
A Framework for Distributing and Migrating
the User Interface in Web Apps

Antonio Peñalver(B), David Nieves, and Federico Botella

Center of Operations Research University Institute,
Miguel Hernández University, Elche, Spain

a.penalver@umh.es

Abstract. Nowadays, the advent of mobile technologies with increasing
functionality and computing power is changing the way people interact
with their applications in more and more different contexts of use. This
way, many traditional user interfaces are evolving towards “distributed”
user ones, allowing that interaction elements can now be distributed
among heterogeneous devices from different platforms. In this paper we
present an HTTP-Based framework for generating and distributing UIs
(User Interfaces) of custom applications, allowing device change with
state preservation. We use a schema-based definition of DUIs (Distrib-
uted User Interfaces), allowing the specification of the elements to be
distributed. The framework is based on open standards and supports
any markup-based web language. We provide a graphic case of use imple-
mented in HTML5.

1 Introduction and Related Work

In a short period of time, the way people interact with computers has changed.
The wide variety of devices that people can use today has an important effect on
the way users interact with them: computers, tablets, smartphones, and so on.
Particularly, new mobile devices provide ubiquitous access to information and
services as well as the possibility of fulfill more and more desktop-related tasks
with them.

These advances open up new possibilities for interaction, including the distri-
bution of the User Interface (UI) among different devices. The UI can be divided,
moved, copied or cloned among heterogeneous devices running the same or differ-
ent operating systems, maintaining its current state. These new ways of handling
the UI are considered under the emerging topics of Distributed User Interfaces
(DUIs) and Migratory Interfaces (MIs). DUIs are related to the distribution of
one or many elements, from one or many user interfaces, in order to support one
or many users, to carry out one or many tasks, on one or many domains, in one
or many contexts of use [1]. Migratory user interfaces [2] are able to automat-
ically move among diverse devices, allowing the users to continue in real-time
their task after changing the device in use [3].

In this paper we propose a full client/server-based architecture to support
DUIs that allows us to distribute the UI of any web-based application among dif-
ferent users in ubiquitous heterogeneous environments. The framework handles
c© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2015, LNCS 9170, pp. 543–553, 2015.
DOI: 10.1007/978-3-319-20916-6 50



544 A. Peñalver et al.

the registration process of applications and clients, as well as the distribution
of the UIs and the communication between them. The state of an interactive
session for each user is stored and saved between different devices. We use our
formal description method for developing DUIs [4], our AUI model [5] and our
schema-based approach to automatically construct a concrete DUI from an XML
specification [6] as a basis for developing our framework.

Many research works have studied and proposed different implementations to
the concepts of Distributed and Migratory User Interfaces. In [7] a software envi-
ronment called Oz/Mozart supporting distribution is presented. It allows migrat-
ing windows and receiving events from the elements of an interface previously
distributed. This is a non-HTTP-based approach and requires using non-
standard web languages. In [8] an XML-based framework supporting collabo-
rative web browsing is proposed. It uses a new XML language with specific tags
in order to describe the UI, and XSL-T transformations to construct the HTML
interface. A web page is split and then replicated to all the users. This approach
needs a Java Applet at the client side. In [9] a framework for dynamically distrib-
ute UI’s among several devices is developed. It is based on an HTTP Interface
Distribution Daemon (IDD) and RelaxNG schema language is used to describe
the XHTML interface, defining constraints for each element, attribute and text
values. The proposal requires implementing a new HTTP command in order to
avoid server timeouts. Recently, in [10] a framework that supports user interface
distribution in web-based and android devices is presented.

In [11] a partial migration web system is proposed. It uses different abstrac-
tion levels to define the UI and allows migration between big displays and mobile
devices. Different modules translate the original interface into a new one suit-
able for the new device and a proxy server captures interaction between the
browser and the original web site. In [12] a system for dynamic generation of
web interfaces supporting migration between different platforms is proposed. The
approach uses a proxy server again to adapt the content to the target platform.

