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Abstract. Increasingly, data streams are generated from a growing
number of small, cheap sensors that monitor, e.g., personal activities,
industrial facilities or the natural environment. In these settings, there
are often rapid changes in input-to-target relations and we are con-
cerned with tree-structured models that can rapidly adapt to these
changes. Based on our new algorithms accuracy and tracking behavior
is improved, which we demonstrate for a number of popular tree based-
classifiers with over state-of-the-art change detection using five data sets
and two different settings. The key novel idea is the representation of
record values as distributions rather than point-values in the stream set-
ting, covering a larger part of the instance space early on, and resulting
in an often smaller, more flexible classification model.

Keywords: Online decision tree learning · Uncertainty-aware data
streams · Classification · Concept change · Regularization

1 Introduction

Recent technological developments have immensely increased the data volume
and require new analytic techniques beyond ordinary batch learning. Streaming
data analysis is concerned with applications where the records are processed in
non stopping streams of information. Examples include the analysis of streams
of text, like in twitter, or the analysis of image streams like in flickr or the analy-
sis of video streams. Other applications include large scale remote monitoring of
environmental sensors and of industrial sensors where data rates can reach ter-
abytes per day. Also, streams are often be subject to gradual or sudden changes
in the relation between attributes (or input) and target variable, and algorithms
have to adapt to these changing conditions. A gradual change is termed concept
drift, a sudden change is called concept change. In this work, we will consider the
case of concept changes, more specifically changes in the conditional probabil-
ity P (y|x) of events y given measurements x [14]. Examples are changes caused
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by the transition from day to night, by changes in production phases, by the
introduction of new features or other sudden changes in the environment.

For these scenarios, online learners for classification have been developed that
should meet the following criteria: Learning should operate iteratively, i.e. build
a classification model incrementally without needing all the data before training
starts. It should use every record in a single pass, i.e. look at every example only
once. It should use finite resources, i.e. the algorithm’s training time and space
requirements should not grow with the data size. It should exhibit any-time
readiness, i.e. provide the best possible classification model at any time during
execution. Hoeffding Tree-Based classifiers possess most of these desired proper-
ties, and remain fairly easy to implement and analyze, and have been shown to
be robust and highly scalable. In this work, we aim to improve classification on
data streams that undergo concept changes to which the classifier has to react
promptly.

The Hoeffding Tree is a classifier that deals with streaming data [7], also
known as VFDT (Very Fast Decision Tree), upon which many state-of-the-art
Online-Learners build, e.g. FIMTDD [14], CVFDT [13], VFDTc [9], iOVFDT
[11], Hoeffding Option Trees [21]. VFDT and its derivatives incrementally build
a decision tree and prune parts again as necessary without looking at any record
more than once. Splits in the tree are introduced when sufficient examples have
been seen to make a confident decision. This decision is guided by statistical
bounds, e.g. the eponymous Hoeffding bound, that need only sufficient statistics
of fixed size stored in the tree. The nature of these statistics varies but typically
allows to calculate the best split on promising attributes. Different pruning cri-
teria have been added to the basic algorithm to detect changes in the underlying
data stream and adapt the tree accordingly. If the growth of the tree is suit-
ably checked to avoid unlimited growth – and eventual overfitting –, the whole
classifier is therefore in size independent of the size of the data stream.

More recently, methods have been developed that deal with inherent uncer-
tainty in the data that stems e.g. from measurement errors, processing errors,
technical limitations or natural fluctuations. The Uncertainty-Aware approach
does not assume recorded attribute values as given, but recognizes that attribute
values are representative of an underlying probability distribution. Such a situ-
ation might also arise if there are multiple measurements, say from redundant
sensors in the same environment, without practical means to pick one measure-
ment over the other if they differ. This paper shows how an Uncertainty-Aware
handling of the data significantly improves accuracy and any-time-readiness in
Online-Classification of changing dynamic streams.

