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Use of Genetic Programming Based Surrogate
Models to Simulate Complex Geochemical
Transport Processes in Contaminated Mine Sites

Hamed Koohpayehzadeh Esfahani and Bithin Datta

14.1 Introduction

Reactive transport of chemical species, in contaminated groundwater system,
especially with multiple species, is a complex and highly non-linear process. Sim-
ulation of such complex geochemical processes using efficient numerical models
is generally computationally intensive. In order to increase the model reliability
for real field data, uncertainties in hydrogeological parameters and boundary
conditions are needed to be considered as well. Also, often the development of
an optimal contaminated aquifer management and remediation strategy requires
repeated solutions of complex and nonlinear numerical flow and contamination
process simulation models. To address these combination of issues, trained ensem-
ble Genetic Programming (GP) surrogate models can be utilized as approximate
simulators of these complex physical processes in the contaminated aquifer. For
example, use of trained GP surrogate models can reduce the computational bur-
den in solving linked simulation based groundwater aquifer management models
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(Sreekanth and Datta 2011a, b) by orders of magnitude. Ensemble GP models
trained as surrogate models can also incorporate various uncertainties in modelling
the flow and transport processes. The development and performance evaluation of
ensemble GP models to serve as computationally efficient approximate simulators
of complex groundwater contaminant transport process with reactive chemical
species under aquifer parameters uncertainties are presented. Performance eval-
uation of the ensemble GP models as surrogate models for the reactive species
transport in groundwater demonstrates the feasibility of its use and the associated
computational advantages. In order to evolve any strategy for management and
control of contamination in a groundwater aquifer system, a simulation model
needs to be utilized to accurately describe the aquifer properties in terms of hydro-
geochemical parameters and boundary conditions. However, the simulation of the
transport processes becomes complex and extremely non-linear when the pollutants
are chemically reactive. In many contaminated groundwater aquifer management
scenarios, an efficient strategy is necessary for effective and reliable remediation
and control of the contaminated aquifer. Also, in a hydrogeologically complex
aquifer site e.g., mining site, acid mine drainage (AMD) and the reactive chemical
species together with very complex geology complicates the characterization of
contamination source location and pathways.

In such contamination scenarios, it becomes necessary to develop optimal
source characterization models, and strategies for future remediation. Solution of
optimization models either for source characterization, or optimal management
strategy development requires the incorporation of the complex physical processes
in the aquifer. Also, most of the developed optimization models for source char-
acterization or remediation strategy development require repeated solution of the
numerical simulation models within the optimization algorithm. This process is
enormously time consuming and often restricts the computational feasibility of such
optimization approaches.

In order to overcome these computational restrictions, and to ensure compu-
tational feasibility of characterizing sources and pathways of contamination it is
computationally advantageous to develop surrogate models which can be trained
using solutions obtained from rigorous numerical simulation models. A number
of attempts have been reported by researchers to develop surrogate models for
approximately simulating the physical processes. Especially the use of trained
Artificial Neural Network (ANN) models has been reported by a number of
researchers (Ranjithan et al. 1993). However, the architecture of an ANN model
needs to be determined by extensive trial and error solutions, and may not be
suitable to deal with the simulation of very complex geochemical processes in
contaminated aquifer site such as mine sites. Genetic Programming (GP) based
surrogate models may overcome some of the limitations of earlier reported surrogate
models. Therefore, this study develops GP model to approximately simulate three-
dimensional, reactive, multiple chemical species transport in contaminated aquifers.

Trained and tested GP models based surrogate models are developed using
the simulated response of a complex contaminated aquifer to randomly generated
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source fluxes. An ensemble GP model is an extension of the GP modelling technique
capable of incorporating various uncertainties in a contaminated aquifer system
data.

