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Abstract. In this paper, a new method is presented to use the epipolar
constraint for the estimations of optical flows. We derive the necessary
formulation to add the epipolar constraint in terms of optical flow com-
ponents and force the components to transform points from the first
frame to the next consecutive frame such that the points lie on their cor-
respondent epipolar lines. In this work, no smoothness term is utilized
and the performance of the proposed method is evaluated based only
on data terms. We conducted different evaluations using two different
point matching methods (SIFT and Lucas-Kanade) and used them in
two different fundamental matrix estimation methods required to calcu-
late epipolar line coefficients. It is demonstrated that epipolar constraint
yields noticeable improvements almost in all of the cases.

1 Introduction

Optical flow is defined as the apparent motion of pixels between two consecutive
frames. Thus, a flow field describes the dynamics of a scene and involves two
independent motions; the ego-motion of the camera and motions of objects.
In literature, many differential optical flow methods, which are mainly dependent
on the brightness constancy assumption have been proposed. In these methods,
it is assumed that the intensities of correspondent pixels do not change if objects
or cameras move. Unfortunately, not every object motion yields changes in gray
values and not every changes in gray values are generated by body motion.
Challenging outdoor scenes with poorly textured regions, illumination changes,
shadows, reflections, glare, and the inherent noise of the camera image may yield
gray value changes while the depicted object remains stationary. Especially in
poor illumination conditions, the number of photons collected by a pixel, may
vary over time.

Recently, many methods have presented different optical flow models to tackle
with the problem of illumination changes. A robust energy is proposed in [1], which
take into account multiplicative and additive illumination factors. Nevertheless,
dealing with motion estimations and illumination variations in one energy func-
tion gives rise to a more complex optimization problem. Additionally, the accuracy
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of the optical flow estimation is adversely affected, if the assumption of illumina-
tion factors is not accurate. Moreover, [2] proposed a photometric invariant of the
dichromatic reflection model. This model is only applicable to color images with
brightness variations. Furthermore, [3] proposed an illumination-invariant total
variation with L1 norm (TV-L1) optical flow model by replacing the data term
proposed in [4] with the Hamming distance of two census transform signatures.
Census signatures encode local neighborhood intensity variations, which are very
sensitive to non-monotonic illumination variation and random noise. In addition,
the census transform discards most of the information casting from neighbors,
and cannot distinguish between dark and bright regions in a neighborhood which
called saturated center.

In addition, the normalized cross correlation was utilized in [5] as a data
term and led to increasing the robustness of the estimated optical flow. In turn,
[6] tackles the problem of poorly textured regions, occlusions and small scale
image structures by incorporating a low level image segmentation process that
has been used in a non-local total variational regularization term in a unified
variational framework. In addition, an optical flow estimation method based on
the zero-mean normalized cross-correlation transform was introduced in [7].

Dense descriptors such as census [3], histogram of oriented gradient (HOG) [8]
and local directional pattern (LDP) [9] and [10] have been incorporated directly
into the classical energy minimization framework in order to gain robustness
for the estimated optical flow in real-world vision systems. Nevertheless, the
algorithms fail in the case of poorly textured regions.

In case that optical flows are mostly induced by camera motion, i.e. the
objects are stationary, the epipolar geometry can be used to obtain one more
extra constraint for the flow of pixels. In this regard, the fundamental matrix
related to the motion of the camera between two frames is firstly estimated;
consequently, given each point in the first frame, the place of the correspondent
point in the next frame will be constrained over a line known as the epipolar line.
Fundamental matrices can be estimated using the 8-point [11] or the 7-point [12]
methods. In [13], by searching over epipolar lines and using a semi-global block
matching technique, the correspondent points are found. The method has two
main shortcomings: block matching methods are slow and they use calibration
information and also an approximation for the rotation matrix which is valid for
rotation angles of less than 10°. In this paper, we introduce a differential method
which works with uncalibrated cameras and does not make any assumptions
concerning rotation matrices. Our contribution in this paper is to utilize epipolar
constraint in a differential multi resolution scheme to gain much more accurate
optical flow estimations even for low textured scenes.

