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Foreword

In the past two decades, artificial intelligence algorithms have proved to be
promising tools for solving a multitude of tough scientific problems. Their success
is due, in part, to the elegant manner in which they avoid the sort of handicaps
that often plague mathematical programming-based tools, such as smooth and
continuous objective functions. Thus, globally optimal (or close approximations of)
design can be achievable with a finite and reasonable number of search iterations.

One of the most exciting of these methods is Genetic Programming (GP),
inspired by natural evolution and the Darwinian concept of “Survival of the Fittest”.
GP’s ability to evolve computer programs has seen it enjoy a veritable explosion of
use in the last 10 years in almost every area of science and engineering.

This handbook brings together some of the most exciting new developments in
key applications of GP and its variants, presented in a hands-on manner to facilitate
researchers tackle similar applications and even use the same data for their own
experiments.

The handbook is divided into four parts, starting with review chapters to quickly
get readers up to speed, before diving into specialized applications in Part II. Part III
focuses on hybridized systems, which marry GP to other technologies, and Part IV
wraps up the book with a detailed look at some recent GP software releases.

The handbook serves as an excellent reference providing all the details required
for a successful application of GP and its branches to challenging real-world
problems. Therefore, for most chapters, the used data are either available as
supplementary materials or publicly accessible.

East Lansing, MI, USA Amir H. Gandomi
East Lansing, MI, USA Amir H. Alavi
Limerick, Ireland Conor Ryan
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Overview of Genetic Programming

Applications



Chapter 1
Graph-Based Evolutionary Art

Penousal Machado, João Correia, and Filipe Assunção

1.1 Introduction

The development of an evolutionary art system implies two main considerations:
(1) the design of a generative system that creates individuals; (2) the evaluation of
the fitness of such individuals (McCormack 2007). In the scope of this chapter we
address both of these considerations.

Influenced by the seminal work of Sims (1991), the vast majority of evolutionary
art systems follows an expression-based approach: the genotypes are trees encoding
symbolic expressions and the phenotypes—i.e., images—are produced by executing
the genotypes over a set of x, y values. While this approach has been proven fruitful,
it has several shortcomings, most notably: (1) although it is theoretically possible
to evolve any image (Machado and Cardoso 2002), in practice, expression-based
evolutionary art tends to produce abstract, mathematical images; (2) due to the
representation, the images lack graphic elements that are typically present in most
forms of art, such as lines, strokes, clearly defined shapes and objects; (3) creating an
appealing image by designing a symbolic expression by hand, or even understanding
an evolved expression, is a hard endeavour.

Extending previous work (Machado et al. 2010; Machado and Nunes 2010),
we describe an approach that overcomes these limitations and introduces new
possibilities. Inspired on the work of Stiny and Gips (1971), who introduced
the concept of shape grammars, we explore the evolution of context free design
grammars (CFDGs) (Horigan and Lentczner 2009), which allow the definition of

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-3-319-
20883-1_1) contains supplementary material, which is available to authorized users.
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complex families of shapes through a compact set of production rules. As such,
in our approach, each genotype is a well-constructed CFDG. Internally, and for
the purposes of recombination and mutation, each genotype is represented as
a hierarchical directed graph. Therefore, the evolutionary engine deviates from
traditional tree-based Genetic Programming (GP) and adopts graph-based crossover
and mutation operators. The details of the representation are presented in Sect. 1.3,
while Sect. 1.4 describes the genetic operators.

In Sect. 1.5 we introduce several fitness assignment schemes based on evolution-
ary art literature. Then, in the same Section, we describe how we combine several
of these measures in a single fitness function.

We conduct several tests to assess the adequacy of the system and deter-
mine reasonable experimental settings. In particular, we focus on the impact of
unexpressed code in the evolutionary process, presenting and analyzing different
options for handling these portions of code. Furthermore, we study how non-
deterministic mapping between genotypes and phenotypes influences the robustness
of the evolved individuals. These experiments are reported in Sect. 1.6. Based on the
results of these tests, we conduct experiments using each of the previously defined
fitness functions individually. The description and analysis of the experimental
results is presented in Sect. 1.7. The analysis of the results highlights the type of
images favored by each fitness function and the relations among them. We then
proceed by presenting results obtained when using a combination of functions to
guide fitness (Sect. 1.7.2). The analysis of these results is focused on the ability of
the system to create imagery that simultaneously addresses the different components
of the fitness functions. We finalize by drawing overall conclusions and identifying
future work.

1.2 State of the Art

Although there are noteworthy expression-based evolutionary art systems (e.g. Sims
(1991); World (1996); Unemi (1999); Machado and Cardoso (2002); Hart (2007)),
systems that allow the evolution of images that are composed of a set of distinct
graphic elements such as lines, shapes, colors and textures are extremely scarce.

Among the exceptions to the norm, we can cite the work of: Baker and Seltzer
(1994), who uses a Genetic Algorithm (GA) operating on strings of variable size
to evolve line drawings; den Heijer and Eiben (2011) who evolve Scalable Vector
Graphics (SVG), manipulating directly SVG files through a set of specifically
designed mutation and recombination operators. Unlike GP approaches, where
the representation is procedural, the representations adopted in these works are,
essentially, descriptive—in the sense that the genotypes describe the elements of
the images in a relatively directed way instead of describing a procedure, i.e.
program, that once executed or interpreted produces the image as output.

In addition to our early work on this topic (Machado et al. 2010; Machado
and Nunes 2010), there are two examples of the use of CFDG for evolutionary
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art purposes. Saunders and Grace (2009) use a GA to evolve parameters of
specific CFDG hand-built grammars. As the name indicates, CFDG Mutate (Borrell
2014) allows the application of mutation operators to CFDGs. Unfortunately the
system only handles deterministic grammars (see Sect. 1.3) and does not provide
recombination operators.

O’Neill et al. (2009) explore the evolution of shape grammars (Stiny and Gips
1971) using Grammatical Evolution (O’Neill and Ryan 2003) for design purposes,
generating 2D shapes (O’Neill et al. 2009) and 3D structures (O’Neill et al. 2010).
Although they do not use CFDGs, their work is, arguably, the one that is most
similar in spirit to the described in this Chapter, due to the adoption of a procedural
representation based on grammars and a GP approach.

1.3 Representation

Context Free (Horigan and Lentczner 2009) is a popular open-source application
that renders images which are specified using a simple language entitled CFDG (for
a full description of CFDG see Coyne (2014)). Although the notation is different
from the one used in formal language theory, in essence, a CFDG program is an
augmented context free grammar, i.e., a 4-tuple: .V; †; R; S/ where:

1. V is a set of non-terminal symbols;
2. † is a set of terminal symbols;
3. R is a set of production rules that map from V to .V [†/�;
4. S is the initial symbol.

Figure 1.1 depicts the CFDG used to illustrate our description. Programs are
interpreted by starting with the S symbol (in this case S D Edera) and proceeding
by the expansion of the production rules in breath-first fashion. Predefined †

symbols call drawing primitives (e.g., SQUARE). CFDG is an augmented context
free grammar: it takes parameters that produce semantic operations (e.g., s produces
a scale change). Program interpretation is terminated when there are no V symbols
left to expand, when a predetermined number of steps is reached, or when the
rendering engine detects that further expansion does not induce changes to the image
(Machado et al. 2010).

Like most CFDGs, the grammar depicted in Fig. 1.1 is non-deterministic: several
production rules can be applied to expand the symbols Ciglio and Ricciolo. When
several production rules are applicable one of them is selected randomly and the
expansion proceeds. Furthermore, the probability of selecting a given production
may be specified by indicating a weight (e.g., 0:08). If no weight is specified a
default value of 1 is assumed. The non-deterministic nature of CFDGs has profound
implications: each CFDG implicitly defines a language of images produced using
the same set of rules (see Fig. 1.2). Frequently, these images share structural and
aesthetic properties. One can specify the seed used by the random number generator
of the grammar interpreter, which enables the replicability of the results.
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Fig. 1.1 On the left, a CFDG adapted from www.contextfreeart.org/gallery/view.php?id=165; On
the right, the same CFDG represented as a graph (the labels of the edges were omitted for the sake
of clarity)

Fig. 1.2 Examples of images produced by the CFDG depicted in Fig. 1.1

In the context of our evolutionary approach each genotype is a well-constructed
CFDG grammar. Phenotypes are rendered using Context Free. To deal with
non-terminating programs a maximum number of expansion steps is set. The
genotypes are represented by directed graphs created as follows:

1. Create a node for each non-terminal symbol. The node may represent a single
production rule (e.g., symbol Edera of Fig. 1.1) or encapsulate the set of all
production rules associated with the non-terminal symbol (e.g., symbols Ciglio
and Ricciolo of Fig. 1.1);

2. Create edges between each node and the nodes corresponding to the non-
terminals appearing in its production rules (see Fig. 1.1);

3. Annotate each edge with the corresponding parameters (e.g., in Fig. 1.1 the edges
to Pelo possess the label ‘{r 5 hue 200 sat 0.5}’).

www.contextfreeart.org/gallery/view.php?id=165
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1.4 Genetic Operators

In this Section we describe the genetic operators designed to manipulate the graph-
based representation of CFDGs, namely: initialization, mutation and crossover.

1.4.1 Random Initialization

The creation of the initial population for the current evolutionary engine is of huge
importance, being responsible for generating the first genetic material that will be
evolved through time. In our previous works on the evolution of CFDGs the initial
population was supplied to the evolutionary engine: the first population was either
composed of human-created grammars (Machado and Nunes 2010) or of a single
minimal grammar (Machado et al. 2010). Although both those options have merit,
the lack of an initialization procedure for the creation of a random population of
CFDGs was a limitation of the approach.

In simple terms, the procedure for creating a random CFDG can be described as
follows: we begin by randomly determining the number of non-terminal symbols
and the number of production rules for each of the symbols (i.e. the number of
different options for its expansion). Since this defines the nodes of the graph,
the next step is the random creation of connections among nodes and calls to
non-terminal symbols. The parameters associated with the calls to terminal and non-
terminal symbols are also established randomly. Finally, once all productions have
been created, we randomly select a starting node and background color. Algorithm 1
details this process, which is repeated until the desired number of individuals is
reached. Figure 1.3 depicts a sample of a random initial population created using
this method.

1.4.2 Crossover Operator

The crossover operator used for the experiments described in this Chapter is similar
to the one used in our previous work on the same topic (Machado et al. 2010;
Machado and Nunes 2010). The rational was to develop a crossover operator that
would promote the meaningful exchange of genetic material between individuals.
Given the nature of the representation, this implied the development of a graph-
based crossover operator that is aware of the structure of the graphs being
manipulated. The proposed operator can be seen as an extension of the one presented
by Pereira et al. (1999). In simple terms, this operator allows the exchange of
subgraphs between individuals.

The crossover of the genetic code of two individuals, a and b, implies: (1)
selecting one subgraph from each parent; (2) swapping the nodes and internal edges
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Algorithm 1 Random initialization of an individual
procedure RANDOMINITIALIZATION

terminal set of terminal symbols
minv; maxv  minimum, maximum number of non-terminal symbols
minp; maxp  minimum, maximum number of production rules per non-terminal
minc; maxc  minimum, maximum number of calls per production
nonterminal RandomlyCreateNonTerminalSet.minv ; maxv/

for all V 2 nonterminal do
numberofproductions random.minp; maxp/

for i 1; numberofproductions do
productionrule NewProductionRule.V/

numberofcalls random.minc ; maxc/

for j 1; numberofcalls do
if random.0; 1/ < probt then

productionrule:InsertCallTo.RandomlySelect.terminal//
else

productionrule:InsertCallTo.RandomlySelect.nonterminal//
end if
productionrule:RandomlyInsertProductionRuleParameters./

end for
end for

end for
individual:setProductionRules.productionrules/
individual:RandomlySelectStartShape.nonterminal/
individual:RandomlyCreateBackgroundColor./

end procedure

Fig. 1.3 Examples of phenotypes from a randomly created initial population
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of the subgraphs, i.e., edges that connect two subgraph nodes; (3) establishing a
correspondence between nodes; (4) restoring the outgoing and incoming edges, i.e.,
respectively, edges from nodes of the subgraph to non-subgraph nodes and edges
from non-subgraph nodes to nodes of the subgraph.

Subgraph selection—randomly selects for each parent, a and b, one crossover
node, va and vb, and a subgraph radius, ra and rb. Subgraph sra is composed
of all the nodes, and edges among them, that can be reached in a maximum of ra

steps starting from node va. Subgraph srb is defined analogously. Two methods
were tested for choosing va and vb, one assuring that both va and vb are in the
connected part of the graph and one without restrictions. The radius ra and rb

were randomly chose being the maximum allowed value the maximum depth of
the graph.

Swapping the subgraphs—swapping sra and srb consists in replacing sra by srb

(and vice-versa). After this operation the outgoing and the incoming edges are
destroyed. Establishing a correspondence between nodes repairs these connec-
tions.

Correspondence of Nodes—let sraC1 and srbC1 be the subgraphs that would be
obtained by considering a subgraph radius of raC 1 and rbC 1 while performing
the subgraph selection. Let msta and mstb be the minimum spanning trees (MSTs)
with root nodes va and vb connecting all sraC1 and srbC1 nodes, respectively.
For determining the MSTs all edges are considered to have unitary cost. When
several MSTs exist, the first one found is the one considered. The correspondence
between the nodes of sraC1 and srbC1 is established by transversing msta and mstb,
starting from their roots, as described in Algorithm 2.

Restoring outgoing and incoming edges—the edges from a … sra to sra are
replaced by edges from a … srb to srb using the correspondence between the nodes
established in the previous step (e.g. the incoming edges to va are redirected to
vb, and so on). Considering a radius of ra C 1 and rb C 1 instead of ra and rb in
the previous step allows the restoration of the outgoing edges. By definition, all
outgoing edges from sa and sb link to nodes that are at a minimum distance of
ra C 1 and rb C 1, respectively. This allows us to redirect the edges from sb to b
… sb to a … sa using the correspondence list.

1.4.3 Mutation Operators

The mutation operators were designed to attend two basic goals: allowing the
introduction of new genetic material in the population and ensuring that the search
space is fully connected, i.e., that all of its points are reachable from any starting
point through the successive application of mutation operators. This resulted in the
use of a total of ten operators, which are succinctly described on the following
paragraphs.
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Algorithm 2 Transversing the minimum spanning trees of two subgraphs
procedure TRANSVERSE(a, b)

setcorrespondence.a; b/

mark.a/

mark.b/

repeat
if unmarked.a:descendants/ ¤ NULL then

nexta  RandomlySelect.unmarked.a:descendants//
else if a:descendants ¤ NULL then

nexta  RandomlySelect.a:descendants/
else

nexta  a
end if
**** do the same for nextb ****
transverse.nexta ; nextb/

until unmarked.a:descendants/ D unmarked.b:descendants/ D NULL
end procedure

Startshape mutate—randomly selects a non-terminal as starting symbol.
Replace, Remove or Add symbol—when applied to a given production rule, these

operators: replace one of the present symbols with a randomly selected one;
remove a symbol and associated parameters from the production rule; add a
randomly selected symbol in a valid random position. Notice that these operators
are applied to terminal and non-terminal symbols.

Duplicate, Remove or Copy & Rename rule—these operators: duplicate a pro-
duction rule; remove a production rule, updating the remaining rules when
necessary; copy a production rule, assigning a new randomly created name to
the rule and thus introducing a new non-terminal.

Change, Remove or Add parameter—as the name indicates, these operators add,
remove or change parameters and parameter values. The change of parameter
values is accomplished using a Gaussian perturbation.

1.5 Fitness Assignment

Fitness assignment implies interpreting and rendering the CFDG. This is accom-
plished by calling the Context Free (Horigan and Lentczner 2009) application.
Grammars with infinite recursive loops are quite common. As such, it was necessary
to establish an upper bound to the number of steps that a CFDG is allowed to make
before its expansion is considered complete. The original version of Context Free
only allows the definition of an upper bound for the number of drawn shapes. This
is insufficient for our goals, because it allows endless loops, provided that no shapes
are drawn. As such, it was necessary to introduce several changes to the source
code of Context Free (which is open source) to accommodate our needs. When
calling Context Free we give as input (1) the CFDG to be interpreted and rendered,
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(2) the rendering size, (3) the maximum number of steps (4) the rendering seed. We
receive as output an image file. The maximum number of steps was set to 100;000

for all the experiments described in this Chapter. The “rendering seed” defines the
seed of the random number generator used by Context Free during the expansion
of the CFDGs. The rendering of the same CFDG using different rendering seeds
can, and often does, result in different images (see Sect. 1.3). We performed tests
using fixed and randomly generated rendering seeds. The results of those tests will
be described in Sect. 1.6.

We use six different hardwired fitness functions based on evolutionary art
literature and conduct tests using each of these functions to guide evolution. In a
second stage, we perform runs using a combination of these measures to assign
fitness. In the reminder of this Section we describe each of the functions and the
procedure used to combine them.

1.5.1 JPEG Size

The image returned by Context Free is encoded in JPEG format using the maximum
quality settings. The size of the JPEG file becomes the fitness of the individual.
The rationale is that complex images, with abrupt transitions of color are harder to
compress and hence result in larger file sizes, whereas simple images will result in
small file sizes (Machado and Cardoso 2002; Machado et al. 2007). Although this
assignment scheme is rather simplistic, it has the virtue of being straightforward to
implement and yield results that are easily interpretable. As such, it was used to
assess the ability of the evolutionary engine to complexify and to establish adequate
experimental settings.

1.5.2 Number of Contrasting Colors

As the name indicates, the fitness of an individual is equal to the number of
contrasting colors present in the image returned by Context Free. To calculate
the number of contrasting colors we: (1) reduce the number of colors using a
quantization algorithm; (2) sort all colors present in the image by descending
order of occurrence; (3) for all the colors, starting from the most frequent ones,
compute the Euclidean distance between the color and the next one in the ordered
list, if it is lower than a certain threshold remove it from the group; (4) return
as fitness the number of colors present on the list when the procedure is over.
In these experiments, the Red, Green, Blue (RGB) color space was adopted. We
quantize the image to 256 colors using the quantization algorithm from the graphics
interchange format (GIF) format (Incorporated 1987). The threshold was set to 1 %
of the maximum Euclidean distance between colors (2553 for the RGB color space).
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1.5.3 Fractal Dimension, Lacunarity

The use of fractal dimension estimates in the context of computational aesthetic
has a significant tradition (Spehar et al. 2003; Mori et al. 1996). Although not
as common, lacunarity measures have also been used (Bird et al. 2008; Bird and
Stokes 2007). For the experiments described in this Chapter the fractal dimension
is estimated using the box-counting method and the � lacunarity value estimated
by the Sliding Box method (Karperien 1999–2013). By definition, the estimation
of the fractal dimension and lacunarity requires identifying the “object” that will
be measured. Thus, the estimation methods take as input a binary image (i.e. black
and white), where the white pixels define the shape that will be measured, while
the black pixels represent the background. In our case, the conversion to black and
white is based on the CFDG background primitive. All the pixels of the same color
as the one specified by the CFDG background primitive are considered black, and
hence part of the background, the ones that are of a different color are considered
part of the foreground (see Fig. 1.4). Once the estimates are computed we assign
fitness according to the proximity of the measure to a desired value, as follows:

fitness D 1

1C jtargetvalue � observedvaluej (1.1)

We use the target values of 1:3 and 0:90 for fractal dimension and lacunarity,
respectively. These values were established empirically by calculating the fractal
dimension and lacunarity of images that we find to have desirable aesthetic qualities.

Fig. 1.4 Example of the transformation from the input color image (left image) to the back-
ground/foreground image (right image) used for the Fractal Dimension and Lacunarity estimates
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1.5.4 Complexity

This fitness function, based on the work of Machado and Cardoso (2002); Machado
et al. (2007, 2005), assesses several characteristics of the image related with
complexity. In simple terms, the rationale is valuing images that constitute a
complex visual stimulus but that are, nevertheless, easy to process. A thorough
discussion of the virtues and limitations of this approach is beyond the scope of
this Chapter, as such, we focus on practical issues pertaining its implementation.
The approach relies on the notion of compression complexity, which is defined as
calculated using the following formula:

C.i; scheme/ D RMSE.i; scheme.i// � s.scheme.i//

s.i/
(1.2)

where i is the image being analysed, scheme is a lossy image compression scheme,
RMSE stands for the root mean square error, and s is the file size function.

To estimate the complexity of the visual stimulus (IC.i/) they calculate the
complexity of the JPEG encoding of the image (i.e. IC.i/ D C.i; JPEG/). The
processing complexity (PC.i/) is estimated using a fractal (quadratic tree based)
encoding of the image (Fisher 1995). Considering that as time passes the level
of detail in the perception of the image increases, the processing complexity is
estimated for different moments in time (PC.t0; i/, PC.t1; i/) by using fractal image
compression with different levels of detail. In addition to valuing images with
high visual complexity and low processing complexity, the approach also values
images where PC is stable for different levels of detail. In other words, according
to this approach, an increase in description length should be accompanied by an
increase in image fidelity. Taking all of these factors into consideration, Machado
and Cardoso (2002); Machado et al. (2007, 2005) propose the following formula for
fitness assignment:

IC.i/a

.PC.t0; i/ � PC.t1; i//b � .
PC.t1;i/�PC.t0;i/

PC.t1;i/ /c
(1.3)

where a, b and c are parameters to adjust the importance of each component.
Based on previous work (Machado et al. 2005), the ability of the evolutionary

engine to exploit the limitations of the complexity estimates was minimized by
introducing limits to the different components of this formula, as follows:8<:

IC.i/ ! max.0; ˛ � jIC.i/� ˛j/
PC.t0; i/ � PC.t1; i/ ! � C j.PC.t0; i/ � PC.t1; i//� � j
PC.t1; i/� PC.t0; i/! ı C j.PC.t1; i/� PC.t0; i// � ıj

(1.4)

where ˛, � and ı operate as target values for IC.i/, .PC.t0; i/ � PC.t1; i/ and
PC.t1; i/ � PC.t0; i/, which were set to 6, 24 and 1:1, respectively. These values
were determined empirically through the analysis of images that we find to be
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desirable. Due to the limitations of the adopted fractal image compression scheme
this approach only deals with greyscale images. Therefore, all images are converted
to greyscale before being processed.

1.5.5 Bell

This fitness function is based on the work of Ross et al. (2006) and relies on the
observation that many fine-art works exhibit a normal distribution of color gradients.
Following Ross et al. (2006) the gradients of each color channel are calculated, one
by one, in the following manner:

jrri;jj2 D .ri;j � riC1;jC1/2 C .riC1;j � ri;jC1/2

d2
(1.5)

where ri;j is the image pixel intensity values for position .i; j/ and d is a scaling
factor that allows to compare images of different size; this value was set to 0:1 % of
half the diagonal of the input image (based on Ross et al. (2006)). Then the overall
gradient Si;j is computed as follows:

Si;j D
q
jrri;jj2 C jrgi;jj2 C jrbi;jj2 (1.6)

Next, the response to each stimulus Ri;j is calculated:

Ri;j D log
Si;j

S0

(1.7)

Where S0 is a detection threshold (set to 2 as indicated in Ross et al. (2006)). Then
the weighted mean (�) and standard deviation (�2) of the stimuli are calculated as
follows:

� D
P

i;j Ri;j
2P

i;j Ri;j
(1.8)

�2 D
P

i;j Ri;j.Ri;j � �/2P
i;j Ri;j

(1.9)

At this step we introduce a subtle but important change to (Ross et al. 2006)
work: we consider a lower bound for the �2, which was empirically set to 0.7. This
prevents the evolutionary engine to converge to monochromatic images that, due
to the use of a small number of colors, trivially match a normal distribution. This
change has a profound impact in the experimental results, promoting the evolution
of colorful images that match a normal distribution of gradients.



1 Graph-Based Evolutionary Art 15

Using �, �2 and the values of Ri;j a frequency histogram with a bin size of
�=100 is created, which allows calculating the deviation from normality (DFN). The
DFN is computed using qi, which is the observed probability and pi, the expected
probability considering a normal distribution. Ross et al. (2006) uses:

DFN D 1000 �
X

pi log
pi

qi
(1.10)

However, based on the results of preliminary runs using this formulation, we
found that we consistently obtained better results using:

DFNs D 1000 �
X

.pi � qi/
2 (1.11)

Which measures the squares of the differences between expected and observed
probabilities. Therefore, in the experiments described in this Chapter Bell fitness is
assigned according to the following formula: 1=.1C DFNs/.

1.5.6 Combining Different Functions

In addition to the tests where the fitness functions described above were used
to guide evolution, we conducted several experiments where the goal was to
simultaneously maximize several of these functions. This implied producing a
fitness score from multiple functions, which was accomplished using the following
formula:

combinedfitness.i/ D
Y

j

log .1C fj.i// (1.12)

where i is the image being assessed and fj refers to the functions being considered.
Thus, to assign fitness based on the Complexity and Bell functions we compute:
log.1 C Complexity.i// � log.1 C Bell.i//. By adopting logarithmic scaling and
a multiplicative fitness function we wish to promote the discovery of images that
maximize all the measures being considered in the experiment.

1.6 Configuring the Evolutionary Engine

The evolutionary engine has several novel characteristics that differentiate it from
conventional GP approaches. Therefore, it was necessary to conduct a series of tests
to assess the adequacy of the engine for the evolution of CFDGs and to determine a
reasonable set of configuration parameters. These tests were conducted using JPEG
Size as fitness function and allowed us to establish the experimental parameters
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Table 1.1 Parameters used for the experiments described in this chapter

Initialization (see Algorithm 1) Values

min, max number of symbols (1,3)

min, max number of rules (1,3)

min, max calls per production rule (1,2)

Evolutionary Engine Values

Number of runs 30

Number of generations 100

Population size 100

Crossover probability 0.6

Mutation probability 0.1

Tournament size 10

Elite size Top 2 % of the population
CFDG Parameters Values

Maximum number expansion steps 100,000

Limits of the geometric transformations rotate 2 [0,359], size 2 [-5,5]

x 2 [-5,5], y 2 [-5,5], z 2 [-5,5]

flip 2 [-5,5], skew 2 [-5,5]

Limits of the color transformations hue 2 [0,359], saturation 2 [-1,1]

brightness 2 [-1,1], alpha 2 [-1,1]

Terminal symbols SQUARE, CIRCLE, TRIANGLE

summarized in Table 1.1, which are used throughout all the experiments described
herein. In general, the results show that the engine is not overly sensitive to the
configuration parameters, depicting an adequate behavior for a wide set of parameter
configurations. Although the optimal parameters settings are likely to depend on the
fitness function, a detailed parametric study is beyond the scope of this Chapter.
Therefore, we did not attempt to find an optimal combination of parameters.

The use of a graph-based representation and genetic operators is one of the
novel aspects of our approach. The use of such operators may introduce changes
to the graph that may make some of the nodes (i.e. some production variables)
unreachable from the starting node. For instance, a mutation of the node Edera of
Fig. 1.1 may remove the call to node Ciglio making most of the graph unreachable.
Although, unreachable nodes have no impact on the phenotype, their existence may
influence the evolutionary process. On one hand they may provide space for neutral
variations and promote evolvability (unreachable nodes may become reattached by
subsequent genetic operators), on the other they may induce bloat since they allow
protection from destructive crossover. To study the impact of unreachable nodes in
the evolutionary process we considered three variations of the algorithm:

Unrestricted—the crossover points are chosen randomly;
Restricted—the crossover points are chosen randomly from the list of reachable
nodes of each parent;
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Fig. 1.5 Best and average fitness values for different implementations of the genetic operators
using JPEG Size as fitness function. The results are averages of 30 independent runs

Restricted with Cleaning—in addition to enforcing the crossover to occur in a
reachable region of the graph, after applying crossover and mutation all unreachable
nodes are deleted.

Figure 1.5 summarizes the results of these tests depicting the best and average
fitness for each population. As it can be observed, although the behaviors of the three
different approaches are similar, the restricted versions consistently outperform
the unrestricted implementation by a small, yet statistically significant, margin. The
differences between the restricted approaches are not statistically significant.

The differences among the three approaches become more visible when we
consider the evolution of the number of reachable and unreachable nodes through
time. As it can be observed in Fig. 1.6, without cleaning, the number of unreachable
nodes grows significantly, clearly outnumbering the number of reachable nodes.
The number of reachable nodes of the restricted versions is similar, and smaller
than the one resulting from the unrestricted version. Although cleaning does not
significantly improve fitness in comparison with the restricted version, the reduction
of the number of rules implies a reduction of the computational cost of interpreting
the CFDGs and applying the crossover operators. As such, taking these experimental
findings into consideration, we adopt the Restricted with Cleaning variant in all
further tests.

The non-deterministic nature of the CFDGs implies that each genotype may be
mapped into a multitude of phenotypes (see Sect. 1.3). The genotype to phenotype
mapping of a non-deterministic grammar depends on a rendering seed, which is
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Fig. 1.6 Evolution of the average number of reachable and unreachable nodes across populations
for different implementations of the genetic operators using JPEG Size as fitness function. The
results are averages of 30 independent runs

passed to Context Free. We considered two scenarios: using a fixed rendering seed
for all individuals; randomly generating the rendering seed whenever genotype to
phenotype occurs. The second option implies that the fitness of a genotype may, and
often does, vary from one evolution to the other, since the phenotype may change.

Figure 1.7 summarizes the results of these tests in terms of the evolution of fitness
through time. As expected, using a fixed rendering seed yields better fitness, but
the differences between the approaches are surprisingly small and decrease as the
number of generations increases. To better understand this result we focused on the
analysis of the characteristics of the CFGDs being evolved. Figure 1.8 depicts box
plots of fitness values of the fittest individuals of each of the 30 evolutionary runs
using different setups:

Fixed—individuals evolved and evaluated using fixed rendering seeds; Random—
individuals evolved using random rendering seeds and evaluated using the same
seeds as the ones picked randomly during evolution;
Fixed Random—individuals evolved using fixed rendering seeds and evaluated with
30 random seeds each;
Random Random—individuals evolved using random rendering seeds and evaluated
with 30 random seeds each.

In other words, we take the genotypes evolved in a controlled static environment
(fixed random seed) and place them in different environments, proceeding in
the same way for the ones evolved in a changing environment. The analysis of
the box plots shows that, in the considered experimental settings, the fitness of



1 Graph-Based Evolutionary Art 19

0

5K

10K

15K

20K

25K

0 10 20 30 40 50 60 70 80 90 100

←
 F

IT
N

E
S

S
 →

← GENERATION →

Max FixedAvg Fixed Avg Random Max Random
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Fig. 1.8 Box plots of fitness values of the fittest individuals of each of the 30 evolutionary runs
using different rendering seed setups

the individuals evolved in a fixed environment may change dramatically when the
environmental conditions are different. Conversely, using a dynamic environment
promotes the discovery of robust individuals that perform well under different
conditions. Although this result is not unexpected, it was surprising to notice how
fast the evolutionary algorithm was able to adapt to the changing conditions and
find robust individuals. In future tests we wish to explore, and exploit, this ability.
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Nevertheless, for the purposes of this Chapter, and considering that the use of a
fixed rendering seed makes the analysis and reproduction of the experimental results
easier, we adopt a fixed rendering seed in all further tests presented in this Chapter.

1.7 Evolving Context Free Art

After establishing the experimental conditions for the evolutionary runs we con-
ducted a series of tests using each of the fitness functions described in Sect. 1.5
to guide evolution. In a second step, based on the results obtained, we combined
several of these measures performing further tests. The results of using each of the
measures individually are presented in Sect. 1.7.1 while those resulting from the
combination of several are presented in Sect. 1.7.2.

1.7.1 Individual Fitness Functions

Figure 1.9 summarizes the results of these experiments in terms of evolution of
fitness. Each chart depicts the evolution of the fitness of the best individual when
using the corresponding fitness function to guide evolution. The values yield by
the other 5 fitness functions are also depicted for reference to illustrate potential
inter-dependencies among fitness functions. The values presented in each chart
are averages of 30 independent runs (180 runs in total). To improve readability we
have normalized all the values by dividing each raw fitness value by the maximum
value for that fitness component found throughout all the runs.

The most striking observation pertains the Fractal Dimension and Lacunarity
fitness functions. As it can be observed, the target values of 1:3 and 0:9 are easily
approximated even when these measures are not used to guide fitness. Although
this is a disappointing result, it is an expected one. Estimating the fractal dimension
(or lacunarity) of an object that is not a fractal and that can be described using
Euclidean geometry yields meaningless results. That is, although you obtain a value,
this value is meaningless in the sense that there is no fractal dimension to be
measured. As such, these measures may fail to capture any relevant characteristic of
the images. In the considered experimental conditions, the evolutionary algorithm
was always able to find, with little effort, non-fractal images that yield values close
to the target ones. Most often than not, these images are rather simplistic. We
conducted several tests using different target values, obtaining similar results.

An analysis of the results depicted in Fig. 1.9 reveals that maximizing JPEG Size
promotes Contrasting Colors and Complexity, but does not promote a distributing
of gradients approaching a normal distribution (Bell). Likewise, maximizing Con-
trasting Colors originates an improvement in JPEG Size and Complexity during the
early stages of the evolutionary process; Bell is mostly unaffected. Using Complexity
to guide evolution results in an increase of JPEG Size and Contrasting Colors
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Fig. 1.9 Evolution of the fitness of the best individual across populations. The fitness function
used to guide evolution is depicted in the title of each chart. The other values are presented for
reference. The results are averages of 30 independent runs for each chart

during the early stages of the runs, but the number of Contrasting Colors tends to
decrease as the number of generations progresses. The Complexity fitness function
operates on a greyscale version of the images, as such it is not sensitive to changes
of color. Furthermore, abrupt changes from black to white create artifacts that are
hard to encode using JPEG compression, resulting in high IC estimates. Fractal
image compression, which is used to estimate PC, is less sensitive to these abrupt
changes. Therefore, since the approach values images with high IC and low PC,
and since it does not take color information into consideration, the convergence
to images using a reduced palette of contrasting colors is expected. Like for the
other measures, Complexity and Bell appear to be unrelated. Finally, maximizing
Bell promotes an increase of JPEG Size, Contrasting Colors and Complexity during
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the first generations. It is important to notice that this behavior was only observed
after enforcing a lower bound for �2 (see Sect. 1.5). Without this limit, maximizing
Bell results in the early convergence to simplistic monochromatic images (typically
a single black square on a white background). The adoption of a quadratic DFN
estimate (DFNs) also contributed to the improvement of the visual results.

Figures 1.10, 1.11, 1.12, 1.13, 1.14, and 1.15 depict the best individual of each
evolutionary run using the different fitness functions individually. A degree of
subjectivity in the analysis of the visual results is unavoidable. Nevertheless, we

Fig. 1.10 Best individual of each of the 30 runs using JPEG Size as fitness function
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Fig. 1.11 Best individual of each of the 30 runs using Contrasting Colors as fitness function

believe that most of the findings tend to be consensual. When using JPEG Size
to guide evolution, the evolutionary engine tended to converge to colorful circular
patterns, with high contrasts of color (see Fig. 1.10). The tendency to converge to
circular patterns, which is observed in several runs, is related with the recursive
nature of the CFDGs and the particularities of the Context Free rendering engine.
For instance, repeatedly drawing and rotating a square while changing its color
will generate images that are hard to encode. Furthermore, the rendering engine
automatically “zooms in” the shapes drawn cropping the empty regions of the
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Fig. 1.12 Best individual of each of the 30 runs using Fractal Dimension as fitness function

canvas. As such, rotating about a fixed point in space tends to result in images that
fill the entire canvas, maximizing the opportunities for introducing abrupt changes
and, therefore, maximizing file size. Additionally, these CFDGs tend to be relatively
stable and robust, which further promotes the convergence to this type of image.

Unsurprisingly, the results obtained when using Contrasting Colors are char-
acterized by the convergence to images that are extremely colorful. Although
some exceptions exist, most runs converged to amorphous unstructured shapes,
which contrasts with circular patterns found when using JPEG Size. In our opinion
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Fig. 1.13 Best individual of each of the 30 runs using Lacunarity as fitness function

this jeopardizes the aesthetic appeal of the images, that tend to have a random
appearance, both in terms of shape and color.

As anticipated by the data pertaining the evolution of fitness, the visual results
obtained using Fractal Dimension and Lacunarity (Figs. 1.12 and 1.13 are disap-
pointing. None of the runs converged to images of fractal nature. These results
reinforce earlier findings using expression based evolutionary art systems, indicating
that these measures are not suitable for aesthetically driven evolution (Machado
et al. 2007).
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Fig. 1.14 Best individual of each of the 30 runs using Complexity as fitness function

As Fig. 1.14 illustrates, using Complexity tends to promote convergence to
monochromatic and highly structured images. As previously, the tendency to
converge to circular and spiral patterns is also observed in this case, and is explained
by the same factors. Furthermore, since fractal image compression takes advantage
of the self-similarities present in the image at multiple scales, the convergence to
structured and self-similar structures that characterizes these runs was expected.
As mentioned when analysing results pertaining the evolution of fitness, the
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Fig. 1.15 Best individual of each of the 30 runs using Bell as fitness function

convergence to monochromatic images with high contrast is due to the different
sensitivity of JPEG and fractal compression to the presence of abrupt transitions.

The most predominant feature of the images evolved using Bell, Fig. 1.15, is the
structured variation of color, promoted by the need to match a natural distribution of
color gradients. The shapes evolved result from an emergent property of the system.
In other words, as previously explained, when using CFDG a circular pattern is
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easily attainable and provides the conditions for reaching a natural distribution of
color gradients. Although this is not visible in Fig. 1.15 the individuals reaching the
highest fitness values tend to use a large color palette.

1.7.2 Combining Several Measures

We performed several experiments where a combination of measures was used to
assign fitness (see Sect. 1.5.6). We conducted tests combining Fractal Dimension
and Lacunarity with other measures, these results confirm that these measures are
ill-suited for aesthetic evolution in the considered experimental setting. Tests using
JPEG Size in combination with other measures were also performed. The analysis
of the results indicates that they are subsumed and surpassed by those obtained when
using Complexity in conjunction with other metrics. This results from two factors:
on one hand Complexity already takes into account the size of the JPEG encoding;
on the other the limitations of Complexity regarding color are compensated by the
use of measures that are specifically designed to handle color information. As such,
taking into account the results described in the previous Section, as well as space
constraints, we focus on the analysis of the results obtained when combining:
Contrasting Colors, Complexity and Bell.

Figure 1.16 summarizes the results of these experiments in terms of evolution of
fitness. Each chart depicts the evolution of the fitness of the best individual when
using the corresponding combination of measures as fitness function. The values
yield by the remaining measures are depicted but do not influence evolution. The
values presented in each chart are averages of 30 independent runs (120 runs in
total). As previously, the values have been normalized by dividing each raw fitness
value by the maximum value for that fitness component found throughout all the
runs.

As it can be observed, combining Contrasting Colors and Complexity leads to
a fast increase of both measures during the early stages of the runs, followed by a
steady increase of both components throughout the rest of the runs. This shows that,
although the runs using Complexity alone converged to monochromatic imagery, it
is possible to evolve colorful images that also satisfy the Complexity measure.

Combining Contrasting Colors and Bell results in a rapid increase of the number
of contrasting colors during the first generations. Afterwards, increases in fitness
are mainly accomplished through the improvements of the Bell component of the
fitness function. This indicates that it is easier to maximize the number of contrasting
colors than to attain a normal distribution of gradients. This observation is further
attested by the analysis of the charts pertaining the evolution of fitness when using
Contrasting Colors, Complexity and Bell individually, which indicate that Bell
may be the hardest measure to address. The combination of Complexity and Bell
is characterized by a rapid increase of complexity during the first populations,
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Fig. 1.16 Evolution of the fitness of the best individual across populations using a combination of
measures. The combination used to guide evolution is depicted in the title of each chart. The other
values are presented for reference, but have no influence in the evolutionary process. The results are
averages of 30 independent runs for each chart and have been normalized to improve readability

followed by a slow, but steady, increase of both measures throughout the runs.
The combination of the three measures further establishes Bell as the measure that
is most difficult to address, since the improvements of fitness are mostly due to
increases in the other two measures. Significantly longer runs would be necessary
to obtain noteworthy improvements in Bell.

Figure 1.17 depicts the best individual of each evolutionary run using as fitness
a combination of the Contrasting Colors and Complexity measures. As it can
be observed, in most cases, the neat structures that characterize the runs using
Complexity (see Fig. 1.14) continue to emerge. However, due to the influence of
the Contrasting Colors measure, they tend to be colorful instead of monochromatic.
Thus, the visual results appear to depict a good combination of both measures. The
same can be stated for the images resulting from using Contrasting Colors and Bell.
As can be observed in Fig. 1.18, they are more colorful than those evolved using Bell
(see Fig. 1.15) but retain a natural distribution of color gradients, deviating from the
“random” coloring schemes that characterize the images evolved using Contrasting
Colors (see Fig. 1.11).

The images obtained when using Complexity and Bell simultaneously (Fig. 1.19)
are less colorful than expected. Visually, the impact of Complexity appears to
overshadow the impact of Bell. Nevertheless, a comparison between these images
and those obtained using Complexity alone (Fig. 1.14) reveals the influence of Bell
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Fig. 1.17 Best individual of each of the 30 runs using the combination of Contrasting Colors with
Complexity as fitness function

in the course of the runs: the monochromatic images are replaced by ones with a
wider number of color gradients, and these color changes tend to be subtler.

Finally, as expected, the images obtained in the runs using the three measures
(Fig. 1.20) often depict, simultaneously, the features associated with each of them.
As previously, the influence of the Bell measure is less obvious than the others,
but a comparison with the results depicted in Fig. 1.17 highlights the influence of
this measure. Likewise, the structures that emerge from runs using Complexity and
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Fig. 1.18 Best individual of each of the 30 runs using the combination of Contrasting Colors with
Bell as fitness function

the colorful images that characterize runs using Contrasting Colors are also less
often. Thus, although the influence of each measure is observable, we consider that
significantly longer runs would be necessary to enhance their visibility.
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Fig. 1.19 Best individual of each of the 30 runs using the combination of Complexity with Bell as
fitness function

1.8 Conclusions

We have presented a graph-based approach for the evolution of Context Free Design
Grammars. This approach contrasts with the mainstream evolutionary art practices
by abandoning expression-based evolution of images and embracing the evolution
of images created through the combination of basic shapes. Nevertheless, the
procedural nature of the representation, which characterizes Genetic Programming
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Fig. 1.20 Best individual of each of the 30 runs using the combination of Contrasting Colors,
Complexity and Bell as fitness function

approaches, is retained. We describe the evolutionary engine, giving particular
attention to its most discriminating features, namely: representation, graph-based
crossover, mutation and initialization.

We introduce six different fitness functions based on evolutionary art literature
and conduct a wide set of experiments. In a first step we assess the adequacy
of the system and establish satisfactory experimental parameters. In this context,
we study the influence of unexpressed genetic code in the evolutionary process
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and the influence of the environment in the robustness of the individuals. In the
considered experimental settings, we find that restricting crossover to the portions of
the genome that are expressed and cleaning unexpressed code is advantageous, and
that dynamic environmental conditions promote the evolution of robust individuals.

In a second step, we conducted runs using each of the six fitness functions
individually. The results show that Fractal Dimension and Lacunarity are ill-suited
for aesthetic evolution. The results obtained with the remaining fitness functions are
satisfactory and correspond to our expectations. Finally, we conducted runs using
a combination of the previously described measures to assign fitness. Globally, the
experimental results illustrate the ability of the system to simultaneously address
the different components taken into consideration for fitness assignment. They also
show that some components are harder to optimize than others, and that runs using
several fitness components tend to require a higher number of generations to reach
good results.

One of the most prominent features of the representation adopted herein is its
non-deterministic nature. Namely, the fact that a genotype may be mapped into a
multitude of phenotypes, i.e. images, produced from different expansions of the
same set of rules. As such, each genotype represents a family of shapes that, by
virtue of being generated using the same set of rules, tend to be aesthetically and
stylistically similar. The ability of the system to generate multiple phenotypes from
one genotype was not explored in this Chapter, and will be addressed in future work.
Currently we are conducting experiments where the fitness of a genotype depends
on a set of phenotypes generated from it. The approach values genotypes which are
able to consistently produce fit and diverse individuals, promoting the discovery of
image families that are simultaneously coherent and diverse.
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Chapter 2
Genetic Programming for Modelling
of Geotechnical Engineering Systems

Mohamed A. Shahin

2.1 Introduction

Geotechnical engineering deals with materials (e.g., soil and rock) that, by their
very nature, exhibit varied and uncertain behaviour due to the imprecise physical
processes associated with the formation of these materials. Modelling the behaviour
of such materials is complex and usually beyond the ability of most traditional forms
of physically-based engineering methods (e.g., analytical formulations and limit
equilibrium methods). Artificial intelligence (AI) is becoming more popular and
particularly amenable to modelling the complex behaviour of most geotechnical
engineering materials as it has demonstrated superior predictive ability when
compared to traditional methods. AI is a computational method that attempts to
mimic, in a very simplistic way, the human cognition capability to solve engineering
problems that have defied solution using conventional computational techniques
(Flood 2008). The essence of AI techniques in solving any engineering problem
is to learn by examples of data inputs and outputs presented to them so that the
subtle functional relationships among the data are captured, even if the underlying
relationships are unknown or the physical meaning is difficult to explain. Thus,
AI models are data-driven approaches that rely on the data alone to determine
the structure and parameters that govern a phenomenon (or system), without the
need for making any assumptions about the physical behavior of the system. This
is in contrast to most physically-based models that use the first principles (e.g.,
physical laws) to derive the underlying relationships of the system, which usually
justifiably simplified with many assumptions and require prior knowledge about
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the nature of the relationships among the data. This is one of the main benefits of
AI techniques when compared to most physically-based empirical and statistical
methods. Examples of the available AI techniques are artificial neural networks
(ANNs), genetic programming (GP), support vector machines (SVM), M5 model
trees, and k-nearest neighbors (Elshorbagy et al. 2010). Of these, ANNs are by far
the most commonly used AI technique in geotechnical engineering and interested
readers are referred to Shahin et al. (2001), where the pre-2001 ANN applications in
geotechnical engineering are reviewed in some detail, and Shahin et al. (2009) and
Shahin (2013), where the post-2001 papers of ANN applications in geotechnical
engineering are briefly examined. More recently, GP has been frequently used
in geotechnical engineering and has proved to be successful. The use of GP in
geotechnical engineering is the main focus of this book chapter.

Despite the success of ANNs in the analysis and simulation of many geotech-
nical engineering applications, they have some drawbacks such as the lack of
transparency and knowledge extraction, leading this technique to be criticised as
being black boxes (Ahangar-Asr et al. 2011). Model transparency and knowledge
extraction are the feasibility of interpreting AI models in a way that provides
insights into how model inputs affect outputs. Figure 2.1 shows a representation of
the classification of modelling techniques based on colours (Giustolisi et al. 2007)
in which the higher the physical knowledge used during model development, the
better the physical interpretation of the phenomenon that the model provides to
the user. It can be seen that the colour coding of mathematical modelling can be
classified into white-, black-, and grey-box models, each of which can be explained
as follows (Giustolisi et al. 2007). White-box models are systems that are based
on first principles (e.g., physical laws) where model variables and parameters are
known and have physical meaning by which the underlying physical relationships
of the system can be explained. Black-box models are data-driven or regressive
systems in which the functional form of relationships between model variables
are unknown and need to be estimated. Black-box models rely on data to map
the relationships between model inputs and corresponding outputs rather than to

Fig. 2.1 Graphical
classification of modelling
techniques. Source: Adapted
from Giustolisi et al. (2007)
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find a feasible structure of the model input-output relationships. Grey-box models
are conceptual systems in which the mathematical structure of the model can
be derived, allowing further information of the system behaviour to be resolved.
According to the abovementioned classification of modelling techniques based on
colour, whereby meaning is related to three levels of prior information required,
ANNs belong to the class of black-box models due to their lack of transparency
and the fact that they do not consider nor explain the underlying physical processes
explicitly. This is because the knowledge extracted by ANNs is stored in a set of
weights that are difficult to interpret properly, and due to the large complexity of the
network structure, ANNs fail to give a transparent function that relates the inputs to
the corresponding outputs. Consequently, it is difficult to understand the nature of
the derived input–output relationships (Shahin 2013). This urged many researchers
to find alternative AI techniques that can overcome most shortcomings of ANNs;
one of these techniques is the genetic programming.

GP is relatively new in geotechnical engineering but has proved to be successful.
GP is based on evolutionary computing that aims to search for simple and optimal
structures to represent a system through a combination of the genetic algorithm
and natural selection. According to the classification of modelling techniques based
on colour that is mentioned earlier, GP can be classified as “grey box” technique
(conceptualisation of physical phenomena); despite the fact that GP is based on
observed data, it returns a mathematical structure that is symbolic and usually
uncomplicated. The nature of obtained GP models permits global exploration of
expressions, which provides insights into the relationship between the model inputs
and the corresponding outputs, i.e., it allows the user to gain additional knowledge
of how the system performs. An additional advantage of GP over ANNs is that
the structure and network parameters of ANNs should be identified a priori and are
usually obtained using ad-hoc, trial-and-error approaches. However, the number and
modelling parameters of GP are all evolved automatically during model calibration,
as will be explained later. At the same time, the prior physical knowledge based on
engineering judgment or other human knowledge can be used to make hypotheses
about the elements of the objective functions and their structure, hence enabling
refinement of final models. It should be noted that while white-box models provide
maximum transparency, their construction may be difficult to obtain for many
geotechnical engineering problems where the underlying mechanism is not entirely
understood. In this chapter, the feasibility of utilising the GP technique to develop
simple and transparent prediction models for solving some complex problems in
geotechnical engineering will be explored and discussed.

2.2 Overview of Genetic Programming

Genetic programming (GP) is an extension of genetic algorithms (GA), which
are evolutionary computing search (optimisation) methods that are based on the
principles of genetics and natural selection. In GA, some of the natural evolutionary
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mechanisms, such as reproduction, cross-over, and mutation, are usually imple-
mented to solve function identification problems. GA was first introduced by
Holland (1975) and developed by Goldberg (1989), whereas GP was invented by
Cramer (1985) and further developed by Koza (1992). The difference between GA
and GP is that GA is generally used to evolve the best values for a given set of
model parameters (i.e., parameters optimization), whereas GP generates a structured
representation for a set of input variables and corresponding outputs (i.e., modelling
or programming).

Genetic programming manipulates and optimises a population of computer
models (or programs) proposed to solve a particular problem, so that the model that
best fits the problem is obtained. A detailed description of GP can be found in many
publications (e.g., Koza 1992), and an overview is given herein. The modelling steps
by GP start with the creation of an initial population of computer models (also called
individuals or chromosomes) that are composed of two sets (i.e., a set of functions
and a set of terminals) that are defined by the user to suit a certain problem. The
functions and terminals are selected randomly and arranged in a tree-like structure
to form a computer model that contains a root node, branches of functional nodes,
and terminals, as shown by the typical example of GP tree representation in Fig. 2.2.
The functions can contain basic mathematical operators (e.g., C, �, �, /), Boolean
logic functions (e.g., AND, OR, NOT), trigonometric functions (e.g., sin, cos), or
any other user-defined functions. The terminals, on the other hand, may consist of
numerical constants, logical constants, or variables.

Once a population of computer models has been created, each model is executed
using available data for the problem at hand, and the model fitness is evaluated
depending on how well it is able to solve the problem. For many problems, the
model fitness is measured by the error between the output provided by the model
and the desired actual output. A generation of new population of computer models
is then created to replace the existing population. The new population is created
by applying the following three main operations: reproduction, cross-over, and
mutation. These three operations are applied on certain proportions of the computer
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Fig. 2.2 Typical example of genetic programming (GP) tree representation for the function:
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models in the existing population, and the models are selected according to their
fitness. Reproduction is copying a computer model from an existing population
into the new population without alteration. Cross-over is genetically recombining
(swapping) randomly chosen parts of two computer models. Mutation is replacing
a randomly selected functional or terminal node with another node from the same
function or terminal set, provided that a functional node replaces a functional node
and a terminal node replaces a terminal node. The evolutionary process of evaluating
the fitness of an existing population and producing new population is continued
until a termination criterion is met, which can be either a particular acceptable
error or a certain maximum number of generations. The best computer model
that appears in any generation designates the result of the GP process. There are
currently three variants of GP available in the literature including the linear genetic
programming (LGP), gene expression programming (GEP), and multi-expression
programming (MEP) (Alavi and Gandomi 2011). More recently, the multi-stage
genetic programming (MSGP) (Gandomi and Alavi 2011) and multi-gene genetic
programming (MGGP) (Gandomi and Alavi 2012) are also introduced. However,
GEP is the most commonly used GP method in geotechnical engineering and is
thus described in some detail below.

Gene expression programming was developed by Ferreira (2001) and utilises
evolution of mathematical equations that are encoded linearly in chromosomes of
fixed length and expressed non-linearly in the form of expression trees (ETs) of
different sizes and shapes. The chromosomes are composed of multiple genes, each
gene is encoded a smaller sub-program or sub-expression tree (Sub-ET). Every
gene has a constant length and consists of a head and a tail. The head can contain
functions and terminals (variables and constants) required to code any expression,
whereas the tail solely contains terminals. The genetic code represents a one-to-
one relationship between the symbols of the chromosome and the function or
terminal. The process of information decoding from chromosomes to expression
trees is called translation, which is based on sets of rules that determine the spatial
organisation of the functions and terminals in the ETs and the type of interaction
(link) between the Sub-ETs (Ferreira 2001). The main strength of GEP is that the
creation of genetic diversity is extremely simplified as the genetic operators work at
the chromosome level. Another strength is regarding the unique multi-genetic nature
of GEP, which allows the evolution of more powerful models/programs composed
of several sub-programs (Ferreira 2001).

The major steps in the GEP procedure are schematically represented in Fig. 2.3.
The process begins with choosing sets of functions F and terminals T to randomly
create an initial population of chromosomes of mathematical equations. One
could choose, for example, the four basic arithmetic operators to form the set of
functions, i.e., FDfC, �, �, /g, and the set of terminals will obviously consist
of the independent variables of a particular problem, for example, for a problem
that has two independent variables, x1 and x2 would be TDfx1, x2g. Choosing
the chromosomal architecture, i.e., the number and length of genes and linking
functions (e.g., addition, subtraction, multiplication, and division), is also part of
this step. The chromosomes are then expressed as expression trees of different sizes
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Fig. 2.3 Algorithm of gene
expression programming
(GEP) (Teodorescu and
Sherwood 2008)

and shapes, and the performance of each individual chromosome is evaluated by
comparing the predicted and actual values of presented data. One could measure the
fitness fi of an individual chromosome i using the following expression:

fi D
CtX

jD1

�
M � ˇ̌C.i;j/ � Tj

ˇ̌�
(2.1)

where M is the range of selection, C(i.j) is the value returned by the individual
chromosome i for fitness case j (out of Ct fitness cases), and Tj is the target value
for the fitness case j. There are, of course, other fitness functions available that
can be appropriate for different problems. If the desired results (according to the
measured errors) are satisfactory, the GEP process is stopped, otherwise, some
chromosomes are selected and mutated to reproduce new chromosomes, and the
process is repeated for a certain number of generation or until the desired fitness
score is obtained.

Figure 2.4 shows a typical example of a chromosome with one gene, and its ET
and corresponding mathematical equation. It can be seen that, while the head of a
gene contains arithmetic and trigonometric functions (e.g.,C, �, �, /,

p
, sin, cos),

the tail includes constants and independent variables (e.g., 1, a, b, c). The ET is
codified reading the ET from left to right in the top line of the tree and from top to
bottom.

More recently, a genetic programming based technique called evolutionary
polynomial regression (EPR) was developed and used in geotechnical engineering.
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Fig. 2.4 Schematic representation of a chromosome with one gene and its expression tree (ET)
and corresponding mathematical equation (Kayadelen 2011)

EPR is a hybrid regression technique that was developed by Giustolisi and Savic
(2006). It constructs symbolic models by integrating the soundest features of
numerical regression, with genetic programming and symbolic regression (Koza
1992). The following two steps roughly describe the underlying features of the
EPR technique, aimed to search for polynomial structures representing a system. In
the first step, the selection of exponents for polynomial expressions is carried out,
employing an evolutionary searching strategy by means of GA (Goldberg 1989). In
the second step, numerical regression using the least square method is conducted,
aiming to compute the coefficients of the previously selected polynomial terms. The
general form of expression in EPR can be presented as follows (Giustolisi and Savic
2006):

y D
mX

jDi

F
�

X; f .X/; aj
�C ao (2.2)

where y is the estimated vector of output of the process, m is the number of terms
of the target expression, F is a function constructed by the process, X is the matrix
of input variables, f is a function defined by the user, and aj is a constant. A typical
example of EPR pseudo-polynomial expression that belongs to the class of Eq. (2.2)
is as follows (Giustolisi and Savic 2006):

bY D ao C
mX

jDi

aj : .X1/
ES.j;1/

: : : .Xk/
ES.j;k/

:f
h
.X1/

ES.j;kC1/
: : : .Xk/

ES.j;2k/
i

(2.3)



44 M.A. Shahin

where Ŷ is the vector of target values, m is the length of the expression, aj is the
value of the constants, Xi is the vector(s) of the k candidate inputs, ES is the matrix
of exponents, and f is a function selected by the user.

EPR is suitable for modelling physical phenomena, based on two features (Savic
et al. 2006): (1) the introduction of prior knowledge about the physical system/pro-
cess, to be modelled at three different times, namely before, during, and after EPR
modelling calibration; and (2) the production of symbolic formulas, enabling data
mining to discover patterns that describe the desired parameters. In the first EPR
feature (1) above, before the construction of the EPR model, the modeller selects
the relevant inputs and arranges them in a suitable format according to their physical
meaning. During the EPR model construction, model structures are determined by
following user-defined settings such as general polynomial structure, user-defined
function types (e.g., natural logarithms, exponentials, tangential hyperbolics), and
searching strategy parameters. The EPR starts from true polynomials and also
allows for the development of non-polynomial expressions containing user-defined
functions (e.g., natural logarithms). After EPR model calibration, an optimum
model can be selected from among the series of models returned. The optimum
model is selected based on the modeller’s judgement, in addition to statistical
performance indicators such as the coefficient of determination. A typical flow
diagram of the EPR procedure is shown in Fig. 2.5, and a detailed description of
the technique can be found in Giustolisi and Savic (2006).

2.3 Genetic Programming Applications in Geotechnical
Engineering

In this section, the applications of GP techniques (including linear genetic program-
ming, LGP; gene expression programming, GEP; multi-expression programming,
MEP; multi-stage genetic programming, MSGP; multi-gene genetic programming,
MGGP; and evolutionary polynomial regression, EPR) in geotechnical engineering
are presented. The section provides a general view of GP applications that have
appeared in the literature to date in the field of geotechnical engineering. Some
of these applications are selected to be described in some detail, while others are
acknowledged for reference purposes. The section starts with the overview of GP
applications, followed by detailed description of some selected applications.

The behaviour of foundations (deep and shallow) in soils is complex, uncertain
and not yet entirely understood. This fact has encouraged researchers to apply
the GP techniques to predict the behaviour of foundations. The GP applications
in foundations include the bearing capacity of piles (Gandomi and Alavi 2012;
Alkroosh and Nikraz 2011, 2012, 2014; Shahin 2015), settlement and bearing
capacity of shallow foundations (Rezania and Javadi 2007; Shahin 2015; Shahnazari
et al. 2014; Pan et al. 2013; Tsai et al. 2013; Adarsh et al. 2012; Shahnazari and
Tutunchian 2012), uplift capacity of suction caissons (Gandomi et al. 2011; Rezania
et al. 2008), and pull-out capacity of ground anchors (Shahin 2015).
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Fig. 2.5 Typical flow diagram of the evolutionary polynomial regression (EPR) procedure
(Rezania et al. 2011)

Classical constitutive modelling based on elasticity and plasticity theories has
limited capability to properly simulate the behaviour of geomaterials. This is
attributed to reasons associated with the formulation complexity, idealization of
material behaviour and excessive empirical parameters (Adeli 2001). In this regard,
GP techniques have been proposed as a reliable and practical alternative to
modelling the constitutive behaviour of geomaterials (Cabalar et al. 2009; Javadi
and Rezania 2009; Shahnazari et al. 2010; Javadi et al. 2012a, b; Faramarzi et al.
2012; Feng et al. 2006).
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Liquefaction during earthquakes is one of the very dangerous ground failure
phenomena that can cause a large amount of damage to most civil engineering
structures. Although the liquefaction mechanism is well known, the prediction of
liquefaction potential is very complex (Baziar and Ghorbani 2005). This fact has
attracted many researchers to investigate the applicability of GP techniques for
prediction of liquefaction potential (Alavi and Gandomi 2011, 2012; Baziar et al.
2011; Gandomi and Alavi 2011, 2012; Kayadelen 2011; Javadi et al. 2006; Rezania
et al. 2010, 2011; Muduli and Das 2013, 2014).

Geotechnical properties and characteristics of soils are controlled by factors such
as mineralogy; fabric; and pore water, and the interactions of these factors are
difficult to establish solely by traditional statistical methods due to their interdepen-
dence (Yang and Rosenbaum 2002). Based on the applications of GP techniques,
methodologies have been developed for estimating several soil properties, including
deformation moduli (Mollahasani et al. 2011; Alavi et al. 2012a, 2013; Rashed
et al. 2012), compaction parameters (Naderi et al. 2012; Ahangar-Asr et al. 2011),
shear strength (Cuisinier et al. 2013; Narendara et al. 2006; Shahnazari et al. 2013),
angle of shearing resistance (Mousavi et al. 2013; Alavi et al. 2012b), shear wave
velocity (Nayeri et al. 2013), and soil-water characteristics including permeability
(Ahangar-Asr et al. 2011), gravimetric water content (Johari et al. 2006), and pore
water pressure (Garg et al. 2014a).

Other applications of GP in geotechnical engineering include: rock-fill dams
(Alavi and Gandomi 2011), slope stability (Alavi and Gandomi 2011; Adarsh and
Jangareddy 2010; Ahangar-Asr et al. 2010; Garg et al. 2014b), tunnelling (Alavi and
Gandomi 2011; Gandomi and Alavi 2012), soil classification (Alavi et al. 2010),
rock modelling (Feng et al. 2006).

Out of the abovementioned GP applications, it can be seen that the use of GP in
prediction of behaviour of foundations and soil liquefaction is the most common.
Consequently, three selected studies from the above applications are examined and
presented in some detail below. These include the settlement of shallow foundations
on cohesionless soils, bearing capacity of pile foundations, and soil liquefaction.

2.3.1 Application A: Settlement of Shallow Foundations
on Cohesionless Soils

The design of foundations is generally controlled by the criteria of bearing capacity
and settlement, the latter often being the governing factor in design of shallow
foundations, especially when the breadth of footing exceeds 1 m (Schmertmann
1970). The estimation of settlement of shallow foundations on cohesionless soils
is complex, uncertain, and not yet entirely understood. This fact has encour-
aged a number of researchers to apply the GP techniques to the settlement of
shallow foundations on cohesionless soils. For example, Shahin (2015) carried
out a comprehensive study to predict the settlement of shallow foundations on
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cohesionless soils utilizing EPR technique. Using a large database that contains 187
data records of field measurements of settlement of shallow foundations as well
as the corresponding information regarding the footings and soil, Shahin (2015)
developed an EPR model that was found to outperform the most commonly used
traditional methods. The data were obtained from the literature and cover a wide
range of variation in footing dimensions and cohesionless soil types and properties.
Details of the references from which the data were obtained can be found in Shahin
et al. (2002a). The model was trained using five inputs representing the footing
width, net applied footing pressure, average blow count obtained from the standard
penetration test (SPT) over the depth of influence of the foundations as a measure
of soil compressibility, footing length, and footing embedment depth. The single
model output was the foundation settlement. The EPR returned several different
models and the one selected to be optimal is as follows (Shahin 2015):

SEPR
p D �8:327

q

N2L
C 8:849

q

N2
C 2:993

B
p

q

N
� 0:651

B
p

qDf

N
C 2:883 (2.4)

where Sp (mm) is the predicted settlement, B (m) is the footing width, q (kPa) is the
net applied footing pressure, N is the average SPT blow count, L (m) is the footing
length, and Df (m) is the footing embedment depth.

The results between the predicted and measured settlements obtained by utilising
GP model were compared with those obtained from an artificial neural networks
(ANN) model previously developed by the author (Shahin et al. 2002b), and three
traditional methods, namely, Meyerhof (1965), Schultze and Sherif (1973), and
Schmertmann (1978). Comparisons of the results obtained using the GP model and
the methods used for comparison in the validation set are given in Table 2.1. It can be
seen that the EPR model performs better than the other methods, including the ANN
model, in all performance measures used including the coefficient of correlation, r,
coefficient of determination, R2, root mean squared error, RMSE, mean absolute
error, MAE, and ratio of average measured to predicted outputs, �.

Using the same database of Shahin et al. (2002a) and similar model inputs
and outputs used above, Rezania and Javadi (2007) and Shahnazari et al. (2014)

Table 2.1 Comparison of EPR model and other methods in the validation set for settlement of
shallow foundations on cohesionless soils (Shahin 2015)

Method

Performance measure
EPR
(Shahin 2015)

ANNs
(Shahin et al.
2002a, b)

Meyerhof
(1965)

Schultze
and Sherif
(1973)

Schmertmann
(1978)

r 0.923 0:905 0:440 0:729 0:838

R2 0.844 0:803 0:014 0:185 0:153

RMSE (mm) 9.83 11:04 24:71 22:48 22:91

MAE (mm) 6.99 8:78 16:91 11:29 16:23

� 1.03 1:10 0:91 1:73 0:79
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developed two different genetic programming models (2014). The formulation of
the GP model developed by Rezania and Javadi (2007) is as follows:

SGP
p D

q .1:80BC 4:62/� 346:15Df

N2
C 11:22L� 11:11

L
(2.5)

The formulation of the GP model developed by Shahnazari et al. (2014) is as
follows:

SGP
p D

2:5B
�

N
B � 1C BC1

DfC0:16B C 2B�N
L C q

N

�
�

N C Df

B

�
B � L

B

�C B
N

� (2.6)

The above GP models represented by Eqs. (2.5) and (2.7) were compared with the
traditional methods and found to outperform most available methods.

2.3.2 Application B: Bearing Capacity of Pile Foundations

In contrast to design of shallow foundations, the load carrying capacity is often
being the governing factor in design of pile foundations rather than settlement;
hence, has been examined by several AI researchers. For example, Shahin (2015)
developed EPR models for driven piles and drilled shafts that found to perform
well. The data used to calibrate and validate the EPR models include a series of
79 in-situ driven pile load tests and 94 in-situ drilled shaft load tests, as well as
cone penetration test (CPT) results. The conducted tests were located on sites of
different soil types and geotechnical conditions, ranging from cohesive clays to
cohesionless sands. The driven pile load tests include compression and tension
loading conducted on steel and concrete piles. The driven piles used have different
shapes (i.e., circular, square, and hexagonal) and range in diameter between 250
and 900 mm and embedment lengths between 5.5 and 41.8 m. The drilled shaft load
tests were conducted on straight and belled concrete piles and include compression
and tension loading but no tension loading for belled shafts. The drilled shafts used
have stem diameters ranging from 305 to 1798 mm and embedment lengths from
4.5 to 27.4 m. The statistics of the data used can be found in Shahin (2015). The
formulations of the developed EPR models yielded pile capacity, Qu (kN), as follows
(Shahin 2015):

For driven (steel) piles:

QEPR
u.steel�driven/ D �2:277

Dqc�tipq
qc�shaftf s�shaft

C 0:096DLC 1:714 � 10�4D2qc�tip

p
L

� 6:279 � 10�9D2L2
q

qc�tipf s�tip C 243:39 (2.7)
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Alternatively, for driven (concrete) piles:

Qu.concrete�driven/ D �2:277
Dqc�tipq

qc�shaftf s�shaft

C 0:096DL

C 1:714 � 10�4D2qc�tip

p
L � 6:279

� 10�9D2L2
q

qc�tipf s�tip C 486:78 (2.8)

For drilled shafts:

Qu.drilled�shafts/ D 0:6878L2
q

f s�shaft C 1:581 � 10�4B2
q

f s�shaft

C 1:294 � 10�4L2q2
c�tip

p
DC 7:8

� 10�5Dqc�shaftf s�shaft

q
f s�tip (2.9)

where D (mm) is the pile perimeter/  (for driven piles) or pile stem diameter (for
drilled shafts), L (m) is the pile embedment length, B (mm) is the drilled shaft base
diameter, qc�tip (MPa) is the weighted average cone point resistance over pile tip
failure zone, f s�tip (kPa) is the weighted average cone sleeve friction over pile tip
failure zone, qc�shaft (MPa) is the weighted average cone point resistance over pile
embedment length, and f s�shahft (kPa) is the weighted average cone sleeve friction
over pile embedment length.

The performance of the above EPR models, represented by Eqs. (2.7)�(2.9),
was compared with four other models in the validation set and the results are given
in Table 2.2. For driven piles, the methods considered for comparison include an
ANN model developed by Shahin (2010), the European method (de Ruiter and
Beringen 1979), LCPC method (Bustamante and Gianeselli 1982), and Eslami and
Fellenius (1997) method. For drilled shafts, the methods considered for comparison
include an ANN model (Shahin 2010), Schmertmann (1978) method, LCPC method
(Bustamante and Gianeselli 1982), and Alsamman (1995) method. It can been seen
from Table 2.2 that the performance of the EPR models is as good as the ANN
model, or better, and outperforms the other available methods with the possible
exception of Alsamman (1995).

The application of GP in estimating the capacity of pile foundations was carried
out by Alkroosh and Nikraz (2011, 2012). Correlation models for predicting the
relationship between pile axial capacity and CPT data using gene expression
programming (GEP) technique were developed. The GEP models were developed
for bored piles as well as driven piles (a model for each of concrete and steel piles).
The performance of the GEP models was evaluated by comparing their results with
experimental data as well as the results of a number of currently used CPT-based
methods. The results indicated the potential ability of GEP models in predicting the
bearing capacity of pile foundations and outperformance of the developed models
over existing methods. More recently, Alkroosh and Nikraz (2014) developed GEP
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Table 2.2 Comparison of EPR model and other methods in the validation set for bearing
capacity of pile foundations (Shahin 2015)

Methods for driven piles

Performance
measure

EPR
(Shahin
2015)

ANNs
(Shahin
2010)

de Ruiter
and
Beringen
(1979)

Bustamante and
Gianeselli (1982)

Eslami and
Fellenius
(1997)

r 0.848 0.837 0.799 0.809 0.907
R2 0.745 0.753 0.219 0.722 0.681
RMSE (kN) 249.0 244.0 435.0 260.0 278.0
MAE (kN) 185.0 203.0 382.0 219.0 186.0
� 1.00 0.97 1.36 1.11 0.94

Methods for drilled shafts

Performance
measure

EPR
(Shahin
2015)

ANNs
(Shahin
2010)

Schmertmann
(1978)

Bustamante and
Gianeselli (1982)

Alsamman
(1995)

r 0.990 0.970 0.901 0.951 0.984
R2 0.944 0.939 0.578 0.901 0.939
RMSE (kN) 511.0 533.0 1404.0 681.0 534.0
MAE (kN) 347.0 374.0 702.0 426.0 312.0
� 1.03 1.02 1.33 0.97 1.03

model that correlates the pile capacity with the dynamic input and SPT data. The
performance of the model was assessed by comparing its predictions with those
calculated using two commonly used traditional methods and an ANN model. It was
found that the GEP model performed well with a coefficient of determination of 0.94
and 0.96 in the training and testing sets, respectively. The results of comparison with
other available methods showed that the GEP model predicted the pile capacity more
accurately than existing traditional methods and ANN model. Another successful
application of genetic programming in pile capacity prediction was carried out by
Gandomi and Alavi (2012), who used a multi-gene genetic programming (MGGP)
method for the assessment of the undrained lateral load capacity of driven piles and
undrained side resistance alpha factor of drilled shafts.

2.3.3 Application C: Soil Liquefaction

Soil liquefaction induced by earthquakes is one of the most complex problems in
geotechnical engineering, and is an essential design criterion for many civil engi-
neering structures. Many buildings, highways, embankments and other engineering
structures have been damaged or destroyed as a result of liquefaction induced by
strong earthquakes that have recently occurred around the world (Kayadelen 2011).
Consequently, accurate determination of soil liquefaction potential is an essential
part of geotechnical engineering investigation as it provides fairly significant and
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necessary tool for design of civil engineering structures located on active zones
of earthquakes. Hence, many researchers used GP to develop new models for
prediction of liquefaction potential of soils and induced deformation.

Alavi and Gandomi (2011) and Gandomi and Alavi (2012) developed gener-
alized GP models including LGP, GEP, MEP, and MGGP for the classification
of several liquefied and non-liquefied case records. Soil and seismic parameters
governing the soil liquefaction potential were used for model development including
the CPT cone tip resistance, qc (MPa), sleeve friction ratio, Rf (%), effective stress
at the depth of interest, �

0

v (kPa), total stress at the same depth, �v (kPa), maximum
horizontal ground surface acceleration, amax (g), and earthquake moment magnitude,
Mw. the existence of the liquefaction (LC) was represented by binary variables,
non-liquefied and liquefied cases were represented by 0 and 1, respectively. The
GP models were developed based on CPT database that contains 226 case records,
with 133 liquefied cases and 93 non-liquefied cases. Out of the available data,
170 case records were used for model training and 56 case records were used for
model validation. The LGP, GEP, MEP, and MGGP models used to classify the non-
liquefied and liquefied cases, LC, are given as follows (Alavi and Gandomi 2011;
Gandomi and Alavi 2012):

LCLGP D 1

� 02v

�
amax� 02v � 4qc�

0
v � 9Rf �

0
v C 54� 0v C 9�v � 54Mw � 378

�
(2.10)

LCGEP D amax � 1

� 0v

�
Rf
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� 5amax

�
C qc � .Mw � qc/ Rf

2qc � �v � 3
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4
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LCMGGP D 0:5491C 0:9634� 10�5Rf q
4
c ln .qc/ � 0:6553qc

C 0:6553 ln .tanh .amax//C 0:1288Rf C 0:2576MwC 0:1288 ln
�
� 0v
�

qc

C 0:2058 ln .jln .amax/j/C 0:2058 ln .amax/ Rf � 0:2861

� 10�6�v� 0v .�v C qc/� 0:2861� 10�6q2
c� 02v

(2.13)

When the return of Eqs (2.10)–(2.13) is greater than or equal to 0.5, the case is
marked as “liquefied”, otherwise, it is marked as “non-liquefied”. The accuracy
of the GP models in the training and validation sets were, respectively, LGP
(trainingD 90 % and validationD 94.64 %), GEP (trainingD 88.82 % and Vali-
dationD 92.86 %), MEP (trainingD 86.47 % and validationD 85.71 %), MGGP
(trainingD 90 % and validationD 96.4 %). These results clearly indicate that the GP
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models are efficiently capable of classifying the liquefied and non-liquefied cases.
The best classification results are obtained by both LGP and MGGP models, which
yielded similar performance, followed by the GEP and MEP models.

Javadi et al. (2006) introduced GP models for determination of liquefaction
induced lateral spreading. The models were trained and validated using SPT-based
case histories. Separate models were presented to estimate the lateral displacements
for free face as well as gently sloping ground conditions. It was shown that
the GP models are capable of learning the complex relationship between lateral
displacement and its contributing factors, in the form of a high accuracy prediction
function. It was also shown that the attained function can be used to generalize the
learning to predict liquefaction induced lateral spreading for new cases that have not
been used in model calibration. The results of the developed GP models were also
compared with one of the most commonly used available methods in the literature,
i.e., multi linear regression (MLR) model (Youd et al. 2002), and the advantages of
the proposed GP models were highlighted. It was shown that the GP models offer
an improved determination of the lateral spreading over the most commonly used
MLR method.

Another successful application of genetic programming in soil liquefaction
potential was carried out by Rezania et al. (2010), who used CPT results and
EPR method for determination of liquefaction potential in sands. Furthermore,
Kayadelen (2011) used GEP method to forecast the safety factor of soil liquefaction
using standard penetration test (SPT) results. Both of the above GP models were
found to provide more accurate results compared to the conventional available
methods. More recently, Gandomi and Alavi (2013) developed a robust GP model,
coupled with orthogonal east squares, for predicting the soil capacity energy
required to trigger soil liquefaction, and Gandomi (2014) presented a short review
for use of soft computing, including GP, in earthquake engineering.

2.4 Discussion and Conclusion

In the field of geotechnical engineering, it is possible to encounter some types
of problems that are very complex and not well understood. In this regard,
artificial intelligence (AI) techniques such as genetic programming (GP) provide
several advantages over more conventional computing methods. For most traditional
mathematical models, the lack of physical understanding is usually supplemented
by either simplifying the problem or incorporating several assumptions into the
models. Mathematical models also rely on assuming the structure of the model in
advance, which may be less than optimal. Consequently, many mathematical models
fail to simulate the complex behaviour of most geotechnical engineering problems.
In contrast, AI techniques are a data-driven approach in which the model can be
trained on input-output data pairs to determine the structure and parameters of the
model. In this case, there is no need to either simplify the problem or incorporate
any assumptions. Moreover, AI models can always be updated to obtain better
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results by presenting new training examples as new data become available. These
factors combine to make AI techniques a powerful modelling tool in geotechnical
engineering.

In contrast to most AI techniques, GP does not suffer from the problem of lack of
transparency and knowledge extraction. GP has the ability to generate transparent,
compact, optimum and well-structured mathematical formulations of the system
being studied, directly from raw experimental or field data. Furthermore, prior
knowledge about the underlying physical process based on engineering judgement
or human expertise can also be incorporated into the learning formulation, which
greatly enhances the usefulness of GP over other AI techniques. It was evident
from the review presented in this chapter that GP has been applied successfully to
several applications in geotechnical engineering. Based on the results of the studies
reviewed, it can be concluded that genetic programming models provide high level
of prediction capability and outperform most traditional methods.
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Chapter 3
Application of Genetic Programming
in Hydrology

E. Fallah-Mehdipour and O. Bozorg Haddad

3.1 Introduction

In the real world, there are several natural and artificial phenomenons which follow
some rules. These rules can model in a mathematical and/or logical form consider-
ing simple or complex equation/s may be difficult in some systems. Moreover, it is
sometimes necessary to model just some parts of system without considering whole
system information. Data-driven models are a programming paradigm that employs
a sequence of steps to achieve best connection between data sets.

The contributions from artificial intelligence, data mining, knowledge discovery
in databases, computational intelligence, machine learning, intelligent data analysis,
soft computing, and pattern recognition are main cores of data-driven models with
a large overlap in the disciplines mentioned.

GP is a data-driven tool which applies computational programming to achieve the
best relation in a system. This tool can set in the inner or outer of system modeling
which makes it more flexible to adapt different system states.
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In the water engineering, there are several successful metaheuristic algorithm
applications in general (e.g. Yang et al. 2013a, b; Gandomi et al. 2013) and GP
in particular. Sivapragasam et al. (2009), Izadifar and Elshorbagy (2010), Guven
and Kisi (2011), and Traore and Guven (2012, 2013) applied different GP versions
to find best evaporation or evapotranspiration values with minimum difference from
real values. Urban water management is other GP application field in which monthly
water demand has forecasted by lags of observed water demand. Nasseri et al.
(2011) applied GP for achieving an explicit optimum formula. These results can
help decision makers of water resources to reduce their risks of online water demand
forecasting and optimal operation of urban water systems (Nasseri et al. 2011).
Li et al. (2014) extracted operational rules for multi-reservoir system by GP out
of mathematical model. They used following steps to find operational rules: (1)
determining the optimal operation trajectory of the multi-reservoir system using
the dynamic programming to solve a deterministic long-term operation model, (2)
selecting the input variables of operating rules using GP based on the optimal
operation trajectory, (3) identifying the formulation of operating rules using GP
again to fit the optimal operation trajectory, (4) refining the key parameters of
operating rules using the parameterization-simulation-optimization method (Li et al.
2014). Results showed the derived operating rules were easier to implement for
practical use and more efficient and reliable than the conventional operating rule
curves and ANN rules.

Hydrology is a field of water engineering that focuses on the quantity and quality
of water on Earth and other planets. In the scientific hydrologic studies, formation,
movement and distribution of water are considered in hydrologic cycle, water
resources and environmental watershed sustainability. The Earth is often called
“blue planet” because of water distribution on its surface that appears blue from
space. The total volume of water on Earth is estimated at 1.386 billion km3 (333
million cubic miles), with 97.5 % and 2.5 % being salt and fresh water, respectively.
Of the fresh water, only 0.3 % is in liquid form on the surface (Eakins and Sharman
2010). Due to, the key role of freshwater in life and different limitations of available
water on the Earth, appropriate accuracy on hydrology models is necessary. On
the other hand, increasing accuracy needs more data and application of expand
conceptual methods in the hydrology models. Thus, GP have been applied as a
popular, simple and user-friendly tool. This tool can summarize complex methods in
a black-box process without modeling all system details. The purpose of this chapter
is to assess the state of the art in GP application in hydrology problems.

3.2 Genetic Programming

GP is a data-driven model which borrows a random iterative searching base from
evolutionary algorithms and move toward optimal solution (optimal relation) using
advantage of these algorithms. Evolutionary algorithm is a subfield of artificial
intelligence that involves combinatorial optimization and uses in the different fields
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Fig. 3.1 GP presentation in the mathematical models

of water management considering single- and multi-objective. In the recent decades,
there is a considerable growth in the development and improvement of evolutionary
algorithms and application of hybrid algorithms to increase convergence velocity
and find near-optimal solution.

Although, some new developed hybrid algorithms are capable to derive optimal
solution, the decision variables have been considered only among the numerical
variables. Thus, these algorithms present optimal value and not optimal equations.
GP is one of the evolutionary algorithms, in which mathematical operators and
functions are added to the numerical values as decision variables.

As shown in Fig. 3.1, GP equation can stand in or out of mathematical model to
minimize difference between real (observed) and estimated output data set.

If GP equation presents in mathematical model, it will determine a constraint. In
contrast, if GP equation is out of mathematical model, it will play a black-box role
which can replace with mathematical model.

In evolutionary algorithms, each decision variable is called a gene, particle,
frog and bee in the genetic algorithm (GA), particle swarm optimization (PSO),
shuffled frog leaping algorithm (SFLA) and honey bees mating optimization
(HBMO) algorithm and a set of aforementioned points with a fixed length is
identified as solutions. However, in GP, the solutions have a tree structure which
can include different numbers of decision variables and can produce a mathematical
expression. Every tree node has an operator function and every terminal node has
an operand, necessitating the evaluation of mathematical and logical expressions
(Fallah-Mehdipour et al. 2012).

Figure 3.2a, b present two trees in the GP. As it is shown, in a tree structure,
all the variables and operators are assumed to be the terminal and function sets,
respectively.

Thus, fx, y, 47g and fx, yg are the terminal sets and fsin;C; =g and fexp, cos,/g
are the function sets of Fig. 3.2a, b, respectively. In the GP structure, the length
of the tree creates the formula called depth of tree. The larger number of depth of
tree, the more accuracy of the GP relation (Orouji et al. 2014). The GP searching
process starts generating a random set of trees in the first iteration as same as other
evolutionary algorithms. An error performance which is commonly assumed such as
root mean squared error (RMSE) or mean absolute error (MAE) is then calculated.
Thus, the error performance corresponds obtained objective function.
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To generate the next tree set, trees with the better fitness values are selected using
techniques such as roulette wheel, tournament, or ranking methods (Orouji et al.
2014). In following, crossover and mutation as the two genetic operators as same
as GA operators create new trees using the selected trees. In the crossover operator,
two trees are selected and sub-tree crossover randomly (and independently) selects
a crossover point (a node) in each parent tree. Then, two new trees are produced
by replacing the sub-tree rooted at the crossover point in a copy of the first parent
with a copy of the sub-tree rooted at the crossover point in the second parent, as
illustrated in Fig. 3.3 (Fallah-Mehdipour et al. 2012).

In the mutation operator, point mutation is applied on a per node basis. That is,
some node/s are randomly selected, it is exchanged by another random terminal or
function, as it is presented in Fig. 3.4. The produced trees using genetic operators are
the input trees for the next iteration and the GP process continues up to a maximum
number of iterations or minimum of error performance.

3.3 GP Application in Hydrology Problems

GP is a data-driven model based on a tree-structured approach presented by Cramer
(1985) and Koza (1992, 1994). This method belongs to a branch of evolutionary
algorithm, based on the GA, which presents the natural process of struggle for
existence. There are two approaches to apply GP in water problems: (1) outer and
(2) inner mathematical model. In the first approach, GP extracts system behavior by
using some or all characteristics without focus on the system modeling. In contrast,
in the second approach, the derived equation by GP uses in system modeling as
same as other basic equations. In this section, some applications of aforementioned
approaches have been considered.
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3.3.1 GP Application Outer Mathematical Model

In this section, a common GP application as a modeling tool in the natural and
artificial phenomenon is presented. This type of GP applications which is used outer
mathematical model to extract the best equation in a system without considering
whole details.

In this process, some characteristic/s are selected as the input data and one
corresponding data set is used as the real or observed output data set. The main
goal is finding the best appropriate equation between these input and output data that
yield the minimum difference from observation values. As it is presented in Fig. 3.5,
this GP application has a black-box framework in which there is no direct relation
with system modeling and equations. In other words, in this type of application, GP
can be viewed solely in terms of its input, output and transfer characteristic without
any knowledge of its internal working.

3.3.1.1 Rainfall-Runoff Modeling

A watershed is a hydrologic unit in which surface water from rain, melting snow
and/or ice converges to a single point at a lower elevation, usually the exit of the
basin. Commonly, water that moves to external point and join another water body,
such as river, lake or sea. Figure 3.6 presents schematic of a watershed.

When rain falls on watershed, water that called runoff, flows on it. A rainfall-
runoff model is a mathematical model describing relations between rainfall and
runoff for a watershed. In this case, conceptual models are usually used to
obtain both short- and long-term forecasts of runoff. These models are applied
several variables such as climate parameters, topography and land use variables to
determine runoff volume. Thus, that volume depends directly on the accuracy of
each aforementioned variable estimation. On the other hand, some global circulation
model (GCM) that is used for runoff calculation apply for large scale and runoff
volume for smaller scale should be extracted by extra processes.

GP equation as a
system modeling

Generate random
trees

Evaluate objective
function

SelectionMutation Crossover

Input/s

Output

Fig. 3.5 GP framework in the outer mathematical model
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Fig. 3.6 Schematic of a watershed

Although conceptual models can calculate runoff for a watershed, their processes
are long and expensive. Therefore, to overcome these problems, Savic et al. (1999)
applied GP to estimate runoff volume for Kirkton catchment in Scotland.

Rainfall on the Kirkton catchment is estimated using a network of 11 period
gauges and 3 automatic weather stations at different altitudes. The daily average
rainfall is calculated from weighted domain areas for each gauge. Stream flow is
measured by a weir for which the rating has been adjusted after intensive current
metering (Savic et al. 1999). They compared obtained results with HYRROM,
one conceptual model by Eeles (1994) that applied 9 and 35 parameters for
runoff estimation considering different land use variables. Moreover, GP employed
different combinations rainfall, runoff and evaporation for one, two and three
previous periods and rainfall at current period as the input data to estimate runoff of
current period as the output data. Results showed that GP can present better solution
even by fewer input data sets than other conceptual models by Eeles (1994).

3.3.1.2 Groundwater Levels Modeling

When rain falls, extra surface water and runoff moves under earth and forms
groundwater. In groundwater, soil pore spaces and fractures of rock formations fill
from water and called an aquifer. The depth at which soil pores and/or fractures
become completely saturated with water is water table or groundwater level.

Groundwater contained in aquifer systems is affected by various processes, such
as precipitation, evaporation, recharge, and discharge. Groundwater level is typically
measured as the elevation that the water rises in, for example, a test well.
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Two-dimensional groundwater flow in an isotropic and heterogeneous aquifer is
approximated by the following equation (Bozorg Haddad et al. 2013):

@
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(3.1)

in which, T D aquifer transmissivity; h D hydraulic head; Sy D storativity; W D
the net of recharge and discharge within each a real unit of an aquifer model, e.g.,
a cell in a finite-difference grid; W is positive (negative) if it represents recharge
(discharge) in the aquifer; and x, yD spatial coordinates, and tD time.

Based on Eq. (3.1), mathematical models are used to simulate various conditions
of water movement over time. However, mathematical simulation necessitates
values of several parameters which may not be measured or their measurements
incur considerable expenses (Fallah-Mehdipour et al. 2013a). Thus, to overcome
those expenses and increase calculation accuracy in groundwater modeling, Fallah-
Mehdipour et al. (2013a) applied GP in both prediction and simulation of ground-
water levels. Results of the prediction and simulation process respectively help
determining unknown and missed data in a time series. In order to modeling, three
observation well of Karaj aquifer with water level variation in a 7-year (84-month)
period have been considered. This aquifer is recharged from precipitation and
recharging wells. To judge fairly about GP capabilities in groundwater modeling,
results of the GP have been compared with adaptive neural fuzzy inference system
(ANFIS). Results showed that GP yields more appropriate results than ANFIS when
different combinations of input data sets have been employed in both prediction and
simulation processes.

3.3.2 GP Application in Inner Mathematical Model

In this section, reservoir presents as an example of hydro systems in which GP is
applied in mathematical model. In this model, GP is extracted operational rule as a
constraint that illustrates when and how release water from reservoir.

Reservoirs are one of the main water structures which operate for several
purposes, such as supplying downstream demands, generating hydropower energy,
and flood control. There are several investigations in the short, long, and integrating
short and long term (e.g., Batista Celeste et al. 2008) reservoir operation without
considering any operational decision rules (Fallah-Mehdipour et al. 2013b). In these
investigations, released water from reservoir is commonly identified as the decision
variable.

The result of this type of operation is only determined for the applied time series.
In order to operate a reservoir system in real-time, an operational decision rule can
be used in reservoir modeling which helps the operator to make an appropriate
decision to calculate how much (amount) and when (time) to release water from
the reservoir.



3 Application of Genetic Programming in Hydrology 67

To determine a decision rule, a general mathematical equation is usually
embedded in the simulation model:

Rt D F1 .St; Qt/ (3.2)

in which, Rt, St and Qt are release, storage and inflow at tth period. Moreover, F1

is linear or nonlinear function for transferring storage volume and inflow to the
released water from the reservoir at each period.

The common pattern of aforementioned decision rule which is a linear decision
rule that a, b and c are the decision variables (e.g., Mousavi et al. 2007; Bolouri-
Yazdeli et al. 2014):

Rt D a � Qt C b � St C c (3.3)

Although, application of Eq. (3.3) as a decision rule is useful in real-time
operation, this rule has a pre-defined linear pattern. It is possible to exist some
decision rules with other mathematical frame (not just linear). GP can extract an
embed equation in this reservoir model without any assumed pattern which is
adapted with storage and inflow and their fluctuations at each period.

Moreover, the aforementioned rule involves Qt needs commonly a prediction
model may be coupled with decision rule to estimate inflow as a stochastic variable.
Inappropriate selection of this prediction model increases calculations and impacts
the reservoir operation efficiency (Fallah-Mehdipour et al. 2012). To overcome
this inappropriate selection, GP can find a flexible decision rule which develops
a reservoir operation policy simultaneously with inflow prediction. In this state, GP
which presented its capability in inflow prediction, has been used as the reservoir
simulation tool and two operational rule curves including water release, storage
volume, and previous inflow/s (not in the current period (t)) are extracted.

Fallah-Mehdipour et al. (2012, 2013b) applied the GP application considering
inflow of the current and previous periods. In these investigations, GP tries to
close released water from reservoir to the demand by using different functions and
terminals in the decision rule. Thus, GP rules presented a considerable improvement
compare to the common linear decision rule.

Figure 3.7 presents GP framework in the real-time operation of reservoir. As it is
shown, the random trees are generated in the first iteration. These trees are decision
rules which explain a mathematical function including inflow, storage and release.

Accordingly, decision rule is embedded in the reservoir operation model and the
released water from reservoir is calculated using continuity equation and limited
constraint storage volume between minimum and maximum allowable storage
(SMin < St < SMax). Then, the objective function yields considering minimization of
deficit and maximization of generated energy in the supplying downstream demand
and hydropower energy generation purpose, respectively. To find released water
and storage in a feasible range, the constraints are considered in the optimization
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Fig. 3.7 GP framework in the real-time operation of reservoir

process by penalty. This penalty is added and subtracted in the minimization and
maximization objective for each violation unit from feasible bound. The other GP
process (selection, crossover and mutation) are continues to satisfy stopping criteria.

3.4 Concluding Remarks

There are many investigations that present successful application, development
and adaptation of GP in the water engineering and hydrology. This chapter
reviewed these investigations considering different aspects of GP application in
the mathematical models that can be inner and outer of system modeling. Inner
system modeling such as decision operational rule uses GP equation in the modeling
process as same as other system equations. Thus, the output which is released water
in reservoir system is adapted to the GP equation. In contrast, the outer mathematical
model is widely used for developing an optimal existing relation between input
and output data in water resources in a black-box method. In both aforementioned
methods, GP illustrated appropriate solution and can be recommended for the future
studies, because some highlight reasons:

• Appropriate capability to use in and out of models.
• Predict and simulate some phenomenon with a considerable fluctuation espe-

cially in the extreme bounds.
• Easy link with other models, softwares, and optimization techniques.

Acknowledgement Authors thank Iran’s National Elites Foundation for financial support of this
research.



3 Application of Genetic Programming in Hydrology 69

References

Batista Celeste, A., Suzuki, K., and Kadota, A. (2008). “Integrating long-and short-term reservoir
operation models via stochastic and deterministic optimization: case study in Japan.” Journal
of Water Resources Planning and Management (ASCE), 134(5), 440–448.

Bolouri-Yazdeli, Y., Bozorg Haddad, O., Fallah-Mehdipour, E., and Mariño, M.A. (2014).
“Evaluation of real-time operation rules in reservoir systems operation.” Water Resources
Management, 28(3), 715–729.

Bozorg Haddad, O., Rezapour Tabari, M.M., Fallah-Mehdipour, E., and Mariño, M.A. (2013).
“Groundwater model calibration by meta-heuristic algorithms.” Water Resources Management,
27(7), 2515–2529.

Cramer, N.L. (1985). “A representation for the adaptive generation of simple sequential programs.”
In Proceedings of an International Conference on Genetic Algorithms and the Applications,
Grefenstette, John J. (ed.), Carnegie Mellon University. 24-26 July, 183–187.

Eakins, B.W. and Sharman, G.F. (2010). Volumes of the World’s Oceans from ETOPO1, NOAA
National Geophysical Data Center, Boulder, CO, 2010.

Eeles CWO: (1994) Parameter optimization of conceptual hydrological models, PhD Thesis, Open
University, Milton Keynes, U.K.

Fallah-Mehdipour, E., Bozorg Haddad, O., and Mariño, M. A. (2012). “Real-time operation of
reservoir system by genetic programming.” Water Resources Management, 26(14), 4091–4103.

Fallah-Mehdipour, E., Bozorg Haddad, O., and Mariño, M. A. (2013a). “Prediction and Simulation
of Monthly Groundwater level by Genetic Programming.” Journal of Hydro-environment
Research, 7(4), 253–260.

Fallah-Mehdipour, E., Bozorg Haddad, O., and Mariño, M. A. (2013b). “Developing reservoir
operational decision rule by genetic programming.” Journal of Hydroinformatics, 15(1),
103–119.

Gandomi, A.H., Yang, X.S., Talatahari, S., and Alavi, A. H. (2013). “Metaheuristic Applications
in Structures and Infrastructures” Elsevier. 568 pages.

Guven, A., and Kisi, O. (2011). “Daily pan evaporation modeling using linear genetic program-
ming technique.” Irrigation Science, 29(2), 135–145.

Izadifar, Z., and Elshorbagy, A. (2010). “Prediction of hourly actual evapotranspiration using
neural network, genetic programming, and statistical models.” Hydrological Processes, 24(23),
3413–3425.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge, MA.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
293 Press. Cambridge, MA.

Li, L., Liu, P., Rheinheimer, D.E., Deng, C., and Zhou, Y. (2014). “Identifying explicit formulation
of operating rules for multi-reservoir systems using genetic programming.” Water Resources
Management, 28(6), 1545–1565.

Mousavi, S. J., Ponnambalam, K., and Karray, F. (2007). “Inferring operating rules for reservoir
operations using fuzzy regression and ANFIS.” Fuzzy Sets and Systems, 158(10), 1064–1082.

Nasseri, M., Moeini, A., and Tabesh, M. (2011). “Forecasting monthly urban water demand using
extended Kalman filter and genetic programming.” Expert Systems with Applications, 38(6),
7387–7395.

Orouji, H., Bozorg Haddad, O., Fallah-Mehdipour, E., and Mariño, M.A. (2014). “Flood routing
in branched river by genetic programming.” Proceedings of the Institution of Civil Engineers:
Water Management, 167(2), 115–123.

Savic, D. A., Walters, G. A., and Davidson, J. W. (1999). “A genetic programming approach to
rainfall-runoff modeling.” Water Resources Management, 13(3), 219–231.

Sivapragasam, C., Vasudevan, G., Maran, J., Bose, C., Kaza, S., and Ganesh, N. (2009). “Modeling
evaporation-seepage losses for reservoir water balance in semi-arid regions.” Water Resources
Management, 23(5), 853–867.



70 E. Fallah-Mehdipour and O. Bozorg Haddad

Traore, S., and Guven, A. (2012). “Regional-specific numerical models of evapotranspiration using
gene-expression programming interface in Sahel.” Water Resources Management, 26(15),
4367–4380.

Traore, S., and Guven, A. (2013). “New algebraic formulations of evapotranspiration extracted
from gene-expression programming in the tropical seasonally dry regions of West Africa.”
Irrigation Science, 31(1), 1–.10.

Yang, X.S., Gandomi, A.H., Talatahari, S., and Alavi, A. H. (2013a). “Metaheuristis in Water,
Geotechnical and Transportation Engineering” Elsevier. 496 pages

Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., and Karamanoglu, M. (2013b). “Swarm Intelligence
and Bio-Inspired Computation: Theory and Applications”, Elsevier. 450 pages.