These ensemble GP models are trained and tested utilizing transient, three
dimensional groundwater flow and transport simulation models for an illustrative
study area hydrogeologically representing an abandoned mine site in Australia.
Performance of the developed surrogate models is also evaluated by comparing
GP model solutions with solution results obtained by using a rigorous numerical
simulation of the aquifer processes. The three dimensional finite element based
transient flow and contaminant transport process simulator, HYDROGEOCHEM
5.0 (Sun 2004) is used for this purpose. Reactive transport processes incorporating
acid mine drainage in a typical mine site is simulated. Comparison of the solutions
obtained with the surrogate models and the numerical simulation model solution
results show that the ensemble GP surrogate models can provide acceptable
approximations of the complex transport process in contaminated groundwater
aquifers, with a complex geochemical scenario.

The performance of the developed surrogate models is evaluated for an illus-
trative study area to establish the suitability of GP models as surrogate models for
such complex geological processes. These surrogate models if suitable will ensure
the computational feasibility of developing optimization based models for source
characterization, and help in the development of optimum strategies for remediation
of large contaminated aquifer study areas. This study will demonstrate the utility and
feasibility of using trained and tested ensemble GP models as a tool for approximate
simulation of the complex geochemical processes in contaminated mine sites.

Aquifer contamination by reactive chemical species is widespread especially
in mining sites. Numerical simulation models incorporating both chemical and
physical behaviours are essential to describe reactive chemical transport process
accurately. The numerical simulation model using the chemical reactive transport
processes in aquifer contamination was addressed by (Parkhurst et al. 1982)
and also implemented by (Herzer and Kinzelbach 1989; Tebes-Stevensa et al.
1998; Prommer et al. 2002). Coupled physical–chemical transport processes was
developed using non-reactive transport model like MT3DMS (Zheng and Wang
1999) incorporating with various reactive transport numerical models (Prommer
2002; Parkhurst and Appelo 1999; Parkhurst et al. 2004; Waddill and Widdowson
1998; Mao et al. 2006) to simulate more realistic chemical reactive transport
processes.

HYDROGEOCHEM (Yeh and Tripathi 1991) as a comprehensive numerical
simulation model of flow and geochemically reactive transport in saturated–
unsaturated media incorporates wide range of aquatic chemical equations as well as
complex physical processes effectively. Heat, reactive geochemical and biochemical
transport processes along with flow equations for the subsurface (saturated and
unsaturated zones) are solved by three-dimensional model, HYDROGEOCHEM
5.0 (Sun 2004). In the proposed study, HYDROGEOCHEM 5.0 (HGCH) is used
to simulate groundwater flow and transport processes with chemically reactive
pollutants for an illustrative subsurface study area utilizing actual hydrogeologic
data and synthetic hydro-geochemical data. Trained and tested ensemble GP based
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surrogate models are then utilized to approximately model complex geological
and geochemical processes to improve the computational efficiency as well as
reasonably accurate solutions.

One of the most hazardous contaminants for water resources is acid mine
drainage (AMD) and its related compounds spatially distributed which are the
products of mining activities (Kalin et al. 2006). Generally AMD or acid rock
drainage (ARD) is produced by various sulphide rocks’ surface chemical weathering
in presence of water, oxygen and microorganisms. Mining activities accelerate
AMD production by increasing the rocks’ surface as well as distributing wastewater
and waste deposit of sulphide minerals such as pyrite (FeS2), pyrrhotite (Fe1-
xS), chalcopyrite (CuFeS2), arsenopyrite (FeAsS), etc. in mine sites (Nordstrom
and Alpers 1999). These contaminants pollute water resources widely as well
as decrease the water pH which leads to increase in the concentration of other
hazardous metals and heavy metals in water (Kalin et al. 2006). In this study, the
transport process of sulphate, iron and copper, hazardous AMD’s compounds, along
with their chemical reactions through the contaminated aquifer is considered.

