(q), and R(q) be the duration of the
checkpoint, downtime, and recovery for each group. We assume that the checkpoints
of the G groups take place in sequence within a period (see Fig. 1.10a). We start by
generalizing the formula obtained for the coordinated scenario before introducing
several new parameters to the model.

Generalizing previous scenario with G ≥ 1: We obtain the following intricate
formula for the waste, which we illustrate with Fig. 1.10 and the discussion below:

Wastehier = 1−
(
1− T − Work

T

)(
1− 1

μ

(
D(q)+ R(q)+Re- Exec

))
(1.23)

Work = T − (1 − α)GC(q) (1.24)

Re- Exec =
T −GC(q)

T

1

G

G∑
g=1

[
(G−g+1)αC(q) + T −GC(q)

2

]

+ GC(q)

T

1

G2

G∑
g=1

[

g−2∑
s=0

(G − g + s + 2)αC(q) + T − GC(q)

+ GαC(q) + T − GC(q) + C(q)

2

+
G−g∑
s=1

(s + 1)αC(q)

]
(1.25)
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Fig. 1.10 Hierarchical checkpoint: illustrating the waste when a failure occurs. a during the work
phase (first part of Eq. (1.25)); and during the checkpoint phase (last three parts of Eq. (1.25)), with
three sub-cases: b before the checkpoint of the failing group (second part of Eq. (1.25)), c during
the checkpoint of the failing group (third part of Eq. (1.25)), or d after the checkpoint of the failing
group (last part of Eq. (1.25))
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• The first term in Eq. (1.23) represents the overhead due to checkpointing during
a fault-free execution (same reasoning as in Eq. (1.17)), and the second term the
overhead incurred in case of failure.

• Equation (1.24) provides the amount of work units executed within a period of
length T .

• The first part of Eq. (1.25) represents the time needed for re-executing the work
when the failure happens in a work-only area, i.e., during the first T − GC(q)

seconds of the period (see Fig. 1.10a).
• The second part of Eq. (1.25) deals with the case where the fault happens during a
checkpoint, i.e., during the last GC(q) seconds of the period (hence the first term
that represents the probability of this event).
We distinguish three cases, depending upon what group was checkpointing at the
time of the failure:

– The third part of Eq. (1.25) is for the case when the fault happens before the
checkpoint of group g (see Fig. 1.10b).

– The fourth part of Eq. (1.25) is for the case when the fault happens during the
checkpoint of group g (see Fig. 1.10c).

– The fifth part of Eq. (1.25) is the casewhen the fault happens after the checkpoint
of group g, during the checkpoint of group g + s, where g + 1 ≤ g + s ≤ G
(See Fig. 1.10d).

Of course this expression reduces to Eq. (1.21) when G = 1. Just as for the
coordinated scenario, we enforce the constraint

GC(q) ≤ T (1.26)

by construction of the periodic checkpointing policy.

1.3.3.4 Refining the Model

Wenow introduce three new parameters to refine themodel when the processors have
been partitioned into several groups. These parameters are related to the impact of
message logging on execution, re-execution, and checkpoint image size, respectively.

Impact of message logging on execution and re-execution. With several groups,
intergroup messages need to be stored in local memory as the execution progresses,
and event logs must be stored in reliable storage, so that the recovery of a given
group, after a failure, can be done independently of the other groups. This induces
an overhead, which we express as a slowdown of the execution rate: instead of
executing one work-unit per second, the application executes only λ work-units,
where 0 < λ < 1. Typical values for λ are said to be λ ≈ 0.98, meaning that the
overhead due to payload messages is only a small percentage [14, 36].

On the contrary, message logging has a positive effect on re-execution after a
failure, because intergroup messages are stored in memory and directly accessible
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after the recovery. Our model accounts for this by introducing a speedup factor ρ

during the re-execution. Typical values for ρ lie in the interval [1; 2], meaning that
re-execution time can be reduced by up to half for some applications [13].

Fortunately, the introduction of λ and ρ is not difficult to account for in the
expression of the expected waste: in Eq. (1.23), we replace Work by λWork and
Re- Exec by Re- Exec

ρ
and obtain

Wastehier = 1−
(
1− T − λWork

T

)(
1− 1

μ

(
D(q)+R(q)+Re- Exec

ρ

))
(1.27)

where the values of Work and Re- Exec are unchanged, and given by Eqs. (1.24)
and (1.25) respectively.

Impact of message logging on checkpoint size. Message logging has an impact on
the execution and re-execution rates, but also on the size of the checkpoint. Because
intergroup messages are logged, the size of the checkpoint increases with the amount
of work per unit. Consider the hierarchical scenario with G groups of q processors.
Without message logging, the checkpoint time of each group isC0(q), and to account
for the increase in checkpoint size due to message logging, we write the equation

C(q) = C0(q)(1 + βλWork) ⇔ β = C(q) − C0(q)

C0(q)λWork

(1.28)

As before, λWork = λ(T − (1 − α)GC(q)) (see Eq. (1.24)) is the number of
work units, or application iterations, completed during the period of duration T , and
the parameter β quantifies the increase in the checkpoint image size per work unit,
as a proportion of the application footprint. Typical values of β are given in the
examples of Sect. 1.3.3.5. Combining with Eq. (1.28), we derive the value of C(q) as

C(q) = C0(q)(1 + βλT )

1 + GC0(q)βλ(1 − α)
(1.29)

The constraint in Eq. (1.26), namely GC(q) ≤ T , now translates into
GC0(q)(1+βλT )

1+GC0(q)βλ(1−α)
≤ T , hence

GC0(q)βλα ≤ 1 and T ≥ GC0(q)

1 − GC0(q)βλα
(1.30)

1.3.3.5 Case Studies

In this section, we use the previous model to evaluate different case studies. We
propose three generic scenarios for the checkpoint protocols, and three application
examples with different values for the parameter β.
Checkpointing algorithm scenarios.
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Coord- IO —The first scenario considers a coordinated approach, where the dura-
tion of a checkpoint is the time needed for the N processors to write the memory
footprint of the application onto stable storage. Let Mem denote this memory, and
bio represents the available I/O bandwidth. Then

C = CMem = Mem

bio
(1.31)

(see the discussion on checkpoint/recovery overheads in Sect. 1.3.2.2 for a similar
scenario). In most cases we have equal write and read speed access to stable storage,
and we let R = C = CMem, but in some cases we could have different values. Recall
that a constant value D(q) = D is used for the downtime.

Hierarch- IO—The second scenario uses a number of relatively large groups. Typi-
cally, these groups are composed to take advantage of the application communication
pattern [32, 36]. For instance, if the application executes on a 2D-grid of processors,
a natural way to create processor groups is to have one group per row (or column)
of the grid. If all processors of a given row belong to the same group, horizontal
communications are intragroup communications and need not to be logged. Only
vertical communications are intergroup communications and need to be logged.

With large groups, there are enough processors within each group to saturate the
available I/O bandwidth, and the G groups checkpoint sequentially. Hence the total
checkpoint time without message logging, namely GC0(q), is equal to that of the
coordinated approach. This leads to the simple equation

C0(q) = CMem

G
= Mem

Gbio
(1.32)

where Mem denotes the memory footprint of the application, and bio the available
I/O bandwidth. Similarly as before, we use R(q) for the recovery (either equal to
C(q) or not), and a constant value D(q) = D for the downtime.

Hierarch- Port —The third scenario investigates the possibility of having a large
number of very small groups, a strategy proposed to take advantage of hardware
proximity and failure probability correlations [15]. However, if groups are reduced
to a single processor, a single checkpointing group is not sufficient to saturate the
available I/O bandwidth. In this strategy, multiple groups of q processors are allowed
to checkpoint simultaneously in order to saturate the I/Obandwidth.Wedefine qmin as
the smallest value such that qminbport ≥ bio, where bport is the network bandwidth
of a single processor. In other words, qmin is the minimal size of groups so that
Eq. (1.32) holds.

Small groups typically imply logging more messages (hence a larger growth
factor of the checkpoint per work unit β, and possibly a larger impact on computation
slowdown λ). For an application executing on a 2D-grid of processors, twice as many
communications will be logged (assuming a symmetrical communication pattern
along each grid direction). However, let us compare recovery times in theHierarch-
Port and Hierarch- IO strategies; assume that R0(q) = C0(q) for simplicity. In
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both cases Eq. (1.32) holds, but the number of groups is significantly larger for
Hierarch- Port, thereby ensuring a much shorter recovery time.

Application examples: We study the increase in checkpoint size due to message
logging by detailing three application examples that are typical scientific applica-
tions executing on 2D-or 3D-processor grids, but this exhibits a different checkpoint
increase rate parameter β.

2D- Stencil– We first consider a 2D-stencil computation: a real matrix of size n ×n
is partitioned across a p × p processor grid, where p2 = N . At each iteration, each
element is averaged with its 8 closest neighbors, requiring rows and columns that
lie at the boundary of the partition to be exchanged (it is easy to generalize to larger
update masks). Each processor holds a matrix block of size b = n/p, and sends four
messages of size b (one in each grid direction). Then each element is updated, at the
cost of 9 double floating-point operations. The (parallel) work for one iteration is
thus Work = 9b2

sp
, where sp is the speed of one processor.

HereMem = 8n2 (in bytes), since there is a single (double real)matrix to store. As
already mentioned, a natural (application-aware) group partition is with one group
per row (or column) of the grid, which leads to G = q = p. Such large groups
correspond to the Hierarch- IO scenario, with C0(q) = CMem

G . At each iteration,
vertical (intergroup) communications are logged, but horizontal (intragroup) com-
munications are not logged. The size of logged messages is thus 2pb = 2n for each
group. If we checkpoint after each iteration, C(q) − C0(q) = 2n

bio
, and we derive

from Eq. (1.28) that β = 2npsp

n29b2
= 2sp

9b3
. We stress that the value of β is unchanged

if groups checkpoint every k iterations, because both C(q) − C0(q) and Work are
multiplied by a factor k. Finally, if we use small groups of size qmin, we have the
Hierarch- Port scenario. We still have C0(q) = CMem

G , but now the value of β has
doubled since we log twice as many communications.

Matrix- Product—Consider now a typical linear-algebra kernel involving matrix
products. For eachmatrix-product, there are threematrices involved, soMem = 24n2

(in bytes). The matrix partition is similar to previous scenario, but now each proces-
sor holds three matrix blocks of size b = n/p. Consider Cannon’s algorithm [18]
which has p steps to compute a product. At each step, each processor shifts one
block vertically and one block horizontally, andWork = 2b3

sp
. In the Hierarch- IO

scenario with one group per grid row, only vertical messages are logged: β = sp

6b3
.

Again, β is unchanged if groups checkpoint every k steps, or every matrix product
(k = p). In the Coord- Port scenario with groups of size qmin, the value of β is
doubled.

3D- Stencil —This application is similar to 2D- Stencil, but with a 3D matrix of
size n partitioned across a 3D-grid of size p, where 8n3 = Mem and p3 = N . Each
processor holds a cube of size b = n/p. At each iteration, each pixel is averaged with
its 26 closest neighbors, andWork = 27b3

sp
. Each processor sends the six faces of its

cube, one in each direction. In addition toCoord- IO, there are now three hierarchical
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Local checkpoint
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Remote checkpoint
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Period
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Fig. 1.11 Double checkpoint algorithm

scenarios: (A)Hierarch- IO- Planewhere groups are horizontal planes, of size p2.
Only vertical communications are logged, which represents two faces per processor:
β = 2sp

27b3
; (B)Hierarch- IO- Linewhere groups are lines, of size p. Twice as many

communications are logged, which represents four faces per processor: β = 4sp

27b3
;

(C) Hierarch- Port (groups of size qmin). All communications are logged, which

represents six faces per processor: β = 6sp

27b3
. The order of magnitude of b is the

cubic root of the memory per processor for 3D- Stencil, while it was its square root
for 2D- Stencil and Matrix- Product, so β will be larger for 3D- Stencil.

Wrap-up. We have shown how to instantiate all the resilience parameters of the
model. Now, to assess the performance of a given scenario for hierarchical check-
pointing, there only remain to instantiate the platform parameters: individual MTBF
μind, number of nodes N (from which we deduce the platform MTBF μ), number
of cores per node, speed of each core sp, memory per node, fraction of that memory
used for the application memory footprint Mem, I/O network and node bandwidths
bio and bport . Then we can use the model to predict the waste when varying the
number of groups and the assumptions on checkpoint time. The interested reader
will find several examples in [10].

1.3.4 In-Memory Checkpointing

In this section, we briefly survey a recent protocol that has been designed to reduce
the time needed to checkpoint an application. The approach to reduce checkpoint
time is to avoid using any kind of stable, but slow-to-access, storage. Rather than
using a remote disk system, in-memory checkpointing uses the main memory of the
processors. This will provide faster access and greater scalability, at the price of the
risk of a fatal failure in some (unlikely) scenarios.

Figure1.11 depicts the double checkpoint algorithm of [59, 71]. Processors are
arranged into pairs. Within a pair, checkpoints are replicated: each processor stores
its own checkpoint and that of its buddy in its local memory. We use the notations of
[59, 71] in Fig. 1.11, which shows the following:

• The execution is divided into periods of length P
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• At the beginning of the period, each node writes its own checkpoint in its local
memory, which takes a time δ. This writing is done in blocking mode, and the
execution is stopped.

• Then each node send its checkpoint to its buddy. This exchange takes a time θ . The
exchange is non-blocking, and the execution can progress, albeit with a slowdown
factor Φ

• During the rest of the period, for a time σ , the execution progresses at full (unit)
speed

The idea of the non-blocking exchange is to use those time-steps where the applica-
tion is not performing inter-processor communications to send/receive the checkpoint
files, thereby reducing the overhead incurred by the application.

Let us see what happens when a failure strikes one processor, as illustrated in
Fig. 1.12a.Node p is hit by a failure, and a spare nodewill take over. After a downtime
D, the spare node starts by recovering the checkpoint file of node p, in time R. The
spare receives this file from node p′, the buddy of node p, most likely as fast as
possible (in blocking mode) so that it can resume working. Then the spare receives
the checkpoint file of node p′, to ensure that the application is protected if a failure
hits p′ later on. As before, receiving the checkpoint file can be overlapped with
the execution and takes a time Θ , but there is a trade-off to make now: as shown in
Fig. 1.12b, the application is at risk until both checkpoint receptions are completed. If
a failure strikes p′ before that, then it is a critical failure that cannot be recovered from.
Hence it might be a good idea to receive the second checkpoint (that of p′) as fast
as possible too, at the price of a performance degradation of the whole application:
when one processor is blocked, the whole application cannot progress. A detailed
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Fig. 1.12 Handling failures in the double checkpoint algorithm. a A failure hits node p. bA second
failure hits node p′, the buddy of node p, before the spare node had finished to receive the checkpoint
file of p′. This is a fatal failure for the application
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analysis is available in [28], together with extensions to a triple-checkpoint algorithm
where each node has two buddies instead of one, thereby dramatically decreasing
the risk of a fatal failure.

Finally, we mention that the risk of a fatal failure can be eliminated when using
a multi-level checkpointing protocol, such as FTI. [5] or SCR. [57]. Such protocols
allow to set different levels/types of checkpoints during the execution. Different
checkpoint levels correspond to different recovery abilities, and also suffer from
different checkpoint/recovery overheads. See [5, 57] for further details.

1.4 Probabilistic Models for Advanced Methods

In this section, we present two extensions of checkpointing performance models.
Section1.4.1 explains how to combine checkpointing with fault prediction, and dis-
cuss how the optimal period is modified when this combination is used. Section1.4.2
explains how to combine checkpointingwith replication, and discuss how the optimal
period is modified when this combination is used.

1.4.1 Fault Prediction

A possible way to cope with the numerous faults and their impact on the execution
time is to try and predict them. In this section we do not explain how this is done,
although the interested reader will find some answers in Chap. 2 and in [35, 70, 73].

A fault predictor (or simply a predictor) is a mechanism that warns the user
about upcoming faults on the platform.More specifically, a predictor is characterized
by two key parameters, its recall r , which is the fraction of faults that are indeed
predicted, and its precision p, which is the fraction of predictions that are correct (i.e.,
correspond to actual faults). In this section,we discuss how to combine checkpointing
and prediction to decrease the platform waste.

We start with a few definitions. LetμP be the mean time between predicted events
(both true positive and false positive), andμNPbe themean time between unpredicted
faults (false negative). The relations between μP, μNP, μ, r and p are as follows:

• Rate of unpredicted faults: 1
μNP

= 1−r
μ

, since 1− r is the fraction of faults that are
unpredicted;

• Rate of predicted faults: r
μ

= p
μP

, since r is the fraction of faults that are predicted,
and p is the fraction of fault predictions that are correct.

To illustrate all these definitions, consider the time interval below and the different
events occurring:

http://dx.doi.org/10.1007/978-3-319-20943-2_2
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fault fault fault fault fault

pred. pred. pred. pred. pred. pred.

Time

F+P F+P
pred.

F+P
pred.

F+P
fault

t

Actual faults:

Predictor:

Overlap:

During this time interval of length t , the predictor predicts six faults, and there
were five actual faults. One fault was not predicted. This gives approximately:μ = t

5 ,
μP = t

6 , and μNP = t . For this predictor, the recall is r = 4
5 (green arrows over red

arrows), and its precision is p = 4
6 (green arrows over blue arrows).

Now, given a fault predictor of parameters p and r , can we improve the waste?
More specifically, how to modify the periodic checkpointing algorithm to get better
results? In order to answer these questions, we introduce proactive checkpointing:
when there is a prediction, we assume that the prediction is given early enough so
that we have time for a checkpoint of size C p (which can be different from C). We
consider the following simple algorithm:

• While no fault prediction is available, checkpoints are taken periodically with
period T ;

• When a fault is predicted, we take a proactive checkpoint (of length C p) as late as
possible, so that it completes right at the time when the fault is predicted to strike.
After this checkpoint, we complete the execution of the period (see Fig. 1.13b, c);

We compute the expected waste as before. We reproduce Eq. (1.7) below:

Waste = WasteFF + Wastefault − WasteFFWastefault (1.33)

(a)

(b)

(c)

TimeTlost

fault

C T -C C T -C C D R T -C C

TimeWreg

pred.

T -Wreg-C

C T -C C Cp C T -C C T -C C

TimeWreg

F+P

T -Wreg-C

C T -C C Cp D R C T -C C T -C

Fig. 1.13 Actions taken for the different event types. a Unpredicted fault, b Prediction taken into
account—no actual fault, c Prediction taken into account—with actual fault
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While the value ofWasteFF is unchanged (WasteFF = C
T ), the value ofWastefault

is modified because of predictions. As illustrated in Fig. 1.13, there are different
scenarios that contribute toWastefault. We classify them as follows:

(1) Unpredicted faults: This overhead occurs each time an unpredicted fault
strikes, that is, on average, once every μNP seconds. Just as in Eq. (1.6), the
corresponding waste is 1

μNP

[ T
2 + D + R

]
.

(2) Predictions: We now compute the overhead due to a prediction. If the predic-
tion is an actual fault (with probability p), we lose C p + D + R seconds, but if
it is not (with probability 1 − p), we lose the unnecessary extra checkpoint time
C p. Hence

Tlost = p(C p + D + R) + (1 − p)C p = C p + p(D + R)

We derive the final value of Wastefault:

Wastefault = 1

μNP

(
T

2
+ D + R

)
+ 1

μP

(
C p + p(D + R)

)

= 1 − r

μ

(
T

2
+ D + R

)
+ r

pμ

(
C p + p(D + R)

)

= 1

μ

(
(1 − r)

T

2
+ D + R + rC p

p

)

We can now plug this expression back into Eq. (1.33):

Waste = WasteFF + Wastefault − WasteFFWastefault

= C

T
+
(
1 − C

T

)
1

μ

(
D + R + rC p

p
+ (1 − r)T

2

)
.

To compute the value of T p
FO

, the period that minimizes the total waste, we use the
same reasoning as in Sect. 1.3.1 and obtain:

T p
FO

=

√√√√2
(
μ −

(
D + R + rC p

p

))
C

1 − r
.

We observe the similarity of this result with the value of TFO from Eq. (1.9). If μ is

large in front of the resilience parameters, we derive that T p
FO

=
√

2μC
1−r . This tells

us that the recall is more important than the precision. If the predictor is capable of
predicting, say, 84% of the faults, then r = 0.84 and

√
1 − r = 0.4. The optimal

period is increased by 40%, and the waste is decreased by the same factor. Prediction
can help!
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Going further. The discussion above has been kept overly simple. For instancewhen
a fault is predicted, sometimes there is not enough time to take proactive actions,
because we are already checkpointing. In this case, there is no other choice than
ignoring the prediction.

Furthermore, a better strategy should take into account at what point in the period
does the prediction occur. After all, there is no reason to always trust the predictor,
in particular if it has a bad precision. Intuitively, the later the prediction takes place
in the period, the more likely we are inclined to trust the predictor and take proactive
actions. This is because the amount of work that we could lose gets larger as we
progress within the period. On the contrary, if the prediction happens in the beginning
of the period, we have to trade-off the possibility that the proactive checkpoint may
be useless (if we indeed take a proactive action) with the small amount of work that
may be lost in the case where a fault would actually happen. The optimal approach
is to never trust the predictor in the beginning of a period, and to always trust it in
the end; the crossover point C p

p depends on the time to take a proactive checkpoint
and on the precision of the predictor. See [4] for details.

Finally, it is more realistic to assume that the predictor cannot give the exact
moment where the fault is going to strike, but rather will provide an interval of time
for that event, a.k.a. a prediction window. More information can be found in [2].

1.4.2 Replication

Another possible way to cope with the numerous faults and their impact on the
execution time is to use replication. Replication consists in duplicating all computa-
tions. Processors are grouped by pairs, such as each processor has a replica (another
processor performing exactly the same computations, receiving the same messages,
etc.). See Fig. 1.14 for an illustration. We say that the two processes in a given pair

p1

p2

p1

p2

p1

p2

p1

p2

Time

Pair1

Pair2

Pair3

Pair4

Fig. 1.14 Processor pairs for replication: each blue processor is paired with a red processor. In
each pair, both processors do the same work
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are replicas. When a processor is hit by a fault, its replica is not impacted. The exe-
cution of the application can still progress, until the replica itself is hit by a fault later
on. This sounds quite expensive: by definition, half of the resources are wasted (and
this does not include the overhead of maintaining a consistent state between the two
processors of each pair). At first sight, the idea of using replication on a large parallel
platform is puzzling: who is ready to waste half of these expensive supercomputers?

In this section, we explain how replication can be used in conjunction with check-
pointing and under which conditions it becomes profitable. In order to do this, we
compare the checkpointing technique introduced earlier to the replication technique.

A perfectly parallel application is an application such that in a failure-free,
checkpoint-free environment, the time to execute the application (TimeBase) decreases
linearly with the number of processors. More precisely:

Timebase(N ) = Timebase(1)

N
.

Consider the execution of a perfectly parallel application on a platform with N =
2n processors, each with individual MTBF μind. As in the previous sections, the
optimization problem is to find the strategy minimizing Timefinal. Because we com-
pare two approaches using a different number of processors, we introduce the
Throughput, which is defined as the total number of useful flops per second:

Throughput = Timebase(1)

Timefinal

Note that for an application executing on N processors,

Throughput = N
(
1 − Waste

)

The standard approach, as seen before, is to use all 2n processors so the execution
of the application benefits from the maximal parallelism of the platform. This would
be optimal in a fault-free environment, but we are required to checkpoint frequently
because faults repeatedly strike the N processors. According to Proposition 1.2, the
platformMTBF isμ = μind

N . According to Theorem 1.1, the waste is (approximately)

Waste =
√

2C
μ

=
√

2C N
μind

. We have:

ThroughputStd = N

(
1 −

√
2C N

μind

)
(1.34)

The second approach uses replication. There are n pairs of processors, all compu-
tations are executed twice, hence only half the processors produce useful flops. One
way to see the replication technique is as if there were half the processors using only
the checkpoint technique, with a different (potentially higher) mean time between
faults, μrep. Hence, the throughput ThroughputRep of this approach writes:
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ThroughputRep = N

2

(
1 −

√
2C

μrep

)
(1.35)

In fact, rather than MTBF, we should say MTTI, for Mean Time To Interruption. As
already mentioned, a single fault on the platform does not interrupt the application,
because the replica of the faulty processor is still alive. What is the value of MNFTI ,
the Mean Number of Faults To Interruption, i.e., the mean number of faults that
should strike the platform until there is a replica pair whose processors have both
been hit? If we find how to compute MNFTI , we are done, because we know that

μrep = MNFTI × μ = MNFTI × μind

N

We make an analogy with a balls-into-bins problem to compute MNFTI . The
classical problem is the following: what is the expected number of balls that you will
need, if you throw these balls randomly into n bins, until one bins gets two balls?
The answer to this question is given by Ramanujans Q-Function [34], and is equal

to q(n)� where q(n) = 2
3 +

√
πn
2 +

√
π

288n − 4
135n + . . . . When n = 365, this is

the birthday problem where balls are persons and bins are calendar dates; in the best
case, one needs two persons; in the worst case, one needs n + 1 = 366 persons; on
average, one needs q(n)� = 25 persons.3

In the replication problem, the bins are the processor pairs, and the balls are
the faults. However, the analogy stops here. The problem is more complicated, see
Fig. 1.15 to see why. Each processor pair is composed of a blue processor and of a
red processor. Faults are (randomly) colored blue or red too. When a fault strikes a
processor pair, we need to know which processor inside that pair: we decide that it is
the one of the same color as the fault. Blue faults strike blue processors, and red faults
strike red processors. We now understand that we may need more than two faults
hitting the same pair to interrupt the application: we need one fault of each color.
The balls-and-bins problem to compute MNFTI is now clear: what is the expected
number of red and blue balls that you will need, if you throw these balls randomly
into n bins, until one bins gets one red ball and one blue ball? To the best of our
knowledge, there is no closed-form solution to answer this question, but a recursive
computation does the job:

Proposition 1.3 MNFTI = E(NFTI|0) where

E(NFTI|n f ) =
{
2 if n f = N ,

2N
2N−n f

+ 2N−2n f
2N−n f

E
(
NFTI|n f + 1

)
otherwise.

Proof LetE(NFTI|n f ) be the expectation of the number of faults needed to interrupt
the application, knowing that the application is still running and that faults have

3As a side note, one needs only 23 persons for the probability of a common birthday to reach 0.5
(a question often asked in geek evenings).
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Pair1 Pair2 Pair3 Pair4

Fig. 1.15 Modeling the state of the platform of Fig. 1.14 as a balls-into-bins problem. We put a red
ball in bin Pairi when there is a fault on its red processor p1, and a blue ball when there is a fault
on its blue processor p2. As long as no bin has received a ball of each color, the game is on

already hit n f different processor pairs. Because each pair initially has 2 replicas,
this means that n f different pairs are no longer replicated, and that N − n f are still
replicated. Overall, there are n f + 2(N − n f ) = 2N − n f processors still running.

The case n f = N is simple. In this case, all pairs have already been hit, and all
pairs have only one of their two initial replicas still running. A new fault will hit such
a pair. Two cases are then possible:

1. The fault hits the running processor. This leads to an application interruption, and
in this case E(NFTI|N ) = 1.

2. The fault hits the processor that has already been hit. Then the fault has no
impact on the application. The MNFTI of this case is then: E(NFTI|N ) = 1 +
E (NFTI |N ).

The probability of fault is uniformly distributed between the two replicas, and thus
between these two cases. Weighting the values by their probabilities of occurrence
yields:

E (NFTI |N ) = 1

2
× 1 + 1

2
× (1 + E (NFTI |N )) ,

hence E (NFTI |N ) = 2.
For the general case 0 ≤ n f ≤ N − 1, either the next fault hits a new pair, i.e., a

pair whose 2 processors are still running, or it hits a pair that has already been hit,
hence with a single processor running. The latter case leads to the same sub-cases as
the n f = N case studied above. The fault probability is uniformly distributed among
the 2N processors, including the ones already hit. Hence the probability that the next
fault hits a new pair is

2N−2n f
2N . In this case, the expected number of faults needed

to interrupt the application fail is one (the considered fault) plus E
(
NFTI|n f + 1

)
.

Altogether we have:

E
(
NFTI|n f

) = 2N−2n f
2N × (1 + E

(
NFTI|n f + 1

))
+ 2n f

2N × ( 12 × 1 + 1
2

(
1 + E

(
NFTI|n f

)))
.

Therefore,
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E
(
NFTI|n f

) = 2N

2N − n f
+ 2N − 2n f

2N − n f
E
(
NFTI|n f + 1

)
.

Let us compare the throughput of each approachwith an example. FromEqs. (1.34)
and (1.35), we have

ThroughputRep ≥ ThroughputStd ⇔ (1 −
√

2C N

MNFTI μind
) ≥ 2(1 −

√
2C N

μind
)

which we rewrite into

C ≥ μind

2N

1

(2 − 1√
MNFTI

)2
(1.36)

Take a parallel machine with N = 220 processors. This is a little more than one
million processors, but this corresponds to the size of the largest platforms today.
Using Proposition 1.3, we compute MNFTI = 1284.4 Assume that the individual
MTBF is 10years, or in seconds μind = 10 × 365× 24 × 3600. After some painful
computations, we derive that replication is more efficient if the checkpoint time is
greater than 293 seconds (around 6 minutes). This sets a target both for architects
and checkpoint protocol designers.

Maybe you would say say that μind = 10years is pessimistic, because we rather
observe that μind = 100years in current supercomputers. Since μind = 100years
allows us to use a checkpointing period of one hour, you might then decide that
replication is not worth it. On the contrary, maybe youwould say thatμind = 10years
is optimistic for processors equipped with thousands of cores and rather take μind =
1year. In that case, unless you checkpoint in less than 30 s, better be prepared for
replication. The beauty of performancemodels is that you can decidewhich approach
is better without bias nor a priori, simply by plugging your own parameters into
Eq. (1.36).

Going further. There are two natural options “counting” faults. The option chosen
above is to allow new faults to hit processors that have already been hit. This is the
option chosen in [33], who introduced the problem. Another option is to count only
faults that hit running processors, and thus effectively kill replica pairs and interrupt
the application. This second option may seemmore natural as the running processors
are the only ones that are important for executing the application. It turns out that
both options are almost equivalent, the values of theirMNFTI only differ by one [19].

We refer the interested reader to Chap. 4 for a full analysis of replication. For con-
venience, we provide a few bibliographical notes in the following lines. Replication
has long been used as a fault tolerance mechanism in distributed systems [38], and in
the context of volunteer computing [51]. Replication has recently received attention
in the context of HPC (High Performance Computing) applications [31, 33, 66, 72].
While replicating all processors is very expensive, replicating only critical processes,
or only a fraction of all processes, is a direction being currently explored under the
name partial replication.

http://dx.doi.org/10.1007/978-3-319-20943-2_4
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Speaking of critical processes, we make a final digression. The de-facto stan-
dard to enforce fault tolerance in critical or embedded systems is Triple Modular
Redundancy and voting, or TMR [56]. Computations are triplicated on three differ-
ent processors, and if their results differ, a voting mechanism is called. TMR is not
used to protect from fail-stop faults, but rather to detect and correct errors in the
execution of the application. While we all like, say, safe planes protected by TMR,
the cost is tremendous: by definition, two thirds of the resources are wasted (and this
does not include the overhead of voting when an error is identified).

1.5 Application-Specific Fault Tolerance Techniques

All the techniques presented and evaluated so far are general techniques: the assump-
tions theymake on the behavior of the application are as little constraining as possible,
and the protocol to tolerate failures considered two adversaries: the occurrence of
failures, which can happen at the worst possible time, and also the application itself,
which can take the worst possible action at the worst possible moment.

We now examine the case of application-specific fault tolerance techniques in
HPC: when the application itself may use redundant information inherent of its
coding of the problem, to tolerate misbehavior of the supporting platform. As one
can expect, the efficiency of such approaches can be orders of magnitude better than
the efficiency of general techniques; their programming, however, becomes a much
harder challenge for the final user.

First, the application must be programmed over a middleware that not only tol-
erates failures for its internal operation, but also exposes them in a manageable
way to the application; then, the application must maintain redundant information
exploitable in case of failures during its execution. We will present a couple of
cases of such applicative scenarios. Finally, we will discuss the portability of such
approaches, and present a technique that allows the utilization of application-specific
fault tolerance technique inside a more general application, preserving the fault
tolerance property while exhibiting performance close to the one expected from
application-specific techniques.

1.5.1 Fault-Tolerant Middleware

The first issue to address, to consider application-specific fault tolerance, is how to
allow failures to be presented to the application. Even in the case of fail-stop errors,
that can be detected easily under the assumption of pseudo-synchronous systems
usually made in HPC, the most popular programming middleware, MPI, does not
allow to expose failures in a portable way.

The MPI-3 specification has little to say about failures and their exposition to the
user:
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It is the job of the implementor of the MPI subsystem to insulate the user from this unreli-
ability, or to reflect unrecoverable errors as failures. Whenever possible, such failures will
be reflected as errors in the relevant communication call. Similarly, MPI itself provides no
mechanisms for handling processor failures.

MPI Standard, v3.0, p. 20, l. 36:39

This fist paragraph would allow implementations to expose the failures, limiting
their propagation to the calls that relate to operations that cannot complete because
of the occurrence of failures. However, later in the same standard:

This document does not specify the state of a computation after an erroneous MPI call has
occurred.

MPI Standard v3.0, p. 21, l. 24:25

Unfortunately, most Open Source MPI implementations, and the numerous
vendor-specific MPI implementations that derive from them, chose, by lack of
demand from their users, and by lack of consensus, to interpret these paragraphs
in a way that limits the opportunities for the user to tolerate failures: in the worst
case, even if all communicators hit by failures are marked to return in case of error,
the application is simply shutdown by the runtime system, as a cleanup procedure;
in the best case, the control is given back to the user program, but no MPI call
that involves a remote peer is guaranteed to perform any meaningful action for the
user, leaving the processes of the application as separate entities that have to rely on
external communication systems to tolerate failures.

The Fault Tolerance Working Group of the MPI Forum has been constituted
to address this issue. With the dawn of extreme scale computing, at levels where
failures become expected occurrences in the life of an application, MPI has set a cap
to evolve towards more scalability. Capacity for the MPI implementation to continue
its service in case of failures, and capacity for the MPI language to present these
failures to the application, or to the software components that wish to handle these
failures directly, are key among themilestones to remove technological locks towards
scalability. Chapter 3 details the User-Level Failures Mitigation (ULFM) proposal
of the FTWG of the MPI Forum in its Sect. 3.8. We present here its main features,
as an introduction.

There are two main issues to address to allow applications written in MPI to
tolerate failures:

• Detect and report failures
• Provide service after the occurrence of failures

ULFM exposes failures to the application through MPI exceptions. It introduces
a couple of error classes that are returned by pertaining MPI calls if a failure strikes,
and prevents their completion (be it because the failure happened before or during
the call). As per traditional MPI specification, exceptions are raised only if the user
defined a specific error handler for the corresponding communicator, or if it specified
to use the predefined error handler that makes exceptions return an error code.

In those cases, theULFMproposal states that noMPI call should block indefinitely
because of the occurrence of failures. Collective calls must return either a success

http://dx.doi.org/10.1007/978-3-319-20943-2_3
http://dx.doi.org/10.1007/978-3-319-20943-2_3
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code if they did complete despite the failure, or an error code if their completion was
compromised; point to point operations must also return. This raises two issues:

• the same collective call may return with success or fail, depending on the rank.
For example, a broadcast operation is often implemented using a broadcast tree to
provide logarithmic overheads. If a node low in the broadcast tree is subject to a
failure, the root of the tree may not notice the failure and succeed completing all its
local operations, while trees under the failed node will not receive the information.
In all cases, all processes must enter the broadcast operation, as the meaning of
collective is not changed, and all processes must leave the operation, as none
could stall forever because of a failure. Nodes under the failed process may raise
an exception, while nodes above it may not notice the failure during this call.

• in the case of point to point operations, it may become hard for the implementation
to decide whether an operation will complete or not. Take the example of a receive
from any source operation: any process in the communicator may be the sender
that would, in a failure-free execution, send the message that would match this
reception. As a consequence, if a single process failed, the MPI implementation
cannot safely decide (unless it finds incoming messages to match the reception) if
the reception is going to complete or not. Since the specification does not allow for
a process to stall forever because of the occurrence of failures, the implementation
should raise an exception. However, the reception operation cannot be marked
as failed, since it is possible that the matching send comes later from a different
process. The specification thus allows the implementation to delay the notification
for as long as seems fit, but for a bounded time, after which the reception must
return with a special exception that marks the communication as undecided, thus
giving back the control to the application to decide if that message is going to
come or not.

To take such decisions, the application has access to a few additional routines.
The application can acknowledge the presence of failures in a communicator (using
MPI_Comm_failure_ack, and resume its operation over the same communicator
that holds failed processes. Over such a communicator, any operation that involves
a failed process will fail. Thus, collective operations that involve all processes in
the communicator will necessarily fail. Point to point communications, on the other
hand, may succeed if they are not a specific emission to a failed process or recep-
tion from a failed process. Receptions from any source will succeed and wait for a
matching message, as the user already acknowledged the presence of some failures.
If the user wanted to cancel such a reception, she can decide by requesting the MPI
implementation to provide the list of failed processes after an acknowledgment (via
MPI_Comm_get_acked). If more processes fail after the acknowledgment, more
exceptions will be raised and can be acknowledged. Point to point communications
will thus continue to work after a failure, as long as they do not directly involve an
acknowledged failed process.

The application may also need to fix the communicator, in order to allow for
collective operations to succeed. In order to clearly separate communications that
happened before or after a set of failures, ULFM does not provide a way to fix
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the communicator. Instead, it provides a routine that exclude the failed processes
from a communicator and creates a new one, suitable for the whole range of MPI
routines (the routine MPI_Comm_shrink). This communicator creation routine is
specified to work despite the occurrence of failures. The communicator that it creates
must exclude failures that were acknowledged before entering the routine, but since
failures may happen at any time, the newly created communicator may itself include
failed processes, for example if a failure happened just after its creation.

The last routine provided by the ULFM proposal is a routine to allow resolution
of conflicts after a failure. MPI_Comm_agree provides a consensus routine over
the surviving ranks of a communicator. It is critical to determine an agreement in
the presence of failures, since collective operations have no guarantee of consistent
return values if a failure happens during their execution. Its usage is documented
more closely in Chap.3, as it interacts with MPI_Comm_failure_ack to enable
the user to construct a low cost group membership service, that provides a global
view of processes that survived a set of failures.

The leading idea of ULFM was to complement the MPI specification with a
small set of routines, and extended specification for the existing routines, in case of
process failures, enabling the user application or library to notice failures, react and
continue the execution of the application despite the occurrence of these failures.
The specification targets a lean set of changes, not promoting any specific model to
tolerate failures, but providing the minimal building blocks to implement, through
composition of libraries or directly in the application, a large spectrumof application-
specific fault tolerance approaches. In the following, we discuss a few typical cases
that were implemented over this ULFM proposal.

1.5.2 ABFT for Dense Matrix Factorization

Algorithm-Based Fault Tolerance (ABFT) was introduced by Abraham and Huang
in 1984 [45] to tolerate possible memory corruptions during the computation of a
densematrix factorization. It is a good example of application-specific fault tolerance
technique that is not simplistic, but provides an extreme boost in performance when
used (compared to a general technique, like rollback-recovery). ABFT and disk-less
checkpointing have been combined to apply to basic matrix operations like matrix-
matrix multiplication [8, 22, 23] and have been implemented on algorithms similar
to those of ScaLAPACK [24], which is widely used for dense matrix operations on
parallel distributed memory systems, or the High Performance Linpack (HPL) [26]
and to the Cholesky factorization [40].

An ABFT scheme for dense matrix factorization was introduced in [16, 29], and
we explain it here, because it combines many application-level techniques, includ-
ing replication, user-level partial checkpointing, and ABFT itself. We illustrate this
technique with the LU factorization algorithm, which is the most complex due
to its pivoting, but the approach applies to other direct methods of factorization.

http://dx.doi.org/10.1007/978-3-319-20943-2_3
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Section3.7.3 of Chap.3 presents a similar algorithm for the QR factorization in the
context of a less supportive communication middleware.

To support fail-stop errors, an ABFT scheme must be built on top of a fault-
aware middleware. We assume a failure, defined in this section as a process that
completely and definitely stops responding, triggering the loss of a critical part of the
global application state, could occur at any moment and can affect any part of the
application’s data.

Algorithm Based Fault Tolerance. The general idea of ABFT is to introduce infor-
mation redundancy in the data, and maintain this redundancy during the computa-
tion. Linear algebra operations over matrices are well suited to apply such a scheme:
the matrix (original data of the user) can be extended by a number of columns, in
which checksums over the rows are stored. The operation applied over the initial
matrix can then be extended to apply at the same time over the initial matrix and its
extended columns, maintaining the checksum relation between data in a row and the
corresponding checksum column(s). Usually, it is sufficient to extend the scope of
the operation to the checksum rows, although in some cases the operation must be
redefined.

If a failure hits processes during the computation, the data host by these processes
is lost. However, in theory, the checksum relation being preserved, if enough infor-
mation survived the failure between the initial data held by the surviving processes
and the checksum columns, a simple inversion of the checksum function is sufficient
to reconstruct the missing data and pursue the operation.

No periodical checkpoint is necessary, and more importantly the recovery proce-
dure brings back the missing data at the point of failure, without introducing a period
of re-execution as the general techniques seen above impose, and a computational
cost that is usually linear with the size of the data. Thus, the overheads due to ABFT
are expected to be significantly lower than those due to rollback-recovery.

LU Factorization: The goal of a factorization operation is usually to transform a
matrix that represents a set of equations into a form suitable to solve the problem
Ax = b, where A and b represent the equations, A being a matrix and b a vector of
same height. Different transformations are considered depending on the properties
of the matrix, and the LU factorization transforms A = LU where L is a lower
triangular matrix, and U an upper triangular matrix. This transformation is done by
blocks of fixed size inside the matrix to improve the efficiency of the computational
kernels. Figure1.16 represents the basic operations applied to a matrix during a
block LU factorization. The GETF2 operation is a panel factorization, applied on a
block column. This panel operation factorizes the upper square, and scales the lower
rectangle accordingly. The output of that operation is then used to the right of the
factored block to scale it accordingly using a triangular solve (TRSM), and the trailing
matrix is updated accordingly using a matrix-matrix multiplication (GEMM). The
block column and the block row are in their final LU form, and that trailing matrix
must be transformed using the same algorithm, until the last block of the matrix is in
the LU form. Technically, each of these basic steps is usually performed by applying
a parallel Basic Linear Algebra Subroutine (PBLAS).

http://dx.doi.org/10.1007/978-3-319-20943-2_3
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Fig. 1.16 Operations
applied on a matrix, during
the LU factorization. A’ is
the trailing matrix, that needs
to be factorized using the
same method until the entire
initial matrix is in the form
LU

A A'

U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

Fig. 1.17 Block cyclic
distribution of a 8mb × 8nb
matrix over a 2 × 3 process
grid

Data Distribution. For a parallel execution, the data of thematrixmust be distributed
among the different processors. For dense matrix factorization, the data is distributed
following a 2D block cyclic distribution: processes are arranged over a 2D cyclic
processor grid of size P × Q, the matrix is split in blocks of size mb × nb, and the
blocks are distributed among the processes cyclically. Figure1.17 shows how the
blocks are distributed in a case of a square matrix of size 8mb × 8nb, and a process
grid of size 2 × 3.

Reverse Neighboring Scheme: If one of the processes is subject of failure, many
blocks are lost. As explained previously, the matrix is extended with checksum
columns to introduce information redundancy. Figure1.18 presents how the matrix
is extended with checksum columns following a reverse neighboring scheme. The
reverse neighboring scheme is a peculiar arrangement of data that simplifies signifi-
cantly the design of the ABFT part of the algorithm.

The data matrix has 8 × 8 blocks and therefore the size of checksum is 8 × 3
blocks with an extra 8 × 3 blocks copy. Checksum blocks are stored on the right of

Fig. 1.18 Reverse
neighboring scheme of
checksum storage
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the data matrix. In the example, the first 3 block columns produce the checksum in
the last two block columns (hence making 2 duplicate copies of the checksum); the
next 3 block columns then produce the next 2 rightmost checksum columns, etc.

Because copies are stored in consecutive columns of the process grid, for any
2D grid P × Q with Q > 1, the checksum duplicates are guaranteed to be stored
on different processors. The triangular solve (TRSM) and trailing matrix update
(GEMM) are applied to the whole checksum area until the first three columns are
factored. In the following factorization steps, the two last block columns of check-
sum are excluded from the TRSM and GEMM scope. Since TRSM and GEMM
claim most of the computation in the LU factorization, shrinking the update scope
greatly reduces the overhead of the ABFT mechanism by diminishing the amount of
(useless) extra computations; meanwhile, the efficiency of the update operation itself
remains optimal as, thanks to the reverse storage scheme, the update still operates
on a contiguous memory region and can be performed by a single PBLAS call.

Checksum blocks are duplicated for a reason: since they are stored on the same
processes as the matrix and following the same block cyclic scheme, when a process
is subject to a failure, blocks of initial data are lost, but also blocks of checksums.
Because of the cyclic feature of the data distribution, all checksumblocksmust remain
available to recover the missing data. Duplicating them guarantees that if a single
failure happens, one of the copies will survive. In the example, checksum blocks
occupy almost as much memory as the initial matrix once duplicated. However, the
number of checksumblock columnnecessary is 2N/(Q×nb), thus decreases linearly
with the width of the process grid.

To simplify the figures, in the following we will represent the checksum blocks
over a different process grid, abstracting the duplication of these blocks as if they
were hosted by virtual processes that are not subject to failures. We consider here an
algorithm that can tolerate only one simultaneous failure (on the same process row),
hence at least one of the two checksum blocks will remain available.

Q-Panel: The idea of the ABFT factorization is that by extending the scope of the
operation to the checksum blocks, the checksum property is maintained between the
matrix and the checksum blocks: a block still represents the sum of the blocks of the
initial matrix. This is true for the compute-intensive update operations, like GEMM
and TRSM. Unfortunately, this is not true for the GETF2 operation that cannot be
extended to span over the corresponding checksum blocks.

To deal with this, a simplistic approach would consist in changing the compu-
tational kernel to go update the checksum blocks during the GETF2 operation. We
avoid doing this because this would introduce more synchronization, having more
processes participate to this operation (as the processes spanning over the correspond-
ing checksum blocks are not necessarily involved in a given GETF2 operation). The
GETF2 operation is already a memory-bound operation, that require little computa-
tion compared to the update operations. It also sits in the critical path of the execution,
and is amajor blocker to performance, so introducingmore synchronization andmore
delay is clearly detrimental to the performance.

That is the reason why we introduced the concept of Q-panel update. Instead of
maintaining the checksum property at all time for all blocks, we will let some of
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GETF2 GEMM

TRSM

Fig. 1.19 Q-panel update of the ABFT LU factorization

the checksum blocks drift away, for a bounded time, and tolerate the risk for these
Q-panel blocks with another approach. Then, when the cost of checksum update can
be safely absorbed with maximal parallelism, we will let the algorithm update the
checksums of the drifted away blocks, and pursue the computation.

ABFT LU Factorization: We now present the steps of the ABFT LU factorization
using Q-panel update :

1. At a beginning of a Q-panel, when process (0, 0) hosts the first block on which
GETF2 is going to be applied, processes take a partial checkpoint of the matrix:
the first Q-block columns of the trailing matrix are copied, as well as the block
column of corresponding checksums.

2. Then, the usual operations of LU are applied, using the first block column of the
trailing matrix as a block panel (see Fig. 1.19): GETF2 is applied on that block
column, then TRSM extended to the corresponding checksums, and GEMM, also
extended on the corresponding checksums, producing a smaller trailing matrix.
The checksums that correspond to the previously factored part of the matrix are
left untouched, as the corresponding data in the matrix, so the checksum property
is preserved for them. The checksums that were just updated with TRSM and
GEMM also preserve the checksum property, as the update operations preserve
the checksum property.
The part of the checksum represented in red in the figure, however, violates the
checksum property: the block column on which GETF2 was just applied hold
values that are not represented in the corresponding block column in the reserve
neighboring storing scheme.

3. The algorithm iterates, using the second block column of the Q-panel as a panel,
until Q panels have been applied. In that case, the checksum property is pre-
served everywhere, except between the blocks that belong to the Q-panel, and
the corresponding checksum block column. A checksum update operation is then
executed, to recompute this checksum, the checkpoint saved at the beginning of
this Q-panel loop can be discarded, and the next Q-panel loop can start.

Failure Handling. When a failure occurs, it is detected by the communication mid-
dleware, and the normal execution of the algorithm is interrupted. The ABFT fac-
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Fig. 1.20 Single failure
during a Q-panel update of
the ABFT LU factorization

Fig. 1.21 Data restored
using valid checksums

torization enters its recovery routine. Failures can occur at any point during the
execution. The first step of the recovery routine is to gather the status of all surviving
processes, and determine when the failure happened. Spare processes can then be
reclaimed to replace the failed ones, or dynamic process management capabilities of
the communication middleware are used to start new processes that will replace the
missing ones.

In the general case, the failure happened while some blocks have been updated,
and others not, during one of the Q-panels (see Fig. 1.20). Since the checksum blocks
are replicated on adjacent processes, one copy survived the failure, so they are not
missing. For all blocks where the checksum property holds, the checksum blocks are
used to reconstruct the missing data.

The checkpoint of the Q-panel at the beginning of the last Q-panel step also lost
blocks, since a simple local copy is kept. But because the processes also copied the
checksum blocks corresponding to this Q-panel, they can rebuild the missing data
for the checkpoint (Fig. 1.21).

The matrix is then overwritten with the restored checkpoint; the corresponding
checksum blocks are also restored to their checkpoint. Then, the processes re-execute
part of the update and factorization operations, but limiting their scope to the Q-panel
section, until they reach the step when the Q-panel factorization was interrupted. At
this point, all data has been restored to the time of failure, and the processes continue
their execution, and are in a state to tolerate another failure.

If a second failure happens before the restoration is complete (or if multiple fail-
ures happen), the applicationmay enter a statewhere recovery is impossible. This can
be mitigated by increasing the number of checksum block columns, and by replac-
ing checksum copies with linearly independent checksum functions. Then, when
multiple failures occur, the restoration process consists of solving a small system of
equations for each block, to determine the missing values. More importantly, this
exhibits one of the features of application-specific fault tolerance: the overheads are
a function of the risk the developer or user is ready to take.
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Fig. 1.22 Single failure during a Q-panel update of the ABFT LU factorization

Performance of ABFT LU. Fig. 1.22 (from [16]) shows a weak scalability study
of the ABFT scheme that we presented above. On the left axis, the lines show the
relative overhead of the ABFT-LU implementation in a failure-free and 1-failure/1-
recovery scenario, compared to the non fault-tolerant implementation. On the right
axis, the bar graphs show the raw performance of each scenario. This is a weak-
scaling experiment, and the matrix size progresses with the process grid size, so that
in each case, each processor is responsible for the same amount of data. We denote
by Q × Q; N in the x-axis the process grid size (P × Q) and the matrix size (N ).

That experiment was conducted on the NSF Kraken supercomputer, hosted at the
National Institute for Computational Science (NICS). At the time of the experiment,
this machine featured 112,896 2.6GHz AMD Opteron cores, 12 cores per node,
with the Seastar interconnect. At the software level, to serve as a comparison base,
we used the non fault-tolerant ScaLAPACK LU in double precision with block size
mb = nb = 100.

The recovery procedure adds a small overhead that also decreases when scaled to
large problem size and process grid. For largest setups, only 2–3 percent of the exe-
cution time is spent recovering from a failure. Due to the introduction of checksum,
operations counts and communication have been increased, as update operation span
on a largermatrix comprised of the original trailingmatrix and the checksums.During
checkpointing and recovery, extra workload is performed and this all together leads
to higher computing complexity than the original implementation in ScaLAPACK.

For simplicity of description, we consider square data matrices of size N × N
distributed on a square grid Q × Q. The operation count ration for LU factorization
without and with checksum is:
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Clearly limQ→+∞ R = 1. Hence for systems with high number of processes, the
extra flops for updating checksum columns is negligible with respect to the normal
flops realized to compute the result.

In addition, checksums must be generated, once at the start of the algorithm, the
second time at the completion of a Q-wide panel scope. Both these activities account
for O(N 2) extra computations, but can be computed at maximal parallelism, since
there is no data dependency.

1.5.3 Composite Approach: ABFT and Checkpointing

ABFT is a useful technique for production systems, offering protection to important
infrastructure software.Aswe have seen,ABFTprotection and recovery activities are
not only inexpensive, but also have a negligible asymptotic overheadwhen increasing
node count, which makes them extremely scalable. This is in sharp contrast with
checkpointing, which suffers from increasing overhead with system size. Many HPC
applications do spend quite a significant part of their total execution time inside a
numerical library, and in many cases, these numerical library calls can be effectively
protected by ABFT.

However, typical HPC applications do spend some time where they perform com-
putations and data management that are incompatible with ABFT protection. The
ABFT technique, as the name indicates, allows for tolerating failures only during
the execution of the algorithm that features the ABFT properties. Moreover, it then
protects only the part of the user dataset that is managed by the ABFT algorithm.
In case of a failure outside the ABFT-protected operation, all data is lost; in case of
a failure during the ABFT-protected operation, only the data covered by the ABFT
scheme is restored. Unfortunately, these ABFT-incompatible phases force users to
resort to general-purpose (presumably checkpoint based) approaches as their sole
protection scheme.

A composition scheme proposed in [9, 11], protects the application partly with
general fault tolerance techniques, and partlywith application-specific fault tolerance
techniques, harnessing the best of each approach. Performance is close to ABFT,
as the ABFT-capable routines dominate the execution, but the approach is generic
enough to be applied to any application that uses for at least a part of its execution
ABFT-capable routines, so generality is not abandoned, and the user is not forced
to rely only on generic rollback-recovery. We present this scheme below, because
the underlying approach is key to the adoption of application-specific fault tolerance
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while( !converged() ) {
  /* Extract data from the simulator, create the LA problem */
  sim2mat();

  /* Factorize the matrix, and solve the problem */
  dgetrf();
  dsolve();

  /* Update simulation with result vector */
  vec2sim();
}

GENERAL

GENERAL

LIBRARY

Fig. 1.23 Pseudo-code of a typical application using Linear Algebra routines

methods in libraries: without a generic composition scheme, simply linking with
different libraries that provide internal resilience capabilities to protect their data from
a process crashwill notmake an application capable of resisting such crashes: process
failure breaks the separation introduced by library composition in the software stack,
and non protected data, as well as the call stack itself, must be protected by another
mean.

As an illustration, consider an application that works as the pseudo-code given in
Fig. 1.23. The application has two data: a matrix, on which linear algebra operations
are performed, and a simulated state. It uses two libraries: a simulation library that
changes the simulated state, and formulates a problem as an equation problem, and
a linear algebra library that solves the problem presented by the simulator. The first
library is not fault-tolerant, while there is an ABFT scheme to tolerate failures in the
linear algebra library.

To abstract the reasoning, we distinguish two phases during the execution: during
General phases, we have no information about the application behavior, and an
algorithm-agnostic fault tolerance technique, namely checkpoint and rollback recov-
ery, must be used. On the contrary, during Library phases, we know much more
about the behavior of the library, and we can apply ABFT to ensure resiliency.

ABFT&PERIODICCKPT Algorithm. During aGeneral phase, the application
can access the whole memory; during a Library phase, only the Library dataset
(a subset of the application memory, which is passed as a parameter to the library
call) is accessed. The Remainder dataset is the part of the application memory that
does not belong to the Library dataset.

The ABFT&PeriodicCkpt composite approach (see Fig. 1.24) consists of alter-
nating between periodic checkpointing and rollback recovery on one side, and ABFT
on theother side, at different phases of the execution.Every time the application enters
a Library phase (that can thus be protected by ABFT), a partial checkpoint is taken
to protect the Remainder dataset. The Library dataset, accessed by the ABFT
algorithm, need not be saved in that partial checkpoint, since it will be reconstructed
by the ABFT algorithm inside the library call.
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Fig. 1.24 ABFT&PeriodicCkpt composite approach

Memory Protected 
by Checkpoints 

Memory Protected 
by ABFT 

Process 0 

Process 1 

Process 2 

Memory Protected 
by Checkpoints 

Memory Protected 
by ABFT 

Memory Protected 
by Checkpoints 

Memory Protected 
by ABFT 

ABFT Recovery 

Fig. 1.25 Fault handling during a Library phase

When the call returns, a partial checkpoint covering themodified Library dataset
is added to the partial checkpoint taken at the beginning of the call, to complete it
and to allow restarting from the end of the terminating library call. In other words,
the combination of the partial entry and exit checkpoints forms a split, but complete,
coordinated checkpoint covering the entire dataset of the application.

If a failure is detected while processes are inside the library call (Fig. 1.25), the
crashed process is recovered using a combination of rollback recovery and ABFT.
ABFT recovery is used to restore the Library dataset before all processes can
resume the library call, as would happen with a traditional ABFT algorithm. The
partial checkpoint is used to recover the Remainder dataset (everything except the
data covered by the current ABFT library call) at the time of the call, and the process
stack, thus restoring it before quitting the library routine. The idea of this strategy is
that ABFT recovery will spare some of the time spent redoing work, while periodic
checkpointing can be completely de-activated during the library calls.

DuringGeneral phases, regular periodic coordinated checkpointing is employed
to protect against failures (Fig. 1.26). In case of failure, coordinated rollback recovery
brings all processes back to the last checkpoint (at most back to the split checkpoint
capturing the end of the previous library call).

ABFT&PERIODICCKPT Algorithm Optimization. Recall from Sect. 1.3.2 that
a critical component to the efficiency of periodic checkpointing algorithms is the
duration of the checkpointing interval. A short interval increases the algorithm over-
heads, by introducing many coordinated checkpoints, during which the application
experiences slowdown, but also reduces the amount of time lost when there is a fail-
ure: the last checkpoint is never long ago, and little time is spent re-executing part
of the application. Conversely, a large interval reduces overhead, but increases the
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Fig. 1.26 Fault handling during a General phase

time lost in case of failure. In the ABFT&PeriodicCkpt algorithm, we interleave
periodic checkpointing protected phases with ABFT protected phases, during which
periodic checkpointing is de-activated. Thus, different cases have to be considered:

• When the time spent in a General phase is larger than the optimal checkpoint
interval, periodic checkpointing is used during these phases in the case of ABFT-
&PeriodicCkpt;

• When the time spent in a General phase is smaller than the optimal checkpoint
interval, the ABFT&PeriodicCkpt algorithm already creates a complete valid
checkpoint for this phase (formed by combining the entry and exit partial check-
points), so the algorithm will not introduce additional checkpoints.

Moreover, the ABFT&PeriodicCkpt algorithm forces (partial) checkpoints at
the entry and exit of library calls; thus if the time spent in a library call is very
small, this approach will introduce more checkpoints than a traditional periodic
checkpointing approach. The time complexity of library algorithms usually depends
on a few input parameters related to problem size and resource number, and ABFT
techniques have deterministic, well known time overhead complexity. Thus, when
possible, the ABFT&PeriodicCkpt algorithm features a safeguard mechanism: if
the projected duration of a library call with ABFT protection (computed at runtime
thanks to the call parameters and the algorithmcomplexity) is smaller than the optimal
periodic checkpointing interval, then ABFT is not activated, and the corresponding
Library phase is protected using the periodic checkpointing technique only.

1.5.3.1 Performance Model of ABFT&PERIODICCKPT

The execution of the application is partitioned into epochs of total duration T0.
Within an epoch, there are two phases: the first phase is spent outside the library (it is
aGeneral phase, of duration TG), and only periodic checkpointing can be employed
to protect from failures during that phase. Then the second phase (a Library phase
of duration TL ) is devoted to a library routine that has the potential to be protected
by ABFT. Let α be the fraction of time spent in a Library phase: then we have
TL = α × T0 and TG = (1 − α) × T0.
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As mentioned earlier, another important parameter is the amount of memory that
is accessed during the Library phase (the Library dataset). This parameter is
important because the cost of checkpointing in each phase is directly related to the
amount of memory that needs to be protected. The total memory footprint is M , and
the associated checkpointing cost is C (we assume a finite checkpointing bandwidth,
so C > 0). We write M = ML + ML , where ML is the size of the Library dataset,
and ML is the size of the Remainder dataset. Similarly, we write C = CL + CL ,
where CL is the cost of checkpointing ML , and CL the cost of checkpointing ML .
We can define the parameter ρ that defines the relative fraction of memory accessed
during the Library phase by ML = ρM , or, equivalently, by CL = ρC .

Fault-free execution. During the General phase, we separate two cases. First, if
the duration TG of this phase is short, i.e. smaller than PG −CL , which is the amount
of work during one period of length PG (and where PG is determined below), then
we simply take a partial checkpoint at the end of this phase, before entering the
ABFT-protected mode. This checkpoint is of duration CL , because we need to save
only the Remainder dataset in this case. Otherwise, if TG is larger than PG − CL ,
we rely on periodic checkpointing during the General phase: more specifically,
the regular execution is divided into periods of duration PG = W + C . Here W is
the amount of work done per period, and the duration of each periodic checkpoint
is C = CL + CL , because the whole application footprint must be saved during a
General phase. The last period is different: we execute the remainder of the work,
and take a final checkpoint of duration CL before switching to ABFT-protected
mode. The optimal (approximated) value of PG will be computed below.

Altogether, the length T ff
G of a fault-free execution of the General phase is the

following:

• If TG ≤ PG − CL , then T ff
G = TG + CL

• Otherwise, we have � TG
Work

� periods of length PG , plus possibly a shorter last
period if TG is not evenly divisible by W . In addition, we need to remember that
the last checkpoint taken is of length CL instead of C .

This leads to

T ff
G =

⎧⎪⎨
⎪⎩

TG + CL if TG ≤ PG − CL
� TG

PG−C × PG� + (TG mod W ) + CL if TG > PG − CL and TG mod W �= 0
TG

PG−C × PG − CL if TG > PG − CL and TG mod W = 0
(1.38)

Now consider the Library phase: we use the ABFT-protection algorithm, whose
cost is modeled as an affine function of the time spent: if the computation time of
the library routine is t , its execution with the ABFT-protection algorithm becomes
φ × t . Here, φ > 1 accounts for the overhead paid per time-unit in ABFT-protected
mode. This linear model for the ABFT overhead fits the existing algorithms for linear
algebra, but other models could be considered. In addition, we pay a checkpoint CL

when exiting the library call (to save the final result of the ABFT phase). Therefore,
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the fault-tree execution time is

T ff
L = φ × TL + CL (1.39)

Finally, the fault-free execution time of the whole epoch is

T ff = T ff
G + T ff

L (1.40)

where T ff
G and T ff

L are computed according to the Eqs. (1.38) and (1.39).

Cost of failures. Next we have to account for failures. For each phase, we have a
similar equation: the final execution time is the fault-free execution time, plus the
number of failures multiplied by the (average) time lost per failure:

T final
G = T ff

G + T final
G

μ
× t lostG (1.41)

T final
L = T ff

L + T final
L

μ
× t lostL (1.42)

Equations (1.41) and (1.42) correspond toEq. (1.5) inSect. (1.3.1). Equation (1.41)
reads as follows: T ff

G is the failure-free execution time, to which we add the time

lost due to failures; the expected number of failures is
T final

G
μ

, and t lostG is the average

time lost per failure. We have a similar reasoning for Eq. (1.42). Then, t lostG and t lostL
remain to be computed. For t lostG (General phase), we discuss both cases:

• If TG ≤ PG − CL : since we have no checkpoint until the end of the General

phase, we have to redo the execution from the beginning of the phase. On average,

the failure strikes at the middle of the phase, hence the expectation of loss is
T ff

G
2

time units. We then add the downtime D (time to reboot the resource or set up a
spare) and the recovery R . Here R is the time needed for a complete reload from
the checkpoint (and R = C if read/write operations from/to the stable storage have
the same speed). We derive that:

t lostG = D + R + T ff
G

2
(1.43)

• If TG > PG − CL : in this case, we have periodic checkpoints, and the amount of
execution which needs to be redone after a failure corresponds to half a checkpoint
period on average, so that:

t lostG = D + R + PG

2
(1.44)

For t lostL (Library phase), we derive that
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t lostL = D + RL + ReconsABFT

Here, RL is the time for reloading the checkpoint of the Remainder dataset (and in
many cases RL = CL ). As for theLibrary dataset, there is no checkpoint to retrieve,
but instead it must be reconstructed from the ABFT checksums, which takes time
ReconsABFT .

Optimization: finding the optimal checkpoint interval in GENERAL phase.
We verify from Eqs. (1.39) and (1.42) that T final

L is always a constant. Indeed, we
derive that:

T final
L = 1

1 − D+RL+ReconsABFT
μ

× (φ × TL + CL) (1.45)

As for T final
G , it depends on the value of TG : it is constant when TG is small. In

that case, we derive that:

T final
G = 1

1 − D+R+ TG +CL
2

μ

× (TG + CL

)
(1.46)

The interesting case is when TG is large: in that case, we have to determine the
optimal value of the checkpointing period PG which minimizes T final

G . We use an
approximation here: we assume that we have an integer number of periods, and the
last periodic checkpoint is of size C . Note that the larger TG , the more accurate
the approximation. From Eqs. (1.38), (1.41) and (1.44), we derive the following
simplified expression:

T final
G = TG

X
where X =

(
1 − C

PG

)(
1 − D + R + PG

2

μ

)
(1.47)

We rewrite:

X =
(
1 − C

2μ

)
− PG

2μ
− C(μ − D − R)

μPG

The maximum of X gives the optimal period Popt
G . Differentiating X as a function

of PG , we find that it is obtained for:

Popt
G = √2C(μ − D − R) (1.48)

We retrieve Eq.1.9 of Sect. 1.3.1 (as expected). Plugging the value of Popt
G back into

Eq. (1.47) provides the optimal value of T final
G when TG is large. We conclude this

with reminding the word of caution given at the end of Sect. 1.3.2.1): the optimal
value of the waste is only a first-order approximation, not an exact value. Just as
in [25, 69], the formula only holds when μ, the value of the MTBF, is large with
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respect to the other resilience parameters. Owing to this hypothesis, we can neglect
the probability of several failures occurring during the same checkpointing period.

Comparison of the scalability of approaches. TheABFT&PeriodicCkpt approach
is expected to provide better performance when a significant time is spent in the
Library phase, and when the failure rate implies a small optimal checkpointing
period. If the checkpointing period is large (because failures are rare), or if the dura-
tion of the Library phase is small, then the optimal checkpointing interval becomes
larger than the duration of the Library phase, and the algorithm automatically
resorts to the periodic checkpointing protocol. This can also be the case when the
epoch itself is smaller than (or of the same order of magnitude as) the optimal check-
pointing interval (i.e., when the application does a fast switching between Library

and General phases).
However, consider such an application that frequently switches between (rel-

atively short) Library and General phases. When porting that application to a
future larger scale machine, the number of nodes that are involved in the execution
will increase, and at the same time, the amount of memory on which the ABFT
operation is applied will grow (following Gustafson’s law [37]). This has a double
impact: the time spent in the ABFT routine increases, while at the same time, the
MTBF of the machine decreases. As an illustration, we evaluate quantitatively how
this scaling factor impacts the relative performance of the ABFT&PeriodicCkpt

and a traditional periodic checkpointing approach.
First, we consider the case of an application where the Library and General

phases scale at the same rate.We take the example of linear algebra kernels operating
on 2D-arrays (matrices), that scale in O(n3) of the array order n (in both phases).
Following a weak scaling approach, the application uses a fixed amount of memory
Mind per node, and when increasing the number x of nodes, the total amount of
memory increases linearly as M = x Mind . Thus O(n2) = O(x), and the parallel
completion time of the O(n3) operations, assuming perfect parallelism, scales in
O(

√
x).

