
Chapter 22
GPTIPS 2: An Open-Source Software Platform
for Symbolic Data Mining

Dominic P. Searson

22.1 Introduction

Genetic programming (GP; Koza 1992) is a biologically inspired machine learn-
ing method that evolves computer programs to perform a task. It does this by
randomly generating a population of computer programs (usually represented by
tree structures) and then breeding together the best performing trees to create a
new population. Mimicking Darwinian evolution, this process is iterated until the
population contains programs that solve the task well.

When building an empirical mathematical model of data acquired from a
process or system, the process is known as symbolic data mining (SDM). SDM
is an umbrella term to describe a variety of related activities including gener-
ating symbolic equations predicting a continuous valued response variable using
input/predictor variables (symbolic regression); predicting the discrete category of
a response variable using input variables (symbolic classification, e.g. see Espejo
et al. 2010; Morrison et al. 2010) and generating equations that optimise some other
criterion (symbolic optimisation, e.g. GPTIPS was used in this way to generate new
chaotic attractors in Pan and Das 2014).

Symbolic regression is perhaps the most well known of these activities (it is
closely related to classical regression modelling) and the most widely used. Hence,
much of the functionality of GPTIPS is targeted at facilitating it. Unlike traditional
regression analysis (in which the user must specify the structure of the model and
then estimate the parameters from the data), symbolic regression automatically
evolves both the structure and the parameters of the mathematical model from the
data. This allows it to both select the inputs (features) of the model and capture
non-linear behaviour.

D.P. Searson (�)
School of Computing Science, Newcastle University, Newcastle, UK
e-mail: searson@gmail.com

© Springer International Publishing Switzerland 2015
A.H. Gandomi et al. (eds.), Handbook of Genetic Programming Applications,
DOI 10.1007/978-3-319-20883-1_22

551

mailto:searson@gmail.com

552 D.P. Searson

Symbolic regression models are typically of the form:

by D f .x1; : : : ; xM/ (22.1)

where y is an output/response variable (the variable/property you are trying to
predict), ŷ is the model prediction of y and x1, : : : , xM are input/predictor variables
(the variables/properties you know and want to use to predict y; they may or may
not in fact be related to y) and f is a symbolic non-linear function (or a collection of
non-linear functions). A typical simple symbolic regression model is:

by D 0:23x1 C 0:33 .x1 � x5/ C 1:23x3
2 � 3:34 cos .x1/ C 0:22 (22.2)

This model contains both linear and non-linear terms and the structure and
parameterisation of these terms is automatically determined by the symbolic
regression algorithm. Hence, it can be seen that symbolic regression provides a
flexible—yet simple—approach to non-linear predictive modelling.

Additional advantages of symbolic regression are:

• It can automatically create compact, accurate equations to predict the behaviour
of physical systems. This appeals to the notion of Occam’s razor. In particular,
the use of multigene GP (MGGP) within GPTIPS can exert a ‘remarkable’ degree
of control of model complexity in comparison with standard GP (Gandomi and
Alavi 2011).

• Unlike many soft-computing modelling methodologies—such as feed forward
artificial neural networks or support vector machines (SVMs)—no specialised
modelling software environment is required to deploy the trained symbolic
models. And, because the symbolic models are simple constitutive equations,
a non-modelling expert can easily and rapidly implement them in any modern
computing language. Furthermore, the simplicity of the model form means they
are more maintainable than typical black box predictive models.

• Examination of the evolved equations can often lead to human insight into the
underlying physical processes or dynamics. In addition, the ability of a human
user to understand the terms of a predictive equation can help instil trust in the
model (Smits and Kotanchek 2004). It is hard to overstate the importance of user
understanding and trust in predictive models, although this is not often discussed
in the predictive modelling literature. In contrast, it is extremely difficult, if not
impossible, to gain insight into a neural net model where the ‘knowledge’ about
the data, system or process is encoded as network weights.

• Discovery of a population of models (rather than a single model as in the
majority of other predictive modelling techniques). The evolved population can
be regarded as a model library and usually contains diverse models of varying
complexity and performance. This gives the user choice and the ability to gain
understanding of the system being modelled by examination of the model library.

Note that the human related factors mentioned above, such as interpretation and
deployment of models, are especially important when dealing with data obtained

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 553

from highly multivariate non-linear systems of unknown structure (Smits and
Kotanchek 2004) for which traditional analysis tends to be difficult or intractable.

Hence, symbolic regression (and symbolic data mining in general) has many
features that make it an attractive basis for inducing simple, interpretable and
deployable models from data where the ‘true’ underlying relationships are high
dimensional and largely unknown. However, there has been a relative paucity of
software that allows researchers to actually do symbolic data mining, and in many
cases the existing software is either expensive, proprietary and closed source or
requires a high degree of expertise in software configuration and machine learning
to use it effectively.

GPTIPS (an acronym for Genetic Programming Toolbox for the Identification
of Physical Systems) was written to reduce the technical barriers to using symbolic
data mining and to help researchers, who are not necessarily experts in computing
science or machine learning, to build and deploy symbolic models in their fields of
research. It was also written to promote understanding of the model discovery mech-
anisms of MGGP and to allow researchers to add their own custom implementations
of code to use MGGP in other non-regression contexts (e.g. Pan and Das 2014). To
this end, it was written as a free (subject to the GNU public software license, GPL
v3), open source project in MATLAB.

The use of MATLAB as the underlying platform confers the following benefits:

• Robust, trustable, fast and automatically multi-threaded implementations of
many matrix and vector math algorithms (these are used extensively in GPTIPS).

• Widely taught at the undergraduate level and beyond at educational institutes
around the world and hence is familiar (and site licensed) to a diverse array of
students, researchers and other technical professionals. It is also heavily used in
many commercial, technical and engineering environments.