The paper is organized as follows: in Sect. 2, the sparse optical flow calculation
based on brightness consistency is reviewed, while the optical flow model is
discussed in Sect. 3. The inclusion of the epipolar constraint in the calculation
of optical flow is discussed in Sect.4. Evaluation of the proposed method is
conducted in Sect. 5. Section 6 concludes this paper.
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2 Brightness Constancy Assumption (BCA)

Most sub-pixel optical flow estimation are based on the (linearized) brightness
constraint, which assumes that the intensity of a pixel stays constant if objects
or cameras move. Given two gray level images such as I(z,y) and I'(z,y), we
are interested to map each pixel, namely (x,y), in the image I to a pixel, namely
(2',y'), in the image I’ using a translation vector such as [u v]T. The brightness
constraint states that:

T =1 + oy (1)

Yi =y + i (2)

such that I(z,y) = I'(2’,y’). In a differential optical flow calculation, the inten-
sity consistency constraint can be approximated as follows:

Im(x,y)u—l—fy(:v,y)v = _It(x7y) (3)

where I,(z,y) = 250 1, (2, y) = 255520 and I(x,y) = I'(z,y) — I(x,y).

Nevertheless, the brightness constraint in Eq. 3 has one inherent problem: it
yields only one constraint to solve for two variables. It is well known that such
an under-determined equation system gives an infinite number of solutions. For
every fixed u a valid v can be found fulfilling the constraint and vice versa.

3 Optical Flow Model

Lucas-Kanade method [14] assumed a constant (or affine) optical flow field in a
small neighborhood of a pixel and calculate the flow based on the least square
method. Such a neighborhood typically consists of N = n x n pixels with n
smaller than 15. The brightness constraint is then evaluated with respect to
all pixels within this neighborhood window N. The brightness constraint will
usually not be perfectly fulfilled for all pixels as the assumption of equal flow
vectors within the window might be violated.

Assuming that the optical flow changes smoothly in a neighborhood or
remains constant in a small neighborhood, more equations in terms of w and
v can be obtained. Nevertheless, it is also necessary that the intensities of pixels
vary at least in two different directions, otherwise the equation system becomes
singular and will have infinite solutions. The singularities occur in low textured
images or for the pixels located at the edges (aperture problem). Typically,
the equation system is formed with more than two equations and it should be
solved using the least squared method. Consequently, weighting equations dif-
ferently yields different solutions. Thus, given a set of neighbor pixels such as
{(zs,y:)|i = 0..n}, the equation system will be:
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wy 0 0 L(x1,y1) Iy(xi,y1) wy 0 0 Ii(x1,1)
0 wo 0 I(z2,y2) Iy(z2,92) [u] 0 ws 0 I (22, y2)
: L0 : v : L0 :

0 wy | Le(zN,yn) Iy(zN, yN) 0 wy | [Le(zn,yn)

(4)
where (g, o) is the center point for which the optical flow should be calcu-
lated and (wy, wa, ..., wy) are the weight of each equation. The weights are also
assumed to be normalized: Zf\il w; = 1.

The computed flow vector is sub-pixel accurate. But due to the Taylor
approximation, the method is only valid for small displacement vectors. Larger
displacements are found by embedding the method into a pyramid approach,
solving for low frequency structures in low resolution images first and refining
the search on higher resolved images. While the maximum track length depends
on the image content, generally speaking, flow vectors with large displacements
are less likely to be found than those within few pixel displacements.