To instantiate this case, we take an application that would last a thousand minutes
at 100,000 nodes (the scaling factor corresponding to an operation in O(n3) is then
applied when varying the number of nodes), and consisting for 80% of a Library
phase, and 20% of aGeneral phase.We set the duration of the complete checkpoint
and rollback (C and R , respectively) to 1 minute when 100,000 nodes are involved,
and we scale this value linearly with the total amount of memory, when varying the
number of nodes. The MTBF at 100,000 nodes is set to 1 failure every day, and
this also scales linearly with the number of components. The ABFT overheads, and
the downtime, are set to the same values as in the previous section, and 80% of the
application memory (ML ) is touched by the Library phase.

Given these parameters, Fig. 1.27 shows (i) the relative waste of periodic check-
pointing and ABFT&PeriodicCkpt, as a function of the number of nodes, and (ii)
the average number of faults that each execution will have to deal with to complete.
The expected number of faults is the ratio of the application duration by the platform
MTBF (which decreases when the number of nodes increases, generating more fail-
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Fig. 1.27 Total waste for periodic checkpointing and ABFT&PeriodicCkpt, when considering
the weak scaling of an application with a fixed ratio of 80% spent in a Library routine

ures). The fault-free execution time increases with the number of nodes (as noted
above), and the fault-tolerant execution time is also increased by the waste due to
the protocol. Thus, the total execution time of periodic checkpointing is larger at 1
million nodes than the total execution time of ABFT&PeriodicCkpt at the same
scale, which explains why more failures happen for these protocols.

Up to approximately 100,000 nodes, the fault-free overhead of ABFT negatively
impacts the waste of the ABFT&PeriodicCkpt approach, compared to periodic
checkpointing. Because the MTBF on the platform is very large compared to the
application execution time (and hence to the duration of each Library phase), the
periodic checkpointing approach has a very large checkpointing interval, introducing
very fewcheckpoints, thus a small failure-free overhead.Because failures are rare, the
cost due to time lost at rollbacks does not overcome the benefits of a small failure-free
overhead, while the ABFT technique must pay the linear overhead of maintaining
the redundancy information during the whole computation of the Library phase.

Once the number of nodes reaches 100,000, however, two things happen: failures
become more frequent, and the time lost due to failures starts to impact rollback
recovery approaches. Thus, the optimal checkpointing interval of periodic check-
pointing becomes smaller, introducing more checkpointing overheads. During 80%
of the execution, however, theABFT&PeriodicCkpt approach can avoid these over-
heads, and when they reach the level of linear overheads due to the ABFT tech-
nique,ABFT&PeriodicCkpt starts to scale better than both periodic checkpointing
approaches.

All protocols have to resort to checkpointing during the General phase of the
application. Thus, if failures hit during this phase (which happens 20% of the time in
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Fig. 1.28 Total waste for ABFT&PeriodicCkpt and periodic checkpointing when considering
the weak scaling of an application with variable ratio of time spent in a Library routine

this example), they will all have to resort to rollbacking and lose some computation
time. Hence, when the number of nodes increases and the MTBF decreases, eventu-
ally, the time spent in rollbacking and recomputing, which is linear in the number of
faults, will increase the waste of all algorithms. However, one can see that this part
is better controlled by the ABFT&PeriodicCkpt algorithm.

Next, we consider the case of an unbalanced General phase: consider an appli-
cation where the Library phase has a cost O(n3) (where n is the problem size),
as above, but where the General phase consists of O(n2) operations. This kind of
behavior is reflected in many applications where matrix data is updated or modi-
fied between consecutive calls to computation kernels. Then, the time spent in the
Library phase will increase faster with the number of nodes than the time spent
in the General phase, varying α . This is what is represented in Fig. 1.28. We
took the same scenario as above for Fig. 1.27, but α is a function of the number of
nodes chosen such that at 100,000 nodes, α = T final

L /T final = 0.8, and everywhere,
T final

L = O(n3) = O(
√

x), and T final
PC = O(n2) = O(1). We give the value of α

under the number of nodes, to show how the fraction of time spent in Library phases
increases with the number of nodes.

The periodic checkpointing protocol is not impacted by this change, and behaves
exactly as in Fig. 1.27. Note, however, that T final = T final

L + T final
PC progresses at

a lower rate in this scenario than in the previous scenario, because T final
PC does not

increase with the number of nodes. Thus, the average number of faults observed for
all protocols is much smaller in this scenario.

The efficiency on ABFT&PeriodicCkpt, however, is more significant. The lat-
ter protocol benefits from the increased α ratio in both cases: since more time is
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spent in the Library phase, periodic checkpointing is de-activated for relatively
longer periods. Moreover, this increases the probability that a failure will happen
during the Library phase, where the recovery cost is greatly reduced using ABFT
techniques. Thus, ABFT&PeriodicCkpt is capable of mitigating failures at a much
smaller overhead than simple periodic checkpointing, and more importantly with
better scalability.

1.6 Silent Errors

This section deals with techniques to cope with silent errors. We focus on a general-
purpose approach that combines checkpointing and (abstract) verification mecha-
nisms. Section1.6.1 provides some background, while Sect. 1.6.2 briefly surveys
different approaches form the literature. Then Sect. 1.6.3 details the performance
model for the checkpoint/verification approach and explains how to determine the
optimal pattern minimizing the waste.

1.6.1 Motivation

Checkpoint and rollback recovery techniques assume reliable error detection, and
therefore apply to fail-stop failures, such as for instance the crash of a resource.
In this section, we revisit checkpoint protocols in the context of silent errors, also
called silent data corruption. Such errors must be accounted for when executing
HPC applications [58, 61, 74–76]. The cause for silent errors may be for instance
soft efforts in L1 cache, or bit flips due to cosmic radiation. The problem is that the
detection of a silent error is not immediate, but will only manifest later as a failure,
once the corrupted data has impacted the result (see Fig. 1.29). If the error stroke
before the last checkpoint, and is detected after that checkpoint, then the checkpoint
is corrupted, and cannot be used to restore the application. In the case of fail-stop
failures, a checkpoint cannot contain a corrupted state, because a process subject
to failure will not create a checkpoint or participate to the application: failures are
naturally contained to failed processes; in the case of silent errors, however, faults
can propagate to other processes and checkpoints, because processes continue to
participate and follow the protocol during the interval that separates the error and its
detection.
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To alleviate this issue, one may envision to keep several checkpoints in memory,
and to restore the application from the last valid checkpoint, thereby rolling back
to the last correct state of the application [55]. This multiple-checkpoint approach
has three major drawbacks. First, it is very demanding in terms of stable storage:
each checkpoint typically represents a copy of the entire memory footprint of the
application, which may well correspond to several terabytes. The second drawback
is the possibility of fatal failures. Indeed, if we keep k checkpoints in memory, the
approach assumes that the error that is currently detected did not strike before all the
checkpoints still kept in memory, which would be fatal: in that latter case, all live
checkpoints are corrupted, and one would have to re-execute the entire application
from scratch. The probability of a fatal failure is evaluated in [3] for various error
distribution laws and values of k. The third drawback of the approach is the most
serious, and applies even without memory constraints, i.e., if we could store an
infinite number of checkpoints in storage. The critical question is to determine which
checkpoint is the last valid one. We need this information to safely recover from that
point on. However, because of the detection latency (which is unknown), we do not
know when the silent error has indeed occurred, hence we cannot identify the last
valid checkpoint, unless some verification system is enforced.

This section introduces algorithms coupling verification and checkpointing, and
shows how to analytically determine the best balance of verifications between check-
points so as to minimize platform waste. In this (realistic) model, silent errors are
detected only when some verification mechanism is executed. This approach is
agnostic of the nature of this verification mechanism (checksum, error correcting
code, coherence tests, etc.). This approach is also fully general-purpose, although
application-specific information, if available, can always be used to decrease the cost
of verification.

The simplest protocol (see Fig. 1.30) would be to perform a verification just before
taking each checkpoint. If the verification succeeds, then one can safely store the
checkpoint and mark it as valid. If the verification fails, then an error has struck since
the last checkpoint, which was duly verified, and one can safely recover from that
checkpoint to resume the execution of the application. This protocolwith verifications
eliminates fatal errors that would corrupt all live checkpoints and cause to restart
execution from scratch. However, we still need to assume that both checkpoints and
verifications are executed in a reliable mode.

There is room for optimization. Consider the second pattern illustrated in Fig. 1.31
with three verifications per checkpoint. There are three chunks of size w, each fol-
lowed by a verification. Every third verification is followed by a checkpoint. We
assume that w = W/3 to ensure that both patterns correspond to the same amount

TimeW W

fault
Detection

V C V C V C

Fig. 1.30 The first pattern with one verification before each checkpoint
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Timew w w w w w

fault
Detection

V C V V V C V V V C

Fig. 1.31 The second pattern with three verifications per checkpoint

of work, W . Just as for the first pattern, a single checkpoint needs to be kept in
memory, owing to the verifications. Also, as before, each error leads to re-executing
the work since the last checkpoint. But detection occurs much more rapidly in the
second pattern, owing to the intermediate verifications. If the error strikes in the first
of the three chunks, it is detected by the first verification, and only the first chunk
is re-executed. Similarly, if the error strikes in the second chunk (as illustrated in
the figure), it is detected by the second verification, and the first two chunks are
re-executed. The entire pattern of work needs to be re-executed only if the error
strikes during the third chunk. On average, the amount of work to re-execute is
(1 + 2 + 3)w/3 = 2w = 2W/3. On the contrary, in the first pattern of Fig. 1.30,
the amount of work to re-execute always is W , because the error is never detected
before the end of the pattern. Hence the second pattern leads to a 33% gain in re-
execution time. However, this comes at the price of three times as many verifications.
This overhead is paid in every failure-free execution, and may be an overkill if the
verification mechanism is too costly.

This little example shows that the optimization problem looks difficult. It can be
stated as follows: given the cost of checkpointing C , recovery R, and verification V ,
what is the optimal strategy to minimize the (expectation of the) waste? A strategy is
a periodic pattern of checkpoints and verifications, interleaved with work segments,
that repeats over time. The length of the work segments also depends upon the
platformMTBFμ. For example, with a single checkpoint and no verification (which
corresponds to the classical approach for fail-stop failures), recall from Theorem 1.1
that the optimal length of the work segment can be approximated as

√
2μC . Given a

periodic pattern with checkpoints and verifications, can we extend this formula and
compute similar approximations?

We conclude this introduction by providing a practical example of the check-
point and verification mechanisms under study. A nice instance of this approach is
given by Chen [21], who deals with sparse iterative solvers. Chen considers a sim-
ple method such as the PCG, the Preconditioned Conjugate Gradient method, and
aims at protecting the execution from arithmetic errors in the ALU. Chen’s approach
performs a periodic verification every d iterations, and a periodic checkpoint every
d × c iterations, which is a particular case of the pattern with p = 1 and q = c.
For PCG, the verification amounts to checking the orthogonality of two vectors and
to recomputing and checking the residual, while the cost of checkpointing is that
of storing three vectors. The cost of a checkpoint is smaller than the cost of the
verification, which itself is smaller than the cost of an iteration, especially when the
preconditioner requires much more flops than a sparse matrix-vector product. In this
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context, Chen [21] shows how to numerically estimate the best values of the para-
meters d and c. The results given in Sect. 1.6.3 show using equidistant verifications,
as suggested in [21], is asymptotically optimal when using a pattern with a single
checkpoint (p = 1), and enable to determine the best pattern with p checkpoints and
q verifications as a function of C , R, and V , and the MTBF μ.

1.6.2 Other Approaches

In this section, we briefly survey other approaches to detect and/or correct silent
errors. Considerable efforts have been directed at error-checking to reveal silent
errors. Error detection is usually very costly. Hardware mechanisms, such as ECC
memory, can detect and even correct a fraction of errors, but in practice they are
complemented with software techniques. General-purpose techniques are based on
replication, which we have already met in Sect. 1.4.2: using replication [31, 33, 66,
72], one can compare the results of both replicas and detect a silent error. Using
TMR [56] would allow to correct the error (by voting) after detection. Note that
another approach based on checkpointing and replication is proposed in [60], in
order to detect and enable fast recovery of applications from both silent errors and
hard errors.

Coming back to verification mechanisms, application-specific information can be
very useful to enable ad-hoc solutions, that dramatically decrease the cost of detec-
tion. Many techniques have been advocated. They include memory scrubbing [48],
but also ABFT techniques [8, 46, 68], such as coding for the sparse-matrix vector
multiplication kernel [68], and coupling a higher-order with a lower-order scheme
for Ordinary Differential Equations [6]. These methods can only detect an error but
do not correct it. Self-stabilizing corrections after error detection in the conjugate
gradient method are investigated by Sao and Vuduc [65]. Also, Heroux and Hoem-
men [44] design a fault-tolerant GMRES capable of converging despite silent errors,
and Bronevetsky and de Supinski [17] provide a comparative study of detection costs
for iterative methods. Elliot et al. [30] combine partial redundancy and checkpoint-
ing, and confirm the benefit of dual and triple redundancy. The drawback is that twice
the number of processing resources is required (for dual redundancy).

As already mentioned, the combined checkpoint/verification approach is agnostic
of the underlying error-detection technique and takes the cost of verification as an
input parameter to the model.

1.6.3 Optimal Pattern

In this section, we detail the performance model to assess the efficiency of any
checkpoint/verification pattern. Then we show how to determine the best pattern.
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Fig. 1.32 The BalancedAlgorithm with five verifications for two checkpoints

1.6.3.1 Model for Patterns

Consider a periodic pattern with p checkpoints and q verifications, and whose total
length is S = pC + qV + W . Here, W is the work that is executed during the whole
pattern, and it is divided into several chunks that are each followed by a verification, or
a checkpoint, or both. Checkpoints and verifications are at arbitrary location within
the pattern. The only constraint is that the pattern always ends by a verification
immediately followed by a checkpoint: this is to enforce that the last checkpoint is
always valid, thereby ruling out the risk of a fatal failure. In the example of Fig. 1.31,
we have three chunks of same size w, hence W = 3w and S = C + 3V + 3w. The
example of Fig. 1.32 represents a more complicated pattern, with two checkpoints
and five verifications. The two checkpoints are equidistant in the pattern, and so are
the five verifications, hence the six chunks of size either w or 2w, for a total work
W = 10w, and S = 2C + 5V + 10w. The rationale for using such chunk sizes in
Fig. 1.32 is given in Sect. 1.6.3.2.

We compute the waste incurred by the use of a pattern similarly to what we did for
fail-stop failures in Sect. 1.3.1. We consider a periodic pattern with p checkpoints,
q verifications, work W , and total length S = pC + qV + W . We assume a a
selective reliability model where checkpoint, recovery and verification are error-free
operations. The input parameters are the following:

• the cost V of the verification mechanism;
• the cost C of a checkpoint;
• the cost R of a recovery;
• the platform MTBF μ.

We aim at deriving the counterpart of Eq. (1.33) for silent errors. We easily derive
that the waste in a fault-free execution isWasteff = pC+qV

S , and that the waste due
to silent errors striking during execution. is which is the waste due to checkpointing
isWastefail = Tlost

μ
, where Tlost is the expected time lost due to each error. The value

of Tlost is more complicated to compute than for fail-stop errors, because it depends
upon which pattern is used. Before computing Tlost for arbitrary values of p and q
in Sect. 1.6.3.2, we give two examples.

The first example is for the simple pattern of Fig. 1.30. We have p = q = 1, a
single chunk of size w = W , and a pattern of size S = C + V + W . Computing Tlost
for this pattern goes as follows: whenever an error strikes, it is detected at the end
of the work, during the verification. We first recover from the last checkpoint, then
re-execute the entire work, and finally redo the verification. This leads to Tlost =
R + W + V = R + S − C . From Eq. (1.33), we obtain that
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Waste = 1 −
(
1 − R + S − C

μ

)(
1 − C + V

S

)
= aS + b

S
+ c, (1.49)

where a = 1
μ
, b = (C + V )(1+ C−R

μ
) and c = R−V −2C

μ
. The value that minimizes

the waste is S = Sopt, and the optimal waste is Wasteopt, where

Sopt =
√

b

a
= √(C + V )(μ + C − R) and Wasteopt = 2

√
ab + c. (1.50)

Just as for fail-stop failures, we point out that this approach leads to a first-order
approximationof the optimal pattern, not to anoptimal value.As always, the approach
is valid when μ is large in front of S, and of all parameters R, C and V . When this

is the case, we derive that Sopt ≈ √
(C + V )μ and Wasteopt ≈ 2

√
C+V

μ
. It is very

interesting to make a comparison with the optimal checkpointing period TFO (see
Eq. (1.9)) when dealing with fatal failures: we had TFO ≈ √

2Cμ. In essence, the
factor 2 comes from the fact that we re-execute only half the period on average with
a fatal failure, because the detection is instantaneous. In our case, we always have
to re-execute the entire pattern. And of course, we have to replace C by C + V , to
account for the cost of the verification mechanism.

The second example is for the BalancedAlgorithm illustrated in Fig. 1.32. We
have p = 2, q = 5, six chunks of size w or 2w, W = 10w, and a pattern of size
S = 2C + 5V + W . Note that it may now be the case that we store an invalid
checkpoint, if the error strikes during the third chunk (of size w, just before the
non-verified checkpoint), and therefore we must keep two checkpoints in memory to
avoid the risk of fatal failures. When the verification is done at the end of the fourth
chunk, if it is correct, then we can mark the preceding checkpoint as valid and keep
only this checkpoint in memory. Because q > p, there are never two consecutive
checkpoints without a verification between them, and at most two checkpoints need
to be kept in memory. The time lost due to an error depends upon where it strikes:

• With probability 2w/W , the error strikes in the first chunk. It is detected by the
first verification, and the time lost is R +2w+ V , since we recover, and re-execute
the work and the verification.

• With probability 2w/W , the error strikes in the second chunk. It is detected by the
second verification, and the time lost is R +4w+2V , since we recover, re-execute
the work and both verifications.

• With probabilityw/W , the error strikes in the third chunk. It is detected by the third
verification, and we roll back to the last checkpoint, recover and verify it. We find
it invalid, because the error struck before taking it. We roll back to the beginning of
the pattern and recover from that checkpoint. The time lost is 2R + 6w + C + 4V ,
since we recover twice, re-execute the work up to the third verification, redo
the checkpoint and the three verifications, and add the verification of the invalid
checkpoint.

• With probability w/W , the error strikes in the fourth chunk. It is detected by the
third verification. We roll back to the previous checkpoint, recover and verify it.
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In this case, it is valid, since the error struck after the checkpoint. The time lost is
R + w + 2V .

• With probability 2w/W , the error strikes in the fifth chunk. Because there was a
valid verification after the checkpoint, we do not need to verify it again, and the
time lost is R + 3w + 2V .

• With probability 2w/W , the error strikes in the sixth and last chunk. A similar
reasoning shows that the time lost is R + 5w + 3V .

Averaging over all cases, we derive that Tlost = 11R
10 + 35w

10 + C
10 + 22V

10 . We then
proceed as with the first example to derive the optimal size S of the pattern. We

obtain Sopt =
√

b
a and Wasteopt = 2

√
ab + c (see Eq. (1.50)), where a = 7μ

20 ,

b = (2C + 5V )(1 − 1
20μ(22R − 12C + 9V )) and c = 1

20μ(22R − 26C − 17V ).

When μ is large, we have Sopt ≈
√

20
7 (2C + 5V )μ and Wasteopt ≈ 2

√
7(2C+5V )

20μ .

1.6.3.2 Optimal Pattern

In this section, we generalize from the examples and provide a generic expression
for the waste when the platformMTBFμ is large in front of all resilience parameters
R, C and V . Consider a general pattern of size S = pC + qV + W , with p ≤ q. We
haveWasteff = off

S , where off = pC +qV is the fault-free overhead due to inserting

p checkpoints and q verifications within the pattern. We also haveWastefail = Tlost
μ

,
where Tlost is the time lost each time an error strikes and includes two components:
re-executing a fraction of the total work W of the pattern, and computing additional
verifications, checkpoints and recoveries (see the previous examples). The general
form of Tlost is thus Tlost = freW + α where fre stands for fraction of work that
is re-executed due to failures; α is a constant that is a linear combination of C , V
and R. For the first example (Fig. 1.30), we have fre = 1. For the second example
(Fig. 1.32), we have fre = 7

20 (recall that w = W/10). For convenience, we use an
equivalent form

Tlost = freS + β, (1.51)

where β = α − fre(pC + qV ) is another constant. When the platform MTBF μ is
large in front of all resilience parameters R, C and V , we can identify the dominant
term in the optimal waste Wasteopt. Indeed, in that case, the constant β becomes
negligible in front of μ, and we derive that

Sopt =
√

off
fre

× √
μ + o(

√
μ), (1.52)

and that the optimal waste is

Wasteopt = 2
√

off fre

√
1

μ
+ o(

√
1

μ
). (1.53)
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This equation shows that the optimal pattern when μ is large is obtained when the
product off fre is minimal. This calls for a trade-off, as a smaller value of off with
few checkpoints and verifications leads to a larger re-execution time, hence to a
larger value of fre. For instance, coming back to the examples of Figs. 1.30 and 1.32,
we readily see that the second pattern is better than the first one for large values
of μ whenever V > 2C/5, which corresponds to the condition 7

20 × (5V + 2C) >

1 × (V + C).
For a general pattern of size S = pC + qV + W , with p ≤ q, we always have

off = off(p, q) = pC + qV and we aim at (asymptotically) minimizing fre =
fre(p, q), the expected fraction of the work that is re-executed, by determining the
optimal size of each work segment. It turns out that fre(p, q) is minimized when
the pattern has pq same-size intervals and when the checkpoints and verifications
are equally spaced among these intervals as in the BalancedAlgorithm, in which
case fre(p, q) = p+q

2pq . We first prove this result for p = 1 before moving to the
general case. Finally, we explain how to choose the optimal pattern given values of
C and V .

Theorem 1.2 The minimal value of fre(1, q) is obtained for same-size chunks and
it is fre(1, q) = q+1

2q .

Proof Forq = 1,we already know from the study of thefirst example that fre(1, 1) =
1. Consider a pattern with q ≥ 2 verifications, executing a total work W . Let αi W
be the size of the i-th chunk, where

∑q
i=1 αi = 1 (see Fig. 1.33). We compute

the expected fraction of work that is re-executed when a failure strikes the pattern
as follows. With probability αi , the failure strikes in the i-th chunk. The error is
detected by the i-th verification, we roll back to the beginning of the pattern, so we
re-execute the first i chunks. Altogether, the amount of work that is re-executed is∑q

i=1

(
αi
∑i

j=1 α j W
)
, hence

fre(1, q) =
q∑

i=1

⎛
⎝αi

i∑
j=1

α j

⎞
⎠ . (1.54)

What is the minimal value of fre(1, q) in Eq. (1.54) under the constraint
∑q

i=1 αi =
1? We rewrite

fre(1, q) = 1

2

( q∑
i=1

αi

)2

+ 1

2

q∑
i=1

α2
i = 1

2

(
1 +

q∑
i=1

α2
i

)
,

Timeα1W α2W α3W

V C V V V C

Fig. 1.33 A pattern with different-size chunks, for p = 1 and q = 3
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and by convexity,we see that fre isminimalwhen all theαi ’s have the same value 1/q.
In that case, we derive that fre(1, q) = 1

2 (1 +∑q
i=1

1
q2 ) = q+1

2q , which concludes
the proof.

When p = 1, BalancedAlgorithm uses q same-size chunks. Theorem 1.2
shows that this is optimal.

Theorem 1.3 For a pattern with p ≥ 1, the minimal value of fre(p, q) is fre(p, q) =
p+q
2pq , and it is obtained with the BalancedAlgorithm.

Proof Consider an arbitrary pattern with p checkpoints, q ≥ p verifications and
total work W . The distribution of the checkpoints and verifications is unknown, and
different-size chunks can be used. The only assumption is that the pattern ends by a
verification followed by a checkpoint.

The main idea of the proof is to compare the gain in re-execution time due to the
p − 1 intermediate checkpoints. Let f (p)

re be the fraction of work that is re-executed
for the pattern, and let f (1)

re be the fraction of work that is re-executed for the same
pattern, but where the p − 1 first checkpoints have been suppressed. Clearly, f (p)

re is
smaller than f (1)

re , because the additional checkpoints save some roll-backs, and we
aim at maximizing their difference.

In the original pattern, let αi W be the amount of work before the i-th checkpoint,
for 1 ≤ i ≤ p (and with

∑p
i=1 αi = 1). Figure1.34 presents an example with p = 3.

What is the gain due to the presence of the p − 1 intermediate checkpoints? If an
error strikes before the first checkpoint, which happens with probability α1, there
is no gain, because we always rollback from the beginning of the pattern. This is
true regardless of the number and distribution of the q verifications in the pattern. If
an error strikes after the first checkpoint and before the second one, which happens
with probability α2, we do have a gain: instead of rolling back to the beginning of
the pattern, we rollback only to the first checkpoint, which saves α1W units of re-
executed work. Again, this is true regardless of the number and distribution of the q
verifications in the pattern. For the general case, if an error strikes after the (i −1)-th
checkpoint and before the i-th one, which happens with probability αi , the gain is∑i−1

j=1 α j W . We derive that

f (1)
re − f (p)

re =
p∑

i=1

⎛
⎝αi

i−1∑
j=1

α j

⎞
⎠ .

Timeα1W α2W α3W

V C C C V C

Fig. 1.34 A pattern with different-size chunks, with 3 checkpoints (we do not show where inter-
mediate verifications are located)
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Similarly to the proof of Theorem 1.2, we have

p∑
i=1

⎛
⎝αi

i−1∑
j=1

α j

⎞
⎠ = 1

2

⎛
⎝
( p∑

i=1

αi

)2

−
p∑

i=1

α2
i

⎞
⎠ = 1

2

(
1 −

p∑
i=1

α2
i

)

and by convexity, the difference f (1)
re − f (p)

re is maximal when αi = 1/p for all i . In
that latter case, f (1)

re − f (p)
re =∑p

i=1(i −1)/p2 = (p−1)/p2. This result shows that
the checkpoints should be equipartitioned in the pattern, regardless of the location
of the verifications.

To conclude the proof, we now use Theorem 1.2: to minimize the value of f (1)
re ,

we should equipartition the verifications too. In that case, we have f (1)
re = q+1

2q and

f (p)
re = q+1

2q − p−1
2p = q+p

2pq , which concludes the proof.

Theorem 1.3 shows that BalancedAlgorithm is the optimal pattern with p
checkpoints and q verifications when μ is large. An important consequence of this
result is that we never need to keep more than two checkpoints in memory when
p ≤ q, because it is optimal to regularly interleave checkpoints and verifications.

To conclude this study,we outline a simple procedure to determine the best pattern.
We start with the following result:

Theorem 1.4 Assume that μ is large in front of C, R and V , and that
√

V
C is a

rational number u
v , where u and v are relatively prime. Then the optimal pattern

Sopt is obtained with the BalancedAlgorithm, using p = u checkpoints, q = v

verifications, and pq equal-size chunks of total length
√

2pq(pC+qV )μ
p+q .

We prove this theorem before discussing the case where
√

V
C is not a rational

number.

Proof Assume that V = γ C , where γ = u2

v2
, with u and v relatively prime integers.

Then, the product off fre can be expressed as

off fre = p + q

2pq
(pC + qV ) = C × p + q

2

(
1

q
+ γ

p

)
.

Therefore, given a value of C and a value of V , i.e., given γ , the goal is to minimize

the function p+q
2

(
1
q + γ

p

)
with 1 ≤ p ≤ q, and p, q taking integer values.

Let p = λ × q. Then we aim at minimizing

1 + λ

2

(
1 + γ

λ

)
= λ

2
+ γ

2λ
+ 1 + γ

2
,

and we obtain λopt = √
γ =

√
V
C = u

v . Hence the best pattern is that returned by

the BalancedAlgorithm with p = u checkpoints and q = v verifications. This
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pattern uses pq equal-size chunks whose total length is given by Eq. (1.52), hence
the result.

For instance, for V = 4 and C = 9, we obtain λopt =
√

V
C = 2

3 , and a balanced
pattern with p = 2 and q = 3 is optimal. This pattern will have 6 equal-size chunks

whose total length is
√

12(2C+3V )μ
5 = 6

√
2μ. However, if V = C = 9, then λopt = 1

and the best solution is the base algorithm with p = q = 1 and a single chunk of
size

√
(C + V )μ = √

13μ.

In some cases, λopt =
√

V
C may not be a rational number, andwe need to find good

approximations of p and q in order to minimize the asymptotic waste. A solution is
to try all reasonable values of q, say from 1 to 50, and to compute the asymptotic
waste achieved with p1 = �λopt × q� and p2 = λopt × q�, hence testing at most
100 configurations (p, q). Altogether, we can compute the best pattern with q ≤ 50
in constant time.

1.7 Conclusion

This chapter presented an overview of the fault tolerance techniques most frequently
used in HPC. Large-scale machines consist of components that are robust but not
perfectly reliable. They combine a number of components that grows exponentially
and will suffer from failures at a rate inversely proportional to that number. Thus, to
cope with such failures, we presented two sets of approaches:

• On the one hand, middleware, hardware, and libraries can implement general tech-
niques to conceal failures from higher levels of the software stack, enabling the
execution of genuine applications not designed for fault tolerance. Behind such
approaches, periodic checkpointing with rollback-recovery is the most popular
technique used in HPC, because of its multiple uses (fault tolerance, but also
post-mortem analysis of behavior, and validation), and potential better usage of
resources. We presented many variations on the protocols of these methods, and
discussed practical issues, like checkpoint creation and storage.
At the heart of periodic checkpointing with rollback recovery lays an optimization
problem: rollback happens when failures occurs; it induces re-execution, hence
resource consumption to tolerate the failure that occurred; frequent checkpoint-
ing reduces that resource consumption. However, checkpointing also consumes
resources, even when failures do not occur; thus checkpointing too often becomes
a source of inefficiency.We presented probabilistic performancemodels that allow
to deduce the optimal trade-off between frequent checkpoints and high failure-free
overheads for the large collection of protocols that we presented before.
The costs of checkpointing and coordinated rollback are the major source of over-
heads in these protocols: future large scale systems can hope to rely on rollback
recovery only if the time spent in checkpointing and rolling-back can be kept orders
of magnitude under the time between failures. The last protocol we studied, that
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uses the memory of the peers to store checkpoints, aims precisely at this. But since
the checkpoints become stored in memory, that storage becomes unreliable, and
mitigating the risk of a non-recoverable failure reenters the trade-off. Here again,
probabilistic models allow to quantify this risk, to guide the decision of resource
usage optimization.

• On the other hand, by letting the hardware and middleware expose the failures to
the higher-level libraries and the application (while tolerating failures at their level
to continue providing their service), we showed how a much better efficiency can
be expected. We presented briefly the current efforts pursued in the MPI standard-
ization body to allow such behavior in high-performance libraries and application.
Then, we illustrated over complex realistic examples how some applications can
take advantage of failures awareness to provide high efficiency and fault tolerance.
Because these techniques are application-specific, many applications may not be
capable of using them. To address this issue, we presented a composition tech-
nique that enables libraries to mask failures that are exposed to them from a non
fault-tolerant application. That composition relies on the general rollback-recovery
technique, but allows to disable periodic checkpointing during long phases where
the library controls the execution, featuring the high-efficiency of application-
specific techniques together with the generality of rollback-recovery.

To conclude, we considered the case of silent errors: silent errors, by definition,
do not manifest as a failure at the moment they strike; the application may slowly
diverge from a correct behavior, and the data be corrupted before the error is detected.
Because of this, they pose a new challenge to fault tolerance techniques.We presented
how multiple rollback points may become necessary, and how harder it becomes to
decide when to rollback. We also presented how application-specific techniques can
mitigate these issue by providing data consistency checkers (validators), allowing to
detect the occurrence of a silent error not necessarily when it happens, but before
critical steps.

Designing a fault-tolerant system is a complex task that introduces new program-
ming and optimization challenges. However, the combination of the whole spectrum
of techniques, from application-specific to general tools, at different levels of the
software stack, allows to tolerate a large range of failures with the high efficiency
expected in HPC. In the rest of this book, experts in fault tolerance and HPC have
contributed with technical chapters, in which they dig deeper into some of the top-
ics that were overviewed in this chapter. Their contributions present the most recent
advances in an intellectually buoyant research field. We hope they will inspire innov-
ative solutions and the adoption of sound approaches to tolerate failures at large scale.
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Chapter 2
Errors and Faults

Ana Gainaru and Franck Cappello

Abstract Understanding the behavior of failures in large-scale systems is important
in order to design techniques to tolerate them. Reliability knowledge of resources
can be used in numerous ways by scientist of systems administrators: (1) it can be
used to improve the quality of service of the machine; (2) to reduce performance loss
due to unexpected failures either by reliability-aware scheduling or by reliability-
aware checkpointing; (3) to design more resilient applications, programming models
or machines in the future. This chapter focuses on offering an overview of failures
observed in real large-scale systems and their characteristics, with an emphasis on
modeling, detection, and prediction.

2.1 Introduction

As large-scale systems evolve toward post-Petascale computing to accommodate
applications’ increasing demands for computational capabilities, many new chal-
lenges need to be faced, among which fault tolerance is a crucial one.

The number of system components in current and future supercomputers increases
faster than component reliability. In the future, projections show larger systems with
even more failure-prone hardware and more complex system and application codes.
Near threshold logic is considered as a candidate technology for future system. It has
advantages in power consumption but it increases error rates. Even in classic CMOS
technology, soft errors can cause one or multiple bits to spontaneously flip to the
opposite state, due to multiple reasons such as alpha particles from package decay or
cosmic rays. Although techniques such as error correcting codes (ECCs) have been
implemented in memory, in reality, some bit flips still manage to pass undetected.
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Moreover, processor caches are not protected by ECC in general. In addition, the
constant need to reduce component size and voltage, limits the use of soft-error
mitigation techniques. The overall consequence is a decreasingMean Time Between
Failures (MTBF) for future extreme-scale systems.

Failures in supercomputers are assumed to be uniformly distributed in time. How-
ever, recent studies show that failures in high-performance computing systems are
partially correlated in time, generating periods of higher failure density. Understand-
ing the inter-arrival patterns of failures is crucial in optimizing current fault tolerance
approaches and decreasing the impact of failures on execution time to a minimum.
This chapter provides characterization of failures and their pattern in extreme-scale
computers with a focus on modeling, detection, and prediction. We present currently
used detection mechanisms for several national laboratories in the US as well as
state-of-the-art research formore sophisticatedmechanism inSect. 2.3. Failure detec-
tion is valuable for systemmanagement, replication, load balancing, and other main-
tenance services. The inter-arrival distribution of failures has been the study of many
research programs. Failure modeling is an important research direction used in guid-
ing reliability-aware resource allocation and optimizing fault-tolerant protocols in
order to minimize the performance loss due to failures. We present the most recent
findings and their impact on resiliency protocols in Sect. 2.5.

There are important lessons to be learned form the statistical information of fail-
ures and events generated by current large-scale systems (Sect. 2.4). These lessons
will guide the design of future extreme-scale platforms and can be used to predict
the direction of improvements in technological solutions for future system and appli-
cation software development. Finally failure prediction is a field that complements
current resiliency methods and has the potential of improving the performance of
fault-tolerant protocols. A survey of prediction methods (starting from methods that
assess the future reliability of a system to methods that pinpoint the exact time and
space occurrence of the next failure) and their impact on checkpointing is presented
in Sect. 2.6.

2.2 Definitions

The absence of consistent definitions andmetrics for supercomputer reliability, avail-
ability and serviceability has hindered meaningful collaborations in the community
[72]. In order to avoid this problem, the workshop organized by the Institute for
Computing Sciences on August 2012 proposed a taxonomy of terms to be used as
standard. The definitions that were proposed are based almost entirely on [5]. We
will use the terms as defined in the workshop’s report [71]. This section enumerates
the most important ones.

Resilience is defined as the ability of a system to keep applications running and
maintain an acceptable level of service in the face of transient, intermittent, and
permanent faults. The term “fault tolerance” refers to the ability of a system to
continue performing its intended function properly in the face of faults.
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Fig. 2.1 Error propagation and cascading failures

Figure2.1 shows the propagation chain from faults to failures in a system. A fault
represents the cause of an error, like a bit flip due to an alpha particle. An error is the
part of total state that might lead to a failure and the failure is a transition to incorrect
service. Faults can be active or inactive, depending on whether they cause errors or
not. For example, a software bug that is never exercised is called inactive while a
bit flip in the processor cache that leads to an application crash is called an active
fault. In general, a fault is local to one component, either software or hardware, while
errors and failures may propagate from one component to another. In case of failures,
this propagation is called cascading failures.

More generally, a failure can be defined as the event that occurs when the service
delivered deviates from the correct service operation or when at least one external
state of the system deviates from the correct service state. Faults may be caused by
complex combinations of internal states and external conditions that occur rarely and
are difficult to reproduce.

By error identification, we mean the process of discovering the presence of an
error but without necessarily identifying which part of the system state is incorrect,
and what fault caused this error. By definition, every fault causes an error. Almost
always, the fault is detected by detecting the error the fault caused. Therefore, fault
detection or error detection often refers to the same thing. Latent or silent errors are
errors that are not detected.

There are several means of dealing with faults divided in four separate classes:

• Tolerance is used to avoid failures in the presence of faults
• Removal is used to reduce the fault number and severity
• Forecasting is used to estimate the present number, future incidence and likely
consequences of faults

• Prevention is used to prevent fault occurrences

The term “Time to Failure” or TTF represents the interval between the end of
the last failure and the beginning of the consecutive failure. Time between Failures
(TBF) represents the interval between the beginnings of two consecutive failures
and the Time to Repair (TTR) is synonymous with the Downtime and it defines the
interval between the beginning of a failure and its end. Formally:

MTBF (Mean time between failures) = TotalTime
NumFailures

MTTF (Mean time to failure) = Uptime
NumFailures

MTTR (Mean time to repair) = UnscheduledDowntime
NumFailures
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Fig. 2.2 Diagram of possible states in a supercomputer’s life

An incredibly dense state diagram would be required to characterize all possible
states for a supercomputer lifespan and its workload. For the purpose of resiliency,
we will consider the diagram in Fig. 2.2. The diagram is a simplified version of the
one proposed by [72].

The nonscheduled time represents the interval when the system is not scheduled
to be utilized by production or system engineering users. Otherwise, the system is
considered in its operation times. This interval includes production time or unsched-
uled and scheduled downtime. The unscheduled downtime occurs when a system is
not available due to unplanned events, like failures, while the scheduled downtime
occurs when the system is not available due to planned events, for example system
testing in order to verify that a component is functioning properly.

Prediction is defined as the activity of estimating the presence of a failure. A
prediction where the predicted failures occurred in the given time interval and on
the given location (or set of locations) is called a true positive. A false positive
happens when the predicted failure either does not occur in the given time frame
or the predicting location is wrong. Failures that occur without being predicted are
false negatives. These three values define the three metrics that we use to measure
the performance of a failure predictor: precision, recall and F-measure. Precision
defines the quality of all the predictions made by the method and it is equal to the
ratio of true positives to the total of number of predictions made. Recall represents
the coverage of a predictor and defines the ratio of failures predicted to the total
failures in the system. A measure that combines precision and recall is the harmonic
mean of the two, called F-measure.

2.3 Detection

In order for management systems to be able to analyze the characteristics of failures,
to try to reduce the fault number and severity or to implement forecasting and pre-
vention mechanisms, the system needs to be able to detect failures. In general, HPC
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system vendors integrate management systems that aim at ensuring job completion
and providing system administrator with a way to check the sanity of the machine.
Examples of such management systems are Cray’s Node Health Checker or IBM’s
Cluster Systems Management.

Cray’s node health checker is automatically invoked by the scheduler upon the
termination of an application. The scheduler gives the monitoring system a list of
compute nodes associated with the terminated application on which the node health
checker performs specified tests to determine if the given compute nodes are healthy
enough to support running subsequent applications. If a node fails one of the tests, it
gets removed from the available resource pool. In addition, subsequent monitoring
systems are deployed for other components as well. For example, the Gemini inter-
connect technology used by Cray, has hardware and software support that allows
the system to handle certain types of failures without requiring a system reboot.
Another example is the CLFS Lustre Monitor tool that implements detection and
fault-tolerant methods in order to keep the file systems available in the event of a
Meta Data Server (MDS) and/or Object Storage Server (OSS) failures.

Similarly, IBM’s Cluster System Management (CSM) provides automatic error
detection through heartbeats that is implemented in conjunction with problem avoid-
ance, resolution, and recovery. Disk-heartbeat networks work by exchanging heart-
beat messages on a reserved portion of a shared disk.Moreover, current HPC systems
implement various optimization methods that provide a way of reducing the time it
takes for a node failure to be sent throughout the cluster. For example, IBM’s CSM
uses disk-heartbeat so that the node that fails puts a departing message on a shared
disk so its neighbors will be immediately aware of the node failure (without waiting
for missed heartbeats).

There are some failure situations in which heartbeat monitoring cannot determine
what exactly failed. For example, lets imagine a cluster node failure due to a problem
in a critical hardware component such as a processor. The whole machine can go
down without giving the cluster resource service on that node an opportunity to
notify other cluster nodes of the failure. The other nodes can only see a failure in the
heartbeat monitoring. They are unable to know if it was due to a node failure or a
failure in some part of the communication path (for example a router or an adapter).

More advanced node failure detectionmethods are provided outside of the vendors
management systems. These solutions are implemented by system administrators
and researchers and are used to reduce the number of failure scenarios which result
in system partitions. In general, failures that are not detected at the system level
but that propagate and crash an application, are analyzed post-mortem by system
administrators. Rules and alerts are afterwards created in order to capture future
occurrences of the same problem. This process is, in general, manual and requires a
considerable effort.

There are several general methods used in the literature in order to detect failures
in an automatic way, from modeling the hardware system and finding outliers in this
model, to implementing fault detection at the application and programming model
levels. We will briefly present, in this section, a few examples from each method.
Most studies are not integrated in any production machine, but some are used as
external tools by several national laboratories.
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Firstly, there are external approaches for detecting a node failure by using a sim-
ilar method offered by HPC vendors, namely based on the use of heartbeats, as a
way of constantly monitoring a system. These are, in general, hardware health mon-
itoring methods (e.g., IPMI an open standard hardware management specification
that defines a set of common interfaces to hardware and firmware). For example,
some network failures partition the filesystem into two or more groups of nodes that
can only see the nodes in their group. These types of failures can be easily detected
through a hardware heartbeat protocol. Software health monitoring [61] systems are
also implemented on several large-scale systems by using timeouts to detect node
problems.

One method used extensively in the past was to measure each node’s behavior and
compare it to all other nodes executing similar workloads. An event is categorized
as a failure in case of a significant deviation [73, 88]. The method can be applied on
performance metrics as well as log entries. After recording performance metrics at a
fixed time interval from various components in the system, this information can then
be aggregated into a single large matrix. Similarly, for system logs, homogeneous
nodes correctly executing similar workloads will tend to generate almost identical
logs. The samematrix as for performancemetrics can be created by indexing the logs
and using nonzero values in the matrix to indicate how many times word i occurs
during hour j. By normalizing and performing PCA (principal component analysis),
the methods are able to determine anomalies in these matrices. Such a method has
been used by researchers at the Sandia National Laboratory in order to complement
the available software integrated on their Spirit cluster. The results are in general
good and show that the method is able to detect several known fault conditions. On
Sandia’s 512-node “Spirit” Linux cluster, the detection algorithmwas able to localize
50% of faults with 75% precision.

Another similar type of method models the components and their interactions and
then monitors the model. Most examples are using pattern recognition algorithms
[65, 83] to model the system. Others include context free grammars [13] and math-
ematical equations [2]. Some methods are better suited for analyzing performance
metrics (like regression models), while other can be applied on both log files and per-
formance metrics. Some analyze the entire system, while others focus on a specific
component. For example, Markov models can be used to implement network failure
symptom detection and event correlation discovery. The failure detection’s results,
when applying the method on the entire system, are decent but less impressive than
using the previous method. However, when focusing on one component, specifically
networks, path analysis contributes to the discovery of the system structure and the
detection of subtle behavioral differences across system versions. Path analysis is
an extension of regression methods that estimates the magnitude and significance
of causal connections between sets of variables. The method complements existing
failure detection methods offered by vendors. Similarly, several studies use, as their
core abstraction, runtime paths followed by requests as they move through the sys-
tem. Based on this, they characterize component interactions. Automated statistical
analysis ofmultiple paths allows to detect and put a diagnosis on complex application
level failures.
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In the Clouds field, online failure detection is done by using entropies [80]. The
algorithm works in three phases: metric collection, entropy time series construction,
and entropy time series processing like spike detection, signal processing, or subspace
methods, in order to find anomaly patterns. The method uses performance metrics
by collecting values from all components on each physical level of the system’s
hierarchy. A leaf component collects rawmetric data from its local sensors. A nonleaf
component collects not only its local metric data but also entropy time series data
from its child nodes. The method is not integrated in production at this point, but
the preliminary results on smaller systems are extremely good showing a 90% recall
with an 80% precision.

More specific methods focus on the software stack of an HPC system. One exam-
ple is Rani et al. [61], where the authors propose a fault-tolerant approach that pro-
vides the ability to detect and self-recover the parallel runtime environment in cases
of compute node failure. Their solution consists of a lightweight heartbeat protocol
(BHB) that addresses the scalability issues in system monitoring and failure detec-
tion. Their focus is common fault tolerance issues in large scale systems, especially
due to permanent component failure.

Application level failure detection is in general used for large servers or for large
web application. For example, in [42], the authors present a generic framework for
using statistical learning techniques to detect and localize likely application-level
failures in component-based Internet services. In the HPC field, Kharbas et al. [41]
propose a study on generic fault detection capabilities at the MPI level. The authors
implement multiple detectors at various layers of the software stack: at the MPI
communication layer and a separate one as stand-alone processes across nodes.

2.4 Observations

The design of extreme-scale platforms that are expected to reach Exascale in the next
several years will represent an improvement in technological solutions and will push
the boundary of algorithm and application software development. The precise details
of these new designs are not yet known. However, there are numerous papers that
look at the configurations and properties of existing systems and make predictions
regarding the future of HPC systems. There are important lessons to be learned form
the statistical information of failures and events by analyzing generated log files and
performance/environmental metrics from current systems.

There are several Exascale/Petascale reports that focus on presenting directions
for resiliency and programming models for future Exascale systems. The DARPA
white paper on system resilience at extreme scale from 2008 [21] points out that cur-
rent high-end systems waste in average 20% of their computing capacity on failure
and recovery. The paper outlines possible research in order to bring this number down
to 2%, but current methods are not yet at this point. The DOD/DOE report issued
in 2009 [16] identifies resilience as a major emerging issue for HPC. It proposes
research in five thrust areas: theoretical foundations, enabling infrastructure, fault
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prediction and detection, monitoring and control and end-to-end data integrity. The
paper published in the International Journal of High Performance Computing Appli-
cations in 2009 [11] describes the challenges resiliency faces in the Exascale era and
possible directions in order to address these needs. The DOD/DOE report [81] issued
in 2012 identifies six high priorities: fault characterization, detection, fault-tolerant
algorithms, fault-tolerant programming models, fault-tolerant system services and
tools. The DOE workshop from 2012 [78] describes the required HPC resilience
for critical DOE mission needs and details what HPC resilience research is already
being done at the DOE national labs and what is expected to be done by industry and
other groups. Also, the workshop focused on determining what fault management
research is a priority for DOEs Office of Science and NNSA over the next five years.
The Exascale report from March 2013 [71] gathered the main points discussed at
the workshop organized by the Institute for Computing Sciences on August 2012.
The report analyzes the state of resiliency for HPC and proposes three designs for
approaches in this field: (1) business as usual where the global checkpoint/restart is
used; (2) system-level resilience where vendors do not provide sufficiently low SDC
rates at an acceptable acquisition and operation cost and a combination of hard-
ware and software technologies is needed to hide the increased failure rates from
the application; (3) application-level resilience for which there is an assumption that
application codes will need to be modified in order to handle the increased failure
rate. The paper makes a couple of recommendations for each design in order for
them to become solutions for future systems.

The International Exascale Software Project (IESP)Workshop [19], held in Kobe,
Japan on April 12–13, 2012 discussed what will be the major obstacles that the
climate communitywill face at Exascale and proposed and evaluated possibleways to
overcome these obstacles. The focus of theworkshopwas on node-level performance,
scalability and resilience. The European Exascale Software Initiative EESI2 [62] is
a collaborative project that aims to build and consolidate a vision and roadmap
at the European level including applications both from academia and industry to
address the challenge of performing scientific computing on the new generation
super-computers. In September 2013, the project released the report on the first
technical workshopwhere experts in the areas of software development, performance
analysis, applications knowledge, funding models and governance aspects in High
Performance Computing provided recommendations and roadmaps for the future of
HPC in Europe.

Continuous availability of HPC systems has become a primary concern with the
continuous increase of system size to thousands of components. Understanding the
behavior of failures in current systems is increasingly important in order to design
more reliable systems. To this extent, failure data analysis of currentHPC systems can
serve three purposes. Firstly, it can highlight dependability bottlenecks and might
serve as a guideline for designing more reliable systems in the future. Moreover,
real data can be used to develop performance models and simulations, which are
an essential part of reliability engineering. As we will see in the following sections,
these models can be used to predict node availability, which is useful for resource
characterization and scheduling. Reliability knowledge of resources can reduce per-
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formance loss due to unexpected failures, and can improve QoS (Quality of Service)
either by reliability-aware scheduling, where the systems allocate a priority job to
get maximum reliability or by reliability-aware checkpointing where the optimal
checkpointing interval can be computed based on the reliability of a set of nodes (see
Chap.1, and Sect. 1.3 in particular).

There are several papers that study the statistics of the data, including the root
cause of failures, the mean time between failures, and the mean time to repair. Work
on characterizing failures in computer systems differs in the type of data used; the
type and number of systems under study; the time of data collection; and the num-
ber of failure or error records in the data set. Most of these statistics are based on
reliability, availability and serviceability (RAS) data mainly provided by major HPC
laboratories and centers in the USA: Los Alamos National Laboratory (LANL),
National Energy Research Scientific Computing Center (NERSC), Pacific North-
west National Laboratory, Sandia National Laboratory (SNL), Laurence Livermore
National Laboratory (LLNL), and the National Center for Supercomputing Applica-
tions (NCSA).

Most studies divide failures into two major categories: software and hardware,
each having separately different subcategories. Reliability monitoring and analysis
considers failures that affect a single node and also failures affecting a group of nodes.
The studies also look at failures that may affect applications or important services.
Table2.1 presents an overview of the categories used in literature when looking at
the broad overall image of a system.

Table2.2 presents a summary of the current studies presenting failure statistics
for different machines. Depending on the study and on the analyzed system, the table
shows a wide range of results. There is not a consistent main root cause of failures
among all systems, nor a consistent MTBF or mean time to repair. However, by
looking at the overall view including all systems there are several observations to be
made.

On average, for the biggest Petascale systems, there are failures of any type once
every 7–10h, while the systems suffer system-wide outages (SWO), in general once
every week. The MTBF has continued to decrease from one failure every couple of
months in very small systems (LANL systems in the Table) to a failure every several
hours for the Blue Waters system. Moreover, the time to restart the machine and the
applications after a system-wide outage is taking longer times for larger machines.
The frequency of failures and the system complexity is making the task of failure
detection and prediction much harder.

Table 2.1 Types of failures

Hardware failures Software failures

Failures that affect group of nodes

Switch; Power supply Scheduler; FS; Cluster Management Software

Individual node failure

Processor; Mother Board; Disk OS; Client Daemon

http://dx.doi.org/10.1007/978-3-319-20943-2_1
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Table 2.2 Different failure characterization studies and their results

System MTBF Root cause analysis Citation

-A cluster of 12 SGI
Origin 2000 (1500
CPUs)
-A PC cluster (1000
CPUs)
-A cluster of 162
Itanium dual CPUs

MTTI of 1day, less
than 1h and about 6h
respectively

Software was at the
origin of most outages
(59–84%)

Lu et al. [51]

Blue Gene/L during
6months

More than 10h – Leangsuksun et al.
[45]

- Blue Gene/L (131k
CPUs)
- Red Storm (11k
CPUs)
- Thunderbird (9k
CPUs)
- Spirit (1k CPUs)
- Liberty (512 CPUs)

– Software caused 64%
of failures, while
hardware only 18%

Oliner et al. [57]

22 different systems at
LANL, mostly large
clusters of SMP and
NUMA nodes, over a
period of 10years

– Hardware is the main
cause of failures with
percentages ranging
from 30% to more
than 60%. Software is
the second largest
contributor, with
percentages from 5 to
24%

Schroeder et al. [68]

Blue Gene/P The job level MTBF is
about three times
larger than that system
level MTBF

– Zheng et al. [87]

Blue Gene/L, Blue
Gene/P, SciNet,
Google

– A large fraction of
DRAM errors can be
attributed to hard
errors

Hwang et al. [38]

Beowulf-style PC
clusters: Platium,
Titan

6h Software represents
the cause of most
outages with 84% for
Platium and 60% for
Titan

Lu et al. [50]

Blue Waters 6–8h Software is the cause
of almost all storage
failures, more than
50% of the node
failures and more than
50% of system wide
outages

Di Martino [53]
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2.4.1 Location Propagation

In general on all systems, over 15% of failures affect more than one node (without
considering system wide outages). For example failures in the voltage converter
module, or problems with the cabinet controller on the Blue Waters system, affect a
whole blade consisting of four nodes.

Large-scale systems contain a large number of nodes that are organized in a
hierarchy. For example for the BlueGene systems, nodes are gathered into mid-
planes and multiple mid-planes form a rack. The propagation path for different error
types follows closely the way components are connected in the system. For example,
if a fan breaks, all nodes sharing the same rack will be affected. In general, sequences
of non faulty events, like warnings, following a failure do not propagate on different
locations and if they propagate they appear on a small number of nodes: only around
22% for Mercury and 25% for Blue Gene/L show some kind of propagation. This
phenomenon is consistent with all the systems presented in Table2.2.

Avery small number of failures appear on locations that do not follow the topology
of the machine. An example of such a failure can be seen on the Mercury machine,
when it experiences NFS (Network File System) problems. The event “rpc: bad
tcp reclen d+ (nonterminal)” indicates network file system unavailabil-
ity to any requests for a machine. In applications using the network file system this
could cause file operations to fail and the application to quit. Also all nodes from
which the application tries to access the network file system will be affected by this
problem. This failure usually occurs nearly simultaneously on a large number of
nodes depending on where the application was running.

In general some failure types aremore likely to create cascade failures than others.
This is the case, for example, of network and filesystem failures. In general, errors
in memory or processor caches do not show the same behavior.

2.4.2 Failure Statistics

We divided all failures in 5 main categories that can be encountered in all systems:
hardware, software, network, facility and unknown. Table2.3 presents the percentage
of failures representing each considered type for several HPC systems.

Table 2.3 Percentage of different failure types

Category Blue Waters (%) Blue Gene/P (%) LANL systems (%)

Hardware 43.12 52.38 61.58

Software 26.67 30.66 23.02

Network 11.84 14.28 1.8

Facility/Environment 3.34 2.66 1.55

Unknown 2.98 – 11.38

Heartbeat 12.02 – –
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Fig. 2.3 Percentage of main hardware failures

Fig. 2.4 Percentage of main software failures

Hardware represents the majority of failures for all systems, with the lowest
percentage of 43.12% for theBlueWaters systemand 61.58% for theLANLsystems.
As shown in Fig. 2.3, the majority of hardware failures were memory and processor
errors. Moreover, failures with hardware root causes were limited to a single node
in 96% of the cases, or a single blade consisting of 4 service nodes in 99.3% of the
cases.

Software errors represent over 30% of total failures for the Blue Waters system,
while for the LANL system they represent only 23%. In general, as the system
increases in size and complexity, the number of software failures has continued to
increase while the hardware failures represent a smaller percentage.

Figure2.4 presents themain causes of software failures. Themain ones are filesys-
tem problems (Lustre for the Blue Waters system, GPFS for BGL and several for
LANL: Cluster File System, Parallel File System, NFS, Scratch FS and Vizscratch
FS), failures of the job scheduler and operating system problems. On the BlueWaters
system, 12% of total software failures caused system-wide outages (SWO) and rep-
resent over 75% of all causes that triggered SWO.Moreover, software failures, when
not causing an SWO, propagate to more than one node in 15% of the cases.

Environmental failures include power-outages, failures related to temperature,
cooling hardware problems and others. Table2.4 presents the main failure types for
each main category for each system.
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Table 2.4 Main specific failure types

Blue Waters Blue Gene/P LANL systems

Hardware

RAM 33.12% L1 data cache parity error 35.27% CPU 41.35%

CPU 27.04% CPU 21.81% DIMM 20.08%

Memory 16.72%

Software

FS (Lustre) 27.2% OS 62.11% Other software 21.89%

Scheduler 18.9% FS 36.02% OS 20.99%

DST 21.02%

FS 12.33%

2.4.3 Additional Information

Some of the studies give additional information to what is presented in the Table2.2.
Schroeder et al. [68] demonstrate that the number of failures per socket in different
systems is rather stable from 1996 to 2004. They also find that average failure rates
differ wildly across systems, ranging from 20–1000 failures per year.

In a paper from 2011, Zheng et al. [87] analyze Blue Gene/P at Argonne National
Lab and by using both RAS and job logs, they filter out failures that do not affect any
jobs. By characterizing only the failures that lead to application crashes, they make a
couple of interesting observations which might influence the fault-tolerant protocol
used by different applications. Another observation their study reveals is that the
probability of job interruption is high if there exist historical records of application-
related interruptions. Moreover, most errors due to bugs in the application tend to be
reported in the first hour. Therefore it is not recommended to introduce checkpointing
early in the execution period if the job has historical records of application-related
interruptions. Another interesting find is that the MTBF after filtering all failures
that do not lead to application crashes is about three times larger than that without
applying the filtering.

Tsai et al. [77] present a study that uses data collected from a population of over
50,000 customer deployed disk drives to examine the relationship between disk soft
errors and failures, in particular failures manifested as hard errors. They observe that
soft errors alone cannot be used as a reliable predictor of hard errors. However, in
the cases where soft errors do accurately predict hard errors, sufficient warning time
exists for preventive actions. Disk failures will be inspected in more detail in the next
section.

In [38], Hwang et al. analyze data on DRAMerrors collected on a diverse range of
production systems in total covering nearly 300 terabyte-years of main memory. The
authors provide a detailed analytical study of DRAM error characteristics, including
both hard and soft errors.

Table2.5 presents high-level statistics on the frequency of correctable and uncor-
rectable errors per year of operation, broken down by the type of hardware platform.
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Table 2.5 Memory errors per year

Platform Technology Time
(days)

Scrubbers Corrected
errors

Uncorrected
errors

Google—platform 1 DDR1 2.5years no 45.80% 0.17%

Google—platform 2 DDR1 2.5years yes 22.30% 2.15%

Google—platform 3 DDR2 2.5years yes 19.60% 2.65%

Google—platform 4 Fully-Buffered DIMM 2.5years no N/A 0.27%

Blue Gene/L N/A 214 no 5.32% N/A

Blue Gene/P N/A 583 no 3.55% 1.34%

SciNet N/A 211 no 2.51% N/A

For the Google platforms the last two columns represent the percentage of machines
affected by at least one error, while for the HPC system the percentage refers to
nodes. As we see, memory errors are not rare events. For example, about a third
of all machines at Google experience at least one uncorrectable memory error per
year and the average number of correctable errors per year is over 22,000. These
numbers vary across platforms, with some system experiencing nearly 50% of cor-
rectable errors, while in others it represents only 15–30%. For the platforms with a
low percentage of machines affected by correctable errors, the average number of
correctable errors per machine per year is the same or even higher than for the other
platforms.

In general, we have seen that in all studies that analyze memory failures, the
number of errors is highly variable depending on the machine under study. Some
systems develop a very large number of correctable errors compared to others. The
overall image of memory errors shows that for all platforms, 20% of the nodes with
errors make up more than 90% of all observed errors for the corresponding system.
This can be explained by the observation that memory errors are highly correlated.

While correctable errors, depending on their number, typically do not have an
immediate impact on applications, uncorrectable errors usually result in a crash.
Uncorrectable errors are less common than correctable errors (as seen in Table2.5);
however, they do happen at a significant rate. Memory failures will be inspected in
more detail in the next section.

Recently, systems have started to have heterogeneous nodes, which may have
different failure rates. The study from 2013 [75] has shown that even homogeneous
nodes present different rates both in the failure rate as well as the reliability.

2.4.3.1 Time to Repair

There are several studies that analyze the mean time to repair [45, 53, 68, 69]. In
general, the studies conclude that hardware type has a major effect on repair times.
While systems of the same hardware type exhibit similar mean and median time to
repair, repair times vary significantly across systems of different type. All studies
make an analysis of the relative impact that different types of failures have on the
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Fig. 2.5 Time to repair for different failure types

total number of node repair hours (hours required to repair failures due to the same
root cause, multiplied by the number of nodes involved in the failure). Figure2.5
shows the median and mean of time to repair as a function of the root cause, and as
an aggregate across all failure records. The figure summarizes the information given
by all studies presented in Table2.2.

Both the median and the mean time to repair vary significantly depending on the
failure type that is being analyzed. The mean time to repair ranges from less than 3h
for failures caused by human error, to nearly 10h for failures due to environmental
problems, while the repair time across all failures (independent of root cause) has
an average close to 6h. The most frequent type of failures affecting the systems are
hardware and software.

After merging the results from all the studies, we observed that failures with
software root causes are responsible for the largest percentage of the total node repair
hours. This is surprising considering that hardware failures represent the majority of
failures for all analyzed systems. Together, hardware and software node repair hours
represent over 90% of the total downtime. For larger system this percentage is even
higher. For example, for the Blue Waters system, over 98% of the total node repair
hours are represented by software and hardware problems. The rest of 2% represents
network, facility, environmental, and unknown failures.

In general, hardware problems are closely monitored and are well managed by
the vendor management system. In addition, hardware is easier to diagnose than
software. There is also a difference in the distribution of the number of nodes involved
in failures with different types of root causes. Failures with hardware root causes
propagate outside the boundary of the smallest unit of node aggregation in a very
small percentage of cases. Conversely, software failures propagate in a much larger
percentage of the cases (for the Blue Waters system this number is 20 times more
often than the hardware propagation percentage).

One reason for the high variability in repair times of software and hardware
failures might also be the diverse set of problems that can cause these failures. For
example, the root cause information for hardware failures spans on a very large
list of different categories, compared to only two (power outage and A/C failure) for
environmental problems on the LANL smaller systems. Breaking down the hardware
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problems in specific categories, the average time to repair for each still presents a
high variability. Moreover, even the same hardware problem can have different times
to repair depending on when it occurred. For example, the variability for repair times
of CPU, memory, and node interconnect problems, as expressed with the squared
coefficient of variation, are 36, 87, and 154, respectively on the LANL system. This
indicates that there are other factors as well contributing to the high variability of
hardware failures. Software failures have a similar behavior.

Another important observation from these studies is that the time to repair for
all types of failures is extremely variable, except for environmental problems. These
failures are better understood and the solution policies are already in place and
it usually requires changing a component in the system, which explains the long
average times to repair such problems.

2.4.4 Silent Errors

All the characteristics and statistical properties extracted so far are covering only a
subset of all actual faults, namely those that can be detected by software and hardware
monitoring systems. These are the faults that have a fail-stop behavior or degrade
the performance of the systems and/or applications. Silent data corruptions (SDC)
are undetected faults that are usually materialized as bit flips in storage (both volatile
memory and nonvolatile disk) or even within processing cores.

In general, a single bit flip in memory can be detected and even corrected if the
system is using an Error Correcting Code (ECC). Double bit flips, however, even
though they are detected, often force an instant reboot of the node since ECC cannot
correct them. For smaller systems, the frequency of double bit flips was considered to
be seemingly low. Current studies [24] on the Oak Ridge National Laboratory’s Cray
XT5 system have shown that the density of DIMMs causes uncorrected but detected
errors to occur on a daily basis (at a rate of one per day for 75,000+ DIMMs).

Single bit flips in the processor cores mostly remain undetected since few proces-
sor structures are protected. For this reason, the sensitivity of register files and ALUs
for SDC is significantly higher. The Blue Gene/L architecture uses an unprotected
L1 cache. Due to the high number of silent corruptions, the next generation system,
the Blue Gene/P implemented ECC in L1. However, since hardware redundancy still
remains extremely costly, not all storage systems afford to implement ECC.

It is believed that in today’s systems, the frequency of bit flips is no longer domi-
nated by single-events caused by radiation from space but it is increasingly attributed
to fabrication miniaturization and aging of silicon given the increasing likelihood of
repeated failures in DRAM after a first failure has been observed [38].

Bit-flips in stale data or in the instruction caches do not impact the system and
application’s execution. Only those in active data or the system’s code can have
extremely big effects and potentially render computational results invalid without
ever being detected. This creates a severe problem for today’s science that relies
increasingly on large-scale simulations.
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There are several solutions for overcoming the effects of silent corruption on
systems and applications. Redundant computing is the method of choice when the
frequency of silent errors is not extremely high since it can detect silent data corrup-
tion that impacts the results. Detection requires dual redundancy, while correction
requires at least triple redundancy. Such high levels of redundancy are costly. How-
ever,with the current systems and depending on the application, itmight be preferable
to flawed scientific results. For the Exascale era redundancy at the process level, as
currently defined, would not be feasible. Thus, the state of research for HPC requires
urgent investigation to level the path for the Exascale computing.

The research direction in this field spans two separate directions: (i) more efficient
application level redundancy and (ii) application level detection.

The study in [38], analyzes the potential for redundancy to detect and correct soft
errors inMPI message-passing applications. For this purpose, the authors investigate
the challenges inherent to detecting soft errors within MPI applications by provid-
ing transparent MPI redundancy. Their theoretical model assumes that corruption
in application data manifests itself by producing differing MPI messages between
replicas. With this model, the authors study the best suited protocols for detecting
and correcting corrupted MPI messages.

In scientific applications that involve dense matrices, checksum encodings have
yielded “Algorithm-Based Fault Tolerance” (ABFT) in the event of data corruption
from either hard or transient (soft) errors in the hardware. The second research
direction in dealing with SDC for Exascale systems deals with optimizing or finding
new ways of detecting the corruption at the application level. In [70], the authors
developed a new sparse checksum encoded algorithm that can be applied to all the
key operations in the Preconditioned Conjugate Gradient method (PCG), including
sparse matrix-vector multiplication, vector operations and the application of a pre-
conditioner through sparse triangular solution. Their method detects a single error
in the matrix and vector elements and in the metadata representing the sparse matrix
row or column indices.