The rest of the paper is organized as follows: First the basic components of
the framework architecture, including elements and communication schema are
discussed. Then, an example of application is described. Last section provides
conclusions and further work.

2 Architecture

This section is devoted to explain the architecture of the framework. The essen-
tial part of the framework is a Java Servlet that manages distributed interactive
sessions for each connected client, passing messages from clients to applications
and vice versa. The only requirement for a client to connect to the framework is
a web browser supporting AJAX (Asynchronous JavAscript and Xml) in order
to send and receive XML data without reloading the entire page each time an
event arises.



A Framework for Distributing and Migrating the User Interface in Web Apps 545

2.1 Communication Model

Communication between applications and framework as well as communication
between framework and clients is based on the REST (Representative State
Transfer) model, where procedure calls are performed by conventional HTTP
requests using standard URL nomenclature. The Servlet processes an HTTP
request and replies with an HTTP response message using the HTTP 1.1 version
specification, including only GET and POST standard commands. Some ad-hoc
commands have been implemented in order to perform the different tasks the
Servlet can perform. Table 1 shows a summary of all the Servlet commands and
their descriptions.

Two different XML-based messages are used: “event” and “action”. When the
user performs an action during an interactive session (e.g. clicking on a button)
an action message is sent to the framework. Then, the message is forwarded to
the application that has to execute the action at the server side. After that, an
event message may be triggered by the application and then returned to the
framework that will forward it to all the clients interested in a specific type of
event. Thus, as a result of a client action over a device, an event may be triggered
and sent to multiple devices, and the UIs of these devices updated accordingly.
It should be noted that each event message is stored in a repository within the
server, so that clients connecting later can apply for and update the status of
their interface. This allows us to migrate the interface between different devices
maintaining the application state.

Figure 1 shows the action/event communication model with applications on
the left side and clients on the right side. The information flows between client
interface and framework and between framework and clients. We also need a
middleware layer composed by two new APIs: one at server-side, which acts as
an intermediary between framework and applications and other one at client-
side, acting as an intermediary between framework and clients.

The former is required to parse and interpret XML-based action messages
and translate them to native function calls of the application. The code depends
on the particular application but we selected again the Java language because
it supports both XML and HTTP over almost every operating system and plat-
form. The latter is devoted to manage communication between framework and
clients. We selected JavaScript language, as it can directly retrieve and submit
XML data. Received XML documents can be processed through the Document
Object Model (DOM) interface. This way, the communication with the server is
performed in the background, so user interaction with the application is carried
out asynchronously, and the updates of the UI are dynamically executed.

2.2 Client Pull

HTTP protocol is a stateless communication method but client devices may send
action messages to the framework at any time. Each message is encapsulated as
a POST HTTP command. When the framework accepts the POST command,
it processes the message and replies by triggering an application event. This



546 A. Peñalver et al.

Table 1. Servlet commands to allow bi-directional communication between clients and
applications.

Command Description

validate user The Servlet logs a client in the framework from a valid
username and password. A unique client id is generated
and then returned to the user in a cookie

validate application Allows registering a new application. An app name and an
app key are required. The Servlet looks for the application
in the application.xml file. If all is correct, a unique
application id is generated and then returned in a cookie

user logout The Servlet unregister the specified client and then he/she is
redirected to the login page

application logout The Servlet unregister the application with the specified Id

ui Specifies the user sub-interface selected by the user. The body
of the request includes all the required data. When the
request is received, a new session starts and a new cookie
id is sent to the user. Then, a new web page with the
required sub-interface is generated, sent and rendered in
the client device

session end When the user ends her/his session, the selected
sub-interfaces are released, and then the user is redirected
to the application selection page

action Depending on each application, this command allows to
specify different user interactions with the interface. The
body of the request includes an XML document with the
information needed for the Servlet to process the action.
The actions are stored in the application message queue

event If an application changes its state, a new event is generated
and sent to the Servlet encapsulated in XML format. The
event is stored in the message queue and sent to all the
clients interested in such event in order to upgrade the
state of their interface