The remainder of the paper is organized as follows. Section 2 reviews related
work. Sections 3 and 4 introduce our algorithm in the context of existing decision
tree algorithms. Section 5 describes the data sets, we used in our experiments,
and shows the success of our algorithm compared to popular Online-Classifiers.
Finally, Sect. 6 discusses the conclusions we reached based on these experiments
and outlines directions for future research.
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2 Related Work

In the last decade, there has been substantial research in the areas of stream
processing and uncertain data. Uncertainty-aware research covers topics from
clustering uncertain data [6,18,20] or outlier detection [1] to querying proba-
bilistic databases [17]. Classification with tree models has been done by e.g. [25].
The common idea is that the expected distance between two objects is calcu-
lated with probability distributions of these objects. This work deals exclusively
with static and stationary data but we borrow concepts from the research into
uncertainty and apply them to data where uncertainty is not apparent but used
as a tool to essentially extract more information from the data.

The earliest stream classification with iterative tree models has been developed
by [7] and built upon by [9,11,13,21]. Reference [22] used an uncertainty-aware
approach to improve classification models on static data, [19] used a similar app-
roach for online stream-classification. We improve upon their work and extend the
analysis to cases with time-changing data streams. To the best of our knowledge,
we present the first analysis of an Uncertainty-aware classifier for data streams
with concept change.

3 Online Trees for Changing Data

Our algorithm design is based on the basic Hoeffding Tree algorithm, but is in
principal adaptable to any tree-like incremental learner. We introduce an ele-
mentary notation in the following section and review basic concepts of Online
Decision Trees. We then present our approach PHT (Probabilistic Hoeffding
Tree) as extension of those trees and outline how these changes can be imple-
mented in an online fashion in the next section.

3.1 Online Decision Trees

Let Ai = (ai,1, . . . , ai,k) be an instance of the data stream with k single-valued
attributes where the index i notes the position in the data stream. Like all
decision trees, Hoeffding Trees consist of nodes and edges (V,E) where the nodes
contain tests to decide which edge to follow towards a leave of the tree. To build
a Hoeffding tree, during the training phase leave nodes are recursively replaced
with decision nodes. The leave nodes store statistics, decision nodes contain a
split attribute. Each instance is assigned to one leaf node v after a series of tests
that determine the path from the root down. These tests select the appropriate
path based on the relevant split attribute of the instance in each node along
the path. Thereby they determine the one branch Ai falls into and the statistics
stored in leaf v are updated with the information from Ai. In some versions
statistics in the nodes on the path to v are also updated. A decision to grow or
prune the tree is then based on these updated statistics. They are also crucial to
detect changes in the data stream and adapt the tree via pruning and regrowth
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Algorithm 1. Basic Online Tree Induction
Input: data stream s yielding records Ai

Output: decision tree t
1: procedure TreeInduction
2: t ← empty leaf
3: while Ai ← next from(s) do
4: v ← get leaf(Ai)
5: update(v,Ai)
6: test and split(v)
7: prune(t)
8: end while
9: end procedure

to the changes [2]. The pseudo code to build an incremental tree is given in
Algorithm 1.

Note that we will only explicitly consider two-way splits for numeric
attributes. More than two branches are possible, and common for categorical
attributes, but the case for multi-way splits and discrete distributions follows
easily. The tree can at any time be trained further with more instances from the
stream and conversely prediction with the induced tree is possible at any point
in the lifetime of the tree. Ordinarily, the prediction for a record Ai is based on
whatever model is stored in the leaf to which Ai is assigned. In the simplest case
this might be a single class-label or numeric value, more sophisticated versions
store specific classification or regression models in the leaves.

4 Probabilistic Hoeffding Trees

The main idea in our approach is to treat records not as sets of exactly mea-
sured single values but to treat the attributes as a probability density function
(PDF) centered around the recorded value instead. We call the resulting class
of Hoeffding-tree algorithms PHT (Probabilistic Hoeffding Trees).

4.1 Probabilistic Records for Decision Trees

The modifications compared to the base algorithm are again given as pseudo
code in Algorithm 2.