Recently surrogate models have been proposed as approximate replacement for
numerical simulation model for developing linked simulation optimization models
(Bhattacharjya and Datta 2005) for groundwater quality management. Replacing
aquifer responses simulation by linear surrogate models developed using response
matrix approach was initially reported (Zhou et al. 2003; Abarca 2006). Recently,
Artificial Neural Network (ANN) (Ranjithan et al. 1993) and Genetic Programming
(GP) based surrogate models have been proposed as efficient non-linear surrogate
models (Koza 1994).

Artificial Neural Networks (ANN) has been widely used as approximate sur-
rogate models for groundwater simulation (Aly and Peralta 1999). Rogers et al.
(1995) presented one of the earliest attempts using ANN as a surrogate for a coastal
groundwater flow model. They demonstrated the substantial saving in terms of
computation time by using ANN and Genetic Algorithmic (GA) based meta-model
(surrogate model) within a linked simulation-optimization model for evolving opti-
mal groundwater management strategies. Replacing groundwater simulation models
with ANN-base surrogate models were developed by Bhattacharjya and Datta
(2005, 2009) and Bhattacharjya et al. (2007) and Dhar and Datta (2009). McPhee
and Yeh (2006) used ordinary differential equation surrogates to approximating
simulate of groundwater flow and transport processes. Optimizing the surrogate
model parameters related on fixed initial surrogate model structure is the main
concept of most of these surrogate modelling approaches to obtain the best between
the explanatory and response variables. Even the most popularly used trained ANN-
based surrogate modelling approach obtains the optimal model formulation by trial
and error (Bhattacharjya and Datta 2005).

Bhattacharjya et al. (2007) used ANN as an approximate simulation for sub-
stitutes the three dimensional flow and transport simulation model to simulate the
complex flow and transport process in a coastal aquifer. Bhattacharjya and Datta
(2009) used the trained ANN-based surrogate models for approximating density
depended saltwater intrusion process in coastal aquifer to predict the complex flow
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and transport processes. Dhar and Datta (2009) used ANN as a surrogate model
for simulation of flow and transport in the multiple objective non-dominated front
search process resulting in saving a huge amount of computational time.

Genetic Programming (GP), proposed by Koza (1994) is an evolutionary
algorithm which is capable approximate simulation of complex models effectively
using stochastic search methods. Compared to other regression techniques, the most
important advantage of GP is its ability to optimize both the variables and constants
of the candidate models without initial model structure definition. This approach
makes GP a strong surrogate model to characterize the model structure uncertainty.
Recently genetic programming has been utilized in hydrological applications in
several researches (Dorado et al. 2002; Makkeasorn et al. 2008; Wang et al. 2009).
Trained GP-based surrogate models has been used to substitutes the simulation
models for runoff prediction, river stage and real-time wave forecasting (Whigham
and Crapper 2001; Savic et al. 1999; Khu et al. 2001; Babovic and Keijzer 2002;
Sheta and Mahmoud 2001; Gaur and Deo 2008). In addition, GP has been applied
to approximate modelling of different geophysical processes including flow over
a flexible bed (Babovic and Abbott 1997); urban fractured-rock aquifer dynamics
(Hong and Rosen 2002); temperature downscaling (Coulibaly 2004); rainfall-
recharge process (Hong et al. 2005); soil moisture (Makkeasorn et al. 2006);
evapotranspiration (Parasuraman et al. 2007b); saturated hydraulic conductivity
(Parasuraman et al. 2007a); and for modelling chemical entropy (Bagheri et al.
2012, 2013, 2014). Zechman et al. (2005) developed a trained GP-based surrogate
models as an approximate simulation of groundwater flow and transport processes
in a groundwater pollutant source identification problem.