• Supported, regularly updated and bug fixed and extremely well documented.
• Easy to use interface and interactive environment and supports the import and

export of data in a wide variety of formats.
• A robust symbolic math engine (MuPAD) that is exceptionally useful for the

post-run processing, simplification, visualisation and export of symbolic models
in different formats using variable precision arithmetic.

• Runs on many OS platforms (i.e. Windows, Linux, Mac OSX) using the same
code.

• Increasing emphasis on parallel computing (e.g. GPTIPS 2 has a parallel mode
and can use unlimited multiple cores to evolve and evaluate new models), GPU
computing, cloud computing and other so called ‘big data’ features such as
memory-mapped variables.

This chapter is structured as follows: Sect. 22.2 provides a high level overview
of GPTIPS and, in particular, the new features aimed at multigene regression model
development in GPTIPS2. Section 22.3 is provided to review some different forms
of symbolic regression in the context of classical regression analysis and describes
the mechanisms of MGGP. Note that a basic tutorial level description of ‘standard’
GP is not provided here, as it is readily available elsewhere, e.g. (Poli et al. 2007).

554 D.P. Searson

Section 22.4 is used to demonstrate some of the features of GPTIPS 2, focusing
on the visual analytics tools provided for the development of portable multigene
symbolic regression models. Section 22.5 describes a new gene-centric approach
to identifying and removing horizontal bloat in multigene regression models, with
emphasis on the new visual analysis tool provided in GPTIPS to do this. Finally, the
chapter ends with some concluding remarks in Sect. 22.6.

22.2 GPTIPS 2: Overview

GPTIPS (version 1) has become a widely used technology platform for symbolic
data mining via MGGP. It is used by researchers globally and has been successfully
deployed in dozens of application areas.1

GPTIPS using MGGP based regression has been shown to outperform existing
soft-computing/machine learning methods such as neural networks, support vector
machines etc. on many problem domains in terms of predictive performance and
model simplicity. Examples include:

• Global solar irradiation prediction—MGGP was noted to give clearly better
results than fuzzy logic and neural networks and the resulting equations were
understandable by humans (Pan et al. 2013).

• The automated derivation of correlations governing the fundamental properties
of the motion of particles in fluids, a key subject in powder technology, chemical
and environmental engineering. The evolved models were significantly better (up
to 70 %) than the existing empirical correlations (Barati et al. 2014).

• The reverse engineering of the structure of the interactions in biological tran-
scription networks from time series data, attaining model accuracy of around
99 % (Floares and Luludachi 2014).

• The use of MGGP for the accurate modelling and analysis of data from
complex geotechnical and earthquake engineering problems (Gandomi and Alavi
2011, 2012). It was noted that the evolved equations were highly accurate and
‘particularly valuable for pre-design practices’ (Gandomi and Alavi 2011).

The symbolic engine of GPTIPS, i.e. the mechanism whereby new equations
are generated and improved over a number of iterations, is a variant of GP called
multigene genetic programming (MGGP, e.g. see Searson 2002; Searson et al. 2007,
2010) which uses a modified GP algorithm to evolve data structures that contain
multiple trees (genes). An example of a single tree representing a gene is shown
in Fig. 22.1. This represents the equation sin(x1) C sin(3x1). A typical GPTIPS
multigene regression model consists of a weighted linear combination of genes such
as these.

1A list of research literature using GPTIPS is maintained at https://sites.google.com/site/
gptips4matlab/application-areas.

https://sites.google.com/site/gptips4matlab/application-areas
https://sites.google.com/site/gptips4matlab/application-areas

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 555

Fig. 22.1 Example of a tree
(gene) representing the model
term sin(x1) C sin(3x1). This
tree visualisation was created
as a graphic within an HTML
file using the GPTIPS 2
drawtrees function. The
appearance of the trees is user
customisable using simple
CSS

GPTIPS is a generic tree based GP platform and has a pluggable architecture.
This means that users can easily write their objective/fitness functions (e.g. for
symbolic classification and symbolic optimisation) and plug them into GPTIPS
without having to modify any GPTIPS code.

GPTIPS also has many features aimed specifically at developing multigene
symbolic regression models. This combines the ability to evolve new equation
model terms of MGGP with the power of classical linear least squares parameter
estimation to optimally combine these model terms in order to minimise a prediction
error metric over a data set. It is sometimes helpful to think of GPTIPS multigene
regression models as pseudo-linear models in that they are linear combinations of
low order non-linear transformations of the input variables. These transformations
can be regarded as meta-variables in their own right.

Multigene symbolic regression has been shown to be able to evolve compact,
accurate models and perform automatic feature selection even when there are more
than 1500 input variables (Searson et al. 2010). It has been demonstrated that
multigene symbolic regression can be more accurate and efficient than ‘standard’
GP for modelling nonlinear problems (e.g. see Gandomi and Alavi 2011, 2012).

22.2.1 GPTIPS Feature Overview

GPTIPS is mostly a command line driven modelling environment and it requires
only a basic working knowledge of MATLAB. The user creates a simple con-
figuration file where the data is loaded from file (or generated algorithmically
within the configuration file) and configuration options set (numerous example
configuration files and several example data sets are provided with GPTIPS).
GPTIPS automatically generates default values for the majority of configuration
options and these can be modified in the configuration file. Typical configuration
options that the user sets are population size, maximum number of generations to
run for, number of genes and tournament size. However, there are a large number of
other run configuration options that the user can explore. In addition, GPTIPS 2 has
the following features to support effective non-linear symbolic model development,
analytics, export and deployment:

556 D.P. Searson

• Automatic support for the Parallel Computing Toolbox: fitness and complexity
calculations are split across multiple cores allowing significant run speedup.

• Automatic support for training, validation and test data sets and comprehensive
reporting of performance stats for each.