In [17] the authors convert the detection problem to a one-step look-ahead predic-
tion issue. By modeling the values taken by different variables used by an algorithm
based on their history, one can predict the future state of each of them. A running
HPC application often iteratively operates on a set of data, whose values thus change
over time. As shown in Fig. 2.6, at each iterative time-step, the detector dynamically
predicts the possible range for the next-step data value. The detector will consider a

Fig. 2.6 Value prediction model for SDC detection
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value as an outlier if it falls outside this range. The study explores the most effective
prediction methods for different HPC applications (the Auto Regressive model, the
Auto RegressiveMoving AverageModel, Linear Curve Fitting, and Quadratic Curve
Fitting). Experiments show that this method can obtain an F-measure around 80%
for silent bit-flip errors.

2.5 Modeling

Failures and downtime intervals have a severe impact on the performance of appli-
cations in large scale HPC environments. Research efforts have been deployed to
understand the failure behavior on such computing systems. Failure modeling is an
important research direction used in guiding reliability-aware resource allocation
and optimizing fault-tolerant protocols in order to minimize the performance loss
due to failures. The failure’s distribution is also used by fault-tolerant protocols,
like checkpointing, to decide an advantageous trade-off between frequently creating
checkpoints, which takes resources away from completing execution of the applica-
tion but reduces the amount of lost calculation, and infrequent checkpoints, which
diverts less resources but incurs greater losseswhen a fault occurs. Prediction can also
be built when knowing the failure distribution and later used for marking suspicious
components and monitoring them more frequently.

In general, studies that analyze failures on different HPC systems, like the ones
presented in the previous section, are also extracting the failure distribution. Most
research characterizes an empirical distribution by using three import metrics: the
mean, the median, and the squared coefficient of variation (C2). The squared coef-
ficient of variation is a measure of variability and is defined as the squared standard
deviation divided by the squared mean which has the advantage of allowing com-
parison of variability across distributions with different means.

Another used method is the empirical cumulative distribution function (CDF) that
studies how well the data is fit by several probability distributions commonly used in
reliability theory, like the exponential, the Weibull, the gamma, and the log-normal
distributions. The method uses the maximum likelihood estimation to parameterize
the distributions and evaluate the goodness of fit either by visual inspection and
the negative log-likelihood test. The primary problem with using goodness-of-fit
measures is that usually they do not take into account the number of free parameters
in a model; with enough free parameters, any model can precisely match any dataset.
For example, a phase-type distribution with a high number of phases would likely
give a better fit than any of the above standard distributions, which are limited to one
or two parameters. The standard distribution is preferred whenever the quality of fit
allows it.

There are several goodness-of-fit tests that are currently used from Anderson-
Darling and Kolmogorov–Smirnov to the chi-square test. The chi-square goodness-
of-fit test can be applied to discrete distributions such as the binomial and the Poisson,
while the Kolmogorov–Smirnov and Anderson–Darling tests are restricted to con-
tinuous distributions.
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2.5.1 Randomness Testing

Before investigating the distribution fitting for failures, several tests of randomness
need to be run in order to identify whether the generated failures have a truly random
behavior. A random data series exhibits trends of periodicity, autocorrelation, or
nonstationarity. Fitting probability distribution to nonrandom data is not statistically
relevant since data with such properties do not respect the basic assumption of all
standard statistical tests. For this purpose, when fitting distribution to a dataset,
randomness needs to be tested first.

Themethodology used in the literature focuses on two classes of randomness tests:
parametric and nonparametric tests. In the first case the algorithm has information
about the distribution of the data and only parameters need to be found. The second
class refers to tests where the distribution of the observed data is unknown. In this
category, there are tests of randomness based on runs or trends, such as the Mann-
Kendall test, the Bartels’ rank test, or the Wald-Wolfowitz test, as well as tests based
on entropy estimators. A commonly used example of run-based randomness test is
the Wald-Wolfowitz test in which each interval of time is compared with the mean
in order to determine the mutually independent property of the intervals. Another
frequently used test is the autocorrelation that is used to discover repeated patterns
that differ only by a lag in time.

The autocorrelation function describes the correlation between values in the data
at different times. Plotting the autocorrelation values makes it easy to visualize the
lags that offer correlation. Examples of the auto-correlation function, for a periodic
and random data set, can be seen in Fig. 2.7. Random data sets have only one peak
for lag 0, which means that the signal has a high similarity only with itself. Periodic
data sets havemultiple peaks, visible in Fig. 2.7b. Thresholds can be chosen to decide
when a data set is periodic either by setting it manually or in automatic using different
heuristics [29].

Since no method is perfect, in general it is recommended to run multiple tests
on the same data set and compare the results. The runs test and the up/down test
return one value called a probability value and noted p-value. This value is used to
either reject the null hypothesis about the randomness of the data, if the p-value is
smaller than or equal to the significant threshold, or to confirm that the data is truly
random otherwise. Depending on how many samples are available in the data set,
the statistical threshold might have different values, between 1 and 15%. For large
data sets, a significance level is chosen before data collection and is usually set by all
research to 5%. Other significance levels, for example 1%, may be used, depending
on the field of study. For the autocorrelation function, in general a confidence interval
of 95% is considered. Thus, if the value of the autocorrelation test is out of this
confidence interval, the sample contains a high correlation of order 1, which implies
the nonrandomness of the data.

In general, most HPC systems pass the randomness test. By analyzing studies that
looked at different HPC systems from several national laboratories, around 85% of
systems presented a random time between failures. Interestingly, after filtering out
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Fig. 2.7 Auto-correlation
plots for different signals. a
Random signals. b Periodic
signals

the failures that can be predicted with a failure prediction method, the remaining
failures pass the randomness test for 75% of the systems that had nonrandom time
intervals initially. This means that, now, fault-tolerant protocols can be optimized for
these systems as well, since failures can be fitted to a distribution.

2.5.2 Fitting Distributions

The principle behind fitting a data set with a distribution function is to find the
type of distribution (for example, exponential, normal, log-normal, gamma) and the
value of its parameters (mean, variance, etc.) that give the highest probability of
producing the observed data. The objective of a fitting distribution algorithm in the
fault tolerance field is to find the mathematical model that best describes the inter-
arrival time between failures. As mentioned before, only traces with a truly random
behavior can be used to find a good probability distribution that is a good match to
the empirical distribution.
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2.5.2.1 Fitting Methodology

There are several available methods that can be used to fit the empirical data to
probability distribution functions. In general, themethodology used has three distinct
steps: (1) select a set of candidate distributions either by domain knowledge about
the given data set or by including as many distribution functions as possible; (2)
estimate the parameter values for each empirical distribution; and (3) choose the best
fit with the most likely similarity either by manual inspection or by using automatic
thresholds.

Many distributions could be used as input candidates in the first step of the fitting
methodology, but in general, in theHPC community there are several commonly used
distribution functions to model failures [9, 39] namely, the Poisson, exponential,
Weibull, log-normal, normal, and gamma distributions.

The second step of the methodology deals with computing the best parameter val-
ues for each candidate distribution. Specifically, the maximum likelihood estimates
(MLE) method is being used [46] to chose the values that are the most likely to fit the
empirical data. Several older studies also use the moment matching method. How-
ever, since this methods has been shown to be sensitive to outliers [23], recent work
has mainly used the MLE method. This method aims to maximize the logarithm of
the likelihood function that corresponds to the closest distance between the empiri-
cal distribution and the samples resulting from the distribution function with certain
parameters. The negative log likelihood value produced by the MLE is being used
to rank different distributions. This method will give a list of ordered distributions,
however, without giving an indication of how good the distributions actually fit the
empirical data.

In order to check if a distribution is actually a good model for the given data, we
must check also the goodness-of-fit between the data sample and the synthetic sample
generated by the distribution. In most cases, the number of inspected distributions
is relatively low so a visual inspection of the fitting is desirable. Figure2.8 shows

Fig. 2.8 The CDF, fitted with a Poisson, normal and log-normal distribution
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four cumulative distribution functions of four separate data sets that represent the
measured number of failures per compute node in different year intervals, with four
different distributions fitted to it: the Weibull, log-normal, gamma, and exponential
distributions. It is visible that, in general, the distribution between failures is well
modeled by a Weibull or gamma distribution, for some year intervals better than for
others. Both distributions create an equally good visual fit and the same negative
log-likelihood. In general, the simpler exponential distribution is a poor fit. This can
also be seen by looking at its C2, which is equal to 1 for the exponential distribution,
for example for the first two figures. This value is significantly lower than the data’s
C2 of 1.9. Using the C2 goodness-of-fit method, choosing the distribution can be
made in an automatic way.

There aremany goodness-of-fit tests in the literature, butmost of them are not used
in practice in theHPC community. TheKolmogorov–Smirnov test is a nonparametric
test and one of themost popular methods to date. Through this test, samples are being
compared with a reference probability distribution. The Kolmogorov–Smirnov test
quantifies a distance between the empirical distribution function of the sample and
the cumulative distribution function of the reference distribution. What makes this
test attractive is that it also rejects the true randomness hypothesis.

Another popular method for visualizing the fitness of a distribution is the standard
probability-probability plot (P-P plot) and quantile-quantile plot (Q-Q plots). In a
Q-Q Plot, the cumulative distribution function associated with the empirical measure
of the sample and the CDF from the theoretical distribution are plotted against one
another. If the extracted distribution would fit exactly the given data observations,
the resulting Q-Q plot would be very nearly a line intersecting the origin and having
slope of 1. Figure2.9 presents examples of Q-Q plots for failure data sets from
two wide-area distributed computing environments after fitting them on a Weibull
distribution.

Fig. 2.9 The Q-Q plot for two data sets and Weibull distribution samples
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2.5.2.2 Failure Distribution for HPC System

There are several studies that analyze different HPC systems. Some even investigate
the relationship between the distribution of failures without considering prediction
and the probability distribution of the false negative alerts when prediction is per-
formed.

Table2.6 presents the results obtained by different studies when fitting the failure
distributions for several HPC systems.

There was an assumption in the past that the failure rate at all nodes follows a
Poisson process with the same mean. In this case the distribution of failures across
nodes would be expected to match a Poisson distribution. The large majority of
studies for current HPC systems have found that the Poisson distribution is a poor
fit, the Weibull and log-normal distributions being a much better fit, visually as well
as measured by the negative log-likelihood.

Overall, we observed that the failure rate varies widely across systems, ranging
from as low as 17 failures per year to about 1200 failures per year depending on the
size and the architecture used by each system. In fact, variability in the failure rate
is high even among systems of the same hardware type. Moreover, the same system
might experience different distributions depending on when in the system’s lifecycle
the failures are inspected. For example, some systems present a complete different
distribution that best fits their results when analyzing the first on second half of the
system life.

For failure inter-arrival distributions, it is useful to know how the time since the
last failure influences the expected time until the next failure. This notion is captured
by the distribution’s hazard rate function. An increasing hazard rate function predicts
that if the time since a failure is long then the time lag until the next failure will be
short. And a decreasing hazard rate function predicts the reverse, i.e., not seeing
a failure for a long time decreases the chance of seeing one in the near future. In
general, the analyzed systems are well-fit by a Weibull distribution, in most cases
with a shape parameter of less than 1, indicating that the hazard rate function is
decreasing.

Table 2.6 Failure distribution for several systems

System Failure distribution Citation

20 systems at LANL Weibull distribution with
decreasing hazard rate

Schroeder et al. [68]

O2K Weibull distributions Lu et al. [50]

Titan Exponential distribution Lu et al. [50]

Platium Exponential distribution Lu et al. [50]

Blue Gene/L Weibull distribution Taerat et al. [74]

Blue Gene/P Weibull distribution Harper et al. [34]
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Another important overall observation after inspecting the studies, is that some
nodes experience a significantly higher number of failures than other nodes in the
same cluster. In some cases, it was observed that nodes that make up only about
5% of the entire cluster account for over 20% of all the failures. One explanation
is that these nodes run different workloads. For example, nodes that are used for
visualization, as well as computation, thus resulting in a more varied and interactive
workload compared to the other nodes, experience a higher failure rate. Similar
observations are made for other systems as well. For example, it was observed that
front-end nodes, which run a more interactive and varied workload have a different,
higher failure rate than all other nodes. Another interesting observation is that, while
the whole system best fits the Weibull and gamma distributions, individual node
failures are best fit by the log-normal distribution, followed by the Weibull and the
gamma distribution.

As the failure distribution varies depending on the node’s workload, as well as
for other reasons, it is important to characterize how this phenomenon influences
the applications running on a system. The study from [75] uses the failure trace
obtained fromprominentHPCplatforms to study and compare different distributions,
Exponential, Weibull, and Log-Normal for fitting the failures that affect applications
running on k nodes. Their results indicate that Weibull distribution results in the
better reliability model in most of the cases for the given data.

Table2.7 shows the distribution that fits the time to repair for several systems. The
distributions, as well as their parameters are very different depending on the system.
This is to be expected since the process is dependent on the failover mechanisms
offered by the vendor, the policy of the center and the policies used by system
administrators.

Not all failures propagate to the application level and crash the job. Indeed, as
seen in the previous section, a large percentage of failures either do not affect the
application at all or degrade its performance without causing it to crash. All failure
distribution functions presented thus far deal with modeling all system level fail-
ures without making a distinction between the fail-stop ones. Moreover, job-related
redundancy is not negligible. Some studies have shown that over half of the resub-
mitted jobs were allocated to the same failed nodes by the scheduler.When analyzing
application crashes it is important to separate the redundant failures, either due to
the same faulty node or because users keep submitting the same buggy code, thereby
leading to the same type of application errors at different locations.

Table 2.7 Failure distribution for several systems

System Time to repair distribution Citation

20 systems at LANL Log-Normal distribution Schroeder et al. [68]

O2K Inverse normal distribution Lu et al. [50]

Titan Gamma distribution Lu et al. [50]

Platium Truncated Weibull distribution Lu et al. [50]



2 Errors and Faults 113

Fig. 2.10 Experimental CDF for inter-arrival times of interruptions. a Due to system failures and
b due to application errors

In general, application interruption distribution can be fitted by a Weibull distrib-
ution with a shape parameter of less than 1, indicating that the hazard rate function
is decreasing as in the case of system failures. In general, over 65% of job inter-
ruptions are caused by system failures, and the rest are caused by application errors.
Figure2.10 presents the distribution fitting results of interruption inter-arrival times
for the Blue Waters system at the National Center for Supercomputing Applications
for a period of 4months. Weibull distribution still gives a best fit for both interrupts
caused by system failures and interrupts caused by application errors, having a shape
parameter of less than 1. Another observation is that the hazard rate of interruptions
caused by system failures is less than the one for interruptions caused by application
errors. Themain reason is that application errors generally needmore time for fixing,
whereas some system failures can be easily solved by rebooting.

2.5.3 Including Prediction

The distribution of failures is in general known for most of the current HPC system.
However, when prediction is used, and preventive actions are taken for the failures
that are known in advance, the distribution of the predicted failures, as well as that
of the false negatives is, in general, unknown. In other fields [52], the analysis of
false negatives has given new insights into combining a predictor with fault tolerance
actions, but since prediction in the HPC field is still an area of research that is rarely
used in practice, such studies are rare.

In [9], the authors present such a study for several systems that were deployed
at the Los Alamos National Laboratory in the past several years. Firstly, they check
the randomness hypothesis of failure intervals and identify whether it is possible to
fit the entire failure set to any classic probability distribution functions. After which,
by studying the randomness of the false negatives alerts, they investigate the impact
of the prediction process on the randomness of the data and on the final distribution
fit of the predicted failures.
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Interestingly, the authors report several systems with nonrandom behavior that
become random after prediction is applied and only false negatives are analyzed. In
this case, after prediction, the unpredicted failures can be fitted by one of the classical
distribution functions. In general, the best fit distributions for each system is different,
with most systems having a Weibull, other log-normal and rarely some systems are
fitted by exponential distributions, all with different parameters. While no pattern
can be extracted, the results are still important since after prediction fault-tolerant
protocols can be optimized for the rate of false negative alerts.

Table2.8 shows the best fitted distribution for all failures and false negatives for
several systems. The figure investigates the relationship between the initial failure
distribution and the false negative distribution function. In general, it was found
that the best fitted distribution for the false negative alerts is the same as for the
initial failure data set, but having different parameters. Interestingly, this means that
a failure predictor does not change the initial distribution and affects only the scale
parameters of the initial distribution.

Moreover, when the best fitted distribution is exponential, the ratio between the
parameter μu for the initial distribution and the parameter μy for the false negative
distribution is given by μy/μu ≈ 1 − r , where r represents the recall value for
the given predictor. Similarly for the Weibull distribution, the systems that fit this
distribution have approximately the same shape parameter for both distributions, and
the scale parameters follow the same pattern as before: au/ay ≈ 1 − r . Basically,
the failure prediction mechanism acts as a scaling filter affecting only the time scale.
Therefore the distribution of the false negative alerts can be estimated from the initial
failure distribution, by using the recall value to scale the parameters.

The analysis of false negatives and the impact of its distribution on fault-tolerant
protocols is a current area of research that has been applied on a relatively small
number of systems.Moreover, there is no study on current Petascale systems that have
shown more complexity and different behaviors than previous generation machine.
Thus, the results of false negative distribution analysis still need to be validated on
current HPC system in order for a general conclusion to be drawn.

Table 2.8 Distribution fitting for all failures and for false negatives

System All failures False negatives Param ratio

Dist. fit Parameters Dist. fit Parameters

Blue Gene/L Exp. μx = 62431.3 Exp. μy = 113289 0.55

LANL system 3 Exp. μx = 215705 Exp. μy = 393538 0.54

LANL system 4 Exp. μx = 204544 Exp. μy = 371218 0.54

LANL system 5 Exp. μx = 197671 Exp. μy = 382671 0.51

LANL system 6 Exp. μx = 1007800 Exp. μy = 1912690 0.54

LANL system 23 Weib. ax = 509380
bx = 0.84

Weib. ay = 895274
by = 0.85

0.56
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2.5.4 Per Component Failure Distribution

Large-scale applications using large numbers of processors and memory in parallel
are relatively more sensitive to individual component failures. It is important to
understand the failure distribution of each component and how this might affect the
application’s tolerance to failures. Application-centric models providemore accurate
reliability estimates compared to general models. This can, for example, improve
the efficiency of fault-tolerant algorithms by tuning the application checkpointing
strategies to the tailored model.

The components (such as memory, CPU, disk, and the network) of current HPC
systems have different failure dynamics in terms of time and space. Some components
fail randomly and frequently while others fail in a correlated manner. Moreover,
modern computing systemsusemultiple heterogeneous types of processors, networks
or storage systems. This makes the failure dynamics even more diverse.

As mentioned previously, the failure data of the entire system is best fitted by the
log-normal and Weibull distributions with p-values of around 0.4–0.5 respectively,
by using the standardmethod ofmaximum likelihood estimation of theKolmogorov–
Smirnov test to evaluate these distributions.

In [36], the authors analyze the distribution of the most frequent failures on a
particular HPC system (Mercury at the National Center for Supercomputing Appli-
cations). They found that the best fit for each failure type is still a Weibull or log-
normal distribution, but depending on the analyzed type the parameters that describe
the distribution might vary considerably.

For certain storage failures the distribution that best fits the failure rate is the
log-normal and Weibull with average p-values around 0.52–0.61. The Network File
System failures have irregular sharp spike shapes and are in general difficult tomodel.
However, the data still fits reasonably to an exponential, log-normal or Weibull dis-
tribution (p-values 0.33, 0.22 and 0.12 respectively). Network availability failures
are best fitted by a log-normal distribution with p-values around 0.38. Memory and
processor cache errors are the most similar and are both fitted by log-normal distri-
butions (p-values 0.82 and 0.68), Weibull distributions (p-values 0.68 and 0.58) and
exponential distributions (p-values around 0.55).

The parameters for these distributions are shown in Table2.9. In addition to having
heterogeneous scale and shape parameters, the hazard rates are different as well
depending on the failure type. As mentioned previously, a decreasing hazard rate
means that when a component has been without failure for longer, the probability of
the component failing in the future becomes lower. A shape parameter with value
less than 1 indicates a decreasing hazard rate.

Storage and network errors show a clear decreasing hazard rate since the shape
parameter is below one. For memory and processor cache errors the shape parameter
has values above or slightly below 1, which means that the hazard rate is relatively
constant. Overall the hazard rate is decreasing for the dominant failures in the system,
namely storage, memory, and filesystem. This indicates that the presence of a failure
in the system, in most cases, is followed by a period of increased failure rate.
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Table 2.9 Failure distribution parameters for NCSA’s Mercury system

Inter-event time in days

Failure type Distribution fit Time
interval 1

Time
interval 2

Time
interval 3

All failures Weibull λ = 0.26 λ = 0.16 λ = 0.17

k = 0.66 k = 0.61 k = 0.58

Storage errors (F1) Weibull λ = 3.16 λ = 7.57 λ = 10.68

k = 0.84 k = 0.55 k = 0.65

NFS errors (F2) Weibull λ = 1.83 λ = 13.08 λ = 8.07

k = 0.53 k = 0.92 k = 1.41

Network unavailability (F3) Log normal μ = −1.71 μ = −2.76 μ = −2.62

σ = 2.03 σ = 2.24 σ = 2.12

Memory errors (F4) Weibull λ = 7.18 λ = 5.5 λ = 2.27

k = 0.84 k = 0.85 k = 0.7

Processor cache errors (F5) Weibull λ = 2.52 λ = 4.78 λ = 4.54

k = 1.32 k = 1.45 k = 1.09

The differences between the characteristics of different failure types are also visi-
ble when looking at the effect of node failure distributions on job failure probability.
The weighted sum of the probabilities that the failure affects one or more of the nodes
the job is running on can be used in order to compute the node failure distribution.
We are assuming that all nodes are equally likely to experience a given failure.

Figure2.11 shows this function for different error types. The results are for the
Mercury system, but are general and they describe the behavior of otherHPC systems.
When looking at all failures at once, the distribution that fits the data is Weibull. For

Fig. 2.11 Effect of node failure distribution on job failure probability. More details in [36]
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network failures the exponential distribution offers the best fit, while for filesystem
failures, the log-normal fits better. The black solid line represents the case when
failures affect a single node. In this case the job failure probability rises linearly
because the probability of a single node failure affecting a job rises linearly with
the number of nodes used by the job. When looking at different failure types that
are likely to affect a large numbers of nodes, the probability of having a job failure
is high even when using a few nodes. When looking at all failures at once, the job
failure probability is similar to that of a single node, but slightly higher due to the
chance of a failure affecting multiple nodes (depending on the system this number
can be as low as 10%).

These differences in characteristics show that, when analyzing a system, it is
important to also look at individual failure types and extract their distribution and
probabilities.

Recently, studies [6, 38, 77] have focused on certain components and analyzed
them separately and extensively. This is the case with DRAMs on today’s large-scale
systems, since main memory is currently one of the leading hardware causes for
application crashes. Designing, evaluating, and modeling systems that are resilient
against memory errors requires a good understanding of the underlying characteris-
tics of errors in DRAM in the field. Studies in this field provide a detailed analytical
study of DRAM error characteristics, including both hard and soft errors.

In general, failure rates are observed to increase with age, even when the early
stage of the disk’s lifecycle is included. The analysis of the failure distribution shows
moderate degree of spatial correlation and a high temporal correlation between suc-
cessive failures. Depending on the study, between 40 and 80% of errors arrive within
one minute of the previous error. This is visible when inspecting the arrival-rate dis-
tributions that present very long tails in all the studies. This observed locality implies
that the errors are detected close in time, even though they may have developed long
before they were detected.

The data collected by these studies cover over 1 million disks that were analyzed
and their behavior investigated. Patterns were extracted by using latent sector errors,
for both nearline storage and enterprise class disks. The correlation between latent
sector errors (hard errors) and recovered errors (soft errors) have also been analyzed.

In general, about one-third of all hard errors occur within a very short time, less
than one second, after an initial soft error. However, a large portion of hard errors has
a time delay between the soft and hard error of over one hour, sometimes reaching
even several days. In the study that gives the most pessimistic results, only about one
third of the hard errors have a lead time of one hour or greater, while in the most
optimistic results this number is closer to 80%. These results are very promising
considering that such a lead time could allow preventive actions to finish before the
hard errors occur.
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2.6 Prediction

Over the years, approaches on prediction have been developed in a variety of fields,
from astrology, meteorology to stock analysis and politics to computer science and
engineering. High reliability and availability are important requirements for many
systems, such as switches and track circuits for railroad networks [18], liquid stor-
age tanks during earthquakes [58] or routers and batteries for self adapting sensor
networks [1]. For this purpose, several methods have been used depending on the
environmental variables gathered by each system. For example, multivariate statis-
tical models have been developed to improve the ability to predict the occurrence of
broken rails; Data mining classification models are used to create predictive models
on a combination of hourly temperature readings with fire reports in order to build
the context and model environmental variability for sensor networks.

Fatigue prediction has also been an area of increasing research in several fields.
The term “Fatigue” refers to a failure of a component as a result of cyclic stress and
it occurs following the same patters no matter the system analyzed. There are three
phases that characterize fatigue failures: initiation, propagation, and catastrophic
overload failure. The duration of each of these three phases depends on many factors
including fundamental raw material characteristics, magnitude, and orientation of
applied stresses or processing history. In the past, predicting fatigue life has been
one of the most important problems in design engineering for reliability and quality.
Holmgren et al. present an overview in their 1996 paper [37] of different methods for
fatigue life prediction. Even though their study focuses on bogie beams, the presented
methods are general and can give a good background for understanding the evolution
of aging predictors in computer systems.

The fatigue life prediction methods use, in general, three primary steps. First, a
theoretical or constitutive equation is defined, which forms the basis for modeling.
Depending on the type of system that needs to be modeled, appropriate assumptions
need to be made in constructing the constitutive equation. Second, the constitutive
equation is translated into a model. The model considers the predicted stress–strain
values for the system under study and returns stress values for the simulated condi-
tions. Third, the model is tested and validated by measurement data.

In general, environmental metrics are used as the input data that creates the model
and triggers predictions. Out of all environmental metrics, the most used is the load
history, since it is uniaxial and proportional. Fatigue can then be evaluated with the
S–N curve, also known as the Wöhler curve, which represents a graph of the stress
amplitude against the logarithmic scale of cycles to failure. In many applications
we deal with multi-axiality and non-proportional loading. In this instance, the S–N
curve is insufficient for fatigue prediction. Weibull distribution and modified Good-
man diagram modeling are two other frequently used methods. Moreover, critical
plane models examine stress state in different orientations in space and can therefore
incorporate some effects of multi-axiality and non-proportionality. Because they can
accurately predict the fatigue failure phenomenon for many structural applications,
they have gained a wide acceptance among the engineering community.
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In computer science, prediction methods are used in various areas. For example,
branch prediction inmicroprocessors tries to prefetch instructions that aremost likely
to be executed; similarly, memory or cache prediction tries to forecast what data
might be required next. In the fault-tolerance community, the focus is on predicting
computer system failures, a topic that has attracted interest for more than 30years.
However, what is understood by the term “failure prediction” varies among research
communities and has also changed over the decades. In reliability theory, the goal of
reliability prediction is to assess the future reliability of a system from its design or
specification. For clouds [31, 80], run-time information can be used to identify the
current execution state, and to check whether the design-time model will satisfy a
set of wanted/unwanted properties in the future.

As computer systems are growingmore andmore complex, they are also changing
dynamically due to themobility of devices, updates andupgrades, changing execution
environments, online repairs, the addition and removal of system components and
the systems/networks complexity itself. Classical prediction methods do not work
online and are therefore not capable to reflect the dynamics of run-time systems and
failure processes. Suchmethods are typically useful in design for long termor average
behavior predictions and comparative analysis. New methods have been developed
specifically for short-term predictions on rapidly changing computing systems.

These new methods are almost entirely based on data mining, by using either
classification, for predicting the outcome from a set of finite possible values; regres-
sion, for predicting a numerical abnormal value; clustering, for summarizing data
and identifying groups of similar data points; association analysis, for finding rela-
tionships between attributes; or deviation analysis, for finding exceptions in major
trends or structures.

Over the years, approaches on failure prediction in computer science have been
developed in relation to reliability theory and preventive maintenance [30, 56, 68],
by using the lifetime distribution or the component aging rate. Models evolved by
trying to incorporate several factors into the distribution, for example the manufac-
turing process [79] or code complexity [22]. As the methods from other fields, these
solutions are tailored to long-term predictions and, in general, do not work appro-
priately for online failure prediction. We will look at these methods next and in the
following sub-section we will analyze methods for short term prediction.

2.6.1 Long-Term Prediction

In general long-term predictions use deterministic models for approximating the
aging indicators. In addition some studies use an automated procedure for statistical
testing of their correctness in order to find the optimal rejuvenation schedule under
utility functions [2]. Aging in this context of long-term prediction refers, in general
to software aging. The software aging phenomenon is defined by an increase in the
failure rate or in the performance degradation of a system, which can be induced due
to unreleased resources, the accumulation of errors in the system state, filesystem
degradation or to the consumption of resources such as physical memory.
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While a priori the most straightforward solutions to fix the software bugs that
cause software aging, in practice this can be rarely applied due to many reasons from
application complexity to budget constraints.

Software rejuvenation is the most used solution for the aging phenomenon, by
restarting the software continuously after certain time frames or at a specific perfor-
mance degradation level. This approach has been investigated in context of applica-
tion replication in order to avoid service outages [2].

In general, in order to apply software rejuvenation techniques effectively, the aging
process needs to be modeled. These models allow to estimate the current or future
progress of the performance degradation or failure state.Moreover, they can facilitate
the schedule of optimal rejuvenation times or the management of system adminis-
trator tasks, such as alerting operators of anticipated crashes. These approaches are
known as adaptive or proactive software rejuvenation.

In [14], the authors present a comprehensive analysis of Software Aging and
Rejuvenation literature, by reviewing almost 500 papers that were published in the
fields of software engineering and software dependability. The aim of the paper is
to provide an overall picture of the state of the art in this field. For this purpose,
the paper surveys relevant studies that have been used to forecast the software aging
phenomenon and to apply software rejuvenation. It also presents a study of the kind
of systems and aging symptoms that have been studied, and the techniques that have
been proposed to rejuvenate complex software systems.

In general, the work addressing software rejuvenation, though rich in research
studies, often lacks experimentation on real systems.Most of the studies are validated
by numerical examples and by simulations instead of real scenarios. In order for these
studies to be useful for practical scenarios it is not enough to study these techniques in
simulated environments since the models presented in the survey make assumptions
about the systembeingmodeled,which can be validated only by comparing the actual
behavior of the system with the prediction of models, and because the deployment
of software rejuvenation on real systems can reveal practical issues that would be
neglected otherwise.

A lot of research has been focused on software rejuvenation techniques as well,
however most studies do not specify the particular rejuvenation technique analyzed.
This phenomenon denotes that the focus of the community is more on finding the
theoretical optimal scheduling rather than on the design of the actual rejuvenation
action. Rejuvenation techniques are useful to reduce the performance decrease by
keeping the cost of software rejuvenation low. Most studies analyze approaches that
are independent from the application and that involve a restart of the correspond-
ing software. At the same time, other approaches are application-depended by using
specific features of the system to improve the availability and efficiency of the soft-
ware rejuvenation technique. The best results in the literature are given by these
application-specific methods, especially in the context of embedded systems and
distributed systems. Another interesting result of current research is given by reju-
venation techniques that are selective and can restart parts of the system instead of
the whole software.
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Another long-term prediction method category is using failure models in order
to predict the reliability of a component in the system. Most studies use the Weibull
and other failure distributions discussed in the previous section in order to define the
state of components. This prediction can be combined with short-term predictions
in order to increase their coverage [9].

2.6.2 Short-Term Prediction

If the systemknows about a critical situation in advance, it can try to trigger preventive
measures in order to mitigate the effect of a failure, or it can prepare repair mech-
anisms for the upcoming failure in order to reduce time-to-repair. For this purpose,
short-term predictions need to be accurate and leave enough time for the preventive
measure to be taken.

Recent methods for short-term failure prediction are typically based on run-time
monitoring as they take into account a current state of the system. The taxonomy we
will be using is presented in Fig. 2.12.

There are two levels of online failure prediction in the literature: component level
and system level failure prediction. The first level assumes methods that observe
components (hard drive, mother board, DRAM, etc.) with their specific parameters
and domain knowledge and define different approaches that give best prediction
results for each [38].One example of this type of approach is to compare the execution

Fig. 2.12 Online failure prediction taxonomy



122 A. Gainaru and F. Cappello

of good components with failed ones. A couple of studies from different fields that
fit in this category are [8, 60]. For the HPC community, one example is [88] in
which matrices are used to record system performance metrics at every interval.
The algorithm afterwards detects outliers by identifying the nodes that are far away
from the majority. One example is [44], where the authors implement their own
data collection module that gathers relevant data across the system and assembling
them into a uniform format. In the second step they apply two feature extraction
techniques: PCA and ICA to generate matrices with lower dimensionality and in the
last step the nodes that are far away from the majority are determined and considered
potential anomalies. Their data mining algorithm is specifically designed for HPC
systems and the results are different than previous studies.

The second level is represented by system level failure prediction, in which mon-
itoring daemons observe different system parameters (system log, scheduler logs,
performance metrics, etc.) and investigate the existence of correlations between dif-
ferent events. In the last couple of years, a significant number of papers have been
proposed that focus on providing predictions by analyzing different HPC systems.
However, most predictors are able to use the information extracted in the training
phase for only short prediction span after which a new training phase is required. For
example, [89] is using almost 3months of training for predicting only half a month of
execution. When dealing with real long time execution of a HPC system, the results
of this type of prediction are unknown and can become unusable for real large-scale
applications.

System level failure prediction has several categories:

Prediction Based on Failure Statistic The basic idea of failure prediction based on
failure statistics is to draw conclusions about upcoming failures from the aggre-
gated occurrences of previous failures. This may include the time of occur-
rence as well as the types of failures that have occurred. The two sub-categories
includes: Probability Distribution Estimation and Co-Occurrence. Prediction
methods belonging to the first category try to estimate the probability distrib-
ution of the time to the next failure from the previous occurrence of failures. The
second type of failure predictors use the fact that system failures can occur close
together either in time or in space (e.g., at proximate nodes in a cluster environ-
ment). This can be exploited to make an inference about failures that might come
up in the near future.

Prediction Based on System Models Themotivation for analyzingperiodicallymea-
sured system variables such as the amount of free memory or CPU usage in order
to identify an imminent failure is the fact that some types of errors affect the
system even before they are detected. The key notion of failure prediction based
on monitoring data is that some errors can be grasped by their side-effects on the
system such as exceptional memory usage, CPU load, disk I/O, or unusual func-
tion calls in the system. These side-effects are called symptoms. Symptom-based
online failure prediction methods frequently address non-fail-stop failures, which
are usually more difficult to grasp. The following subcategories are included in
this category: function approximation that refers to mimicking a target value,
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which is supposed to be the output of an unknown function of measured system
variables as input data (this includes stochastic models, regression and machine
learning); classifiers where failure prediction is achieved by classifying whether
the current situation is failure-prone or not (this includes for example Bayesian
networks); and time-series analysis where sequences of monitored system vari-
ables are treated as time series and time-series analysis is used in order to predict
outlier moments in the series.

Event-Driven Failure Prediction Failure prediction approaches that use error reports
as input data have to deal with event-driven input data. This is one of the major
differences to system model failure prediction that uses symptom monitoring-
based approaches, which in most cases operate on periodic system observations.
Furthermore, symptoms are in most cases represented by metrics that are real-
valued while error events are mostly discrete, categorical data such as event IDs,
component IDs, log messages, etc.

2.6.2.1 Prediction Based on Failure Statistics

The predictors in this category assume the correlation between failures either in
time or in space. In order to estimate the probability distribution of the time to
the next failure, nonparametric methods as well as Bayesian predictors have been
applied. Figure2.14 presents how failures occur in a cluster, where the horizontal
axes represents time and M1, M2, . . . , MJ denote the J nodes in use. ALLCL refers
to the set of failure event times over the entire cluster. ALL refers to the set of unique
failure event times over the entire cluster. Several papers [36, 38, 84] study the
failure inter-arrival time distribution as well as the failure co-occurrence properties
for different systems. Their results are later used by predictors in this category so it
is important to understand their results. The next section gives a brief overview of
their most important findings that can later be used by failure predictors.

Cumulative Distribution of Failure Inter-Arrivals

Figure2.13 presents a cumulative distributions (CDF) graph of the time between
failures for an entire cluster over different epochs of time. This study by Heien et
al. [36] analyzes a large scale system from the National Center for Supercomputer
application, but their results are general and have been seen on other systems as well.
In this figure, on the horizontal axes F1, F2 represent different failure types, while
on the vertical axes each failure is analyzed for different time intervals. The solid
lines indicate inter-event times for the cluster as a whole.

These time intervals between consecutive events correspond to the time line
labeled ALLCL in our previous figure (Fig. 2.14). It is visible that some failures are
correlated and so occur nearly simultaneously on multiple machines. Current studies
have shown that network or filesystem failures are a good example of such a spatial
co-occurrence. In the logs generated by the cluster, a correlated failure appears as
sequence of time-clustered events of the same failure type across machines. For this
purpose, different studies assume different time thresholds for determining when
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Fig. 2.13 Failure inter-event cumulative distributions for different epochs (Solid line cluster as a
whole, dotted line discounts simultaneous failures, red line best fit)

Fig. 2.14 Example of failure co-occurrence

failures are correlated. Depending on the system administrators expertise, one needs
to assume that a correlated failure occurs when the time separating two consecutive
failure events is less than a given threshold. Usual values for this threshold can range
between tens of seconds, 1min and several minutes.

Aftermerging all simultaneous failures as a single failure, the resulting cumulative
distribution is shown as the dotted line in Fig. 2.13. These time intervals between
failures correspond to the time line labeled ALL in our previous figure (Fig. 2.14).
The red line indicates the line of best fit. The best fit is found with any of the methods
presented in Sect. 2.5.

Failure Correlation. All studies have found that some of the failures are corre-
lated across different machines while other do not present this behavior. The failures
that have a strong space correlation are shown in Fig. 2.13 as a large cumulative
distribution at the start of the plot. Depending on the study, between 10 and 40% of
all the failures on different machines occur within 30s of each other. One example
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of this phenomenon is when multiple nodes are being restarted simultaneously after
a shared power failure.

Besides space correlation between failures, it is important to understand and inves-
tigate whether different failure types are correlated, such as memory and processor
failures being correlated due to common causes like overheating or motherboard fail-
ure. To determine whether different failures are time-correlated between machines,
current research is dividing the life interval of a machine into time intervals of dif-
ferent lengths and noting the existence of failures in each period. Thus, the value of
each period is 1 if a specified failure type occurred and 0 otherwise. In general, each
study chooses the time interval length of a couple of hours since most failure events
are separate by several hours. The cross-correlation is then calculated between all
combinations of failure types, with a cross-correlation of 1 indicating exact corre-
lation (at some time delta) between two failure patterns. When looking at the entire
lifetime of a cluster and on broad failure categories, studies have shown that the
average cross-correlations between different failures over all time intervals ranged
from 0.04 to 0.11, none of which indicate strong positive or negative correlation.
However, when analyzing shorter periods of time and/or specific categories, there
is a visible correlation between different failure types. For this purpose, we present
the results of a study that investigates the daily failure probability of certain general
types of failures following another failure.

The authors looked at the probability that a node will fail within 24h following a
failure of a particular type. At the same time they are also looking at the percentage
of cases when a node failure of any type follows a particular type of failure within an
hour window. The percentage of cases when a failure of a particular type follows any
failure within a one hour time window is also investigated. The results are presented
in Fig. 2.15.

Figure2.15a shows what types of failures are good precursors for other failures
and Fig. 2.15b shows the types of failures that have precursors. In general, many
failures seem to follow environmental and network failures. Also, by looking at
Fig. 2.15c, we observe that these failures in general affect a large number of nodes
which suggest they propagate not only in time but also space. All the results seem to
indicate a strong correlation in space and time for failures affecting a cluster. These
studies have encouraged the development of predictors based on failure statistics and
co-occurrences.

Statistical Prediction

In order to estimate the probability distribution of the time to the next failure, non-
parametric methods as well as Bayesian predictors have been applied. In [20], the
authors investigate reliability prediction by analyzing a decade of field data made
available by Los Alamos National Lab. They focus on investigating the impact of
factors such as the power quality, temperature, fan and chiller reliability, system
usage and utilization, and external factors, such as cosmic radiation, on system relia-
bility. They observed that some types of failures increase the likelihood of follow-up
failures more than others and that this information can be used for creating effective
failure prediction models based on root cause distribution.
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(a) (b)

(c)

Fig. 2.15 Correlations between failures. a Probability of having a failure of any type after a failure
of type X. b Probability of failure of type X following another failure of any type. c The probability
that any node-failure follows a failure of type X

Bayesian failure prediction has the goal of estimating the probability distribution
of the next time of failure by benefiting from the knowledge obtained from previous
failure occurrences in a Bayesian framework [15, 35]. In [35], the authors use a
mixture model of naive Bayes clusters trained by using expectation-maximization
algorithm in order to predict disk failures.

Another paper [59] uses Bayesian statistics to develop an anomaly detection/
prediction system that employed naiveBayesian networks to perform intrusion detec-
tion on traffic bursts. Their model has the capability to potentially detect distributed
attacks in which each individual attack session is not suspicious enough to generate
an alert.

Due to sharing of resources, system failures can occur close together either in
time or in space (at a closely coupled set of components or computers). As men-
tioned in the previous subsection, it has been observed several times that failures
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occur in clusters in a temporal as well as in a spatial sense. Liang et al. [48] choose
such an approach to predict failures of IBM’s Blue Gene/L from event logs contain-
ing reliability, availability and serviceability data. The key to their approach is data
pre-processing employing first a categorization and then temporal and spatial com-
pression: temporal compression combines all events at a single location occurring
with inter-event times lower than some threshold, and spatial compression combines
all messages that refer to the same location within some time window. Prediction
methods are rather straightforward: using data from temporal compression, if a fail-
ure of type application I/O or network appears, it is very likely that a next failure will
follow shortly. If spatial compression suggests that some components have reported
more events than others, it is very likely that additional failures will occur at that
location. Fu and Xu [25] further elaborate on temporal and spatial compression and
introduce a measure of temporal and spatial correlation of failure events in distrib-
uted systems. A different approach is given in [49, 82], where the authors investigate
parameter co-occurrences between different application log messages for extract-
ing dependencies among system components. The authors mine dependencies from
the tuple-form representations of the log messages looking for patterns that could
indicate a failure in the system that prevented tasks from completing.

Statistical methods do not have extremely good results when looking at the entire
set of failures affected by a system, however, they have proven a great insight for
some particular failures. The study that uses these types of prediction and that has the
best results shows 50% precision and 48% recall on a 350 node-based cluster [82].
Location prediction is one of the limitations of these methods, so it is no surprise that
the same methods applied on larger and more complex systems give lower results.
However, these types of method can be used to predict a state of instability for a node,
without being able to give an exact time when the failure will occur. When using
large time windows for when the node might fail, the methods give better results.

Another example of using the statistical failure predictor is by combining it with
a rule-based method. In [64], the authors use a meta-learning predictor to choose
between a rule-based method and a statistical method depending on which one gives
better predictions for a corresponding state of the system and their results show that
they can obtain better predictors, showing a 90% prediction and 70% recall on small
clusters.

2.6.2.2 Prediction Based on System Models

One frequently used method is represented by regression techniques where parame-
ters of a function are adapted such that the curve best fits the measurement data, for
example by minimizing the mean square error. The simplest form of regression one
can use in order to develop a predictor is curve fitting of a linear function. For this
purpose, system administrators analyze either performance metrics or the count of
particular events in order to predict future failures. The usual performance metrics
that represent the input for regression models are temperature and CPU usage. A
steady increase in temperature until exceeding a given threshold for a given cabinet
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could indicate future problems in several components on the corresponding cabinet.
At the same time, an increase in the count or frequency of correctable memory errors
usually can indicate a future occurrence of an uncorrected memory error.

In [2], the authors apply deterministic function approximation techniques such as
splines to characterize the functional relationships between the target function and
input data. Deterministic modeling offers a simple and concise description of system
behavior with few parameters. They consider the problem of automated modeling
in server-type applications whose performance degrades depending on the “work”
done since last rejuvenation. Their input data is for example the number of served
requests by a system. In this case a failure can be seen as a type of performance
degradation caused mostly by resource depletion. This is common for filesystems
for example where failures on the metadata or object target server propagate at the
application level as performance diminishes.

Pattern recognition techniques operate on sequences of error events trying to
identify patterns that indicate a failure-prone system state. The most used method
for pattern recognition is by far the Markov chain model. The approach is based on
the assumption that failure-prone system behavior can be identified by characteristic
patterns of errors. The most used technique by current system administrators as well
as research in this field is to use a hidden Markov model.

An HMM is mathematically equal to a stochastic finite automaton defined by 5
tuples (Q,

∑
, Δ, π , O), where Q = {q1, q2, . . . , qN } is a finite set of states , ∑ is

an alphabet of output symbols, Δ = {aij with 1 ≤ i, j ≤ N,
∑N

j=1 aij = 1} is a state

transition probability distribution and π = {πi with 1 ≤ i ≤ N,
∑N

j=1 πi = 1} is an

initial state distribution and O is the set {e j (x) with 1 ≤ j ≤ N,
∑N

j=1 e j (x) = 1} of
output symbol probabilities.

HMMs are called hidden because only the outputs can be observed from outside
and the actual state qi is hidden from the observer. The objective of this type of
predictors, as before, is to assess the risk of failure for some time in the future. Similar
to the previous methods, here failures are predicted by analysis of error events that
have occurred in the system by using the property of systems that the frequency of
error occurrence increases before a failure occurs. Given a sequence of observations
(events generated by the system in the past) a Hidden Markov Model is successfully
developed from a probabilistic finite state automata. The overall probability of the
given sequence can be afterwards found by sequence likelihood.

Building a failure predictor from a sequence of error events takes two steps:
(i) firstly the number of states in the automata needs to be fixed and (ii) secondly
the probability that leads to failure needs to be computed. All methods used in
the literature construct the best automaton governing the given data. There are a
number of variations on HMM problems depending on how many states a system
administrator would take. The simplest model has one state, the most complex model
has a state for each and every symbol of the data but certainly neither extreme is
justified. Figure2.16 presents two models, one with two states and one with five that
both fit the input data AAACACBBBCCBBAACAAACB. The number of states for
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(a) (b)

Fig. 2.16 State models. a Two states automaton. b Five states automaton

the Markov model is either chosen empirically based on the previous knowledge
of the failure and its behavior or by a hierarchical algorithm that fits the data for
increasing number of states and the best one is chosen. In general, current work is
using between 5 and 15 states depending on the analyzed failure and system.

In [66] the authors propose to use hidden semi-Markov models (HSMM) in order
to add one additional level of flexibility to the theoretical method. Two HSMMs
are trained from previously recorded log data: one for failure and one for non-
failure sequences. Online failure prediction is then accomplished by computing the
likelihood of the observed error sequence for both models and by applying Bayes
decision theory to classify the sequence (and hence the current system status) as
failure-prone or not.

The second step implemented by [33] uses two semiMarkov models that quantify
the reliability of a node in the overall system. In the process the method identifies
nodes that tend to be the source of a large number of failures and predicts the reli-
ability of these nodes. The first discrete-time semi-Markov model is built for each
system where state transitions are driven by functions derived from the distribu-
tions fitted to the result of the neural-gas filtering analysis. The second semi-Markov
process computes transaction probabilities and event arrival rates directly from event
observations.

Othermethods include covariancemodelswith an adjustable timescale to quantify
the temporal correlation and a stochastic model to describe the spatial correlation. In
[25], the authors build a neural network to approximate the number of failures in a
given time interval. The set of input variables consists of a temporal and spatial failure
correlation factor together with variables, such as CPU utilization or the number of
packets transmitted by a computing node.

Support vector machines (SVM) are another popular modern pattern recognition
and regression algorithm that is used by current research for offering model-based
failure prediction. The principle of the SVM classifier is to project the data into a
higher dimensional space where the classes are separated by a linear hyperplane
which is defined by a small set of support vectors. There are open source or free tools
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already developed that implement a wide range of SVM algorithm, like the MySVM
package developed by Ruping [63]. Other researchers develop their own, depending
on the needs of their analysis. Murray et al. [55] have used the MySVM package on
their data, gathered with the Self-Monitoring and Reporting Technology (SMART)
system in order to predict failures of hard disk drives.

Depending on the analyzed data set, predictors based on system models can be
accurately used in diverse systems. For disk drives, the predictor detects around 50%
of failures with only a 0.6% false alarms. If even lower false alarm rates are needed,
studies have shown that changing the combination of attributes can offer a prediction
for 25.0% of failures with no measured false alarms. For disk drives it is important to
have a very low false alarm rate since it reduces the number of returned good drives,
thus lowering costs tomanufacturers of implementing improved SMART algorithms.

2.6.2.3 Event-Driven Prediction

Failure predictionmethods in this category analyze the events generatedby the system
and derive a set of rules/patterns/correlations between different events. In general,
the rules express temporal ordering of events in the form “if errors A and B occur
within x seconds, then error C occurs within y seconds with probability P.” Several
parameters such as the maximum length of the data window, types of error messages,
and ordering requirements have to be prespecified.

The predictors follow the same work flow (Fig. 2.17): (1) the input data is pre-
processed so that it fits the standards required by the analyzing modules; (2) data
mining algorithms are applied on the preprocessed data in order to extract patterns and
rules between events; and (3) the system is monitored and predictions are triggered
based on the extracted rules. In the preprocessing phase, failures are divided into
different classes after which rules are being extracted for each class. In general, the
groups used are either general groups of failures, like network, hardware or software,

Fig. 2.17 Prediction methodology
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or more specific, like memory ECC errors, cpu cache error and so on. Most of the
research in this field uses a predefined number of classes, that are usually defined by
the system administrator. For analyzing general types of events a predefined number
of classes is enough. However, when moving the analysis at a more specific layer,
a more flexible method of defining events is necessary. Since systems can change
during the course of their lifetime, novel events may appear, thus the number of
classes may need to change in time. In [33] the authors propose a clustering method
that groups events automatically. The method proposed in [27] is another way of
automatically extracting all events generated in the past by a system and keeping
them accurate by monitoring everything that is generated by the system. Table2.10
presents examples of event types found on different systemswith their corresponding
regular expressions.

Extensive research has been focusing on using system logs, scheduling logs,
performance metrics or usage logs in order to extract a correlation between events
generated by a system. There are numerous methods, starting with simple brute
force extraction of rules between nonfatal events and failures [67] and going to more
sophisticated techniques. Event logs are a rich source of information for analyzing the
cause of failures in cluster systems. However, the size of these files has continued to
increase with the ever growing size of supercomputers, making the task of analyzing
log files a hard and error prone process when handled manually.

Table2.11 presents the number of events generated by systems throughout time,
starting with LANL systems from 1996 to the current BlueWater system from 2014.
The number of events generated by theBlueWaters system is twoorders ofmagnitude
larger than previous generation systems and it keeps increasing as new components

Table 2.10 Examples of event types

System Template Event type

BGL Failed to configure resource mgmt subsystem err = d+ Processor cache
error

Blue Waters * panic - * syncing: * LBUG

Blue Waters Lustre: * @@@ Request sent has failed due to network
error: n+

MDT failure

BGQ Component state change: component * is in the * state * Info notification

BGQ ECC-correctable single symbol error: DDR Controller d+,
failing SDRAM address *, BPC pin *, n+

DDR single
symbol error

Table 2.11 Log file statistics

System Events/Day Total event types

Blue Waters 11.5GB (90 mil events) 10,495

Blue Gene/P 8.12MB (120,000 events) 252

Blue Gene/L 5.76MB (25,000 events) 186

Mercury 152.4MB (1.5 mil events) 563

LANL systems 433,490 in 5years 53
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are added in the system. Filtering both in time and space is frequently necessary for
several data mining algorithms in order to reduce the input data set and to cluster all
failures that belong to the same problem.

Filtering Failures. Failure events from the same location often occur in bursts
or clusters of notifications. Some clusters are homogeneous, with their failures hav-
ing the same type, while others are heterogeneous and their failures usually report
different attributes of the same event. For example, a memory failure cluster is het-
erogeneous, in the sense that every consecutive entry reports the same memory error
referring to the same unique system state. Filtering failures in time requires to coa-
lesce a cluster into a single failure record. Identifying such bursts from the log,
requires sorting/grouping all the failures according to the associated general/specific
category and location. Studies that focus on the application level might also consider
the job ID. Failures that occur within the same subsystem and that are reported by the
same location (and/or the same job), are filtered into a single entry if the gaps between
them are less than a specified threshold. Figure2.18 presents the usual number of
remaining failure records after using this filtering technique with different threshold
values. In general, the threshold is chosen by the system administrator and is a fix
value between 5 and 10min depending on the study.

Bursts of messages can occur on multiple locations as well, especially since HPC
systems host parallel jobs. For example, all the tasks from a job will experience the
same I/O failure if they access the same directory. At the same time, a network or
a file system failure is very likely to be detected by multiple locations. As a result,
many studies consider it essential to filter across locations. Spatial filtering removes
failures that occur closer in time than a given threshold for the same event type
and/or from the same job, but from different locations. Similarly, Fig. 2.19 presents
the number of remaining failure records after spatial filtering with different threshold
values. The values presented in the figure are for the Blue Gene/L system but the
filtering percentage is similar for other systems as well.

In general, choosing the appropriate value for spatial filtering is easier than the
temporal filtering, seen in Figs. 2.18 and 2.19 by the fact that the resulting failure
count is not very sensitive to the threshold value for spatial filtering. Most studies
chose the same threshold as for the temporal filtering, between 5 and 15min.

Fig. 2.18 Percentage of failures filtered with temporal filtering for different thresholds
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Fig. 2.19 Percentage of failures filtered with spatial filtering for different thresholds

Extracting Events’ Behavior. Large scale systems experience a large variety
of events during their lifetime and they output notifications for each of them. Once
an error is triggered for one component, either software or hardware, there is not a
consistent way of registering how the system will behave. For example, in case a
node experience a network failure and is incapable of generating log messages, the
failure is announced in the logfiles by a lack of generatedmessages.Conversely, some
component failures may cause logging a large numbers of notifications. For example,
memory failures can result in a single faulty component generating hundreds or
thousands of messages in less than a day.

At the same time, some errors are notified by a single message. For example
on NCSA’s Mercury system, NFS related errors that indicate unavailability of the
network file system for a machine, need a single instance of the generated message
to notify a potentially fatal failure to an application using this resource. However,
this is not always the case. Memory errors, for example, are often correctable by the
ECC capabilities, so only when the system generates a large numbers of these errors
in a short time span, it is likely to have a permanent failure of a component.

Each failure type behaves differently and affects the systems differently. An alter-
native to the methods that simply apply the same data mining algorithm on the
pre-process data is to model the normal behavior of the system for each event that
might be generated. By characterizing the way a failure affects these models the
input data can be transformed into a unified format that can be used as an input in
the data mining algorithm. Such an example is [29], where the authors extract all
the event types and then plot the number of occurrences per time step for each event
type into separate signals. Each event type has occurrences at different times in a
system lifespan. By choosing a sampling rate and mapping the number of messages
generated by the system in each sampling slot and for each event type, time series
of number of occurrences for each event type can be extracted. The obtained time
series are regarded as signals and can be analyzed with signal processing modules.
The sampling rate is chosen differently depending on the characteristics of each
signal.

Extracting all the signals for different systems has shown that there are three types
of events: periodic, silent, and noisy.An example of each of the three types can be seen
in Fig. 2.20. Usually, periodic signals are generated by daemons or by events that deal
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Fig. 2.20 Different signals generated by HPC systems. a Silent signals. b Noisy signals. c Periodic
signals

with monitoring information. Examples of these signals are presented in Fig. 2.20c.
We call the second type silent signals because most of the signal is a flat line around
the zero value, and only from time to time there is a burst of messages. This type is
presented in Fig. 2.20a and is usually characteristic for errormessages, for example in
case of PBS (Portable Batch System) errors. Noisy signals are chatty signals that send
notifications very often. Two examples of such events are presented in Fig. 2.20b.
These types of signals are usually warning messages that are generated both in case
of normal behavior and failures, usually preceding error messages or when a problem
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Fig. 2.21 Rule extraction methodology

is corrected. We observed that even some failure events can experience this behavior,
for example in the case of memory errors that could be corrected by ECC. Anomaly
detection can be applied for each signal and a unified model can be created for each.

Prediction

Event-driven predictors are in general characterized by twomainmethods: (1) period-
based approaches and (2) rule-based approaches with a few variations. Figure2.21
shows themethodology for the first type ofmethod. In general, there is an observation
window, a lead time and a prediction window. The observation window is usually
composed of a set of consecutive time intervals I = I1, I2, . . . , In , either of the same
size (like in [64]) or dynamically adjusted (like in [26]). The observation window
is used to collect evidence that determines whether a failure will occur within the
prediction window. A priori based data mining algorithms are used in order to find
correlated events that occur frequently together in the same time interval.

The second method is called rule-based prediction and it uses an observation
window in order to extract rules between different failures and between failures
and events. This is done either by brute force (for smaller systems) by investigating
all to all correlations or with more advanced data mining solutions, like the Grite
algorithm [40].

The period-based method has been applied in [85]. The authors are using a three-
phase failure predictor for the Blue Gene/L systems: event preprocessing where the
raw RAS log is cleaned and categorized; the base prediction phase where different
base learning methods are applied on the preprocessed log to identify fault patterns
and correlations. Similarly, [64] uses a period-based predictor close to [85] in that it
uses a fixed time window for creating the time intervals. The method consists of two
steps: (1) a preprocessing step that converts sys-logs into a data set that is appropriate
for running classification techniques by extracting a set of features. These features
can accurately capture the characteristics of failures. (2) In the next step the method
applies different classifiers besides the rule-based method in order to compare the
results (a rule-based classifier and a Bayesian network that combines both methods).
A different approach on the classical period-based prediction is presented in [26]
where the time intervals are not fixed, but they are rather defined by the data. For
each failure type, the time intervals are defined by the time between two consecutive
failures. The same algorithm is then applied to find frequently occurring events for
each failure.
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In [43], the authors are using a meta-learning predictor to choose between a
rule-based method and a statistical method depending on which one gives better pre-
dictions for a corresponding state of the system. They show that different prediction
methods capture different failures so combining predictors together is beneficial and
has the potential to increase the results drastically. Another successful rule-based
approach is presented in [28] where the authors combine signal analysis with data
mining in order to extract the rules. A modified version of the gradual item set min-
ing algorithm is used for extracting patterns of the form “the more/less X1, . . ., the
more/less Xn”. In our case the algorithm gives us rules of the form “X1 has anom-
alies, . . . , Xn has anomalies” where X are events in the system. This method has the
advantage of extracting multiple event correlations instead of only pairs. The results
indicate that this type of prediction has good results on its own and gives enough
lead time for different preventive actions.

Table2.12 presents the prediction results for the most successful studies in litera-
ture up to date. While some of the results seem extremely good, at a closer look it is
clear that some are obtained either by using long training phases for only a couple of
days of prediction, or not considering the lead time between when the prediction is
done and when the failure occurs. Moreover, most of the presented methods do not
provide any location information. This makes it impossible for proactive methods to
know which application processes should be migrated. At the same time, predictions
with location information will enable checkpointing data only on those failure-prone
components, thereby avoiding system-wide checkpointingwhich is significantly time
consuming. When filtering out the predictor’s that have a small lead time or do not
offer location prediction, the results are slightly lower, the best study offering around
50% recall and 80% precision.

For the second problem, Yu et al. [85] offers a study of the influence that the
observation window has on the prediction’s results. They look at both period-based
and event-based approaches. The accuracy achieved by the period-based approach
is growing with the increase of the observation window, while for the event-driven
approach it is the opposite. The period-based approach achieves its best performance,
in general, when the observation window is bigger than a couple of days, while the

Table 2.12 Prediction results for different state of the art-related work

System Method Precision Recall Lead time (s) Citation

BGL Rule-based method 0.7 0.3–0.4 5min [48]

BGL Statistical method 0.5 0.48 – [64]

BGL Multiple methods 0.9 0.7 – [64]

BGP Rule-based method 0.4/0.4/0.35 0.8/0.7/0.6 0/300/600 [89]

BGP Rule-based method 0.5 0.5 30min [85]

LANL
systems

Signal analysis 0.9 0.5 10s [29]

BGP Signal analysis with
rule-based method

0.7 0.6 10s [28]
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event-driven one reaches its peakwhen the observationalwindow is as low as a couple
of hours. Looking at the entire results, the event-driven approach outperforms the
period-based approach significantly.

In general, thresholds, like the observation window, greatly influence the results.
Figure2.22 presents the prediction results for several methods when varying one
of the parameters. Event-driven approaches are in general sensitive to the events
that occur shortly before a failure. That is the reason why, in general, event-driven
predictors will achieve their best performance with small observation windows. On
the contrary, the period-based approaches takes more benefits from past statistical
information which makes them achieve their best results with larger observation
windows. There are also thresholds, like the correlation threshold in the first graph
from Fig. 2.22, that offer trade-offs between precision and recall. Depending on how
the predictions are used, a larger coverage or a higher accuracy might be desirable.

A failure in the systemmost of the time does not seem to impact amassive numbers
of jobs. At a closer analysis, we observed that only around 44% of the failures lead
to at least one application crash, out of which the most surprising were filesystem
failures.

Filesystem failures are one of the main reasons for a low recall for current large-
scale system. For example, on the Blue Waters system, the Lustre Metadata failures
have very few precursors since most of them occur at the same time with the actual
failure. Metadata servers for the Lustre filesystem store namespace metadata, such as
filenames, directories, access permissions, and file layout. When applications detect
an MDT (Meta Data Target) failure, they connect to the the backup MDT and con-
tinue their execution. Just in less than 17% of the cases, applications having trouble
connecting to the back-up MDT fail. During an OST (Object Storage Target) failure,
when applications attempt to do I/O to a failed Lustre target, these are blocked wait-
ing for OST recovery. An application does not detect anything unusual, except that
the I/O may take longer to complete. Rarely, when an OST is marked as inactive, the
file operations that involve the failed OST will return an IO error and the application
might be terminated.

In general, prediction from the application’s point of view is more complex and
differs in results compared to the one for system failures. Moreover, when analyzing
the prediction results from the application’s perspective, the online methodology is

Fig. 2.22 Evaluation of different approaches using different thresholds
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highly sensitive to the lead time offered by each prediction. The lead time represents
the time interval between when the prediction is triggered and when the failure actu-
ally occurs. Location prediction gets a slightly newmeaning aswell when application
crashes need to be predicted instead of system failures. If a given method predicts a
failure correctly in time, but the failure occurs on a different node, all methods will
give a false negative and a false positive in the final results. However, if an appli-
cation was running on multiple nodes, one of which corresponds to the predicted
node, and the application takes global preventive actions, the mis-predicted failure
could be masked. Depending on the fault avoidance strategy, a predictor that only
looks at applications as a whole and not as a set of running nodes could increase
the recall significantly. By taking the lead time and the new definition of location
prediction into consideration one can recompute the results for different methods.
We observed that the prediction results have, in general slightly better values than
when applying the same method for system failures. For the method presented in
[28] and when analyzing the Blue Waters system, the application crash prediction
has a higher recall value with 5% for the same precision.

2.6.3 Checkpointing Challenges

We consider that the prediction performance presented in the previous section has
the potential to be used in the future in order to reduce the effects of failures on
application. For this purpose, failure prediction is useful only when coupled with a
proactive failure management that tries to apply countermeasures. The decision to
actually trigger a countermeasure may follow a complex process involving (i) cost
of the actions, (ii) the confidence in the prediction and (iii) the effectiveness and
complexity of the actions. These promising advances in failure prediction precision
and recall open the possibility to reduce drastically the rework time by actually
checkpointing right before the failure; a technique know as proactive checkpointing.

However, proactive checkpointing alone, cannot systematically avoid re-executing
the application from scratch if failures are not perfectly predicted. Since executions
on large scale HPC systems are very expensive (in time and energy), taking the risk
of long (potentially near to full) re-executions is unacceptable. Therefore, failure
prediction and proactive checkpointing should be combined with periodic check-
pointing. Nevertheless, little is known about the benefits of failure prediction and
proactive checkpointing when combined with periodic checkpointing.

Most predictions offer small lead time windows for proactive actions to be taken.
To be consistent with short term prediction, fault tolerance strategies require signifi-
cantly improvement. One promising direction ismulti-level checkpointing. There are
currently two environments providing multi-level Checkpoint/Restart: SCR (Scal-
able Checkpoint/Restart) [54] and FTI (Fault Tolerance Interface) [7]. Recent results
show that a process context of 1GB can be saved in 2–3s in local SSD (i.e. 2 SSD
mounted in RAID0). Such checkpoint speed is orders ofmagnitude faster than check-
pointing on remote file system which requires tens of minutes in current petascale
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systems and may require many hours in projected exascale systems. An experiment
with FTI on a large scale execution (1/2 million GPU cores) of an earthquake simula-
tion on a hybrid system composed ofCPUandGPUs demonstrates very lowoverhead
on the execution time (i.e., less than 10%)when using such checkpoint strategy com-
pared to no fault tolerance. Other research results demonstrate that checkpointing on
remote node memory is even faster than on local HDD or SSD [86]. These results
demonstrate that proactive checkpoints can be taken even with a few seconds before
the predicted failure happens. However, proactive checkpointing introduces a whole
new dimension with several challenges:

• To decrease the checkpoint size and maximize efficiency many applications rely
on user-guided checkpointing, in which users specify points in the code where to
checkpoint, so that the amount of data that need to be saved is minimal. However,
upon a failure prediction, the checkpoint is triggered by the prediction runtime and
the application may be in the middle of a complex kernel execution that requires a
high memory footprint. Thus, new ways of combining user-guided checkpointing
with proactive checkpointing need to be found.

• Furthermore, it is important to remember that the application needs to restart after
the failure and still produce correct results. This is the classic checkpointing coor-
dination problem that may imply the use of a fault-tolerant protocol. In application
level checkpointing, the coordination is implicit, while in system level checkpoint-
ing capturing the state of the execution is explicit and relies on a fault-tolerant
protocols. If the approach relies on coordinated checkpointing or on hierarchical
fault-tolerant protocols [32], the coordination (global or partial) needs to be fast
enough to store the state of the application before the failure occurs.

Any proactive checkpointing implementation that does not provide high perfor-
mance solutions for these two problems will not be able to work efficiently in com-
bination with a prediction strategy. There are several theoretical studies that propose
to combine classic periodic checkpointing with proactive fault tolerance actions in
order to study the theoretical benefit of such approaches in case such an implemen-
tation will work on future systems. One such example is presented in Aupy et al. [3],
where the authors propose a fault-tolerant strategy that uses the prediction alerts to
compute an optimal checkpointing interval. In their follow-up work [4], the authors
assume that the fault-prediction systems that do not provide exact prediction dates,
but instead time intervals during which faults are predicted to strike, with different
probabilities at each moment of time. Li et al. [47] consider a different model of
prediction mechanism that provides a probability of failure when the application
ask for a prediction. Moreover, they consider a specific application model where
proactive checkpoints or migration can be performed at a predefined location during
the execution. Cappello et al. [12] proposed two proactive fault tolerance strategies,
both relying on a perfect prediction mechanism. The perfect prediction mechanism
is supposed to have a 100% recall, 100% precision and enough lead time to perform
either checkpointing or migration. Even though the scenario is not realistic since
there is no prediction method that can offer these results, it can show the trade-off of
combining prediction either with checkpointing or with migration.
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In [10], the authors combine an existing multi-level checkpointing strategy with a
short-term event driven prediction. The results show that the benefit of such an imple-
mentation can give a decrease in the waste of the checkpointing strategy of around
10% for the Blue Waters system and over 20% for Blue Gene/L. Considering the
extra 3–4% overhead induced by this hybrid approach, the overall benefit becomes
over 15% for smaller system, and around 7% for current Petascale computing.