Sreekanth and Datta (2010) implemented GP as meta-model to replace the flow
and transport simulation of density dependent saltwater intrusion in coastal aquifers
for ultimate development of optimal saltwater intrusion management strategies.
Sreekanth and Datta (2011b, 2012) compared two non-linear surrogate models
based on GP and ANN models, respectively and showed that the GP based
models perform better in some aspects. These advantages include: simpler surrogate
models, optimizing the model structure more efficiently, and parsimony of param-
eters. Datta et al. (2013) described the utilization of trained GP surrogate models
for groundwater contamination management, and development of a monitoring
network design methodology to develop optimal source characterization models.
Replacing simulation groundwater model by GP-based ensemble surrogate models
in linked simulation-optimization developed methodology was addressed by Datta
et al. (2014) and Sreekanth and Datta (2011a) which improve the computational
efficiency and obtains reasonably accurate results under aquifer hydrogeologic
uncertainties.

In this study our main objectives is to develop ensemble genetic programming
based surrogate models to approximately simulate the complex transport process in
a complex hydrogeologic system with reactive chemical species, and to illustrate
its efficiency and reliability in a contaminated aquifer resembling an abandoned
mine site. The numerical model’s formulations as well as using ensemble genetic
programming based surrogate models are described in Sect. 14.2 and the results are
presented and discussed in Sect. 14.3.
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14.2 Methodology

The methodology developed includes two main components. In the first step, the
simulation model for the flow and transport processes is described, and complex
chemical reactive transport process is simulated by the HGCH, a three-dimensional
coupled physical and chemical transport simulator, to realize the reactive con-
taminants behaviours is contaminated aquifers. The hydrogeochemical data and
boundary conditions at the illustrative study site are similar to an abandoned mine
site in Queensland, Australia. Trained ensemble GP based surrogate models are then
developed to approximately obtain concentrations of the chemical contaminants at
different times in specified locations while incorporating uncertainties in hydroge-
ological aquifer parameters like hydraulic conductivity. Comparison of the spatio-
temporal concentrations obtained as solution by solving the implemented numerical
three dimensional reactive contaminant transport simulation model (HGCH) and
those obtained using ensemble GP models are then presented to show the potential
applicability and the efficiency of using GP ensemble surrogate models under
aquifer uncertainties.

14.2.1 Simulation Model of Groundwater Flow
and Geochemical Transport

HYDROGEOCHEM 5.0 (HGCH), consisting of the numerical flow simulator and
physio-chemical transport simulator HGCH is a computer program that numerically
solves the three-dimensional groundwater flow and transport equations for a porous
medium. The finite-element method is used in this simulation model.

The general equations for flow through saturated–unsaturated media are obtained
based on following components: (1) fluid continuity, (2) solid continuity, (3) Fluid
movement (Darcy’s law), (4) stabilization of media, and (5) water compressibility
(Yeh et al. 1994). Following governing equation is used:
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V is the Darcy’s velocity (L/T) described as:

V D �K
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Where:
™: effective moisture content (L3/L3);
h: pressure head (L);
t: time (T);
z: potential head (L);
q: source or sink of fluid [(L3/L3)/T];
¡0: fluid density without biochemical concentration (M/L3);
¡: fluid density with dissolved biochemical concentration (M/L3);
¡*: fluid density of either injection (D¡*) or withdraw (D¡) (M/L3);
�0: fluid dynamic viscosity at zero biogeochemical concentration [(M/L)/T];
�: the fluid dynamic viscosity with dissolved biogeochemical concentrations

[(M/L)/T];
’0: modified compressibility of the soil matrix (1/L);
ß: modified compressibility of the liquid (1/L);
ne: effective porosity (L3/L3);
S: degree of effective saturation of water;
G: is the gravity (L/T2);
k: permeability tensor (L2);
ks: saturated permeability tensor (L2);
Kso: referenced saturated hydraulic conductivity tensor (L/T);
kr: relative permeability or relative hydraulic conductivity (dimensionless)
When combined with appropriate boundary and initial conditions, the above

equations are used to simulate the temporal-spatial distributions of the hydrological
variables, including pressure head, total head, effective moisture content, and
Darcy’s velocity in a specified study area.