• An extensive set of functions for tree building blocks is provided: plus, minus,
multiply, divide (protected and unprotected), add3 (ternary addition), mult3
(ternary multiplication), tanh, cos, sin, exp, log10, square, power, abs, cube, sqrt,
exp (� x), if-then-else, �x, greater than (>), less than (<), Gaussian (exp(x2))
and threshold and step functions. Furthermore—virtually any built in MATLAB
math function can be used a tree building block function (sometimes a minor
modification is required such as writing a wrapper function for the built in
function). In general, it is very easy for users to define their own building block
functions.

• Tight integration with MATLAB’s MuPAD symbolic math engine to facilitate
the post-run analysis, simplification and deployment of models.

• Run termination criteria. In addition to number of generations to run for, it is
usually helpful to specify additional run termination criteria in order to avoid
waste of computational effort. In GPTIPS, the maximum amount of time to run
for (in seconds) can be set for each run as well as a target fitness. For example
for multigene regression the target fitness can be set as model root mean squared
error (RMSE) on the training data.

• Multiple independent runs where the populations are automatically merged after
the completion of the runs. It is usually beneficial to allocate a relatively small
amount of computational effort to each of multiple runs rather than to perform
a single large run (e.g. 10 runs of 10 s each rather than a single run of 100 s).
For example this ‘multi-start’ approach mitigates problems with the possible loss
of model diversity over a run and with the GP algorithm getting stuck in local
minima. In addition, GPTIPS 2 provides functionality such that final populations
of separate runs may be manually merged by the user.

• Steady-state GP and fitness caching.
• Two measures of tree complexity: node count and expressional complexity

(Smits and Kotanchek 2004). The latter is a more fine-grained measure of
model complexity and is used to promote flatter trees over deep trees. This has
significant benefits (albeit at extra computation cost) in evolving compact, low
complexity models. For a single tree, expressional complexity is computed by
summing together the node count of itself and all its possible full sub-trees (a
leaf node is also considered a full sub-tree) as illustrated in (Smits and Kotanchek
2004). Hence, for two trees with the same node count, flatter and balanced trees
have a lower expressional complexity than deeper ones. For instance, the tree
shown in Fig. 22.2 has a total node count of 8 and contains 8 possible sub-
trees. The sum of the node counts of the 8 possible full sub-trees gives, in this
case, an expressional complexity of 23. For multigene individuals, the overall
expressional complexity is computed as the simple sum of the expressional
complexities of its constituent trees.

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 557

ŷ =

Fig. 22.2 Naïve symbolic regression. The prediction of the response data y is the unmodified
output of a single tree that takes as its inputs one or more columns of the data matrix X

• Regular tournament selection (considers fitness only), Pareto tournament selec-
tion (considers fitness and model complexity) and lexicographic tournament
selection (similar to regular tournament selection but always chooses the less
complex model in the event of a fitness ‘tie’). The user can set the probability of
a particular tournament type occurring at every selection event (i.e. each time the
GP algorithm selects an individual for crossover, mutation etc.). For example the
user can set half of all selection events to be performed by regular tournament
and half by Pareto tournament. Pareto tournaments of size P for two objectives
are implemented using the O(P2) fast non-dominated sort algorithm described in
(Deb et al. 2002).2

• Six different tree mutation operators.
• Interactive graphical population browser showing Pareto front individuals in

terms of fitness (or for multigene regression models, the coefficient of determina-
tion R2) and complexity on training, validation and test data sets. This facilitates
the exploration of multigene regression models that are accurate but not overly
complex and the identification of models that generalise well across data sets.

• A configurable multigene regression model filter object that enables the pro-
gressive refinement of populations according to model performance, model
complexity and other user criteria (e.g. the presence of certain input variables
in a model).

• Functions to export any symbolic regression model to (a) a symbolic math
object (b) a standalone MATLAB file for use outside GPTIPS (c) snippets of
optimised C code—which may be easily manually ported to other languages such
as Java (d) an anonymous MATLAB function or function handle (e) an HTML
formatted equation (f) a LaTeX formatted equation (g) a MATLAB data structure
containing highly detailed information on the model as well as the individual
gene predictions on training, test and validation data.

• Standalone (i.e. can be viewed in a web browser without the need for MATLAB)
HTML model report generator. This enables a comprehensive performance and
statistical analysis of any model in the population to be exported to HTML
for later reference. The HTML report contains interactive graphical displays of
model performance and model genotype and phenotype structure.

2Currently, the Pareto tournament implementation does not support more than two objectives.

558 D.P. Searson

• Customisable standalone HTML model report generator to visualise the tree
structure(s) comprising an individual/model.

• Standalone HTML Pareto front report generator to allow the interactive visu-
alisation of simplified multigene regression models in tabular format, sortable
by performance (in terms of the coefficient of determination, i.e. model R2) and
model complexity.

• Regression Error Characteristic (REC; Bi and Bennett 2003) curves to allow sim-
ple graphical comparisons of the predictive performance of selected multigene
regression models.

22.3 Multigene Symbolic Regression and MGGP: Overview
and Mathematical Context

In this section, multigene symbolic regression is described in a mathematical
context and compared with some other common symbolic regression methods
as well as multiple linear regression (MLR). In addition, the mechanics of the
MGGP algorithm are described, including a new, simplified high level crossover
operator to expedite the exchange of genes between individuals during the simulated
evolutionary process.

22.3.1 Multigene Symbolic Regression

22.3.1.1 Naïve Symbolic Regression

In early standard formulations of symbolic regression (which will be referred to as
naïve symbolic regression) GP was often used to evolve a population of trees, each
of which is interpreted directly as a symbolic mathematical equation that predicts
a (N � 1) vector of outputs/responses y where N is the number of observations
of the response variable y. The corresponding input matrix X is an (N � M) data
matrix where M is the number of input variables. In general, only a subset of the M
variables are ‘selected’ by GP to form the models. In naïve symbolic regression, the
ith column of X comprises the N input values for the ith variable and is designated
the input variable xi. Figure 22.2 illustrates naïve symbolic regression.