Long-term predictions can be combined with checkpointing in order to reduce
the I/O overhead and compute resource wastage induced by current checkpointing
strategies. In [76], the authors propose a couple of methods that place checkpoints
by taking advantage of the temporal locality in failures, instead of naively taking
periodic checkpoints.
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Chapter 3
Fault-Tolerant MPI

Aurélien Bouteiller

Abstract As supercomputers are entering an era of massive parallelism where the
frequency of faults is increasing, the MPI standard remains distressingly vague on
the consequence of failures on MPI communications. In this chapter, we present the
spectrum of techniques that can be applied to enable MPI application recovery, rang-
ing from fully automatic to completely user driven. First, we present the effective
deployment of most advanced checkpoint/restart techniques within the MPI imple-
mentation, so that failed processors are automatically restarted in a consistent state
with surviving processes, at a performance cost. Then, we investigate how MPI can
support application-driven recovery techniques, and introduce a set of extensions to
MPI that allow restoring communication capabilities, while maintaining the extreme
level of performance to which MPI users have become accustomed.

3.1 Introduction

High Performance Computing, as observed by the Top 500 ranking,1 has exhibited
a constant progression of the computing power by a factor of two every 18 months
for the last 15 years and the pace of progress has been only slightly disturbed by
the financial turmoil in 2008. Following the long-term trend, the Exaflops milestone
should be reached as soon as 2022. The International Exascale Software Project
(IESP) [27] proposes an outline of the characteristics of an Exascale machine, based
on the foreseeable limits of the hardware and maintenance costs. A machine in this
performance range is expected to be built from gigahertz processing cores, with
thousands of cores per computing node (up to 1012 flops per node), thus requiring
millions of computing nodes to reach the Exascale. Software will face the challenges
of complex hierarchies and unprecedented levels of parallelism.

1http://www.top500.org/.
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One of the major concerns is reliability. If we consider that failures of comput-
ing nodes are independent, the reliability probability of the whole system (i.e., the
probability that all components will be up and running during the next time unit) is
the product of the reliability probability of each of the components (see Chap.1, and
especially Sect. 1.3.2.1 for the discussion on the MTBF of large machines). A con-
servative assumption of a ten-year mean time to failure translates into a probability
of 0.99998 that a node will still be running in the next hour. If the system consists
of a million of nodes, the probability that at least one unit will be subject to a failure
during the next hour jumps to 1 − 0.9999810

6
> 0.99998. This probability being

disruptively close to 1, one can conclude that many computing nodes will inevitably
fail during the execution of an Exascale application.

Fault-tolerant algorithms have a long history of research. Only recently, since the
practical issue has been raising, High Performance Computing (HPC) software has
been adapted to deal with failures. As most HPC applications are using the Message
Passing Interface (MPI) [87] to manage data transfers, introducing failure recovery
features that can support MPI applications is paramount to maintain productivity on
future systems. One of the most popular fault-tolerance technique deployed today,
coordinating checkpointing, builds a consistent recovery set [54, 73]. As today’s
HPC users are facing occasional failures, they can still dismiss as an inconvenience
the slow, inefficient recovery procedure, involving restarting all the computing nodes
even when only one has failed. Considering future systems will endure higher fault
frequency, recovery time could become another gap between the peak performance
of the architecture and the effective performance users can actually harvest from the
system.

In this chapter, we present a range of additions and fault-tolerance constructs
that can be added to an MPI library in order to support more advanced recovery
strategies. Advanced fault-tolerance techniques have the potential to prevent full-
scale application restart and therefore lower the cost incurred for each failure, but
they demand fromMPI the capability to detect failures and resume communications
afterward. In Sect. 3.2, we first consider the case of automatic fault tolerance, that is
a fault tolerant recovery procedure that does not require actions from the application,
so that legacy codes are rendered fault tolerant without modifications. This goal can
be achieved with the integration of an uncoordinated checkpointing mechanism into
the MPI library, that ensures that the application can be restored to an equivalent
state as before a failure struck. Then, we turn our attention to interfaces that permit
deploying arbitrary fault tolerance techniques, in applications and/or middleware
that are enhanced to integrate their own recovery mechanism. We will discuss what
type of user fault tolerance is possible in the current iteration of the MPI standard
in Sect. 3.7, and then, in Sect. 3.8, present additional APIs that permit restoring a
consistent communication environment, under the control of an application recovery
mechanism,which can then benefit from a full post-failure communication capability
to perform the necessary application and dataset recovery operations.

http://dx.doi.org/10.1007/978-3-319-20943-2_1
http://dx.doi.org/10.1007/978-3-319-20943-2_1
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3.2 Automatic Uncoordinated Fault Tolerance in MPI

Automatic fault-tolerant algorithms, which can be provided either by the operating
system or the middleware, remove some of the complexity in the development of
applications by masking failures and the ensuing recovery process. The most com-
mon approaches to automatic fault tolerance are replication, which consumes a high
number of computing resources, and rollback recovery. Rollback recovery stores
system-level checkpoints of the processes, enabling rollback to a saved state when
failures happen. Consistent sets of checkpoints must be computed, using either coor-
dinated checkpointing or some variant of uncoordinated checkpointing withmessage
logging (for brevity, in this chapter, we use indifferently message logging or unco-
ordinated checkpointing). Coordinated checkpointing minimizes the overhead of
failure-free operations, at the expense of a costly recovery procedure involving the
rollback of all processes. Conversely, message logging requires every communica-
tion to be tracked to ensure consistency, but its uncoordinated recovery procedure
proves more efficiency in failure prone environments. See Sect. 1.4.2 for discussions
on replication, and Sects. 1.2.2 and 1.3.2 for coordinated checkpointing. Uncoor-
dinated checkpointing was briefly presented in Sect. 1.2.3. In this chapter, we will
detail its implementation in an actual MPI library.

Because message logging does not rely on a full restart, it is able to recover faster
from failures. From previous results [54], it is expected that a typical application
makespan will be better than coordinated checkpoint when the MTBF is less than 9
h while coordinated checkpoint will not be able to progress anymore for a MTBF
less than 3 h. Still, message logging suffers from a high overhead on communication
performance. Moreover, the better the latency and bandwidth offered by newer high
performance networks, the higher the relative overhead. Those drawbacks need to
be addressed to provide a resilient and fast fault tolerant MPI library to the HPC
community. In this section, we will present refinements of the classical message
logging theoretical concepts as well as practical effective implementation issues
designed tomitigate the high cost on communication ofmessage logging, and thereby
improve its practical effectiveness in HPC production systems.

In the first part of this section, we first describe a refinement of the classical model
ofmessage logging, closer to the reality of high-performance network interface cards,
where message receptions are decomposed in multiple dependent events (Sect. 3.3).
We better categorize message events allowing (1) the suppression of intermediate
message copies on high performance networks and (2) the identification of deter-
ministic and nondeterministic events, thus reducing the overall number of messages
requiring latency disturbing management. We demonstrate how this refinement can
be used to reduce the fault-free overhead ofmessage logging protocols by implement-
ing it in Open OMPI [35]. Its performance is compared with the previous reference
implementation of message logging MPICH-V2. Results outline a several orders of
magnitude improvement of the fault-free performance of pessimistic message log-
ging and a drastic reduction in the overall number of logged events. Then, we discuss
the impact of the event logging protocol employed, and we observe by comparing

http://dx.doi.org/10.1007/978-3-319-20943-2_1
http://dx.doi.org/10.1007/978-3-319-20943-2_1
http://dx.doi.org/10.1007/978-3-319-20943-2_1
http://dx.doi.org/10.1007/978-3-319-20943-2_1
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experimentally the optimistic and pessimistic event logging strategies, which are
situated at both extremes in terms of event logging synchrony (Sect. 3.4). With the
observation that message payload copy is a major contributor to the overall cost of
message logging, we then focus our attention on reducing this overhead. First, we
present varied strategies to increase the throughput of message exchanges over the
network by overlapping, as much as possible, the copy of the message payload and
its sending over the network (Sect. 3.5). Then, we investigate how a combination
between uncoordinated and coordinated checkpointing has the potential to drasti-
cally reduce both the volume and the overhead on message bandwidth of payload
logging (Sect. 3.6).

3.2.1 Rollback Recovery Execution Model

Message logging is defined in the more general model of message passing distrib-
uted systems. Communications between processes are considered explicit: processes
explicitly request sending and receiving messages; and a message is considered as
delivered only when the receive operation associated with the data movement is
complete. Additionally, from the perspective of the application each communication
channel is FIFO, but there is no particular order on messages traveling along differ-
ent channels. The execution model is pseudo-synchronous; there is no global shared
clock among processes but there is some (potentially unknown) maximum propaga-
tion delay of messages in the network. A formal interpretation is to say the system is
asynchronous and there is an eventually reliable failure detector. Failures can affect
both the processes and the network. Usually, network failures are managed by some
CRC mechanism and message reemission provided by the hardware or low-level
software stack and do not need to be considered in the model. Therefore, the con-
sidered failure model is definitive crash failures, where a failed process completely
stops sending any subsequent message.

In the following section, we define our executionmodel.We consider a distributed
execution, with explicit message passing. Any process may be subject to permanent
(fail-stop) failures. After a failure, a processwill be replaced and rejoin the distributed
execution by loading a checkpoint image saved by the failed processes prior to the
failure.

3.2.1.1 Events and States

Each computational or communication step of a process is an event. An execution is
an alternate sequence of events and process states, with the effect of an event on the
preceding state leading the process to the new state. As the system is basically asyn-
chronous, there is no direct time relationship between events occurring on different
processes. However, Lamport defines a causal partial ordering between events with
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the happened-before relationship [53]. It is noted e ≺ f when event f is causally
influenced by e.

Events can be classified into two categories. An event is deterministic if, in a given
state, no other event can apply. On the contrary, if in a given state multiple events can
apply and lead to different outcome states, these events are considered nondetermin-
istic. The arrival of a network packet is a notorious example of a nondeterministic
event: the ordering of packet arrival depends on network jitter between independent
channels, resulting in an uncertain matching between packets and posted receptions
(see [11] for a classification of MPI reception events).

3.2.1.2 Recovery Line

Rollback recovery addresses mostly fail-stop errors: a failure is the loss of the com-
plete state and actions of a process. A checkpoint is a copy of a past state of a
particular process stored on some persistent memory (remote node, disk, …), and
used to restore the process in case of failure. The recovery line is the configuration
of the entire application after some processes have been reloaded from checkpoints.
If the checkpoints can happen at arbitrary dates, some messages can cross the recov-
ery line [14]. Consider the example execution of Fig. 3.1. When process P1 fails, it
rolls back to checkpoint C1

1 . If no other process rolls back, messages m3,m4,m5 are
crossing the recovery line. A recovery set is the union of the saved states (checkpoint,
messages, events) and a recovery line.

3.2.1.3 In-transit Messages

Messages m3 and m4 are crossing the recovery line from the past, they are called
in-transit messages. The in-transit messages are necessary for the progression of
the recovered processes, but are not available anymore, as the corresponding send
operation is in the past of the recovery line. For a recovery line to form a complete
recovery set, every in-transit message must be added to the recovery line.

Fig. 3.1 Recovery line based on rollback recovery of a failed process
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3.2.1.4 Orphan Messages

Messagem5 is crossing the recovery line from the future to the past; suchmessages are
referred to as orphan messages. By following the happened-before relationship, the
current state of P0 depends on the reception of m5; by transitivity, it also depends on
events e3, e4, e5 that occurred on P1 since C1

1 . Since the channels are asynchronous,
the reception of m3 and m4, from different senders, can occur in any order during
re-execution, leading to a recovered state of P1 that can diverge from the initial
execution. As a result, the current state of P0 depends on a state that P1 might never
reach after recovery. Checkpoints leading to such inconsistent states are useless and
must be discarded; in the worst case, a domino effect can force all checkpoints to be
discarded.

3.2.2 Building a Consistent Recovery Set

Two different strategies can be used to create consistent recovery sets. The first one is
to create checkpoints at a moment in the history of the application where no orphan
messages exist, usually through coordination of checkpoints. The second approach
avoids coordination, but instead saves all in-transit messages to keep them available
without sender rollback, and keep track of nondeterministic events, so that orphan
messages can be regenerated identically.We focus our work on this second approach,
deemed more scalable.

3.2.2.1 Coordinated Checkpoint

Checkpoint coordination aims at eliminating in-transit andorphanmessages from the
recovery set. Several algorithms have been proposed to coordinate checkpoints, the
most usual being the Chandy–Lamport algorithm [20] and the blocking coordinated
checkpointing [15, 64, 73], which silences the network. In these algorithms, waves
of tokens are exchanged to form a recovery line that eliminates orphan messages and
detects in-transit messages. Coordinated algorithms have the advantage of having
almost no overhead outside of checkpointing periods, but require that every process,
even if unaffected by failures, rolls back to its last checkpoint, as this is the only
recovery line that is guaranteed to be consistent.

3.2.2.2 Message Logging

Message Logging is a family of algorithms that attempt to provide a consistent recov-
ery set from checkpoints taken at independent dates. As the recovery line is arbitrary,
every message is potentially in-transit or orphan. Event Logging is the mechanism
used to correct the inconsistencies induced by orphan messages, and nondetermin-
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istic events, while Payload Copy is the mechanism used to keep the history of in-
transit messages. While introducing some overhead on every exchanged message,
this scheme can sustain a much more adverse failure pattern, which translates to
better efficiency on systems where failures are frequent [54].

Event Logging: In event logging, processes are considered Piecewise deterministic:
only sparse nondeterministic events occur, separating large parts of deterministic
computation. Event logging suppresses future nondeterministic events by adding the
outcome of nondeterministic events to the recovery set, so that, during recovery, it can
be forced to a deterministic outcome (identical to the initial execution). In message
logging, the network, more precisely the order of reception, is considered the unique
source of nondeterminism. The relative ordering of messages from different senders
(e3, e4 in Fig. 3.1), is the only information necessary to be logged. For a recovery set
to be consistent: then, no unlogged nondeterministic event can precede an orphan
message.

Payload Copy: When a process is recovering, it needs to replay any reception that
happened between the last checkpoint and the failure. Consequently, it requires the
payload of in-transit messages (m3,m4 in Fig. 3.1). Several approaches have been
investigated for payload copy, themost efficient onebeing the sender-based copy [66].
During normal operation, every outgoing message is saved in the sender’s volatile
memory. The surviving processes can serve past messages to recovering processes
on demand, without rolling back. Unlike events, sender-based data do not require
stable or synchronous storage (although this data is also part of the checkpoint).
Should a process holding useful sender-based data crash, the recovery procedure of
this process replays every outgoing send and thus reproduces the missing messages.

3.2.3 Short Survey of Related Works

Though fault tolerance can be fully managed by the application [21, 71], the soft-
ware engineering cost prevents a large number of applications from benefiting of
the entire capacity of modern clusters. FT-MPI [31, 32] aims at helping an applica-
tion to express its failure recovery policy by taking care of rebuilding internal MPI
data structures (communicators, rank, etc.) and triggering user provided callbacks to
restore a coherent application state when failures occur. Though this approach is very
efficient to minimize the cost of failure recovery techniques, it still adds a significant
level of complexity to the design and implementation of parallel applications.

The next step toward easing application development is automatic fault-tolerant
MPI libraries, where failures are completely hidden from the application, thus avoid-
ing anymodification of the user’s code. Consistent recovery can be achieved automat-
ically by building a coordinated checkpoint set where no-orphanmessage exists (with
the Chandy and Lamport algorithm [20, 54, 83], or blocking the application until
channels are empty [49, 72, 73]). Communication Induced Checkpoint (CIC) [52]
is another approach that aims at constructing a consistent recovery set, but with-
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out coordination. The CIC algorithm maintains the dependency graph of events and
checkpoints to compute Z-paths as the execution progresses. Forced checkpoints
are taken whenever a Z-path would become a consistency breaking Z-cycle. This
approach has several drawbacks: it adds piggyback to messages, and is notably not
scalable because the number of forced checkpoints grows uncontrollably [3]. In all
coordinated checkpoint techniques, the only consistent recovery set is when every
process, including non-failed ones, restart from a checkpoint.

Another approach, that allows for faster recoveries according to [54], is to use
message logging. Manetho [29], Egida [67] and MPICH-V [9] feature the main fla-
vors of message logging (optimistic, pessimistic, and causal). Optimistic message
logging protocols, such as [23, 80, 81, 85], delay the storing of determinants to the
stable storage and keeps them in the process memory. As a consequence, they are
more subject to creating orphan processes and to piggyback more determinants with
messages. Active optimistic message logging protocol [69] copes with this draw-
back by aggressively saving determinants to the stable storage as soon as possible.
Because they are based on the classic message logging model, when implemented
in MPI, all these protocols face difficulties to distinguish between deterministic and
nondeterministic events and introduce extramemory copies leading to a performance
penalty on high-throughput networks.

3.3 Message Logging and Zero-Copy MPI Communication

Though the classical model has been used successfully in many implementations
of message logging in the past, it is unable to capture the full complexity of MPI
communications, resulting in nonoptimal performance. This was left unaddressed as
long as the performance gap between network and memory bandwidth was hiding
the ensuing overhead. But as the performance of network interface cards progressed
it became clear that extra memory copies on the critical path of messages were the
source of significant performance penalties.

The discrepancy between the model and the reality of MPI communication basi-
cally roots in the existence of non-blocking communications. Those are intended to
maximize opportunities for overlapping communication and computation, by hav-
ing the application post in advance its intention to communicate, compute while the
communication actually takes place, and wait for completion of the communications
later. One of the most important optimizations for a high-throughput communication
library is zero-copy: the ability to send and receive directly into the application’s
user space buffer without intermediary memory copies. Because the classical mes-
sage logging model assumes that the message reception is a single atomic event, it
cannot catch the complexity of zero-copy MPI communications involving distinct
matching and completion events, as is the case with non-blocking communication.
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3.3.1 Understanding Non-blocking MPI Communication

To better understand the difficultmatch between advancedMPI communication oper-
ations and the classical message logging model, one has to first understand the steps
of a MPI communication when it is managed internally by the MPI implementation.
To illustrate, Fig. 3.2 shows the basic steps of two concurrent non-blocking zero-copy
communications between three MPI processes.

3.3.1.1 Request Post

At the receiver side, the application posts the intent for a message to be received,
specifying the message source, tag, and reception buffer. The postoperation creates
a request. As an example, the post-event Postany

r1 creates the request r1 to receive a
message from any sender.

3.3.1.2 Fragments

Every message is divided into a number of network fragments when it is transferred
over the network, the number depending on its length. Though MPI enforces a FIFO
semantic for messages from a particular sender, at the lowest network level, there is
no particular order between fragments. Consequently, when receiving two different
messages m1 and m2, the first fragment of m1 coming first does not imply that the
last fragment of m1 arrives before the last fragment of m2. Therefore, unlike in the
classic model, with MPI communications the reception order of a message cannot be
fully described by a single event denoting message reception, but rather depends on
the relative ordering of the multiple fragments composing the messages. Although
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there is a very large number of such network nondeterministic events, only the order
of events denoting the first and last fragments of a message are actually meaningful
to the application, as described in the next paragraphs.

3.3.1.3 Matching

In order to correctly dispatch incoming fragments to the reception buffers, the MPI
implementation needs to match a reception request with the incoming fragments.
When the first fragment of a message is delivered by the network, requests are
considered in order by the matching logic; the first request (according to the post-
ordering) with a matching source and tag is associated with the incoming message
fragments. All upcoming fragments of this message are then delivered directly into
the request’s reception buffer. If no request matches, the message is unexpected; it
is copied into an internal buffer until it matches an upcoming posted request.

In the example of Fig. 3.2, Mm1
r1 is the matching determinant between the request

created by the any source non-blocking receive Pany
r1 and the first fragment reception

event efirst
1 . Though the relative order of the fragments from the network is always

nondeterministic, the FIFO by channelMPI semantic allows formost of thematching
determinants to be deterministic. The only nondeterministic ones are promiscuous
receptions, i.e., when a request can match a message coming from any source. Those
promiscuous matching determinants are the only events that need to be logged in
order to replay a correct matching during recovery.

3.3.1.4 Completion of Requests

When using non-blocking communications, several requests can concurrently
progress while the application is computing. When the next computation needs to
access the buffer involved in an ongoing communication operation, the application
has to wait for the completion of the corresponding requests. All the functions allow-
ing the application to check the status of a request (likeMPI_Wait) are a completion
test. The most commonly employed completion test operations are always deter-
ministic, namely the MPI_Recv, MPI_Send, MPI_Wait, and MPI_Waitall
functions. However, for MPI_Waitany, as an example, the outcome of the MPI
call depends on the ordering between the arrival date of the last fragments of mes-
sages associated to the input parameter requests. MPI_Waitsome, MPI_Test,
MPI_Testany, MPI_Testsome, and MPI_Iprobe add to the previous source
of nondeterminism a dependency between the arrival date of the last fragments and
the date of the completion test.
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3.3.1.5 Consequences on Message Logging

By not discriminating betweenmatching and completion, the legacymodel of atomic
message reception event, prevents messages from being directly delivered into the
application buffer. The only software layer where the MPI matching can be delayed
is the very low level interface with the network. Implementing message logging at
this level has two severe limitations. First, the message logging mechanism cannot
easily take advantage of the optimized network drivers and second, at this level it is
impossible tomake a distinction between deterministic and nondeterministic delivery
determinants. As an example, in MPICH, only the lowest blocking point-to-point
transport layer called thedevicematches the classicalmodel, explainingwhyprevious
state-of-the-art message logging implementations, such as MPICH-V, replace the
low level device with the MPIch- V fault-tolerant one (see Fig. 3.3a). This device
has adequate properties regarding the hypothesis of message logging: (1) messages
are delivered in one single atomic step to the application (though message interleave
is allowed inside the MPIch- V device), (2) intermediate copies are made for every
message to fulfill this atomic delivery requirement, so that the matching is delayed to
the delivery time, (3) as themessage loggingmechanism replaces the regular low level
device, it cannot easily benefit from zero-copy and OS bypass features of modern
network cards, and (4) because it is not possible to distinguish the deterministic events
at this software level, every message generates an event (which is obviously useless
for deterministic receptions). We will show in the performance analysis section how
these strong model requirements lead to dramatical performance overhead in anMPI
implementation when considering high-performance interconnects.

3.3.2 A Split Model for Matching and Delivery Events

By relaxing the strong model described previously, it is possible to interpose the
event logging mechanism inside the MPI library. Then it is only necessary to log the
communication events at the library level and the expensive events generated by the
lower network layer can be completely ignored. This requires consideration of the
particularity of the internal MPI library events, but allows to use the optimized net-
work layers provided by the implementation. The remainder of this section describes
this improved model.

3.3.2.1 Network Events

From the lower layer come the packet-related events: let m denote a message trans-
ferred in length(m) network packets.We note that r i

m equals the i th packet ofmessage
m, where 1 ≤ i ≤ length(m). Because the network is considered reliable and FIFO,
we have ∀1 ≤ i ≤ length(m) − 1, r i

m ≺ r i+1
m . We denote tag(m) the tag of message

m and src(m) its emitter. Packets are received atomically from the network layer.
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3.3.2.2 Application Events

From the upper layer comes the application-related events. We note that Post(tag,
source) is a reception post, Probe(tag, source) is the event of checking the presence
of a message, and Wait(n, {R}) is the event of waiting n completions of the request
identifier set {R}. Because the application is considered piecewise deterministic, we
can assign a totally ordered sequence of identifiers to upper layer events. Let r0 be a
request identifier obtained by thePost0(tag0, source0) event. Since posting is the only
way to obtain a request identifier, if r0 ∈ {R}, Post0(tag0, source0) ≺ Wait0(n, {R}).
There is at most one event Post per message and at least one Wait event per message.
If r1m0

≺ Probe0(tag0, source0) ≺ Post0(tag0, source0), then Probe0(tag0, source0)
must return true. Otherwise, it must return false. The main difference between Probe
and Post is that in case r1m0

precedes one of these events, Probe0(tag0, source0) will
not discard r1m0

, while Post0(tag0, source0) will always do so.

3.3.2.3 Library Events

The library events are the result of the combination of a network-layer event and
an application-layer event. There are two categories of library events: (1) Matching
(denoted by M) and (2) Completing (denoted by C). Matching binds a network
communication with a message reception request; completing checks the internal
state of the communication library to determine the state of a message (completed
or not).

(1) To build a Matching event from a reception event and a Post-event, we define
a reception-matching pair of events: r1m and Post0(tag0, source0) match for
reception if and only if (source0 = src(m) ∨ source0 = ANY) ∧ (tag0 =
tag(m) ∨ tag0 = ANY). The Matching event built from the reception-matching
events is causally dependent from the two elements of the matching pair:
Post0(tag0, source0) ≺ M0 and r1m ≺ M0. The reception-matching pair is
determinist if and only if source0 �= ANY. Additionally, based on the same
rules, we can build a Matching from a Probe event and a reception event. In
this case, the result of the Matching M0 is successful if and only if r1m ≺
Probe0(tag0, source0). Otherwise, the Matching event takes a special value
(undefined source). Because the order between r1m and Probe0(tag0, source0)
is nondeterministic, all probe-matching pair events are nondeterministic.

(2) Similarly, to build aCompleting event froma reception event and aWait event,we
define a completion-matching pair of events: r length(m)

m and Wait(n, {R}) match
for completion if and only if there is a matching event M0 built from r1m contain-
ing the request identifier r0 and r0 ∈ {R}. The Completing event built from the
completion-matching events is causally dependent on the two elements of the
matching pair:Wait(n, {R}) ≺ C0 and r length(m)

m ≺ C0. All the r i
m events are non-

deterministic per definition. Thus, every Wait(n, {R}) event is nondeterministic,
because the result of these events depends upon the internal state of the library,
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which depends upon the r length(m)
m events. However, according to the matching

and completion rules, if r length(m)
m and Wait(n, {R}) is a completion-matching

pair, the Completing event built is deterministic if and only if n0 = |R0| (case
of Wait, WaitAll, Recv).

Although this refinement generates supplementary events, most of them are deter-
ministic and do not need to be logged. Only nondeterministic events (nondeterminis-
ticMatching due toANY sources; nondeterministicMatching due to probe-matching
events; nondeterministic completion due to WaitSome, WaitAny, TestAll, Test, Tes-
tAny and TestSome) are logged and force a synchronization with the event logger.

3.3.3 A Generic Framework for Message Logging
in Open MPI

The Open MPI architecture is a typical example of the modern generation MPI
implementation. Figure3.3b summarizes the Open MPI software stack dedicated to
MPI communication. Regular components are summarized with plain lines, while
the additional fault-tolerant components are dashed. At the lowest level, the BTL
exposes a set of communication primitives appropriate for both send/receive and
RDMA interfaces. A BTL is MPI semantics agnostic; it simply moves a sequence
of bytes (potentially noncontiguous) across the underlying transport. Multiple BTLs
might be in use at the same time to strip data across multiple networks. The PML
implements all logic for point-to-point MPI semantics including standard, buffered,
ready, and synchronous communicationmodes.MPImessage transfers are scheduled
by the PML based on a specific policy according to short and long protocol, as
well as using control messages (ACK/NACK/MATCH). Additionally, the PML is in
charge of providing the MPI matching logic as well as reordering the out-of-order
fragments. All remainingMPI functions, including some collective communications,
are built on top of the PML interface.While in the current implementation of the fault-
tolerant components only point-to-point based collectives are supported, other forms

or

Application

Collective MPI

ADI

ch_Vch_p4ch_GM or

(a) (b)

BTL

Sender−Based Logging :

BTL

Datatype pack

Recv iRecv Send iSend WaitAny WaitSome iProbe TestEvent Logging :

TCP IB

MPI

Application

Collective

MX

Vprotocol

BTL

Original unchanged PMLPessimist

Fig. 3.3 Comparison between the MPICH and the Open MPI architecture and the interposition
level of fault tolerance (fault-tolerant components are dashed). a MPICH-1.2/MPICH-V. b Open
MPI/Open MPI-V
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of collective communication implementations (such as hardware based collectives)
can also be supported as they are deterministic.

In order to integrate the fault-tolerance capabilities in Open MPI, we added one
new class of components, the Vprotocol (dashed in the Fig. 3.3b). A Vprotocol

component is a symbiotic shell component enveloping the default PML. Each is an
implementation of a particular fault-tolerant algorithm; its goal is not to manage
actual communications but to extend the PML with message logging features. As
all of the Open MPI components, the Vprotocol module is loaded at runtime at
the user’s request. When it is loaded, it replaces some of the interface functions of
the PML with its own. Once it has logged or modified the communication requests
according to the needs of the fault-tolerant algorithm, it calls the real PML to perform
the actual communications. This modular design has several advantages compared
to the MPICH-V architecture: (1) it does not modify any core Open MPI compo-
nent, regular PML message scheduling and device optimized BTL can be used, (2)
expressing a particular fault-tolerant protocol is easy, it is only focused on reacting
to some events, not handling communications and (3) the best-suited fault-tolerant
component can be selected at runtime.

3.3.4 Pessimistic Message Logging Implementation

The Vprotocol pessimist is the first implementation based on our refined model.
It provides four main functionalities: sender-based message logging, remote event
storage, event logging for any source receptions, and event logging for nondeter-
ministic deliveries. Each process has a local Lamport clock, used to mark events;
during Send, iSend, Recv, iRecv, and Start, every request receives this clock stamp
as a unique identifier.

3.3.4.1 Sender-Based Logging

The improvements we propose to the original model still rely on a sender-based
message payload logging mechanism. We integrated the sender-based logging to the
data type engine of OpenMPI. The data type engine is in charge of packing (possibly
noncontiguous) data into a flat format suitable for the receiver’s architecture. Each
time a fragment of the message is packed, we copy the resulting data in an mmaped
memory segment. Because the sender-based copy progresses at the same speed as
the network, it benefits from cache reuse and releases the send buffer at the same
date. Data is then asynchronously written from memory to disk in background to
decrease the memory footprint.
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3.3.4.2 Event Logger Commits

Nondeterministic events are sent to event loggers processes (EL). An EL is a spe-
cial process added to the application outside the MPI_COMM_WORLD; several might
be used simultaneously to improve scalability. Events are transmitted using non-
blocking MPI communications over an intercommunicator between the application
process and the event logger. Though asynchronous, there is a transactional acknowl-
edgment protocol to ensure that every event is safely logged before any MPI send
can progress.

3.3.4.3 Any Source Receptions

Any source logging is managed in the iRecv, Recv, and Start functions. Each time an
any source receive is posted, the completion function of the corresponding request
is modified. When the request is completed, the completion callback logs the event
containing the request identifier and the matched source. During recovery, the first
step is to retrieve the events related to the MPI process from the event logger. Then
every promiscuous source is replaced by the well specified source of the event cor-
responding to the request identifier. Because the MPI matching is FIFO per channel,
enforcing the source is enough to replay the original matching order.

3.3.4.4 Nondeterministic Deliveries

In MPI, several completion operations have the potential to generate a nondeter-
ministic outcome (iProbe, WaitSome, WaitAny, Test, TestAll, TestSome, and Tes-
tAny functions). Every nondeterministic completion test is assigned a unique clock
according to the local Lamport clock. When the operation returns, a delivery event
containing the list of all requests completed by the operation is created for this clock.
During replay, when the completion operation’s clock is equal to the clock of the
first event, the corresponding requests are completed by waiting specifically for each
of them.

Should the outcome of the completion test be that no request completed, to avoid
the creation of a large number of events for consecutive unsuccessful completion
test, we use lazy logging; only one event is created for all the consecutive operations.
If a completion test succeeds, any pending lazy event is discarded. During recovery,
any completion test whose clock is lower than the first event in the log has to return
that no request completed.
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3.3.5 Performance of MPI Message Logging

The full experimental conditions are described in [11]. Because the proposed
approach does not change the recovery strategy used in previous works, we only
focus on failure-free performance.

3.3.5.1 Benefits from Event Distinction

One of the main differences of the refined model is the split of message receptions
into two distinct events. In the worst case, this might lead to logging twice as many
events compared to the model used in other message logging implementations. How-
ever, the closer match between the newmodel andMPI internals allows for detecting
(and discarding) deterministic events. Table3.1 characterizes the amount of nonde-
terministic (actually logged in Open MPI-V) events compared to the overall number
of exchanged messages. Though we investigated all the NPB kernels (BT, MG, SP,
LU, CG, FT) to cover the widest spectrum of application patterns, we detected non-
deterministic events in LU and MG only. In all other benchmarks, Open MPI-V
does not log any event, thanks to the detection of deterministic messages. On both
MG and LU, the only nondeterministic events are any source messages; there are no
nondeterministic deliveries or probes. In MG, two-thirds of the messages are deter-
ministic, while in LU less than 1% are using the any source flag, outlining how the
better fitting model drastically decreases the overall number of logged events in the
most usual application patterns. As a comparison, MPICH-V2 logs at least one event
for each message (and two for rendezvous messages). According to our experiments,
the same results hold for class A, C, and D of the NAS. The ratio of logged events
does not correlate with the number of computing processes in LU and decreases
when more processes are used in MG, meaning that the fault-tolerant version of the
application is at least as scalable as the original one. Separate research efforts have
confirmed that most events are deterministic in a wide range of applications [44].

Avoiding logging of some events is expected to lower the latency cost of a pes-
simistic protocol. Figure3.4 presents the overhead on Myrinet round trip time of
enabling the pessimistic fault-tolerant algorithm. We normalize Open MPI-V pes-

Table 3.1 Percentage of nondeterministic events to total number of exchanged messages on the
NAS Parallel Benchmarks (Class B)

BT SP LU

#processors All 4 32 64 256 512 1024

%nondeterministic 0 0 1.13 0.66 0.80 0.80 0.75 0.57

FT CG MG

#processors All 4 32 64 256 512 1024

%nondeterministic 0 0 40.33 29.35 27.10 22.23 20.67 19.99
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Fig. 3.4 Myrinet 2000 ping-pong performance of pessimistic message logging in percentage of
non-fault-tolerant MPI library

simist (labeled Open MPI-V with sender-based in the figure) according to a similar
non-fault-tolerant version of Open MPI, while we normalize the reference message
logging implementation MPICH-V2 according to a similar version of MPICH-MX;
in other words, 100% is the performance of the respective non-fault-tolerant MPI
library. We deem this as reasonable as (1) the bare performance of Open MPI and
MPICH-MX is close enough that using a different normalization base introduces no
significant bias on the comparison between fault-tolerant protocols, and (2) this ratio
reflects the exact cost of fault tolerance compared to a similar non-fault-tolerant MPI
implementation, which is exactly what needs to be outlined. IPoMX performance is
also provided as a reference to support our discussion on the overhead breakdown
of MPICH-V2.

In this ping-pong test, all Recv operations are well-specified sources and there is
no WaitAny. As a consequence, Open MPI-V pessimist does not create any event
during the benchmark, and reaches exactly the same latency as Open MPI (3.79µs).
To measure the specific cost of handling nondeterministic events in Open MPI-V
pessimist, we modified the NetPIPE [82] benchmark code; every Recv has been
replaced by the sequence of an any source iRecv and a WaitAny. This altered code
generates two nondeterministic events for each message. The impact on Open MPI-
V pessimist latency is a nearly three time increase in latency. The two events are
merged into a single message to the event logger; the next send is delayed until the
acknowledgment comes back. This corresponds to the expected cost on latency of
pessimistic message logging. Still, the better detection of nondeterministic events
removes the message logging cost for most common types of messages.

Because MPICH-V does not discard deterministic events from logging, there is
a specific overhead for every message (the 40µs latency increases to reach 183µs),
even on the original deterministic benchmark. This specific overhead comes on top
of the cost of supplementary memory copies.
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3.3.5.2 Benefits from Zero-Copy Receptions

Figure3.4 shows the overhead of MPICH-V. With the pessimistic protocol enabled,
MPICH-V reaches only 22% of the MPICH-MX bandwidth. This bandwidth reduc-
tion is caused by the number of memory copies in the critical path of messages.
Because the message logging model used in MPICH-V assumes delivery is atomic,
it cannot accommodate the MPI matching and buffering logic; therefore, it does not
fit the intermediate layer of MPICH (similar to the PML layer of Open MPI). As
a consequence, the event logging mechanism of MPICH-V replaces the low level
ch_mx with a TCP/IP based device. The cost of memory copies introduced by this
requirement is estimated by considering the performance of the NetPipe TCP bench-
mark on the IP emulation layer of MX: IPoMX. The cost of using TCP, with its
internal copies and flow control protocol, is as high as 60% of the bandwidth and
increases the latency from 3.16 to 44.2µs. In addition, the MPIch- V device itself
needs to make an intermediate copy on the receiver to delay matching until the mes-
sage is ready to be delivered. This is accountable for the 20% remaining overhead on
bandwidth and increases the latency to 96.1µs, even without enabling event logging.

On the contrary, in Open MPI-V the model fits tightly with the behavior of MPI
communications. The onlymemory copy comes from the sender-basedmessage pay-
load logging; there are no other memory copies. As a consequence, Open MPI-V is
able to reach a typical bandwidth as high as 1570Mbit/s (compared to 1870Mbit/s
for base Open MPI and 1825Mbit/s for MPICH-MX). The difference between
Open MPI-V with or without sender-based logging highlights that, although the
cost is not completely eliminated, the cache reuse effect from progressing with the
packing convertor is beneficial. While the sender-based copy fits in cache, the per-
formance overhead of the extra copy is reduced to 11% and jumps to 28% only for
messages larger than 512kB.

3.3.5.3 Sender-Based Impact

While the overall number of memory copies has been greatly reduced, the sender-
based message payload copy is mandatory and can’t be avoided. Figure3.5 explains
the source of this overhead by comparing the performance of Open MPI and
OpenMPI-V pessimist on different networks. As the sender-based copy is not on the
critical path of messages, there is no increase in latency, regardless of the network
type. On Ethernet, bandwidth is unchanged as well, because the time to send the
message on the wire is much larger than the time to perform the memory copy, thus
a perfect overlap.

Counterintuitively, Open MPI bandwidth for the non-fault-tolerant version is bet-
ter on Myrinet 10G than on shared memory: the shared memory device uses a copy-
in copy-out mechanism between processes, producing one extra memory access for
each message (i.e., physically reducing the available bandwidth by two). Adding a
third memory copy for handling sender-based logging to the two involved in regular
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(a) (b)

(c) (d)

Fig. 3.5 Ping-pong performance comparison between Open MPI and Open MPI-V pessimist on
various networks. a TCP gigabit ethernet. bMXMyrinet 2G. c MXMyrinet 10G. d Sharedmemory

shared-memory transfer has up to 30% impact on bandwidth for large messages,
even when this copy is asynchronous. This is the expected result considering that the
performance bottleneck for shared-memory network is the pressure on memory bus
bandwidth.

As the sender-based message logging speed depends on memory bandwidth, the
faster the network, the higher the relative copy time becomes. Myrinet 2G already
exhibits imperfect overlap betweenmemory copies andnetwork transmission, though
when the message transfer fits in cache, the overhead is reduced by the memory reuse
pattern of the sender-basedmechanism.With the fasterMyrinet 10G, the performance
gap widens to 4.2Gbit/s (44% overhead). As the pressure on the memory subsystem
is lower when using Myrinet 10G network than when using shared memory, one
could expect sender-based copy to be less expensive in this context. However the
comparison between OpenMPI-V onMyrinet 10G and shared memory shows a sim-
ilar maximum performance on both media, suggesting that somememory bandwidth
is still available for improvements from better software engineering. Similarly, the
presence of performance spikes for message sizes between 512kB and 2MB indi-
cates that the cache reuse strategy does not fit well with the DMA mechanism used
by this NIC.

3.3.5.4 Application Performance and Scalability

Figure3.6a presents the performance overhead of various numerical kernels on a
Myrinet 10G network with 64 nodes. Interestingly, the two benchmarks exhibiting
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Fig. 3.6 Application behavior comparison between Open MPI and Open MPI-V pessimist on
Myrinet 10G. a NAS normalized performance (Open MPI = 1). b Weak scalability of HPL (90
procs, 360 cores). c Scalability of CG Class D. d Scalability of LU Class D

nondeterministic events suffer from a mere 1% overhead compared to a non-fault-
tolerant run. The more synchronous CG shows the highest performance degradation,
a moderate 5% increase in execution time. Because there are no nondeterministic
events in CG, overhead is solely due to sender-based payload logging.

Figure3.6b compares the performance of a fault-tolerant run of HPL with regular
Open MPI on 90 quad-core processors connected through Myrinet 10G, one thread
per core.While the performance overhead is limited, it is independent of the problem
size. Similarly, for CG and LU (Fig. 3.6c, d), the scalability when the number of
processes increase follows exactly the same trend for Open MPI and Open MPI-V.
For up to 128 nodes, the scalability of the proposed message logging approach is
excellent, regardless of the use of nondeterministic events by the application.

3.3.6 Concluding Remarks

The model of message logging could be refined to match the reality of high-
performance network interface cards, where message receptions are decomposed
in multiple interdependent events. From a finer decomposition of events impacting
the life cycle of a MPI message, the need for intermediate message copies impacting
bandwidth on high-performance networks is lifted; deterministic and nondetermin-
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istic events are clearly discriminated, allowing a reduction of the overall number
of messages requiring latency disturbing management. One question that naturally
arises is the effect of this new development on the historical knowledge and under-
standing about the importance of the event logging technique, and it’s synchronicity.

3.4 Comparing Event Logging Strategies

Pessimistic message logging, as we discussed so far, is the most synchronous event
logging technique. It ensures the always no-orphan condition: all the previous nonde-
terministic events of a process must be logged before a process is allowed to impact
the rest of the system. Therefore, any process has to ensure that every event is safely
logged before any MPI send can proceed. Since no-orphan process can be created,
only the failed processes have to restart after a failure. In order to improve latency,
the no-orphan condition can be relaxed. Over the years, different versions of message
logging have been proposed to address the issue of high latency associated with syn-
chronous logging of events to a stable storage [2, 9, 30]. Causal message logging [8,
67] piggybacks unlogged events on outgoing messages, so that any process depends
only on events either logged or known locally. Optimistic message logging [69]
pushes one step further; nondeterministic events are buffered in the sender process
memory and logged asynchronously, while message sending is never delayed. The
consequence is that a message sent by a process may depend on an unlogged event
and may become orphaned. Thus a recovery protocol is needed to detect orphan
messages and to recover the application in a consistent global state after a failure. To
be able to detect orphan messages, dependencies between nondeterministic events
need to be tracked during the entire execution; dependency information needs to be
piggybacked on application messages.

As we described earlier, the model of message logging was recently refined to
match the reality of high-performance network interface cards, wheremessage recep-
tions are decomposed in multiple interdependent events. In this section, we present
two implementations of message logging, pessimistic and optimistic message log-
ging, respectively, being the most and the least synchronous possible paradigms,
based on that same generic failure recovery framework, implementing the finer mes-
sage logging model in a production MPI implementation [11]. Then we present a
comprehensive experimental comparison of those two approaches usingmicrobench-
marks and exploring their behavior on a range of scientific kernels. Results demon-
strate how improvements targeted at adapting message logging to high-performance
networks have dramatically altered the knowledge acquired in previous work about
the impact of synchronicity on event logging performance [30].
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3.4.1 Active Optimistic Message Logging

In order to compare the impact of the synchronicity of event logging, we need to
consider two best performing strategies in their class. Although there are little pos-
sible variations in the pessimistic event logging protocol, optimistic logging can
take more varied forms. Optimistic message logging traditionally suffers from two
main drawbacks. First, it is less efficient than pessimistic message logging on recov-
ery because orphan processes may be created. In the event of a failure, a recovery
protocol must be executed to detect orphan processes and these orphan processes
must rollback, in addition to the failed processes. Second, to track dependencies
between processes during failure-free execution, dependency information must be
piggybacked on application messages, adding overhead on communications [76].

A new optimistic message logging solution, called active optimistic message log-
ging [69] (O2P), has been recently proposed to mitigate some inefficiencies in exist-
ing optimistic message logging protocols. In the standard model of optimistic mes-
sage logging, determinants are buffered is the process memory and logged asynchro-
nously. O2P is an active optimistic message logging protocol, i.e., it logs nondeter-
ministic determinants on stable storage as soon as possible to reduce the probability
that a message depends on an unlogged determinant when it is sent. Thus it reduces
the risk for a failure to produce orphan messages. In addition, it has been proved
that to be able to detect orphan messages, only dependencies to unlogged nonde-
terministic determinants have to be tracked [23]. Since active optimistic message
logging maximizes the probability that previous nondeterministic determinants are
logged when a message is sent, it also reduces the amount of data that needs to be
piggybacked on application messages.

3.4.1.1 Dependency Tracking

To track dependencies between application processes, O2P uses a dependency vec-
tor. A dependency vector is an n-entry vector, n being the number of processes in
the application. Entry j of process pi dependency vector is the last unlogged nonde-
terministic event of process p j that the current state of pi depends on. If entry j is
empty, it means that pi doesn’t depend on any unlogged nondeterministic event from
the process p j . When a process sends a message, it piggybacks its dependency vec-
tor on the message. The process receiving that message updates its own dependency
vector with the piggybacked vector.

When a nondeterministic event occurs at process pi , it sends the event to the EL
and saves it in entry i of its dependency vector. This entry is emptied by the process
when it receives the acknowledgment from theEL.To limit the piggybacked data size,
dependency vectors are implemented as described in [79]. Only nonempty entries
that have changed since the last message sent to the same process are piggybacked
on the message.
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3.4.1.2 Event Logger

In order to make a process aware of the events saved by other processes, the EL
maintains a n-entry vector that we call the stable vector. Entry k of the stable vector
is the last event of process pk received by the EL. The stable vector is included in
the acknowledgements sent by the EL. When a process delivers an acknowledgment
from the EL, it updates its dependency vector according to the stable vector received.
This mechanism contributes to reduce the size of the piggybacked data.

3.4.1.3 Piggyback Mechanisms

Piggyback mechanisms have a significant impact on O2P failure-free performance.
Due to active optimistic message logging, most of the time, there is no data to
piggyback on applicationmessages. That is whywe have implemented a solution that
optimizes this case. Piggybacked data are sent in a separate message. An additional
flag is included in the application message header to make the destination process
aware of the presence of piggybacked data. Thus an additional message is sent only
if there is data to piggyback.

3.4.2 Optimistic Versus Pessimistic: Experimental Evaluation

In this section, we compare the performance obtained by the optimistic and pes-
simistic protocols taking into account the impact of the new message logging model.
The Vprotocol framework enables the implementation of message logging pro-
tocols in the Open MPI library. It is based on the refined model presented in the
previous section. The two protocols compared in this paper are implemented in this
same framework, allowing for a fair and equitable comparison. The full description
of the experimental conditions can be found in [10].

3.4.2.1 Ping-Pong Performance

For this set of experiments,NetPIPE is deployed on twoDell PowerEdge 1950 servers
while a third one hosts the Event Logger. The results of Fig. 3.7a show a regular
Gigabit Ethernet ping-pong for the two protocols. With the default options, there is
no nondeterministic event in this benchmark. Therefore, thanks to the optimizations
introduced by the refined model, there is no event to log and the latency overhead is
unnoticeable. As a consequence, both protocols exhibit very similar behavior.

Impact of nondeterministic events To investigate the impact of event logging, we
force any source receptions in the NetPIPE benchmark. According to the pattern of
communication in this benchmark, a nondeterministic event is created by each recep-
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Fig. 3.7 Ping-pong performance comparison of pessimistic and optimistic protocols. a Common
case without nondeterministic events. b With forced nondeterministic events

tion and is immediately followed by a send, forcing the pessimistic protocol to log
an event synchronously before allowing the send to proceed. Figure3.7b illustrates
that the consequence is a threefold increase in latency. The overhead induced by the
optimistic protocol is much smaller: while the event is still sent to the Event Logger
immediately, the next send does not need to be delayed until the reception of the
acknowledgment. The impact of piggybacked data management is very small: as the
application has only two processes, the maximum number of events to piggyback is
at most one.

High-performance networks Focusing on the Myrinet 10G network results from
Fig. 3.7a, the very low latency of both protocols illustrates that without nondeter-
ministic events, the cost of event logging is well contained on high-performance
networks. As seen in Fig. 3.7b, the relative overhead of managing nondeterministic
events is not modified; the pessimistic protocol still endures a threefold increase in
latencywhile the optimistic one sees amilder degradation.However, the performance
penalty associated with sender-based payload logging, a shared characteristic of all
message logging protocols, sees its share increase as the network becomes faster. The
Myrinet network is fast enough that even being asynchronous, the extramemory copy
generated by the sender-based payload logging drains more memory bandwidth than
available. Experiments where the sender-based mechanism is disabled, depicted in
Fig. 3.7a, further support that explanation, with no bandwidth degradation compared
to non-fault tolerant MPI.
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3.4.2.2 Application Benchmarks

Figure3.8 presents the performance of all the NAS kernels for 64 processes on the
Myrinet network. Every kernel is evaluated with or without the sender-based mech-
anism being active. While it is a required component for a successful recovery, deac-
tivating the sender-based overhead reveals the performance differences imputable to
the event logging protocols. Among the NAS kernels, only two generates nondeter-
ministic events: MG and LU. As expected, the performance of event logging exhibits
almost no differences between the protocols on the benchmarkswhere there is no non-
deterministic events. Even on those with nondeterministic events, the performance
varies only by less than 2%, which is close to the error margin of measurements.
On this fast network, the sender-based overhead clearly dominates the performance
and flattens any performance difference coming from the synchronicity of the event
logging.

3.4.3 Concluding Remarks

Pessimistic and optimistic message logging are, respectively, the most and the least
synchronous message logging solutions. Optimistic message logging exchanges the
ability to delay logging of determinants with the need to rollback some non-failed
processes during recovery. As outlined byNetPIPE, this allows optimistic logging for
reaching a twofold better latency in that case. However, in many application kernels,
the performance degradation due to synchronous message logging is very limited.
When the application actually uses nondeterministic communication patterns, a five
to six percent difference can be measured between the two protocols. From a broader

Fig. 3.8 Normalized performance of theNASkernels on theMyrinet 10Gnetwork (Open MPI = 1)
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perspective, from the combined effects of the event logging model improvements,
and the increase in the network interface performance, sender-based payload copy
has become the dominant overhead of message logging.

3.5 Optimizing Sender-Based Message Logging

The previous sections demonstrated that, with a new careful modeling, the cost of
event logging and has tremendously decreased [10], leading the once negligible over-
head incurred by in-transit messages to now dominate. The technique considered as
the most efficient today to replay in-transit messages is sender-based message log-
ging: the sender keeps a copy of every outgoing message. Although sender-based
logging requires only a local copy, done in memory, and could theoretically be over-
lapped by actual communication over the network, it has appeared experimentally
to remain a significant overhead. The bandwidth overhead of the sender-based copy
is now standing alone in the path of ubiquitous automatic and efficient fault-tolerant
software. In this article, we consider and compare multiple approaches to reduce or
overlap this cost to a nonmeasurable overhead in the Open MPI implementation of
message logging: Open MPI-V [11].

Many works have recently considered the more general issue of copying memory
regions in multicore systems using specific hardware [41, 90], or how the memory
management can play a significant role in the communication performance [40,
84]. However, the interactions between simultaneously transferring the data to the
Network Interface Card and obtaining an additional copy in the application space
has not been addressed.

3.5.1 Strategies for Sender-Based Copies

In the message logging fault-tolerant protocol, two mechanisms are used: event
logging and sender-based message logging. The event logging mechanism defuse
the threat on recovery consistency posed by orphan messages, those who carry a
dependency between the nondeterministic future of the recovering processes and the
past of the survivors. The outcome of every nondeterministic event is stored on a
stable remote server; upon recovery, this list is used to force the replay to stay in a
globally consistent state. In this section, we focus our efforts on improving the second
mechanism, message payload copy, thus we do not further discuss the event logging
method. The necessity of the sender-based message logging comes from in-transit
messages, i.e., messages sent in the past of the survivors but not yet received by the
recovering processes. Because only the failed processes are restarted, messages sent
in the past from the survivors can not be regenerated. The sender-based message
logging approach keeps a memory copy of every outgoing message on the sender, so
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that any in-transit message is either regenerated (because the sender also failed and
therefore is replaying the execution as well), or is readily available.

There are mostly two parameters governing the payload logging: (1) the backend
storage system, and (2) the copy strategy from the user memory to the backend
storage system.We have designed three backend storages: (a) a file that is mapped in
memory, (b) heap memory as backend, allocated using memory mapping of private
anonymous memory, and (c) a dummy backend storage, that does not implement
message logging, but provides us a mean to measure the overhead due only to the
copy itself. We have also designed three copy methods: (a) a pack method, that copy
the message in one go into the backend space, (b) a convertor method, that chops the
copy of the message according to the Open MPI pipeline, and (c) a thread method,
that creates an independent thread responsible of doing the copies. In the following,
we describe with more details these strategies.

3.5.2 Backend Storages

Memory Mapped file: It should be noted that there is no necessity for the log to
be persistent: if a process crashes, it will restart in its own history, and recreate the
messages that have been logged after the last checkpoint (still, messages preceding
the last checkpoint must be saved with the checkpoint image, because they are part
of the state of the process). However, a file backend is natural, because the volume
of message to be logged can be significant, and this should not reduce the amount of
memory available for the application. Mapping the backend file into memory is the
most convenient way of accessing it.

We designed this backend file as a growing storage space, on which we open a
movingwindow using themmap system call.When thewindow is too small to accept
a new message (we use windows of 256MB, unless some message exceeds the size
of the window), we wait that all messages are logged (depending on the copying
method, described later), make the file grow if necessary, and move the window
entirely to a free area of the file.

Heap Memory: If the amount of memory available on themachine is large enough to
accept at the same time the application and the copy of the messages payload (up to
garbage collection time), then the payload logging can be kept in memory. This
second method uses anonymous private memory allocated with the mmap system
call to create such a backend for our message logging system.

Dummy Storage: In order to measure independently the overhead introduced by the
copymethod itself,we alsodesigned aDummyStorage that does not really implement
message logging: after a message is logged, the pointer to store the message payload
is moved back to the beginning of the same memory area, reallocated if the size of
the message is larger than the largest message seen until the call. When messages are
sent often, the pages related to this area will most likely be present in the TLB, and
for very short messages, it is even possible that the area itself remains in the CPU
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cache between two emissions. Though this storage cannot be considered as a backend
storage for message logging, it helps us evaluate the overheads of the copy methods
themselves, without considering other parameters like TLB misses and pages fault.

3.5.3 Copy Methods

Pack.: The Pack method consists in copying the payload of the message using the
memcpy libc call, from the user space to the backend storage space, when the PMLV
intercepts the message emission for the first time. This interception can happen just
after the message has been given to the network card for short messages, or just after
the first bytes of the message have been given to the network card, and the network
card cannot send more without blocking, for longer messages.

Conv.: When converting the user data to a serialized form usable by the network
cards, the Open MPI data type engine can optimize the operation by establishing
a pipeline. Instead of sending a single very large message, the convertor data type
component splits the message in fragments, and it sends multiple messages of a
predetermined maximal size on the network cards. Up to four messages can be given
to the network card simultaneously, which will send one after the other. The data
type engine tries to keep this pipeline as full as possible, to ensure that a network card
has always some data ready to send. In the Conv. payload copy method, the PML V
intercepts the convertor component’s production of fragments, and introduces the
message payload copy at this time. If the pipeline is enabled, each time a chunk of
data is copied from the user data to the network card, the PML V copies the same
amount of bytes from the user data to the backend storage. The size of the chunks in
the pipeline is a parameter of this method.

Thread.: The last copying method is based on a thread. A copying thread is created
during the initialization. This thread waits on a queue for copy orders. When this
queue is not empty, the thread pops the first element of the queue, and copies the
whole user memory onto the backend storage, using the memcpy libc call. When a
message emission is intercepted by the PML V, if the message is short, it is copied
as for the Pack method. If the message is long enough and could not be sent to the
network in one go, a copy request is created and pushed at the end of the request
queue.When the application returns from theMPI call, it synchronizes with the copy
thread, and waits, to guarantee message integrity, that the relatedmessages have been
entirely logged before returning from the MPI call. To ensure a fair comparison, at
constant hardware resources, this thread is pinned on the same core as the MPI
process that produces the message.

3.5.4 Sender-Based Copy: Experimental Evaluation

The full description of the experimental conditions can be found in [7].
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Fig. 3.9 Reference MPI MX NetPIPE performance between two dancer nodes compared to mem-
copy. a Latency. b Bandwidth

Figure3.9 presents the reference latency (Fig. 3.9a) and bandwidth (Fig. 3.9b)
of Open MPI on the specified network, and of the memory bus of the machines
used. These figures are presented here as a absolute reference of peak performance
achievable without message logging. A first observation is that the high-memory
bandwidth and low latency compared to the High-Speed network card should enable
a logging in memory with little performance impact for messages of less than 1MB.
For larger messages, the bandwidth of the memory bus will become a bottleneck for
the logging, and unless the time taken to transfer the message on the network can be
recovered by the logging mechanism, overheads are to be expected.

A fewcharacteristics of the underlying network and theOpenMPI implementation
can moreover be observed from these two figures: one can clearly see the gaps in
performance formessages of 4KB (default size of theMX frame), and 32KB (change
of communication protocol from eager to rendezvous in the Open MPI library).
In the rest of the paper, all other measurement will be presented relative to the
bandwidth performance of the high-speed network card, to highlight the overheads
due to message logging.

Each of the first figures grouped under Figure3.10 consider a specific storage
medium, and compare for a given medium the overheads of the different logging
methods as function of the message size.

First, we consider Fig. 3.10a that uses as a storage medium the “Ideal” Storage.
As described in Sect. 3.5.1, the Ideal storage uses a single memory area to log all the
messages (thus overriding existing log with new messages). The goal of this exper-
iment is to demonstrate the overheads due to the copy itself (and when it happens)
without other effects, like page faults, etc. One can see that the logging method has
no significant impact up to (and excluding) messages of 4KB. At 4KB, the Thread
method suffers a huge overhead that decreases the performance by 80%, while the
other methods suffer a lower overhead.

A single MX frame is of 4KB (on this platform). Thus, for messages of 4KB
of payload, or more, multiple MX frames are necessary to send the message (this
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Fig. 3.10 NetPIPE MX bandwidth between two dancer nodes, according to the storage method.
a Ideal storage memory. b Anonymous memory. c File map

is true for messages of 4KB of payload too, since the message header must also be
sent). When the message fits in a single frame, the logging thread can be scheduled
while the message circulates on the network and is handled by the receiving peer.
When the message does not fit in a single MX frame, the Open MPI engine requires
scheduling to ensure the lowest possible latency. Since both threads are bound on
the same core, they compete for the core, and the relative performances decrease.

On one hand, when the number of frames needed for a single message is low,
the MPI thread and the logging thread must alternate with a high frequency on the
core (since the MPI call exits only when the message has been sent and logged).
On the other hand, when the number of frames needed is high, the thread that is
scheduled on the CPU can either log the whole message in one quantum, or use all
available frames in the MX NIC to send as much data as possible in one go. Thus,
when the number of frames increases, the relative overhead due to the logging thread
decreases.

The pack method decreases almost linearly with the message size, since all copies
are made sequentially after the send. Because the network is eventually saturated,
the relative overhead reaches a plateau. The Convertor method uses a pipeline of
512KB. Thus, until messages are 512KB long, it behaves similarly as the Pack
method. The difference is due to a slightly better cache reuse from the Pack method
that send themessage, then logs it, instead of first logging it during the pack operation,
then sending it on the network. When the messages size is larger than the pipeline
threshold, the Convertor method introduces some parallelism (although not as much
as the Thread method), that is used to recover the communication time with logging
time.

The other two figures Fig. 3.10b, c demonstrate a similar behavior before 4K,
although the overheads begin to be notifiable a little sooner for all methods when
logging on a File. This is due to file system overheads (inodes and free blocks
accounting), and memory management (TLB misses) when more pages are needed
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Fig. 3.11 NetPIPE MX bandwidth between two dancer nodes, according to the copy method.
a Pack method. b Convertor method. c Thread method

to log themessages.When the file system is effectively used (messages of 4 and 8MB
end up consuming all available buffer caches of the file system), a high variability
in the relative overhead becomes observable (Fig. 3.10c).

These phenomenon are more observable on the second group of three figures
under Fig. 3.11. These figures consider each a specific logging method, and expose
the impact of themediumon the overheads due to a loggingmethod, as function of the
message size. As can be seen, using a mmaped file as a storage space introduces the
highest overhead, significantly higher than the overhead due to in-memory storage,
even when the kernel buffers of the file system are large enough to hold this amount
of data. This is due to accounting in the file system (free blocks lists, inodes status),
forced synchronization of the journaling information, and a conservative policy for
the copy of the data to the file system.

The difference of overhead between an anonymous memory map (in the heap of
the process virtual memory), and the Ideal storage space is mainly due to TLBmisses
introducing additional page reclaims. This cost is unavoidable to effectively log the
messages, but it is small for small messages, and amortized for very large messages.
As a consequence, logging should happen in memory as long as the log can be kept
small enough to fit there, and the system should resort to mmaped files only when
necessary.

Figure3.10b, c lead us to the conclusion that an hybrid approach, with different
thresholds depending on the storage medium, and on the message size, should be
taken: up to messages of 2KB, the method has little influence, however after this,
the Pack or the convertor methods should be preferred up to messages of 128KB.
For messages higher than 128KB, the use of an asynchronous thread, even if it must
share the core with the application thread, is the preferred method of logging.



176 A. Bouteiller

3.5.5 Concluding Remarks

In this section, we studied three techniques to log the payload of messages in a
sender-based approach, in the OpenMPI PMLV framework that implement message
logging fault tolerance.Because the copyingof themessagepayloadmust be achieved
before the corresponding MPI emission is complete (either when the blocking send
function exits, or when the corresponding wait operation exits), copying this payload
is a critical efficiency bottleneck of any message logging approach.

Oneof the techniques proposed is to use an additional thread to process the copying
asynchronously with the communication; a second uses the pipeline installed by the
OpenMPI communication engine to interlace transmissions toward the network, and
copies in memory; the third simply copy the payload after it has been sent, and before
the completion of the communication at the application level.

We also demonstrated that the medium used to store the payload has a signif-
icant impact on the performances of the payload logging process. We concluded
that depending on the medium for storage, and the message size, different strate-
gies should be chosen, advocating for a hybrid approach that will have to be tuned
specifically for each hardware. Even with advanced payload logging methods, the
experimental results indicate that devising a strategy to decrease the amount, or
totally eliminate payload logging for some messages would be highly beneficial. We
are presenting a technique that achieves such a goal in the next section.

3.6 Correlated Sets Coordination to Decrease Message
Logging

Recent advances in message logging have decreased the cost of event logging [11].
As a consequence, more than the logging scheme adopted (a thorough survey of
possible approaches is given in [30]), the prominent source of overhead in mes-
sage logging is the copy of message payload caused by in-transit messages [10].
While attempts at decreasing the cost of payload copy have been successful to some
extent [7], these optimizations are hopeless at improving shared-memory communi-
cation speed. Although the low mean time to failure of Exascale machines calls for
preferring an uncoordinated checkpoint approach, the overhead on communication
of message logging is bound to increase with the advent of many-core nodes. Unco-
ordinated checkpointing has been designed with the idea that failures are mostly
independent, which is not the case in many-core systems, where multiple cores
crash when the whole node is struck by a failure. Not only do simultaneous failures
negate the advantage of uncoordinated recovery, but the logging ofmessages between
cores is also a major performance issue. All interactions between two uncoordinated
processes have to be logged, and a copy of the transaction must be kept for future
replay. Since making a copy has the same cost as doing the transaction itself (as the
processes are on the same node we consider the cost of communications equal to
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the cost of memory copies), the overhead is unacceptable. It is disconcerting that the
most resilient fault-tolerant automatic method is also the most bound to suffer, in
terms of performance, on expected future systems.

In this section, we consider the case of correlated failures: we say that two
processes are correlated or codependent if they are likely to be subject to a simultane-
ous failure. We propose a hybrid approach between coordinated and noncoordinated
checkpointing, that prevents the overhead of keeping message copies for communi-
cations between correlated processes, but retains the more scalable uncoordinated
recovery of message logging for processes whose failure probability is independent.
This is a special case of a hierarchical checkpointing protocol presented in Sect. 1.2.4
and analyzed in Sect. 1.3.3, and we detail here how this case can be handled and is
evaluated. The coordination protocol we present is a split protocol, which takes
into account the fragmentation of messages, to avoid long waiting cycles, while
still implementing a transactional semantic for whole messages. Additionally, we
demonstrate that application’s communication pattern are likely to adopt a topology
which is beneficial to the correlated set approach we propose, and leads to a drastic
reduction of log volume.

3.6.1 Background

In this section we present our approach, designed to reduce the performance penalty
due to message logging, suffered by distributed applications on many-core systems.
On such systems the communication subsystem moving data between processes on
the same physical node is usually implemented on top of a shared-memory substrate.
Taking advantage of this geographical proximity of processes on amany-core system,
our message logging protocol significantly reduces the amount of payload to be
logged, by emphasizing characteristics linked to the process location.

3.6.1.1 Shared Memory and Message Logging

In uncoordinated checkpoint schemes, the ordering between checkpoint and mes-
sage events is arbitrary. As a consequence, every message is potentially in-transit,
and must be copied. Although the cost of the sender-based mechanism involved to
perform this necessary copy is not negligible, the cost of a memory copy is often
one order of magnitude lower than the cost of the network transfer. Furthermore, the
copy and the network operation can overlap. As a result, proper optimization greatly
mitigates the performance penalty suffered by network communications (typically to
less than 10%, [7, 11]). One can hope that future engineering advances will further
reduce this overhead.

Unlike a network communication, a shared-memory communication is a strongly
memory-bound operation. In the worst case, memory copy induced by message log-
ging doubles the volume of memory transfers. Because it competes for the same

http://dx.doi.org/10.1007/978-3-319-20943-2_1
http://dx.doi.org/10.1007/978-3-319-20943-2_1
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scarce resource—memory bandwidth—the cost of this extra copy cannot be over-
lapped, hence the time to send a message is irremediably doubled.

A message is in-transit (and needs to be copied) if it crosses the recovery line
from the past to the future. The emission and reception dates of messages are beyond
the control of the fault-tolerant algorithm: one could delay the emission or reception
dates to match some arbitrary ordering with checkpoint events, but these delays
would obviously defeat the goal of improving communication performance. The
only events that the fault-tolerant algorithm can alter, to enforce an ordering between
message events and checkpoint events, are checkpoint dates. Said otherwise, the only
way to suppress in-transit messages is to synchronize checkpoints.

3.6.1.2 Correlated Failures

Fortunately, although many-core machines put a strain on message logging perfor-
mance, a new opportunity opens, thanks to the side effect that failures do not have
an independent probability on such an environment. All the processes hosted by a
single many-core node are prone to fail simultaneously: they are located on the same
piece of silicon, share the same memory bus, network interface, cooling fans, power
supplies, operating system, and are subject to the same physical interferences (rays,
heat, vibrations, …). One of the motivating properties of message logging is that it
tolerates a large number of independent failures very well. If failures are correlated,
the fault-tolerant algorithm can bemore synchronous without decreasing its effective
efficiency.