The contaminant transport equations used in the HG model can be derived based
on mass balance and biogeochemical reactions (Yeh 2000). The general transport
equation using advection, dispersion/diffusion, source/sink, and biogeochemical
reaction as the major transport processes can be written as follows:
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Where
Ci: the concentration of the ith species in mole per unit fluid volume (M/L3);
�: the material volume containing constant amount of media (L3);
�: the surface enclosing the material volume � (L2);
n: the outward unit vector normal to the surface �;
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Ji: the surface flux of the ith species due to dispersion and diffusion with respect
to relative fluid velocity [(M/T)/L2];

™ri: the production rate of the ith species per unit medium volume due to all
biogeochemical reactions [(M/L3)/T];

Mi: the external source/sink rate of the ith species per unit medium volume
[(M/L3)/T];

M: the number of biogeochemical species;
Vi: the transporting velocity relative to the solid of the ith biogeochemical species

(L/T).

14.2.2 Genetic Programming Based Ensembles
Surrogate Model

GP models are used in this study to evolve surrogate models for approximately
simulating flow and transport processes in a contaminated mine site. Trained GP
models are developed using the simulated response of the aquifer to randomly
generated source fluxes. GP, a branch of genetic algorithms (Koza 1994), is an
evolutionary algorithm-based methodology inspired by biological evolution to find
computer programs that perform a user-defined task (Sreekanth and Datta 2011b).
Essentially, GP is a set of instructions and a fitness function to measure how well a
computer model has performed a task. The main difference between GP and genetic
algorithms is the representation of the solution. GP creates computer programs in
the lisp or scheme computer languages as the solution. Genetic algorithms create a
string of numbers that represent the solution.

The main operators applied in genetic programming as in evolutionary algo-
rithms are crossover and mutation. Crossover is applied on an individual by simply
replacing one of the nodes with another node from another individual in the
population. With a tree-based representation, replacing a node means replacing the
whole branch (Fig. 14.1). This adds greater effectiveness to the crossover operator.
The expressions resulting from crossover are very different from their initial parents.
Mutation affects an individual in the population. It can replace a whole node in
the selected individual, or it can replace just the node’s information. To maintain
integrity, operations must be fail-safe or the type of information the node holds must
be taken into account. For example, mutation must be aware of binary operation
nodes, or the operator must be able to handle missing values.

GP utilizes a set of input–output data which are generated randomly by using the
flow and contaminant transport simulation models. The numerical Simulation model
creates M number of out-put sets from M number of input sets, which is generated
by using random Latin Hypercube sampling in defined ranges. The performance
of each GP program is an evaluated formulation in terms of training, testing the
validation using the set of input–output patterns. The testing data evaluates the
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Fig. 14.1 Function
represented as a tree structure

model performance for new data using the fitness function obtained in the training
phase. Non-tree representations have been proposed and successfully implemented,
such as linear genetic programming which suits the more traditional imperative
languages (Banzhaf et al. 1998). The commercial GP software Discipulus (Francone
1998) performs better by using automatic induction of binary machine code. In the
proposed methodology, Discipulus GP software is used to solve and generate GP
models. Discipulus uses Linear Genetic Programming (LGP) which utilizes input
variables in line-by-line approach. This objective of this program is minimizing
difference in value between the output estimated by GP program on each pattern
and the actual outcome. The fitness objective functions are often absolute error or
minimum squared error. Almost two-thirds of the input–output data sets obtained
from the numerical simulation model are utilized for training and testing the GP
model. The remaining data sets are used to validate the GP models. The r-square
value shows the fitness efficiency to the GP models (Sreekanth and Datta 2010).