Chapter 4
Application of Gene-Expression Programming
in Hydraulic Engineering

A. Zahiri, A.A. Dehghani, and H.Md. Azamathulla

4.1 Introduction

Hydraulic engineering as a sub-discipline of civil engineering is the application
of fluid mechanics principles to problems dealing with the collection, storage,
control, transport, regulation, measurement, operation, and use of water (Prasuhn
1987). In other words, hydraulic engineering is the application of fluid mechanics
and other science and engineering disciplines in the design of structures, and the
development of projects and systems involving water resources (Roberson et al.
1998). An interesting believe for hydraulic engineering is from Liggett (2002)
who defines this term as clearly a field for those who love nature and who are
comfortable in applying the laws of fluid mechanics for the betterment of mankind
while preserving nature. Familiar applications of hydraulic engineering are water
supply and distribution systems, flood protection, flood hazard mapping, erosion
protection, transport modeling of pollutants in surface water, irrigation, navigation,
water quality modeling and environmental evaluation of projects. This broad field
covers many aspects ranges from closed conduit (pipe, pump) to open channels
(river, canal, lake, estuary, and ocean). However, civil engineers are primarily
concerned with open channel flow, and especially natural rivers.
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The areas of theoretical, experimental and computational hydraulics have much
progress in various field of application. However, each of these sub-groups has
some individual or in many cases inter-dependent difficulties. Theoretical hydraulics
generally is beyond of the scientific extent and trades of hydraulic and river engi-
neers. Experimental works need large space and facilities. Finally, computational
hydraulics’ progress depends on the growth of theoretical aspects in hydraulic
field. These features have caused limiting progress in these fields. On the other
hands, evolutionary algorithms such as genetic algorithm, genetic programming
and gene-expression programming have considerable progress and development
through recent years. These algorithms known as soft computing techniques, with
less complexity and cost, have received much attention by researchers in many
fields of science and engineering (Guven and Gunal 2008; Azamathulla et al. 2010;
Azamathulla and Zahiri 2012; Guven and Azamathulla 2012; Azamathulla and
Jarrett 2013; Najafzadeh et al. 2013; Sattar 2014; Onen 2014). The soft computing
includes the concepts and techniques to solve or overcome the difficulties in the real
world especially in engineering sciences (Gandomi and Alavi 2011, 2012).

Guven and Azamathulla (2012) presented the following relations for estimation
of maximum scour depth (ds), width (ws) and location (ls) at the downstream of the
flip bucket spillway by using GEP, respectively:

ds

dw
D
�

d50 C q

	
� .H1 � q � 1:199/

�
5:616

d50

	

�	
�
h
0:309	.RC .d50 C 0:185/ .H1d50//

�0:5
i

(4.1)

ws

dw
D
"

q � 0:006d50 C 1:168RCH1

2:336	

#0:5�
7:521d50C 3:955H1 � 2q

0:428	�1
C 15:42	

	0:5

(4.2)

ls
dw
D
�

e	

R

�
H1 � d50 C 0:495C 2:878.q/�1

�	
h
R.qCH1 � 9:948d50/

0:5 .2H1 C qC 	/
i

(4.3)

In which q is unit discharge over the spillway, H1 is total head, R is radius of the
bucket, 	 is lip angle of the bucket, dw is tail water depth, d50 is median sediment size
and g is acceleration due to gravity. Results of these equations were compared with
the regression equation formulae and neural network approach. The comparison
revealed that the GEP models (Eqs. 4.1–4.3) have higher accuracy.

Mujahid et al. (2012) used GEP for estimation of bridge pier scour. The following
explicit relation was obtained and its performance was compared with artificial
neural networks (ANNs) and conventional regression-based techniques. The results
showed that GEP gives more accurate results than the other models.
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In the above equation, Y is approach flow depth, Fr is Froude number, b is pier width
and ¢ is standard deviation of particle grain size distribution.

Wang et al. (2013) using GEP model, presented Eq. (4.5) for estimating pier
scours depth based on available experimental data from various researches. Four
main dimensionless parameters such as pier width (D/d50), approaching flow depth
(Y/d50), threshold flow velocity ((V2–Vc

2)/(4gd50)), and pier scour depth (ds/D)
were used as independent variables in Eq. (4.5).
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where D is pier width or diameter, Y is approaching flow depth, V is average
approaching flow velocity, 
D(�s/�w)-1 is the relative submerged density of
sediment which �w and �s are density of water and sediment, respectively, and
’ is channel open-ratio. Analysis of the above equation results showed the high
capability of GEP model.

Moussa (2013) used GEP for estimation of scour depth downstream of stilling
basin through a trapezoidal channel. The performance of GEP approach was com-
pared with other modeling techniques such as artificial neural networks (ANNs) and
multiple linear regression (MLR). The results showed that GEP gives significantly
more accurate results than the ANN and MLR models.

Azamathulla et al. (2011) used GEP and developed stage-discharge (S-Q)
relationship for the River Pahang as follows:

Q D 9:84S2 � 64:391S� 4033:296 (4.6)

The results showed that GEP as an effective tool can be used for estimating
of daily discharge data in flood events. For developing flow rating curves, also
Guven and Aytek (2009) used GEP technique in two stations of Schuylkill River
(Pennsylvania). The performance of GEP approach was compared with more
conventional methods, common stage rating curve (SRC) and multiple linear
regression (MLR) techniques. The results showed that GEP gives more accuracy
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results than SRC and MLR models. Equations (4.7) and (4.8) were obtained for
discharge as a function of stage for upstream (Berne) and downstream stations
(Philadelphia), respectively:

Q D 10:313S1:5C 4:738S�6 � 27:743 (4.7)

Q D 2S � 4:925S2 C 54:421.2S � 4:715=S/2 � 8:349 (4.8)

Zakaria et al. (2010) used GEP model to predict total load transport in three rivers
(i.e., Kurau, Langat, and Muda). The explicit formulation of GEP for total bed
material load is presented in Eq. (4.9):
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(4.9)

In which, Qs is total load, B is river width, Y0 is flow depth, R is hydraulic radius, Q
is the flow discharge, S0 is river slope and ! is particle fall velocity.

Azamathulla and Jarrett (2013) using field measurements data presented the
following Equation for estimation of the manning’s roughness coefficient for high
gradient streams:

n D 3Sf �
�
1:87Sf

�
d84 � Rh C d2

84

�� � �9:13
Sf

2

Rh

�
C

�
d84 � Sf

�0:25

.26:2 � 4:68d84/
(4.10)

in which n is the Manning’s roughness coefficient, Sf is the energy gradient or
friction slope, and d84 is streambed particle size. The results showed that GEP
presents more accurate results than the Jarrett’s (1984) equation.

From the literatures it is found that GEP technique has recently received
much attention by researchers in the field of hydraulic engineering. In this book
chapter, some of soft computing techniques’ applications on hydraulic engineering
have been presented. In this regards, we have mainly focused on gene-expression
programming.

4.2 Material and Methods

4.2.1 Gene-Expression Programming

Inspired by Darwin’s theory of natural evolution and motivated by the development
of computer technologies, Evolutionary Computation (EC) was introduced in the
1960s as a robust and adaptive search method. This technique is capable of solving
complex problems that the traditional algorithms have been unable to conquer
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(Sharifi 2009). The branch of Genetic based algorithms states that the survival of
an organism is affected by the rule of “survival of the strongest species”. This
family of algorithms is often viewed as function optimizers, although the range of
problems to which genetic algorithms have been applied is quite broad (Whitley
1991). Among the different methods belong to this family, the Gene expression
programming (GEP) is the up-to-date technique. GEP was invented by Ferreira
in 1999, and is the natural development of EAs. The great insight of GEP was
the invention of chromosomes capable of representing any expression tree; GEP
surpasses the genetic programming (GP) system by a factor of 60,000 (Ferreira
2001). In GEP, complex relations are encoded in simpler, linear structures of a fixed
length called chromosomes. The chromosomes consist of a linear symbolic string
of a fixed length composed of one or more genes (Sattar 2014). To express the
genetic information encoded in the gene, Ferreira (2001) used expression tree (ET)
representations. Due to the simple rules that determine the structure of the ET, it
is possible to infer the gene composition given the ET and vice versa using the
unequivocal Karva language. The Karva language represents genes in a sequence
that begins with a start codon, continues with amino acid codons, and ends with a
termination codon (Sattar 2014). Consider, for example, the following mathematical
expression:

z D e
� cos.x/C

sin.x/

cos.y/ (4.11)

This mathematical form can be represented as an ET (Fig. 4.1):
In this example x, y and � are the set of terminals or the variables used in the

example definition; and the basic mathematical operators of C, �, /, sin, cos and
exp are the rules (functions) that determine the spatial organization of the terminals.

The characteristics of the best chromosomes and the evolutionary strategy of
the GEP have been explained in detail by many researchers. For complete details
on GEP and the related genetic operations, interested readers can refer to Ferreira

Fig. 4.1 Expression tree for
a mathematical example
(Eq. 4.11) p cos(x)+

z = e

sin (x)
cos(y)

cos

%

cos

+

exp

pi

X X Y

*

sin
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(2001) and Sattar (2014). GEP fitting computations for experimental or field data is
can be performed using some commercial nonlinear data-mining softwares such as
GeneXProTools (www.gepsoft.com). The fitness function of a program fi in GEP is:

fi D 1000
1

1C RRSEi
(4.12)

The fitness function ranges from 0 to 1000, with 1000 corresponding to a perfect fit.
In the above equation, RRSE is root relative square error of an individual program i
(i-th offspring) and is defined by the following equation:

RRSEi D

vuuuuuuuut
nX

jD1

ˇ̌
Yij � Xj

ˇ̌2
nX

jD1

ˇ̌
X � Xj

ˇ̌2 (4.13)

where X and Y, respectively, are the actual and predicted targets, Yij is the value
predicted by the program i for fitness case j, Xj is the target value for fitness case j,
X is the average of the measured outputs (X) and n is the number of samples (Sattar
2014).

4.2.2 Analysis Procedure for GEP Model Development

The following procedure has been used to develop the final GEP equation (Sattar
2014);

1. Choosing an initial set of control variables as terminals for GEP.
2. Defining the chromosome architecture (number of genes, head size, functions)

and mutation rates for the initial work environment of GEP.
3. Producing several first-generation offspring by GEP through randomly formu-

lation of the parent program’s chromosomes and implementation of genetic
operators.

4. Selection of the fittest offspring by using the fitness criteria (Eq. 4.12). This
offspring represents the solution to the problem in the first generation.

5. Producing several second-generation offspring by GEP using the fittest offspring
as new parent the then implementing genetic operators.

6. Repeating steps 3–5 until the required program fitness is met. Unfortunately,
there is no specific range for GEP fitness indicator fi, however, a domain of
600–800 has been suggested by Ferreira (2001) for suitable model predictions.
The final GEP-model (the fittest offspring of generation i) is scored on a set of
performance indicators.

7. Repeating steps 1–7 with a different set of control variables to produce another
GEP-model.

www.gepsoft.com
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4.2.3 GEP Model Evaluation by Statistical Measures

To evaluate the accuracy of the final explicit GEP equation in both training and test-
ing phases, some common statistical measures including correlation coefficient (R),
the mean squared error (MSE), the mean absolute error (MAE) and performance
index (�), are used in this study as follows:

R D
X

xyqX
x2
X

y2
(4.14)

MSE D
X

.X � Y/2

N
(4.15)

MAE D
X jX � Yj

X
N

(4.16)

� D
p

MSE

X

1

1C R
(4.17)

where xD(X � X), yD(Y � Y), X is the mean of X (measured outputs), Y is the
mean of Y (predicted outputs) and N is the data point’s number for GEP evaluation
(experimental data). The last statistical parameter (�) is a new criterion proposed by
Gandomi and Roke (2013) which combines both correlation and error functions.

4.3 Applications

4.3.1 Main Channel and Floodplain Discharges
in Compound Channels

Rivers are vital carriers of water and sediments. At extreme discharge conditions
floods may occur that could damage nearby infrastructure and also cause casualties
(Huthoff 2007). Over more than three decades, hydraulics of compound channels
has been extensively investigated by many researchers.

Flow hydraulic characteristics are completely different in main channel and
floodplains, and hence, it’s necessary to treat the channel into subsections for any
analysis and computation (Lambert and Myers 1998). For dividing of compound
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Fig. 4.2 A typical compound channel (a) with common dividing channel methods (b) (Bousmar
2002)

Fig. 4.3 Development of
Strong lateral shear stress at
the main channel/floodplain
interface (Van Prooijen et al.
2005)

u1

Floodplain Intersection Main channel

u2

channels, there are three common approaches, vertical, horizontal and diagonal
planes. For hydraulic modeling of river compound channels, the first approach
has the most applications in one-dimensional commercial mathematical packages
such as MIKE11, HEC-RAS, ISIS and SOBEC (Huthoff et al. 2008). However,
this method has great over-prediction error for discharge estimation in field and
laboratory compound sections.

In Fig. 4.2a, a typical compound channel with associated important parameters
is shown. Also, in Fig. 4.2b, the division ways for vertical, horizontal and diagonal
dividing channel methods have been illustrated. As mentioned by many researchers,
it’s assumed, in all these simple methods, that there is no shear stress and momentum
transfer at the division lines between main channel and floodplains. Results of
experimental works carried out in compound channels, have revealed that this
assumption isn’t correct and therefore, these methods are maybe very erroneous
(Martin and Myers 1991; Ackers 1992).

Unreliability of dividing channel methods’ assumption was demonstrated
through Van Prooijen et al. (2005) experimental work. It’s seen from Fig. 4.3, that
due to lateral shear stress, a fully turbulent flow with high momentum transfer
is induced at the main channel/floodplain interface. This shear stress is maybe
comparable, in magnitude, with the bed shear stress. Furthermore, it’s interesting
to note that the flow velocity in the floodplain is considerably less than the main
channel and it’s insufficient to cause major movement of suspended sediment.

In accordance to large error of traditional divided channel methods, several
modified approaches have been provided by many researchers (Wormleaton and
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Merrett 1990; Ackers 1992; Bousmar and Zech 1999; Atabay 2001; Huthoff et al.
2008; Yang et al. 2014). Even though these methods perform well, but in most of
these studies, the main aim is precise prediction of total flow discharge or average
velocity. However, in many practical situations, distribution of flow rate in the main
channel and the flood plains is also important. Ackers (1992) states that any suitable
method should has such ability to predict flow discharge in subsections, especially
in the main channel, with sufficient accuracy.

In overbank flows the river system not only behaves as a conveyance but also as a
storage or pond. It is recognized that for sediment transport, only the flow discharge
in main channel is effective and floodplain’s discharge is nearly negligible (Ackers
1992). In fact the floodplains, due to their high capacities, play an important role in
flood water level reduction, water retention and sediment deposition. These features
are essential for wetlands restoration and preserve of river ecology as well as for
success of flood mitigation works. The main channel flow discharge determination
also covers the main input data for several hydraulic and morphologic computations
such as pollutant dispersion, sediment transport and bed shear stress distribution in
river compound channels.

The bank-full level is defined as the level at which the water has its maximum
power to move sediment. In flood event and when the water rises above the bank-
full level, flow spills onto the floodplain, which the average flow velocity and
consequently stream power dramatically reduce. As the stream power is reduced, so
too is its capacity sediment transport. Thus, for better monitoring of river behavior
during flood events, accurate computation of flow velocity and hence sediment
transport capacity of both main channel and floodplains are needed.

It should be noted that for computation of sediment transport capacity in flooded
rivers, one initially should separate the main channel flow discharge from the total
flow rate and then put it into a suitable empirical sediment transport equation.

Towards the finding suitable methods for prediction of main channel and
floodplain discharges, first, the traditional methods are reviewed.

4.3.1.1 Divided Channel Methods

In Fig. 4.2b, main channel and floodplains sections separated by three dividing
methods (e.g., horizontal, vertical, and diagonal) are shown. Total flow discharge is
the sum of discharges calculated separately in each subsection using an appropriate
conventional friction formula, for example, Manning’s equation (Chow 1959):

QDCM D
3X

iD1

Qi D
3X

iD1

AiR
2=3
i S1=2

0

ni
(4.18)

where QDCM is total flow discharge in compound channel, A is area. In this equation,
i refers to each subsection (main channel or floodplains).
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4.3.1.2 Coherence Parameter

In a compound channel, the degree of interaction between main channel and
floodplains depends on many factors, including relative depth of floodplain flow
to main channel flow, width ratio between main channel and floodplain and relative
roughness of floodplain to main channel and channel geometry (Ackers 1992). On
this basis, Ackers (1992, 1993) introduced an important dimensionless parameter,
named coherence parameter (COH):

COH D
.1C A�/1:5


q�
1C P�1:33n�2=A�0:33

�
1C A�1:67=n�P�0:33

(4.19)

where P is the wetted perimeter and * denotes the ratio of floodplain to main
channel’s value.

4.3.1.3 Data Used for Modeling

In this study, 102 laboratory stage-discharge data from 14 different compound
channel sections were used among 72 were training data and the remaining 30 were
taken as testing data. This data set include bank-full depth, bed slope, and main
channel and floodplain characteristics such as width, side slope, flow discharge,
flow depth and Manning roughness coefficient. These data are collected form
experimental works carried out by HR Wallingford (FCF) in compound channel
flumes with large-scale facility (Knight and Sellin 1987, www.flowdata.bham.ac.uk;
Lambert and Myers 1998; Bousmar and Zech 1999; Bousmar et al. 2004; Fernandez
et al. 2012). The ranges of geometric and hydraulic characteristics of compound
channels used in this study are listed in Table 4.1.

Table 4.1 Overview of data sets used for development and assess-
ment of GEP model

Variable definition Variable range Mean

Bank-full height, h (m) 0.05–0.2 0.103
Flow depth, H (m) 0.058–0.32 0.1482
Main channel width, bc(m) 0.05–1.6 0.89
Floodplain width, bf (m) 0.16–6 1.49
Bank-full discharge, Qb(m3/s) 0.0023–0.2162 0.096
Total flow discharge, Qt(m3/s) 0.003–1.1142 0.2145
Main channel flow discharge, Qmc(m3/s) 0.00233–0.6271 0.1499
Floodplain flow discharge, Qf (m3/s) 0.00046–0.6340 0.064
Bed slope 0.00099–0.013 0.0021

www.flowdata.bham.ac.uk
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4.3.1.4 Selection of Input and Output Variables

For GEP model development, it is assumed, somewhat similar to Ackers’ approach,
that subsection’s flow discharges are dependent on three input dimensionless
parameters including depth ratio (floodplain depth to main channel depth, Dr),
coherence parameter, and calculated flow discharge using vertical divided channel
method. Accordingly, the following functions are proposed to predict the flow
discharge both in main channel and floodplain:

Qmc D f .Dr; COH; Qmc�VDCM/ (4.20)

Qfp D f
�
Dr; COH; Qfp�VDCM

�
(4.21)

where Qmc and Qfp are flow discharges in main channel and floodplain, respectively.

4.3.1.5 GEP Results

In Fig. 4.4a, b, results of three methods of dividing compound channels are shown
for flow discharges in main channel and floodplains. As can be seen, for main
channel discharge (Fig. 4.4a), vertical and horizontal approaches have still over and
under predictions, respectively. Errors of these methods are growing with increasing
flow discharges, especially for vertical method. Among these approaches, the
diagonal planes, has a suitable result, although for large main channel’s discharges,
the errors are increasing. For floodplains (Fig. 4.4b), both vertical and diagonal
dividing planes produce considerably better predictions than the horizontal case.
It is interesting to note, that even for large discharges, these two methods have good
results. Furthermore, for floodplains, the vertical divided method under-predicts the
flow discharge, opposite to the main channels case. This is due to the interaction
effect that causes the actual discharge to decrease in the main channel and increase in
the floodplains. This flow exchange isn’t considered in the vertical divided method,
as well as for both horizontal and diagonal methods.

The formulations of GEP model for main channel and floodplains flow dis-
charges, as a function of Dr, COH and vertical divided discharges, were obtained as
following:

Qmc D Qmc�VDCMp
Dr � 8:181

C eCOH C Qmc�VDCM � eDr

�5:1033
C Qmc�VDCM (4.22)

Qfp D COH3
�
Qfp�VDCM

�
Qfp�VDCM C COH

��3
Dr � 1:963

C Qfp�VDCM

C
�

Qfp�VDCM .1 �Dr/

COH C Qfp�VDCM

	3

C Dr2

5:222
.COH C 5:222/

Qfp�VDCM

9:495
(4.23)



82 A. Zahiri et al.

�

�.�

�.�

�.�

�.�

� �.� �.� �.� �.�

Co
m

pu
te

d 
Q

m
c 
(m

� /
s)

Observed Qmc (m�/s) 

VDCM
DDCM
HDCM
Perfect Line

�

�.�

�.�

�.�

�.�

� �.� �.� �.� �.�

Co
m

pu
te

d 
Q

fp
 (m

� /
s)

Observed Qfp (m�/s)

VDCM
DDCM
HDCM
Perfect Line

a

b

Fig. 4.4 Flow discharge calculation of traditional divided channel methods for main channels
(a) and floodplains (b)

The performance of the GEP model was compared with the traditional vertical
divided method. Figure 4.5a, b show the observed and estimated main channel and
floodplains flow discharges of the all used data. As can be seen, the GEP model
produced much enhanced results, especially for floodplaindischarges.

Table 4.2 presentsa comparison of R, MSE, MAE and � for predicted main
channel flow discharges obtained from different models. It can be concluded that
according to the error functions, especially the mean absolute error, the GEP model
gives much better results than the other approaches. The GEP model produces the
least errors (MSED 0.0003 and MAED 2.1 %). Among traditional methods, the
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Fig. 4.5 Comparison of flow discharge calculation of traditional vertical divided channel method
and GEP model for main channels (a) and floodplains (b)

Table 4.2 Correlation and error measures for different traditional
predictors (divided channel methods) and GEP model for flow
discharge in main channel

Models R MSE MAE (%) ¡

GEP model 0:994 0:0003 2:1 0:055

Vertical divided method 0:986 0:0026 18:98 0:152

Diagonal divided method 0:994 0:0003 11:05 0:056

Horizontal divided method 0:980 0:0015 15:91 0:117
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vertical approach, which is currently used in many engineering packages, with mean
absolute error of 19 %, has the lowest accuracy. On the other hands, the diagonal
approach is the best one.

4.3.2 Stage-Discharge Curve in Compound Channels

In rivers, hydrological measurements such as the flow discharge and depth are
essential for the design and implementation of river training works and for water
resources management. Manning equation is the simplest computational tool for
changing flow depth to the discharge. This equation gives an adequate estimate
for flow discharge in rivers, provided that no significant flood occurs in such a
way that river overflows its banks. Field and laboratory experiments conducted
by Martin and Myers (1991) and Lai and Bessaih (2004) indicated that the
maximum errors caused by Manning equation are up to 40 and 60 %, respectively.
To overcome this difficulty, various methods have been developed with different
assumptions for compound channels. Off these many approaches, works of Shiono
and Knight (1991), Ackers (1992), and Bousmar and Zech (1999) have good
accuracy and hence, very wide applications in flow discharge computations of
compound channels (Abril and Knight 2004; Unal et al. 2010). However, the above
mentioned approaches are not straightforward to be applied by hydraulic engineers
and also may suffer from long-time computations. Furthermore, efficient solution
of some of these methods mainly depends to numerical solution of differential
equations. For simplifying the computations of conveyance capacity, in this section,
GEP is used for prediction of flow discharge in compound channels.

4.3.2.1 Data Set

For training and testing the proposed GEP equation in this research, 394 data sets of
flow hydraulic parameters from 30 different straight laboratory and river compound
sections were selected. Most of these data are gathered form an experimental
program undertaken by HR Wallingford (FCF) in large scale compound channel
flumes (Knight and Sellin 1987). In addition, some extra laboratory data from other
studies were used (Blalock and Sturm 1981; Knight and Demetriou 1983; Lambert
and Sellin 1996; Myers and Lyness 1997; Lambert and Myers 1998; Bousmar
and Zech 1999; Haidera and Valentine 2002; Guan 2003; Lai and Bessaih 2004;
Bousmar et al. 2004). Field data were collected from natural compound rivers of
River Severn at Montford Bridge (Ackers 1992; Knight et al. 1989), River Main
(Martin and Myers 1991) and Rio Colorado (Tarrab and Weber 2004). A typical
geometry for natural compound section having inclined berms is seen in Fig. 4.6.
The domains of main parameters of flow hydraulics and cross section geometry of
compound channels used in this book chapter are mentioned in Table 4.3.
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Fig. 4.6 Typical river compound channel cross section with berm inclination

Table 4.3 Range of geometric and hydraulic variables of compound
channels

Variable definition Variable range Mean value

Bank-full height, h(m) 0.031–6 0:811

Main channel width, bc(m) 0.152–21.4 3:2

Floodplain width, bf (m) 0–63 6:5

Manning’s n for main channel, nc 0.01–0.036 0:0133

Manning’s n for floodplains, nf 0.01–0.05 0:0166

Bed slope, S0 0.000185–0.005 0:0011

Flow depth, H(m) 0.036–7.81 0:985

Bank-full discharge, Qb(m3/s) 0.00268–172.048 20:99

Total flow discharge, Qt(m3/s) 0.003–560 30:486

4.3.2.2 Input and Output Variables

For developing a precise explicit equation to obtain total flow discharge in com-
pound channels, GEP has been used. Through following equation, it is assumed that
total flow discharge in compound channels is proportional to three dimensionless
parameters:

Qt

Qb
D f

�
Dr; COH;

QVDCM

Qb

�
(4.24)

Where Qt is total flow discharge and Qb is bank-full discharge. Of the total data set,
approximately 70 % (272 sets) were selected randomly and used for training. The
remaining 30 % (112 sets) were considered for testing.

Using optimization procedure, following relationship has been obtained for
training data:

Qt

Qb
D 3:954Dr � 0:457DrC.1�COH/Dr C QVDCM

Qb

.1�COH/.1�COH/2
Dr

� Dr.1�COH/
QVDCM

Qb
.1 � COH/Dr2:462

(4.25)

In GEP, to avoid overgrowing programs, the maximum size of the program is gen-
erally restricted (Brameier and Banzhaf 2001). This configuration was tested for the
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Table 4.4 The parameters of
final GEP model

Parameter Description of parameter Parameter amount

P1 Chromosomes 30
P2 Genes 3
P3 Mutation rate 0.044
P4 Inversion rate 0.1
P5 Function set C, �, �, /, power
P6 One-point recombination rate 0.3
P7 Two-point recombination rate 0.3
P8 Gene recombination rate 0.1
P9 Gene transposition rate 0.1
P10 Program size 33

�

�
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�
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Fig. 4.7 Comparison of traditional vertical divided channel method and GEP model for discharge
ratios

proposed GEP model and was found to be sufficient. The best individual (program)
of a trained GEP can be converted into a functional representation by successive
replacements of variables starting with the last effective instruction (Oltean and
Grosan 2003). For developing Eq. (4.25), beside to the basic arithmetic operators
and mathematical functions (C, �, �, power), a large number of generations (5000)
were used for testing. First, the maximum size of each program was specified as 256,
starting with 64 instructions for the initial program. Table 4.4 shows the operational
parameters and functional set used in the GEP modelling.

The computed discharge ratios (Qt/Qb) resulted from the GEP model for both
training and testing data as well as the vertical divided method are presented in
Fig. 4.7. It is clearly seen that GEP model in all variable ranges of selected data
(laboratory and field compound sections), has very promised accuracy. Based on
these prediction results, the mean absolute errors of discharge ratios for VDCM and
GEP model have been calculated as 55.2 and 8.5 %, respectively. It indicates that the
GEP model (Eq. 4.25) is highly satisfactory for total flow discharge in compound
open channels.
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Fig. 4.8 Flow through side sluice gate

4.3.3 Flow Discharge Through Side Sluice Gates

Side sluice gates are underflow diversion structures placed along channels for
spilling part of the liquid through it (Fig. 4.8). These structures are mainly used
in irrigation, land drainage, urban sewage system, sanitary engineering, storm relief
and as head regulators of distributaries (Ghodsian 2003).

The flow through a side sluice gate is a typical case known as spatially varied
flow with decreasing discharge. By considering flow through side sluice gate as an
orifice flow, the flow discharge through side sluice gate under free flow condition
may be written as (Mostkow 1957):

Qs D Cdab
p

2gym (4.26)

where Cd is discharge coefficient, a is opening height of the side gate, b is the gate
length and ym is upstream flow depth in the main channel.

Review of the literature shows that in spite of the importance of the side sluice
gates, relatively little attention has been given to studying the behavior of flow
through this structure (Panda 1981; Swamee et al. 1993; Ojah and Damireddy 1997;
Ghodsian 2003; Azamathulla et al. 2012). They related the discharge coefficient
of side sluice gates to the approach Froude number and ratio of flow depth to
gate opening. In the recent work, Azamathulla et al. (2012) used GEP technique
for developing a relationship for the discharge coefficient for the computation of
discharge through sluice gates.
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Table 4.5 Range of
variables used in Azamathulla
et al. (2012) study

Variable definition Variable range

Upstream depth, ym (m) 0.05–0.78
Downstream depth, yb (m) 0.09–0.39
Sluice gate opening, a (m) 0.01–0.1
Upstream discharge, Qm (m3/s) 0.01–0.098
Side sluice gate discharge, Qs (m3/s) 0.005–0.099
Approach Froude Number, Fr 0.02–0.94

Table 4.6 Parameters of the optimized GEP model

Parameter Description of parameter Setting of parameter

p1 Function set C, �, �, /
p2 Population size 250
p3 Mutation frequency % 96
p4 Crossover frequency % 50
p5 Number of replication 10
p6 Block mutation rate % 30
p7 Instruction mutation rate % 30
p8 Instruction data mutation rate % 40
p9 Homologous crossover % 95
p10 Program size initial 64, maximum 256

The experimental data of Ghodsian (2003) were used in Azamathulla et al. (2012)
study. The experiments were restricted to subcritical flow in main and side channel.
The range of various parameters used in this study is given in Table 4.5.

Basic arithmetic operators (C, �, �, /) as well as main basic trigonometric
and mathematical functions (sin, cos, tan, log, power) were used for GEP equation
development. Furthermore, a large number of generations (5000) were tested. The
functional set and operational parameters used in side slice gate flow hydraulic
modelling with GEP during this study are listed in Table 4.6.

The GEP model presented by Azamathulla et al. (2012) for estimating the
discharge coefficient of side sluice gates for free flow conditions is as follows:

Cd D
h
�0:12574tan�1

n
tan�1 sin

�
log

ym

a

�
C Fr

oi
� 0:1293

h
tan�1

n
sin
�

cos
�
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�ym

a

���oi
C
"

tan�1 cos

 
Fr

�8:54
Fr C

� ym
a

�1=3

!#
(4.27)

The correlation coefficient (R) and mean square error (MSE) for model training
(60 data) are 0.976 and 0.0012, respectively, while for testing phase (14 data) are
0.967 and 0.0043, respectively. The performance of the GEP model is shown in
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Fig. 4.9 Comparison of computed Cd using GEP with observed ones for training data

Figs. 4.9 and 4.10 for training and testing data, respectively. As can be seen, for both
phases, the computed Cd is within ˙5 % of the observed ones. The mean absolute
percentage error of the computed discharge coefficient by proposed GEP model is
about 2.15. It should be noted that although GEP models are somewhat complicated
in the mathematical form, but are easy to use practically by engineers at the field by
aid of available tools (e.g. spreadsheets).

4.3.4 Local Scour Depth Downstream of Bed Sills

Bed sills are a common solution to stabilize degrading bed rivers and channels. They
are aimed at preventing excessive channel-bed degradation in alluvial channels by
dividing them into partitions (Zahiri et al. 2014). For practical purposes, designers
and civil engineers are often interested in a short-term local scouring and its extent in
downstream of grade control structures. By this local scour, the structure itself (and
many times other structures in vicinity of it, like bridge piers or abutments, or bank
revetments) might be undermined (Bormann and Julien 1991; Gaudio and Marion
2003). Therefore, most researchers have focused on local scouring at isolated or
series bed sill structures. Summaries of research for the bed sills can be found
in Lenzi et al. (2002). Most of the studies on scouring at bed sills have been
conducted through experimental works (Bormann and Julien 1991; Gaudio et al.
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Fig. 4.10 Comparison of computed Cd using GEP with observed ones for testing data

Table 4.7 Empirical equations for maximum scour depth prediction

Empirical equation Investigator Eq. number
ys
Hs
D 1:45

�
a

Hs

�0:86 C 0:06
�

a

d50

�1:49 C 0:44 Lenzi et al. (2004) (4.28)

ys
Hs
D 1:6

�
a

Hs

�0:61 C 1:89
�

a

d50

�0:21 � 2:03 Chinnarasri and
Kositgittiwong (2008)

(4.29)

ys
Hs
D 3

�
a

Hs

�0:6

SI�0:19
�
1� e�0:25 L

Hs

�
Tregnaghi (2008) (4.30)

2000; Lenzi et al. 2002, 2003; Lenzi and Comiti 2003; Marion et al. 2004; Tregnaghi
2008; Chinnarasri and Kositgittiwong 2008). In general, in laboratory works a non-
linear regression equation is proposed based on curve fitting of experimental scour
depth data and hydraulic quantities and sediment properties. Some well-known
empirical equations based on regression analysis of experimental data have been
presented in Table 4.7.

These regression equations have one key limitation which mainly originate from
the wide ranges of hydraulic and sediment characteristics of flow in rivers. Owing
to rapid increase in successful applications of artificial intelligence techniques, it is
interesting to explore the applicability of the GEP in prediction of maximum scour
depth at bed sills.

In this section, using the 226 experimental data set of maximum scour depth at
bed sills from literatures in different canal bed slopes, applicability of GEP has been
examined in prediction of relative maximum scour depth at bed sills. These data
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Table 4.8 Range of geometric and hydraulic parameters for scouring
at bed sills

Variable definition Variable range Mean value

Sills spacing, L (m) 0.4–2.5 1:07

Initial bed slope, S0 0.0059–0.268 0:1099

Flow discharge, Q (l/s) 0.68–30.6 16:5

Sediment median diameter, d50 (mm) 0.6–9.0 6:17

Maximum scour depth, ys (cm) 2.4–29.8 14:45

are collected from Lenzi et al. (2002), Gaudio and Marion (2003), Marion et al.
(2004), Tregnaghi (2008) and Chinnarasri and Kositgittiwong (2006, 2008). Range
of variations as well as the mean values of important flow hydraulic and sediment
characteristics of experimental data are shown in Table 4.8.

4.3.4.1 Physical Definition of Scouring

Chinnarasri and Kositgittiwong (2008) by considering most effective parameters
of flow and sediment characteristics on bed sill scouring (see Fig. 4.11) and using
Buckingham’s  -theorem, presented the following dimensionless groups:

ys

Hs
D f2

�
a

Hs
;

a


d50

;
L

Hs
;

d50

Hs
; S0

�
(4.31)

where ys is equilibrium maximum scour depth, a D �
S0 � Seq

�
L is morphological

jump which S0 and Seq are initial and equilibrium bed slopes, respectively, L is
horizontal spacing between sills, 
 D .�s � �w/ =�w is the relative submerged
density of sediment and Hs D 1:5 3

p
q2=g is critical specific energy on the sills

where q is water discharge per unit width.

4.3.4.2 Selection of Input and Output Parameters

Based on dimensional analysis of scour depth downstream bed sills, one can select
the parameters of a/Hs, a/
d50, L/Hs, d50/Hs and S0 as input variables and ys/Hs as
output variable. Table 4.9 reports the ranges of input and output parameters, used in
this section.

4.3.4.3 GEP Results

According to training data (174 data), an explicit equation has been developed GEP
technique as following:
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Fig. 4.11 Schematic of scour depth and length downstream of a bed sill (Tregnaghi 2008)

Table 4.9 Range of input
and output parameters used in
this study

Input/output parameter Range Mean value

a/Hs 0.096–9.703 2:12

a/
d50 0.494–164.62 23:906

L/Hs 0.1531–55.74 17:736

d50/Hs 0.0136–0.4615 0:106

S0 0.0059–0.268 0:1099

ys/Hs 0.261–10.617 2:12

ys

Hs
D Ln

�
a


d50

C a

Hs
C 9:8561

d50

Hs

�
C d50

Hs

�
a


d50

� S0

d50=Hs

�
C d50=Hs

Log .a=Hs/ � .a= .
d50//
1=3

(4.32)

The prediction results of bed sill scour depth for training and testing (52 data) GEP
model have been showed in Fig. 4.12. Comparison of the GEP model with the
empirical equations of scour depth at bed sills (Eqs. 4.28–4.30) are presented in
Fig. 4.13.

The detailed information of GEP model as well as the empirical equations is
indicated in Table 4.10. Based on this statistical analysis, it is indicated that among
different models considered in this study, Eq. (4.28) (Lenzi et al. 2004) has the
highest errors and therefore, doesn’t recommended for application. On the other
hand, GEP model can be proposed as an option for prediction of maximum scour
depth at bed sills. In addition, the simple equation of Chinnarasri and Kositgittiwong
(2008), with requiring to only two parameters and also having good accuracy, is may
be considered as a suitable approach.
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Fig. 4.13 Comparison of GEP model and well-known empirical equations for prediction of
relative maximum scour depth at bed sills

Table 4.10 Evaluation of empirical equations and GEP model for bed sill scour
depth prediction

Training Testing All data
Method R MSE ¡ R MSE ¡ R MSE ¡

Empirical eqs.
Eq. (4.28) – – – – – – 0.780 402 3.35
Eq. (4.29) – – – – – – 0.956 0.559 0.118
Eq. (4.30) – – – – – – 0.925 1.667 0.200
GEP model 0.976 0.203 0.067 0.986 0.308 0.013 0.979 0.286 0.081
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4.4 Conclusions

In this book chapter, some applications of GEP in hydraulic engineering field
have been presented. These examples cover a broad range of hydraulic engineering
problems. Through these examples, high capability of GEP technique, as a powerful
tool for developing explicit equations has been indicated. The main conclusion of
this book chapter is that the proposed GEP equations provide reliable estimation
of flow discharge in compound channels, discharge coefficient of the side sluice
gates and maximum scour depth at the downstream bed sills. All GEP models have
high degree of accuracy and are better than traditional or basic methods proposed in
the literature. It is interesting to note that although the developed formulas by GEP
have generally complex form in mathematical point of view, but they can be easily
calculated by using available programs (e.g. Excel spreadsheets).
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Chapter 5
Genetic Programming Applications
in Chemical Sciences and Engineering

Renu Vyas, Purva Goel, and Sanjeev S. Tambe

5.1 Introduction

With ever-increasing amounts of monitored, recorded and archived data in establish-
ments such as manufacturing and service industries, and R&D institutions, the need
for making sense of the collected data is also growing exponentially. Analyzing and
interpreting data regarding structures, properties and reactions of chemicals as also
plant operations, due to their sheer size, have become a challenging task. More often
than not, systems encountered in chemical sciences and engineering/technology
exhibit nonlinear behavior and analyzing data emanating from them using, for exam-
ple, traditional classification and modeling techniques often leads to difficulties.
The modern day chemical processes also comprise multiple equipment wherein a
plethora of reactions and physical and chemical transformations take place. This
characteristic together with their commonly encountered nonlinear behavior makes
the “first principles” modeling (also termed phenomenological modeling) of such
systems a complex, time-consuming, tedious and costly task. In this context, data-
mining methods including data-driven modeling have assumed a great importance.

In the last two and half decades, artificial intelligence (AI), machine intelligence
(ML), and computational intelligence (CI) based formalisms have found increasing
data-mining applications in chemical sciences and engineering/technology. These
computer science sub-fields are linked by a major common theme in that they
attempt to meet one of the main challenges narrated by Samuel (1983)—“to get
machines to exhibit behavior, which if done by humans, would be assumed to
involve the use of intelligence.” The principal methods employed by AI, ML, and
CI, in getting the machines to exhibit an intelligent behavior are artificial neural
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networks (ANNs), fuzzy logic (FL), evolutionary algorithms (EA) and support
vector machines/regression (SVM/SVR).

There exists a novel member of the evolutionary algorithms family, namely
genetic programming (GP) (Koza 1992), that addresses the above-stated challenge
by providing a method for automatically creating a computer program that performs
a prespecified task simply from a high-level statement of the problem. Genetic
programming follows Darwin’s theory of biological evolution comprising “survival
of the fittest” and “genetic propagation of characteristics” principles. It addresses
the goal of automatic generation of computer programs by: (i) genetically breeding
a random population of computer programs, and (ii) iteratively transforming the
population into a new generation of computer programs by applying analogs of
nature-inspired genetic operations, namely, selection, crossover and mutation.

The operating mechanisms of GP are similar to that of the genetic algorithms
(GA) (Goldberg 1989; Holland 1975). Though both these formalisms use the same
evolutionary principles, their application domains are very different; while GA
searches and optimizes the decision variables that would maximize/minimize a
specified objective function, GP automatically generates computer codes perform-
ing prespecified tasks. In addition to generating computer programs automatically,
there exist two important data-mining applications, namely, classification and sym-
bolic regression, for which GP has been found to be a suitable methodology. Unlike
the “divide and conquer” approach employed by machine learning algorithms to
perform classification, an evolutionary algorithm such as GP does not directly
construct a solution to a problem (e.g., a decision tree) but rather searches for a
solution in a space of possible solutions (Eggermont et al. 2004). The GP-based
symbolic regression (GPSR) is an extension of the genetic model of learning into the
space of function identification. Here, members of the population are not computer
programs but they represent mathematical models/expressions coded appropriately
using symbols.

As compared to classification, GP has been used extensively to conduct symbolic
regression in chemical sciences and engineering. GPSR possesses several advan-
tages over the two widely employed strategies namely artificial neural networks
(ANNs) and support vector regression (SVR) in developing exclusively data-driven
models. ANNs and SVR construct models in terms of a non-linear transfer function
and a kernel function, respectively. Depending upon the specific application for
which an ANN (SVR) model is being developed and the nature of the nonlinearities
between the corresponding input and output data, the complexity of the model
differs. However, owing to the use of the transfer (kernel) function, the basic
building blocks of the data-driven models fitted by the ANN (SVR) strategy remain
the same irrespective of their application domains. In contrast, GPSR provides a
system-specific linear or a nonlinear model that fits the given input–output data and
that too without making any assumptions regarding the form of the fitting function
(Kotanchek 2006). This is a remarkable feature of GP, which makes it a novel,
ingenious and an effective data-driven modeling formalism. The GP models are
also more compact and utilize less number of parameters than the existing classical
statistical techniques. Some of the comparative studies have indicated GP to be
superior in terms of accuracy of prediction than ANNs (Can and Heavy 2012).
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Moreover, GP models may enable the user to gain an insight into the fundamental
mechanisms (first principles) underlying the data. In a noteworthy study by Schmidt
and Lipson (2009) GP has been demonstrated to yield a phenomenological model
(natural law) governing the dynamics of a pendulum.

Despite its novelty and potential, GP—unlike ANNs and SVR—has not wit-
nessed an explosive growth for data-driven modeling applications. One possible
reason behind this scenario is that for a long time feature-rich, user-friendly and
efficient GP software packages were not available. The situation has changed in
recent years and a few software packages, both commercial and open source, have
become available for performing GP-based classification and symbolic regression.
These packages have definitely assisted in the development of a large number of
diverse GP applications in various science, engineering and technology disciplines.
In this chapter, GP-based classification and regression applications in chemical
sciences including biochemical sciences and chemical engineering/technology are
reviewed. Owing to the predominance of GPSR over GP-based classification, the
implementation details of the former are presented in greater depth. For an in-
depth generic treatment of the GP-based classification the reader is referred to, for
example, Koza (1991), Bonet and Geffner (1999), Cantú-Paz and Kamath (2003),
Eggermont et al. (2004), and Espejo et al. (2010).

Hereafter, this chapter is structured as follows. Section 5.2 provides a detailed
discussion of symbolic regression, issues involved in conducting GPSR, the step-
wise procedure of GPSR and a short list of GP software packages. In Sect. 5.3,
a review of classification and regression applications of GP in various sub-areas
of chemistry is provided. The specific GP application areas covered in this section
include drug design, environmental chemistry, green technologies, analytical chem-
istry, polymer chemistry, biological chemistry, and proteomics. Section 5.4, presents
GP applications in chemical engineering and technology. Here, the specific GP
application areas that are considered comprise process modeling, energy and fuels,
membrane technology, petroleum processes and heat transfer. Finally, Sect. 5.5
provides concluding remarks.

5.2 Symbolic Regression

Conventional regression analysis involves finding the parameters of a predefined
function such that it best fits a given sample of input–output data. The principal
difficulty with this approach is that if the data fit is poor then the model builder has to
explore other functional forms until a well-fitting model is secured. This approach is
time-consuming, tedious, and requires a skilled model builder to guess and evaluate
various potential linear/nonlinear functional forms. In this type of search for an
optimal data-fitting model, even domain experts tend to have strong mental biases
that limit wider exploration of the function space. For instance, in many application
areas traditionally only linear or quadratic models are used, even when the data
might be fitted better by a more complex model (Poli et al. 2008). In the traditional
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nonlinear regression analysis, even after expending a major effort in exploring the
function space there is no guarantee that a well-fitting model can indeed be secured
in a finite number of trials.

Most of the above-stated difficulties are overcome by the symbolic regression
(SR). It essentially involves function identification wherein a mathematical model/-
expression coded in a symbolic form is found in a manner such that the model
and the associated parameters provide a good, best, or a perfect fit between a
given finite sampling of values of the independent variables (model inputs) and
the corresponding values of the dependent variable (model output). Notably, SR
does this without making any assumptions about the structure of that model. That
is, it finds an appropriate linear or nonlinear form of the function that fits the data.
A similarity between the original “automatic development of a computer program
doing a specified job” and “symbolic regression” applications of GP is that both
methods take the values of the independent variables as input and produce the
values of the dependent variables as output (Koza 1990). Symbolic regression was
one of the earliest applications of GP (Koza 1992), and continues to be widely
studied (see, for example, Koza and Poli 2005; Poli et al. 2008; Iba et al. 2010;
Keedwell and Narayanan 2005; Sumathi and Surekha 2010; Cartwright 2008; Cai
et al. 2006; Gustafson et al. 2005; Lew et al. 2006). The major drawback of GPSR,
however, is that it is computationally intensive since it searches wide function and
associated parameter spaces. This however does not pose a major difficulty since
GPSR procedure is amenable to parallel processing.

Consider a multiple input—single output (MISO) example data set, D D
f(x1, y1), (x2, y2), : : : , (xN , yN)g, consisting of N patterns, where xn (nD 1, 2, : : : ,N)
denotes an M-dimensional vector of inputs (xn D [xn1 , xn2, : : : , xnM]T), and yn

denotes the corresponding scalar output. Using the data set D, the task of GPSR
is to search and optimize the exact form and the associated parameters of that
unknown MISO linear/nonlinear function (f ), which for the given set of inputs
produces the corresponding outputs as closely as possible. The general form of the
function/model to be fitted by GPSR is given as:

y D f .x; ’/ (5.1)

where ’D [’1 , ’1 , : : : , ’K]T represents a K-dimensional parameter vector.

5.2.1 GPSR Implementation

In GPSR, to begin with a random population of probable (candidate) solutions to the
function identification problem is generated. Each candidate solution is coded in the
form of a “parse tree,” which when decoded forms a candidate model for producing
the desired outputs fyng (Iba 1996). The tree structure emanates from a root node
and consists of operator (“function”) and operand (“terminal”) nodes. The former
class of nodes define mathematical operators while operands define model inputs
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Fig. 5.1 Schematic of genetic programming: (a) basic tree structure, (b) random selection of
branches for reproduction, (c) crossover operation, and (d) mutation operation. Symbols in the
figure denote following operators (function nodes): (“C”) addition, (“�”) subtraction, (“*”)
multiplication, (“�”) division; xn;n D 1, 2, : : : , N, and numeric values define operands (terminal
nodes)

(x) and parameters (’). The trees in a population are of different sizes and their
maximum size is predefined. An illustrative tree structure representing an expression
“cos2x1 C x2

x3
� logx4” is depicted in Fig. 5.1. Upon forming the initial population

of candidate solutions, following steps are performed: evaluation of fitness scores
of candidate solutions, formation of a mating pool of parents, and actions of the
genetic operations, namely crossover and mutation. An iteration of these steps
produces a new generation of offspring candidate solutions. Several such iterations
are needed before convergence is achieved. The candidate solution possessing the
highest fitness score encountered during the iterative process is chosen as the best-
fitting model.
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The preliminaries before executing a GPSR run comprise the following:

• Choice of the operator (function) set: It defines the operators that act on the
terminals of a tree structure. The set of possible operators are as follows.

– Arity-2 operators (act on two terminals): addition, subtraction, multiplication
and division.

– Arity-1 operators (act on a single terminal): exponentiation, logarithm, square
root, cube root and trigonometric functions such as sine, cosine, tan and cot.

• Identification of the terminal (operands) set: The terminals of a tree structure
describe inputs (xn) and parameters (’) of the corresponding candidate solution.
Among these, the user needs to identify the elements of vector, x, that should
appear in the candidate solutions.

• Selection of the fitness function: This function evaluates the fitness score (value)
of a candidate solution. The said score measures how well the solution fares
in fulfilling the GPSR objective of searching and optimizing a model that best
fits the example input–output data. Those candidate solutions that perform well
in predicting the desired outputs possess high fitness scores and are acted upon
by the genetic operators to produce new candidate solutions (offspring) for the
next generation. The fitness function uses a prediction error measure such as root
mean square error (RMSE) for evaluating the fitness of a candidate solution.
The function may also contain a penalty term that penalizes those candidate
solutions, which do not satisfy a desirable characteristic or a constraint, for
instance, presence of a specific variable(s) in the solution’s input space.

• The basic parameters to be specified for executing a GPSR run are population
size, maximum number of generations over which GPSR evolves and crossover
and mutation probabilities. More parameters are possible depending upon the
specific software package used in the GPSR implementation. It is necessary to
vary all these parameters systematically to obtain an overall optimal solution.

• Using prior knowledge: If some prior knowledge about the data-fitting function
is available then it should be utilized while creating the initial population
of candidate solutions as also choosing the members of an operator set. For
example, if there exists a periodic relationship between the inputs (predictor
variables) and the desired outputs, then inclusion of the operators, such as,
sine and cosine, is recommended. Similarly, in the case of data emanating from
exothermic reactions, choice of the exponentiation operator is suggested. It may
be noted that some GP software packages allow even user-defined expressions in
the initial population of candidate solutions.

A generic step-wise implementation of the GPSR is presented below.
Step 1: Generate an initial population of Np number of candidate solutions

randomly; each candidate solution is represented using a tree structure.
Step 2: Iteratively perform the following four sub-steps until a termination

criterion is satisfied. The commonly used termination criteria are: (1) a pre-specified
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number of generations have been evolved, and (2) the fitness value of the best
candidate solution in a population no longer increases significantly or remains
constant over a large number of successive generations.

1. Fitness score evaluation: Using the example set inputs fxng, n D 1,2, : : : N,
compute the output of each candidate solution in the current population. The
computed outputs are utilized to calculate the magnitude of the pre-selected error
metric (e.g., RMSE), which is then used to determine the fitness score of that
solution. This procedure is repeated to calculate fitness scores of all candidate
solutions in the current population.

2. Selection: Create a mating pool of candidate solutions termed “parents” to
undergo crossover operation described in step 3. The members of the mating
pool are selected in a manner such that only those candidate solutions possessing
relatively high fitness scores can enter the pool. There exist a number of methods
for selecting the candidate solutions in a mating pool, such as Roulette-wheel
selection, greedy over-selection, ranking selection, tournament selection and
elite strategy (Iba et al. 2010). Each one of these strategies possesses certain
advantages and limitations.

3. Crossover: This step can be performed multiple ways, for example, single- and
two-point crossover. In the former (see Fig. 5.1b), a pair of parent candidate
solutions is selected randomly from the mating pool and two new candidate
solutions (offspring) are created by slicing each parent tree at a random point
along the tree length and mutually exchanging and recombining the sliced parts
between the parents (see Fig. 5.1c). This crossover operation is conducted with a
pre-specified probability value (termed crossover probability) and repeated with
other randomly chosen parent pairs until Np offspring candidate solutions are
formed. The trees in GP do not have a fixed length and these can grow or shrink
due to the crossover operation.

4. Mutation: In this step, small changes are applied to the operator and operand
nodes of the offspring solutions to produce a new generation of candidate
solutions (see Fig. 5.1d). This step is performed with a small magnitude of the
probability termed “mutation probability.”

Avoiding over-fitting of models An important issue that needs to be addressed
during GPSR is over-fitting of the constructed models. Over-fitting can occur in two
ways, that is, when a model is trained over a large number of iterations (termed
overtraining), and/or the model contains more terms and parameters than necessary
(over-parameterization). Over-parameterization tends to increase the complexity of
the fitted model. Over-fitting results in a model that has learnt even the noise in the
data at the cost of capturing a smooth trend therein. Such a model performs poorly
at generalization, which refers to the model’s ability to accurately predict outputs
corresponding to a new set of inputs. A model incapable of generalization is of no
practical use. To overcome the problem of over-fitting, the available input–output
example set is partitioned into two sets namely training and test sets. While the
former is used to train the model, the test set is used for evaluating the generalization
capability of the model. After each training iteration or convergence the candidate
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solutions are assessed for their generalization capability using the test set data
and those predicting the training and test set outputs with high and comparable
accuracies are accepted. Sometimes, a third set known as validation set is formed
from the available example data and a model performing well on all the three i.e.
training, test and validation sets is selected.

GP implementation is computationally very intensive and often the evolved solu-
tion is anything but ideal thus requiring even greater numerical processing to secure
an acceptable solution. The component of the GP algorithm that is computationally
most expensive is fitness evaluation. It is therefore at most important to use fitness
functions that are computationally economical yet efficient.

The most attractive feature of the GP-based symbolic regression is that it searches
and optimizes the “structure” (form) of a suitable linear or nonlinear data-fitting
function. It also obtains values of all the parameters of that function although
relatively this is a less important GP characteristic since several deterministic and
stochastic linear/nonlinear parameter estimation strategies are already available.
Moreover, optimality of the parameter values searched by the GP cannot be guar-
anteed. It is therefore advisable that the parameters of the GP-searched function are
optimized using an appropriate parameter optimization strategy such as Marquardt’s
method (Marquardt 1963).

5.2.2 Software Packages for Implementing GP

A non-exhaustive list of software packages for implementing GP algorithm is given
below. It may be noted that the list is meant only for providing an idea of what is
available and should not be construed as a recommendation.

• Disciplus ™ (commercial software) performs predictive modeling and utilized
in data mining tasks requiring predictive analytics, classification, ROC curve and
regression analysis (Register Machine Learning Technologies Inc. 2002)

• Eureqa® (Schmidt and Lipson 2009, 2014) uses symbolic regression to unravel
the intrinsic relationships in data and explain them as simple mathematics. It uses
GP heavily in its functioning and is optimized to provide parsimonious solutions.
A number of modeling studies in various science and engineering disciplines,
such as astronomy, biology, chemistry, chemical engineering, and computer,
material and environmental sciences, have been conducted using Eureqa.

• GPTIPS (Searson et al. 2010) is a free, open source MATLAB toolbox for
performing GPSR. It is specifically designed to evolve mathematical models of
predictor-response data that are “multigene” in nature, i.e. linear combinations of
the low order nonlinear transformations of the input variables.

• HeuristicLab (GNU general public license) (Wagner 2009) is an open-source
environment for heuristic optimization. This software provides a number of
well-known standard algorithms for classification and regression tasks and
additionally includes an extensive implementation of GPSR.
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• RGP (Flasch 2014) is a GP system based on, as well as fully integrated into, the
R environment. It implements classical tree-based GP as well as other variants
including, for example, strongly typed GP and Pareto GP. This package is flexible
enough to be applied in nearly all possible GP application areas, such as symbolic
regression, feature selection, automatic programming and general expression
search.

• ECJ toolkit (ECJ 22 2014) is one of the popular computational tool with full
support for GP. It is a evolutionary computation research system written in
Java and developed at George Mason University’s evolutionary computation
Laboratory. ECJ 22 is the latest version of the toolkit provided with a GUI and
various features such as flexible breeding architecture, differential evolution and
multiple tree forest representation. This toolkit is reviewed by White (2012).

5.3 Applications of Genetic Programming (GP)
in Chemical Sciences

Genetic programming has been used in chemistry with a great success for providing
potential solutions to a variety of classification and data-driven modeling problems
as well as to create new knowledge. It has been also established that GP models
can approximate to a first principles models (Anderson et al. 2000). While GA
has been used extensively for optimization in chemical sciences and chemical
engineering/technology, GP-based applications in these disciplines are relatively
fewer (Aguiar-Pulido et al. 2013). The applications of GP in chemical sciences
have focused mainly on data mining, which can be further broadly categorized into
rule-based classification and symbolic regression based model development (see
Fig. 5.2).

GP is an apt tool for data-mining in chemical sciences. Formally, data mining is
defined as “identification of patterns in large chunks of information” (Cabena et al.
1997). The data could be physicochemical data from small molecule based assays or
spectral data emanating from the analytical instruments used for characterization of
chemical or biological moieties. Several representations of the tree-based GP have
been used exhaustively for the rule-based data classification (Li and Wong 2004).
GP-based intelligent methodologies have been used for developing the rule-based
systems in chemistry and biochemistry domains such as, chemical networks and
reactivity, wherein the computer programs are all functional models of chemical or
biochemical properties (Tsakonas et al. 2004). GP-based regression has been mainly
employed for building quantitative structure—property relationship (QSPR) models
(Barmpalexis et al. 2011). The flexibility of GPSR is at the core of the development
of free form mathematical models from the observed data (Kotanchek 2006). Both
the approaches persist and consequently the subsequent sections are devoted to the
applications of the GPSR and GP-based classification methods, illustrated by using
copious examples from the literature.
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Fig. 5.2 An overview of the major applications of GP in chemical sciences

5.3.1 Applications of GP in Drug Design

Drug design and development is an essential component of pharmaceutical industry
(Guido et al. 2008; Anderson 2003). In this tedious, time consuming and expensive
endeavor, computational methods are utilized in every stage of the development,
mainly for the prediction of properties of small molecules (Venkatraman et al.
2004) and their affinities towards the respective biological targets. Due to the
fail early paradigm prevalent in the pharmaceutical industry, even an approximate
computational method applied before the clinical stage, which can assist in elim-
inating molecules with undesirable properties is highly welcome (Atkinson et al.
2012). The GP-based methods have been employed in the field of drug design in
conjunction with the machine learning methods to address the interactions between
potential drugs/lead molecules or between drugs and large bio-molecules such as
proteins (Garcia et al. 2008). These interactions are otherwise difficult to assess
via experiments largely due to the involved ethical issues. As depicted in Fig. 5.3,
GP approaches have been mainly applied in the four principal stages of the drug
discovery pipeline viz. lead selection, lead optimization, preclinical trials and
clinical trials stages. Wherever applicable, related examples have been cited in the
text that follows.

Genetic programming has been compared with a few other advanced compu-
tational methods for predicting the critical ADME properties—such as the oral
bioavailability (OB) of the drug molecules—during preclinical trials (Langdon
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Fig. 5.3 A schematic of the
drug discovery pipeline
showing the steps wherein the
GP method can be applied

and Barrett 2005). The results showed that classification of drugs into ‘high’ and
‘low’ OB classes could be performed on the basis of their molecular structure and
the output given by the developed models would be useful in the pharmaceutical
research. Moreover, the results indicated that the quantitative prediction of the oral
bioavailability is also possible. In a study involving structure-property relationships,
GP was utilized for the prediction of Caco-2 cell permeability (Vyas et al.
2014), which is an important ADMET parameter; the said GP model yielded high
coefficient of correlation (�0.85) between the desired and model predicted values
of the permeability and a low RMSE value of 0.4.

Mathematical models have been developed to predict drug release profiles
(Ghosal et al. 2012; Güres et al. 2012). In a related study, GP-based models were
built for the prediction of drug release from the solid-lipid matrices (Costa and
Lobo 2001). Here, GP was used specifically for determining the parameters of
the model—a modified Weibull equation—that is commonly used in the reliability
engineering defined as:

f .T/ D ˇ
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(5.2)

where f .T/ � 0; T � 0 or �; ˇ > 0; ˜ > 0; and �1 < � <1. Here, “ represents
the shape parameter, also known as the Weibull slope, ˜ is the scale parameter and
” denotes the location parameter. In this study, the calculated release profiles of the
solid-lipid extrudates of varying dimensions compared well with the experimentally
determined dissolution curves.
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5.3.2 Applications in Network Generation

In the graph theory representation of molecules, atoms are denoted as nodes and
bonds connecting them are represented as edges. In a classic study by Globus et al.
(1999), the molecular design problem was viewed as a search of the space of all
molecules to find a target molecule with the desired properties. The GP fitness
function was used to automatically evolve chains and rings in new molecules by
using the crossover operator to divide trees into fragments (Globus et al. 1999). Ring
evolution was enabled by the mutation operator and the fitness function defined a
distance measure, i.e., Tanimoto coefficient. Likewise, GP has found a potential
use in systems that can be represented using the graph theory such as metabolic
pathways wherein the networks of organic transformations occurring in biological
systems can be represented as program trees (Ivanova and Lykidis 2009).

5.3.3 Applications in Environmental Chemistry

Whole cell biosensors have become an integral part of the environment monitoring
(Gu et al. 2004). Here, the main task is to detect the substance specific patterns from
the huge biosensor data being monitored continuously. GP has been found to be
a suitable classification technique to handle the stated task. For example, GP has
been employed in the classification of herbicide chemical classes and herbicides
with high sensitivity albeit with a low selectivity (Podola and Melkonian 2012).
Electronic noses are being employed as vapor sensors since they provide rich
information regarding the analyte binding (Persaud and Dodd 1982). GP-based
approaches were able to detect the airborne analytes in real time with a good
sensitivity as also selectivity (Wedge et al. 1999).

Gene expression programming (GEP) is an extension of the genetic programming
(GP) and genetic algorithms (GAs). It is a population-based evolutionary algo-
rithm (Ferreira 2001) wherein a mathematical function defined as a chromosome
consisting of multi-genes is developed using the data presented to it. In GEP, a
mathematical expressions are encoded as simple linear strings of a fixed-length,
which are subsequently expressed as nonlinear entities of different sizes and shapes
(i.e. simple diagram representations or expression trees) (Cevik 2007). Singh
and Gupta (2012) employed GEP for forecasting the formation trihalomethanes
(THMs)—which are toxic to human health—in waters subjected to chlorination.
In this study, five parameters namely dissolved organic carbon normalized chlorine
dose, water pH, temperature, bromide concentration, and contact time, were used as
model inputs. Similar to the GP-based model, ANN and SVM based models were
developed for comparison purposes. The results of this comparison revealed that
the ANN, SVM, and GEP models are capable of capturing the complex nonlinear
relationship between the water disinfection conditions and the corresponding THM
formation in the chlorinated water.
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5.3.4 Applications in Green Technologies

Multigene genetic programming has been employed to gauge the performance of
microbial fuel cells (Garg et al. 2014). The method provided a correlation between
the output voltage and input factors of microbial fuel cell and was found to be
superior to ANN and SVR in terms of the generalization ability.

Biomass is one of the upcoming important and renewable sources of green energy
(Martin 2010). It is thus crucial—from the viewpoint of designing, fabricating,
operating and optimizing biomass-based energy generating systems—to accurately
know the amount of energy contained in a biomass fuel (biofuel). The higher heating
value (HHV) is an important property defining the energy content of a biomass
fuel. Experimental estimation of the energy content of a biofuel in terms of HHV
is a slow and time-consuming laboratory procedure. Thus, a number of proximate
and/or ultimate analysis based predominantly linear models have been proposed
for predicting HHV magnitudes of biomass fuels. The basic assumption of linear
dependence (Parikh et al. 2005) between the constituents of the proximate/ultimate
analyses of biofuels and the respective HHVs is not unambiguously supported by
the corresponding experimental data. Accordingly, Ghugare et al. (2014a) employed
GP for developing two biomass HHV prediction models, respectively using the
constituents of the proximate and ultimate analyses as the model inputs. In the
development of the proximate (ultimate) analysis based model, data pertaining
to 382 (536) different biomass samples were utilized. The GP-based two models
developed using Eureqa Formulize software package (Schmidt and Lipson 2009)
are as follows:

• Proximate analysis based optimal model:

HHV D 0:365 � FCC 0:131 � VM C 1:397

FC

C 328:568� VM

10283:138C 0:531 � FC3 � ASH � 6:893 � FC2 � ASH
(5.3)

where FC, VM, and ASH are the weight percentages (dry basis) of fixed carbon,
volatile matter, and ash respectively.

• Ultimate analysis based optimal model:

HHV D 0:367 � CC 53:883� O

2:131 � C2 � 93:299
C C �H � 115:971

10:472� H C 0:129 � C � O

� 91:531

.35:299C N/
C 232:698

77:545C S
(5.4)

where, C, H, O, N and S are the weight percentages (dry basis) of carbon,
hydrogen, oxygen, nitrogen, and sulfur, respectively. The coefficient of corre-
lation (CC) magnitudes in respect of the experimental and GP model-predicted
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HHVs were high (>0.95) while the corresponding magnitudes of mean absolute
percentage error (MAPE) were low (<4.5 %). The HHV prediction accuracy
and generalization performance of these models were rigorously compared with
the corresponding multilayer perceptron (MLP) neural network based as also
previously available high-performing linear and nonlinear HHV models. This
comparison showed that the HHV prediction and generalization performance
of the GP as also MLP-based models to be consistently better than that of
their linear and/or nonlinear counterparts proposed earlier. The biofuel HHV
prediction models proposed by Ghugare et al. (2014a), due to their excellent
performance, possess a potential of replacing the models proposed earlier. Also,
their GP-based strategy can be extended for developing HHV prediction models
for other types of fuels.

Among the two commonly employed analyses for characterizing biomass fuels,
proximate analysis is relatively easy to perform than the ultimate analysis. Accord-
ingly, GPSR was employed for building non-linear models for the accurate predic-
tion of C, H and O fractions of the solid biomass fuels from the constituents of
the corresponding proximate analysis (Ghugare et al. 2014b). These models were
constructed using a large data set of 830 fuels. For comparison purposes, C, H and
O prediction models were developed using ANN and SVR approaches also. The
results of the comparison of the prediction accuracy and generalization performance
of GP, ANN and SVR based nonlinear models with that of the currently available
linear models indicated that the nonlinear models have consistently and significantly
outperformed their linear counterparts.

5.3.5 Applications in Analytical Chemistry

GP has been applied for conducting multivariate analysis of the nonlinear dielectric
spectroscopy (NLDS) data of a yeast fermentation process (Woodward et al. 1999).
In this study, GP was found to outperform the conventional methods like partial least
squares (PLS) and ANNs. Genetic programming was also used for recognizing the
bonds taking part in increasing or decreasing the dominant excitation wavelength by
identifying the conjugated … systems for lowest UV transition for a system of 18
anthocyanidins (Alsberg et al. 2000). The model stressed upon the important role
of bond critical point (BCP) characterized by the electron density, the Laplacian
operator and the ellipticity.

5.3.6 Applications in Polymer Chemistry

The reactivity ratios in free radical copolymerization are routinely estimated using
Alfrey-Price (AP) model (Alfrey and Price 1947). However, the accuracy of
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predictions made by this model is sub-optimal. Accordingly, exclusively data-
driven, GP-based nonlinear models have been developed for the reactivity ratio
prediction in free radical copolymerization (Shrinivas et al. 2015). These models use
the same Q and e parameters as utilized by the Alfrey-price model for characterizing
the monomers. The GP-based models were further fine-tuned using Levenberg-
Marquardt (LM) nonlinear regression method (Marquardt 1963). A comparison of
the Alfrey-Price, GP, GP-LM and artificial neural network (ANN) based models
indicated that the GP and GP-LM models exhibit superior reactivity ratio prediction
accuracy and generalization performance (with correlation coefficient magnitudes
close to or greater than 0.9) when compared with the AP and ANN models. The GP-
based reactivity ratio prediction models possess the potential of replacing the widely
used AP models mainly due to their higher accuracy and generalization capability.
In the area of designing of new polymeric materials Porter et al. (1996) employed
GP to perform a structural optimization of a monomer in order to achieve desired
polymer properties.

5.3.7 Applications in Biological Chemistry

By itself GP is a biology inspired computational technique and finds several
applications in this field. The ever increasing amounts of data being generated
by today’s sophisticated technologies such as microarray and single nucleotide
polymorphism (SNP) make the usage of suitable methods for feature extraction and
data analysis essential. These data mainly emanate from the fields of genomics,
proteomics and clinical time series studies and are amenable to processing by
GP (Schneider and Orchard 2011). An exhaustive review on GP applications in
genomics has been recently published (Khan and Alam 2012). The applications
essentially include genetic network inference (Lanza et al. 2000), gene expression
data classification (Paul et al. 2006), SNP (Poli et al. 2008), epistasis (Estrada-
Gil et al. 2007) and gene annotation (Stein 2001). Genetic programming neural
networks (GPNN) have begun to be recently employed in the identification of
the hidden relationships of gene–gene and gene-environment interactions in the
context of disease of interest (Motsinger et al. 2006). The GP-based classification
method has been used for automatically locating the property motif candidates in
peptide sequences (Tomita et al. 2014). The discriminant nature of the GP-based
rules was ascertained by the precise identification of twofold MHC class II binding
peptides. Another important GP application lies in identifying the signal peptides
and discerning their cleavage sites. In a report by Lennartsson and Nordin (2004),
GP was used for the automatic evolution of classification programs and it compared
favorably with ANNs. The best evolved motif could detect the h region composed
of the hydrophobic amino acids in the signal peptide.
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5.3.8 Applications in Proteomics

MS/MS spectroscopy technique plays an important role in proteomics for identify-
ing proteins, peptides and metabolic data. Feature selection methods have been often
used in clinical proteomics (Christin et al. 2013). In a study, GP-based approach
was employed for biomarker detection and classification of MS data (Ahmed et al.
2014). Specifically, GP was employed for the feature ranking in mass spectroscopic
data; this is considered a herculean task due to the presence of a large number
of features. The inherent feature selection ability of GP was exploited to identify
the selected features from the best evolved program. Here, GP not only proved
to be superior to “Information GAIN” and “RELIEF” feature selection methods
but outperformed the GA-based approach also. In the same study, the GP-based
classifier was found to be superior to J48, Naive Bayes and SVM classifiers. The
reduced set of features for a biomarker as selected by GP brings down the clinical
cost of validating them in laboratories.

5.3.9 Applications of GP in Chemical Biology

Cancer is a major disease for which GP has found numerous applications ranging
from the classification models of cancer tumors to mechanistic understanding of the
underlying pathogenesis. Easy interpretability of these GP models greatly enhances
our understanding of the underlying cellular and disease pathway dynamics at
the systems biology level (Finley et al. 2014). Interested readers are referred to a
comprehensive review of GP applications in cancer research (Worzel et al. 2009).
As of today, for most of the neurodegenerative diseases there is no cure; however
an early detection can provide a better life for the patients suffering from them.
An example of the use of GP in the clinical time series data involves inducing
classifiers capable of recognizing the movements characteristic of patients afflicted
with a disease like Parkinson’s wherein a diagnostic accuracy of 97 % was achieved
(Castelli et al. 2014). Here, GP was used to identify patterns in the slow motor
movements (Bradykinesia) related clinical data. Similar applications are found in
the context of visuo-spatial diseases also where a graph based GP system termed
Implicit Context representation Cartesian Genetic Programming (IRCGP), which
functions similarly to the well known crossover operator was devised (Smith and
Lones 2009).

5.3.10 Applications in Reaction Modeling

Genetic programming was used to generate a network of chemical reactions from
the observed time domain data (Koza et al. 2001). Here, the concentration of the
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Fig. 5.4 A schematic representation of reactions involved in the human phospholipid pathway

last product of the predicted network model matched with a high accuracy with
the experimental data; GP could successfully construct two metabolic pathways
viz. phospholipids cycle and degradation of ketone bodies. The eukaryotic phos-
pholipids biosynthetic pathway and its role in the cellular biology has been well
studied (Vamce and Vance 2008) (see Fig. 5.4). Here, the researchers chose four
enzymatic reactions from the said pathway with glycerol and fatty acid as inputs
and diacyl-glycerol as the end product. A tree was constructed programmatically
to represent the chemical reaction functions and selector functions as nodes, and
reaction rates, substrates, products and enzymes, as leaves. The results of the GP run
could be corroborated with the observed experimental data. Thus, GP could create
metabolic pathways that included topological features such as an internal feedback
loop, bifurcation point, accumulation point and rates for all reactions using the time
domain concentration values.

5.4 GP Applications in Chemical Engineering/Technology

In chemical engineering and technology, GP formalism has been used in a wide
variety of applications. Depending upon their domain these applications have been
divided in the following eight major categories: process modeling, energy and fuels,
water desalination and wastewater treatment (membrane technology), petroleum
systems, heat transfer, unit operations, process identification, and miscellaneous.
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5.4.1 Process Modeling

Complex chemical processes are modeled using the input–output data from the
experimental tests. In one of the early significant contributions of GP, McKay et al.
(1997) developed data driven steady-state models for two processes, namely, a
binary vacuum distillation column and a chemical reactor system. For the vacuum
distillation unit a model was developed to infer the bottom product composition.
The vacuum distillation column was equipped with 48 trays, a steam reboiler
and a total condenser. The feed was split into two product streams i.e., the
distillate and bottoms. McKay et al. (1997) obtained the input–output data from a
phenomenological model of the column wherein a set consisting of 150 data points
of the steady-state composition estimates from three trays (numbered 12, 27, and
42 from the top) was considered along with the corresponding values of the bottom
composition. A set of 50 data points was used in the model validation. The models
were accepted only if the validation set RMSE was less than 0.02. An F-test was then
performed to find the best model. The overall best model had an RMSE of 0.011
on the training set data and 0.015 on the validation set data. McKay et al. (1997)
applied a similar method to obtain a functional relationship, the data for which was
generated from an assumed relationship with three inputs (u1, u2, and u3) and a
single output, y:

y D 1000 u1 � exp .�5=u2/C u3 (5.5)

They also modeled a continuous stirred tank reactor (CSTR) system for the
prediction of the product composition.

In chemical processes, operating conditions need to be optimized for a variety
of reasons such as maximization of conversion, profit and selectivity of desirable
products, and minimization of cost and selectivity of undesirable products. For
conducting such an optimization, it is necessary that a representative and accurate
process model is available. Often, process behavior is nonlinear and complex and
therefore developing phenomenological (also termed “first principles” or “mech-
anistic”) process models becomes tedious, costly and difficult. In such instances,
data-driven process models can be constructed. Cheema et al. (2001) presented
GP-assisted stochastic optimization strategies for the optimization of glucose to
gluconic acid bioprocess wherein Aspergillus niger strain was used for producing
gluconic acid. Their study utilized two hybrid process modeling-optimization
approaches wherein a GP-based model was first developed from the process data,
following which the input space of the GP model was separately optimized using
two stochastic optimization (SO) formalisms, namely, genetic algorithms (GA)
and simultaneous perturbation stochastic approximation (SPSA) (Spall 1998). A
schematic of the GP-based process modeling and GA-based optimization strategy
is shown in Fig. 5.5. Cheema et al. (2002) used process data from 46 batch
fermentation experiments conducted by them in building the GP-based model. The
gluconic acid concentration (y)(g/L) which formed the output of the GP model
(see Eq. 5.6) was predicted as a function of three process parameters, namely,
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Fig. 5.5 Schematic of GP-model based process optimization

glucose concentration (x1)(g/L), biomass concentration (x2)(g/L), and dissolved
oxygen (x3) (mg/L).

y D
�

ˇ1x1

.x1 � ˇ2/4 C ˇ3

	 �
1

x2
2 � ˇ4x2 C ˇ5

	 �
1

ˇ6x3
2 � ˇ7x3 C ˇ8

	
(5.6)

The values of the eight model parameters fitted by the GPSR are: “1 D 3.1911 �
1010, “2 D 158.219, “3 D 2.974 � 106, “4 D 5.421, “5 D 107.15, “6 D 0.116,
“7 D 12.752, and “8 D 448.112. The magnitude of the variance (R2) pertaining to
the training (test) set output predictions made using Eq. (5.6) was 0.987 (0.986).
Since the form of the model was known (determined by GP), Cheema et al.
(2002) subjected the GP-based model to Marquardt’s non-linear regression analysis
(Marquardt 1963) to explore whether the model’s eight parameters could be fine-
tuned further to improve its prediction accuracy. This parameter fine-tuning indeed
led to a better R2 value of 0.9984 (0. 9979) for the training (test) set. The GP based
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model’s input space consisting of three predictors (glucose concentration, biomass
concentration and dissolved oxygen) was then optimized using the GA and SPSA
formalisms separately to obtain the optimized values of the three process parameters
(x1, x2, x3) leading to the maximization of the gluconic acid yield. The optimized
values of the three parameters were tested experimentally and the gluconic acid
concentration obtained thereby matched closely with its GA-maximized value. It is
thus seen that the usage of the GP-based hybrid modelling-optimization technique
allowed Cheema et al. (2002) to obtain optimized fermenter operating conditions
that imparted a significant improvement in the gluconic acid yield.

Using a similar approach, Xu et al. (2014) performed optimization of ultra-violet
water disinfection reactors. Ultra-violet disinfection is an environment-friendly
water treatment technology designing of which requires a good process model. The
GP model was trained using bi-objective genetic programming as described by Giri
et al. (2012). Next, a Matlab-based Non-dominated Sorting Genetic Algorithm II
(NSGA II) program was used to obtain optimized process design and operating
conditions.

The spouted bed reactors are used as an efficient fluid-solid contactors in
various chemical processes. Maintaining the reactor in the spouting regime is an
important task during the operation of these processes since it determines other
process operating conditions. Accordingly, minimum spouting velocity (Ums/is a
crucial parameter in the design and scale up of the spouted bed reactors. Various
correlations have been developed for the Ums prediction—most of which while are
based on the least-squares fitting, others have employed support vector machines,
artificial neural networks, etc. Hosseini et al. (2014) developed a GP model to
estimate the magnitude of Ums in spouted beds with a conical base. This correlation
uses several geometric and operating parameters such as column diameter (Dc),
spout nozzle diameter (Di/, static bed height (H0), particle diameter (dp), particle
density (�p), gas density (�g) and gravitational force (g/. It is given as:

Umsp
2H0g
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The results obtained from the above GP-based correlation are in good agreement
with the experimental values.
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Grosman and Lewin (2002) described the use of GP to generate empirical
dynamic models of two processes. These GP models were derived to implement
the nonlinear model predictive control (NMPC) strategy. The first process for which
Grosman and Lewin (2002) formulated the GP model was a mixing tank consisting
of two feed flows (fresh water and saturated salt water) for which the control
objective was to maintain the level of fluid and concentration of the effluent salt.
Since the GP models obtained for both the stated parameters were of linear type,
an inference could be drawn regarding the almost linear character of the actual
process. The second system considered by Grosman and Lewin (2002) is a Karr
liquid–liquid extraction column with the controlled outputs being the dispersed
phase effluent concentration and column hold-up. Here, both linear and nonlinear
models were developed although the performance of the nonlinear model was found
to be better than that of the linear model. Subsequently, Grosman and Lewin (2004)
modified the GP approach to generate steady-state nonlinear empirical models for
process analysis and optimization. The key feature was to improve the efficiency and
accuracy of the algorithm, via incorporation of a novel fitness calculation, optimal
creation of new generations, and parameter allocation. The first case study by
Grosman and Lewin (2004) was similar to that of McKay et al. (1997) wherein the
performance of GP was tested on the data generated using Eq. (5.5). The developed
GP model was compared with the model presented by McKay et al. (1997). The
GP model obtained by Grosman and Lewin (2004) yielded an RMSE of 0.017
whereas the GP model of McKay et al. (1997) resulted in an RMSE value of 0.47.
As can be seen, the Grosman and Lewin (2004) model showed an improvement in
the predictive capability by a good order of magnitude. Their second case study
involved a catalytic reaction of hydrogen and toluene to produce methane and
benzene.

C6H5CH3 C H2 ! C6H6 C CH4 (5.10)

Grosman and Lewin (2004) developed a GP model to predict the reaction rate of
toluene. The developed model showed that the GP-based model possesses a good
prediction accuracy (RMSED 0.0038).

In semiconductor manufacturing, rapid thermal processing (RTP) has gained
importance in recent years. In the processes using RTP, the principal issue is
temperature regulation. Dassau et al. (2006) presented GP for the development of
steady-state and dynamic temperature control models. To improve RTP an NMPC
system was developed using GP, as done by Grosman and Lewin (2002). The models
were based on the mathematical representation of the Steag RTP system and these
were subsequently used in controlling the temperature at three different locations on
the wafer, namely, centre of the wafer, 5 cm from the centre, and edge of the wafer
(9.5 cm from the centre). The advantage of this NMPC system is that the process
approaches the set point easily.

Hinchcliffe and Willis (2003) developed GP-based dynamic process models in
two case studies—a system with time delay (Narendra and Parthasarathy 1990)
and a cooking extruder (Elsey et al. 1997)—which were used to compare the
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performance of the GP algorithm with the filter based neural networks (FBNNs).
It was observed that the two approaches exhibit comparable performances although
GP has a potential advantage over FBNNs in that it can measure the performance
of the model during its development. In another study involving development
of GP based steady-state and dynamic input–output models, Willis et al. (1997)
constructed models for a vacuum distillation column and a twin screw cooking
extruder.

Coal gasification is more environment-friendly and efficient process for energy
generation than coal combustion. The performance of a coal gasification process
is significantly dependent on the quality of coal. For instance, process efficiency
is adversely affected by the high ash content in a coal. Such coals are found
in many countries, and form an important raw material for the coal gasification
and combustion. Despite the wide-spread availability of high ash coals, modeling
studies on gasification using these coals are much less in number when compared
with the studies performed using low ash coals. Coal gasification is a nonlinear
and complex process and its phenomenological modeling is a difficult, tedious
and expensive task. In such circumstances, data-driven modeling provides a low-
cost and relatively easier alternative to conduct process modeling if representative,
statistically well-distributed and sufficient process data are available. Accordingly,
Patil-Shinde et al. (2014) developed data-driven steady-state models for a pilot plant
scale fluidized bed coal gasifier (FBCG) utilizing Indian coals with a high ash
content. These models were constructed using process data from 36 experiments
conducted in the FBCG. Specifically, four models predicting gasification related
performance variables, namely, COCH2 generation rate, syngas production rate,
carbon conversion and heating value of syngas, were developed using GP and multi-
layer perceptron (MLP) neural network formalisms, separately. The input space of
these models consisted of eight coal and gasifier process related parameters, namely
fuel ratio, ash content of coal, specific surface area of coal, activation energy of
gasification, coal feed rate, gasifier bed temperature, ash discharge rate and air/coal
ratio. A comparison of the GP and MLP-based models revealed that their output
prediction accuracies and generalization performance vary from good to excellent
as indicated by the high training and test set correlation coefficient magnitudes lying
between 0.920 and 0.996.

Gandomi and Alavi (2011) developed a new strategy for non-linear system
modeling. They proposed a multistage genetic programming (MSGP) formulation
to provide accurate predictions by incorporating the individual effects of predictor
variables and interactions among them. The initial stage of MSGP formulates the
output variable in terms of an influencing variable. Thereafter, a new variable
is defined by considering the difference between the actual and predicted value.
Finally, an interaction term is derived by considering the difference between the
desired output values and those predicted by the individually developed terms.
Gandomi and Alavi (2011) applied this strategy to various engineering problems
such as simulation of pH neutralization process. The results yielded by the MSGP
strategy were observed to be more accurate than that by the standard GP.
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5.4.2 Energy and Fuels

The quality of fossil fuels is comprehended by their physical, chemical and
thermodynamic properties. These properties are measured using various chemical,
physical and instrumental methods. Often, the procedures involved in the property
determination are tedious, time consuming and expensive. In such cases, the role
of empirical models for property prediction becomes vital. A number of studies
have been performed wherein, GP has been utilized for developing models for the
prediction of a property.

Shokir (2008) developed a dew-point pressure (DPP) model to successfully
predict the future performance of gas condensate reservoirs. This study used GP
and the orthogonal least squares (GP-OLS) algorithm to generate a new DPP
model as a function of the reservoir fluid composition consisting of mole fractions
of methane to heptaneC, nitrogen, carbon dioxide, hydrogen sulfide, molecular
weight of heptaneC fraction, and reservoir temperature. The GP-OLS model was
developed using a training dataset of 245 gas condensate samples and a test
dataset of 135 samples. The prediction accuracy and generalization performance
of the model were tested and validated by comparing the GP-OLS based DPP
predictions with those from the correlations of Nemeth and Kennedy (1967),
Elsharkawy (2002), and Peng—Robinson (1976); the said comparison indicated
the accuracy of the GP-OLS based model to be better than the other correlations.
Additionally, the impact of the independent variables on the predicted DPP was
assessed by performing a sensitivity analysis, results of which were found to be
comparable with that given by the equation of state (EoS) calculations. Shokir and
Dmour (2009) employed similar strategy to develop a model for the prediction of
viscosities of pure hydrocarbon gases (methane to pentane) and hydrocarbon gas
mixtures that also contain minuscule amounts of non-hydrocarbon gases. Their
GP-OLS based viscosity model covers wide ranges of temperatures (0–238 ıC)
and pressures (1–890 bar) and uses gas density, pseudo reduced pressure, pseudo
reduced temperature, and molecular weight of pure and mixed hydrocarbons, as
inputs. In the model development, Shokir and Dmour (2009) used training and test
sets consisting of 6330 and 2870 data points, respectively. The results showed a
good agreement between the model predicted and experimental gas viscosities, with
only a 5.6 % average absolute relative error in respect of the test set outputs. This
viscosity prediction model has an advantage that it does not require the measurement
of gas viscosity at an atmospheric pressure, which is necessary in most of the
previously developed correlations. Subsequently, Shokir et al. (2012) developed
a model for the prediction of compressibility factor (z-factor) of sweet, sour and
condensate gases. There exist over twenty complex correlations for calculating the
z-factor. Firstly, the GP-OLS technique was applied to develop models for psuedo-
critical pressure and temperature as a function of the gas composition (mole percent
of C1-C7C , H2S, CO2 and N2) and specific gravity of C7C. A data set of 1150 gas
samples was considered in the model development. These pseudo-critical pressure
and temperature models were used to calculate the pseudo-reduced pressure and
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temperature. Next, using GP, a z-factor predicting model was developed as a
function of the pseudo reduced pressure and pseudo reduced temperature. The z-
factor model by Shokir et al. (2012) possesses higher prediction accuracy than that
possessed by other empirical correlations and the EoS with an average absolute
relative error of only 0.58 % and coefficient of correlation equal to 0.999.

With hydrogen gaining importance as an alternate to fossil fuels, it has become
necessary to have the knowledge of its thermophysical properties. Muzny et al.
(2013) developed a correlation for the prediction viscosity of normal hydrogen using
GP. The correlation was developed for a wide range of temperatures—from the triple
point to 1000 K—and pressures up to 200 MPa. This model agrees well with the
experimentally determined viscosities over the temperature range of 200–400 K and
for pressures up to 0.11 MPa with uncertainty magnitude less than 0.1 %. Outside
this region, the model has an estimated uncertainty of 4 % for the saturated liquid
and supercritical fluid phases. The uncertainty is larger along the saturated liquid
boundary above 31 K and near the critical region.

The GP has also been utilized for the prediction of crude oil properties. For
example, Fattah (2012, 2014) and AlQuraishi (2009) developed GP-based models
for the prediction of K-value of crude oil components the gas-oil ratio of gas
condensate and crude oil saturation pressure, respectively.

Pandey et al. (2015) proposed a multi gene genetic programming technique to
predict the syngas yield and lower heating value for the municipal solid waste
gasification in a fluidised bed gasifier. The predicted outputs were in good agreement
with the experimental data.

5.4.3 Water Desalination and Wastewater Treatment
(Membrane Technology)

Oils, fuels, solvents, paints, detergents, organic matter, and rusts, are a few typical
contaminants present in the wastewater. With ever growing need for a high quality
water, the need for treating the waste-water has also increased. In recent years,
membrane technology has assumed an important role in the wastewater treatment.
A significant difficulty with this technology is fouling of the membrane, which
leads to a decline in the permeation flux. Accordingly, Lee et al. (2009) utilized
genetic programming for the prediction of membrane fouling in a microfiltration
(MF) system. The model was developed to predict the membrane fouling rate in a
pilot scale drinking water production system consisting of a hollow fiber membrane
of polyvinylidene fluoride (PVDF). The model was developed using the following
input variables (predictors): operating conditions (flow rate and filtration time) and
feed water quality (turbidity, temperature and algae pH). Lee et al. (2009) collected
data from a membrane filtration system for 470 days, during which chemical
washing was done three times. The operating conditions and water quality data used
in the model development were analyzed separately during the three system runs.
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The resultant GP model predicted accurately the membrane resistance and yielded
very low RMSE values (ranging from 0.06 to 0.12). Shokrkar et al. (2012) also
developed a GP model for an accurate quantification of the permeation flux decline
during cross-flow membrane filtration of oily wastewater. A total of 327 data points
covering the effects of individual variations in the five predictor variables, namely,
temperature, cross flow velocity, trans-membrane pressure, oil concentration, and
filtration time, were used in the model development. Simulations conducted using
the GP model suggested that by increasing the filtration time, oil layer on the
membrane surface thickens and permeation flux decreases. The permeation flux falls
rapidly in the beginning of the filtration. The GP-model predicted results agreed
within 95 % of the experimental data. This study clearly gives an idea of how each
parameter affects the flux.

Reverse osmosis (RO) has been proved to be a promising technology for desali-
nation. It has been observed that the performance of RO is negatively affected by the
formation of scales of soluble salts. Cho et al. (2010) developed a GP model to study
the effect of CaSO4 scale formation on the RO membrane. The extent of RO fouling
(permeation flux decline) is dependent on the applied pressure, time, volumetric
concentration factor (VCF), stirring speed, and humic acid concentration. After
training and validation, the correlation coefficient for the model predictions was
0.832. It was observed that the applied pressure and VCF have higher impact on
the RO fouling. Park et al. (2012) have also developed a GP model for the analysis
of the performance of an RO process. The input parameters considered by them
are pH, oxidation reduction potential (ORP), conductivity, temperature, flux, TMP,
and recovery time. The GP models were developed for trans-membrane pressure
and membrane permeability separately for an early stage data (0–5 days) and the
late stage data (20–24 days). The models matched the trend of the pilot plant data
well. The sensitivity analysis of the GP models showed that the model-fitted early
stage data exhibit higher sensitivity towards conductivity, flux and ORP, whereas
the late stage data show higher sensitivity to temperature, recovery time, and ORP.
It was also observed that the GP model predictions of membrane permeability
were more accurate than the predictions of transmembrane pressure. In a recent
study, Meighani et al. (2013) have conducted a thorough comparative analysis
of the three modeling techniques (pore-blocking model, ANN and GP) for the
prediction of permeate flux decline. The permeate flux is modeled as a function of
the transmembrane pressure, feed temperature, cross flow velocity, pH and filtration
time. Eight sets of experimental data were compiled from the literature to investigate
the accuracy of the models. The correlation coefficients for the pore blocking, ANN,
and GP models were found to be 0.9799, 0.9999 and 0.9723, respectively.

Okhovat and Mousavi (2012) predicted the performance of a nanofiltration
process for the removal of heavy metals such as arsenic, chromium and cadmium.
GP-based models were developed for studying the membrane rejection of arsenic,
chromium and cadmium ions. Specifically, ions rejection (%) was considered as
the model output while feed concentration and transmembrane pressure, formed the
model inputs. The models showed satisfactory prediction accuracies with RMSE
magnitudes ranging between 0.005 and 0.02. Suh et al. (2011) utilized GP for
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estimating the membrane damage during the membrane integrity test of a silica
fluorescent nanoparticle microfiltration membrane. This model predicts the area
of membrane damage for the experimental input parameters (concentration of
fluorescent nanoparticles, permeate water flux, and transmembrane pressure). The
GP model yielded good prediction results with mean absolute error (MAE) of 0.83.

5.4.4 Petroleum Systems

Wax or asphaltene precipitation is a common issue encountered by the petroleum
industry, which leads to serious problems in crude oil production. This can occur
due to recovery processes or a natural depletion in reservoir condition. Manshad
et al. (2012a) utilized genetic programming neural network (GPNN) approach
for the prediction of wax precipitation in crude oil systems. In GPNN, genetic
programming is employed to choose an optimal architecture for the feedforward
neural network (Ritchie et al. 2003, 2007). This methodology was proposed by
Koza and Rice (1991). Manshad et al. (2012a) used a set of 87 experimental data
points in the development of a GPNN model for the prediction of wax precipitation.
Model’s input parameters were compositions of C1-C3, C4-C7, C8-C15, C16-C22,
C23-C29 and C30C fractions, specific gravity, system pressure and temperature. The
CC magnitude pertaining to the training (test) set output predictions was 0.973
(0.930). Prediction performance of this GPNN model was compared with that of
the multi-solid model and its prediction accuracy was found to be better than the
latter model. Manshad et al. (2012b) utilized a similar strategy for the modeling of
permeability reduction by asphaltene precipitation in Iranian crude oil reservoirs.

In petroleum production, the inflow performance relationship (IPR) is used
for evaluating the reservoir deliverability. It is a graphical representation of the
relationship that exists between the oil flow rate and bottom-hole flowing pressure.
There are various empirical models for IPR modeling. Sajedian et al. (2012)
developed a GP model for the prediction of the inflow performance of the vertical
oil wells experiencing two phase flow and compared this model with the multi-layer
perceptron model and empirical correlations. Their study investigated the ability
of GP and MLP in establishing and predicting the well-inflow performance for the
solution-gas-drive reservoirs. Though, for an IPR only the bottom-hole pressure and
its corresponding oil flow rate are required, additional parameters such as recovery
factor, average reservoir pressure, bubble point pressure, oil formation volume factor
at bubble point pressure, solution gas-oil ratio at bubble point pressure and gas
viscosity at bubble point pressure, become necessary for defining a specific IPR. For
the GP-based model, Sajedian et al. (2012) considered data from sixteen different
simulated reservoir models. Data from fourteen reservoirs were used in the model
training while data from the remaining two reservoirs were utilized for testing
and validation. The prediction performance of the developed GP and MLP models
was compared with that of the existing empirical models. This comparison clearly
indicated that the GP model produced the smallest error for the unseen data.
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5.4.5 Heat Transfer

In designing thermal systems for industrial processes, it is necessary to predict the
performance of system components. Theoretically, such a performance calculation
can be carried out with the help of “first principles” based governing equations.
However, complexities arising from the factors like turbulence, temperature depen-
dence of properties, and the geometry, make the first principles based modeling
a difficult exercise. To overcome the said difficulty, Cai et al. (2006) presented
a GP-based methodology for developing heat transfer correlations predicting the
performance of a thermal system component. They demonstrated the idea with two
case studies—heat transfer in compact heat exchangers and, heating and cooling
of liquids in pipes. To prevent complex heat transfer correlation functions, Cai
et al. (2006) modified the GP method by imposing a penalty on such functions.
The procedure was applied to the heat exchanger data reported by McQuiston
(1978) for a compact multi-row multi-column heat exchanger, with air as the over-
tube fluid and water as the in-tube fluid. Performance of the air side heat transfer
was indicated by the Colburn j-factor, for which a model was developed in terms
of the Reynolds number and a non-dimensional geometric parameter representing
an air side area ratio. The GP-based models yielded a smaller prediction error
when compared with that reported by McQuiston (1978). A comparison of the
experimental and model predicted j-factors showed a minor scatter. Earlier, Lee
et al. (1997) developed a GP model for the critical heat flux (CHF) prediction for an
upward water flow in vertical round tubes, under low pressure and flow conditions.
The data for modeling were obtained from the KAIST CHF data bank (414 and 314
CHF data). These models were developed for predicting CHF at the inlet (upstream
condition) and local conditions (CHF point conditions). The errors pertaining to
the GP-model predictions were small when compared with the predictions of other
existing correlations. Pacheco-Vega et al. (2003) also used GP to construct heat
transfer correlations for a compact heat exchanger. Two datasets were used in testing
the capability of the GP-based models–first being the artificial data from a one
dimensional function and the second from the previously determined correlations
for a single phase air-water heat exchanger. In both cases, the GP-based heat transfer
correlations showed good prediction capability.

5.4.6 Unit Operations

In one of its early applications, Greeff and Aldrich (1998) employed GP in various
leaching experiments as described below.

1. Acid pressure leaching of nickeliferous chromites: Based on the data by Das et al.
(1995) GP models were developed for the dissolution of nickel, cobalt and iron
from the beneficiated lateritic chromite samples as a function of temperature,
ammonium sulfate concentration, and acid concentration at different time inter-
vals.
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2. Leaching of uranium and radium: Here, models were developed for the co-
extraction of uranium and radium from a high grade arseniferous uranium ore
(Kondos and Demopoulos 1993), where the percentage of radium and uranium
was modeled as a function of pulp density, concentration of hydrochloric
leaching acid, concentration of the calcium chloride additive and time. Cross-
validation (using leave-k out method, k D3) was performed to evaluate the
prediction performance of the models. All the GP-based models were found to
be comparable and significantly more accurate than those developed by means
of the standard least-squares methods. In another leaching related study, Biswas
et al. (2011) analyzed the leaching of manganese from low grade sources,
using genetic algorithms, GP and other strategies where they made an extensive
comparison of the data-driven modeling techniques.

Wang et al. (2008a) applied GP to a complex heat-integrated distillation system
to synthesize a flow-sheet for separating a multicomponent mixture into pure
components at a minimum total annual cost. Both sharp and non-sharp distillations
were considered in the modeling. Based on the knowledge of chemical engineering,
unique solution encoding methods and solution strategies were proposed in this
study. The GP-based synthesis algorithm automatically optimizes the problem of
complex distillation systems. In related studies, Wang et al. (2008b) and Wang
and Li (2008, 2010) made use of GP for the synthesis of non-sharp distillation
sequences, synthesis of multicomponent products separation sequences, and syn-
thesis of heat integrated non-sharp distillation.

5.4.7 System Identification

In a situation when a chemical process is too complex to be understood and
modeled at a fundamental (first-principles) level, system identification is used for
its modeling. It refers to the development of an empirical (often black-box) model
for a dynamic system/process from the experimental data. Here also exists a scope
for incorporating into the model any process knowledge available a priori. When
compared with the first principles models, it is easier and time-saving to build data-
driven dynamic process models since industries routinely collect large amounts of
data via distributed control systems. Another advantage of the system identification
is that it can handle unmeasured process dynamics and uncertainties, which are
difficult to take care of using first-principles based modeling approaches.

Consider the dynamics of a single input—single output (SISO) system repre-
sented as:

ykC1 D f .yk; yk�1; yk�2; : : : ; yk�mC1I uk; uk�1; uk�2; : : : ; uk�nC1/ (5.11)

where k denotes the discrete time, ykC1 refers to the one-time-step-ahead process
output, u is the manipulated variable, f refers to the linear/nonlinear functional
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relationship (to be identified) between ykC1 and the current (kth) and the lagged
values of the input–output variables, and m and n refer to the number of lags
in the output and input variables, respectively. Traditionally, system identification
employs statistical methods for constructing models of dynamical systems from
their experimental (measured) data consisting of yk and uk values. In one of the early
studies on the applications of GP technique in chemical engineering, Kulkarni et al.
(1999) utilized the methodology for system identification by conducting two case
studies involving nonlinear pH and heat exchanger control systems. The objective
in both case studies was to obtain an appropriate non-linear form of f given the time
series values of the process input (u) and the corresponding output (y). To derive GP-
based models, Kulkarni et al. (1999) used synthetic process data. In actual practice,
these data are collected by conducting open-loop tests wherein manipulated variable
(u) is varied randomly and its effect on y is monitored. The specific systems
considered in two case studies were: (1) continuous stirred tank reactor (CSTR)
wherein hydrochloric acid and sodium hydroxide streams are mixed and effluent
stream’s pH is measured and controlled using a model-based control strategy, and
(2) a nonlinear heat exchanger control system wherein heater voltage and exchanger
outlet temperature are the manipulated and controlled variables, respectively. The
CC values in respect of the training and test set output predictions by both the
models were greater than 0.99 indicating an excellent prediction and generalization
performance by the models identified by GP. In a similar work, Nandi et al. (2000)
performed GP-based system identification of a fluidized catalytic cracking (FCC)

unit, wherein an exothermic reaction (A ! B ! C
�

takes place. Here, two

GP models each possessing an excellent prediction accuracy and generalization
capability were developed for the prediction of one-time-step-ahead and three-time-
steps-ahead outlet concentrations of species B.