4 Epipolar Constraint

As stated before, Eq. 4 can be singular in low textured scenes, i.e., all equations
will be dependent. Nevertheless, if the optical flow field between two images is
mostly induced by the camera motion, another constraint known as the epipolar
constraint can be leveraged to calculate optical flow more robustly even for
low textured images. Given two matched points: (z,y) and (z',y’) between two
images captured at two different camera positions, the following equation holds:

a"Fp=0 (5)
where p = [z y 1]T, g = [/ ¥ 1]T and F is a 3 x 3 matrix known as the
fundamental matrix. The fundamental matrix can be determined using the 8-
point method [11] or the 7-point method [12]. As a result, given a point in the
image I the location of the correspondent point in the image I’ is constrained
with a line equation (epipolar line). In this regard, Eq.5 can be rewritten as

follows:
ax; +by; +¢c=0 (6)
where [a b c]T = %Fp, where 7 is a normalization factor such that a? + b? = 1.
By substituting Eq. 2 in Eq. 6, an equation in terms of u and v is obtained:
au~+bv = —ax —by —c (7)

Equation 7 gives one more linear equation of v and v which can be inserted in

Eq. 4:

w Lz (w0, y0) woly(zo,yo) —wi (o, yo)

: : [“} — : (8)
wnlx(xnayn) wnly(xnayn) v _wnlt(-rnvyn)
Wnt1G Wpt1b —wp41(azo + byo + ¢)
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Since Eq. 2 is based on a linear approximation, usually the optical flow is cal-
culated in an iterative context in which the optical flow is enhanced in each itera-
tion. Therefore, the equation system should be reformed based on the enhanced
variables, namely du* and 6vF. As a result, the optical flow components are
iteratively modified as follows:

uF = uF 4 suF (9)

P =k 4 soP (10)

In this case, to guarantee that the matched point in the second image lies on
the epipolar line, the following equation should hold in each iteration:

a(uf + 0u*) + b(v* 4 6vF) = —azy — by — ¢ (11)
Thus
aduf 4+ bov® = —a(zo + uF) — by + %) — ¢ (12)

Therefore, we obtain the following equation system in an iterative context:

wi Ly (zo,y0) wily(zo,Yo) —wy Iy (wo + uP, yo + %)
: : {W} _ :
wan<xn? yn) wn[y(xnv yn) ov —wp Iy (2, + ukv Yn + 'Uk)
W 410 Wn41b —wn1(a(zo +u*) + b(yo +v*) + )
(13)

So far we have focused on the calculation of small optical flow if the flows are
about a few pixels. Obviously, in case of a large displacement optical flows,
using the discussed method causes the iterations to get stuck in local minima.
An efficient well-known solution to this problem is the pyramid analysis in which
an optical flow is calculated step by step from coarse to fine levels. In this case,
using the epipolar line is a bit tricky since the line equations should be changed
depending on the level of the pyramid in which the optical flow is calculated.
Assuming the level of the pyramid denoted as [ < 1 and the scale factor of the
pyramid to be s, it can be verified that in the epipolar line equation ¢ will be
changed as follows:

o = sleg (14)

where ¢g = c.

The weight of the neighborhood pixels is chosen to follow a Gaussian distri-
bution. The weight of the epipolar constraint determines the importance of the
constraint. Experimentally, we found that the weight 1.5 gives the best results.

Figure 2 shows comparisons of the AEE and the AAE for each image from 194
training images and presents significant improvements of the accuracy for the
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new data term as shown in Fig. 3. However, in some scenarios such as sequence
150, the average errors based on epipolar constraint were larger for the epipolar
constraint. In such scenarios such as Fig. 4, the camera had obviously side trans-
lations and relatively high rotations which typically gave rise to high errors in the
estimation of the fundamental matrix for even a small amount of measurement
noise.

5 Experimental Results

For a quantitative evaluation, we tested our method on the well-known KITTI
dataset [15]. The dataset contained images with a resolution of (1240 x 376)
pixels. The KITTI dataset provided a very challenging testbed for the evalua-
tion of optical flow algorithms. Pixel displacements in the data set are generally
large, exceeding 250 pixels. Furthermore, the images exhibit less texture regions,
strongly varying lighting conditions, and many non-Lambertian surfaces, espe-
cially translucent windows and specular glass, and metal surfaces. Moreover, the

Table 1. Average end point and average angular error of the estimated optical flow
for the 194 training sequences from KITTI data set.