pull This command allows both clients and application to ask the
Servlet for incoming messages (actions and events)

event may be sent to many clients, but as clients do not run a server to listen
for incoming requests, the message cannot be delivered with a classic HTTP
POST command. Bi-directional communication between clients and applications
is required, because if the state of an application changes, all the clients must be
informed. The same applies at server side, where an application must be notified
when a client triggers an action. In order to overcome these drawbacks, we use
Client-Pull technique for bi-directional communication. Server-Push method is
an efficient technique, but it is difficult to implement using AJAX at the client
side, so we use the Client-Pull. Client-Pull allows clients and applications poll
for actions and events by sending requests to the framework at regular time



A Framework for Distributing and Migrating the User Interface in Web Apps 547

Fig. 1. Action/Event communication model and middleware layer at the server and
client sides.

intervals. This way, the framework answers with an action or event message if
there is anything to report. Thus, standard HTTP protocol and AJAX can be
used. Pull messages are implemented as standard POST commands, and then
data is encapsulated in XML format before being submitted.

2.3 Distribution

Prior to the use of the framework, both clients and applications must be reg-
istered in the framework. Application registration is performed by means of an
XML configuration file with a pre-defined schema specification called aplica-
tions.xml, and then stored in one of the framework folders. The schema speci-
fies the services that an application provides. The file includes tags to specify
the application folder and the sub-interfaces that can be distributed. A “state”
attribute allows us to specify whether the sub-interface can or cannot be distrib-
uted to more than one user at the same time.

Another important file is globals.xml, including important configuration infor-
mation for the Servlet, such as connection port, applications paths, names for
the cookies and so on. Client registration is performed in a slightly different way:
first, the end user connects to the framework through an URL and a list of appli-
cations is showed with available services. Second, the user selects an application
sub-interface.

Then the framework runs an XML instance generator algorithm producing
a valid XML instance (concrete DUI in a markup language like XHTML or
HTML5), taking into account the constraints specified in the schema. Finally, the
UI is sent to the client and rendered in her/his device. Each service is marked as
“exclusive” or “collaborative” in the configuration file. If “collaborative” option
is specified, then the sub-interface can be duplicated and used in a collaborative
session among different users. If “exclusive” option is specified, the service is
available only for one user. At low-level, we use an identification cookie that is



548 A. Peñalver et al.

Fig. 2. Actions and Events interaction scheme.

used in subsequent requests in order to register a client. The client is validated
by using a user name and a password. Then a session cookie is also generated and
sent in order to link application and client. At the server side, each application
is also provided with an identification cookie, which is sent to the framework in
every new message.

Figure 2 shows the action/ event communication process for an ad-hoc draw-
ing application we have developed to test the framework. The application is a
standard drawing application with different sub-interfaces: canvas, color palette,
etc. that can be distributed among different clients. The left column shows inter-
action between the application and the framework. On the right side we can see
interaction between the framework and one client. Both, application and client
send “pull” messages to check if there is any pending message from the frame-
work. First, the client sends an action message with a “color change request”.
The message is sent to the framework, encapsulated in XML format, with the
color selected by the user. Then the framework receives the command and redi-
rect it to the application.



A Framework for Distributing and Migrating the User Interface in Web Apps 549

Fig. 3. DPictionary. Interface distribution options for the cartoonist role.

The Java API middleware at server-side processes the message and triggers
the events that are also encapsulated in XML format, and then sent to the
framework that forwards it to all the clients that selected the color palette sub-
interface. The message is received by the Javascript middleware API at client
side and then the UI is changed properly with the new current color in the
palette. In this context, when a user selects a color in the color palette, all the
clients will paint with that color in advance.