Sankpal et al. (2001) utilized a GP-based model for the monitoring of a process
involving continuous production of gluconic acid by the fermentation of sucrose
and glucose solution in the presence of aspergillus niger immobilized on cellulose
fabric. During the continuous conversion of glucose and sucrose the rate of gluconic
acid formation drops as fermentation progresses. To compensate for this loss in
efficiency the residence time needs a suitable adjustment. As online determination
of the reaction rates and substrate concentration is cumbersome, a GP-based model
was developed to predict the conversion (z) as a function of the time. For a given

time series fzt; zt�1; : : : ; zT

o
, of length T, a model was developed to compute ztC1,

where ztC1 D f .zt; zt�1; : : : ; zt�˛/ I ˛ � t � .T � 1/ I 0 � ˛ � L; where t refers
to the discrete time, ˛ refers to the number of lags and L denotes the maximum
permissible lags. The expression for the one-time-step-ahead prediction gave high
prediction accuracies with correlation coefficient magnitudes� 1.

Timely and efficient process fault detection and diagnosis (FDD) is of critical
importance since it helps in, for example, energy savings, reduction in operating and
maintenance costs, curbing damage to the equipment, avoiding economic losses due
to process down-time, and most importantly preventing mishaps and injuries to plant
personnel. Process identification and FDD are related since a good process model



128 R. Vyas et al.

is needed for conducting the latter. Witczak et al. (2002) used a GP-based approach
for process identification and fault diagnosis of non-linear dynamical systems. They
proposed a new fault detection observer and also demonstrated the use of GP for
increasing the convergence rate of the observer. The reliability and effectiveness
of the identification network proposed by Witczak et al. (2002) were checked by
constructing models for a few individual parts of the evaporation section at Lublin
Sugar Factory S.A. and for an induction motor.

Madar et al. (2005) applied GP to develop nonlinear input–output models for
dynamic systems. They hybridized GP and the orthogonal least squares (OLS)
method for the selection of a model structure using a tree representation based
symbolic optimization. The strategy was implemented using MATLAB GP-OLS
Toolbox—a rapid prototyping system—for predicting (a) the structure of a known
model, (b) the model order for a continuous polymerization reaction, and (c) both
order and structure of the model for Van der Vusse reaction. The results of this
modeling study indicated that the proposed strategy provides an efficient strategy for
the selection of the model order and identification of the model structure. Recently,
Faris and Sheta (2013) also adopted GP for the system identification of Tennessee
Eastman Chemical process reactor.

5.4.8 Miscellaneous Applications

Other than the main areas of GP applications covered in the preceding subsections,
there exist a number of studies wherein the formalism has been employed to address
diverse problems in chemical engineering.

Genetic programming based methods are frequently employed in the multi-scale
modeling of process and product data (Seavey et al. 2010). A number of properties
such as critical flux heat prediction, viscosity, dew point pressure, compressibility,
permeation flux, solubility and gas consumption have been modeled using the
GP approach. It is often applied in conjunction with the genetic algorithms for
automatically building the kinetic models in terms of ordinary differential equations
(ODEs) to model complex systems of chemical reactions (Cao et al. 1999).

The proportional-integral-derivative (PID) controllers are the most commonly
used industrial process control strategies. Implementation of a PID controller
requires knowledge of three parameters, namely, the proportional gain (Kp), the
integral time (Ti) and the derivative time (Td). Ziegler-Nichols (ZN) proposed
a method to determine these parameters. However, parameters evaluated in this
manner usually have an overshoot of� 25 % thus making their fine tuning essential.
Almeida et al. (2005) used GP for fine tuning PID controller parameters designed
via ZN technique. The GP algorithm was programmed to create an initial population
of 500 individuals (candidate solutions), which evolved over 30 generations. The
GP-based fine tuning of PID parameters is a simple and an efficient method and
it improved the settling time of the system with a minimum overshoot and with a
null steady-state error. This performance was clearly seen in the three case studies
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that Almeida et al. (2005) performed, namely, a high order process, a process
with a large time delay, and a highly non-minimum phase process. Their GP-
based approach when compared with four other fine tuning techniques, was found
to exhibit superior performance. GP has been also used in the implementation of
nonlinear model predictive control strategies for the rapid acquisition of efficient
models to accurately predict the process trajectories (Tun and Lakshminarayanan
2004).

Often a situation arises, in which an appropriate hardware-based sensor for
measuring a process variable is either unavailable or the alternative analytical
procedure for its determination is time-consuming, expensive and tedious. In
such cases, a suitably developed soft-sensor can be employed for estimating the
magnitude of the “tricky-to-measure” process variable/parameter. Soft-sensor is a
software module consisting of a mathematical model that utilizes the available
quantitative information of other process variables and parameters for estimating
the magnitude of the chosen variable/parameter. Recently, Sharma and Tambe
(2014) demonstrated that GP can be effectively used to develop soft-sensors
models for biochemical systems. Specifically, they developed the GP-based soft-
sensors possessing excellent prediction accuracy and generalization capability for
two biochemical processes, namely, extracellular production of lipase enzyme and
bacterial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer.
The strategy developed by Sharma and Tambe (2014) is generic and can be extended
to develop soft-sensors for various other types of processes.

Despite the fact that most industrial reactions employ heterogeneous catalysis,
GP has received little attention in this area. Baumes et al. (2009), however, used
GP for an advanced performance assessment of industrially relevant heterogeneous
catalysts. Epoxides are cyclic ethers with three ring atoms. Their structure is highly
strained, which makes them more reactive than other ethers. Epoxidation of double
bonds to obtain epoxides, is carried out with micro- and meso-porous titanosilicates
(Ti-MCM-41 and Ti-ITQ-2) as catalysts. The catalytic activity of these materials can
be improved by controlling their surface properties. Baumes et al. (2009) achieved
this control by anchoring alkyl-silylated agents onto the catalyst surface, which
modifies the hydrophilic nature of the catalyst. In the absence of a rigorous kinetic
study of the synthesized catalysts, they used GP for obtaining a model for the
conversion of reactant in presence of a catalyst as a function of the reaction time.
The catalyst activity was assessed via the conversion versus reaction time curve.
Catalyst performance evaluation by this method is based on the total reaction time.
The catalyst activity was monitored during 16 h of reaction in a batch reactor and
the GP model constructed thereby resulted in an adjusted fitness of 0.93. Baumes
et al. (2009) also presented a GP algorithm with the context aware crossover (CAX)
operator, which did not perform better than the ordinary crossover operator.

The chemical industry requires reliable and accurate thermodynamic data for
different fluids, covering a wide range of temperature, pressure and composition
(Hendriks et al. 2010). The knowledge of thermodynamic properties of fluids plays
a critical role in the design and operation of chemical processes. A large number
of phenomenological and empirical models have been developed for the prediction
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of thermodynamic properties of fluids although application of GP in this area is not
wide-spread. Bagheri et al. (2014) developed a linear genetic programming (LGP)
based quantitative structure-property relationship (QSPR) model for the prediction
of standard state real gas entropy of pure materials. The LGP was utilized for 1727
diverse chemicals comprising 82 material classes obtained from Design Institute
for Physical Properties (DIPPR) database. The model yielding the best prediction
accuracy contained four input parameters describing two topological features and a
single 3D-MoRSE and a molecular property descriptor; the model is given by,

S
ı

298 D
�
11:15˙ 0:12 � R1:1

WW � .1:54˙ 0:04/ � BAC � .32:35˙ 1:12/

�Mor11u� .1:91˙ 0:08/ � TPSA.NO/0:9 C .188:80˙ 2:00/ (5.12)

where S
ı

298 refers to the standard state real gas entropy, RWW represents the
reciprocal hyper-detour index, BAC is the Balaban centric index, TPSA(NO) refers
to the topological polar surface area, and Mor11u describes the 3D molecular
representation of the structures based on electron diffraction (3D-MoRSE); all these
parameters can be derived from the chemical structure. The predictions of the above
QSPR model resulted in the RMSE and coefficient of determination (r2) magnitudes
of 52.24 J/(mol K) and 0.885, respectively. This model by Bagheri et al. (2014) is
helpful in the design of materials and exergy analysis.

The vapor-liquid equilibrium (VLE) models are used for the estimation of vapor
and liquid compositions under thermodynamic equilibrium conditions. Seavey et al.
(2010) employed GP for modeling VLE as also polymer viscosity. Their VLE model
relates the temperature (T), pressure (P) and overall molar composition (zi) to the
overall vapor mole fraction (� ) and composition of liquid and vapor phases (xi and
yi, respectively).

‰; xi; yi D f1 .T; P; zi/ (5.13)

In this study the unknown function f1 is characterized using a combination of
the fundamental and empirical modeling techniques to fit the data. The VLE model
development was initiated using the well-known Rachford–Rice equation,

xi D zi

1C‰ .Ki � 1/
(5.14)

yi D Kixi (5.15)

X
i

zi .Ki � 1/

1C‰ .Ki � 1/
D 0 (5.16)

Ki D �iPsat
i

P
(5.17)
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where the overall vapor mole fraction (� ), Ki values, activity coefficients (� i),
vapor pressure (Pi

sat), liquid mole fraction (xi), and vapor mole fraction (yi), are
unknown; the vapor pressure can be calculated by using Antoine equation. The
activity coefficient, � i , is a function of the temperature and the excess Gibbs energy
of each component gi (J/mol) is given by

RT ln �i D gi (5.18)

where R is the ideal gas law constant (8.314 J/mol K). The excess Gibbs energy
is then modeled using GP following which the overall vapor mole fraction and
compositions of the vapor and liquid phases are evaluated. In the same study, Seavey
et al. (2010) developed a GP-based model for predicting the polymer viscosity,
wherein the fundamental Williams-Landel-Ferry (WLF) equation was used along
with GP to capture the effect of temperature on the polymer viscosity. Integrating GP
with the fundamental equations led to the models that are compact and containing
fewer parameters.

Sugimoto et al. (2005) employed GP for obtaining dynamic models for two
enzyme-catalyzed reactions involving adenylate kinase and phosphofructokinase.
Data for developing the GP models were obtained by simulating the respective
kinetic models. The topology (structure) and the corresponding parameters of
the GP-based models obtained by Sugimoto et al. (2005) matched closely with
the respective phenomenological models. Their study indicates that the GP-based
modeling approach presented by them can be applied to identify metabolic reactions
from the observable reaction data.

Principal component analysis (PCA) is a standard statistical technique, which
is commonly employed in the dimensionality reduction of large highly correlated
data sets. PCA’s main limitation is that it is a linear technique and therefore
it finds restricted utility in analyzing data from nonlinearly behaving chemical
processes. Hiden et al. (1999) proposed a GP-based technique for non-linear PCA
and demonstrated its applicability using two simple non-linear systems and data
collected from an industrial distillation column.

Marref et al. (2013) studied the use of GP and GA for the derivation of corrosion
rate expressions for steel and zinc. Here, GP-based corrosion rate (�m) predicting
model was obtained using the major influential environmental factors as inputs and
GA was used to estimate the parameters of the engineered GP-based model. The
five inputs used in the modeling were temperature, time of wetness, contaminant
(SO2) content, contaminant (chloride) content, and exposure time. The corrosion
rate expressions yielded by GP and GA exhibited good accuracy in predicting the
corrosion rate.
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Bagheri et al. (2012) predicted the sublimation enthalpies of organic contam-
inants using their 3D molecular structure. Gene expression programming was
integrated with the quantitative structure-property relationship (QSPR), which
produced promising results with the coefficient of determination magnitude of 0.931
and RMSE of 9.87 kJ/mol. A dataset of 1586 organic contaminants from 73 diverse
material classes was used in the model development.

Bagheri et al. (2013) also developed a model for the prediction of the formation
enthalpies of nitro-energetic materials based on multi expression programming
(MEP). Multi expression programming is a sub-area of GP. A dataset of 35
nitro-energetic materials with formation enthalpies ranging between 115.4 and
387.3 kJ/mol were used by Bagheri et al. (2013). The MEP based model developed
thereby considers three molecular descriptors—Kier flexibility index, the mean
information index and R maximal autocorrelation of lag 2, as inputs. This model
yielded an acceptable accuracy for the prediction of formation enthalpy.

5.5 Conclusion

Genetic programming is one of the most intellectually appealing computational
intelligence formalisms. Its attractiveness stems from the following features: (a)
unlike ANNs and SVR, genetic programming does not make any assumptions about
the form of the data-fitting model and thus GP-based models exhibit far greater
diversity, (b) depending upon the relationship between the dependent and predictor
variables in the data set, it arrives at an appropriate linear or nonlinear data-fitting
function and all its parameters, and (c) since it provides system-specific closed-form
explicit linear/nonlinear data-fitting functions, GP-based models are easier to grasp,
deploy, and use.

As this chapter has revealed, GP applications in chemical sciences and engineer-
ing/technology have spanned a very wide problem space. GP is a young field of
research and efforts are directed at understanding its functioning in greater details
and devising methodologies to make it more efficient and faster. On the other
hand, practitioners in chemical sciences and engineering are finding ever increasing
applications of GP. In general, the phenomenal increase in the CPU speeds in the
last 30 years and the emergence of parallel computing have definitely assisted
in developing GP-based solutions for some real-life modeling and classification
problems. Despite its novelty and potential, genetic programming has not been
explored in chemical sciences and engineering for classification and modeling
applications as widely as ANNs and SVM/SVR. Thus, there is still a lot of work
to be done in the context of the GP-based applications in chemical sciences and
engineering. In what follows, some guidelines as also an outlook for the future
developments involving GP applications in chemical sciences and engineering are
provided.

There exist a number of studies wherein prediction and generalization perfor-
mance of GP has been compared with other data-driven modeling/classification
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methodologies such as ANNs and SVR/SVM. Often it has been found that
for non-linear systems, no single modeling/classification formalism consistently
outperforms the other methods. Accordingly, it is advisable to explore multiple
approaches such as GP, ANN and SVR/SVM for conducting modeling/classification
of nonlinear systems and choose the best performing one.

Although there are a few studies demonstrating its capability to obtain phe-
nomenological models (see for example, Schmidt and Lipson 2014) this fascinating
and un-matched feature of GP has been largely ignored. It is thus necessary to
exploit the stated GP characteristic extensively for developing first principles models
in chemistry and chemical engineering.

A large number of semi-quantitative and purely empirical correlations are
routinely used in chemistry and chemical engineering/technology. Prediction accu-
racies of many of these correlations are far from satisfactory. Also, in a number of
instances, linear correlations—since being easy to develop—are utilized although
the underlying phenomena being modelled are nonlinear. It is possible to construct
these correlations freshly using GP to improve their prediction accuracy and
generalization performance. The notable feature of GP that it is by itself capable
of arriving at an appropriate linear or a nonlinear model, can be gainfully exploited
for the development of the correlations alluded to above.

GP possesses certain limitations such as it is computationally demanding, the
solutions provided by it may be over fitted and an extensive heuristics is involved
in obtaining the best possible solution. Despite these limitations it is envisaged
that owing to its several attractive and unique features together with the advent of
user-friendly software such as Eureqa Formulize, Discipilus and ECJ tool kit, GP
will be extensively and fruitfully employed for providing meaningful relationships
and insights into the vast data available in the domain of chemical sciences and
engineering.
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Chapter 6
Application of Genetic Programming
for Electrical Engineering Predictive
Modeling: A Review

Seyyed Soheil Sadat Hosseini and Alireza Nemati

6.1 Introduction

Over the last decade, GP has received the interest of streams of researchers around
the globe. First, we wanted to provide an outline of the basics of GP, to sum up
valuable tasks that gave impetus and direction to research in GP as well as to
discuss some interesting applications and directions. Things change fast in this area,
as researchers discover new paths of doing things, and new things to do with GP.
It is not possible to cover all phases of this field, even within the generous page
limits of this chapter.

GP produces computer models to solve a problem utilizing the principle of
Darwinian natural selection. GP results are computer programs that are represented
as tree structures and shown in a functional programming language (such as LISP)
(Koza 1992; Alavi et al. 2011). In other words, programs evolved by genetic
programming are parse trees whose length can change throughout the run (Hosseini
et al. 2012; Gandomi et al. 2012). GP provides the architecture of the approximation
model together with the values of its parameters (Zhang et al. 2011; Gandomi et al.
2011). It optimizes a population of programs based on a fitness landscape specified
by a program capability to perform a given task. The fitness of each program is
assessed utilized an objective function. Therefore, a fitness function is the objective
function that GP optimizes (Gandomi et al. 2010; Javadi and Rezania 2009; Torres
et al. 2009). GP and other evolutionary methods have been successfully applied
to different supervised learning work like regression (Oltean and Dioan 2009), and
unsupervised learning work like clustering (Bezdek et al. 1994; Jie et al. 2004; Falco
et al. 2006; Liu et al. 2005; Alhajj and Kaya 2008) and association discovery (Lyman
and Lewandowski 2005).
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Our review on the application of GP is focused on electrical engineering, control,
optimization and scheduling, signal processing, classification and power system
operation. The distinctive features of GP create it a very convenient method in
regard to optimization. The application of GP to these areas gives some interesting
advantages, the principal one being its flexibility, which lets the algorithm be
modified to the needs of each particular problem. In fact, GP typically performs
an implicit process of feature selection and extraction. Interpretability can be
quickly favored by the utilization of GP since it can utilize more interpretable
representation formalism, like rules. It requires to be mentioned that GP approach
is an evolutionary method that bears a strong resemblance to genetic algorithm’s
(GA’s). The main differences between GA’s and GP can be summed up as follows:

• GP codes solutions as tree structured, variable length chromosomes, but GAs
make utilization of chromosomes of fixed length and structure.

• GP usually includes a domain specific syntax that governs meaningful arrange-
ments of information on the chromosome. The chromosomes are syntax free
for GAs.

• GP maintains the syntax of its tree-structured chromosomes during
‘re-production’.

• GP solutions are frequently coded in a way that lets the chromosomes be directly
executed utilizing a suitable interpreter. GAs are hardly coded in a directly
executable form.

The utilization of this flexible coding system permits the method to carry out
structural optimization. This technique can be helpful to the solution of many
engineering problems. For instance, GP may be utilized to implement symbolic
regression. While conventional regression seeks to optimize the parameters for a
pre-specified model architecture with symbolic regression, while the model design
and parameters are specified simultaneously. Similarly, the evolution of control
methods, Structural design, scheduling programs and signal processing algorithms
can be seen as structural optimization problems appropriate for GP. Cramer created
one of the first tree structured GAs for primary symbolic regression. Another early
development was the BEAGLE technique of Forsyth, which produced classification
rules utilizing a tree structured GA. However, it was Koza (1992) who was largely
responsible for the popularization of GP within the area of computer science. His
GP method (coded in LISP) was applied to a broad range of problems involving
symbolic regression, control, robotics, games, classification and power system
operation. Engineering applications have started to appear while still dominated
by computer scientists. Thus, the objective of this paper is to discuss these recent
engineering applications and give an entry point to this quickly expanding areas.
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6.2 Genetic Programming

GP is a symbolic optimization method that produces computer programs to solve a
problem using the principle of Darwinian natural selection. GP was introduced by
Koza as an extension of genetic algorithms (GAs). In GP, a random population of
individuals (trees) is created to achieve high diversity. While common optimization
techniques represent the potential solutions as numbers (vectors of real numbers),
the symbolic optimization algorithms present the potential solutions by structural
ordering of several symbols. A population member in GP is a hierarchically
structured tree comprising functions and terminals. The functions and terminals are
selected from a set of functions and a set of terminals. For example, function set F
can contain the basic arithmetic operations (C, �, �, /, etc), Boolean logic functions
(AND, OR, NOT, etc.), or any other mathematical functions. The terminal set T
contains the arguments for the functions and can consist of numerical constants,
logical constants, variables, etc. The functions and terminals are chosen at random
and constructed together to form a computer model in a tree-like structure with a
root point with branches extending from each function and ending in a terminal. An
example of a simple tree representation of a GP model is illustrated in Fig. 6.1.

The creation of the initial population is a blind random search for solutions
in the large space of possible solutions. Once a population of models has been
created at random, the GP algorithm evaluates the individuals, selects individuals
for reproduction, generates new individuals by mutation, crossover, and direct
reproduction, and finally creates the new generation in all iterations. During the
crossover procedure, a point on a branch of each solution (program) is selected
at random and the set of terminals and/or functions from each program are then
swapped to create two new programs as can be seen in Fig. 6.2.

The evolutionary process continues by evaluating the fitness of the new popula-
tion and starting a new round of reproduction and crossover. During this process, the
GP algorithm occasionally selects a function or terminal from a model at random

Fig. 6.1 The tree
representation of a GP model
.X1C 3=X2/2
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Fig. 6.2 Typical crossover operation in genetic programming

Fig. 6.3 Typical mutation
operation in genetic
programming

and mutates it (see Fig. 6.3). GEP is a linear variant of GP. The linear variants
of GP make a clear distinction between the genotype and the phenotype of an
individual. Thus, the individuals are represented as linear strings that are decoded
and expressed like nonlinear entities (trees) (Yaghouby et al. 2010; Baykasoglu et al.
2008; Gandomi et al. 2008).

6.3 GP Applications

The following section shows a review of engineering applications of GP. The results
of the literature survey have been organized into the following broad groups:

• Control
• Optimization and scheduling
• Signal processing
• Classification
• Power System Operation
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6.3.1 Control

Mwaura and Keedwell (2010) used evolutionary algorithms (EAs) to automatically
develop robot controllers and occasionally, robot morphology. This field of research
is introduced as evolutionary robotics (ER). Through the utilizations of evolutionary
methods such as genetic algorithms and genetic programming, ER has proved to
be a promising approach through which robust robot controllers can be developed.
Ebner (1999) explored the utilization of genetic programming for robot localization
to evolve an inverse function mapping sensor readings. This inverse function is
defined as an internal model of the environment. Environment is sensed utilizing
dense distance information acquired from a laser range finder. An inverse function
is developed to localize a robot in a simulated office environment.

Alfaro-Cid et al. (2008) assessed the implementation of genetic programming to
design a controller structure. GP is utilized to evolve control strategies that provided
the current and desired state of the propulsion and heading dynamics of a supply
ship as inputs, produce the commanded forces needed to maneuver the ship. The
controllers built utilizing GP are analyzed through real maneuverability tests and
computer simulations in a laboratory water basin facility. The robustness of each
controller is analyzed through the simulation of environmental disturbances.

Dracopoulos and Kent (1997) emphasized on the application of genetic program-
ming to prediction and control. Results were shown for an oral cancer prediction
task and a satellite attitude control problem. Using bulk synchronous model
parallelization, the paper explained how the convergence of genetic programming
can be significantly speeded up. Nordin and Banzhaf (1997) evaluated the utilization
of genetic programming to a direct control a miniature robot. The GP system is
employed to evolve real-time obstacle avoiding behavior. Genetic programming
enables real-time learning with a real robot. A speed-up of the approach by a factor
of more than 2000 was achieved by learning from past. Genetic programming was
used in Zell (1999) to search the space of possible programs automatically. First a
behavior-based control architecture utilizing computer simulations is evolved. Then
one of the experiments with a service robot is replicated, displaying that Kozas
classic experiment of evolving a control structure can be transferred to the real world
with adjustment to representation. Suwannik and Chongstitvatana (2001) generated
the control program by genetic programming to enhance the robustness of a robot
arm. The robustness is measured in the real world. To enhance the robustness,
multiple robot arm configurations used to evolve the control program. The result
showed that the robustness of a control program is enhanced by 10 % in comparison
to a control program evolved with a single configuration. Another control related
application of GP has been done by Nordin et al. (1997). they have tried to control
the khepera robot using GP. Their objective of using GP to control this miniature
robot is to evolve real-time obstacle avoiding behavior. Their technique enables real
time learning with actual robot. Figures 6.4 and 6.5 show the actual robot and its
sensor placement, respectively. The learning that applied to experimental result, had
papulation size of 50 individuals. the individuals used values from the sensors as an
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Fig. 6.4 The Khepera robot

Fig. 6.5 Position of the IR
proximity sensors

input and create two outputs values. The output values has been transmitted to the
robot as motor speeds. the population of each individuals is processed by the GP
system.

Figure 6.6 shows a schematic view of the system. This schematic has been
captured from Nordin et al. (1997).

6.3.2 Optimization and Scheduling

Grimes (1995) were used genetic algorithm (GA) and genetic programming (GP)
methods for track maintenance work with profit as the optimization criteria. The
results were compared with an existing method. It was shown that the GP algorithm
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Fig. 6.6 Schematic view of the control system

provided the best results, with the GA approach providing good results for a short
section and poor results for a long section of track. Genetic programming was
used in Stephenson et al. (2003) to optimize the priority functions associated with
two well-known compiler heuristics: predicted hyperblock formation and register
allocation. Their system achieved remarkable speedups over a standard baseline
for both problems. Vanneschi and Cuccu (2009) presented a new model of genetic
programming with variable size population in this paper and applied to the
reconstruction of target functions in dynamic environments. This models suitability
was tested on a set of benchmarks based on some well-known symbolic regression
problems.

Experimental results confirmed that their variable size population model found
solutions of similar quality to the ones found by genetic programming, but with a
smaller amount of computational effort. Ho et al. (2009) developed an algorithm
to derive a distributed method automatically dynamically to optimize the coverage
of a femtocell group utilizing genetic programming. The resulting evolved method
showed the capability to optimize the coverage well. Also, this algorithm was able to
offer increased overall network capacity compared with a fixed coverage femtocell
deployment. The evolution of the best-known schedule illustrated in Langdon and
Treleaven (1997) for the base South Wales problem utilizing genetic programming
starting from the hand coded heuristics. Montana and Czerwinski (1996) applied
a hybrid of a genetic algorithm and strongly typed genetic programming (STGP)
to the problem of controlling the timings of traffic signals that optimize aggregate
performance. STGP learns the single basic decision tree to be executed by all the
intersections when determining whether to change the phase of the traffic signal.
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6.3.3 Signal Processing

Ahmad and Khan (2012) explored the application of Neuro-Evolutionary Tech-
niques to the diagnosis of various diseases. The evolutionary method of Cartesian
Genetic programming Evolved Artificial Neural Network (CGPANN) is applied
for the detection of three important diseases. Holladay and Robbins Holladay and
Robbins (2007) showed that FIFTH, a new vector-based genetic programming
(GP) language, can automatically derive very efficient signal processing techniques
directly from signal data. Utilizing symbol rate estimate as an example, the perfor-
mance of a standard method was compared to an evolved approach. The capabilities
of genetic programming were expanded with combining domain knowledge about
both machine learning and imaging processing techniques in Harding et al. (2013).
The method is shown fast, scalable and robust. A novel genetic programming
method was developed in Sharman et al. (1995) to evolve both the parameters
and structure of adaptive digital signal processing algorithms. This process is
accomplished by determining a set of node terminals and functions to implement
the necessary operations commonly utilized in a broad class of DSP techniques.
Also, simulated annealing was used to assist the GP in optimizing the numerical
parameters of expression trees.

Esparcia Alczar (1998) presented a novel GP approach in the equalization of
nonlinear channels. A new way of handling numerical parameters in GP, node
gains, was defined. A node gain is a numerical parameter assigned to a node that
multiplies its output value. Esparcia-Alczar and Sharman (1999) investigated the
application of a combined genetic programming—simulated annealing (GP-SA)
solution to a classical signal processing problem. This problem is called channel
equalization where the goal is to build a system which adaptively compensates
for imperfections in the path from the transmitter to the receiver. Authors were
examined the reconstruction of binary data sequences transmitted through distorting
channels. Alczar et al. (1996) are also have worked on some application of GP in
signal processing in discrete-time manner. They have presented special tree nodes
that maintain time recursion, sigmoidal nonlinear transfer functions and internal
recursion, which are frequently used operations in signal processing. Table 6.1
which has capture from the same paper, describe these with nodes which implement
frequently used algebraic operations in signal processing.

6.3.4 Classification

An algorithm to the utilization of genetic programming was proposed for multi-
class image recognition problems in Smart and Zhang (2003). In their method, the
terminal set is made with image pixel statistics, the function set includes arithmetic
and conditional operators, and the objective function is based on classification
precision in the training set. Instead of utilizing xed static thresholds as boundaries
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to distinguish between different classes, this technique proposed two dynamic
algorithms of classification. These methods are centered dynamic range selection
and slotted dynamic range selection, based on the returned value of an evolved
genetic program where the boundaries between different classes can be dynamically
decided during the evolutionary process. GP was applied to solve cost-sensitive
classification by means of two techniques through a) manipulating training data
and b) adapting the learning method in Li et al. (2005). A constrained genetic
programming (CGP), a GP based the cost-sensitive classifier, has been proposed
in this paper. CGP is capable of making decision trees to minimize not only the
expected number of errors, but also the expected misclassification costs through
a novel constraint objective function. The ensemble classification paradigm is an
efficient way to enhance the accomplishment and stability of individual predic-
tors. Evolutionary algorithms (EAs) also have been widely utilized to produced
ensembles. In the context of heterogeneous ensembles, EAs have been successfully
employed to modify weights of base classifiers or to select ensemble members.
A novel genetic program was developed in Escalante et al. (2009) that learned
a fusion function for integrating heterogeneous-classifiers outputs. It evolves a
population of fusion functions to maximize the classification precision. A GP-based
method was developed in Liu and Xu (2009) to evaluate multi-class micro-array data
sets. In contrast to the standard GP, the individual formulated in this paper includes
a set of small-scale ensembles, named as sub-ensemble (indicated by SE). Each SE
includes a set of trees. In application, a multi-class problem is split into a set of
two-class problems, each of which is addressed by an SE first. The SEs tackling
the respective two-class problems are integrated to make a GP individual, so each
can address a multi-class problem directly. Efficient algorithms are developed to
address the problems arising in the fusion of SEs, and a greedy method is developed
to keep high diversity in SEs. Three GP-based methods were proposed in Zhang and
Nandi (2007) for addressing multi-class classification problems in roller bearing
fault detection. The First method maps all the classes onto the one-dimensional
GP output. The second algorithm singles out each class individually by evolving
a binary GP for each class independently. The third technique also has one binary
GP for each class, but these GPs are evolved together with the goal of choosing
as few features as possible. It can also be mentioned that an application of GP in
classifiers also could be dividing in three different data set which consist of several
subsets. Each of the subsets is also used in an independent run of GP to build up
each classifiers. Figure 6.7 shows the classification tasks where GP can be used.
This figure has been captured from Zhang and Nandi (2007).

6.3.5 Power System Operation

One of the fundamental power systems planning responsibility of an electrical
utility is to precisely anticipate load requirement for all time. The achieved results
from load forecasting operation are utilized in various fields like planning and
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Genetic Programming in Classification
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Fig. 6.7 Applications of GP in classification tasks

operation. Preparation of future expenses on construction, rely on the certainty of
the long term load foretelling significantly, therefore, various estimation procedure
have been tested for short and long term forecasting. Traditional load forecasting
approaches are planted on statistical scheme. It needs to be mentioned that the
evaluation of load aforetime is usually called as a Load forecasting. This estimation
could be demand and energy which is essentially required to improve the system
planning effectiveness. These forecasting is also utilized to organized approaches
for construction and energy forecast which are essential for future fuel requirements
determination. So a good forecast affecting the trend of power planning of present
and future. Chaturvedi et al. (1995) are given the GP approach for long term load
forecasting.

GP claims to support an optimal solution for the computational problem like
power planning. Dr. Kamal (2002) worked on methods of calculation of problems
of curve fitting by using GP. He showed that this problem can be carried out without
use of equation shape. Farahat (2010) are also applied GP to forecast short term
demand by using a new method. Some other researchers are also specified the
comparison of different estimation algorithms for power system load forecasting.
Genetic pronging, least absolute value filtering and least error squares are different
approaches in their experiments. They have considered different forecasting models.
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6.4 Conclusions

This paper has provided us with the background context required to understand the
reviewed documents and use as a guideline to categorize and sort relevant literature.
While computer scientists have focused on gaining a significant understanding of
the methods the engineering community is solving practical problems, frequently
by introducing accepted systems engineering methodologies and concepts. The
combination of different methods permits us to make the most of several algorithms,
using their strengths and preventing their drawbacks. The flexibility of GP makes it
possible to combine it with very various algorithms. But the combination of GP with
some other methods is not the only option; GP can be employed as a mechanism to
integrate different techniques. It is stressed that GP is a young area of research,
whose practitioners are still exploring its abilities and drawbacks. Therefore, it is
the authors’ belief that the future holds much promise.
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Chapter 7
Mate Choice in Evolutionary Computation

António Leitão and Penousal Machado

7.1 Introduction

Darwin’s theory of Natural Selection (Darwin 1859) has been widely accepted and
endorsed by the scientific community since its early years. Described as the result of
competition within or between species affecting its individuals rate of survival, it has
had a deep impact on multiple research field and is at the source of the ideas behind
EC. The theory of Sexual Selection (Darwin 1906) was later developed by Darwin to
account for a number of traits that were observed in various species, which seemed
to have no place in his Natural Selection theory. Darwin described Sexual Selection
as the result of the competition between individuals of the same species affecting
their relative rate of reproduction, a force capable of shaping traits to high degrees of
complexity and responsible for the emergence of rich ornamentation and complex
courtship behaviour.

Despite having been discredited by the scientific community at the time, it is
now widely regarded as a major influence on evolution theory. Interest arose in the
1970s through the works of Fisher (1915, 1930) and Zahavi (1975) and since then
the community as gradually embraced it, having found its place in various research
fields. While it has come a long way, Sexual Selection is still far from understood in
EC, both regarding possible benefits and behaviour.
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Mate Choice was one of the processes of Sexual Selection described by Darwin
and that mostly attracted his followers. This chapter describes a nature-inspired
self-adaptive Mate Choice setup and covers the design steps necessary for applying
it. A two-chromosome scheme where the first chromosome represents a candidate
solution and the second chromosome represents mating preferences is proposed.
Two approaches for encoding mating preferences are presented and differences
discussed. Details on how to apply each of them to problems with different
characteristics are given and design choices are discussed. The application of both
approaches on different problems is reviewed and the observed behaviour discussed.

Section 7.2 introduces Mate Choice as well as its background, Sect. 7.3 gives
a general overview of Mate Choice in Evolutionary Computation and covers the
state of the art through a classification based on adaptation of mating preferences,
popular preference choices and the role of genders. The section finally introduces
the proposed setup, giving specific details on the ideas behind it and how to
apply it. Section 7.4 describes the application of both the proposed approaches
to multiple problems and discusses the obtained results and behaviours. Finally,
Sect. 7.5 presents a summary.

7.2 Sexual Selection Through Mate Choice

Since his journey on the Beagle, Darwin has thoroughly studied the forces responsi-
ble for the evolution of species. The result of competition within or between species
affecting their individuals relative rate of survival was named Natural Selection.
Since the publication of Darwin’s On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the Struggle for Life in 1859
(Darwin 1859), the theory has become widely accepted by the scientific community.
This was achieved thanks to the evidence gathered by Darwin, its co-discoverer
Alfred Russel Wallace (1858) as well as multiple following researchers, ultimately
overcoming other competitive ideas (Cronin 1993).

Despite such a success, Darwin battled with gaps in its theory. For instance,
Darwin questioned how was it that Natural Selection could account for animal
ornamentation or courtship behaviour. He observed a large number of species, where
individuals displayed rich and costly ornamentations or complex and risky courtship
behaviours that seemed to serve no purpose in survival, sometimes even risking it.
These characteristics challenged the theory of Natural Selection and the idea that
traits adapted to the environment in a purposeful way. Individuals carrying aimless
and costly features should be unfavored in competition, making such features bound
to face extinction.

However, as Darwin observed, that was not the case. Ornamentation and
courtship behaviour were spread across populations and species, although Natural
Selection could not explain their origin. He figured, however, that for these features
to emerge they had to bring some kind of competitive advantage. As they didn’t fit
in Natural Selection, he envisioned the existence of another trait-shaping selection
force in nature, one capable of shaping species in complex and diverse ways, by
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causing traits that help in competing for mates to spread through future generations.
These traits were linked to reproduction, as he observed in nature, and brought
evolutionary advantages, even when risking survivability. Darwin developed the
theory of Sexual Selection (Darwin 1906) to explain this phenomena and described
it as the result of competition within species affecting its individuals relative rate of
reproduction.

Darwin therefore saw evolution as the interplay between two major forces,
Natural Selection as the adaptation of species to their environment, and Sexual
Selection as the adaptation of each sex in relation to the other, in a struggle of
individuals of one sex for the possession of individuals of the other in order to
maximize their reproductive advantages. While the outcome of failing in Natural
Selection would be low survivability, the outcome of failing in Sexual Selection
would be a low number or no offspring. From an evolutionary perspective, they
reach the same outcome with competition in reproductive rates between individuals
leading to evolutionary changes across populations.

Unlike his theory of Natural Selection, which easily found support on the
scientific community, his theory of Sexual Selection was mostly rebuffed. The
scientific community was not keen on Darwin’s ideas regarding Sexual Selection,
specially his ideas on Female Mate Choice and the impact it could have on evolution.
It was clear for them that Natural Selection was the only force capable of adapting
species and so a number of theories emerged in order to explain rich displays or
courtship behaviour. One of the most avid opponents of Darwin’s ideas was Wallace
who came up with various reasons for the emergence of traits such as protection
through dull colors in females, recognition of individuals of the same species, usage
of surplus energy on courtship behaviour or non-selective side effects (Cronin 1993).

The community was better prepared to understand such ideas, which were
embraced by various renowned researchers such as Huxley (Cronin 1993). This lead
to a time where Darwin’s ideas on Sexual Selection and specially Mate Choice were
dismissed as non-important, and its impact to be regarded as a small part of Natural
Selection. These ideas remained for over a century, with the exception of a few
works by a select few researchers who made important contributions, such as Fisher
(1915) who explored the origin of mating preferences and runaway sexual selection,
Williams and Burt (1997) who discussed how ornaments should be considered
as important as other adaptations or Zahavi (1975) who expanded on the role of
displays as fitness indicators.

Overtime, the work of these researchers was able to gain some space in the
community, eventually reaching more open-minded generations who were also
better equipped to test and understand the workings of Sexual Selection and Mate
Choice. The resulting discussion has for the past few decades attracted experimental
biologists, psychologists and anthropologists that since then have put Darwin’s
ideas as well as those promoted by his followers to the test, contributing with
increasing evidence to back the ideas behind Sexual Selection through Mate Choice.
Nowadays, there is active research on various fields and the theory has been widely
accepted by the community. Two extensive reviews on Sexual Selection have been
published by Helena Cronin (1993) and Malte Andersson (1994).
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Mate Choice is one of the main Sexual Selection processes described by Darwin
and where he put much of his effort, as did most of his followers. They aimed
to explain the emergence of aesthetic features such as ornamentation or courtship
behaviour. One of the pillars of Darwin’s theories on evolution was that species
went through adaptations because they brought some kind of advantage over time.
In this case, these traits emerged because they brought reproductive advantage as a
result of preferences when selecting mating partners (Darwin 1906). Fisher helped
explain the relation between mating preferences and traits, and the genetic link
between them through his theory of runaway sexual selection. He addressed how
displays may arise as a result of positive reinforcement between mental mating
preferences and physical traits, through a feedback loop that can lead to extravagant
adaptations such as the peacock’s tail, colorful appearance or complex courtship
behaviour (Fisher 1915, 1930).

Fisher’s work suggests the inheritance of mating preferences much like any
other trait, therefore adapting throughout the generations. This process can be better
understood if mate choice is thought of like any other adaptive choice such as food
choice (Miller 1994). Still, criticism of theses ideas remained, since the evolution of
traits through such a runaway process with increasing speed could drastically risk
the survival ability of individuals. Zahavi later expanded on this subject, suggesting
that aesthetic displays can act as indicators of fitness, health, energy, reproductive
potential etc. He argued through his handicap principal (Zahavi 1975) that even
in the case of costly displays and behaviour, which seemed to have no purpose
in Natural Selection, it was in fact their high cost that made them good fitness
indicators. As these traits were handicaps, they couldn’t be maintained by weak,
unfit individuals and that only strong healthy individuals would be able to maintain
them and survive. Therefore reinforcement of mating preferences for these traits
would be beneficial for females, which would in turn reinforce such physical traits
in males as suggested by Fisher (1915).

These ideas were explored and discussed by many other researchers, who finally
brought Sexual Selection through Mate Choice into the spotlight. Their work
corroborated Darwin’s ideas and brought new evidence allowing Sexual Selection to
be seen as an important force in Evolutionary Theory. The interplay between Natural
Selection and Sexual Selection was found to have a deep impact on various traits
on many different species, especially among those equipped with complex sensory
systems (Cronin 1993). During the last few decades, Sexual Selection has found
its place on various research fields such as Evolutionary Biology, Evolutionary
Psychology and Evolutionary Anthropology. On the other hand, it is yet to attract the
full attention of the Evolutionary Computation community, despite the publication
of several papers over the last couple of decades.

The possible advantages that Sexual Selection, particularly through Mate Choice
can bring to the field of Evolutionary Computation have been previously discussed
by several researchers, and an extensive discussion on arguably the most relevant
ones has been published by Miller and Todd (1993). They find that the addition
of Mate Choice to Natural Selection can bring advantages such as (1) increased
accuracy when mapping from phenotype to fitness, therefore reducing the “error”
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caused by different forms of Natural Selection; (2) increasing the reproductive
variance of populations by distinguishing between individuals with no survival-
relevant (fitness) differences; (3) help populations escape from local optima through
a directional stochastic process; (4) contribute to the emergence of complex
innovations which may eventually contribute to fitness increasing; (5) promote
sympatric speciation, diversity and parallel evolutionary searches.

7.3 Mate Choice in Evolutionary Computation

Mate Choice has been modeled in Evolutionary Computation by applying more
or less the same mechanism. Algorithm 1 succinctly describes the approach. First,
parent1 is selected from the population using fitness-based traditional operators.
Secondly, a pool of potential mating partners is determined. These could be the
whole remaining population, a random subset or a group of individuals selected
based on a given characteristic. Thirdly, the mating candidates are evaluated
according to a given set of mating preferences. Finally, the candidate that according
to the evaluation best matches the first parent is selected as parent2.

To further understand how Mate Choice works, Figs. 7.1 and 7.2 show how
traditional approaches and mate choice approaches work respectively. As seen in
Fig. 7.1, traditional approaches select each parent independently, based on their
fitness alone, meaning that each individual should have reproductive success
according to their fitness value. However, these individuals are paired randomly,
without any knowledge about their mating partners. In mate choice approaches,

Algorithm 1 Parents Selection using Sexual Selection through Mate Choice
proc MateChoice(population) �

parent1 parentSelection(population)
candidates candidatesSelection(population)
evaluateCandidates(parent1,candidates)
parent2 selectBest(candidates)

end

Fig. 7.1 Parents Selection
using traditional approaches

POPULATION
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Parent 1 Parent 2
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Fig. 7.2 Parents Selection
using a Mate Choice
approach

Most 
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as seen in Fig. 7.2, individuals selected by traditional approaches are allowed to
choose a mating partner based on their own criteria, meaning the pairing is no longer
random but happens with a given characteristic in mind. This Mate Choice process
is therefore ruled by the mating preferences as they will determine which individuals
are good matches and are more likely to achieve reproductive success by producing
fit, attractive offspring.

7.3.1 State of the Art

Mating preferences may remain static over the generations or undergo adaptation.
In order to address preferences and adaptation mechanisms we will rely on the
classification of adaptation of parameters and operators by Hinterding et al. (1997).
Afterwards, we will look on different preferences and how they can be used to assess
genotypes or phenotypes. Finally we will discuss the use of genders in Mate Choice
strategies.
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7.3.1.1 Adaptation of Mate Choice

Various authors rely on guiding the choice of mating partners using pre-established
preferences, which remain static over the evolution process. The most widely known
strategies are probably those that mate individuals based on similarity measures.
Examples found in the literature include using Hamming distances (De et al. 1998;
Fernandes and Rosa 2001; Galan et al. 2013; Ochoa et al. 2005; Ratford et al. 1996,
1997; Varnamkhasti and Lee 2012), Euclidean distances (Galan et al. 2013; Ratford
et al. 1996), number of common building blocks (Ratford et al. 1996) or even
simply using the fitness value as a distance measure (De et al. 1998; Galan et al.
2013; Goh et al. 2003; Ratford et al. 1996; Varnamkhasti and Lee 2012). In some
implementations, the first selected parent chooses the candidate that maximizes
similarity (Fernandes et al. 2001; Hinterding and Michalewicz 1998) while in other
cases the candidate that minimises the measure is considered the best (Varnamkhasti
and Lee 2012). Other approaches attribute a probability of selection proportional or
inversely proportional to the distance measures (Ratford et al. 1996).

Moreover, some authors don’t want to maximize or minimize distances but rather
consider an ideal distance and favour mating candidates that have distances closer to
that pre-established value. In this case the attractiveness of a candidate is established
using bell curves or other functions with a predefined center and width parameters
(Ratford et al. 1997).

Other metrics have been applied such as in Hinterding and Michaelwicz’s study
on constrained optimization (Hinterding and Michalewicz 1998). They suggest
having the first parent select the mating candidate that in conjunction with itself
maximizes the number of constraints satisfied. A second example is the study by
Fernandes et al. on vector quantization problems where a problem specific metric
is used (Fernandes et al. 2001). Sometimes different metrics are combined in a
seduction function. This can be accomplished through the use of rules such as
choosing the fittest candidate if two candidates both maximize or minimize the
similarity measure or choosing between them randomly if they both also share the
same fitness value (Varnamkhasti and Lee 2012). A different approach is to combine
different metrics using different functions (such as weighted functions) which has
been done for instance by Ratford et al. (1996).

While fixed parameters and mating preferences can often achieve competitive
results and reproduce desired behaviours in Mate Choice algorithms, allowing their
online control may be extremely valuable. Such approaches, which allow the Mate
Choice strategy to change online without external control, therefore turning it into a
dynamic process, can be subdivided into three groups: deterministic, adaptative and
self-adaptative.

Deterministic approaches are the least common among the literature. Still,
Ratford et al. give a good example (Ratford et al. 1997). On an aforementioned
study they use a function to calculate a candidate’s attractiveness which has two
variables, centre and depth. It values individuals whose hamming distance from the
first parent is closer to the centre of the function. However they complement this
study by testing an approach where the centre of the function is adjusted at each
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generation, so that dissimilar individuals are favoured at the beginning of the run
but the opposite happens at the end.

Adaptative approaches are more common and rely on information about the
evolution process to adapt parameters or preferences. Fry et al. (2005) have applied
such a strategy to control which operator is used to select the second parent, either a
regular tournament selection or a Mate Choice operator. In their study they choose
mating partners by combining fitness with a penalization for similar candidates
(different similarity measures are applied). However they use this operator with a
given probability which is increased or reduced depending on its relative success
in producing enhanced offspring in previous generations. A second example can
be found on studies by Sánchez-Velazco and Bullinaria (2003, 2013). Mating
candidates in this case are evaluated based on a weighted function that combines
three metrics: fitness, likelihood of producing enhanced offspring, and age. While
age is adapted deterministically at each generation, the second factor represents a
feedback on each individual’s ability to produce fit offspring in the past.

Self-adaptive approaches better resemble the workings of Mate Choice in nature.
By allowing preferences and parameters to be encoded in each individual, self-
adaptation allows them to take part in the evolution process and to impact not
only the individuals that encode them but the population as a whole. Possibly the
simplest example of such an approach relies on encoding an index as an extra gene
in each individual. When evaluating its mating candidates, each individual will order
them from best to worst according to a given metric and select the candidate at the
encoded position. Galan et al. (2013) have experimented with this approach using
Euclidean distance and fitness to order mating candidates. On the aforementioned
study by Fry et al. (2005), a second approach was tested, where each individual
encodes its own probability of selecting a mating partner using a mate choice
operator rather than regular tournament selection. The probability is inherited by
the offspring and adapted by comparing their fitness with that of their parents.

More complex mating preferences can be found on self-adaptive approaches.
Miller and Todd (1993) and Todd and Miller (1997) suggest encoding a reference
position on the phenotype space marking each individual’s ideal position for a
mating candidate. When assessing potential mating partners, the probability of
mating varies according to their distance to the reference position. New offspring
inherit genetic material from both parents through two-point crossover thus allowing
for its self-adaptation throughout the evolutionary process.

Holdener and Tauritz (2008) relied on an extra chromosome to encode a list
of desired features to look for on mating candidates. They tackle a problem
using a binary representation on the first chromosome but rely on a real value
representation on the preferences chromosome. This chromosome has the same
size as the first chromosome with each gene representing how much an individual
wants the corresponding gene to be set to 1. This information is used to evaluate
mating candidates by comparing the preferences chromosome with each candidate’s
potential solution, favouring desired genes. Preference genes are inherited from
parents to offspring so that they match the genes they influence and adapt to match
the offspring’s relative success. On a related study, Guntly and Tauritz (2011)
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proposed a centralized approach in addition to an approach similar to the one
described above. The centralized approach relies on two preference vectors common
to the whole population: one relative to genes set to 0 and one relative to genes set
to 1. These vectors are accessed by individuals when evaluating mating candidates
in a similar fashion as in the previous approach. The value of each gene is adapted
at each selection step according to the relative success of the offspring.

Smorodkina and Tauritz (2007) proposed a different approach where each
individual encodes a mate choice function in addition to its own candidate solution
to the problem at hand. This function is represented as a tree which is used to select
a mating partner. The tree in each individual is initialized using only one terminal
node which corresponds to the remaining of the population. As a non-terminal set, a
number of selection operators can be used, which compare different metrics between
mating candidates. Eventually the tree returns the preferred mating candidate. If the
produced offspring shows enhancements then it inherits the tree used for evaluation
from its parents, otherwise it inherits the product of recombination between the
evaluation trees of both parents.

7.3.1.2 Mating Preferences

As described above, many possible mating preferences have been applied by
different researchers. Some of them focus on the similarity between the first parent
and each mating candidate. A measure of similarity can be assessed either using
genotypic (De et al. 1998; Fernandes and Rosa 2001; Galan et al. 2013; Ochoa et al.
2005; Ratford et al. 1996, 1997; Varnamkhasti and Lee 2012) or phenotypic (Galan
et al. 2013; Ratford et al. 1996) information.

Other metrics focus on characteristics of mating candidates such as previous
reproductive success, fitness or age (Ratford et al. 1996). Characteristics can be
compared to those of the first parent in an attempt to find a partner that complements
it (Hinterding and Michalewicz 1998). Often, when multiple metrics are applied
they are combined through rules or functions. In some cases similarity measures
are also combined with such metrics (Ratford et al. 1996). More interestingly are
perhaps approaches where the first parent is able to perceive certain genotypic or
phenotypic traits on mating candidates and selects the one that best matches its
preferences. This is often accomplished by encoding mating preferences in each
individual and comparing those preferences with traits displayed by each candidate
(Holdener and Tauritz 2008; Miller and Todd 1993; Smorodkina and Tauritz 2007;
Todd and Miller 1997).

7.3.1.3 Gender Roles

In nature, Mate Choice is almost absolutely on the side of females. Due to their high
reproductive investment, they are picky when selecting a mating partner, looking for
a fit male that can provide good genes. On the other hand males are more willing
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to mate with as many females as possible in an attempt to increase their number of
offspring and benefit the presence of their genes in following generations. Looking
back at Algorithm 1, parent1 takes the female role while the mating candidates and
therefore parent2 take the male role.

There are different approaches in the literature to establish which individuals
will take a female role or a male role. For instance, on some approaches a gender
is attributed randomly to each individual at the beginning of each generation (Goh
et al. 2003; Sánchez-Velazco and Bullinaria 2013) while in other cases gender is
attributed alternatively when offspring are produced (Varnamkhasti and Lee 2012).
In such cases where each individual has a fixed role, females can be selected from
their subpopulation using different strategies. In some cases all females are selected
and produce offspring once (Goh et al. 2003), in other cases traditional selection
operators are applied (Varnamkhasti and Lee 2012). An alternative approach has
each individual participating once as a female and once as a male in the parent
selection process (Holdener and Tauritz 2008). Mating candidates are selected from
the males pool, often randomly. In other cases, all individuals in the population
have the chance to play either role. In these cases, any individual can be selected
as parent1, therefore for the role of female, and all the remaining can be selected
as mating candidates, or for the role of male. In these cases it is popular to select
females through traditional operators and males randomly. If an individual takes the
role of female at a selection step, it could be selected as male on the next one and
vice-versa.

7.3.2 Designing a Nature-Inspired Mate Choice Approach

When designing Mate Choice approaches we feel that in order to best resemble the
natural process, models should follow three nature-inspired rules:

1. individuals must choose who they mate with based on their own mating
preferences

2. mating preferences, as mental traits, should be inherited the same way as physical
ones

3. mate selection introduces its own selection pressure but is subject to selection
pressure itself

We see the evaluation of mating candidates as a complex process, where the
relation between observed traits, or their weight on each individual’s mate choice
mechanism is difficult to establish beforehand. While some traits could be seen
as valuable on a mating candidate, others could turn out to be irrelevant or even
harmful. The relation between them is also certainly not straightforward as they
could be connected in unforeseeable ways. Moreover, certain displayed traits may
be very important for survival purposes but hold little value for mate choice, or
the other way around. This value can also vary on each selection step, depending
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on the characteristics of parent1, its mating preferences and the mating candidates
involved.

This discussion is particularly relevant when we recall the following aspects of
Sexual Selection through Mate Choice:

1. each individual has its own characteristics and may benefit differently from
reproducing with different mates. Each individual also has its own distinct
mating preferences that may value different characteristics in mating candidates.
The reproductive success of individuals depends on choosing appropriate mating
partners the same way that it depends on how attractive they are to others.

2. the paradigm may result on cases where individuals with poor survival abilities
attain a high reproductive success because they display characteristics that are
favoured by mating preferences. Their offspring may achieve low fitness values
but may contribute to exploration and the emergence of innovation which may
eventually turn into ecological opportunities.

3. the handicap principle shows that certain traits may risk the survival ability of
individuals while in fact being indicative of good gene quality, thus reducing the
accuracy of fitness values. Mate Choice mechanisms may be able to help increase
the accuracy of mapping between phenotypes and fitness values and translate that
into reproductive success.

4. mating preferences and evolved physical traits have an intrinsic and deep
dependence between them which results from the feedback loop described in
the theory of runaway sexual selection. The resulting arms race causes mating
preferences to evolve in relation to displayed traits and physical traits to adapt
in relation to enforced mating preferences. This process can lead traits to a high
degree of elaboration.

With these ideas in mind and with the goal of designing mate choice mechanisms
that best resemble the natural process, we refrain from establishing what are good
or bad mating preferences. Also, we avoid linking each individual’s candidate
solution with its mating preferences using any pre-established method, such as
inheritance rules. We therefore treat genetic material regarding physical traits and
mating preferences equally and leave the responsibility of adapting individuals up
to the evolutionary process. Inheritance and selection pressure should be able to
bring reproductive and survival advantages to individuals carrying genes linked
to appropriate phenotypes and mating preferences through the intrinsic relation
between Natural Selection and Sexual Selection through Mate Choice.

The following subsections detail how we design Mate Choice approaches that
meet the presented rules and aspects.

7.3.2.1 Representation

We propose a setup where each individual is composed by two chromosomes. The
first one encodes a candidate solution to the problem at hand while the second
chromosome encodes an individual’s mating preferences, which it will use to
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assess potential mating partners. The first chromosome could use any representation
wanted for the problem at hand, be it a Genetic Algorithm (GA) vector, a GP
tree or others. We propose representing mating preferences, therefore the second
chromosome, as a GP tree.

Mating preferences can be represented using two possible approaches: (1)
representing an ideal mating partner; (2) representing an evaluation function. The
first approach requires that we are able to map GP representations to the phenotype
space of the problem at hand. In this case, the terminal and non-terminal sets should
be established accordingly. For instance, if we are using a GP representation for the
candidate solutions in the first chromosomes, then we can use the same terminal and
non-terminal sets. This approach can also be used if we rely on other representations
in the first chromosome but there are know GP representations, as long as both
representations map to the same phenotype space. The second approach requires
that the individuals can extract characteristics from their mating candidates and
evaluate them. The terminal set of the GP representation will be the evaluation
of such characteristics. The non-terminal set will provide a number of operators
that allows the creation of relations between characteristics into complex functions.
At the end, in this approach, the second chromosome encodes a GP function that
evaluates a number of characteristics on a mating candidate and through a number
of operations linking different characteristics, produces an attractiveness value.

7.3.2.2 Evaluation

The two representation approaches rely on different evaluation mechanisms, how-
ever Fig. 7.3 shows a general view of the process. On the first approach, when an
individual is assessing a mating candidate, an ideal mating partner according to
that individual’s preferences is mapped to the phenotype space and compared to the
phenotype of the mating candidate. In order to do so, a similarity measure has to be
established and used. The mating candidate that best resembles an ideal partner and
therefore minimizes the metric used is selected as a mating partner. Notice that this
is conceptually different from selecting mating partners so that the distance between
parents is minimized or maximized. The behaviour resulting from this approach will
be much different but the design effort required is actually quite similar. As long as
there is a possible GP representation for the problem at hand, that can be used for
the second chromosome and for evaluation to take place, only a similarity measure
is required.

The second approach evaluates mating candidates in a different way. Instead
of comparing each mating candidate to an ideal mating partner, it will evaluate
them according to a number of displayed traits. Therefore, in order to design
such an approach, we have to determine a perceptive system, or in other words,
what characteristics can each individual observe on others. To do so, researchers
have to rely on their own knowledge of the problem and determine what may or
may not be relevant characteristics. This process often requires the deconstruction
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of the problem at hand and subdividing it on a set of simpler problems, or
assessing simpler objectives that are implicit on the global fitness function. These
characteristics will make up the terminal set, so that when an individual is evaluating
a candidate, the terminal nodes on the GP tree representing its mating preferences
will assume a numeric value representing how the candidate performs on the present
characteristics. The operators included on the non-terminal set will determine how
these values relate with each other and what weight they have on the mating
preferences. Finally, the GP function returns a numeric value which represents the
attractiveness of a mating candidate (Fig. 7.4 shows an example of a possible GP
tree). The candidate that achieves the highest attractiveness is selected as a mating
partner. This approach is more difficult to setup as it requires more knowledge from
the person designing the system. However, the choice of relevant characteristics
does not have to be perfect, the evolution process will be in charge of determining
which are valuable, harmful or irrelevant. It has the advantage of not requiring a GP
representation of the problem to be applicable.

Chromosome 1

Candidate solution

Phenotype

Chromosome 2

Perception system

Mating preferences

Atractiveness

Interpretation

PARENT 1

Chromosome 1

Candidate solution

Phenotype

Chromosome 2

Perception system

Mating preferences

CANDIDATE

Fig. 7.3 Representation of mating preferences and evaluation of mating candidates
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Fig. 7.4 Example of a GP tree combining a different characteristics to evaluate a mating candidate

7.3.2.3 Operators and Parameters

The Mate Choice mechanism has been mostly described, but a few questions remain.
The first one regards selection of the first parent and the mating candidates. In our
approach we attribute gender roles during selection, meaning that any individual
can play the role of female or male. As in many studies, we select females using
a traditional operator which may be problem dependent. We usually select male
mating candidates using a random operator. This way, any individual even if its
survival ability is very low, has the chance of being evaluated by a female and,
if attractive enough, may reproduce. All individuals are therefore subject to both
natural and sexual selection through mate choice. They both have an impact on
the number of offspring that each individual produces. Mate selection pressure is
controlled by the size of the mating candidates set. A higher number of mating
candidates means that more males will be competing for the same female causing
less attractive individuals to have smaller chances of reproducing.

When two parents have been selected, two new offspring are generated by means
of reproductive operators. In our setup we apply these operators independently
at each chromosome. This decision not only allows different strategies to be
applied to each of them, for instance if different representations are used, but also
allows operators to be applied with different probabilities and parameters. This is
beneficial since the two chromosomes may impact behaviour differently with the
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same operators and parameters. Regarding the mating preferences chromosome,
we suggest applying either crossover or mutation exclusively and with a given
probability. This means that new offspring may inherit a combination of the mating
preferences of both its parents, a mutated version of the mating preferences of one of
its parents, or in case neither crossover or mutation occurs the offspring will inherit
the exact mating preferences of one of its parents (Koza 1994). Unlike previous
studies (Holdener and Tauritz 2008; Smorodkina and Tauritz 2007), we don’t check
the feasibility of new offspring to decide on how their mating preferences will be
inherited. Finally, new offspring are inserted into the population of the following
generation.

7.4 Applications

The presented Mate Choice setup has been previously applied to different problems,
including real-world applications. We have had the chance to test both preference
representation approaches and have also compared to a GA representation on a
specific problem. The section discusses the obtained results and observed behaviour.

Applying Mate Choice to symbolic regression has probably been the easiest to
setup (Leitão et al. 2013). Using a GP representation to tackle the problem allows us
to rely on the same terminal and non-terminal sets on both chromosomes. This way,
the first chromosome represents a candidate solution to the target function while the
second chromosome represents an ideal mating partner, as described previously. In
a nutshell, evaluation of mating candidates is quite similar to the standard evaluation
of the phenotype of each individual, but instead of comparing the phenotype with the
target function, it’s compared to the ideal mating partner represented. The similarity
measure applied was the same. The approach was tested on six setups with different
characteristics, using a Tournament of five individuals to select the first parent which
chooses its mate from a pool of five candidates.

Table 7.1 shows the obtained results. The instances where the proposed approach
performed statistically better than a standard one or the other way around are shown
in bold (A Wilcoxon Mann Whitney test with a significance level of 0.01 was used).
The Mate Choice approach was able to outperform the standard approach on all
instances of the problem except for the Koza-1 function. However, the Koza-1

Table 7.1 Mean Best fitness
obtained over 50 runs
obtained with a standard,
mate choice and random
approaches on the symbolic
regression of six functions

Function Standard Mate Choice Random

Keijzer-1 0:008005462 0:0059473756 0:0072442644

Keijzer-2 0:0063776454 0:0052139161 0:0062104645

Keijzer-3 0:0071500245 0:0056003145 0:0067438776

Keijzer-4 0:0890397335 0:0833904122 0:0840754187

Koza-1 0:0006384168 0:0014386396 0:0006481816

Nguyen-5 0:0014892713 0:0004783439 0:0025763115
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approach is regarded as a particularly easy one (McDermott et al. 2012), where
the standard approach is able to convert faster and therefore gain advantage. Also,
the Nguyen-5 instance relies on a large population, which may explain why both
approaches were able to largely outperform the random approach, with the Mate
Choice approach still achieving statistical differences from the standard one.

It is clear by observing the results of the random approach, where the mating
candidate is selected randomly, that the evolution process benefits from a lower
selection pressure on the problem set. An analysis of the behaviour of each
approach, focusing on the Mean Cumulative Destructive Crossovers (MCDC) and
Mean Cumulative Neutral Crossovers (MCNC) shows that they behave differently.
The Mate Choice approach achieved consistently a smaller number of neutral
crossovers (with statistical differences except for the Koza-1 function), which don’t
contribute to fitness enhancements. At the same time it performed a larger number
of destructive crossovers, which reduce the fitness of the offspring when compared
with their parents, with statistical differences. This behaviour suggests that Mate
Choice focus more on exploration than exploitation in this particular scenario,
whereas the standard approach promotes mating between the fittest individuals.
This exploration seems to be important for the enhanced results as it helps avoid
convergence and turns explored traits into ecological opportunities thus achieving
better Mean Best Fitness (MBF) values. The approach also obtains lower MCNC
and higher MCDC values consistently when compared with the random approach
suggesting that the promoted behaviour is not similar to randomly selecting mating
partners. A larger analysis of the behaviour is available (Leitão et al. 2013).

Cluster Geometry Optimization (CGO) consists on finding the geometry of a
cluster so that its potential energy is minimized. The problem is a NP-hard task
(Cheng et al. 2009) with important applications in Nanoscience, Physics, Chemistry
and Biochemistry (Zhao and Xie 2004). The problem provides a number of difficult
test instances, from which we have tested the applicability of Mate Choice on Morse
clusters ranging from 41 to 80 atoms (Leitão and Machado 2013). We have coupled
our setup with an evolutionary algorithm that has previously achieved state of the
art results (Pereira and Marques 2009). The initial approach relies on a steady-
state population with a substitution mechanism that controls which offspring are
allowed into the population. This mechanism is focused on maintaining diversity in
the population as this is seen as a key factor when tackling CGO problems.

Each individual encodes the Cartesian coordinates of each particle in the cluster
in the 3D space and evolve using GA operators. The Mate Choice setup adds a GP
chromosome that allows each individual to evaluate mating candidates on a number
of phenotypic features. When tackling the optimization of a Morse Cluster, each
individual not only encodes a candidate solution to a N sized cluster but also to all
N� i instances. How an individual performs on each of these smaller instances may
indicate good, bad or neutral genes, depending on the instance being optimized. It’s
up to the self-adaptive system to use this information in an appropriate way.

Table 7.2 shows the success rate on finding the putative optima on 30 runs for
each instance using a tournament of five individuals to select the first parent and
five mating candidates. A pairwise proportions test was used to test for significant
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differences (Taillard et al. 2008) with a significance level of 0.01. Overall, out of 40
instances, the Mate Choice approach was able to achieve higher success rates on 20
instances, 4 of them with significant differences. Ties were found on seven instances
as well. A study on the impact of the Mate Choice approach on the behaviour of the
algorithm focusing on population diversity as well as on the acceptance rate of the
replacement operator has shown relevant differences from a standard approach.

The replacement operator has a powerful role on this problem as it determines
which individuals are allowed in the population. If they are structurally similar
(according to a distance measure) to one individual of the population, the fittest one
is kept. If they are structurally dissimilar from all individuals, the offspring replaces
the worst one as long as it has a better fitness. Otherwise the offspring is discarded.
Therefore it is foreseeable that mating preferences will adapt so that new offspring
can overcome these restrictions.

Results suggest that the algorithm has successfully done so, with an increase in
the number of accepted individuals, both similar and dissimilar. Together, there has
been an increase of roughly 50 % on the cumulative average number of substitutions.
While an increase in the acceptance rate of new offspring doesn’t necessarily
translate into a better performance it does show an adaptation to the replacement
strategy. The results in Table 7.2 suggests that such a behaviour contributes to
competitive and sometimes better success rates, which is corroborated by average
fitness values along the generations.

An analysis of the average population diversity also shows behavioural differ-
ences. While the standard approach is able to reach a higher average diversity,
the Mate Choice approach is able to maintain it steadier while at the same time
conducting a much larger number of substitutions in the population. This effect may
indicate that individuals produced by Mate Choice in this scenario have smaller but
steadier impact, which seems beneficial on the population level. A more complete
analysis on the behaviour of Mate Choice on the optimization of Morse Clusters is
available (Leitão and Machado 2013).

A third application of our Mate Choice mechanism has been done on the
problem of Packing Circles in Squares (CPS). This problem consists on finding
the configuration of a set of circles of fixed radius so that they minimize the area
of a containing square (Machado and Leitão 2011). In order to represent candidate
solutions to this problem, each individual encodes a vector of Cartesian coordinates
representing the position of each circle, which is then mapped so that the area of the
enclosing square is calculated. Our approach adds a GP chromosome that is used
to assess characteristics on other individuals. Similarly to the CGO problem, we
have divided the problem into several subproblems, in this case, for the instance of
packing N circles, we assess how an individual performs on each N � i instance.

Therefore, the GP functions are initialized using a terminal set composed by such
characteristics and a number of arithmetic operators to combine them. Once again,
performing well on a given instance may be an indication of either good, bad or
neutral genes. The approach was compared to a standard approach, an approach
where mating partners are selected randomly from the candidates set and a third
approach where the mate evaluation function was encoded using GAs. The GA
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Table 7.3 Mean Best Fitness
over 30 runs obtained with a
standard, random, mate
choice with GA
representation and mate
choice with GP representation
on the packing of N circles in
squares

Mate Choice
N Optimal Standard Random GA GP

2 3:4142 3:4142 3:4142 3:4142 3:4142

3 3:9319 3:9320 3:9320 3:9319 3:9319

4 4:0000 4:0266 4:0001 4:0255 4:0001

5 4:8284 5:0056 4:9911 4:9250 4:9475
6 5:3282 5:3669 5:3674 5:3685 5:3804

7 5:7321 5:8227 5:8081 5:8296 5:8098

8 5:8637 6:0212 5:9615 5:9913 5:9898

9 6:0000 6:5184 6:4907 6:5401 6:5154

10 6:7474 6:8936 6:8854 6:9110 6:8536
11 7:0225 7:1619 7:1764 7:2232 7:1564

12 7:1450 7:3966 7:3565 7:4809 7:3438

13 7:4630 7:8088 7:8167 7:8355 7:7147
14 7:7305 8:0705 8:0950 8:1509 8:0048
15 7:8637 8:3324 8:4173 8:4345 8:2581
16 8:0000 8:7014 8:8632 8:8153 8:6012
17 8:5327 8:8765 9:2345 9:0836 8:8665

18 8:6564 9:0996 9:4966 9:2724 9:0984

19 8:9075 9:4442 9:9422 9:6036 9:3511
20 8:9781 9:7212 10:2839 9:7641 9:6030
21 9:3580 9:9788 10:7402 10:1307 9:9425

22 9:4638 10:2610 11:0512 10:3705 10:2693

23 9:7274 10:5201 11:5476 10:6498 10:5892

24 9:8637 10:7725 11:8382 10:8163 10:8034

approach assesses all N � i characteristics on mating candidates and combines
them on a weighted sum. Each individual’s second chromosome encodes therefore
a set of weights, one for each characteristic and representing that characteristic’s
impact on the Mate Choice process. We expect the algorithm to evolve appropriate
weights, either negative, close to zero or positive, according to the value of each
characteristic.

Experiments were conducted on problem instances using 2–24 circles. The first
parent was selected using a tournament of five individuals and sets of five mating
candidates. Table 7.3 shows the MBF over 30 runs obtained by each approach. The
GP based approach was able to achieve better results on 18 out of 23 instances,
8 of which with statistical differences (using a Wilcoxon Mann Whitney test with
a significance level of 0.05) while the GA based approach performed better on 4
instance, 1 of which with statistical significant differences. The results achieved by
the random approach suggest that the algorithm may benefit from a smaller selection
pressure on most of the instances. The results obtained by the GA approach were
disappointing as it was expected that it would be able to make a better use of
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the information provided or at least evolve into the original fitness function and
therefore achieve results closer to the standard approach.

The results obtained by the GP approach suggest that the approach was able
to make good use of the information provided about mating candidates and build
appropriate functions to select mating candidates, which are likely to be radically
different from the weighted sum designed by us using our knowledge of the
problem. We believe that we would unlikely be able to design mating evaluation
functions capable of matching the ones evolved by the GP approach. A larger
analysis on the application of Mate Choice on the CPS problem is available
(Machado and Leitão 2011).

Apart from the presented analysis on performance and behaviour of the Mate
Choice setup on the three addressed scenarios, there are a two observations that are
transversal and should be discussed. The first one regards the overhead of the setup,
which results from the need to evaluate mating candidates using preferences specific
to each individual. While on the first approach, based on ideal mating partners, this
overhead depends on the metric being used, on the second approach it depends
on the characteristics being evaluated. On the first approach, each candidate is
evaluated once at each selection step as it is being compared to an ideal mating
partner. On the second approach, individuals share what characteristics they can see
in mating partners, therefore when a candidate is evaluated on a given characteris-
tics, that process doesn’t have to be repeated. The effort also depends on the mating
preferences present in the population at each generation. This makes estimating an
overhead for the Mate Choice operator a hard task. The second observation regards
the complexity of the evolved GP functions, which makes it extremely difficult
to assess exactly how individuals are evaluating others, which characteristics they
value or not. Figure 7.4 shows what a GP tree representing a mating evaluation
function may look like, however they can be much larger in size. Still, the example is
enough to show that while we can see what characteristics are present, it is extremely
difficult to assess exactly what role they play in the function. Some of them
may be extremely relevant while others may be approximately neutral. Moreover,
these functions are different from individual to individual and may vary drastically
over the evolution process so that certain characteristics can be important at the
beginning and others at the end, or may have different importance to each individual.
What we can assess however is that we would unlikely be able to design such
evaluation functions by hand and that they are radically different from previously
used functions. The results suggest that despite how they work, these functions are
making a good use of the information that they assess on mating candidates.

7.5 Synthesis

Sexual Selection through Mate Choice has been first proposed by Darwin to explain
animal characteristics that didn’t seem to fit in his theory of Natural Selection such
as extravagant ornamentation and complex courtship behaviour. The theory, while
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being mostly rejected by the active research community at the time, eventually was
able to gain the attention of researchers in multiple fields that have contributed
with supporting evidence over the years. Nowadays Sexual Selection through Mate
Choice is highly regarded by the scientific community as an important player in the
evolution of species.

Despite the success of the theory on other fields, the impact of Mate Choice in
the field of Evolutionary Computation is still very small, and a large number of
questions remain unanswered regarding its design, implementation, behaviour and
potential benefits. Several authors have proposed various approaches inspired by
Mate Choice and have tackled multiple problems with more or less success. We have
addressed a framework common for Mate Choice approaches and have reviewed
important contributions through a classification study based on their adaptation
mechanisms. We have also covered preference choices and gender role attribution
mechanisms.

We finally propose a nature-inspired Mate Choice setup. First we discuss relevant
aspects of Mate Choice in nature, propose three nature-inspired rules and follow
up by covering design choices such as representation, evaluation, operators and
parameters. The use of an extra chromosome to encode a GP tree representing
mating preferences following two possible approaches was discussed as well as how
it can be used to evaluate mating partners and take part of the evolution process.

We present a discussion on the application of Mate Choice on three problems and
assess the behaviour of the algorithm. The discussed approaches differ drastically
in behaviour from standard selection approaches as well as from an approach
where the mating partner is selected randomly. The differences in behaviour impact
performance as well as diversity, exploration and exploitation. A comparison with a
self-adaptive Mate Choice approach based on a GA representation is also included
and the differences discussed. Finally it’s argued that assessing the overhead caused
by this selection process is a difficult task and that the inner-workings of the evolved
Mate Choice functions are very complex, making it extremely difficult to see which
are relevant or irrelevant mating preferences. Still, the reported results suggest that
the evolved GP functions are able to use the provided information in meaningful
and beneficial ways. It is however unlikely that we would be able to design them by
hand.

Acknowledgements The authors acknowledge the financial support from the Future and Emerg-
ing Technologies (FET) programme within the Seventh Framework Programme for Research of
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Chapter 8
Genetically Improved Software

William B. Langdon

Sources and data sets are available on line.

8.1 Introduction

As other chapters in the book show, genetic programming (Koza 1992; Banzhaf
et al. 1998; Poli et al. 2008) has been very widely applied.1 For example in
modelling (Kordon 2010), prediction (Langdon and Barrett 2004; Podgornik et al.
2011; Kovacic and Sarler 2014), classification (Freitas 1997), design (Lohn and
Hornby 2006) (including algorithm design Haraldsson and Woodward 2014), and
creating art (Reynolds 2011; Jacob 2001; Langdon 2004; Romero et al. 2013). Here
we concentrate upon application of genetic programming to software itself (Arcuri
and Yao 2014). We start by briefly summarising research which evolved complete
software but mostly we will concentration on newer work which has very effectively
side stepped, what John Koza referred to as the S-word in artificial intelligence, the
scaling problem, by using genetic programming not to create complete software but
rather to enhance existing (human written) software.

The next section describes early successes with using GP to evolve real, albeit
small, code and for automatically fixing bugs and then Sects. 8.3–8.6 describe recent
success in which GP improved substantial (human written) C or CCC programs.
The last part of the chapter (Sect. 8.7 onwards) describes in detail one of these.

1Genetic programming bibliography http://www.cs.bham.ac.uk/~wbl/biblio/ gives details of more
than nine thousand articles, papers, books, etc.
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Fig. 8.1 Top: left and right stereo images. Bottom: Discrepancy between images, which can be
used to infer distances

It shows how genetic programming was used to automatically evolve an almost
seven fold speedup in parallel graphics code for extracting depth from stereoscopic
image pairs. (See Fig. 8.1.)

8.2 Background

8.2.1 Hashes, Caches and Garbage Collection

Three early examples of real software being evolved using genetic programming
are: hashing, caching and garbage collection. Each has the advantages of being
small, potentially of high value and difficult to do either by hand or by theoretically
universal principles. In fact there is no universally correct optimal answer. Any
implementation which is good in one circumstance may be bettered in another use
case by software deliberately designed for that use case. Thus there are several
examples where not only can GP generate code but for particular circumstances,
it has exceeded the state-of-the art human written code. Whilst this is not to say a
human could not do better. Indeed they may take inspiration, or even code, from the
evolved solution. It is that to do so, requires a programmer skilled in the art, for each
new circumstance. Whereas, at least in principle, the GP can be re-run for each new
use case and so automatically generate an implementation specific to that user.
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Starting with (Hussain and Malliaris 2000) several teams have evolved good
hashing algorithms (Berarducci et al. 2004; Estebanez et al.; Karasek et al. 2011).

Paterson showed GP can create problem specific caching code (Paterson and
Livesey 1997). O’Neill and Ryan (1999) used their Grammatical Evolution (O’Neill
and Ryan 2001, 2003) approach also to create code. Whilst (Branke et al. 2006)
looked at a slightly different problem: deciding which (variable length) documents
to retain to avoid fetching them again across the Internet. (Following (Handley
1994) several authors have sped up genetic programming itself by caching partial
fitness evaluations, including me (Langdon 1998). However here we are interested
in improving software in general rather than just improving genetic programming.)

Many languages allow the programmer to allocate and free chunks of memory as
their program runs, e.g. C, C++ and Java. Typically the language provides a dynamic
memory manager, which frees the programmer of the tedium of deciding exactly
which memory is used and provides some form of garbage collection whereby
memory that is no longer in use can be freed for re-use. Even with modern huge
memories, memory management can impose a significant overhead. Risco-Martin
et al. (2010) showed the GP can generate an optimised garbage collector for the
C language.

8.2.2 Mashups, Hyper-heuristics and Multiplicity Computing

The idea behind web services is that useful services should be easily constructed
from services across the Internet. Such hacked together systems are known as web
mashups. A classic example is a travel service which invokes web servers from
a number of airlines and hotel booking and car hire services, and is thus able to
provide a composite package without enormous coding effort in itself. Since web
services must operate within a defined framework ideally with rigid interfaces,
they would seem to be ideal building blocks with which genetic programming
might construct high level programs. Starting with Rodriguez-Mier, several authors
have reported progress with genetic programming evolving composite web services
(Rodriguez-Mier et al. 2010; Fredericks and Cheng 2013; Xiao et al. 2012).

There are many difficult optimisation problems which in practise are efficiently
solved using heuristic search techniques, such as genetic algorithms (Holland 1992;
Goldberg 1989). However typically the GA needs to be tweaked to get the best for
each problem. This has lead to the generation of hyper-heuristics (Burke et al. 2013),
in which the GA or other basic solver is tweaked automatically. Typically genetic
programming is used. Indeed some solvers have been evolved by GP combining
a number of basic techniques as well as tuning parameters or even re-coding GA
components, such as mutation operators (Pappa et al. 2014).

A nice software engineering example of heuristics is compiler code generation.
Typically compilers are expected not only to create correct machine code but also
that it should be in some sense be “good”. Typically this means the code should
be fast or small. Mahajan and Ali (2008) used GP to give better code generation
heuristics in Harvard’s MachineSUIF compiler.
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Multiplicity computing (Cadar et al. 2010) seeks to over turn the current
software mono-culture where one particular operating system, web browser, soft-
ware company, etc., achieves total dominance of the software market. Not only
are such monopolies dangerous from a commercial point of view but they have
allowed widespread problems of malicious software (especially computer viruses)
to prosper. Excluding specialist areas, such as mutation testing (DeMillo and
Offutt 1991; Langdon et al. 2010), so far there has been only a little work in the
evolution of massive numbers of software variants (Feldt 1998). Only software
automation (perhaps by using genetic programming) appears a credible approach
to N-version programming (with N much more than 3). N-version programming
has also been proposed as a way of improving predictive performance by voting
between three or more classifiers (Imamura and Foster 2001; Imamura et al. 2003)
or using other non-linear combinations to yield a higher performing multi-classifier
(Langdon and Buxton 2001; Buxton et al. 2001).

Other applications of GP include: creating optimisation benchmarks which
demonstrate the relative strengths and weaknesses of optimisers (Langdon and Poli
2005) and first steps towards the use of GP on mobile telephones (Cotillon et al.
2012).

8.2.3 Genetic Programming and Non-Function Requirements

Andrea Arcuri was in at the start of inspirational work on GP showing it can create
real code from scratch. Although the programs remain small, David White, he and
John Clark (White et al. 2011) also evolved programs to accomplish real tasks such
as creating pseudo random numbers for ultra tiny computers where they showed a
trade off between “randomness” and energy consumption.

The Virginia University group (see next section) also showed GP evolving Pareto
optimal trade offs between speed and fidelity for a graphics hardware display
program (Sitthi-amorn et al. 2011). Evolution seems to be particularly suitable for
exploring such trade-offs (Feldt 1999; Harman et al. 2012) but (except for the work
described later in this chapter) there has been little research in this area.

Orlov and Sipper (2011) describe a very nice system, Finch, for evolving Java
byte code. The initial program to be improved is typically a Java program, which is
compiled into byte code. Effectively the GP population instead of starting randomly
(Lukschandl et al. 1998) is seeded (Langdon and Nordin 2000) with byte code from
the initial program. The Finch crossover operator acts on Java byte code to ensure
the offspring program area also valid java byte code. Large benefits arise because
there is no need to compile the new programs. Instead the byte code can be run
immediately. As Java is a main stream language, the byte code can be efficiently
executed using standard tools, such as Java virtual machines and just in time (JIT)
compilers. Also after evolution, standard java tools can be used to attempt to reverse
the evolved byte code into Java source code.
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Archanjo and Von Zuben (2012) present a GP system for evolving small business
systems. They present an example of a database system for supporting a library of
books.

Ryan (1999) and Katz and Peled (2013) provide interesting alternative visions.
In genetic improvement the performance, particularly the quality of the mutated
program’s output, is assessed by running the program. Instead they suggest each
mutation be provably correct and thus the new program is functionally the same as
the original but in some way it is improved, e.g. by running in parallel. Katz and
Peled (2013) suggests combining GP with model checking to ensure correctness.

Zhu and Kulkarni (2013) suggest using GP to evolve fault tolerant programs.
Schulte et al. (2014a) describes a nice system which can further optimise the
low level Intel X86 code generated by optimising compilers. They show evolution
can reduce energy consumption of non-trivial programs. (Their largest application
contains 141,012 lines of code.)

8.2.4 Automatic Bug Fixing

As described in the previous two sections, recently genetic programming has
been applied to the production of programs itself, however so far relatively small
programs have been evolved. Nonetheless GP has had some great successes when
applied to existing programs. Perhaps the best known work is that on automatic
bug fixing (Arcuri and Yao 2008). Particularly the Humie award winning2 work of
Westley Weimer (Virginia University) and Stephanie Forrest (New Mexico) (Forrest
et al. 2009). This has received multiple awards and best paper prizes (Weimer et al.
2009, 2010). GP has been used repeatedly to automatically fix most (but not all)
real bugs in real programs (Le Goues et al. 2012a). Weimer and Le Goues have
now shown GP bug fixing to be effective on several millions of lines of CCC
programs. Once GP had been used to do the impossible others tried (Wilkerson
and Tauritz 2010; Bradbury and Jalbert 2010; Ackling et al. 2011) and it was
improved (Kessentini et al. 2011) and also people felt brave enough to try other
techniques, e.g. Nguyen et al. (2013); Kim et al. (2013). Indeed their colleague, Eric
Schulte, has shown GP can even work at abstraction levels other than source code. In
Schulte et al. (2010) he showed bugs can be fixed at the level of the assembler code
generated by the compiler or even machine code (Schulte et al. 2013). After Weimer
and co-workers showed that automatic bugfixing was not impossible, people studied
the problem more openly. It turns out, for certain real bugs, with modern software
engineering support tools, such as bug localisation (e.g. Yoo 2012), the problem
may not even be hard (Weimer 2013).

2Human-competitive results presented at the annual GECCO conference
http://www.genetic-programming.org/combined.php.

http://www.genetic-programming.org/combined.php
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Formal theoretical analysis (Cody-Kenny and Barrett 2013) of evolving sizable
software is still thin on the ground. Much of the work presented here is based on
GP re-arranging lines of human written code. In a very large study of open source
software (Gabel and Su 2010) showed that excluding white space, comments and
details of variable names, any human written line of code has probably been written
before. In other words, given a sufficiently large feedstock of human written code,
current programs could have been written by re-using and re-ordering existing lines
of code. In many cases in this and the following sections, this is exactly what GP is
doing. Schulte et al. (2014b) provides a solid empirical study which refutes the
common assumption that software is fragile. (See also Fig. 8.2). While a single
random change may totally break a program, mutation and crossover operations
can be devised which yield populations of offspring programs in which some
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Fig. 8.2 C++ is not fragile. Performance versus speed for random mutations of Bowtie2. The
horizontal axis shows the change in quality of Bowtie2 output, whilst the vertical axis (note non-
linear scale) shows the change in the number of lines of code executed. As expected some mutations
totally destroy the program, e.g. they fail to compile or abort (not plotted) or reduce the quality of
the answer enormously (e.g. -36). Some are slower (lower half ) and some are faster (top). However
a large number have exactly the same quality as the original code (plotted above “0”). These may
be either slower or faster. The rectangle of dots attempts to emphasis the 18 % that are identical (in
terms of quality of answer and run time) to the original code. To the right of the “0”, there are even
a few random programs which produce slightly better answers than the original code. It is these
Darwinian evolution selects and breeds the next generation from. Total 10,000 random program
runs. Failed runs are not plotted
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may be very bad but the population can also contains many reasonable programs
and even a few slightly improved ones. Over time the Darwinian processes of
fitness selection and inheritance (Darwin 1859) can amplify the good parts of the
population, yielding greatly improved programs.

8.3 Auto Porting Functionality

The Unix compression utility gzip was written in C in the days of Digital Equipment
Corp.’s mini-computers. It is largely unchanged. However there is one procedure
(of about two pages of code) in it, which is so computationally intensive that it has
been re-written in assembler for the Intel 86X architecture (i.e. Linux). The original
C version is retained and is distributed as part of Software-artifact Infrastructure
Repository sir.unl.edu (Hutchins et al. 1994). SIR also contains a test suite for
gzip. In Genetic Improvement, as with Le Goues’ bug-fixing work, we start with
an existing program and a small number of test cases. In the case of the gzip
function, we showed genetic programming could evolve a parallel implementation
for an architecture not even dreamt of when the original program was written
(Langdon and Harman 2010). Whereas Le Goues uses the original program’s AST
(abstract syntax tree) to ensure that many of the mutated programs produced by
GP compile, we have used a BNF grammar. In the case of (Langdon and Harman
2010) the grammar was derived from generic code written by the manufacture of
the parallel hardware. Note that it had nothing special to do with gzip. The original
function in gzip was instrumented to record its inputs and its outputs each time it
was called (see Fig. 8.3). When gzip was run on the SIR test suite, this generated
more than a million test cases, however only a few thousand were used by the GP.3

Essentially GP was told to create parallel code from the BNF grammar which when
given a small number of example inputs returned the same answers. The resulting
parallel code is functionally the same as the old gzip code.

8.4 Bowtie2GP Improving 50,000 lines of C++

As Fig. 8.4 shows, genetic programming produces populations of programs which
may have different abilities on different scales. While Fig. 8.4 shows speed versus
quality, other tradeoffs have been investigated (Harman et al. 2012, see also Schulte
et al. 2014a). For example it may be impossible to simultaneously minimise

3Later work used even fewer tests.

http://sir.unl.edu
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Instrumented gzip
(PC)

Evolved moduleModule to be replaced

Record data f lows

CUDA kernel on
graphics card

Fig. 8.3 Auto porting a program module to new hardware (a GPU). The original code is
instrumented to record the inputs (upper blue arrows) to the target function (red) and the result
(lower blue arrows) it calculates. Its inputs and outputs are logged every time every time it is called.
These become the test suite and fitness function for the automatically evolved replacement module
running on novel hardware. By inspecting the evolved CUDA code automatically generated by GP
we can see that it is functionally identical to the C code inside gzip. Also it has been demonstrated
by running back-to-back with the original code more than a million times (Langdon and Harman
2010) (Color figure online)

execution time, memory foot print and energy consumption. Yet, conventionally
human written programs choose one trade-off between multiple objectives and it
becomes infeasible to operate the program with another trade-off. For example,
consider approximate string matching.

Finding the best match between (noisy) strings is the life blood of Bioinformatics.
Huge amounts of people’s time and computing resources are devoted every day to
matching protein amino acid sequences against databases of known proteins from
all forms of life. The acknowledge gold standard is the BLAST program (Altschul
et al. 1997) which incorporate heuristics of known evolutionary rates of change. It
is available via the web and can lookup a protein in every species which has been
sequences in a few minutes. Even before the sequencing of the human genome,
the volume of DNA sequences was exploding exponentially at a rate like Moore’s
Law (Moore 1965). With modern NextGen sequencing machines throwing out 100s
of millions (even billions) of (albeit very noisy) DNA base-pair sequences, there
is no way that BLAST can be used to process this volume of data. This has lead to
human written look up tools for matching NextGen sequences against the human
genome. Wikipedia list more than 140 programs (written by some of the brightest
people on the planet) which do some form of Bioinformatics string matching.

The authors of all this software are in a quandary. For their code to be useful the
authors have to chose a point in the space of tradeoffs between speed, machine
resources, quality of solution and functionality, which will: (1) be important to
the Bioinformatics community and (2) not be immediately dominated by other
programs. In practise they have to choose a target point when they start, as once
basic design choices (e.g. target data sources and computer resources) have been
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Fig. 8.4 Example of automatically generated Pareto tradeoff front (Harman et al. 2012). Genetic
programming used to improve 2D Stereo Camera code (Stam 2008) for modern nVidia GPU
(Langdon and Harman 2014b). Left (above 0) many programs are faster than the original code
written by nVidia’s image processing expert (human) and give exactly the same answers. Many
other automatically generated programs are also faster but give different answers. Some (cf. dotted
blue line) are faster than the best zero error program (Color figure online)

made, few people or even research teams have the resources to discard what they
have written and start totally from scratch. Potentially genetic programming offers
them a way of exploring this space of tradeoffs (Feldt 1999; Harman et al. 2012).
GP can produce many programs across the trade-off space and so can potentially
say “look here is a trade-off which you had not considered”. This could be very
useful to the human, even if they refuse to accept machine generated code and insist
on coding the solution themselves.

We have made a start by showing GP can transform human written DNA
sequence matching code, moving it from one tradeoff point to another. In our
example, the new program is specialised to a particular data source and sequence
problem for which it is on average more than 70 times faster. Indeed on this
particular problem, we were fortunate that not only is the variant faster but indeed it
gives a slight quality improvement on average (Langdon and Harman 2015).
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8.5 Merging Boolean Satisfiability Code Written
by Experts

The basic GI technique has also been used to create an improved version of CCC
code from multiple versions of a program written by different authors. Boolean
Satisfiability is a problem which appears often. MiniSAT is a popular SAT solver.
The satisfiability community has advanced rapidly since the turn of the century. This
has been due in part to a series of competitions. These include the “MiniSAT hack
track”, which is specifically designed to encourage humans to make small changes
to the MiniSAT code. The new code is available after each competition. MiniSAT
and a number of human variants were given to GI and it was asked to evolve a
new variant specifically designed to work better on a software engineering problem
(interaction testing) (Petke et al. 2014b). At GECCO 2014 it received a Human
Competitive award (HUMIE) (Petke et al. 2014a).

8.6 Babel Pidgin: Creating and Incorporating
New Functionality

Another prize winning genetic programming based technique has been shown to be
able to extend the functionality of existing code (Harman et al. 2014). GP, including
human hints, was able to evolved new functionality externally and then search based
techniques (Harman 2011) were used to graft the new code into an existing program
(pidgin) of more than 200,000 lines of CCC.

8.7 Improving Parallel Processing Code
Written by Experts

There is increasing use of parallelism both in conventional computing but also in
mobile applications. At present the epitome of parallelism are dedicated multi-core
machines based on gaming graphics cards (GPUs). Although originally devised
for the consumer market, they are increasingly being used for general purpose
computing on GPUs (GPGPU) (Owens et al. 2008) with several the world’s fastest
computers being based on GPUs. However, although support tools are improving,
programming parallel computers continues to be a challenge (Langdon 2012)
and simply leaving code generation to parallel compilers is often insufficient.
Instead experts, e.g. Merrill et al. (2012), have advocated writing highly param-
eterised parallel code which can then be automatically tuned. Unfortunately this
throws the load back on to the coder (Langdon 2011). In the rest of the chapter we
explain how genetic programming (see Fig. 8.5) was able to automatically update for
today’s GPUs software written specifically by nVidia’s image processing expert to
show off the early generations of their graphics cards (Stam 2008). While originally
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Fig. 8.5 Genetic Improvement of stereoKernel

(Langdon and Harman 2014b) we considered six types of hardware, in the interests
of brevity we shall concentrate on the most powerful (Tesla K20c). Performance of
the other five GPUs and more details can be found in Langdon and Harman (2014b)
and technical report (Langdon and Harman 2014a). GP gave more than a six fold
performance increase relative to the original code on the same hardware. (Each
Tesla K20c contains 2496 processing elements, arranged in 13 blocks of 192 and
running at 0.71GHz. Bandwidth to its on board memory is 140 Gbytes per second.
See Fig. 8.6.)

In another example a combination of manual and automated changes to pro-
duction 3D medical image processing code lead to the creation of a version of a
performance critical kernel which (on a Tesla K20c) is more than 2000 times faster
than the production code running on an 2.67 GHz CPU (Langdon et al. 2014).

The next sections briefly gives the StereoCamera CUDA code. This is fol-
lowed by descriptions of the stereo images (page 194), and the code tuning
process (pages 196–205). The changes made specifically for the K20c Tesla are
described in Sect. 8.16 (page 206) whilst the Appendix (pages 211–214) holds the
complete CUDA source code for the K20c Tesla. The code is also available in
StereoCamera_v1_1c.zip.

8.8 Source Code: StereoCamera

The StereoCamera system was written by nVidia’s stereo image processing expert
Joe Stam (Stam 2008) to demonstrate their 2007 hardware and CUDA. StereoCam-
era was the first to show GPUs could give real time stereo image processing (> 30
frames per second). StereoCamera V1.0b was downloaded from SourceForge but,
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Fig. 8.6 Tesla K20c contains 13 SMX multiprocessors (each containing 192 stream processors),
a PCI interface to the host PC, thread handling logic and 4800 MBytes of on board memory

despite the exponential increase in GPU performance, it had not been updated since
2008 (except for my bugfix). In the six years after it was written, nVidia GPUs
went through three major hardware architectures whilst their CUDA software went
through five major releases.

StereoCamera contains three GPU kernels plus associated host code. We shall
concentrate upon one, stereoKernel which contains the main stereo image algorithm.
For each pixel in the left image, GPU code stereoKernel reports the number of
pixels the right image has to be shifted to get maximal local alignment (see Fig. 8.7).
Stam (2008) notes that the parallel processing power of the GPU allows the local
discrepancy between the left and right images to be calculated using the sum of
squares of the difference (SSD) between corresponding pixels and this sum is taken
over the relatively large 11�11 area. It does this by minimising the sum of squares of
the difference (SSD) between the left and right images in a 11�11 area around each
pixel. Once SSD has been calculated, the grid in the right hand image is displaced
one pixel to the left and the calculation is repeated. Although the code is written
to allow arbitrary displacements, in practice the right hand grid is move a pixel at
a time. SSD is calculated for 0 to 50 displacements and the one with the smallest
SSD is reported for each pixel in the left hand image. In principle each pixel’s value
can be calculated independently but each is surrounded by a “halo” of five others in
each direction.

Even on a parallel computer, considerable savings can be made by reducing
the total number of calculations by sharing intermediate calculations (Stam 2008,
Fig. 3). Each SSD calculation (for a given discrepancy between left and right
images) involves summing 11 columns (each of 11 squared discrepancy values).
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Fig. 8.7 Schematic of stereo disparity calculation. Top: left and right stereo images. Bottom:
output. Not to scale. For each pixel stereoKernel calculates the sum of squared differences (SSD)
between 11� 11 regions centred on the pixel in the left image and the same pixel in the right hand
image. This is the SSD for zero disparity. The right hand 11 � 11 region is moved one place to
the left and new SSD is calculated (SSD for 1 pixel of disparity). This is repeated 50 times. Each
time a smaller SSD is found, it is saved. Although the output pixel (bottom) may be updated many
times, its final value is the distance moved by the 11 � 11 region which gives the smallest SSD.
That is the distance between left and right images which gives the maximum similarity between
them (across an 11 � 11 region). This all has to be done for every pixel. Real time performance is
obtained by parallel processing and reducing repeated calculations

By saving the column sums in shared memory adjacent computational threads can
calculate just their own column and then read the remaining ten column values
calculated by their neighbouring threads.

After one row of pixel SSDs have been calculated, when calculating the SSD of
the pixels immediately above, ten of the eleven rows of SSD values are identical.
Given sufficient storage, the row values could be saved and then 10 of them could be
reused requiring only one row of new square differences to be calculated. However
fast storage was scare on GPUs and instead Stam compromised by saving the total
SSD (rather than the per row totals). The SSD for the pixel above is then the total
SSD plus the contribution for the new row minus the contribution from the lowest
row (which is no longer included in the 11 � 11 area). Stam took care that the code
avoids rounding errors. The more rows which share their partial results, the more
efficient is the calculation but then there is less scope for performing calculations
in parallel. To avoid re-reading data it is desirable that all the image data for both
left and right images (including halos and discrepancy offsets) should fit within the
GPU’s texture caches. The macro ROWSperTHREAD (40) determines how many
rows are calculated together in series. The macro BLOCK_W (64) determines how the
image is partitioned horizontally (see Figs. 8.8 and 8.9). To fit the GPU architecture
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Fig. 8.8 The left and right images (solid rectangle) are split into BLOCK_W�ROWSperTHREAD
tiles. The dashed lines indicate the extra pixels outside the tile which must be read to calculate
values for pixels in the tile. The right hand image is progressively offset by between zero and
STEREO_MAXD pixels (50, dotted lines)

STEREO_MAXD BLOCK_W

ROWSperTHREAD

Fig. 8.9 An example of the part of the right hand of a stereo image pair which is processed by a
block of CUDA threads. The area covered in the right image is eventually shifted STEREO_MAXD
(50) pixels to the left. For most GPUs the original code did not use the optimal shape, see
Fig. 8.10. Although the width (BLOCK_W, 64) was correct, the height (ROWSperTHREAD) should
be reduced from 40 to 5

BLOCK_W will often be a multiple of 32. In practise all these factors interact in
non-obvious (and sometimes undocumented) hardware dependent ways.