We replace the single value of aij with a PDF p(aij) centered around aij . For
numeric attributes a uniform or Gaussian distribution are standard choices, for
categorical attributes any discrete distribution specified over the possible values
of aij is acceptable [5,23]. The training process is then adapted in the following
way: We assume again an initial weight of 1 for every instance Ai. For every
test Ai encounters in a node, e.g. aij < tm, the integrals wl =

∫ tm

−∞p(aij) daij

and wr =
∫ ∞

tm
p(aij) daij for the left and right branch are calculated. wl and wr

simply determine, how much of the probability mass of the attribute falls in the
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left and right branch respectively. The values wl and wr are then interpreted
as the weight of the branch. Ai follows every branch where w is larger than
0 simultaneously and may reach more than one leaf of the tree (cf. line 4 of
Algorithm 2). The relative weight of a leaf v is then wAi,v =

∏
m∈M wI,m, the

product of all weights along the path to leaf v branching at nodes m, where
I ∈ {l, r} determines the branch taken at node m. The statistics in these leaves
are then updated with the information from Ai, as in the original case, but
down-weighted by wAi,m (cf. line 6 of Algorithm 2). The total weight of v still
sums to 1 but it promotes growth in more than a single leaf.

Algorithm 2. Incremental Uncertain Tree Induction
Input: data stream s yielding records Ai

Output: decision tree t
1: procedure ProbabilisticTreeInduction
2: t ← empty leaf
3: while Ai ← next from(s) do
4: L ← get leaves(Ai)
5: for all v ∈ L do
6: update(v,Ai, rel weight(Ai, v))
7: test and split(v)
8: end for
9: prune(t)

10: end while
11: end procedure

We treat instances for prediction the same way as in training, see the mod-
ifications to the prediction process in Algorithm 3. We do not need to change
the prediction model used in the tree, but we do not limit the prediction to one
of those models. Our algorithm filters one record down to several leaves instead,
and averages the predictions from every leaf weighted by wAi,v.

The voting (cf. line 9 in Algorithm 3) has the advantage of giving a distrib-
ution for the prediction from which a confidence value can be inferred, even if
the base algorithm does not provide one.

In the long run in the stream setting, using a symmetric distribution and
using point-values will – assuming a stationary stream – in theory converge. The
advantages lie in more independence towards the order of the instances, greater
flexibility during training and prediction and – as experiments will show – in the
speed of the convergence towards the expected optimal tree.

4.2 Online Approximation of Density Functions

The PDFs for the attribute values have always been chosen as uniform distri-
bution with mean equal to the original attribute point value and a standard
deviation proportional to (b − a) × w. Here a and b are the minimum and maxi-
mum values for the attribute that actually appear in the data set and w controls
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Algorithm 3. ProbabilisticTreePrediction
Input: tree t, instance Ai

Output: prediction x̃
1: procedure ProbabilisticTreePrediction
2: L ← get leaves(Ai)
3: V = ∅
4: for all v ∈ L do
5: vote ← predict(Ai, v)
6: weight ← rel weight(Ai, v)
7: V = V ∪ (vote, weight)
8: end for
9: x̃ ← average(V )

10: return x̃
11: end procedure

the width of the distribution and the ‘fuzzines’ of the attribute value. For the
categorical attributes, the PDF has been constructed in such a way that 1 − w
of the probability mass is placed onto the original value and the rest spread uni-
formly on the possible attribute values. For the synthetic data set (with numer-
ical attributes only), a and b have been chosen so that P (xa ∈ [a, b]) ≥ 0.997 or
approximately within three standard deviations of the mean.

The notation as range of values is closely related to, but here more intu-
itive, than the standard deviation. If the attribute range is unknown, it can
be estimated from the stream for example with a number of algorithms that
incrementally calculate the variance of the attribute, e.g. [16]. The ranges follow
easily from the variance, for example for uniform distributions σ2 = (b−a)2

12 .
Representing the PDF p(aij) is simple if the attribute j is categorical. Then

we need only the probability for every possible value of j which has a finite
and in practice usually small domain. In principal, numeric attributes could be
discretized in a number of bins and treated equivalently [19]. This, however,
discards the ordinality of the attribute values, forces multi-way splits and is
necessarily low grained. In a simple, non-analytical solution, which has been
used for example in [25], the PDF can be represented numerically by storing a
set of s sample points drawn from p(aij) which approximates any function with
a discrete distribution. Conveniently, this works equally well for numeric and
categorical attributes and for all types of distributions. We chose s = 100 which
provided a balance between approximation quality and performance in our tests.