The framework stores events and actions in a FIFO queue. Although the
figure model is a simplification (one client and one application), when multiple
clients are collaborating, the framework has to forward event messages over
multiple pull requests. Consequently, the framework needs a message queue to
store and control the flow, letting applications and clients to retrieve messages at
their own rate. When a new client logs into the system, all the application events
stored in the queue are sent to the device, so that the initial state for the new
client is just the same that the state of the rest of clients whose sessions began
before. This way, our framework supports the concept of “Migratory” interface,
as users do not need to restart their applications for each device change and they
are migrated seamlessly across devices.

3 DPICTIONARY: A Graphic Distributed Interface

In order to test the performance and functionality of our proposal, some applica-
tions have been developed and their interfaces distributed using the framework
described in the previous sections. Here we provide a distributed Pictionary,
based on HTML5, using some of the advanced features of this new version of



550 A. Peñalver et al.

the standard, for managing graphical interfaces (the new <canvas> tag and
Javascript). We have developed a DUI version of the well-known Pictionary game
with very similar functionality than the original one. The application is multi-
user, allows distribution and migration and provides two user roles: cartoonist
and player. It consists of four different services with several sub-interfaces, three
for the cartoonist and one for the players:

– Canvas: The cartoonist can draw on it, but it is also used as a viewer for the
rest of users. It also includes a text box containing a word representing what
the cartoonist has to draw.

– Palette: This is a toolbar with some drawing tools that are distributed
together: pencils, erasers, thickness, objects, colors, etc.

– Players panel (Cartoonist): Includes the list of players and the answers. The
cartoonist can select a player as a winner and the game ends.

– Players panel (Player): This is the only interface available to the player role.
It includes the canvas (a read only version), the current score label, a text
box to write the answer and the list of answers of all the players (like the
cartoonist’s one).

Figure 3 shows the interface for the cartoonist role with the canvas, the toolbar
and the players panel. They can be displayed together of distributed between
different devices. For instance, the tool palette could be displayed on a smart-
phone, the canvas on a tablet and the players panel on a PC. Although the
player interface could be distributed equally, we provide all the elements of the
interface together.

DPictionary implements several actions that user can perform: “Draw”,
“Erase”, “Erase All”, “Change Object”, “Change Thickness” , “Change Color”,
“New cartoon”, “Winner”, “Answer”, “New player”. Each action has its own
XML schema grammar in order to specify all the required parameters so that
the application can perform the action. All of them use the <action> tag with
the “name” attribute. Although the current implementation already has several
actions, it would be very easy to extend the application functionality extending
the schema and adding new commands accordingly.

In Fig. 4 an action/event diagram for the “Winner” action is displayed.
The cartoonist selects player two as winner of the current game and a new
action named “scorePoints” is sent to the framework. The message includes the
winner’s name. The framework processes the message, adds 30 points to the
“pointsPlayer” XML tag, and then a new event is sent back to the players. Each
player receives the same message, but only the winner adds the new points to
her/his score. As the framework stores in a queue all the actions and events
raised since the beginning of an interactive session, if a user init a session in a
different device, the state is automatically migrated to the new device and the
user can keep playing as he did in the previous device. The user can continue
the interaction from the same point where it was left, without having to restart
from scratch.



A Framework for Distributing and Migrating the User Interface in Web Apps 551

Fig. 4. DPictionary action/event diagram with three clients: the cartoonist and two
players. The cartoonist select the winner and an action is sent to the framework. .

4 Conclusions and Further Work

In this paper we have proposed a framework that allows distributing user inter-
faces among heterogeneous client devices. Our proposal is based on a JAVA
servlet that manages registration of clients and applications and bi-directional
communication between them in a transparent way. The framework uses REST
model over classic HTTP connections, so the only requirement for a client to
establish an interactive session is an Internet browser supporting Javascript. The
framework supports any XML-based user interface description language and we
have provided an example based on an HTML5 graphical interface.



552 A. Peñalver et al.

Constraints related to the distribution process itself are defined through W3C
Schema grammars. After the DUI has been defined, an XML instance generator
algorithm generates a new XML instance (concrete DUI) in any markup-based
language, taking into account the constraints specified in the schema. The frame-
work allows device change with state preservation.