14.2.2.1 Performance Evaluation

The trained ensemble GP surrogate models are evaluated to verify the performance
of the surrogate models approximating flow and transport processes simulation
with reactive chemical species, under hydrogeological uncertainties. Input data
sets are generated randomly by Latin Hypercube sampling in defined ranges. The
aquifer hydrogeological uncertainties include uncertainties in estimating hydraulic
conductivity, water content and constant groundwater label in boundary conditions.
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14.2.3 Performance Evaluation of Developed Methodology

In order to evaluate the performance of the proposed methodology, ensemble GP
based surrogate models are utilized for an illustrative study area shown in Fig. 14.2.
The specified hydrogeologic conditions resemble a homogeneous and isotropic
aquifer. In order to evaluate the methodology, the ensemble GP surrogate models are
first trained using the sets of solution results obtained using the 3-D finite element
based flow and reactive transport simulation model. Once trained and tested, the GP
models are utilized for simulating the transport process in the study site. Then the
surrogate model solution results are compared with the actual numerical simulation
solution results.

The areal extent of the specified study area is 10,000 m2 with complex pollutant
sources including a point source and a distributed source. The spatial concentrations
are assumed to measure at different times at ten arbitrary observation well locations.
The thickness of the aquifer is specified as 50 m with anisotropic hydraulic
conductivity in the three directions. The boundaries of the study area are no-flow
for top and bottom sides while left and right sides of the aquifer have constant head
boundaries with specified hydraulic head values. The total head decreases from top
to bottom and left to right gradually. The aquifer system is shown in Fig. 14.2.
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Fig. 14.2 Illustrative study area (total head: A D 37 m, B D 40 m, C D 33 m, D D 30 m)
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As shown in Fig. 14.2, the dark blue area represent the contaminant sources S(i)
which include distributed and point sources. Concentration data from monitoring
well locations, shown as black rectangular points, are used to train, test and validate
the GP model formulations.

Table 14.1 shows dimensions, hydrogeological properties, and boundary condi-
tions of the study area which are utilized for numerical models to simulate ground-
water flow and chemical reactive transport processes. The synthetic concentration
measurement data used for the specified polluted aquifer facilitates evaluation of
the developed methodology. These synthetic concentration measurement data at
specified observation locations are obtained by solving the numerical simulation
model with known pollution sources, boundary conditions, initial conditions,
and hydrogeologic as well as geochemical parameter values. In the incorporated
scenario, copper (Cu2C), Iron (Fe2C) and sulphate (SO42�) are specified as the
chemical species in the pollutant sources. The associated chemical reactions are
listed in Table 14.2.

Nine different scenarios are defined based on different hydraulic conductivity
and boundary conditions with maximum 10 % differences between maximum

Table 14.1 Aquifer’s properties

Aquifer parameter Unit Value

Dimensions (length * width * thickness) study area m * m * m 100 * 100 * 50
Number of nodes 387
Number of elements 1432
Hydraulic conductivity, Kx, Ky, Kz m/d 10.0, 5.0, 3.0
Effective porosity, � 0.3
Longitudinal dispersivity, ’L m/d 10.0
Transverse dispersivity, ’T m/d 6.0
Horizontal anisotropy 1
Initial contaminant concentration Mole/lit 0–5
Diffusion coefficient 0

Table 14.2 Typical chemical reactions during the contaminant trans-
port process

Chemical reaction equations Constant rate (Log k)a

Equilibrium reactions
(1) Cu2C C H2O $ Cu(OH)C C HC �9.19
(4) Cu2C C SO4

2� $ CuSO4 2.36
(7) Fe2C C SO4

2� $ FeSO4 2.39
(9) 4Fe2C C 4HC $ 4Fe3C C 2H2O 8.5
(14) Fe3C C SO4

2� $ FeSO4
C 4.05

(15) Fe3C C SO4
2� C HC $ FeHSO4

2C 2.77
Kinetic reactions
(17) FeOOH(s) C 3HC $ Fe3C C 3H2O Kf D 0.07

aConstant rates are taken from Ball and Nordstrom (1992)
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and minimum values, and with the mean value assumed as the actual value for
simulating the synthetic concentration observation (N11, N12, : : : , N21, : : : N33).
First digit indicates an index for hydraulic conductivity values and second one
represents an index for the hydraulic head as boundary condition. 1 illustrates
parameters with 5 % less than the actual definition as well as 2 and 3 shows the
exact data and 5 % more than actual parameters in illustrative aquifer respectively.