5 Experiments

To test our algorithm we used 4 large data sets collected from sensor readings or
network streams and one synthetic data set. The real data sets are all available
at the UCI machine learning repository and range from 5 k to 580 k in size.
While these are sufficient to gauge the algorithm behavior, we also use synthetic
data to test performance in longer runs. For those experiments we used instance
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streams of 5 million instances. All test runs have been performed on a PC with
an Intel Xeon 1.80 GHz CPU, running Linux with a 2.6.32 x86 64 kernel, and
with memory limitations set to 64 MB.

5.1 Implementation

We adapted three different tree induction algorithm to PHT: Adaptive Hoeffding
Trees [2], iOVFDT [11] and Hoeffding Option Trees [21] to HoeffdingAdaptive-
TreePHT, iOVFDTPHT and HoeffdingOptionTreePHT. The implementation
was done in the MOA framework [3], where reference implementations of the
aforementioned algorithms exist and the algorithms could easily be extended.

For the evaluation of the experiments, we recorded accuracy, resulting tree
size and training time measured in an interleaved test-then-train setting where
every instance is first used for blind testing, and then to train the tree [2]. The
standard deviation for each measure is computed over 10 repeated experiments
with shuffled data sets or different initialization parameters for the synthetic
data set. For the accuracy we use a fading average as described in [10] with a
fading factor α of 0.99. The fading average Mα(i) is defined as

Mα(i) = Sα(i)
Nα(i) (1)

Sα(i) = Ii + α × Sα(i − 1); Sα(1) = I1 (2)
Nα(i) = 1 + α × Nα(i − 1); Nα(1) = 1, (3)

where Sα is the fading sum of observations, Nα the fading increment and I = 1
for a correct prediction, 0 otherwise.

We report tree size in number of nodes rather than model size in bytes. The
consumed memory depends not only on the implementation but also on the
number and types of attributes in a data set. The number of nodes on the other
hand allows an easier comparison of different tree models. We test our algorithms
first on the static data sets to establish their performance and advance to time
changing data streams in the following sections.

5.2 Data Sets

Robot Movement Data (RM). The RM data set is available since 2010.
It contains 24 numeric attributes recorded from the a robot’s sensors and four
distinct classes, which determine the robot’s course along a wall. The data set
contains 5,456 instances [8].

Person Activity Analysis (PA). The PA data set is available since 2010. It
recorded the instances collected from four sensors placed on both ankles, belt and
chest of five people. Each instance has five numeric attributes, two categorical
attributes and one of eleven classes. The classes distinguish human activities,
e.g. walking, standing, falling, etc. The data set contains 164,860 instances [15].
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Network Attack Detection (NA). The NA data set has been published
for the KDD CUP 1999. It describes network connections and is used to classify
normal and abnormal connections, i.e. attacks . It contains 34 numeric and seven
categorical attributes like duration, error rate and protocol type. The connection
types are distinguished in 23 distinct classes. We use 10 % of the full data with
494,021 instances [24].

Cover Type (CT). The CT data set is available since 1999. It collects surveil-
lance sensor data of forestland. Each instance provides 42 categorical attributes
and eleven numeric attributes like soil type, elevation, and hill shade. It distin-
guishes cover types in seven classes. The data set contains 581,012 instances [4].

Synthetic RBF Stream (RBF). This type of synthetic stream uses a radial
basis function to generate arbitrarily large data sets. Using different initialization
parameters we can create different streams, each of arbitrary length. The streams
for the experiments were initiated with fixed seeds to ensure reproducibility. We
set the parameters to use 50 base functions that generate 15 attributes and 4
classes and limited stream size to five million instances.

5.3 Results on Static Data

We implemented as PHT variants the following classifiers: HoeffdingAdaptive
PHT, iOVFDTPHT and HoeffdingOptionPHT. We tested these on the five
large data sets described in Sect. 5.2 and varied the values for the width w
of the assumed distribution from 0 to 0.5. w = 0 means no uncertainty and is
equivalent to the base classifiers our algorithms build upon. In general, we see an
improvement for w ≤ 0.1, with small to moderate (3.3 %) improvement of accu-
racy. Accuracy drops for larger values of w that would imply major uncertainty
and are not reported.