Our future work includes the definition of a metric that allows us to decide
the most suitable distribution scheme. This metric will require the use of device
profiles including the device features and the formal definition of the “optimal
distribution” concept. Thus, the distribution of the elements could be decided
automatically by the framework, depending on the device’s features.

Acknowledgments. This research is partially funded by the project 11859/2011 from
Bancaja-UMH of Miguel Hernández University of Elche.

References

1. Vanderdonckt, J.: Distributed user interfaces: how to distribute user interface ele-
ments across users, platforms, and environments. Proceedings of X International
Conference on Interaccion Persona-Ordenador (Interaccion 10) (2010)

2. Paterno, F.: User Interface design adaptation. In: Soegaard, M., Dam, R.F. (eds.)
The Encyclopedia of Human-Computer Interaction, 2nd Ed. The Interaction
Design Foundation, Aarhus. http://www.interaction-design.org/encyclopedia/
user interface design adaptation.html

3. Berti, S., Paternó, F., Santoro, C.: A taxonomy for migratory user interfaces. In:
Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS, vol. 3941, pp. 149–160.
Springer, Heidelberg (2006)

4. Peñalver, A., López-Esṕın, J., Gallud, J., Lazcorreta, E., Botella, F.: Distributed
user interfaces: specification of essential properties. In: Gallud, J.A., Tesoriero, R.,
Penichet, V.M. (eds.) Distributed User Interfaces. Human-Computer Interaction
Series, pp. 13–21. Springer, London (2011)

5. Gallud, J.A., Peñalver, A., López-Esṕın, J., Lazcorreta, E., Botella, F.,
Fardoun, H.M., Sebastián, G.: A proposal to validate the user’s goal in distrib-
uted user interfaces’. Int. J. Hum. Comput. Interact. 28, 700–708 (2012)

6. Peñalver, A., Botella, F., López-Esṕın, J., Gallud, J.: Defining distribution con-
straints in distributed user interfaces. J. Univers. Comput. Sci. 19, 831–850 (2013)

7. Grolaux, D., Van Roy, P., Vanderdonckt, J.: Migratable user interfaces: beyond
migratory interfaces. In: Mobiquitous, pp. 422–430. IEEE Computer Society (2004)

8. Han, R., Perret, V., Naghshineh, M.: WebSplitter: a unified XML framework for
multi-device collaborative Web browsing. In: Proceedings of the 2000 ACM Con-
ference on Computer Supported Cooperative Work, pp. 221–230 (2000)

9. Vandervelpen, C., Vanderhulst, G., Luyten, K., Coninx, K.: Light-weight distributed
web interfaces: preparing the web for heterogeneous environments. In: Lowe, D.G.,
Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 197–202. Springer, Heidelberg
(2005)

10. Frosini, L., Paterno, F.: User interface distribution in multi-device and multi-user
environments with dynamically migrating engines. In: Proceedings of Engineering
Interactive Computing Systems (EICS2014), Rome, Italy (2014)

http://www.interaction-design.org/encyclopedia/user_interface_design_adaptation.html
http://www.interaction-design.org/encyclopedia/user_interface_design_adaptation.html


A Framework for Distributing and Migrating the User Interface in Web Apps 553

11. Ghiani, G., Patern, F., Santoro, C.: Partial Web interface migration. In: Proceed-
ings of the International Conference on Advanced Visual Interfaces, Rome, Italy
(2010)

12. Bandelloni, R., Mori, G., Patern, F.: Dynamic generation of web migratory inter-
faces. In: Proceedings of the 7th International Conference on Human Computer
Interaction with Mobile Devices and Services, New York, NY, USA (2005)


	A Framework for Distributing and Migrating the User Interface in Web Apps
	1 Introduction and Related Work
	2 Architecture
	2.1 Communication Model
	2.2 Client Pull
	2.3 Distribution

	3 DPICTIONARY: A Graphic Distributed Interface
	4 Conclusions and Further Work
	References