The leading idea of our approach is to propose a partially coordinated fault-tolerant
algorithm, that retains message logging between sets of processes experiencing inde-
pendent failure probability, but synchronize the checkpoints of processes that have a
strong probability of simultaneous failures, what we call a correlated set. It leverages
the correlated failures property to avoid message copies that have a high chance of
being useless.

3.6.1.3 Related Works

Group coordinated checkpoint has been proposed in MVAPICH2 [37] to solve I/O
storming issues in coordinated checkpointing. In that context, the group coordination
refers to a particular scheduling of the checkpoint traffic, intended to avoid over-
whelming the I/O network. Unlike our approach, which is partially uncoordinated,
this algorithm builds a completely coordinated recovery set.

In [47], Ho et al. propose a group-based approach that combines coordinated and
uncoordinated checkpointing, similar to the technique we use in this paper, to reduce
the cost of message logging in uncoordinated checkpointing. Their work, however,
focuses on communication patterns of the application, to reduce the amount of mes-
sage logging. Similarly, in the context of AMPI [61], Meneses, Mendes, and Kalé
have proposed in [58] a team-based approach to reduce the overhead of message
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logging. The Charm++ model advocates a high level of oversubscription, with a
ratio of Chares threads per hardware thread much larger than one. In their work,
teams are of fixed, predetermined sizes. The paper does not explicitly explain how
teams are built, but an emphasis on communication patterns seems preferred. In a
similar manner, in [70] the authors propose to study the communication pattern of
the application in order to devise a static process grouping. In contrast, our work
takes advantage of hardware properties of the computing resources, proposing to
build correlated groups based on likeliness of failures, and relative efficiency of the
communication medium. Our approach effectively circumvents the inherent limita-
tion of competing for the same memory bandwidth on the shared-memory transport
by completely eliminating the need for copies inside many-core processors.

3.6.2 Correlated Set Coordinated Message Logging

Whenever a process of a correlated set needs to take a checkpoint, it forces a synchro-
nization with all other processes of the set. If a failure hits a process, all processes
of that set have to roll back to their last checkpoint (see the recovery line in example
execution depicted in Fig. 3.12). Considering a particular correlated set (as an exam-
ple S1), every message can be categorized as either ingoing (m1, m2), outgoing (m5),
or internal (m3,m4). Between sets, no coordination is enforced. A process failing
in another correlated set does not trigger a rollback, but messages between sets have
no guaranteed properties with respect to the recovery line, and can still be orphan
or in-transit. Therefore, regular message logging, including payload copy and event
logging must continue for outgoing and ingoing messages.

As checkpoints are coordinated, all orphan and in-transit messages are eliminated
between processes of the correlated set. However, as the total recovery set does con-
tain in-transit and orphanmessages, the consistency proof of coordinated checkpoint
does not hold for the recovery set formed by the union of the coordinated sets. In
an uncoordinated protocol, a recovery set is consistent if all in-transit messages are
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m4 m5

C0
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1 C 1
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Fig. 3.12 An execution of the correlated set coordinated message logging algorithm
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available, and no orphan message depends on the outcome of a nondeterministic
event. In the next paragraphs, we demonstrate that payload copy can be disabled for
internal messages, but that event logging must apply to all types of messages.

3.6.2.1 Intra-Set Payload Copy

Theorem 3.1 There is no recovery set containing an in-transitmessage between two
processes of the same correlated set.

If two processes are part of the same correlated set, they rollback together to
the recovery line containing their last checkpoint. By the direct application of the
coordination algorithm, no message is in-transit between any pair of synchronized
processes at the time of checkpoint (in the case of the Chandy–Lamport algorithm,
occasional in-transit messages are integrated inside the receiver’s checkpoint, hence
they are considered as already delivered).

Because an internal message cannot be in-transit, it is never sent before the recov-
ery line and received after. Therefore, the payload copy mechanism, used to recover
past sent messages during the recovery phase, is unnecessary for internal messages.

3.6.2.2 Intra-Set Event Logging

Theorem 3.2 In a fault-tolerant protocol creating recovery sets with at least two
distinct correlated sets, if the nondeterministic outcome of any internal messages
preceding an outgoing message is omitted from the recovery set, there exists an
execution that reaches an inconsistent state.

Outgoing messages are crossing a noncoordinated portion of the recovery line,
hence the execution follows an arbitrary ordering between checkpoint events and
message events. Therefore, for any outgoing message there is an execution in which
it is orphan. Consider the case of the execution depicted in Fig. 3.12. In this execution,
the message m5, between the sets S1 and S2 is orphan in the recovery line produced
by a rollback of the processes of S1.

Let us suppose that Event logging of internal messages is unnecessary for building
a consistent recovery set. The order between the internal receptions and any other
reception of the same process on another channel is nondeterministic. By transitivity
of the Lamport relationship, this nondeterminism is propagated to the dependent
outgoing message. Because an execution in which this outgoing message is orphan
exists, the recovery line in this execution is inconsistent. The receptions of messages
m3,m4 are an example: the nondeterministic outcome created by the unknown order-
ing of messages in asynchronous channels is propagated to P4 through m5. The state
of the correlated set S2 depends on future nondeterministic events of the correlated
set S1, therefore the recovery set is inconsistent. One can also remark that the same
proof holds for ingoing messages (as illustrated by m1 and m2).
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As a consequence of this theorem, it is necessary to log all message reception
events, even if the emitter is located in the same correlated set as the receiver. Only
the payload of this message can be spared.

3.6.2.3 Implementation

We have implemented the correlated set coordinated message logging algorithm
inside the pessimistic Vprotocol in Open MPI [11]. In order to evaluate the perfor-
mance of our new approach, we have extended this fault-tolerant component with
the capabilities listed below.

Construction of the Correlated Set, Based on Hardware Proximity: Open MPI
enables the end user to select a very precisemapping of his application on the physical
resources, up to pinning a particular MPI rank to a particular core. As a consequence,
the Open MPI’s runtime instantiates a process map detailing node hierarchies and
ranks allocations. The detection of correlated sets parses this map and extracts the
groups of processes hosted on the same node.

Internal Messages Detection: In Open MPI, the couple formed by the rank and the
communicator is translated into a list of endpoints, each one representing a channel
to the destination (eth0, ib0, shared memory, …). During the construction of the
correlated set, all endpoints pertaining to a correlated process are marked, so that
set membership can be resolved directly. When the fault-tolerant protocol considers
making a sender-based copy, the endpoint’s mark is simply checked to determine if
the message payload has to be copied.

Checkpoint Coordination in a Correlated Set: The general idea of a network-
silence based coordination is simple: processes send amarker in their communication
channels to notify other processes that no other message will be sent before the end
of the phase. When all output channels and input channels have been notified, the
network is silenced, and the processes can start communicating again. However, MPI
communications do not exactlymatch the theoretical model, which assumesmessage
emissions or receptions are atomic events. In practice, an MPI message is split into
several distinct events. The most important include the emission of the first fragment
(also called eager fragment), the matching of an incoming fragment with a receive
request, and the delivery of the last fragment. Most of those events are unordered, in
particular, a fragment can overtake another fragment, even from the same message
(especially with channel bonding). Fortunately, because the MPI matching has to be
FIFO, in Open MPI, eager fragments are FIFO, an advantageous property that our
algorithm leverages. Our coordination algorithm has three phases: it silences eager
fragments so that all posted sends are matched; it completes any matched receives;
it checkpoints processes in the correlated set.

Eager silence: When a process enters the checkpoint synchronization, it sends a
token to all correlated opened endpoints. Any send targeting a correlated endpoint,
if posted afterwards, is stalled upon completion of the algorithm. When a process
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not yet synchronizing receives a token, it enters the synchronization immediately.
The eager silence phase is complete for a processwhen it has received a token from
every opened endpoint. Because no new message can inject an eager fragment
after the token, and eager fragments are FIFO, at the end of this phase, all posted
sends of processes in the correlated set have been matched.

Rendezvous Silence: Unlike eager fragments, the remainder fragments of amessage
can come in any order. Instead of a complex non-FIFO token algorithm, the
property that any fragment left in the channel belongs to an already matched
message can be leveraged to drain remaining fragments. In the rendezvous silence
phase, every receive request is considered in turn. If a request hasmatched an eager
fragment from a process of the correlated set, the progress engine of Open MPI is
called repeatedly until it is detected that this particular request completed. When
all such requests have completed, all fragments of internalmessages to this process
have been drained.

Checkpoint phase: When a process has locally silenced its internal inbound chan-
nels, it enters a local barrier. After the barrier, all channels are guaranteed to be
empty. Each process then takes a checkpoint. A second barrier denotes that all
processes finished checkpointing and that subsequent sends can be resumed.

3.6.3 Experimental Evaluation

In this section we assess the performance benefit of the correlated set coordination
approach on a variety of platforms. First, we investigate the behavior of coordinated
message logging on large multicore nodes. Second application performance on a
cluster of multicore nodes is presented. Last we measure the log volume for several
widely used collective communication patterns.

The Pluto platform features 48 cores, and is our main testbed for large shared-
memory performance evaluations. The Dancer cluster is an 8 nodes (64 cores total)
Infiniband DDR cluster. Vanilla Open MPI means that no fault-tolerant protocol is
enabled, regular message logging means that the pessimistic algorithm is used, and
correlated set message logging denotes that the pessimistic algorithm is used but
cores of the same node undergo coordinated checkpoint. A full description of the
experimental conditions is available in [12].

3.6.3.1 Shared-Memory Performance

Coordination Cost: The cost of coordinating a growing number of cores is presented
in the Fig. 3.13. The first token exchange is a complete all-to-all, that cannot rely on a
spanning tree algorithm. Although, all other synchronizations are simple barriers, the
token exchange dominates the execution time, which grows quadratically with the
number of processes. Note, however, that this synchronization happens only during
a checkpoint, and that its average cost is comparable to sending a 10KB message.
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Fig. 3.13 Time to
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Clearly, the cost of transmitting a checkpoint to the I/O nodes overshadows the cost
of this synchronization.

Ping-Pong: Figure3.14 presents the results of the NetPIPE benchmark on shared
memory with a logarithmic scale. Processes are pinned to two cores sharing an L2
cache, a worst case scenario for regular message logging. The maximum bandwidth
reaches 53Gb/s, because communication cost is mostly related to accessing the L2
cache. The sender-based algorithm decreases the bandwidth to 11Gb/s, because it
copies data to a buffer that is never in the cache. When the communication hap-
pens between processes of the same correlated set, the the sender-based mechanism
is inactive and only event logging remains, which enables correlated set message
logging to obtain the same bandwidth as the non-fault-tolerant execution.

NAS Benchmarks: Figure3.15 presents the performance of the NAS benchmarks
on the shared-memory Pluto platform. BT and SP run on 36 cores, all others run
on 32. The results presented are the best run out of 10 for each benchmark protocol
combination. One can see that avoiding payload copy enables the correlated set
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message logging algorithm to experience at most a 7% slowdown, and often no
overhead, while the regular message logging suffers from up to 17% slowdown.

Cluster of Multicore Performance: Figure3.16 presents the performance of the
HPL benchmark on the Dancer cluster, with a one process per core deployment. For
small matrix sizes, the behavior is similar between the three MPI versions. However,
for slightly larger matrix sizes, the performance of regular message logging suffers.
Conversely, the correlated set message logging algorithm performs better, and only
slightly slower than the non fault-tolerant MPI, regardless of the problem size.

On the Dancer cluster, the available 500MB ofmemory per core is a strong limita-
tion. In this memory envelope, themaximum computable problem size on this cluster
is N = 28260. The extra memory consumed by payload copy limits the maximum
problem size to only N = 12420 for regular message logging, while the reduction on
the amount of logged messages enables the correlated set message logging approach
to compute problems as large as N= 19980. Not only does partial coordination of the
message logging algorithm increase communication performance, it also decreases
memory consumption.
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3.6.3.2 Collective Communications and Log Volume

In the experiments presented in Fig. 3.17, the benefit of the correlated set message
logging approach is compared with the legacy sender-based approach in terms of
logged message volume, for a variety of collective operations. We consider the hier-
archical collective communication implementations provided by Open MPI’s “Hier-
arch” module. These operations have the particularity of being implemented in a
topology-aware, hierarchical, manner; this is interesting to demonstrate the symbi-
otic relationship between the desired property of the application—reducing internode
communication volume—and the desired property of the message logging scheme—
reducing log volume. For a given collective, the colormap presents the ratio between
the remaining log volume of the correlated set approach over the total log volume
incurred by legacy message logging. The brighter the color, the less log is incurred
by correlated set message logging, compared to legacy message logging. Each line
represents the volume ratio on a particular rank (i.e., a core), the horizontal grid
boundaries, every 8 cores, denote ranks allocated on the same node. The columns,
as separated by the grid, pertain to a particular message size.

The first figure presents the log volume of the Hierarchical Broadcast algorithm.
For small messages, between 4 bytes to 1k bytes, half of the processes are send-
ing only messages crossing node boundaries that consequently incur logging in any
cases. The other half of the processes are leaves in the topology and therefore do not
send any message (denoted by the white area). This illustrates the typical behavior
of a non-topology-aware algorithm; for small messages, it is more beneficial to favor
operation parallelism over locality. The choice of this latency optimizing binary tree
algorithm has dire consequences on message logging, as it incurs the logging of the
complete volume, even with correlated sets. Furthermore, it generates log volume
imbalance across nodes. However, one should notice that latency avoiding strategies
are, by definition, beneficial only for small messages, where logging has no perfor-
mance penalty on remote link bandwidth and generate small absolute log volume.
In contrast, for large messages, which are obviously generating a much larger com-
munication volume, the broadcast algorithm favors a hierarchical, topology-aware
pipeline algorithm. This algorithm features the optimal volume of cross-node com-
munications and maximizes bandwidth (the operation extract parallelism between
progression of fragments in the pipeline, hence does not require to extract node
parallelism with an aggressive dissemination strategy, as is the case for short mes-
sages). As a consequence, on large messages, the correlated set approach reaches
the optimal log volume per node: only one core per node logs messages, all other
messages payloads, having local destinations, are ignored. The overall log volume
of the operation is hence divided by the number of cores per node. For intermediate
messages, both bandwidth and latency are important, hence the broadcast algorithm
undergoes an hybrid approach that starts by parallelizing the operation as much as
possible, first sending fragments along a binary tree, and then finishes the broadcast
by transmitting large fragments through a pipeline chain. The resulting log volume
for the correlated set approach, in this case, reflects the dual nature of the algorithm,
which is still imbalanced, but does not require to log all messages.
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Fig. 3.17 Remaining log volume of correlated set message logging (as a ratio over regular sender-
based message logging, lower is better)
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The Reduce algorithm is completely hierarchical, no matter the size of the mes-
sage. Thanks to the topology-aware nature of that algorithm, it can divide the log
volume per node by the optimal factor: the number of cores per nodes.

The Allreduce operation presents the behavior of a many-to-many algorithm.
For small and intermediate messages, up to 8k bytes, the collective operation is
implemented by an algorithm that enables large instant parallelism, at the expense
of internode communication volume. Still, because the many-to-many nature of the
algorithm incurs a significant stress on the network cross-section bandwidth, the
implementors have taken great care of balancing the communication volume per
node. They also favor to some extent intra-node communications, as is illustrated
by the overall 3/8 log volume reduction in correlated set message logging. For large
messages, similarly to the one-to-all communications, the main concern is to max-
imize cross-section bandwidth, which results in favoring the hierarchical pipeline
chain algorithm, which is also optimal for correlated set message logging.

Overall, as soon as the collective operation incurs a significant message vol-
ume, the implementation of the collective systematically favors an algorithm that (1)
minimizes the internode communication volume, as this is the crucial performance
impacting factor, and (2) balances communication volume per node. As a conse-
quence, the correlated set message logging approach spares the optimal amount of
log volume ratio for operations involving the largest absolute communication vol-
ume.We advocate that inherently, scalable collective operation implementations aim
at reducing the internode communication volume. Hence they induce a symbiotic
relation between the communication pattern and the correlated set message logging
approach.

3.6.4 Discussion on Process Grouping

In this section, we compare the interest of dynamically discovering the groups of
processes based on their communication patterns, as is often proposed in the lit-
erature, versus defining the groups from the physical hierarchy of the machine, as
proposed in this work. We proved in Theorem 3.2 that all nondeterministic events
must be logged in order to maintain the recovery line consistency; independently of
the shape or size of the process groups. Therefore, establishing checkpoint synchro-
nization groups is only beneficial by reducing the payload logging mechanism.

Logging the payload of intra-node communications introduces an overhead that is
of the same order of magnitude as the communications themselves. On the opposite,
logging the payload of internode communications is orders of magnitude faster than
the communication themselves. Hence, as long as storage memory is available, the
logging of internode communications does not introduce a significant slowdown
of the application. As a result, grouping coordinated sets according exclusively to
communication patterns, without taking into account the relative overhead of the
logging operation, can lead to suboptimal performance.



188 A. Bouteiller

For applications using a large amount of internode communications, memory con-
sumption might become a dominating problem. When the storage space for message
payload is exhausted, forced checkpoints must be regularly taken, or payload logging
must be transferred to a larger, and usually slower, storage. In that respect, group-
ing according to discovered communication patterns could yield better results than
according to hardware process mapping, as it is specifically designed to decrease
internode communication volume. However, we argue that on practical applications,
the difference in volume of logged communications between the two approaches
tend to be minimal. Indeed, as seen in the performance evaluation (Sect. 3.6.3.2),
collective communications in MPI tend to be implemented in a hierarchical way,
naturally grouping processes per levels of hierarchy in the underlying system. As
a result, processes physically located on the same machine log only external com-
munications, automatically realizing the same gain as a dynamic group discovery
algorithm. Even for applications that rely on point-to-point to express their commu-
nication patterns, an application that would intensely communicate between nodes
would present scalability and performance issues on a machine with a deep hierar-
chy. Hence application programmers and users have a strong incentive to map the
communication pattern of the application according to the hardware topology. This
results in a symbiotic mapping between the communication patterns and the corre-
lated set message logging, enabling, in practice, close to optimal message logging
volume reductions.

3.6.5 Concluding Remarks

In this section, we proposed a novel approach combining the most advantageous fea-
tures of coordinated and uncoordinated checkpointing. The resulting fault-tolerant
protocol, belonging to the event logging protocol family, spares the payload logging
for messages belonging to a correlated set, but retains uncoordinated recovery scala-
bility. We demonstrate formally, on one hand, that any pessimistic logging protocol
must log all nondeterministic event outcomes, regardless of the type of communica-
tion generating them, to fulfill the piecewise deterministic assumption. On the other
hand, we prove that payload logging of messages within the group can be safely
avoided.

The benefit on shared-memory point-to-point performance is significant, translat-
ing directly into an observable performance improvement for many types of applica-
tions. Even though internode communications are not modified by this approach, the
shared-memory speedup translates into a reduced overhead on cluster of multicore
type platforms. Moreover, the memory required to hold message payload is greatly
reduced; our algorithm provides a flexible control of the tradeoff between synchro-
nization and memory consumption. Our discussion emphasizes that the hardware-
conscious mapping of the correlated sets not only accounts for failure probability,
but also tends toward minimizing the volume of payload logging per node. Overall,
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this work greatly improves the applicability of message logging in the context of
distributed systems based on a large number of many-core nodes.

3.7 Supporting User-Level Recovery with Standard MPI

The primary form of fault tolerance today is rollback recovery with periodical check-
points to disk.While this method is effective in allowing applications to recover from
failures using a previously saved state, it causes serious scalability concerns [16]. Tra-
ditional approaches based on periodic checkpointing and rollback recovery, incurs
a steep overhead, as much as 25% [74], on failure-free operations. Moreover, peri-
odic checkpointing requires precise heuristics for fault frequency to minimize the
number of superfluous, expensive protective actions [17, 22, 39, 65, 92]. Even the
advanced checkpoint/restart techniques we have discussed in this chapter can suffer
from significant overhead given an adverse failure frequency, or a communication
pattern that generates too many sender-based copies.

In contrast, forward recovery leverages algorithms’ properties to complete oper-
ations despite failures. In naturally fault-tolerant applications, the algorithm can
compute the solution while totally ignoring the contributions of failed processes. In
Algorithm Based Fault Tolerance (ABFT) applications, a recovery phase is neces-
sary, but failure damaged data can be reconstructed only by applying mathematical
operations on the remaining dataset [48]. A recoverable dataset is usually created
by initially computing redundant data, dispatched so as to avoid unrecoverable loss
of information from failures. At each iteration, the algorithm applies the necessary
mathematical transformations to update the redundant data (at the expense of more
communication and computation). Despite great scalability and low overhead [13,
21, 57], the adoption of such algorithms has been hindered by the requirement that
the support environment must continue to consistently deliver communications, even
after being crippled by failures. This demand from the MPI library largely exceeds
the specifications of the currentMPI Standard [88] and has proven to be an unrealistic
requirement, considering that only a handful of MPI implementations provide it.

The currentMPI Standard (MPI-3.0, [88]) does not provide significant help to deal
with the required type of behavior. Section2.8 states in the first paragraph: MPI does
not provide mechanisms for dealing with failures in the communication system. […]
Whenever possible, such failures will be reflected as errors in the relevant commu-
nication call. Similarly, MPI itself provides no mechanisms for handling processor
failures. Failures, be they due to a broken link or a dead process, are considered
resource errors. Later, in the same section: This document does not specify the state
of a computation after an erroneous MPI call has occurred. The desired behavior
is that a relevant error code be returned, and the effect of the error be localized to
the greatest possible extent. So, for the current standard, process or communication
failures are to be handled as errors, and the behavior of the MPI application after
an error has been returned is left unspecified by the standard. However, the standard
does not prevent implementations from going beyond its requirements, and on the

http://dx.doi.org/10.1007/978-3-319-20943-2_2
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contrary, encourages high-quality implementations to return errors once a failure is
detected. Unfortunately, most of the implementations of theMPI Standard have taken
the path of considering process failures as unrecoverable errors, and the processes of
the application are most often killed by the runtime system when a failure hits any
of them, leaving no opportunity for the user to mitigate the impact of failures.

Several proposals have emerged during the efforts of the MPI forum toward the
MPI-3 standard.2 However, these proposals are still in their infancy and it is expected
that several years will pass before they are blessed by the forum in a future revision
and become generally deployed and available.

The current MPI-3 standard leaves open an optional behavior regarding failures
to qualify as a “high-quality implementation.” According to this specification, when
using the MPI_ERRORS_RETURN error handler, the MPI library should return con-
trol to the user when it detects a failure. In this paper, we propose the idea of
Checkpoint-on-Failure (Checkpoint-on-Failure (CoF)) as a minimal impact feature
to enable MPI libraries to support forward recovery strategies, while relying exclu-
sively on the features of a high quality implementation, as defined by the current
MPI Standard, and thereby enable advanced forward recovery techniques despite
the default undefined state of MPI which does not permit continued communication
in case of a failure. We demonstrate that an implementation that enables CoF is sim-
ple and yet effectively supports abft recovery strategies that completely avoid costly
periodic checkpointing. The CoF protocol undergoes checkpoint after a failure has
struck, thereby creating an optimal number of checkpoints (exactly one per actual
failure). The MPI application is then restarted in order to restore a fresh, functional
MPI library. The dataset is reloaded from checkpoints where possible, otherwise
it is restored through a scalable, application-specific forward recovery protection
scheme. It is notable that in this scheme, checkpoint actions are taken only after a
failure is detected; hence the checkpoint interval is optimal by definition, as there
will be one checkpoint interval per effective fault. We then extend the analysis to the
broader case of general applications where only part of the computations are handled
byMPI routines. In Sect. 3.7.4, we explain how such applications, for which periodic
checkpoint–restart is generally not practical, can still efficiently integrate the subset
of their MPI operations with the CoF approach. Additionally, this type of deploy-
ment also eliminates the checkpoint overhead: the non-MPI part of the application
can remain dormant during the redeployment of MPI, so that the dataset remains
resident in memory without paying the cost of checkpoint I/O.

3.7.1 The Checkpoint-on-Failure Protocol

In this section, we advocate that an extremely efficient form of fault tolerance can be
implemented, strictly based on the MPI Standard, for applications capable of taking
advantage of forward recovery. abftmethods are a family of forward recovery algo-

2http://meetings.mpi-forum.org/mpi3.0_ft.php.

http://meetings.mpi-forum.org/mpi3.0_ft.php
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1. MPI returns an error at surviving processes
2. Surviving processes checkpoint
3. Surviving processes exit
4. A new MPI application is started
5. Processes load from checkpoint (if any)
6. Processes enter ABFT dataset recovery
7. Application resumes
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Fig. 3.18 The checkpoint-on-failure protocol

rithms, capable of restoringmissing data from redundant information located on other
processes. In the remainder of this text, we will consider the case of abftwithout
loss of generality: any other forward recovery technique could be substituted. For-
ward recovery requires that communication between processes can resume, and we
acknowledge that, in light of the current standard, requiring the MPI implementation
to maintain service after failures is too demanding. However, a high-quality MPI
library should at least allow the application to regain control following a process
failure. We note that this control gives the application the opportunity to save its
state and exit gracefully, rather than the usual behavior of being aborted by the MPI
implementation.

Based on these observations, we propose a new approach for supporting applica-
tion based forward recovery, called Checkpoint-on-Failure (CoF). The algorithm in
Fig. 3.18 presents the steps involved in the CoF method. In the associated explana-
tory figure, horizontal lines represent the execution of processes in two successive
MPI applications. When a failure eliminates a process, other processes are notified
and regain control from ongoing MPI calls (1). Surviving processes assume the MPI
library is dysfunctional and do not call further MPI operations (in particular, they
do not yet undergo abft recovery). Instead, they checkpoint their current state inde-
pendently and abort (2, 3). When all processes exited, the job is usually terminated,
but the user (or a managing script, batch scheduler, runtime support system, etc.) can
launch a newMPI application (4), which reloads the dataset from the checkpoint (5).
In the new application, the MPI library is functional and communications possible;
the abft recovery procedure is called to restore the data of the process(es) that could
not be restarted from checkpoint (6). When the global state has been repaired by the
abft procedure, the application is ready to resume normal execution.

Compared to periodic checkpointing, in CoF, a process pays the cost of creating
a checkpoint only when a failure, or multiple simultaneous failures have happened,
hence an optimal number of checkpoints during the run (and no checkpoint over-
head on failure-free executions). Moreover, in periodic checkpointing, a process
is protected only when its checkpoint is stored on safe, remote storage, while in
CoF, local checkpoints are sufficient: the forward recovery algorithm reconstructs
datasets of processes which cannot restart from checkpoint. Of course, CoF also
exhibits the same overhead as the recovery technique employed by the application.
In an abft approach, the application might need to do extra computation, even in the
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absence of failures, to maintain internal redundancy (whose degree varies with the
maximumnumber of simultaneous failures) used to recover data damaged by failures.
However, abft techniques often demonstrate excellent scalability; for example, the
overhead on failure-free execution of the abft -QR operation (used as an example
in Sect. 3.7.3) is inversely proportional to the number of processes [13].

3.7.1.1 MPI Requirements for Checkpoint-on-Failure

Returning Control over Failures: In most MPI implementations, the default (and
often, only functional) error handler is MPI_ERRORS_ABORTS. However, the MPI
Standard also defines the MPI_ERRORS_RETURN handler. To support CoF, the
MPI library should never deadlock because of failures, but invoke the error handler,
at least on processes doing direct communicationswith the failed process, and returns
control to the application.

Preparing for Checkpoint: If the MPI implementation intends to support a system-
based checkpointmodule (such asMTCP [68]), before invoking the error handler, the
MPI librarymust dispose of its internal state, so that it is not restoredby the checkpoint
library upon restart. This cleanup consists in releasing all acquired resources and
freeing internal buffers and structures,which is safe as theMPI library is not supposed
to be functional anymore. If the MPI implementation intends to support only user-
directed checkpoint, this effort can be spared.

Termination After Checkpoint: A process that detects a failure ceases to use MPI.
It only checkpoints on some storage and exits without calling MPI_FINALIZE.
Exitingwithout callingMPI_Finalize is an error from theMPI perspective, hence
the failure cascades following the communication pattern of the application, andMPI
eventually returns with a failure notification on every process, which triggers their
own checkpoint procedure and termination. Only processes that do not communicate
may reach MPI_Finalize without detecting a failure, adding a Barrier before
MPI_Finalize will result in the expected error in that case.

3.7.2 Implementation Issues

OpenMPI is an MPI 3.0 implementation architected such that it contains two main
levels, the runtime (ORTE) and the MPI library (OMPI). As with most MPI library
implementations, the default behavior of OpenMPI is to abort after a process failure.
This policy was implemented in the runtime system, preventing any kind of decision
from theMPI layer or the user level. Themajor change requested by theCoF protocol
was to make the runtime system resilient, and leave the decision in case of failure to
the MPI library policy, and ultimately to the user application.
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3.7.2.1 Failure Resilient Runtime

For full support of theCoFprotocol, it is sufficient for the runtime to delay the cleanup
of the failed MPI application until it terminates itself. However, a persistent runtime
that remains available for spawning replacement MPI processes confers a number
of advantages compared to this simple design. Indeed, it eliminates the downtime
resulting from the complete redeployment of the parallel job infrastructure and the
supplementary wait time from losing the batch scheduler reservation. In addition, it
can serve as a local storage for checkpoints.

The ORTE runtime layer depends on an out-of-band communication mechanism
(OOB); therefore, node failures not only impact the MPI communications, but also
disrupt the OOB overlay routing topology. Fortunately, restoring TCP-based OOB
communications is easier than it is to repair MPI. The default routing policy in the
Open MPI runtime has been amended to allow for self-healing behaviors. The OOB
overlay topology now automatically routes around failed processes. In some routing
topologies, such as a star, this is a trivial operation and only requires excluding the
failed process from the routing tables. For more elaborate topologies, such as a bino-
mial tree, the healing operation involves computing the closest neighbors in the direc-
tion of the failed process and reconnecting the topology through them. The repaired
topology is not rebalanced, resulting in degraded performance but complete func-
tionality after failures. Although in-flight messages that were currently “hopping”
through the failed processes are lost, newer in-flightmessages are safely routed on the
repaired topology. Thanks to self-healing topologies, the runtime remains responsive
and can continue to support the replacement MPI application.

3.7.2.2 Failure Notification

Although not strictly necessary to support CoF, rapid dissemination of failure noti-
fications has a significant influence on the delay before the recovery can start. The
runtime has therefore been augmented with a failure detection and dissemination
service. To track the status of the failures, an incarnation number has been included
in the process names. Following a failure, the name of the failed process (includ-
ing the incarnation number) is broadcasted over the OOB topology. By including
this incarnation number, we can identify transient process failures, prevent duplicate
detections, and track message status. ORTE processes monitor the health of their
neighbors in the OOB routing topology. Detection of other processes rely on a fail-
ure resilient broadcast that overlays on the OOB topology. This broadcast algorithm
has a low probability of creating a bipartition of the routing topology, hence ensur-
ing a high accuracy of the failure detector. We will show in the experiments that the
underlying OOB routing algorithm has a significant influence on the propagation
time. Finally, on each node, the ORTE runtime layer forwards failure notifications to
the MPI layer, which has been modified to invoke the appropriate MPI error handler.
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3.7.3 Example: The QR Factorization

In this section, we propose to illustrate the applicability of CoF by considering a rep-
resentative routine of a widely used class of algorithms: dense linear factorizations.
The QR factorization is a cornerstone building block in many applications, including
solving Ax = b when matrices are ill-conditioned, computing eigenvalues, least
square problems, or solving sparse systems through the GMRES iterative method.
For an M × N matrix A, the QR factorization produces Q and R, such that A = Q R
and Q is an M×M orthogonalmatrix and R is an M×N upper triangularmatrix. The
most commonly used implementation of the QR algorithm on a distributed memory
machine comes from the ScaLAPACK linear algebra library [26], based on the block
QR algorithm. It uses a 2D block-cyclic distribution for load balance, and is rich in
level 3 BLAS operations, thereby achieving high performance.

3.7.3.1 ABFT-QR Factorization

In the context of FT-MPI, the ScaLAPACK-QR algorithm has been rendered fault
tolerant through an abftmethod in previous work [13]. This abft algorithm protects
both the left (Q) and right (R) factors from fail-stop failures at any time during the
execution, and is similar to the abftLU algorithm presented in Sect. 1.5.2. At the
time of failure, every surviving process is notified by FT-MPI. FT-MPI then spawns
a replacement process that takes the same grid coordinates in the P × Q block-cyclic
distribution.Missing checksums are recovered fromduplicates, a reduction collective
communication recovers missing data blocks in the right factor from checksums. The
left factor is protected by theQ-parallel panel checksum, it is either directly recovered
fromchecksum, or by recomputing the panels in the currentQ-wide section (see [13]).
Although this algorithm is fault tolerant, it requires continued service from the MPI
library after failures—which is a stringent requirement that can be waived with CoF.

3.7.3.2 Checkpoint-on-Failure QR

Checkpoint Procedure: In our current implementation of CoF, system-level check-
pointing is not supported and would result in restoring the state of the broken MPI
library upon restart. Instead, the application provides a custom MPI error handler,
which invokes an algorithm specific checkpoint procedure to dump the matrices and
the value of important loop indices into a file.

State Restoration: In the theoretical version of the abft algorithm, regardless of
when the failure is detected, the current iteration is completed before entering the
recovery procedure, so that all updates are applied to the checksums. In the case of
the CoF protocol, failures interrupt the algorithm immediately, the current iteration
cannot be completed due to lack of communication capabilities. A ScaLAPACK
program has a deep call stack, layering functions from multiple software packages,

http://dx.doi.org/10.1007/978-3-319-20943-2_1
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such as PBLAS, BLACS, LAPACK and BLAS. Because failure notification happens
only in MPI, lower level, local procedures (BLAS, LAPACK) are never interrupted.
However, PBLAS operations may be incomplete, and therefore checksums only
partially updated.

To resolve this issue, the call stack must be restored on every process. The current
indices in the loop nest of the QR algorithm, down to the PBLAS level, are adjunct
to the checkpoint. When restarted from a checkpoint, a process undergoes a “dry
run” phase that mimics the already completed loop nests, without actually applying
modifications to or exchanging data. When the same loop indices as before the
failure are reached, the matrix content is loaded from the checkpoint; the state is
then identical to that immediately preceding the failure. The regular abft recovery
procedure can then be applied: the current iteration of the factorization is completed
to update all checksums and the dataset is finally rebuilt using the abft reduction.

3.7.4 In-Memory COF Protocol

The CoF protocol circumvents one of the major limitations of current MPI imple-
mentations: the lack of confidence that the MPI library is capable of successfully
completing communications once a failure happened. As illustrated above, forward
recovery strategies are capable of taking advantage of this technique and provide effi-
cient fault-tolerance support that does not require periodic checkpointing. However,
when a failure strike, the CoF protocol still incurs checkpoint I/O overhead. In this
section, we explain how the CoF protocol can be efficiently integrated with already
resilient, non-MPI applications to completely eliminate all checkpointing activity.
We will illustrate the approach with a fault-tolerant database management system,
SciDB.

Fault-tolerant database management exposes a set of requirements that is best
addressed today using replication and transactional operations. SciDB [89] com-
bines database operations and many scientific specific operations (including linear
algebra routines) to create a highly expressive request query language suitable for
scientists to solve their data analysis problems. The SciDB system is not implemented
on top of MPI, mainly because of the lack of fault-tolerance capabilities from the
MPI Standard. It makes use, however, of the MPI based distributed linear algebra
operations in ScaLAPACK, to provide, among other things, various factorization
routines. Because most MPI implementations are not usable after a process failure,
and high availability is a necessity in database management systems, the SciDB
implementation cannot integrate the MPI library in its main process. As a result,
the linear algebra operations are called from separate processes: a query coordinator
orders the distributed database managers to locate the data on which the factorization
operationmust be applied and to expose this data in the expected ScaLAPACK layout
using one shared memory segment per node; it then launches a ScaLAPACK/MPI
application that attaches to this memory segment and applies the operation on it.
If a failure hits a node, the MPI application aborts, and the mpirun child process
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Fig. 3.19 SciDB/CoF ABFT-ScaLAPACK integration

reports the error to the data query coordinator. The original data is recovered from
the database management system (using database-specific fault-tolerant techniques),
and the linear algebra operation is relaunched from scratch on the original data.

This approach can be improved using the CoF protocol and an ABFT implemen-
tation of the factorization operation. The idea is depicted in Fig. 3.19. SciDB and
ScaLAPACK are coupled in a similar way; however, the DB managers compute the
initial checksum of the original data, and expose both the data and checksum to
the ABFT-ScaLAPACK process. The ABFT operation is applied, and if no failure
happens, the result of the factorization is accessible in the shared-memory segments
(the checksum data can then be discarded by the DB managers). If a failure occurs,
the MPI process updates the shared-memory segments with the meta information of
the checkpoint (values of the loop counters, etc.); the content of the shared-memory
segments is analog to the checkpoints performed in the normal CoF protocol. Then,
the MPI processes quit and the mpirun child process reports the error to the database
coordinator. Instead of fixing the data issue at the DB level, the coordinator immedi-
ately relaunches a new ABFT-ScaLAPACK operation on the same set of nodes plus
a spare node with an empty shared-memory segment, the ABFT algorithm recov-
ers the data and the original operation resumes. Upon successful completion, the
mpirun child process reports to the database coordinator that the result is in the
shared memory segments.

This approach is advantageous compared to both the original design and the
checkpoint-based CoF approach. Instead of restarting from scratch after each failure,
the factorization incurs only the small recovery overhead of ABFT, ensuring a faster
time-to-solution for the linear algebra operation. In exchange, a small overhead, for
creating and maintaining the checksum data during the operation, is imposed on the
failure-free case. Second, this approach removes the cost of writing the checkpoint to
a file: the shared-memory segment that survives the exit of the MPI processes where
the node was not subject to a failure and the checksum information maintained
by the ABFT algorithm are sufficient to recover the missing data. The segment of
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memory on which the operation is computed is made remanent, creating the bulk of
the checkpoint data and reducing to an insignificant value the cost of checkpointing
when a failure occurs. This will be demonstrated in the experimental section, below.

3.7.5 Performance Discussion

In this section, we use our OpenMPI and abft -QR implementations to evaluate
the performance of the CoF protocol. We use two test platforms. The first machine,
“Dancer”, is a 16-node cluster. All nodes are equipped with two 2.27GHz quad-core
Intel E5520 CPUs with a 20GB/s Infiniband interconnect. Solid State Drive (SSD)
disks are used as the checkpoint storage media. The second system is the “Kraken”
supercomputer. Kraken is aCrayXT5machinewith 9,408 compute nodes. Each node
has two Istanbul 2.6GHz six-core AMDOpteron processors, 16GB of memory, and
is connected to other nodes through the SeaStar2+ interconnect. The scalable cluster
file system “Lustre” is used to store checkpoints.

3.7.5.1 MPI Library Overhead

One of the concerns when evaluating the performance of fault tolerance techniques
is the amount of overhead introduced by the fault-tolerance management additions.
Our implementation of fault detection and notification is mostly implemented in the
noncritical ORTE runtime. Typical HPC systems feature a separated service network
(usually Ethernet-based) and a performance interconnect, hence health monitoring
traffic, which happens on the OOB service network, is physically separated from
the MPI communications, leaving no opportunity for network jitter. Changes to
MPI functions are minimal: the same condition that used to trigger unconditional
abort has been repurposed to trigger error handlers. As expected, no impact on MPI
bandwidth or latency wasmeasured. Thememory usage of theMPI library is slightly
increased, as the incarnation number doubles the size of process names; however,
this is negligible in typical deployments.

3.7.5.2 Failure Detection

According to the requirement specified in Sect. 3.7.1.1, only in-band failure detec-
tion is required to enable CoF. Processes detecting a failure checkpoint then exit,
cascading the failure to processes communicating with them. However, no recovery
action (in particular checkpointing) can take place before a failure has been notified.
Thanks to asynchronous failure propagation in the runtime, responsiveness can be
greatly improved, with a high probability for the next MPI call to detect the failures,
regardless of communication pattern or checkpoint duration.
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Fig. 3.20 Failure detection time, sorted by process rank, depending on the OOB overlay network
used for failure propagation. a Linear OOB routing. b Binomial OOB routing

We designed a microbenchmark to measure failure detection time as experienced
byMPIprocesses. Thebenchmark code synchronizeswith anMPI_BARRIER, stores
the reference date, injects a failure at a specific rank, and enters a ring algorithm until
theMPI error handler stores the detection date. TheOOBrouting topologyused by the
ORTE runtime introduces a nonuniform distance to the failed process, hence failure
detection time experienced by a process may vary depending on both the used OOB
overlay topology and the position of the failed process in the topology. Figure3.20a, b
present the case of the linear and binomial OOB topologies, respectively. The curves
“Low,Middle,High” present the behavior for failures happening at different positions
in the OOB topology. On the horizontal axis is the rank of the detecting process, on
the vertical axis is the detection time it experienced. The experiment uses 16 nodes,
with one process per node, MPI over Infiniband, OOB over Ethernet, an average of
20 runs, and theMPI barrier latency is four orders of magnitude lower than measured
values.

In the linear topology (Fig. 3.20a) every runtimeprocess is connected to thempirun
process. For a higher rank, failure detection time increases linearly because it is noti-
fied by the mpirun process only after the notification has been sent to all lower ranks.
This issue is bound to increase with scale. The binomial tree topology (Fig. 3.20b)
exhibits a similar best failure detection time. However, this more scalable topol-
ogy has a low output degree and eliminates most contentions on outgoing messages,
resulting in amore stable, lower average detection time, regardless of the failure posi-
tion. Overall, failure detection time is on the order of milliseconds, a much smaller
figure than typical checkpoint time.
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3.7.5.3 Checkpoint-on-Failure QR Performance

Supercomputer Performance: Figure 3.21 presents the performance on the Kraken
supercomputer. The process grid is 24 × 24 and the block size is 100. abft -QR
(no failure) presents the performance of the CoF-QR implementation, in a fault-
free execution; it is noteworthy, that when there are no failures, the performance is
exactly identical to the performance of the unmodified abft -QR implementation.
The abft -QR (with CoF recovery, latter called CoF-QR for brevity) curves present
the performancewhen a failure is injected after the first step of the PDLARFB kernel.
The performance of the non-fault-tolerant ScaLAPACK-QR is also presented for
reference.

Without failures, the performance overhead compared to the regular ScaLA-
PACK is caused by the extra computation to maintain the checksums inherent to
the abft algorithm [13]; this extra computation is unchanged when applying the
CoF method to the abft -QR. Only on runs where failures occur does the CoF pro-
tocol undergoes the supplementary overhead of storing and reloading checkpoints.
However, the performance of CoF-QR remains very close to the no-failure case.
For instance, at matrix size N = 100,000, CoF-QR still achieves 2.86 Tflop/s after
recovering from a failure, which is 90% of the performance of the non-fault-tolerant
ScaLAPACK-QR. This demonstrates that the CoF protocol enables efficient, prac-
tical recovery schemes on supercomputers.

Impact of Local Checkpoint Storage: Figure3.22a presents the performance of the
CoF-QR implementation on the Dancer cluster with a 8×16 process grid. Although
a smaller test platform, the Dancer cluster features local storage on nodes and a
variety of performance analysis tools unavailable on Kraken. As expected (see [13]),
the abftmethod has a higher relative cost on this smaller machine (with a smaller
number of processors and a smaller problem size, the cost in supplementary opera-
tions to update checksums is relatively larger). Compared to the Kraken platform, the
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Fig. 3.22 ABFT-QR and one CoF recovery on dancer (local SSD). a Performance. b Time break-
down of one COF recovery

relative cost of CoF failure recovery is smaller on Dancer. The CoF protocol incurs
disk accesses to store and load checkpoints when a failure hits, hence the recov-
ery overhead depends on I/O performance. By breaking down the relative cost of
each recovery step in CoF, Fig. 3.22b shows that checkpoint saving and loading only
takes a small percentage of the total runtime, thanks to the availability of solid state
disks on every node. Since checkpoint reloading immediately follows checkpoint-
ing, the OS cache satisfies most disk accesses, resulting in high I/O performance.
For matrices larger than N = 44,000, the memory usage on each node is high and
decrease the available space for disk cache, explaining the decline in I/O performance
and the higher cost of checkpoint management. Overall, the presence of fast local
storage can be leveraged by the CoF protocol to speedup recovery (unlike periodic
checkpointing, which depends on remote storage by construction). Nonetheless, as
demonstrated by the efficiency on Kraken, while this is a valuable optimization, it is
not a mandatory requirement for satisfactory performance.

In-Memory Checkpoint-on-Failure: An interesting optimization toCoF is to avoid
the checkpointing cost by using the SM-CoF approach described in Sect. 3.7.4. In
this paragraph, we present the performance of the QR factorization, when applied by
a fragile helper MPI application, onto a dataset exported through a shared-memory
segment from a resilient, non-MPI application. Figure3.23 compares the overhead
incurred by introducing a failure with checkpoint-based CoF recovery versus a
shared-memory-CoF recovery where a master application maintains the dataset res-
ident in memory.

The cost of the abft recovery is unchanged by the use of SM-CoF; the obvi-
ous consequence is that, for very small matrix sizes, when the relative cost of
abft checksum inversion represents a large portion of the overall compute time,
the difference between the shared-memory optimization and the checkpoint-based
CoF is small. A similar result is observed for very large matrices: for a matrix of
size N , checkpointing time is O(N 2) while compute time is O(N 3), thus the cost of
storing and reloading checkpoints is dwarfed by the total execution time of the appli-
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Fig. 3.23 abft -QR and one
recovery on Kraken:
comparing CoF and
SM-CoF overheads
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cation and achieve similar asymptotic performance. For intermediate matrix sizes,
however, the cost of checkpointing represents a significant share of the overhead
experienced by the application during the recovery procedure. In that case, which is
the most relevant in production deployments, the SM-CoF optimization successfully
suppresses the checkpoint overhead and performs similarly to abft -QR on a fully
fault-tolerant MPI implementation, although at the expense of more complexity in
the application code.

3.7.6 Concluding Remarks

In this section, we presented an original scheme to enable forward recovery using
only features of the current MPI Standard. Rollback recovery, which relies on peri-
odic checkpointing, has a variety of issues. The ideal period between checkpoints, a
critical parameter, is particularly hard to assess. Too short a period wastes time and
resources on unnecessary Input/Output. Overestimating the period results in dramat-
ically increasing the lost computation when returning to the distant last successful
checkpoint. Although Checkpoint-on-Failure involves checkpointing, it takes check-
point images at optimal times by design: only after a failure has been detected. This
small modification enables the deployment of abft techniques, without requiring a
complex, unlikely to be available MPI implementation that itself survives failures.
The MPI library needs only to provide the feature set of a high-quality implemen-
tation of the MPI Standard: the MPI communications may be dysfunctional after
a failure, but the library must return control to the application instead of aborting
brutally.

We demonstrated, by providing such an implementation in OpenMPI, that this
feature set can be easily integrated without noticeable impact on communication per-
formance. We then converted an existing abft -QR algorithm to the CoF protocol.
Beyond this example, the CoF protocol is applicable on a large range of applica-
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tions that already feature an abft version, for example the dense direct solvers LLT,
LU [24] and the dense iterative solver CG [21]. Similarly, abft algorithms exist
for sparse computation [77]. Beside abft , many master–slave and iterative meth-
ods enjoy an extremely inexpensive forward recovery strategy where the damaged
domains are simply discarded, and therefore can also benefit from the CoF protocol.

The performance on the Kraken supercomputer reaches 90% of the non fault-
tolerant algorithm, even when including the cost of recovering from a failure (a
figure similar to regular, noncompliant MPI abft ). In addition, on a platform fea-
turing node local storage, the CoF protocol can leverage low overhead checkpoints
(unlike rollback recovery that requires remote storage). To the extreme, the cost of
checkpointing can be completely avoided when the application uses a master process
to actively retain the dataset in memory during the MPI restart.

3.8 User-Level Fault Tolerance with Extended MPI

Although the CoF protocol permits the deployment of abft forward recovery tech-
niques, it does not spare the application the cost of a full restart of the MPI runtime,
including the restart of processes originally not impacted by failures. In order to
avoid the full redeployment of the application, the MPI library itself must be able
to restore its capability to communicate. Considering a context in which the appli-
cation is fully aware of the volatile nature of compute resources, and is ready to
take protective actions of its own (like forward recovery), an important question is
the degree of control the application should have over the repair of the MPI internal
state, and what gains can be expected from providing a precise interface to monitor
only relevant failures and repair only necessary objects.

Basic coordinated checkpoint can be implemented without meaningful support
for MPI fault tolerance, but the literature is rich in alternative recovery strategies per-
mitting better performance in a volatile, high failure rate environment. The variety of
techniques employed is very wide, and notably include checkpoint–restart variations
based on uncoordinated rollback recovery [12], replication [33], algorithm-based
fault tolerancewheremathematical properties are leveraged to avoid checkpoints [13,
24], etc. A common feature required by most of these advanced failure recovery
strategies is that, unlike historical rollback recovery where the entire application is
interrupted and later restarted from a checkpoint, the application is expected to con-
tinue operating despite processor failures, thereby reducing the incurred I/O, down-
time and computation loss overheads. However, the MPI Standard doesn’t define a
precise behavior for MPI implementations when disrupted by failures. As a conse-
quence, the deployment of advanced fault-tolerance techniques is challenging, taking
a strain on software development productivity in many applied science communities,
and fault-tolerant applications suffer from the lack of portability of ad hoc solutions.

Several issues prevented the standardization of recovery behavior by the MPI
Standard. Most prominently, the diversity of the available recovery strategies is, in
itself, problematic: there does not appear to be a single best practice, but a com-
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plex ecosystem of techniques that apply best to their niche of applications. The
second issue is that, without a careful, conservative design, fault tolerance additions
generally take an excruciating toll on bare communication performance. Many MPI
implementors, systemvendors and users are unwilling to accept this overhead, an atti-
tude further reinforced by the aforementioned diversity of fault-tolerance techniques
which results in costly additions being best suited for somebody else’s problem.

In this section, we describe a set of extended MPI routines and definitions that
were introduced in Sect. 1.5.1 of the overview Chapter. This extension is called User-
Level Failure Mitigation (User-Level Failure Mitigation (ulfm)), and it permits MPI
applications to continue communicating across failures,while avoiding the two issues
described above.

3.8.1 Communication Substrate Recovery Background

Many communication layers embed fault tolerance, or, at least, a graceful failure
handling as a major feature of the specification. In the socket interface, given the
appropriate initiation parameters, error codes are returned when a remote peer is
disconnected (as the result of a network or crash error). However, the stream semantic
of sockets comes with copy overheads, and maintaining an open connection with
every peer is not a scalable solution. Closer to the HPC field, MapReduce [25] and
PVM [38] both feature strong resilience capabilities. In the case of MapReduce, the
programmingmodel is essentiallymaster–worker based, whichmakes fault tolerance
easier to manage; workers that are discovered dead are simply eliminated from the
pool and masters are protected with checkpoints. Since there is little shared global
state, it is simple to restore the application and the communication context. It is
striking that such a simple use case is hard to deploy with MPI. In PVM, the feature
set is even more advanced, applications can register a callback to be triggered when
failures (or other erroneous conditions) happen. The callback offers the flexibility
to actively monitor tasks and processes, but as the monitoring has to inserted with
explicit calls in the application code, it can be cumbersome to develop, in practice.
Once a failure is detected, the application can use one of the control operations of the
virtual machine, to add supplementary hosts to the resource pool. This rich feature
set partially plays a role in the observation that none of these approaches can rival in
terms of raw bandwidth, latency and optimized collective communication patterns
with MPI, which is spared the effort of maintaining a workable state when failures
disrupt ongoing communication [42].

In [43], Gropp and Lusk describe methods using the then current version of the
MPI Standard to perform fault tolerance. They described methods including check-
pointing,MPI_ERRHANDLERs, and using intercommunicators to provide some form
of fault tolerance. They outline the goals of providing fault tolerance without requir-
ing changes to the MPI Standard. However, at the time of writing, fault tolerance
was still an emerging topic of research with few solutions beyond checkpointing
and simple ABFT in the form of master–worker applications. As fault tolerance has

http://dx.doi.org/10.1007/978-3-319-20943-2_1
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evolved to include those paradigms mentioned in Sect. 3.8.4, the requirements on the
MPI implementation have also grown, and the limited functionality emphasized are
insufficient for general communication purposes.

Another notable effort was FT-MPI [31]. The overreaching goal was to support
ABFT techniques, it thereby provide three failure modes adapted to this type of
recovery techniques, but difficult to use in other contexts. In the Blank mode, failed
processes were automatically replaced by MPI_PROC_NULL; messages to and from
them were silently discarded and collective communications had to be significantly
modified to cope with the presence of MPI_PROC_NULL processes in the commu-
nicator. In the Replace mode, faulty processes were replaced with new processes. In
the Shrink mode, the communicator would be changed to remove failed processes
(and ranks reordered accordingly). In all cases, only MPI_COMM_WORLD would be
repaired and the application was in charge of rebuilding any other communicators.
No standardization effort was pursued, and it was mostly used as a playground for
understanding the fundamental concepts. A major distinction with the ulfm design
is that when FT-MPI detects a failure, it repairs the state of MPI internally according
to the selected recovery mode, and then only triggers the coordinated user recovery
handle at all nodes. Library composition is rendered difficult by the fact that recovery
preempts the normal flow of execution and returns to the highest level of the software
stack without alerting intermediate layers that a failure happened.

A more recent effort to introduce failure handling mechanisms was the Run-
Through Stabilization (RTS) proposal [51]. This proposal introduced many new
constructs for MPI including the ability to “validate” communicators as a way of
marking failure as recognized and allowing the application to continue using the
communicator. It included other new ideas such as Failure Handlers for uniform
failure notification. Because of the implementation complexity imposed by resuming
operations on failed communicators, this proposal was eventually unsuccessful in its
introduction to the MPI Standard.

From a higher perspective, it can be noted that the reasons why these fault-tolerant
communication libraries did not enjoy wide adoptions are varied. In some cases, the
feature set is too rich and the consistency guarantees after a failure are too strong,
which incurs too large an impact on performance (PVM, RTS). In some instances,
the feature set is too limited, and although performance is satisfactory, the lack of
features renders the implementation of any fault-tolerant strategy excruciatingly diffi-
cult (MPI with connect/accept/disconnect). In other instances, the feature set permits
effective deployment of fault-tolerant applications with adequate performance, but
is too specific to a particular recovery model, and lacking generality cannot support
the full ecosystem of HPC applications (Hadoop, FT-MPI).

3.8.2 Establishing a Flexible Feature Set

After evaluating the strengths and weaknesses of the previous efforts toward fault
tolerance both within MPI and with other models, we converged on four overarching
goals for ulfm. In this work, we consider the effect of fail-stop failures (that is,
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when a processor crashes and stops responding completely). Network failures are
equally important to tolerate, but are generally handled at the link protocol level,
thereby relieving MPI programs from experiencing their effect. Silent errors that
damage the dataset of the application (memory corruption) without hindering the
capacity to deliver messages (or resulting in a crash), are the sole responsibility of
the application to correct. The motivation behind the design choices are weighted
against alternatives, a task that requires simultaneously considering MPI from the
viewpoint of both the implementor (in Sect. 3.8.3) and the user (in Sect. 3.8.4) . The
overreaching design goals we have identified are the following:

Flexibility in fault response is paramount: not all applications have identical
requirements. In the simple case of a Monte Carlo master–worker application that
can continue computations despite failures, the application should not have to pay for
the cost of any recovery actions; on the contrary, consistency restoration interfaces
must be available for applications that need to restore a global context (a typical case
for applications with collective communications). As a consequence, and in sharp
contrast with previous approaches (see Sect. 3.8.1), we believe that MPI should not
attempt to define the failure recoverymodel or to repair applications. It should inform
applications of specific conditions that prevent the successful delivery of messages,
and provide constructs and definitions that permit applications to restoreMPI objects
and communication functionalities. Such constructs must be sufficient to express
advanced high-level abstractions (without replacing them), such as transactional fault
tolerance, uncoordinated checkpoint/restart, and programming language extensions.
The failure recovery strategies can then be featured by independent portable packages
that provide tailored, problem specific recovery techniques and drive the recovery of
MPI on behalf of the applications.

Resiliency refers to the ability of the MPI application not only to survive failures,
but also to recover into a consistent state from which the execution can be resumed.
One of the most strenuous challenges is to ensure that no MPI operation stalls as a
consequences of a failure, for fault tolerance is impossible if the application cannot
regain full control of the execution. An error must be raised when a failure prevents a
communication from completing. However, we propose that such a notice indicates
only the local status of the operation, and does not permit inferring whether the asso-
ciated failure has impacted MPI operations at other ranks. This design choice avoids
expensive consensus synchronizations from obtruding into MPI routines, but leaves
open the danger of some processes proceeding unaware of the failure. Therefore,
supplementary constructs must be sparingly employed in the application code to let
processes which have received an error resolve their divergences. but only when
necessary (see MPI_COMM_REVOKE in Sect. 3.8.5).

Productivity and the ability to handle the large number of legacy codes already
deployed in production is another key feature. Backward compatibility (i.e., sup-
porting unchanged non-fault-tolerant applications) and incremental migration are
necessary. A fault tolerant API should be easy to understand and use in common
scenarios, as complex tools have a steep learning curve and a slow adoption rate
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by the targeted communities. To this end, the number of newly proposed constructs
must be small, and have clear and well-defined semantics that are familiar to users.

Performance impact outside of recovery periods should be minimal. Indeed,
minimalism is a design principle that we believe must be embraced, for it limits the
number and extent of modifications to the MPI implementation. Failure protection
actions within the implementation must be outside the performance critical path, and
recovery actions triggered by the application only when necessary. Asmost functions
are left unmodified (as an example, the implementation of collective operations), they
continue to deliver the extraordinary performance resulting from years of careful
optimization. Overheads are tolerated only as a consequence of actual failures.

3.8.3 The Implementor’s Perspective

In this section we discuss the rationale behind the proposed design by taking the view
of MPI implementors in analyzing the challenges and performance implications that
result from possible implementations, and explain why sometime counterintuitive
designs are superior. One of the most important design goasl is performance, which
explain why we take this stance first; our claims that the proposed design does indeed
achieve excellent performance is supported by an implementation, presented in [5].

3.8.3.1 Failure Detection

Failure detection has proven to be a complex but crucial area of fault-tolerance
research. Although in the most adverse hypothesis of a completely asynchronous
system, failures are intractable in theory [34], the existence of an appropriate failure
detector permits resolving most of the theoretical impossibilities [19]. One of the
crucial goals of ulfm is to prevent deadlocks from arising, which indeed requires the
use of some failure detectionmechanism (in order to discriminate between arbitrarily
longmessage delays and failures).However, because the practicality of implementing
a particular type of failure detector strongly depends on the hardware features, the
specification is intentionally vague and refrains from forcing a particular failure
detection strategy. Instead, it leaves open to the implementations choices that better
match the target system. On some systems, hardware introspection may be available
and provide total awareness of failures (typically, an IPMI capable batch scheduler).
However, on many systems, a process may detect a failure only if it has an active
open connection with the failed resource, or if it is actively monitoring its status with
heartbeat messages. In the latter situation requiring complete awareness of failures of
every process by every process would generate an immense amount of system noise
(from heartbeat messages injected into the network and the according treatments on
the computing resources to respond to them), and it is known thatMPI communication
performance is very sensitive to system noise [63]. Furthermore, processes that are



3 Fault-Tolerant MPI 207

not trying to communicate with the dead process do not need to be aware of its
failure, as their operations are with alive processors and therefore deadlock-free.
As a consequence, to conserve generality and avoid extensive generation of system
noise, failure detection in ulfm requires only to detect failures of processes that
are active partners in a communication operation, so that this operation eventually
returns an appropriate error. In the ideal case, the implementation should be able to
turn on failure monitoring only for the processes it is expecting events from (like
the source or destination in a point-to-point operation). Some cases (like wildcard
receives from any source) may require a wider scoped failure detection scheme, as
any processor is a potential sender. However, the triggering of active failure detection
can be delayed according to implementation internal timers, so that latency critical
operations don’t have to suffer a performance penalty.

3.8.3.2 Communication Objects Status

A natural conception is to consider that detection of failures results in MPI automat-
ically altering the state of all communication objects (i.e., communicators, windows,
etc.) inwhich the associated process appears. In such amodel, it is understood that the
failure “damages” the communication object and renders it inappropriate for further
communications. However, a complication is hidden in such an approach: the state
of MPI communication objects is the aggregate state of individual views by each
process of distributed system. As failure awareness is not expected to be global, the
implementation would then require internal and asynchronous propagation of failure
detection, a process prone to introduce jitter. Furthermore, MPI messages would be
able to cross the toggling of the communication object into an invalid state, result-
ing in a confuse semantic where operations issued on a valid communication object
would still fail, diluting the meaning of a valid and invalid state of communication
objects.

We decided to take the opposite stance on the issue, failures never automatically
modify the state of communication objects. Even if it contains failed processes, a
communicator remains a valid communication object. Instead, error reporting is not
intended to indicate that a process failed, but to indicate that an operation cannot com-
plete. As long as no failures happen, the normal semantic of MPI must be respected.
When a failure has happened, but the MPI operation can proceed without disruption,
it completes normally. Obviously, when the failed process is supposed to participate
to the result of the operation, it is impossible for the operation to succeed, and an
appropriate error is returned. Postingmore operations that involve the dead processes
is allowed, but is expected to result in similar errors.

There are multiple advantages to this approach. First, the consistency of MPI
objects is always guaranteed, as their state remains unchanged as long as users don’t
explicitly change it with one of the recovery constructs. Second, there is no need to
introduce background propagation of failure detections to update the consistent state
of MPI objects, because operations that need to report an error do actively require
the dead process’ participation, thereby active failure detection is forced only at the
appropriate time and place.
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3.8.3.3 Local or Uniform Error Reporting

In the ulfm design, errors notify the application that an operation couldn’t satisfy its
MPI specification. However, most MPI operations are collective, or have a matching
call at some other process. Should the same error be returned uniformly at all ranks
that participated in the communication?Although such a feature is desirable for some
users, as it permits easily tracking the global progress of the application (and then
infer a consistent synchronized recovery point), the consequences on performance are
dire. This would require that each communication conclude with a global agreement
operation to determine the success or failure of the previous communication as viewed
by each process. Such an operation cannot be possibly achieved in less than the cost
of an Allreduce, even without accounting for the cost of actually tolerating failures
in the operation, and would thus impose an enormous overhead on communication.
In regard to the goal of maintaining unchanged level of performance, it is clearly
unacceptable to double, at best, the cost of all communication operations, even when
no failure happened.

As a consequence, in ulfm, the reporting of errors has a local semantic: the
local completion status (in error, or successfully) cannot be used to assume if the
operationhas failed or succeeded at other ranks. Inmanyapplications, this uncertainty
is manageable, because the communication pattern is simple enough. When the
communication pattern does not allow such flexibility, the application is required to
resolve this uncertainty itself (by explicitly changing the state of the communication
object to Revoked with one of our proposed additional API). Indeed, it is extremely
difficult for MPI to assess if a particular communication pattern is still consistent (it
would require computing global snapshots after any communication), while the user
can know through algorithm invariants when it is the case. Thanks to that flexibility,
the cost associated with consistency in error reporting is paid only after an actual
failure has happened, and applications that do not need consistency can enjoy better
recovery performance.

3.8.3.4 Restoring Consistency and Communication Capabilities

Revoking a communication object results in a definitive alteration of the state of the
object, that is consistent across all processes. This alteration is not to be seen as the
(direct) consequence of a failure, but as the consequence of the user calling a specific
operation on the communication object. In a sense, Revoking a communication object
explicitly achieves the propagation of failure knowledge that has intentionally not
been required, but is provided when the user deems necessary. Another important
feature of that change of state is that it is definitive. After a communication object
has been revoked, it can never be repaired. The rationale is to avoid the matching to
have to check for stale messages from past incarnations of a repaired communication
object. Because the object is discarded definitively, any stale message matches the
revoked object and is appropriately ignored without modifications in the matching
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logic. In order to restore communication capacity, the repair function derive new,
fresh communication objects, that do not risk intermixing pre-failure operations.

3.8.4 The Users’ Perspective

Since the focus of this work is to design an extension to the MPI runtime to enable
effective deployment of advanced fault-tolerance techniques, it is critical to under-
stand how the proposed design goals interact with the specificities, issues, com-
mon features and opportunities offered by this wide range of application recovery
techniques. We classify application recovery in four crude categories, presented in
Fig. 3.24, depending on the type of features that are required from the MPI layer to
enable their effective production deployment, or simply to improve their performance
or portability.

3.8.4.1 Ignoring Failures

Master/Worker is the simplest case in terms of application recovery strategy. Despite
its simplicity, it is a model that is currently unsupported byMPI, and has been poorly
supported in many past attempts at providing meaningful fault semantics to MPI.
It is a model that commands important applications, like Monte Carlo simulation.
The ulfm design has indeed been used in significant multilevel MC simulations to
estimate partial differential equations [62]. In this work, the application can continue

Fig. 3.24 ULFM is a set of MPI interfaces that enables varied recovery strategies, that match a
wide range of applications
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Fig. 3.25 A master/worker application illustrates a communication pattern in which MPI layer
repair is a useless cost

without the contribution of the failed processes, either producing a degraded, less
accurate result, or computing supplementary iterations before convergence [62].

Figure3.25 presents themockup communication pattern of amaster/worker appli-
cation with a very simple communication pattern. A master process submits tasks
to a set of workers. In order to monitor the completion of the submitted tasks, the
master posts a single MPI_ANY_SOURCE receive in order to receive completion
notices from the workers. When a workers reports such a successful job completion,
the master submits a new work unit. In this example, the worker W1 fails. The only
things required for this application to reach a successful completion is that the mas-
ter is informed of the failure, and can thereafter resume posting point-to-point send
and receives with non-failed workers, in order to resubmit the failed work package
to another worker. In any case, rebuilding a full communication context in which
collective operations can be employed, eliminating completely failed ranks from
the communicator, or restoring a full consistent global view of the entire system is
utterly unnecessary in this application. For maximum performance, the MPI layer
must refrain from taking any of these corrective actions automatically, and simply
maintain a communication capability on the preexisting communicator context.

3.8.4.2 Full Capability Restoration

As fault tolerance continues to evolve, checkpoint/restartwill continue to be a popular
design for legacy codes and therefore should be supported by any new fault-tolerant
environments.ManyMPI libraries provide coordinated checkpointing automatically,
without application knowledge or involvement [15, 49].Because of the use of system-
based checkpoint routines [28], these libraries have to be internally modified to
remove theMPI state from the checkpoints. However, thesemodifications do not alter
the interface presented to users and the performance hit on communication routines is
usually insignificant. More generally, coordinated rollback recovery has been widely
deployed by message passing applications without any specific requirements from
the MPI implementation. The program code flow is designed so that checkpoints are
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taken at points when no messages have been injected into MPI (hence the network
is empty and the checkpoint set consistent) [78].