Taking the best performing setting for each classifier and data set, we see
an improvement in 10 out if 15 cases (each significant with p < 0.1, in a one
sided t-test) in Table 1. Figure 1 shows the final accuracy for the smallest (RM)
and the largest (CT) UCI data set. The fading accuracy used gives less weight
to the earlier test examples, giving an overall accuracy that favors the recent
predictions.

Figure 2 shows the accuracy during the lifetime of the data stream of the RBF
data set. We used the RBF data set to analyze the behavior of the algorithms
on much longer lived data streams and see improvement over the base classifiers,
especially for the Hoeffding Adaptive Tree.

The tree size on average stays within two nodes of the base classifier, with
a few exceptions on the larger data sets. There is no clear correlation between
changes in model size and improved performance, with five of the eight improved
models being smaller, three larger than the base classifier. Tree size does, on the
other hand, decrease slightly with increasing values of w since a flatter distrib-
ution makes splits in the tree less likely.
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Fig. 1. Comparison of different flavors of Hoeffding-Tree based classifiers (iOVFDT-
PHT (iOVFDTPHT), HoeffdingOptionTreePHT (HOTPHT), HoeffdingAdaptiveTree
(HATPHT)) on large UCI data sets. Shown here are only the smallest and the largest
of the used data sets. UA gives the width-parameter of the PDF replacing the attribute
values. Accuracy is the accuracy with a fading factor of 99%. The standard deviation
is calculated from 10 shuffled runs.

The most interesting observation here is, how even very small values for w
can improve the classification without major cost to the model. Running time
for the best performing models with w �= 0 stays within a factor of 2 to the
run time of the base classifier. Our algorithms (with w ≤ 10%) hold equal to or
considerably outperform the base algorithms.

5.4 Significant Improvements During Concept Change

While stationary streams are much easier to deal with, we expect both grad-
ual and sudden changes in real life streams. We therefore especially studied the
effects of concept change, i.e. changes in the conditional probability of the classes
given attribute vectors, and the improvements our algorithm achieves in such a
setting. This occurs if an observed stream/the underlying system undergoes dif-
ferent phases in its lifetime like seasonal changes, day-night cycles in ecological
systems, or different production phases in industrial machinery. Normal behavior
might look completely different before and after these changes and the classifi-
cation algorithm has to adapt accordingly. While HoeffdingAdaptiveTrees and
HoeffdingOptionTrees have the capability to detect changes and adapt, iOVFDT
does not have a mechanism to adapt to dynamic streams and is not included in
this section.
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Fig. 2. Evaluation on RBF stream. The plots shows the accuracy over a the lifetime
of a stream with 5 million instances exemplary for the Hoeffding Adaptive Trees and
Hoeffding Option Trees. The vertical axis is enlarged from the 20 %-mark on.

To evaluate the effect of changes for the other classifiers, we streamed each
of the original UCI data sets in the stream five times in a row, but at each
repetition switched the order of the numeric attributes as suggested by e.g.
[12,26,27]. This permutation of attributes induces the desired concept changes
and at the same time keeps the integrity of the data set compared to, say,
introducing bias or noise into the data. In the RBF data set we simulated such
changes by changing the parameters of the generating function. Figure 3 shows
the classification accuracy during the lifetime of a RBF-stream with concept
changes every 200.000 records. To compare the accuracy over the total lifetime,
we averaged the accuracy over 100 sample points during the stream life time and
report the results in Table 2. After every concept change, all classifiers fall back
in accuracy and recover gradually, but our algorithms recovers at a much faster
rate and in this setting of changing streams significantly (p < 0.1 in a one-sided
t-test for the best-performing setting) outperforms the base classifiers. Figure 3
show how accuracy behaves before and after the concept change. For the smaller
data set shown in Fig. 3(c) the break-down between change is less pronounced
since the classifier has not reached a stable plateau before the concept change
as in the longer-lived streams. Our algorithm improves the results of the base
classifiers by up to 16 % with an average improvement of 3.2 %. We improve over
HoeffdingOptionTree in 3 out of 5 data sets and over HoeffdingAdaptiveTree in
5 out of five data sets with no significant increase in model size.
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Table 1. Tree size of final tree and classification accuracy on 4 UCI data sets with dif-
ferent width-options for the attribute PDFs. UA00 is equivalent to the base algorithm,
UAmin to a PDF with 0.1 % width of the attribute range, UA05 to a width of 5 % of
the attribute range, etc.