8.9 Example Stereo Pairs from Microsoft’s I2I Database

Microsoft have made available for image processing research thousands of images.
Microsoft’s I2I database contains 3010 stereo images. Figure 8.7 (top) is a typical
example. Many of these are in the form of movies taken in an office environment.
Figure 8.1 shows the first pair from a typical example.
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Fig. 8.10 The effect of changing the work done per thread (ROWSperTHREAD) and the block
size (BLOCK_W) on CUDA kernel speed before it was optimised by GP. For all but one of the
GPUs, stereoKernel is fastest at 5, 64 (the default is 40, 64)

We downloaded i2idatabase.zip4 (1.3GB) and extracted all the stereo image pairs
and converted them to grey scale. Almost images all are 320�240 pixels. We took
(up to) the first 200 pairs for training leaving 2810 for validation. Notice we are
asking the GP to create a new version of the CUDA stereoKernel GPU code which
is tuned to pairs of images of this type. As we shall see (in Sect. 8.15) the improved
GPU code is indeed tuned to 320�240 images but still works well on the other I2I
stereo pairs.

8.10 Host Code and Baseline Kernel Code

The supplied C++ code is designed to read stereo images from either stereo
webcams or pairs of files and using OpenGL, to display both the pair of input images
and the calculated discrepancy between them on the user’s monitor (see Fig. 8.1).
This was adapted to both compare answers generated by the original code with those
given by the tuned GP modified code and to time execution of the modified GPU
kernel code. These data are logged to a file and the image display is disabled.

4http://research.microsoft.com/en-us/um/people/antcrim/data_i2i/i2idatabase.zip.

http://research.microsoft.com/en-us/um/people/antcrim/data_i2i/i2idatabase.zip
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Table 8.1 Evolvable configuration macros and constants

Name Default Options Purpose

Cache preference None None, Shared, L1, Equal L1 v. shared memory

-Xptxas -dlcm ‘ ’, ca, cg, cs, cv nvcc cache options

OUT_TYPE float float, int, short
int, unsigned
char

C type of output

STORE_disparityPixel GLOBAL GLOBAL, SHARED,
LOCAL

STORE_disparityMinSSD GLOBAL GLOBAL, SHARED,
LOCAL

DPER disabled Section 8.12.2

XHALO disabled Section 8.12.1

__mul24(a,b) __mul24 __mul24, * fast 24-bit multiply

GPtexturereadmode NormalizedFloat NormalizedFloat,
ElementType, none

Section 8.13.1.4

texturefilterMode Linear Linear, Point

textureaddressMode Clamp, Mirror,
Wrap

texturenormalized 0, 1

The original kernel code is in a separately compiled file to ensure it is not affected
by GP specified compiler options (particularly -Xptxas -dlcm, Table 8.1). For each
pixel it generates a value in the range 0:0; 1:0; 2:0 : : : 50:0 being the minimum
discrepancy between the left and right images. If a match between the left and right
images cannot be found (i.e. SSD � 500000) then it returns �1.0.

8.11 Pre- and Post- Evolution Tuning and Post Evolution
Minimisation of Code Changes

In initial genetic programming runs, it became apparent that there are two param-
eters which have a large impact on run time but whose default settings are not
suitable for the GPUs now available. Since there are few such parameters and they
each have a small number of sensible values, it is feasible to run StereoCamera
on all reasonable combinations and simply choose the best for each GPU. Hence
the revised strategy is to tune ROWSperTHREAD and BLOCK_W before running
the GP. (DPER, Sect. 8.12.2, is not initially enabled.) Figure 8.10 shows the effect
of tuning ROWSperTHREAD and BLOCK_W for the GTX 295. As with (Le Goues
et al. 2012b) and our GISMOE approach (Langdon and Harman 2015), after GP
has run the best GP individual from the last generation is cleaned up by a simple
one-at-a-time hill climbing algorithm. Langdon and Harman (2015) (Sect. 8.11) and
finally ROWSperTHREAD, BLOCK_W and DPER are tuned again. (Often no further
changes were needed.)
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For each combination of parameters, the kernel is compiled and run. By
recompiling rather than using run time argument passing, the nVidia nvcc C++
compiler is given the best chance of optimising the code (e.g. loop unrolling) for
these parameters and the particular GPU.
BLOCK_W values were based on sizes of thread blocks used by nVidia in the

examples supplied with CUDA 5.0. (They were 8, 32, 64, 128, 192, 256, 384 and
512.) All small ROWSperTHREAD values or values which divide into the image
height (240) exactly were tested. (I.e., 1, . . . 18, 20, 21, 24, 26, 30, 34, 40, 48, 60,
80, 120 and 240.) Autotuning reduced ROWSperTHREAD (see Fig. 8.9) from 40
to 5 before the GP was run. For the Tesla K20c, this gave a speed up of 2.373 ˙
0.03 fold.

The best GP individual in the last generation is minimised by starting at its
beginning and progressively removing each individual mutation and comparing the
performance of the new kernel with the evolved one. For simplicity this is done on
the last training stereo image pair. Unless the new kernel is worse the mutation is
excluded permanently. To encourage removal of mutations with little impact, those
that make less than 1 % difference to the kernel timing are also removed.

In the after evolution tuning, if GP had enabled DPER (Sect. 8.12.2) then as well
as tuning BLOCK_W and ROWSperTHREAD the autotuner tried values 1, 2, 3 and 4
for DPER. (In the case of the Tesla K20c, GP enabled DPER but its default value, 2,
turned out to be optimal.)

8.12 Alternative Implementations

8.12.1 Avoiding Reusing Threads: XHALO

As mentioned in Sect. 8.8 each row of pixels is extended by five pixels at both
ends. The original code reused the first ten threads of each block to calculate these
ten halo values. Much of the kernel code is duplicated to deal with the horizontal
halo. GPUs have a special type of parallel architecture which means many identical
operations can be run in parallel but if the code branches in different directions part
of the hardware becomes idle. (This is known as thread divergence.) Thus diverting
ten threads to deal with the halo causes all the remaining threads in the warp to
become idle. (Each warp contains 32 threads.) Option XHALO allows GP to use
ten additional threads which are dedicated to the halo. Thus each thread only deals
with one pixel. In practise the net effect of XHALO is to disable the duplicated code
so that instead of each block processing vertical stripes of 64 pixels, each block only
writes stripes 54 pixels wide.
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8.12.2 Parallel of Discrepancy offsets: DPER

The original code (Sect. 8.8) steps through sequentially 51 displacements of the
right image with respect to the left. Modern GPUs allow many more threads and
often it is best to use more threads as it allows greater parallelism and may improve
throughput by increasing the overlap between computation and I/O. Instead of
stepping sequentially one at a time through the 51 displacements, the DPER option
allows 2, 3 or 4 displacement SSD values to be calculated in parallel. As well as
increasing the number of threads, the amount of shared memory needed is also
increased by the same factor. Nevertheless only one (the smallest) SSD value per
pixel need be compared with the current smallest, so potentially saving some I/O.
Although the volume of calculations is little changed, there are also potential saving
since each DPER block uses almost the same data.

8.13 Parameters Accessible to Evolution

The GISMOE GP system (Langdon and Harman 2015) was extended to allow not
only code changes but also changes to C macro #defines. The GP puts the evolved
values in a C #include .h file, which is complied along with the GP modified
kernel code and the associated (fixed) host source code.

Table 8.1 shows the twelve configuration parameters. Every GP individual
chromosome starts with these 12, which are then followed by zero or more changes
to the code. Figure 8.16 page 206 contains an example GP individual, whereas
Figs. 8.12 page 202, 8.13 and 8.14 contain simplified schematics of GP individuals.

8.13.1 Fixed Configuration Parameters

8.13.1.1 OUT_TYPE

The return value should be in the range -1 to 50 (Sect. 8.10). Originally this is coded
as a float. OUT_TYPE gives GP the option of trying other types. Notice, since
the data will probably be used on the GPU, we do not use the fact that the smaller
data types take less time to transfer between GPU and host. (I.e. all fitness times,
Sect. 8.14.5.2, are on the GPU.)

8.13.1.2 STORE_disparityPixel and STORE_disparityMinSSD

disparityPixel and disparityMinSSD are major arrays in the kernel. Stam coded them
to lie in the GPU’s slow off chip global memory. These configuration options give
evolution the possibility of trying to place them in either shared memory or in local
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memory. Where the compiler can resolve local array indexes, e.g. as a result of
unrolling loops, it can use fast registers in place of local memory.

8.13.1.3 __mul24

For addressing purposes, older GPU’s included a fast 24 bit multiply instruction,
which is heavily used in the original code. It appears that in the newer GPUs
__mul24 may actually be slower than ordinary (32 bit) integer multiply. Hence we
give GP the option of replacing __mul24 with ordinary multiply.

8.13.1.4 Textures

CUDA textures are intimately linked with the GPU’s hardware and provide a
wide range of data manipulation facilities (normalisation, default values, control
of boundary effects and interpolation) which the original code does not need but is
obliged to use. The left and right image textures are principally used because they
provide caching (which was not otherwise available on early generation GPUs.) We
allowed the GP to investigate all texture options, including not using textures. Some
combinations are illegal but the host code gives sensible defaults in these cases.

Unfortunately it is tricky to ensure access directly to the data and via a texture
produce identical answers. Once cause of differences is there can be a 1

2
pixel

discrepancy between direct access (which treats the images as 2D arrays) and
textures where reference point is the centre of the pixel. This leads to small differ-
ences between direct access and the original code. Whilst such slight differences
make little difference to the outputs’ appearance, even so such GP individuals
are penalised by the fitness function (Sect. 8.14.5). This may have inhibited GP
exploring all the data access options.

8.14 Evolvable Code

Following the standard GISMOE approach (Langdon and Harman 2015), the
evolutionary cycle is amended so that we start by creating a BNF grammar from
the supplied source code and the GP evolves linear patches to the code (applied via
the grammar) rather than trees, cf. Fig. 8.5 page 191. The source code, including
XHALO and DPER (Sects. 8.12.1 and 8.12.2), is automatically translated line
by line into the grammar (see Fig. 8.11). Notice the grammar is not generic, it
represents only one program, stereoKernel, and variants of it. The grammar contains
424 rules, 277 represent fixed lines of C++ source code. There are 55 variable lines,
27 IF and 10 of each of the three parts of C for loops. There are also five CUDA
specific types:
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<KStereo.cuh_52> ::= "__attribute__((global)) " <launchbounds_KStereo.cuh_52>
" void KERNEL(\n"

#kernel
<launchbounds_KStereo.cuh_52> ::= ""
<launchbounds_K0> ::= "\n" "#ifdef DPER\n" "__launch_bounds__(BLOCK_W*dperblock)\n"

"#else\n" "__launch_bounds__(BLOCK_W)\n" "#endif /*DPER*/\n"
...

<launchbounds_K5> ::= "\n" "#ifdef DPER\n" "__launch_bounds__(BLOCK_W*dperblock,5)\n"
"#else\n" "__launch_bounds__(BLOCK_W,5)\n" "#endif /*DPER*/\n"

<optrestrict_KStereo.cuh_52> ::= " __restrict__ "
#kernelarg
<KStereo.cuh_53> ::= "OUTYPE *" <optrestrict_KStereo.cuh_52> "disparityPixel,\n"
<KStereo.cuh_54> ::= <optconst_KStereo.cuh_54> "size_t out_Pitch,\n"
<optconst_KStereo.cuh_54> ::= "const "
<KStereo.cuh_55> ::= "#ifdef GLOBAL_disparityMinSSD\n"
<KStereo.cuh_56> ::= "int *" <optrestrict_KStereo.cuh_52> "disparityMinSSD,\n"
<KStereo.cuh_57> ::= "#if OUT_TYPE != float_ && OUT_TYPE != int_\n"
<KStereo.cuh_58> ::= <optconst_KStereo.cuh_58> "size_t out_pitch,\n"
<optconst_KStereo.cuh_58> ::= "const "
<KStereo.cuh_59> ::= "#endif\n"
<KStereo.cuh_60> ::= "#endif /*GLOBAL_disparityMinSSD*/\n"

...
<KStereo.cuh_72> ::= ")\n"

...
<KStereo.cuh_141> ::= " if" <IF_KStereo.cuh_141>

" extra_read_val = BLOCK_W+threadIdx.x;\n"
#"if
<IF_KStereo.cuh_141> ::= "(threadIdx.x < (2*RADIUS_H))"

...
<KStereo.cuh_158> ::= <pragma_KStereo.cuh_158> "for("

<for1_KStereo.cuh_158> ";" "OK()&&"
<for2_KStereo.cuh_158> ";"
<for3_KStereo.cuh_158> ") \n"

#for
<pragma_KStereo.cuh_158> ::= ""
#pragma
<pragma_K0> ::= "#pragma unroll \n"
<pragma_K1> ::= "#pragma unroll 1\n"

...
<pragma_K11> ::= "#pragma unroll 11\n"
<for1_KStereo.cuh_158> ::= "i = 0"
<for2_KStereo.cuh_158> ::= "i<ROWSperTHREAD && Y+i < height"
<for3_KStereo.cuh_158> ::= "i++"
<KStereo.cuh_159> ::= "{\n"
<KStereo.cuh_160> ::= "" <_KStereo.cuh_160> "\n"
#other
<_KStereo.cuh_160> ::= "init_disparityPixel(X,Y,i);"
<KStereo.cuh_161> ::= "" <_KStereo.cuh_161> "\n"
<_KStereo.cuh_161> ::= "init_disparityMinSSD(X,Y,i);"
<KStereo.cuh_162> ::= "}\n"

Fig. 8.11 Fragments of BNF grammar used by GP. Most rules are fixed but rules starting with
<_, <IF_, <for1_, <pragma_, etc. can be manipulated using rules of the same type to produce
variants of stereoKernel. Lines beginning with # are comments

1. #pragma unroll allows GP to control the nvcc compiler’s loop unrolling.
pragma rules are automatically inserted before each for loop but rely on GP to
enable and set their values. Using the type constraints GP can either: remove it,
set it to #pragma unroll, or set it to #pragma unroll n (where n is 1
to 11).

2. optvolatile CUDA allows shared data types to be marked as volatile which
influences the compiler’s optimisation. As required by the CUDA compiler,
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the grammar automatically ensures all shared variables are either flagged as
volatile or none are.

The remaining three CUDA types apply to the kernel’s header.
3. optconst Each of kernel’s scalar inputs can be separately marked as const.
4. optrestrict All of the kernel’s array arguments can be marked with
__restrict__ This potentially helps the compiler to optimise the code.
On the newest GPUs (SM 3.5) optrestrict allows the compiler to access read
only arrays via a read only cache. Since both only apply if all arrays are marked
__restrict__, the grammar ensures they all are or none are.

5. launchbounds is again a CUDA specific aid to code optimisation. By default
the compiler must generate code that can be run with any numbers of
threads. Since GP knows how many threads will be used, specifying it via
__launch_bounds__ gives the compiler the potential of optimising the
code. __launch_bounds__ takes an optional second argument which refers
to the number of blocks that are active per streaming multiprocessor SMX. How
it is used is again convoluted, but the grammar allows GP to omit it, or set it to
1, 2, 3, 4 or 5.

8.14.1 Initial Population

Each member of the initial population is unique. They are each created by selecting
at random one of the 12 configuration constants (Table 8.1) and setting it at random
to one of its non-default values. As the population is created it becomes harder
to find unique mutations and so random code changes are included as well as the
configuration change. Table 8.2 summarises the GP parameters.

Table 8.2 Genetic programming parameters for improving stereoKernel

Representation: Fixed list of 12 parameter values (Table 8.1) followed by variable list of
replacements, deletions and insertions into BNF grammar

Fitness: Run on a randomly chosen 320�240 monochrome stereo image pair. Compare
answer & run time with original code and time its execution. See Sects. 8.14.5
and 8.14.6.

Population: Panmictic, non-elitist, generational. 100 members. New randomly chosen
training sample each generation.

Parameters: Initial population of random single mutants heavily weighted towards the kernel
header and shared variables. 50 % truncation selection. 50 % crossover (uniform
for fixed part, 2pt for variable). 50 % mutation 25 % mutation random change to
fixed part. 25 % add code mutation (one of: delete, replace, insert, each equally
likely). No size limit. Stop after 50 generations.
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8.14.2 Weights

Normally each line of code is equally likely to be modified. However, only as part
of creating a diverse initial population, the small number of rules in the kernel
header (i.e. launchbounds, optrestrict, optconst and optvolatile) are 1000 times more
likely to be changed than the other grammar rules. (Forcing each member of the GP
population to be unique is also only done in the initial population.) In future, it might
be worthwhile ensuring GP does not waste effort changing CUDA code which can
have no effect by setting the weights of lines excluded by conditional compilation
to zero.

8.14.3 Mutation

Half of mutations are made to the configuration parameters (Table 8.1). In which
case one of the 12 configuration parameters is chosen uniformly at random and its
current value is replaced by another of its possible values again chosen uniformly
at random, see Fig. 8.12. The other half of the mutations are made to the code. In
which case the mutation operator appends an additional code patch to the parent (see
Fig. 8.13). There are three possible code mutations: delete a line of code, replace a
line and insert a line. The replacement and inserted lines of code are copied from
stereoKernel itself (via the grammar). Notice GP does not create code. It merely
rearranges human written code.

None Variable number of code patches1 SHARED Float_ Linear Clamp Float_ 1 LOCAL cg

1 LOCAL Float_ Linear Clamp Float_ 1 LOCAL cgNone Variable number of code patches

Fig. 8.12 Example of mutation to the configuration part at the start of a GP individual. Top: parent
Bottom: offspring. The 12 configuration parameters are given in Table 8.1

<284>+<194> volitile <247><186><180><231><358><154><174>+<176><288>+<161>

<284>+<194> volitile <247><186><180><231><358><154><174>+<176>

Fig. 8.13 Example of mutation to the variable length part of a GP individual. Patch
<288>+<161> is appended to parent (top) causing in the child (bottom) a copy of source line
161 to be inserted before line 288 in the kernel source code. (For clarity the left hand part omitted
and full grammar rule names simplified, e.g. to just the line numbers.)
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1 SHARED Linear 1Shared <284>+<194> <261>+<166> volatile <186>+<247><168>#5cgGLOBALfloat_ClampFloat_ <288><257><359>#3<IF307><IF358><IF281><IF154>

1 SHARED Linear 1Equal <300>+<240><261>+<166>Float_ Clamp float_ GLOBAL cg

1 SHARED Linear 1Equal <212>+<273><300>+<240><261>+<166> <359>#3cvGLOBALint_MirrorFloat_ <158>#11<262>#11<IF307><IF358> volatile <224><176>

<359>#3 volatile <212>+<273><158>#11 <224><176><IF307><IF358>

<for3_307>
<for3_158>

Fig. 8.14 Example of crossover. Parts of two above median parents (top and middle) recombined
to yield a child (bottom)

8.14.4 Crossover

Crossover creates a new GP individual from two different members of the better
half (Sect. 8.14.6) of the current population. The child inherits each of the 12 fixed
parameters (Table 8.1) at random from either parent (uniform crossover Syswerda
1989, see Fig. 8.14). Whereas in Langdon and Harman (2015) we used append
crossover which deliberately increases the size of the offspring, here, on the variable
length part of the genome, we use an analogue of Koza’s tree GP crossover (Koza
1992). Two crossover points are chosen uniformly at random. The part between the
two crossover points of the first parent is replaced by the patches between the two
crossover points of the second parent to give a single child. On average, this gives
no net change in length.

8.14.5 Fitness

To avoid over fitting and to keep run times manageable, each generation one of the
two hundred training images pairs is chosen (Langdon 2010). Each GP modified
kernel in the population is tested on that image pair.

8.14.5.1 CUDA memcheck and Loop Overruns

Normally each GP modified kernel is run twice. The first time it is run with CUDA
memcheck and with loop over run checks enabled. If no problems are reported by
CUDA memcheck and the kernel terminates normally (i.e. without exceeding the
limit on loop iterations) it is run a second time without these debug aids. Both
memcheck and counting loop iterations impose high overheads which make timing
information unusable. Only in the second run are the timing and error information
used as part of fitness. If the GP kernel fails in either run, it is given such a large
penalty, that it will not be a parent for the next generation.

When loop timeouts are enabled, the GP grammar ensures that each time a C++
for loop iterates a per thread global counter is incremented. If the counter exceeds
the limit, the loop is aborted and the kernel quickly terminates. If any thread reaches
its limit, the whole kernel is treated as if it had timed out. The limit is set to 100�
the maximum reasonable value for a correctly operating good kernel.
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8.14.5.2 Timing

Each of the streaming multiprocessor (SMXs) within the GPU chip has its own
independent clock. On some GPUs cudaDeviceReset() resets all the clocks,
this is not the case with the C2050. To get a robust timing scheme, which applies to
all GPUs, each kernel block records both its own start and end times and the SMX
unit it is running on. After the kernel has finished, for each SMX, the end time of
the last block to use it and the start time of the first block to use it are subtracted to
give the accurate duration of usage for each SMX. (Note to take care of overflow
unsigned int arithmetic is used.) Whilst we do not compare values taken from
clocks on different SMXs, it turns out to be safe to assume that the total duration of
the kernel is the longest time taken by any of the SMXs used. (As a sanity check
this GPU kernel time is compared to the, less accurate, duration measured on the
host CPU.) The total duration taken by the GP kernel (expressed as GPU clock tics
divided by 1000) is the first component of its fitness.

8.14.5.3 Error

For each pixel in the left image the value returned by the GP modified kernel is
compared with that given by the un-modified kernel. If they are different a per
pixel penalty is added to the total error which becomes the second part of the GP
individual’s fitness.

If the unmodified kernel did not return a value (i.e. it was -1.0, cf. Sect. 8.10)
the value returned by the GP kernel is also ignored. Otherwise, if the GP failed
to set a value for a pixel, it gets a penalty of 200. If the GP value is infinite or
otherwise outside the range of expected values (0..50) it attracts a penalty of 100.
Otherwise the per pixel penalty is the absolute difference between the original value
and the GP’s value.

For efficiency, previously (Langdon and Harman 2010) we batched up many GP
generated kernels into one file to be compiled in one go. For simplicity, since we
are using a more advanced version of nVidia’s nvcc compiler, and GP individuals in
the same population may need different compiler options, we did not attempt this.
Typically it takes about 3.3 s to compile each GP generated kernel. Whereas to run
the resulting StereoCamera program (twice see Sect. 8.14.5.1) takes about 2.0 s,

8.14.6 Selection

At the end of each generation we compare each mutant with the original kernel’s
performance on the same test case and only allow it to be a parent if it does well. In
detail, it must be both faster and be, on average, not more than 6.0 per pixel different
from the original code’s answer. However mostly the evolved code passes both tests.
At the end of each generation the population is sorted first by their error and then
by their speed. The top 50 % are selected to be parents of the next generation.
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Each selected parent creates one child by mutation (Sect. 8.14.3) and another by
crossover with another selected parent (Sect. 8.14.4). The complete GP parameters
are summarised in Table 8.2.

8.15 Results

The best individual from the last generation (50) was minimised to remove
unneeded mutations which contributed little to its overall performance and returned
(Sect. 8.11). This reduced the length of the GP individual from 29 to 10. On
the Tesla K20c, on average, across all 2516 I2I 320�240 stereo image pairs,
GP sped up the original StereoCamera code almost seven fold. (The mean speed
up is 6.837˙ 0.04.) By reducing ROWSperTHREAD from the original 40 to 5,
pretuning (Sect. 8.11) itself gave a factor of 2.4 fold speed up. The original value of
BLOCK_W (64) and the default value of DPER (2) were optimal for the Tesla K20c.
I.e. the GP code changes gave another factor of almost three on top of the parameter
tuning. The speedup of the improved K20c kernel on all of the I2I stereo images
is given in Fig. 8.15. The speed up for the other five GPUs varied in a similar way
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Fig. 8.15 Performance of GP improved K20c Tesla kernel on all 3010 stereo pairs in Microsoft’s
I2I database relative to original kernel on the same image pair on the same GPU. Fifty of first 200
pairs used in training. The evolved kernel is always much better, especially on images of the same
size and shape as it was trained on
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to the K20c. Finally, notice typically there is very little difference in performance
across the images of the same size and shape as the training data

8.16 Evolved Tesla K20c CUDA Code

The best of generation 50 individual changes 6 of the 12 fixed configuration
parameters (Table 8.1) and includes 23 grammar rule changes. After removing less
useful components (Sect. 8.11) four configuration parameters were changed and
there were six code changes. See Figs. 8.16 and 8.17. The complete code is given in
the appendix (pages 211–214).

The evolved configuration parameters mean that DPER is enabled and the new
kernel calculates two disparity values in parallel (Sect. 8.12.2), disparityPixel and
disparityMinSSD are stored in shared memory (Sect. 8.13.1.2) and XHALO is
enabled (Sect. 8.12.1).
The final code changes, Fig. 8.17, are:

• disable volatile, Sect. 8.14.
• insert #pragma unroll 11 before the for loop that steps through the
ROWSperTHREAD - 1 other rows (Sect. 8.8).

• insert #pragma unroll 3 before the for loop that writes each of the
ROWSperTHREAD rows of disparityPixel from shared to global memory. Its not
clear why evolution chose to ask the nvcc compiler to unroll this loop (which is

DPER=1 STORE disparityMinSSD=SHARED XHALO=1 STORE disparityPixel=SHARED
<pragma KStereo.cuh 359><pragma K3> < KStereo.cuh 161>+< KStereo.cuh 224>
< KStereo.cuh 348> <optvolatile KStereo.cuh 86>
<pragma KStereo.cuh 262><pragma K11> <IF KStereo.cuh 326><IF KStereo.cuh 154>

Fig. 8.16 Best GP individual in generation 50 of K20c Tesla run after minimising, Sect. 8.11,
removed less useful components. (Auto-tuning made no further improvements.) Top line (normal
font) are four non-default values for the 12 fixed configuration parameters. Six code changes shown
in tt font

int * restrict disparityMinSSD, //Global disparityMinSSD not kernel argument
volatile extern __attribute__((shared)) int col_ssd[];
volatile int* const reduce_ssd = &col_ssd[(64 )*2 -64];
#pragma unroll 11
if(X < width && Y < height) replaced by if(dblockIdx==0)
syncthreads();

#pragma unroll 3

Fig. 8.17 Evolved changes to K20c Tesla StereoKernel. (Produced by GP grammar changes in
Fig. 8.16). Highlighted code is inserted. Code in italics is removed. For brevity, except for the
kernel’s arguments, disparityPixel and disparityMinSSD changes from global to shared memory
are omitted. The appendix, pages 211–214, gives the complete source code
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always executed 5 times) only 3 times. But then when nvcc decides to do loop
unrolling is obscure anyway.

• Mutation <_KStereo.cuh_161>+<_KStereo.cuh_224> causes line
224 to be inserted before line 161. Line 224 potentially updates local
variable ssd, however ssd is not used before the code which initialises it.
It is possible that the compiler spots that the mutated code cannot affect anything
outside the kernel and simply optimises it away. During minimisation removing
this mutation gave a kernel whose run time was exactly on the removal threshold.

• Mutation <IF_KStereo.cuh_326><IF_KStereo.cuh_154> replaces
X < width && Y < height by dblockIdx==0. This replace a
complicated expression by a simpler (and so presumably faster) expression,
which itself has no effect on the logic since both are always true. In fact, given
the way if(dblockIdx==0) is nested inside another if, the compiler may
optimise it away entirely. I.e. GP has found a way of improving the GPU kernel
by removing a redundant expression.

The original purposed of if(X < width && Y < height) was to
guard against reading outside array bounds when calculating SSD. However the
array index is also guarded by i < blockDim.x

• delete __syncthreads() on line 348. __syncthreads() forces all
threads to stop and wait until all reach it. Line 348 is at the end of code
which may update (with the smaller of two disparities values) shared variables
disparityPixel and disparityMinSSD. In effect GP has discovered it is safe to let
other threads proceed since they will not use the same shared variables before
meeting other __syncthreads() elsewhere in the code. As well as reducing
the number of instructions, removing synchronisation calls potentially allows
greater overlapping of computation and I/O leading to an overall saving.

8.17 Discussion

Up to Intel’s Pentium, Moore’s Law (Moore 1965) had applied not only to the
doubling of the number of transistors on a silicon chip but also to exponential rises in
clock speeds. Since 2005 mainstream processor clock speeds have remained fairly
much unchanged. However Moore’s Law continues to apply to the exponential rise
in the number of available logic circuits. This has driven the continuing rise of par-
allel multi-core computing. In mainstream computing, GPU computing continues to
lead in terms of price v. performance. However GPGPU computing (Owens et al.
2008) (and parallel computing in general) is still held back by the difficulty of high-
performance parallel programming (Langdon 2011; Merrill et al. 2012).

When programming the GPU, in addition to the usual programming tasks, there
are other hardware specific choices, e.g. where to store data. Even for the expert
it is difficult to find optimal choices for these while simultaneously programming.
Merrill et al. (2012) propose heavy use of templates in kernel code in an effort to
separate algorithm coding for data storage etc. However templates are in practise
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even harder to code and current versions of the compiler cannot optimally make
choices for the programmer. As Sect. 8.11 shows, it can be feasible to remove
the choice of key parameters (typically block size) from the programmer. Instead
their code is run with all feasible values of the parameter and the best chosen. There
are already tools to support this. Such enumerative approaches are only feasible with
a small number of parameters. The GP approach is more scalable and allows mixing
both parameter tuning and code changes. To be fair, we should say at present all the
approaches are still at the research stage rather than being able to assist the average
graphics card programmer.

Future new requirements of StereoCamera might be dealing with: colour, moving
images (perhaps with time skew), larger images, greater frame rates and running on
mobile robots, 3D telephones, virtual reality gamesets or other low energy portable
devices. We can hope our GP system could be used to automatically create new
versions tailored to new demands and new hardware.

In some cases modern hardware readily gives on line access to other important
non-functional properties (such as power or current consumption, temperature and
actual clock speeds). Potentially these might also be optimised by GP. White et al.
(2008) showed it can be possible to use GP with a cycle-level power level simulator
to optimise small programs for embedded systems. (Schulte et al. 2014a recently
extended this to large open source every day programs.) Here we work with the real
hardware, rather than simulators, however real power measurements are not readily
available with all our GTX and Tesla cards.

Many computers, including GPUs, and especially in mobile devices, now
have variable power consumption. Thus reducing execution time can lead to a
proportionate reduction in energy consumption and hence increase in battery life,
since as soon as the computation is done the computer can revert to its low power
idle hibernating state. Yao et al. (1995); Han et al. (2010); Radulescu et al. (2014)
consider other ways of tuning of the processor’s clock speed (which might be
combined with software improvements).

Another promising extension is the combined optimisation for multiple func-
tional and non-functional properties (Colmenar et al. 2011). Initial experiments
hinted that NSGA-II (Deb et al. 2002; Langdon et al. 2010) finds it hard to maintain
a complete Pareto front when one objective is much easier than the others. Thus
a population may evolve to contain many fast programs which have lost important
functionality while slower functional program are lost from the population. Newer
multi-objective GAs or alternative fitness function scalings may address this.

The newer versions of CUDA also include additional tools (e.g. CUDA race
check) which might be included as part of fitness testing.

The supplied kernel code contains several hundred lines of code. It may be
that this only just contains enough variation for GP’s cut-and-past operations
(Sect. 8.14.3). We had intended to allow GP to also use code taken from the copious
examples supplied by nVidia with CUDA (see Sect. 8.5) but so far this has not been
tried.

nVidia and other manufactures are continuing to increase the performance,
economy and functionality of their parallel hardware. There are also other highly
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parallel and low power chips with diverse architectures (e.g. multicore CPUs,
FPGAs, Intel Xeon Phi, mobile and RFID devices Andreopoulos 2013). These
trends suggest the need for software to be ported (Langdon and Harman 2010) or to
adapt to new parallel architectures will continue to increase.

One of the great success for modular system design has been the ability to
keep software running whilst the underlying hardware platforms have gone through
several generations of upgrades. In some cases this has been achieved by freezing
the software, even to the extent of preserving binaries for years. In practise this
is not sufficient and software that is in use is under continual and very expensive
maintenance. There is a universal need for software to adapt.

8.18 Conclusions

We have reviewed published work on using genetic programming on software.
Initially we showed examples where genetic programming was able to evolve real
software from scratch. In some cases, e.g. by automatically creating bespoke
applications tailored to particular tasks, the GP generated code improves on generic
human written code.

Even now, code evolved from scratch tends to be small. The GGGP (grow and
graft) system, described in Sect. 8.6, is a potential way around the problem. GGGP
still evolves small new components but also uses GP to graft them into much bigger
human written codes, thus create large hybrid software.

Similarly the CUDA gzip example (Sect. 8.3) showed small but valuable units
of code can be effectively automatically ported by evolving new code to match
the functionality of the existing code, even if it is written in a different language
or executes on different hardware. Indeed auto bugfixing (Sect. 8.2.4), Bowtie2,
NiftyReg and StereoCamera also use the existing code as the de facto specification
of the functionality of the to be evolved software.

The work on miniSAT (Sect. 8.5) shows GP can potentially scavenge not just
code from the program it is improving but code from multiple programs by multiple
authors. This GP plastic surgery (Barr et al. 2014) created in a few hours an award
winning version of miniSAT tailored to solving an import software engineering
problem, for which it was better than generic versions of miniSAT which has been
optimised by leading SAT solving experts for years.

Another promising area is evolving software to meet multiple conflicting require-
ments. Indeed GP’s potential ability to present the software designer with a Pareto
trade-off front of different measures of code performance (Harman et al. 2012),
may be one avenue that leads most quickly to the wide spread adoption of genetic
programming for software improvement. One can imagine a system which shows a
range of programs with different speed versus memory requirements, which invites
the software designer to choose a suitable trade-off before any manual coding starts.
Few, if any projects, once the location of their implementation on the trade off
space is known, i.e. coding is almost complete, can afford to reject their initial
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design choices and start again from scratch. Instead typically only relatively small
performance changes can be made within the straight jacket of the original design.
Further the GP system could consider not only conventional alternatives (e.g.
speed v. memory) but also aspects required by mobile computing, such as network
bandwidth, power, battery life, and even quality of solutions. It would be very useful
to be able to see credible results of design decisions before implementation starts,
even if the machine generated code is totally discarded and the designer insists on
human coding.

GI is definitely a growth area with the first international event on Genetic
Improvement, GI-2015, being held in Madrid along side the main evolutionary
computation conference, GECCO, and GI papers being well represented in the
SSBSE software engineering conference series as well as gaining best paper prizes
in the top software engineering conference and human competitive awards.

Mostly we have described in detail an application of our BNF grammar based
GP system, in which a population of code patches is automatically evolved to
create new versions of parallel code to run on graphics hardware. The evolving
versions are continuously compared with the original, which is treated as the de
facto specification, by running regression tests on both and frequently changing the
example test used. The fitness function penalises deviation from the original but
rewards faster execution. The GP evolves code which exploits the abilities of the
hardware the code will run on. The StereoCamera system was specifically written
by nVidia’s image processing expert to show off their hardware and yet GP is able
to improve the code for hardware which had not even been designed when it was
originally written yielding almost a seven fold speed up in the graphics kernel.

8.18.1 Sources and Datasets

Le Goues’ bug fixing system (Sect. 8.2.4) is available on line: http:// gen-
prog.cs.virginia.edu/ The grammar based genetic programming systems for
gzip (Sect. 8.3), Bowtie2 (Sect. 8.4), StereoCamera (Sect. 8.7 onwards) and
3D Brain scan registration (NiftyReg Sect. 8.7 page 191) are available on
line via ftp.cs.ucl.ac.uk. (For the MiniSAT genetic improvement
code, Sect. 8.5, please contact Dr. Petke directly.) The StereoCamera code
is in file genetic/gp-code/StereoCamera_1_1.tar.gz and training images are in
StereoImages.tar.gz The new code is available in StereoCamera_v1_1c.zip.

Acknowledgements I am grateful for the assistance of njuffa, Istvan Reguly, vyas of nVidia, Ted
Baker, and Allan MacKinnon.

GPUs were given by nVidia. Funded by EPSRC grant EP/I033688/1.

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/I033688/1
http://www.nvidia.com
http://www.cs.fsu.edu/~baker/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoCamera_v1_1c.zip
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoImages.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/StereoCamera_1_1.tar.gz
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://genprog.cs.virginia.edu/
http://genprog.cs.virginia.edu/


8 Genetically Improved Software 211

Appendix: StereoKernel Tuned for K20c Tesla

In addition to the complete Stereo Camera system StereoCamera_v1_1c.zip
contains the following CUDA kernel. The modifications to the openVidia CUDA
Stereo Camera code distributed by SourceForge are also described in Sect. 8.16
(pages 206 to 207).

/*******
stereoKernel
Now for the main stereo kernel: There are four parameters:
disparityPixel points to memory containing the disparity value (d)
for each pixel.
width & height are the image width & height, and out_pitch
specifies the pitch of the output data in words (i.e. the number
of floats between the start of one row and the start of the next.).
disparityMinSSD removed by GP

*********/

__attribute__((global)) void stereoKernel(
// pointer to the output memory for the disparity map
float * __restrict__ disparityPixel,
// the pitch (in pixels) of the output memory for the disparity
map const size_t out_pitch,
const int width,
const int height,
unsigned int * __restrict__ timer, //For GP timing only
int * __restrict__ sm_id //For GP timing only

)
{
FIXED_init_timings(timer,sm_id); //For GP timing only
extern __attribute__((shared)) float disparityPixel_S[];

int* const disparityMinSSD = (int*)&disparityPixel_S[ROWSper
THREAD*BLOCK_W];

// column squared difference functions
int* const col_ssd = &disparityMinSSD[ROWSperTHREAD*BLOCK_W];
float d; // disparity value
float d0,d1;
float dmin;

int diff; // difference temporary value
int ssd; // total SSD for a kernel
float x_tex; // texture coordinates for image lookup
float y_tex;
int row; // the current row in the rolling window
int i; // for index variable
const int dthreadIdx = threadIdx.x % BLOCK_W;
const int dblockIdx = threadIdx.x / BLOCK_W;

//bugfix force subsequent calculations to be signed
const int X = (__mul24(blockIdx.x,(BLOCK_W-2*RADIUS_H)) +

dthreadIdx);
const int ssdIdx = threadIdx.x;
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int* const reduce_ssd = &col_ssd[(BLOCK_W )*dperblock-BLOCK_W];
const int Y = (__mul24(blockIdx.y,ROWSperTHREAD));

//int extra_read_val = 0; no longer used
//if(dthreadIdx < (2*RADIUS_H)) extra_read_val = BLOCK_W + ssdIdx;

// initialize the memory used for the disparity and the disparity
difference

//Uses first group of threads to initialise shared memory
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(dblockIdx==0)
if(X<width )
{

for(i = 0;i<ROWSperTHREAD && Y+i < height;i++)
{
// initialize to -1 indicating no match
disparityPixel_S[i*BLOCK_W +threadIdx.x] = -1.0f;
//ssd += col_ssd[i+threadIdx.x];
disparityMinSSD[i*BLOCK_W +threadIdx.x] = MIN_SSD;

}
}
__syncthreads();

x_tex = X - RADIUS_H;
for(d0 = STEREO_MIND;d0 <= STEREO_MAXD;d0 += STEREO_DISP_STEP*

dperblock)
{

d = d0 + STEREO_DISP_STEP*dblockIdx;
col_ssd[ssdIdx] = 0;

// do the first row
y_tex = Y - RADIUS_V;
for(i = 0;i <= 2*RADIUS_V;i++)
{
diff = readLeft(x_tex,y_tex) - readRight(x_tex-d,y_tex);
col_ssd[ssdIdx] += SQ(diff);
y_tex += 1.0f;

}
__syncthreads();

// now accumulate the total
if(dthreadIdx<BLOCK_W-2*RADIUS_H)
if(X < width && Y < height)
{
ssd = 0;
for(i = 0;i<=(2*RADIUS_H);i++)
{

ssd += col_ssd[i+ssdIdx];
}

}
if(dblockIdx!=0) reduce_ssd[threadIdx.x] = ssd;
__syncthreads();

//Use first group of threads to set ssd to smallest SSD for
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d1<d0+dperblock
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(X < width && Y < height)
{
dmin = d;
d1 = d + STEREO_DISP_STEP;
for(i = threadIdx.x+BLOCK_W;i < blockDim.x;i += BLOCK_W) {

if(d1 <= STEREO_MAXD && reduce_ssd[i] < ssd) {
ssd = reduce_ssd[i];
dmin = d1;

}
d1 += STEREO_DISP_STEP;

}
//if ssd is smaller update both shared data arrays
if( ssd < disparityMinSSD[0*BLOCK_W +threadIdx.x])
{
disparityPixel_S[0*BLOCK_W +threadIdx.x] = dmin;
disparityMinSSD[0*BLOCK_W +threadIdx.x] = ssd;

}
}
__syncthreads();

// now do the remaining rows
y_tex = Y - RADIUS_V; // this is the row we will remove
#pragma unroll 11
for(row = 1;row < ROWSperTHREAD && (row+Y < (height+RADIUS_V));
row++)

{
// subtract the value of the first row from column sums
diff = readLeft(x_tex,y_tex) - readRight(x_tex-d,y_tex);
col_ssd[ssdIdx] -= SQ(diff);

// add in the value from the next row down
diff = readLeft(x_tex, y_tex + (float)(2*RADIUS_V)+1.0f) -

readRight(x_tex-d,y_tex + (float)(2*RADIUS_V)+1.0f);
col_ssd[ssdIdx] += SQ(diff);
y_tex += 1.0f;
__syncthreads();

if(dthreadIdx<BLOCK_W-2*RADIUS_H)
if(X<width && (Y+row) < height)
{

ssd = 0;
for(i = 0;i<=(2*RADIUS_H);i++)
{

ssd += col_ssd[i+ssdIdx];
}

}
if(dblockIdx!=0) reduce_ssd[threadIdx.x] = ssd;
__syncthreads();

//Use 1st group threads to set ssd/dmin to smallest SSD for
d1<d0+dperblock

if(threadIdx.x<BLOCK_W-2*RADIUS_H)
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if(dblockIdx==0)
{

dmin = d;
d1 = d + STEREO_DISP_STEP;
for(i = threadIdx.x+BLOCK_W;i < blockDim.x;i += BLOCK_W) {

if(d1 <= STEREO_MAXD && reduce_ssd[i] < ssd) {
ssd = reduce_ssd[i];
dmin = d1;

}
d1 += STEREO_DISP_STEP;

}
//if smaller SSD found update shared memory
if(ssd < disparityMinSSD[row*BLOCK_W +threadIdx.x])
{

disparityPixel_S[row*BLOCK_W +threadIdx.x] = dmin;
disparityMinSSD[row*BLOCK_W +threadIdx.x] = ssd;

}
}//endif first group of thread

}// for row loop
}// for d0 loop

//Write answer in shared memory to global memory
if(threadIdx.x<BLOCK_W-2*RADIUS_H)
if(dblockIdx==0)
if(X < width) {
#pragma unroll 3

for(row = 0;row < ROWSperTHREAD && (row+Y < height);row++)
{
disparityPixel[__mul24((Y+row),out_pitch)+X] =

disparityPixel_S[row*BLOCK_W +threadIdx.x];
}

}
FIXED_report_timings(timer,sm_id); //For GP timing only
}
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Chapter 9
Design of Real-Time Computer-Based Systems
Using Developmental Genetic Programming

Stanisław Deniziak, Leszek Ciopiński, and Grzegorz Pawiński

9.1 Introduction

Computer-based system (CBS) is a system which uses microprocessors or comput-
ers for executing tasks. We may find computers almost everywhere, from simple
microcontrollers or more complex embedded systems used in automotive, telecom-
munication, medical, home and other appliances, to powerful computing centers
running cloud applications. Certain system features like cost, power consumption,
performance are critical in most applications. Thus, CBS should be optimized
by developing the dedicated architecture that satisfies all user requirements and
expectations.

In many applications a system response is expected during the specified time
period. Violation of the time limit causes system fail or degrades the quality of
service. This class of systems, called real-time systems, is used in many domains.
Most of embedded systems work in real time. Any CBS that interacts with the
environment e.g. by controlling processes or electromechanical devices, also is
a subject of real-time constraints. Recently, requirements for real-time features
appeared also for some classes of cloud services.

Design of the dedicated architecture of real time CBS consists of the following
tasks: resource allocation, task assignment and task scheduling. Usually the goal of
optimization is to minimize a cost or power consumption, while satisfying all real
time constraints. In general, this process is defined as a resource constrained process
scheduling problem (RCPSP).

RCPSP is an NP-complete problem, which is computationally very hard
(Blazewicz et al. 1983), therefore optimal solutions for real-life systems may
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be found only by using efficient heuristics. It was shown that for the design of
real-time computer-based systems, approaches based on the developmental genetic
programming are very effective.

9.2 Developmental Genetic Programming

Developmental genetic programming (DGP) (Keller and Banzhaf 1999; Koza et al.
2003) evolves the development process, instead of computer programs. In classical
genetic approaches, the search space (genotype) is the same as a solution space
(phenotype). DGP distinguishes between genotypes and phenotypes and uses a
genotype to phenotype mapping prior to fitness evaluation of the phenotype
(Fig. 9.1).

Genotypes usually are represented by trees. Nodes of the genotype are genes
specifying the system construction functions. The edges indicate the order of execu-
tion of these functions. Thus, the genotype specifies the procedure of construction of
the final solution (phenotype). Genotype to phenotype mapping is performed by the
execution of this procedure, starting from the root. During mapping all constraints
are taken into consideration, therefore only valid phenotypes will be obtained.

Motivations for the DGP approach are hard-constrained optimization problems.
Genetic algorithms handle these problems by constraining genetic operators in the
manner, which makes them to produce only legal individuals. However, constrained
operators create infeasible regions in the search space, also eliminating sequences
of genes, which may lead to high quality solutions. In the DGP the problem does
not exists anyway. Because of separating the search space from the solution space,
legal as well as illegal genotypes are evolved, while each genotype is mapped onto
a legal phenotype. It is worth to notice that the evolution of an illegal genotype may
lead to the legal genotype constructing the optimal result. Thus, the whole search
space is explored.

DGP is a quite new and it is not fully studied, yet. However, it has already
been successfully applied in the design of electronic circuits, control algorithms,
strategy algorithms in computer games (Koza et al. 2003) etc. Many of the human-
competitive results that were produced using runs of genetic programming that
employed a developmental process are described in Koza (2010).

Genotype Phenotype
Genotype

to Phenotype
Mapping

Search space
(unconstrained)

Constraints Solution space
(constrained)

Fig. 9.1 Developmental approach
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9.3 Resource Constrained Project Scheduling Problem

Researchers’ attention has been focused on making the best use of scarce resources
available since PERT (Program Evaluation and Review Technique) and CPM
(Critical Path Method) developed in the late 1950s (Hendrickson and Tung 2008).
Resource-constrained project scheduling problem (RCPSP) (Klein 2000) addresses
the task of allocating limited resources over time, in order to perform a set of
activities subject to constraints on the order, in which the activities may be executed.

9.3.1 Classical Approach

RCPSP attempts to schedule the project tasks, efficiently using limited renewable
resources, minimizing the maximal completion time of all activities VDfv1, : : : ,vng.
Each activity vi 2V has a specific processing time pi and it requires resources
RDfr1, : : : ,rmg to be processed. In general, activities may not be interrupted during
their processing (non-preemption) and cannot be processed independently from
each other, due to limited resource capacity and additional technological require-
ments. Technological requirements are represented by precedence relationships
that specify a fixed processing order between pairs of activities. The finish–start
relationship with zero time lags means that the activity can be started immediately
after all its predecessors are completed. An example of a project plan with
precedence constraints is shown in Fig. 9.2.

Resources are constrained due to limited number of available units. An activity vi

requires sik units of one or several resources rk 2R. However, the resource capacity
Rk is constant in each period. If an activity vi is being executed by the resource rk,
then it consumes sik resource units, which cannot be used by another activity. Thus,
a feasible solution only exists if, in each period, resource demands for all activities
are not higher than resource capacities (Dorndorf et al. 2000). An example of the
resource demands for activities is shown in Table 9.1.

Fig. 9.2 Precedence
constraints
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Table 9.1 Resource
demands for activities

vi pi si

1 5 2
2 4 4
3 2 3
4 3 3
5 3 3
6 3 1
7 2 1
8 2 3
9 4 1
10 1 2

Fig. 9.3 Sample schedule

The objective of the RCPSP is to find feasible completion times for all activities
such that the makespan of the project is minimized, while the precedence of
activities and limits of resources are not violated (Kolisch and Hartmann 1999).
Figure 9.3 presents a feasible schedule of a project comprising nD 10 activities
(Fig. 9.2) which have to be scheduled, assuming that only one renewable resource
with a capacity of five units is available.

9.3.2 RCPSP Extensions

The RCPSP occurs frequently, in high scale project management such as software
development, power plant building and military industry projects such as design,
development and building of nuclear submarines (Pinedo and Chao 1999). However,
classical RCPSP is a rather basic model with assumptions that are too restrictive
for many practical applications. Consequently, various extensions of the RCPSP
have also been developed (Hartmann and Briskorn 2010; Węglarz et al. 2011).
The authors outline generalizations of the activity concept, alternative precedence
and resource constraints, as well as, deal with different objectives, task graph
characteristic and the simultaneous consideration of multiple projects.

In the classical approach a goal of optimization is to minimize the makespan,
but in many practical problems the goal is to minimize the cost i.e. to minimize the
number of resources or the cost of using resources required for executing all tasks,
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while time constraints should be satisfied. Such problems are defined as resource
investment problems (Drexl and Kimms 2001) or resource renting problems (Nubel
2001). Example of a practical application of this extension is the optimization
of distributed embedded systems, especially implemented as a network on chip
architectures or based on multi-core embedded processors. Moreover, existing
RCPSP approaches do not take into consideration initial resource workload. Thus,
resources are available in the whole time period. Such constraint better fits real-life
project management problems. Dealing with more than one project is common in IT
business, for example, where managers have to use a resource-sharing approach. An
extension of the problem, where resources are only partially available, since they
may be involved in many projects, was also investigated (Pawiński and Sapiecha
2014a, b). Finally, some architectures of future computing systems may also be
modelled as the RCPSP. This concerns the so called “cloud computing”. Results of
the research will be crucial for optimization of real-time distributed applications for
Internet of things and for designing of distributed systems implemented according
to the IaaS (Infrastructure as a Service) model of the cloud computing (Bąk et al.
2013).

9.3.3 Solutions of the Problem

RCPSP has become a well-known standard of optimization, which has attracted
numerous researchers who developed both, exact and heuristic scheduling algo-
rithms (Brucker et al. 1998; Demeulemeester and Herroelen 1997, 2002). In most
cases, branch-and-bound is the only exact method, which allows the generation
of optimal solutions for scheduling rather small projects (usually containing less
than 60 tasks and not highly constrained), within acceptable computational effort
(Alcaraz and Maroto 2001; Demeulemeester and Herroelen 2002). Since the finding
of the best solution is very complex, only efficient heuristics may be applied for
real-life systems. In-depth study of the performance of the recent RCPSP heuristics
can be found in Kolisch and Hartmann (2006). Heuristics described by the authors,
include X-pass approach, also known as priority rule based heuristics, classical
metaheuristics, such as Genetic algorithms, Tabu search, Simulated annealing (SA),
and Ant systems (Dorigo and Stützle 2004). Results of the investigation showed that
the best performing heuristics for solving the RCPSP were the Genetic algorithm
(GA) of Hartmann (1998) and the Tabu search (TS) procedure of Bouleimen and
Lecocq (1998).

Another metaheuristic algorithm, driven by a metric of the gain of optimization
(MAO) (Deniziak 2004), was also applied to the RCPSP (Pawiński and Sapiecha
2012). The advantage of the algorithm is that it has a capacity of getting out of local
minima. The authors adapted the algorithm to take into account specific features of
human resources participating in a project schedule. The computational experiments
showed significant efficiency of the approach in optimizing the RCPSP and an
extension of the problem, where resources are only partially available, since they
may be involved in many projects (Pawiński and Sapiecha 2014a).
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Deiranlou and Jolai (2009) have published one of the latest review papers, which
present exact methods and heuristics for solving the RCPSP. The authors paid
particular attention to GAs. They introduced a new crossover operator and auto-
tuning for adjusting the rates of crossover and mutation operators. Two approaches
for solving the problem with GAs and Genetic Programming (GP) (Koza 1992) are
given in Frankola et al. (2008). The authors achieved good quality results by the
use of GAs. Yet, they state that GAs, as a technique, is inappropriate for dynamic
environments and for projects with large number of activities, because of their
uncertainty and amount of time required to obtain satisfactory results. The authors
propose GP to find a solution of an acceptable quality within a reasonable time.

9.4 Application of the DGP to the Optimization
of Computer-Based Real Time Systems

We assume that the behaviour of a system is described by a task graph GDfV,Eg,
which is an acyclic, directed graph. Each node vi 2V represents a task, describing a
single thread of execution. An edge ei,j 2E describes a dependency between tasks vi

and vj. Each edge is annotated with a number di,j describing the amount of data that
have to be transferred between the two connected tasks. With any node vi a deadline
ci may be associated. The deadline is the time by which the given task must complete
its execution. All deadlines create a set of constraints C, where each constraint has
to be satisfied by the target system. A sample task graph with deadlines is presented
in Fig. 9.4. Tasks Start and Stop are dummy tasks indicating the entry and exit points
of the specified function. They may be omitted during the synthesis.

The function specified as a task graph with real time constraints may be
implemented as various types of computer based systems: multicore and/or mul-
tiprocessor system, dedicated embedded system or real-time cloud. In all cases an

T0 T3

T1 T4

Start

T2 T5 T7

T6 T8 T9 Stop

10

25

40

15

20

30

20

40

5

c2

c1

c2

c0

Fig. 9.4 Sample task graph
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efficient optimization method should be applied, to minimize the cost of the system,
while all real time constraints should be satisfied. In this chapter we will consider
the following optimization problems of real time computer-based systems:

• scheduling of real-time tasks in multiprocessor systems,
• hardware/software co-design of distributed embedded systems,
• budget-aware real-time cloud computing.

We will show that the DGP may be efficiently applied for optimization purposes
in all above problems.

9.4.1 DGP Approach to the RCPSP

The goal of the DGP is to find the optimal schedule of all tasks. Since the
proper schedule has to fulfill all requirements given in the system specification, the
system construction functions should be enough flexible to construct only feasible
schedules.

9.4.1.1 Embryonic System

A root of the genotype tree specifies a construction of an embryonic system, while
all other nodes correspond to functions that schedule tasks, according to the assigned
strategies. The embryo may be a system executing one of the first tasks from the task
graph (Deniziak and Górski 2008) or it may specify other design decisions e.g. it
may partition the system into subsystems (Pawiński and Sapiecha 2014b; Sapiecha
et al. 2014).

9.4.1.2 System Construction Functions

Functions that construct the target system consist of the following steps:

• resource allocation and task assignment, which selects an appropriate resource to
execute a particular task,

• task scheduling (only when more than one task is assigned to the same resource).

A resource is allocated according to the strategy that is randomly selected
with the given probability. We may define a strategy in terms of the resource
types (processor, hardware core), resource parameters (the fastest, the cheapest, the
smallest, etc.), resource usage (the longest idle time, the least frequently allocated),
time constraints (start and finish times of activities). A set of strategies should be
taken specific to the considered problem and the optimization goal. Strategies may
also be combined, e.g. choose a resource which is the fastest and causes the smallest
increase of the system cost.
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9.4.1.3 Genotypes and Phenotypes

The genotype has a form of a tree corresponding to the procedure of synthesis
of phenotypes (target solutions). In the case of real time systems, only schedules
satisfying all time requirements are feasible. Two types of approaches are possible:
hierarchical and sequential.

In the hierarchical approach (Pawiński and Sapiecha 2014b), two types of nodes
are distinguished: internal nodes and leaves. The internal node defines a new level
in the hierarchical design by dividing the part of the system into subsystems. The
leave implements the corresponding subsystem. The edges represent the division of
tasks into two subgroups, while nodes specify a location of the division di and the
strategy of resource allocation si. With each node, a list of tasks is associated. A
root node contains the list consisting of all tasks, ordered according to the level in a
task graph. Next, the list is cut into two sublists, the first sublist will be associated
with the left successor while the second one is passed to the right successor. The
same operation is repeated for successor nodes. If a node is the internal node, di is
used for dividing currently considered list of tasks into two sublists and strategies
are assigned to them. The left child define a strategy for the first sublist and the right
child for the other. Lists of tasks corresponding to leaves are scheduled on resources
according to the strategy specified by the node. Strategies and cut positions for each
node are randomly generated during the creation of the genotype.

Figure 9.5 gives a sample genotype and the corresponding sequence of strategies,
each corresponding to the given task. For each node, the top number means the cut
position (important only for the internal nodes) while the bottom number defines the

Fig. 9.5 Genotype using 6 decision strategies (0–5) and the corresponding sequence of strategies
(strat.)
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strategy (used only by leaves). The sequence of strategies is obtained by traversing
the tree in the depth-first order starting from the top node (the root). It corresponds
to the list of leaves starting from left to right. First, tasks are partitioned into groups:
fT0–T5g and fT6–T9g. Next, the first group is divided into fT0–T1g, fT2–T5g, and
the second group is divided into fT6–T7g, fT8–T9g. The group fT0–T1g is associated
with the leaf, hence the strategy 5 is assigned to tasks T0 and T1. Group fT2–T5g is
partitioned into fT2–T4g and fT5g, then the strategies 3 and 2 are assigned to tasks
T2, T3, T4 and T5 respectively. And so on, the result is given in Fig. 9.5.

A phenotype corresponds to the final system. It represents a resource allocation,
task assignment and a task schedule. Phenotype is used for evaluation of the quality
(fitness) of the corresponding genotype. The method of genotype to phenotype map-
ping guarantees that each phenotype will satisfy all requirements and constraints.

9.4.1.4 Genotype-to-Phenotype Mapping

The genotype to phenotype mapping constructs the target schedule, according to
strategies specified by the genotype nodes. System is constructed by executing func-
tions corresponding to nodes. Each function takes into consideration constraints.
After assigning strategies to tasks, the following steps have to be carried out, to
create a task schedule:

• search activities from the task graph, according to the precedence relationships,
in order to find a list of ready-to-start tasks,

• assign the strategies with corresponding tasks and execute the strategy to
calculate a resource to allocate,

• schedule tasks—calculate a start time for each task, based on the earliest
precedence relationships and the feasible time of a resource,

• repeat the first step, until there are unassigned tasks.

Thus, each genotype specifies custom scheduling policy for the whole system.
The goal of the evolution is to find the genotype giving the best result.

9.4.2 Scheduling of Real-Time Tasks
in Multiprocessor Systems

A multiprocessor system consists of many multi-core processors. Each core is a
resource and may have allocated tasks to execute. Like in classical RCPSP approach,
tasks are precedence-related and have to be executed in a specific order. We consider
the variant, where resources have already got their own schedule and are available
only in particular time periods. Such tasks cannot be moved. The task graphs are
created on working system and therefore, the current availability of resources has
to be taken into consideration. The goal is to schedule real-time tasks and allocate



230 S. Deniziak et al.

Table 9.2 Strategies for
implementation of tasks

No. Strategy

1 The fastest core
2 The cheapest processor
3 The earliest start of the task
4 The earliest finish of the task
5 The smallest local duration of schedule
6 The smallest local cost of the system

resources of multiprocessor systems, taking into consideration the availability of
resources, in order to minimize the total cost (or power consumption) of the system
and complete it before a deadline. We consider the architecture with shared memory
i.e. transmissions between consecutive tasks will be neglected.

DGP approach that may be applied for scheduling tasks in multiprocessor
systems is presented in Pawiński and Sapiecha (2014b). The method uses a list
of possible strategies for resource assignment, chosen for the task, presented in
Table 9.2. The first two strategies, search for a processor which is the fastest or
the cheapest, its load is not taken into consideration. Strategies 3 and 4 refer to tasks
execution time. Task may be assigned to a processor, which will start the task as fast
as possible or execute it as soon as possible, respectively. We distinguish these two
strategies, because execution time of task may differ for different processors. The
last two strategies check, how the resource assignment and the task allocation affect
current duration and current cost of the system that is being built.

The initial population consists of individuals generated randomly by recursively
creating nodes until a pre-established maximum height of the genotype tree (H) is
reached. Each node has one of the strategies, assigned with the same probability and
a random cut point di, which is inversely proportional to H. However, it has to be
verified whether nodes contain improper values of di. The location of the division
cannot be greater than the number of tasks in the currently considered sublist. One
of the repairing mechanisms could be a “deleting repair” that removes all children of
the invalid node. The process is similar to withering of unused features in live
organisms, like in the intron splicing (Watson et al. 1992). But we used a “replacing
repair” that replaces the invalid node by any of its children, instead of removing the
entire branch. Therefore, more genetic information will be kept in the genotype.

Let’s assume that we have three processors with four cores each (resource
capacity) and deadlines are the following: c0D 5, c1D 10, c2D 15. With each
processor the following parameters are associated: processing speed, cost of task
execution per time unit and unit cost (Table 9.3). For architectures with message
passing also a communication cost and a throughput of communication channels
should be given. Assume that the system is specified with the task graph given in
Fig. 9.4 and resource demands are given in Table 9.1 (tasks are multithreaded). Then
according to the genotype given in Fig. 9.5, the system is constructed as follows.
First, a list of tasks without predecessors is created and a processor is assigned to



9 Design of Real-Time Computer-Based Systems Using Developmental. . . 231

Table 9.3 Values of resource parameters

Resource Processing speed Execution cost per time Unit cost

1 1000 MHz 0.95 20
2 1200 MHz 0.96 21
3 1600 MHz 1.07 25

them, according to the corresponding strategy. Afterwards, the list is updated and
the process is continued. Thus, tasks are being assigned in the following order:

• T0 (strategy 5)—assign a resource that causes the smallest increase of duration
of the current schedule; all processors fits; the first one (R1) is chosen,

• T1 (strategy 5)—processors R2 and R3 are available, so R2 is chosen,
• T2 (strategy 3)—assign processor R3, because it can start the task the earliest,
• T3 (strategy 3)—processor R3 will be available the earliest, but T3 may not start

before T0 is completed, so all processors fits and R1 is chosen,
• T4 (strategy 3)—again, processor R3 is available the earliest, but T4 may not start

before T1 is completed, the second best processor is R2,
• T5 (strategy 2)—assign a resource that is the cheapest, that is processor T2, but

the deadline c0 would be exceeded, so processor R1 is assigned,
• T6 (strategy 1)—assign a resource that is the fastest, that is R3,
• T7 (strategy 1)—assign processor R3,
• T8 (strategy 5)—all processors fits, because T8 have to be started after T6 and T7

are completed, and T6 finishes the latest, processor R1 is chosen,
• T9 (strategy 6)—assign a resource that causes the smallest increase of the current

cost. Processor R1 is chosen.

The result of the genotype-to-phenotype mapping is a feasible schedule illus-
trated in Fig. 9.6. The total cost of the system equals 224.46.

Efficiency of the DGP approach was tested on projects from PSPLIB (Kolish
and Sprecher 1996). In our study we used project instances with 30 non-dummy
activities because it is the hardest standard set of RCPSP instances, for which
all optimal solutions are currently known (Demeulemeester and Herroelen 1997).
The multiprocessor systems were randomly generated. A single group of 10 test
instances was examined, in which 10 schedules were computed for each test case.
Figure 9.7 presents the project cost averaged from 100 schedules. We used a
tournament selection method with a tournament size equal to 3. At the beginning
a population is the most various and its diversity lowers in further generations.
Good quality results start to dominate in the population very quickly, along with
the increasing number of generations and therefore the project cost decreases. The
convergence of the method is fast. Only nine generations are enough to obtain
good quality results. Further improvement is very slight, but it occurs till the last
generation.

Usually, the project cost becomes lower along with increasing probabilities of
mutation and crossover, because the operators produce more new genotypes and
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Fig. 9.6 A target solution obtained after genotype-to-phenotype mapping

Fig. 9.7 Project cost in each
generation for PmutD 0.8
(mutations rate), PcrossD 0.8
(crossover rate), POPsizeD 30
(population size), min—the
lowest system cost, max—the
highest system cost, avg—the
average system cost from all
individuals of a given
generation
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Table 9.4 Experimental results for different methods (DGP:
POPD 30, TSsizeD 3, PmutD 0.8, PcrossD 0.8, HD 0.8)

Scheduling method Cost Duration Computation time [ms]

Greedytime 651.89 105.40 70

Greedycost 654.92 106.47 65

MAO 637.94 102.97 4; 560

GA 619.89 98.57 10; 062

DGP 599.90 92.69 13; 650

Table 9.5 A comparison of
the uncorrected sample
standard deviation SN

Scheduling method SN

GA 12.83
DGP 4.89

the population is more diverse. Thus, the chance of finding the optimal solution is
greater. However, only the best genotypes will be selected to the next generation.
The variety of individuals may also be increased by increasing their number in
generations. Generally, if POPsize is bigger, then the results are better. Nevertheless,
the slope of the cost reduction is similar.

Finally, we have performed efficiency test on all 480 instances, where 10
project schedules were computed for each test case. The results were averaged and
compared with other methods (Table 9.4) (Pawiński and Sapiecha 2014b). Greedy
procedures try to find an optimal resource for each task, according to the smallest
increase of the project duration (Greedytime) or according to the minimal growth
of the total cost (Greedycost). MAO is given from Pawiński and Sapiecha (2014a).
Genetic approaches have similar evolution process but they differ in a way of coding
the genotype. GA is a classical genetic algorithm. In the GA, the genotype does
not have a tree structure. Genetic operators are applied directly to a sequence of
resources corresponding to the activities.

The comparison results showed that DGP is the slowest method, mainly because
of the large number of generations. DGP in a comparison with other methods is
3-times slower than MAO and only 36 % slower than GA. On the other hand, it
outperforms MAO in the project cost reduction by 5.5 %, greedy methods by 8 %
and it outperforms MAO in the project time reduction by 6 % and greedy methods
by 12 %. Furthermore, the uncorrected sample standard deviation of DGP is 3-times
lower than the deviation of GA (Table 9.5).

9.4.3 Hardware/Software Co-design of Embedded Systems

Hardware/software co-synthesis (Yen and Wolf 1997) automatically generates
architecture for an embedded system specified on the system level. The goal of
the co-synthesis is to optimize certain system properties like a cost, performance or
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average power consumption. Since, modern embedded systems are implemented as
multiprocessor systems usually realized as a single chip (System on Chip—SoC),
most co-synthesis methods consider distributed target architectures composed of
processing elements (PEs) and communication links (CLs).

We assume that a database of available PEs and CLs is given. For each pei 2PE
a worst-case execution time tj,i of each task vj is given, as well as an area sj occupied
by this task. There are two basic kinds of pei: programmable processors (PP) and
hardware cores (HC). Each ppi 2PP may execute all tasks which are compatible
with it. Task areas specified for ppi mean the size of a memory required to execute
these tasks, while Si is an area of ppi itself. Hardware core hci 2HC executes only
task vi, but more than one core may be available, each corresponding to another
hardware implementation of this task. The area of a task implemented in hardware
is the size of the corresponding hci. Communication links cli 2CL are defined by
the following parameters: a bandwidth bi and an area si,j occupied by this link
connected to pej. Table 9.6 presents a sample resource database for the system
described by the task graph from Fig. 9.4. Task T7 is not compatible with PP2, and
task T5 has only one hardware implementation. All other tasks have four alternative
implementations. There are two communication links available.

Since the area occupied by the system corresponds to the cost of the system
implemented as SOC, the goal of the co-synthesis is to find the architecture with the
smallest area that satisfies all real time constraints.

The DGP approach for the co-synthesis of embedded systems is presented in
Deniziak and Górski (2008). The embryo is a system implementing the first task
from the given task graph. Each node of a genotype tree represents a function
implementing one task from the task graph. Hence, all genotypes have the same
structure, which is the spanning tree of the task graph. This corresponds to the
sequential approach.

Table 9.6 Sample resource
database

PP1

SD 100
PP2

SD 200 HC1 HC2

t s t s t S t S

T0 30 3 10 2 3 50 4 10
T1 50 5 20 4 6 80 5 20
T2 40 4 10 3 3 60 5 20
T3 10 3 8 1 1 20 2 5
T4 30 3 15 2 4 70 10 30
T5 30 5 30 3 5 110 – –
T6 40 3 15 2 10 70 12 15
T7 30 3 – – 5 50 8 18
T8 8 3 5 1 2 30 3 10
T9 10 3 5 1 3 40 4 12
CL1 BD 8 sD 2 sD 1 sD 10
CL2 BD 16 sD 3 sD 4 sD 15
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Each system-construction function consists of the following steps:

1. PE allocation: allocates a new PE. This step is optional.
2. Task assignment: chooses a PE to execute the given task. This step must always

be performed. If the first step is performed then the task will be assigned to the
newly allocated PE, otherwise task will be assigned to any previously allocated
PE.

3. CL allocation: allocates a new CL for the transmission. This step is optional.
4. Transmission assignment: chooses CL for the transmission. Steps 3 and 4 are

repeated for each transmission, associated with incoming edges of the node
corresponding to the task being implemented.

5. Task scheduling: this step is performed only when more than one task are
assigned to one PP.

For each system-construction function, all steps are chosen randomly, according
to the options presented in Table 9.7.

Figure 9.8 presents a sample genotype for the task graph from Fig. 9.3. Node
numbers indicate the order of execution of the corresponding functions. The
function may be executed only if all its predecessors were processed. Assume
that deadlines are the following: c0D 80, c1D 120, c2D 150. Then the system is
constructed as follows:

1. The embryo allocates processor pe0 (of type PP1) as a processor with the
smallest cost, then task Start is assigned to it. None communication channel
is allocated. Steps 4 and 5 are not applicable.

Table 9.7
System-construction options
used for genotype to
phenotype mapping, for each
step one option is randomly
selected according to a given
probability P

Step Option P

1 a. None
b. Smallest area
c. Fastest
d. Lowest t * S
e. Least used

0.6
0.1
0.1
0.1
0.1

2 a. Smallest area
b. Fastest
c. Lowest utilization
d. Idle for the longest time
e. The same as a predecessor

0.2
0.2
0.2
0.2
0.2

3 a. None
b. Smallest area
c. Highest B
d. Least used

0.5
0.2
0.2
0.1

4 a. Smallest area
b. Fastest
c. Lowest utilization
d. Idle for the longest time

0.3
0.3
0.2
0.2

5 List scheduling 1.0
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T1:1b/
2c/3a/
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S:1b/2a
3a/4a/5
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2d/3c/
4b/5

T6:1d/
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Fig. 9.8 Sample genotype (a) and the corresponding phenotype (b)

2. Task T2 is assigned to pe0 (only this processor is available) and CL1 is allocated
(as the cheapest channel), step 5 is not required, therefore it is omitted.

3. Task T5 is also assigned to pe0 (only this processor is available). Since T2 and T5

are assigned to the same processor, hence the transmission between these tasks
is omitted. There is only one valid schedule, therefore task T5 will be executed
after finishing task T2. Task T5 will finish its execution at time 70, hence c0

constraint will be satisfied.
4. T7 will be also assigned to pe0. Transmission is neglected and the only valid

schedule is T2, T5, T7 .
5. The second PP1 (pe1) is allocated (smallest area) and T1 is assigned to it, as a

processor with the lowest utilization. Steps 3, 4 and 5 do not change the system.
6. T4 will be also assigned the same processor as task T1. The second CL1 is

allocated (as the cheapest channel) but none transmission will be assigned to it.
The only valid schedule is T1, T4.

7. T0 cannot be assigned to pe1, because this will violate c1 (T4 or T0 will
finish its execution at 110 and it will not possible to implement T6 with
incoming transmissions to finish this task at 110 or earlier, even using the fastest
resources). Thus, T0 will be assigned to pe0. The only valid schedule is T2, T5,
T0, T7 , T0. All tasks will be finished at 100.

8. For task T3 the fastest resource (HC1) is allocated. The fastest communication
channel (cl2) is allocated for transmission between T0 and T3. Time of
transmission is equal 1 and the T3 will finish at 102.
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Table 9.8 Experimental results (N—number of tasks, Tmax—global time constraint,
time—execution time of all tasks, area—the cost of system)

Yen-Wolf MAO DGP-average DGP-best
N Tmax [ms] Time Area Time Area Time Area Time Area

10 400 315 1573 287 1517 395 1552 395 1545
20 450 196 3046 196 3046 396 2665 396 2649
30 500 499 4213 488 4361 473 3988 484 3823
40 800 794 5204 779 5188 782 4959 795 4595
50 1100 1099 6017 1092 5967 1079 5289 1090 5046
60 1400 1360 8218 1386 7316 1337 8086 1376 7784
70 1600 1548 6859 1590 6657 1554 5832 1599 5607
80 1900 1893 11,692 1878 8662 1745 10,243 1854 9918
90 2000 1917 13,184 1995 8257 1943 7012 1986 6599
100 2150 2115 10,800 2140 7240 2098 8524 2133 7941
110 2200 2167 12,171 2199 9030 2142 9098 2193 8499
Total 82,977 67,241 67,248 64,006

9. Task T6 is implemented using the resource giving the lowest t*S factor. It will
be obtained by HC2. Incoming transmissions will be assigned to the lowest
utilized channels. Task T6 will finish its execution at 117, hence the c1 will also
be satisfied.

10. For T8 the least used resource should be allocated. Since none instance exists
only for the PP2, therefore it is allocated. For incoming transmissions cl1 and
cl2 are assigned. T8 will finish at 140.

11. Finally, T9 should be assigned to pe1 but it will violate c2, the same will be
caused by assigning this task to pe1. Thus, the only feasible solution is to assign
T9 to pe2. Then it will finish its execution at 145.

Table 9.8 presents the experimental results obtained for some randomly gener-
ated task graphs. First, systems were synthesized using DGP, Yen-Wolf (Yen and
Wolf 1995) and MAO (Deniziak 2014) methods. Yen-Wolf starts from the fastest
architecture, where for each task the fastest PE is allocated. Then, the algorithm
evaluates different solutions created by moving one task from one PE to another.
The best one is selected for the next step. Iteration stops when there is no such
improvement, which reduces the total system cost and which does not violate any
constraint. MAO works in similar way, but it uses more sophisticated refinement
methods, instead of moving only one task it allocates and/or removes one PE
to/from the system architecture. In this way in one step many tasks can be moved to
other PEs. Usually MAO produces significantly better results than Yen-Wolf method
(Deniziak 2014). Moreover, this method found better or comparable solutions than
ones, found with the help of genetic algorithm (Dick and Jha 1998), for the same
task graphs. Table 9.8 presents average results (30 trials) obtained using DGP, as
well as the best solution found in all experiments. For all systems the DGP method
found comparable or better solutions in comparison with other heuristics.
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Fig. 9.9 Optimization flows for different co-synthesis methods. GP50, GP100 and GP200 repre-
sent the DGP method with population size equal 50*N, 100*N and 200*N, respectively

Figure 9.9 presents the comparison of the optimization flow for all methods
mentioned above. Graph with 50 tasks was synthesized with constraint TmaxD 2200.
The Y axis represents the cost of a solution, found in the following optimizations
steps (generations). For DGP approach the X axis represents the population number,
while for MAO and Yen-Wolf it represents the following refinement steps. In the
DGP methods solutions with costs: 4062, 4044, 3939 were found, while using
iterative improvement methods the best solution found had a cost equal to 4191.
It may be observed that DGP converges faster than heuristics based on iterative
improvements.

9.4.4 Budget-Aware Scheduling for Real-Time
Cloud Computing

Distributed Internet applications require expensive network platforms, consisting
of servers, routers, communication links etc., to operate. The cost of such systems
may be reduced by sharing the network resources between different applications.
This is possible by using the Infrastructure as a Service (IaaS) model of the
cloud computing services (Buyya et al. 2011). IaaS together with a real-time
cloud environment seems the most suitable platform for many real-time cloud
applications. But to guarantee the quality of service and minimize the cost of the
system, efficient methods of mapping real-time applications onto cloud resources
should be developed.

In Deniziak et al. (2014), the IaaS model of the real-time cloud computing is
considered, where the user pays the cost of using the resources supported by the
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service provider. The authors present the methodology for the mapping real-time
cloud applications, specified as a set of distributed echo algorithms, onto the IaaS
cloud. The goal of the methodology is to find the mapping giving the minimal
cost of IaaS services required for running the real-time applications in the cloud
environment, while the level of QoS will be as high as possible. For this purpose an
efficient algorithm based on developmental genetic programming was developed.

The methodology starts from the formal specification of the system. Next,
the specification is converted into a set of task graphs. Then the optimal set
of cloud resources is assigned to tasks. In this way the cost of outsourcing
the network infrastructure to the IaaS cloud provider is minimized. Finally, all
tasks are scheduled, taking into consideration real time constraints. Allocation
of resources, task assignment and scheduling are optimized using developmental
genetic programming.

Genotypes represent the hierarchical approach as in the classical RCPSP
approach described above. Lists of tasks corresponding to leaves are scheduled
on cloud resources according to the strategy specified by the node. All possible
strategies are presented in Table 9.9. The last column indicates the probability of
selection of the corresponding strategy. The strategy 4 selects an alternative node,
i.e. a node that cannot be chosen by strategies 1–3.

In Bąk et al. (2013) an adaptive navigation system, as an example of real-time
distributed application, was presented. The system was specified as a set of different
distributed algorithms. First, each specification was converted into task graphs, than
the system was mapped onto cloud resources. Figure 9.10 presents part of this
system represented by 3 task graphs consisting of 12, 12 and 10 tasks, respectively.

Table 9.9 Strategies for
implementation of tasks

No. Strategy P

1 As fast as possible 0.1
2 As cheap as possible 0.1
3 The lowest cost*execution time 0.2
4 Alternative node 0.2
5 First available node 0.2
6 The fastest finishing node 0.2
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G2 G1
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Fig. 9.10 Specification of the distributed system
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Table 9.10 Cost of cloud resources

Server Processors Per hour Link Bandwidth [Mb/s] Per hour

S1 1.7 GHz 0.004 $ L1 1 0.0001 $
S2 2.4 GHz 0.008 $ L2 5 0.0010 $
S3 2� 1.7 GHz 0.007 $ L3 10 0.0028 $
S4 2� 2.4 GHz 0.014 $ L4 20 0.0069 $
S5 4� 1.7 GHz 0.013 $
S6 4� 2.4 GHz 0.025 $
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Fig. 9.11 Sample genotype (a) and the corresponding phenotype (b)

Assume that cloud consists of six different servers connected using four com-
munication links. Detailed specification of cloud resources is given in Table 9.10.
According to the DGP methodology presented in Deniziak et al. (2014) the sample
genotype and the corresponding phenotype are presented in Fig. 9.11. The task
schedule is given in Fig. 9.12.

The efficiency of the DGP method was estimated with some experiments. Each
task graph from Fig. 9.10 was synthesized using three different pairs of hard and
soft deadlines. Since the DGP approach each time may produce different results,
each experiment was repeated 2–3 times. The results of synthesis of the system
specified are given in Table 9.11. Columns TG1–TG3 present the cost of using IaaS
services, computed on per-resource basis. Since, for deadlines longer than 7 s all
applications may be executed using only one, the cheapest node, the results are
the same. The column Total cost presents the cost of outsourcing cloud resources,
assuming dedicated resources for each application. Next, the methodology to map
all applications, taking into consideration the resource sharing, was applied. The
column TG1CTG2CTG3 presents the cost of the optimized system. The last
column presents the reduction of costs obtained using the DGP methodology.
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Fig. 9.12 Task schedule for shared cloud resources

Table 9.11 Results of optimization

Deadline TG1 TG2 TG3 Total cost TG1CTG2CTG3 Cost reduction [%]

6 s 17.07 17.07 12.79 46.93 27.21 42.02
6 s 17.07 17.07 17.07 51.21 25.53 50.15
6 s 17.07 17.07 12.07 46.21 25.52 55.23
10 s 4 4 4 12 10.43 13.08
10 s 4 4 4 12 10.45 12.92
10 s 4 4 4 12 10.24 15.50
12 s 4 4 4 12 8.01 33.25
12 s 4 4 4 12 7.44 38.00

9.5 Conclusions and Outlook

Developmental genetic programming proved to be very efficient in many domains
(Koza 2010). We showed that it may also be successfully applied for optimization of
real-time computer-based systems. Since it the DGP genotypes are evolved, while
phenotype is used for fitness evaluation, this approach is very suitable for hard
constrained problems.
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Optimization problems, that are the extension of RCPSP, require efficient
heuristics to find the accepted solution. DGP gives significantly better results
than deterministic methods as well as existing classical genetic approaches. The
presented solutions are the first applications of the DGP, targeting the design of
real-time computer-base systems. Thus, we believe that there is still a lot of room
for improvements.

DGP requires large computational power and optimization usually takes a lot of
time to find the optimal solution. But this approach is easy to parallelize (Deniziak
and Wieczorek 2012a). Thus, the time of computation may be significantly reduced
by using the highly parallel computers. Moreover, it was observed that parallel
genetic solutions, which evolve many populations, may outperform the approach
based on single-population evolution (Tomassini 1999).

The application of the DGP is not limited to the RCPSP problems, as far as
computer-based systems are considered. It may be also applied for FPGA-based
logic synthesis (Deniziak and Wieczorek 2012b), synthesis of adaptive real time
scheduler (Sapiecha et al. 2014) and other hard-constraints optimization problems.
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Chapter 10
Image Classification with Genetic
Programming: Building a Stage 1 Computer
Aided Detector for Breast Cancer

Conor Ryan, Jeannie Fitzgerald, Krzysztof Krawiec, and David Medernach

10.1 Introduction

Image Classification (IC) is concerned with automatically classifying images based
on their features, which are typically some sort of measurable/quantifiable property,
such as brightness, interest points, etc. The term “feature” can have several
meanings in Pattern Recognition (PR) and Machine Learning (ML) where it may
be defined as either a location in an image that is relevant with respect to some
classification/detection/analysis task or simply as a scalar value extracted from an
image. For this work we adopt the latter meaning.

IC has been applied in fields as diverse as medicine (Petrick et al. 2013),
military (Howard et al. 2006), security (Xie and Shang 2014), astronomy (Riess
et al. 1998) and food science (Tan et al. 2000). Part of the success of IC stems from
the fact that the same key steps are applied regardless of the application domain.
This chapter describes IC in detail using mammography as a test problem.

Statistics produced by the Organisation for Economic Co-operation and Devel-
opment (OECD) highlight the importance of the early detection of breast cancer,
both in terms of extending the longevity of women and in reducing financial costs.
Routine mammographic screening, particularly at a national level, is by far the most
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effective tool for the early detection and subsequent successful treatment of breast
cancer (Tot et al. 2000; Tabar et al. 2000; Smith et al. 2012). It is essential to discover
signs of cancer early, as survival is directly correlated with early detection (Tabar
et al. 2000).

Screening is usually performed on asymptomatic women over a certain age
(e.g. over 50 in many European countries) at regular periods, typically every 2 or 3
years. In national mammography screening, radiologists examine the mammograms
of thousands of women (typically having only a few minutes to examine each image)
to determine if there are early signs of a cancerous growth or a lesion that may
require further examination.

The introduction of screening programs has contributed to a higher demand
for radiologists and a world wide shortage of qualified radiologists who choose
mammography as their area of specialisation (Bhargavan et al. 2002), particularly
in the USA, has led to many radiologists being dangerously overworked (Berlin
2000). This is likely to lead to (i) there being insufficient time for radiologists to
read and interpret mammograms (mammograms are notoriously difficult to read);
(ii) an inability to provide redundant readings (more than one radiologist checking
each mammogram); and (iii) radiologists being overly conservative, which in turn
is likely to increase the number of patient call backs, thus resulting in unnecessary
biopsies. This can lead to anxiety and mistrust of the system such that patients
become disillusioned with the process and less inclined to participate. This work
aims to improve the early detection of true positives by evolving detectors which,
although accurate, are not overly conservative.

If breast cancer is diagnosed, further tests are usually carried out to determine
the extent of the cancer. The disease is then assigned a “stage” depending on
characteristics such size of the tumour, whether the cancer is invasive or non-
invasive, whether lymph nodes are involved, and whether the cancer has spread
to other areas of the body. These stages are numbered 0, 1, 2, 3 and 4, and there
are various sub-stages in between. At stage 0 the cancer is localised and there is
no evidence of cancerous cells outside the original site, while at stage 4 the cancer
has spread to other organs of the body. According to the OECD, 75 % of patients
diagnosed with breast cancer at Stage 0 are said to have close to 100 % survival
rate, while at Stage 4 the survival rates drop between 20 and 40 %. Treatment cost
is six times more when a diagnosis is made at Stage 4 than at Stage 0 (Hughes and
Jacobzone 2003). There is a large body of scientific evidence supporting the view
that mammography is currently the strongest tool available in the fight against breast
cancer (Kopans 2003; Tabar et al. 2000).

A stage 1 detector examines mammograms and highlights suspicious areas that
require further investigation. A too conservative approach degenerates to marking
every mammogram (or segment of) as suspicious, while missing a cancerous area
can be disastrous.

Various studies (Anttinen et al. 1993; Ciatto et al. 2005) have shown that
second (redundant) reader functionality has a valuable role to play in breast cancer
detection, offering increases in detection rates of between 4.5 and 15 % together
with the possibility of discovering cancers at an earlier stage (Thurfjell et al. 1994).
However, due to shortages of qualified personnel in several countries and the extra
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costs involved, the use of independent second readers in large scale screening
programs is not always possible. Thus, the availability of a reliable automated
stage 1 detector would be a very useful and cost effective resource.

We describe a fully automated work-flow for performing stage 1 breast cancer
detection with GP (Koza 1990) as its cornerstone. Mammograms are by far the most
widely used method for detecting breast cancer in women, and its use in national
screening can have a dramatic impact on early detection and survival rates. With the
increased availability of digital mammography, it is becoming increasingly more
feasible to use automated methods to help with detection.

Our work-flow positions us right at the data collection phase such that we
generate textural features ourselves. These are fed through our system, which
performs feature analysis on them before passing the ones that are determined to be
most salient on to GP for classifier generation. The best of these evolved classifiers
produces results of 100 % sensitivity and a false positive per image rating of just
0.33, which is better than prior work. Our system can use GP as part of a feedback
loop, to both select existing features and to help extract further features. We show
that virtually identical work-flows (just with different feature extraction methods)
can be applied to other IC tasks.

The following section provides a background to the work and outlines some of
the important existing research, while Sect. 10.3 demonstrates how our proposed
work-flow moves from raw mammograms to GP classifiers. The specifics of the GP
experiments are detailed in Sect. 10.4 and the results are in Sect. 10.5. We finish with
the conclusions and future work in Sect. 10.6.

10.2 Background

Image analysis with classification is a broad research area and there is a plethora
of GP literature on the topic, from early work such as Koza (1993), Tackett (1993),
Andre (1994) to more recent studies such as Bozorgtabar and Ali Rezai Rad (2011),
Fu et al. (2014), and Langdon et al. (2014). Describing the full breath of the
research is far beyond the scope of this article. Thus, we direct the interested
reader to Krawiec et al. (2007) for a review of GP for general image analysis,
and we choose to focus here on the most relevant aspects in the current context:
classification, object detection and feature extraction, detection and selection.

In early work on image analysis, Poli (1996) presented an approach based on the
idea of using GP to evolve effective image filters. They applied their method to the
problem of segmentation of the brain in pairs of Magnetic Resonance images and
reported that their GP system outperformed Neural Networks (NNs) on the same
problem.

Agnelli et al. (2002) demonstrated the usefulness of GP in the area of document
image understanding and emphasised the benefits of the understandability of GP
solutions compared with those produced by NNs or statistical approaches. In other
work Zhang et al. (2003) proposed a domain independent GP method for tackling
object detection problems in which the locations of small objects of multiple classes
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in large images must be found. Their system applied a “moving window” and used
pixel statistics to construct a detection map. They reported competitive results with
a low false alarm rate.

Several novel fitness functions were investigated in Zhang and Lett (2006)
together with a filtering technique applied to training data, for improving object
localisation with GP. They reported fewer false alarms and faster training times for
a weighted localisation method when this was compared with a clustering approach.
The suitability of different search drivers was also studied by Krawiec (2015)
who examined the effectiveness of several different fitness functions applied the
problem of detection of blood vessels in ophthalmology imaging. Another example
where preprocessing of training samples proved effective can be seen in Ando and
Nagao (2009) where training images were divided into sub-populations based on
predefined image characteristics.

An alternative approach, which leveraged the natural ability of evolutionary
computation to perform feature selection, was suggested by Komosiński and
Krawiec (2000) who developed a novel GA system which weighted selected
features. They reported superior results when their approach was used for detec-
tion of central nervous system neuroepithelial tumours. In related work Krawiec
(2002) investigated the effectiveness of a feature construction approach with GP,
where features were constructed based on a measure of utility determined by
their perceived effectiveness according to decision tree induction. The reported
feature construction approach significantly outperformed standard GP on several
classification benchmarks.

A grammar guided GP approach was used to locate the common carotid artery in
ultrasound images in Benes et al. (2013), and this approach resulted in a significant
improvement on the state of the art for that task.

Details of other object detection research of note may be found in for exam-
ple Robinson and McIlroy (1995), Benson (2000), Howard et al. (2002), Isaka
(1997), Zhang and Lett (2006), and Trujillo and Olague (2006).

A thorough review of feature detection approaches in the general literature can
be found in Tuytelaars and Mikolajczyk (2008). In the field of GP, a wide variety
of different types of features have been used to guide classification. “Standard”
approaches include first, second and higher order statistical features which may be
local (pixel based) (Howard et al. 2006) or global (area based) (Lam and Ciesielski
2004). Wavelets have been employed in various work including Chen and Lu (2007)
and Padole and Athaide (2013). Texture features constructed from pixel grey levels
were used in Song et al. (2002) to discriminate simple texture images. Cartesian
GP was used to implement Transform based Evolvable Features (TEFs) in Kowaliw
et al. (2009), which were used to evolve image transformations: an approach which
improved classification of Muscular Dystrophy in cell nuclei by 38 % over previous
methods (Zhang et al. 2013).

Recently, local binary patterns (LBP) were successfully used with GP for
anomaly detection in crowded scenes (Xie and Shang 2014). LBPs were also
previously used in, for example Al-Sahaf et al. (2013) and Oliver et al. (2007).

With regard to feature extraction and classification, Atkins et al. (2011) also sug-
gested a domain independent approach to image feature extraction and classification
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where each individual was constructed using a three tier architecture, where each
tier was responsible for a specific function: classification, aggregation, and filtering.
This work was later developed to use a two tier architecture in Al-Sahaf et al. (2012).
These researchers demonstrated that their automated system performed as well as a
baseline GP-based classifier system that used human-extracted features. A review of
pattern recognition approaches to cancer diagnosis is presented in Abarghouei et al.
(2009), where the researchers reported competitive performance of GP on feature
extraction when compared with other machine learning (ML) algorithms and feature
extraction algorithms.

A multi-objective GP (MOGP) approach to feature extraction and classification
was recently adopted in Shao et al. (2014) which constructed feature descriptors
from low-level pixel primitives and evaluated individual performance based on
classification accuracy and tree complexity. They reported superior performance of
their method when compared with both a selection of hand-crafted approaches to
feature extraction and several automated ML systems.

Of special note are the Hybrid Evolutionary Learning for Pattern Recognition
(HELPR) (Rizki et al. 2002) and CellNet (Kharma et al. 2004) systems, both of
which aspire to being fully autonomous pattern recognisers. HELPR combines
aspects of evolutionary programming, genetic programming, and genetic algo-
rithms (GAs) whereas CellNet employs a co-evolutionary approach using GAs.

10.2.1 Performance Metrics

In classification the true positive rate (TPR) is the proportion of positive instances
which the radiologist or learning system classifies as positive, and the false positive
rate (FPR) is the proportion of instances actually belonging to the negative class that
are misclassified as positive. In the classification task of discriminating cancerous
from non-cancerous instances, the objective is to maximize the TPR while at the
same time minimizing the FPR. The TPR is of primary importance as the cost of
missing a cancerous case is potentially catastrophic for the individual concerned.
However, it is also very important to reduce the FPR as much as possible due to the
various issues associated with false alarms, as outlined in Sect. 10.1. In the literature,
when a classification task involves image processing, the number of false positives
per image (FPPI) is usually reported. This is the number of false positives divided
by the number of images.

In classification literature the TPR is often referred to as sensitivity or recall,
whereas specificity is a term used to describe the true negative rate (TNR) and
FPR D 1� specificity.

The Receiver Operating Characteristic (ROC) is a tool which originates from
World War II where it was used to evaluate the performance of radio personnel at
accurately reading radar images. These days it is sometimes used to measure the
performance of medical tests, radiologists and classifiers. It can also be used to
examine the balance between the TPR and FPR as the decision threshold is varied.
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Fig. 10.1 Comparison of
ROC curves
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In a ROC curve, the TPR is plotted against the FPR for different cut-off
points. Each point on the resulting plot represents a sensitivity/specificity pair
corresponding to a particular decision threshold. A “perfect” classifier will have a
ROC curve which passes through the upper left corner of the plot which represents
100 % sensitivity and 100 % specificity. Therefore the closer the ROC curve is to
the upper left corner, the higher the overall accuracy of the classifier (Zweig and
Campbell 1993), whereas a curve that splits the plot exactly across the diagonal is
equivalent to random guessing. This is illustrated in Fig. 10.1.

The area under the ROC curve, known as the AUC is a scalar value which
captures the accuracy of a classifier. The AUC is a non-parametric measure
representing ROC performance independent of any threshold (Brown and Davis
2006). A perfect ROC will have an AUC of 1, whereas the ROC plot of a random
classifier will result in an AUC of approximately 0:5.

In this work, we report the TPR, FPR, FPPI and AUC for each of the various
configurations of mammographic image data included in our work-flow.

10.2.2 Mammography

A mammogram is a low-energy X-ray projection of a breast which is performed by
compressing the breast between two plates which are attached to a mammogram
machine: an adjustable plate on top with a fixed x-ray plate underneath. An image
is recorded using either X-ray film or a digital detector located on the bottom plate.
The breast is compressed to prevent it from moving, and to make the layer of breast
tissue thinner.

Two views of each breast are recorded: the craniocaudal (CC) view, which is a top
down view, and the mediolateral oblique (MLO) view, which is a side view taken at
an angle. See Fig. 10.2 for examples of each view. Functional breast tissue is termed
parenchyma and this appears as white areas on a mammogram, while the black areas
are composed of adipose (non-functioning fatty) tissue which is transparent under
X-rays.
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Fig. 10.2 Mammograms. On the left is the MLO view, with benign micro-calcifications magnified,
while in the middle is the CC view, with a cancerous mass magnified. Notice the extra information
in the background of the image, such as view labels. On the right is the same CC view divided
into segments; each segment is examined separately for suspicious areas by the method proposed
in this chapter

Mammographic images are examined by radiologists who search for masses
or architectural distortions. A mass is defined in American College of Radiology
(2003) as a space-occupying lesion that can be seen in at least two views.
Architectural distortion is defined as an alteration in the direction of a normal area
of the breast, such that it appears straight, pulled in, wavy or bumpy (Lattanzio
et al. 2010). Mammograms often also contain micro-calcifications, which are tiny
deposits of calcium that show up as bright spots in the images. With the exception of
very dense breasts, where calcifications can be obscured, it is generally accepted that
compared with other abnormalities, micro-calcifications are easier to detect both
visually and by machine due to their bright and distinctive appearance and the fact
that they are intrinsically very different from the surrounding tissue. Also, micro-
calcifications are usually, but not always, benign.

Depending on the machine used for the mammogram, the resulting image is
stored either as a plastic sheet of film or as an electronic image. Many machines
in use today produce digital mammograms. With digital mammograms, the original
images can be magnified and manipulated in different ways on a computer screen.
Several studies have also found that digital mammograms are more accurate in
finding cancers in women under the age of fifty, in peri-menopausal women, and in
women with dense breast tissue (Pisano et al. 2005). Most importantly, the advent of
digital mammography opens up huge opportunities for the development of computer
aided analysis of mammograms.
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10.2.3 Computer-Aided Detection of Mammographic
Abnormalities

Various levels of automation exist in mammography, and these can generally be
divided into Computer-Aided Detection (CAD) and Computer-Aided Diagnosis
(CADx) (Sampat and Bovik 2010). In this work we concentrate exclusively on
CAD, in particular, what is known as Stage 1 detection.

In 1967 Winsberg et al. (1967) developed a system for automated analysis of
mammograms. However, it was not until the late 1980s that improved digitisation
methods and increases in computer power made the development of potentially
useful CAD and CADx systems feasible. Since then, a large body of research has
been undertaken on the topic, with many research groups currently active in the area
internationally.

A typical work-flow for a computer-aided system is shown in Fig. 10.3. The first
stage of CAD is to detect suspicious regions, which are then examined by more
specialised routines in the second stage. The output of this stage is a set of Regions of
Interest (ROIs) which are passed either to a radiologist or to a CADx system which
outputs the likelihood of malignancy. The involvement of radiologists and/or later
stages obviates the need for a perfectly understandable system, as any diagnostic
action is ultimately determined by them.

As with many medical applications, mammography demands near-perfection,
particularly in the identification of True Positives (TPs), where the true positive
rate (TPR) is measured as the percentage of test cases containing cancerous areas
identified. In general, Stage 1 detectors are quite conservative (Sampat and Bovik
2010) and often return a relatively high False Positives per Image (FPPI) rate, that
is, the number of areas from an image that are incorrectly identified as having
cancerous masses.

While an important function of stage 2 detectors is to reduce the FPPI in the
output produced by the Stage 1 detector, the rate of FPPI can have an impact on
the speed and quality of stage 2 detectors, as a too-conservative approach will
degenerate to returning virtually every image. Although this would return a perfect
TPR, the FPPI rate would render the system virtually useless.

The potential for CAD to improve screening mammography outcomes by
increasing the cancer detection rate has been shown in several retrospective
studies Vyborny (1994), Brake et al. (1998), Nishikawa et al. (1995), and

Fig. 10.3 A typical flowchart for computer aided detection and diagnosis. Stage 1 of the process
aims to detect suspicious areas with high sensitivity, while Stage 2 tries to reduce the number of
suspicious lesions without compromising sensitivity
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Warren Burhenne and D’Orsi (2002). A more recent study (Cupples et al. 2005)
reported an overall increase of 16 % in the cancer detection rates using CAD
together with traditional detection methods. In this study, CAD increased the
detection rate of small invasive cancers (1 cm or less) by 164 %. The study
concluded that “increased detection rate, younger age at diagnosis, and significantly
earlier stage of invasive cancer detection are consistent with a positive screening
impact of CAD”.