Typically, the GP algorithm will attempt to minimise the sum of squared errors
(SSE) between the observed response y and the predicted response ŷ (where the
(N � 1) error vector e is y � ŷ) although other error measures are also frequently
used, e.g. the mean squared error (MSE) and the root mean squared error (RMSE),
the latter having the advantage that it is expressed in the units of the response
variable y.

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 559

ŷ = b0 + b1 ×

Fig. 22.3 Scaled symbolic regression. The prediction of the response data y is the vector output of
single tree modified by a bias term b0 and a scaling parameter b1. These are determined by linear
least squares

22.3.1.2 Scaled Symbolic Regression

To improve the efficacy of symbolic regression a bias (offset) term b0 and a
weighting/scaling term b1 can be used to modify the tree output so that it fits y better.
The values of these coefficients are determined by linear least squares and, for any
valid tree, the prediction is guaranteed to be at least as good as the naïve prediction.
It will almost always be better (the only case where it is not is the case b0 D 0 and
b1 D 1). This method is essentially the same as scaled symbolic regression (Keijzer
2004) because the coefficients b0 and b1 translate and linearly scale the raw output of
the tree in such a way as to minimise the prediction error of y as shown in Fig. 22.3.

Hence, the prediction of y is given by:

by D b0 C b1 t (22.3)

where t is the (N � 1) vector of outputs from the GP tree on the training data. This
may also be written as:

by D Db (22.4)

where b is a (2 � 1) vector comprising the b0 and b1 coefficients and D is an (N � 2)
matrix where the 1st column is a column of ones (this is used as a bias/offset input)
and the 2nd column is the tree outputs t. The optimal linear least squares estimate
(i.e. that which minimises the SSE eTe) of b is computed from y and D using the
well known least squares normal equation as shown in (22.5) where DT is the matrix
transpose of D. Note that the optimality of the estimate of b is only strictly true if
a number of assumptions are met such as independence of the columns of D and
normally distributed errors. In practice, these assumptions are rarely strictly met—
but with the use of the Moore-Penrose pseudo-inverse (described in the following
section)—the violations of these assumptions do not appear to prevent the practical
development of effective symbolic regression models.

b D �

DTD
��1

DTy (22.5)

560 D.P. Searson

+ ... + bG ×+ b2 ×ŷ = b0 + b1 ×

Fig. 22.4 Multigene symbolic regression. The prediction of the response data y is the vector
output of G trees modified by bias term b0 and scaling parameters b1, : : : , bG

22.3.1.3 Multigene Symbolic Regression

A generalisation of the previous approach is to use G trees to predict the response
data y. GPTIPS uses MGGP to evolve the trees comprising the additive model terms
in each individual and this is referred to as multigene symbolic regression.

Again, there is an offset/bias coefficient b0 and now the coefficients b1, b2, : : : ,
bG are used for scaling the output of each tree/gene. A linear combination of scaled
tree outputs can capture non-linear behaviour much more effectively than using
scaled symbolic regression, in which one tree must capture all of the non-linear
behaviour.

Moreover, by enforcing depth restricted trees and using other strategies such
as Pareto tournaments and expressional complexity, this leads to the evolution of
compact models that tend to have linearly separable terms and so lend themselves
to automated post-run model simplification using symbolic math software. The
structure of multigene symbolic regression models is illustrated in Fig. 22.4.

The prediction of the y training data is given by:

by D b0 C b1 t1 C � � � C bG tG (22.6)

where ti is the (N � 1) vector of outputs from the ith tree/gene comprising a
multigene individual. Next, define G as a (N � (G C 1)) gene response matrix as
follows in (22.7).

G D Œ1t1 : : : tG� (22.7)

where the 1 refers to a (N � 1) column of ones used as a bias/offset input.
Now (22.6) can be rewritten as:

by D Gb (22.8)

The least squares estimate of the coefficients b0, b1, b2, : : : , bG formulated as a
((G C 1) � 1) vector can be computed from the training data as:

b D �

GTG
��1

GTy (22.9)

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 561

In practice, the columns of the gene response matrix G may be collinear (e.g.
due to duplicate genes in an individual, and so the Moore-Penrose pseudo-inverse
(by means of the singular value decomposition; SVD) is used in (22.9) instead
of the standard matrix inverse. Because this is computed for every individual
in a GPTIPS population at each generation (except for cached individuals), the
computation of the gene weighting coefficients represents a significant proportion of
the computational expense of a run. In GPTIPS, the RMSE is then calculated from
eTe and is used as the fitness/objective function that is minimised by the MGGP
algorithm.3

Compare this with classical MLR which is typically of the form:

by D a0 C a1x1 C a2x2 C � � � C aNxM (22.10)

Here, the data/design matrix X is defined as:

X D Œ1x1 : : : xM� (22.11)

and this allows the least squares computation of the coefficients a0, a1, : : : aM as:

a D �

XTX
��1

XTy (22.12)

where a is a ((M C 1) � 1) vector containing the a coefficients.
This section described how a multigene individual can be interpreted as a linear-

in-the-parameters regression model and how the model coefficients are computed
using least squares. The following section outlines how MGGP actually generates
and evolves the trees that the form the component genes of multigene regression
models.