RM data set

Accuracy in % Tree size in #nodes

HOTPHT HATPHT iOVFDTPHT HOTPHT HATPHT iOVFDTPHT

UA00 56.81 ± 4.83 50.49 ± 1.54 79.68 ± 2.61 0.60 ± 1.26 0.00 ± 0.00 5.90 ± 0.57

UAmin 56.58 ± 4.81 54.54 ± 1.18 79.95 ± 2.67 0.60 ± 1.26 0.00 ± 0.00 6.10 ± 0.74

UA05 54.84 ± 1.45 54.38 ± 1.11 76.21 ± 2.12 0.20 ± 0.63 0.00 ± 0.00 6.90 ± 0.88

UA10 54.30 ± 1.30 53.67 ±1.19 72.90 ± 1.73 0.40 ± 0.84 0.00 ± 0.00 6.80 ± 0.63

PA data set

Accuracy in % Tree size in #nodes

UA00 50.12 ± 0.29 46.84 ± 0.15 39.43 ± 0.22 3.30 ± 0.48 4.00 ± 0.00 3.80 ± 0.42

UAmin 50.21 ± 0.28 48.10 ± 0.44 39.35 ± 0.34 3.20 ± 0.42 3.20 ± 0.42 3.90 ± 0.32

UA05 49.80 ± 0.36 47.90 ± 0.53 39.22 ± 0.31 3.10 ± 0.32 3.40 ± 0.52 3.90 ± 0.32

UA10 48.75 ± 0.21 47.19 ± 0.66 38.40 ± 0.43 3.00 ± 0.00 3.10 ± 0.57 3.70 ± 0.48

NA data set

Accuracy in % Tree size in #nodes

UA00 99.70 ± 0.04 98.34 ± 0.02 98.89 ± 0.17 4.60 ± 1.26 2.10 ± 0.32 3.80 ± 0.92

UAmin 99.38 ± 0.17 99.08 ± 0.23 98.79 ± 0.15 3.00 ± 0.00 3.70 ± 0.48 4.30 ± 0.67

UA05 99.35 ± 0.17 99.11 ± 0.20 98.84 ± 0.15 3.20 ± 0.42 4.20 ± 0.42 3.60 ± 0.70

UA10 99.04 ± 0.15 98.75 ± 0.38 98.41 ± 0.22 6.50 ± 1.18 3.70 ± 0.67 5.20 ± 0.42

CT data set

Accuracy in % Tree size in #nodes

UA00 71.04 ± 0.30 69.65 ± 0.15 68.61 ± 0.49 10.20 ± 1.40 8.33 ± 1.12 6.30 ± 1.16

UAmin 71.11 ± 0.32 70.11 ± 0.24 68.90 ± 0.47 10.00 ± 1.70 13.00 ± 1.94 7.30 ± 0.82

UA05 70.04 ± 0.45 70.42 ± 0.18 68.91 ± 0.68 8.90 ± 0.74 9.56 ± 0.73 7.60 ± 1.07

UA10 68.87 ± 0.30 70.35 ± 0.18 67.98 ± 0.58 7.80 ± 0.63 9.78 ± 1.39 7.60 ± 0.84

RBF data set

Accuracy in % Tree size in #nodes

UA00 91.73 ± 1.21 91.72 ± 0.04 88.68 ± 5.21 22.00 ± 7.07 27.00 ± 0.00 9.50 ± 0.71

UAmin 92.14 ± 1.70 93.33 ± 0.02 83.75 ± 4.55 22.00 ± 2.83 26.00 ± 0.00 10.00 ± 0.00

UA05 92.89 ± 1.49 92.52 ± 0.03 84.29 ± 0.42 23.50 ± 12.02 32.00 ± 0.00 9.50 ± 0.71

UA10 92.45 ± 1.86 90.85 ± 0.07 79.62 ± 0.08 21.00 ± 7.07 26.00 ± 0.00 8.50 ± 0.71
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Fig. 3. Effect of concept changes simulated with RBF stream (Figures (a) and (b))
and UCI data sets (figures (c) and (d)). UA gives the width-parameter of the PDF
replacing the attribute values. Accuracy is the accuracy with a fading factor of 99 %.
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Table 2. Accuracy and model size on the data sets with 4 induced concept changes.
UA00 is equivalent to the base algorithm, UAmin to a PDF 0.1 % width of the attribute
range, UA05 to a width of 5 % of the attribute range, etc. Accuracy is the average of the
accuracies at 100 sample points during the stream existence. Model size is the number
of nodes in the final tree structure.