In general, most automated approaches to mammography divide the images into
segments (Sampat and Bovik 2010) on which further analysis is undertaken. Each
segment is examined for signs indicative of suspicious growths. This work takes a
radically different approach by considering textural asymmetry across the breasts
and between segments of the same breast as a potential indicator for suspicious
areas. This is a reasonable approach because, although breasts are generally
physically (in terms of size) asymmetrical, their parenchymal patterns (i.e., their
mammographic appearance) and, importantly, the texture of their mammograms,
are typically relatively uniform (Tot et al. 2000).

Density of breast tissue is an important attribute of the parenchyma and it has
been established that mammograms of dense breasts are more challenging for
human experts. At the same time, repeated studies have demonstrated that women
with dense tissue in greater than 75 % of the breast are 4–6 times more likely to
develop breast cancer compared with women with little to no breast density (Boyd
et al. 1995, 1998; Byrne et al. 2001; McCormack and Santos Silva 2006). Douglas
et al. (2008) highlighted a correlation between genetic breast tissue density and
other known genetic risk factors for breast cancer, and concluded that the “shared
architecture” of these features should be studied further. Given the importance
of parenchymal density as a risk factor and the difficulty for human experts in
identifying suspicious areas in this challenging environment, we believe that a
stage 1 detector which focuses on textural asymmetry may have a strong decision
support role to play in the identification of suspicious mammograms.

10.2.4 Feature Detection, Selection and Extraction

Feature detection, feature selection and feature extraction are crucial aspects of any
image analysis or classification task. This importance is reflected in the volume of
research that has been undertaken on the subject. Feature detection involves the
extraction of possibly interesting features from image data, with a view to using
them as a starting point to guide some detection or classification task. The objectives
of feature selection are the extraction from a potentially large set of detected features
those features that are most useful, in terms of discrimination, for the particular
purpose and also for determining which combinations of features may work best.
Finally, feature extraction is the process of extracting from detected features the
non-redundant meaningful information that will inform a higher level task such
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as classification. This may involve reducing the number of features or combining
features (or aspects thereof) to form new, more compact or useful features.

Mammograms are large (the images in this work are of the order 3600 � 5600

pixels) grey-scale images, but only minute parts of them contain diagnostically
relevant information. Therefore, a detection process typically relies on the existence
of features, which describe various properties of the image. Features are typically
extracted using either area- or pixel-based measures. In this work we focus
exclusively on area-based features as they are better suited to the identification of
ROIs (because the images are so large) than their pixel-based counterparts, which
are best suited for highly localized search. Section 10.3 below describes the features
extracted.

10.2.5 Related Work

Although several CAD systems already exist, most are Stage 2 detectors (Sampat
and Bovik 2010) and focus on particular kinds of masses, e.g. spiculated lesions. Of
the more general systems, the best reported appears to be that of Ryan et al. (2014)
which reports a best TPR of 100 % with an FPPI of just 1.5. Other good results
were produced by Li et al. (2001) with 97.3 % TPR and 14.81 FPPI. Similar work
by Polakowski et al. (1997) had a lower TPR (92 %) but with a much lower FPPI
rate (8.39).

There has been a great deal of research undertaken in the area of detection
and classification of micro-calcifications. Various approaches to feature detection
have been proposed including texture features, gray level features (Dhawan et al.
1996), wavelet transforms (Strickland and Hahn 1996), identification of linear
structures (Wu et al. 2008) and various statistical methods. In 2004 Soltanian-
Zadeh et al. (2004) undertook a comparison of the most popular features used
for micro-calcification detection including texture, shape and wavelet features.
They concluded that the multi-wavelet approach was superior for the particular
purpose. In more recent work using Cartesian GP, micro-calcifications were targeted
by Volk et al. (2009), in a CADx application, where they took 128 � 128 pixel
segments, each of which contained at least one micro-calcification and predicted
the probability of it being malignant.

For the objectives of mass segmentation and detection, image features which
capture aspects of shape (Rangayyan et al. 1997), edge-sharpness (Mudigonda et al.
2000) and texture (Bovis and Singh 2000) are frequently used. Nandi et al. (2006)
reported a classification accuracy of 98 % on test data when using a combination of
all three of these feature types. In that work, the researchers examined a database
of 57 images, each of which already had 22 features detected, and used GP in
combination with various feature selection methods to reduce the dimensionality
of the problem.

Varying numbers of Haralick texture features were used in Woods (2008) to train
a NN classifier to detect cancerous lesions in contrast enhanced magnetic resonance
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imaging (DCE-MRI) for both breast and prostate cancer. The results of that study
showed that the proposed approach produced classifiers which were competitive to
a human radiologist.

10.2.5.1 Learning Paradigms

Various research paradigms such as neural networks (Papadopoulos et al. 2005),
fuzzy logic (Cheng et al. 2004) and Support Vector Machines (SVM) Dehghan
et al. (2008), Cho et al. (2008) have been applied to the problem. In a review
of various ML approaches for detecting micro-calcifications, Sakka et al. (2006)
concluded that neural networks showed the most promise of the methods studied. In
a contemporary review, Alanís-Reyes et al. (2012) employed feature selection using
a GA and then compared the classification performance of various ML algorithms
in classifying both micro-calcifications and other suspicious masses, using these
features. Their results showed that SVM produced the best overall performance.

Given the success of GP in finding solutions to a wide range of problems,
it is not surprising that the approach has been applied to problems relating to
mammography. Quite a lot of the GP research effort has successfully demonstrated
feature selection and classification of micro-calcifications and masses as either
benign or malignant (Zheng et al. 1999; Nandi et al. 2006; Verma and Zhang 2007;
Sánchez-Ferrero and Arribas 2007; Hernández-Cisneros et al. 2007). In this work
the feature detection task is generally not handled by the genetic programs.

A genetic algorithm was used for feature selection in Sahiner et al. (1996), where
a very large number of initial features were reduced to a smaller set of discriminative
ones and then passed to either a NN or a linear classifier.

Other notable research using GP is that Ahmad et al. (2012) who designed
a Stage 2 cancer detector for the well known Wisconsin Breast Cancer dataset,
in which they used the features extracted from a series of fine needle aspira-
tions (FNAs) and an evolved neural network. Ludwig and Roos (2010) used GP
to estimate the prognosis of breast cancer patients from the same data set, initially
using GP to reduce the number of features, before evolving predictors. Langdon
and Harrison (2008) took a different approach, using biopsy gene chip data, but
their system approached a similar level of automation.

Current work in mammography has been concerned with a combination of
feature selection and classification (Ganesan et al. 2013). One such approach
suggested by Ryan et al. (2014) reports a best TPR of 100 % with an FPPI of only
1.5. In other work, the best reported appears to be that of Li et al. (2001) which
delivers a 97.3 % TPR with 14.81 FPPI. Similar work by Polakowski et al. (1997)
reported a lower TPR (92 %) but with a much lower FPPI rate (8.39). The standard
method of reporting results is the TP/FPPI breakdown, which is what we will also
present here.

See Petrick et al. (2013) for an evaluation of the current state-of-the-art of
computer-aided detection and diagnosis systems. In other work, Worzel et al. (2009)
reported favourably on the application of GP in cancer research generally.
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Most systems operate only at the Classification stage, although more recent work
also considers Feature Selection. As we generate our own features, we can modify
and parameterize them based on the analysis of our classifiers. While the focus of
this chapter is on the classification system, because we extract the features from
the images ourselves, GP will eventually form part of a feedback loop, instructing
the system about what sorts of features are required. See Sect. 10.6 for more details
on this.

Most previous work relies upon previously extracted features, and all the
previous work mentioned above deals with a single breast in isolation (although
using segmentation and multiple views). Our work leverages the research by Tot
et al. (2000) which indicates that, in general, both breasts from the same patient
have the same textural characteristics. Our hypothesis is that breasts of the same
patient that differ texturally may contain suspicious areas.

In summary, the unique features of our approach are that we do not focus only on
a single breast but address the problem by considering textural asymmetry across
the breasts as well as between segments of the same breast and we do not confine
our efforts simply to the classification step—rather we adopt an end-to-end strategy
which focuses on area-based features and incorporates feature extraction, detection
and selection.

10.3 Workflow

Part of the challenge in a project like this is to choose how to represent the
data. A typical mammogram used in this study is 3575 � 5532 pixels and 16
bit gray-scale, which is a challenging volume of data to process. The following
work-flow was created. Steps 1–5 are concerned with the raw images, while steps
6 and 7 use GP to build and test classifiers. The described work-flow provides a
template for similar tasks, where steps 1 and 2 can be replaced with domain specific
counterparts.

1. Background suppression
2. Image segmentation
3. Feature detection
4. Feature selection
5. Dataset construction
6. Model development
7. Model testing

10.3.1 Background Suppression

Figure 10.2 shows that much of the images consist of background, and clearly,
this must first be removed before calculating segments and extracting features.
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Removing the background is a non-trivial task, partly because the non-uniformity
of breast size across patients, but also because of the difficulty in taking consistent
mammograms. Due to the pliable nature of the breasts and the way in which the
mammograms are photographed (by squeezing the breast between two plates), the
same breast photographed more than once on the same machine (after a reset) may
look different.

The background of the mammographic image is never perfectly homogeneous,
and it includes at least one tag letter indicating if the image is either a right or
left breast. This is sometimes augmented by a string of characters indicating which
view (CC or MLO) is depicted. It is necessary to remove this background detail and
replace it with a homogeneous one so that the image can be properly processed at a
later stage.

Our first attempt was based on the Canny Edge Detector, but, although this
method is efficient on raw imagery, the mammograms we dealt with had been
processed to increase the contrast within the breast (to make them easier to read,
but which has the side effect of reducing the contrast between the edge of the breast
and the background). Canny Edge Detection revealed itself to be less efficient on
these images.

Our most efficient technique was to use a threshold (average of the median pixel
value and the average pixel value) such that any pixel .px; py/ above the threshold
level of was kept, i.e. 202 D .x�px/

2C.y�py/
2; x < px. We used local thresholding

with the threshold defined as an average of mean and median, calculated from each
pixel’s circular neighbourhood of radius 20. We scan each horizontal line right to
left. Once three consecutive pixels are brighter than the threshold calculated in the
above way, those pixels and the pixels to the left of it are considered as belonging
to the breast.

10.3.2 Image Segmentation

Our approach is to divide each image into three segments, and to examine each
segment separately. As there can be more than one suspicious area in an image,
we return true for as many segments as the systems finds suspicious, meaning that
a single mammogram can have several positives returned. With Stage 1 detectors
such as ours, this is described by the FPPI of an image, as discussed in Sect. 10.2.5.

Of course, the maximum FPPI is capped by the number of segments that the
breast is divided into. Using fewer segments means that the FPPI will be lower, but
the cost of the detection of the TPs is substantially more difficult because the area is
larger.

Using the same algorithm outlined in Ryan et al. (2014), we segmented the
breast images into three overlapping sub-images of roughly similar size, as shown
in Fig. 10.2. The first of these captures the nipple area and the other two cover the
top and bottom sections of the rest of the breast. The three segments intersect, to
help reduce the possibility of a mass going unnoticed.
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In summary, each patient has two breasts, and mammograms are taken for two
views (CC and MLO) of each breast—giving a total of four mammograms per
patient. From these four mammograms we obtain sixteen images: four images of
the full breast (left CC, left MLO, right CC, right MLO) and three sub images (top,
bottom, nipple) for each of these four images. We construct our training and test
data with features obtained from these sixteen images/sub-images.

10.3.3 Textural Features

As with most image classification systems, before attempting classify mammograms
as suspicious or not we must first extract features for GP. In this study, we use
Haralick’s Texture Features (Haralick et al. 1973) as we believe that textural features
are appropriate in this case because we are examining parenchymal patterns, and our
hypothesis is that suspicious areas are likely to be texturally dissimilar to normal
areas. However, different features may be suited for other problem domains, in
which case the detection and selection of these problem specific features can simply
slot into the work-flow at this juncture.

The seminal work of Haralick et al. (1973) described a method of generating
14 measures which can be used to form 28 textural features from a set of co-
occurrence matrices or “grey tone spatial dependency matrices”. When applied to
pixel grey levels, the Grey Level Co-occurrence Matrix (GLCM) is defined to be
the distribution of co-occurring values at a given offset. In other words, GLCM is
a joint distribution (histogram) of brightness of two pixels bound by a given spatial
relationship. That relationship is typically specified by assuming that the second
pixel is at a specific offset with respect to the first one.

Given a neighbourhood relationship r, an element c.i; j/ of a GLCM of image m
is the probability that a pixel p and its neighbour pixel q have brightness values i
and j respectively, i.e., Pr.r.p; q/ ^m.p/ D i ^m.q/ D j/.

Using the co-occurrence matrix, different properties of the pixel distribution can
be generating by applying various calculations to the matrix values.

Given the image matrix in Table 10.1 which handles three grey levels, the
co-occurrence matrix below is obtained by moving over the image matrix and
calculating f .i; j/ where f .i; j/ is the frequency that grey levels i and j occur with
at a given distance and direction.

Table 10.1 Pixel grey levels 0 0 0 1 2

1 1 0 1 1

2 2 1 0 0

1 1 0 2 0

1 0 1 0 0



10 Image Classification with Genetic Programming 259

Table 10.2 Co-occurrence
matrix

0 1 2

0 8 8 2

1 8 6 2

2 2 2 2

For example, f .0; 0/ D 8 is obtained by scanning the image matrix, and for
each pixel with a grey value of zero incrementing f .0; 0/ every time one of its
neighbours on the horizontal direction at a distance of 1, also has a value of zero.
Co-occurrence matrices can also be generated in other directions: 90, 135 and 45
degrees (vertical and diagonal), and for distances other than one. In this work
we examine a neighbourhood of one and average the feature values for the four
orientations (Table 10.2).

Haralick et al. (1973) showed that GLCMs conveniently lend themselves to
efficient calculation of various informative measures, including:

1. Angular Second Moment
2. Contrast
3. Correlation
4. Sum of squares
5. Inverse Difference Moment
6. Sum Average
7. Sum Variance
8. Sum Entropy
9. Entropy

10. Difference Variance
11. Difference Entropy
12. Information Measure of Correlation 1
13. Information Measure of Correlation 2
14. Maximal Correlation Coefficient

For a chosen distance there are four spatial dependency matrices corresponding
to the four directions 0ı, 45ı, 90ı and 135ı, giving four values for each of the 14
Haralick texture measures listed. There are some issues with this approach. The
amount of data in the co-occurrence matrices varies with the range and number of
values chosen for neighbourhood and direction and will be significantly higher that
the amount of data in the original image. Simple examples of the method found in
the literature typically use few gray levels for ease of explanation. However, in real-
life applications the number of grey levels is likely to be significant. This obviously
greatly increases the volume of matrix data: there will be an n � n matrix for each
direction and each distance chosen, where n is the number of gray levels. Also, the
resulting matrices are often very sparse as certain combinations of brightness may
never occur in an image. In spite of these obvious downsides, Haralick features are
widely used in the research.
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To quantitatively describe the textural characteristics of breast tissue, we
calculate a GLCM for each segment and for each breast. To keep the GLCM
size manageable, we first reduce the number of gray levels to 256 (from 65,535 in
the original images) via linear scaling. Because textures in mammograms are often
anisotropic (directionally dependent), we independently calculate GLCMs for four
orientations corresponding to two adjacent and two diagonal neighbours. Next, we
calculate 13 Haralick features (Haralick et al. 1973) (we exclude the 14th feature:
Maximal Correlation Coefficient as it can be computationally unstable Woods
2008). By doing this for each orientation, we obtain 52 features per segment,
which may subsequently be passed to a ML system for classification. This down-
sampling of gray levels, construction of GLCMs and extraction of Haralick features
is achieved using MATLAB (2013).

Segments are rectangular and often extend beyond the breast, which means that
they may contain some background. A GLCM calculated from such a segment in the
normal way would register very high values for black pixels (m.p/ D 0 or m.q/ D 0)
which may distort the values of Haralick features. As many mammographic images
contain useful information captured in black pixels, such as sections of adipose
tissue (fat), which appears black in mammograms, it would not be correct to simply
ignore black pixels. Therefore, before calculating the GLCM, we increase by one
the intensity of every pixel within the breast, using the information resulting from
the segmentation stage (see previous subsection). The pixels that already had the
maximal value retain it (this causes certain information loss, albeit negligible one, as
there are typically very few such pixels). Then, once the GLCM has been calculated,
we simply “hoist” the GLCM up and to the left to remove the impact of the
unmodified background pixels.

Feature Selection As previously mentioned, the neighbourhood relation of the
GLCM can be varied, such that the calculation is conducted on pixels further away
from each other, but, each extra neighbourhood examined produces another 52
features per segment. In this work we examine the neighbourhoods composed of
direct neighbours only (i.e., at a distance of 1 from the reference pixel) and averaged
the feature values for the four orientations.

We conducted a preliminary analysis of the 13 computed Haralick features
where we initially examined variance across and between both classes and then
carried out a more formal analysis using several ranker methods (Hall et al. 2009)
which ranked the attributes according to the concept of information gain. In this
context information gain can be thought of as a measure of the value of an attribute
which describes how well that attribute separates the training examples according
to their target class labels. Information gain is also known as Kullback Leibler
divergence (Kullback and Leibler 1951), information divergence or relative entropy.
Information gain employs the idea of entropy as used in information theory. These
feature selection steps suggested that the most promising features in terms of
discrimination were contrast and difference entropy. Accordingly, we discarded the
other features and let GP focus on those two.
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10.4 Experimental Setup

In this section, we describe the construction and distributions of the datasets used,
together with details of configurations of that data for specific experiments. We also
provide details of the GP parameters and classification algorithm employed.

10.4.1 Dataset Construction

This work employs University of South Florida Digital Database for Screening
Mammography (DDSM) (Heath et al. 2001) which is a collection of 43 “volumes”
of mammogram cases. A volume is a collection of mammogram cases (typically
about 50–100 different patients) and can be classified as either normal, positive,
benign or benign without callback. All patients in a particular volume have the same
classification. We use cases from the cancer02 and three of the normal volumes
(volumes 1–3). For this study we do not use images from either the benign or benign
without callback volumes.

The incidence of positives within mammograms is roughly 5 in 1000,1 giving a
massively imbalanced data set. To ensure that our training data maintains a more
realistic balance, we deliberately select only a single volume of positive cases.

Several images were discarded either because of image processing errors or
because we were unable to confidently identify which segment/s were cancerous
for a particular positive case. In the current work, this latter task was performed
manually. We will automate this step in the next iteration. This initial processing
resulted in a total of 294 usable cases, 75 of which contain cancerous growths (which
we call positive in the remainder of this document). Each case initially consists of
images for the left and right breasts and for the MLO and CC views of each breast.
Once the segmentation step has been completed images are added for each of the
three segments (nipple/top/bottom) for each view of each breast. Thus, there are a
total of four images per view for each breast: one for the entire breast (A), and one
for each of the three segments (At; Ab; An).

If we count the numbers of positives and negatives in terms of breasts rather than
cases, which is reasonable, given that each is examined independently (i.e. most, but
not all, patients with cancerous growths do not have them in both breasts), then the
number of non-cancerous images increases significantly: giving two for each non-
cancerous case and one for most cancerous growths. For the volumes studied, of the
75 usable positive cases, 3 have cancer in both breasts. Thus, considering full breast
CC images only, we have 78 positive images and 510 (219 * 2 + 72) negative ones

Turning our attention to segments (At; Ab; An) (excluding full breast images), and
again considering only CC segments for the moment, for each non-cancerous case

1The actual incidence over a patient’s lifetime is closer to 1 in 7 (Kerlikowske et al. 1993).
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we have 3 segments for each breast (left and right) together with 2 non-cancerous
segments for each cancerous breast which gives a total of 1686 non-cancerous
segments and 78 cancerous segments. Similarly, for the MLO view there are 1686
non-cancerous segments and 78 cancerous ones.

Thus, we obtain three different distributions, one for the non-segmented single
views (CC or MLO) full breast images (78 positives (P), and 510 negatives, (N)),
one for the segmented single views (78 Ps and 1686 Ns) and one for segmented
combined CC MLO views (156 Ps and 3372 Ns). Each of these three distributions
exhibit very significant class imbalance which, in and of itself, increases the level of
difficulty of the classification problem. The imbalance in the data was handled in all
cases by using Proportional Individualised Random Sampling (Fitzgerald and Ryan
2013), as described in Sect. 10.4.2

Based on this master dataset, we consider several setups representing different
configurations of breasts, segments and views (see Table 10.3). The following
terminology is used to describe the composition of instances for a given setup,
where an instance is a single training or test example in a dataset: BXSYVZ, where
X is the number of breasts, Y the number of segments and Z the number of views
for a given instance. In the cases where there is just one view (B1S1V1, B2S2V1,

Table 10.3 Experimental
configurations

Name Ps Ns Description

B1S0V1 78 510 1 breast, unsegmented image,1
view, uses CC view only

B1S1V1 78 1686 1 breast, 1 seg., 1 view; uses CC
view only

B1S2V2 156 3372 1 breast, 2 segs., 2 views; uses
both CC and MLO views

B1S3V1 78 1686 1 breast, 3 segs., 1 view; CC
view only

B2S0V1 78 510 2 breasts, unsegmented image,
1 view, uses CC view only

B2S2V1 78 1686 2 breasts, 2 segs., 1 view; both
CC views, one segment from
each

B2S4+0V1 78 1686 2 breasts, 4 segs.,1 view, CC
views, 1 segment +
unsegmented from each

B2S3+0V1 78 1686 2 breasts, 3 segs., 1 view, CC
views, 1 segment from each +
unsegmented from first

B2S4V1 78 1686 2 breasts, 4 segs., 1 view; CC
views, three segments + one
segment

B2S6V1 78 1686 2 breasts, 6 segs., 1 view; CC
views, three segments + one
segment + 2 unsegmented

Each was generated from the same master data set
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B1S3V1, B2S4V1) we use the CC views, while in the cases where the breast has
been segmented, the system attempts to classify whether or not the segment has a
suspicious area or not. In particular, the two breast (B2SYV1) special setups which
investigate the use of asymmetry. These rely solely on the CC view: each instance
is comprised of selected features from one breast CC segment/s together with the
same features taken from the corresponding other breast CC segment/s for the same
patient.

When it comes to processing the data, we want to exploit any differences between
a segment and the rest of the breast (i.e. between A and Ax) but also between a
segment and the corresponding segment from the opposite breast, (say B and Bx),
with the objective of evolving a classifier capable of pinpointing a specific cancerous
segment. To facilitate this process, where we use more than one segment for a
particular setup, features from the segment of interest are the first occurring data
items in each instance for the dataset for that setup, where the segment of interest is
the segment for which we want to obtain a prediction. Details of he specific setups
used in the current study are as follows:

10.4.1.1 B1S0V1

This dataset configuration has an instance for the selected features of each full breast
image. It uses the CC view only and has an instance for each breast for each patient.
It has 78 Ps and 501 Ns.

10.4.1.2 B1S1V1

The BIS1V1 configuration also uses only the CC view, but this setup uses each
of the three segments (At; Ab; An) separately, i.e each instance is comprised of the
feature values for a single segment. Again there is an instance for each breast for
each segment. This results in 78 Ps and 1686 Ns.

10.4.1.3 B1S2V2

Both views are used in the B1S2V2 setup. For each segment, excluding the full
breast image, for each breast, each instance contains feature values for that segment
and the corresponding segment for the other view (CC or MLO), i.e each instance
has information for both views of a single breast. So for a given segment, say At,
there are instances for the following:

At LEFT_CC, At LEFT_MLO
At LEFT_MLO, At LEFT_CC
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At RIGHT_CC, At RIGHT_MLO
At RIGHT_MLO, At RIGHT_CC

In this setup the segments of interest are At LEFT_CC, At LEFT_MLO, At

RIGHT_CC and At RIGHT_MLO respectively, i.e the segment whose features occur
first. This principle applies to all of the remaining setups, where more than one
segment is used.

10.4.1.4 B1S3V1

This configuration uses three CC segments (At; Ab; An) for a single breast, where the
first segment is alternated in successive instances For example, for a given single
breast there are three training instances. Similar to:

At LEFT_CC, Ab LEFT_CC, An LEFT_CC
Ab LEFT_CC, An LEFT_CC, At LEFT_CC
An LEFT_CC At LEFT_CC, Ab LEFT_CC

Where the order of the remaining two segments does not matter.

10.4.1.5 B2S2V1

In this configuration we investigate the simplest case of symmetry: each entry
consists of the feature values for a single CC segment from one breast combined
with those of the corresponding CC segment from the other breast, for the same
patient. In this case there are two entries for each segment: (Ax LEFT_CC, Ax

RIGHT_CC) and (Ax RIGHT_CC, Ax LEFT_CC), where x represents a particular
segment (At; Ab; An).

10.4.1.6 B2S3+0V1

There are two set-ups which deviate slightly from the naming scheme above,
namely, B2S3+0V1 and B2S4+0V1. Here, +0 indicates that features for a non-
segmented image have been included. Each instance in this setup is comprised of
feature data from segmented and unsegmented images. It consists of information for
a segment, the unsegmented image and the corresponding segment from the other
breast. For example:

At LEFT_CC, A LEFT_CC,Bt LEFT_CC
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10.4.1.7 B2S4+0V1

Similar to B2S3+0V1, each instance in this setup is again comprised of feature data
from segmented and unsegmented images. It consists of information for a segment,
the unsegmented image and the corresponding segment from the other breast
together with the unsegmented image data for the other breast. For example:

At LEFT_CC, A LEFT_CC,Bt LEFT_CC,B LEFT_CC

10.4.1.8 B2S4V1

The B2S4V1 experimental setup is a combination of B1S3V1 and B2S2V1 where
each training instance is comprised of the feature values for the three segments for
a single breast (A) combined with the corresponding segment from the other breast
(B) for the leftmost, first occurring segment of A. For example:

At LEFT_CC, Ab LEFT_CC, An LEFT_CC, Bt LEFT_CC

Where in this instance At LEFT_CC is the segment of interest.

10.4.1.9 B2S6V1

The final experimental setup is an extension of B2S4V1 where feature values for
the full breast segment for the right and left breasts are added. For example:

At LEFT_CC, Ab LEFT_CC, An LEFT_CC,A LEFT_CC, Bt LEFT_CC, B
LEFT_CC

Where in this instance At LEFT_CC is the segment of interest.
It is important to note here is that where more than one segment is used the

segment of interest is the first occurring leftmost one, for example, At LEFT_CC in
the B2S6V1 setup example above. If that segment is diagnosed as cancerous then
the training/test instance in which it occurs is marked as positive, and if it is not
diagnosed as cancerous then the entire instance is marked as negative regardless
of the cancer status of any other segments used in that particular instance. Thus,
excluding the B1S0V1 setup, the objective is not simply to determine if a given
breast is positive for cancer, but rather to pinpoint which segments are positive.
If successful, this capability could pave the way for further diagnosis.

10.4.2 Proportional Individualised Random Sampling

In each of our experimental configurations there is significant disparity in the num-
ber of positive to negative instances. Greater disparity makes classification problems
much more challenging, as there is an inherent bias towards the class which has
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greater representation in the dataset—in this case, the negative class. When a
ML algorithm, designed for general classification tasks and scored according to
classification accuracy, is faced with significant imbalance, the “intelligent” thing
for it to do is to predict that all instances belong to the majority class. Ironically,
it is frequently the case that the minority class is the one which contains the
most important or interesting information. In datasets from the medical domain,
such as our mammographic data it is often the case that instances which represent
malignancy or disease are far fewer than those which do not.

Various approaches to mitigating class imbalance problems have been proposed
in the literature. In general, methods can be divided into those which tackle the
imbalance at the data level, and those which propose an algorithmic solution. In
addition, several hybrid approaches have been advanced which combine aspects of
the other two.

Methods which operate on the data level attempt to repair the imbalance by
rebalancing training data. This is usually achieved by either under-sampling the
majority class or over-sampling the minority class, where the former involves
removing some examples of the majority class and the latter is achieved by adding
duplicate copies of minority instances until such time as some predefined measure
of balance is achieved. Over- or under-sampling may be random in nature (Batista
et al. 2004) or “informed” (Kubat et al. 1997), where in the latter, various criteria are
used to determine which instances from the majority class should be discarded. An
interesting approach called SMOTE (Synthetic Minority Oversampling Technique)
was suggested by Chawla et al. (2002) in which rather than over sampling the
minority class with replacement they generated new synthetic examples.

At the algorithmic level Joshi et al. (2001) modified the well known AdaBoost
(Freund and Schapire 1996) algorithm so that different weights were applied for
boosting instances of each class. Akbani et al. (2004) modified the kernel function
in a Support Vector Machine implementation to use an adjusted decision threshold.
Class imbalance tasks are closely related to cost based learning problems, where
misclassification costs are not the same for both classes. Adacost (Fan et al. 1999)
and MetaCost (Domingos 1999) are examples of this approach. See Kotsiantis et al.
(2006), He and Garcia (2009) for a thorough overview of these and various other
methods described in the literature.

There several disadvantages to the application of over or under sampling
strategies. The obvious downside to under-sampling is that it discards potentially
useful information. The main drawback with standard over sampling is that exact
copies of minority instances are introduced into the learning system, which may
increase the potential for over-fitting. Also, the use of over-sampling generally
results in increased computational cost because of the increased size of the dataset.
In this study, we have employed a proportional sampling approach (Fitzgerald and
Ryan 2013) which eliminates or mitigates these disadvantages.

Using this approach the size of the dataset remains unchanged so there is no
extra computational cost, as is generally the case with random over sampling.
Instead, the number of instances of each class is varied. At each generation
and for each individual in the population the percentage of majority instances
is randomly selected in the range between the percentages of minority (positive)
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and majority (negative) instances in the original distribution. Then, that particular
individual is evaluated on that percentage of majority instances with instances of the
minority class making up the remainder of the data. In both cases, each instance is
randomly selected with replacement. In this way, individuals within the population
are evaluated with different distributions of the data within the range of the original
distribution.

The benefit of the method from the under sampling perspective is that while
the majority class may not be fully represented at the level of the individual, all
of the data for that class is available to the population as a whole. Because all of
the available knowledge is spread across the population the system is less likely to
suffer from the loss of useful data that is normally associated with under sampling
techniques. From the under sampling viewpoint, over-fitting may be less likely as
the distribution of instances of each class is varied for each individual at every
generation. Also, as all sampling is done with replacement, there may be duplicates
of negative as well as positive instances.

Previous work (Liu and Khoshgoftaar 2004) has shown that aside from the
consideration of balance in the distribution of instances, the use of random sampling
techniques may have a beneficial effect in reducing over-fitting.

10.4.3 GP Methodology and Parameters

All experiments used a population 200 individuals, running for 60 generations, with
a crossover rate of 0:8 and mutation rate of 0:2. The minimum initial depth was
four, while the maximum depth was 17. The instruction set was small, consisting of
just C;�;�; =. The tree terminals (leaves) fetch the Haralick features as defined in
Sect. 10.3.3, with two available per segment.

To transform a continuous output of a GP tree into a nominal decision (Positive,
Negative), we binarize it using the method described in Fitzgerald and Ryan (2012),
which optimizes the binarization threshold individually for each GP classifier.

We employed an NSGA-II (Deb et al. 2002) algorithm as updated in Fortin and
Parizeau (2013) as the selection and replacement strategy. Using a population of
200, at each generation, 200 new offspring are generated, then parents and offspring
are merged into one population pool before running pareto-based selection to select
the best 200). During evolution, we aim to minimize three fitness objectives, where
AUC is a the area under ROC, calculated using the Mann-Whitney (Stober and Yeh
2007) test, where the false positive rate (FPR) and TPR are calculated with the
output threshold set using the binarization technique mentioned above:

• Objective 1: FPR;
• Objective 2: 1�TPR;
• Objective 3: 1�AUC.

The chosen multi-objective fitness function is specifically tailored to suit the
mammography task. However, it would be quite straightforward to modify the
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work-flow and GP system to accommodate a different set of objectives or a single
valued or composite single objective fitness function to suit a problem from an
alternative domain.

We performed stratified fivefold cross-validation (CV, Geisser 1993; Hastie et al.
2009) for all setups. However, we also retained 10 % of the data as a “hold out” (HO)
test set, where for each meta run (each consisting of 5 CV runs) this HO test set
data was separated from the CV data prior to the latter’s allocation to folds for CV.
The data partitioning was carried out using the sci-kit learn ML toolkit (Pedregosa
et al. 2011). We conducted 50 cross-validated runs (each consisting of 5 runs) with
identical random seeds for each configuration outlined in Table 10.3.

10.5 Results

In this section we present our experimental results firstly with regard to AUC
measure on the training and test partitions of the CV phase. Secondly we examine
the TPR and FPR for this data. Finally we explore the results for each performance
metric, adopting various approaches to model selection, this time taking the
performance on hold-out data into consideration.

10.5.1 AUC

Figure 10.4, left plot shows the change in average AUC over generations on the CV
training partitions averaged over all cross validated runs, whereas Fig. 10.4 right
plot shows the development of the best training AUC also averaged over all cross
validated runs. Similarly, Fig. 10.5 left plot shows the change in average AUC over
generations on the CV test partition averaged over all cross validated runs, and
Fig. 10.5 right plot shows the development of the best population test AUC also
averaged over all cross validated runs.

It appears that the best performing setups from the perspectives of both training
and test partitions are those which leverage information from both breasts, the single
breast configuration which uses all three segments or single breast setup which uses
features from the unsegmented image. The B2S2V1 configuration delivers “middle
of the road” AUC figures: better results than the two worst performing setups but
worse that the better ones.

Clearly some of the worst AUC results are achieved with the configurations
which use segments from a single breast, particularly that which uses two views (CC
and MLO) of the same area (top, bottom or nipple). The latter is not very surprising
as the features contain essentially the same information and having features which
are strongly correlated with each other is known to be detrimental to accurate
classification.
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Overall, the results suggest that simply increasing the number of segments gives
a significant boost to performance in terms of training fitness but that the strategy
does not necessarily improve results on test data.

10.5.2 TP/FPRs

Population average TPR and FPRs for training data are shown in Fig. 10.6 and the
corresponding rates on test data can be seen in Fig. 10.7. The plots exemplify the
tension which exists in the population between the two competing objectives of
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the standard error of the mean

maximizing the TPR while simultaneously trying to minimize the FPR. In general,
a configuration which produces a higher than average TPR will also produce a
correspondingly higher FPR. For any configuration, there will always be individuals
within the population which classify all instances as either negative or positive. In
order to accurately distinguish which configurations are likely to deliver a usable
classification model it is more useful to examine the results of the best performing
individuals in the population on the various metrics: TPR, FPR and AUC. We
explore this aspect in Sect. 10.5.4.
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10.5.3 Program Size

Turning our attention to the average size of the individuals produced by each
configuration as shown in Fig. 10.8, we can see that there is a substantial difference
in average size between the smallest and the largest, and the difference appears
to increase as evolution progresses. The smallest individuals are produced by
the non-segmented configurations, and the next smallest by the most feature rich
B2S6V1 setup. The largest programs result from the B1S3V1 configuration which,
interestingly, has half as many feature values for each instance as B2S6V1 does. We
can hypothesise that this may be because with fewer feature values, the system needs
to synthesize them itself, which would be fairly typical evolutionary behaviour.

10.5.4 Model Selection

As described earlier in Sect. 10.4.3 the NSGA-II multi-objective GP (MOGP)
algorithm (Deb et al. 2002; Fortin and Parizeau 2013) was used to drive selection
according to performance against our three objectives of maximizing AUC and TPR
while also minimizing FPR. When using this type of algorithm for problems where
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there is a natural tension between objectives which may necessitate trade-offs, the
system typically does not return a single best individual at the end of evolution, but
rather a Pareto front or range of individuals representing various levels of trade-off
between the different objectives.

Due to the relationship between the main objectives for the mammography
task, we choose to use the multi-objective algorithm. Preliminary experiments with
various composite single objective fitness functions had not proved very successful
and previous work (Ryan et al. 2014) had demonstrated the effectiveness of the
MOGP approach. However, for this particular task, we are not interested in the
pareto front of individuals, after all, a model with a zero FPR and zero or very
low TPR (every instance classified as N) is not much use in this context. What we
really care about is achieving the lowest possible FPR for the highest possible TPR.
Thus, during evolution we maintained a single entry “hall of fame” (HOF) for each
CV iteration, whereby as we evaluated each new individual on the training data, if it
had a higher TPR or if it had an equal TPR but a lower FPR to the HOF incumbent
for that CV iteration, the new individual replaced that HOF incumbent.

We report results on the training and test CV segments but the most important
results are those for the HO test set, as these provide an indication of how the
system might be expected to perform on new, unseen instances. We choose to
present results, with best results in bold text, under several different model selection
schemes:

• Mean average best trained individual: results for each HOF are firstly averaged
for each CV run and then averaged across the 50 cross validated runs. See
Table 10.4.

• Average best trained individual: the best trained individual is chosen from each
CV run and the results for these 50 best individuals are averaged. See Table 10.5.

• Average best test individual: the best performing individual on the test dataset is
chosen from amongst the 5 HOF members for each CV run and the results of this
50 individuals are averaged. See Table 10.6.

• Best overall trained individual: the single best trained individual. See Table 10.7.
• Best overall test individual: the single best individual on the CV test data chosen

from amongst the 250 best trained solutions. See Table 10.8.

The results on training data shown in Tables 10.4, 10.5, 10.6, 10.7 and 10.8 show
that simply adding features gives a boost to performance. The configuration with
the greatest number of features (B2S6V1) consistently produces the lowest FPR
and the best AUC score on the training data. However, this setup appears to suffer
from over-fitting, as the excellent training results do not translate into good test
results, as evidenced by the low TPR on the hold out test data. This configuration
has the largest number of segments, and, as each added segment contributes two
extra features—it also has more features than the others.

Regardless of which model selection approach we choose to adopt for evaluating
performance on the hold out test data, the best evolved model is produced by the two
breast non-segmented configuration (B2S0V1) which has a best result TPR of 1 with
a very low FPR of 0:19. With the exception of B1S3V1, the single breast segmented
setups perform worst overall.
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Both B2S3+0V1 and B2S4+0V1 are two breast configurations which combine
features of segmented and unsegmented images. They are essentially combinations
of B2S2V1 and B2S0V1—both of which deliver good results on the hold out test
data. The augmented methods do not appear to contribute a huge improvement,
although we see that for several views of the data, they produce a very competitive
low FPR.

When we compare the figures for average program size between the single best
individuals selected based on training or CV test partitions it is interesting to note
that those selected on test performance are almost universally smaller than the ones
selected based on training results. However, the best overall individual is the largest,
at 979 nodes.

To compare with results from the literature we convert the FPRs into FPPI which
we report in Table 10.9. Here, the average results reported result from the data in
Table 10.4 which represents the mean average results for all of the best trained
individuals. The best results use the TP and FP data of the single best individuals
selected based on performance on CV test partitions. Results refer to performance
on the crucial hold out test data.

Clearly the best results are produced by the two breast non-segmented approach
B2S2V1 with a TPR of 1 and an FPPI of 0:33. This is closely followed by its single
breast counterpart B1S0V1 which again delivered a perfect TPR and an FPP1 of
0:41.

Of the segmented setups the two augmented configurations of B2S3+0V1 and
B2S4+0V1 also produced good results with perfect TPRs combined with good
FPPIs of 1:11 and 1:08 respectively. Also the B2S4V1 method did very well with
a TPR of 1 and FPP1 of 1:11. Contrast these figures with the results reported in
Sect. 10.2.5 with scores of 97 % TP and FPPIs of 4–15.

Overall, several of our configurations proved capable of correctly classifying
100 % of the cancerous cases while at the same time having a low FPPI, and the
best results were delivered by individuals trained to view breast asymmetry.

Table 10.9 Mean average
TPR and FPPI of best trained
individual, TPR and FPPI of
single best trained individual,
both on HO data

Method Avg TPR Avg FPPI Best TPR Best FPP1

B1S0V1 1 0:61 1 0:41

B1S1V1 1 1:88 1 1:68

B1S2V2 0:97 2:03 0:95 1:86

B1S3V1 0:96 1:49 0:80 1:08

B2S0V1 1 0:45 1 0:33

B2S2V1 1 1:67 1 1:34

B2S3+0V1 0:96 1:57 1 1:11

B2S4+0V1 0:96 1:48 1 1:08

B2S4V1 0:97 1:52 1 1:11

B2S6V1 0:86 1:28 0:77 1:06
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10.6 Conclusions and Future Work

We have presented an entire work-flow for automated mammogram analysis with
GP as its cornerstone. Our system operates with raw images, extracts the features
and presents them to GP, which then evolves classifiers. The result is a Stage 1
cancer detector that achieves 100 % accuracy on unseen test data from the USF
mammogram library, with a lowest reported FPPI of 0:33.

This work-flow can be applied to virtually any image classification task with
GP, simply by using task-specific features. In this chapter we use textural features
which can be directly employed by any problem with similar images, which means
that the only modification required to the system is the manner in which the images
are segmented.

The experimental set up that had the lowest FPPI was the one that compared both
entire breasts, showing that we successfully leveraged textural breast asymmetry as
a potential indicator for cancerous growths. Additionally, several of the segmented
configurations also produced very good results, indicating that the system is
capable of not only identifying with high accuracy which breasts are likely to have
suspicious lesions but also which segments contain suspicious areas. The first of
these capabilities could prove useful in providing second reader functionality to
busy radiologists, whereas the second supply inputs to an automated diagnostic
system where further analysis can be undertaken.

One minor limitation of this work is that all of the positive cases examined
came from the same volume. However, it is reasonable to assume that for any
automated system, a classifier will be generated for a specific type of X-ray machine
used by a screening agency. Digital mammograms come in the DICOM (Whitcher
et al. 2011) format which contains much meta-data, including the specific machine
and location where the mammogram was taken. This means that it is feasible to
produce machine-specific classifiers which are trained to deal with the particular
idiosyncrasies of various machines. However, our next step will be to train the
system across multiple volumes to test the impact on the TPR/FPPI scores.

Most prior work examines just a single step in the typical work-flow, i.e. the
classification step, assuming the existence of previously selected features and
concentrating on extracting the best possible results from those features. We are,
however, positioned to leverage the ability of GP to produce solutions that are in
some way human-readable, and treat GP as part of the work-flow, rather than the
entire focus of the work. This means that, as the work progresses, we can create
a feedback loop which examines the GP individuals to ascertain which terminals
(features) are most useful, and extract more information related to those from the
data. This is possible because data acquisition is also part of our work-flow; this is
a system that accepts raw mammograms and outputs adjudicated segments.

GP is the essential element of the work-flow, as it is responsible for synthesizing
the classifier by processing the previously selected and transformed image features.
One of the recognised drawbacks of GP, compared with several other ML algo-
rithms, is that the approach requires significantly longer training times. However, as
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the roles envisaged for the evolved GP classifiers involve providing second reader
functionality and/or supplying input to a computer aided diagnosis module, both of
which are off-line functions—the requirement for long training times is a non-issue.

For this study, feature selection was conducted through analysis of the initial
Haralick features which dramatically reduced the number of features, and indicated
that the contrast and sum of squares variance features were promising in terms of
their potential to discriminate. Current work is examining the ways in which GP is
combining these features and initial results are very positive; these results will then
be compared with other ML systems, specifically SVMs and C4.5, to investigate the
specific impact that GP has, particularly as the number of features increase.

Our segments are relatively large. While we were still able to maintain a 100 %
TPR with them, there is a case to be made for examining smaller segments, as the
smaller these are, the better it is for the later analysis stage.

Finally, although the Haralick textural measures are powerful, they are not the
only features that have been used in image analysis. Our system also extracts Hu
invariants (Hu 1962) and Local Binary Patterns (Ojala et al. 1994); we will use GP
to combine these with the Haralick features to further decrease the FPPI.
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Chapter 11
On the Application of Genetic Programming
for New Generation of Ground Motion
Prediction Equations

Mehdi Mousavi, Alireza Azarbakht, Sahar Rahpeyma, and Ali Farhadi

11.1 An Introduction to Ground Motion Prediction Equation

Seismic hazard analyses are traditionally used to estimate ground motion intensities
in a specific site for design purposes. These can be done through two different
approaches i.e., Deterministic Seismic Hazard Analysis (DSHA) and Probabilistic
Seismic Hazard Analysis (PSHA). In the first method uncertainties are neglected
to identify a “worst-case” ground motion, whereas the second approach considers
all possible earthquake events to estimate ground shaking levels associated with its
probability of exceedance (McGuire 1995). However, it should be emphasized that
estimating strong ground motion intensities, based on the seismological parameters
such as: earthquake moment magnitude and distance from earthquake rupture zone
to the site of interest, is definitely required for using both of the abovementioned
methodologies. Generally, Ground Motion Prediction Equations (GMPEs), known
also as attenuation relationships, are used in order to approximately calculate the
intensity of strong ground motions. It has been proved that the attenuation of
earthquake ground motions is a key element in estimating ground motion parameters
for assessment and design purposes. GMPEs are analytical expressions describing
how energy of seismic waves attenuates during propagation. It is noteworthy
that GMPEs permit the estimation of both the ground shaking level at a site
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from a specific earthquake and the uncertainty associated with the prediction.
This predicted value is one of the most potent elements in any probabilistic and
deterministic Seismic Hazard Analysis (SHA).

During recent decades, multitude numbers of GMPEs have been developed by
different researchers. The most common intensity measures (IMs) used in GMPEs
are PGA, PGV, PGD, and SA. GMPEs for such intensity measures have been
incorporated into PSHA correspondences (McGuire 2004; OpenSHA 2009) are
used to employ in PSHA or other structural earthquake engineering (Petersen et al.
2008) for specific sites.

During recent decades, the number of strong motion recording equipment has
dramatically proliferate which provided more complete and reliable data sets
for different seismic regions. In general, the functional form of ground motion
attenuation relationships is as follows:

log .Y/ D log .b1/C log Œf1.M/�C log Œf2.R/�C log Œf3 .M; R/�

C log Œf4 .Ei/�C log ."/ (11.1)

where Y is the ground motion intensity measure, and b1 is a scaling factor. The terms
f1 to f4 are functions of earthquake magnitude M, distance to the site R, and other
influential parameters. The term E denotes uncertainties associated with predicted
values. Equation (11.1) is an additive function based on the model for ground motion
regression equations defined by Campbell (1985). It is suggested that the fault type
and the focal depth should be taken into account for the source characteristics
(McGarr 1984; Youngs et al. 1997). In addition, for the path effects, the appropriate
definition of the distance in the near-source area is in controversy (Campbell 1985).
Fourth, for the site effects, it is also suggested that the qualitative evaluation using
soil types is not sufficient (Fukushima and Tanaka 1990; Midorikawa et al. 1994).
The abovementioned equation provides logarithmic value of the ground motion
intensity which has a log normal distribution.

Worldwide, there are a vast number of reviews of attenuation studies which
provide beneficial information regarding the methods for obtaining GMPEs and
their results (e.g. Trifunac and Brady 1976; Idriss 1978; Boore and Joyner 1982;
Campbell 1985; Joyner and Boore 1988, 1996; Ambraseys and Bommer 1995;
Power et al. 2008). A comprehensive global summary of GMPEs was given by
J. Douglas in 2011, which reviews all empirical models for the prediction of PGA
and elastic-response spectral ordinates between 1964 and 2010 (Douglas 2011).
The growing quantity and quality of ground-motion information on recordings, in
different databases, have resulted in numerous regional and worldwide GMPEs and
continue reviewed and updated attenuation relationships through recent decades.
Furthermore, it is worth to mention that a few studies concerned with relating
ground-motion parameters to an intensity scale compared with magnitude based
GMPEs. These studies were conducted in the latter part of the twentieth century
(Elnashai and Di Sarno 2008); however, nowadays, some of researches put a great
effort in order to use as much as available seismic parameters into the relationships
(Abrahamson et al. 2013).
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11.2 Different Approaches for Driving GMPEs

As it is aforementioned, GMPEs are the key element in any seismic hazard analysis.
Two basic different methodologies have been developed by different researchers,
i.e. empirical and physical relationships, for attaining prediction equation models
according to the site geology and distribution of events. The first method, known as
empirical models, describes the observations by means of regression analysis on a
specific site with abundant data set. It should be noted that this type of approach
requires a vast number of data set in order to achieve the best predictive trend
between Ground Motion Records (GMRs); however, these types of models simply
describe observed information and do not necessarily reflect the realistic process of
an earthquake. Obviously, obtaining a valid empirical model requires availability
of a vast collection of data. Consequently, empirical GMPEs have been derived
and effectively applied in specific regions where abundant GMRs were available,
such as California and Japan. The main drawback of this method is its inextricable
sensitivity to, and dependency on, the data sets. Also, the reliability and robustness
of these empirical predictions depend largely on how data are classified and what
regression methods were applied. Even in regions with abundant data, enrichment of
databases could lead to large changes in the model predictions. In addition, physical
models, which describe seismic wave’s generation and propagation, are used in a
specific site with lack of observations. In physical relationships sparse data are used
to calibrate a model which describes realistic process of an earthquake. Physical
models have been usually derived through stochastic manner and based on random
vibration theory, as a result, further information can be obtained from studies
concerned with the applied methodology and basic theory (see e.g. Papageorgiou
and Aki 1983 and references therein). More advanced physical models, which try to
model the realistic process of faulting through numerical modeling of fault rupture
model and wave propagation, have also been developed (e.g. Komatitsch et al.
2004; Krishnan et al. 2006). Apparently, physical GMPEs can only be applied in
specific regions where comprehensive information about soil structure and faulting
mechanisms are available, such as Los Angeles Basin.

The objective of having computers automatically solve problems is central to
artificial intelligence, machine learning, and the broad area encompassed by what
called ‘machine intelligence’. Arthur Samuel as the pioneer in the area of machine
learning in his 1983 talk entitled ‘AI: Where It Has Been and Where It Is Going’
(Samuel 1983), stated that the main goal of the fields of machine learning and
artificial intelligence is:

To get machines to exhibit behavior, which if done by humans, would be assumed to involve
the use of intelligence.

There are various parameters both known and unknown affecting induced hazard
of a specific event. As a result, developing a valid physical model capable to
describe such a complex behavior may not be possible with traditional engineering
methodologies. On the other hand, Artificial Intelligence (AI) is becoming more
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popular and particularly amenable to model the complex behavior of most geotech-
nical engineering materials because of its superiority over conventional methods in
predicting more accurate outputs (Fister et al. 2014; Yang et al. 2013; Gandomi
and Alavi 2012). Among the available AI techniques are artificial neural networks
(ANNs), Genetic programming (GP), Evolutionary polynomial regression (EPR),
support vector machines, M5 model trees, and K-nearest neighbors (Elshorbagy
et al. 2010). Utilization of ANNs in deriving GMPEs is shown in different studies
(e.g. Alavi and Gandomi 2011a, b; Gandomi et al. 2015).

Genetic programming is an Evolutionary Computation (EC) technique that
automatically solves problems without having to tell the computer explicitly how
to do it. At the most abstract level, GP is a systematic, dominion dependent method
for getting computers to automatically solve problems starting from a high-level
statement of what needs to be done (Langdon et al. 2008).

During recent decades, beside the two mentioned traditional approaches, meth-
ods of information processing known as soft computing techniques, such as
Evolutionary Algorithms (EA), have been used in order to obtain attenuation
relationships as a modern and beneficial approach. Nowadays, one of the most
practical methods in this area is GP which incredibly affects the methodologies
for obtaining the new GMPEs. EA algorithms, specifically genetic programming
and genetic algorithm (GA), are optimization techniques based on the rules of
natural selection (Koza 1992; Goldberg 1989). It has been proved that although
using GP methods does not reduce the uncertainties; however, there is more
complicated interaction among the observation and prediction values (Cabalar and
Cevik 2009). It has been proved by different researchers (e.g. Rahpeyma et al.
2013; Mohammadnejad et al. 2012; Alavi et al. 2011a, b; Gandomi et al. 2011;
Cabalar and Cevik 2009) that GP approach can be successfully applied to derive
new GMPEs comparable with the previous attenuation relationships. In this chapter,
an introduction to the genetic programming assumptions is presented and some of
the mentioned studies beside mathematical tools for applying the GP programs are
discussed comprehensively.

11.3 A Brief Introduction to the Genetic Programming

In artificial intelligence, Genetic Programming (GP) is an Evolutionary Algorithm-
based (EA) methodology inspired by biological evolution and principles of Dar-
winian natural selection. It tries to find computer programs that perform a user-
defined task which was introduced by John Koza (1992). It should be recalled
that GP firstly was used by Friedberg (1958) to put a program in progress in
stepwise manner. Much later, Cramer (1985) applied Gas and tree-like structures
to evolve programs. In the latter part of 1980s experiments of Koza (1992) resulted
in extension of GA as the major breakthrough in the area of GP (Elshorbagy et al.
2010).
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Basically, GP is a collection of instructions and a fitness function for evaluating
performance of a computer in doing a specific task. It should be emphasized that GP
is a specialization of GA where each individual is a computer program. GP develops
computer programs, traditionally represented in memory as tree structures (parse
tree) (Koza 1992; Alavi et al. 2011a, b). Trees can be easily evaluated in a recursive
manner. Every tree node has an operator function and every terminal node has an
operand, making mathematical expressions easy to evolve and evaluate. GP and GA
are different when it comes to the evolving programs (individuals), individuals in GP
are parse trees instead of fixed length binary strings. GA as a traditional optimization
technique often used to obtain best values for a given set of input parameters of a
model. However, GP is a machine learning technique used to optimize a population
of computer programs regarding a fitness landscape determined by capability of
a program to carry out specific computational task. On the other hand, it gives
the basic structure of the approximation model together with the values of its
parameters. In GP structure, a random population of individuals (parse trees) is
created to achieve high diversity and include as much as possible multiplicity of
individuals. The symbolic optimization algorithms present the potential solutions
by structural ordering of several symbols (Torres et al. 2009; Gandomi et al. 2010).

The computer programs provided by standard GP are represented as tree
structures (Koza 1992; Gandomi et al. 2011). This conventional scheme is also
referred to the tree-based genetic programming (TGP). Linear genetic programming
(LGP) is a particular subset of TGP (Brameier and Banzhaf 2007). LGP evolves
programs of an imperative language or machine language instead of the standard
TGP expressions of a functional programming language (Brameier and Banzhaf
2001, 2007). LGP has shown to be an efficient alternative to the traditional TGP
(Oltean and Grossan 2003). Moreover, Graph-based GP (parallel) programs are
another type of traditional TGP (Alavi et al. 2011a, b) (see Fig. 11.1).

As it is abovementioned, a population member in GP is a hierarchically
structured tree comprising functions and terminals. The functions and terminals are
selected from a set of functions and a set of terminals. For instance, the function
set can include the basic arithmetic operations (e.g. C, _, _, /, etc.), Boolean logic
functions (e.g. AND, OR, NOT, etc.), or any other mathematical functions. The
terminal set contains the arguments for the functions and can consist of numerical
constants, logical constants, variables, etc. The functions and terminals are chosen

Genetic Programming

Linear-based GP Graph-based GPTree-based GP

Fig. 11.1 Different types of GP (Gandomi et al. 2013; Alavi and Gandomi 2011a, b)
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Fig. 11.2 Tree representation
of a GP model
(.X1 C 5/ = log .X2/2)

at random and constructed together to form a computer model in a tree-like structure
with a root point with branches extending from each function and ending in a
terminal. An example of a simple tree representation of a GP model is illustrated in
Fig. 11.2. The creation of the initial population is a blind random search for solutions
in the large space of possible solutions. The importance of initialization in GP leads
to define a multitude numbers of approaches to create the initial population. There
are three different prime methods in GP which each of them uses either the standard
procedure based on depth (Koza 1992), or the new variation based on size, i.e.,
number of nodes (Silva 2007), depending on the parameter depth of nodes (Silva
2007):

• Full method: In the standard procedure, the new tree receives non terminal
(internal) nodes until the initial tree depth is reached—the last depth level is
limited to terminal nodes. As a result, trees initialized with this method will be
perfectly balanced with all the branches of the same length.

• Grow method: in the standard procedure, each new node is randomly chosen
between terminals and non-terminals, except nodes at the initial tree depth level,
which must be terminals. Trees created with this method may be very unbalanced,
with some branches much longer than others.

• Ramped Half-and-Half method: In the standard procedure, an equal number of
individuals are initialized for each depth between 2 and the initial tree depth
value. For each depth level considered, half of the individuals are initialized using
the Full method, and the other half using the Grow method. The population of
trees resulting from this initialization method is very diverse, with balanced and
unbalanced trees of several different depths.

Having a randomly created population of models, the GP algorithm then eval-
uates the individuals, selects them for reproduction, generates new individuals by
mutation, crossover, and direct reproduction, and finally creates the new generation
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Fig. 11.3 Typical mutation
operation in GP

Fig. 11.4 Typical cross-over operation in GP

in all iterations (Koza 1992; Gandomi et al. 2010). During the mutation procedure,
a point on a branch of each solution (program) selected at random and the set
of terminals and/or functions from each program are then swapped to create two
new programs as can be seen in Fig. 11.3. The evolutionary process continues by
evaluating the fitness of the new population and starting a new round of reproduction
and crossover. During this process, the GP algorithm occasionally selects a function
or terminal from a model at random and mutates it. This operator is illustrated in
Fig. 11.4. Consequently, the best program that appeared in any generation, the best-
so-far solution, defines the output of the GP algorithm (Koza 1992). The following
three main steps are summarized form for the abovementioned introduction for
operating within any GP procedure (Koza 1992):

1- Generate an initial population of random compositions of functions and
terminals.

2- Repeat (below) steps 2.1 and 2.2 until the establishment of the program’s
suitable and final condition:

2.1 Executes each program and assigns a fitness value to it according to the
fitness function.
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2.2 Create a new population of computer pro- grams by means of the genetic
operators (reproduction, mutation, and cross-over).

• Reproduction: Copy the best existing programs in the new population.
• Mutation: Select an existing program, change a node of the individual

randomly and move the program to the new population (see Fig. 11.3)
• Cross-over: Select two programs and change one branch with another

randomly and move the two produced programs to the new population (see
Fig. 11.4).

3- Select the best computer program that has been appeared in any generation.

11.4 Mathematical Tools for Applying the GP Programs

As it is mentioned earlier, GP uses parse tree in order to operate the final solution;
thus, how one implements GP trees will obviously depend significantly on the
programming languages and libraries being used. Most traditional languages used
in AI research (such as Lisp and Prolog), many recent languages (say Ruby and
Python), and the languages associated with several scientific programming tools
(namely, MATLAB and Mathematica) provide automatic garbage collection and
dynamic lists as fundamental data types making it easy to directly implement
expression trees and the necessary GP operations. In other languages one may have
to implement lists/trees or use libraries that provide such data structures (Langdon
et al. 2008); however, non-tree representations have been suggested and successfully
implemented, such as linear genetic programming which suits the more traditional
imperative languages (see, Banzhaf et al. 1998). While GP often evolves computer
programs, the solutions can be executed without post-processing. Conversely, the
coded binary strings typically evolved by GA require post-processing.

Additionally, it should be noted that there is multitude numbers of different GP
implementations in order to resolve different types of problems (see http://www.
cosc.brocku.ca/Offerings/5P71/). Among all the practical computational software
methods, for instance, the “Discipulus” uses automatic induction of binary machine
code “AIM” to achieve better performance and generates code in most high level
languages (Peter Nordin 1997; Banzhaf et al. 1998, Sections 11.6.2–11.6.3). The
“MicroGP (�GP)” uses directed multi-graphs to generate programs that fully
exploit the syntax of a given assembly language which is known as a general purpose
tool, mostly exploited for assembly language generation. The “GeneXproTools” is
an extremely flexible modeling tool designed for Function Finding, Classification,
Time Series Prediction, and Logic Synthesis. Moreover, “GPLAB” and “GPTIPS”
are genetic programming toolboxes for MATLAB. These toolboxes are very flexible
that different functions can be adapted easily even by non professional users. It
was tested on different MATLAB versions and computer platforms, and it does not
require any additional toolboxes (Silva 2007).

http://www.cosc.brocku.ca/Offerings/5P71/
http://www.cosc.brocku.ca/Offerings/5P71/
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11.5 Genetic Programming; A Capable Tool
for Driving GMPEs

11.5.1 Genetic Programming for Linear-in-Parameters Models

In 2011, Gandomi et al. employed a novel hybrid method coupling genetic
programming and orthogonal least squares, called GP/OLS, to develop a new GMPE
in order to predict the ground-motion parameters of the Iranian plateau earthquakes.
The principal ground-motion parameters formulated were peak ground accelera-
tion (PGA), peak ground velocity (PGV) and peak ground displacement (PGD).
The developed GMPE relate abovementioned intensity measures to seismological
parameters including earthquake magnitude, earthquake source to site distance,
average shear-wave velocity (Vs30), and faulting mechanisms. The equations
were established based on an abundant collection of GMRs released by Pacific
Earthquake Engineering Research Center (PEER). Furthermore, contribution of
influential parameters which affect predicted values of intensity measures was
determined by sensitivity analysis. Also, parametric analysis was performed to
assess the sensitivity of the models to the variations of the influential parameters.
The most appropriate GMPEs were determined according to a multi-objective
strategy as below:

(i) The simplicity of the model, although this was not a predominant factor.
(ii) Providing the best fitness value on a learning set of data.

(iii) Providing the best fitness value on a validation set of data.

The first objective can be controlled by the user through the parameter settings
(e.g., maximum program depth). For the other objectives, the following objective
function (OBJ) was constructed as a measure of how well the model predicted output
agrees with the measured output. The selections of the best models were deduced
by the minimization of the Eq. (11.2):

OBJ D
�

NOLearning � NOValidation

NOTraining

�
RMSELearning CMAELearning

R2
Learning

C 2NOValidation

NOTraining

RMSEValidation CMAEValidation

R2
Validation

(11.2)

where NoLearning, NoValidation and NoTraining are the number of learning, validation and
training data in turn; R, RMSE and MAE are, respectively, correlation coefficient,
root mean squared error and mean absolute. The peak ground acceleration (PGA),
velocity (PGV) and displacement (PGD) prediction equations, for the best results
by the GP/OLS algorithm, are as following equations:
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Table 11.1 The coefficients
derived for different fault
types

F
Fault type PGA PGV PGD

Reverse 0.046 0.001 �0.037
Normal �0.059 �0.371 �0.372
Strike-slip �0.101 0.080 0.236
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Fig. 11.5 Measured versus predicted PGA values using the GP/OLS model: (a) training data and
(b) testing data (Gandomi et al. 2011)
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where Mw, Rjb, and Vs30, respectively, denote the earthquake magnitude, earthquake
source to site distance, and average shear-wave velocity. FPGA, FPGV, and FPGD are
the empirical coefficients derived for different fault types. These coefficients are
presented in Table 11.1. PGD Comparisons of the measured and predicted PGA,
PGV and PGD values are, respectively, shown in Figs. 11.5, 11.6, and 11.7.

The results indicate that the obtained GMPEs are effectively capable of estimat-
ing the site ground-motion parameters. In comparison with the previous GMPEs,
the obtained attenuation relationships predict values with better similarity to the
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(b) testing data (Gandomi et al. 2011)
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Fig. 11.7 Measured versus predicted PGD values using the GP/OLS model: (a) training data and
(b) testing data (Gandomi et al. 2011)

observed data than those found in literature. Developed GMPEs can be reliably
implemented in design procedure due to the fact of having very simple functional
form (Gandomi et al. 2011).

11.5.2 Gene Expression Programming-Based GMPE

In 2009, Cabalar and Cevik introduced a genetic programming-based GMPE for
predicting PGA for Turkey seismic zone based on earthquakes in Turkey. The
proposed GP based GMPE obtained from the most reliable set of data in Turkey
and predicts PGA values as output. It should be emphasized that the researchers
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utilized Gene Expression Programming (GEP) software as an extension to GP
that evolves computer programs of different sizes and shapes encoded in linear
chromosomes of fixed length. The chromosomes are composed of multiple genes,
each gene encoding a smaller sub-program. Furthermore, the structural and func-
tional organization of the linear chromosomes allows the unconstrained operation
of important genetic operators such as mutation, transposition, and recombination.
One of the most potent points of the GEP approach is that the creation of genetic
diversity is extremely simplified as genetic operators work at the chromosome level.
On the other hand, GEP consists of its unique, multigenic nature, which allows
the evolution of more complex programs composed of several sub-programs. As a
result GEP surpasses the old GP system in 100–10,000 times (Ferreira 2001a, b,
2002). GeneXTools (see www.gepsoft.com); GEP software developed by Candida
Ferreira is used in this study. GA, GP, and GEP are basically different in nature
of individuals, in GA the individuals are fixed length binary strings, in GP the
evolving programs are parse trees,; and in GEP the individuals are encoded as
linear strings of fixed length (the genome or chromosomes), which are afterwards
expressed as nonlinear entities of different sizes and shapes (i.e., simple diagram
representations or expression trees (ETs)). Thus, the two main parameters GEP
are the chromosomes and expression trees. The process of information decoding
(from the chromosomes to the ETs) is called translation, which is based on a set of
rules. The genetic code is very simple where there exist one-to-one relationships
between the symbols of the chromosome and the functions or terminals they
represent. The rules, which are also very simple, determine the spatial organization
of the functions and terminals in the ETs and the type of interaction between sub-
ETs (Ferreira 2001a, b, 2002). That is why two languages are utilized in GEP: the
language of the genes and the language of ETs. A significant advantage of GEP is
that it enables to infer exactly the phenotype given the sequence of a gene, and vice
versa which is termed as Karva language (Cabalar and Cevik 2009). The derived
GMPE is shown in Eq. (11.6):

PGA D
�

5:7

A

�5

C .B/ .Mw/ .log Mw/
3
p

R

where

A D 4
p

VS30 C
�

R � 9

q
V4

S30 C 2385

�2

B D 3

vuut 4

s
651

VS30

� log R

3
(11.6)

The results indicate that proposed GP based GMPE provides relatively high
consistency among predicted output and observed data. Additionally, this model
yields more accurate PGA in comparison with an existing attenuation relationship.



11 On the Application of Genetic Programming for New Generation. . . 301

11.5.3 Capability of Adjusting Novel and Modern
Fitness Function

In 2013, Rahpeyma et al. represent a new attenuation relationship for predicting
PGA parameter based on Iranian plateau database by means of GPLAB, a genetic
programming toolbox (Silva 2007). This toolbox is an operational and practical
application for different types of users. Recently, some researchers have used this
toolbox for obtaining predictive equations (Kermani et al. 2009; Johari et al. 2006).
For using GPLAB, the database is divided into the training set (80 % of the data set)
and the testing set (20 % of the data set), chosen randomly (uniformly distributed).
The programs in GPLAB (tree structures), are initialized with one of the three
accessible initializing methods “Full, Grow, and Ramped Half-and-Half” (Koza
1992). In this study, initial population is produced based on Ramped Half-and-Half
method. In the standard procedure, an equal number of individuals is initialized
for each depth between two and the initial tree depth value (Silva 2007). The
population of trees resulting from this initialization method is very diverse, with
balanced and unbalanced trees of several different depths (Silva 2007). One of the
important features of GPLAB is some appropriate restrictions on tree’s depth or
size to avoid bloat that is a phenomenon consisting of an excessive code growth
without any corresponding Improvement in the fitness (Koza 1992; Silva 2007).
In GPLAB, parents are selected for reproduction according to four usual sampling
methods (Koza 1992; Silva 2007). In this paper, Lexictour sampling approach was
used for selecting parents. In this approach, a random number of individuals are
chosen from the population and the best of them is chosen (Silva 2007). In this
study, the GP fitness function is defined based on information theoretic method, the
average sample log likelihood (LLH) (Scherbaum et al. 2009) is proposed in order
to quantitatively assess the predictive models. After obtaining the initial predictive
model, by GP, in order to reduce the bias toward different earthquake parameters and
likewise for reducing the sensitivity of the initial attenuation model to the considered
database, the GA fitness function is defined according to Eq. (11.7) as a combination
of LLH criterion and re-sampling analysis, known as RSA method (Azarbakht et al.
2014).

Fitness FunctionD !1 � LLH Training Data

C !2 �
90; 110; 130; 145X

n

NdX
iD1

M;R;Vs30X ˇ̌̌
1 � PV

Sn
i

j

ˇ̌̌
3 � Nd

(11.7)

where Nd is the uniformly distributed random databases (in this study, NdD 100),
Sn

i is the ith sample with n records, Sn
i is the residuals’ P-value of Sn

i versus jth
parameter, M is the earthquake moment magnitude, R is the distance measure, Vs30
is the shear wave velocity, w1D 0.25 and w2D 0.125 are the weighting constants
based on authors judgment. The final form of LnPGA is shown in Eq. (11.8) and
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Table 11.2 The constant
coefficients obtained by GA
from final optimized model
(Rahpeyma et al. 2013)

a1 1.00 a8 1.00
a2 3.44 a9 1.00
a3 0.72 a10 1.00
a4 1.00 a11 0.056
a5 0.11 a12 1.00
a6 1.00 a13 1.00
a7 2.33 ¢ lnY 0.9276
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Fig. 11.8 Tree-expression for the proposed GP model (X1, X2, and X3 are moment magnitude,
distance measure, and shear wave velocity, respectively)

Table 11.2 shows the result of the coefficients achieved by GA. Figure 11.8 shows
tree-expression of the derived model.
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Furthermore, the proposed GP model is compared with a set of existing attenu-
ation relationships via several traditional and modern mathematical and statistical
methods. Explicitly, the obtained model shows clearly more consistency with the
local data in comparison with the other selected models. As a plain evidence,
Table 11.3 indicates the progress of obtained GP. It should be noted that R will
not change significantly by shifting the output values of a model equally, and
error functions (e.g. RMSE and MAE) only shows the error not correlation. As
a result, for illustrating suitable comparison among all models a new criteria
(¡DRRMSE/(RC 1)) is also computed within Table 11.3.

11.6 Conclusion

Seismic hazard studies estimate ground motion intensities in a specific site by means
of GMPEs. These equations are functions of seismological parameters such as
earthquake magnitude and source to site distance. Attenuation relationships as one
of the most potent elements in any seismic hazard analysis can be developed through
two basic approaches. The first method, known as empirical models or mathematical
relationships which have been fit to a database of recorded ground motions using
regression methods. Empirical ground motion prediction equations have been
developed and successfully implemented for regions where there are adequate
and sufficient strong ground-motion data. However, obtaining the best predictive
equation requires a large set of data and depends largely on the performance of
regression and classification methods. Additionally, this methodology simply results
in a mathematical relationship that only describes observed information and does
not necessarily reflect the realistic process of an earthquake. The second approach,
however, is concerned with physical modeling of the problem. In this methodology,
limited observed data in stochastic manner are used for calibration of physical
model. As a result, these GMPEs are only applicable in specific regions where
comprehensive information about the soil structure mechanical characteristics and
the active dynamic fault systems are available. During recent decades, beside the
two abovementioned methodologies soft computing techniques, such as Evolu-
tionary Algorithms (EA), have been used for obtaining attenuation relationships
with more complicated interaction among the observation and prediction values,
whereas, physically based engineering approaches usually fail to capture such
complex behavior of predicting relationships. EA algorithms, specifically genetic
programming (GP) and genetic algorithm (GA), are optimization techniques based
on the rules of natural selection. GA is generally used in parameter optimization
to evolve the best values for a given set of model parameters. However, in GP as a
machine learning technique, random population of individuals is created and then
selected for reproduction of different generations to obtain the best program that
appeared in any generation as the output. GP is one of the most capable approaches
which incredibly affected the methodologies for deriving the new GMPEs. GMPEs
obtained by means of GP are remarkably simple and straightforward and provide a
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prediction performance better than or comparable with the attenuation relationships
derived through two traditional methodologies. In this chapter, further information
on variety of GP based GMPEs including those developed by Gene Expression
Programming (GEP) software, a hybrid method coupling genetic programming and
orthogonal least squares (GP/OLS) and GPLAB are discussed in more details.
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Chapter 12
Evaluation of Liquefaction Potential of Soil
Based on Shear Wave Velocity Using Multi-Gene
Genetic Programming

Pradyut Kumar Muduli and Sarat Kumar Das

12.1 Introduction

Seismic hazards can be categorized as ground shaking, structural hazards,
liquefaction, landslides, retaining structure failures, lifeline hazards, tsunamis.
Out of the above, seismically induced liquefaction of soil is a major cause of
both loss of life and damage to infrastructures and lifeline systems. The soil
liquefaction phenomenon was known in early stage of development of soil
mechanics by Terzhagi and Peck (1948) to explain the phenomenon of sudden
loss of strength in loose sand deposit. It was recognized as the main cause of
slope failure in saturated sandy deposit. Though, soil liquefaction phenomena
have been recognized since long, it was more comprehensively brought to the
attention of engineers, seismologists and scientific community of the world by
several devastating earthquakes around the world; Niigata and Alaska (1964),
Loma Prieta (1989), Kobe (1995), Kocaeli (1999), and Chi-Chi (1999) earthquakes
(Baziar and Jafarian 2007). Since then, a numerous investigations on field and
laboratory revealed that soil liquefaction may be better described as a disastrous
failure phenomenon in which saturated soil loses strength due to increase in pore
water pressure and reduction in effective stress under rapid loading and the failed
soil acquires a degree of mobility sufficient to permit movement from meters to
kilometers. Soil liquefaction can cause ground failure in the way of sand boils,
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major landslides, surface settlement, lateral spreading, lateral movement of bridge
supports, settling and tilting of buildings, failure of waterfront structure and severe
damage to the lifeline systems etc.

The liquefaction hazard evaluation involves liquefaction susceptibility analysis,
liquefaction potential evaluation, assessment of effect of liquefaction (i.e., the extent
of ground failure caused by liquefaction) and study of response of various founda-
tions in liquefied soil. These are the major concern of geotechnical engineers. In the
present study, the focus is on liquefaction potential evaluation, which determines
the likelihood of liquefaction triggering in a particular soil in a given earthquake.
Evaluation of the liquefaction potential of a soil subjected to a given seismic loading
is an important first step towards mitigating liquefaction-induced damage. Though,
different approaches like cyclic strain-based, energy- based and cyclic stress-based
approaches are in use, the stress based approach is the most widely used method
for evaluation of liquefaction potential of soil (Kramer 1996). Thus, the focus of
present study is on the evaluation of liquefaction potential on the basis of the cyclic
stress-based approach.

There are two types of cyclic stress based-approach available for assessing
liquefaction potential. One is by means of laboratory testing (e.g., cyclic tri-axial
test and cyclic simple shear test) of undisturbed samples, and the other involves the
use of empirical relationships that relate observed field behavior with in-situ tests
such as standard penetration test (SPT), cone penetration test (CPT), shear wave
velocity (Vs) measurement and the Becker penetration test (BPT).

The methods like finite element, finite difference, statistically-derived empirical
methods based on back-analyses of field earthquake case histories are used for lique-
faction analysis. Finite element and finite difference analyses are the most complex
and accurate of the above methods. However, liquefied sediments are highly variable
over short distances, developing a sufficiently accurate site model for a detailed
numerical model requires extensive site characterization effort. Desired constitutive
modeling of liquefiable soil is very difficult, even with considerable laboratory
testing. Hence, in-situ tests along with the post liquefaction case histories-calibrated
empirical relationships have been used widely around the world. The cyclic stress-
based simplified methods based on in-situ test such as SPT, CPT, Vs measurements
and BPT are commonly preferred by the geotechnical engineer to evaluate the
liquefaction potential of soils throughout most part of world.

The stress-based simplified procedure is pioneered by Seed and Idriss (1971).
The SPT-based simplified method, developed by Seed and Idriss (1971), has been
modified and improved through several revisions (Seed and Idriss 1982; Seed et al.
1983, 1985; Youd et al. 2001) and remains the most widely used methods around
the world. However, SPT method cannot detect thin layers and the result depends
upon the efficiency of the machine and operator. Robertson and Campanella (1985)
first developed a CPT based method for evaluation of liquefaction potential, which
is a conversion from the SPT based method using empirical correlation of SPT-CPT
and follows the same stress-based approach of Seed and Idriss (1971). Thereafter,
various CPT-based methods of soil liquefaction potential evaluation using statistical
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and regression analysis techniques have been developed (Seed and de Alba 1986;
Olsen 1997; Robertson and Wride 1998; Youd et al. 2001). Though CPT is most
effective in most of the cases but, difficult to penetrate through gravelly soil.

A potential alternative to the above penetration based methods is the in-situ
measurements of small-strain shear-wave velocity Vs. The use of Vs as an index
of liquefaction resistance is firmly based on the fact that both Vs and liquefaction
resistance are similarly controlled by many of the same factors (e.g., void ratio, state
of stress, stress history, and geological age). Some advantages of Vs method can be
summarized as: (1) the Vs measurements are possible in soils, which are difficult to
sample, such as gravelly soils where penetration tests are mostly unreliable; (2) Vs

measurements can also be conducted on small laboratory specimens, allowing direct
comparisons between laboratory and field behavior; (3) Vs is a basic mechanical
property of soil materials, directly related to small-strain shear modulus, Gmax as
given below:

Gmax D �V2
s (12.1)

where � is the mass density of soil (4) Gmax, or Vs, is in general a required property
in earthquake site response and soil-structure interaction analyses; and (5) Vs can be
measured by the spectral analysis of surface waves (SASW) technique at sites where
borings may not be permitted, such as, sites that extend for great distances where
rapid evaluation is required, sites composed of gravels, cobbles, even boulders etc.,
where sampling is difficult. There are certain difficulties also arise when using Vs

to evaluate liquefaction resistance as because (1) seismic testing does not have the
provision of collection of samples for classification of soils and determination of
non-liquefiable soft clay- rich soils (2) thin, low Vs strata may not be detected if the
measurement interval is too large and (3) measurements are made at small strains,
whereas pore-water pressure buildup and liquefaction are medium- to high-strain
phenomena. The last concern as mentioned above may be significant for cemented
soils, because small-strain measurements are highly sensitive to weak inter-particle
bonding that is eliminated at medium and high strains. It also can be significant in
silty soils above the water table where negative pore-water pressures can increase
Vs (Andrus and Stokoe 2000; Youd et al. 2001).

Over the past three decades, a number of investigations have been performed to
study the relationship between Vs and liquefaction resistance. These studies include
field performance observations (Stokoe II and Nazarian 1985; Kayen et al. 1992;
Andrus and Stokoe 1997, 2000; Andrus et al. 2004), penetration-Vs correlations
(Seed et al. 1983), analytical investigations (Bierschwale and Stokoe 1984; Stokoe
et al. 1988), and laboratory tests (Dobry et al. 1982; de Alba et al. 1984; Tokimatsu
and Uchida 1990). Most of the above liquefaction evaluation procedures have been
developed with limited field performance data and following the general simplified
procedure of the Seed-Idriss, where Vs is corrected to a reference overburden stress
and correlated with the cyclic stress ratio.

For a given soil resistance index, such as the Vs, the boundary curve yields
liquefaction resistance of a soil, which is usually expressed as the cyclic resistance
ratio (CRR). Under a given seismic loading, usually expressed as the cyclic stress
ratio (CSR), the liquefaction potential of a soil is evaluated in terms of a factor of
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safety (Fs), which is defined as the ratio of CRR to CSR. The approach of expressing
liquefaction potential of soil in terms of Fs is referred to as a deterministic method
and is very much preferred by geotechnical professionals due its simplicity for
use. National Center for Earthquake Engineering Research (NCEER) workshop,
1998, published the reviews of the above in-situ test based deterministic methods
for evaluation of liquefaction potential of soil (Youd et al. 2001).

However, due to parameter and model uncertainties, Fs� 1 does not always
indicate non-liquefaction and also does not necessarily guarantee zero chance of soil
being liquefied. Similarly Fs� 1 may not always correspond to liquefaction and may
not guarantee 100 % chance of being liquefied. The boundary surface that separates
liquefaction and non-liquefaction cases in the deterministic methods is considered
as a performance function or “limit state function” and is generally biased towards
the conservative side by encompassing most of the liquefied cases. But, the degree of
conservatism is not quantified (Juang et al. 2000). Thus, attempts have been made by
several researchers (Haldar and Tang 1979; Liao et al. 1988; Youd and Nobble 1997;
Toprak et al. 1999; Juang et al. 2001, 2005, 2006; Muduli and Das 2013a, b; Muduli
et al. 2014) to assess liquefaction potential in terms of probability of liquefaction
(PL) using statistical or probabilistic approaches.

Most common statistical techniques like; logistic regression (Liao et al. 1988;
Juang et al. 2001; Gandomi and Alavi 2013), decision tree (Gandomi and Alavi
2013) and well known soft computing techniques such as; artificial neural network
(ANN) (Goh 1994, 2002; Juang and Chen 2000; Hanna et al. 2007), support
vector machine (SVM) (Pal 2006; Goh and Goh 2007; Samui and Sitharam 2011)
and relevance vector machine (RVM) (Samui 2007) have been used to develop
liquefaction prediction models based on an in-situ test database, which are found
to be very efficient. However, the ANN has poor generalization, attributed to
attainment of local minima during training and needs iterative learning steps to
obtain better learning performances. The SVM has better generalization compared
to ANN, but the parameters ‘C’ and insensitive loss function (") needs to be fine
tuned by the user. Moreover, these techniques will not produce a comprehensive
relationship between the inputs and output and are also called as ‘black box’ system.

In the recent past, genetic programming (GP) based on Darwinian theory of
natural selection is being used as an alternate soft computing technique. The GP
is defined as the next generation soft computing technique and also called as a
‘grey box’ model (Giustolisi et al. 2007) in which the mathematical structure of the
model can be derived, allowing further information of the system behaviour. The
GP models have been applied to some difficult geotechnical engineering problems
(Yang et al. 2004; Javadi et al. 2006; Rezania and Javadi 2007; Alavi et al. 2011;
Gandomi and Alavi 2012a; Muduli et al. 2013) with success. However, use of
GP and its variant in liquefaction susceptibility assessment are limited. Alavi and
Gandomi (2012) have used promising variants of GP; linear genetic programming
(LGP) and multi expression programming (MEP) to develop strain energy-based
models for evaluation of the liquefaction resistance of sandy soils. Gandomi and
Alavi (2012b) developed a classification model based on CPT database using multi-
gene genetic programming (MGGP), a variant of GP. But, the performance of the
developed model is not compared with that of the existing models based on other
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soft computing techniques. A first order reliability-based model for evaluation of
liquefaction potential in terms of probability of liquefaction is developed using
the MGGP by Muduli and Das (2013a) based on CPT database. Muduli and Das
(2013b) described the development of a probabilistic model using the MGGP
based on SPT database and Bayesian theory of conditional probability. Muduli
and Das (2014a) developed a deterministic model, using the MGGP based on post
earthquake SPT database, which out performs the available ANN-based model.
Two deterministic models have been developed by Muduli and Das (2014b) using
the MGGP based on CPT database, which are found to be more efficient than
the available ANN-based model and at par with the available SVM-based model
respectively. Muduli et al. (2014) presented a Bayesian mapping function using
the MGGP based on post liquefaction CPT database for evaluation of liquefaction
potential within probabilistic framework. The main advantage of GP and its variant
multi-gene genetic programming (MGGP) over traditional statistical methods and
other soft computing techniques is its ability to develop a compact and explicit
prediction equation in terms of different model variables.

The objective of the present study is to develop deterministic and probabilistic
models to evaluate the liquefaction potential of soil using multi-gene genetic
programming (MGGP) based on available post liquefaction Vs database. Here,
the liquefaction potential is evaluated and expressed in terms of liquefaction field
performance indicator, referred as a liquefaction index (LI) and factor of safety
against the occurrence of liquefaction (Fs). Further, the developed LIp models have
been used to develop both Vs-based CRR model. These developed CRR models in
conjunction with the widely used CSR7.5 model, form the proposed MGGP-based
deterministic method. The efficiency of the developed Vs-based deterministic model
has been compared with that of available statistical and ANN-based model on the
basis of independent database. And also the probabilistic evaluation of liquefaction
potential has been performed where liquefaction potential is expressed in terms
of probability of liquefaction (PL) and the degree of conservatism associated with
developed deterministic model is quantified in terms of PL. Using Bayesian theory
of conditional probability the Fs is related with the PL through the developed
mapping function. The development of compact and comprehensive model equation
using deterministic method based on Vs data will enable geotechnical professional
to use it with confidence and ease. The presentation of probabilistic methods in
conjunction with deterministic factor of safety (Fs) value gives the measure of
probability of liquefaction corresponding to particular Fs. The developed Vs -based
deterministic as well as probabilistic model has been compared with that of the
available ANN-based models through two examples one from liquefied case and the
other from non-liquefied case to show the robustness of the developed models.

12.2 Deterministic Approach

In deterministic approach, the Fs, which is defined as the ratio of CRR to CSR, is
calculated on the basis of prediction of single values of load (CSR) and resistance
(CRR) as shown in Fig. 12.1 without considering the uncertainty associated in
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Fig. 12.1 Deterministic approach used in liquefaction potential evaluation (modified from Becker
1996)

prediction of loading and resistance. It is assumed that there is 100 % probability
of occurrence of calculated CRR and CSR. In deterministic approach, Fs > 1
corresponds to non-liquefaction and Fs� 1 corresponds to liquefaction. Here in
this approach, only single Fs based on past experience is used to account for all
the uncertainties associated with the load and resistance parameters. Though, this
method of analysis does not provide adequate information about the behaviour
of variables causing liquefaction, is still very much preferred by the geotechnical
professionals due to its simple mathematical approach with minimum requirement
of data, time and effort.

In the present study, multi-gene genetic programming (MGGP), the variant of
GP is used to develop prediction model for evaluation of liquefaction potential of
soil within the framework of deterministic approach.

12.2.1 Genetic Programming

Genetic Programming is a pattern recognition technique where the model is
developed on the basis of adaptive learning over a number of cases of provided data,
developed by Koza (1992). It mimics biological evolution of living organisms and
makes use of the principles of genetic algorithms (GA). In traditional regression
analysis the user has to specify the structure of the model, whereas in GP, both
structure and the parameters of the mathematical model are evolved automatically.
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Fig. 12.2 Typical GP tree
representing a mathematical
expression: tan (6.5x2/x1)
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It provides a solution in the form of a tree structure or in the form of a compact
equation using the given dataset. A brief description about GP is presented for the
completeness, but the details can be found in Koza (1992).

GP model is composed of nodes, which resembles a tree structure and thus, it
is also known as GP tree. Nodes are the elements either from a functional set or
terminal set. A functional set may include arithmetic operators (C, �, 	, or �),
mathematical functions (sin(.), cos(.), tanh(.) or ln(.)), Boolean operators (AND,
OR, NOT, etc.), logical expressions (IF, or THEN) or any other suitable functions
defined by the user. The terminal set includes variables (like x1, x2, x3, etc.) or
constants (like 3, 5, 6, 9, etc.) or both. The functions and terminals are randomly
chosen to form a GP tree with a root node and the branches extending from each
function nodes to end in terminal nodes as shown in Fig. 12.2.

Initially a set of GP trees, as per user defined population size, is randomly
generated using various functions and terminals assigned by the user. The fitness
criterion is calculated by the objective function and it determines the quality of
each individual in the population competing with the rest. At each generation a new
population is created by selecting individuals as per the merit of their fitness from
the initial population and then, implementing various evolutionary mechanisms like
reproduction, crossover and mutation to the functions and terminals of the selected
GP trees. The new population then replaces the existing population. This process
is iterated until the termination criterion, which can be either a threshold fitness
value or maximum number of generations, is satisfied. The best GP model, based
on its fitness value that appeared in any generation, is selected as the result of
genetic programming. The description of various evolutionary mechanisms (i.e.,
reproduction, crossover and mutation) in GP are presented in Muduli and Das
(2013b).



316 P.K. Muduli and S.K. Das

Gene-1 Gene-2

sin /

X 0.5 x3

x1 x2

+

Log

X x3 x4

0.6 x1

-

x

Fig. 12.3 An example of typical multi-gene GP model

12.2.2 Multi-Gene Genetic Programming

MGGP is a variant of GP and is designed to develop an empirical mathematical
model, which is a weighted linear combination of a number of GP trees. It is
also referred to as symbolic regression. Each tree represents lower order non-linear
transformations of input variables and is called a ‘gene’. “Multi-gene” refers to the
linear combination of these genes.

Figure 12.3 shows an example of MGGP model where the output is represented
as a linear combination of two genes (Gene-1 and Gene-2) that are developed using
four input variables (x1, x2, x3, x4). Each gene is a nonlinear model as it contains
nonlinear terms (sin(.) / log(.)). The linear coefficients (weights) of Gene-1 and
Gene-2 (c1 and c2) and the bias (c0) of the model are obtained from the training
data using statistical regression analysis (ordinary least square method).

In MGGP procedure, initial population is generated by creating individuals that
contain randomly evolved genes from the user defined functions and variables. In
addition to the standard GP evolution mechanisms there are some special MGGP
crossover mechanisms (Searson et al. 2010), which allow the exchange of genes
between individuals. Similarly, MGGP also provides six methods of mutation
for genes (Gandomi and Alavi 2012a): (1) sub-tree mutation, (2) mutation of
constants using additive Gaussian perturbation, (3) substitution of a randomly
selected input node with another randomly selected input node, (4) substitute a
randomly selected constant with another randomly generated constant (5) setting
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of randomly selected constant to zero, (6) setting a randomly selected constant
one. The probabilities of the each of the re-combinative processes (evolutionary
mechanisms) can be set by the users for achieving the best MGGP model. These
processes are grouped into categories referred to as events. Therefore, the probabil-
ity of crossover, mutation and the direct reproduction event are to be specified by the
user in such a way that the sum of these probabilities is 1.0. The probabilities of the
event subtypes can also be specified by the user. For example, once the probability
of crossover event is selected, it is possible to define the probabilities of a two point
high-level crossover and low-level crossover keeping in mind that the sum of these
event subtype probabilities must be equal to one.

Various controlling parameters such as function set, population size, number of
generations, maximum number of genes allowed in an individual (Gmax), maximum
tree depth (dmax), tournament size, probabilities of crossover event, high level
crossover, low level crossover, mutation events, sub-tree mutation, replacing input
terminal with another random terminal, Gaussian perturbation of randomly selected
constant, reproduction, and ephemeral random constants are involved in MGGP
predictive algorithm. The generalization capability of the model to be developed by
MGGP is affected by selection of these controlling parameters. These parameters
are selected based on some previously suggested values (Searson et al. 2010) and
after following a trial and error approach for the problem under consideration. The
function set (arithmetic operators, mathematical functions etc.) is selected by the
user on the basis of physical knowledge of the system to be analysed. The number
of programs or individuals in the population is fixed by the population size. The
number of generation is the number of times the algorithm is used before the run
terminates. The proper population size and number of generations often depend on
the complexity of the problems. A fairly large number of population and generations
are tested to find the best model. The increase in Gmax and dmax value increases the
fitness value of training data whereas the fitness value of testing data decreases,
which is due to the over-fitting to the training data. The generalisation capability
of the developed model decreases. Thus, in the MGGP-model development it is
important to make a tradeoff between accuracy and complexity in terms Gmax and
dmax. There are optimum values of Gmax and dmax, which produce a relatively
compact model (Searson et al. 2010). The success of MGGP algorithm usually
increases by using optimal values above of controlling parameters.

In the MGGP procedure a number of potential models are evolved at random
and each model is trained and tested using the training and testing data respectively.
The fitness of each model is determined by minimizing the root mean square error
(RMSE) between the predicted and actual value of the output variable (LI) as the
objective function (f ),

RMSE D f D

vuuuut
nX

iD1

�
LI � LIp

�2
n

(12.2)
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where nD number of cases in the fitness group, LIpD predicted value of liquefaction
field performance indicator (LI) and LID 1 for liquefaction and LID 0 for non-
liquefaction field manifestations. If the errors calculated by using Eq. (12.2) for
all the models in the existing population do not satisfy the termination criteria, the
evolution of a new generation of the population continues till the best model is
developed.

12.2.3 Formulation of the Vs-Based Method

The general form of MGGP-based model for LIp based on Vs database can be
presented here as:

LIp D
nX

iD1

F ŒX; f .X/; ci�C c0 (12.3)

FD the function created by the MGGP process referred herein as liquefaction
index function, XD vector of input variablesDfVs, �v

’
, FCI, CSR7.5g where,

VsD corrected blow count, �’vD vertical effective stress of soil at the depth
under consideration, FCIDfines content index (FCID 1, for fines content of soil,
FC� 5 %; FCID 2, for 5 %�FC� 35 %; FCID 3, for FC� 35 %) (Juang et al.
2001). Here, in the present study, the general formulation of CSR as presented by
Seed and Idriss (1971) and Youd et al. (2001) is adopted with minor modification,
i.e., CSR is adjusted to the benchmark earthquake (moment magnitude, Mw, of 7.5)
by using the parameter, magnitude scaling factor (MSF).

CSR7:5 D 0:65

 
�v

�’
v

!�
amax

g

�
.rd/ =MSF (12.4)

where amaxD peak horizontal ground surface acceleration, gD acceleration due to
gravity, rdD shear stress reduction factor which is determined as per Youd et al.
(2001):

rd D 1:0 � 0:00765 z; for z � 9:15m
D 1:174� 0:0267z; for 9:15 � z � 23m

(12.5)

where z is depth under consideration.
The adopted MSF equation is presented below according to Youd et al. (2001).

MSF D
�

Mw

7:5

��2:56

(12.6)
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ci is a constant, f(X)D function defined by the user from the functional set of MGGP,
n is the number of terms of model equation and c0 is the bias. The MGGP as per
Searson et al. (2010) is used and the present model is developed and implemented
using Matlab (MathWorks Inc. 2005).

12.2.4 Database and Preprocessing

In the present study, Vs -based dataset of post liquefaction case histories from
various earthquakes is used (Juang and Chen 2000). It contains information about
soil and seismic parameters: depth (d), measured Vs, soil type, �v, �’v, amax, Mw

and CSR7.5, with field performance observations (LI). The soil in these cases ranges
from grave and gravelly sand with soils having 5–10 % fines content, clean sand
with less than 5 % fines, sand mixtures to sand with fines content between 5 and
15 %, sandy silt to silty sand with FC between 15 and 35 % and silty sand to sandy
and clayey silt with FC > 35 %. The depths at which Vs measurements are reported
in the database range from 2 to 14.8 m. The Vs values range from 28.7 to 1230 m/s.
The FCI values are in the range of 1–3. The amax, Mw and CSR7.5 values are in
the range of [0.02, 0.51 g], [5.9, 8.3] and [0.01, 0.41] respectively. The database
consists of total 186 cases, 88 out of them are liquefied cases and other 98 are non-
liquefied cases. Out of the above data 130 cases are randomly selected for training
and remaining 56 data are used for testing the developed model. Juang and Chen
(2000) also used the above databases with the above number of training and testing
data while developing ANN-based liquefaction model. Here, in the MGGP approach
normalization or scaling of the data is not required which is an advantage over ANN
approach.

12.3 Results and Discussion

The results of the deterministic and probabilistic models are presented separately as
follows. First the deterministic approach is presented in terms of determination of
factor of safety against liquefaction and then the probabilistic approach is developed
based on the results of deterministic approach.

12.3.1 Deterministic Approach

In this section, the result of deterministic model based on post liquefaction Vs

database is presented. A limit state function that separates liquefied cases from the
non-liquefied cases and also represents cyclic resistance ratio (CRR) of soil is also
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Table 12.1 Controlling parameter settings for MGGP-based LIp model development

Parameters Ranges Resolution
Selected
optimum values

Population size 1000–4000 200 3000
Number of generations 100–300 50 200
Maximum number of genes (Gmax) 2–4 1 3
Maximum tree depth (dmax) 2–5 1 3
Tournament size 2–8 1 7
Reproduction probability 0.01–0.07 0.02 0.05
Crossover probability 0.75–0.9 0.05 0.85
Mutation probability 0.05–0.15 0.05 0.1
High level cross over probability 0.1–0.4 0.1 0.2
Low level cross over probability 0.5–0.9 0.1 0.8
Sub-tree mutation 0.6–0.9 0.05 0.85
Substituting input terminal with another
random terminal

0.05–0.2 0.05 0.05

Gaussian perturbation of randomly selected
constant

0.05–0.2 0.05 0.1

Ephemeral random constant [�10, 10] – –

developed by using MGGP. The developed CRR model in conjunction with widely
used CSR7.5 is used to evaluate liquefaction potential in terms of Fs and the results
are presented in following sequence.

The selection of controlling parameters affects the efficacy of the model gen-
erated by the MGGP. Thus, optimum values of the parameters are selected for the
development of LIp model based on some previously suggested values (Searson et al.
2010) and after following a trial and error approach and are presented in Table 12.1.

Using the optimum values of controlling parameters as given in Table 12.1
different LIp models were developed running the MGGP code several times. These
models are analyzed with respect to physical interpretation of LIp as well as their
rate of successful prediction capability and the “best” LIp model was selected. The
developed model is presented below as Eq. (12.7).

LIp D 1:779 tanh .8:249CSR7:5/� 0:0067VsC 0:0069

CSR7:5

� 7:694CSR7:5 exp.FCI/

�’
v

C 0:221 (12.7)

The developed LIp model has been characterized by Figs. 12.4, 12.5, and 12.6.
Figure 12.4 shows the variation of the best fitness (log values) and mean fitness with
number of generations. It can be seen from this figure, the fitness values decrease
with increasing the number of generations and its decrements. The best fitness was
found at the 149th generation (fitnessD 0.349). The statistical significance of each
of the three genes and bias of the developed model is shown in Fig. 12.5. As shown
in Fig. 12.5 the weight (coefficient) of the gene-2 is higher than the other genes



12 Evaluation of Liquefaction Potential of Soil Based on Shear Wave Velocity. . . 321

0 20 40 60 80 100 120 140 160 180 200
-1.1

-1

-0.9

Lo
g 

F
itn

es
s

Generation

Best fitness: 0.34931 found at generation 149

Best fitness

0 20 40 60 80 100 120 140 160 180 200
0.2

0.4

0.6

Generation

F
itn

es
s

Mean fitness (+ - 1 std. dev)

Fig. 12.4 Variation of the best and mean fitness with the number of generation

Bias Gene 1 Gene 2 Gene 3
-10

-5

0

5
Gene weights

Bias Gene 1 Gene 2 Gene 3
0

0.05

0.1
P value (low = significant)

Fig. 12.5 Statistical properties of the evolved MGGP-based LIp model (on training data)

4 6 8 10 12 14 16 18 20

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

F
itn

es
s

Total number of nodes

Fig. 12.6 Population of evolved models in terms of their complexity and fitness



322 P.K. Muduli and S.K. Das

and bias. The degree of significance of each gene using p values is also shown in
Fig. 12.5. It can be noted that the contribution of all the genes towards prediction of
LI (i.e., LIp) is very high except the bias, as their corresponding p values are very
low, whereas the bias contribution is the least, which shows the appropriateness of
the developed MGGP model. Figure 12.6 presents the population of evolved models
in terms of their complexity (number of nodes) and fitness value. The developed
models that perform relatively well with respect to the “best” model and are much
less complex (having less number of nodes) than the “best” model in the population
can be identified in this figure as green circles. The “best” model in the population is
highlighted with a red circle.