A recent development in checkpointing techniques is the increasing importance of
decreasing the cost of checkpointing, and the reliance of ultrafast,micro-checkpoints.
Advanced checkpointing libraries like Scalable Checkpoint–Restart (SCR) [60] and
Fault Tolerance Interface (FTI) [4] automate the deployment of multilevel, hierar-
chical checkpoint storage, in local memory, in nonvolatile memory, in the memory
of peers (possibly employing diskless checkpointing [56]), and finally, if no failure
has disrupted the application in the meantime, on the global shared file system. Even
the most customary checkpoint/restart strategy can benefit immensely from being
deployed on a fault-tolerant MPI framework: if the application processes are not
wiped out by failure, they can serve as hot caches for checkpoint storage, and the
high-performance network can be employed to save, and redistribute to the replace-
ment hot swap processes the checkpoint data. In order to deploy these optimizations,
the MPI layer must provide the capability to report failures, synchronize the state
by aborting ongoing operations, and recreate a communication environment that
respect the former process mapping. Because ulfm targets a wider audience than
just checkpoint/restart, the proposed interface proposes a shrink recovery model.
The shrink model is not very popular with users of checkpoint/restart (it requires to
rebalance the application and shuffles the ranks), but, as is illustrated in Fig. 3.26, it
can be employed in two different ways as the basic building block to support check-
point/restart, or any application that needs to restore an identical world with the same
rankmapping after a failure. In thismockup application, processes participate to some
collective operations. When a failure strikes, processes undergo a Shrink operation
(through an additional API in ulfm). In order to restore the process/rank mapping,
two strategies can be employed. The first one is to overallocate spare processes
for the application. The application initially splits the MPI_COMM_WORLD in two
separate communicators, one contains the active processes partaking in the compu-
tation, while the other are spare processes kept available to replace dead processes
(these processes can also serve as checkpoint storage cache, etc.). When a failure
strikes, the MPI_COMM_WORLD communicator is shrunk, and, given that enough
spare processes were still available, a replacement for the active processes commu-

Fig. 3.26 Some applications can continue on a reduced world, in which failed processes are
excluded, and the communication context is sanitized. Many more need to maintain the process
topology grid a and rank mapping, and thereby require to replace failed processes
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nicator is recreated. The second approach is to use a sequential combination of the
shrink operation and anMPI-2 spawn operation. After the shrink operation has com-
pleted, any collective MPI operation is valid, in particular, the MPI_COMM_SPAWN
function can be employed to spawn spares on demand, rather than relying on over-
allocations. Again, from the intercommunicator created from spawn, a replacement
communicators with the same process/rank mapping can be derived. Indeed, frame-
works that harness these capabilities of ulfm to present a simple to use, but powerful,
user-directed checkpointing interface are already emerging [36, 86].

Transactional based computation (sometimes referred to as containment domain
fault tolerance) takes advantage of micro-checkpoints to integrate them in the pro-
gramming model itself. It can be seen as a form of speculative progress with light-
weight checkpoints. The basic idea is that the algorithm is divided into blocks of
code. Each block is concluded with a construct that decides the status of all com-
munication operations which occurred within the block, as opposed to checking the
status of each communication operation independently [46]. If the block comple-
tion construct determines that the block is completed, the necessary data is saved
in memory (a form of micro-checkpoint) and the algorithm executes the next block
with the optimistic assumption that no failures are happening. If at the end of the
block, a process failure had occurred, the application to return to the status before
the beginning of the block, giving it the opportunity to execute the block again (after
replacing the failed process). One of the major blocks to perform transactional fault
tolerance therefore a resilient collective operation that can be employed to validate
when a transaction has been successful, or to trigger the recovery if a failure has
disturbed the current algorithmic phase. Depending on the application, the recovery
procedure may redo the transaction only on the surviving processes, or may require
the replacement of the failed processes and an in-place restart.

3.8.4.3 Portability in Automatic Methods

In Checkpoint/Restart with partial rollback recovery, processes that have not been
damaged by a failure are kept alive and can continue computing as long as they
don’t depend on a message from a failed process. Although the interface presented
to users is unchanged, major modifications have to be integrated deep within theMPI
library to enable continued MPI communications. This in turn makes deployment of
Message Logging dependent upon a specific implementation of MPI that may not
be best suited or even available on the target hardware. With an MPI specification
providing clear semantics for its post-failure behavior, uncoordinated checkpointing
approaches could be expressed as portable libraries that could be deployed on top of
anyMPI implementation. The message logging interposition layer can be inserted in
the original MPI code, either bye employing the PMPI profiling interface [75], or by
performing automated code injection in the original source code. Then,when a failure
happens, it needs to be able to direct the cleanup of the damaged communicators,
and silently swap them with replacements obtained from the ulfm communicator
recreation functions [55, 86].
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In replication [33] an application executes multiple concurrent copies of itself
simultaneously. In most variations, the replicates need to remain strongly synchro-
nized, and messages’ delivery are effectively atomic commits to multiple targets.
Process migration [18, 91] is a form of fault tolerance which combines advanced,
proactive failure detectors with some other form of fault tolerance, often check-
point/restart. To reduce the increasing overhead of other forms of fault tolerance
at scale, process migration detects that a failure is likely to occur at a particular
process and moves it (or replicates it) to a node in the system less likely to fail.
Migration requires accurate failure predictors to be useful, but when successful, it
can reduce the overhead of other fault-tolerance mechanisms significantly. For both
Replication and Migration, the PMPI hooks are usually already leveraged in order
inject the appropriate code to redirect messages to the appropriate target, or to inte-
grate the consistent delivery protocol to multiple replicates. For example, the library
might redirect the communication to point to the currently active target depending
on which replica is being used or if a process has migrated. When a failure happens,
the ulfm specification can be employed to hot swap the communication object in
order to restore optimal collective communication performance (an crucial feature
when point-to-point message have to be converted to broadcasts), ensure the safe
completion of a transaction with a failure resistant agreement operation, and spawn
new clones of failed processes on the fly, to insure continued protection from further
failures.

3.8.4.4 Forward Recovery with Complex Patterns

Algorithm-Based Fault Tolerance (ABFT) [6, 13, 21, 24] is a family of recovery
techniques based on algorithmic properties of the application. In some Naturally
Fault-Tolerant applications, when a failure occurs, the application can simply con-
tinue while ignoring the lost processes. In other cases, the application uses intricate
knowledge of the structure of the computation to maintain supplementary, redundant
data, that is updated algorithmically and forms a recovery dataset that does not rely
on checkpoints. Although generally exhibiting excellent performance and resiliency,
ABFT requires that the algorithm is innately able to incorporate fault tolerance and
therefore might be a less generalist approach. In abft applications that require the
restoration of a full set of processes [1], the recovery procedure for the MPI layer
actually has strikingly similar requirement to the deployment of coordinated check-
point with in-place restart. Unlike checkpoint/restart, this is not only an optimization,
but a hard requirement. Nonetheless, many forward recovery strategies prove more
malleable and can cope with a reduced number of processes. However, if the com-
munication pattern is complex, the occurrence of failures has the potential to deeply
disturb the application and prevent an effective recovery from being implemented.
Consider the example in Fig. 3.27; four processes are communicating in a point-to-
point pattern. process P3 is waiting to receive a message from P2, which is itself
waiting to receive a message from P1. In the meantime, P1 has failed, but, as only
P2 communicates with P1 directly, other processes do not detect this condition, and
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Fig. 3.27 A complex communication pattern that requires to revoke the existing communication
context when switching to the recovery phase, in order to avoid deadlocks resulting from transitive
dependencies between processes

only P2 is informed of the failure of P1. Process 2 is faced with a dilemma: it knows
that P1 has failed, and that the application should branch into its recovery procedure.
However, if it were to branch abruptly to the recovery procedure, it would cease
matching the receives P3 is waiting on. At this point, without an additional MPI
construct, the application would reach a deadlock: the messages that P3 to Pn are
waiting for will never arrive. To resolve this scenario, before switching to the recov-
ery procedure, P2 calls MPI_COMM_REVOKE, a new API which notifies all other
processes in the communicator that a condition requiring recovery actions has been
reached. When receiving this notification, any communication on the communicator
(ongoing or future) is interrupted and a special error code returned. Then, all surviv-
ing processes can safely enter the recovery procedure of the application, knowing
that no alive process belonging to that communicator can deadlock.

3.8.5 The User-Level Failure Mitigation API

ulfm was proposed as an extension to the MPI Forum3 to introduce fault-tolerance
constructs in the MPI standard. It is designed according to the criterion identified in
the previous section: to be the minimal interface necessary to restore the complete
MPI capability to transport messages after failures. As requested by our flexibility
goal, it does not attempt to define a specific application recovery strategy. Instead, it
defines the set of functions that can be used by applications (or libraries and languages
that provide high-level fault-tolerance abstractions) to repair the state of MPI.

3The interested reader may refer to Chap.17 of the complete draft, available from http://fault-
tolerance.org/ulfm/ulfm-specification.

http://fault-tolerance.org/ulfm/ulfm-specification
http://fault-tolerance.org/ulfm/ulfm-specification
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3.8.5.1 Failure Reporting

The failure reporting mechanism of ulfm piggybacks on existing features ofMPI. In
the currentMPI standard, erroneous conditions arising fromwithinMPI functions are
reported through exceptions, which can be captured by error handlers. The default
error handler aborts the application, but it can be replaced with an user provided
handler, or a predefined handler that returns the error code as an output of the MPI
function. Even when the handler doesn’t abort the application, it is considered that
the state of MPI is corrupted when any exception is raised. To this mechanism, we
add supplementary exception classes to denote a process failure. When a process
failure exception is raised, the state of the MPI library remains well-defined.

Failures are reported on a per-operation basis, and indicate essentially that the
operation could not be carried out successfully because a failure occurred on one
of the processes involved in the operation. For performance reasons, not all failures
need to be propagated, in particular, processes that do not communicate with the
failed process are not expected to detect its demise. Similarly, during a collective
communication, some processes may detect the failure, while some other may con-
sider that the operation was successful; a particularity that we name nonuniform
error reporting (see Sect. 3.8.3.3). Let’s imagine a broadcast communication using
a tree-based topology. The processes that are high in the tree topology, close to the
root, complete the broadcast earlier than the leaves. Consequently, these processes
may report the successful completion of the broadcast, before the failure disrupts the
communication, or even before the failure happens, while processes below a failed
process cannot deliver the message and have to report an error.

Once a failure condition has been reported, users can employ the recovery func-
tions summarized in Fig. 3.28 to inspect process local, known information about
failed processes, to propagate failure notifications, and last to restore a sane commu-
nication context.

Fig. 3.28 Summary of the ulfm recovery functions. Functions can be classified into three groups,
the introspection of locally known failure, the propagation of failure knowledge, and the recovery
of a stable context
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3.8.5.2 Failure Introspection

The next two functions, MPI_COMM_FAILURE_ACK and MPI_COMM_
FAILURE_GET_ACKED are introduced as a lightweight mechanism to continue
using point-to-point operations on a communicator that contains failed processes.
Using these functions, the application can determine which processes are known to
have failed, and inform the MPI library that it acknowledges that no future receive
operation can match sends from any of the reported dead processes. MPI_COMM_
FAILURE_GET_ACKED returns the group containing all processes which were
locally known to have failed at the time the last MPI_COMM_FAILURE_ACK was
called. These functions can be used on any type of communicator, be it revoked
or not.

The operation of retrieving the group of failed processes is split into two functions
for two reasons. First, it permits multiple threads to synchronize on the acknowledge,
to prevent situations were multiple thread read a different group of failed processes.
Second, the acknowledge acts as a mechanism for alerting the MPI library that the
application has been notified of a process failure, permitting to relax error report-
ing rules for “wildcard” MPI_ANY_SOURCE receives. Without an acknowledgment
function, the MPI library would not be able to determine if the failed process is a
potential matching sender, and would have to take the safe course of systematically
returning an error, thereby preventing any use of wildcard receives after the first
failure. Once the application has called MPI_COMM_FAILURE_ACK, it becomes
its responsibility to check that no posted “wildcard” receive should be matched by
a send at a reported dead process, as MPI stops reporting errors for such processes.
However, it will continue to raise errors for named point-to-point operations with the
failed process as well as collective communications.

3.8.5.3 Failure Knowledge Propagation

MPI_COMM_REVOKE, is a key additional construct: and is intended to resolve the
issues resulting from nonuniform error reporting. As seen above, if nonuniform error
reporting is possible, the view of processes, and accordingly the actions that they
will undergo in the future, may diverge. Processes that have detected the failure may
need to initiate a recovery procedure, but they have the conflicting need to match
pending operations that have been initiated by processes that have proceeded unaware
of the failure, as otherwise these may deadlock while waiting for their operation
to complete. When such a situation is possible, according to the communication
pattern of the application, processes that have detected that recovery action is needed
and intend to interrupt following the normal flow of communication operations can
release other processes by explicitly calling the MPI_COMM_REVOKE function on
the communication object. Likemany otherMPI constructsMPI_COMM_REVOKE is
a collective operation over the associated communicator. However, unlike any other
collectiveMPI constructs it does not require a symmetric call on all processes, a single
processes in the communicator calling the revoke operation ensure the communicator
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will be eventually revoked. In other words, it has a behavior similar to MPI_ABORT
with the exception that it does not abort processes, instead it terminate all ongoing
operations on the communicator and mark the communicator as improper for future
communications.

3.8.5.4 Rebuilding Communicators

Thenext construct provides a recoverymechanism:MPI_COMM_SHRINK.Although
the state of a communicator is Although the state of a communicator is left unchanged
by process failures, and point-to-point operations between non-failed processes are
still functional, it is to be expected that most collective communication will always
raise an error, as they involve all processes in the communicator. Therefore, to restore
full communication capacity, MPI communicators objects must be repaired. The
MPI_MPI_COMM_SHRINK function create a new functional communicator based
on an existing, revoked communicator containing failed processes. It does this by
creating a duplicate communicator (in the sense of MPI_COMM_DUP) but omitting
any processes which are agreed to have failed by all remaining processes in the
shrinking communicator. If there are new process failures which are discovered
during the shrink operation, these failures are absorbed as part of the operation.

3.8.5.5 Ensuring a Consistent State

The last function permits deciding on the completion of an algorithmic section:
MPI_COMM_AGREE. This function, which is intrinsically costly, is designed to be
used sparingly, for example when a consistent view of the status of a communicator
is necessary, such as during algorithm completion, or at the end of an application’s
transaction. This operation performs an agreement algorithm, computing the con-
junction of boolean values provided by all alive processes in a communicator. It is
important to note that this functionwill continue successfully even if a communicator
has known failures (or if failures happen during the operation progress).

3.8.5.6 Beyond Communicators

While communicator operations are the historic core of MPI, the standard has been
extended over the years to support other type of communication contexts, namely
shared-memory windows (with explicit put/get operations) and collective file I/O.
The same principles described in this paper are extended to these MPI objects in the
complete proposal; in particular, windows and files have a similar Revoke function. A
notable difference though, is that file and window object don’t have repair functions.
These objects are initially derived from a communicator object, and the expected
recovery strategy is to create a repaired copy of this communicator, before using
it to create a new instance of the window or file object. While windows also have
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the failure introspection function MPI_WIN_GET_FAILED, which is useful for
continuing active target operations on the window when failed processors can be
ignored (similarly to point-to-point operations on a communicator), all file operations
are collective, hence this function is not provided, as the onlymeaningful continuation
of a failure impacting a file object is to revoke the file object. It is to be noted that in
the case of file objects, only failures of MPI processes (that may disrupt collective
operations on the file) are addressed. Failures of the file backend itself are already
defined in MPI-2.

3.8.6 Performance Assessment

3.8.6.1 Impact on Failure-Free Operations

Memory: Because a communicator cannot be repaired, tracking the state of failed
processes imposes a minimal memory overhead. From a practical perspective each
node needs a global list of detected failures, shared by all communicators; its size
grows linearlywith the number of failures, and it is empty as long as no failures occur.
Within each communicator, the supplementary state is limited to two values: whether
the communicator is revoked or not, and an index in the global list of failures denoting
the last acknowledged failure (with MPI_COMM_FAILURE_ACK). For efficiency
reasons, an implementation may decide to cache the fact that some failures have
happened in the communicator so that collective operations andMPI_ANY_SOURCE
receptions can bail out quickly. Overall, the supplementary memory consumption
from fault-tolerant constructs is small, independent of the total number of nodes, and
unlikely to affect the cache and TLB hit rates.

Conditionals: Another concern is the number of supplementary conditions on the
latency critical path. Indeed, most completion operations require a supplementary
conditional statement to handle the casewhere the underlying communication context
has been revoked. However, the prediction branching logic of the processor can be
hinted to favor the failure-free outcome, resulting in a single load of a cached value
and a single, mostly well-predicted, branching instruction, unlikely to affect the
instruction pipeline. It is notable that non-blocking operations raise errors related to
process failure only during the completion step, and thus do not need to check for
revocation before the latency critical section.

Matching logic: MPI_COMM_REVOKE does not have a matching call on other
processes on which it has an effect. As such, it might add detrimental complexity to
the matching logic. However, any MPI implementation needs to handle unexpected
messages. The order of revocation message delivery is loose enough that the han-
dling of revocation notices can be integrated within the existing unexpected message
matching logic. In our implementation in OpenMPI, we leverage the active message
low level transport layer to introduce revocation as a new active message tag, without
a single change to the matching logic.
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Collective operations: A typical MPI implementation supports a large number of
collective algorithms, which are dynamically selected depending on criteria such as
communicator ormessage size and hardware topology. The loose requirements of the
proposal concerning error reporting of process failures in collective operations limits
the impact it has on collective operations. Typically, the collective communication
algorithms and selection logic are left unchanged. The only new requirement is that
failures happening at any rank of the communicator cause all processes to exit the
collective (successfully for some, with an error for others). Due to the underlying
loosely connected topologies used by some algorithms, a point-to-point based imple-
mentation of a collective communication is unlikely to detect all process failures.
Fortunately, a practical implementation exists that does not require modifying any of
the collective operations: when a rank raises an error because of a process failure, it
can revoke an internal, temporary communication context associated with the collec-
tive operation. As the revocation notice propagates on the internal communicator, it
interrupts the point-to-point operations of the collective. An error code is returned to
the high-level MPI wrapper, which in turn raises the appropriate error on the user’s
communicator.

3.8.6.2 Recovery Routines

Some of the recovery routines described in Sect. 3.8.5 are unique in their ability to
deliver a valid result despite the occurrence of failures. This specification of correct
behavior across failures calls for resilient, more complex algorithms. In most cases,
these functions are intended to be called sparingly by users, only after actual failures
have happened, as a means of recovering a consistent state across all processes. The
remainder of this section describes the algorithms that can be used to deliver this
specification and their cost.

Agreement: The agreement can be conceptualized as a failure resilient reduction on
a boolean value. Many agreement algorithms have been proposed in the literature;
the log-scaling two-phase consensus algorithm used by the ulfm prototype is one
of many possible implementations of MPI_COMM_AGREE operation based upon
prior work in the field. Specifically, this algorithm is a variation of the multilevel
two-phase commit algorithms [59]. The algorithm first performs a reduction of the
input values to an elected coordinator in the communicator. The coordinator then
makes a decision on the output value and broadcasts that value back to all of the alive
processes in the communicator. The complexity of the agreement algorithm appears
when adapting to an emerging process failure of the coordinator and/or participants.
A more extensive discussion of the algorithmic complexity has been published by
Hursey, et.al. [50]. The algorithmic complexity of this implementation is O(log(n))
for the failure-free case, matching that of an MPI_ALLREDUCE operation over the
alive processes in the communicator.

Revoke: Although the revoke operation is not collective, the revocation notification
needs to be propagated to all alive processes in the specified communicator, even
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when new failures happen during the revoke propagation. These requirements are not
without recalling those from the reliable broadcast [45]. Among the four defining
qualities of a reliable broadcast (Termination, Validity, Integrity, Agreement), the ter-
mination and integrity criteria can be relaxed in the context of the revoke algorithm.
If a failure during the Revoke algorithm kills the initiator as well as all the already
notified processes, the Revoke notification is indeed lost, but the observed behav-
ior, from the view of the application, is indiscernible from a failure at the initiator
before the propagation started. As the algorithm still ensures agreement, there are no
opportunities for inconsistent views.

In the ulfm implementation, the initiator marks the communicator as revoked
and sends a Revoke message to every processes in the groups (local and remote) of
the communicator. Upon reception of a revoke message, if the communicator is not
already revoked, it is revoked and the process acts as a new initiator.

Shrink: The Shrink operation is, algorithmically, an agreement on which the
consensus is done on the group of failed processes. Hence, the two operations
have the same algorithmic complexity. Indeed, in the prototype implementation,
MPI_COMM_AGREE and MPI_COMM_SHRINK share the same internal implemen-
tation of the agreement.

3.8.6.3 Experimental Evaluation

The following analysis uses a prototype of the ulfm proposal based on the develop-
ment trunk of OpenMPI [35] (r26237). The test results presentedwere gathered from
the Smoky system at Oak Ridge National Laboratory. Each node contains four quad-
core 2.0GHz AMD Opteron processors with 2GB of memory per compute core.
Compute nodes are connected with gigabit Ethernet and InfiniBand. Some shared-
memory benchmarks were conducted on Romulus, a 6×8-core AMDOpteron 6180
SE with 256GB of memory (32GB per socket) at the University of Tennessee.

The NetPIPE-3.7 benchmark [82] was used to assess the 1-byte latency and band-
width impact of the modifications necessary for the ulfm support in Open MPI.
We compare the vanilla version of Open MPI (r26237) with the ulfm enabled ver-
sion on Smoky. Table3.2 highlights the fact that the differences in performance are
well below the noise limit, and that the standard deviation is negligible proving the
performance stability and lack of impact.

The impact on shared-memory systems, which are sensitive even to small modi-
fications of the MPI library, has been further assessed on the Romulus machine—a
large shared-memory machine—using the IMB benchmark suite (v3.2.3). As shown
in Fig. 3.29, the duration difference of all the benchmarks (point-to-point and collec-
tive) remains below 5%, thus within the standard deviation of the implementation
on that machine.
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Table 3.2 NetPIPE results on Smoky

Interconnect Vanilla Std. Dev. Enabled Std. Dev. Difference

1-byte Latency (microseconds) (cache hot)

Shared
memory

0.8008 0.0093 0.8016 0.0161 0.0008

TCP 10.2564 0.0946 10.2776 0.1065 0.0212

OpenIB 4.9637 0.0018 4.9650 0.0022 0.0013

Bandwidth (Mbps) (cache hot)

Shared
memory

10,625.92 23.46 10,602.68 30.73 −23.24

TCP 6,311.38 14.42 6,302.75 10.72 −8.63

OpenIB 9,688.85 3.29 9,689.13 3.77 0.28

Fig. 3.29 The intel MPI
benchmarks: relative
difference between ulfm

and the vanilla Open MPI on
shared memory (Romulus).
Standard deviation ≈5% on
1,000 runs
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To measure the impact of the prototype on a real application, we used the Sequoia
AMG benchmark.4 ThisMPI intensive benchmark is an AlgebraicMultigrid (AMG)
linear system solver for unstructured mesh physics. A weak scaling study was con-
ducted up to 512 processes following the problem Set 5. In Fig. 3.30, we compare
the time slicing of three main phases (Solve, Setup, and SStruct) of the benchmark,
with, side by side, the vanilla version of the Open MPI implementation, and the
ulfm enabled one. The application itself is not fault tolerant and does not use the
features proposed in ulfm. The goal of this benchmark is to demonstrate that a
careful implementation of the proposed semantic does not impact the performance
of the MPI implementation, and ultimately leaves the behavior and performance of
legacy applications unchanged. The results show that the performance difference is
negligible.

To assess the overheads of recovery constructs, we developed a synthetic bench-
mark that mimics the behavior of a typical fixed-size tightly coupled fault-tolerant

4https://asc.llnl.gov/sequoia/benchmarks/#amg.

https://asc.llnl.gov/sequoia/benchmarks/#amg
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Fig. 3.30 Comparison of the
vanilla and ulfm versions of
Open MPI running Sequoia
AMG at different scales
(smoky)
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application. Unlike a normal application it performs an infinite loop, where each iter-
ation contains a failure and the corresponding recovery procedure. Each iteration con-
sists of 5 phases: in the first phase (Detection), all processes but a designated victim
enter a Barrier on the intracommunicator. The victim dies, and the failure detection
mechanism makes all surviving processes exit the Barrier, some with an error code.
In Phase 2 (Revoke), the surviving processes that detected a process failure-related
error during the previous phase invoke the new construct MPI_COMM_REVOKE.
Then they proceed to Phase 3 (Shrink) where the intracommunicator is shrunk using
MPI_COMM_SHRINK. The two other phases serve to repair a full-size intracommu-
nicator using spawnand intercommunicatormerge operations to allow the benchmark
to proceed to the next round.

In Fig. 3.31, we present the timing of each phase, averaged upon 50 iterations of
the benchmark loop, for a varying number of processes on the Smoky machine. We
focus on the three points related to ulfm: failure detection, revoke and shrink. The
failure detection is mildly impacted by the scale. In the prototype implementation,
the detection happens at two levels, either in the runtime system or in theMPI library
(when it occurs on an active link). Between the two detectors, all ranks get notified
within 30ms of the failure (this compares to the 1 s timeout at the link level). Although
the revoke call will inject a linear number of messages (at each rank) in the network
to implement the level of reliability required for this operation, the duration of this
call itself is under 50µs and is not visible in the figure. The network is disturbed

Fig. 3.31 Evaluation of the
fault injection benchmark
with full recovery at different
scales (smoky)
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for a longer period, due to the processing of the messages, but this disturbance will
appear in the network only after a failure occurred. The last call shown in the figure
is the shrink operation. Although its duration increases linearly with the number of
processes (the figure has a logarithmic scale on the x-axis), this cost must only be
paid after a failure, in order to continue using collective operations. In its current
implementation, shrink requires an agreement, the allocation of a new communi-
cator identifier, and the creation of the communicator (with MPI_COMM_SPLIT).
Most of the time spent in the shrink operation is not in the agreement (which scales
logarithmically), but in the underlying implementation of the communicator creation.

3.8.7 Concluding Remarks

Simple communication interfaces, such as sockets or streams, have been featuring
robust fault tolerance for decades. It may come as a surprise that specifying the
behavior of MPI when fail-stop failures strike is so challenging. In this chapter we
have identified the contentious issues, rooted in the fact that the state of MPI objects
is implicitly distributed and that specifying the behavior of collective operations
and communication routines requires a careful, precise investigation of unexpected
consequences on the concepts as well as on the performance. We first took a review
of the field of fault tolerance and recovery methods; most require that MPI can
restore the full set of communication functionalities after a failure happened. Then,
we proposed the ulfm interface, which responds to that demand, and took the critical
viewpoint of the implementor unwilling to compromise performance, on a number
of hidden, but crucial issues regarding the state of MPI objects when failure happen.
Lastly, we took the viewpoint of MPI users, and depicted how the ulfm specification
can be used to support high level recovery strategies.

The landscape for fault-tolerant applications is varied, with differing needs and
opportunities. Some applications can afford to pay the engineering cost of a full
application rewrite, taking into account inherent properties of the algorithms in order
to decrease the cost of the fault protection strategy. Some legacy applications are not
ready to take that leap, yet, or do not have algorithmic features that can be easily
leveraged to significantly improve above checkpoint/restart. In this chapter, we have
presented techniques that support both these usage models: the MPI standard is
active, and getting ready to support the effective, portable deployment of advanced
fault-tolerance techniques.
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Chapter 4
Using Replication for Resilience
on Exascale Systems

Henri Casanova, Frédéric Vivien and Dounia Zaidouni

Abstract High-performance computing applications must be resilient to faults. The
traditional fault tolerance solution is checkpoint–recovery, by which application state
is saved to and recovered from secondary storage throughout execution. It has been
shown that, even when using an optimal checkpointing strategy, the checkpointing
overhead precludes high parallel efficiency at large-scale. Additional fault tolerance
mechanisms must thus be used. Such a mechanism is replication, which can be used in
addition to checkpoint–recovery. Using replication, multiple processors perform the
same computation so that a processor failure does not necessarily mean application
failure. While at first glance replication may seem wasteful, it may be significantly
more efficient than using solely checkpoint–recovery at large scale. In this work we
investigate two approaches for replication. In the first approach, entire application
instances are replicated. In the second approach, each process in a single application
instance is (transparently) replicated. We provide a theoretical study of these two
approaches, comparing them to the pure checkpoint–recovery approach in terms of
expected application execution times.

4.1 Introduction

As plans are made for deploying post-petascale high-performance computing (HPC)
systems [8, 27], solutions need to be developed to ensure that applications on such
systems are resilient to faults. Resilience is particularly critical for applications
that enroll large numbers of processors. For such applications, processor failures

H. Casanova
University of Hawai‘i, Manoa, USA
e-mail: henric@hawaii.edu

F. Vivien (B) · D. Zaidouni
INRIA & Ecole Normale Supérieure de Lyon, Lyon, France
e-mail: frederic.vivien@inria.fr

D. Zaidouni
e-mail: dounia.zaidouni@inria.fr

© Springer International Publishing Switzerland 2015
T. Herault and Y. Robert (eds.), Fault-Tolerance Techniques
for High-Performance Computing, Computer Communications and Networks,
DOI 10.1007/978-3-319-20943-2_4

229



230 H. Casanova et al.

are projected to be common occurrences [10, 23, 30]. For instance, the 45,208-
processor Jaguar platform is reported to have experienced on the order of 1 failure per
day [37], and its scale was modest compared to upcoming platforms. Failures occur
because not all faults are automatically detected and corrected in current production
hardware. To tolerate failures the standard approach is to use rollback and recov-
ery for resuming application execution from a previously saved fault-free execution
state, or checkpoint. Checkpoints are saved to resilient storage throughout execution,
usually periodically. More frequent checkpointing leads to higher overhead during
fault-free execution, but less frequent checkpointing leads to a larger loss when a
failure occurs. A checkpointing strategy specifies when checkpoints should be taken.
A large literature is devoted to identifying good checkpointing strategies, includ-
ing both theoretical and practical efforts. The former typically rely on assumptions
regarding the probability distributions of inter-failure times of the processors (e.g.,
Exponential, Weibull), while the latter rely on simulations driven by failure datasets
obtained on real-world platforms.

In spite of these efforts, the necessary checkpoint frequency for tolerating fail-
ures in large-scale platforms can become so large that processors spend more time
checkpointing than computing. Consider an ideal moldable parallel application that
can be executed on an arbitrary number of processors and that is perfectly paral-
lel. The makespan with p processors is the sequential makespan divided by p. In a
failure-free execution, the larger p the faster the execution. But in the presence of
failures, as p increases so does the frequency of processor failures, leading to (i) more
time spent performing recoveries from these failures and (ii) more time spent saving
more frequent checkpoints to avoid long re-executions after failure. Beyond some
threshold values, increasing p actually increases the expected makespan when using
checkpoint–recovery [10, 13, 23, 30]. This is because the MTBF (mean time between
failures) of the platform becomes so small that the application performs too many
recoveries and re-executions to make progress efficiently.

One possible solution to this problem is to increase the reliability of individ-
ual components, e.g., with more hardware redundancy. This increase comes at a
higher cost. Since system acquisition costs are typically constrained when design-
ing a parallel platform, vendors must instead use commercial off-the-shelf (COTS)
components. The reliability of these COTS components is defined by the product
lifetime, as driven by the market. HPC systems with COTS components will thus
experience higher failure rates at higher scales [34], thereby limiting parallel effi-
ciency if only checkpoint–recovery is used at these scales. Furthermore, even if the
MTBF of an individual component is a high μcomp, then the MTBF of a platform
with p components is μ = μcomp

p (see Eq. 1.14 in Sect. 1.3.2.1). No matter how reli-
able the individual components, there is thus a value of p above which errors are so
frequent that they can prevent any application progress with checkpoint–recovery.

In this work we focus on replication: several processors perform the same com-
putation synchronously, so that a fault on one of these processors does not lead to
an application failure. Replication is an age-old fault-tolerant technique, but it has
gained traction in the HPC context only relatively recently [12, 28, 38]. While repli-
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cation wastes compute resources in fault-free executions, it can alleviate the poor
scalability of checkpoint–recovery.

We study two replication approaches. Consider a parallel application that is
moldable, meaning that it can be executed on an arbitrary number of processors,
which each processor running one application process. In the first approach, group
replication, multiple application instances are executed. For example, 2 distinct
n-process application instances could be executed on a 2n-processor platform. Each
instance runs at a smaller scale, meaning that it has better parallel efficiency than a
single 2n-process instance due to a smaller checkpointing frequency. Furthermore,
once an instance saves a checkpoint, another instance can use this checkpoint imme-
diately to “jump ahead” in its execution. Hence group replication is more efficient
than the mere independent execution of several instances: each time one instance
successfully completes a given “chunk of work,” all the other instances immediately
benefit from this success.

In the second approach, process replication, a single instance of an application
is executed but each application process is (transparently) replicated. For the same
example, one could execute the application with n processes so that there are two
replicas of each process, each running on a distinct physical processor. This approach
is sensible because the mean time to failure of a group of two replicas is larger than
that of a single processor. The checkpointing frequency can thus be lowered and the
parallel efficiency improved. In [13] Ferreira et al. have studied process replication,
with a practical implementation and analytical results. Process replication has been
introduced in Sect. 1.4.2.

Process replication largely outperforms group replication due to dramatically
increased MTBF for each replica set. However, process replication may not always
be a feasible option because it must be provided transparently as part of the runtime
system. There are several popular programming models and runtimes (e.g., message
passing, concurrent objects, distributed components, workflows, algorithmic skele-
tons). In some cases, e.g., for the Message Passing Interface (MPI) runtime, proof of
concept implementations that provide process replication are available [13]. But in
general, many existing and popular runtimes do not (yet) provide transparent process
replication for the purpose of fault tolerance, and enhancing them with this capability
may be nontrivial. A solution could be to implement process replication explicitly as
part of the application, but this would be labor-intensive, especially for legacy appli-
cations. Group replication can be used whenever process replication is not available
because it is agnostic to the parallel programming model, and thus views the appli-
cation as an unmodified black box. The only requirement is that the application be
moldable and that an instance be startable from a saved checkpoint file.

We note that (process or group) replication prevents the execution of an application
that requires the aggregate memory of the full platform, and in this sense limits
the scale of the application execution. However, such full-scale execution is likely
impractical in the first place due to the need for a high checkpointing frequency. The
processors would spend more time-saving state than computing state, thus leading
to low parallel efficiency.

http://dx.doi.org/10.1007/978-3-319-20943-2_1
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At first glance, it may seem paradoxical that better performance can be achieved
by using (process or group) replication. After all in the above example, 50 % of the
platform is “wasted” to perform redundant computation. As a result the applica-
tion instance runs at a smaller scale. But, precisely because the scale is smaller, the
application can use a lower checkpointing frequency, and can thus have better par-
allel efficiency when compared to an application instance running at full scale. The
application makespan can then be comparable to or even shorter than that obtained
when running a single application instance. In the end, the cost of wasting proces-
sor power for redundant computation can be offset by the benefit of the reduced
checkpointing frequency.

In this chapter we study group and process replication from a theoretical perspec-
tive, with the following highlights:

• For group replication:

– We propose a simple, yet effective algorithm for group replication.
– For exponentially distributed failures, we derive a checkpointing period that

minimizes a upper bound on application makespan.
– For non-exponentially distributed failures we propose a Dynamic Programming

approach that computes non-periodic checkpoint dates in a view to minimizing
makespan.

– For non-exponentially distributed failures we also propose a periodic check-
pointing approach in which the period is computed based on a numerical search.

– We perform simulation experiments assuming that failures follow Exponential
or Weibull distributions, the latter being more representative of real-world failure
behaviors [17, 18, 22, 29].

• For process replication:

– We derive exact expressions for the MNFTI (Mean Number of Failures To
Interruption) and the MTTI (Mean Time To Interruption) for arbitrary numbers
of replicas assuming Exponential failures.

– We extend these results to arbitrary failure distributions, notably obtaining
closed-form solutions in the case of Weibull failures.

– We perform simulation experiments and the results show that the choice of a
good checkpointing period is no longer critical when process replication is used.

A broad and expected result for both approaches is that replication is beneficial
at large scale. But more precisely, our results make it possible to determine in which
conditions the use of replication is beneficial and to quantify the benefit in terms
of expected application makespan. This chapter is organized as follows. Section 4.2
discusses related work. Section 4.3 defines our models and states our key assump-
tions. Section 4.4 presents our results for group replication. Section 4.5 presents our
results for process replication. Finally, Sect. 4.6 provides concluding remarks and
perspectives.
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4.2 Related Work

Checkpointing policies have been widely studied in the literature. In [7], Daly studies
periodic checkpointing for Exponential failures, generalizing the well-known bound
obtained by Young [36]. Daly extended his work in [19] to study the impact of
suboptimal checkpointing periods. In [32], the authors develop an “optimal” check-
pointing policy, based on the popular assumption that optimal checkpointing must
be periodic. In [4], Bouguerra et al. prove that the optimal checkpointing policy is
periodic when checkpointing and recovery overheads are constant, for either Expo-
nential or Weibull failures. But their results rely on the unstated assumption that all
processors are rejuvenated after each failure and after each checkpoint, an assumption
that is unreasonable for Weibull failures [3]. We have developed optimal solutions
for Exponential failures and dynamic programming solutions for Weibull failures,
demonstrating performance improvements over checkpointing approaches proposed
in the literature in the case of Weibull failures [3]. The Weibull distribution is recog-
nized as a reasonable approximation of failures in real-world systems [17, 29].

In spite of all the above advances in the areas of checkpointing policies, several
studies have questioned the feasibility of pure checkpoint–recovery for large-scale
systems (see [13] for a discussion of this issue and for references to such studies).
This chapter studies the use of replication in addition to checkpoint–recovery, and is
thus related to previous works on checkpointing policies. In particular, some of our
results build on the algorithms and results developed in [3].

Replication has long been used as a fault tolerance mechanism in distributed
systems [16]. The idea to use replication together with checkpoint–recovery has
been studied in the context of grid computing [35]. One concern about replication
in HPC is the induced resource waste. However, given the scalability limitations of
pure checkpoint–recovery, replication has recently received more attention in the
HPC literature [12, 30, 38].

In this chapter we study two replication techniques, group replication and process
replication. While, to the best of our knowledge, no previous work has considered
group replication, process replication has been studied by several authors. Process
replication is advocated in [11] for HPC applications, and in [21] for grid computing
with volatile nodes. The work by Ferreira et al. [13] studies the use of process repli-
cation for MPI (Message Passing Interface) applications, using 2 replicas per MPI
process. They provide a theoretical analysis of parallel efficiency, an MPI imple-
mentation that supports transparent process replication (including failure detection,
consistent message ordering among replicas, etc.), and a set of experimental and
simulation results. Partial redundancy is studied in [9, 31] (in combination with
coordinated checkpointing) to decrease the overhead associated to full replication.
Adaptive redundancy is introduced in [15], where a subset of processes is dynami-
cally selected for replication.

In Sect. 4.5 we provide a full-fledged theoretical analysis of the combination of
process replication and checkpoint–recovery. While some theoretical results are pro-
vided in [13], they are based on an analogy between the process replication problem
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and the birthday problem. This analogy is appealing but, as seen in Sect. 4.5.1.1, does
not make it possible to compute exact MNFTI (Mean Number of Failures To Inter-
ruption) and MTTI (Mean Time To Interruption) values. In addition, the authors use
Daly’s formula for the checkpointing period, even for Weibull or other distributions,
simply using the mean of the distribution in the formula. This is a commonplace
approach. However, a key observation is that using replication changes the optimal
checkpointing period, even for Exponential distributions. This chapter provides the
optimal value of the period for Exponential and Weibull distributions (either analyt-
ically or experimentally), taking into account the use of replication.

4.3 Models and Assumptions

We consider the execution of a tightly coupled parallel application, or job, on a large-
scale platform composed of p processors. We use the term processor to indicate any
individually scheduled compute resource (a core, a multi-core processor, a cluster
node), so that our work is agnostic to the granularity of the platform. We assume that
standard checkpoint–recovery is performed (with checkpointing either at the system
level or at the application level, with some checkpointing overhead involved). At
most one application process (replica) runs on one processor.

The job must complete W units of (divisible) work, which can be split arbitrarily
into separate chunks. We define the work unit so that when the job is executed on a
single processor one unit of work is performed in one unit of time. The job can be
executed on any number q ≤ p processors. Defining W (q) as the time required for
a failure-free execution on q processors, we consider three models:

• Perfectly parallel jobs: W (q) = W /q.
• Generic parallel jobs: W (q) = (1 − γ )W /q + γW . As in Amdahl’s law [1],

γ < 1 is the fraction of the work that is inherently sequential.
• Numerical kernels: W (q) = W /q + γW 2/3/

√
q , which is representative of a

matrix product or a LU/QR factorization of size N on a 2D-processor grid, where
W = O(N 3). In the algorithm in [2], q = r2 and each processor receives 2r
blocks of size N 2/r2 during the execution; γ is the platform’s communication-to-
computation ratio.

Each participating processor is subject to failures that each cause a downtime. We
do not distinguish between soft and hard failures, with the understanding that soft
failures are handled via software rejuvenation (i.e., rebooting [5, 20]) and that hard
failures are handled by processor sparing, a common approach in production sys-
tems. For simplicity we assume that a downtime lasts D time units, regardless of the
failure type. After a downtime the processor is fault-free and begins a new lifetime.
In the absence of replication, when a processor fails, the whole execution is stopped,
and all processors must recover from the previous checkpointed state. The recov-
ery lasts the time needed to restore the last checkpoint from persistent storage. We
assume coordinated checkpointing [33] so that no message logging/replay is needed
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for recovery. We allow failures to happen during recovery or checkpointing, but not
during downtime (otherwise, the downtime could be considered part of the recovery).
We assume that processor failures are independent and identically distributed (i.i.d.).
This assumption is commonplace in the literature because it makes analysis more
tractable. In the real world, instead, failures are bound to be correlated. One source
of failure correlation is the hierarchical structure of compute platforms (each rack
comprises compute nodes, each compute node comprises processors, each proces-
sor comprises cores), which leads to simultaneous failures of groups of processors.
Generalizing the theoretical results in this chapter to non-i.i.d. failures is an open
question.

We let C(q) denote the time needed to perform a checkpoint, and R(q) the time
needed to perform a recovery. Assuming that the memory footprint of an application
checkpoint is V bytes, with each processor holding V/q bytes, we consider two
scenarios:

• Proportional overhead: C(q) = R(q) = αV/q = C/q for some constant α. This
is representative of cases where the bandwidth of the network card/link at each
processor is the I/O bottleneck.

• Constant overhead: C(q) = R(q) = αV = C , which is representative of cases
where the bandwidth to/from the resilient storage system is the I/O bottleneck.

Since we consider tightly coupled parallel jobs, all q processors operate synchro-
nously. These processors execute the same amount of work W (q) in parallel, chunk
by chunk. The total time (on one processor) to execute a chunk of duration, or size,
ω and then checkpoint it, is ω + C(q).

4.4 Group Replication

With group replication one executes multiple application instances on different
processor groups. All groups compute the same chunk simultaneously, and do so
until one of them succeeds, potentially after several failed trials. Then all other
groups stop executing that chunk and recover from the checkpoint stored by the suc-
cessful group. All groups then attempt to compute the next chunk. Group replication
can be implemented easily with no modification to the application, provided that the
recovery implementation allows a group to recover immediately from a checkpoint
produced by another group. Hereafter we formalize group replication as an execution
protocol we call ASAP (As Soon As Possible).

We consider g groups, where each group has q processors, with g × q ≤ p. A
group is available for execution if and only if all its q processors are available. In
case of a failure at a processor in a group the downtime of this group is a random
variable X D(q) ≥ D. This random variable can take values strictly larger than D
because while a processor in a group is experiencing a downtime another processor
in that group can experience a failure, thus prolonging the groups’ downtime beyond
D seconds. If a group encounters a first processor failure at time t we say that the
group is down between times t and t + X D(q).
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R(q)

Downtine (of a group)
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2tend

1

Fig. 4.1 Execution of chunks ω1 and ω2 (macro-steps 1 and 2) using the ASAP protocol. At time
tend
1 , Group 1 is not ready, and Group 2 is the only one that does not need to recover

ASAP proceeds in k macro-steps, with a chunk of work processed during each
macro-step. More formally, during macro-step j , 1 ≤ j ≤ k, each group indepen-
dently attempts to execute the j th chunk of size ω j and to checkpoint it, restarting
as soon as possible in case of a failure. As soon as one of the groups succeeds, say
at time tend

j , all the other groups are immediately stopped, macro-step j is over, and
macro-step ( j + 1) starts (if j < k). The only two necessary inputs to the algorithm
are (i) the number of chunks, k, and (ii) all chunk sizes, the ω j ’s, chosen so that∑k

j=1 ω j = W (q).
Before being able to start macro-step ( j + 1), a group that has been stopped must

execute a recovery so that it can resume execution from the checkpoint saved by a
successful group. Furthermore, this recovery may start later than time tend

j , in the

case where the group is down at time tend
j . This is shown on an example execution

in Fig. 4.1. At time tend
1 , Group 2 completes the computation and checkpointing

of the chunk for macro-step 1. During that macro-step, Group 1 experiences two
downtimes, each of duration D, while Group 3 experiences a single downtime of
duration > D due to a failure at a first processor followed by a failure at a second
processor before the end of the first processor’s downtime. At time tend

1 , Group 1 is
down (experiencing a downtime caused by a sequence of three processor failures),
so it cannot begin the recovery from the checkpoint saved by Group 2 immediately.
Group 3, instead, can begin the recovery immediately a time tend

1 , but due to a failure
it must reattempt the recovery. At time tend

2 it is Group 3 that completes the chunk
for macro-step 2. The only groups that do not need to recover at the beginning of
the next macro-step are the groups that were successful for the previous macro-step
(except for the first macro-step for which all groups can start computing right away).

4.4.1 Exponential Failures

In this section we provide an analytical evaluation of ASAP assuming Exponential
failures. More specifically, we are able to compute the optimal number of macro-steps
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Algorithm 1: ASAP (ω1, …, ωk)
for j = 1 to k do

for each group do in parallel
repeat

Finish current downtime (if any)
Try to perform a recovery, then a chunk of size ω j , and finally to checkpoint
if execution successful then

Signal other groups to immediately stop their attempts
until one of the groups has a successful attempt

k and the optimal values of the chunk sizes ω j . Assume that individual processor
failures are distributed following an Exponential distribution of parameter λ. For
the sake of the theoretical analysis, we introduce a slightly modified version of the
ASAP protocol in which all groups, including the successful ones, execute a recovery
at the beginning of all macro-steps, including the first one. This version of ASAP
is described in Algorithm 1. It is completely symmetric, which renders its analysis
easier: for macro-step j to be successful, one of the groups must be up and running
for a duration of R(q) + ω j + C(q). Note however that all experiments reported
in Sect. 4.4.4 use the original version of ASAP, without any superfluous recovery
during execution (as depicted in Fig. 4.1).

Consider the j th macro-step, number the attempts of all groups by their start time,
and let N j be the index of the earliest started attempt that successfully computes
chunk ω j . Figure 4.2 zooms in on the execution of the second macro-step ( j = 2).
Each attempt is called Jobi in the order of its start time, and is followed by a
downtime but for the last attempt, which is successful. In that example the successful
computation of the chunk of size R + ω2 + C is the fourth attempt, Job4, executed
by Group 3. Consequently, N2 = 4, meaning that macro-step 2 requires 4 attempts.
The duration of each attempt is the sum of a sample of two random variables X j

i

and Y j
i , 1 ≤ i ≤ N j . X j

i corresponds to the duration of the i th attempt at executing

Group 3

X2
1

Group 1

Group 2

Job2

Job3

Job4

X2
2 Y 2

2Y 2
1 Y 2

3X2
3 R(q)+ω2 +C(q)

Attempt i (of step 2) has size X2
i

and is followed by a downtime of size Y 2
i

tend
1 tend

2

Job1

Fig. 4.2 Zoom on macro-step 2 of the execution depicted in Fig. 4.1, using the (X, Y ) notation of
Algorithm 2. Recall that Jobi has size X2

i + Y 2
i for 1 ≤ i ≤ 3, and Job4 has size R(q)+ω2 + C(q)
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Algorithm 2: Step j of ASAP (ω1, …, ωk)

i ← 1 /* number of attempts for the job */
L ← ∅ /* list of attempts for the job */

Sample X j
i and Y j

i using DX and DX D(q), respectively

while X j
i < R(q) + ω j + C(q) do

Add Jobi , with processing time X j
i + Y j

i , to L
i ← i + 1

Sample X j
i and Y j

i using DX and DX D(q), respectively
N j ← i
Add JobN j , with processing time R(q) + ω j + C(q), to L

/* first successful job has size R(q)+ω j +C(q) not X j
N j

+Y j
N j

*/

From time tend
j−1 on, execute a List Scheduling algorithm to distribute jobs in L to the

different groups (recall that some groups may not be ready at time tend
j−1)

the chunk. Y j
i corresponds to the duration of the i th downtime that follows the i th

attempt (if i �= N j ). Note that X j
i < R(q) + ω j + C(q) for i < N j , and X j

N j
=

R(q) + ω j + C(q). All the X j
i ’s follow the same distribution DX , an Exponential

distribution of parameter qλ. And all the Y j
i ’s follow the same distribution DX D (q),

that of the random variable X D(q) corresponding to the downtime of a group of q
processors. The main idea is to view the N j execution attempts as jobs, where the

size of job i is X j
i +Y j

i , and to distribute them across the g groups using the classical
online list scheduling algorithm for independent jobs [24, Sect. 5.6], as stated in the
following proposition:

Proposition 4.1 The jth ASAP macro-step can be simulated using Algorithm 2: the
last job scheduled by Algorithm 2 ends exactly at time tend

j .

Proof The List Scheduling algorithm distributes the next job to the first available
group. Because of the memoryless property of Exponential laws, it is equivalent
(i) to generate the attempts a priori and greedily schedule them, or (ii) to generate
them independently within each group.

Proposition 4.2 Let T
(R(q)+ω j +C(q))

truestart be the time elapsed between tend
j−1 and the

beginning of JobN j (see Fig.4.3). We have

E

(
T

(R(q)+ω j +C(q))

truestart

)
≤ E(Y ) + E(N j )E(X) − E(X

N j
j ) + (E(N j ) − 1)E(Y )

g

where X and Y are random variables corresponding to an attempt (sampled using
DX and DX D(q) respectively). Moreover, we have E(N j ) = eλq(R(q)+ω j +C(q)) and

E(X
N j
j ) = 1

qλ
+ R(q) + ω j + C(q).
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Fig. 4.3 Notations used in
Proposition 4.2

tend
j−1

T
(R(q)+ω j+C(q))

truestart R(q)+ω j +C(q)

X j
Nj

tend
j

tend
j − tend

j−1

Proof For group x , 1 ≤ x ≤ g, let Ỹx denote the time elapsed before it is ready
for macro-step j . For example, in Fig. 4.2, we have Ỹ1 > 0 (group 1 is down at
time tend

j−1), while Ỹ2 = Ỹ3 = 0 (groups 2 and 3 are ready to compute at time tend
j−1).

Proposition 4.1 has shown that executing macro-step j can be simulated by executing
a List Schedule on a job list L (see Algorithm 2). We now consider g “jobs” ˜Jobx ,
x = 1, . . . , g, so that ˜Jobx has duration Ỹx . We now consider the augmented job
list L ′ = L ∪ ⋃g

x=1
˜Jobx . Note that L ′ may contain more jobs than macro-

step j : the jobs that start after the successful job JobN j are discarded from the list
L ′. However, both schedules have the same makespan, and jobs common to both

systems have the same start and completion dates. Thus, we have T
(R(q)+ω j +C(q))

truestart ≤∑g
x=1(Ỹx )+∑N j −1

i=1 (X j
i +Y j

i )

g : this key inequality is due to the property of list scheduling:
the group which is assigned the last job is the least loaded when this assignment
is decided, hence its load does not exceed the average load (which is the total load
divided by the number of groups). Given that E(Ỹx ) ≤ E(Y ), we derive

E

(
T

(R(q)+ω j +C(q))

truestart

)
≤ E(Y ) +

E

(∑N j −1
i=1 X j

i

)
+ E

(∑N j −1
i=1 (Y j

i )
)

g

But N j is the stopping criterion of the (X j
i ) sequence; hence, using Wald’s

theorem [26], we have E(
∑N j

i=1 X j
i ) = E(N j )E(X) and E(

∑N j −1
i=1 X j

i ) = E(N j )

E(X) − E(X
N j
j ). Moreover, as N j and Y j

i are independent variables, we have

E(
∑N j −1

i=1 Y j
i ) = (E(N j ) − 1)E(Y ), and we get the desired bound for

E(T
(R(q)+ω j +C(q))

truestart ). Finally, as the expected number of attempts when repeating
independently until success an event of probability α is 1

α
(geometric law), we get

E(N j ) = eλq(R(q)+ω j +C(q)). The value of E(X
N j
j ) can be directly computed from

the definition, recalling that X
N j
j ≥ R(q) + ω j + C(q) and each Xi

j follows an
Exponential distribution of parameter qλ.
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Theorem 4.1 The expected makespan of ASAP has the following upper bound:
g−1

g W (q) + 1
g

(
1

qλ
+ E(Y )

)
eλq(R(q)+C(q))k∗eλq W (q)

k∗ + k∗
(

g−1
g (E(Y ) + R(q) + C(q)) − 1

g
1

qλ

)
,

where Y is a random variable with distribution DX D(q). This bound is obtained when
using k∗ = max(1, �k0�) or k∗ = k0� same-size chunks, whichever leads to the
smaller value, where

k0 = λqW (q)

1 + L

((
g − 1 + (g − 1)qλ(R(q) + C(q))− g

1 + qλE(Y )

)
e−(1 + λq(R(q) + C(q)))

) ·

L, the Lambert function, is defined as L(z)eL(z) = z.

Proof From Proposition 4.2, the expected execution time of ASAP has upper bound
TASAP = ∑k

j=1 α j , where

α j = E(Y ) + E(N j )E(X) − E(X
N j
j ) + (E(N j ) − 1)E(Y )

g
+ (R(q) + ω j + C(q)).

Our objective now is to find the inputs to the ASAP algorithm, namely the number k
of macro-steps together with the chunk sizes (ω1, . . . , ωk), that minimize this TASAP

bound.
We first have to prove that any optimal (in expectation) policy uses only a finite

number of chunks. Let α be the expectation of the ASAP makespan using a unique
chunk of size W (q). According to Proposition 4.2,

α = E

(
T (R(q)+W (q)+C(q))

truestart

)
+ C(q) + W (q) + R(q),

and is finite. Thus, if an optimal policy uses k∗ chunks, we must have k∗C(q) ≤ α,
and thus k∗ is bounded.

In the proof of Theorem 1 in [3], we have shown that any deterministic strategy
uses the same sequence of chunk sizes, whatever the failure scenario, thanks to the
memoryless property of the Exponential distribution. We cannot prove such a result
in the current context. For instance, the number of groups performing a downtime
at time tend

1 depends on the scenario. There is thus no reason a priori for the size of
the second chunk to be independent of the scenario. To overcome this difficulty, we
restrict our analysis to strategies that use the same sequence of chunk sizes whatever
the failure scenario. We optimize TASAP in that context, at the possible cost of finding
a larger upper bound.

We thus suppose that we have a fixed number of chunks, k, and a sequence of
chunk sizes (ω1, . . . , ωk), and we look for the values of (ω1, . . . , ωk) that minimize
TASAP = ∑k

j=1 α j . Let us first compute one of the α j term. Replacing E(N j ) and

E(X
N j
j ) by the values given in Proposition 4.2, and E(X) by 1

qλ
, we get
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α j = g − 1

g
ω j + 1

g
eλq(R(q)+ω j +C(q))

(
1

qλ
+ E(Y )

)

+ g − 1

g
(E(Y ) + R(q) + C(q)) − 1

g

1

qλ

TASAP = g − 1

g
W + 1

g

(
1

qλ
+ E(Y )

)
eλq(R(q)+C(q))

k∑
j=1

eλqω j

+ k

(
g − 1

g
(E(Y ) + R(q) + C(q)) − 1

g

1

qλ

)

By convexity, the expression
∑k

j=1 eλqω j is minimal when all ω j ’s are equal (to
W (q)/k). Hence all the chunks should be equal for TASAP to be minimal. We obtain:

TASAP = g − 1

g
W + 1

g

(
1

qλ
+ E(Y )

)
eλq(R(q)+C(q))keλq W (q)

k

+ k

(
g − 1

g
(E(Y ) + R(q) + C(q)) − 1

g

1

qλ

)
.

Let f (x) = τ1xeλq W (q)
x + τ2x , where

τ1 = 1

g

(
1

qλ
+ E(Y )

)
eλq(R(q)+C(q)) and

τ2 =
(

g − 1

g
(E(Y ) + R(q) + C(q)) − 1

g

1

qλ

)
.

A simple analysis using differentiation shows that f has a unique minimum, and

solving f ′(x) = 0 leads to τ1eλq W (q)
k

(
1 − λqW (q)

k

)
+ τ2 = 0, and thus to k =

λqW (q)

1+L

(
τ2

τ1·e
) = k∗, which concludes the proof.

This theorem can in turn be used to compute numerically the number of chunks and
an upper bound on the expected makespan, provided that E(Y ) = E(X D(q)) can be
itself bounded. The following proposition provides such a bound:

Proposition 4.3 Let X D(q) denote the downtime of a group of q processors. Then

D ≤ E(X D(q)) ≤ e(q−1)λD − 1

(q − 1)λ
· (4.1)

Proof In [3], we have shown that the optimal expectation of the makespan is com-
puted as:
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E
∗(q) = K ∗(q)

(
1

qλ
+ E(Trec(q))

)(
e

qλW (q)

K∗(q)
+qλC(q) − 1

)
(4.2)

where E(Trec(q)) denotes the expectation of the recovery time, i.e., the time spent
recovering from failure during the computation of a chunk. All chunks have the
same recovery time because they all have the same size and because of the mem-
oryless property of the Exponential distribution. It turns out that although we can
compute the optimal number of chunks (and thus the chunk size), we cannot compute
E

∗(q) analytically becauseE(Trec(q)) is difficult to compute. We write the following
recursion:

Trec(q) =

⎧⎪⎨
⎪⎩

X D(q) + R(q) if no processor fails

during R(q) units of time,

X D(q) + Tlost (R(q)) + Trec(q) otherwise.

(4.3)

X D(q) is the downtime of a group of q processors, that is, the time between the
first failure of one of the processors and the first time at which all of them are
available (accounting for the fact a processor can fail while another one is down,
thus prolonging the downtime). Tlost (R(q)) is the amount of time spent computing
by these processors before a first failure, knowing that the next failure occurs within
the next R(q) units of time. In other terms, the compute time is wasted because
checkpoint recovery was not completed. The time until the next failure of a group
of q processors is the minimum of q iid Exponential random variables, and is thus
Exponential with parameter qλ. We can compute E(Tlost (R(q))) = 1

qλ
− R(q)

eqλR(q)−1
(see [3] for details). Plugging this value into Eq. 4.3 leads to:

E(Trec(q)) = e−qλR(q)(E(X D(q)) + R(q))

+ (1 − e−qλR(q))

(
E(X D(q)) + 1

qλ
− R(q)

eqλR(q) − 1
+ E(Trec(q))

)

(4.4)

Equation 4.4 reads as follows: after the downtime X D(q), either the recovery suc-
ceeds for everybody, or there is a failure during the recovery and another attempt must
be made. Both events are weighted by their respective probabilities. Simplifying the
above expression we get:

E(Trec(q)) = E(X D(q))eqλR(q) + 1

qλ
(eqλR(q) − 1) (4.5)

Plugging back this expression in Eq. 4.2, we obtain the Equation:

E
∗(q) = K ∗(q)

(
1

qλ
+ E(X D(q))

)
eqλR(q)

(
e

qλW (q)

K∗(q)
+qλC(q) − 1

)
(4.6)
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Now we establish the desired bounds on E(X D(q)) We always have X D(q) ≥
X D(1) ≥ D, hence the lower bound. For the upper bound, consider a date at which
one of the q processors, say processor i0, just had a failure and initiates its downtime
period for D time units. Some other processors might be in the middle of their
downtime period: for each processor i , 1 ≤ i ≤ q, let ti denote the remaining
duration of the downtime of processor i . We have 0 ≤ ti ≤ D for 1 ≤ i ≤ q,
ti0 = D, and ti = 0 means that processor i is up and running. Let X

t1,...,tq
D (q) be the

remaining downtime of a group of q processors, knowing that processor i , 1 ≤ i ≤ q,
will still be down for a duration of ti , and that a failure just happened (i.e., there exists
i0 such that ti0 = D). Given the values of the ti ’s, we have the following equation
for the random variable X

t1,...,tq
D (q):

X
t1,...,tq
D (q) =

⎧⎪⎨
⎪⎩

D if none of the processors of the group fails during

the next D units of time

T
t1,...,tq

lost (D) + X
t ′1,...,t ′q
D (q) otherwise.

In the second case of the equation, consider the next D time units. Processor i can
only fail in the last D − ti of these time units. Here the values of the t ′i ’s depend

on the ti ’s and on T
t1,...,tq

lost (D). Indeed, except for the last processor to fail, say i1,

for which t ′i1
= D, we have t ′i = max{t ′i − T

t1,...,tq
lost (D), 0}. More importantly, we

always have T
t1,...,tq

lost (D) ≤ T D,0,...,0
lost (D) and X

t1,...,tq
D (q) ≤ X D,0,...,0

D (q) because
the probability for a processor to fail during D time units is always larger than that
to fail during D − ti time units. Thus, E(X

t1,...,tq
D (q)) ≤ E(X D,0,...,0

D (q)). Following

the same line of reasoning, we derive an upper bound for X D,0,...,0
D (q):

X D,0,...,0
D (q) ≤

⎧⎪⎨
⎪⎩

D if none of the q-1 running processors of the group

fails during the downtime D

T D,0,...,0
lost (D) + X D,0,...,0

D (q) otherwise.

Weighting both cases by their probability and taking expectations, we obtain

E

(
X D,0,...,0

D (q)
)

≤ e−(q−1)λD D + (1 − e−(q−1)λD)
(

E
(

T D,0,...,0
lost (D)

)
+ E

(
X D,0,...,0

D (q)
))

Hence, E
(

X D,0,...,0
D (q)

)
≤ D + (e(q−1)λD − 1)E

(
T D,0,...,0

lost (D)
)

, with

E
(

T D,0,...,0
lost (D)

)
= 1

(q − 1)λ
− D

e(q−1)λD − 1
.
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We derive

E

(
X

t1,...,tq
D (q)

)
≤ E

(
X D,...,0

D (q)
)

≤ e(q−1)λD − 1

(q − 1)λ
.

which concludes the proof. As a sanity check, we observe that the upper bound is at
least D, using the identity ex ≥ 1 + x for x ≥ 0.

4.4.2 General Failures

The analytical derivations in Sect. 4.4.1 hold only for Exponential failures. In the case
of non-Exponential failures we propose two algorithms for determining an execution
of ASAP that achieves good makespan in practice: a “brute-force” approach called
BestPeriod and a Dynamic Programming approach called DPNextFailure.

4.4.2.1 Brute-Force Algorithm

The BestPeriod algorithm enforces a periodic execution of ASAP, meaning that
all chunk sizes are identical. For a given number of groups, the period is computed
via a numerical search among a set of candidate periods generated as follows. The
work in [3] makes it possible to compute an optimal period, τ , for an application
executed without replication on n processors subjected to Exponential failures. In
our case, with g groups and p processors, we compute this period for n = �p/g�
processors. Besides τ , we then generate 360 candidates as τ(1 + 0.05 × i) and
τ/(1+0.05× i) for i ∈ {1, . . . , 180}, and 120 candidates as τ ×1.1 j and τ/1.1 j for
j ∈ {1, . . . , 60}, for a total of 481 candidate periods. We then evaluate each candidate
period in simulation (see Sect. 4.4.3 for details on our simulation methodology) over
50 randomly generated experimental scenarios. We pick the candidate period that
achieves the best average makespan over these 50 scenarios.

BestPeriod has two potential drawbacks. First, it enforces a periodic execution,
even though there is no theoretical reason why the optimal should correspond to
a periodic execution if failures are non-Exponential. Second, it requires running a
large number of simulations (50 × 481 = 24,050). With our current implementation
each individual set of 481 simulations requires between 3 and 24 min on one core
of a Quad-core AMD Opteron running at 2400 MHz. While this may indicate that
BestPeriod is impractical, when compared to application makespans that can be
several days the overhead of searching for the period may not be significant. Fur-
thermore, the search for the period can be done in parallel since all simulations are
independent. The search for the best period to execute an application on a large-scale
platform can thus be done in a few seconds on that same large-scale platform.



4 Using Replication for Resilience on Exascale Systems 245

4.4.2.2 Dynamic Programming Algorithm

As an alternative to the brute-force algorithm in the previous section, one can resort
to Dynamic Programming (DP). We initially developed a DP algorithm to compute
chunk sizes for each group at each step of the application execution. Even though
this seems like a natural approach, it is only tractable (in terms of number of DP
states) if the chunk sizes for each group are computed independently of those for
the other groups. As a result, we found that the resulting algorithm does not achieve
good results in practice.

Algorithm 3: DPNextCheckpoint(W , T , T0, τ1, ..., τgq )

1 if W = 0 then return 0 best_work ← 0;
2 next_chkpt ← T ;
3 (W1, ..., Wg) ← WorkAlreadyDone(T );

; /* Work done since last recovery or checkpoint */
4 Sort groups by non-increasing of work done (W1 is maximum);
5 for t = T to T + W − Wg step quantum; /* Loop on checkpointing date */
6 do
7 cur_work ← 0;
8 for x = 1 to g; /* Loop on the first group to successfully work

until t + C(q) */
9 do

10 δ ← (t + C(q)) − T0; /* Total time elapsed until the
checkpoint completion */

11
proba ←

(∏x−1
y=1 Pf ail(τ(y−1)q+1 + δ, ..., τ(y−1)q+q + δ | τ(y−1)q+1, ..., τ(y−1)q+q )

)
×Psuc(τ(x−1)q+1 + δ, ..., τ(x−1)q+q + δ | τ(x−1)q+1, ..., τ(x−1)q+q )

;

12 ω ← min{W − Wx , t − T };
; /* Work done between T and t by group x */

13 (rec_ω, rec_t) ←
DPNextCheckpoint(W − Wx − ω, T + ω + C(q) + R(q), T0, τ1, ..., τgq );

14 cur_work ← cur_work + proba × (Wx + ω + rec_ω)

15 if cur_work > best_work then
16 best_work ← cur_work;
17 next_chkpt ← t
18 return (best_work, next_chkpt)

When faced with an exponential number of DP states when using DP to min-
imize expected makespan, an alternate goal is to maximize the expected amount
of completed work before the next failure [3]. We generalize this idea to the con-
text of replication, doing away with the concept of chunk sizes altogether. More
specifically, since the first failure only interrupts a single group, the objective is to
maximize the expected amount of work completed before all groups have failed.
This can be achieved with the DP algorithm presented hereafter. We make one sim-
plifying assumption: we ignore that once a group has failed, it will eventually restart
and resume computing. This is because keeping track of such restarts would again



246 H. Casanova et al.

lead to an exponential number of DP states. The hope is that our approach will work
well in spite of this simplifying assumption.