RM data set × 5

Accuracy in % Tree size in #nodes

HOTPHT HATPHT HOTPHT HATPHT

UA00 65.43 ± 4.07 58.65 ± 0.97 8.30 ± 1.06 5.70 ± 0.67

UAmin 65.09 ± 4.23 67.16 ± 1.73 8.50 ± 0.97 5.40 ± 1.65

UA05 60.42 ± 0.91 62.23 ± 3.78 6.70 ± 0.82 8.70 ± 2.58

UA10 58.31 ± 0.61 63.62 ± 3.55 6.70 ± 0.67 6.50 ± 2.55

PA data set × 5

Accuracy in % Tree size in #nodes

UA00 44.66 ± 0.89 43.11 ± 0.48 1.00 ± 0.00 1.10 ± 0.32

UAmin 44.66 ± 0.91 45.22 ± 0.33 1.00 ± 0.00 1.40 ± 0.52

UA05 44.34 ± 0.94 45.05 ± 0.32 1.10 ± 0.32 1.20 ± 0.42

UA10 43.81 ± 0.94 44.60 ± 0.27 1.10 ± 0.32 1.20 ± 0.42

NA data set × 5

Accuracy in % Tree size in #nodes

UA00 97.65 ± 0.58 97.61 ± 0.21 3.90 ± 0.57 2.70 ± 0.48

UAmin 97.72 ± 0.56 98.31 ± 0.51 3.00 ± 0.00 1.00 ± 0.00

UA05 97.97 ± 0.46 98.63 ± 0.28 3.60 ± 0.52 1.00 ± 0.00

UA10 97.99 ± 0.45 98.77 ± 0.27 3.40 ± 0.52 1.00 ± 0.00

CT data set × 5

UA00 Accuracy in % Tree size in #nodes

UA00 63.81 ± 1.12 65.81 ± 0.50 8.90 ± 0.57 2.50 ± 0.53

UAmin 63.67 ± 1.10 67.45 ± 0.46 9.00 ± 0.67 3.20 ± 0.42

UA05 63.59 ± 0.95 67.23 ± 0.32 8.60 ± 1.17 3.00 ± 0.00

UA10 64.41 ± 1.04 67.05 ± 0.52 9.10 ± 1.20 2.90 ± 0.32

RBF data set × 5

Accuracy in % Tree size in #nodes

UA00 84.70 ± 1.16 73.52 ± 2.40 12.50 ± 0.58 9.40 ± 2.70

UAmin 85.62 ± 0.69 85.99 ± 0.37 13.25 ± 1.26 9.80 ± 0.84

UA05 87.15 ± 0.41 88.61 ± 0.70 13.50 ± 1.00 10.00 ± 0.00

UA10 87.18 ± 0.98 89.71 ± 0.70 13.00 ± 0.82 10.20 ± 0.45
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6 Conclusion and Further Work

In this paper we have shown a generic approach that extends stream classification
models to incorporate the concept of uncertain data. We tested this approach
on several classifiers and data sets and achieved significantly improved accuracy
with comparable model size and run time across all data sets and classifiers we
examined. In the case of data sets with concept change we improve accuracy by
up to 16 % with 3.2 % on average. Our approach reacts swiftly to changing data
streams which makes it especially suited to environments where the concept
generating the streams changes periodically, as is the case in many industrial
or ecological applications. Non-synthetic data where the data quality is quanti-
fied, i.e. the actual uncertainty of measured values is known appears not to be
available at the moment. If such data sets become accessible, we expect much
interesting results if we could substitute empirical values for the idealized PDFs.
Also, we believe that the approach of uncertainty-aware data can be broadened
to other types of algorithms, not limited to classification or tree-like prediction
models.
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