A prediction in terms of LIp is said to be successful if it agrees with field
manifestation (LI) of the database. The successful prediction rates of liquefied
and non-liquefied cases are found to be comparable, 88 % for training and 86 %
for testing data, showing good generalization of the developed model. The overall
success rate of the trained model in predicting liquefaction and non-liquefaction
cases is 87 %. Thus, it is evident from the results that the proposed MGGP based
LIp model is able to establish the complex relationship between the liquefaction
index and its main contributing factors in terms of a model equation with a high
accuracy.

12.3.2 Parametric Study

For verification of the developed MGGP-based LIp model, a parametric analysis
was performed. The parametric analysis investigates the response of the predicted
liquefaction index from the above model with respect to the corresponding input
variables. The robustness of the developed model equation for LIp (i.e. Eq. 12.7)
is evaluated by examining how well the predicted values agree with the underlying
physical behavior of occurrence of liquefaction.

As it can be observed from Fig. 12.7, that LIp decreased with increase in Vs,

and FCI linearly. But, it can be seen that LIp increased with increasing CSR7.5 and
¢’v nonlinearly. The above results confirm that the developed model is capable of
showing the important physical characteristics of liquefaction index.

12.3.3 Sensitivity Analysis

The sensitivity analysis is an important aspect of a developed model to identify
important input parameters. In the present study, sensitivity analysis was made
following Gandomi et al. (2013a, b). As per Gandomi et al. (2013a, b) the sensitivity
(Si) of each parameter, is expressed as given below:
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Fig. 12.7 Parametric analysis of LIp for developed MGGP-based model

Table 12.2 Sensitivity
analysis of inputs for the
developed MGGP-based LIp

model

Parameters Vs FCI ¢ ’
v CSR7.5

Sensitivity (%) 46.2 10.5 11.3 32.0
Rank 1 4 3 2

Ni D fmax .xi/� fmin .xi/ (12.8a)

Si D Ni
nX

jD1

Nj

� 100 (12.8b)

where fmax (xi) and fmin (xi) are respectively the maximum and minimum of the
predicted output (i.e. LIp) over the ith input domain, where other variables are
equal to their average values. Table 12.2 presents the results of above analysis for
the proposed MGGP model. Thus, Vs is the most important parameter. The other
important inputs are CSR7.5, and �’v with FCI is the least important parameter.
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Fig. 12.8 Conceptual model
for search technique for
artificial data points on limit
state curve (modified from
Juang and Chen 2000)
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12.3.4 Generation of Artificial Points on the Limit State Curve

As discussed earlier artificial data points on the boundary curve are generated
using Eq. (12.7) to approximate a function, referred as limit state function that will
separate liquefied cases from the non–liquefied ones, following a simple and robust
search technique developed by Juang and Chen (2000) and used by Muduli and Das
(2013b). The technique is explained conceptually with the help of Fig. 12.8. Let a
liquefied case, ‘L’ (target output LID 1) of the database as shown in Fig. 12.8 can
be brought to the boundary or limit state curve [i.e. when the case becomes just
non-liquefied as per the evaluation by Eq. (12.7)] if CSR7.5 is allowed to decrease
(path P) or Vs is allowed to increase (path Q). Further, for a non-liquefied case,
‘NL’ (target output LID 0) of the database, the search for a point on the boundary
curve involves an increase in CSR7.5 (path T) or a decrease in Vs(path S) and the
desired point is obtained when the case just becomes liquefied as adjudged by
Eq. (12.7). Figure 12.9 shows the detailed flowchart of this search technique for
path ‘P’ and ‘T’. A multi-dimensional (Vs, �v

’
, FCI, CSR7.5) data point on the

unknown boundary curve is obtained from each successful search. In this study,
the limit state is defined as the ‘limiting’ CSR7.5, which a soil can resist without
occurrence of liquefaction and beyond which the soil will liquefy. Thus, for a
particular soil at it’s in-situ conditions, this limit state specifies its CRR value.
A total of 210 multi-dimensional artificial data points (Vs, �v

’
, FCI, CRR), which are

located on the boundary curve are generated using the developed model (Eq. 12.7)
and the technique explained in Figs. 12.8 and 12.9. These data points are used to
approximate the limit state function in the form of CRRD f (Vs, �v

’
, FCI) as per

MGGP and is presented below.
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Fig. 12.9 Search algorithm for data point on limit state curve

12.3.5 MGGP Model for CRR

The multi-gene GP is also used for development of CRR model using 210 artificially
generated data points, out of which 140 data points are selected randomly for
training and rest 70 numbers for testing the developed model. The optimum values
of the controlling parameters are obtained as explained above using the range of
values given in Table 12.1. Several CRR models were obtained with the optimum
values of controlling parameters by running the MGGP program several times.
Then, the developed models were analyzed with respect to physical interpretation
of CRR of soil and after careful consideration of various alternatives the following
expression (Eq. 12.9) was found to be most suitable prediction model for CRR.
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CRRD 0:0000144V2
s �

0:000158V2
s

�’
v � 8:010754

� 0:001704VsC 1:171FCI � Vs

�’
v

2
C 0:0458

(12.9)

The statistical performance of the developed CRR model is evaluated in terms
of correlation coefficient (R), coefficient of determination (R2) (Rezania and
Javadi 2007), Nash-Sutcliff coefficient of efficiency (E) (Das and Basudhar 2008),
RMSE, average absolute error (AAE) and maximum absolute error (MAE). These
coefficients are defined as:

R D

nX
iD1

�
Xt � Xt

� �
XP � XP

�
vuut nX

iD1

�
Xt � Xt

�2 nX
iD1

�
XP � XP

�2 (12.10)

R2 D

nX
iD1

.Xt/
2 �

nX
iD1

�
Xt � Xp

�2
nX

iD1

.Xt/
2

(12.11)

E D

nX
iD1

�
Xt � Xt

�2 � nX
iD1

�
Xt � Xp

�2
nX

iD1

�
Xt � Xt

�2 (12.12)

AAE D 1

n

nX
iD1

ˇ̌
Xt � Xp

ˇ̌
(12.13)

MAE D max
ˇ̌
Xt � Xp

ˇ̌
(12.14)

RMSE D

vuuuut
nX

iD1

�
Xt � Xp

�2
n

(12.15)

where n is the number of case histories and Xt and Xp are the measured (i.e.,
target) and predicted values (of CRR in this case), respectively. Xt is the average
of measured values. In addition, another criterion the performance index (�), which
is a combination of R and RMSE as proposed by Gandomi et al. (2014), is also
used to evaluate the performance of the developed model because R will not change



12 Evaluation of Liquefaction Potential of Soil Based on Shear Wave Velocity. . . 327

Table 12.3 Statistical
performances of developed
MGGP based CRR model

Data R2 E AAE MAE RMSE �

Training (140) 0.94 0.83 0.02 0.21 0.04 0.14
Testing (170) 0.95 0.85 0.02 0.13 0.03 0.13

significantly by shifting the output values of a model equally, and error functions
(e.g. RMSE and AAE) only shows the error not the correlation and is presented
below.

� D RMSE

Xt
� 1

RC 1
(12.16)

Thus, statistical performances: R2, E, RMSE, AAE, MAE and � of the developed
CRR model as presented in Table 12.3 for training and testing data are comparable
showing good generalization capability of the CRR model, which also ensures that
there is no over-fitting. The developed CRR model is found to be very compact
and comprehensive for use by the geotechnical professionals. The performance
of the proposed CRR model is also evaluated by calculating the Fs for each case
of the present database. In deterministic approach Fs� 1 predicts occurrence of
liquefaction and Fs > 1 refers to non-liquefaction. A prediction (liquefaction or non-
liquefaction) is considered to be successful if it agrees with the field manifestation.
The deterministic approach is preferred by the geotechnical professionals and vari-
ous design decisions for further works to be taken up at the site under consideration
are taken on the basis of Fs. In the present study, Eq. (12.9) in conjunction with
the model for CSR7.5 (Eq. 12.4) forms the proposed Vs-based deterministic method
for evaluation of liquefaction potential. The performance of the proposed MGGP-
based deterministic model is compared with that of the ANN-based model (Juang
and Chen 2000) and statistical model (Andrus and Stokoe 1997) and the results
are presented in Table 12.4. It is noted from Table 12.4 that the success rate in
prediction of liquefied cases is 91 % and that for non-liquefied cases is 85 % and
the overall success rate is found to be 88 % by the present MGGP model, whereas
the accuracies in prediction of liquefied cases, non-liquefied cases and for overall
cases are 88, 88 and 88 %, respectively by the available ANN-based deterministic
model (Juang and Chen 2000); 99, 40 and 68 % respectively by the available
statistical model (Andrus and Stokoe 1997). This clearly indicates the robustness of
the proposed deterministic model as it is at par with the available ANN-based model
and better than available statistical model. However, it may be mentioned here that
the ANN is a ‘black box’ system and the expression for Fs is not comprehensive for
future use.
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Table 12.4 Comparison of performance of the developed MGGP-based deterministic model
with ANN-based model of Juang and Chen (2000) and Statistical model of Andrus and
Stokoe (1997)

Performance in terms of successful prediction (%)
Liquefied cases(88) Non-liquefied cases(98) Overall (186)

MGGP ANN Statistical MGGP ANN Statistical MGGP ANN Statistical
91 88 99 85 88 40 88 88 68

12.3.6 Parametric Study

For verification of the developed MGGP-based CRR model, a parametric analysis
was performed. The robustness of the developed model equation for CRR (Eq. 12.9)
is evaluated by examining how well the predicted values agree with the underlying
physical behavior of cyclic resistance ratio of soil.

It is observed from Fig. 12.10, that CRR increased with increasing Vs, nonlinearly
whereas it increased linearly with FCI. But, it can be noted that CRR decreased with
increasing ¢’v nonlinearly. The above results confirm that the developed model is
capable of showing the underlying physical behavior of CRR.

12.3.7 Sensitivity Analysis

The sensitivity analysis of the developed MGGP-based CRR model was done
following Gandomi et al. (2013a, b) as explained in the previous section. Table 12.5
presents the results of above analysis. It is found that Vs is the most important
parameter. The other important input parameter is �’v with FCI is the least important
parameter.

The developed methodology is presented with examples for non-liquefied and
liquefied cases separately for easier in using the results of the present study.

Example No. 1: Deterministic Evaluation of a Non-liquefied Case
This example is of a non-liquefied case. Field observation of the site, which is
designated as Salinas River, north of 1989 Loma Prieta California earthquake
(as cited in Juang and Chen 2000), indicated no occurrence of liquefaction. The
mean values of seismic and soil parameters at the critical depth (9.85 m) are given
as follows: VsD 177 m/s, �vD 178.2 kPa, �v

’D 140.8 kPa, soil type index/ soil
class numberD 1.5, amaxD 0.15 g and MwD 7.1.
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Fig. 12.10 Parametric analysis of CRR for developed MGGP-based model

Table 12.5 Sensitivity
analysis of inputs for the
developed MGGP-based CRR
model

Parameters Vs FCI ¢ ’
v

Sensitivity (%) 51.4 10.0 38.6
Rank 1 3 2

(i) Calculation of CRR
Soil class number 1.5 corresponds to silt to sand mixture with fines content
more than 35 %, which corresponds to FCI value of 3. CRR is calculated using
Eq. (12.9)

CRR D 0:0000144V2
s �

0:000158V2
s

�’
v � 8:010754

� 0:001704Vs

C 1:171FCI � Vs

�’
v

2
C 0:0458 D 0:189
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(ii) Calculation of CSR

MSF D
�

Mw

7:5

��2:56

D 1:151

rd D 1:174� 0:0267z;

D 0:911

Finally using Eq. (12.4), we have

CSR7:5 D 0:65

 
�v

�’
v

!�
amax

g

�
.rd/ =MSF

D 0:098

(iii) The factor of safety is calculated as follows:

Fs D CRR=CSR D 0:189=0:098D 1:928 > 1

As a back analysis of the case history, above Fs value would suggest no
liquefaction, which agrees with field manifestation. The same example has
been evaluated by the ANN-based deterministic method as per Juang and Chen
(2000) and the corresponding Fs is found out to be 1.262.

Example No. 2: Deterministic Evaluation of a Liquefied Case
This example is of a liquefied case. Field observation of the site, which is designated
as Pence Ranch of 1983 Borah Peak, Idaho earthquake (as cited in Juang and
Chen 2000), indicated occurrence of liquefaction. The mean values of seismic and
soil parameters at the critical depth (2.35 m) are given as follows: VsD 131 m/s,
�vD 39.4 kPa, �v

’D 33.8 kPa, soil type index/ soil class numberD 4, amaxD 0.36 g
and MwD 6.9.

(i) Calculation of CRR
Soil class number 4 corresponds to gravel and gravelly sand with fines content
equal to 5 %, which corresponds to FCI value of 1. CRR is calculated using
Eq. (12.9)

CRR D 0:0000144V2
s �

0:000158V2
s

�’
v � 8:010754

� 0:001704Vs

C 1:171FCI � Vs

�’
v

2
C 0:0458 D 0:099
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(ii) Calculation of CSR

MSF D
�

Mw

7:5

��2:56

D 1:238

rd D 1:0 � 0:00765 z;

D 0:982

Finally using Eq. (12.4), we have

CSR7:5 D 0:65

 
�v

�’
v

!�
amax

g

�
.rd/ =MSF

D 0:216

(iii) The factor of safety is calculated as follows:

Fs D CRR=CSR D 0:099=0:216D 0:458 < 1

As a back analysis of the case history, this Fs value would suggest
liquefaction, which agrees with field manifestation. The above example has
also been evaluated by the ANN-based deterministic method as per Juang and
Chen (2000) and the corresponding Fs is found out to be 0.600, which confirms
the finding of MGGP-based deterministic method.

12.3.8 Probabilistic Approach

Because of the parameter and model uncertainties, in liquefaction potential evalua-
tion, Fs > 1 does not always correspond to non-liquefaction that it cannot guarantee
a zero chance of occurrence of liquefaction and similarly, Fs� 1 does not always
correspond to liquefaction. This can be explained considering the variability of CRR
and CSR as shown in Fig. 12.11. If Fs is evaluated considering the mean values of
CRR and CSR then, Fs is greater than 1.0. But, as per the distributions of CSR and
CRR shown in Fig. 12.11, there is some probability that the CRR will be less than
CSR as indicated by the shaded region of the figure, which will yield Fs < 1, proving
the previous prediction wrong and a non-liquefied case may turn out to be a liquefied
case. Thus, in recent years efforts have been made to assess the liquefaction potential
in terms of probability of liquefaction (PL) as discussed earlier.

Here, in the present study the Vs-based deterministic method as proposed in the
previous section is calibrated with the liquefaction field performance observations
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Fig. 12.11 Shows the possible distribution of CRR and CSR in liquefaction potential evaluation

using Bayesian theory of conditional probability and case histories of post lique-
faction Vs database to develop a probabilistic model, referred herein as Bayesian
mapping function, which is used to correlate Fs with PL.

12.3.9 Development of Bayesian Mapping Function

According to Juang et al. (1999) the probability of liquefaction occurrence of a case
in the database, for which the Fs has been calculated, can be found out using Bayes’
theorem of conditional probability as given below.

P .L=Fs/ D P .Fs=L/ P.L/

P .Fs=L/ P.L/C P .Fs=NL/ P.NL/
(12.17)

where P(L/ Fs)D probability of liquefaction for a given Fs; P(Fs/L)D probability of
Fs, assumed that liquefaction did occur; P(Fs/NL)D probability of Fs, assumed
that liquefaction did not occur; P(L)D prior probability of liquefaction; and
P(NL)D prior probability of non-liquefaction. P (Fs/L) and P (Fs/NL) can be
obtained by using Eqs. (12.8a) and (12.8b), respectively.

P .Fs=L/ D
FsC
FsZ

Fs

fL.x/dx (12.18a)
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P .Fs=NL/ D
FsC
FsZ

Fs

fNL.x/dx (12.18b)

where fL(x) and fNL(x) are the probability density functions of Fs for liquefied cases
and non-liquefied cases of the database respectively. As 
Fs! 0 Eq. (12.17) can
be expressed as Eq. (12.19).

P .L=Fs/ D fL .Fs/ P.L/

fL .Fs/ P.L/C fNL .Fs/ P.NL/
(12.19)

If the information of prior probabilities P(L) and P(NL) is available, Eq. (12.19)
can be used to determine the probability of liquefaction for a given Fs. In absence
of P(L) and P(NL) values it can be assumed that P(L)DP(NL) on the basis of the
maximum entropy principle (Juang et al. 1999). Thus, under the assumption that P
(L)DP (NL), Eq. (12.19) can be presented as Eq. (12.20).

PL D fL .Fs/

fL .Fs/C fNL .Fs/
(12.20)

where fL(Fs) and fNL(Fs) are the probability density functions (PDFs) of Fs for
liquefied cases and non-liquefied cases respectively.

In the present investigation, the calculated Fs values, using the Vs-based deter-
ministic method as presented in the previous section, for different cases of the
database (Juang and Chen 2000) are grouped according to the field performance
observation of liquefaction (L) and non-liquefaction (NL). Several different proba-
bility density functions are considered and out of them the three best fitting curves
(Lognormal, Weibull and Rayleigh) to the histogram for both L and NL groups are
shown in Fig. 12.12a–f. It is found on the basis of chi-square test for goodness-
of-fit that histograms of the factor of safety of both L and NL group are best fitted
by lognormal probability density function with mean (�) and standard deviation
(¢): �D�0.622, ¢ D 0.535 and �D 0.732, ¢D 1.018 respectively as shown in
Fig. 12.12a, d, respectively.

For the present Vs database, fL(Fs) and fNL(Fs) are the lognormal probability
density functions of Fs for liquefied cases and non-liquefied cases, respectively.
Based on the obtained probability density functions, PL is calculated using Eq.
(12.20) for each case in the database. The Fs and the corresponding PL of the total
186 cases of database are plotted and the mapping function is approximated through
curve (logistic) fitting as shown in Fig. 12.13. The mapping function is presented as
Eq. (12.21) with a high value of R2 (0.99).

PL D 1

1C �Fs
a

�b (12.21)
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Fig. 12.12 Histogram showing the PDFs of calculated factor of safeties: (a),(b), (c) Liquefied (L)
cases; (d),(e),(f) Non-liquefied (NL) cases

where a (1.04) and b (3.8) are the parameters of the fitted logistic curve. The
Fs is calculated using the proposed MGGP-based deterministic method and the
corresponding PL can be found out using the developed mapping function.
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Fig. 12.12 (continued)

The proposed deterministic limit state surface (FsD 1.0) corresponds to a
probability of 53.7 % according to Eq. (12.21). This is close to the 50 % probability
that is associated with a completely unbiased limit state curve corresponding to
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Fig. 12.13 Plot of PL-Fs showing the mapping function approximated through curve fitting

a factor of safety of 1.0 and mapping function parameter (a) value of 1. The
mapping function can be utilized as a tool for selecting proper factor of safety based
on the probability of liquefaction that is acceptable for a particular project under
consideration. For example, applying the present deterministic method with a factor
of safety of 1.04 would result in a probability of liquefaction (PL) of 50 %, whereas
an increased Fs of 1.15 corresponds to a reduced PL of 40.5 %. If a probability of
liquefaction less than 40.5 % is required for a particular project in a site, this can be
achieved by selecting a larger factor of safety on the basis of the developed mapping
function.

The probabilities of liquefaction for the total 186 cases of the database (Juang and
Chen 2000) are calculated using the proposed MGGP-based probabilistic methods.
The assessed probability of liquefaction is used to judge the correctness of the
prediction on the basis of field manifestation. If the PL value is found out to be 1.0
for a particular case then, there is maximum probability that liquefaction will occur
and similarly, PLD 0 corresponds to maximum probability of non-liquefaction. But,
it is not always possible to get the PL values as 1.0 or 0. Hence, in the present
study, the success rate of prediction of liquefied cases is measured on the basis
of three different limits of PL values and are as follows: [0.85–1.0], [0.65–1] and
[0.5–1.0]. Similarly, for non-liquefied cases the three PL limits considered are in
the range [0, 0.15], [0, 0.35] and [0, 0.5] (Muduli et al. 2014). As per results
presented in Table 12.6, the rate of successful prediction by the proposed MGGP-
based probabilistic model for liquefied cases on the basis of above three different PL

limits are (38 %), (73 %) and (91 %), for non-liquefied cases the rate of successful
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Table 12.6 Results of proposed MGGP-based probabilistic model based on the present
database (Juang and Chen 2000)

Criterion (PL range) No. of successful prediction Rate of success full prediction (%)

Based on 88 liquefied cases
0.85–1.00 33 38
0.65–1.00 64 73
0.5–1.00 80 91
Based on 98 non-liquefied cases
0–0.15 47 48
0–0.35 66 67
0–0.5 79 81
Based on all 186 cases
0.85–1.00 and 0–0.15 80 43
0.65–1.00 and 0–0.35 130 70
0.5–1.00 and 0–0.5 159 85

prediction are (48 %), (67 %) and (81 %) and for overall cases of the database are
(43 %), (70 %) and (85 %). The above probabilistic analysis of the present database
compliments the results as obtained by the deterministic approach presented in the
previous section.

Similar to deterministic approach, the above probabilistic liquefaction analysis is
also presented with examples.

Example No. 3: Probabilistic Evaluation of a Non-liquefied case
This example is of a non-liquefied case that was analysed previously using the
deterministic approach (see Example No. 1). As describe previously, field obser-
vation of the site, indicated no occurrence of liquefaction during 1989 Loma Prieta,
California earthquake. The mean values of seismic and soil parameters at the critical
depth (9.85 m) are given as follows: VsD 177 m/s, �vD 178.2 kPa, �v

’D 140.8 kPa,
soil type index/soil class numberD 1.5, amaxD 0.15 g and MwD 7.1 (as cited in
Juang and Chen 2000).

The Fs of the above example is found out to be 1.928.
Using the developed mapping function (Eq. 12.21) the probability of liquefaction

is calculated:

PL D 1

1C � Fs
1:04

�3:8

D 1

1C � 1:928
1:04

�3:8

D 0:087
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As the obtained PL is within the range [0, 0.15] this is a case of non-
liquefaction, which agrees with the field observation as well as the result of the
deterministic approach presented in Example No. 1. The above example has also
been evaluated by the ANN-based probabilistic method as per Juang et al. (2001)
and the corresponding PL is found out to be 0.15, which confirms the finding of
MGGP-based probabilistic method. As the PL (0.087) according to MGGP model is
found be less than the PL (0.15) as per the ANN-based model and also more close to
0, the prediction capability of MGGP is considered to better than that of ANN-based
method.

Example No. 4: Probabilistic Evaluation of a Liquefied Case
This example is of a liquefied case that was analyzed previously using the
deterministic approach (see Example No. 2). Field observation of the site, indicated
occurrence of liquefaction during 1983 Borah Peak, Idaho earthquake. The mean
values of seismic and soil parameters at the critical depth (2.35 m) are given as
follows: VsD 131 m/s, �vD 39.4 kPa, �v

’D 33.8 kPa, soil type index/soil class
numberD 4, amaxD 0.36 g and MwD 6.9 (as cited in Juang and Chen 2000).

The Fs of the above example is found out to be 0.458.
Using the developed mapping function (Eq. 12.21) the probability of liquefaction

is calculated as given below:

PL D 1

1C � Fs
1:04

�3:8

D 1

1C � 0:458
1:04

�3:8

D 0:957

As the obtained PL is within the range [0.85, 1] this is a case of liquefaction,
which agrees with the field observation as well as the result of the deterministic
approach presented in Example No. 2. The above example has also been evaluated
by the ANN-based probabilistic method as per Juang et al. (2001) and the
corresponding PL is found out to be 0.637, which is in the range [0.5–1] of a
liquefied case. As the PL (0.957) as per MGGP model is found be greater than
the PL (0.637) of ANN-based model and more close to 1, the prediction capability
of MGGP is considered to better than that of ANN-based method.

The present findings from the above two examples show that the MGGP-based
probabilistic method is more accurate than ANN-based method considering the non-
liquefied [PL of MGGP method (0.087) < PL of ANN method (0.15)] as well as
liquefied case [PL of MGGP method (0.957) > PL of ANN method (0.637)].
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12.4 Conclusion

12.4.1 Conclusions Based on Vs-Based Deterministic
Approach

The following conclusions are drawn from the results and discussion of the Vs-based
liquefaction potential evaluation studies by the proposed deterministic approach:

1. Vs-based post liquefaction database available in literature is analyzed using
multi-gene genetic programming to predict the liquefaction potential of soil in
terms of liquefaction field performance indicator, LI.

2. The efficacy of the developed MGGP-based LIp model in terms of rate of the
successful prediction of liquefied and non-liquefied cases are comparable, 88 %
for training and 86 % for testing data, showing good generalization of the
developed model.

3. From the parametric study it is found that LIp decreased with increasing Vs,

and FCI linearly. But, LIp increased with increasing CSR7.5 and ¢’v nonlinearly.
The above results confirm that the developed model is capable of showing the
important physical characteristics of liquefaction index.

4. Based on sensitivity analyses the measured Vs are found to be “most” important
parameter contributing to the prediction of liquefaction index (LIp) as well as
CRR.

5. For the proposed deterministic method based on developed CRR model and
widely used CSR7.5 model, the rates of successful prediction of liquefaction and
non-liquefaction cases are 91, and 85 % respectively. The overall success rate
of the proposed method for all 186 cases in the present database is found to be
88 %. The performance of the present deterministic method is at par with that of
the ANN-based method (Juang and Chen 2000) and better than that of statistical
method (Andrus and Stokoe 1997). But, unlike ANN based method the present
methodology presents a compact expression for easier in prediction.

6. From the parametric study it is found that CRR increased with increasing
Vs, nonlinearly whereas it increased with increasing FCI linearly. But, CRR
decreased with increasing ¢’v nonlinearly.

12.4.2 Conclusions Based on Vs-Based Probabilistic Analysis

The following conclusions are drawn based on the results and discussion as
presented above for Vs-based probabilistic evaluation of liquefaction potential.

1. The proposed Vs-based deterministic method is characterized with a probability
of 53.7 % by means of the developed Bayesian mapping function relating Fs

to PL. The developed Bayesian mapping function can be utilized as a tool
for selecting proper factor of safety in deterministic approach based on the
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probability of liquefaction that is acceptable for a particular project under
consideration. For example, applying the present deterministic method with a
factor of safety of 1.04 would result in a probability of liquefaction (PL) of 50 %,
whereas an increased Fs of 1.15 corresponds to a reduced PL of 40.5 %. If a
probability of liquefaction of less than 40.5 % is required, it can be achieved by
selecting a larger Fs based on the proposed mapping function.

2. The present findings from the two examples show that the MGGP-based proba-
bilistic method is more accurate than that of available ANN-based method for
both the non-liquefied [PL of MGGP method (0.087) < PL of ANN method
(0.15)] as well as liquefied [PL of MGGP method (0.957) > PL of ANN method
(0.637)] cases.
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Chapter 13
Site Characterization Using GP, MARS
and GPR

Pijush Samui, Yıldırım Dalkiliç, and J Jagan

13.1 Introduction

Geotechnical site characterization is an important task for any civil engineering
project. Civil engineers use different in-situ tests fStandard Penetration Test (SPT),
Cone Penetration Test (CPT) and shear wave velocity techniqueg for site char-
acterization purpose. The main aim of site characterization is the prediction of
soil properties at any point in site based on experimental data. Researchers use
random field method and geostatic for geotechnical site characterization (Yaglom
1962; Lumb 1975; Vanmarcke 1977; Tang 1979; Wu and Wong 1981; Asaoka
and Grivas 1982; Vanmarcke 1983; Baecher 1984; Kulatilake and Miller 1987;
Kulatilake 1989; Fenton 1998; Phoon and Kulhawy 1999; Uzielli et al. 2005;
Kulatilake and Ghosh 1988; Kulatilake 1989; Soulie et al. 1990; Chiasson et al.
1995; DeGroot 1996). However, the act of arbitrary field method and geostatic
are not promising (Juang et al. 2001). Artificial Neural Network (ANN) has been
adopted for site characterization (Juang et al. 2001; Samui and Sitharam 2010).
However, ANN undergoes various restraints such as black box approach, arriving
at local minima, low generalization capability, etc (Park and Rilett 1999; Kecman
2001). The problem of ANN was solved by using Support Vector Machine (SVM)
(Samui and Das 2011). However, SVM has the various limitations (Tipping 2001).

P. Samui (�) • J. Jagan
Centre for Disaster Mitigation and Management, VIT University,
Vellore 632014, Tamilnadu, India
e-mail: pijush.phd@gmail.com; janyfriends57@gmail.com

Y. Dalkiliç
Faculty of Engineering, Civil Engineering Department, Erzincan University,
Erzincan, Turkey
e-mail: yildirim.dalkilic@gmail.com

© Springer International Publishing Switzerland 2015
A.H. Gandomi et al. (eds.), Handbook of Genetic Programming Applications,
DOI 10.1007/978-3-319-20883-1_13

345

mailto:yildirim.dalkilic@gmail.com
mailto:janyfriends57@gmail.com
mailto:pijush.phd@gmail.com


346 P. Samui et al.

This article adopts Genetic Programming (GP), Multivariate Adaptive
Regression Spline (MARS) and Gaussian Process Regression (GPR) for developing
site characterization model of Bangalore (India) based on corrected Standard
Penetration Test (SPT) value (Nc). This article uses the database collected from the
work of Samui and Sitharam (2010). GP is constructed based on genetic algorithm
(Koza 1992). There are lots of applications of GP in the literatures (Londhe and
Charhate 2010; Guven and Kişi 2011; Alavi and Gandomi 2012; Gandomi and
Alavi 2011, 2012; Danandeh et al. 2013; Zahiri and Azamathulla 2014; Yang et al.
2013; Fister et al. 2014; Langdon 2013; Alavi and Gandomi 2011, 2012). MARS is
developed by Friedman (1991). It is a non-parametric regression technique. It has
been successfully applied for solving different problems (Harb et al. 2010; Mao
et al. 2011; Zhan et al. 2012; Kumar and Singh 2013; Garcia and Alvarez 2014).
The formulation of GPR is Bayesian. GPR assumes covariance function for final
prediction. It has been previously applied in different problems (Shen and Sun 2010;
Xu et al. 2011; Kongkaew and Pichitlamken 2012; Fairchild et al. 2013; Holman et
al. 2014). The results of GP, MARS and GPR have compared with each other. The
developed GP, MARS and GPR give the spatial variability of Nc.

13.2 Methods

13.2.1 Details of GP

GP is developed based on the concept of ‘survival of the fittest’. In 1st step, a random
population of equations is created. The fitness value of each equation is determined
in 2nd step. ‘Parents’ are selected in this step. In 3rd step, ‘offspring’s are created
through the procedure of reproduction, mutation and crossover. In 4th step, the best
equation is obtained.

The above flowchart exposes the simplified working procedure of the genetic
programming. Crossover is one of the genetic operators used to fuse the population.
This operator gently selects preferable parent’s chromosome and couple them
to produce an offspring. The crossover point was elected in an aimless manner.
Figure 13.1 explains the process of crossover.

Mutation is another genetic operator which is identical to the crossover only
in selecting the chromosomes of the parent’s (i.e.) the mutation point is randomly
selected. It changes the building blocks helping to breakout from the local minimal
traps. The size of the mutation is also arbitrary, which helps to get the best
individual.

From Fig. 13.2 we can get the exposure on the technique of mutation. These are
the general details of the GP.
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Fig. 13.2 Methodology of
mutation
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13.2.2 Details of MARS

MARS uses basis functions to develop relationship between input (x) and output
(y). It uses the following equation for prediction of y.

y D a0 C
MX

mD1

amBm.x/ (13.1)

where M is the number of basis functions, Bm(x) is the mth basis function, am is the
coefficient corresponding Bm(x) and a0 is constant.

In this study, Latitude (Lx), Longitude (Ly) and depth (z) of SPT tests have been
taken as inputs of the MARS. The output of MARS is Nc. So, x D �

Lx; Ly; z
�

and
y D ŒNc�.

MARS uses spline function as basis function. The expression of basis function is
given below.

Œ� .x � t/�qC D


.t � x/q; if x < t
0; otherwise

(13.2)

ŒC .x � t/�qC D


.t � x/q; if x � t
0; otherwise

(13.3)

where t is knot location and q is power.
The developed MARS contains two steps. In forward step, basis functions are

added to define Eq. (13.1). Overfitting can occur due to large number of basis
functions. In backward step, basis functions are deleted based on Generalized Cross
Validation (GCV) (Sekulic and Kowalski 1992). The value of GCV is determined
by using the following equation.
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GCV D
1
N

NX
iD1

Œyi � f .xi/�
2

h
1 � C.B/

N

i2
(13.4)

where N is the number of data and C(B) is a complexity penalty. The value of C(B)
is given by the following expression.

C.B/ D .BC 1/C dB (13.5)

where B is number of basis function and d is the penalty for each basis function.
These depicted details gives the basic information of MARS.

13.2.3 Details of GPR

This section will serve a detail methodology of GPR. Let us consider the following
dataset (D).

D D f.xi; yi/gNiD1 (13.6)

where N is number of dataset, x is input and y is output.
In this article, Lx, Ly and z of SPT tests have been taken as inputs of the GPR.

The output of GPR is Nc. So, x D �Lx; Ly; z
�

and y D ŒNc�.
In GPR, the relation between x and y is given below.

yi D f .xi/C ©i (13.7)

where f is latent real-valued function and © is observational error.
GPR uses the following relation for prediction of new output (yNC1)�

y
yNC1

�

 N .0; KNC1/ (13.8)

where KNC1 is covariance matrix and the expression of KNC1 is given below.

KNC1 D
�

ŒK� Œk .xNC1/��
k.xNC1/

T� k1 .xNC1/

	
(13.9)

where k(xNC1) denotes covariances between training inputs and the test input and
k1(xNC1) denotes the autocovariance of the test input.

The distribution of yNC1 is Gaussian with the following mean (�) and variance
(¢) respectively.
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Table 13.1 Statistical parameters of the dataset

Variable Mean Standard deviation Skewness Kurtosis

Lx(degree) 77:59 0:03 0:39 2:51

Ly(degree) 12:97 0:03 0:39 2:57

z(m) 5:29 3:64 5:44 1:41

N 31:49 19:23 1:07 4:08

� D k.xNC1/
TK�1y (13.10)

� D k .xNC1/� k
�
.xNC1/

TK�1k .xNC1/ (13.11)

Radial basis function has been used as covariance function. The above mentioned
information’s will give the basic knowledge of GPR.

13.3 Experimental Data

In Bangalore, during the period 1995–2005 major projects were carried out. The
collaborative work on Standard Penetration Test (SPT) was administered by Torsteel
Research Foundation (India) and the Indian Institute of Science (Bangalore) and the
data was collected from their vault. The data gathered are on average up to a depth of
40 m below the ground level. The borelogs enclose knowledge about depth, density
of the soil, N values, fines content and depth of ground water table. These obtained
data have been used for this study. In this study, we use three input parameters Lx,
Ly, and z which represents the latitude, longitude and depth of a point.

For the construction of GP, MARS and GPR the dataset has been branched into
two sets.

Training Dataset This is used to develop the model. It adopts 90 % boreholes as
training dataset.

Testing Dataset It is used to evaluate the developed model. The well left 10 %
boreholes are considered as testing dataset.

The dataset is normalized against their maximum values. The statistical param-
eters of the dataset have been tabulated in Table 13.1. The programs of GP, MARS
and GPR were constructed by using MATLAB.

13.4 Model Development

In order to construct GP, the number of population is kept to 800. The number of
generation is set to 200. The developed GP gives the best performance for mutation
frequencyD 60 and crossover frequencyD 40. The final equation of the GP is given
below.
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Table 13.2 Details of basis
functions

Bm(x) Equation am

B1(x) max .0; z� 0:387/ 0.239
B2(x) max .0; 0:387� z/ �0.891
B3(x) max .0; Lx � 0:387/ 0.579
B4(x) B2.x/ max

�
0; Ly � 0:971

�
60.658

B5(x) max .0; 0:678� Lx/ max
�
0; Ly � 0:599

�
1.008

B6(x) max .0; 0:678� Lx/ max
�
0; 0:599� Ly

�
1.423

B7(x) max
�
0; Ly � 0:884

� �2.0353
B8(x) max

�
0; 0:884� Ly

� �0.230

Nc D 1:24 sin
�
sin
�
Ly C z

��C 0:9874Ly.exp .Lx//
2 � 0:203 exp .Lx/

�
8:22Ly C z

�
C 0:272 exp .Lx/ sin

�
8:22Ly

� � 0:897 sin
�
8:059Ly

�
tanh .Lx/ � 1:641LxLy

.2Lx � tanh.z//C 0:0216 (13.12)

The value of Nc has been predicted by using the above Eq. (13.12) for training and
testing datasets.

In the event of developing MARS, 12 basis functions have been recommended in
over heading step. 4 basis functions have been excluded in backward step. Finally,
MARS model encloses eight basis functions. The expression of MARS (by putting
yDNc, MD 8 and a0D 0.510 in Eq. (13.1) is given below.

Nc D 0:510C
8X

mD1

amBm.x/ (13.13)

Table 13.2 shows the details of am and Bm(x).
The performance of GPR depends on © and width (¢) of radial basis function.

The design values of © and ¢ have been determined by trial and error approach. The
developed GPR gives better reaction at ©D 0.04 and ¢D 0.03.

13.5 Results and Discussion

This section covers the results of the developed GP, MARS and GPR models. The
following figure establishes the achievement of the GP.

The Coefficient of Correlation (R) value has been used for determining the
achievement of GP. When the value of R is near to one, then we can say the
developed model is good. As shown in Fig. 13.3, the performance of GP is not so
good. Figure 13.4 shows the variation of Nc on the plane of zD 1.5 m by using the
GP model. This figure helps in predicting the Nc values at different places without
performing several tests.
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Fig. 13.3 Performance of GP

Fig. 13.4 Variation of Nc on the plane of zD 1.5 m by using the GP model
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Fig. 13.5 Performance of MARS

The developed model can be evaluated by its performance. Figure 13.5 reveals
the performance of MARS.

The Coefficient of Correlation (R) value is used to conclude the achievement
of the developed MARS model. When the R value is close to one, we can say the
developed model is a good model. Figure 13.5 shows the capability of MARS in
determining the Nc value. Figure 13.6 depicts the spatial variability of Nc on the
plane of zD 1.5 m by using MARS model. This figure helps in finding the Nc values
at different places without conducting any other tests.

The GPR model also performed to its capacity it is illustrated in Fig. 13.7. When
the Coefficient of Correlation (R) value is close to one, then the built model is a
good model.

Figure 13.8 shows spatial variability of Nc on the plane of zD 1.5 m using GPR
model. This figure provides the guidance for forecasting the Nc values at different
places without performing several other tests.

The developed MARS and GPR uses two tuning parameter, whereas the GP use
four tuning parameters for predicting Nc. The GP model gives the direct equation
when compared with the other models, which could be a benefit of this model. The
developed MARS gives better performance than the GPR and GP models. In GPR,
it is assumed that the dataset should follow Gaussian distribution. GP and MARS
do to assume any data distribution.



354 P. Samui et al.

Fig. 13.6 Variation of Nc on the plane of zD 1.5 m by using MARS model
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Fig. 13.7 Performance of the GPR

13.6 Sensitivity Analysis

Sensitivity analysis is an analysis used to determine the sensitivity of an output when
there is a change in the input while keeping the other input constant. It assists the
reviewer to resolve which parameter is the influential parameter of a models result.
The sensitivity analysis (S) of each input parameter is calculated and tabulated in
Table 13.3 of the input parameters
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Fig. 13.8 Variation of Nc on the plane of zD 1.5 m using GPR model

Table 13.3 Sensitivity
analysis

Input Lx Ly z

GP, S(%) 37:40 35:04 27:49

MARS, S(%) 40:29 34:69 25:1

GPR, S(%) 39:58 36:27 24:15

13.7 Conclusion

This article examines the capability of GPR, MARS and GP for developing site
characterization model of Bangalore based on Nc. The performance of MARS is
best. Spatial variability of Nc in Bangalore has been obtained from the developed
models. MARS uses basis function for final prediction. GPR adopts kernel function
for developing the model. GP employs any function for final prediction. User can
use the developed equations for prediction of Nc at any point in Bangalore. The
developed models give Nc values without performing any SPT tests.
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Chapter 14
Use of Genetic Programming Based Surrogate
Models to Simulate Complex Geochemical
Transport Processes in Contaminated Mine Sites

Hamed Koohpayehzadeh Esfahani and Bithin Datta

14.1 Introduction

Reactive transport of chemical species, in contaminated groundwater system,
especially with multiple species, is a complex and highly non-linear process. Sim-
ulation of such complex geochemical processes using efficient numerical models
is generally computationally intensive. In order to increase the model reliability
for real field data, uncertainties in hydrogeological parameters and boundary
conditions are needed to be considered as well. Also, often the development of
an optimal contaminated aquifer management and remediation strategy requires
repeated solutions of complex and nonlinear numerical flow and contamination
process simulation models. To address these combination of issues, trained ensem-
ble Genetic Programming (GP) surrogate models can be utilized as approximate
simulators of these complex physical processes in the contaminated aquifer. For
example, use of trained GP surrogate models can reduce the computational bur-
den in solving linked simulation based groundwater aquifer management models
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(Sreekanth and Datta 2011a, b) by orders of magnitude. Ensemble GP models
trained as surrogate models can also incorporate various uncertainties in modelling
the flow and transport processes. The development and performance evaluation of
ensemble GP models to serve as computationally efficient approximate simulators
of complex groundwater contaminant transport process with reactive chemical
species under aquifer parameters uncertainties are presented. Performance eval-
uation of the ensemble GP models as surrogate models for the reactive species
transport in groundwater demonstrates the feasibility of its use and the associated
computational advantages. In order to evolve any strategy for management and
control of contamination in a groundwater aquifer system, a simulation model
needs to be utilized to accurately describe the aquifer properties in terms of hydro-
geochemical parameters and boundary conditions. However, the simulation of the
transport processes becomes complex and extremely non-linear when the pollutants
are chemically reactive. In many contaminated groundwater aquifer management
scenarios, an efficient strategy is necessary for effective and reliable remediation
and control of the contaminated aquifer. Also, in a hydrogeologically complex
aquifer site e.g., mining site, acid mine drainage (AMD) and the reactive chemical
species together with very complex geology complicates the characterization of
contamination source location and pathways.

In such contamination scenarios, it becomes necessary to develop optimal
source characterization models, and strategies for future remediation. Solution of
optimization models either for source characterization, or optimal management
strategy development requires the incorporation of the complex physical processes
in the aquifer. Also, most of the developed optimization models for source char-
acterization or remediation strategy development require repeated solution of the
numerical simulation models within the optimization algorithm. This process is
enormously time consuming and often restricts the computational feasibility of such
optimization approaches.

In order to overcome these computational restrictions, and to ensure compu-
tational feasibility of characterizing sources and pathways of contamination it is
computationally advantageous to develop surrogate models which can be trained
using solutions obtained from rigorous numerical simulation models. A number
of attempts have been reported by researchers to develop surrogate models for
approximately simulating the physical processes. Especially the use of trained
Artificial Neural Network (ANN) models has been reported by a number of
researchers (Ranjithan et al. 1993). However, the architecture of an ANN model
needs to be determined by extensive trial and error solutions, and may not be
suitable to deal with the simulation of very complex geochemical processes in
contaminated aquifer site such as mine sites. Genetic Programming (GP) based
surrogate models may overcome some of the limitations of earlier reported surrogate
models. Therefore, this study develops GP model to approximately simulate three-
dimensional, reactive, multiple chemical species transport in contaminated aquifers.

Trained and tested GP models based surrogate models are developed using
the simulated response of a complex contaminated aquifer to randomly generated



14 Use of Genetic Programming Based Surrogate Models to Simulate. . . 361

source fluxes. An ensemble GP model is an extension of the GP modelling technique
capable of incorporating various uncertainties in a contaminated aquifer system
data.

These ensemble GP models are trained and tested utilizing transient, three
dimensional groundwater flow and transport simulation models for an illustrative
study area hydrogeologically representing an abandoned mine site in Australia.
Performance of the developed surrogate models is also evaluated by comparing
GP model solutions with solution results obtained by using a rigorous numerical
simulation of the aquifer processes. The three dimensional finite element based
transient flow and contaminant transport process simulator, HYDROGEOCHEM
5.0 (Sun 2004) is used for this purpose. Reactive transport processes incorporating
acid mine drainage in a typical mine site is simulated. Comparison of the solutions
obtained with the surrogate models and the numerical simulation model solution
results show that the ensemble GP surrogate models can provide acceptable
approximations of the complex transport process in contaminated groundwater
aquifers, with a complex geochemical scenario.

The performance of the developed surrogate models is evaluated for an illus-
trative study area to establish the suitability of GP models as surrogate models for
such complex geological processes. These surrogate models if suitable will ensure
the computational feasibility of developing optimization based models for source
characterization, and help in the development of optimum strategies for remediation
of large contaminated aquifer study areas. This study will demonstrate the utility and
feasibility of using trained and tested ensemble GP models as a tool for approximate
simulation of the complex geochemical processes in contaminated mine sites.

Aquifer contamination by reactive chemical species is widespread especially
in mining sites. Numerical simulation models incorporating both chemical and
physical behaviours are essential to describe reactive chemical transport process
accurately. The numerical simulation model using the chemical reactive transport
processes in aquifer contamination was addressed by (Parkhurst et al. 1982)
and also implemented by (Herzer and Kinzelbach 1989; Tebes-Stevensa et al.
1998; Prommer et al. 2002). Coupled physical–chemical transport processes was
developed using non-reactive transport model like MT3DMS (Zheng and Wang
1999) incorporating with various reactive transport numerical models (Prommer
2002; Parkhurst and Appelo 1999; Parkhurst et al. 2004; Waddill and Widdowson
1998; Mao et al. 2006) to simulate more realistic chemical reactive transport
processes.

HYDROGEOCHEM (Yeh and Tripathi 1991) as a comprehensive numerical
simulation model of flow and geochemically reactive transport in saturated–
unsaturated media incorporates wide range of aquatic chemical equations as well as
complex physical processes effectively. Heat, reactive geochemical and biochemical
transport processes along with flow equations for the subsurface (saturated and
unsaturated zones) are solved by three-dimensional model, HYDROGEOCHEM
5.0 (Sun 2004). In the proposed study, HYDROGEOCHEM 5.0 (HGCH) is used
to simulate groundwater flow and transport processes with chemically reactive
pollutants for an illustrative subsurface study area utilizing actual hydrogeologic
data and synthetic hydro-geochemical data. Trained and tested ensemble GP based
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surrogate models are then utilized to approximately model complex geological
and geochemical processes to improve the computational efficiency as well as
reasonably accurate solutions.

One of the most hazardous contaminants for water resources is acid mine
drainage (AMD) and its related compounds spatially distributed which are the
products of mining activities (Kalin et al. 2006). Generally AMD or acid rock
drainage (ARD) is produced by various sulphide rocks’ surface chemical weathering
in presence of water, oxygen and microorganisms. Mining activities accelerate
AMD production by increasing the rocks’ surface as well as distributing wastewater
and waste deposit of sulphide minerals such as pyrite (FeS2), pyrrhotite (Fe1-
xS), chalcopyrite (CuFeS2), arsenopyrite (FeAsS), etc. in mine sites (Nordstrom
and Alpers 1999). These contaminants pollute water resources widely as well
as decrease the water pH which leads to increase in the concentration of other
hazardous metals and heavy metals in water (Kalin et al. 2006). In this study, the
transport process of sulphate, iron and copper, hazardous AMD’s compounds, along
with their chemical reactions through the contaminated aquifer is considered.

Recently surrogate models have been proposed as approximate replacement for
numerical simulation model for developing linked simulation optimization models
(Bhattacharjya and Datta 2005) for groundwater quality management. Replacing
aquifer responses simulation by linear surrogate models developed using response
matrix approach was initially reported (Zhou et al. 2003; Abarca 2006). Recently,
Artificial Neural Network (ANN) (Ranjithan et al. 1993) and Genetic Programming
(GP) based surrogate models have been proposed as efficient non-linear surrogate
models (Koza 1994).

Artificial Neural Networks (ANN) has been widely used as approximate sur-
rogate models for groundwater simulation (Aly and Peralta 1999). Rogers et al.
(1995) presented one of the earliest attempts using ANN as a surrogate for a coastal
groundwater flow model. They demonstrated the substantial saving in terms of
computation time by using ANN and Genetic Algorithmic (GA) based meta-model
(surrogate model) within a linked simulation-optimization model for evolving opti-
mal groundwater management strategies. Replacing groundwater simulation models
with ANN-base surrogate models were developed by Bhattacharjya and Datta
(2005, 2009) and Bhattacharjya et al. (2007) and Dhar and Datta (2009). McPhee
and Yeh (2006) used ordinary differential equation surrogates to approximating
simulate of groundwater flow and transport processes. Optimizing the surrogate
model parameters related on fixed initial surrogate model structure is the main
concept of most of these surrogate modelling approaches to obtain the best between
the explanatory and response variables. Even the most popularly used trained ANN-
based surrogate modelling approach obtains the optimal model formulation by trial
and error (Bhattacharjya and Datta 2005).

Bhattacharjya et al. (2007) used ANN as an approximate simulation for sub-
stitutes the three dimensional flow and transport simulation model to simulate the
complex flow and transport process in a coastal aquifer. Bhattacharjya and Datta
(2009) used the trained ANN-based surrogate models for approximating density
depended saltwater intrusion process in coastal aquifer to predict the complex flow
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and transport processes. Dhar and Datta (2009) used ANN as a surrogate model
for simulation of flow and transport in the multiple objective non-dominated front
search process resulting in saving a huge amount of computational time.

Genetic Programming (GP), proposed by Koza (1994) is an evolutionary
algorithm which is capable approximate simulation of complex models effectively
using stochastic search methods. Compared to other regression techniques, the most
important advantage of GP is its ability to optimize both the variables and constants
of the candidate models without initial model structure definition. This approach
makes GP a strong surrogate model to characterize the model structure uncertainty.
Recently genetic programming has been utilized in hydrological applications in
several researches (Dorado et al. 2002; Makkeasorn et al. 2008; Wang et al. 2009).
Trained GP-based surrogate models has been used to substitutes the simulation
models for runoff prediction, river stage and real-time wave forecasting (Whigham
and Crapper 2001; Savic et al. 1999; Khu et al. 2001; Babovic and Keijzer 2002;
Sheta and Mahmoud 2001; Gaur and Deo 2008). In addition, GP has been applied
to approximate modelling of different geophysical processes including flow over
a flexible bed (Babovic and Abbott 1997); urban fractured-rock aquifer dynamics
(Hong and Rosen 2002); temperature downscaling (Coulibaly 2004); rainfall-
recharge process (Hong et al. 2005); soil moisture (Makkeasorn et al. 2006);
evapotranspiration (Parasuraman et al. 2007b); saturated hydraulic conductivity
(Parasuraman et al. 2007a); and for modelling chemical entropy (Bagheri et al.
2012, 2013, 2014). Zechman et al. (2005) developed a trained GP-based surrogate
models as an approximate simulation of groundwater flow and transport processes
in a groundwater pollutant source identification problem.

Sreekanth and Datta (2010) implemented GP as meta-model to replace the flow
and transport simulation of density dependent saltwater intrusion in coastal aquifers
for ultimate development of optimal saltwater intrusion management strategies.
Sreekanth and Datta (2011b, 2012) compared two non-linear surrogate models
based on GP and ANN models, respectively and showed that the GP based
models perform better in some aspects. These advantages include: simpler surrogate
models, optimizing the model structure more efficiently, and parsimony of param-
eters. Datta et al. (2013) described the utilization of trained GP surrogate models
for groundwater contamination management, and development of a monitoring
network design methodology to develop optimal source characterization models.
Replacing simulation groundwater model by GP-based ensemble surrogate models
in linked simulation-optimization developed methodology was addressed by Datta
et al. (2014) and Sreekanth and Datta (2011a) which improve the computational
efficiency and obtains reasonably accurate results under aquifer hydrogeologic
uncertainties.

In this study our main objectives is to develop ensemble genetic programming
based surrogate models to approximately simulate the complex transport process in
a complex hydrogeologic system with reactive chemical species, and to illustrate
its efficiency and reliability in a contaminated aquifer resembling an abandoned
mine site. The numerical model’s formulations as well as using ensemble genetic
programming based surrogate models are described in Sect. 14.2 and the results are
presented and discussed in Sect. 14.3.
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14.2 Methodology

The methodology developed includes two main components. In the first step, the
simulation model for the flow and transport processes is described, and complex
chemical reactive transport process is simulated by the HGCH, a three-dimensional
coupled physical and chemical transport simulator, to realize the reactive con-
taminants behaviours is contaminated aquifers. The hydrogeochemical data and
boundary conditions at the illustrative study site are similar to an abandoned mine
site in Queensland, Australia. Trained ensemble GP based surrogate models are then
developed to approximately obtain concentrations of the chemical contaminants at
different times in specified locations while incorporating uncertainties in hydroge-
ological aquifer parameters like hydraulic conductivity. Comparison of the spatio-
temporal concentrations obtained as solution by solving the implemented numerical
three dimensional reactive contaminant transport simulation model (HGCH) and
those obtained using ensemble GP models are then presented to show the potential
applicability and the efficiency of using GP ensemble surrogate models under
aquifer uncertainties.

14.2.1 Simulation Model of Groundwater Flow
and Geochemical Transport

HYDROGEOCHEM 5.0 (HGCH), consisting of the numerical flow simulator and
physio-chemical transport simulator HGCH is a computer program that numerically
solves the three-dimensional groundwater flow and transport equations for a porous
medium. The finite-element method is used in this simulation model.

The general equations for flow through saturated–unsaturated media are obtained
based on following components: (1) fluid continuity, (2) solid continuity, (3) Fluid
movement (Darcy’s law), (4) stabilization of media, and (5) water compressibility
(Yeh et al. 1994). Following governing equation is used:
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V is the Darcy’s velocity (L/T) described as:

V D �K

�
¡
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(14.4)

Where:
™: effective moisture content (L3/L3);
h: pressure head (L);
t: time (T);
z: potential head (L);
q: source or sink of fluid [(L3/L3)/T];
¡0: fluid density without biochemical concentration (M/L3);
¡: fluid density with dissolved biochemical concentration (M/L3);
¡*: fluid density of either injection (D¡*) or withdraw (D¡) (M/L3);
�0: fluid dynamic viscosity at zero biogeochemical concentration [(M/L)/T];
�: the fluid dynamic viscosity with dissolved biogeochemical concentrations

[(M/L)/T];
’0: modified compressibility of the soil matrix (1/L);
ß: modified compressibility of the liquid (1/L);
ne: effective porosity (L3/L3);
S: degree of effective saturation of water;
G: is the gravity (L/T2);
k: permeability tensor (L2);
ks: saturated permeability tensor (L2);
Kso: referenced saturated hydraulic conductivity tensor (L/T);
kr: relative permeability or relative hydraulic conductivity (dimensionless)
When combined with appropriate boundary and initial conditions, the above

equations are used to simulate the temporal-spatial distributions of the hydrological
variables, including pressure head, total head, effective moisture content, and
Darcy’s velocity in a specified study area.

The contaminant transport equations used in the HG model can be derived based
on mass balance and biogeochemical reactions (Yeh 2000). The general transport
equation using advection, dispersion/diffusion, source/sink, and biogeochemical
reaction as the major transport processes can be written as follows:
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Where
Ci: the concentration of the ith species in mole per unit fluid volume (M/L3);
�: the material volume containing constant amount of media (L3);
�: the surface enclosing the material volume � (L2);
n: the outward unit vector normal to the surface �;
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Ji: the surface flux of the ith species due to dispersion and diffusion with respect
to relative fluid velocity [(M/T)/L2];

™ri: the production rate of the ith species per unit medium volume due to all
biogeochemical reactions [(M/L3)/T];

Mi: the external source/sink rate of the ith species per unit medium volume
[(M/L3)/T];

M: the number of biogeochemical species;
Vi: the transporting velocity relative to the solid of the ith biogeochemical species

(L/T).

14.2.2 Genetic Programming Based Ensembles
Surrogate Model

GP models are used in this study to evolve surrogate models for approximately
simulating flow and transport processes in a contaminated mine site. Trained GP
models are developed using the simulated response of the aquifer to randomly
generated source fluxes. GP, a branch of genetic algorithms (Koza 1994), is an
evolutionary algorithm-based methodology inspired by biological evolution to find
computer programs that perform a user-defined task (Sreekanth and Datta 2011b).
Essentially, GP is a set of instructions and a fitness function to measure how well a
computer model has performed a task. The main difference between GP and genetic
algorithms is the representation of the solution. GP creates computer programs in
the lisp or scheme computer languages as the solution. Genetic algorithms create a
string of numbers that represent the solution.

The main operators applied in genetic programming as in evolutionary algo-
rithms are crossover and mutation. Crossover is applied on an individual by simply
replacing one of the nodes with another node from another individual in the
population. With a tree-based representation, replacing a node means replacing the
whole branch (Fig. 14.1). This adds greater effectiveness to the crossover operator.
The expressions resulting from crossover are very different from their initial parents.
Mutation affects an individual in the population. It can replace a whole node in
the selected individual, or it can replace just the node’s information. To maintain
integrity, operations must be fail-safe or the type of information the node holds must
be taken into account. For example, mutation must be aware of binary operation
nodes, or the operator must be able to handle missing values.

GP utilizes a set of input–output data which are generated randomly by using the
flow and contaminant transport simulation models. The numerical Simulation model
creates M number of out-put sets from M number of input sets, which is generated
by using random Latin Hypercube sampling in defined ranges. The performance
of each GP program is an evaluated formulation in terms of training, testing the
validation using the set of input–output patterns. The testing data evaluates the
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Fig. 14.1 Function
represented as a tree structure

model performance for new data using the fitness function obtained in the training
phase. Non-tree representations have been proposed and successfully implemented,
such as linear genetic programming which suits the more traditional imperative
languages (Banzhaf et al. 1998). The commercial GP software Discipulus (Francone
1998) performs better by using automatic induction of binary machine code. In the
proposed methodology, Discipulus GP software is used to solve and generate GP
models. Discipulus uses Linear Genetic Programming (LGP) which utilizes input
variables in line-by-line approach. This objective of this program is minimizing
difference in value between the output estimated by GP program on each pattern
and the actual outcome. The fitness objective functions are often absolute error or
minimum squared error. Almost two-thirds of the input–output data sets obtained
from the numerical simulation model are utilized for training and testing the GP
model. The remaining data sets are used to validate the GP models. The r-square
value shows the fitness efficiency to the GP models (Sreekanth and Datta 2010).

14.2.2.1 Performance Evaluation

The trained ensemble GP surrogate models are evaluated to verify the performance
of the surrogate models approximating flow and transport processes simulation
with reactive chemical species, under hydrogeological uncertainties. Input data
sets are generated randomly by Latin Hypercube sampling in defined ranges. The
aquifer hydrogeological uncertainties include uncertainties in estimating hydraulic
conductivity, water content and constant groundwater label in boundary conditions.
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14.2.3 Performance Evaluation of Developed Methodology

In order to evaluate the performance of the proposed methodology, ensemble GP
based surrogate models are utilized for an illustrative study area shown in Fig. 14.2.
The specified hydrogeologic conditions resemble a homogeneous and isotropic
aquifer. In order to evaluate the methodology, the ensemble GP surrogate models are
first trained using the sets of solution results obtained using the 3-D finite element
based flow and reactive transport simulation model. Once trained and tested, the GP
models are utilized for simulating the transport process in the study site. Then the
surrogate model solution results are compared with the actual numerical simulation
solution results.

The areal extent of the specified study area is 10,000 m2 with complex pollutant
sources including a point source and a distributed source. The spatial concentrations
are assumed to measure at different times at ten arbitrary observation well locations.
The thickness of the aquifer is specified as 50 m with anisotropic hydraulic
conductivity in the three directions. The boundaries of the study area are no-flow
for top and bottom sides while left and right sides of the aquifer have constant head
boundaries with specified hydraulic head values. The total head decreases from top
to bottom and left to right gradually. The aquifer system is shown in Fig. 14.2.
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Fig. 14.2 Illustrative study area (total head: AD 37 m, BD 40 m, CD 33 m, DD 30 m)
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As shown in Fig. 14.2, the dark blue area represent the contaminant sources S(i)
which include distributed and point sources. Concentration data from monitoring
well locations, shown as black rectangular points, are used to train, test and validate
the GP model formulations.

Table 14.1 shows dimensions, hydrogeological properties, and boundary condi-
tions of the study area which are utilized for numerical models to simulate ground-
water flow and chemical reactive transport processes. The synthetic concentration
measurement data used for the specified polluted aquifer facilitates evaluation of
the developed methodology. These synthetic concentration measurement data at
specified observation locations are obtained by solving the numerical simulation
model with known pollution sources, boundary conditions, initial conditions,
and hydrogeologic as well as geochemical parameter values. In the incorporated
scenario, copper (Cu2C), Iron (Fe2C) and sulphate (SO42�) are specified as the
chemical species in the pollutant sources. The associated chemical reactions are
listed in Table 14.2.

Nine different scenarios are defined based on different hydraulic conductivity
and boundary conditions with maximum 10 % differences between maximum

Table 14.1 Aquifer’s properties

Aquifer parameter Unit Value

Dimensions (length * width * thickness) study area m * m * m 100 * 100 * 50
Number of nodes 387
Number of elements 1432
Hydraulic conductivity, Kx, Ky, Kz m/d 10.0, 5.0, 3.0
Effective porosity,� 0.3
Longitudinal dispersivity, ’L m/d 10.0
Transverse dispersivity, ’T m/d 6.0
Horizontal anisotropy 1
Initial contaminant concentration Mole/lit 0–5
Diffusion coefficient 0

Table 14.2 Typical chemical reactions during the contaminant trans-
port process

Chemical reaction equations Constant rate (Log k)a

Equilibrium reactions
(1) Cu2CCH2O$Cu(OH)CCHC �9.19
(4) Cu2CCSO4

2�$CuSO4 2.36
(7) Fe2CC SO4

2�$ FeSO4 2.39
(9) 4Fe2CC 4HC$ 4Fe3CC 2H2O 8.5
(14) Fe3CC SO4

2�$ FeSO4
C 4.05

(15) Fe3CC SO4
2�CHC$ FeHSO4

2C 2.77
Kinetic reactions
(17) FeOOH(s)C 3HC$ Fe3CC 3H2O KfD 0.07

aConstant rates are taken from Ball and Nordstrom (1992)
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and minimum values, and with the mean value assumed as the actual value for
simulating the synthetic concentration observation (N11, N12, : : : , N21, : : : N33).
First digit indicates an index for hydraulic conductivity values and second one
represents an index for the hydraulic head as boundary condition. 1 illustrates
parameters with 5 % less than the actual definition as well as 2 and 3 shows the
exact data and 5 % more than actual parameters in illustrative aquifer respectively.

14.2.3.1 Generation of Training and Testing Patterns
for the Ensemble GP Models

The total time of source activities is specified as 800 days, subdivided into eight
similar time intervals of 100 days each. The actual pollutant concentration from
each of the sources is presumed to be constant over each stress period. The pollutant
concentration of copper, iron as well as sulphate in the pit is represented as Cpit(i),
Fepit(i) and Spit(i) respectively, where i indicates the stress period number, and also
C(i), Fe(i) and S(i) represent copper, iron and sulphate concentrations in the point
sources, respectively at different time steps.

An overall of sixteen concentration values for each contaminant are considered
as explicit variables in the simulation model. The concentration measurements are
simulated for a time horizon of 800 days since the start of the simulation. The pollu-
tant concentration are assumed to be the resulting concentrations at the observation
wells at every 100 days interval and this process is continued at all the observation
locations till tD 800 days. Only for this methodology evaluation purpose, these
concentration measurements are not obtained from field data, but are synthetically
obtained by solving the numerical simulation model for specified initial conditions,
boundary conditions and parameter values. In actual application these measurement
data need to be simulated using a calibrated flow and contaminant simulation model.
However, using field observations for calibration, and then for evaluation of a
proposed methodology results in uncertain evaluation results as the quality of the
available measurement data cannot be quantified most of the time. Therefore as
often practiced, synthetic aquifer data is used for this evaluation of the methodology
proposed.

The comprehensive three-dimensional numerical simulation model was used to
simulate the aquifer flow and chemical reactive transport processes due to complex
pollutant sources in this study area. Different random contaminant source fluxes
as well as different realization of boundary conditions and hydraulic conductivities
were generated using Latin hypercube sampling. For random generation purpose,
10 % initial aquifer properties are considered as Maximum error for the uncer-
tainties of aquifer parameters. HGCH was utilized to obtain the concentrations
resulting from each of these concentration patterns. The simulated concentration
measured data at monitoring network and the corresponding concentration of
contaminants at sources form the input–output pattern. Totally, 8000 concentration
patterns for all the ten concentration observation locations were used in this
evaluation. Eight input–output patterns were defined based on different time steps.
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Genetic programming models were obtained using each of these data sets to create
ensemble GP based surrogate models. Each data set was split into halves for training
and testing the genetic programming-based surrogate models.

Surrogate models were developed for simulating pollutant concentrations at the
observation locations at different times resulting from the specified pollutant sources
at different times under hydrogeological uncertainties. All the GP models used a
population size of 1000, and mutation frequency of 95. The Discipulus, commercial
Genetic Programming software, was used to develop the surrogate models. The
model was developed using default parameters values of Discipulus. The GP fitness
function was the squared deviation between GP model generated and actually
simulated concentration values at the observation locations and times.

14.3 Evaluation Results and Discussion

The flow and concentration simulation results for the study area obtained using
the numerical HGCH simulation model are shown in Figs. 14.3, 14.4, 14.5, and
14.6. The flow movement, total head contours in top layer and also velocity vectors
are shown in Figs. 14.3, 14.4 and 14.5 respectively. Figures 14.3, 14.4 and 14.5
show the hydraulic heads for flow. The contours show a gentle slope from point
B towards D. Figure 14.6 shows the copper concentration distribution in the study
area which shows the complex transport processes with reactive chemical species.

Fig. 14.3 3-D view of hydraulic head distribution
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Fig. 14.4 Hydraulic head contours (m)

Fig. 14.5 Velocity vectors of groundwater movement
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Fig. 14.6 Copper concentration (mole/lit) distribution in the study area

The concentration of sulphate remains almost the same while iron concentration is
lower in groundwater. Based on pH changes the iron can react and cease to be in
solute phase, thus removed form groundwater.

The results obtained using the developed ensemble genetic programming based
surrogate models for approximate simulation of pollutant concentrations are com-
pared with the numerical simulation results obtained using the HGCH. Nine
different scenarios are considered. These nine scenarios are characterized by
different hydraulic conductivity value realizations and hydraulic head boundary
conditions. Each randomized within 10 (˙5)% errors in the mean values (assumed
same as the actual values) for hydrogeological parameters and boundary condi-
tions. Incorporation of these scenarios together with the Latin Hypercube based
randomization to achieve the efficiency of ensemble GP based surrogate models.
The uncertainties in the parameter values of the scenarios are within the range
of input data which are used to create the ensemble GP models. Figure 14.7a–c
illustrate these comparison results in which one scenario for one particular hydraulic
conductivity is selected for obtaining simulated output data from HGCH model at
each monitoring networks. Each time step is marked on the x-axis. Each of the bars
corresponds to contaminant concentration in each well, obtained by HGCH and
ensemble GP models.

Figure 14.7 shows that the results obtained from the ensemble GP based
surrogate models are very close to the simulated results obtained using the numerical
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Fig. 14.7 Comparison of ensemble GP model solutions with HGCH simulation results for
specified parameter values defined by (a) lower bound on uncertain aquifer parameter values,
(b) actual or mean parameters values and (c) upper bound on aquifer parameter values (GW1:
concentration data at well number 1 based on GP formulation, HCHW1: concentration data at well
number 1 based on HGCH simulation)
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simulation model, and also incorporates der uncertainties. Figure 14.8 shows the
summation of normalized error at each of the observation locations for each
monitoring network averaged over the 8 time periods. It is noted that, the ensemble
GP models provide relatively accurate results for concentrations at observation
locations. Although the boundary conditions are different, the normalized errors for
all the three scenarios with same hydraulic conductivity are almost the same. The
most important advantage of using the developed GP models is that the numerical
simulation model requires long computational time usually several hours for a
typical study area, while ensemble genetic programming surrogate models deliver
the solution results in typically fraction of a second. Also the ensemble GP models
directly incorporate hydrogeologic uncertainties in the modelled system. Therefore
the computational advantage of using the ensemble GP for approximate simulation
of complex reactive transport processes in aquifers is enormous if the errors in
simulation are within acceptable range. Especially, this computational time saving
could be critical in development and solution of linked simulation-optimization
models (Datta et al. 2014) for management of contaminated aquifers.

14.4 Conclusion

Although surrogate models are widely used in solving groundwater management
problems replacing the actual complex numerical models, often the main issue is the
accuracy and reliability of surrogate model predictions under input data uncertain-
ties. This study developed a methodology based on ensemble GP surrogate models
to substitute numerical simulation for approximate simulation of the chemically
reactive multiple species transport process in a contaminated aquifer resembling
the geochemical characteristics of an abandoned mine site. The evaluation results
show the applicability of this methodology to approximating the complex reactive
transport process in an aquifer. The developed ensemble GP models result in
increasing the computation efficiency and computational feasibility, while providing
acceptable results.



376 H.K. Esfahani and B. Datta

The linked simulation-optimization approach is an effective method to identify
source characterization and monitoring network design under uncertainties in
complex real life scenarios which important for robust remediation strategies and
groundwater management. The main difficulty with linked simulation-optimization
models generally is the required huge computation time, due to iterative repeated
solution of the numerical flow and transport simulation models. To address this,
ensemble GP based surrogate models may be used to approximate the numerical
simulation model under uncertainties, in the linked simulation-optimization model.
Ensemble GP based surrogate models can increase efficiency and feasibility of
developing optimal management strategies for groundwater management in geo-
chemically complex contaminated aquifers such as mine sites, while at the same
time incorporating uncertainties in defining the hydrogeologic system. The evalu-
ations results show that it is feasible to use ensemble GP models as approximate
simulators of complex hydrogeologic and geochemical processes in a contaminated
groundwater aquifer incorporating uncertainties in describing the physical system.
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Chapter 15
Potential of Genetic Programming
in Hydroclimatic Prediction of Droughts:
An Indian Perspective

Rajib Maity and Kironmala Chanda

15.1 Introduction

15.1.1 Backgound

The presence of hydroclimatic teleconnection between large-scale
atmospheric-oceanic circulation patterns and hydrologic variables has been
established through previous research. Particularly, the impacts of El Niño-Southern
Oscillation (ENSO) on the rainfall anomalies across the world (Nicholls 1983;
Kousky et al. 1984) have been a subject of research for quite some time.

Other large scale oceanic-atmospheric phenomena such as ENSO, Equatorial
Indian Ocean Oscillation (EQUINOO), Pacific Decadal Oscillation (PDO), Atlantic
Multi-decadal Oscillation (AMO), Indian Ocean Dipole (IOD) etc. have also been
found to play significant roles in influencing hydrological variables worldwide
(Chiew and McMahon 2002; Terray et al. 2003; Gadgil et al. 2004; Goswami et al.
2006; Maity and Nagesh Kumar 2006, 2008; Feng and Hu 2008; Li et al. 2008;
Mo and Schemm 2008; Ting et al. 2011; Singhrattna et al. 2012; Oubeidillah et al.
2012; Jiang et al. 2013; Rogers 2013). Apart from the influence of these large-scale
circulation patterns, local meteorological variables also add to the complexity of
hydroclimatic association at smaller spatio-temporal scales (Maity and Kashid 2010,
2011). Studies have indicated that changes in air temperature, relative humidity,
evaporation and land use pattern often act as triggers of drought events (Giannini
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et al. 2008; Wong et al. 2011; Maity et al. 2013). The multi-year droughts that swept
over the Northern hemisphere in 1998–2002 are known to have been aggravayed by
the persistent above normal surface temperature and the accompanying increase in
moisture demand (Hoerling and Kumar 2003). Thus, the contribution of local and
global climatic factors in shaping regional hydrological extremes is intricate and
dynamic, thus making the prediction of such extremes a very challenging task. In
the Indian context, such predictions are even more tricky since rainfall extremes
in India are one of the most complex, continental-scale hydrologic phenomena and
very much unpredictable (Yuan and Wood 2013).

15.1.2 Genetic Programming

Genetic Programming (GP) is one of the many artificial intelligence techniques
available presently. It is a problem solving approach similar to Genetic Algorithm
(GA). However, it operates on computer programs, while GA operates on (coded)
strings of numbers. GP does not assume any functional form of the solution; it can
optimize both the structure of the model and its parameters. The computer programs
that are created in GP are generally represented as tree structures (Gandomi et al.
2008; Alavi et al. 2012 and the references therein). Hence it is often referred as
tree-based GP (TGP). LGP is a subset of TGP where the evolved programs are in
imperative language like C/CCC or in machine language rather than in functional
programming language like List Processing (LISP) (Alavi et al. 2010a, 2012).
Figure 15.1 depicts the representation of a function in GP. It shows a distinct tree
structure rather than a flat one dimensional string. The structure consists of simple

Fig. 15.1 Representation of
a function in GP (Source:
Kashid and Maity 2012)
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functions that can be encoded using a high level computer programming language
that supports routines for tree manipulation. GP provides a methodology where
a set of computer programs evolve automatically to represent the model relating
input and output variables. GP automatically selects input variables that contribute
favourably to the model and disregards those that do not (Jayawardena et al. 2005).
GP is based on the Darwinian principles of reproduction and survival of the fittest.
Reproduction is the process of transferring a certain number of parent programs into
the population of the next generation. The actual number of programs transferred
depends on the reproduction rate. In GP, evolution of better programs occurs via
the genetic operators Mutation and Crossover. Mutation is the process that causes
random changes in programs, while crossover is the process of exchange of some
sequences of instructions (a ‘branch’ of a tree structure as shown in Fig. 15.1)
between two programs. The exchange results in two offspring programs that are
then inserted into the new population replacing the worse programs of the lot. The
basic steps involved in GP are depicted in the form of a flow chart in Fig. 15.2.

GP has been successfully utilized by many researchers to solve a multitude
of classification problems. In engineering, a number of variants of GP has been
used for solving problems ranging from soil classification (Alavi et al. 2010b) to
simulation of pH neutralization process (Gandomi and Alavi 2011) to behavioural
modelling of structural engineering systems (Gandomi and Alavi 2012; Pérez et al.
2012). In water engineering, GP has been extensively used in flood routing and
flood control (Orouji et al. 2012; Yang et al. 2013; Gandomi et al. 2013) as well
as optimisation of water supply systems (Xu et al. 2013; Ahn and Kang 2014). GP
has also found use in hydrological applications such as rainfall-runoff modelling
(Drecourt 1999; Babovic and Keijzer 2002; Jayawardena et al. 2005), flow discharge
computations (Sivapragasam et al. 2008; Azamathulla and Zahiri 2012), ground
water level simulation (Fallah-Mehdipour et al. 2013), rainfall prediction (Kashid
and Maity 2012) and streamflow forecasting in the annual scale (Ni et al. 2010),
monthly scale (Mehr et al. 2014) as well as weekly scale (Maity and Kashid 2010).
GP was found to have one of the best predictive capabilities among various data
driven modeling techniques (Elshorbagy et al. 2010).

In this chapter, the potential of LGP in modelling and prediction of extreme
hydrological events is explored. While the hydrological extremes could refer to
extremes of many variables such as precipitation, soil moisture, runoff etc., in this
study, meteorological droughs (i.e., extremes in precipitation) are in focus. The goal
of the study is to develop an LGP based model that uses global climatic information
for the detection of ensuing extreme (dry and wet) precipitation events at a target
region. The immense volume of global climatic information is first arranged into
a reduced dataset by establishing a Global Climate Pattern (GCP) (explained in
Sect. 15.2.3) that is influential in triggering precipitation extremes in the target
area i.e., India. Using the observed GCP as input, and observed standardized
precipitation anamalies (in terms of an index discussed in Sect. 15.2.2) as output, the
LGP tool is trained to predict a time series of index values representing standardized
precipitation anaomalies. The predicted index values are further classified to obtain
the categories of extreme events. The performance of the raw prediction as well as
the final categorization is evaluated in terms of standard statistical measures.
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Fig. 15.2 Flowchart of GP (modified from Kashid and Maity 2012)
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15.2 Materials and Methods

15.2.1 Data

Monthly precipitation data of India for the period 1959–2010 is obtained from
India Meteorological Department (IMD). It is retrieved from the website of
Indian Institute of Tropical Meteorology (IITM) (www.tropmet.res.in). Monthly
gridded (2.5ı lat� 2.5ı lon) climate data (Reanalysis I) for four global climate
variables namely—Surface Pressure (SP), Air Temperature (AT), Wind Speed
(WS) and Total Precipitable Water (TPW) for the period 1958–2010 are obtained
from National Oceanic and Atmospheric Administration (NOAA) (http://www.esrl.
noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html). Kaplan Sea Surface
Temperature (SST) anomalies having spatial resolution of 5ı lat� 5ı lon are
obtained from NOAA (http://www.esrl.noaa.gov/psd/data/gridded/data.kaplan_sst.
html) for the same period.

15.2.2 Standardization of Precipitation Anomaly
for Quantification of Extreme Events

To identify extreme events, some method of standardization of precipitation of the
target area is necessary. Standardized Precipitation Index (SPI) is one of the popular
standardization techniques. However, for monsoon dominated regions with strongly
seasonal precipitation pattern, the recently developed Standardized Precipitation
Anomaly Index (SPAI) fares better (Chanda and Maity 2015a, b). In case of the
popular SPI, the range of index values would be similar for each of the 12 months
and equally extreme index values may arise in both monsoon months (high rainfall
months) as well as non-monsoon months (very low rainfall months). For instance,
let us consider an extreme SPI value of �2. From the statistical point of view,
this particular value of SPI may occur in any month of the year and correspond
to similarly rare events across the months. However, an SPI of �2 in the month
of July (peak monsoon month) is socio-economically very different from the same
SPI occurring in the month of January (traditionally driest month). This is because,
heavy rainfall during the monsoon period is customary in a monsoon dominated
region such as India. Rainfall in monsoon drives agriculture and this economic
growth. On the other hand, in traditionally dry months, small rainfall deficits are
harmless since the community is used to meeting agricultural and other water
requirements during these periods from other sources. Again, it is worthwhile to
note that an index value of –2 does not always correspond to identical hydroclimatic
conditions. The global climatic conditions that lead to an extreme SPI in monsoon
in the target region is generally very different from that causing similar SPI in
non-monsoon period. Trying to find a pattern in global climate fields considering
all extreme events manifested by SPI together would dilute the signal pool and

http://www.esrl.noaa.gov/psd/data/gridded/data.kaplan_sst.html
http://www.esrl.noaa.gov/psd/data/gridded/data.kaplan_sst.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
www.tropmet.res.in
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hinder the detection of the GCP that triggers extremes in high rainfall months.
To address the issues mentioned above, two methodological differences are adopted
in SPAI with respect to SPI. Firstly, instead of absolute precipitation series, SPAI
uses anomaly series of precipitation and secondly, instead of 12 different probability
distributions used in SPI, a single distribution is fitted in case of SPAI.

For the present study, the target area is India which experiences strongly
seasonal precipitation pattern; hence, the SPAI is used here for standardization of
precipitation. The range of SPAI is less for non-monsoon months and high for
monsoon months. This helps in putting more prominence to monsoon months which
are much critical for drought related vagaries for a region with strongly periodic
rainfall.

The SPAI can be computed for any temporal scale; in this study, it is computed
at a temporal scale of 3 months. Hence, SPAI-3 is used throughout this study and
it is referred as simply SPAI. If t represents the current month, the sum of the
precipitation of the tth, .t � 1/th and .t � 2/th month is standardized with respect
to the long-term precipitation totals of those three consecutive months of the year.
Similarly, the total precipitation for each three consecutive overlapping months
in the study period is standardized with respect to the long-term climatology of
the respective 3 months. For example, the first entry in the dataset, i.e, January
1959, which consists of precipitation totals of November 1958, December 1958
and January 1959 is standardized with respect to the long-term climatology of
November-December-January. The base period is considered to be 1961–1990,
which represents the long-term climatology of the study area. The anomalies
are calculated based on the long term means of the aforementioned period. The
anomalies of precipitation are given by:

yi;j D
�
xi;j � xj

�
=sj (15.1)

where, yi, j is the precipitation anomaly for the ith year and jth time step of the year,
xi, j is the precipitation value for the ith year and jth time step of the year, xj and
sj are the long-term mean and standard deviation of precipitation for the jth time
step of the year. Hence, if yi, j denotes the precipitation anomaly of July–August–
September (JAS) 1990, xi, j denotes the total precipitation of JAS, 1990 and xj and sj

are the long-term mean and standard deviation of precipitation for the months JAS.
Next, a t Location-Scale probability distribution is fitted to the entire anomaly

series (y).The pdf of the t Location-Scale distribution is given by:
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where �, � and � are the location, scale (� > 0) and shape (v > 0) parameters
respectively. From the fitted Cumulative Distribution Function (CDF) of t Location-
Scale distribution, the quantiles Œqi 2 .0; 1/� of each of the observed anomaly values
are computed. These quantiles (q) are then transformed to standard normal variates
(Z) to obtain the SPAI values.

Thus,

Zi D ˆ�1 .qi/ (15.3)

where ˆ�1 is the cumulative inverse standard normal distribution.
As in case of SPI, SPAI values also range from �1 to1. The values less than

zero indicate dryness while those greater than zero indicate wetness. In the present
study, dry events are defined as the events with SPAI � �0:8 and wet events are
defined as those with SPAI � 0:8.

15.2.3 Identification and Characterization of Input Dataset

For the target region, the dry and wet events (as defined before) are identified first.
For each dry event, standardized (with long-term standard deviation) anomalies of
the climate variables (except SST, where Kaplan SST anomalies are used directly
without standardization) are obtained at 3 months lag at all grid locations across
the globe. The lag period is selected as 3 months to reflect the climate conditions
immediately before the extreme event. Any temporal overlap is avoided so that the
climate indicators may be used for prediction of extremes. Thus, the anomalies of
the climate variables are obtained from January–February–March for a dry event
of the months April–May–June. Similarly, for each wet event, anomalies of the
climate variables are obtained at 3 months lag. Now, the global anomaly fields of
a given climate variable are averaged across all dry events to get a mean global
anomaly field corresponding to dry events at the target area. Similarly, a mean global
anomaly field corresponding to wet events is also obtained. For each of the climate
variables considered, the maps of the mean global anomaly fields during dry and
wet events are inspected and one or more zones showing significantly contrasting
anomaly values during opposite extremes (dry and wet) are identified. These zones
may serve as possible predictors in a model concerned with detection and prediction
of the extreme events. Thus, together they form the input dataset where each input
refers to a climate anomaly from a specific location on the globe. The identified
inputs are characterized as the Global Cimate Pattern (GCP). Further details on
GCP can be found elsewhere (Chanda and Maity 2015b). The focus of this chapter
is to demonstrate the efficacy of LGP in predicting droughts using hydroclimatic
information.
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15.2.4 Hydroclimatic Prediction of Droughts Using LGP

The potential of LGP in hydroclimatic prediction of extreme events is explored and
the climate anomaly series at the selected zones constituting the GCP is used as
input. The period 1959–1990 is designated as the training period while 1991–2010
is designated as the validation period.

15.2.4.1 Data Processing

The target output is the SPAI series which follows standard normal distribution. For
a standard normal distribution, the values theoretically lie between .�1;1/ and
99.73 % of them lie between .�3; 3/. The target series is rescaled from .�3; 3/ to
.�30; 30/ by multiplying each value with 10. The analysis presented in this study
was also performed without this rescaling. However, the performance was found
to improve with this rescaling. This might be because an improved evolution of
programs through LGP was possible due to the wider numerical gap (between dry
and wet events) after rescaling. The input data set consists of anomalies of SST and
standardized anomalies of AT, WS and TPW. The later also range from .�1;1/

theoretically. However, they are not rescaled since it is not necessary before
determination of the most impactful inputs through random program generation
in GP.

15.2.4.2 Prediction Using LGP

Generally, for a LGP based prediction, the input dataset is selected based on prior
knowledge about the nature of the problem. In the present study, prediction of
hydrological extremes is attempted using hydroclimatic information. Hence, an
input dataset (characterized as the GCP) consisting of global climate anomaly fields
has been developed based on statistical evidence from historical extreme events
(explained in Sect. 15.2.3).

In a LGP, the evolved function that relates the input and output variables may be
expressed as

Ym D f .Xn/ (15.4)

where Xn is an n-dimensional input vector and Ym is a m-dimensional output
vector. In this study, the selected climate anomaly zones, characterized by the
GCP, represent the input vector and the SPAI series represents the output vector.
Freely downloadable software named Discipulus Lite (Frankone 1998) is used as
the LGP tool in this study. Before running this software, the ‘Problem Category’
must be set. ‘Function Fitting’ and ‘Classification’ are the two options available.
In the first one, a regression or curve fitting model is built, while in the second
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one, a binary classification model is built which can distinguish category X from
category Y. There is an option to change the ‘Error Measurement’ for ‘Fitness
Calculation’. Either ‘Linear’ or ‘Square’ may be used to determine how fit an
evolving program is. ‘Linear’ indicates that Mean Absolute Error (MAE) would
be used as the fitness function while ‘Square’ indicates that Mean Squared Error
(MSE) would be used for the same. Some of the important control parameters in
Discipulus are Population Size, Maximum Tournaments, Mutation Frequency and
Crossover Frequency. The ‘Population Size’ indicates the number of programs in
the population that Discipulus will evolve. There is no upper limit as such for this
parameter; rather it is only limited by the RAM available on the computer being
used and the maximum length of the programs in the population. The larger the
population, the higher will be the time required to complete the run, however,
Discipulus is fast enough to evolve very large populations within acceptable time
frames. In LGP, a number (k) of individual programs are chosen at random and the
best programs (based on fitness criteria) among them are selected for crossover. Here
k is called the Tournament Size and the maximum number of times such random
program selections occur is called the ‘Maximum Tournaments’. The parameter
‘Mutation Frequency’ is used to set the probability of mutation of the programs
that have been selected as winners in a tournament by Discipulus. The allowable
range for ‘Mutation Frequency’ is 0–100 %. The ‘Crossover Frequency’ parameter
is used to set the probability that crossover will occur between the two winners
in a tournament by Discipulus. The allowable range for this parameter is 0–100 %.
Though many LGP applications use a very low mutation rate, it has been established
(Frankone 1998) that Discipulus benefits from a high (in excess of 90 %) mutation
rate. If the values of these control parameters are not set specifically, Discipulus
will run with the default values. The values used in this study are reported later in
Sect. 15.3.2.1.

It may be noted here that the term ‘linear’ in Linear Genetic Programming refers
to the structure of the imperative programme representation and does not refer to
functional genetic programs restricted to a linear list of nodes only. In fact, highly
nonlinear solutions are generally represented through LGP (Brameier and Banzhaf
2004).

15.2.4.3 Evaluation of Prediction Performance

The predicted SPAI series must be rescaled to .�3; 3/ before the prediction
performance is evaluated. The predicted and observed SPAI is visually compared to
evaluate the correspondence between them. A very good match is not expected since
prediction of anomaly series is always challenging. However, rather than one-to-one
comparison of SPAI values, it may be worthwhile to investigate whether extreme
events are identified correctly by the GP model. Hence, a categorical classification
of dry, wet and normal events is attempted. Since multi-category classification is not
directly supported in GP, the ‘Function Fitting’ problem type in GP is availed. After
obtaining a predicted SPAI series, they may be classified based on the criteria that
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SPAI � �0:8 correspond to dry events, SPAI � 0:8 correspond to wet events, and
the SPAI values in between correspond to normal events. Thus, the predicted SPAI
series may be evaluated directly as also the classification performance.

In order to evaluate the prediction performance, 3-way contingency tables are
constructed for both the training and the validation periods. The cell Xij, in the
contingency table, refers to the number of events falling in ithobserved and jth

predicted category. The contingency table is visually inspected and the model
performance is quantitatively assessed in terms of the Contingency Coefficient (C)
(Pearson 1904). This coefficient measures the degree of association in a contingency
table for N samples (Gibbons and Chakraborti 2011) and may be expressed as

C D
s

Q

QC N
(15.5)

where Q is a statistic that tests the null hypothesis that there is no association
between observed and predicted categories. The statistic Q may be expressed as

Q D
mX

iD1

nX
jD1

�
NXij � Xi˝Y˝j

�2
NXi˝Y˝j

(15.6)

where m and n are the number of categories, Xij is the number of cases falling in ith

observed and jth predicted category, and Xi˝ D
nX

jD1

Xij and Y˝j D
mX

iD1

Yij.

The statistic Q approximately follows chi-square distribution with � degrees of
freedom, where � D .m � 1/ .n � 1/. The null hypothesis (no association between
observed and predicted categories) can be rejected if the p-value is very low. The
higher the value of C, the better the association between the observed and predicted
categories. Theoretically, the maximum value that C can attain is 1. The upper bound
of C is given by

Cmax D
r

t � 1

t
(15.7)

where t D min .m; n/(Gibbons and Chakraborti 2011). The ratio C
.

Cmax
is often

used as a measure of the degree of association. The higher the value of C
.

Cmax
, the

better the prediction performance.
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15.3 Results and Discussions

15.3.1 Determination of the Input Dataset

As stated earlier, in this demonstration, the SPAI is computed on a trimonthly scale
for the entire study period. Using the criteria SPAI � �0:8, a total of 98 dry events
(66 during 1959–1990 and 32 during 1991–2010) are identified. Similarly, using
the criteria SPAI � 0:8, a total of 135 wet events (86 during 1959–1990 and 49
during 1991–2010) are identified. The trimonthly anomaly series of the five global
climate variables are obtained for the entire study period. For all the dry events,
the global anomaly fields of each climate variable at 3 months lag (as explained in
Sect. 15.2.3) is averaged event-wise to identify the mean global field of that variable
corresponding to dry events. Similarly, the mean global anomaly field corresponding
to wet events is also obtained for each of the climate variables. As mentioned earlier,
the maps of the mean global anomaly fields during dry and wet events are inspected
and the grid-wise difference in anomalies are computed for each climate variable.
The zones where the differences in mean anomalies (during dry and wet events) pass
the test for statistical significance at 95 % confidence level are identified. When the
identified zone is contiguous and statistically significant, the core area is selected.
However, if the spatial extent of an identified zone is very small with respect to
the global scale, then it is ignored even though it may be statically significant.
Finally, 14 zones from five climate variables are selected for characterization of the
Global Climate Pattern (GCP). A map depicting the SST anomaly zones selected
along with the corresponding p-values is shown in Fig. 15.3. Since the number of
zones of significance for the other climate variables is much less, they are not shown
separately in maps, rather they are summarized along with SST zones in Table 15.1.

Fig. 15.3 p-values of the differences in mean Kaplan SST anomalies during dry events (SPAI �
3 � �0:8) and wet events (SPAI � 3 	 0:8). Only those regions are shown where p-value is less
than 0.02. Selected input zones are demarcated with rectangles
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Table 15.1 Descriptions of zones of climate anomalies used to characterize the global
pattern

Sl. no. Physical variable Symbol Latitudinal extent Longitudinal extent

1 Air temperature AT 20–30ıN 85–95ıE
2 Wind speed WS 0ı–5ıN 70–85ıE
3 Total precipitable water TPW 5–15ıN 55–65ıE
4 Surface pressure SP1 15–30ıN 145–160ıW
5 Surface pressure SP2 30–40ıS 0ı–10ıW
6 Surface pressure SP3 55–65ıN 145–160ıW
7 Surface pressure SP4 10–20ıN 55–65ıE
8 Sea surface temperature SST1 42–48ıN 150–164ıW
9 Sea surface temperature SST2 13–23ıN 70–80ıW
10 Sea surface temperature SST3 20–26ıS 160–170ıE
11 Sea surface temperature SST4 0ı–6ıN 120–140ıW
12 Sea surface temperature SST5 16–24ıS 74–80ıE
13 Sea surface temperature SST6 12–20ıS 110–120ıE
14 Sea surface temperature SST7 18–26ıN 127–135ıE

15.3.2 Potential of LGP in Hydroclimatic Prediction
of Droughts

15.3.2.1 Running the LGP Tool

The 14 variable input dataset and the rescaled target series for the period 1959–
1990 is used for training the LGP and that for the period 1991–2010 is used for
validation. The ‘Problem Category’ in Discipulus is set as ‘Function Fitting’ to
obtain a predicted SPAI series. The criterion for function fitting is set as minimum
MSE between observed and predicted values. For the initial control parameters,
some typical values are used. Discipulus is generally able to solve difficult problems
with populations of 100–1000 (Frankone 1998). Thus ‘Population Size’ is set as 500
which is the default value. The other control parameters are also set to their default
values which are Maximum TournamentsD 9�106, Mutation FrequencyD 95 %
and Crossover FrequencyD 50 % respectively. Once the run is completed, predicted
SPAI series is obtained for both the training and validation period.

15.3.2.2 Interpretation of Results

Figure 15.4 shows the observed and predicted SPAI time series during training and
validation period and Fig. 15.5 shows the scatter plot between them for the entire
period of study. The correlation coefficients between the observed and predicted
series are found to be 0.49 and 0.35 during the training and validation period
respectively. It may be noted that the present study is focussed on the investigation
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Fig. 15.4 Timeseries of observed and predicted SPAI

Fig. 15.5 Scatter plot of
observed and predicted SPAI
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Table 15.2 Contingency table for multi-class classification

Training period (1959–2000) Validation period (2001–2010)
Predicted category

Observed category Dry Normal Wet Dry Normal Wet

Dry 14 52 0 5 27 0
Normal 7 212 13 1 150 8
Wet 0 61 25 0 46 3
Q 83.387 27.582
� 4 4
p-value 
 <10�4 
 <10�4

C 0.422 0.321
Cmax 0.817 0.817
C
.

Cmax
0.517 0.393

of the potential of GP in hydroclimatic prediction of droughts. Hence, based on the
predicted SPAI values, a categorical classification of events into dry, wet and normal
is attempted as explained earlier. Table 15.2 shows the contingency table for multi-
class classification for both training and validation period. It is observed that 14 out
of the 66 dry events are correctly identified during the training period. The remaining
52 dry events are falsely classified as normal events. In the validation period, 5 out
of the 32 dry events are correctly identified and the remaining 27 dry events are
falsely classified as normal events. On the other side of the extreme, 25 out of the 86
wet events are correctly identified during the training period while 3 out of the 49
wet events are correctly identified during the validation period. It may be observed
that for both training and validation periods, all the corner elements in the secondary
diagonal are zero. Thus, the extremes which are not identified correctly are classified
as ‘normal’. For normal events, the rate of correct identification is quite high for both
training and validation periods. During the former, 212 out of 232 normal events are
correctly identified; during the latter, 150 out of 159 normal events are correctly
identified. Thus, in brief, the extremes are either identified correctly or as normal.
They are generally not predicted as the opposite extremes (i.e, dry as wet, or wet as
dry). The performance of predicting normal events are quite satisfactory. Another
interesting observation is that prediction performance of extremes is better on the
dry side than that on the wet side.

The quantitative evaluation of the prediction performance is done through the
Contingency Coefficient C, which is described earlier. During the training and
validation periods, the values of C are obtained as 0.422 and 0.321 respectively.

The corresponding C
.

Cmax
values are 0.517 and 0.393 respectively.

It may be noted (Fig. 15.5) that the range of SPAI values in the predicted
series lies mostly between �1:5 and 2 while that of the observed series lies mostly
between �2:5 and 2:5. This may be because of the fact that the fitness criterion is
‘minimization of MSE’. Since, the number of normal events is much more than that
of extreme events; it is possible that minimization of the MSE for all the normal
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events makes the evolved programs less accurate towards the extremes. This is
supported by a superior prediction performance for normal events. Hence, careful
selection of the fitness function might be necessary depending on the focus of the
problem at hand. To put higher prominence to hydrologic extremes, as needed for
the problem discussed in the chapter, identification/development of more suitable
fitness criteria apart from just MSE/MAE (as available in Discipulus Lite), may
yield even better results. This can be considered as future research scope.

15.4 Summary and Conclusions

The potential of LGP in the prediction of dry and wet events in India using
global climatic information is explored in this study. GP is known to possess good
predictive capabilities due to its flexible functional nature. While GP has been
successfully used in a number of hydrological applications previously, this study
presents a GP-based approach for hydroclimatic prediction of extreme precipitation
events in the Indian context. Unlike most earlier studies which use the well-known
large scale circulation patterns (such as ENSO, EQUINOO) that are known to affect
rainfall anomalies worldwide, an extensive global climate field is considered in
this study. Zones of importance are identified and characterized as Global Climate
Pattern (GCP). The GCP, consisting of 14 variables, is used as the input dataset
and values of SPAI are predicted using LGP. The predicted output series obtained
through LGP is further processed to obtain a categorical classification of rainfall
events as dry, wet and normal. Considering the complexity and challenge involved
in drought prediction, the application of LGP is found to hold promise in capturing
the inherent dependence structure between GCP and hydrological extremes. Many
of the extreme events are identified and predicted correctly. It is noted that there may
be scope for more practically useful results if some problem-specific customizations
in fitness functions can be incorporated in GP based modelling.
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Chapter 16
Application of Genetic Programming
for Uniaxial and Multiaxial Modeling
of Concrete

Saeed K. Babanajad

16.1 Introduction

New generations of concrete, normal strength concrete (NSC), high strength
concrete (HSC), high performance fiber reinforced concrete (HPFRC), and slurry
infiltrated fiber concrete (SIFCON) are the most applied types of concrete in
civil projects. This would force the investigations to be concentrated in achieving
comprehensive understanding of their behaviors under different loading conditions.

To discover the stress–strain behavior of a solid material such as concrete,
different types of stress paths should be considered to address the comprehensive
understanding of that material. There are four general stress state paths previously
introduced and investigated: (1) Uniaxial, (2) Biaxial, (3) Triaxial, and (4) True-
triaxial. Each of these paths is also categorized in separate compressive and
tensile conditions. Generally, multiaxial stress states are created in construction
applications, such as in anchorage zones, shell or dams structures (Hampel et al.
2009). For simplicity those types are replaced by uniaxial cases. Therefore, a
decrease due to combined compressive-tensile load or an increase in ultimate
strength due to multiaxial compressive may be ignored (Hampel et al. 2009). In
order to overcome this problem, each stress path must be studied separately to
discover the behavior of concrete under multiaxial loading conditions.
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Most of the constitutive models achieved by analytical/numerical calculations
(such as Elasticity and Plasticity theories), are verified using different stress states.
These test points could be obtained using different test set ups and loading paths.
The Uniaxial path is used as the most important characteristic of hardened concrete
in design and construction stages. Uniaxial Compressive Strength and Uniaxial
Tensile Strength are two components of this categorization. In these paths, the axial
stress is applied to the concrete specimen from only one axis while the other axes are
not carrying any stresses .�1 ¤ 0; �2 D �3 D 0/. The Biaxial stress path is used to
scrupulously extend the understanding of concrete under biaxial loading, in which
the concrete cubic specimen is loaded in two surfaces while the third face is free
of stress. The test is performed in different stress ratios .�2=�1

; �1 > �2; �3 D 0/

to complete the stress–strain curve. Moreover, Triaxial test results have been used
in several investigations and national building codes to consider the effect of
confinement pressures. This stress state is the most applied stress conditions in the
world since it occurs in many actual concrete elements used in structures and inside
soil. Triaxial Compressive Strength (�1 > �3 D �2/ and Triaxial Tensile Strength
.�1 < �3 D �2/ are two components of this categorization. Most of known triaxial
data in the literature were determined by using Triaxial cells. As explained, only
experiments with combinations of stress ratios of equal stresses in two directions
(�3 D �2/ are possible with these cylindrical cells (Hoek and Brown 1980). As
mentioned, the Triaxial test is the most conventional and useful test to derive the
general behavior of concrete under different loading paths; however, it still has
some shortcomings in defining all the experimental points at a failure envelope.
In contrast, True-triaxial test is able to provide all the stress components required
for establishing failure envelopes. However, due to high-tech instruments needed
for testing concrete under True-triaxial loading and since it is expensive, there are
few technical references performed the experimental tests with this technique. It
must be highlighted that the aforementioned stress state is general and can account
all types of Uniaxial, Biaxial and Triaxial tests either in compression or tension.
For design and industrial applications using this system will not be economical and
the comprehensive information provided by this test will not be required for typical
design purposes. However, to develop new material models it is necessary to include
the True-triaxial test results.