Our DP algorithm, DPNextCheckpoint, is shown in Algorithm 3. It does not
define chunk sizes, i.e., amounts of work to be processed before a checkpoint is
taken, but instead it defines checkpoint dates. The rationale is that one checkpoint
date can correspond to different amounts of work for each group, depending on when
the group has started to process its chunk, after either its last failure and recovery, or
its last checkpoint, or its last recovery from another group’s checkpoint. Input to the
algorithm is the amount of work that remains to be done (W ), the current time (T ),
the time at which the application started (T0), and the times since the latest failure at
each processor before time T0 (the τi ’s). The output is the next checkpoint date and
the expected amount of work completed before the next failure occurs.

Algorithm 4: DPNextFailure(W ).
for each group x = 1 to g do in parallel

while W �= 0 do
(τ1, . . . , τgq ) ← Alive(1, . . . , gq)

T0 ← Time() /* Current time */
(work, date) ← DPNextCheckpoint(W, T0, T0, τ1, . . . , τgq )

Signal all processors that the next checkpoint date is now date
Try to work until date and then checkpoint
if successful work until date and checkpoint then

Let y be the longest running group without failure among the successful groups
Let ω be the work performed by y since its last recovery or checkpoint
W ← W − ω

if group x’s last recovery or checkpoint was strictly later than that of y then
Perform a recovery

if failure then Complete downtime if failure or signal then Perform recovery from
last successfully completed checkpoint

DPNextCheckpoint proceeds as follows. At Line 3 a function is called (Work-

AlreadyDone) which returns, for each group, the time since it has started processing
its current chunk (i.e., the amount of work it has done to date). The groups are sorted
in decreasing order of work performed to date (Line 4). The algorithm then picks
the next checkpoint date for all possible dates between the current time T and time
T + W − Wg , i.e., the time at which the last group would finish computing if
no failure were to occur (Line 5). At the checkpointing date, the amount of work
completed is the maximum of the amount of work done by the different groups that
successfully complete the checkpoint. Therefore, we consider all the different cases
(Line 11), that is, which group x , among the successful groups, has done the most
work. We compute the probability of each case (Line 11). All groups that started to
work earlier than group x have failed (i.e., at least one processor in each of them
has failed) but not group x (i.e., none of its processors have failed). We compute the
expectation of the amount of work completed in each case (Lines 12 and 13). We then
sum the contributions of all the cases (Line 14) and record the checkpointing date
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leading to the largest expectation (Line 15). Note that the probability computed at
Line 11 explicitly states which groups have successfully completed the checkpoint,
and which groups have not. We choose not to take this information into account when
computing the expectation (recursive call at Line 13) so as to avoid keeping track of
which groups have failed, thereby lowering the complexity of the dynamic program.
This is why the conditions do not evolve in the conditional probability at Line 11.

Algorithm 4 shows the overall algorithm, DPNextFailure, which uses DP-
NextCheckpoint (the Alive function returns, for a list of processors, the amount
of time each has been up and running since its last downtime). Each time a group
is affected by an event (a failure, a successful checkpoint by itself or by another
group), it computes the next checkpoint date and broadcasts it to the g group leaders.
Hence, a group may have computed the next checkpoint date to be t , and that date can
be either unmodified, postponed, or advanced by events occurring at other groups
and by their recomputation of the best next checkpoint date. In practice, as time is
discretized, at each time quantum a group can check whether the current date is a
checkpoint date or not.

Both Algorithms 3 and 4 have a complexity in O

(
gq
(

W
quantum

)2
)

. The gq

factor comes from the computation of the probabilities at Line 11 in Algorithm 3.
This complexity can be lowered using the methodology outlined in [3].

4.4.3 Simulation Methodology

In this section we detail our simulation methodology.

4.4.3.1 Evaluated Algorithms

Our simulator implements two versions of the ASAP protocol in the case of expo-
nentially distributed failures. The first version, OptExp, simply uses for each group
the optimal and periodic policy outlined in Sect. 1.3.1 (Proposition 1.1 and its dis-
cussion) and formally established in [3] for Exponential failure distributions and no
replication. To use OptExp with g groups we use the period from [3] computed with
�p/g� processors. The second, OptExpGroup, uses the periodic policy defined by
Theorem 4.1. Both OptExp and OptExpGroup compute the checkpointing period
based solely on the MTBF, assuming that failures are exponentially distributed. We
nevertheless include them in all our experiments, simply using the MTBF value
even when failures are not exponentially distributed. The simulator also implements
BestPeriod (Sect. 4.4.2.1) andDPNextFailure (Sect. 4.4.2.2). Based on the results
in [3], we do not consider any additional checkpointing policy, such as those defined
by Young [36] or Daly [7] for instance.

http://dx.doi.org/10.1007/978-3-319-20943-2_1
http://dx.doi.org/10.1007/978-3-319-20943-2_1
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4.4.3.2 Failure Distributions

To choose failure distribution parameters that are representative of realistic systems,
we use failure statistics from the Jaguar platform. Jaguar contained 45,208 processors
and is said to have experienced on the order of 1 failure per day [37]. Assuming a
1-day platform MTBF leads to a processor MTBF equal to 45,208

365 ≈ 125 years.
We generate both Exponential and Weibull failures, the former serving as a best
case yet unrealistic scenario and the latter being representative of failure behavior
in production systems [17, 18, 22, 29]. For the Exponential distribution of failure
inter-arrival times, we simply set λ = 1

MTBF . For the Weibull distribution, which
requires two parameters, a shape parameter k and a scale parameter λ, and has
density k

λ
( x
λ
)k−1e−(x/λ)k

for x ≥ 0, we have λ = MTBF/Γ (1 + 1/k). Based on
the results in [17, 18, 22, 29] we use k = 0.5 and k = 0.7. For small values of the
shape parameter k, the Weibull distribution is far from an Exponential distribution,
meaning that it is far from being memoryless.

4.4.3.3 Platform and Job Parameters

We consider platforms containing from 32,768 to 4,194,304 processors. We deter-
mine the job size W so that a job using the whole platform would use it for a
significant amount of time in the absence of failures, namely ≈ 21 h on the largest
platforms (W = 10,000 years). In experiments we use D = 60 s, and C = R = 60 s,
600 s, and 6000 s, thus spanning the spectrum from relatively fast to relatively slow
checkpointing/recovery. We also ran experiments with a very short C = R = 6 s,
but the results are virtually identical to those obtained with C = R = 60 s and we do
not present them. Finally, for all experiments we use γ = 10−6 for generic parallel
jobs, and γ = 0.1 for numerical kernels (see Sect. 4.3).

4.4.3.4 Generation of Failure Scenarios

Given a p-processor job, a failure trace is a set of failure dates for each processor
over a fixed time horizon h (set to 2 years). The job start time is assumed to be 1
year. We use a nonzero start time to avoid side effects related to the synchronous
initialization of all nodes/processors. Given the distribution of inter-arrival times at
a processor, for each processor we generate a trace via independent sampling until
the target time horizon is reached.

4.4.4 Simulation Results

In this section, we only present simulation results for perfectly parallel applications
under the constant overhead model (see Sect. 4.3). All trends and conclusions are
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similar regardless of the application and overhead models. All results are averages
over at least 50 instances, and all graphs show one-standard-deviation error bars.

4.4.4.1 Exponential Failures

Figure 4.4 shows the average makespan versus the number of processors for our
algorithms, using g = 1, 2, or 3 groups, and assuming Exponential failures. A first
observation is that many curves overlap each other: for a given g all algorithms
lead to similar average makespan. For instance, for C = R = 600 s and g =
2, and taking OptExp as a reference, the relative difference between the average
makespan of OptExp and that of the other three algorithms is at most 6.81 % (and
only 2.31 % when averaged over all considered numbers of processors). In spite of
such small differences, several trends emerge. OptExp almost always leads to higher
average makespan than OptExpGroup (note that for g = 1 the two algorithms are
equivalent). Over the 8 numbers of processors considered, the 3 values for R = C , and
the 3 values for g, i.e., 72 scenarios,OptExp leads to average makespans shorter than
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that of OptExpGroup only 4 times (for R = C = 6000 s, for 218 to 221 processors,
and by at most 3.27 %). BestPeriod never leads to an average makespan higher than
that of OptExp or OptExpGroup, and outperforms them by up to several percent
across all the R = C and g values. DPNextFailure leads to mixed results, with
equal or shorter average makespan than OptExpGroup, resp. BestPeriod, for 31,
resp. 24, of the 72 different scenarios.

A second observation is that the use of g > 1 (i.e., multiple groups) often does not
help and can even lead to larger average makespans. For R = C = 60 s, increasing
g from 1 to 2, or from 2 to 3, never leads to a lower average makespan for any of
our algorithms. For R = C = 600 s, the only improvements are seen when going
from 1 to 2 groups, for the OptExp, OptExpGroup, and BestPeriod algorithms,
and only with more than 221 processors. The relative improvements are at most
7.75 % for 221 processors, and between 25.40 and 41.09 % for 222 processors. No
improvements are achieved when going from 2 to 3 groups. More improvements
are seen for C = R = 6000 s. When going from 1 to 2 groups, improvements are
achieved starting at 218 processors, with improvements up to between 93.64 and
95.17 % at large scale, for all four algorithms. When going from 2 to 3 groups,
relative improvements are seen starting at 219 processors, reaching up to between
85.09 and 85.78 % for all four algorithms.

For low and moderate checkpointing overheads, C = R = 60 s or 600 s, the
average makespan decreases as the number of processors increases. Instead, for high
checkpointing overheads, C = R = 6000 s, the average makespan initially decreases
but starts increasing at large scale. This is particularly noticeable when using g = 1
group. For instance, the average makespan using OptExp goes from 21.83 s with
220 processors to 249.39 s with 221 processors, or an increase by a factor 11.42. The
increase is similar with BestPeriod and marginally lower with DPNextFailure

(a factor 9.72). The reason for this makespan increase is simply that with a high
checkpointing overhead, the parallel efficiency is low as processors spend more time
in checkpointing activities than in actual computation. This observation is precisely
the motivation for using g > 1 (see Sect. 3.1). With g = 2, we still see increases in
average makespans, but only by a factor between 2.46 and 2.53 when going from 220

processors to 221 processors for all algorithms. With g = 3, this factor is between
1.34 and 1.39 for all algorithms. Therefore, the use of group replication improves
parallel efficiency and can lead to scalability improvements. For instance, with g = 1
or g = 2, regardless of the algorithm in use, it is not advisable to use 220 processors
as the makespan is lower when using 219 processors. With g = 3, instead, there is
a reduction in average makespan when going from 219 processors to 220 processors
for all our algorithms (the relative percentage reductions are between 14.58 and
18.81 %).

Based on the above, we conclude that for Exponential failures group replication
can be useful when the checkpointing overhead is relatively large and/or when the
scale of the execution is large. While large checkpointing overheads decrease parallel
efficiency, the use of group replication makes it possible to limit this decrease or even
to increase parallel efficiency at some scales. All our algorithms lead to compara-
ble performance, with BestPeriod leading to good results, even though marginally

http://dx.doi.org/10.1007/978-3-319-20943-2_3
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outperformed by DPNextFailure in some instances. While these results are inter-
esting, although Exponential failures have been studied in all previously published
works, their relevance to practice is not clear given that real-world failures follow
non-memoryless distributions. In the next section we present results for Weibull
failure distributions.

4.4.4.2 Weibull Failures

Figure 4.5 show results for Weibull failures with k = 0.7 and k = 0.5, respectively.
For low R = C = 60 s and for k = 0.7 (Fig. 4.5a), results are similar to those
seen for Exponential failures: the use of multiple groups does not help, and all
algorithms lead to sensibly the same performance. The gaps between the algorithms
become larger for k = 0.5, i.e., when the failure distribution is farther from the
Exponential distribution, with the advantage toBestPeriod (Fig. 4.5b). For instance,
for k = 0.5, 220 processors, and using g = 2 groups,BestPeriod leads to an average
makespan lower than that of OptExp, OptExpGroup, and DPNextFailure by
10.46, 51.04, and 2.08 %, respectively. A general observation in all the results for
replication (g > 1) with Weibull failures, regardless of the value of C = R, is that
OptExpGroup leads to much poorer results than all the other algorithms. This is
because the analytical development of Theorem 4.1 relies heavily on the Exponential
failure assumption. As a result, OptExpGroup is even outperformed by OptExp,
even though this algorithm also assumes Exponential failures. In all that follows we
no longer discuss the results for OptExpGroup.

For C = R = 600 s and k = 0.7, and unlike the results for Exponential fail-
ures, at large scale the average makespan of the g = 1 executions increases sharply
while the average makespans for g > 1 executions remain more stable (Fig. 4.5c).
In other words, even when checkpointing overheads are moderate, group replica-
tion is useful for increasing parallel efficiency once the scale is large enough. This
result is amplified when failures are further from being Exponential, i.e., for k = 0.5
(Fig. 4.5d). For k = 0.5, going from g = 1 to g = 2 groups is beneficial for Opt-
Exp starting at 217 processors and for BestPeriod and DPNextFailure starting
at 218 processors. Going from g = 2 to g = 3 groups is beneficial for OptExp

andBestPeriod starting at 219 processors, and for DPNextFailure starting at 220

processors. In terms of comparing the algorithms with each other, in Figure 4.5d all
algorithms experience a makespan increase after the initial decrease. Only BestPe-

riod and DPNextFailure, when using g = 3 groups, have a decreasing makespan
up to 220 processors. When going to 221 processors, these algorithms lead to relative
increases in makespan of 18.50 and 14.99 %, and larger increases when going from
221 to 222 processors. Across the board, BestPeriod with g = 3 groups leads to the
lowest average makespan, with DPNextFailure with g = 3 groups a close second.
The average makespan of DPNextFailure is at most 15.66 % larger than that of
BestPeriod, and in fact is shorter at low scales (for 215 and 216 processors).
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Fig. 4.5 Average makespan versus number of processors, Weibull failures, k = 0.7 or k = 0.5,
MTBF = 125 years. a C = R = 60 s, k = 0.7. b C = R = 60 s, k = 0.5. c C = R = 600 s,
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Results for C = R = 6000 s show similar but accentuated trends. For k = 0.7
(Fig. 4.5e) the main results are similar to those obtained for k = 0.5 with C = R =
600 s. The best two algorithms are BestPeriod and DPNextFailure using g = 3
groups, but both algorithms show an increase in makespan starting at 219 processors.
For k = 0.5 (Fig. 4.5f) this increase occurs at 218 processors and is sharper for
DPNextFailure than BestPeriod. Even though group replication helps, with such
large checkpointing overheads parallel efficiency cannot be maintained beyond 217

processors.
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We conclude that all our algorithms are more or less equivalent with Exponential
failures (see Sect. 4.4.4.1), and show pronounced differences with Weibull failures.
Overall, BestPeriod is the best algorithm. The only algorithm that leads to compa-
rable makespans is DPNextFailure, but it never leads to a lower average makespan
than BestPeriod at large scale. Even though DPNextFailure relies on a sophis-
ticated DP approach, the brute-force but pragmatic approach used by BestPeriod

turns out to be more effective. Even when using BestPeriod, our results show that
application scalability is hindered by higher checkpoint overheads, which is expected,
but also by lower k values, i.e., by less exponentially distributed failures.

4.4.4.3 Checkpointing Contention

The results presented so far are obtained assuming that the checkpointing overhead
(R = C) does not depend on the number of groups. There are cases in which
this assumption could give an unfair advantage to group replication. Consider an
application with a given memory footprint V , in bytes, running on a platform with a
total of q processors. With no replication (g = 1) the total volume of data involved
in a checkpoint is V . Assuming that V is no larger than the aggregate RAM capacity
of q/g processors, then group replication can be used with g > 1 groups. In this
case, since each group executes the application, the total volume of data involved in
a checkpoint at each group is also V . Since groups may checkpoint/recover at the
same time, the amount of data involved can be up to g × V , or a factor g larger than
in the no-replication case.

To evaluate the impact of group replication on checkpointing overhead, we
introduce a checkpointing contention model in our simulation. Whenever multi-
ple checkpointing/recovery operations are concurrent, they receive a fair share of the
checkpointing/recovery bandwidth. For instance, if n checkpointing operations begin
at the same time, and no other checkpointing or recovery occurs over the next n × C
time units, then all n checkpointing operations finish after n × C time units. More
generally, considering that a checkpointing/recovery operations requires C units of
activity, over a time interval Δt during which there are n ongoing such operations
each operation performs 1

n /Δt units of activity (if one of these operations requires
fewer units of work to complete, consider a shorter Δt interval).

Our objective in this section is to determine whether group replication can still
be beneficial when considering checkpointing contention. We repeated all the exper-
iments presented in Sects. 4.4.4.1 and 4.4.4.2. For C = R = 60 s, checkpointing
contention has negligible impact on the results, and the impact for C = R = 600 s
is lower than that for C = R = 6000 s. This is expected since the larger the check-
pointing/recovery overhead, the more likely that more than one group is engaged
in checkpointing or recovery at the same time. Thus, among all our results, those
for C = R = 6000 s should be the most disadvantageous for group replication.
These are the results presented in Fig. 4.6, which shows average makespan versus
number of processors for BestPeriod without and with contention (denoted by
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BestPeriod-Cont), for g = 1, 2, and 3, for C = R = 6000 s, for Exponential
failures and for Weibull failures with k = 0.7 and k = 0.5.

As expected the average makespan of BestPeriod is increased due to check-
pointing contention when multiple groups are used. However, even with contention,
group replication outperforms the no-replication case at large scale. For Exponential
failures, using g = 2 groups outperforms using g = 1 group as soon as the number
of processors reaches 218, both with and without contention. Using g = 3 groups
outperforms using g = 2 groups when there are either 219 or 220 processors with
contention. The lowest average makespans with contention are achieved using either
218 processors split in g = 2 groups, or 219 processors split in g = 3 groups. For
Weibull failures with k = 0.7, using g = 2 groups outperforms using g = 1 group
starting at 216 processors, with or without checkpointing contention. With contention,
using g = 3 groups never outperforms using g = 2 groups, and ties its performance
starting at 218 processors. For Weibull failures with k = 0.5, using g = 2 groups
outperforms using g = 1 group starting at 215 processors with or without contention.
With contention, using g = 3 groups is beneficial over using g = 2 groups when
there are 217 processors but the lowest makespan overall is achieved with g = 2
groups and 215 processors.
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We conclude that although checkpointing contention increases the makespan of
group replication executions, the makespans of these executions are still shorter than
that of no-replication execution at the same or slightly higher scales than when no
contention takes place. One difference due to contention is that in our experiments
using g = 3 groups is never worthwhile.

4.5 Process Replication

While in the previous section we replicate application instances, in this section we
replicate processes within an instance with each process running on a distinct proces-
sor. Process replication was recently studied in [13], in which the authors propose
to replicate each application process transparently on two processors. Only when
both these processors fail must the job recover from the previous checkpoint. One
replica performs redundant (thus wasteful) computations, but the probability that
both replicas fail is much smaller than that of a single replica, thereby allowing for
a drastic reduction of checkpoint frequency.

We consider the general case where each application process is replicated g ≥ 2
times. We call replica-group the set of all the replicas of a given process, and we
denote by nrg the number of replica-groups. Altogether, if there are p available
processors, there are nrg × g ≤ p processes running on the platform. We assume
that when one of the g replicas of a replica-group fails it is not restarted, and the
execution of the application proceeds as long as there is still at least one running
replica in each of the replica-groups. In other words, for the whole application to
fail, there must exist a replica-group whose g replicas have all been “hit” by a failure.
One could envision a scenario where a failed replica is restarted based on the current
state of the remaining replicas in its replica-group. This would increase application
resiliency but would also be time-consuming. A certain amount of time would be
needed to copy the state of one of the remaining replicas. Because all replicas of a
same process must have a coherent state, the execution of the still running replicas
would have to be paused during this copying. In a tightly coupled application, the
execution of the whole application would be paused while copying. Consequently,
restarting a failed replica would only be beneficial if the restarting cost were very
small, when taking in consideration the frequency of failures and the checkpoint and
restart costs. The benefit of such an approach is doubtful and, like [13], we do not
consider it.

4.5.1 Theoretical Results

Two important quantities for evaluating the quality of an application execution, when
replication is used, are: (i) the Mean Number of Failures To Interruption (MNFTI),
i.e., the mean number of processor failures until application failure occurs; and
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(ii) the Mean Time To Interruption (MTTI), i.e., the mean time elapsed until appli-
cation failure occurs. In this section, we compute exact expressions of these two
quantities. We first deal with the computation of MNFTI values in Sect. 4.5.1.1. Then
we proceed to computing MTTI values, for Exponential failures in Sect. 4.5.1.2, and
for arbitrary failures in Sect. 4.5.1.3. Note that the computation of MNFTI applies to
any failure distribution, while that of MTTI is strongly distribution-dependent.

4.5.1.1 Computing MNFTI

We consider two options for “counting” failures. One option is to count each failure
that hits any of the g ·nrg initial processors, including the processors already hit by a
failure. Consequently, a failure that hits an already hit replica-group does not neces-
sarily induce an application interruption. If the failure hits an already hit processor,
whose replica had already been terminated due to an earlier failure, the application
is not affected. If, on the contrary, the failure hits the other processor, in the case
g = 2, then the whole application fails. This is the option chosen in [13]. Another
option is to count only failures that hit running processors, and thus effectively kill
replicas. This approach seems more natural as the running processors are the only
ones that are important for the application execution.

We use MNFTIah to denote the MNFTI with the first option (“ah” stands for
“already hit”), and MNFTI rp to denote the MNFTI with the second option (“rp”
stands for “running processors”). The following theorem gives a recursive expression
for MNFTIah in the case g = 2 and for memoryless failure distributions.

Theorem 4.2 If the failure inter-arrival times on the different processors are i.i.d.
and independent from the failure history, then using process replication with g = 2,
MNFTIah = E(NFTIah|0) where E(NFTIah|n f ) =

{
2 if n f = nrg,

2nrg
2nrg−n f

+ 2nrg−2n f
2nrg−n f

E
(
NFTIah|n f + 1

)
otherwise.

Note that Theorem 4.2 reproduces Proposition 1.3 in Sect. 1.4.2. We reproduce
the result and proof for the convenience of the reader who studies this chapter inde-
pendently.

Proof Let E(NFTIah|n f ) be the expectation of the number of failures needed for
the whole application to fail, knowing that the application is still running and that
failures have already hit n f different replica-groups. Because each process initially
has 2 replicas, this means that n f different processes are no longer replicated, and
that nrg − n f are still replicated. Overall, there are n f + 2(nrg − n f ) = 2nrg − n f

processors still running.
The case n f = nrg is the simplest. A new failure will hit an already hit replica-

group, that is, a replica-group where one of the two initial replicas is still running.
Two cases are then possible:

http://dx.doi.org/10.1007/978-3-319-20943-2_1
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• The failure hits the running processor. This leads to an application failure, and in
this case E(NFTIah|nrg) = 1.

• The failure hits the processor that has already been hit. Then the failure has no
impact on the application. The MNFTIah of this case is then: E(NFTIah|nrg) =
1 + E

(
NFTIah

∣∣nrg
)
.

The probability of failure is uniformly distributed between the two replicas, and thus
between these two cases. Weighting the values by their probabilities of occurrence
yields:

E

(
NFTIah

∣∣nrg

)
= 1

2
× 1 + 1

2
×
(

1 + E

(
NFTIah

∣∣nrg

))
= 2.

For the general case 0 ≤ n f ≤ nrg − 1, either the next failure hits a new replica-
group, that is one with 2 replicas still running, or it hits a replica-group that has
already been hit. The latter case leads to the same sub-cases as the n f = nrg case
studied above. As we have assumed that the failure inter-arrival times on the different
processors are i.i.d. and independent from the processor failure history the failure
probability is uniformly distributed among the 2nrg processors, including the ones
already hit. Hence the probability that the next failure hits a new replica-group is
2nrg−2n f

2nrg
. In this case, the expected number of failures needed for the whole appli-

cation to fail is one (the considered failure) plus E
(
NFTIah|n f + 1

)
. Altogether we

have:

E

(
NFTIah|n f

)
= 2nrg − 2n f

2nrg
×
(

1 + E

(
NFTIah|n f + 1

))

+ 2n f

2nrg
×
(

1

2
× 1 + 1

2

(
1 + E

(
NFTIah|n f

)))
.

Therefore, E
(
NFTIah|n f

) = 2nrg
2nrg−n f

+ 2nrg−2n f
2nrg−n f

E
(
NFTIah|n f + 1

)
.

We obtain a very similar recursive formula for MNFTI rp.

Theorem 4.3 If the failure inter-arrival times on the different processors are inde-
pendent and identically distributed, then under the process replication scheme, with
g = 2, we have MNFTI rp = E(NFTI rp|0) where

E(NFTI rp|n f ) =
{

1 if n f = nrg,

1 + 2nrg−2n f
2nrg−n f

E(NFTI rp|n f + 1) otherwise.

It turns out that there is a simple (and quite unexpected) relationship between both
failure models:

Proposition 4.4 If the failure inter-arrival times on the different processors are i.i.d.
and independent from the processor failure history then, for g = 2,
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MNFTIah = 1 + MNFTI rp.

Proof We prove by induction that E(NFTIah|n f ) = 1 + E(NFTI rp|n f ), for any
n f ∈ [0, nrg]. The base case is for n f = nrg and the induction uses nonincreasing
values of n f .

For the base case, we have E(NFTI rp|nrg) = 1 and E(NFTIah|nrg) = 2. Hence
the property is true for n f = nrg . Consider a value n f < nrg , and assume to have
proven that E(NFTIah|i) = 1 +E(NFTI rp|i), for any value of i ∈ [1 + n f , nrg]. We
now prove the equation for n f . According to Theorem 4.2, we have:

E(NFTIah|n f ) = 2nrg

2nrg − n f
+ 2nrg − 2n f

2nrg − n f
E

(
NFTIah|n f + 1

)
.

Therefore, using the induction hypothesis, we have:

E(NFTIah|n f ) = 2nrg
2nrg−n f

+ 2nrg−2n f
2nrg−n f

(
1 + E

(
NFTI rp|n f + 1

))
= 2 + 2nrg−2n f

2nrg−n f
E
(
NFTI rp|n f + 1

) = 1 + E
(
NFTI rp|n f

)

the last equality being established using Theorem 4.3. Therefore, we have proved
by induction that E(NFTIah|0) = 1 + E(NFTI rp|0). To conclude, we remark that
E(NFTIah|0) = MNFTIah and E(NFTI rp|0) = MNFTI rp.

We now show that Theorems 4.2 and 4.3 can be generalized to g > 2. Because the
proofs are very similar, we only give the one for the MNFTI rp accounting approach
(failures on running processors only), as it does not make any assumption on failures
besides the i.i.d. assumption.

Proposition 4.5 If the failure inter-arrival times on the different processors are i.i.d.

then using process replication for g ≥ 2, MNFTI rp = E

⎛
⎜⎝NFTI rp| 0, . . . , 0︸ ︷︷ ︸

g−1 zeros

⎞
⎟⎠where:

E

(
NFTI rp|n(1)

f , . . . , n(g−1)
f

)
=

1 +
g ·
(

nrg −∑g−1
i=1 n(i)

f

)

g · nrg −∑g−1
i=1 i · n(i)

f

· E
(

NFTI rp|n(1)
f , n(2)

f , . . . , n(g−1)
f

)

+
g−2∑
i=1

(g − i) · n(i)
f

g ·nrg −
g−1∑
i=1

i · n(i)
f

· E
(

NFTI rp|n(1)
f , . . . , n(i−1)

f , n(i)
f −1, n(i+1)

f +1, n(i+2)
f , . . . , n(g−1)

f

)

Proof Let E
(

NFTI rp|n(1)
f , . . . , n(g−1)

f

)
be the expectation of the number of failures

needed for the whole application to fail, knowing that the application is still running
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and that, for i ∈ [1..g − 1], there are n(i)
f replica-groups that have already been hit

by exactly i failures. Note that a replica-group hit by i failures still contains exactly
g − i running replicas. Therefore, in a system where n(i)

f replica-groups have been

hit by exactly i failures, there are still overall exactly g · nrg −∑g−1
i=1 i · n(i)

f running

replicas, g ·
(

nrg −∑g−1
i=1 n(i)

f

)
of which are in replica-groups that have not yet been

hit by any failure. Now, consider the next failure to hit the system. There are three
cases to consider.

1. The failure hits a replica-group that has not been hit by any failure so far. This
happens with probability:

g ·
(

nrg −∑g−1
i=1 n(i)

f

)

g · nrg −∑g−1
i=1 i · n(i)

f

and, in that case, the expected number of failures needed for the whole application

to fail is one (the studied failure) plus E

(
NFTI rp|1 + n(1)

f , n(2)
f , . . . , n(g−1)

f

)
.

Remark that we should have conditioned the above expectation with the statement
“if nrg >

∑g−1
i=1 n(i)

f .” In order to keep equations as simple as possible we rather
do not explicitly state the condition and use the following abusive notation:

g ·
(

nrg −∑g−1
i=1 n(i)

f

)

g · nrg −∑g−1
i=1 i · n(i)

f

·
(

1 + E

(
NFTI rp|1 + n(1)

f , n(2)
f , . . . , n(g−1)

f

))

considering than when nrg = ∑g−1
i=1 n(i)

f the first term is null and thus that it does
not matter that the second term is not defined.

2. The failure hits a replica-group that has already been hit by g − 1 failures. Such a
failure leads to a failure of the whole application. As there are n(g−1)

f such groups,
each containing exactly one running replica, this event happens with probability:

n(g−1)
f

g · nrg −∑g−1
i=1 i · n(i)

f

.

In this case, the expected number of failures needed for the whole application to
fail is exactly equal to one (the considered failure).

3. The failure hits a replica-group that had already been hit by at least one failure,
and by at most g −2 failures. Let i be any value in [1..g −2]. The probability that
the failure hits a group that had previously been the victim of exactly i failures is
equal to:

(g − i) · n(i)
f

g · nrg −∑g−1
i=1 i · n(i)

f
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as there are n(i)
f such replica-groups and that each contains exactly g − i still

running replicas. In this case, the expected number of failures needed for the whole

application to fail is one (the studied failure) plus E

(
NFTI rp|n(1)

f , . . . , n(i−1)
f ,

n(i)
f − 1, n(i+1)

f + 1, n(i+2)
f , . . . , n(g−1)

f

)
as there is one less replica-group hit

by exactly i failures and one more hit by exactly i + 1 failures.

We aggregate all the cases to obtain:

E

(
NFTI rp|n(1)

f , . . . , n(g−1)
f

)
=

g ·
(

nrg −∑g−1
i=1 n(i)

f

)

g · nrg −∑g−1
i=1 i · n(i)

f

·
(

1 + E

(
NFTI rp|1 + n(1)

f , n(2)
f , . . . , n(g−1)

f

))

+
g−2∑
i=1

(g−i) · n(i)
f

g ·nrg −
g−1∑
i=1

i ·n(i)
f

(
1+E

(
NFTI rp|n(1)

f , . . . , n(i−1)
f , n(i)

f −1, n(i+1)
f + 1, n(i+2)

f , . . . , n(g−1)
f

))

+ n(g−1)
f

g · nrg −∑g−1
i=1 i · n(i)

f

· 1

which is equivalent to the target equation.

Following the construction used to establish Proposition 4.5, here is the recursion
to compute MNFTIah for g = 3:

Proposition 4.6 If the failure inter-arrival times on the different processors are i.i.d.
and independent from the failure history, then using process replication with g = 3,
MNFTIah = E(NFTIah|0, 0) where

E
(
NFTIah|n2, n1

) =
1

3nrg − n2 − 2n1

(
3nrg + 3(nrg − n1 − n2)E

(
NFTIah|n2 + 1, n1

)

+ 2n2E
(
NFTIah|n2 − 1, n1 + 1

))

One can solve this recursion using a dynamic programming algorithm of quadratic
cost O(p2) (and linear memory space O(p)).

Proposition 4.7 If the failure inter-arrival times on the different processors are i.i.d.
and independent from the failure history, then using process replication with g = 3,
MNFTI rp = E(NFTI rp|0, 0) where
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E
(
NFTI rp|n2, n1

) =
1 + 1

3nrg − n2 − 2n1

(
3(nrg − n1 − n2)E

(
NFTI rp|n2 + 1, n1

)

+ 2n2E
(
NFTI rp|n2 − 1, n1 + 1

))

Given the simple additive relationship that exists between MNFTIah and MNFTI rp

for g = 2 (Proposition 4.4), one may expect a similar relationship for large g.
Table 4.1 shows MNFTIah and MNFTI rp values and the difference between them for
g = 3. The difference is not constant and increases as nrg increases, and no simple
relationship seems to exist between MNFTIah and MNFTI rp.

We can now evaluate our approach for computing the MNFTI value and compare
it to that in [13]. The authors therein observe that the generalized birthday problem
is related to the problem of determining the number of processor failures needed to
induce an application failure. The generalized birthday problem asks the following
question: what is the expected number of balls BP(m) to randomly put into m (origi-
nally empty) bins so that there is a bin with two balls? This problem has a well-known
closed-form solution [14]. In the context of process replication, it is tempting to con-
sider each replica group as a bin, and each ball as a processor failure, thus computing
MNFTI = BP(nrg). Unfortunately, this analogy is incorrect because processors in a
replica group are distinguished. Let us consider the case g = 2, i.e., two replicas per
replica group, and the two failure models described in Sect. 4.5.1.1. In the “already

Table 4.1 MNFTIah and MNFTI rp computed using Propositions 4.6 and 4.7 and the difference
between them, for nrg = 20, . . . , 220, with g = 3

nrg 20 21 22 23 24 25 26

MNFTIah 5.5 7.3 10.1 14.6 21.6 32.4 49.4

MNFTI rp 3.0 4.5 6.9 10.9 17.1 27.1 42.9

(MNFTIah

−
MNFTI rp)

2.5 2.8 3.2 3.7 4.4 5.3 6.4

nrg 27 28 29 210 211 212 213

MNFTIah 75.9 117.6 183.3 286.8 450.2 708.5 1117.0

MNFTI rp 68.1 108.0 171.5 272.2 432.1 685.8 1088.7

(MNFTIah

−
MNFTI rp)

7.8 9.6 11.8 14.6 18.2 22.7 28.3

nrg 214 215 216 217 218 219 220

MNFTIah 1763.5 2787.6 4410.2 6982.3 11060.6 17528.6 27788.6

MNFTI rp 1728.1 2743.2 4354.6 6912.5 10972.9 17418.4 27650.1

(MNFTIah

−
MNFTI rp)

35.4 44.3 55.6 69.8 87.7 110.2 138.6



262 H. Casanova et al.

hit” model, which is used in [13], if a failure hits a replica group after that replica
group has already been hit once (i.e., a second ball is placed in a bin) an application
failure does not necessarily occur. This is unlike the birthday problem, in which the
stopping criterion is for a bin to contain two balls, thus breaking the analogy. In the
“running processor” model, the analogy also breaks down. Consider that one failure
has already occurred. The replica group that has suffered that first failure is now twice
less likely to be hit by another failure as all the other replica groups as it contains
only one replica. Since probabilities are no longer identical across replica groups,
i.e., bins, the problem is not equivalent to the generalized birthday problem. How-
ever, there is a direct and valid analogy between the process replication problem and
another version of the birthday problem with distinguished types, which asks: what
is the expected number of randomly drawn red or white balls BT(m) to randomly
put into m (originally empty) bins so that there is a bin that contains at least one red
ball and one white ball? Unfortunately, there is no known closed-form formula for
BT(m), even though the results in Sect. 4.5.1.1 provide a recursive solution.

In spite of the above, [13] uses the solution of the generalized birthday problem
to compute MNFTI . According to [25], a previous article by the authors of [13],
it would seem that the value BP(nrg) is used. While [13] does not make it clear
which value is used, a recent research report by the same authors states that they use
BP(g · nrg). For completeness, we include both values in the comparison hereafter.

Table 4.2 shows the MNFTIah values computed as BP(nrg) or as BP(g · nrg),
as well as the exact value computed using Theorem 4.2, for various values of nrg

and for g = 2. (Recall that in this case, MNFTIah and MNFTI rp differ only by
1). The percentage relative differences between the two BP values and the exact
value are included in the table as well. We see that the BP(nrg) value leads to
relative differences with the exact value between 29 and 33 %. This large difference
seems easily explained due to the broken analogy with the generalized birthday
problem. The unexpected result is that the relative difference between the BP(g ·
nrg) value and the exact value is below 16 % and, more importantly, decreases and
approaches zero as nrg increases. The implication is that using BP(g · nrg) is an
effective heuristic for computing MNFTIah even though the birthday problem is
not analogous to the process replication problem! These results thus provide an
empirical, if not theoretical, justification for the approach in [13], whose validity
was not assessed experimentally therein.

4.5.1.2 Computing MTTI for Exponential Failures

With the “already hit” assumption, and assuming Exponential failures, the MTTI can
be computed easily as

MTTI = systemMTBF(g × nrg) × MNFTIah (4.7)

where systemMTBF(p) denotes the mean time between failures of a platform with
p processors and MNFTIah is given by Theorem 4.2. Recall that systemMTBF(p)
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is simply equal to the MTBF of an individual processor divided by p (cf. Proposi-
tion 1.2). A recursive expression for MTTI can also be obtained directly. While the
MTTI value should not depend on the way to count failures, it would be interesting
to compute it with the “running processor” assumption as a sanity check. It turns
out that there is no equivalent to Eq. (4.7) for linking MTTI and MNFTI rp. The rea-
son is straightforward. While systemMTBF(2nrg) is the expectation of the date at
which the first failure will happen, it is not the expectation of the inter-arrival time of
the first and second failures when only considering failures on processors still run-
ning. Indeed, after the first failure, there only remain 2nrg − 1 running processors.
Therefore, the inter-arrival time of the first and second failures has an expectation
of systemMTBF(2nrg − 1). We can, however, use a reasoning similar to that in the
proof of Theorem 4.3 and obtain a recursive expression for MTTI:

Theorem 4.4 If the failure inter-arrival times on the different processors follow an
Exponential distribution of parameter λ then, when using process replication with
g = 2, MTTI = E(TTI|0) where E(TTI|n f ) =

{ 1
nrg

1
λ

if n f = nrg

1
(2nrg − n f )

1
λ

+ 2nrg − 2n f
2nrg − n f

E(TTI|n f +1) otherwise

Proof We denote by E(TTI|n f ) the expectation of the time an application will run
before failing, knowing that the application is still running and that failures have
already hit n f different replica-groups. Since each process initially has 2 replicas,
this means that n f different processes are no longer replicated and that nrg − n f are
still replicated. Overall, there are thus still n f + 2(nrg − n f ) = 2nrg − n f running
processors.

The case n f = nrg is the simplest: a new failure will hit an already hit replica-
group and hence leads to an application failure. As there are exactly nrg remaining
running processors, the inter-arrival times of the nrgth and (nrg + 1)th failures is
equal to 1

λnrg
(minimum of nrg Exponential laws). Hence:

E
(
TTI

∣∣nrg
) = 1

λnrg
.

For the general case, 0 ≤ n f ≤ nrg − 1, either the next failure hits a replica-
group with still 2 running processors, or it strikes a replica-group that had already
been victim of a failure. The latter case leads to an application failure; then, after n f
failures, the expected application running time before failure is equal to the inter-
arrival times of the n f th and (n f + 1)th failures, which is equal to 1

(2nrg−n f )λ
. The

failure probability is uniformly distributed among the 2nrg −n f running processors,

hence the probability that the next failure strikes a new replica-group is
2nrg−2n f
2nrg−n f

. In
this case, the expected application running time before failure is equal to the inter-
arrival times of the n f th and (n f + 1)th failures plus E

(
TTI|n f + 1

)
. We derive

that:

http://dx.doi.org/10.1007/978-3-319-20943-2_1
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E
(
TTI|n f

) = 2nrg − 2n f

2nrg − n f
×
(

1

(2nrg − n f )λ
+ E

(
TTI|n f + 1

))

+ n f

2nrg − n f
× 1

(2nrg − n f )λ
.

Therefore,

E
(
TTI|n f

) = 1

(2nrg − n f )λ
+ 2nrg − 2n f

2nrg − n f
E
(
TTI|n f + 1

)
.

The above results can be generalized to g ≥ 2. To compute MTTI under the
“already hit” assumption one can use Eq. (4.7) replacing MNFTIah by the value
given by Proposition 4.6 or its generalization for a higher value of g. To compute
MNFTI rp under the “running processors,” Theorem 4.4 can be generalized using the
same proof technique as when proving Proposition 4.5.

The linear relationship between MNFTIah and MTTI , seen in Eq. (4.7), allows
us to use the results in Table 4.2 to compute MTTI values. To quantify the potential
benefit of replication, Table 4.3 shows these values as the total number of processors
increases. For a given total number of processors, we show results for g = 1, 2, and 3.
As a safety check, we have compared these predicted values with those computed
through simulations, using an individual processor MTBF equal to 125 years. For
each value of nrg in Table 4.3, we have generated 1,000,000 random failure dates,
computed the Time To application Interruption for each instance, and computed the
mean of these values. This simulated MTTI , is in full agreement with the predicted
MTTI in Table 4.3.

The main and expected observation in Table 4.3 is that increasing g, i.e., the level
of replication, leads to increased MTTI . The improvement in MTTI due to replication
increases as nrg increases, and increases when the level of replication, g, increases.
Using g = 2 leads to large improvement over using g = 1, with an MTTI up to 3
orders of magnitude larger for nrg = 220. Increasing the replication level to g = 3
leads to more moderate improvement over g = 2, with an MTTI only about 10 times
larger for nrg = 220. Overall, these results show that, at least in terms of MTTI ,
replication is beneficial. Although these results are for a particular MTBF value,
they lead us to believe that moderate replication levels, namely g = 2, are sufficient
to achieve drastic improvements in fault tolerance.

4.5.1.3 Computing MTTI for Arbitrary Failures

The approach that computes MTTI from MNFTIah is limited to memoryless (i.e.,
Exponential) failure distributions. To encompass arbitrary distributions, we use
another approach based on the failure distribution density at the platform level.
Theorem 4.5 quantifies the probability of successfully completing an amount of
work of size W when using process replication for any failure distribution, which
makes it possible to compute MTTI via numerical integration:
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Table 4.3 MTTI values achieved for Exponential failures and a given number of processors using
different replication factors (total of p = 20, . . . , 220 processors, with g = 1, 2, and 3)

p 20 21 22 23 24 25 26

g = 1 10,95,000 5,47,500 2,73,750 1,36,875 68,438 34,219 17,109

g = 2 16,42,500 10,03,750 6,37,446 4,16,932 2,78,726 1,89,328

g = 3 15,05,625 9,99,188 7,78,673 5,65,429 4,32,102

p 27 28 29 210 211 212 213

g = 1 8555 4277 2139 1069 535 267 134

g = 2 1,30,094 90,135 62,819 43,967 30,864 21,712 15,297

g = 3 3,26,569 2,51,589 1,94,129 1,51,058 1,17,905 92,417 72,612

p 214 215 216 217 218 219 220

g = 1 66.8 33.4 16.7 8.35 4.18 2.09 1.04

g = 2 10,789 7615 5378 3799 2685 1897 1341

g = 3 57,185 45,106 35,628 28,169 22,290 17,649 13,982

The individual processor MTBF is 125 years, and MTTIs are expressed in hours

Theorem 4.5 Consider an application with nrg processes, each replicated g times
using process replication, so that processor Pi , 1 ≤ i ≤ g ·nrg, executes a replica of

process
⌈

i
g

⌉
. Assume that the failure inter-arrival times on the different processors

are i.i.d, and let τi denote the time elapsed since the last failure of processor Pi . Let
F denote the cumulative distribution function of the failure probability, and F(t |τ)

be the probability that a processor fails in the next t units of time, knowing that its
last failure happened τ units of time ago. Then the probability that the application
will still be running after t units of time is:

R(t) =
nrg∏
j=1

(
1 −

g∏
i=1

F
(
t |τi + g( j − 1)

))
. (4.8)

Let f denote the probability density function of the entire platform ( f is the derivative
of the function 1 − R): the MTTI is given by:

MTTI =
∫ +∞

0
t f (t)dt =

∫ +∞

0
R(t)dt =

∫ +∞

0

nrg∏
j=1

(
1 −

g∏
i=1

F
(
t |τi + g( j − 1)

))
dt.

(4.9)

This theorem can then be used to obtain a closed-form expression for MTTI when
the failure distribution is Exponential (Theorem 4.6) or Weibull (Theorem 4.7):

Theorem 4.6 Consider an application with nrg processes, each replicated g times
using process replication. If the probability distribution of the time to failure of each
processor is Exponential with parameter λ, then the MTTI is given by:
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MTTI = 1

λ

nrg∑
i=1

i ·g∑
j=1

((nrg
i

)(i ·g
j

)
(−1)i+ j

j

)
.

The following corollary gives a simpler expression for the case g = 2:

Corollary 4.1 Consider an application with nrg processes, each replicated 2 times
using process replication. If the probability distribution of the time to failure of each
processor is Exponential with parameter λ, then the MTTI is given by:

MTTI = 1

λ

nrg∑
i=1

i ·2∑
j=1

((nrg
i

)(i ·2
j

)
(−1)i+ j

j

)
= 2nrg

λ

nrg∑
i=0

(−1

2

)i
(nrg

i

)
(nrg + i)

·

Theorem 4.7 Consider an application with nrg processes, each replicated g times
using process replication. If the probability distribution of the time to failure of each
processor is Weibull with scale parameter λ and shape parameter k, then the MTTI
is given by:

MTTI = λ

k
Γ

(
1

k

) nrg∑
i=1

i ·g∑
j=1

(nrg
i

)(i ·g
j

)
(−1)i+ j

j
1
k

.

While Theorem 4.6 is yet another approach to computing the MTTI for Expo-
nential distributions, Theorem 4.7 is the first analytical result (to the best of our
knowledge) for Weibull distributions. Unfortunately, the formula in Theorem 4.7 is
not numerically stable for large values of nrg . As a result, we resort to simulation to
compute MTTI values. Table 4.4, which is the counterpart of Table 4.3 for Weibull
failures, show MTTI results obtained as averages computed on the first 100,000
application failures of each simulated scenario. The results are similar to those in
Table 4.3. The MTTI with g = 2 is much larger than that using g = 1, up to more
than 3 orders of magnitude at large scale (nrg = 220). The improvement in MTTI
with g = 3 compared to g = 2 is more modest, reaching about a factor 10. The con-
clusions are thus similar: replication leads to large improvements, and a moderate
replication level (g = 2) may be sufficient.

4.5.2 Empirical Evaluation

In the previous section, we have obtained exact expressions for the MNFTI and MTTI
quantities, which are of direct relevance to the performance of the application and
are amenable to analytical derivations. The main performance metric of interest to
end-users, however, is the application makespan, i.e., the time elapsed between the
launching of the application and its successful completion. But since it is not tractable
to derive a closed-form expression of the expected makespan, in this section we
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Table 4.4 Simulated MTTI values achieved for Weibull failures with shape parameter 0.7 and a
given number of processors p using different replication factors (total of p = 20, . . . , 220 proces-
sors, with g = 1, 2, and 3)

p 20 21 22 23 24 25 26

g = 1 10,91,886 5,49,031 2,74,641 1,37,094 68,812 34,383 17,202

g = 2 20,81,689 12,43,285 7,69,561 4,91,916 3,21,977 2,14,795

g = 3 28,10,359 18,11,739 10,83,009 7,63,629 5,39,190

p 27 28 29 210 211 212 213

g = 1 8603 4275 2132 1060 525 260 127

g = 2 1,44,359 98,660 67,768 46,764 32,520 22,496 15,767

g = 3 3,98,410 2,96,301 2,23,701 1,70,369 1,31,212 1,01,330 78,675

p 214 215 216 217 218 219 220

g = 1 60.1 27.9 12.2 5.09 2.01 0.779 0.295

g = 2 11,055 7766 5448 3843 2708 1906 1345

g = 3 61,202 47,883 37,558 29,436 23,145 18,249 14,391

The individual processor MTBF is 125 years, and MTTIs are expressed in hours

compute the makespan empirically via simulation experiments. One of our goals here
is to verify that the performance advantage of process replication seen in Sects. 4.5.1.2
and 4.5.1.3 in terms of MTTI are also seen when considering the makespan.

4.5.2.1 Simulation Framework and Models

In this section we provide details on our simulation methodology for evaluating the
benefits of process replication.

Failure distributions and failure scenarios—We use the methodology described
in Sect. 4.4.3.2 to generate failure distributions and the methodology described in
Sect. 4.4.3.4 to generate failure scenarios,

Checkpointing policy—Replication dramatically reduces the number of applica-
tion failures, so that standard periodic checkpointing strategies can be used. The
checkpointing period can be computed based on the MTTI value using Young’s
approximation [36] or Daly’s first-order approximation [7], the latter being used
in [13]. We use Daly’s approximation in this work because it is classical, often used
in practice, and used in previous work [13]. It would be also interesting to present
results obtained with the optimal checkpointing period, so as to evaluate the impact
of the choice of the checkpointing period on our results. However, deriving the opti-
mal period is not tractable. However, since our experiments are in simulation, we
can search numerically for the best period among a sensible set of candidate periods.
To build the candidate periods, we use the period computed in [3] (called OptExp)
as a starting point. We then multiply and divide this period by 1 + 0.05 × i with
i ∈ {1, . . . , 180}, and by 1.1 j with j ∈ {1, . . . , 60} and pick among these the value
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that leads to the lowest makespan. For a given replication level (g = x), we present
results with the period computed using Daly’s approximation (Daly-g = x) and
with the best candidate period found numerically (BestPeriod-g = x).

Replication overhead—In [13], the authors consider that the communication over-
head due to replication is proportional to the application’s communication demands.
Arguing that, to be scalable, an application must have sub-linear communication
costs with respect to increasing processor counts, they consider an approximate log-
arithmic model for the percentage replication overhead: log(p)

10 + 3.67, where p is
the number of processors. The parameters to this model are instantiated from the
application in [13] that has the highest replication overhead. When g = 2, we use
the same logarithmic model to augment our first two parallel job models in Sect. 4.3:

• Perfectly parallel jobs: W (p) = W
p × (1 + 1

100 × (
log(p)

10 + 3.67)).

• Generic parallel jobs: W (p) = ( W
p + γ W ) × (1 + 1

100 × (
log(p)

10 + 3.67)).

For the numerical kernel job model, we can use a more accurate overhead model
that does not rely on the above logarithmic approximation. Our original model in
Sect. 4.3 comprises a computation component and a communication component.
Using replication (g = 2), for each point-to-point communication between two orig-
inal application processes, now a communication occurs between each process pair,
considering both original processors and replicas, for a total of 4 communications.
We can thus simply multiply the communication component of the model by a factor
4 and obtain the augmented model:

• Numerical kernels: W (p) = W
p + γ×W

2
3√

p × 4.

When g = 3, we (somewhat arbitrarily) multiply by 9/4 the overhead for perfectly
parallel and generic parallel jobs, because the number and volume of communications
are multiplied by 4 when g = 2 and by 9 when g = 3. When g = 3, we multiply the
communication component by a factor 9 for numerical kernels.

Parameter values—Following Sect. 4.4.3.3, we use the following default parameter
values to instantiate the simulations: C = R = 600 s, D = 60 s and W = 10,000
years.

4.5.2.2 Choice of the Checkpointing Period

Our first set of experiments aims at determining whether using Daly’s approximation
for computing the checkpointing period, as done in [13], is a reasonable idea when
replication is used. In the g = 2 case (two replicas per application process), we
compute this period using the exact MTTI expression from Corollary 4.1. Given a
failure distribution and a parallel job model, we compute the average makespan over
100 sample simulated application executions for a range of numbers of processors.
Each sample is obtained using a different seed for generating random failure events
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based on the failure distribution. We present results using the best period found via a
numerical search in a similar manner. In addition to the g = 2 and g = 3 results, we
also present results for g = 1 (no replication) as a baseline, in which case the MTTI
is simply the processor MTBF. In the three options the total number of processors is
the same, i.e., g × n/g.

We show experimental results for three failure distributions: (i) Exponential with a
125-year MTBF; (ii) Weibull with a 125-year MTBF and shape parameter k = 0.70;
and (iii) Weibull with a 125-year MTBF and shape parameter k = 0.50. For each fail-
ure distribution, we use five parallel job models as described in Sect. 4.3, augmented
with the replication overhead model described in Sect. 4.5.2.1: (i) perfectly paral-
lel; (ii) generic parallel jobs with γ = 10−6; (iii) numerical kernels with γ = 0.1;
(iv) numerical kernels with γ = 1; and (v) numerical kernels with γ = 10. We thus
have 5 × 5 = 25 sets of results.

Figures 4.7, 4.8 and 4.9 show average makespan versus number of processors.
It turns out that, for a given failure distribution, all results follow the same trend
regardless of the job model, as illustrated in Fig. 4.9 for Weibull failures with k = 0.7.
But for Fig. 4.9 we show results only for generic parallel jobs.

Figures 4.7 and 4.8 show average makespan versus number of processors for
generic parallel jobs subject to each of the three considered failure distributions. We
first note that, without replication, and except for Exponential failures, the minimum
makespan is not achieved on the largest platform. The fact that in most cases the
makespan with 219 processors is lower than the makespan with 220 processors sug-
gests that duplicating processes should be beneficial. This is indeed always the case
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period, without process replication (Daly-g = 1 and BestPeriod-g = 1) and with process
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Exponential failures (MTBF = 125 years)
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Fig. 4.8 Same as Fig. 4.7 (generic parallel jobs) but for Weibull failures (MTBF = 125 years).
a k = 0.70. b k = 0.50
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for the largest platforms: when using 220 processors, the makespan without replica-
tion is always larger than the makespan with replication, the replication factor being
either g = 2 or g = 3. However, in none of the configurations, using a replication of
g = 3 is more beneficial than with g = 2. More importantly, in each configuration,
the minimum makespan is always achieved while duplicating the processes (g = 2)
and using the maximum number of processors.

The two curves for g = 1 are exactly superposed in Fig. 4.7. For g = 2 and for g =
3 the two curves are exactly superposed in all three figures. Results for the case g = 1
(no replication) show that Daly’s approximation achieves the same performance as
the best periodic checkpointing policy for Exponential failures. For Weibull failures,
however, Daly’s approximation leads to significantly suboptimal results that worsen
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Table 4.5 Number of application failures and fraction of processor failures that cause application
failures with process replication (g = 2) assuming Weibull failure distributions (k = 0.7 or 0.5)
for various numbers of processors and C = 600 s

# of app. failures % of proc. failures

# of proc. k = 0.7 k = 0.5 k = 0.7 k = 0.5

214 1.95 4.94 0.35 0.39

215 1.44 3.77 0.25 0.28

216 0.88 2.61 0.15 0.19

217 0.45 1.67 0.075 0.12

218 0.20 1.11 0.034 0.076

219 0.13 0.72 0.022 0.049

220 0.083 0.33 0.014 0.023

Results are averaged over 100 experiments

as k decreases (as expected and already reported in [3]). What is perhaps less expected
is that in the cases g = 2 and g = 3, using Daly’s approximation leads to virtually the
same performance as using the best period even for Weibull failures. With replication,
application makespan is simply not sensitive to the checkpointing period, at least in
a wide neighborhood around the best period. This is because application failures and
recoveries are infrequent, i.e., the MTBF of a pair of replicas is large. To quantify
the frequency of application failures Table 4.5 shows the percentage of processor
failures that actually lead to failure recoveries when using process replication. Results
are shown in the case of Weibull failures for k = 0.5 and k = 0.7, C = 600 s,
and for various numbers of processors. We see that very few application failures,
and thus recoveries, occur throughout application execution (recall that makespans
are measured in days in our experiments). This is because a very small fraction of
processor failures manifest themselves as application failures (below 0.4 % in our
experiments). This also explains why using g = 3 replicas does not lead to any further
performance improvements (recall that the expectation was that further improvement
would be low anyway given the results in Tables 4.3 and 4.4). While this low number
of application failures demonstrates the benefit of process replication, the interesting
result is that it also makes the choice of the checkpointing period not critical.

When setting the processor MTBF to a lower value so that the MTBF of a pair of
replicas is not as large, then the choice of the checkpointing period matters. Consider
for instance a process replication scenario with Weibull failures of shape parameters
k = 0.7, a generic parallel job, and a platform with 220 processors. When setting
the MTBF to an unrealistic 0.1 year, using Daly’s approximation yields an average
makespan of 22.7 days, as opposed to 19.1 days (an increase of more than 18 %)
when using the best period. Similar cases can be found for Exponential failures.

We summarize our findings so far as follows. Without replication, a poor choice of
checkpointing period produces significantly suboptimal performance. When using
replication, a poor choice can also theoretically lead to poor results, but this is very
unlikely in practice because replication drastically reduces the number of failures.
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In fact, in practical settings, the choice of the checkpointing period is simply not
critical when replication is used. Consequently, setting the checkpointing period
based on an approximation, Daly’s being the most commonplace and oft referenced,
is appropriate.

4.5.2.3 When Is Process Replication Beneficial?

In this section we determine under which conditions process replication is beneficial,
i.e., leads to a lower makespan, when compared to a standard application execution
that uses only checkpoint–recovery. We restrict our study to duplication (g = 2) as
we have seen that the case g = 3 was never beneficial with respect to the case g = 2.

In a 2-D plane defined by the processor MTBF and the number of processors,
and given a checkpointing overhead, simulation results can be used to construct a
curve that divides the plane into two regions. Points above the curve correspond to
cases in which process replication is beneficial. Points below the curve correspond
to cases in which process replication is detrimental, i.e., the resource waste due to
replication is not worthwhile because the processor MTBF is too large or the number
of processors is too low. Several such curves are shown in [13] (Fig. 9 therein) for
different checkpointing overheads, and, as expected, the higher the overhead the
more beneficial it is to use process replication.

One question when comparing the replication and the no-replication cases is that
of the checkpointing period. We have seen in the previous section that when using
process replication the choice of the period has little impact and that Daly’s approxi-
mation can be used safely. In the no-replication case, however, Daly’s approximation
should only be used in the case of exponentially distributed failures as it leads to poor
results when the failure distribution is Weibull (see the g = 1 curves in Fig. 4.8).
Furthermore, there is evidence that, in general, failure distributions are well approx-
imated by Weibull distributions [17, 18, 22, 29], while not at all by exponential
distributions. Most recently, in [18], the authors show that failures observed on a
production cluster, over a cumulative 42-month time period, are modeled well by
a Weibull distribution with shape parameter k < 0.5. In other words, the failure
distribution is far from being Exponential and thus Daly’s approximation would be
far from the best period (compare Fig. 4.8a for k = 0.7 to Fig. 4.8b for k = 0.5).

Given the above, comparing the replication case to the no-replication case with
Weibull failure distributions and using Daly’s approximation as the checkpointing
period gives an unfair advantage to process replication. To isolate the effect of repli-
cation from checkpointing period effects, we opt for the following method: we always
use the best checkpointing period for each simulated application execution, as com-
puted by a numerical search over a range of simulated executions each with a different
checkpointing period. These results, for g = 2, are shown as solid curves in Fig. 4.10,
for Weibull failures with k = 0.7 and k = 0.5, each curve corresponding to a different
checkpointing overhead (C) value.

Each curve corresponds to the break-even point and the area above the curve
corresponds to settings for which replication is beneficial. As expected, replication
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Fig. 4.10 Break-even point curves for replication (g = 2) versus no-replication for various check-
pointing overheads, as computed using the best checkpointing periods (solid lines) and Daly’s
approximation (dashed lines), assuming Weibull failure distributions. a k = 0.70. b k = 0.50

becomes detrimental when the number of processors is too small, when the check-
pointing overhead is too low, and/or when the processor MTBF is too large. For
comparison purposes, the figure also shows a set of dashed curves that correspond
to results obtained when using Daly’s approximation as the checkpointing period
instead of using our numerical search for the best such period. We see that, as
expected, using Daly’s approximation gives an unfair advantage to process repli-
cation. This advantage increases as k decreases, since the Weibull distribution is
then further away from the Exponential distribution. (For exponential distributions,
all curves match.) For instance, for k = 0.5 (Fig. 4.10b), the break-even curve for
C = 600 s as obtained using Daly’s approximation is in fact, for most values of the
MTBF, below the break-even curve for C = 900 s as obtained using the best check-
pointing period. Note that the results presented in [13] are obtained using Daly’s
approximation as the checkpointing period.

4.6 Conclusion

In this chapter we have presented a rigorous study of replication techniques for
large-scale platforms. These platforms are subject to failures, the frequencies of
which increase dramatically with platform scale. We have investigated replication as
a technique to better use all the resources provided by the platform. Replication comes
in two flavors, group replication and process replication. Group replication consists
in partitioning the platform into several groups, which each executes an instance of
the application concurrently in phases. All groups synchronize as soon as one of them
completes a phase. Instead, process replication replicates each application process
onto several processors (a replica group), thereby reducing the need to recover from
a failure only when all processors in a replica group have failed. Process replication
is the approach followed in [13] with two processors per replica group.
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While both replication techniques improve reliability, they have very different
characteristics. Group replication can be used for any kind of parallel application,
while process replication requires a replication-aware runtime (e.g., an MPI imple-
mentation with process replication support). Also, with process replication the total
communication volume is increased by a factor proportional to the square of the
replication degree, while the increase is only linear with group replication.

We have provided a detailed analysis of group replication for large-scale plat-
forms. Given an execution protocol, ASAP, it is possible to derive a bound on the
expected application makespan using this protocol when failures are exponentially
distributed, which suggests a checkpointing period that can be used in practice.
We have also proposed two approaches to minimize application makespan that are
applicable regardless of the failure distribution: (i) a brute-force search for a check-
pointing period, called BestPeriod; and (ii) a Dynamic Programming algorithm,
called DPNextFailure. Using simulation we have obtained the following main
findings: (i) when considering realistic non-Exponential failures group replication
can significantly lower application makespan on large-scale platforms; (ii) our prag-
matic BestPeriod approach outperforms the more sophisticated DPNextFailure

Dynamic Programming approach; (iii) even when accounting for the contention due
to concurrent checkpointing/recovery by multiple groups, group replication remains
beneficial at large scale. Group replication leads to particularly good results when
failures are far from being exponentially distributed, which several studies have
shown to be the case in production platforms [17, 18, 22, 29].

We have also provided a detailed analysis of process replication for large-scale
platforms. We have obtained recursive expressions for MNFTI , and analytical expres-
sions for MTTI with arbitrary distributions, which lead to closed-form expressions
for Exponential and Weibull distributions. It turns out that there is an unexpected
relationship between two natural failure models (already hit and running processors)
in the case of process duplication (g = 2). Simulation results show that, although the
choice of a good checkpointing period can be important in the no-replication case
(e.g., for non-Exponential failures) this choice is not critical when process replica-
tion is used. This is because with process replication few processor failures lead to
application failures (i.e., rollback and recovery). This effect is essentially the rea-
son why process replication was proposed in the first place. But a surprising and
interesting side effect is that choosing a good checkpointing period is no longer
challenging. Finally, we have determined the break-even point between replication
and no-replication for Weibull failures in a way that is agnostic to the choice of the
checkpointing period. These results identify relevant scenarios in which replication
is worthwhile when compared to the no-replication case.

An interesting direction for future work on group replication would be to compare
the checkpoints saved by multiple groups as a way to detect silent errors or corrupted
data. This would require modifying the group replication approach so that at least 2
groups among g > 2 groups compute a chunk of work successfully, thereby trading
off performance for reliability. Another direction is to generalize the work on group
replication beyond the case of coordinated checkpointing, for instance to deal with
hierarchical checkpointing schemes based on message logging, or with containment
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domains [6]. Both these techniques alleviate the cost of checkpointing and recovery,
and would dramatically decrease checkpointing contention costs.

Further work could investigate the impact of partial replication instead of full
replication. In this approach, replication would be used only for critical compo-
nents (e.g., message loggers in uncoordinated checkpoint protocols), while tradi-
tional checkpointing would be used for noncritical components. The goal would be
to reduce the overhead of replication while still achieving some of its benefits in
terms of resilience.

Another direction for future work is to study the impact of resilience techniques on
energy consumption. Together with fault tolerance, energy consumption is expected
to be a major challenge for exascale machines [8, 27]. A promising next step in this
search is the study of the interplay between checkpointing, replication, and energy
consumption. By definition, both checkpointing and replication induce additional
power consumption, but both techniques lead to faster executions in expectation.
There are thus various energy trade-offs to achieve. The key question is to determine
the best execution strategy given both an energy budget and a maximum admissible
application makespan.
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Chapter 5
Energy-Aware Checkpointing Strategies

Guillaume Aupy, Anne Benoit, Mohammed El Mehdi Diouri,
Olivier Glück and Laurent Lefèvre

Abstract Future extreme-scale supercomputerswill gather severalmillions of cores.
The main problem that we address in this chapter is the energy consumption of these
systems. Fault-tolerant methodsmust be deployed in such extreme-scale systems and
these methods have a dramatic impact on total energy consumption. Fault-tolerant
protocols have different energy consumption rates, depending on parameters such as
platform characteristics, application features, and number of processes used in the
execution. Currently, in order to evaluate the power consumption of fault-tolerant
protocols in a given execution context, the only approach is to run the application
with the different versions of fault-tolerant protocols and to monitor energy con-
sumption. In order to avoid this time and energy consuming process, we describe in
this chapter a methodology to estimate the energy consumption of the fault-tolerant
protocols used for HPC applications. This methodology relies on an energy cali-
bration of the supercomputer and a user description of the execution setting. We
evaluate the accuracy of the estimations with applications and scenarios executed on
a real platform with energy consumption monitoring. Results show that the energy
estimations provided before the execution are highly accurate, and allow users to
select the less energy consuming fault-tolerant protocol without pre-running their
applications.
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5.1 Introduction

For decades, the computer science research community exclusively focused on per-
formance, which resulted in highly powerful, but in turn, low efficient systems with
a very high total cost of ownership (TCO) [31]. A significant research effort is focus-
ing on the characteristics, features, and challenges of High-Performance Computing
(HPC) systems capable of reaching the Exaflop performance mark [21, 42]. The
portrayed Exascale systems will necessitate billion way parallelism, resulting not
only in a massive increase in the number of processing units (cores), but also in
terms of computing nodes.

Considering the relative slopes describing the evolution of the reliability of indi-
vidual components on one side, and the evolution of the number of components
on the other side, the reliability of the entire platform is expected to decrease, due
to probabilistic amplification (see Sects. 1.1.1 and1.3.2). Even if each independent
component is quite reliable, theMean Time Between Failures (MTBF) is expected to
drop drastically. Executions of large parallel applications on these systems will have
to tolerate a higher degree of errors and failures than in current systems. The de-facto
general-purpose error recovery technique in high-performance computing is check-
point and rollback recovery. Such protocols employ checkpoints to periodically save
the state of a parallel application, so that when an error strikes some process, the
application can be restored into one of its former states. The most widely used pro-
tocol is coordinated checkpointing, where all processes periodically stop computing
and synchronize to write critical application data onto stable storage. Coordinated
checkpointing is well understood, at least in its blocking form (when no computing
activity takes place during checkpoints), and good approximations of the optimal
checkpoint interval exist; they are known as Young’s and Daly’s formula [10, 44]
(see also Sect. 1.3.1). While the future Exascale applications are not yet designed
and developed, it is anticipated, from the current knowledge and observations of
existing large systems, that fault tolerance is unavoidable at the post-Petascale era,
since Exascale systems will experience various kind of faults many times per day [8].