22.3.2 Multigene Genetic Programming

Here it is outlined how multigene individuals are created and then iteratively
evolved by the MGGP algorithm. This algorithm is similar to a ‘standard’ GP
algorithm except for modifications made to facilitate the crossover and mutation
of multigene individuals. Note that—although GPTIPS uses MGGP primarily for
symbolic regression—the algorithmic implementation of MGGP is independent of
the interpretation of the multigene individuals as regression models. Multigene
individuals can also be used in other contexts, e.g. classification trees (Morrison
et al. 2010). In GPTIPS there is a clear modular separation of the MGGP code
and the code that implements multigene regression. GPTIPS has a simple pluggable

3Although RMSE is the default fitness measure, this can be easily changed to, for example, MSE
by a very minor edit to the file containing the default fitness function.

562 D.P. Searson

architecture in that it provides explicit code hooks to allow the addition of new
code that interprets multigene individuals in a way of the user’s choosing (the
code for performing multigene regression is—by default—attached to these hooks).
Note that MGGP also implicitly assumes that the specific ordering of genes in any
individual is unimportant.

In the first generation of the MGGP algorithm, a population of random indi-
viduals is generated (it is currently not possible to seed the population with partial
solutions). For each new individual, a tree representing each gene is randomly gener-
ated (subject to depth constraints) using the user’s specified palette of building block
functions and the available M input variables x1, : : : , xM as well as (optionally)
ephemeral random constants (ERCs) which are generated in a range specified by the
user (the default range is �10 to 10). In the first generation the MGGP algorithm
attempts to maximise diversity by ensuring that no individuals contain duplicate
genes. However, due to computational expense, this is not enforced for subsequent
generations of evolved individuals.

Each individual is specified to contain (randomly) between 1 and Gmax genes.
Gmax is a parameter set by the user. When using MGGP for regression, a high Gmax

may capture more non-linear behaviour but there is the risk of overfitting the training
data and creating models that contain complex terms that contribute little or nothing
to the model’s predictive performance (horizontal bloat). This is discussed further in
Sect. 22.5. Conversely, setting Gmax to 1 is equivalent to performing scaled symbolic
regression.

As in standard GP, at each generation individuals are selected probabilistically
for breeding (using regular or Pareto tournaments or a mixture of both). Each
tournament results in an individual being selected based on either its fitness or—
for Pareto tournaments—its fitness and its complexity (the user can set this to be
either the total node count of all the genes in an individual or the total expressional
complexity of all the genes in an individual).

In MGGP, there are two types of crossover operators: high level crossover and
the standard GP sub-tree crossover, which is referred to as low level crossover. The
high level crossover operator is used as a probabilistically selected alternative to the
ordinary low level crossover (in GPTIPS the default is that approximately a fifth of
crossover events are high level crossovers).

When low level crossover is selected a gene is randomly chosen from each parent.
These genes undergo GP sub-tree crossover with each other and the offspring genes
replace the original genes in the parent models. The offspring are then copied into
the new population.

When high level crossover is selected an individual may acquire whole genes—
or have them deleted. This allows individuals to exchange one or more genes with
another selected individual (subject to the Gmax constraint).

In GPTIPS 2 the high level crossover operator described in (Searson 2002;
Searson et al. 2007, 2010) has been simplified and is outlined below between
a parent individual consisting of the three genes labelled (G1 G2 G3) and a
parent individual consisting of the genes labelled (G4 G5 G6 G7) where (in this
hypothetical case) Gmax D 5.

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 563

Parents (G1 G2 G3)
(G4 G5 G6 G7)

A crossover rate parameter CR (where 0 < CR < 1) is defined. This is similar to
the CR parameter used in differential evolution (DE, see Storn and Price 1997) and
a uniform random number r between 0 and 1 is generated independently for each
gene in the parents. If r is �CR then the corresponding gene is moved to the other
individual. The default value of CR in GPTIPS 2 is 0.5.

Hence, randomly selected genes (highlighted in boldface above) are exchanged
resulting in two offspring in the next generation.

Offspring (G1 G3 G4 G7)
(G5 G6 G2)

This high level crossover mechanism is referred to as rate based high level
crossover to distinguish it from the two point high level crossover mechanism in
GPTIPS version 1 (which swapped contiguous sections of genes from individuals).
Note that the rate based high level crossover mechanism results in new genes for
both individuals as well as reducing the overall number of genes for one model and
increasing the total number of genes for the other. If an exchange of genes results
in either offspring containing more genes than the Gmax constraint then genes are
randomly deleted until the constraint is no longer violated.

22.4 Using GPTIPS

In this section it will be illustrated how GPTIPS 2 may be used to generate, analyse
and export non-linear multigene regression models, both using command line tools
and visual analytics tools and reports. The example screenshots in the figures
contained in this section are taken from example runs from various data sets using
configuration files and data that are provided with GPTIPS 2. The screenshots were
obtained using MATLAB Release 2014b on OSX.

22.4.1 Running GPTIPS

As discussed in Sect. 22.2.1, the user creates a simple text configuration file that
specifies some basic run parameters and either loads in the data to be modelled from
file or algorithmically generates it. Any unspecified parameters are set to GPTIPS
default values.

To run the configuration file (here called configFileName.m) the rungp
function is used as follows:

gp D rungp(@configFileName)

564 D.P. Searson

where the @ symbol denotes a MATLAB function handle to the configuration file.
The GPTIPS run then begins. When it is complete—the population and all other

relevant data is stored in the MATLAB ‘struct’ variable gp. This is used as a basis
for all subsequent analyses.

22.4.2 Exploratory Post Run Analyses

GPTIPS provides a number of exploratory post-run interactive visualisation and
analysis tools. For instance, a simple summary of any run can be generated using
the summary function and an example is shown in Fig. 22.5.

For multigene symbolic regression this shows in the upper part of the chart—by
default—the log10 value of the best RMSE (this is the error metric that GPTIPS
attempts to minimise over the training data) achieved in the population over the
generations of a run. The lower part of the chart shows the mean RMSE achieved in
the population.