To solve engineering problems, the currently used empirical, analytical, and
numerical methods are simplified with different assumptions and in most cases
accompanied with approximations. These simplifications have resulted in high
rates of errors which made a large gap between the actual and calculated results
(Boukhatem et al. 2011; Khan 2012; Chou and Tsai 2012; Sobhani et al. 2010).
However, the machine learning based methods use the natural rules existing in
the nature and since many of the features of natures are encountered within the
calculations they can release more precise and reliable results (Boukhatem et al.
2011). The machine learning techniques directly learn from raw experimental (or
field) data inserted and release the functional relationships among the data, even if
the underlying relationships are unknown or the physical meaning is difficult to be
explained (Gandomi and Alavi 2011; Gandomi et al. 2011a, 2013a, b). Contrary
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to these types of methods, many of conventional empirical/statistical/numerical/-
analytical methods require prior knowledge about the nature of the relationships
among the data as the start point (Alavi and Gandomi 2011). Therefore, the machine
learning techniques will be more proper to be applied for modeling the complex
behavior of many engineering problems with extreme variability in their natures
(Shahin et al. 2009).

To explore the relationships between the performance characteristics of concrete
and the affecting parameters, Pattern Recognition (PR) systems made a great
opportunity to investigate new models. As known, the basis of these systems’
performances relies on the training from experience and develops various discrim-
inators. As a subcategorize of PR systems, Artificial Neural Networks (ANNs) has
been included in solving great portions of engineering problems (e.g., Alavi et al.
2010a). Unlike these systems result in high efficiencies, they are usually unable to
be ended by a certain input–output function (Gandomi and Alavi 2011). The ANNs
have been utilized to discover different features of cement based materials such as
concrete (Gupta et al. 2006; Khan 2012; Sobhani et al. 2010; Cheng et al. 2012;
Kewalramani and Gupta 2006; Ilc et al. 2009). Tang (2010) recently used radial
basis function neural network to predict the peak stress and strain in plain concrete
while confinement pressures have been applied. As much as ANNs are successful in
prediction, they are not successful in producing practical prediction equations and
also the structure of a neural network should be predefined by researcher (Alavi and
Gandomi 2011).

Genetic Programming (GP) as the advanced subcategorize of machine learning
methods owns the ability to model the mechanical behavior of concrete without any
prior assumptions whatsoever regarding material behavior. In this manner, Koza
(1992) mentioned that GP is rather a new developed method for the modeling of
structural engineering issues. As highlighted by Banzhaf et al. (1998), GP generates
the solutions which are computer programs rather than binary strings. It could be
accounted as a supervised machine learning technique while searching a program
space instead of a data space (Gandomi et al. 2010a; Alavi et al. 2010a).

This chapter presents the feasibility of using PR method with an emphasize on
GP for modeling the behavior of concrete in uniaxial condition and also under multi
confinement pressures. Different configurations of confinement paths are consid-
ered. The chapter is organized as follows: Sect. 16.2 represents the main aspects and
the features of the employed GP algorithms. In following Sect. 16.3, the modeling
processes are described for the mentioned methods. Later on, numerical examples
and the experimental results were also compared. Finally, some concluding remarks
are provided in Sect. 16.4.

16.2 Genetic Programming

In a simple comparison, Genetic Algorithm (GA) creates a string of numbers
representing the solution, however, the GP solutions are computer programs demon-
strated as tree structures and expressed in a functional programming language (like
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LISP) (Koza 1992; Gandomi et al. 2010a; Javadi and Rezania 2009; Alavi and
Gandomi 2011). In GP, the evolving programs (individuals) are parse trees. These
components are not fixed length and are able to be changed throughout the runs.

In parameter optimization, many of the traditional GA optimization techniques
have been usually utilizing to evolve the suitable results for a given set of model
parameters. In contrast, the values of model’s parameters accompanied by the
basic structure of the approximation model are generated by the GP. In GP,
to properly optimize a population of computer programs a fitness seeking path
determined by a program is used. Using a fitness function the fitness of each
program in the population is evaluated. In this manner, the fitness function is
the objective function GP aims to optimize (Alavi and Gandomi 2011). Also, GP
proposed simplified prediction equations without any assumption regarding the
form of the existing relationships. This specification will rise up the GP over the
conventional statistical and ANN techniques. Furthermore, to discover complex
relationships among experimental data the GP-developed equations could be very
strong candidates to be easily verified in practical circumstances (e.g., Gandomi
et al. 2010a).

Many researchers have employed GP and its variants to discover complex
relationships between experimental data (Alavi and Gandomi 2011). In this
chapter, Traditional Genetic Programming (TGP), Gene Expression Programming
(GEP), Linear Genetic Programming (LGP), Hybrid GP-Orthogonal Least
Squares algorithm (GP/OLS), Macroevolutionary Algorithm Genetic Programming
(MAGP), Improved Grammatical Evolution Combined with Macrogenetic
Algorithm (GEGA), Multi Expression Programming (MEP), and Genetic Operation
Tree (GOT) approaches are discussed since they recently have been used in the area
of concrete modeling (Gandomi et al. 2012; Babanajad et al. 2013). Each method
is briefly introduced to give schematics of their performances in modeling concrete
behavior.

16.2.1 Traditional Genetic Programming

TGP is introduced by Koza (1992) as the classical GP. Once a population of
individuals (models) has been created at random, the TGP algorithm starts the
evaluation of the individuals’ fitnesses. Then, it selects individuals for reproduction,
crossover and mutation. The reproduction operation generates new individuals to
create a higher probability of selection toward more successful individuals. These
individuals, without any change, are directly copied into the next generation. Then,
the crossover operation is applied to exchange the genetic materials between the
evolved programs. Within this procedure, a point is randomly chosen on a branch
of each solution (program). Later on, from each program the set of terminals and/or
functions are swapped in order to create two new solutions (programs). During the
mutation process, occasionally a function or terminal from a model is randomly
chosen to be mutated. If the randomly selected node is a terminal, it is replaced by
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another terminal. If the randomly selected node is a function, depending on the type
of mutation (point or tree type), a new function is assigned. More details are listed
in Gandomi and Alavi (2011).

16.2.2 Gene Expression Programming

As a recent extension and natural development of GP, GEP first invented by Ferreira
(2001), has been developed to evolve computer programs with different sizes and
shapes. The GEP approach can be utilized as an efficient alternative to the TGP
for the numerical experiments (Ferreira 2001, 2006). Gandomi et al. (2012, 2013c)
directed valuable efforts at applying GEP to civil engineering tasks. Many of the
GAs’ genetic operators could be used as GEP operators with few changes. Function
set, terminal set, fitness function, control parameters, and termination condition are
the five main components of the GEP structure.

A fixed length of character strings, called chromosomes, have been used by
GEP to develop solutions to the problems as the parse trees of different sizes and
shapes which are called GEP expression trees (ETs). However, the TGP methods
use parse-tree representation. It is also noted by Gandomi et al. (2011a) that the
generation of genetic diversity is extremely simplified because of the capability
of genetic operators in working at the chromosome level. GEP is unique and has
multigenic nature which allows evolutions of more complex programs composed
of several subprograms (Gandomi et al. 2012). Further information regarding the
detailed technical processes used in GEP method are available in Ferreira (2001,
2006), Alavi and Gandomi (2011) and Gandomi et al. (2012, 2014a).

16.2.3 Linear Genetic Programming

LGP is placed as a subcategorize of GP with a linear representation of individuals. It
is explained that the expressions of a functional programming language (like LISP)
are replaced by programs of an imperative language (like C/CCC) (Brameier and
Banzhaf 2001; Gandomi et al. 2010a; Alavi et al. 2013), which made LGP to differ
from TGP. Figure 16.1 demonstrates the above mentioned difference between LGP
and TGP.

In TGP, the data flow is more rigidly determined by the tree structure of the
program while inside linear genetic program, the data flow graph generated by
multiple usage of register content (Brameier and Banzhaf 2001, 2007; Gandomi
et al. 2010a; Gandomi and Alavi 2011; Alavi and Gandomi 2011; Alavi et al.
2010b). That is, on the functional level the evolved imperative structure indicates
a special directed graph. Comprehensive descriptions of the basic parameters used
to direct a search for a linear genetic program can be found in Brameier and Banzhaf
(2007), Gandomi et al. (2010a, 2011b, 2014a, b), Oltean and Grossan (2003a),
Aršoglu et al. (2006) and Babanajad et al. (2013).
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Fig. 16.1 Comparison of the
GP program structures,
(a) TGP; (b) LGP

a b
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16.2.4 Hybrid GP-Orthogonal Least Squares Algorithm

It is well known that the combination of Orthogonal Least Squares (OLS) and GP
algorithms creates significant performance improvements of the GP (Mousavi et al.
2010; Billings et al. 1988; Chen et al. 1989; Madár et al. 2005; Gandomi and Alavi
2013; Gandomi et al. 2010b, 2010c). OLS algorithm could be effectively applied to
determine the significant terms of a linear-in-parameters model (Billings et al. 1988;
Chen et al. 1989). The OLS algorithm uses the error reduction ratio to monitor the
variance of output by a given term. Madár et al. (2005) created a hybrid algorithm
with the combination of GP and OLS techniques to achieve higher efficiency. It was
proven that applying OLS into GP results in more robust and interpretable models
(Madár et al. 2005). To determine the structure and parameters of the model the
GP/OLS is relied on the data alone. Different references stated that the discussed
technique has rarely been applied to the structural engineering issues and they
have concluded that GP/OLS approach can be helpful in deriving empirical models
by directly extracting the knowledge contained in the experimental data, such as
concrete compressive strength (Mousavi et al. 2010; Gandomi and Alavi 2013,
Gandomi et al. 2010b). The method transforms the trees to simpler trees with more
transparencies and close accuracies to the original trees, which is the main point
of the proposed method. First GP generates several solutions in the form of a tree
structure and then OLS estimates the contribution of the branches of the tree to the
accuracy of the model. The terms (sub-trees) with smallest error reduction ratio are
selected to be eliminated from the main tree and this approach is conducted in every
fitness evaluation before the calculation of the fitness values of the trees (Pearson
2003). This action is named as Pruning proposed by Pearson (2003). As the next
step, the mean square error values and error reduction ratios are calculated again.
After pruning the improved model obviously releases a higher mean square error
including a more adequate structure.
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16.2.5 Macroevolutionary Algorithm Genetic Programming

GP basics are relied on a transparent and structured way to obtain a fittest function
type of experimental results in an automatic process. On the other hand, the GP
has still issues regarding premature convergence to the local optimum. Therefore,
based on the concept and also performance of Macroevolutionary Algorithm (MA)
in solving similar issues, it was considered as a proper candidate (Chen 2003). MA
has been introduced as a new concept of species evolution at the higher level which
was presented to replace the conventional selection scheme of GP (Chen 2003;
Marin and Sole 1999). They have concluded that MA has superior capability over
the rest of techniques. Therefore, it was claimed that the combination of MA and
GP improves the capability of searching global optima.

16.2.6 Improved Grammatical Evolution Combined
with Macrogenetic Algorithm

Grammatical Evolution (GE) is classified as one of the subcategorize of evolutionary
based techniques. GE proposes a novel technique of using grammars in the process
of automatic programming. Backus–Naur form (BNF) is utilized by GE to express
computer programs (Oltean and Grosan 2003a; Ryan et al. 1998; Ryan and O’Neill
1998). BNF refers to a notation that permits a computer program to be expressed
as a grammar. Terminal and non-terminal symbols form the BNF grammar and
the grammar symbols could be re-explained in other terminal and non-terminal
symbols. The GE individual has variable length types of binary string and contains
the vital information to select a production rule from a BNF grammar in its codons
(groups of eight bits). This model was proposed by Chen and Wang (2010) in order
to estimate the compressive strength of HPC. They have concluded that GEGA
has shown less error in comparison with TGP and two popular types of traditional
multiple regression analysis methods.

16.2.7 Multi Expression Programming

MEP is a subcategorize of GP that was developed by Oltean and Dumitrescu (2002).
Linear chromosomes are used for solution encoding. MEP is capable to encode
multiple solutions (computer programs) inside a single chromosome (Mohammadi
Bayazidi et al. 2014). The best of the encoded solutions is selected based on
the fitness values of the individuals, which represent the chromosomes. Other GP
variants (such as GEP, GE, and LGP) store a single solution in a chromosome while
MEP encodes multiple solutions in a chromosome (Oltean and Grosşan 2003a, b).
MEP translates mathematical expressions into machine code in a very similar way
used in C and Pascal compilers (Aho et al. 1986). The number of genes within a
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single chromosome is constant and a function symbol (an element in the function
set) or a terminal (an element in the terminal set) is encoded by each gene (Heshmati
et al. 2010).

16.2.8 Genetic Operation Tree

GOT is a variant of GP that consists GA and operation trees (OT). Operation
tree is designed in a tree shaped in order to represent a mathematical formula
(Yeh et al. 2010). The designed tree could be optimized to create a self-organized
regression formula. The discrete type of optimization mandates using GA instead
of mathematical programming. Due to the inherit features of the GA based
techniques global optimization, flexible, nonlinear, and parallelism problems could
be easily addressed. Furthermore, some investigations have attempted to improve
the performance of the GOT by combining with other techniques. For example,
Cheng et al. (2014) integrated the Weighted Operation Structure (WOS) and
Pyramid Operation Tree (POT) in order to extend and improve the efficiency of the
prediction. They introduced Genetic Weighted Pyramid Operation Tree (GWPOT)
as the improved version of GOT that consists of the Weighted Operation Structure,
Pyramid Operation Tree, and GA methods.

The advantages and disadvantages of all of the variants of GP technique which
were explained in previous paragraphs are completely addressed in Oltean and
Grossan (2003a).

16.3 Strength Modeling of Concrete Using GP Techniques

As known, empirical models have been developed and verified based on the
data points gathered from different experimental tests. As the numbers of various
tests and their repeatability increase, the proposed model is more reliable and
comprehensive to be used in different conditions. However, there are some major
shortcomings in developing empirical models. The models are initializing based
on very simple assumptions and observations. In many cases the proposed models
can only handle specific and few parameters involved in the behavior of concrete.
In the case of increasing the parameters, achieving a proper model would be more
difficult. In addition, the proposed models are driven for specific range of concrete
strengths (range of f 0c). In contrast, the analytical and numerical models release more
reliable results. They are established based on theoretical and analytical rules (such
as Elasticity, Plasticity theories, etc.) which could consider complex behavior of
concrete under different loading paths. However, to validate these models different
loading paths with different configurations must be available. This will result in time
and cost consuming experiments. Like empirical tests, analytical models can only
account few parameters in the modeling of concrete behavior (Farnam et al. 2010;
Babanajad et al. 2012). Both empirical and analytical models only use principal
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stresses and strains, except some models considered also temperature effects in their
modeling (He and Song 2010). While the PR models, specifically GP models, enable
the researchers to consider other effective parameters in concrete behavior. Besides,
these models do not need to be evaluated by specific experimental tests. They can
use the available databases in the literature. However, their accuracies depend on
the size and variety of the database. In the case of concrete modeling since there are
different and very large databases, using PR models is very efficient. Later on, these
models could be used as a proper tool for validation and verification of the existing
models used by the national building codes.

As the first step in using GP techniques for modeling the strength of concrete,
the main parameters of concrete previously used in different models are explained.
The influenced variables include as follows:

�1 D f
�
�2; �3; f

0

c; K; Z; W; C; P .B; F/ ; S; MSA; Fib; Ln.A/
�

(16.1)

where,
�1 (MPa): principal stress
�2 (MPa): principal stress
�3 (MPa): principal stress
�1 � �2 � �3

f
0

c(MPa): Uniaxial Compressive Strength
K: Ratio of water and superplasticizer summation to binder ..W C S/ =Binder/
Binder: Binder content .CC P/

W(kg/m3): Water content
C(kg/m3): Cement content
P(kg/m3): Pozzolan content (B: Blast furnace slag, F: Fly Ash)
S(kg/m3): Superplasticizer content
Z: Ratio of coarse aggregate (CA) to fine aggregate (FA) content
MSA (mm): Maximum Size Aggregate
Fib (%): Fiber index .Fib D Vf

lf
df

)
Vf (%): Steel fiber volume fraction
lf
df

: Fiber aspect ratio
lf (mm): Fiber length
df (mm): Fiber diameter
A (day): Age of specimens at testing
The mix design variables were chosen as the input variables on the basis of

literature review (Mousavi et al. 2010; Yeh and Lien 2009; Chen and Wang 2010;
Babanajad et al. 2013) and after a trial study. In the following, the aforementioned
models are listed, including:

• TGP (Gandomi and Alavi 2011): Uniaxial Compressive Strength

�1 D f .W; C; B; F; Z; A/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• GEP (Mousavi et al. 2012): Uniaxial Compressive Strength

�1 D f .W; C; B; F; S; CA; FA; A/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0
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• GP/OLS_I (Mousavi et al. 2010): Uniaxial Compressive Strength

�1 D f .K; Z; A/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• GP/OLS_II (Mousavi et al. 2010): Uniaxial Compressive Strength

�1 D f .K; A/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• GEGA (Chen and Wang 2010): Uniaxial Compressive Strength

�1 D f .K; A; CA; FA/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• MEP_I (Heshmati et al. 2010): Uniaxial Compressive Strength

�1 D f .W; C; S; CA; FA/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• MEP_II (Heshmati et al. 2010): Uniaxial Compressive Strength

�1 D f .W; S; C; CA; FA/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• MAGP_I (Chen 2003): Uniaxial Compressive Strength

�1 D f .W; Binder/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• MAGP_II (Chen 2003): Uniaxial Compressive Strength

�1 D f .W; Binder; A; FA/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• TGP (Chen and Wang 2010; Chen 2003): Uniaxial Compressive Strength

�1 D f .K; A; CA; FA/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• LGP (Gandomi and Alavi 2011): Uniaxial Compressive Strength

�1 D f .W; C; B; F; S; Z; A/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• GOT (Yeh et al. 2010): Uniaxial Compressive Strength

�1Df .W; K; Binder; S; CA; FA; A/ I �1.compressive/ D f 0c ¤ 0; �2D�3D0

• GOT (Yeh and Lien 2009): Uniaxial Compressive Strength

�1 D f .W; Binder; S; A/ I �1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

• GOT (Peng et al. 2010) : Uniaxial Compressive Strength

�1 D f .W; C; Binder; S; CA; A/ I �1.compressive/ D f 0c ¤ 0;�2 D �3 D 0

• GEP (Gandomi et al. 2012): Triaxial Compressive Strength

�1 D f .K; �3 .D �2/ ; Fib; Z; A/ I �1 ¤ 0; �2 D �3 ¤ 0

• LGP (Babanajad et al. 2013): Triaxial Compressive Strength

�1 D f
�
�3 .D �2/ ; f

0

c

�
I �1 ¤ 0; �2 D �3 ¤ 0

• GEP_I (Babanajad et al. submitted): True-triaxial Strength

�1 D f .K; �2; �3; Z; MSA/ I �1 > �2 > �3 ¤ 0

• GEP_II (Babanajad et al. submitted): True-triaxial Strength

�1 D f
�

f
0

c; �2; �3

�
I �1 > �2 > �3 ¤ 0
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• GEP_III (Babanajad et al. submitted): True-triaxial Strength

�1 D f
�

f
0

c; �2; �3

�
I �1 > �2 > �3 ¤ 0

16.3.1 Experimental Database

In this part, as an example, seven of previously established GP based models
are briefly discussed. These models were established using GEP, TGP and LGP
concepts to come up with the solution. Twice of the models were applied to
predict the Uniaxial Compressive Strength .f 0c D �1 ¤ 0; �3 D �2 D 0/. Gandomi
and Alavi (2011) developed a TGP and a LGP models to predict the Uniaxial
Compressive Strength of concrete. The used database contained 1133 compressive
strength of concrete test results presented by Yeh (2006a, b). Two more models were
also generated to calculate the Triaxial Strength of concrete .�1 ¤ 0; �3 D �2 ¤ 0/.
Gandomi et al. (2012) developed a GEP model and later Babanajad et al. (2013)
proposed a LGP model. They used the same database contained 330 Triaxial
experimental results of concrete tests under equal confined pressures. Recently,
Babanajad et al. (submitted) established three GEP models to predict the True-
triaxial strength of concrete under multiaxial stresses (�1 ¤ �2 ¤ �3 ¤ 0I General
form). They have used 300 True-triaxial test results to verify the models. In the
literature, there are few models explaining the behavior of concrete under biaxial
loading conditions and there is no GP based model to predict the biaxial behavior of
concrete. This is mainly because of the reason that Biaxial test is not common and
widely applied stress state. Hence, in this chapter the Biaxial modeling of concrete
is not covered.

To visualize the distribution of the samples, the input and output variables are
presented by frequency histograms presented in Fig. 16.2 for models TGP and LGP
(Gandomi and Alavi 2011), as an example. As can be observed from Fig. 16.2,
the distributions of the predictor variables are not uniform. For the cases where the
frequencies of the variables are higher the derived models are expected to provide
better predictions.

It is well known that the GP based models have a capability to properly predict
the target value within the data range used for their development. Thus, the size of
training database for these algorithms is a critical issue, and guarantees the accuracy
and reliability of the extracted models. Comprehensive data sets have to be used for
training the algorithms. Hence, a reliable database consisting of tests on mixtures
with a wide range of water/cement rations, coarse and fine aggregates gradation
and properties has to be obtained from literature to develop the generalized models
(Gandomi and Alavi 2011).
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Fig. 16.2 Variables histogram used in the TGP and LGP development (Gandomi and Alavi 2011)

16.3.2 GP-Based Model Development

In the area of GP, the final selection of the best model is established on the basis of
a multi-objective strategy as below (Gandomi et al. 2012; Babanajad et al. 2013):

1. The simplicity of the model,
2. Providing the best fitness value on the learning set of data,
3. And providing the best fitness value on the validation set of data,

The first objective is conducted by the user with selection of the parameter
settings (e.g., number of genes or head size). However, this is not considered as
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a predominant factor. In the case of the second and third objectives, the objective
function (OBJ) has to be constructed in a manner to monitor the closeness of the
model predicted outputs with the experimental results. Then, the best model is
deduced by minimizing the OBJ function.

In order to develop the GP based concrete model, different input parameters
(¢2; ¢3; f

0

c; K; Z; W; C; P .B; F/ ;S; MSA; Fib; and Ln .A// were previously used to
create the GP models for the strength modeling of concrete. Various parameters
involved in the GP based predictive algorithm were selected. The parameter
selection affects the model generalization capability of the GP models. Therefore,
several runs were conducted to come up with a parameterization of GP models
that provided enough robustness and generalization to solve the problem. Different
parameter settings such as number of Chromosomes, Genes, Head Size, Tail Size,
Dc Size, Gene Size, etc. have been examined until there was no longer significant
improvement in the performance of the proposed models.

In the following, the GP-based formulations existing in the entire technical
literature are listed and the ultimate strength (�1) of concrete are given as below:

TGP (Gandomi and Alavi 2011): Uniaxial Compressive Strength; �1.compressive/

D f 0c ¤ 0; �2 D �3 D 0

�1 D C

W

�
.F C 4/ :

�
Z C Ln.A/C

�
F C B:

W

C

�
:
�

Ln.A/: .Ln.A/C 5/C 13B
�W

C
C F C Ln.A/

����
C 1

GEP (Mousavi et al. 2012): Uniaxial Compressive Strength; �1.compressive/ D
f 0c ¤ 0; �2 D �3 D 0

�1 D
�
� 5:69

�
2:89C 2:64B � 3:19AC F

CA

�
: .8:72SC 1:93A� 33:6C C/

: .16:08SC A � B � 196:26� FA � F/

�
�
FA:

�
W � C � CAC A

A

��
GP/OLS_I (Mousavi et al. 2010): Uniaxial Compressive Strength; �1.compressive/

D f 0c ¤ 0; �2 D �3 D 0

�1 D �39:36K � 3:94

�
Z � Ln.A/

K

�
C 30:88

GP/OLS_II (Mousavi et al. 2010): Uniaxial Compressive Strength; �1

.compressive/ D f 0c ¤ 0; �2 D �3 D 0

�1 D 6:46

�
Ln.A/

K
� K

�
C 11:37
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MAGP_I (Chen 2003): Uniaxial Compressive Strength; �1.compressive/Df 0c ¤ 0;
�2 D �3 D 0

�1 D 860:914�
w
.

Binder

�2
C 1508:4

MAGP_II (Chen 2003): Uniaxial Compressive Strength; �1.compressive/

D f 0c ¤ 0; �2 D �3 D 0

�1 D 514:63
� w

Binder

��1:27

.Ln.A/C 0:0312/C FAcos.0:216FA/

TGP (Chen and Wang 2010; Chen 2003): Uniaxial Compressive Strength;
�1.compressive/ D f 0c ¤ 0; �2 D �3 D 0

�1 D
�

0:425

K
C 0:345 � Ln.A/C 0:015

�
�
�

Ln

�
CA

18:989

�
C Ln.FA/

K

�
LGP (Gandomi and Alavi 2011): Uniaxial Compressive Strength; �1

.compressive/ D f 0c ¤ 0; �2 D �3 D 0

�1 D C

W
:Ln.A/

�
36FC 36B� 2Ln.A/

3

�
1 � 2W

3C

�
C Z C 5

�
� W

C
� Ln.A/� SC 7

GEGA (Chen and Wang 2010): Uniaxial Compressive Strength; �1

.compressive/ D f 0c ¤ 0; �2 D �3 D 0

�1 D 0:397

K

�
1

K
C Ln.A/

�
.Ln .Ln.A/ � CA/C FA/

MEP_I (Heshmati et al. 2010): Uniaxial Compressive Strength; �1
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GOT (Yeh et al. 2010): Uniaxial Compressive Strength; �1.compressive/ D f 0c
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As an example, a comparison of the experimental against predicted triaxial
strength values for GEP (Gandomi et al. 2012) is shown in Fig. 16.3 and reported in
Table 16.1, and also the expression tree of the derived equation is given in Fig. 16.4.
The formula creates a complex arrangement of operators, variables, and constants
to predict �1. Based on the Fig. 16.4, the proposed equation is a combination of
three independent components (subprograms or genes) which are connected by an
additional function. Any individual aspect of the problem is highlighted by each
of these three subprograms such that a meaningful overall solution is developed
(Ferreira 2001). In other words, important information about the physiology of the
final model could be achieved through each of the evolved subprograms. Ferreira
(2001) and Gandomi et al. (2012) stated that each gene of the final equation is

Fig. 16.3 Experimental versus predicted triaxial strength values using the GEP model (Gandomi
et al. 2012)

Table 16.1 Statistical values
of the GEP prediction model
(Gandomi et al. 2012)

MAE RMSE R

Learning 13.28 17.10 0.9850
Validation 10.46 12.60 0.9947
Testing 10.86 14.08 0.9849
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Fig. 16.4 Expression tree for strength modeling of concrete under triaxial compression
(ETsDPETi); GEP model (Gandomi et al. 2012)

committed to resolve a particular facet of the problem. They have concluded that the
provided critical information will make the further scientific discussion at genetic
and chromosomal level to be continued.

Based on a logical hypothesis (Smith 1986), it is concluded that for a model with
R > 0:8 and minimum MAE value strong correlation between the predicted and
measured values exists. The model can therefore be judged as very good (Gandomi
et al. 2011c). The results shown in Table 16.1 prove the reliability and accuracy of
the proposed GP model in predicting the Triaxial strength of concrete. In order to
validate the proposed models different indices have been introduced in the literature.
Minimum ratio of the number of objects over the number of selected variables
(Frank and Todeschini 1994); Slope of Regression Line (k or k

0

) (Golbraikh and
Tropsha 2002); Confirmation Indicator (Rm) (Roy and Roy 2008) are examples of
those external verification indicators.

For further verification of the GP prediction model, a parametric analysis could
be performed in order to evaluate the response of the predicted value (from the
proposed model) to a set of hypothetical input data generated through the data
used for the model calibration. These hypothetical input data are selected from the
ranges of minimum and maximum of their entire data sets. Only one input variable
will change while the rest of variables are kept constant at their average values
of their entire data sets (Gandomi et al. 2012). By increasing the value of varied
parameter in increments, a set of synthetic data for that parameter will be generated.
In this way, the inputs are entered to the model and the output is calculated. The
entire above mentioned procedure is repeated for all input variables of the proposed
model. Therefore, with concentrating on the proximity of the predicted model output
values and the underlying properties of the simulated case, robustness of the design
equations will be more highlighted (Kuo et al. 2009).
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Fig. 16.5 Triaxial strength parametric analysis in the GEP based (Gandomi et al. 2012)

In order to clarify the parametric analysis applied for verification of the GP based
models, Fig. 16.5 represents the ultimate Triaxial strength parametric study in the
GEP model proposed by Gandomi et al. (2012). As presented in Fig. 16.5, it is
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obvious that �1 decreases with increasing K while it increases by increasing �3, Z,
F, and A. It can be concluded that the proposed model’s performance agrees well
with the expected cases from a structural engineering point of view.

16.3.3 Comparative Study

Prediction statistics of the GP model and other empirical/analytical equations found
in the literature could be representation of how well the proposed model performs
in comparison with others. In the following, the GP based proposed models are
compared against others found in the literature (Table 16.2). Totally 99 models
were found to be compared. Out of 64 models allocated for Uniaxial strength
modeling, 16 models were chosen from empirical/analytical references and the
rest were specified for evolutionary algorithms. Then, out of 21 models considered
for Triaxial strength modeling, 19 models were selected from empirical/analytical
references and the rest were specified for GP-based models. Moreover, out of 14
models used for True-triaxial strength modeling of concrete, 11 models were found
from empirical/analytical references and the rest of 3 models were GP based models.
Since these results were collected from different references, in some cases, one or
two of RMSE, MAE, R and � statistical parameters were missing. As explained
by Gandomi et al. (2012), one of the powerful capabilities of GP based models in
distinction to the conventional models is that they can use the mix design properties
of concrete in order to model the strength of concrete while there is no need to
conduct experimental tests. In the other hand, since the conventional models were
derived through the empirical and analytical methods they were unable to consider
many of the mix design properties. As a highlighted point, in some cases the
proposed GP based models directly consider the effect of specimen age in their final
formula. As more data become available, the GP based models can be improved to
make more accurate predictions for a wider range.

To evaluate the capabilities of the models listed in Table 16.2, four different
statistical parameters were considered to be analyzed (RMSE, MAE, R, and �).
RMSE, MAE, MAPE, and ¡ are widely used parameters (Gandomi et al. 2011c;
Milani and Benasciutti 2010; Gandomi and Roke 2013) and respectively indicate
the Root Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage
Error, Correlation Coefficient, and Correlation Index given in the form of following
relationships:

RMSE D

vuutXn

iD1
.hi � ti/

2

n
(16.2)

MAE D
Xn

iD1
jhi � tij
n

(16.3)
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Table 16.2 Comparison of proposed model with other models

Model ID Researcher Load path RMSE MAE R �

1* LLSRa (Ryan 1997; Mousavi et al. 2012) Uniaxial – 7.25 0.840 –
2* NLSRb (Ryan 1997; Mousavi et al.

2012)
Uniaxial – 5.34 0.907 –

3* RA Ic (Chen and Wang 2010;Yeh 1998) Uniaxial 15.28 – – –
4* RA IIc (Chen and Wang 2010;Yeh 1998) Uniaxial 22.86 – – –
5* NRd (Yeh and Lien 2009) Uniaxial 12.80 – 0.966 6.51
6* LSR Ie (Ryan 1997; Mousavi et al. 2010) Uniaxial – 6.03 0.877 –
7* LSR IIe (Ryan 1997; Mousavi et al.

2010)
Uniaxial – 6.05 0.875 –

8 RBFf (Gandomi and Alavi 2011) Uniaxial – 4.37 0.930 –
9 SLNNg (Rajasekaran and Amalraj 2002;

Heshmati et al. 2010)
Uniaxial 7.82 6.90 0.898 4.12

10 MEP_I (Heshmati et al. 2010) Uniaxial 8.63 7.04 0.924 4.49
11 MEP_II (Heshmati et al. 2010) Uniaxial 8.32 6.86 0.908 4.36
12 BPNh (Chen and Wang 2010) Uniaxial 10.36 – – –
13 GOT (Yeh and Lien 2009) Uniaxial 9.30 – 0.931 4.82
14 MLPi (Gandomi and Alavi 2011) Uniaxial – 4.31 0.935 –
15* NRd—K < 0.5 (Yeh et al. 2010) Uniaxial 11.34 – – –
16* NRd—0.35 < K <0.65 (Yeh et al. 2010) Uniaxial 7.56 – – –
17* NRd—K > 0.5 (Yeh et al. 2010) Uniaxial 5.38 – – –
18 ANN—K < 0.5 (Yeh et al. 2010) Uniaxial 10.98 – – –
19 ANN—0.35<K < 0.65 (Yeh et al. 2010) Uniaxial 7.32 – – –
20 ANN—K > 0.5 (Yeh et al. 2010) Uniaxial 5.27 – – –
21 GOT-medium age (Yeh et al. 2010) Uniaxial 11.05 – – –
22 GOT-medium age (Yeh et al. 2010) Uniaxial 7.49 – – –
23 GOT-medium age (Yeh et al. 2010) Uniaxial 5.48 – – –
24 SVMj (Cheng et al. 2014) Uniaxial 7.17 5.30 – –
25 ANN (Cheng et al. 2014) Uniaxial 7.00 5.42 – –
26 ESIMk (Cheng et al. 2014) Uniaxial 6.57 4.16 – –
27 GWPOTl (Cheng et al. 2014) Uniaxial 6.38 4.79 – –
28 GOT (Cheng et al. 2014) Uniaxial 7.12 5.51 – –
29 WOSm (Cheng et al. 2014) Uniaxial 6.89 5.23 – –
30 BPNh (Yeh and Lien 2009; Yeh 2006c) Uniaxial 5.7 – 0.966 2.90
31 ANN (Erdal et al. 2013) Uniaxial 5.57 4.18 0.953 2.85
32 BANNn (Erdal et al. 2013) Uniaxial 4.87 3.60 0.963 2.48
33 GBANNo (Erdal et al. 2013) Uniaxial 5.24 4.09 0.963 2.67
34 WBANNp (Erdal et al. 2013) Uniaxial 4.54 3.30 0.970 2.30
35 WGBANNq (Erdal et al. 2013) Uniaxial 5.75 4.83 0.976 2.91
36 ANN (Chou et al. 2011) Uniaxial 5.03 – 0.953 2.58
37* MRr (Chou et al. 2011) Uniaxial 10.43 – 0.782 5.85
38 SVMj (Chou et al. 2011) Uniaxial 5.62 – 0.941 2.90
39* MARTs (Chou et al. 20115) Uniaxial 4.95 – 0.954 2.53
40* BRTt (Chou et al. 2011) Uniaxial 5.57 – 0.943 2.87

(continued)
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Table 16.2 (continued)

Model ID Researcher Load path RMSE MAE R �

41 GOT-early age-average (Peng et al.
2010)

Uniaxial 8.28 – 0.862 4.45

42 GOT-medium age-average (Peng et al.
2010)

Uniaxial 9.74 – 0.895 5.14

43 GOT-late age-average (Peng et al. 2010) Uniaxial 8.13 – 0.925 4.22
44* NRd-early age (Peng et al. 2010) Uniaxial 7.4 – – –
45* NRd-medium age (Peng et al. 2010) Uniaxial 10.53 – – –
46* NRd-late age (Peng et al. 2010) Uniaxial 9.41 – – –
47 BPNh-early age (Peng et al. 2010) Uniaxial 5.74 – 0.938 2.96
48 BPNh-medium age (Peng et al. 2010) Uniaxial 9.56 – 0.899 5.03
49 BPNh-late age (Peng et al. 2010) Uniaxial 7.12 – 0.943 3.66
50 ANN (Topcu and Sarıdemir 2008) Uniaxial 2.81 – 0.998 1.41
51 FLu (Topcu and Sarıdemir 2008) Uniaxial 2.02 – 0.999 1.01
52 ANFISv (Ramezanianpour et al. 2004;

Fazel Zarandi et al. 2008)
Uniaxial 14.21 – – –

53 FPNNw (Fazel Zarandi et al. 2008) Uniaxial 9.56 – – –
54 GEGA (Chen and Wang 2010) Uniaxial 9.49 – – –
55 TGP (Gandomi and Alavi 2011) Uniaxial – 6.14 0.881 –
56 LGP (Gandomi and Alavi 2011) Uniaxial – 5.71 0.906 –
57 GP/LOS I (Mousavi et al. 2010) Uniaxial – 5.72 0.889 –
58 GP/LOS II (Mousavi et al. 2010) Uniaxial – 6.19 0.876 –
59 MAGP_I (Chen 2003) Uniaxial 7.38 – – –
60 MAGP_II (Chen 2003) Uniaxial 4.64 – – –
61 TGP_I (Chen 2003) Uniaxial 10.6 – – –
62 TGP_II (Chen 2003) Uniaxial 8.27 – – –
63 TGP (Chen and Wang 2010; Chen 2003) Uniaxial 10.87 – – –
64 GEP (Mousavi et al. 2012) Uniaxial – 5.20 0.914 –
65* Richart et al. (1929) Triaxial 22.83 14.80 0.975 11.56
66* Balmer (1949) Triaxial 26.79 17.68 0.985 13.50
67* Martinez et al. (1984) Triaxial 22.27 14.63 0.977 11.26
68* Saatcioglu and Razvi (1992) (I) Triaxial 31.60 20.66 0.981 15.95

Saatcioglu and Razvi (1992) (II) Triaxial 22.94 14.30 0.987 11.55
Setunge et al. (1993) (I) Triaxial 22.31 14.37 0.980 11.27
Setunge et al. (1993) (II) Triaxial 31.60 20.33 0.977 15.98

69* Setunge et al. (1993) (III) Triaxial 27.57 18.56 0.988 13.87
70* Xie et al. (1995) Triaxial 19.07 13.18 0.986 9.60
71* Légeron and Paultre (2003) Triaxial 34.30 22.60 0.979 17.33
72* Attard and Setunge (1996) Triaxial 18.02 11.79 0.984 9.08
73* Girgin et al. (2007) Triaxial 18.86 12.78 0.989 9.48
74* Johnston (1985) Triaxial 28.65 18.94 0.983 14.45
75* Lan and Guo (1997) Triaxial 43.74 26.95 0.960 22.32
76* Ansari and Li (1998) Triaxial 32.63 21.39 0.981 16.47
77* Li and Ansari (2000) Triaxial 31.11 20.08 0.976 15.74
78* Bohwan et al. (2007) Triaxial 77.55 35.54 0.739 44.59

(continued)
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Table 16.2 (continued)

Model ID Researcher Load path RMSE MAE R �

79* Chinn and Zimmerman (1965) Triaxial 40.85 26.50 0.966 20.78
80* Mullar (1973) Triaxial 49.51 23.98 0.814 27.29
81* Avram et al. (1981) Triaxial 15.36 10.36 0.988 7.73
82* Tang (2010) Triaxial 18.14 13.56 0.984 9.14
83* Samaan et al. (1998) Triaxial 58.59 36.77 0.966 29.80
84 GEP (Gandomi et al. 2012) Triaxial 14.08 10.86 0.985 7.09
85 LGP (Babanajad et al. 2013) Triaxial 13.72 10.35 0.992 6.89
86* Ottosen (1977) True-Triaxial 26.84 19.90 0.890 14.20
87* Hsieh et al. (1982) True-Triaxial 77.82 43.27 0.692 45.99
88* Li and Ansari (1999) True-Triaxial 67.03 54.03 0.606 41.74
89* Hampel et al. (2009) True-Triaxial 9.390 6.340 0.988 4.72
90* Willam and Warnke (1975) True-Triaxial 47.73 28.17 0.840 25.94
91* He and Song (2010) True-Triaxial 14.08 10.25 0.984 7.10
92* Mills and Zimmerman (1970) True-Triaxial 27.50 20.03 0.906 14.43
93* Wang et al. (1987) True-Triaxial 54.22 37.23 0.880 28.84
94* Seow and Swaddiwudhipong (2005) True-Triaxial 42.45 33.48 0.955 21.71
95* Desai et al. (1986)-Hinchberger (2009) True-Triaxial 98.98 80.58 0.583 62.53
96* Bresler and Pister (1958) True-Triaxial 137.5 100.8 0.559 88.20
97 GEP_I (Babanajad et al. submitted) True-Triaxial 13.58 9.82 0.984 6.84
98 GEP_II (Babanajad et al. submitted) True-Triaxial 7.87 5.91 0.990 3.95
99 GEP_III (Babanajad et al. submitted) True-Triaxial 11.14 7.11 0.988 5.60

Note: (–) indicates that there is no available results
Note: All of the RMSE, MAE, and R values correspond to the testing evaluation of dataset.
Note: For the models starred in the Model ID column, the formulas were achieved by empirical
and analytical methods.
a Linear Least Squares Regression (LLSR)
b Nonlinear Least Squares Regression (NLSR)
c Regression Analysis (RA)
d Nonlinear Regression (NR)
e Least Squares Regression (LSR)
f ANN-based Radial Basis Function (RBF)
g Sequential Learning Neural Network (SLNN)
h ANN with back-propagation algorithm, called Back Propagation Network (BPN)
i ANN-based Multi-Layer Perceptron (MLP)
j Support Vector Machine (SVM)
k Evolutionary Support Vector Machine Inference Model (ESIM)
l Genetic Weighted Pyramid Operation Tree (GWPOT)
m Weighted Operation Structure (WOS)
n Bagged ANN (BANN)
o Gradient Boosted ANN (GBANN)
p Wavelet Bagged ANN (WBANN)
q Wavelet Gradient Boosted ANN (WGBANN)
r Multiple Regression (MR)
s Multiple Additive Regression Tree (MART)
t Bagging Regression Tree (BRT)
u Fuzzy Logic (FL)
v Adaptive Network-based Fuzzy Inference System (ANFIS)
w Fuzzy Polynomial Neural Netwrok (FPNN)
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in which hi and ti are respectively the actual and calculated outputs for the ith output,
hi and ti are the average of actual and predicted outputs, respectively, and n is the
number of samples.

By equal shifting of the output values of a model, R value does not change.
Therefore, R could not be as a good indicator for predicting the accuracy of a model.
The constructed OBJ function takes into account the changes of RMSE, MAE and
R simultaneously. The combination of lower RMSE and MAE and higher R values
results in lowering OBJ; and hence indicates a more precise model. However, it was
concluded that the models have to be compared using a suitable criterion not only
using R or error functions. It is because R will not change significantly by shifting
the output values of a model equally, and error functions (e.g. RMSE and MAE) only
show the error not correlation. Therefore, the criteria should be the combination of
R, RMSE and/or MAE. In this way, Gandomi and Roke (2013) have proposed a new
criterion (�) in order to address the mentioned issues. The lower � indicates more
precise model.

As an example, comparisons of predicted versus experimental Uniaxial Com-
pressive Strength values using TGP, LGP, Multi Layer Perceptron (MLP), and
Radial Basis Function (RBF) are illustrated in Fig. 16.6 (Gandomi and Alavi 2011).
MLP and RBF are categorized as the variants of ANN technique (Gandomi and
Alavi 2011). It is obvious that the proposed models could greatly encompass the
influencing variables which are not yet considered by existing models (Gandomi
and Alavi 2011). The results of Table 16.2 indicate that the GP based models are
able to predict the Uniaxial Compressive Strength of concrete with high degrees
of accuracy and reliability. Comparing the performance of the GP based methods,
it can be observed from Fig. 16.6 and Table 16.2 that LGP has produced better
outcomes than TGP. The ANN-based models (i.e. MLP and RBF) have shown better
results while there are lacks in preparing any applicable input–output formula.

In the case of Triaxial strength of concrete, the accuracy levels of LGP
(Babanajad et al. 2013) and GEP (Gandomi et al. 2012) highlight the performance of
GP based models from the conventional ones. Among all the conventional proposed
models, Xie et al. (1995), Attard and Setunge (1996), and Girgin et al. (2007)
released good performance measurements, however, they are not as good as those of
the GP models. Besides, the mechanical characteristics of concrete (e.g., cylindrical
Uniaxial compressive strength) are required as the input of empirical/numerical
models, therefore, at least one set of laboratory tests has to be performed. While
the proposed GEP can be implemented only by using the mix design parameters
and confining pressure and there is no need to conduct any experimental program
to obtain Uniaxial compressive strength (f 0c/ or Uniaxial tensile strength (f 0t/. The
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Fig. 16.6 Histograms of (a) RBF, (b) MLP, (c) LGP, and (d) TGP models (Gandomi and Alavi
2011)

model also can directly take into account the effect of specimen age (A/ (Gandomi
et al. 2012). Regarding the LGP model, it is concluded by Babanajad et al. (2013)
that LGP based models require remarkably simple steps to come up with the
solution. In addition to their reasonable accuracies they can also be implemented for
design practice via hand calculations. The LGP based models are capable to derive
explicit relationships for the strength of concrete without assuming prior forms of
the existing relationships. This capacity highlights the superiority of LGP over the
traditional analyses.

For True-triaxial modeling of concrete under different levels of confining
pressures, the GP based models reported in Table 16.2 (GEP_I, GEP_II, GEP_III;
proposed by Babanajad et al. submitted) outperform the rest of conventional models.
Among all models (except GP based models) for True-triaxial modeling of concrete,
the models proposed by Ottosen (1977), Hampel et al. (2009), He and Song (2010),
and Mills and Zimmerman (1970) provide good RMSE, R, MAE, and � values.
However, the performance measurements for these models are not as good as
those of the GEP models. Furthermore, since the conventional empirical/analytical
models were established based on the complex Elasticity and Plasticity concepts
of materials behaviors, these models considered more input parameters in their
formulations. This made the proposed formulas to have explicit relationships among
the input parameters. For instance, using Hsieh et al. (1982) to calculate �1, the
f (�1, �2, �3, f

0

c) has to be solved explicitly. While the GEP models release the
formula in an implicit way, in which �1 is ordered separately from known values
of �2, �3, f

0

c.
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16.4 Conclusions

Robust variants of recently developed GP based models, namely TGP, LGP, GEP,
MEP, GEGA, MAGP, GOT, and GP/LOS were introduced to formulate the strength
capacity of concrete under uniaxial and multiaxial condition states. Different types
of multiaxial modeling of hardened concrete were briefly categorized and the related
literature sources were also reviewed and compared. The following conclusions are
drawn based on the results presented:

• TGP, LGP, MEP, etc. are effectively capable of predicting the Uniaxial, Triaxial
and True-triaxial strength of hardened concrete. Expect few cases, in all cases,
the GP based models give more accurate prediction capabilities than conventional
numerical/empirical/analytical models. The GP based models could easily satisfy
the conditions of different criteria limited for their external validation (Gandomi
and Alavi 2011).

• The proposed GP models simultaneously could consider the role of several
important factors representing the concrete behavior in different ages. The stud-
ied GP models provide simplified formulations which can reliably be employed
for the pre-design purposes or quick checks of complex solutions. The complex
solutions could be developed by more time consuming and in-depth deterministic
analyses or national building codes.

• GP models provide the concrete compressive strength formula based on the
mix design basic properties. In this manner, it is not necessary to conduct
sophisticated and time consuming laboratory tests. Also, some of the reviewed
GP models could consider the effect of specimen age and can be used for
predicting of the uniaxial and multixial strength of concrete in different time
intervals.

• The powerful abilities of GP models in tracking the complex behavior of the
concrete without any need to predefined equations or simplifications makes it to
be a substantial distinction model to the conventional empirical/statistical/numer-
ical/analytical techniques (Gandomi and Alavi 2011).

• Based on the first principles (e.g., Elasticity, Plasticity, or Finite Element theo-
ries) have used in deriving the conventional constitutive models, the GP based
constitutive models are basically formed based on different concepts. Artificial
Intelligence and Machine Learning methods (e.g. GP, ANN, etc.) rely on the
experimental data rather than on the assumptions which are made in developing
the conventional models (Alavi and Gandomi 2011). This feature makes these
techniques to be distinctive from the conventional ones. Consequently, these
material models will be more accurate and reliable by re-training as more data
becomes available.
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Notation

f 0c D Compressive Strength
f 0t D Tensile Strength
¢1; ¢2; ¢3 D Compressive Strength
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Oltean M, Grosşan CA (2003a) Comparison of several linear genetic programming techniques.
Adv Cmplx Sys 14(4): 1–29

Oltean M, Grossan CA (2003b) Evolving evolutionary algorithms using multi expression program-
ming. In: Banzhaf W et al. (eds). 7th European conference on artificial life. Dortmund, LNAI,
pp 651–658

Ottosen NS (1977) A failure criterion for concrete. J Eng Mech Div 103(4): 527–535
Pearson (2003) Selecting nonlinear model structures for computer control. J Process Contr 13(1):

1–26
Peng CH, Yeh IC, Lien LC (2010) Building strength models for high-performance concrete at

different ages using genetic operation trees, nonlinear regression, and neural networks. Eng
Comput 26: 61–73

Rajasekaran S, Amalraj R (2002) Predictions of design parameters in civil engineering problems
using SLNN with a single hidden RBF neuron. Comput Struct 80 (31): 2495–2505

Ramezanianpour AA, Sobhani M, Sobhani J (2004) Application of network based neuro-fuzzy
system for prediction of the strength of high strength concrete. AKU J Sci Technol 15(59-C):
78–93

Richart E, Brandtzaeg A, Brown RL (1929) Failure of Plain and Spirally Reinforced Concrete in
Compression. Bulletin 190, University of Illinois Engineering Experimental Station, Cham-
paign, Illinois

Roy PP, Roy K (2008) On Some Aspects of Variable Selection for Partial Least Squares Regression
Models. QSAR Comb Sci 27(3): 302–313

Ryan TP (1997) Modern regression methods. Wiley, New York
Ryan C, Collins JJ, O’Neill M (1998) Grammatical Evolution: Evolving Programs for an Arbitrary

Language. In: Banzhaf W, Poli R., Schoenauer M, Fogarty TC (eds), First European Workshop
on Genetic Programming, Springer-Verlag, Berlin

Ryan C, O’Neill M (1998) Grammatical Evolution: A Steady State Approach. In: Koza JR (ed)
Late Breaking Papers Genetic Programming, University of Wisconsin, Madison, Wisconsin

Saatcioglu M, Razvi SR (1992) Strength and Ductility of Confined Concrete. J Struct Eng 118(6):
1590–1607

Samaan M, Mirmiran A, Shahawy M (1998) Model of Concrete Confined by Fiber Composites.
J Struct Eng 124(9): 1025–1031

Seow PEC, Swaddiwudhipong S (2005) Failure Surface for Concrete under Multiaxial Load—
a Unified Approach. J Mater Civ Eng 17(2): 219–228

Setunge S, Attard MM, Darvall PL (1993) Ultimate Strength of Confined Very High-Strength
Concretes. ACI Struct J 90(6): 632–41

Sfer D, Carol I, Gettu R, Etse G (2002) Study of the Behavior of Concrete under Triaxial
Compression. J Eng Mech 128(2): 156–63

Shahin MA, Jaksa MB, Maier HR (2009) Recent advances and future challenges for artificial
neural systems in geotechnical engineering applications. Adv Artif Neur Syst, Hindawi, Article
ID 308239

Smith GN (1986) Probability and statistics in civil engineering. Collins, London
Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T (2010) Prediction of the compressive strength

of no-slump concrete a comparative study of regression, neural network and ANFIS models.
Cnstr Bld Mater 24 (5): 709–718

Tang CW (2010) Radial Basis Function Neural Network Models for Peak Stress and Strain in Plain
Concrete under Triaxial Stress Technical Notes. J Mater Civ Eng 22(9): 923–934

Topcu IB, Sarıdemir M (2008) Prediction of compressive strength of concrete containing fly ash
using artificial neural networks and fuzzy logic. Comput Mater Sci 41: 305–311

Wang CZ, Guo ZH, Zhang XW (1987) Experimental Investigation of Biaxial and Triaxial
Compressive Concrete Strength. ACI Mater J: 92–100



430 S.K. Babanajad

Willam K, Warnke E (1975) Constitutive model for triaxial behavior of concrete. In: Seminar
on Concrete Structure Subjected to Triaxial Stresses, International Association for Bridge and
Structural Engineering, Bergamo, Italy, 17–19 May 1974, pp 1–30

Xie J, Elwi AE, Mac Gregor JG (1995) Mechanical properties of three high-strength concretes
containing silica fume. ACI Mater J 92(2): 1–11

Yeh IC (1998) Modeling concrete strength with augment-neuron networks. J Mater Civ Eng 10(4):
263–268

Yeh IC (2006a) Analysis of strength of concrete using design of experiments and neural networks.
ASCE J Mater Civil Eng 18(4): 597–604

Yeh IC (2006b) Exploring concrete slump model using artificial neural networks. J Comput Civ
Eng 20(3): 217–21

Yeh IC (2006c) Generalization of strength versus water-cementations ratio relationship to age.
Cem Concr Res 36(10): 1865–1873

Yeh IC, Lien LC (2009) Knowledge discovery of concrete material using Genetic Operation Trees.
Expert Sys Appl 36: 5807–5812

Yeh IC, Lien CH, Peng CH, Lien LC (2010) Modeling Concrete Strength Using Genetic Operation
Tree. Proceedings of the Ninth International Conference on Machine Learning and Cybernetics,
Qingdao, July 2010



Chapter 17
Genetic Programming for Mining Association
Rules in Relational Database Environments

J.M. Luna, A. Cano, and S. Ventura

17.1 Introduction

Association rule mining (ARM) was first introduced by Agrawal and Srikant (1994).
This data mining task seeks frequent and strong relations among items in a single
relation—in database terminology, ‘relation’ refers to a table in the database. Let
I D fi1; i2; i3; : : : ; ing be the set of items or patterns, and let D D ft1; t2; t3; : : : ; tng
be the set of all transactions in the relation. An association rule is an implication of
the form X) Y where X � I , Y � I , and X\Y D ;. An association rule means
that if the antecedent X is satisfied, then it is highly probable that the consequent Y
will be satisfied.

Most existing ARM proposals discover association rules in a single relation
by using methodologies based on support–confidence frameworks (Agrawal et al.
1996; Han et al. 2004). The support of an item-set X is defined as the probability
of all the items in X appearing in D . Similarly, the support of an association rule
X ) Y is the proportion of transactions in D satisfying all the items in both X
and Y. On the other hand, the confidence of X) Y is defined as the support of this
rule divided by the support of Y, measuring the reliability of the rule.

With the growing interest in the storage of information, databases have become
essential (Konan et al. 2010). Whereas the extraction of association rules in a
single relation is well-studied, only a few proposals have been made for mining
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id name city
1 Ben Nottingham
2 Erwin Leeds
3 Erwin Manchester
4 Ben Leeds

Customer relation

id vegetable fruit household basket price
1 beans apple broom 200
2 onion pear broom 125
2 carrot apple mop 212
2 beans banana dustpan 321
3 onion orange mop 251
4 garlic banana broom 132

Product relation

id name city vegetable fruit household basket price
1 Ben Nottingham beans apple broom 200
2 Erwin Leeds onion pear broom 125
2 Erwin Leeds carrot apple mop 212
2 Erwin Leeds beans banana dustpan 321
3 Erwin Manchester onion orange mop 251
4 Ben Leeds garlic banana broom 132

Customer Product

Fig. 17.1 Sample market basket comprising two relations and the result of joining both relations.
(a) Customer relation. (b) Product relation. (c) Customer‰ Product

association rules in relational databases due to its difficulty to be extracted by
using exhaustive search models (Alashqur 2010; Goethals et al. 2010; Jiménez
et al. 2011). Relational databases have a more complex structure and store more
information than raw datasets. Therefore, existing ARM proposals for mining rules
in single relations cannot directly be applied. Instead, data has to be transformed by
joining all the relations into a single relation Ng et al. (2002) so existing algorithms
can be applied to this relation. However, this transformation technique requires an
in depth analysis: .1/ a high computational time could be required, especially with
the increment of the size of both I and D , and .2/ a detailed attention should be
paid to avoid support deviation—each transaction in a relation could be duplicated
as the result of a join, so the same item could be read and stored multiple times.

In existing relational approaches Crestana-Jensen and Soporkar (2000), Goethals
et al. (2010), the support quality measure is defined as the number of transactions
in the result of a join of the relations in the database. In this definition, it is crucial
to clarify that the support of an item-set strongly depends on how well its items are
connected. For instance, having the relations Customer and Product in a market
basket relational database (see Fig. 17.1a and b), the city Leeds appears in the
relation Customer with a probability of 0.50, i.e. satisfies 50 % of the transactions.
On the other hand, the same city appears in 66 % of the transactions in the result
of a join (see Fig. 17.1c). Therefore, joining different relations into a single relation
could introduce distortions in their support values so counting rows to calculate the
support measure is not correct. One row is not identified with one customer.

The aim of this paper is to propose an approach that maintains the database
structure—not requiring a joining of the relations—and solve the problem
of preserving the support deviation in the discovered associations. To this
end, we introduce an interesting grammar-guided genetic programming (G3P)
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(Espejo et al. 2010; McKay et al. 2010; Ratle and Sebag 2000) algorithm that
represents the solutions in a tree-shape conformant to a context free grammar
(CFG). This CFG enables syntax constraints to be considered (Gruau 1996).
Additionally, solutions could be defined on any domain, so it is of great interest
to apply G3P (Freitas 2002) to the field of relational databases in order to mine
both quantitative and negative rules. It represents a great advantage with respect
to existing algorithms in this field, which usually mine only positive and discrete
items. G3P was previously applied to the ARM field (Luna et al. 2012), achieving
promising results and reducing both the computational cost and the memory
requirements. The use of an evolutionary methodology and searching for solutions
by means of a good heuristic strategy (Mata et al. 2002; Papè et al. 2009) enables
the computational and memory requirements to be solved. All these benefits are
especially important in ARM over relational databases.

To study the effectiveness of our proposal, we exemplify the utility of the
proposed approach by illustrating how it enables discovery of interesting relations
and how it performs with an artificial generated database. Additionally, we apply
the approach to a real case study, discovering interesting students’ behaviors
from a moodle database. Experiments show the usefulness and efficiency of the
proposed algorithm, which discovers associations that comprise any kind of items,
i.e. positive and negative, and also discrete and quantitative. This type of items
could be hardly discovered by exhaustive search algorithms, which can not deal
with quantitative and negative items due to the search space size. Finally, the
computational complexity is analysed, stating that it is linear with regard to the
instances and number of attributes.

This paper is structured as follows: Sect. 17.2 presents some related work;
Sect. 17.3 describes the model and its main characteristics; Sect. 17.4 describes
the experimental analysis and the relational databases used to this end; finally, some
concluding remarks are outlined in Sect. 17.5.

17.2 Related Work

Association rules and measures for evaluating them were first explored by means
of logical and statistical foundations provided by the GUHA method (Hájek
et al. 1966). However, most existing studies in ARM were based on the Apriori
algorithm (Agrawal and Srikant 1994), which is based on an exhaustive search
methodology and only mines discrete items (also known as patterns in the ARM
field). The main motivation of the Apriori-like algorithms is the reduction of the
computational time and the memory requirements. Han et al. (2004) proposed the
FP-Growth algorithm, which stores the frequent patterns mined into a frequent
pattern tree (FP-tree) structure. Then, the algorithm works on the FP-tree instead
of the whole dataset, employing a divide-and-conquer method to reduce the
computational time. However, all these algorithms follow an exhaustive search
methodology, being hard to maintain with an increase in the number of attributes
and transactions.



434 J.M. Luna et al.

The current increasing need for the storage of information has prompted the
use of different ways of storing this information, relational databases being one of
the most widely used. More and more organizations are using this type of storage
to save their information. Under these circumstances, the mining of association
rules using exhaustive search algorithms becomes a hard task. Despite the fact that
the mining of patterns and association rules in relational databases has not been
explored in depth yet, a few approaches already exist for this task (Goethals and
Van den Bussche 2002; Goethals et al. 2012; Spyropoulou and De Bie 2011). For
instance, Wang et al. (Ng et al. 2002) examined the problem of mining association
rules from a set of relational tables. In particular, they focused on the case where the
tables form a star structure. This structure consists of a fact table in the centre and
multiple dimension tables. The mining over the joined result from a star structure is
not an easy task, and some problems could appear. Using large dimensional tables,
the join of all related tables into a single table would be hard to compute. Even if the
join could be computed, the resulting relation extremely increases in the number of
both attributes and transactions. As studied in depth by many other researchers (Han
et al. 2004; Luna et al. 2012), the mining of association rules is very sensitive to the
number of attributes and transactions.

In a different way, there are proposals that mine relational patterns directly from
relational databases. Goethals et al. (2010) proposed the SMuRFIG (Simple Multi-
Relational Frequent Item-set Generator) algorithm, an efficient algorithm in both
time and memory requirements, since it does not work over a single join table. They
determined that the absolute support of a relational item-set in a relation R is the
number of distinct values of the key K, so the relative support of a relational item-
set is the number of values in the KeyID list divided by the number of element
in R. This approach was conceived for mining a set of frequent patterns in relational
databases, so a subsequent step is required for mining association rules from these
patterns. Hence, this second step hampers the association rule mining process.

RDB-MINER (Alashqur 2010) is another algorithm for mining frequent item-
sets directly from relational databases. The main feature of this algorithm is the
use of SQL statements to compute the support count of the item-sets discovered.
Therefore it uses the GROUP BY clause along with the COUNT aggregate function.
In order to discover item-sets whose support is greater than or equal to a minimum
value, the algorithm uses the HAVING clause. The main advantage of this algorithm
is its portability, i.e., it can be applied to any relational database, because of the
specific use of SQL. However, similarly to Apriori, this algorithm mines only
categorical attributes and works in two steps, discovering frequent patterns first and
then mining association rules.

Actually, the proposals focused on the discovery of association rules from
the original database have been not enough yet. An important research in this
field was described in Jiménez et al. (2011), who based their approach on the
representation of relational databases as sets of trees, for which they proposed two
different representation schemes: key-based and object-based tree representations.
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Each of these representations starts from a particular relation, namely the target
relation or the target table, which is selected by the end user according to the user’s
specific goals. The key-based tree representation is based on the fact that each
transaction is identified by its primary key. Therefore, a root node is represented by
its primary key and the children of this primary key will be the remaining attribute
values from the transaction in the relation. On the contrary, in the object-based tree,
the root represents a transaction, and the children represent all the attribute values,
including the primary key.

Based on the previous idea of representing relational databases as sets of trees,
and bearing in mind the problems of using exhaustive search methodologies in
the ARM field, the mining of associations in relational environments could be
considered from the genetic programming (GP) (Koza 1992, 2008) point of view.
In this evolutionary technique, solutions are represented in a tree-shape structure,
where the shape, size and structural complexity are not constrained a priori. A major
feature of GP, especially alluring in the ARM field, is its ability to constrain the
GP process by searching for solutions with different syntax forms. Methods to
implement such restrictions include using some form of constrained syntax (Freitas
2002) or using a grammar (McKay et al. 2010) to enforce syntactic and semantic
constraints on the GP trees. This is known as grammar-guided genetic programming
(G3P) (Ratle and Sebag 2000), an extension of GP where each individual is a
derivation tree that generates and represents a solution using the language defined
by the grammar. The tree is built up by applying productions to leaf nodes and
a maximum tree depth is usually specified to avoid bloat, a well-known problem
in GP. G3P has been successfully used in educational data mining for providing
feedback to instructors (Romero et al. 2004) by mining association rules in a single
relation (Luna et al. 2012).

17.3 Genetic Programming in Relational Databases

In short, this proposal represents association rules in the form of a tree through the
use of G3P, not requiring a previous mining of frequent patterns or even any joining
of the relations into a join table. Instead, the mining process is carried out on the
original relational database regardless of its structure. The strength of representing
individuals conforming to a CFG is twofold. Firstly, individuals are represented
using a tree structure, having the goal of representing solutions on the original
relational database, and preserving the original support value (Jiménez et al. 2011).
Secondly, the CFG provides expressiveness, flexibility, and the ability to restrict the
search space. Finally, the use of an evolutionary methodology provides a powerful
ability to global search and optimization, performing well in terms of scalability,
computational time, and memory requirements.
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17.3.1 Encoding Criterion

The algorithm proposed in this paper represents the individuals by a genotype and
a phenotype. The genotype is defined by using a tree structure, having different
shape and size, whereas the phenotype represents the association rule previously
defined by the genotype. The tree structure is obtained by the definition of a CFG
(see Definition 1), which is depicted in Fig. 17.2.

Definition 1 (Context-Free Grammar). A context-free grammar (CFG) is defined
as a four-tuple .†N , †T , P, S/. Here, †N is the non-terminal symbol alphabet, †T is
the terminal symbol alphabet, P is the set of production rules, S is the start symbol,
and †N and †T are disjoint sets (i.e., †N \†T D ;). Any production rule follows
the format ˛ ! ˇ where ˛ 2 †N , and ˇ 2 f†T [†Ng�.

To obtain new individuals, a sequence of steps is carried out by applying the set
P of production rules and starting from the start symbol S. This process begins from
the start symbol, which always has a child node representing the target relation and
also the antecedent and consequent. Once the tree is defined through the application
of production rules, the general structure of the individual is obtained, and the next
step is to assign values to the leaf nodes. By using trees (Jiménez et al. 2011), each
node represents a relation and the edges represent relationships between keys in two
relations.

Once the tree structure is established according to the CFG, the next step is
to assign values to the leaf nodes. These values depend on the specific relational
database used. First, the target relation or target table is randomly selected from the
set of tables in the relational database. Second, for each leaf node ‘Condition’ related
to this target table, a condition of the form attribute operator value is assigned to this
table. Finally, a table name is randomly assigned to the leaf node ‘Table’ selected
from all tables related to this target relation. The process continues iteratively until

G = (ΣN, ΣT , P, S) with:

S = AssociationRule
ΣN = {AssociationRule, Antecedent, Consequent }
ΣT = {‘AND’, ‘Condition’, ‘TargetTable’, ‘Table’ }
P = {

AssociationRule = ‘TargetTable’, Antecedent, Consequent ;

Antecedent = ‘Condition’ | ‘AND’, ‘Condition’, Antecedent |
‘AND’, ‘Condition’, ‘Table’, Antecedent ;

Consequent = ‘Condition’ | ‘AND’, ‘Condition’, Consequent |
‘AND’, ‘Condition’, ‘Table’, Consequent ;

}

Fig. 17.2 Context-free grammar expressed in extended BNF notation
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AsociationRule

Customer Antecedent

Antecedent

Consequent

name = ErwinAntecedentProductcity = Leeds

fruit = apple

vegetable =
beans

AND

AND

Fig. 17.3 Genotype of a sample individual obtained by using both the CFG defined in Fig. 17.2
and the relational database described in Fig. 17.1

a value is assigned to all leaf nodes. To understand the tree structure, a depth-first
traversal of the tree is carried out. Thus, the ‘Target Table’ node is the root for any
antecedent and consequent. At the same time, each ‘Condition’ belongs to the last
‘Table’ read.

For a better understanding, consider again the sample database depicted in
Fig. 17.1, where there is a 1 W N relationship between tables Customer and Product,
i.e. each customer could buy n products, and the individual depicted in Fig. 17.3.
As mentioned above, the target table establishes the meaning of the association rule
represented by the tree since this table is used as the fact table of the relations.
Therefore, the meaning of the resulting association rule is from all the customers in
the database, if their city is Leeds and they have a market basket comprising beans
and apples, then they should be named Erwin, which is obtained from the following
genotype:

IF fcity D Leedsgcustomer

AND fvegetable D beansgcustomer:Product

AND ffruit D applegcustomer:Product

THEN fname D Erwingcustomer
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An important feature of this proposal is its adaptability to each specific
application domain or problem, allowing both categorical (see Definition 2) and
numerical (see Definition 3) patterns to be mined.

Definition 2 (Categorical Pattern). Given a discrete unordered domain D, a
pattern x is categorical iff accepts any value y1; y2; : : : ; yn in the domain D of x.

Definition 3 (Numerical Pattern). Given a continuous domain D, a pattern x is
numerical iff it accepts any range of values within .ymin; ymax/ in the domain D of x.

In the proposed approach, the following expressions are allowed for a categorical
pattern: x D yn, x Š D yn, x IN fyn; : : :g and x NOT IN fyn; : : :g. The expression
x D yn indicates that x takes any value in D. The expression x Š D yn

represents a value in Dnfyng, x IN fyn; : : :g stands for the values fyn; : : :g in D,
and finally x NOT IN fyn; : : :g indicates a value in Dnfyn; : : :g. More specifically,
using the sample market basket database, the following conditions could be mined:
name D Ben, city Š D Manchester, vegetable IN fbeans; oniong, fruit NOT IN
fbananag. Additionally, numerical patterns make use of the operators BETWEEN
and NOT BETWEEN, randomly selecting two feasible values. Using the sample
market database, numerical conditions could be basket price BETWEEN Œ155; 135�

or basket price NOT BETWEEN Œ210; 282�.

17.3.2 Evaluation Process

Generally, the support of an association rule is defined as the proportion of the
number of transactions including both the antecedent and consequent in a dataset.
When dealing with relational databases, this definition requires a redefinition to
avoid the support deviation. Therefore, the number of transactions is calculated
based on the distinct keys instead of on the complete set of transactions. In relational
databases, the support of an association rule is formally described in Eq. (17.1) as
the proportion of the number of distinct keys K including the antecedent X and
consequent Y in a relational database RDB. On the other hand, the confidence is
formally defined in Eq. (17.2) as the proportion of the distinct keys which include
X and Y among all the different keys that include X. Notice that the interest of
an association rule can not be measured by a support–confidence framework, as
described by Berzal et al. (2002). Even when the support and confidence thresholds
are satisfied by a rule, this rule could be misleading if it acquires a confidence value
less than its consequent support. Therefore, the lift measure is receiving increasing
interest since it measures how many times more often the antecedent and consequent
are related in a dataset than expected if they were statistically independent. Lift is
formally defined in Eq. (17.3) as the difference between the support of the rule and
the expected support under independence. In this regard, it is calculated by using
both sides of the rule. Greater lift values (� 1) indicate stronger relations.
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support.X! Y/ D jfX [ Y  K; K 2 RDBgj
jKj (17.1)

confidence.X! Y/ D jfX [ Y  K; K 2 RDBgj
jfX  K; K 2 RDBgj (17.2)

lift.X ! Y/ D confidence.X! Y/

support.Y/
(17.3)

The proposed GP approach uses support, confidence and lift to evaluate each
new individual obtained. In evolutionary algorithms each individual is evaluated
by means of a fitness function, which determines the individual’s ability to solve
the computational problem. In the algorithm here presented, the evaluation process
comprises a series of different steps. The first one verifies that the individual—given
by the association rule X ) Y—does not have the same pattern in the antecedent
and consequent, i.e. X \ Y D ;. If the antecedent and consequent of an individual
are not disjoint item-sets, then a 0 fitness function value is assigned. The second
step calculates the lift value to determine the individual’s interest value. In such a
way, lift values equal to or less than unity imply a 0 fitness function value. Finally,
the support value is calculated for the rule defined by the individual, and the final
fitness function F is defined by:

F.rule/ D
8<:

0 if X \ Y ¤ ;
0 if lift.rule/ � 1

support.rule/ otherwise
(17.4)

Focusing on the support and confidence measures, notice that the confidence
of a rule is always greater than or equal to its support, and its value is maximal
if the transactions covered by the antecedent of an association rule are a subset of
the transactions covered by the consequent of the rule. In addition, the confidence
measure is symmetric iff sup.A/ D sup.C/. Therefore, using the fitness function
described above, the higher the support value, the higher the confidence value, so
maximizing the fitness function value it is possible to increase both support and
confidence values.

For the sake of calculating these three quality measures, the relational database
is manipulated by running specific SQL expressions—automatically generated by
the proposed algorithm—based on the relations of the database and the individual
representation. For instance, using the individual depicted in Fig. 17.3, its support
value is automatically calculated by the following two SQL statements:

SELECT COUNT( DISTINCT customer . id )
FROM customer , product
WHERE customer . city = ’Leeds’ AND

customer . name = ’Erwin’ AND
product .vegetable = ’beans’ AND
product .fruit = ’apple’ AND
customer . id = product .customer ;

SELECT COUNT( * ) FROM customer ;
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The first SQL statement calculates jfX [ Y  K; K 2 RDBgj, and the second
one obtains jKj, see Eq. (17.1).

Using the same individual, the confidence value is calculated by using both
jfX [ Y  K; K 2 RDBgj and jfX  K; K 2 RDBgj. The first clause
was already obtained when calculating the support measure. The second one is
calculated by the following SQL statement. Notice that this statement could be
computed with the first SQL statement, so we have considered the optimization
as a major issue in our proposal.

SELECT COUNT( DISTINCT customer . id )
FROM customer , product
WHERE customer . city = ’Leeds’ AND

product .vegetable = ’beans’ AND
product .fruit = ’apple’ AND
customer . id = product .customer ;

Finally, the lift measure requires calculating both the confidence value and the
consequent support value. Whereas the confidence was previously obtained, the con-
sequent support value needs to be calculated by means of jfY  K; K 2 RDBgj
and jKj. jKj was already calculated, while the former clause should be still obtained
from the following SQL statement:

SELECT COUNT( DISTINCT customer . id )
FROM customer
WHERE customer . name = ‘Erwin’;

17.3.3 Genetic Operator

As any evolutionary algorithm, the proposal here presented has the aim of solving
the computational problem by improving the fitness function values along the
evolutionary process. Therefore, in each generation of the evolutionary process,
new individuals having better fitness values are desired. For this reason, a genetic
operator is presented (see the pseudo-code in Listing 1), with the aim of maintaining
genetic diversity. This operator has the goal of obtaining conditions with higher
support values than the originals. The support value of an association rule depends
on the frequency of its attributes, so the greater their frequency of occurrence, the
greater the probability of increasing the support value of the entire rule.

In this process, a substitution of the lowest support condition within every
individual from the set of parents parents is carried out. For each of these
individuals, a random value from 0 to 1 is obtained, carrying out the genetic operator
if this value is lower than a predefined value probability� threshold . The operator
provides two possibilities of changing the condition selected: .a/ replacing the
whole condition with a new condition, newCondition, randomly obtaining a new
attribute, a new operator, and a new value; .b/ allowing of replacing the logic
operator used with its opposite operator: D and Š D; IN and NOT IN; BETWEEN
and NOT BETWEEN. The use of opposite operators allows of obtaining a higher



17 GP for Mining ARs in Relational Database Environments 441

Listing 1 Genetic operator
Require: parents
Ensure: newIndividualSet
1: newIndividualSet ;
2: for all individual 2 parents do
3: if random() < probability-threshold then
4: condition getLowerSupportCondition(individual)
5: if random() < 0.5 then
6: newCondition getNewCondition(condition)
7: else
8: switch (operator getOperator(condition))
9: case ‘=’:

10: newOperator D ‘!=’
11: case ‘!=’:
12: newOperator D ‘=’
13: case ‘IN’:
14: newOperator D ‘OUT’
15: case ‘OUT’:
16: newOperator D ‘IN’
17: case ‘BETWEEN’:
18: newOperator D ‘NOT BETWEEN’
19: case ‘NOT BETWEEN’:
20: newOperator D ‘BETWEEN’
21: end switch
22: newCondition changeOperator(condition,

operator,newOperator)
23: end if
24: newIndividual changeCondition(individual,

condition,newCondition)
25: newIndividualSet newIndividualSet [ newIndividual
26: end if
27: end for
28: return newIndividualSet

support value. For example, for a categorical attribute A in a domain D D fa; b; c; dg,
the support of A IN fa; cg is 0.31, whereas the support of A NOT IN fa; cg
will be 0.69.

17.3.4 Proposed Algorithm

The algorithm here proposed follows a general evolutionary schema, as depicted in
flowchart of Fig. 17.4. It starts by randomly generating individuals conforming to the
CFG previously defined in Fig. 17.2. In this initial step, the algorithm guarantees that
each individual covers at least one transaction. Therefore, if an individual generated
conformant to the CFG does not satisfy any transaction, then a new random
individual is generated. The process continues until the population is reached.
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Fig. 17.4 Flowchart for the proposed algorithm
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Once the population is completed, the evolutionary process works over this
population along a number of generations. In each of these generations, and in order
to obtain new individuals, the genetic operator is applied to the individuals by using
a certain probability threshold. The new set of individuals is evaluated, calculating
the support, the confidence, and the lift values for each individual.

The population set and the new set of individuals obtained and evaluated are
merged into a new set, which allows of updating both a pool of individuals (it works
as an elite population) and the population set. The first one comprises those n
individuals having the best support values and lift values greater than unity, n being
the pool size. Furthermore, this updating process guarantees that the pool does
not include individuals having the same genotype. Despite the fact that n is the
pool size, it is possible to not reach this number of individuals if there are not n
distinct individuals having lift values greater than unity. On the other hand, the pool
updating process keeps the m best individuals in the population: those having the
best support values, regardless of their lift values. Notice that the proposed algorithm
does not require any support and confidence thresholds to discover association rules.
It instead discovers those rules having the best support values.

After these updating processes, the algorithm checks the number of generations,
returning the pool when the maximum number of generations is reached. In such a
way, the end user obtains at most n individuals, these individuals being the best ones
discovered in the evolutionary process.

17.4 Experimental Study

In this paper, a number of experiments were carried out to check the effectiveness
and performance of the algorithm, using both an artificial relational database and a
real-world database. First, the artificial relational database used and the experiments
performed will be given in detail in order to exhibit the behaviour of the proposed
GP algorithm. Finally, a real-world relational database obtained from moodle
database at the University of Córdoba (Spain) is analysed as a real case study to
discover interesting students’ behaviors. It is our understanding that any comparison
to existing algorithms in this field is unfair, since no existing algorithms deal with
quantitative and negative patterns, and none of them follows a G3P methodology.

The proposed approach was written by using JCLEC (Ventura et al. 2007), a
Java library for evolutionary computation. All the experiments used in this study
were performed on an Intel Core i7 machine with 12 GB main memory, running
CentOS 5.4.
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17.4.1 Artificial Relational Database

In this section, a synthetic relational database1 and the experimental stage are
described. By using this artificial database, the goal is to show the effectiveness
of the proposed algorithm for mining association rules over different types of
relationships, i.e. 1:1, 1:N, or even N:M. This relational database comprises
information about different department stores and their customers. A department
store is defined as an establishment which satisfies a wide range of consumers’
personal product needs. Each department store was founded in a country, whereas
each country can only found one department store. Focusing on the customers and
their purchases, a number of customers buy in each department store. However,
each customer can only buy in one department store. Each of these customers
buys different items, which could be either food or clothes, grouped in a market
basket, storing the price and the day of these purchases. The relational model (see
Table 17.1) comprises eight tables, one per each relation and an additional one to
represent the B � I relationship. Each of these tables comprises a different number
of attributes and transactions, giving rise to a heterogeneous and large database, the
sum of all transactions being close to 220,000.

17.4.1.1 Parameter behaviour study

The evolutionary proposal here presented only requires four parameters to be
determined by the expert: the maximum number of generations, the population
size, the genetic operator probability, and the pool size. In this section, a sensitivity
analysis is carried out, which aims to identify the influence of the parameters in
the behaviour of the approach. Notice that this behaviour depends on the own
characteristics of the problem.

Table 17.1 Entities for the synthetic relational database

Relation Attributes # Transactions

Country countryName, inhabitants, capital 14

Department store store, name, employees, countryName 14

Customer passport, city, age, store 20; 000

Basket market id, day, price, passport 50; 000

Item code, price 100

B-I (Basket market-Item) code, id 149; 739

Clothes code, name, season 50

Food code, name, weight 50

1This synthetic relational database is available for download at http://www.uco.es/grupos/kdis/
kdiswiki/index.php/Mining_Association_Rules_in_Relational_Databases.

http://www.uco.es/grupos/kdis/kdiswiki/index.php/Mining_Association_Rules_in_Relational_Databases
http://www.uco.es/grupos/kdis/kdiswiki/index.php/Mining_Association_Rules_in_Relational_Databases
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The proposed algorithm keeps in a pool the best individuals obtained along the
evolutionary process, i.e. those having the best fitness function values—determined
by the support measure—until this pool is completed. Therefore, the average
fitness value improves with the elapse of generations until the optimal individuals
are discovered. Figure 17.5a depicts how the average value of both support and
confidence improve in a linear way until the generation number 75 is reached. On
the other hand, the lift value does not significantly improve, obtaining very similar
results. Additionally, the execution time (see Fig. 17.5) grows in a linear way with
the growth of generations. Therefore, it is necessary to reach a trade-off between the
average quality measure values and the execution time required, and a value of 75
seems to be a good option.

A second parameter that must be previously fixed by the expert is the population
size (see Fig. 17.6). Analysing Fig. 17.6a, it is depicted how the confidence value
slightly improves by using a population size greater than 50 individuals. Focusing on
the quality measures, their average values obtained slightly improve, so an analysis
of the execution time (Fig. 17.6b) is required. The analysis shows that the execution
time exponentially increases when more than 50 individuals are used, so this value
could be fixed as optimal.

Fig. 17.5 Average values obtained by setting different number of generations

i

Fig. 17.6 Average values obtained by setting different population size
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Fig. 17.7 Average measure
values obtained by setting
different genetic operator
probabilities. Fitness values
are represented by support

Another parameter to be set is the genetic operator probability, which is analysed
in depth in Fig. 17.7. Regarding the support, confidence and lift measures, they
slightly improve by using different probabilities, obtaining the best results with a
probability of 0:90.

Finally, the pool size parameter establishes the final number of individuals to be
returned by the algorithm. Since the algorithm proposed does not use any threshold
for support and confidence, the number of rules discovered tends to be equal to
the predefined pool size. This pool size is not reached if and only if there are not
enough rules having a lift value greater than unity: otherwise the algorithm returns
the number of rules set by the expert. This pool size is a prerequisite of the user and
depends on his/her own aim for the problem under study, so no analysis could be
carried out.

Scalability

A number of experiments were also carried out to analyse the computation time
of the proposed algorithm. Figure 17.8 shows the relation between the runtime
and both the number of relations and the percentage of transactions in a rela-
tional database. In Fig. 17.8a, the Y-axis represents time in seconds, whereas the
X-axis stands for the number of relations using all the transactions. In the same
way, Fig. 17.8b depicts the relation between the runtime and the percentage of
transactions using all the relations. Transactions were randomly chosen from the
database to obtain a smaller database. As for the number of relations, the first two
relations were Country and Department store. Then, relations were added in order
from Customer to Food, till the complete database is formed.

Focusing on the runtime when varying the number of relations (see Fig. 17.8a),
note that the higher the number of relations, the higher the execution time—it
is able to discover rules in few minutes. More specifically, the increase of the
execution time when varying from 2 to 4 relations seems to be higher than from
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Fig. 17.8 Graphics for the scalability of the runtime

4 to 6 relations, where this increase is more linear. Something similar occurs when
varying the number of transactions (see Fig. 17.8b). There is a small increase when
increasing the number of transactions, up to 80 %. From this point on, the execution
time increases in an exponential way. However, it should be noted that the whole
increase, i.e., from 40 % to 100 %, tends to increase in a linear way.

17.4.2 Real-World Relational Database

Data used in this experimental stage was gathered from moodle at the University of
Córdoba, Spain. Data correspond to 139 different students from a specific course of
the degree in Computer Science. The relational model (see Table 17.2) comprises
thirteen tables, one per each relation. Each of these tables comprises a different
number of attributes and transactions, giving rise to a heterogeneous relational
database.

Once the algorithm is run by using the real database, a series of interesting
association rules are discovered (see Table 17.3), describing the behavior of students
in this specific course. The first rule discovered describes the level of dedication of
students based on their expectation at the beginning of the course. Students had to
fill in a questionnaire at the beginning of the course, describing their interest in the
course, their expectation to pass the course, etc., and this information was stored in
the user_history relation. The first rule, IF User_history.expectation_pass ¤ High
THEN User_history.dedication¤ Low, describes that 98 % of the students that did
not have high expectations that they will pass the course, they will dedicate enough
time to the course. This description is quite interesting since determines that the
expectations present a high relation to the time spent in the course.

The second and third rules describe behaviors in connection with specific
questions and resources. For instance, rule #2 describes that questions that are
not related to computational data tend to obtain a grade lower than 0.5 (in per
unit basis) or higher than 0.88, i.e. IF Questions.question ¤ computational data
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Table 17.2 Entities for the moodle relational database

Relation Attributes # Transactions

User Id_user, first_name, surname, age, grade 139

Resources resource, type, #accesses 8

U-R Id_user, resource, #access 367

User_history Id_userHis, Id_user, entrance_grade, option,

interest, expectation_pass, study, dedication, 139

support_parents, economic_level

Forum Id_forum, forum 139

U-F Id_user, Id_forum 82

Log Id_user, Id_log, #access<30seg, #access 139

Log_action Id_action, action, module 26

L-A Id_action, Id_log 1575

Quizzes name_quiz, grade 6

U-Q Id_user, name_quiz, grade 576

Questions Id_question, grade, question 253

U-Ques Id_user, Id_question, grade 11501

Table 17.3 Some of the rules obtained by running the algorithm on the real database

# Rule Support Confidence Lift

1 IF User_history.expectation_pass ¤ High 0:87 0:98 1:12

THEN User_history.dedication ¤ Low

2 IF Questions.question ¤ computational data 0:59 0:79 1:03

THEN Questions.grade NOT BETWEEN [0.5, 0.88]

3 IF Resources.type D file data 0:50 0:80 1:07

THEN Resources.#accesses BETWEEN [123, 152]

4 IF User.age BETWEEN [20, 23] 0:39 0:81 1:17

THEN User.grade NOT IN (Absent, Distinction),

THEN Questions.grade NOT BETWEEN [0.5, 0.88], and this descriptive rule has
an accuracy of 79 %. As for the rule #3, it describes that resources of the type ‘file’
are highly downloaded by students, and this assertion is right with an accuracy of
80 %. In fact, since there are 139 students enrolled in the course, almost all the
students tend to download this type of resources.

Finally, a very interesting association rule is obtained, i.e. rule #4, denoting that
81 % of the students with an age in the range [20, 23] tend to pass the course, and
they rarely are absent or pass the course with distinction. In other words, since an
age in the range [20, 23] is the common age for this course, only students that did
not pass the course in previous years will pass the course with distinction.
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17.5 Concluding Remarks

This paper presents the first G3P approach to discover association rules over
relational databases. The advantage of representing individuals conforming to a
CFG is twofold. Firstly, the individuals are represented in a tree structure, with
the goal of maintaining the original relational database, and not requiring any
joining of the relations into a unique table. Secondly, the CFG allows of defining
syntax constraints in the trees and obtaining solutions in different attribute domains
(positive, negative, discrete and continuous). More specifically, the use of a grammar
provides expressiveness, flexibility, and the ability to restrict the search space.
Additionally, the CFG allows the rules to be adapted to the expertise of the data
miner.

This methodology was apply to the ARM field (Luna et al. 2012), achieving
promising results and reducing both the computational cost and the memory
requirements. The main advantage of using heuristic stochastic search is its ability
to restrict the search space and to obtain negative and quantitative solutions, which
could be a hard process by means of exhaustive search.

In the experimental stage, a detailed analysis of the proposed approach was
carried out by using an artificial dataset, considering both the mined rules and the
execution time. The results have shown the capability of the proposed algorithm
for extracting highly reliable and frequent association rules. Finally, a real-world
database has been used, extracting interesting descriptions about students’ behaviors
in a moodle course from the University of Córdoba, Spain.
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Chapter 18
Evolving GP Classifiers for Streaming Data
Tasks with Concept Change and Label Budgets:
A Benchmarking Study

Ali Vahdat, Jillian Morgan, Andrew R. McIntyre, Malcolm I. Heywood,
and Nur Zincir-Heywood

18.1 Introduction

A traditional view of learning from data is most often characterized by the
supervised learning ‘classification’ task. However, as we are increasingly encounter-
ing data rich environments, the basis for such a characterization are becoming less
relevant. Decision making from streaming data is one such application area (e.g.,
stock market data, utility utilization, behavioural modelling, sentiment analysis,
process monitoring etc.). Under a ‘streaming’ scenario for constructing models
of classification, data arrives on a continuous basis, thus there is no concept of
a ‘beginning’ or an ‘end’. It is not possible to see all the data at once and it
therefore becomes impossible to guarantee that the data ‘seen’ at any point in
time are representative of the ‘whole’ task. Indeed, the process generating the data
are frequently non-stationary. Applications display properties such as concept drift
(a gradual change in the process creating the data) or concept shift (sudden changes
to the process creating the data). Concept change in general implies that a model
that functions effectively at one point in the stream will not necessarily function
effectively later on. Moreover, in the general case it is not possible to provide labels
for all the stream. Instead decisions need to be made regarding what to label without
calling upon an oracle. Indeed, the real-time nature of many streaming classification
tasks implies that the number of label requests needs to be very much lower than the
throughput of the stream itself. When combined with the issue of non-stationarity,
this makes it much more difficult to recognize when models need to be rebuilt.
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Finally, we note that an ‘anytime’ nature to the task exists. Irrespective of the state
of the model building process itself, a champion individual (classifier) must be avail-
able to suggest labels for the current content of the data stream at any given time.

A distinction is drawn between regression (function approximation) and classi-
fication under streaming data. Regression under a streaming data context is most
synonymous with the task of forecasting. As such the true value for the dependent
variable is known a short time after a prediction is made by the model. This means
that the issue of label budgets is not as prevalent, and models can therefore be
much more reactive. Conversely, having to explicitly address the issue of label
budgets implies that independent processes need to be introduced to prompt for
label information (e.g. change detection).

Various proposals have been made for what properties GP might need to assume
under environments that are in some way ‘dynamic’. Several researchers have
made a case for adopting modular frameworks for model building under dynamic
scenarios. For example, environments that change their objective dynamically over
the course of evolution (e.g., Kashtan et al. 2007). Likewise, modularity might be
deemed useful from the perspective of delimiting the scope of variation operators,
thus making credit assignment more transparent and facilitating incremental mod-
ification (e.g., Wagner and Altenberg 1996). Diversity maintenance represents a
reoccurring theme, and is frequently emphasized by research in (non-evolutionary)
ensemble learning frameworks applied to streaming tasks (Brown and Kuncheva
2010; Minku et al. 2010; Stapenhurst and Brown 2011). Finally, we note that
‘evolvability’ is typically defined in terms of a combination of the ability to
support (phenotypic) variability and the fitness of the resulting offspring (in a future
environment) (e.g., Parter et al. 2008). This can be viewed through the perspective
of Baldwin mechanisms for evolution. Thus, it is desirable to retain parents that are
most likely to lead to fit offspring on a regular basis.

This work undertakes a benchmarking study of a framework previously proposed
for evolving modular GP individuals under streaming data contexts with label
budgets (Vahdat et al. 2014). The specific form of GP assumed takes the form
of Symbiotic Bid-Based GP (SBB) and is hereafter denoted StreamSBB. The
framework consists of three elements: a sampling policy, a data subset, and a data
archiving policy. The combination of sampling policy and the data subset achieve
a decoupling between the rate at which the stream passes and the rate at which
evolution commences. This also provides the basis for changing the distribution of
data from that present in the stream at any point in time. In changing the distribution
of data, we are in a position to, for example, resist the impact of class imbalance.
Finally, in order to address the issue of model building under a limited label budget,
a stochastic querying scheme is assumed. Thus, for any given window location, a
fixed number of label requests are permitted. The selection of an appropriate label
budget being a reflection of the cost of making label requests.

Benchmarking will be performed with both artificially created datasets (which
provide the ability to embed known forms of concept drift and shift) as well as
real-world datasets (electricity utilization/demand and forest cover types). Such
datasets display a wide range of real world properties, with cardinality measured
close to the millions, dummy attributes, class imbalance, and changing relationships
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between attribute and label. Moreover, benchmarking practices for streaming
data are explicitly identified. In particular rather than assuming a ‘prequential’
accuracy metric, a formulation of (average) multi-class detection rate is assumed
and estimated incrementally. This enables us to avoid the caveats that appear
with accuracy style metrics under class imbalance. Comparator algorithms are
included from the MOA toolbox, representing current state of the art in non-
evolutionary approaches to streaming data classification. The benchmarking study
demonstrates the appropriateness of assuming the StreamSBB framework, with
specific recommendations made regarding the utility of: modularity, pre-training,
and generations per sample of labelled data.

Section 18.2 provides a summary of related streaming data research. The
StreamSBB framework is detailed in Sect. 18.3 with the experimental methodology
discussed in Sect. 18.4. Section 18.5 presents results of the benchmarking study
where this is designed to illustrate the contribution from various components of
StreamSBB. Section 18.6 discusses the resulting findings and concludes the work.

18.2 Related Work

A significant body of work has developed regarding the application of machine
learning (ML) to various streaming classification tasks (Quinonero-Candela et al.
2009; Gama 2010; Bifet 2010; Gama 2012; Heywood 2015). For brevity we
concentrate on the issue of change detection which lies at the centre of building ML
frameworks capable of operating under label budgets. Indeed, classification under
label budgets represents the most recent trend in streaming data classification. We
identify three broad categories of interest, outlined as follows:

Properties specific to the model of classification imply that measurements
specific to an ML framework are made and compared to a prior characterization.
For example, changes to the frequency of leaf node utility in decision trees might
signify change, thus trigger label requests (Fan et al. 2004; Huang and Dong 2007).

Properties of the input data imply that change detection now focuses on
characterizing behaviour relative to sliding window content. The principle design
decision is with regards to what statistic to adopt. For example, Chernoff bounds
(Kifer et al. 2004), entropy (Dasu et al. 2006; Vorburger and Bernstein 2006),
Kullback–Leibler divergence (Sebastio and Gama 2007), Hoeffding bounds (Bifet
and Gavalda 2007), Fractal correlation dimension (Folino and Papuzzo 2010) or
Hellinger divergence metric (Ditzler and Polikar 2011). Potential drawbacks of
pursuing such an approach include: (1) it is often necessary to label the data (i.e.,
metrics are estimated class-wise); and (2) changes to the association between label
and input are not detected (Z̆liobaitė et al. 2014).

Properties of the label space imply that the classifier output ‘behaviour’ is
quantified. For example, statistical characterizations of class boundary information
(cf. classifier confidence) have been proposed (Lindstrom et al. 2010; Z̆liobaitė
et al. 2011). Thus, thresholds might be used to detect changes in classifier
certainly (Lindstrom et al. 2013), or changes to the number of confident predictions
(Lanquillon 1999).
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However, none of the above approaches are able to detect when a previously
encountered input, P.x/, is associated with a new or different class label. Thus,
under this scenario a label space characterization would still associate P.x/ with the
previous label. Likewise change detection based on an input data formulation would
not register any change either, i.e. P.x/ has not changed. Under these scenarios
generating label requests uniformly (i.e., independently of the measurable proper-
ties) has been shown to be surprisingly effective (Zhu et al. 2010); as have hybrid
approaches combining label space and uniform sampling (Z̆liobaitė et al. 2014).

Under the guise of evolutionary computation (EC) in general, a body of research
has been developed regarding dynamic optimization tasks (e.g., Blackwell and
Branke 2006). However, such tasks are distinct from streaming data classification in
that the emphasis is with regards to tracking and identifying multiple optima; thus,
there is no concept of operating under label budgets. From a genetic programming
(GP) perspective, most developments come with respect to the specifics of evolving
trading agents for financial applications (e.g., Dempsey et al. 2009). Although
change detection is certainly important to building effective trading agents, the
rebuilding of models is either performed on a continuous basis (as in function
approximation) (Dempsey et al. 2009) or incrementally based on task specific
properties such as an unacceptable loss (Heywood 2015). Thus, the issue of label
budgets does not appear in frameworks for evolving trading agents. Finally, we note
that in the special case of learning classifier systems (LCS), an explicitly online
variant has been proposed in which probabilistic heuristics are used to fill ‘gaps’ in
the provision of label information (Behdad and French 2013).

18.3 Methodology

Figure 18.1 provides a summary of the general architecture assumed for applying
GP to streaming data under finite labelling budgets (Vahdat et al. 2014; Heywood
2015). We assume a non-overlapping ‘sliding window’ as the generic interface to
the stream. For a given window location a fixed number of samples are taken.
Let SW.i/ denote the location of the window and ‘gap’ denote the data sampled
from this location, or Gap.i/ 2 SW.i/I where jGap.i/j � jSW.i/j. The sampling
policy determines which exemplars are selected to appear in Gap.i/ for a given
window location SW.i/. Note that it is only the jGap.i/j exemplars chosen that
have their corresponding labels requested and are added to the Data Subset (DS.i/).
An archiving policy determines which exemplars are replaced from DS at each
update. Note also that the rate at which GP training epochs are performed, gen.k/,
is a function of the rate at which DS is updated or j D i � kI k 2 f1; 2; : : :g. This
means that for each update in DS content (index i), at least a single GP training
epoch is performed (k D 1). Naturally, increasing the number of training epochs
potentially increases the capacity to react to changes to stream content, but may
potentially result in over learning (w.r.t. current DS content). Hereafter we will refer
to this as DS oversampling. Section 18.5 will explicitly investigate this property in
more detail.
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Fig. 18.1 Components of generic architecture for applying GP to streaming data under a label
budget

The StreamSBB framework adopts symbolic bid-based GP (SBB) as the GP
architecture (Doucette et al. 2012b). Specifically, SBB evolves teams of bid-based
GP individuals to cooperatively decompose the classification task without having
to specify team size. Supporting modularity in general has been deemed to be
useful for dynamic task environments (Sect. 18.2), a property we explicitly verify
in Sect. 18.5. Secondly, SBB assumes a Pareto archiving policy with diversity
maintenance heuristics for enforcing a finite archive size. In effect, the concept of
Pareto dominance is used to identify exemplars for retaining within DS. As such
this gives them a ‘lifetime’ beyond the current location of the sliding window.