14.2.3.1 Generation of Training and Testing Patterns
for the Ensemble GP Models

The total time of source activities is specified as 800 days, subdivided into eight
similar time intervals of 100 days each. The actual pollutant concentration from
each of the sources is presumed to be constant over each stress period. The pollutant
concentration of copper, iron as well as sulphate in the pit is represented as Cpit(i),
Fepit(i) and Spit(i) respectively, where i indicates the stress period number, and also
C(i), Fe(i) and S(i) represent copper, iron and sulphate concentrations in the point
sources, respectively at different time steps.

An overall of sixteen concentration values for each contaminant are considered
as explicit variables in the simulation model. The concentration measurements are
simulated for a time horizon of 800 days since the start of the simulation. The pollu-
tant concentration are assumed to be the resulting concentrations at the observation
wells at every 100 days interval and this process is continued at all the observation
locations till t D 800 days. Only for this methodology evaluation purpose, these
concentration measurements are not obtained from field data, but are synthetically
obtained by solving the numerical simulation model for specified initial conditions,
boundary conditions and parameter values. In actual application these measurement
data need to be simulated using a calibrated flow and contaminant simulation model.
However, using field observations for calibration, and then for evaluation of a
proposed methodology results in uncertain evaluation results as the quality of the
available measurement data cannot be quantified most of the time. Therefore as
often practiced, synthetic aquifer data is used for this evaluation of the methodology
proposed.

The comprehensive three-dimensional numerical simulation model was used to
simulate the aquifer flow and chemical reactive transport processes due to complex
pollutant sources in this study area. Different random contaminant source fluxes
as well as different realization of boundary conditions and hydraulic conductivities
were generated using Latin hypercube sampling. For random generation purpose,
10 % initial aquifer properties are considered as Maximum error for the uncer-
tainties of aquifer parameters. HGCH was utilized to obtain the concentrations
resulting from each of these concentration patterns. The simulated concentration
measured data at monitoring network and the corresponding concentration of
contaminants at sources form the input–output pattern. Totally, 8000 concentration
patterns for all the ten concentration observation locations were used in this
evaluation. Eight input–output patterns were defined based on different time steps.
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Genetic programming models were obtained using each of these data sets to create
ensemble GP based surrogate models. Each data set was split into halves for training
and testing the genetic programming-based surrogate models.

Surrogate models were developed for simulating pollutant concentrations at the
observation locations at different times resulting from the specified pollutant sources
at different times under hydrogeological uncertainties. All the GP models used a
population size of 1000, and mutation frequency of 95. The Discipulus, commercial
Genetic Programming software, was used to develop the surrogate models. The
model was developed using default parameters values of Discipulus. The GP fitness
function was the squared deviation between GP model generated and actually
simulated concentration values at the observation locations and times.

14.3 Evaluation Results and Discussion

The flow and concentration simulation results for the study area obtained using
the numerical HGCH simulation model are shown in Figs. 14.3, 14.4, 14.5, and
14.6. The flow movement, total head contours in top layer and also velocity vectors
are shown in Figs. 14.3, 14.4 and 14.5 respectively. Figures 14.3, 14.4 and 14.5
show the hydraulic heads for flow. The contours show a gentle slope from point
B towards D. Figure 14.6 shows the copper concentration distribution in the study
area which shows the complex transport processes with reactive chemical species.

Fig. 14.3 3-D view of hydraulic head distribution
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Fig. 14.4 Hydraulic head contours (m)

Fig. 14.5 Velocity vectors of groundwater movement
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Fig. 14.6 Copper concentration (mole/lit) distribution in the study area

The concentration of sulphate remains almost the same while iron concentration is
lower in groundwater. Based on pH changes the iron can react and cease to be in
solute phase, thus removed form groundwater.