Generation

0 10 20 30 40 50 60

Lo
g

R
M

S
E

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

Summary of run
Config: gpdemo2_config. Data: Cherkassky function.

Best fitness

Generation

0 10 20 30 40 50 60

R
M

S
E

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Mean fitness (+ - 1 std. dev)

Fig. 22.5 An example of a run summary in GPTIPS. Generated using the summary function

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 565

Fig. 22.6 Visually browsing a multigene regression model population. Green dots represent the
Pareto front of models in terms of model performance (1 � R2) and model complexity. Blue dots
represent non-Pareto models. The red circled dot represents the best model in the population in
terms of R2 on the training data. Clicking on a dot shows a yellow popup containing the model ID
and the simplified model equation. Generated using the popbrowser function

Other tools are intended to help the user to identify a model (or small set of
models) that look promising and worthy of further investigation. One of the most
useful visual analytic tools is the population browser. This interactive tool visually
illustrates the entire population in terms of its predictive performance and model
complexity characteristics. This is generated using the popbrowser function. An
example of this is shown in Fig. 22.6. Each model is plotted as a dot with (1 � R2)
on the vertical axis and expressional complexity on the horizontal axis. The Pareto
front models are highlighted in green and it is almost always these models that will
be of the greatest interest to the user. In particular, the Pareto models in the lower
left of the population (high R2 and low complexity) are usually where a satisfactory
solution may be found.

This visualisation may be used with the training, validation or test data sets. For
example Fig. 22.6 was generated using:

popbrowser(gp,’train’)
Another way of displaying information about Pareto front models in a population

is by use of the paretoreport function. This creates a standalone HTML
file—viewable in a web browser—that includes a table listing the simplified
model equations along with the model performance and expressional complexity.

566 D.P. Searson

Fig. 22.7 Extract from a Pareto front model HTML report. GPTIPS 2 can generate a standalone
interactive HTML report listing the multigene regression models on the Pareto front in terms of
their simplified equation structure, expressional complexity and performance on the training data
(R2). The above table is sortable by clicking on the appropriate column header. Generated using
the paretoreport function

The table is interactive and the models can be sorted by performance or complexity
by clicking on the appropriate column header. An example of an extract from such
a report is shown in Fig. 22.7. This report assists the user in rapidly identifying the
most promising model or models to investigate in more detail.

It is also possible to filter populations according to various user criteria using
the gpmodelfilter object. The output of this filter is another gp data structure
which is functionally identical to the original (in the sense that any of the command
line and visual analysis tools may be applied to it) except that models not fulfilling
user criteria have been removed.

For example, if the user wants to only retain models that (a) have an R2 greater
than 0.8 (b) contain the input variables x1 and x2 and (c) do not contain the variable
x4 then the filter can be configured and executed as follows:

Create a new filter object f:
f D gpmodelfilter
Next set the user criteria, i.e. models must have R2 (training data) greater or equal

to 0.8:
f.minR2train D 0.8

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 567

Must include x1 and x2:
f.includeVars D [1 2]
Must exclude x4:
f.excludeVars D 4
Finally, apply the filter to the existing population structure gp to create a new

one gpf:
gpf D f.applyFilter(gp)
At this point the user may apply the exploratory tools (e.g. paretoreport)

to the refined population to zero in on models of interest fulfilling certain criteria.
Other criteria that can be set include maximum expressional complexity, maximum
and minimum number of variables and Pareto front (i.e. exclude all models not on
the Pareto front).

22.4.3 Model Performance Analyses

Once a model (or set of models) has been identified using the tools described above,
the detailed performance of the model can be assessed by use of the runtree
function. This essentially re-runs the model on the training data (and validation and
test data, if present) and generates a set of graphs including predicted vs actual y
and scatterplots of predicted vs actual y. These graphs can be generated using the
numeric model ID (e.g. from the popbrowser visualisation) as an input argument
to runtree or by using keywords such as ‘best’ (best model on training data) and
‘testbest’ (best model on test data), e.g.

runtree(gp,’testbest’)
This is a common design pattern across a large number of GPTIPS functions. An

example of the scatterplots generated by runtree is shown in Fig. 22.8.
Additionally, for any model a standalone HTML report containing detailed

tabulated run configuration, performance and structural (simplified model equations
and trees structures) data may be generated using the gpmodelreport function.
These reports contain interactive scatter charts similar to that in Fig. 22.8. The
reports are fairly lengthy—however—and so are not illustrated here.

A way of comparing the performance of a small set of models simultaneously
is to generate regression error characteristic (REC; Bi and Bennett 2003) curves
using the compareModelsREC function. REC curves are similar to receiver
operating characteristic curves (ROC) used to graphically depict the performance
of classifiers on a data set. An example of REC curves generated using the
compareModelsREC function is shown below in Fig. 22.9. The user can specify
what curves to compare in the arguments to the function, e.g.

compareModelsREC(gp,[2 3 9], true)
where the final Boolean true argument indicates that the best model on the training
data should also be plotted in addition to models 2, 3 and 9.

568 D.P. Searson

Fig. 22.8 Performance scatterplots on training and testing data sets for a selected multigene
regression model. Generated by the runtree function

22.4.4 Model Conversion and Export

Finally, there is a variety of functions provided to convert and/or export models
to different formats, e.g. to convert a model with numeric ID 5 to a standalone
MATLAB M file called model.m then the gpmodel2mfile function may be
used as follows:

gpmodel2mfile(gp,5,’model’)
To convert a model to a symbolic math object, the gpmodel2sym function may

be used in a similar way. A symbolic math object can then be converted to a string
containing a snippet of C code using the ccode function.