While reliability is a major concern for Exascale, another key challenge is to min-
imize energy consumption, both for economic and environmental reasons. The HPC
community has recently acknowledged that the energy efficiency of HPC systems
is a major concern in designing future Exascale systems for the end of the decade
[20, 25]. One of the most power-consuming components of today’s systems is the
processor: even when idle, it dissipates a significant fraction of the total power. How-
ever, for future Exascale systems, the power dissipated to execute I/O transfers is
likely to play an even more important role, because the relative cost of communi-
cation is expected to dramatically increase, both in terms of latency and consumed
energy [43]. An Exascale supercomputer will gather several millions of CPU cores
running up to a billion trends to achieve a performance of 1018 FLoat Operations
Per Second, and it will consume several megawatts. The energy consumption issue
at the Exascale becomes even more worrying when we know that we already reach
power consumptions higher than 17 MW at the Petascale, while DARPA has set to

http://dx.doi.org/10.1007/978-3-319-20943-2_1
http://dx.doi.org/10.1007/978-3-319-20943-2_1
http://dx.doi.org/10.1007/978-3-319-20943-2_1
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20 MW the threshold for Exascale supercomputers [42]. Hence, reducing the energy
consumption of high-performance computing infrastructures is a major challenge for
the next years in order to be able to move to the Exascale era. Nowadays, there exists
a strong research effort toward energy-efficient supercomputers. Hardware provides
part of the solution by exposing unceasingly more energy-efficient devices which
also provide abilities that current operating systems can successfully leverage to save
energy [33]. Mechanisms such as dynamic voltage scaling (DVFS) or P-state man-
agement have also been used to develop power-aware user-level software [1, 2, 33].

Hence, dealing with errors and minimizing the energy consumption are two main
challenges that should be addressed. However, fault tolerance and energy consump-
tion are interrelated: fault tolerance consumes energy and some energy reduction
techniques can increase error and failure rates [23].

Very few papers consider the general problem of the interplay between energy
consumption and fault tolerance. Aupy et al. [3] discuss energy-aware checkpointing
strategies for divisible tasks, using DVFS to reduce the energy consumption. Given
a workload, they show how to decide how many chunks to use, what are the sizes of
these chunks, and at which speed each chunk is executed. Tackling HPC platforms,
Diouri et al. [16] present the energy consumption of the three most important parts
of fault tolerance: message logging, checkpointing, and task coordination. Their first
result is that task coordination is the most energy consuming part of fault-tolerant
protocols. They also show that while it involves more power to store data on RAM,
HDD logging is more energy consuming than RAM logging because of the logging
duration. In a second paper, Diouri et al. [18] extend these results into a framework
that predicts the energy consumption of a fault-tolerant protocol, allowing the user
to choose amongst three fault-tolerant protocols: coordinated, uncoordinated and
hierarchical, depending on the application running on the platform. We detail the
coordinated and uncoordinated protocols below. Finally, Meneses et al. [35] study
the energy consumption of the coordinated periodic checkpointing protocol as a
function ofPStatic (the base power consumed when the platform is switched on) and
PCal (the CPU overhead when the platform is active).

We identify two classes of fault-tolerant protocols: coordinated and uncoordinated
protocols. Both coordinated and uncoordinated protocols rely on checkpointing reg-
ularly (each checkpoint interval) the global state of the application in order to restart
it in case of failure from the last checkpoint instead of re-executing the whole appli-
cation. The problem of checkpointing is to ensure a global coherent state of the
system. A global state is considered as coherent if it does not contain messages that
are received but that were not sent. Coordinated protocols (already discussed above)
are currently the most used fault-tolerant protocols in high-performance computing
applications. In order to ensure the global coherent state of the system, the coordi-
nated protocol relies on a coordination that consists of synchronizing all the processes
before checkpointing [36]. Coordination may result in a huge waste in terms of per-
formance. Indeed in order to synchronize all the processes, it is necessary to wait
for all the inflight messages to be transmitted and received. Moreover, in case of
failure with the coordinated protocol, all the processes have to be restarted from the
last checkpoint even if a single process has crashed. This results in a huge waste
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in terms of energy consumption since all the processes even the non-crashed ones
have to redo all the computations and the communications from the last checkpoint.
The uncoordinated protocol with message logging addresses this issue by restarting
only the failed processes. Thus, the power consumption in recovery is supposed to
be much smaller than for coordinated checkpointing. However, in order to ensure
a global coherent state of the system, all message logging protocols need to log all
messages sent by all processes during the whole execution and this impacts the per-
formance [5]. Hence, in case of failure, the non-crashed processes send to the crashed
ones the messages that they have logged.

A first important result of this chapter is to determine the optimal checkpointing
interval in terms of energy consumption, for coordinated checkpointing. Section5.2
presents a detailed analysis to compute this optimal checkpointing interval, consid-
ering two distinct objectives: minimizing execution time or energy consumption.
Then, according to the determined checkpointing interval, the next results presented
in this chapter allow supercomputer users to choose between the coordinated and
the uncoordinated protocols before pre-executing the HPC application in a given
execution context. To this end, we rely on a methodology that estimates the energy
consumption of fault-tolerant protocols relying on an energy calibration of the exe-
cution platform and a description of execution parameters. Section5.3 presents this
methodology and shows how it enables supercomputer users to select the less energy
consuming fault-tolerant protocol without pre-running the application. We conclude
the chapter in Sect. 5.4.

5.2 Optimal Checkpointing Period: Time versus Energy

This section deals with parallel scientific applications using non-blocking and peri-
odic coordinated checkpointing to enforce resilience. We provide a model and
detailed formulas for total execution time and consumed energy. We characterize
the optimal period for both objectives, and we assess the range of time/energy trade-
offs to bemade by instantiating themodelwith a set of realistic scenarios for Exascale
systems. We give a particular emphasis to I/O transfers, because the relative cost of
communication is expected to dramatically increase, both in terms of latency and
consumed energy, for future Exascale platforms.

This section extends the analysis of the waste presented in Sect. 1.3.1. We inves-
tigate trade-offs between execution time and energy consumption for the execution
of parallel applications on future Exascale systems. The optimal period T opt

Time given
by Young’s and Daly’s formula [10, 44] will minimize (expected) execution time.
However, this period T opt

Time will not minimize energy consumption, mainly because
the fraction of powerPCal spent when computing (by the CPUs) is not the same as
the fraction of power PI/O spent when checkpointing. In particular, we revisit the
work of Meneses et al. [35] for checkpoint/restart, where formulas are given to com-
pute the time-optimum and energy-optimum periods. However, our model is more

http://dx.doi.org/10.1007/978-3-319-20943-2_1
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precise: (i) we carefully assess the impact of the power consumption required for
I/O activity, which is likely to play a key role at the Exascale; (ii) we consider non-
blocking checkpointing that can be partially overlapped with computations; (iii) we
give a more accurate analysis of the consumed energy. To state this more precisely:

• We provide a refined analytical model to compute both the execution time and
the consumed energy with a given checkpoint period. The model handles the case
where checkpointing activity can be non-blocking, i.e., partially overlapped with
computations.

• We provide analytical formulas to approximate the optimal period for time T opt
Time

as well as the optimal period for energy T
opt
Energy, thereby refining and extending

Daly [10] andMeneses, Sarood, andKalé [35] results to non-blocking checkpoints.
• Weassess the range of time/energy trade-offs to bemade by instantiating themodel
with a set of realistic scenarios for Exascale systems.

5.2.1 Model

In this section, we introduce all model parameters. We start with parameters related
to resilience (checkpointing) before moving to parameters related to energy con-
sumption.

5.2.1.1 Checkpointing

Wemodel coordinated checkpointing [9]where checkpoints are taken at regular inter-
vals, after some fixed amount of work units have been performed. This corresponds
to an execution partitioned into periods of duration T . Every period, a checkpoint of
length C is taken.

An important question is whether checkpoints are blocking or not. On some
architectures, we may have to stop executing the application before writing to the
stable storage where the checkpoint data is saved; in that case checkpoint is fully
blocking. On other architectures, checkpoint data can be saved on the fly into a local
memory before the checkpoint is sent to the stable storage, while computation can
resumeprogress; in that case, checkpoints can be fully overlappedwith computations.
To deal with all situations, we introduce a slowdown factorω: during a checkpoint of
duration C, the work that is performed is ωC work units. In other words, (1 − ω)C
work units are wasted due to checkpoint jitter disrupting the progress of computation.
Here, 0 ≤ ω ≤ 1 is an arbitrary parameter. The case ω = 0 corresponds to a fully
blocking checkpoint, while ω = 1 corresponds to a checkpoint totally overlapped
with computations. All intermediate situations can be represented.

Next we have to account for failures. During t time units of execution, the expec-
tation of the number of failures is t

μ
, where μ is the MTBF (Mean Time Between

Failures) of the platform. Note that if the platform if made of N identical resources
whose individual mean time between failures is μind, then μ = μind

N . This relation
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is agnostic of the granularity of the resources, which can be anything from a single
CPU to a complex multi-core socket. When a failure strikes, there is a downtime of
length D (time to reboot the resource or set up a spare), and then a recovery of length
R (time to read the last stored checkpoint). The work executed by the application
since the last checkpoint and before the failure needs to be re-executed. Clearly, the
shorter the period T , the less work to re-execute, but also the more overhead due
to frequent checkpoints in a failure-free execution. The best trade-off when ω = 0
(blocking checkpoint) is achieved for T = √

2Cμ + C (Young’s formula [44]) or
T = √

2C(μ + D + R) + C (Daly’s formula [10]). Both formulas are first-order
approximations and valid only if all checkpoint parameters C, D, and R are small
in front of μ (and these formulas collapse if they become negligible). In Sect. 5.2.2,
we show how to extend these formulas to the case of non-blocking checkpoints (see
also [4] for more details).

5.2.1.2 Energy

To compute the energy consumption of the application, we need to consider the
energy consumption of the different phases, and hence the power consumption at
each time-step. To this purpose, we define:

• PStatic: this is the base power consumed when the platform is switched on.
• PCal: when the platform is active, we have to consider the CPU overhead in
addition to the static power PStatic.

• PI/O: similarly, this is the power overhead due to file I/O. This supplemen-
tary power consumption is induced by checkpointing, or when recovering from a
failure.

• PDown: for coordinated checkpointing, when one processor fails, the rest of the
machine stays idle.PDown is the power consumption overhead when one machine
is down, that may be incurred for instance by rebooting the machine. In general,
we let PDown = 0.

Meneses et al. [35] have a simpler model with two parameters, namely L, the base
power (corresponding to PStatic with our notations), and H, the maximum power
(corresponding toPStatic+PCal with our notations). They usePI/O = PDown = 0.

In Sect. 5.2.2, we show how to compute the optimal period that minimizes the
energy consumption. In Sect. 5.2.3, we instantiate the model with expected values
for power consumption of Exascale platforms.

5.2.2 Optimal Checkpointing Period

We consider a parallel application whose execution time is Tbase without any over-
head due to the resilience method or the occurrence of failures. We compute the
expectationTfinal of the total execution time (accounting both for checkpointing and
for failures) in Sect. 5.2.2.1, and the expectation Efinal of the total energy consumed
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during this execution of length Tfinal in Sect. 5.2.2.2. We will compute the optimal
period T that minimizes the objective, either Tfinal or Efinal.

5.2.2.1 Execution Time

The total execution timeTfinal of the application depends on two sources of overhead.
We first compute Tff, the time taken by a fault-free execution, thereby accounting
only for the overhead due to periodic checkpointing. Thenwe computeTfails, the time
lost due to failures. Finally, Tfinal = Tff +Tfails. We detail here both computations:

• The reasoning to derive Tff is simple. We need to execute a total amount of work
equal toTbase. During each period of lengthT , there is an amount of time T − C
where only computations take place, and an amount of timeC of checkpointing,
where only a work ωC is done. Therefore, the total number of work units executed
during a period of lengthT is T − C + ωC = T − (1 − ω)C, and

Tff = Tbase
T

T − (1 − ω)C
.

• The reasoning to compute Tfails is the following. Since the mean time between
two failures is μ, the average number of failures during execution is Tfinal

μ
. For

each failure, the time lost is expressed as:

– D + R for downtime and recovery;
– a time ωC for the work that was done during the previous checkpoint and that
has to be redone because it was not checkpointed (because of the failure);

– with probability T−C
T , the failure happens while we are not checkpointing, and

the time lost is on averageA = T−C
2 ;

– otherwise, with probability C
T , the failure happens while we are checkpointing,

and the time lost is on average B = T − C + C
2 = T − C

2 .

The time lost for each failure is

D + R + ωC + T − C

T
A + C

T
B = D + R + ωC + T

2
.

Finally,

Tfails = Tfinal

μ

(
D + R + ωC + T

2

)
.

We are now ready to express the total execution time:

Tfinal = Tff + Tfails

= Tbase
T

T − (1 − ω)C
+ Tfinal

μ

(
D + R + ωC + T

2

)
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= T

(T − (1 − ω)C)
(
1 − D+R+ωC+T/2

μ

)Tbase

= T

(T − a)
(

b − T
2μ

)Tbase,

where a = (1 − ω)C and b = 1 − D+R+ωC
μ

.

This equation is minimized for

T
opt
Time = √

2(1 − ω)C(μ − (D + R + ωC)). (5.1)

Note that we retrieve the value given by Eq. (1.24) in Sect. 1.3.3.2. In the following,
we let AlgoT be the checkpointing strategy that checkpoints with period T

opt
Time.

5.2.2.2 Energy Consumption

In order to compute the total energy consumption of the execution, we consider the
different phases during which the different powers introduced in Sect. 5.2.1.2 are
used:

• First, we consume PStatic during each time-step of the execution. Indeed, even
when a node fails and is shutdown, we still pay for the power of all the other nodes,
for the cooling system, etc. The corresponding energy cost is TfinalPStatic.

• Next, letTCal be the time duringwhich theCPU is used, inducing a power overhead
PCal. TCal includes the base work Tbase, and Tre-exec, the work that must be re-
executed after each failure (which wemultiply by the number of failuresTfinal/μ):

– with probability T−C
T , the failure does not happen during a checkpoint, and the

work to re-execute is A = ωC + T−C
2 ;

– with probability C
T , the failure happens during the execution of a checkpoint,

and the work to re-execute is B = ωC + T − C + ωC
2 .

We derive Tre-exec = T−C
T A + C

T B, hence

Tre-exec = ωC + T2 − C2

2T
+ ωC2

2T
.

Finally, we have:

TCal = Tbase + Tfinal

μ

(
ωC + T2 − C2

2T
+ ωC2

2T

)
.

The corresponding energy consumption is TCalPCal.

http://dx.doi.org/10.1007/978-3-319-20943-2_1
http://dx.doi.org/10.1007/978-3-319-20943-2_1
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• Let TI/O be the time during which the I/O system is used, inducing a power
overheadPI/O. This time corresponds to checkpointing and recovery from failures.

– The total number of checkpoints that are taken in a fault-free execution is equal
to the number of periods, Tbase

T−(1 − ω)C , and the time taken by checkpoints is

therefore TbaseC
T−(1 − ω)C .

– For each failure, there is an additional overhead:

1. the system needs to recover, which lasts R time-steps;
2. with probability T−C

T , the failure does not happen during a checkpoint, and there
is no additional I/O overhead;

3. however, with probability C
T , the failure happens during a checkpoint, and the

I/O time wasted is (in average) C
2 .

Altogether, we obtain

TI/O = TbaseC

T − (1 − ω)C
+ Tfinal

μ

(
R + C2

2T

)
.

The corresponding energy consumption is TI/OPI/O.

• Finally, letTDown be the total down time, incurring a power overheadPDown. We
have

TDown = Tfinal

μ
D,

and the corresponding energy cost isTDownPDown. This term is only included for
full generality, as we expect to have PDown = 0 in most scenarios.

The final expression for the total energy consumed is

Efinal = TCalPCal + TI/OPI/O + TDownPDown + TfinalPStatic

=
(
Tbase + Tfinal

μ

(
ωC + T2 − C2

2T
+ ωC2

2T

))
PCal

+
(
Tfinal

μ

(
R + C2

2T

)
+ C

Tbase

T − (1 − ω)C

)
PI/O

+ Tfinal

μ
DPDown + TfinalPStatic.

It is important to understand that Tfinal �= TCal + TI/O + TDown, unless ω = 0.
Indeed,CPUand I/Oactivities are overlapped (andboth consumed)whencheckpoint-
ing. To ease the derivation of the optimal period that minimizes Efinal, we introduce
some notations and letPCal = αPStatic,PI/O = βPStatic, andPDown = γPStatic.
Reusing parameters a = (1 − ω)C and b = 1 − D+R+ωC

μ
from Sect. 5.2.2.1, we

obtain:
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T ′
final

Tbase
= −ab + T2

2μ

(T − a)2
(

b − T
2μ

)2 , and

E ′
final

PStatic
= T ′

final
μ

(
αωC + βR + γ D + αT

2 − α(1 − ω)C2

2T + βC2

2T + μ
)

+Tfinal
2μ

(
α + α(1 − ω)C2

T2 − βC2

T2

)
− βCTbase

(T−(1−ω)C)2
.

Then, letting K = (T−a)2
(

b− T
2μ

)2
PStaticTbase

, we have:

KE ′
final = −ab+ T2

2μ
μ

(
(αωC + βR + γ D + μ) + αT

2 + α(1 − ω)C2

2T + βC2

2T

)

+ (T−a)
(

b− T
2μ

)
2μ

(
α + α(1 − ω)C2−βC2

T

)
− βC

(
b − T

2μ

)2

= T3
(

1
4μ − 1

4μ

)
+ T2

(
αωC+βR+γ D

2μ2 + b+ a
2μ

2μ − βC
4μ2 + 1

2μ

)

+T
(
− ab

2μ − ab
2μ + βCb

μ
− 2 (α(1 − ω)−β)C2

4μ2

)
− βCb2

− ab(αωC+βR+γ D+μ)
μ

−
(

b
2μ − a

4μ2

)
(α(1 − ω) − β)C2

+ 1
T

(
(α(1 − ω) − β) C

2μ − (α(1 − ω) − β) C
2μ

)

= T2
(

αωC+βR+γ D
2μ2 + b

2μ + a−βC
4μ2 + 1

2μ

)

+T
(

(βC−a)b
μ

− 2 (α(1 − ω)−β)C2

4μ2

)
− ab(αωC+βR+γ D+μ)

μ
− βCb2

+
(

b
2μ + a

4μ2

)
(α(1 − ω) − β)C2.

Let T opt
Energy be the only positive root of this quadratic polynomial in T : T opt

Energy is
the value that minimizes Efinal. In the following, we let AlgoE be the checkpointing
strategy that checkpoints with period T opt

Energy.
As a side note, let us emphasize the differences with the approach of Meneses

et al. [35] when restricting to the caseω = 0 (because they only consider the blocking
variant). For each failure, they consider that:

• energy lost due to re-execution is T − 2C
2 PCal, while we have(T − C

T

(T − C
2

) + C
T (T − C)

)
PCal = T2 − C2

2T PCal;

• energy lost due to I/O is CPI/O, while we have C2

2T PI/O.

Theses differences come from our more detailed analysis of the impact of the fail-
ure location, which can strike either during the computation phase, or during the
checkpointing phase, of the whole period.
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5.2.3 Experiments

In this section, we instantiate the previous model with scenarios taken from current
projections for Exascale platforms [21, 26, 42, 43]. We choose realistic values for
all model parameters: this includes all types of power consumption (PStatic, PCal,
PI/O and PDown), all checkpoint parameters (C, R, D and ω), and the platform
MTBF μ. We start with a word of caution: our choices for these parameters may
be somewhat arbitrary, and do not cover the whole range of scenarios that can be
investigated. However, a key feature of our model is its robustness: as long as μ is
reasonably large in front of checkpoint times, the model is able to accurately predict
the best period for execution time and for energy consumption.

The power consumption of an Exascale machine is capped to 20MW. With 106

nodes, this represents a nominal power of 20w per node. Let us express all power
values in watts. A reasonable scenario is to assume that half this power is used for
operating the platform, hence to let PStatic = 10. The overhead due to computing
would represent the other half, hencePCal = 10. As for communications and I/Os,
which are expected to cost an order of magnitude more than computing [43], we take
an overhead of 100, hencePI/O = 100. A key parameter for the experimental study
is the ratio

ρ = PStatic + PI/O

PStatic + PCal
= 1 + β

1 + α
. (5.2)

With our values, we get ρ = 5.5. Note that if we used PStatic = 5 and kept
the same overheads 10 and 100 for computing and I/O respectively, we would get
PCal = 10,PI/O = 100, and ρ = 7. These two representative values ofρ (ρ = 5.5
and ρ = 7) are emphasized by vertical arrows in the plots below on Fig. 5.1. As
for PDown, the power during downtime, we use PDown = 0, meaning that during
downtime we only account for the static powerPStatic of the processors that are idle.

The Jaguar platform,withN = 45, 208processors, is reported to have experienced
about one fault per day [46], which leads to an individual (processor) MTBF μind
equal to 45,208

365 ≈ 125 years. Therefore, we set the individual (processor) MTBF to
μind = 25 years. Letting the total number of processors N vary from N = 219, 150
to N = 2, 191, 500 (future Exascale platforms), the platform MTBF μ varies from
μ = 300 min (5 h) down to μ = 30 min. The experiments use resilience parameters
that are representative of current and forthcoming large-scale platforms [7, 26]. We
take C = R = 10 min, D = 1 min, and ω = 1/2.

On Figs. 5.1, 5.2, and5.3, we evaluate the impact of the ratioρ (see Eq. (5.2)) on
the gain in energy and loss in time of AlgoE with respect to AlgoT. The general
trend is that using AlgoE can lead to significant gains in energy at the price of a
small increase in execution time.

We then study in Figs. 5.4 and5.5 the scalability of the approach on forthcoming
platforms. We set the duration of the complete checkpoint and rollback (C and R,
respectively) to 1 min, independently of the number of processors, and we let the
downtime D equal to 0.1 min. It is reasonable to consider that checkpoint storage
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Fig. 5.1 Time and energy ratios as a function of ρ, with C = R = 10 min, D = 1 min, γ = 0,
ω = 1/2, and various values for μ

Fig. 5.2 Ratios of the
different strategies with
C = R = 10 min, D = 1
min, γ = 0, ω = 1/2 as a
function of μ and ρ: Energy
ratio of AlgoT over AlgoE
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Execution time ratio of
AlgoE over AlgoT

 50  100  150  200  250  300
μ

 1

 10

ρ

 1

 1.05

 1.1

 1.15

 1.2

 1.25

time will not increase with the number of nodes in the future, but on the contrary
will remain constant. Indeed, system designers are studying a couple of alternative
approaches. One consists of providing each computing node with local storage capa-
bility, ensuring through hardware mechanisms that this storage will remain available
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Fig. 5.4 Ratios of total energy and time for the two period strategies, as a function of the number
of nodes, with μ = 120 min for 106 nodes, C = R = 1 min, D = 0.1 min, γ = 0, ω = 1/2: Time
and energy ratios, as a function of the number of nodes, when ρ = 5.5
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Fig. 5.5 Ratios of total energy and time for the two period strategies, as a function of the number
of nodes, with μ = 120 min for 106 nodes, C = R = 1 min, D = 0.1 min, γ = 0, ω = 1/2: Time
and energy ratios, as a function of the number of nodes, when ρ = 7

during a failure of the node. Another approach consists of using the memory of the
other processors to store the checkpoint, pairing nodes as “buddies,” thus allowing to
take advantage of the high bandwidth capability of the high speed network to design
a scalable checkpoint storage mechanism[22, 37, 40, 47].
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The MTBF for 106 nodes is set to 2 hours, and this value scales linearly with
the number of components. Given these parameters, Figs. 5.4 and5.5 show (i) the
execution time ratio of AlgoE over AlgoT, and (ii) the energy consumption ratio of
AlgoT over AlgoE, both as a function of the number of nodes. Figures5.4 and5.5
confirm the important gain in energy that can be achieved, namely up to 30% for
a time overhead of only 12%. When the number of nodes gets very high (up to
108), then we observe that both energy and time ratios converge to 1. Indeed, when
C becomes of the order of magnitude of the MTBF, then both periods T opt

Time and

T
opt
Energy become close to C to account for the higher failure rate.

5.2.4 Summary

In this section, we have provided a detailed analysis to compute the optimal check-
pointing period, when the checkpointing activity can be partially overlapped with
computations. We have considered two distinct objectives: either the goal is to min-
imize the total execution time, or it is to minimize the total energy consumption.
Because of the different power consumption overheads due to computations and
I/Os, we obtain different optimal periods.

We have instantiated the formulas with values derived from current and future
Exascale platforms, and we have studied the impact of the power overhead due to
I/O activity on the gains in time and energy. With current values, we can save more
than 20% of energy with an MTBF of 300 min, at the price of an increase of 10%
in the execution time. The maximum gains are expected for a platform with between
106 and 107 processors (up to 30% energy savings).

Our analytical model is quite flexible and can easily be instantiated to investigate
scenarios that involve a variety of resilience and power consumption parameters.

5.3 Energy-Aware Fault-Tolerant Protocols for HPC
Applications: A Methodology Based on Energy
Estimation

Although some devices allow tomeasure the power and energy consumption of a pro-
tocol [14], measuring the energy consumption requires always to run the procotol at a
large scale and this in all execution contexts. To reduce the number of measurements,
we must be able to estimate accurately the energy consumption of a protocol, for any
execution context and for any experimental platform. The advantage of such energy
estimation is to evaluate the energy consumption of a protocol without pre-executing
in each execution context, and in this order to be able to choose the fault-tolerant
protocol that consumes less energy.
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In order to adapt the energy estimations to the execution platform, we need to
collect a set of power measurements of the nodes of the platform during the various
operations that compose the fault-tolerant protocols. However, we learned from[15],
that the nodes of a same cluster can have an heterogeneous idle power consumption,
while they have the same extra power consumption due to the execution of an giving
operation. We deduce that we need to measure the idle power consumption of each
node of a same cluster but we need to measure the extra power consumption due to
an operation only for each type of node. Moreover, in order to estimate the energy
consumption according to the execution platform, we also need to measure the exe-
cution time of each operation on this platform. However, we have shown in [15] that
the nodes of a cluster are homogeneous in terms of performance. We deduce that we
do not need to measure the execution time due to an operation for each type of node.
In order to adapt the energy estimations to the execution context, our estimation
approach is also based on a description of the parameters execution provided by the
user.

In this section, we explain our estimation methodology from the identification
of the operations found in a fault-tolerant protocol to the energy estimation mod-
els of these operation, through a description of the calibration and the execution
parameters that we need. We apply each step of our methodology to fault-tolerant
protocols [17, 19]. In Sect. 5.3.1, we identify the various operations in the considered
fault-tolerant protocols. Section5.3.2 presents our methodology for calibrating the
power consumption and the execution time of the identified operations. Section5.3.3
shows howwe estimate the energy consumption of the different operations by relying
on the energy calibration and the different execution parameters. In Sect. 5.3.4, we
evaluate the precision of the estimates for the considered fault-tolerant protocols by
comparing then to the real energy measurements. In Sect. 5.3.5, we show how such
energy estimations can be used in order to choose the energy-aware fault-tolerant
protocol. Section5.3.6 presents the conclusions of this section.

5.3.1 Identifying Operations in Fault-Tolerant Protocols

The first step of our methodology consists of identifying the various operations
that we find in the different fault-tolerant protocols. An operation is a task that the
fault-tolerant protocol may need to perform several times during the execution of an
application.

As described in Sect. 5.1, we study the two families of fault-tolerant protocols:
coordinated and uncoordinated protocols. For each of these two families, we dis-
tinguish two major phases: on the one hand, the checkpointing that occurs during a
fault-free execution (i.e., without failure) of an application, and on the other hand,
the recovery which occurs whenever a failure occurs. In our study, we focus on the
checkpointing phase.
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We consider an application using the fault-tolerant protocol that is running on
N nodes with p processes per node and where p is identical in the N nodes. In
fault-tolerant protocols, we identify the following operations:

• Checkpointing: performed in both coordinated and uncoordinated protocols, it
consists in storing a snapshot image of the current application state that can be
later on used for restarting the execution in case of failure. In our study, we consider
the system level checkpointing at the system level and not checkpointing at the
application level. Such a choice is motivated by the fact that not all the applications
embed global checkpointing and that we cannot select the optimal checkpointing
interval with the applicative checkpointing. We consider the checkpointing pro-
vided in the Berkeley Lab Checkpoint/Restart library (BLCR), and available in
the MPICH2 implementation. In checkpointing, the basic operation is to write a
checkpoint of Vdata size on a reliable media storage. For our study, we consider
only the HDD since RAM is not reliable.

• Message logging: performed in uncoordinated protocols, it consists in saving on
each sender process the messages sent on a specific storage medium (RAM, HDD,
NFS,…). In case of failure, thanks to message logging, only the crashed processes
need to restart. In message logging, the basic operation is to write the message of
Vdata size on a given media storage. For our study, we consider the RAM and the
HDD.

• Coordination: performed in coordinated protocols, it consists in synchronizing the
processes before taking the checkpoints. If some processes have inflight messages
at the coordination time, all the other ones are actively polling until these mes-
sages are sent. This ensures that there will be no orphan messages: messages sent
before taking the checkpoints but received after checkpointing. When there is no
more inflight message, all the processes exchange a synchronization marker. In
coordination, the basic operations are the active polling during the transmission of
inflight messages of Vdata and the synchronization of N × p processes that occurs
when there is no more inflight message.

In order to estimate the energy consumption of these operations, we need to take
into account a large set of parameters. These operations are associated to parameters
that depend not only on the protocols but also on the application features, and on the
hardware used. Thus, in order to estimate accurately the energy consumption due to
a specific implementation of a fault-tolerant protocol, the estimator needs to take into
consideration all the protocol parameters (checkpointing interval, checkpointing stor-
age destination, etc.), all the application specifications (number of processes, number,
and size of messages exchanged, volume of data written/read by each process, etc.)
and all the hardware parameters (number of cores per node, memory architecture,
type of hard disk drives, etc.).

• fault tolerance and application parameters: checkpointing interval, checkpointing
storage destination, number of processes, number and size of messages exchanged
between processes, type of storage media used (RAM, HDD, NFS, etc.), volume
of data written/read by each process, etc.
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• hardware parameters: number of nodes, number of sockets per node, number of
cores per socket, network topology, memory architecture, network technologies
(Infiniband, Gigabit Ethernet, proprietary solutions, etc.), type of hard disk drives
(SSD, SATA, SCSI, etc.), etc.

We consider that a parameter is a variable of our estimator only if a variation of
this parameter generates a significant variation of the energy consumption while all
the other parameters are fixed. It is necessary to calibrate the execution platform by
taking into account all the parameters to estimate the energy consumption.

5.3.2 Energy Calibration Methodology

Energy consumption depends strongly on the hardware used in the execution plat-
form. For instance, the energy consumption of checkpointing depends on the check-
pointing storage destination (SSD, SATA, SCSI, etc.), on the read and write speeds
and on the access times to the resource. The goal of the calibration process is to
gather energy knowledge of all the identified operations according to the hardware
used in the supercomputer. To this end, we gather the information about the energy
consumption of the operations by running a set of benchmarks allowing to collect
at set of power measurements and execution times of the various operations. The
goal of such calibration approach is to adapt to the supercomputer used, the energy
evaluations computed from the theoretical estimation models, and this in order to
make our energy estimations accurate on any supercomputer, regardless of specifi-
cations. Although this knowledge base has a significant size, it needs to be done only
occasionally, for example, when there is a change in the hardware (like a new hard
disk drive).

To estimate the energy consumption of a node performing an operation op, we
need to obtain the power consumption of the node during the execution of op and
the execution time of this operation. We know from[15] that the nodes from a same
cluster are homogeneous in terms of performance. Therefore, we do need to measure
and estimate the execution time due to an operation only for each type of nodes.
Thus, the energy ξ

Nodei
op consumed by a node i performing an operation op is:

ξNodei
op = ρNodei

op · top

Analogously, the energy consumption ξ
Switchj
op of a (switch) j during the operation

op is:

ξ
Switchj
op = ρ

Switchj
op · top

top is the time required to perform op by un type of nodes.

ρ
Nodei
op is the power consumed by the node i during top.
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ρ
Switchj
op is the power consumed by the switch j during top.

As a consequence, in order to calibrate the energy consumption, we need a cali-
brator for the power consumption described in Sect. 5.3.2.1 and a calibrator for the
execution time described in Sect. 5.3.2.2.

5.3.2.1 Calibration of the Power Consumption ρop

We showed in [15] that the power consumption of a node i performing an operation
op is composed of a static part, ρNodei

idle , which is the power consumption of the node

i when it is idle and a dynamic part Δρ
Nodei
op , which is the extra power cost related

to the operation op. We have shown that ρ
Nodei
idle can be different even for identical

nodes from homogeneous clusters. Therefore, we measure ρ
Nodei
idle for each node i.

We also have shown in [15] that Δρ
Nodei
op is the same for identical nodes running the

same operation op. Consequently, we measure Δρ
Nodei
op , for each operation op, once

for each type of nodes,
In [15], we have also highlighted that the number p of processes used per nodemay

influence the power consumed by the node. Therefore, we need to measure ρ
Nodei
op (p)

for every operation op and for different values of p. Thus, the power consumption
ρ

Nodei
op (p) of a node i during an operation op using p processes of this node is:

ρNodei
op (p) = ρ

Nodei
idle + ΔρNode

op (p)

Analogously, the power consumption ρ
Switchj
op of a switch j during the operation

op is:

ρ
Switchj
op = ρ

Switchj

idle + ΔρSwitch
op

ρ
Nodei
idle (or ρ

Switchj

idle ) is the power consumption of a node i (or of a switch j) when it is

idle (i.e., switched on but executed nothing except the operating system) andΔρ
Nodei
op

(or Δρ
Switchj
op ) is the extra power consumption due to the execution of the operation

op.

In order to compute ΔρNode
op (p) (or ΔρSwitch

op ), we measure ρ
Nodei
op (p) (or ρ

Switchj
op )

for a given node i (or a switch j) and subtract the static part of the power consumption
which corresponds to the idle power consumption of the node i (or switch j). We

measureρ
Nodei
op (p) (orρ

Switchj
op ) bymaking the operation last a few seconds. Therefore,

it is an mean extra power consumption because it is computed from the average of
several power measurements (one every second).

Moreover, ρNodei
op (p) and so ΔρNode

op (p) may vary depending on the number p of

processes used by the node i. Therefore, we need to calculate ΔρNode
op (p) and thus to

measure ρ
Nodei
op (p) for different values of p in order to be able to estimate ΔρNode

op (p)
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for a number p of processes executing the operation op. To do this, we should be able
to know how ΔρNode

op (p) evolves according to p (and this for each type of nodes). We
do not know such information a priori. To this end, we rely on four possible models
presented in the table below:

Linear ΔρNode
op (p) = αp + β

Logarithmic ΔρNode
op (p) = αln(p) + β

Power ΔρNode
op (p) = βpα

Exponential ΔρNode
op (p) = αp + β

For each type of nodes, we measure ΔρNode
op (p) for five different numbers of

processes:

• the smallest possible value p denoted pmin, which is equal to 1;
• the highest possible value p denoted pmax , which corresponds to the number of
cores available in the node;

• the median value denoted p2 which corresponds to half of the number of cores
available in the node;

• the number p1 which is located in the middle of the interval [pmin; p2];
• the number p3 which is located in the middle of the interval [p2; pmax]

Then, we determine thanks to the least squares method [41] the coefficients (α and
β) of each of the four models according to the five measured values for ΔρNode

op (p).
We compute the coefficient of determination R2 corresponding to each of the four
adjusted models obtained with the least squares method. We consider ΔρNode

op (p)

evolves according to the adjusted model for which the coefficient of determination
is the highest one (i.e., that is to say, the closest to 1).

For our measurements of ΔρNode
op (p) (deduced from measurements of ρ

Nodei
op (p)),

we use an external wattmeter capable to provide us the mean power measure-
ments with a sufficiently high frequency (1 Hz). We have shown in [14] that the
OmegaWatt wattmeter is a good candidate to collect such power measurements.

5.3.2.2 Calibration of the Execution Time top

The execution time top depends on one ormany parameters according to the operation
op. To take into account the possible effects of congestion, we consider that the
number p of the same process node performing the same operation simultaneously
op is a parameter to consider in our calibration of top. For example, this may occur
if multiple processes on the same node try to write data simultaneously on the local
hard drive.
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To calibrate top, we need to measure the execution time by varying different para-
meters. To do this, we measure top for five values uniformly distributed between the
minimum and maximum for each parameter (while fixing all the other parameters).
The five values of each parameter are chosen similarly to what we have previously
reported with the parameter p for the calibration of ΔρNode

op (p).
We consider two cases:

1. “Known model” case: we know a model a model where top evolves with respect
to the parameters. We know it from the literature, with the knowledge of the
algorithm used in the operation op or resource requested by the operation op. In
this case, we determine the coefficients of the theoretical model using the least
squares method [41] based on the values of the five parameters.

2. “No model known” case: we do not know how top evolves with respect to the
parameters. In this case, for each parameter, we proceed to the determination by
the adjusted least squares method as presented for the calibration of ΔρNode

op (p)

relying on the four models (linear, logarithmic, exponential, and power).

To measure top, we instrument the code of the algorithm or the protocol of the
operation op, in order to obtain the corresponding execution time. To ensure that the
calibration of the execution time is accurate, we realize each measurement 30 times
and we compute the mean value of the 30 measurements.

5.3.2.3 Models Used for the Execution Times of the Identified
Fault-Tolerant Operations

In this section, we describe the models used for the execution times of each opera-
tion of the fault-tolerant protocols. For each operation op, top depends on different
parameters.

We remind that the calibration of top is required for each type of nodes. In other
words, we do not need to calibrate top on all nodes when they are all identical.

For each type of nodes, the time tcheckpointing required for checkpointing a volume
of data Vdata is:

tcheckpointing(p, Vdata) = taccess(p) + ttransfer(p, Vdata) = taccess(p) + Vdata

rtransfer(p)

Similarly, the time tlogging required to log a message with a size equal to Vdata is:

tlogging(Vdata) = taccess + ttransfer(Vdata) = taccess + Vdata

rtransfer

p is the number of processes within the same node simultaneously trying to per-
form the checkpointing operation. taccess is the time required to access the storage
media where the checkpoint will be saved or the message logged. ttransfer is the time
required to write data size Vdata on the storage medium. rtransfer is the transmission
rate when writing on storage medium.
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In the case of checkpointing, taccess and rtransfer (and ttransfer) dependon the number
p of processes per node since the p processes save their checkpoints simultaneously
on the same storage media as the frequency of checkpoints writing is the same for
all processes of an application.

A message is logged on a storage medium once it has been sent by a process of
the node through the network interface used by the node. Thus, if several processes
of the node try to send messages, there will be a traffic congestion at the network
interface and the time for the current message will overlap the time of writing the
message previously sent. In other words, this means that we consider that we can not
find themselves in a situation where multiple messages are logged simultaneously
by p processes of the node. Therefore, in the case of message logging, taccess and
rtransfer (and ttransfer) do not depend on the number p process per node.

As explained in Sect. 5.3.2.2, we measure tcheckpointing considering both p and
Vdata parameters.

We know the theoretical model of tcheckpointing based on Vdata so for this parame-
ter, we proceed to the determination of the coefficients of the theoretical model as
explained in the case “with known model” (Sect. 5.3.2.2).

For p parameter, we do not have theoretical model giving tcheckpointing based on p
and therefore proceed as explained in the case of “no known model” (Sect. 5.3.2.2).

Regarding tlogging, it depends only on Vdata and we have the theoretical model
giving tlogging depending on this parameter. So we proceed as explained in the “with
known model” case.

We calibrate tcheckpointing and tlogging with respect to various storage media avail-
able on each node of the platform (RAM, local hard disk, flash SSD, etc.).

As we consider checkpointing at system-level, coordinated protocol requires a
coordination between all processes.

The execution time for coordination between all processes is:

tcoordination(N, p, Vdata) = tpolling(Vdata) + tsynchro(N, p)

= Vdata

Rtransfer
+ tsynchro(N, p)

p is the number of processes of the node i trying to perform coordination.
tsynchro(N, p) is the time required to exchange a marker synchronization between
all processes. tsynchro(N, p) depends on the number of nodes and the number of
processes per node involved in the synchronization. We do not have a theoretical
model for tsynchro(N, p) neither in terms of N nor based on p. For the calibration, we
proceed as explained in the “without knownmodel” case (Sect. 5.3.2.2). tpolling(Vdata)

is the time required to finish transmitting the messages being transmitted at the time
of coordination. In other words, tpolling(Vdata) is equal to the time required to trans-
fer the larger application message. Rtransfer is the transmission rate in the network
infrastructure used for the platform.
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Regarding the polling time, tpolling(Vdata), we have a theoretical model giving
tpolling(Vdata). For the calibration, we proceed as in the “known model” case for
Vdata parameter.

5.3.3 Energy Estimation Methodology

We have previously described how we realize the energy calibration. Once the cal-
ibration is done, the estimator is able to provide estimates of the energy consumed
by the various operations identified for fault-tolerant protocols. Figure5.6 shows the
framework components related to the estimation of the energy consumed.

We can now describe how to estimate the energy consumed by each of the identi-
fied operations. To this end, we rely on the parameters provided by the user and the
data measured by our calibrator.

Once the administrator has provided the hardware settings of the platform, the cal-
ibrator performs the various steps required to build the knowledge base on the power
consumption and the execution time of the various identified operations. Then, based
on the calibration results and a description of the application (the applicationmemory
size, etc.) and runtime parameters (number of nodes used, number of processes per
node, etc.) provided by the user, the estimator calculates the energy consumption of
different fault-tolerant protocols.

The parameters that we get from the user for the estimation depend on each
operation to estimate. In case these parameters correspond to the values that we have
measured during calibration, estimation directly uses these values to calculate the
energy consumed by the operation. If this is not the case, that is to say, if there is a
lack of measurement points in the calibrator, the estimator uses the models created
with the least squares method [41] during calibration.

Fig. 5.6 Framework to estimate the energy consumption of fault-tolerant protocols
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This section describes how we estimate the energy consumed by each operation
identified in the considered fault-tolerant protocols. For this, we show the necessary
information: the parameters provided by the user and the data measured by our
calibrator.

5.3.3.1 Checkpointing

Toestimate the energy consumptionof checkpointing, the estimator gets from theuser
the total memory size required by the application to run, the number of nodes N and
the number p of processes per node. From this information, the estimator calculates
the averagememory sizeVmean

memory required by each process (totalmemory size divided
by the number of processes). Then the estimator gets from the calibrator the extra
power consumptionΔρcheckpointing(p) and the execution time tcheckpointing(p, Vmean

memory)

depending on the models obtained by the least squares method in the step of the cal-
ibration. It also gets the measurement ρNodei

idle for each node i. We denote respectively

by ξ
Nodei
checkpointing(p) andρ

Nodei
checkpointing(p) the energy consumption and the average power

consumption of each node i performing checkpointing. The estimation of the energy
consumption of a single checkpointing is given by:

Echeckpointing =
N∑

i=1

ξ
Nodei
checkpointing(p)

=
N∑

i=1

ρ
Nodei
checkpointing(p) · tcheckpointing(p, Vmean

memory))

= tcheckpointing(p, Vmean
memory) ·

N∑
i=1

(ρ
Nodei
idle + Δρcheckpointing(p))

= tcheckpointing(p, Vmean
memory) · (

N · Δρcheckpointing(p)

+
(

N∑
i=1

ρ
Nodei
idle

))

5.3.3.2 Message Logging

To estimate the energy consumption of message logging, the estimator gets from the
user the number of nodes N , the number p of processes per node, the number and
total size of all messages sent during the application that he wants to run.

With this information, the estimator calculates the average volume Vmean
data of data

sent and therefore logged on each node (total size of all messages sent divided by
the number of nodes N). Then, the estimator gets from the calibrator the extra power
consumption Δρlogging and the execution time tlogging(p, Vmean

data ) depending on the
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models obtained with least squares method in the step of the calibration. It also
receives the measurement of ρ

Nodei
idle for each node i.

The estimation of the energy consumption of messages logging is given by:

Elogging =
N∑

i=1

ξ
Nodei
logging(p)

=
N∑

i=1

ρ
Nodei
logging(p) · tlogging(V

mean
data )

= tlogging(V
mean
data ) ·

N∑
i=1

(ρ
Nodei
idle + Δρlogging(p))

= tlogging(V
mean
data ) ·

(
N · Δρlogging(p) +

(
N∑

i=1

ρ
Nodei
idle

))

5.3.3.3 Coordination

We remind that the coordination is divided into two phases: the active polling during
the transmission of the inflight messages, followed by the synchronization of all
processes. To estimate the energy consumption of the coordination, the estimator
calculates the average message size Vmean

message as the total size of messages divided by
the total number of messages exchanged. The estimator also uses the total number
of nodes N and the number of processes per node p. Then the estimator gets from the
calibrator the extra power consumption Δρsync(p) and the execution time tsync(N, p)

depending on the models obtained with the least squares method in calibration step.
It also receives the measurement ρNodei

idle for each node i. The estimation of the energy
consumption Esynchro of synchronization is given by:

Esynchro =
N∑

i=1

ξ
Nodei
synchro(N, p)

=
N∑

i=1

ρ
Nodei
synchro(p) · tsynchro(N, p)

= tsynchro(N, p) ·
N∑

i=1

(ρ
Nodei
idle + Δρsynchro(p))

= tsynchro(N, p) ·
(

N · Δρsynchro(p) +
(

N∑
i=1

ρ
Nodei
idle

))
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Regarding active polling, the estimator gets from the calibrator the extra power
consumptionΔρpolling(p) and the execution time tpolling(N, p, Vmean

message) depending on
the models obtained with least squares method in the calibration step. The estimation
of the energy consumption of active polling is given by:

Epolling =
N∑

i=1

ξ
Nodei
polling(N, p)

=
N∑

i=1

ρ
Nodei
polling(p) · tpolling(V

mean
message)

= tpolling(V
mean
message) ·

N∑
i=1

(ρ
Nodei
idle + Δρpolling(p))

= tpolling(V
mean
message) ·

(
N · Δρpolling(p) +

(
N∑

i=1

ρ
Nodei
idle

))

The estimator computes the energy consumption of coordination as follows:

Ecoordination = Epolling + Esynchro

5.3.4 Validation of the Estimations

Tovalidate our estimations,weperformvarious real applications of high-performance
computing with different fault-tolerant protocols on a homogeneous cluster of the
experimental distributed platform for large-scale computing, Grid’5000 [6], then we
compare the energy consumption actually measured to the energy consumption eval-
uated by our estimator. For the experiments to validate our estimations, we used a
cluster of the Grid’5000 distributed platform. The cluster we used for our experi-
ments offers 16 identical nodes Dell R720. Each node contains 2 Intel Xeon CPU
2.3 GHz, with 6 cores each; 32 GB of memory; a 10 Gigabit Ethernet network; a
SCSI hard disk with a storage capacity of 598 GB. We monitor this cluster with
an energy-sensing infrastructure of external wattmeters from the SME Omegawatt.
This energy-sensing infrastructure, which was also used in [13], enables to get the
instantaneous consumption in Watts, at each second for each monitored node [12].
Logs provided by the energy-sensing infrastructure are displayed lively and stored
into a database, in order to enable users to get the power and the energy consumption
of one or more nodes between a start date and an end date. We ran each experiment
30 times and computed the mean value over the 30 values. We use the same notations
as in previous sections: N is the number of nodes, p is the number of processes, and
op denotes one of the identified operations (checkpointing, message logging, etc.).
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5.3.4.1 Calibration Results of the Platform

In this section, we present some of the calibration results on the considered platform
according to the methodology described in Sect. 5.3.2. The considered platform is
composed only of identical nodes: thus there is only one type of node. They are
interconnected using a single network switch.

Calibrating the power consumption

First,wemeasure the idle power consumptionρi
idle for each node i of the experimental

cluster. Figure5.7 shows the idle power consumption of the 16 nodes belonging to the
considered cluster. From this figure, even if the cluster is composed of homogeneous
nodes, we notice the need to calibrate the electrical power when idle of each node.

For each identified operation op and for each of the cluster nodes,we calibratewith
OmegaWatt the average additional cost of electrical power due to the op operation,
Δρop(p), as explained in Sect. 5.3.2.1. Since each node of the Taurus cluster has 12
processing cores, the five values of p we choose to calibrate Δρop(p) are 1, 4, 6, 9,
and 12 processes per node. Figure5.8 shows the measurements Δρop(p) for the five
values of p and for each operation op identified in fault-tolerant protocols.

We note in Fig. 5.8 that for some operations, Δρop(p) does vary depending on
the number of cores per node that perform the same operation. For some operations,
such as checkpointing Δρop(p) is almost a constant function of p. For Δρop(p) of
these operations, we obtain one of the four models of the calibrator (see Sect. 5.3.2.1)
with a coefficient α very close to 0 and a value of β very close to the constant value
of Δρop(p) (i.e., that is to say, quasi-stationary model). For example, the model of
Δρcheckpointing(p) adjusted by the least squares method for the five values of p is:
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Fig. 5.7 Idle power consumption of the nodes of the cluster Taurus
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Fig. 5.8 Extra power consumption of fault-tolerant operations

Δρcheckpointing(p) = 17.22 · p0.0084271

Although the fittedmodel is a powermodel, the very low coefficient α implies that
Δρcheckpointing(p) is a quasi-stationary function p. The coefficient of determination
R2 corresponding to this model is 0.976, which is very close to 1.

For other operations such asRAM logging,Δρop(p) increaseswith p. For example,
the model of ΔρRAM_logging(p) obtained in the calibration is:

ΔρRAM_logging(p) = 35.237 · p0.50158

The fact that α is very close to 0.5 means that ΔρRAM_logging(p) is almost expressed
in terms of

√
p. The coefficient of determination R2 corresponding to this model is

0.992, which is also very close to 1.
In addition, wemeasure the energy consumption when idle of 10 Gigabit Ethernet

switch for 300 s followed by the electrical power during heavy network traffic for
300 s. To measure its electrical power when idle, we ensure that there is no network
traffic by turning off all nodes that are interconnected by the network switch. To
measure its electrical power during heavy network traffic, we run iperf in server
mode on one of the nodes and iperf in client mode on all other interconnected
nodes. Figure5.9 shows the electrical measurements.

From Fig. 5.9, we note that the electric power switch remains almost constant
throughout the duration of the experiment. In other words, the electrical power
network switch does not vary depending on the network traffic. This means that

ΔρSwitch
op is (almost) equal to 0 for all operations (∀op, ρ

Switchj
op = ρ

Switchj

idle ). A recent
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Fig. 5.9 Power consumption of the switch when idle for 300s and with an intense network load
for 300s

study [29, 34] confirms this fact in evaluating and demonstrating that the electrical
power of multiple network devices is not affected by network traffic. That said, even
if the electrical power of a network switch would depend on network traffic, our
approach to calibration would allow to take into account in measuring ΔρSwitch

op for
each operation op.

Calibration of the execution time

Based on the methodology presented in Sect. 5.3.2.2, we calibrate the execution time
for each operation on each type of node of the experimental platform.

To calibrate the execution time of checkpointing on local hard drive, we consider
a variable number of cores per node simultaneously checkpointing and we measure
the time for different sizes of checkpoints Vdata for one node of the experimental
platform. Each node process saves a checkpoint with a size equal to Vdata. In other
words, when there are p processes that save checkpoints simultaneously a volume
of p · Vdata is saved on the local hard drive. Figure5.10 shows the measured time
for checkpointing on a node of the experimental platform. As explained inTop, we
choose 1, 4, 6, 9, and 12 processes per node for the five values of p and 0 MB, 500
MB, 1000 MB, 1500 MB, and 2000 MB for the five values of Vdata. The choice of
2000 MB as the maximum size of checkpoint is motivated by the fact that each node
has only 32 GB of memory that can be shared by 12 processing cores. For different
values of p, figure shows how evolves tcheckpointing with respect to Vdata.

First, we observe that the curves have a linear trend according to Vdata for p fixed.
For example, for p = 4, the model for tcheckpointing adjusted by the least squares
method from the five values of Vdata:

tcheckpointing(4, Vdata) = 1

0.56569 · 109 · Vdata + 0.09433 · 10−3
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Fig. 5.10 Calibration of checkpointing on local hard drive

We also note that forVdata fixed tcheckpointing increaseswhen p grows this is because
of the congestion of the input–output generated by concurrent access by p process
on local hard drive. For Vdata = 1000 MB the model of tcheckpointing adjusted by the
least squares method from the five values of p:

tcheckpointing(p, 1000MB) = 4.91359 · p − 1.5026

If, for example, we want to estimate the time tcheckpointing(3, 800MB), that is to
say, for values of p and Vdata which both are not belonging to the five measured
values, we calculate:

• on one side: tcheckpointing(1, 800MB), tcheckpointing(4, 800MB), tcheckpointing
(6, 800MB), tcheckpointing(9, 800MB) and tcheckpointing(12, 800MB), respectively
from the equations tcheckpointing(1, Vdata), tcheckpointing(4, Vdata), tcheckpointing
(6, Vdata), tcheckpointing(9, Vdata) and tcheckpointing(12, Vdata);

• on the other side: tcheckpointing(3, 0MB), tcheckpointing(3, 500MB),
tcheckpointing(3, 1000MB), tcheckpointing(3, 1500MB), tcheckpointing(3, 2000MB),
respectively from the equations tcheckpointing(p, 0MB), tcheckpointing(p, 500MB),
tcheckpointing(p, 1000MB), tcheckpointing(p, 1500MB), tcheckpointing(p, 2000MB).

From the calculated values tcheckpointing(1, 800MB), tcheckpointing(4, 800MB),
tcheckpointing(6, 800MB), tcheckpointing(9, 800MB) and tcheckpointing(12, 800MB), we
determine by the least squares method, the model giving tcheckpointing(p, 800MB)

as a function of p (as explained in Sect. 5.3.2.2) and calculate the determination
coefficient R2 corresponding to the adjusted model.

Similarly, from the values tcheckpointing(3, 0MB), tcheckpointing(3, 500MB),
tcheckpointing(3, 1000MB), tcheckpointing(3, 1500 MB), tcheckpointing(3, 2000 MB), we
determine the model giving tcheckpointing(3, Vdata) as a function of Vdata and calcu-
late the determination coefficient R2 corresponding to the thereby adjusted model.
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Then between tcheckpointing(p, 800MB) and tcheckpointing(3, Vdata), we choose the
model for which the determination coefficient is the closest to 1. Then we calcu-
late tcheckpointing(3, 800MB) with the choosen model.

Figure5.11 presents the execution time for message logging in RAM and on a
HDD. To calibrate the execution time of message logging on memory or on disk, we
measure the time for different message sizes Vdata for one node of the experimental
platform. The values choosen for Vdata are 0 KB, 500 KB, 1000 KB, 1500 KB et
2000 KB. As explained in Sect. 5.3.2.3, we do not need to calibrate tlogging as a
function of p because the processes do not write simultaneously the messages on
the medium storage due to the contention during message sending. We measure the
execution time when a single process (p = 1) of the node executes the message
logging operation.

We observe that the curves have a linear trend and this as well for message logging
on RAM on local hard drive. The message logging time on local hard drive is higher
than the RAM one and this regardless of the size of the logged message. Similarly
to checkpointing, we get the following adjusted models for tlogging:

In RAM : tlogging(Vdata) = 1
4.4342·109 · Vdata + 0.0426 · 10−3

On the local HDD : tlogging(Vdata) = 1
1.0552·109 · Vdata + 0.0858 · 10−3

Regarding coordination, we need to calibrate the time of the synchronization as
well as the transfer time of a message.

To calibrate the synchronization time tsynchro(N, p) of Np process, we measure
this time for different values of N and for different values of p. The measured values
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Fig. 5.11 Calibration of message logging on RAM and local disk
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of p and N are chosen as explained in Sect. 5.3.2.2. In our case, the measured values
of p are 1, 4, 6, 9 and 12, while the measured values for N are 1, 4, 8, 12, and
16. Figure5.12 presents the synchronization time measured by the calibrator. For
example, point 4 cores/8 nodes is the time required to synchronize 32 processes,
32 uniformly distributed over 8 nodes. First, we find that the time to synchronize
processes located on the same node is lower than for processes located on different
nodes. Indeed, it requires much less time to synchronize processes located on the
same node than for processes located on different nodes. The transmission rate of
the network is much lower than the transmission rate within a single node.

For example, for p = 4, the model for tsynchro adjusted by the least squares method
from the five values of N is:

tsynchro(N, 4) = 0.0103757 · ln(N) + 0.00445945

For N = 8 , the model for tsynchro adjusted by the least squares method from the
five values of N is:

tsynchro(8, p) = 0.00443799 · ln(p) + 0.02225942

If, for example, we want to estimate the time tsynchro(N, p), that is to say, for
values of N and p which booth are not belonging to the five measured values, then
we proceed in a manner similar to that explained for tcheckpointing(p, Vdata).

We calibrate the time needed to transfer a message (i.e., the active polling occur-
ring at the time of coordination) on the experimental platform by varying the of
size Vdata of the message to transfer. To do this, we measure the execution time
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Fig. 5.12 Calibration of the synchronization time of the experimental platform
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tpolling(Vdata) to transfer a message sent using MPI_Send by a process located on
a given node to a process on a different node. In the general case, we must make
this measurement for each pair of processes at different levels of the network hierar-
chy, i.e., for two processes that need to cross a single network switch, then for two
processes that need to cross two network switches, etc. In our experimental platform,
a single network switch interconnects all nodes so we only need to measure the time
for a couple of processes on different nodes.

To calibrate the execution time to transfer amessage over the network ,wemeasure
the time for different message sizes Vdata for a couple of processes located on two
separate nodes. The values chosen for Vdata are 0 KB, 500 KB, 1000 KB, 1500
KB, and 2000 KB. On Fig. 5.13, we present the calibration of the transfer time of a
message.

Themeasured transfer timedepends linearly on the size of themessage transferred.
Similarly to checkpointing, we get the following adjusted model for tpolling:

tpolling(Vdata) = 1

0.60148 · 109 · Vdata + 3.6222 · 10−3

5.3.4.2 Accuracy of the Estimations

In this section, we seek to compare the energy consumption achieved by our esti-
mator once the calibration is made (but before executing the application) to the
energy actually measured by the meters OmegaWatt during the execution of the
application.
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Fig. 5.13 Calibration of the active polling for the experimental platform
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Fig. 5.14 Energy
estimations (in kJ) of
operations related to fault
tolerance

Fig. 5.15 Relative
differences (in %) between
the estimated and measured
energy consumption of the
operations related to fault
tolerance

We consider four HPC applications: CM11 with a 2400 × 2400 × 40 resolution
and 3 NAS2 of class D (SP, BT, et EP) executed on 144 processes (i.e., 12 nodes with
12 cores per node) of the considered cluster.

With the infrastructure of external wattmeter OmegaWatt, we measure for each
application the energy consumption during the execution of the application with and
without activation of the fault-tolerant protocols. Specifically, we instrumented the
source code implementations of the different protocols of fault tolerance in order
to enable/disable each of the operations described above: checkpointing, message
logging (on local disk or RAM disk), and coordination. Thus, we obtain the actual
energy consumption for each operation. Each energy measurement is performed 30
times, and we consider the average values.

As concerns the uncoordinated protocol, we estimated and measured the energy
consumption of all message logging. As concerns the coordinated protocol, we esti-
mated and measured the energy consumption of a single checkpointing and therefore
for one single coordination. To measure the energy consumption of a single check-
pointing, we used a checkpoint interval greater than half of the application duration.
Thus, the first (and only) checkpoint will occur in the second half of the application.

In Fig. 5.14, we show the energy estimations for different operations identified
in the protocols of fault tolerance. In Fig. 5.15, we show the relative differences
(in percent) between the estimated and the actual energy consumption. Figure5.15
shows that the energy estimations provided in Fig. 5.14 are accurate. Indeed, the
relative differences between the estimated and measured energy consumption is low.
The worst estimate shows a gap of 7.6% compared to the measured coordination
with EP value. The average deviation of all tests is 4.9%.

1Cloud Model 1: http://www.mmm.ucar.edu/people/bryan/cm1/.
2NAS: http://www.nas.nasa.gov/publications/npb.html.

http://www.mmm.ucar.edu/people/bryan/cm1/
http://www.nas.nasa.gov/publications/npb.html
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In comparison with message logging and checkpointing, we find that we estimate
a little less coordination. This is due to the fact that this process takes much less
time than message logging. This is also due to the fact that this operation is evaluated
from the estimated two sub-operations (tpolling et tsynchro) which generates more inac-
curacies in our estimation We will show in Sect. 5.3.5 how such energy estimations
can reduce energy consumption related to protocols of fault tolerance when they are
known before pre-executing the application.

5.3.5 Energy-Aware Choice of Checkpointing Protocols

In this section, we show how we can rely on energy estimations in order to reduce
the energy consumption of the different fault-tolerant protocols executed with high-
performance computing applications. The fault-tolerant protocol that consumes less
energy may change depending on the considered application. The energy estimation
that we are able to provide allows the users to choose the best fault-tolerant protocol
in terms of energy consumption according to the execution context. By making such
choice, the user is able to reduce the energy consumptionof the executed fault-tolerant
protocols.

The two families of fault-tolerant protocols that we considered are the coordi-
nated and the uncoordinated protocols. We consider the 4 HPC applications that we
studied in Sect. 5.3.4.2: CM1 with a resolution of 2400 × 2400 × 40 and 3 NAS in
Class D (SP, BT, and EP) running over 144 processes (i.e., 12 nodes with 12 cores
per node). For each application and for each fault-tolerant protocol, we estimate the
energy consumption by considering the different operations that we have identified
in Sect. 5.3.1. First, we highlight that the energy consumption of a fault-tolerant oper-
ation depends highly on the application. Then, we show how the energy estimations
of the different operations identified in Sect. 5.3.1 help the user in the choice of the
fault-tolerant protocol that consumes the less energy.

Figure5.14 shows that energy consumption of the operations are not the same from
one application to another. For instance, the energy consumption of RAM logging in
SP is more than 10 times the one in CM1. This is because CM1 exchanges much less
messages compared to SP. Another example is that checkpointing in CM1 is more
than 20 times the one in EP. Indeed, the execution time of CM1 is much higher than
EP so the number of checkpoints is more important in CM1.Moreover, the volume of
data to checkpoint is more important in CM1 as it involves a more important volume
of data in memory.

We can obtain the overall energy estimation of the entire fault-tolerant protocols
by summing the energy consumptions of the operations considered in each proto-
col. For fault-free uncoordinated checkpointing, we add the energy consumed by
checkpointing to the energy consumption of message logging. For fault-free coordi-
nated checkpointing, we add the energy consumed by checkpointing to the energy
consumption of coordinations.
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Both of uncoordinated and coordinated protocols rely on checkpointing. To obtain
a coherent global state, checkpointing is combined with message logging in unco-
ordinated protocols and with coordination in coordinated protocols. Therefore, to
compare coordinated and uncoordinated protocols from an energy consumption point
of view, we compare the energy cost of coordinations to message logging. In our
experiments we consideredmessage logging either in RAMor inHDD.Coordination
will consume as much as there are still bulked messages that are being transferred
at the moments of the processes synchronization. Message logging will consume as
much as the number and the size of exchanged messages during the application are
important.

Figure5.14 shows that from one application to another the less energy consuming
protocol is not always the same. In general, determining the less consuming protocol
depends on the trade-off between the volumeof logged data and the coordination cost.
For BT, SP and CM1, the less energy consuming protocol is the coordinated protocol
(Coordination values in Fig. 5.14 lower to the RAM and HDD logging values) since
the volume of data to log for these applications is relatively important and leads to
a higher energy consumption. Oppositely, the less energy consuming fault-tolerant
protocol for EP is the uncoordinated one.

These conclusions are specific to the case where there is only one checkpointing
and so one coordination during the execution of these applications. If the user is
interested in more reliability, and this specifically for the applications that last long
(several hours), he should choose a smaller checkpoint interval and so a higher
number of checkpointing and coordinations. This checkpoint interval can influence
the choice of the fault-tolerant protocol that consumes the less energy. Indeed, if
for instance during the execution of SP, there are more than 19 checkpointing and
therefore more than 19 coordinations, the energy consumption of coordinations will
be higher than the one of RAM logging. As a consequence, as opposed to what we
have seen previously, it would be better to use the uncoordinated protocol to reduce
the energy consumption of fault tolerance.

This checkpoint interval can be selected by considering the models that define the
optimal interval: the one that enables to maximize the reliability by minimizing the
performance degradation [11, 45].

In case we use a higher number of processes for the execution of a same appli-
cation, the energy consumption of coordination will be more important. However,
the energy consumption of message logging may also increase since there may be
more communications with an increased number of processes. Therefore, there will
be more message to send and so more message to log.

Thus, by providing such energy estimations before executing the HPC applica-
tion, we help the user to select the best fault-tolerant protocol in terms of energy
consumption depending on the number of checkpoints that he would like to perform
during the execution of his application.
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5.3.6 Summary

In this section, we have presented an approach to accurately estimate the energy
consumption of fault-tolerant protocols. We focused on the phase without failure.
We considered the case of coordinated protocols and uncoordinated protocols.

This approach is to first identify the operations that we find in the different fault-
tolerant protocols. Then, in order to adapt our theoreticalmodels to the specificities of
the considered platform, we perform an energy calibration that consists in gathering
a set of measurements of the electrical power and execution times of each of the
identified operations. To calibrate the considered platform, the calibrator collects
parameters describing the execution platform, such as the number of nodes or the
number of cores per node. With this calibration, energy estimations that we provide
can adapt to any platform. Once the calibration is complete, the estimator is based
on the calibration results as well as a description of the execution context to provide
an estimation of the energy consumption of the fault-tolerant protocols.

We have shown that energy estimations are accurate for each fault-tolerant oper-
ation. Indeed, comparing the energy measurements for each operation to energy
estimations that we are able to provide, we have shown that the relative differences
were small. The relative differences between the estimates and energy measures are
equal to 4.9% on average and do not exceed 7.6%.

Furthermore, we described the way to use our estimations in order to consume
less energy. By providing energy consumption estimations before the execution of
the application, we showed that it is possible to choose the fault-tolerant protocol
which is consuming the less energy for a particular application in a given execution
context.

5.4 Conclusion

In this chapter, we have focused on the combination of two of the main challenges
faced by Exascale systems: resilience and energy consumption. Even though these
challenges havemainly been tackled independently, they are strongly interrelated.We
have reviewed the literature on energy-aware checkpointing strategies and detailed
two main topics.

First, we have provided a detailed analysis to compute the optimal checkpointing
period for a coordinated checkpointing protocol where the checkpointing activity
can be partially overlapped with computations. We have considered different power
consumption overheads for computations and I/Os in order to represent real-life
systems in an accurate way. Experiments have shown that we can save more than
20% in energy, at the price of an increase of 10% in the execution time.

Then, we have considered both coordinated and uncoordinated protocols and
explained how to estimate the energy consumption of these protocols. Energy esti-
mations were shown to be accurate, and they can be used to reduce the energy
consumption by allowing the user to use the protocol best suited for a particular
application.
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Besides, thanks to the energy estimations, understanding the energy behavior of
the different fault-tolerant protocols allows us to consider other solutions in order to
reduce the energy consumption of a fault-tolerant protocol. Indeed, by predicting the
idle periods and the active polling periods, we would be able to apply some power
saving capabilities such as slowing down resources (like DVFS [24, 27, 30, 32]) or
even shutting down[28, 39] some components if these idle or active polling periods
are long enough [38].
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