Average End Point Error| Average Angluar Error
Method AEE AAE
(3% 3)|(7Tx7)](15x 15)[(3 x 3)[(7 x 7)|(15 x 15)

Epipolar LK 7 Po?nts 17.74]10.01 7.83 9.93 | 7.93 7.29
Line LK 8 Pom‘Fs 19.11 | 11.55 9.33 13.42 | 11.24 | 10.47
Constraint SIFT 7 Points| 17.87 | 10.25 8.19 10.35 | 8.12 7.92

SIFT 8 Points| 18.65 | 11.15 9.01 12.43 | 10.51 9.84

Brightness Constraint 127.85| 29.69 14.56 36.88 | 17.23 | 11.07
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Fig. 1. The average error for each sequence of the 194 sequences of the KITTI training
data set. (a) AEE. (b) AAE.
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Fig. 2. The average error for each sequence of the 194 sequences of the KITTTI training
data set. (a) AEE. (b) AAE.

high speed of the forward motion creates large regions on the image boundaries
that move out of the field of view between frames, such that no correspondence
can be established.

For the estimation of optical flow, there are two concerns: which feature
matching method should be applied and which method for the estimation of
the fundamental matrix is more appropriate. Hence, we applied two different
feature matching methods: SIFT [16] and the pyramid Lucas-Kanade optical
flow [17] (both are implemented in openCV). Additionally, we applied 7-point
and 8-point methods in the context of a RANSAC algorithm for the fundamental
matrix estimation. For the 8-point method, we used 9 matched points and for
the 7-point method we used 8 matched points. A problem concerning the 7-point
method was that it might yield up to three distinct valid solutions, while only
one solution was needed. As eight points were used in the 7-point method, we
assumed that the solution should not deviate from the 8-point solution; therefore,
we selected the solution which was generated based on the smallest root of the
third order polynomial obtained in the 7-point method.
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Fig. 3. Comparison between ground truth (red) and estimated optical flow (green) for
sequence 24 of the KITTI training data set for some feature points. (a) Using epipolar
constraint based on 7-points method. (b) Using brightness constrain. (c) Estimated
epipolar lines (Color figure online).

In the first experiment, we calculated the average end-point error (AEE) and
the average angular error (AAE) of the estimated optical flow using the data
term based on the epipolar constraint and the data term of brightness constraint
based on [14]. Table 1 shows the average errors using different window sizes and
demonstrates that the epipolar constraint has lower average errors for 194 train-
ing images. As it can be seen, the best performance was achieved using the LK
tracker and the 7-point method. The reason lies in the fact that SIFT works
based on blob features and these features are not sub-pixel or even pixel accu-
rate enough. The 7-point method also performs better than the 8-point method
as it needs less points, which make it robust against outliers in the RANSAC
algorithm. In Fig. 1, the effect of increasing the size of surrounding window is
depicted. As can be seen, brightness constraint has very poor performance for the
small window sizes, whereas using the epipolar constraint yielded good results
even for the small windows.
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Fig. 4. Comparison between ground truth (red) and estimated optical flow (green) for
sequence 150 of the KITTI training data set for some feature points. (a) Using epipolar
constraint based on 7-points method. (b) Using brightness constrain. (c¢) Estimated
epipolar lines (Color figure online).

6 Conclusion

We derived the necessary formulation to augment epipolar constraint for an
uncalibrated camera in a differential method for the calculation of the opti-
cal flow. The proposed algorithm was evaluated with different sequences of the
KITTI datasets and provided more correct flow fields and increased the robust-
ness. For future work, applying this method to dense flow estimations should be
considered.
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