22.5 Reducing Model Complexity Using Gene Analysis

22.5.1 Horizontal Model Bloat

GP frequently suffers from the phenomenon of ‘bloat’, i.e. the tendency to evolve
trees that contain terms that confer little or no performance benefit, e.g. see (Luke
and Panait 2006). In terms of model development this is related to the phenomenon

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 569

Fig. 22.9 Regression error characteristic (REC) curves. GPTIPS 2 allows the simple comparison
between multigene regression models in terms of REC curves which are similar to receiver
operating characteristic (ROC) curves for classifiers. The REC curves show the proportion of data
points predicted (y axis) with an accuracy better than the corresponding point on the x axis. Hence,
‘better’ models lie to the upper left of the diagram. Generated using the compareModelsREC
function

of overfitting. GPTIPS 2 contains a number of mechanisms intended to mitigate
this. For instance: the use of fairly stringent restrictions on maximum tree depth (to
ameliorate vertical bloat), the use of tree expressional complexity as a measure of
model complexity (rather than a simple node count) to promote flatter trees over
deeper ones during the simulated evolutionary process, the integration of the train-
validate-test model development cycle, and the use of Pareto tournaments to select
models that perform well (in terms of goodness of fit) and are not overly complex.

However, the use of multigene regression models in GPTIPS leads to another
type of bloat that is referred to here as horizontal bloat. This is the tendency of
multigene models to acquire genes that are either performance neutral (i.e. deliver no
improvement in R2 on the training data) or offer very small incremental performance
improvements. Clearly—in the majority of practical applications—these terms are
undesirable.

Horizontal bloat is the essentially the same behaviour exhibited by non-
regularised MLR models, where it is well known that the addition of model terms
leads to a monotonically increasing R2 on training data even though the terms may
not be meaningful (e.g. they are capturing noise) or allow the model to generalise
well to testing or validation data sets. Multigene regression is a type of pseudo-

570 D.P. Searson

linear MLR model and it suffers from the same problem. A typical way to combat
this behaviour in MLR is to employ a method of regularisation to penalise for
model complexity [e.g. ridge regression (Hoerl and Kennard 1970) and the lasso
(Tibshirani 1996)]. These methods can be difficult to tune in practice, however.

Ostensibly, the simplest way to way to prevent horizontal bloat in multigene
regression is to limit the maximum allowed number of genes Gmax in a model. In
practice, however, it is not usually easy to judge the optimal value of Gmax for any
given problem. An alternative approach—and one that emphasises the human factor
in instilling trust in models—is to provide a software mechanism that guides the
user to take high performance models and delete selected genes to reduce the model
complexity whilst maintaining a relatively high goodness of fit in terms of R2. In the
following section GPTIPS 2 functionality for expediting this process is described.

22.5.2 Unique Gene Analysis

In GPTIPS 2, a new way of analysing the unique genes contained in a population
of evolved models has been developed. This allows the user to visualise the genes
in a population and to identify genes in an existing model that can be removed
thus reducing model complexity whilst having only a relatively small impact on the
model’s predictive performance. The visualisation aspect (i.e. the ability to see the
gene equation and the R2 value if the gene were removed) is important because it
allows the user to rapidly make an informed choice about which model terms to
remove. Often this choice is based on problem domain knowledge of the system
being modelled. For example, the user might want to delete a model term such as
sin(1 � x3) because it is inconsistent with his or her knowledge about the underlying
data or system. This gene-centric visualisation allows users to tailor evolved models
to suit their own preferences and knowledge of the modelled data.

An additional benefit of being able to visualise the genes in a model is that it
expedites the process of human understanding of the model and intuition into which
model terms account for a high degree of predictive ability and which account for
lower amounts.

After a GPTIPS run has been completed, the user can extract a MATLAB
data structure containing all of the unique genes in a population using the
uniquegenes function as indicated below:

genes D uniquegenes(gp)
This function does the following:

• Extracts every genotype i.e. tree encoded gene (gene weights are ignored) from
each model in the population.

• Deletes duplicate genotypes.
• Converts the unique genotypes to symbolic math objects (phenotypes) and then

analytically simplifies them using MATLAB’s symbolic math engine (MuPAD).
• Deletes any duplicate symbolic math objects representing genes and assigns a

numeric ID to the remaining unique gene objects.

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 571

Note that it is quite frequent that two different genotypes will, after conversion
to symbolic math objects and automated analytic simplification, resolve to the same
phenotype.

Next—to provide an interactive visualisation of the genes in the population and
a selected model—the genebrowser function is used. In the example below, it is
used on the model that performed best (in terms of R2) on the training data.

genebrowser(gp,genes,’best’)
Clicking on any blue bar shows a yellow popup containing the symbolic version

of the gene and the reduction in R2 that would result if that gene were to be removed
from the model. Conversely, clicking on any orange bar in the lower axis does the
same for genes that are not in the current model and shows the increase in R2 that
would be attained if that gene were added to the model (Fig. 22.10).

Unique gene number (model genes)

Model gene list: 47 17 34
Top gene candidate for removal from model: 47

0 10 20 30 40 50

E
xp

re
ss

io
na

l c
om

pl
ex

ity
E

xp
re

ss
io

na
l c

om
pl

ex
ity

0

5

10

15

20

25

30

35

Population (54 genes). Data set: Cherkassky function
Selected model (ID = best) contains 3 genes. R2: 0.99982 Complexity: 65

Unique gene number (non-model genes)

Top gene candidate for addition to model: 33

0 10 20 30 40 50
0

10

20

30

40

50

Gene 34
81.38204944*x1*x4*cos(x1 - x4)

Gene 3 in model.