The results obtained using the developed ensemble genetic programming based
surrogate models for approximate simulation of pollutant concentrations are com-
pared with the numerical simulation results obtained using the HGCH. Nine
different scenarios are considered. These nine scenarios are characterized by
different hydraulic conductivity value realizations and hydraulic head boundary
conditions. Each randomized within 10 (˙5)% errors in the mean values (assumed
same as the actual values) for hydrogeological parameters and boundary condi-
tions. Incorporation of these scenarios together with the Latin Hypercube based
randomization to achieve the efficiency of ensemble GP based surrogate models.
The uncertainties in the parameter values of the scenarios are within the range
of input data which are used to create the ensemble GP models. Figure 14.7a–c
illustrate these comparison results in which one scenario for one particular hydraulic
conductivity is selected for obtaining simulated output data from HGCH model at
each monitoring networks. Each time step is marked on the x-axis. Each of the bars
corresponds to contaminant concentration in each well, obtained by HGCH and
ensemble GP models.

Figure 14.7 shows that the results obtained from the ensemble GP based
surrogate models are very close to the simulated results obtained using the numerical
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Fig. 14.7 Comparison of ensemble GP model solutions with HGCH simulation results for
specified parameter values defined by (a) lower bound on uncertain aquifer parameter values,
(b) actual or mean parameters values and (c) upper bound on aquifer parameter values (GW1:
concentration data at well number 1 based on GP formulation, HCHW1: concentration data at well
number 1 based on HGCH simulation)
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Fig. 14.8 Normalized error for all scenarios under uncertainties

simulation model, and also incorporates der uncertainties. Figure 14.8 shows the
summation of normalized error at each of the observation locations for each
monitoring network averaged over the 8 time periods. It is noted that, the ensemble
GP models provide relatively accurate results for concentrations at observation
locations. Although the boundary conditions are different, the normalized errors for
all the three scenarios with same hydraulic conductivity are almost the same. The
most important advantage of using the developed GP models is that the numerical
simulation model requires long computational time usually several hours for a
typical study area, while ensemble genetic programming surrogate models deliver
the solution results in typically fraction of a second. Also the ensemble GP models
directly incorporate hydrogeologic uncertainties in the modelled system. Therefore
the computational advantage of using the ensemble GP for approximate simulation
of complex reactive transport processes in aquifers is enormous if the errors in
simulation are within acceptable range. Especially, this computational time saving
could be critical in development and solution of linked simulation-optimization
models (Datta et al. 2014) for management of contaminated aquifers.

14.4 Conclusion

Although surrogate models are widely used in solving groundwater management
problems replacing the actual complex numerical models, often the main issue is the
accuracy and reliability of surrogate model predictions under input data uncertain-
ties. This study developed a methodology based on ensemble GP surrogate models
to substitute numerical simulation for approximate simulation of the chemically
reactive multiple species transport process in a contaminated aquifer resembling
the geochemical characteristics of an abandoned mine site. The evaluation results
show the applicability of this methodology to approximating the complex reactive
transport process in an aquifer. The developed ensemble GP models result in
increasing the computation efficiency and computational feasibility, while providing
acceptable results.
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The linked simulation-optimization approach is an effective method to identify
source characterization and monitoring network design under uncertainties in
complex real life scenarios which important for robust remediation strategies and
groundwater management. The main difficulty with linked simulation-optimization
models generally is the required huge computation time, due to iterative repeated
solution of the numerical flow and transport simulation models. To address this,
ensemble GP based surrogate models may be used to approximate the numerical
simulation model under uncertainties, in the linked simulation-optimization model.
Ensemble GP based surrogate models can increase efficiency and feasibility of
developing optimal management strategies for groundwater management in geo-
chemically complex contaminated aquifers such as mine sites, while at the same
time incorporating uncertainties in defining the hydrogeologic system. The evalu-
ations results show that it is feasible to use ensemble GP models as approximate
simulators of complex hydrogeologic and geochemical processes in a contaminated
groundwater aquifer incorporating uncertainties in describing the physical system.
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