Model R^2 without gene: 0.99146

Fig. 22.10 Reducing model complexity using the genebrowser analysis tool. The upper bar
chart shows the gene number and expressional complexity of genes comprising the selected model.
The lower bar chart shows genes in the population but not in the selected model. Clicking on a
blue bar representing a model gene reveals a popup containing the gene equation and the R2 (on
the training data) if that gene were removed from the model. Here it shows that the highlighted
gene/model term 81.382x1x4 cos(x1 � x4) is a horizontal bloat term and could be removed from the
model with a very minor decrease in R2

572 D.P. Searson

Once the user has identified a suitable gene to be removed from the model, a new
model without the gene can be generated using the genes2gpmodel function
using the unique gene IDs as input arguments. The data structure returned from this
function can be examined using the provided tools—as well as exported in various
formats—in exactly the same way as any model contained within the population.

22.6 Conclusions

In this chapter GPTIPS 2, the latest version of the free open source software platform
for symbolic data mining, has been described. It is emphasised that the software
is aimed at non-experts in machine learning and computing science—and that the
software tools provided within GPTIPS are intended to facilitate the discovery,
understanding and deployment of simple, useful symbolic mathematical models
automatically generated from non-linear and high dimensional data.

In addition, it has been emphasised that GPTIPS is also intended as an enabling
technology platform for researchers who wish to add their own code in order to
investigate symbolic data mining problems such as symbolic classification and sym-
bolic optimisation. Whilst this article has focused largely on symbolic regression,
future updates to GPTIPS 2 will include improved out-of-the-box functionality to
support symbolic classification.

Finally, it is noted that GPTIPS 2 provides a novel gene-centric approach
(and corresponding visual analytic tools) to identifying and removing unnecessary
complexity (horizontal bloat) in multigene regression models, leading to the
identification of accurate, user tailored, compact and data driven symbolic models.

References

Koza J.R. (1992) Genetic programming: on the programming of computers by means of natural
selection, The MIT Press, Cambridge (MA).

Espejo, P.G., Ventura, S., Herrera, F. (2010) A survey on the application of genetic programming
to classification, IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications
and Reviews, 40 (2), 121–144.

Morrison, G., Searson, D., Willis, M. (2010) Using genetic programming to evolve a team of
data classifiers. World Academy of Science, Engineering and Technology, International Science
Index 48, 4(12), 210–213.

Pan, I., Das, S. (2014) When Darwin meets Lorenz: Evolving new chaotic attractors through
genetic programming. arXiv preprint arXiv:1409.7842.

Gandomi, A.H., Alavi, A.H. (2011) A new multi-gene genetic programming approach to non-linear
system modeling. Part II: geotechnical and earthquake engineering problems, Neural Comput
& Applic, 21(1), 171–187.

Smits, G.F., Kotanchek, M. (2004) Pareto-front exploitation in symbolic regression, Genetic
Programming Theory and Practice II, 283–299.

22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining 573

Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R. (2007). Genetic programming: An introductory
tutorial and a survey of techniques and applications. University of Essex, UK, Tech. Rep. CES-
475.

Pan, I., Pandey, D.S., Das, S. (2013) Global solar irradiation prediction using a multi-gene genetic
programming approach. Journal of Renewable and Sustainable Energy, 5(6), 063129.

Barati, R., Neyshabouri, S.A.A.S., Ahmadi, G. (2014) Development of empirical models with high
accuracy for estimation of drag coefficient of flow around a smooth sphere: An evolutionary
approach. Powder Technology, 257, 11–19.

Floares, A.G., Luludachi, I. (2014) Inferring transcription networks from data. Springer Handbook
of Bio-/Neuroinformatics, Springer Berlin Heidelberg, 311–326.

Gandomi, A.H., Alavi, A.H. (2012) A new multi-gene genetic programming approach to nonlinear
system modeling. Part I: materials and structural engineering problems. Neural Computing and
Applications, 21(1), 171–187.

Searson, D.P. (2002) Non-linear PLS using genetic programming, PhD thesis, Newcastle Univer-
sity, UK.

Searson D.P., Willis M.J., Montague, G.A. (2007) Co-evolution of non-linear PLS model compo-
nents, Journal of Chemometrics, 21 (12), 592–603.

Searson, D.P., Leahy, D.E., Willis, M.J. (2010) GPTIPS: an open source genetic programming
toolbox for multigene symbolic regression, Proceedings of the International MultiConference
of Engineers and Computer Scientists 2010 (IMECS 2010), Hong Kong, 17–19 March.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T (2002) A fast and elitist multiobjective
genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2), 182–197.

Bi, J., Bennett, K.P. (2003) Regression error characteristic curves, Proceedings of the Twentieth
International Conference on Machine Learning (ICML-2003), Washington DC, 43–50.

Keijzer, M. (2004) Scaled symbolic regression, Genetic Programming and Evolvable Machines, 5,
259–269.

Storn, R., Price, K. (1997) Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11(4), 341–359.

Luke, S., Panait, L. (2006) A comparison of bloat control methods for genetic programming, Evol.
Comput., 14(3), 309–344.

Hoerl, A. E., Kennard, R.W. (1970) Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1), 55–67.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 267–288.

	22 GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining
	22.1 Introduction
	22.2 GPTIPS 2: Overview
	22.2.1 GPTIPS Feature Overview

	22.3 Multigene Symbolic Regression and MGGP: Overview and Mathematical Context
	22.3.1 Multigene Symbolic Regression
	22.3.1.1 Naïve Symbolic Regression
	22.3.1.2 Scaled Symbolic Regression
	22.3.1.3 Multigene Symbolic Regression

	22.3.2 Multigene Genetic Programming

	22.4 Using GPTIPS
	22.4.1 Running GPTIPS
	22.4.2 Exploratory Post Run Analyses
	22.4.3 Model Performance Analyses
	22.4.4 Model Conversion and Export

	22.5 Reducing Model Complexity Using Gene Analysis
	22.5.1 Horizontal Model Bloat
	22.5.2 Unique Gene Analysis

	22.6 Conclusions
	References