18.3.1 Sampling Policy

Rather than evaluating a GP classifier with respect to all data within SW.i/, a
sampling policy is assumed to control entry into the Data Subset .DS.i//. This
decouples the cost of any single training epoch and enforces the labelling budget, i.e.
we control the cardinality of the data subset, but cannot control the throughput of the
stream. Note, however, that the decision regarding the sampling of ‘gap’ exemplars
from sliding window location SW.i/ to a data subset can only be performed without
label information. It is only after identifying the exemplars included in Gap.t/ that
labels are requested.

Two basic approaches for defining sampling policies have been identified in
the wider literature (Sect. 18.2): stochastic sampling or classification confidence
information. Classifier confidence information implies that as the certainty of the
class label suggested by a classifier decreases (i.e. approaches ambiguity), then a
label request is made (Lindstrom et al. 2013; Z̆liobaitė et al. 2014). In the case
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of stochastic label requests, this is performed uniformly relative to exemplars that
are classified with certainty. The objective being to confirm that cases which are
classified with certainty have not undergone some form of shift into a different class.
Moreover, we also note that even requesting labels with a uniform probability (under
a label budget) is often better than more sophisticated heuristics (Zhu et al. 2010).
In this work we will assume the uniform sampling heuristic under a label budget.

The specific form of GP assumed takes the form of Symbiotic Bid-Based
GP (SBB) and therefore benefits from the ability to perform task decomposition
(construct a classifier as a team of programs). Aside from the additional transparency
of the resulting solutions, pursuing a GP teaming approach also provides an elegant
solution to multi-class classification. A short description of SBB is provided in
Sect. 18.3.4, whereas readers are referred to the earlier papers for further details
(Lichodzijewski and Heywood 2008; Doucette et al. 2012b).

18.3.2 Data Archiving Policy

The scheme assumed for prioritizing DS content for replacement is defined by a
data archiving policy. Specifically, Pareto archiving is used to identify exemplars
that ‘distinguish’ between the performance of GP classifiers. Such a set of exemplars
are said to be non-dominated (de Jong 2007). One of the drawbacks of assuming a
Pareto archiving policy, however, is that the archive of exemplars distinguishing
between different GP classifiers increases to P2 � P; where P is the size of
the GP population. This would have implications for the overall efficiency of the
algorithm. Hence, we limit the size of DS to a suitable finite value and employ a DS
exemplar diversity/aging heuristic (Atwater and Heywood 2013). The process for
choosing exemplars from DS for replacement switches between the following cases,
depending on which condition is satisfied. Let the exemplars from DS forming
‘distinctions’ be d and those not supporting a distinction be Nd:

Case 1 The number of exemplars forming a distinction is less than or equal to
jDSj � jGapj (i.e. jdj � jDSj � jGapj). This implies that the number
of exemplars that do not support distinctions is greater than or equal to
jGapj (i.e. j Ndj � jGapj). Hence, the DS exemplars replaced by Gap.i/ are
selected from Nd alone.

Case 2 The number of exemplars forming distinctions is more than jDSj �
jGapj. Any exemplars not forming distinctions (Nd) will be replaced.
In addition jGapj � jNdj exemplars forming distinctions will also be
replaced, potentially resulting in the loss of GP classifiers (i.e., no longer
identified as being non-dominated). The exemplars forming distinctions
are now ranked in accordance with how many other points form the same
distinction and how long an exemplar has been in the archive (Atwater and
Heywood 2013). In effect exemplars supporting: (1) unique distinctions
see more priority than those forming more common distinctions i.e., a
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form of fitness sharing or diversity maintenance, and (2) older exemplars
are more likely to removed in favour of those forming more recent
distinctions.

Such preference schemes were previously shown to be useful under GP streaming
classification, albeit without label budgeting (Atwater et al. 2012; Atwater and
Heywood 2013). Further details of Pareto archiving as applied to GP are available
in Doucette et al. (2012b).

18.3.3 Anytime Classifier Operation

In order to predict class labels for exemplars of the non-stationary stream a single
GP individual must be present at any point in time to perform this task, or anytime
classifier operation. To do so, we assume that the current content of the data subset
DS.i/ is suitably representative of the classification task. That is to say, it is only
the content of DS that is labelled, and the content is incrementally updated from
each SW location with the data archiving policy enforcing a finite archive size
(Sect. 18.3.2). A metric is now necessary for identifying the champion individual
relative to the GP individuals identified as non-dominated. In limiting the available
candidate GP classifiers to the non-dominated set, we reduce the likelihood of
selecting degenerate classifiers. Given that class balance is not enforced on SW.i/
content, it is desirable to assume a metric that is robust to class imbalance (skew).
With this in mind the following definition for average detection rate is assumed:

DR D 1

C

X
cDŒ1;:::;C�

DRc

DRc D tpc

tpc C fnc
(18.1)

where C is the number of classes observed in the dataset so far and tpc and fnc denote
true positive and false negative counts w.r.t. class c respectively.

18.3.4 Symbiotic Bid-Based (SBB) GP

Symbiotic Bid-Based GP, or SBB for short, is a generic coevolutionary GP
framework originally developed to facilitate task decomposition under discrete
decision making tasks (Lichodzijewski and Heywood 2008). SBB has been applied
to a wide range of problem categories such as reinforcement learning (e.g. Doucette
et al. 2012a) and classification (e.g. Doucette et al. (2012b)).

SBB maintains two populations: symbiont and host. Symbionts (sym) take the
form of bid-based GP individuals (Lichodzijewski and Heywood 2008). They
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specify a ‘program’ (p) and a scalar ‘action’ (c). The action in a classification
context takes the form of a class label, assigned when each program is initialized.
Individuals from the host population index some subset of the individuals from the
symbiont population under a variable length representation.

Host (h) evaluation w.r.t. training exemplar (x) involves executing the program of
each of the symbionts associated with that host, and identifying the bid-based GP
with highest output, or:

sym� D arg max
sym2h

�
sym.p; x/

�
(18.2)

This ‘winning’ bid-based GP individual (sym�) suggests its corresponding action
or class label sym�.c/. The only constraint on host membership is that there must be
at least two symbionts with different class labels per host, or:

8 symi;j 2 hI 9 symi.c/ ¤ symj.c/ (18.3)

where i, j are symbiont indexes and i ¤ j. Hence, multiple symbionts might
co-operate to represent a single class. Moreover, previous research with SBB
under streaming tasks (without label budgets) indicated that class membership
could be incrementally evolved over the course of a stream (Atwater et al. 2012;
Atwater and Heywood 2013). This incremental evolution of class membership
avoids the requirement for teams to solve all aspects of the class assignment task
simultaneously.

Variation and selection operators remain unchanged from the original formu-
lation of SBB (Lichodzijewski and Heywood 2008; Doucette et al. 2012b), and
without loss of generality the form of GP assumed for symbiont programs is that of
linear GP. The instruction set includes: fC;�;�;	; cos.�/; exp.�/; log.�/g, although
others can be added. Readers are referred to the earlier SBB papers for further
details of operators and instruction set of SBB (Lichodzijewski and Heywood 2008;
Doucette et al. 2012b).

18.4 Experimental Methodology

This section begins by establishing the approach to benchmark dataset selec-
tion (Sect. 18.4.1). Section 18.4.2 discusses parameter setting and characterizes
StreamSBB design decisions. Section 18.4.3.1 outlines the approach adopted to
performance evaluation. Finally, the properties of an alternate streaming classi-
fier (an adaptive form of Naive Bayes with label budgeting) is summarized in
Sect. 18.4.3.2.
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18.4.1 Streams/datasets

Four streams/datasets will be employed for the purposes of benchmarking: (1) two
artificially created and therefore with known degrees of non-stationary behaviour1;
“Gradual Concept Drift” and “Sudden Concept Shift” streams, and; (2) two well
known real world datasets; “Electricity Demand” (Harries 1999), and “Forest
Cover Types” (Bache and Lichman 2013) that have frequently been employed
for streaming data benchmarking tasks. The basic properties of the datasets are
summarized by Table 18.1.

Gradual Concept Drift stream (Fan et al. 2004): Hyperplanes are defined in a
10-dimensional space. Initial values of the hyperplane parameters are selected with
uniform probability. This Dataset has 150,000 exemplars and every 1000 exemplars,
half of the parameters are considered for modification with a 20 % chance of change,
hence creating the gradual drift of class concepts. Class labels are allocated as a
function of hyperplanes exceeding a class threshold.

Sudden Concept Shift stream (Zhu et al. 2010): The Dataset Generator tool2 is
used to construct decision trees that specify a partitioning of the attribute space
into a 5-class classification task based on randomly generated thresholds. Data is
generated with a uniform p.d.f. and then assigned a class using the decision tree.
A total of two concept generator decision trees (C1, C2) are used to create two
sources of data. A single stream of data is then constructed block-wise with data
integrated from each of the two concept generator decision trees.

The process used to create sudden changes in the concept of classes of the
stream has the following form. The stream is created ‘block-wise’ with 13 blocks
and each block consists of 500,000 exemplars. Consider a concept generator
tuple of the form: hC1 %; C2 %i. We can now define the stream in terms of the
transition of exemplars from 100 % C1 to 100 % C2 in 10 % increments: h100; 0i,
h100; 0i, h100; 0i, h90; 10i, h80; 20i, . . . h0; 100i. For example, h80; 20i denotes a
block consisting of exemplars in which 80 % are from C1 and 20 % are from C2.
A uniform probability is used to determine the exemplar order in each block.

Table 18.1 Benchmarking dataset properties

Stream/Dataset D N k � Class Distribution ( %)

Gradual concept drift (drift) 10 150; 000 3 [16, 74, 10]

Sudden concept shift (shift) 6 6; 500; 000 5 [37, 25, 24, 9, 4]

Electricity demand (elec) 8 45; 312 2 [58, 42]

Forest cover types (cover) 54 581; 012 7 [36, 49, 6, 0.5, 1.5, 3, 4]

D denotes dimensionality, N refers to the total exemplar count, and k is the number
of classes

1Publicly available at http://web.cs.dal.ca/~mheywood/Code/SBB/Stream/StreamData.html.
2Gabor Melli. The ‘datgen’ Dataset Generator. http://www.datsetgenerator.com/.

http://www.datsetgenerator.com/
http://web.cs.dal.ca/~mheywood/Code/SBB/Stream/StreamData.html
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Electricity Demand characterizes the rise and fall of electricity demand in New
South Wales, Australia, using consumption and price information for the target and
neighbouring regions (Harries 1999). As such it is a two class dataset (demand will
either increase or decrease relative to the previous period), moreover, unlike the
other three datasets the distribution of classes is almost balanced.

Forest Cover Types defines forest cover type from cartographic variables (Bache
and Lichman 2013). The actual forest cover type for a given observation (30 � 30

meter cell) was determined from US Forest Service (USFS) Region 2 Resource
Information System (RIS) data. Forest cover type is a 7-class dataset with 54
attributes, 44 of which are binary. The distribution of classes are very imbalanced
with the largest class covering almost 50 % of dataset and the smallest class covering
a mere 0:5 %, almost 1

100
of the majority class. In order to provide a temporal

property, previous research sorted the dataset based on the elevation of the 30 � 30

meter cells to give it characteristics of streaming data (Z̆liobaitė et al. 2014). The
same approach is adopted in this paper. What makes this dataset interesting from a
streaming data perspective is that there are a comparatively large number of classes,
and the seventh class does not appear until roughly half way through the stream.
Thus, any classifier working under a label budget would need to discover the new
class and react accordingly without disrupting its performance on the other six
classes.

18.4.2 Parameterization of GP

Relative to the earlier work (Atwater et al. 2012; Atwater and Heywood 2013;
Vahdat et al. 2014), the following represents a much more through experimental
evaluation. Indeed, the StreamSBB framework of Fig. 18.1 was only proposed in
Vahdat et al. (2014) and then benchmarked under a very restrictive scenario (i.e.
limited to choices for the label budget). In this work, the objective is to identify
what properties of StreamSBB contribute to specific capabilities under streaming
data with non-stationary properties. With this in mind, the following three generic
parameterizations will be assumed through out:

Model initialization is performed using the first Sinit % of the stream during the first
iinit % of generations. This represents the pre-training budget, with the remainder
of the label budget being consumed across the remainder of the stream. Given that
the interface to the stream assumed by StreamSBB is a non-overlapping window,
then this assumption just defines the initial window length and assumes that iinit % of
the generations are performed against this window location. Thereafter, the sliding
window advances at a fixed rate through the stream.

A non-overlapping sliding window of length Smax=imax exemplars is assumed
after model initialization. The remainder of the stream passes through at a constant
rate. The window content defines the pool from which the new jGap.i/j training
exemplars are sampled and labels requested (Fig. 18.1). This results in a ‘non-
overlapping’ sliding window. However, GP is evaluated w.r.t. the content of the
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Data Subset, jDSj, (Fig. 18.1), and only jGapj exemplars are introduced per window
location, hence, there is still a ‘gentle’ turnover in new to old exemplar content
between consecutive generations. Parameters are set to jGapj D 20 and jDSj D 120

in all experiments.

Label budget is the ratio of points whose labels are requested to the total stream
length, or:

label budget.LB/ D imax � jGapj
Smax

(18.4)

In other words only imax�jGapj exemplars are requested for their label in a stream of
length Smax.� N/. Under the sudden concept shift stream with Smax D 6; 500; 000

exemplars and imax D 1000 generations, the non-overlapping window defines 6500
exemplars between updates of the GP population. In the parameterization assumed
here only jGapj D 20 exemplars are added to DS.i/ (by the Sampling Policy) at
each generation. Hence, the label budget in this example would be:

1000 � 20

6; 500; 000
� 0:3 %

Given the rather different stream lengths of the benchmarking datasets
(Table 18.1), different parameterizations for imax will be assumed per dataset as
follows:

Case 1 For Concept Drift and Electricity Demand streams: imax 2 f500I 1000g
Case 2 For Concept Shift and Forest Cover Type streams: imax 2 f1000I 10; 000g
This defines two label budgets (LB) per dataset, as summarized by Table 18.2. Note
that imax is taken to include the pre-training budget iinit %.

Table 18.3 summarizes the remaining generic SBB parameter settings assumed
in this study e.g., population size, variation and selection operator frequencies. The
following new questions are addressed to illustrate the role of design decisions made
during StreamSBB and have not previously been considered:

Let the initial period of fixed sliding window over 10 % of stream (during
which the model is constructed) be called ‘pre-training’ stage and the period of
non-overlapping sliding window over Smax=imax exemplars be called ‘post-training’
stage. Two pre-training bias experiments are considered in an effort to assess the
impact of initial model construction on performance attained across the rest of the

Table 18.2 Stream/datasets with different generation count and label budgets (LB)

Stream/Dataset Smax imax LB imax LB

Gradual concept drift (drift) 150; 000 500 6:7 % 1000 13:3 %

Sudden concept shift (shift) 6; 500; 000 1; 000 0:3 % 10; 000 3:1 %

Electricity demand (elec) 45; 312 500 22:1 % 1000 44:2 %

Forest cover types (cover) 581; 012 1; 000 3:4 % 10; 000 34:4 %
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Table 18.3 Generic SBB
parameters

Parameter Value

DS size (DS) 120

Host population size (Msize) 120

Probability of symbiont deletion (pd) 0:7

Probability of symbiont addition (pa) 0:7

Probability of action mutation (�a) 0:1

Maximum symbionts per host (!) 20

DS gap size (Gap) 20

Host population gap size (Mgap) 60

Symbiont population varies dynamically, hence
no size parameter is defined. SBB assumes a
‘breeder’ model of evolution in which Mgap

hosts are removed per generation (Doucette et al.
2012b)

stream. In effect we are asking whether spending more resource on the pre-training
period has a negative impact on the ability to react to the content in the post-training
period (remainder of the stream). Specifically, we are interested in the impact of:
(1) longer model construction time with same percentage of exemplar labels, and
(2) more label budget during model construction period with the same amount of
time.

DS oversampling reflects the ability of StreamSBB to decouple the rate at which
GP training epochs are performed from the rate at which the data subset content
is updated. Specifically, updates to data subset (DS) and window location (SW) are
synchronized and therefore assume the same index, i (Fig. 18.1). Conversely, for
each DS.i/ we consider the case of performing multiple training epochs, or j D i�k
where k D 1 implies one GP generation per DS.i/, whereas a parameterization of
k D 5 implies five GP generations per DS.i/. Decoupling GP training epochs in this
way potentially provides SBB more time to learn form each data subset. Note also
that this does not change the label budget.

Monolithic vs. modular models: The original StreamSBB is allowed to repre-
sent/model each class label using an evolved mix of symbionts (programs). This
implies that multiple programs might coevolve to represent the same class label
(task decomposition) (Lichodzijewski and Heywood 2010; Doucette et al. 2012b).
We are interested in investigating the contribution of such open-ended modularity
under the context of non-stationary streaming tasks. To do so, we introduce a
constrained version of StreamSBB in which a host cannot have more than one
symbiont (program) with the same action (class label). All other properties are
unchanged; hereafter this will be referred to as the monolithic model.
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18.4.3 Evaluation

Two performance metrics will be adopted for characterizing performance: a “pre-
quential accuracy” and “incremental class-wise detection rate”. Such metrics are
applied relative to the champion individual assumed for labelling stream content.
Likewise two comparator classifiers are assumed for the purpose of comparison: a
“no-change” model (Bifet et al. 2013) and an Adaptive Naive Bayes classifier with
fixed label budgeting (Z̆liobaitė et al. 2014). A summary of each follows:

18.4.3.1 Performance Metrics

Prequential accuracy (Dawid 1984) represents the most widely used performance
metric for streaming data benchmarking. Specifically, the prequential accuracy at
exemplar t in the stream is ‘weighted’ relative to all past t � 1 exemplars as well as
exemplar t, or

preqt D .t � 1/� preqt�1 C Rt

t
(18.5)

where Rt D 1 denotes a correct classification of exemplar t, and Rt D 0 denotes
otherwise. The ratio of time indexes acts as a weighting factor, enforcing a decay
for older updates (Gama et al. 2013). The resulting prequential accuracy takes the
form of a curve, although current benchmarking practice also tends to emphasize the
reporting of the final prequential accuracy estimate for t D Smax as the indication of
overall model quality.

A second performance metric, incremental class-wise detection rate will also
be assumed. The basic motivation is to reduce the sensitivity of the performance
metric to class imbalance. This is particularly important under streaming data
situations as models are updated incrementally and therefore sensitive to the
distribution of current window content (typically a skewed distribution of classes
even when the overall class distribution is balanced). The incremental class-wise
detection rate can be estimated directly from stream content as follows:

DR.t/ D 1

C

X
cDŒ1;:::;C�

DRc.t/

DRc.t/ D tpc.t/

tpc.t/C fnc.t/
(18.6)

where t is the exemplar index, tpc.t/, fnc.t/ are the respective running totals for true
positive and false negative rates up to this point in the stream.
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18.4.3.2 Comparator Models

The No-Change Classifier requires complete label information, but represents a
naive ‘devils advocate’ solution. The no-change ‘classifier’ is actually a 1-bit finite
state machine in which the state is seeded by the class label, l.t/ D c, for the present
exemplar, x.t/. The state machine ‘predicts’ this class for the next exemplar(s) until
there is a change in the exemplar class label. A change in the label for exemplar
x.tCn/ to l.tCn/ ¤ c results in a change in the ‘prediction’ for exemplar x.tCnC1/

to that of the new class, say, c0. The process then repeats with each change in class
label for the current exemplar being assumed as the prediction for the next exemplar.
Such a predictor achieves a high accuracy when there are continuous sequences of
exemplars in the stream with the same label. Naturally, such a no-change classifier
provides a ‘feel’ for how much implicit class variation exists in a stream.

The second comparator classifier is documented in a recent study of streaming
data classification under label budgets and drift detection (Z̆liobaitė et al. 2014),
and has been made available in the Massive Online Analysis (MOA) toolbox.3

Specifically, the Naive Bayes classifier with budgeted active learning and drift
detection under the prequential evaluation task is employed. The drift detection
mechanism selected was the DDM (Drift Detection Method) algorithm from Gama
et al. (2004) with default values for threshold (1) and step parameters (0:01).
The ‘random’ active learning strategy was selected as it provided the baseline in
Z̆liobaitė et al. (2014) and is closest to the stochastic sampling policy adopted in
this work. Finally the label budget parameter was selected according to the label
budget settings of the StreamSBB method. Thus, a new classifier is built when
the current classifier’s performance begins to degrade, i.e. the current classifier
is replaced when drift is explicitly detected by the DDM. Active learning with
budgeting is managed under a random exemplar selection policy in which stream
data is queried for labels with frequency set by the budget parameter. We also
note that both the Naive Bayes and the StreamSBB classifier are configured to
label exemplars based on each exemplar instance. Thus, no use is made of features
designed to represent temporal properties such as tapped delay lines (see Vahdat
et al. 2014 for StreamSBB configured under this scenario).

18.5 Results

Section 18.4.2 discussed configuration of StreamSBB in terms of the generic
parameterization, and higher level design decisions. We start by adopting the basic
parameterization decisions for the duration of pre-training, label budget, sliding
window size, gap size and illustrate the utility of the stream performance metrics
(Sect. 18.4.3.1). A common minimal label parameterization is then adopted to

3MOA prerelease 2014.03; http://moa.cms.waikato.ac.nz/overview/.

http://moa.cms.waikato.ac.nz/overview/


18 Evolving GP Classifiers for Streaming Data Tasks: A Benchmarking Study 465

Fig. 18.2 StreamSBB on
gradual concept drift stream.
Curve of GP accuracy (solid)
and DR (dash) during stream.
First 10 % of stream
(1:5 � 104 exemplars) are
used to construct the initial
model. Red: Label budget
� 6:7 % or imax D 500; Blue:
Label budget of� 13:3 % or
imax D 1000; Black:
No-Change model (Color
figure online)
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enable us to review the impact of making higher level design decisions regarding:
model initialization, oversampling, and support for modularity in GP. Having
established a preferred set of design decisions, we then compare against the
Adaptive Naive Bayesian classifier from the MOA toolbox.

Model initialization and label budget: Figures 18.2, 18.3, 18.4, and 18.5 pro-
vide a behavioural summary of StreamSBB in terms of prequential accuracy
(Eq. (18.5)) and incremental detection rate (Eq. (18.6)) w.r.t. different labelling
budgets (Table 18.2) over the four datasets. In all cases each curve is the result
of averaging the performance of GP over 50 runs for each configuration. A common
parameterization will be assumed throughout for the generic GP parameters of
StreamSBB (Table 18.3). Given that the sliding window follows a non-overlapping
definition, then the size of the window is effectively parameterized by the label
budget and corresponding frequency of gap sampling (Table 18.2). Likewise, the
number of labels per sliding window location is fixed (jGapj D 20) for a data
subset of jDSj D 120. Moreover, at this point we will not consider the impact of
more advanced features (oversampling etc), thus one training epoch is performed
per window location.

As mentioned during Sect. 18.4.2, the first 10 % of the stream is made available
for initial model construction.4 The performance curves reflect the operation of
the champion classifier (Sect. 18.3.3) as the stream data passes. Insight into the
degree of mixing of class labels as the stream progresses is provided by the ‘no-
change’ classifier curve (black solid curve). Thus, the artificial drift dataset begins
with continuous sequences of the same class and then experiences a 20 % reduction

4Implying that 10 % of the label budget is consumed in pre-training.
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Fig. 18.3 StreamSBB on sudden concept shift stream. Curve of GP accuracy (solid) and DR
(dash) during stream. First 10 % of stream (6:5 � 105 exemplars) are used to construct the
initial model. Red: Label budget � 0:3 % or imax D 1000; Blue: Label budget of � 3:1 % or
imax D 10; 000; Black: No-Change model (Color figure online)
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Fig. 18.4 StreamSBB on electricity dataset. Curve of GP accuracy (solid) and DR (dash) during
stream. First 10 % of stream (4:5 � 103 exemplars) are used to construct the initial model. Red:
Label budget � 22:1 % or imax D 500; Blue: Label budget of � 44:2 % or imax D 1000; Black:
No-Change model (Color figure online)
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Fig. 18.5 StreamSBB on cover type dataset. Curve of GP accuracy (solid) and DR (dash) during
stream. First 10 % of stream (5:8 � 104 exemplars) are used to construct the initial model. Red:
Label budget� 3:4 % or imax D 1000; Blue: Label budget of� 34:4 % or imax D 10; 000; Black:
No-Change model (Color figure online)

as the stream progresses (Fig. 18.2). However, the artificial shift dataset experiences
a high degree of mixing of class label throughout (Fig. 18.3). As previously been
pointed out (Bifet et al. 2013), the electricity dataset has a low degree of mixing
(Fig. 18.4) whereas the cover type dataset sees both periods of variation and
continuity in the label during the stream (Fig. 18.5).

During the artificial concept drift dataset, steady gradual improvements are
made throughout the course of the stream, resulting in performance eventually
surpassing/reaching that of the no-change classifier under both metrics. Note that
the no-change classifier performance is always described in terms of accuracy. The
decaying trend of the no-change classifier implies that label mixing increases as the
stream progresses.

Under the artificial shift dataset, there is insufficient continuity in labels for
the no-change classifier to approach the performance of StreamSBB. Note also
that under the shift dataset, the first 1,500,000 exemplars of the stream are drawn
from concept C1. This lasts for nearly twice as long as the initial period of pre-
training. Thus, as the concept generating the five classes shifts from C1 to C2 during
the remaining course of the stream, a decay of � 10 % in either metric appears
irrespective of total label budget.

The accuracy and detection rate curves for GP are almost identical for the
electricity demand dataset and quickly reach a plateau under this configuration
of StreamSBB (Fig. 18.4). Performance of the no-change classifier benefits from
continuous sequences of exemplars carrying the same class label. Note that the
electricity dataset is a 2 class dataset with 58 %–42 % class distribution (almost bal-
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anced). Finally, the forest cover type dataset illustrates several dynamic properties.
Pre-training only results in 6 of 7 classes appearing. Thus, when instances of the
7th class do appear (approximately where index 3 appears in the x-axis), then there
is a corresponding drop in detection rate (detection rate having been estimated over
six classes up to this point). There are also several transient properties earlier in the
stream, which appear to be indicative of sudden context switches in the underlying
process as they impact both metrics and forms of classifier.

It is also evident that the accuracy metric is strongly biased by the class
distribution, resulting in an ‘over optimistic’ performance curve in all but the
balanced data set (electricity); a property widely observed under non-streaming
classification benchmarks. With this in mind, we will adopt the detection rate metric
in the remainder of the study.

Pre-training epoch bias experiment: Figures 18.6 and 18.7 illustrate the impact of
varying the distribution of StreamSBB training epochs between pre-training and the
remainder of the stream. Note that previously the pre-training period (performed
against 10 % of the data) consumed an equal amount of the total training epochs
(10 %). In the case of these experiments, pre-training is still performed against 10 %
of the data (thus still only utilizing a 10 % label budget), but consumes 20 % or 40 %
of the training epochs. Naturally, the total number of training epochs per stream is
unchanged, leading to the following three configurations:

Case 1 The default case, i.e. 10 % of evolution time is dedicated to model
construction and 90 % after.

Case 2 20 % of evolution time is dedicated to model construction and 80 % after.
Case 3 40 % of evolution time is dedicated to model construction and 60 % after.

Fig. 18.6 Pre-training epoch
bias experiment. preqDR on
drift stream. Black: default
10 % (case 1); Red: 20 %
(case 2); and Blue: 40 %
(case 3) (Color figure online)
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Fig. 18.7 Pre-training epoch bias experiment. preqDR on shift stream. Black: default 10 %
(case 1); Red: 20 % (case 2); and Blue: 40 % (case 3) (Color figure online)

It appears that there is no lasting benefit to be gained from biasing more training
epochs to the pre-training period. Under the shift dataset (Fig. 18.7), a significant
regression back to the vicinity of ‘case 1’ detection rate appears by the end of the
stream. In short, the benefit gained by introducing biases towards more pre-training
time are lost over the remainder of the stream.5

Pre-training label budget bias experiment: Here we ask wether using more of
the label budget during pre-training will provide the basis for better models during
the remainder of the stream. Specifically, rather than providing more time to the
pre-training period we provide a larger proportion of label budget to the pre-
training period. Note that the overall label budget is intact, however more labels are
requested during model construction and less thereafter. This leads to the following
three configurations:

Case 1 The default case of uniform sampling through the stream, i.e. 10 % of label
and training budget is requested during construction and 90 % after.

Case 2 20 % of label and training budget is requested during model construction
and 80 % after.

Case 3 40 % of label and training budget is requested during model construction
and 60 % after.

5Electricity demand and forest cover type datasets observed similar effects and therefore results
are not explicitly reported.
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Fig. 18.8 Pre-training label budget bias experiment. preqDR on drift stream. Black: default 10 %
(case 1); Red: 20 % (case 2); and Blue: 40 % (case 3) (Color figure online)

Figures 18.8 and 18.9 summarize the impact of pre-training label budget bias on
detection rate for the concept drift and shift datasets respectively. In both cases the
results are very similar to those observed under the bias to training epochs.6 Any
improvement relative to the drift data set (compare Fig. 18.8 to Fig. 18.6) being lost
under the shift data set (compare Fig. 18.9 to Fig. 18.7). In short, no real benefit
is observed in biasing more training generations or label budget towards the initial
pre-training period.

DS Oversampling experiment: Sections 18.3 and 18.4.2 made the case for relaxing
the relation between updates to the data subset (DS.i/) and performing a training
epoch (Gen.j/, Fig. 18.1). Thus, for each update to the data subset rather than
conduct a single generation, multiple generations might be performed. This does
not change the label budget and does not represent a bias towards pre-training as it
is performed throughout the whole stream. Three parameterizations are considered:

6Similar effects being observed for the electricity and forest cover type datasets.
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Fig. 18.9 Pre-training label budget bias experiment. preqDR on shift stream. Black: default 10 %
(case 1); Red: 20 % (case 2); and Blue: 40 % (case 3) (Color figure online)

Case 1 The default case of uniform sampling through the stream.
Case 2 DS oversampling by a factor of 2.
Case 3 DS oversampling by a factor of 5.

Figures 18.10 and 18.11 illustrate the impact of oversampling in terms of
incremental detection rate curves for concept drift and shift streams. Higher
detection rates are now maintained throughout the stream. Indeed, the higher rate
of oversampling appears to be preferable throughout, although further increases to
the oversampling (a factor of 10) only had marginal effects compared to the case of
oversampling to a factor of 5 (overlearning). Results for electricity and cover type
were also positive and will be reported later when we compare with the Adaptive
Naive Bayesian framework for streaming classification.

Monolithic vs. modular: In all the previous experiments StreamSBB was used in
its original modular configuration, i.e. the number of symbionts per class labels were
allowed to freely evolve. Previous benchmarking performed under a classical non-
streaming setting of classification through supervised learning indicated that such
open-ended evolution of modularity was particularly beneficial (Lichodzijewski and
Heywood 2010). Other researchers have also noted that the open-ended evolution of
modularity can be potentially beneficial in ‘dynamic’ environments (Sect. 18.2). In
this experiment we compare StreamSBB with a modified version in which there
can only be a single program per team per class. Although, still modular at some
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Fig. 18.10 Oversampling experiment. preqDR on drift stream. Black: default sampling; Red: �2

oversampling; and Blue: �5 oversampling (Color figure online)
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Fig. 18.12 Detection rate of concept drift stream under modular (solid) vs. monolithic (dash)
configurations

level (there are as many programs as classes) we will refer to this as a monolithic
classifier, and StreamSBB as a modular classifier.7 The objective of this experiment
is to quantify to what extent support for such open-ended evolution of modularity is
beneficial under non-stationary streaming classification tasks.

Figures 18.12 and 18.13, summarize detection rate on the concept drift and
shift streams respectively. There is a statistically significant difference in favour
of assuming open-ended evolution of modularity (Student T-test p-value of 3:14 �
10�237 and 0 for concept drift and concept shift streams respectively under 0.01
significance level). Thus, modularity is synonymous with task decomposition,
which under domains that undergo change potentially implies that only a subset
of programs within a modular solution need to be revised when a change occurs.
Conversely, under monolithic solutions, it is more difficult to explicitly delimit what
variation operators modify, hence identifying the relevant parts of a program to
modify becomes more difficult.

Under non-stationary streams, given that change takes place throughout the
stream we can also review the development of age of the champion individual
through the course of the stream. Note that the champion solution is the individual
used to provide labels as the stream progresses, with identification of the champion
performed relative to the current content of the data subset (Sect. 18.3.3). Naturally,
each time the data subset is updated, the champion might change. Age is the number
of training epochs for which an individual manages to exist.

7Other than the monolithic formulation of SBB being subject to the constraint that only one
program may represent each class, the two implementations are the same.
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Fig. 18.13 Detection rate of concept shift stream under modular (solid) vs. monolithic (dash)
configurations

Figures 18.14 and 18.15 illustrate the average age of the champion for concept
drift and shift streams respectively. Both plots suggest that the average age of
champion hosts of the modular configuration (red curve) remains lower throughout
the stream. In effect, there is a higher rate of turn over of champion individuals when
modularity is supported (implied by the lower age of champions). This reflects a
stronger ability to react to change. Conversely, the much higher age of champions
under the monolithic framework appears to indicate that the same champion has
to be used for longer before better replacements are found. This has obvious
decremental consequences for classifier performance.

StreamSBB vs. Adaptive Naive Bayes: Results for the second baseline classifier,
the Adaptive Naive Bayesian (ANB) framework for streaming data classification
under label budgets as implemented in the MOA toolkit (Sect. 18.4.3.2) are summa-
rized in Figs. 18.16, 18.17, 18.18, 18.19. Detection rate of StreamSBB and ANB
models with similar label budgets are compared against each other for the four
datasets.

StreamSBB results are presented in terms of a set of curves illustrating the impact
of assuming different DS oversampling rates, i.e. the number of training epochs
performed per DS update. As noted in the earlier experiments this appears to be the
most important design decision and has no impact on the label budget. In all cases
the solid black curve is the incremental detection rate for ANB. Under the drift
stream, ANB appears to take longer to develop an initial classifier. Thereafter, both
models alternate until the end of stream where they settle on the same detection rate.
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Fig. 18.14 Average age of the champion individual during evolutionary loop, concept drift stream
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Fig. 18.15 Average age of the champion individual during evolutionary loop, concept shift stream

Conversely, ANB appears to over learn the initial configuration of the shift stream
(corresponding to concept C1), and then lose 25 % of its initial detection rate (going
from 80 % to 55 %) over the remaining 75 % of the stream. Conversely, StreamSBB
experiences significantly less loss over the course of concept C2 being introduced
during the last three quarters of the stream (Fig. 18.17).
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Fig. 18.16 Detection rate of
StreamSBB vs. ANB model
on concept drift stream (label
budget = 6:6 %)
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Fig. 18.17 Detection rate of
StreamSBB vs. ANB model
on concept shift stream (label
budget = 0:3 %)
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The electricity dataset results in StreamSBB returning a constant detection rate
of 58–60 % throughout the stream, but never approaching the performance returned
by ANB (Fig. 18.18). The behaviour under the covertype dataset is more interesting.
During the first three intervals of the stream, both models undergo sharp changes in
the detection rate (Fig. 18.19). A sudden drop then appears as the seventh class is
encountered for the first time, and therefore all models miss-classify this class (see
x-axis value � 3). The ensuing gradual recovery of the detection rate undergoes a
final jump in the last 20 000 exemplars of the sequence (last interval of the x-axis).

In summary ANB appears to have problems when there are sudden changes to
the content of the stream (shift stream), whereas both algorithms are effective under
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Fig. 18.18 Detection rate of
StreamSBB vs. ANB model
on electricity dataset (label
budget = 22:1 %)
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Fig. 18.19 Detection rate of StreamSBB vs. ANB model on covertype dataset (label budget =
3:4 %)

the drift stream. In both real-world datasets, ANB was more effective, however,
StreamSBB might well benefit from the use of tapped delay lines when contracting
models for such tasks (both models make classification decisions on the basis of
a single exemplar). Further research indicates that StreamSBB does indeed benefit
considerably from the use of a delay lines on real-world data sets (Vahdat et al.
2015).
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18.6 Conclusion

A framework for applying GP to streaming data classification tasks under label
budgets is presented. To do so, GP is evolved against a data subset. The subset makes
use of Pareto archiving policy with diversity/age heuristics to prioritize exemplars
for retention beyond the lifetime of the current window to the stream. A simple
uniform sampling scheme is assumed for selecting exemplars for labelling. Attempts
to introduce more complex sampling policies (such as biasing label requests towards
exemplars that have lower confidence in classification) generally resulted in worse
results than the uniform sampling policy.8 The data subset was also used as the basis
for supporting anytime classifier operation. It is only the data subset that contains
labelled exemplars, however, we also make use of Pareto archiving to limit the set
of GP individuals to those that are non-dominated (cf. effect of class imbalance on
the data subset).

Two factors were identified that had particular significance with respect to
StreamSBB performance:

• perform multiple generations per data subset—where this appears to improve the
rate of adaptation in GP to updates to the data subset content.

• support for coevolution of programs—where assuming a single (monolithic)
program per class resulted in much lower rates of classification than when the
number of programs per class was an evolved property.

Benchmarking also introduced a incremental formulation for detection rate
where this is more informative of the true classifier behaviour under class imbalance.
Future work will assess the utility of tapped delay lines to enable GP to represent
temporal properties between sequences of exemplars when labelling exemplar t. At
present, each exemplar is labelled independently. Moreover, we will continue to
extend the set of real-world datasets on which benchmarking is performed.
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Chapter 19
A New Evolutionary Approach to Geotechnical
and Geo-Environmental Modelling

Mohammed S. Hussain, Alireza Ahangar-asr, Youliang Chen,
and Akbar A. Javadi

19.1 Introduction

Introduced by Koza (1992) Genetic programming (GP) is a relatively new data
mining method that solves problems in a systematic and domain-independent
method. By following the principles of the evolutionary computation, GP learns
to discover the appropriate mathematical models to fit a set of points. The ‘fitness’
of the solutions in the population is improved through successive generations. This
automated induction of mathematical models of data using GP is commonly referred
to as symbolic regression. In contract to the traditional numerical regressions, GP or
more precisely symbolic regression does not need pre-specification of the regression
structure by the users, where both the form of expression and its parameter values
are found automatically. The nature of this automatic approach permits global
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exploration of expressions and allows the user to have an insight into the relationship
between input and output data.

In a last decade the genetic programming has been widely used in different fields
of civil engineering such as structural and material engineering (e.g. Gandomi et al.
2009, 2010a, b, 2013; Gandomi and Alavi 2012b, 2013; Gandomi and Yun 2014);
geotechnical and earthquake engineering (e.g. Yang et al. 2004; Johari et al. 2006;
Narendra et al. 2006; Rezania and Javadi 2007; Baykasoğlu et al. 2008; Alavi et al.
2009, 2010, 2012, 2013a, b; Alavi and Gandomi 2011, 2013; Mousavi et al. 2011;
Gandomi et al. 2011a, b; Gandomi and Alavi 2012a) and hydrology and water
resources engineering (e.g. Dorado et al. 2003; Babovic and Keijzer 2006; Gaur and
Deo 2008; Makkeasorn et al. 2008; Parasuraman and Elshorbagy 2008; Wang et al.
2009; Sreekanth and Datta 2011a). This popularity of GP is attributed to its success
at discovering complex nonlinear spaces and its robustness in practical applications.
Accordingly, a significant reduction in computational time, less uncertainty and
also being better suited to the simulation/optimization framework using adaptive
search space have been reported as positive potentials of GP (Sreekanth and Datta
2010, 2011b).

Despite the advantages, GP also suffers from certain limitations, as it tends to
produce functions that grow in length over time (Davidson et al. 1999). In an attempt
to overcome these limitations, Davidson et al. (1999) introduced a new regression
method for creating polynomial models based on both numerical and symbolic
terms. The structure of the polynomial regressions and the values for the constants in
the expressions are simultaneously captured by GP and least squares optimisation
respectively. Following the same principle Giustolisi and Savic (2006) developed
Evolutionary Polynomial Regression EPR as a hybrid method that integrates the best
features of numerical regression with the effectiveness of GP technique. Therefore
EPR as a data driven technique, belongs to the family of GP strategies. EPR has been
applied to model complicated civil engineering materials and systems (e.g. Javadi
et al. 2012b; Ahangar-Asr et al. 2012, 2014; Faramarzi et al. 2013).

The overall goal of this study is to depict the computational capability of the
EPR methodology in predicating the results of two complex geotechnical and
geo-environmental problems. In the first problem, EPR is used for modelling of
thermo-mechanical behaviour of unsaturated soils by development a model for
volumetric strain. The EPR model is developed and evaluated based on results
from test data and is validated using cases of data that had been kept unseen to
the EPR during the modelling process. This allows investigating the generalisation
capabilities of the developed model. The EPR model predictions are compared with
experimental measurements to evaluate the model performance in predicting the
volumetric behaviour of soils and the level of accuracy of the predictions. In second
problem, the EPR is trained on a set of numerical inputs/outputs and is used to
predict the total mass of salt released in the aquifer during the seawater intrusion
problem. The developed EPR mode is then integrated with a multi objective
optimisation tool to assess the efficiency of a hydraulic barrier proposed to control
the inland encroachment of seawater into the aquifer. The potential capability
of developed simulation–optimization methodology is compared with different
schemes of direct linking of numerical model with the same optimization tool.
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19.2 Evolutionary Polynomial Regression

Evolutionary polynomial regression EPR is a data-driven method based on evo-
lutionary computing, aimed to search for polynomial structures representing a
system. EPR integrates numerical and symbolic regression to perform evolutionary
polynomial regression. The strategy uses polynomial structures to take advantage
of their favourable mathematical properties. The key idea behind the EPR is to use
evolutionary search for exponents of polynomial expressions by means of a genetic
algorithm (GA) engine. This allows (1) easy computational implementation of the
algorithm, (2) efficient search for an explicit expression, and (3) improved control of
the complexity of the expression generated (Giustolisi and Savic 2006). A physical
system, having an output y, dependent on a set of inputs X and parameters ™, can be
mathematically formulated as:

y D F .X; ™/ (19.1)

where F is a function in an m-dimensional space and m is the number of inputs. To
avoid the problem of mathematical expressions growing rapidly in length with time,
in EPR the evolutionary procedure is conducted in the way that it searches for the
exponents of a polynomial function with a fixed maximum number of terms. During
one execution it returns a number of expressions with increasing numbers of terms
up to a limit set by the user, to allow the optimum number of terms to be selected.
The general form of expression used in EPR can be presented as (Giustolisi and
Savic 2006):

y D
mX

jD1

F
�
X; f .X/ ; aj

�C a0 (19.2)

where y is the estimated vector of output of the process; aj is a constant; F is a
function constructed by the process; X is the matrix of input variables; f is a function
defined by the user; and m is the number of terms of the target expression. The
first step in identification of the model structure is to transfer Eq. (19.2) into the
following vector form:

YN�1 .�; Z/ D
h

IN�1 Zj
N�m

i
� �a0 a1 � � � am

�T D ZN�d � �T
d�1 (19.3)

where YN�1(™,Z) is the least squares estimate vector of the N target values; ™d�1

is the vector of dDmC 1 parameters aj and a0 (™T is the transposed vector); and
ZN�d is a matrix formed by I (unitary vector) for bias ao, and m vectors of variables
Zj. For a fixed j, the variables Zj are a product of the independent predictor vectors
of inputs, XD<X1 X2 : : : Xk>.

In general, EPR is a two-stage technique for constructing symbolic models.
Initially, using standard genetic algorithm (GA), it searches for the best form
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of the function structure, i.e. a combination of vectors of independent inputs,
XsD 1:k, and secondly it performs a least squares regression to find the adjustable
parameters, ™, for each combination of inputs. In this way a global search algorithm
is implemented for both the best set of input combinations and related exponents
simultaneously, according to the user-defined cost function (Giustolisi and Savic
2006). The adjustable parameters, aj, are evaluated by means of the linear least
squares (LS) method based on minimization of the sum of squared errors (SSE)
as the cost function. The SSE function which is used to guide the search process
towards the best fit model is as follows:

SSE D

NX
iD1

�
ya � yp

�2
N

(19.4)

where ya and yp are the target experimental and the model prediction values
respectively. The global search for the best form of the EPR equation is performed
by means of a standard GA over the values in the user defined vector of exponents.
The GA operates based on Darwinian evolution which begins with random creation
of an initial population of solutions. Each parameter set in the population represents
the individual’s chromosomes. Each individual is assigned a fitness based on how
well it performs in its environment. Through crossover and mutation operations,
with the probabilities Pc and Pm respectively, the next generation is created. Fit
individuals are selected for mating, whereas weak individuals die off. The mated
parents create a child (offspring) with a chromosome set which is a mix of parents’
chromosomes. In EPR integer GA coding with single point crossover is used to
determine the location of the candidate exponents. The EPR process stops when the
termination criterion, which can be either the maximum number of generations, the
maximum number of terms in the target mathematical expression or a particular
allowable error, is satisfied. A typical flow diagram for the EPR procedure is
illustrated in Fig. 19.1.

19.3 Applications

19.3.1 Problem 1: Modelling Thermo-Mechanical Behaviour
of Unsaturated Soils

Most of the research works on coupled thermal and mechanical behaviour of soils
have focused on saturated soils. Khalili and Loret (2001) presented an alternative
theory for heat and mass transport through deformable unsaturated porous media.
They extended their previous work (Loret and Khalili 2000) on fully coupled
isothermal flow and deformation in variably saturated porous media to include
thermal coupling effects. Wu et al. (2004) presented a thermo-hydro-mechanical
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Fig. 19.1 Flow diagram for EPR procedure (Ahangar-Asr et al. 2012)
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(THM) constitutive model for unsaturated soils. The influences of temperature
on the hydro-mechanical behaviour in unsaturated soils were considered in this
model. Another THM model for unsaturated soils was proposed by Dumont et al.
(2010). In this research the effective stress concept was extended to unsaturated
soils with the introduction of a capillary stress. A thermo-elastic-plastic model was
also suggested by Uchaipichat (2005) for unsaturated soils based on the effective
stress principle by taking into account the coupling effects of thermo-mechanical
behaviour and suction. Uchaipichat and Khalili (2009) published the results of an
experimental investigation on thermo-hydro-mechanical behaviour of unsaturated
silt. They conducted an extensive array of isothermal and non-isothermal tests
including temperature controlled soaking and desaturation, temperature and suction
controlled isotropic consolidation, and suction controlled thermal loading and
unloading tests. In the present work the EPR approach is used for modelling the
volume change behaviour of unsaturated soils under temperature effects.

The results from triaxial experiments on compacted samples of silt at different
temperatures (Uchaipichat and Khalili 2009) were used for developing and eval-
uating the EPR models. The soil samples were obtained from the Bourke region
of New South Wales, Australia. The index properties of the soil are presented in
Table 19.1. The temperature and matric suction values varied from 25 to 60 ıC and
0 to 300 kPa, respectively. Cell pressures of 50, 100 and 150 kPa were used in the
experiments. The total number of cases in the database was divided into training
and testing datasets. From the created database 22 cases (approximately 80 %) were
used to train and develop the EPR models while the remaining 5 cases (about 20 %)
were kept unseen to EPR during model construction and were used to validate the
developed models. The EPR models have nine input parameters as summarized
in Table 19.2. Axial strain, volumetric strain and deviator stress are updated
independently and incrementally during the training and testing stages of the model
development process based on the outputs relating to the previous increment of the
axial strain. The output parameter is volumetric strain corresponding to the end of
the incremental step.

Before starting the EPR model development process, constraints were imple-
mented to control the structure of the models in terms of the length and complexity,
type of implemented functions, number of terms, range of the exponents used
and also the number of generations to complete the evolutionary process. As the
modelling process progressed the accuracy level at every stage was evaluated using
the coefficient of determination (COD) as the fitness equation (Eq. 19.5).

Table 19.1 Index properties of the silt used in the tests (Bourke silt)

Properties Values

Liquid limit (%) 20.5
Plastic limit (%) 14.5
Specific gravity 2.65
Air entry value (kPa) 18
Maximum dry unit weight from standard proctor test (kN/m3) 18.8
Optimum moisture content from standard proctor test (%) 12.5



19 A New Evolutionary Approach to Geotechnical and Geo-Environmental Modelling 489

Table 19.2 Input and output
parameters in the EPR
modelsa

Parameters involved Ranges of the parameter values Unit

OCR (input) 1.3–4 –
Pnet (input) 50–150 kPa
Sui (input) 0–300 kPa
T (input) 25–60 ıC
Sri (input) 0.3–1 –
"a (input) 0–25 %
qi (input) 0–400 kPa
©vi (input) 0–10 %

"a (input) 0–2 %
©viC1

(output) 0–10 %
a OCRD overconsolidation ratio; PnetDmean net stress (kPa);
SuiD initial suction (kPa); TD temperature (ıC); SriD initial
degree of saturation; "aD axial strain; qiD deviator stress
(kPa); "viD volumetric strain; 
"aD axial strain increment;
©viC1
D volumetric strain corresponding to the next increment of

axial strain

COD D 1 �

X
N

�
Ya � Yp

�2
X

N

 
Ya � 1

N

X
N

Ya

!2
(19.5)

where Ya is the actual output value; Yp is the EPR predicted value and N is the
number of data points on which the COD is computed. After completion of the
modelling process, models were developed for volumetric strain ("v). From among
the developed models some did not include all the defined parameters as inputs
to the equations (the parameters that are known to affect the thermo-mechanical
behaviour of soils) and hence were removed. The remaining models were considered
and compared in terms of the robustness of the equations based on the COD,
sensitivity analysis and also the level of complexity of the equations and the best
model satisfying all these criteria was chosen as the final model. Equation (19.6)
represent the selected EPR model for volumetric strain. The COD values of this
EPR model are 99.99 and 99.86 % in training and testing datasets respectively.

©viC1
D 1:06E .�3/ Sriqi
©a

OCR©a
C 0:83
©a C 0:98©vi -0:05©vi
©a-4:44E .-3/ qi
©a

C 1:31E .�7/ Su3
i Sr2

i ©a � 0:98TC 1:09E .�3/ T3 � 9:15E .�4/ T3Sri

T2

C 9:87E .�7/ Sriq3
i � 4:09

Pnet
C 2:52E .�4/ ©vi

2 � 0:89Sr2
i 
©a

Sri

� 2:24E .�4/ qi C 0:01Pnet
©a C 0:1

(19.6)



490 M.S. Hussain et al.

Fig. 19.2 Comparison between the EPR model predictions with experimental data for volu-
metric strain (a) (OCRD 4, mean net stressD 50 kPa, TD 25 ıC); (b) (OCRD 2, mean net
stressD 100 kPa, TD 40 ıC); (c) (OCRD 1.33, mean net stressD 150 kPa, TD 60 ıC)

Figure 19.2 shows the volumetric strain-axial strain curves predicted using the EPR
model (Eq. 19.6) against the experimental results for the data used in training of
the model. The results show the remarkable capabilities of the developed EPR
model in capturing, predicting and also generalising the volume change behaviour
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of unsaturated soils considering temperature effects. The computational time to
develop model using a Dual Core 2.20 GHz Intel Core i3 processor with 4.00 GB
memory was less than 11 min.

The parameters chosen to be used in developing the model were also proven from
the literature to be crucial contributors to the volume change behaviour of soils and
have been widely implemented in previously developed models (Habibagahi and
Bamdad 2003; Javadi et al. 2012b). An important feature of the proposed modelling
approach in this work is the capability to phase any non-effective parameters out of
the equations. However, exceptionally accurate prediction model developed using
the considered parameters and without the need to add or remove any parameters to
achieve the best results was another testimony to the fact that the contributing input
parameters were correctly selected.

19.3.2 Problem 2: Management of Seawater Intrusion
(Simulation–Optimization)

Seawater intrusion is a widespread environmental problem, particularly in arid and
semi-arid coastal areas. Seawater intrusion is distinguished by the encroachment
of saline water into zones previously occupied by fresh groundwater in coastal
aquifer systems. Seawater intrusion problem is exacerbated by over-pumping which
eventually can lead to other problems such as decrease of fresh water availability,
human health and ecosystem damage (Patel and Shah 2008). Bruington (1972) and
Todd (1974) list different methodologies that attempt to control seawater intrusion
and to restore the quality of groundwater in aquifers. These include reduction of
pumping rates, relocation of pumping wells, use of subsurface physical barriers,
natural and artificial recharge, use of a line of injection wells (pressure barrier)
along the coast and pumping of saline water (abstraction barrier) along the seacoast.
The efficiencies of some of these methods have been investigated by integrating
different simulation models (or meta models) with optimization tools to address
long-term planning of groundwater management problems and to limit seawater
intrusion (e.g. Das and Datta 1999; Bhattacharjya et al. 2007; Bhattacharjya and
Datta 2009; Dhar and Datta 2009; Kourakos and Mantoglou 2009; Sreekanth and
Datta 2010; Javadi et al. 2012a). This section involves the application of EPR as a
metamodel to describe the response of the aquifer system under different pumping
patterns. The model is trained and tested by data acquired from FE simulation.
Thereafter, it is integrated with a multi-objective optimization algorithm to assess
management scenario for controlling seawater intrusion. The results are compared
with those obtained by direct integration of the numerical simulation model into the
optimization model.

The study is conducted on a 2D cross section of an aquifer with 200 m length and
100 m depth (Fig. 19.3). The system was simulated using the finite element-based
flow and solute transport model, SUTRA (Saturated-Unsaturated TRAansport)
(Voss 1984). The main input data for the simulation model are given in Table 19.3.



492 M.S. Hussain et al.

Fig. 19.3 Pre- and post-pumping distribution of salinity (0.5 isochlors)

Table 19.3 Parameters involved in the numerical simulation

Parameter Description Value

k Permeability of saturated zone [m2] 5.0� 10�11

Permeability of unsaturated zone [m2] 2.5� 10�13

" Porosity 0.3
� Fluid viscosity [kg/(m s)] 0.001
@¡/@C Change of fluid density with concentration

[kg2(seawater)/kg(dissolved solids) m3]
700

Cf Solute mass fraction of freshwater 0.0
Csea Solute mass fraction of seawater 0.0357
¡sea Density of sea water [kg/m3] 1025
¡o Density of fresh water [kg/m3] 1000
g Gravitational acceleration [m/s2] 9.8
’T/’L Transverse/longitudinal dispersivity ratio 0.1
Sres

a residual saturation at immobile state of flow 0.23
’a Fitting parameters [(m s2)/kg] 2� 10�4

na Fitting parameters 1.3
aParameters used in Van Genuchten (1980) model of unsaturated flow

To account for future demand, a production well pumping fresh water with constant
rate of 26 m3/day at a horizontal distance of 40 m from the inland boundary and
depth of 30 m was incorporated in the model. The results of 50 % iso-concentration
lines prior and after pumping (illustrated in Fig. 19.3) show that the system and the
production well are threatened by seawater intrusion.

Therefore, to study optimal methods of control of seawater intrusion, the aquifer
is subjected to a combined management scenario proposed by Javadi et al. (2012a).
The management model is called ADR (Abstraction–Desalination–Recharge) and is
based on continuous abstraction of brackish water near the coast, desalination of the
abstracted brackish water and use of excess of the desalinated water as a source of
artificial recharge while the rest of the desalinated water is used to meet part of the
demands. The recharge was implemented by an artificial subsurface pond to allow
the collected water to infiltrate into the aquifer.
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Table 19.4 The values of the constant parameters involved in simulation–optimization
model

Parameter Description Value Unit

QR Average rate of recharge by pond (calculated by SUTRA) 5:2 m3/day
˛1 Cost of artificial recharge by pond 0:12 $/m3

˛2 Cost of installation/drilling of well 200 ($/m)
˛3 Unit cost for abstraction 0:42 $/m3

˛4 Cost of treatment 0:6 $/m3

˛5 Cost of construction of pond with (15� 2 m dimensions) 350 $
˛6 Annual cost of maintenance and cleaning of pond 35 $
ˇ Market prices of desalinated water 1:5 $/m3

4t Duration of application of the management strategy 10 years
r Recovery ratio of the desalination plant 60 %

Coupling of (1) the numerical (FE) model and (2) the surrogate (EPR) model
with a multi objective optimization model leads to the two different schemes
used to investigate the efficiency of the control approach. The optimization model
used was Non-dominated Sorting Genetic Algorithm (NSGAII) (Deb et al. 2002).
Minimization of total mass of salinity in the aquifer (f1) and minimization of
the costs of construction and operation of the management process (f2) are the
two objectives considered in the simulation–optimization process. The objective
functions and the set of implemented constraints used in direct coupling of FE model
with GA (FE-GA) scheme are expressed mathematically as follows:

min f1 D
NNX
iD1

Civi (19.7)

min f2 D ˛1QR
tC ˛2DAC .˛3 C ˛4/ QA
t

� ˇ .r � QA � QR/ 
tC ˛5 C ˛6 (19.8)

Subject to: 0.0 < QA(m3/day) < 52; 135 < XA(m) < 200; 0 < YA(m) < 30.
where f1 and f2 are objective functions, NN represents the total number of FE

nodes in the domain, Ci is the solute concentration at node i, vi is FE cell volume
at node i, QA is the abstraction rate (m3/day), and XA and YA are the spatial
coordinates of the pumping well. DA is the depth of abstraction well (m). The
definition and the corresponding values of other parameters (which were considered
constant) are listed in Table 19.4. The values of the unit costs used were taken from
literature (Javadi et al. 2012a).

In the EPR-GA scheme (the model based on coupling of the developed EPR
model with GA), the EPR was first trained and tested to find the best models
describing the values of first objective function (f1) under different pumping patterns
and it was then coupled with the optimization tool. The numerical simulation model



494 M.S. Hussain et al.

Fig. 19.4 Comparison of the
optimal Pareto fronts
obtained using FE-GA with
the ones from EPR-GA for
proposed management
scenario

(SUTRA) was used to create the database including the response of the aquifer. The
input parameters considered were XA, YA and QA of the abstraction well.

Using a uniform probability distribution a database of 500 data cases were
randomly generated. Then, by multiple runs of the SUTRA code the outputs (total
mass of salinity, f1) corresponding to each set of data were calculated. 80 % of data
were used to train the EPR model and the remaining 20 % were used for validation
of the developed model. The best model (Eq. 19.9) in terms of having the optimum
number of terms and complexity and also representing all contributing parameters
with high levels of fitness (COD) values (94.76 % in trained and 94.27 % in tested
datasets) was selected for prediction of total mass of solute (f1):

f1 D �8461:72C 1:14YAC 1787:86XA0:5 � 105:87XA

C �1:10 � 10�1
�

XA2 � 40:92QA0:5 C �2:62 � 10�1
�

YAQA0:5

C 6240:89QA0:5XA�1 C �1:97 � 10�2
�

QA2 � 166:89YA0:5QA2XA�2 (19.9)

The input data of this equation were used concurrently to evaluate the second
objective (cost) function (f2) as well. Figure 19.4 shows the optimal results of the
simulation–optimization process of the management model using both EPR-GA and
FE-GA. It can be easily seen that the new non-dominated front obtained using the
EPR-GA is very close to the one captured by FE-GA. The average time required to
complete the analysis using EPR-GA (including the time to generate the database)
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Fig. 19.5 Optimal pumping rates corresponding to optimal solutions on Pareto fronts

is less that 10 % of the time required by using FE-GA on an Intel(R) Core(TM)
i7-2600 CPU @ 3.40 GHz with 16 GB RAM, which can be considered as a very
significant difference.

Figure 19.5 shows the optimal pumping rates obtained through the simulation–
optimization process. The obtained horizontal locations varied in the range 10–25 m
from the coast and the depths between 36 and 38 m are proposed in both
approaches as the optimal coordinates of designed abstraction well. Although,
seawater intrusion is a highly nonlinear and density-dependent process controlled
by natural hydrophysical and hydrogeological properties of the coastal system,
other factors such as groundwater pumping also have important impacts on the
overall hydrodynamic equilibrium of the process. The optimal controlling of the
abstraction rates and the spatial distributions of the pumping wells can work against
the encroached seawater to the extent that it has been introduced in literature as
a specific strategy (known as abstraction barrier) to protect coastal aquifers (Pool
and Carrera 2010; Sreekanth and Datta 2011a). Accordingly, and based on the
management measure followed in this work, the pumping patterns (XA, YA and
QA) of the designed abstraction well were considered as the only input parameters
in the development of the EPR model (Eq. 19.9). However, the model cannot
be generalized to other cases with different hydrogeological properties and with
different control approaches unless relevant data is made available and the EPR is
retrained.

19.4 Summary and Conclusion

Applications of EPR in two geotechnical and geo-environmental engineering
systems were presented in this chapter. In first application an EPR model was
developed to predict volumetric behaviour of unsaturated soils considering the
temperature effects. An experimental dataset from the literature was used to develop
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and verify the proposed model. The results revealed the efficiency and robustness
of the proposed methodology in capturing and accurately predicting the highly
complicated thermo-mechanical behaviour of unsaturated soils. In the second
application an EPR model was developed to identify the total mass of solute in an
aquifer under the pumping action. The model was integrated with a multi objective
genetic algorithm to assess the efficiency of the ADR management scenario to
control seawater intrusion in coastal aquifers. The developed EPR model was trained
and tested using a database generated numerically using an FE model. The results
were compared with those obtained by direct linking of the numerical simulation
model with the optimization tool. The results showed that the both schemes of the
simulation–optimization are in excellent agreement in terms of capturing the Pareto
front of the system in the management scenario. The application of EPR in the
simulation–optimization framework resulted in significant reduction of the overall
computational complexity and CPU time.
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Chapter 20
Application of GFA-MLR and G/PLS
Techniques in QSAR/QSPR Studies
with Application in Medicinal Chemistry
and Predictive Toxicology

Partha Pratim Roy, Supratim Ray, and Kunal Roy

20.1 Introduction

The design of therapeutic molecules with desired properties and activities as well
as ranking of the hazardous chemicals for screening of toxicity is a challenging
task. Traditionally, drugs were developed by testing synthesized compounds in
time-consuming multi-step processes which often required a trial-and-error pro-
cedure. The use of statistical models to predict biological and physicochemical
properties started with linear regression models developed by Hansch in the 1960s
(Hansch et al. 1962; Hansch and Fujita 1964) leading to the development of the
discipline of Quantitative structure–activity relationship (QSAR), which is a part
of the more general area quantitative structure-property relationship (QSPR). The
target property to be modeled may also be a toxicity endpoint, the corresponding
area being more specifically known as quantitative structure-toxicity relation-
ship (QSTR). In QSAR/QSPR/QSTR modeling, a target activity/property/toxicity
(response variable) is correlated with chemical structure information (descriptors)
using appropriate statistical tools (Roy and Mitra 2011). Such methods have long
been used in the context of drug design and predictive toxicology. The final
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focus of the drug discovery process is to develop therapeutically active lead
compounds as drug candidates. Among the high throughput screening techniques in
drug discovery and toxicity screening, QSAR/QSPR/QSTR methods are practiced
very often. This indicates deployment of computer aided molecular design methods
in accelerating the drug development process (Blaney 1990; Bugg et al. 1993).
QSAR/QSPR methods are also very useful for risk assessment of chemicals in
the context of environmental toxicity. Predictive QSAR models reduce the need of
animal experimentation for determination of chemical toxicity and can thus be used
for regulatory purposes (Kar and Roy 2010).

The organization of economic co-operation and development (OECD) has
recommended a set of guidelines for development and validation of QSAR models
specifically for regulatory uses (Gramatica 2007). One of the guidelines states
about an unambiguous algorithm for QSAR model development. Feature selection
is one of the integral parts in the development of QSAR/QSPR models. Many
applications are capable of generating hundreds or thousands of different molecular
descriptors which are very large in number compared to number of compounds with
biological activity/property to be modeled. Models developed using a large number
of descriptors often suffer from loss of accuracy and/or the problem of overfitting.
Another associated problem may be the redundancy of the descriptors, i.e., many
descriptors may characterize the same feature of compounds. Standard regression
models like multiple linear regression (MLR) and partial least squares (PLS) are
routinely practised for QSAR/QSPR model development. Genetic algorithm has
gained increased attention in the last two decades for providing available additional
information not provided by standard regression techniques, even for data sets with
many features. “Genetic Algorithms in Molecular Modeling” authored by Prof. J.
Devillers (Devillers 1996) is the first book on the use of genetic algorithms in
QSAR and drug design. It is also worth mentioning here that genetic programming,
a branch of genetic algorithms, has found its application in drug design (Archetti
et al. 2010; Pugazhenthi and Rajagopalan 2007), predictive toxicology (Harrigan
et al. 2004) and chemical engineering problems (Bagheri et al. 2012a, b, 2014).

The increasing number of applications of GA in different fields since its inception
from the Holland genetic algorithm (Holland 1975) indicates its effectiveness.
In 1993, Forrest published a paper in Science on the mathematics of GA and
its best use in several natural evolutionary systems (Forrest 1993). The use of
genetic algorithm continued with different research groups in order to solve various
problems (Maddox 1995). Different fields like digital image processing (Andrey and
Tarroux 1994), scheduling problems and strategy planning (Cleveland and Smith
1989; Gabbert et al. 1991; Karr 1991), music composition (Horner and Goldberg
1991), criminology (Caldwell and Johnston 1991) and biology (Hightower et al.
1995; Jaeger et al. 1995) have been benefited from the applications of GA. Several
published literatures indicate the application of genetic algorithms in chemistry and
chemometrics (Hartke 1993; Chang and Lewis 1994; Rossi and Truhlar 1995).
Computer aided molecular design is another field of application for GA for
designing molecules with desired properties and activities (Venkatasubramanian
et al. 1994a). GA is not limited only to the above mentioned applications, it has
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rather a broad spectrum applications in different regression methods. The calibration
and selection of variables using large search domain (with n variables, 2n-1 possible
combinations) and many local optima makes GA as one of the suggested methods in
feature selection (Wise et al. 1995, 1996). Hybridization of GA with other methods
(MLR, PLS) greatly improves the results (Broadhurst et al. 1997). Increasing
applications of genetic algorithms in the QSAR/QSPR/QSTR fields makes it a
popular method of choice. In this context, this chapter is organized in the following
manner. The first part includes a description of Genetic Function Approximation
(GFA) by highlighting genetic algorithm and multivariate adaptive regression
splines. The second part is about the fitness measures in GFA. The third section
is a brief discussion on GFA-MLR and G/PLS techniques. In the final section, the
applications of GFA-MLR and G/PLS in QSAR/QSPR studies are reviewed.

20.2 Genetic Function Approximation

The genetic function approximation algorithm is a combination of two different
algorithms namely Holland’s genetic algorithm and Friedman’s multivariate adap-
tive regression spines (MARS) algorithm (Holland 1975; Friedman 1991).

20.2.1 Genetic Algorithm

Genetic algorithms couple the language of natural genetics and biological evolution.
Adaptation to changing environment is essential for survival of each individual
species. Hereditary transmission of genes to the offspring is a natural process of
generation for survival of the fittest. The natural selection process was popularized
by Charles Darwin (Darwin 1859). GA is the process where segments of genes of
two individuals, i.e., parents are exchanged to produce two new individuals, i.e.,
children (Holland 1975). The driving force of a GA is recombination.

Usually a binary integer code (0, 1) of a definite length of vector of components
or variables is assigned to each individual. For the continuation of genetic similarity,
these individuals are linked to chromosomes and variables are regarded as genes.
Therefore the chromosome consists of several genes or variables (Janikow and
Michalewicz 1991; Mathias and Whitley 1994). The representation of chromosome
may be like the following:

Chromosome 1: 1101100100
Chromosome 2: 1101111000

The chromosomes consist of several bits representing many characteristics, and
encoding of the genes depends on the problem to be solved (Fraser 1957).

The following parameters influence the nature of chromosomes within a
population of individuals:
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• The competition among individuals for resources and mate.
• The successful individual will produce more offspring than poorly performed

individuals
• A good individual will transmit good genes and produce better offspring than the

parent.
• Therefore, each successive generation will be more adaptive to the environment.

The steps in genetic algorithm include the following: encoding mechanism;
creation of a population of chromosomes; definition of a fitness function; genetic
manipulation of the chromosomes.

To maintain equivalence to the natural selection, primarily individual solutions
are randomly generated to form the initial individuals. Generally, increase in
population size increases diversity. As a thumb rule, the population size depends
on the nature of the problem to be solved, the representation used and the choice of
the operators (Goldberg 1989a; Syswerda 1991).

The fitness function which allows the individuals of the population to be exposed
to an evaluation function plays an important role in Darwinian evolution. The role
of the fitness function is to assure the quality of individuals so that best individuals
will receive the best fitness score (Goldberg 1989b). Another importance of the
fitness function is prevention of domination of superior individuals in the selection
process and to promote healthy competition between equal individuals. Different
scaling functions, like linear scaling, the sigma truncation, the powerlaw scaling, the
sigmoidal scaling and Gaussian scaling are applied along with the fitness function
(Goldberg 1989b; Venkatasubramanian et al. 1994b).

Roulette Wheel Selection and tournament selection (Goldberg 1989b; Angeline
1995) procedure are employed in order to remove premature convergence in case of
population with low average fitness values.

After selection of the best fitness function, the next operator is crossover followed
by mutations for the formation of new chromosomes during the reproduction
process. In this step, each parent chromosome shares some portion of their genes
to create a child. Different literature indicates the details of different crossover
techniques and their analysis (Schaffer et al. 1989; Syswerda 1989, 1993; Schaffer
and Eshelman 1991; Spears 1993; Jones 1995).

The single-point crossover is the simplest form. In this, the crossover point is
randomly selected and parts of chromosomes from two parents are exchanged from
the randomly selected point to create two children (Fig. 20.1). Due to random
selection of the crossover point, this crossover technique is characterized by high
positional bias and low distributional bias (Eshelman et al. 1989).

The two point crossover technique (Fig. 20.2) is similar to the single point
crossover in which two crossover points are randomly chosen and parts of the
chromosomes between them are exchanged. The positional bias is reduced without
affecting the distributional bias (Eshelman et al. 1989). Multipoint crossover is an
extension of two point crossover just by increasing the number of crossover points
which suffers both positional and distributional bias.

Mutation is the step followed by the crossover operation (Fig. 20.3). It introduces
irregular and random alterations of genes in chromosomes (Spears 1993). It is an
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Fig. 20.1 Single point cross over

Fig. 20.2 Two point cross over
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Fig. 20.3 Mutation

important genetic operator. The probability of mutation is user defined which can
be kept constant or varied throughout the run of a genetic algorithm. Encoding and
crossover techniques determine mutation probability (Bäck 1993; Tate and Smith
1993).
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20.2.2 The MARS Algorithm

Multivariate adaptive regression spline (MARS) is a form of regression analysis
introduced by Jerome H. Friedman in 1991 (Friedman 1991). Among the supervised
learning methods, multivariate adaptive regression splines have emerged as one of
the popular methods like classification and regression tree (CART) (Breiman et al.
1984) and k-d tree (Bentley 1975). It is a methodology for approximating functions
of many input variables. This is a non-parametric regression technique and can be
applied for both linear and nonlinear modeling.

In adaptive computation, the strategy is to adjust the behavior of particular
problem or behavior of the function to be approximated. Recursive partitioning
(Morgan and Sonquist 1963; Breiman et al. 1984), and projection pursuit (Friedman
and Stuetzle 1981) are the first two methods developed based on adaptive algorithm.
MARS is a modified recursive portioning algorithm (RP), overcoming the shortcom-
ing of recursive portioning that lacks continuality and accuracy of the model. The
idea of RP is to approximate a function by several parametric functions, i.e., low
order polynomials. The popular piecewise polynomial fitting procedures are based
on the splines. Splines which are the parametric functions of polynomials of degree
of q are denoted by ˚

.x � tk/
q
C
�K

1
(20.1)

In Eq. (20.1), ftkgK1 is the set of split (knot) locations, K being the number of
knots. TheC sign of the subscript indicates zero value for a negative value of the
argument. Mathematically this is defined as truncated power basis.

Box 1. Recursive partitioning algorithm
[1] B1(x) 1
[2] For MD 2 to Mmax do: lof * 1
[3] For mD 1 to M-1 do:
[4] For ¤D1 to n do:

[5] For t2 fx¤jjBm(xj) > 0g
[6] g P

i¤m aiBi(x)C amBm(x)H[C (x¤-t)]C aMBm(x)H[-(x¤-t)]
[7] lof  mina1, : : : ,aM LOF(g)
[8] if lof < lof *, then lof * lof ; m* m; v* v; t* t end if
[9] end for
[10] end for
[11] end for
[12] BM(x) Bm*(x)H[- (x¤*-t*)]
[13] Bm*(x) Bm*(x)H[C(x¤*-t*)]
[14] end for
[15] end algorithm
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The RP algorithms (Box 1) are discontinuous because of the use of a step
function H denoting a positive argument. Replacement of the step function with
a continuous function produces a continuous model. In case of the recursive
portioning algorithm, a special spline basis function is employed where qD 0.

The one-sided truncated power basis functions for representing qth order splines
are represented as:

bq .x � t/ D .x � t/q
C (20.2)

In Eq. (20.2), t is the knot location, q is the order of the spline, and the subscript
indicates the positive part of the argument. For q > 0, the spline approximation is
continuous and has q� 1 continuous derivatives. A two-sided truncated power basis
is a mixture of functions of the form:

bq̇ .x � t/ D Œ˙ .x � t/�q
C (20.3)

The step functions appearing in RP are seen to be two-sided truncated power
basis functions for qD 0 splines. The solution of discontinuity is application of the
spline based function where the order of q > 0.

The second modification is related to the lack of good approximation for certain
functions. After the first modification, a large number of variables can be involved.
Therefore the final basis functions increase in the interaction order and result in
complex function of higher order, which is indeed very difficult to approximate as in
case of linear ones. The solution of the problem is to keep lower order parents rather
deleting them resulting in availability of all basis functions for further splitting.
Additionally, another splitting is applied on the parent but not on the child restricting
MARS to increase its depth or addition of new factor to product.

Modification of the spline based system allows multiple splits on same predictors
along with the path of binary tree allowing the final basis function carrying same
variables in their product.

The last problem is to assign the value of q in MARS. The general idea is to use
the value of 1 for q (Friedman 1991).

Generalization of recursive partitioning regression involves the following modi-
fications to recursive partitioning algorithm:

(a) Replacing the step function H[˙(x� t)] (H being a step function indicating the
positive argument) by a truncated power spline function. Œ˙ .x � t/�q

C.
(b) Not removing the parent basis function Bm* after it is split, thereby making it

and both its daughters eligible for further splitting.
(c) Restricting the product associated with each basis function to factors involving

distinct predictor variables.

Multivariate spline basis functions in the MARS algorithm (Box 2), after using
two-sided truncated power basis functions instead of a step function, have now the
following form:

B.q/
m .x/ D

KmY
kD1

�
skm:

�
xv.k;m/ � tkm

��q
C (20.4)
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where the quantity Km is the number of splits that gave rise to basis function Bm,
the quantity skm takes the values ˙1, ¤(k,m) labels the predictor variables, and tkm

represents values on the corresponding variables.

Box 2. The MARS algorithm (forward stepwise)
[1] B1(x) 1; M 2
[2] Loop until M > Mmax: lof * 1
[3] For mD 1 to M-1 do:
[4] For ¤ 62 f¤(k,m)j1� k�Kmg
[5] For t2 fx¤jjBm(xj) > 0g
[6] g 

XM�1

iD1
aiBi.x/C aMBm.x/

h
Cx� � t

�i
C C aMD1Bm.x/Œ� .x� � t/�C

[7] lof  mina1, : : : ,aMC1LOF(g)
[8] if lof < lof *, then lof * lof ; m* m; v* v; t* t end if
[9] end for
[10] end for
[11] end for
[12] BM(x) Bm*(x) [C (x¤*-t*)]C
[13] BMC1(x) Bm*(x) [-(x¤*-t*)]C
[14] end loop
[15] end algorithm

In the algorithm above, truncated power basis functions (qD 1) are substituted
for step functions H in 6th, 12th and 13th steps of the RP algorithm. The parent
basis function is included in the modified model in 6th line and remains in the model
through lines 12–13 (Box 2).

In the MARS algorithm, both forward and backward passes are used for the
development of models. In case of the forward method, the model is built by adding
basis functions in pair to models. The pair of basis functions selected in each step
is based on a greedy algorithm which gives maximum reduction in sum-of-squares
residual error. In the backward pass, the initial model is an overfit model. Pruning
of the model is done in order to build a good general model. The basis functions are
deleted according to their contribution and the least effective functions are deleted
until the best supermodel is obtained. The cycles continue until the best possible
balance of basis and variance is obtained.

20.2.3 GFA Spline in Regression Problem

As stated before, GFA can build models not only with linear polynomials but
also with higher order polynomials (splines, gaussians, quadratic polynomials, and
quadratic splines). By the application of spline-based terms, GFA can perform a



20 Application of GFA-MLR and G/PLS Techniques in QSAR/QSPR Studies. . . 509

Fig. 20.4 Truncated power
of spline <f(x)� a>

form of automatic outlier removal and classification. The splines used are truncated
power splines and are denoted with angular brackets. For example, <f(x)� a> is
equal to zero if the value of (f(x)� a) is negative, else it is equal to (f(x)� a). The
constant ‘a’ is called the knot of the spline. A spline partitions the data samples into
two classes, depending on the value of some feature. The value of the spline is zero
for one of the classes and non-zero for the other classes (Fig. 20.4).

In addition, splines are applied either in range identification or outlier removal.
Spline can identify a range of effect in case there are many members in the non-zero
partition. If the members of the non-zero set are a few in number, then outliers are
identified by splines.

The lack of fit (LOF) criterion optimizes the variables, knots and interaction
criteria. In addition to variable selection, MARS also finds interactions between the
variables and limits the optimal interactions. MARS can handle very complex high
dimensional data. The MARS procedure is computationally intensive and expensive
only for 20 features with more than 1000 input samples although it gives high
levels of performance and is a competitor for many neural network techniques.
Another limitation is its inability to discover models containing features that are
good in groups but poor for individuals. David Rogers then incorporated genetic
algorithm in MARS as a better search instead of exploring a large functional
space in MARS by the incremental approach. Replacement of binary string by
genetic approach led to G/SPLINE approach and it combinedly evolved into genetic
function approximation approach (Rogers 1991, 1992).

20.2.4 Fitness Measures in GFA

The GFA algorithm builds multiple models rather than developing a single model.
The appropriate fitness measure in GFA is Friedman’s lack-of-fit (LOF) function
(Friedman 1988). Generalized cross validation (GCV) is a criterion for appropri-
ateness of a solution of a given problem œ. GCV uses a formula that approximates
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the least squares error (LSE) mainly determined by leave-one-out validation. It was
initially developed by Craven and Wahba (1979) and represented in the following
form:

GCV .�/ D 1

N

LSEh
1� C.�/

N

i2
(20.5)

N is the number of samples in the data set, and C (œ) is a complexity cost function
which estimates the cost of the model. In case of regression splines where œD 0, the
complexity cost function C is simply the number of nonconstant basis function ‘c’
plus one and Eq. (20.5) takes the following form:

GCV .�/ D 1

N

LSE�
1� cC1

N

�2 (20.6)

Finally, Friedman and Silverman (1989) added another penalty term to the basis
function having the following form

LOF D 1

N

LSEh
1 � cCd�p

N

i2
(20.7)

In the above equation c is the number of nonconstant basis functions, N is the
number of samples in the data set, d is a smoothing factor to be set by the user, and
p is the total number of parameters in the model. The value of d is assigned by the
cross validation criterion. Based on the experiment, the following observations were
suggested by Friedman and Silverman (1989):

(1) The actual accuracy of the modeling either in terms of expected squared error
is fairly insensitive to the value of d in the range 2 < d < 4. (2) However, the value
of the LOF function for the final model does exhibit a moderate dependence on the
choice of d. In fact, d is user defined. The overall process of GFA continues until the
average LOF score of models in a population stops improving significantly. Usually
for a population of 300 models, 3000–10,000 iterations are sufficient to achieve
convergence (Rogers and Hopfinger, 1994). LOF and LSE are the fitness measures
used in GFA-MLR and G/PLS model respectively.

20.2.5 GFA-MLR and G/PLS in Regression Studies

The general purpose of multiple regressions (the term was first used by Pearson
1908) is to learn more about the relationship between several independent or
predictor variables and a dependent or criterion variable. Combination of genetic
algorithm (GA) with multiple linear regression (MLR) results in increase in the
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predictivity and interpretability of models for QSAR and other applications like
in spectroscopy (Broadhurst et al. 1997; Bangalore et al. 1996). GA is used as the
optimal variable subset selection method and MLR is applied on the selected subset,
and the process repeated until the best possible root-mean-square error of prediction
(RMSEP) in a multiple linear regression (MLR) model is obtained (Allen 1971).

Partial Least Squares (PLS) regression is another recent technique that couples
the features from principal component analysis and multiple regression and pro-
duces more robust result. PLS creates score vectors (also called latent vectors or
components) by maximizing the covariance between different sets of variables. In
case of the correlated X variables, there is a substantial risk of “overfitting”, i.e.,
obtaining a well-fitted model, with little or no predictive capability (Wold 1995).
G/PLS is derived from two QSAR calculation methods: GFA and partial least
squares (PLS). The G/PLS algorithm uses GFA to select appropriate basis functions
to be used in a model and PLS regression as the fitting technique to weigh the basis
functions’ relative contributions in the final model.

The advantages of incorporating PLS in GA are (Devillers 1996):

1. PLS can handle inter-correlated descriptors.
2. It gives a more robust model than MLR.
3. PLS scores and loadings provide information about the correlation structures of

the variables and structural similarities/dissimilarities among the compounds.
4. PLS with the UNIPALA algorithm lowers the computational time for large data.
5. The GOPLE approach uses D-Optimal design methods to select the heavily

loaded variables in the model which also partially removes the collinearity.
6. In PLS, there is a problem of “noise”. GFA for subset selection filters the noise

and improves the quality of models.

Hybridization of genetic algorithm with regression techniques is beneficial for
its application in different fields. Other examples of similar hybrid evolutionary
computation and regression analysis can also be found in the literature (Gandomi
et al. 2010; Gandomi and Alavi 2013).

20.3 Application of Genetic Algorithm (GFA-MLR
and G-PLS) in QSAR/QSPR Studies

GFA-MLR and G-PLS are frequently used by different research groups for the
development of QSAR/QSPR models with application in medicinal chemistry and
predictive toxicology. The genetic function approximation algorithm is derived from
Rogers’ G/SPLINES algorithm and allows a new way for construction of QSAR and
QSPR models (Rogers 1991, 1992). The first work of GFA applied three data sets
(Rogers and Hopfinger 1994). At first, QSAR models were developed with GFA
on antimycin derivatives having antifilarial activity with an objective to illustrate
the advantages and uses of multiple models. Then another set of compounds having



512 P.P. Roy et al.

acetylcholinesterase inhibitory activities was subjected to GFA analysis to illustrate
the automatic partitioning behavior of spline based models in the QSAR study.
Finally QSPR analysis was performed on some structurally diverse polymers to
predict the glass transition temperatures and melt transition temperature with an
objective to illustrate the applicability of the genetic analysis to QSPR problems.
After this, a lot of studies related with QSAR/QSPR have been performed with
the genetic function approximation algorithm, some of which are mentioned below.
Note that this list is only representative and not exhaustive.

20.3.1 Application of Genetic Algorithm in QSAR Studies

The intrinsic ability of GFA for creation of multiple models makes it a preferable
chemometric tool for QSAR study. GFA and G/PLS have been used in many
applications of QSAR studies. The genetic method helps in appropriate feature
selection leading to models with good predictive features. Some of the represen-
tative examples are cited here.

Modeling of a receptor surface provides information about drug receptor inter-
actions. GFA was efficiently used in a receptor surface model for corticosteroid
globulin binding data, because it allowed the construction of multiple probable
models using the most valuable descriptors (Hahn and Rogers 1995). In another
study (Klein and Hopfinger 1998), partial least squares along with GFA were
used to construct QSAR models for a set of cationic-amphiphilic analogs having
antiarrhythmic properties. For the same compounds, QSPR models were also
developed for the interaction of the compounds with phospholipid membranes. The
study revealed that spatial features of molecules along with partition coefficient play
an important role in antiarrhythmic activity. The change in membrane transition
temperature was also significant in the QSPR study (Klein and Hopfinger 1998).
The importance of partial atomic charges on the ellipticine ring forming atoms
for anticancer activity was identified by a GFA analysis of ellipticine analogs (Shi
et al. 1998). A QSAR analysis (Kulkarni and Hopfinger 1999) was carried out for
the intermolecular membrane solute interaction properties generated by molecular
dynamics simulation along with intramolecular physicochemical properties of eye
irritants (organic compounds) using GFA. The studies showed that the eye irritation
by organic compounds was due to an increased aqueous solubility of compounds
and its strength of binding to the membrane (Kulkarni and Hopfinger 1999). The
importance of free energy force field terms like intramolecular vacuum energy of
the unbound ligand, the intermolecular ligand receptor van der Waals interaction
energy and the van der Waals energy of the bound ligand in regulation of glycogen
metabolism in diabetes was identified using GFA-MLR and G/PLS techniques for
a set of glucose analogue inhibitors of glycogen phosphorylase (Venkatarangan
and Hopfinger 1999). In another study, cationic amphiphilic model compounds
from a series of phenylpropylamine derivatives having antiarrhythmic activity were
employed in a QSAR study using partial least squares and GFA techniques (Klein
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et al. 1999). Both intermolecular membrane-interaction descriptors generated from
molecular dynamics simulation as well as intramolecular descriptors were used
for development of the models. The studies suggest the importance of membrane-
interaction descriptors regarding phase transition temperatures. The electrostatic
properties of the compounds govern the calcium displacing activity at phos-
phatidylserine monolayers. The lipophilicity and molecular size of the compounds
affect the antiarrhythmic activity (Klein et al. 1999). Terbinafine is one of the non-
azole antifungal agents, which shows action by inhibition of the enzyme squalene
epoxidase. A QSAR model was developed with GFA for a series of terbinafine
analogues to explore that steric properties, and it was found that conformational
rigidity of the side chains plays an important role for activity (Gokhale and Kulkarni
2000).

Multiple temperature molecular dynamics simulation along with G/PLS was used
to develop a free energy force field 3D-QSAR model for ligand receptor binding
(Santos-Filho et al. 2001). The receptor for the study was a specific mutant type
of Plasmodium falciparum dihydrofolate reductase. The ligands were structurally
diverse antifolate compounds. The developed models indicate some structural
features of the compounds that are responsible for resistance of the enzyme
(Santos-Filho et al. 2001). 3D-QSAR studies for 3-aryloxazolidin-2-one derivatives
as antibacterial against Staphylococcus aureus were done using GFA. The study
indicated the importance of electronic, spatial and thermodynamic factors of the
molecules (Karki and Kulkarni 2001). A QSAR study using GFA was performed
for some catechol and non-catechol derivatives having HIV-1 integrase inhibitory
activity. From the study, it was found that for catechol derivatives, electronic, shape
related and thermodynamic parameters where as for non-catechol derivatives spa-
tial, structural and thermodynamic parameters played an important role in showing
the activity (Makhija and Kulkarni 2002). The importance of size of the cluster
on the predictive ability of a model was reported in a QSAR study of structurally
diverse classes of compounds having HIV-1 integrase inhibition capacity using
GFA as the chemometric tool. The best model suggested that the larger cluster
of structural classes was better able to reproduce the biological activity (Yuan and
Parrill 2002). Cytotoxic T cells are the integral part in adaptive immune response.
The MHC class I molecules present antigenic peptides to cytotoxic T cells. QSAR
models were developed with GFA and G/PLS algorithms to characterize interactions
between bound peptides and MHC class I molecules (Davies et al. 2006). A GFA
algorithm based QSAR model showed the importance of number of rotatable bonds,
hydrogen-bonding properties and molecular connectivity descriptors in the binding
affinity of arylpiperazines towards alpha-1 adrenoceptors (Maccari et al. 2006).
Multiple temperature molecular dynamics simulation along with G/PLS was used
to develop a free energy force field 3D-QSAR model for a ligand receptor binding
process. This analysis was carried out for a set of p38-mitogen activated protein
kinase inhibitors. The studies indicate the importance of van der Waals energy
change upon binding and the electrostatic energy in the interaction of the ligands
with the receptor (Romeiro et al. 2006). The antimicrobial and haemolytic activities
of cyclic cationic peptide derived from protegrin-1 were analyzed in a QSAR model
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using the GFA algorithm. The models correlate antimicrobial potencies to peptide’s
charge and amphipathicity index, where as the haemolytic effect correlates with
lipophilicity of residues forming the nonpolar face of the beta-hairpin (Frecer 2006).
Another QSAR study of aryl heterocycle based thrombin inhibitors was performed
using the GFA algorithm. The developed model had the capacity not only to predict
the activity of new compounds but also to explain the important region in a molecule
necessary for the activity (Deswal and Roy 2006). Inhibition of histone deacetylases
is important in cancer therapy. A quantitative analysis using GFA showed that
thermodynamic, shape and structural descriptors were important for inhibition of
this enzyme (Wagh et al. 2006). Chalcones and flavonoids were studied as antitu-
bercular agents. A QSAR modeling was done using GFA for better understanding
the relationship between biological activity and structural features of chalcones and
flavonoids (Sivakumar et al. 2007). A structure–activity relationship study of urea
and thiourea derivatives of oxazolidinediones as antibacterial agents using GFA as
the statistical tool showed that electron withdrawing groups at the ortho position
of the phenyl ring enhances the activity of the compounds against various bacterial
strain including clinical isolates and quality control organisms (Aaramadaka et al.
2007). Another QSAR study was performed for assessment of cyclooxygenase
(COX-2 vs. COX-1) selectivity of nonsteroidal anti-inflammatory drugs from
clinical practice using genetic function approximation. The study revealed the
importance of thermodynamic, electronic, structural and shape parameters which
can modulate the selectivity pattern to avoid side effects (Zambre et al. 2007). The
Pseudomonas aeruginosa deacetylase LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-
GlcNAc deacetylase] inhibitory activity of dual PDE4-TNF alpha inhibitors was
analyzed in a QSAR study using GFA. The developed models helped to validate
potential leads for LpxC inhibition (Kadam et al. 2007). The pharmacokinetic
parameters of oral fluoroquinolones were analysed in a QSPR model using the
GFA algorithm. The study showed that a small volume, large polarizability and
surface area of substituents at carbon number 7 contributed to large area under the
curve for fluoroquinolones. It was also observed that large polarizability and small
volume of substituents at N-1 contribute to long half life elimination (Cheng et al.
2007). Protein tyrosine phosphatase 1B is a negative regulator of the insulin receptor
signaling system. Formylchromone derivatives show inhibitory action against the
enzyme. A QSAR study was carried out with formylchromone derivatives using
GFA and it was found that the inhibitory activities of these compounds depend
on electronic, thermodynamic and shape related parameters (Sachan et al. 2007).
Neuraminidase is one of the targets against the influenza virus. Thiourea analogs
possess influenza virus neuraminidase inhibitory action. A QSAR study of these
compounds was performed with spatial, topological, electronic, thermodynamic
and electrotopological state (E-state) indices. GFA was used as the statistical tool
for variable selection to generate the models. From the study, it was found that
atom type log P and shadow indices descriptors had enormous contributions for
the inhibitory activity (Nair and Sobhia 2008). Azole compounds including some
commercial fungicides were subjected to a QSAR analysis for their binding affinity
with cytochrome enzymes CYP 3A and CYP 2B. GFA and G/PLS were used as
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the chemometric tools (Roy and Roy 2008a). The models show that the binding
affinity was related to topological, steric, electronic and spatial properties of the
molecules. The spline based genetic models also indicate optimum range of different
parameters (Roy and Roy 2008a). A QSAR study was carried out using GFA to
determine non-specific chromosomal genotoxicity in relation to lipophilicity of
compounds. It was found that the relation of polar surface to the total molecular
surface plays an important role in the determination of the activity (Dorn et al.
2008). Genetic function approximation was used as the statistical tool in the QSAR
studies for kinetic parameters of polycyclic aromatic hydrocarbon biotransformation
by Sphingomonas paucimobills strain EPA505. The spatial descriptors present in
the models were essential in explaining biotransformation kinetics (Dimitriou-
Christidis et al. 2008). Aryl alkenyl amides/imines can be used as bacterial efflux
pump inhibitors. GFA was used for variable selection to generate the QSAR
model from several aryl alkenyl amides/imines derivatives. The models explain the
important regions in the molecules necessary for activity (Nargotra et al. 2009a, b).
N-aryl derivatives of amides and imides display varied inhibitory activity towards
acetylcholinesterase and butyrylcholinesterase in Alzheimer’s drug discovery. A
QSAR model with these derivatives using GFA technique showed the importance of
parameters like lipophilicity, connectivity, shape and dipole parameters in describ-
ing the bioactivity of the compounds (Solomon et al. 2009). GFA and G/PLS were
used as the chemometric tools for QSAR and QAAR of a series of naphthalene and
non-naphthalene derivatives possessing cytochrome P450 2A6 and 2A5 inhibitory
activities. The studies show that the CYP2A5 and CYP2A6 inhibition activity of
compounds is related to charge distribution, surface area, electronic, hydrophobic
and spatial properties of the molecules (Roy and Roy 2009). The piperine analogs
may be used as Staphylococcus aureus noradrenaline efflux pump inhibitors. The
theoretical models of piperine analogs using GFA as the statistical tool showed
that an increase in the exposed partial negative surface area increases the inhibitory
activity of compounds against noradrenaline where as the area of the molecular
shadow in the XY plane was inversely proportional to the inhibitory activity
(Nargotra et al. 2009a, b). The QSAR study of aryl alkanol piperazine derivatives
possessing antidepressant activity using GFA indicates the importance of various
structural, spatial descriptors necessary for activity (Chen et al. 2009). A series of
hetero aromatic tetrahydro-1,4-oxazine derivatives possessing antioxidant as well as
squalene synthase inhibitory activities was subjected to a QSAR analysis using GFA
and G/PLS techniques. The developed models suggest that the antioxidant activity
was controlled by electrophilic nature of the molecules together with the charges
on the phenolic hydrogen and the steric volume occupied by the molecules. For
squalene synthase inhibitory activity, the charges on the hetero aromatic nucleus
as well as the charge surface area of the molecules and their size governed the
response (Roy et al. 2009). Protoporphyrinogen oxidase inhibitor 3H-pyrazolo[3,4-
d][1,2,3]triazin-4-one derivatives are potential herbicides to protect agricultural
products from unwanted weeds. A QSAR study using GFA and G/PLS suggest that
for better activity, the molecules should have symmetrical shape in 3D space. Along
with charged surface area, electrophilic and nucleophilic characters of the molecules



516 P.P. Roy et al.

also influence the activity (Roy and Paul 2010a). GFA was used for the development
of a QSAR model for compounds showing N-type calcium channel blocking
activity. The developed model identified the physicochemical features of the
compounds relevant to N-type calcium channel blocking activity (Mungalpara et al.
2010). QSAR analyses of structurally diverse compounds possessing cytochrome
11B2 and 11B1 enzyme inhibitory activity using GFA and G/PLS indicate the
importance of pyridinylnaphalene and pyridylmethylene-indane scaffolds with less
polar and electrophilic substituents for optimum CYP11B2 inhibitory activity and
CYP11B2/CYP11B1 selectivity (Roy and Roy 2010a). Another theoretical study
using GFA was carried out for acetohydroxy acid synthase inhibitor sulfonylurea
analogs. The developed models indicate the importance of bulky substitution,
charged surface area, hydrogen bond acceptor parameters as well as the number of
electronegative atom present in the molecules (Roy and Paul 2010b). Cytochrome
19 inhibitors are potential candidates for treatment of breast cancer. A QSAR study
with GFA and G/PLS was carried out using molecular shape, spatial, electronic,
structural and thermodynamic descriptors. The models obtained using the spline
option showed better predictive capability (Roy and Roy 2010b). A QSAR study
was performed for the free radical scavenging activity of flavone derivatives using
GFA and G/PLS. The developed models indicate the importance of hydroxy and
methoxy substituents present in the flavone moiety for the scavenging activity (Mitra
et al. 2010). GFA and G/PLS were used for the development of QSAR models
for androstendione derivatives possessing cytochrome 19 inhibitory activity. The
developed models indicate the importance of spatial, structural and topological
indices of different fragments (Roy and Roy 2010c).

9-Azido-noscapine and reduced 9-azido-noscapine were designed through a
QSAR analysis of noscapinoids using GFA as the chemometric tool. The exper-
imentally determined antitumor activities of the new compounds against human
acute lymphoblastic leukemia cells were close to the predicted activity (Santoshi
et al. 2011). Phosphodiesterase-4 enzyme inhibitors are used for various diseases
like asthma, inflammation, rheumatoid arthritis, etc. A QSAR study was carried
out using GFA for N-substituted cis-tetra and cis-hexahydrophthalazinone deriva-
tives with potent anti-inflammatory activity. The analyses indicate that shape and
structural descriptors strongly govern the phosphodiesterase-4 enzyme inhibition
(Raichurkar et al. 2011). Another QSAR model for benzodithiazine derivatives
was built using GFA to identify novel HIV-1 integrase inhibitors. Four benzodithi-
azine derivatives were identified as novel HIV-1 integrase inhibitors (Gupta et al.
2012). GFA technique was used for the development of QSAR models for 2-
nitroimidazo-[2,1-b][1,3] oxazines as antitubercular agents. The GFA model with
spatial, thermodynamic and topological descriptors appeared to be the best model
(Ray and Roy 2012). The inhibitors of p53-HDM2 interaction are useful for
treatment of wild type p53 tumors. A QSAR study was performed with GFA and
G/PLS for 1,4-benzodiazepine-2,5-diones as HMD2 antagonist. The bioactivities
of some new compounds were predicted with this model (Dai et al. 2012).
Several QSAR models were developed with GFA and G/PLS techniques for lipid
peroxidation inhibitory activity of cinnamic acid and caffeic acid derivatives. The
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model from GFA-spline techniques yielded most satisfactory results. The studies
signify the importance of ketonic oxygen of the amide/acid fragment and the
ethereal oxygen substituted on the parent phenyl ring of the molecules (Mitra et al.
2012). The interaction mechanism and binding properties of flavonoid-lysozyme
were investigated in a QSAR model using GFA analysis. The result showed
the importance of dipole moment, molecular refractivity, hydrogen-bond donor
capacity of the molecules (Yang et al. 2012). Another computational study was
carried out on novel 1,4-diazepane-2,5-dione derivatives with chymase inhibitory
activity for the development of cardiovascular and anti-allergy agents with the
GFA technique to construct 3D-QSAR models. The study explored the crucial
molecular features contributing to the binding specificity (Arooj et al. 2012).
Human leukotriene A4 hydrolase inhibitors play an important role in the treatment
of inflammatory response exhibited through leukotriene B4. QSAR models were
developed using GFA for compounds with leukotriene A4 hydrolase inhibitory
activity (Thangapandian et al. 2013). A QSAR approach was employed for 1,6-
dihydropyrimidine derivatives showing antifungal activity against Candida albicans
(MTCC, 227). By using GFA as the statistical tool, it was observed that electron
withdrawing substitution on N-phenyl acetamide ring of 1,6-dihydropyrimidine
moiety lead to good activity (Rami et al. 2013).

20.3.2 Application of Genetic Algorithm in QSPR/QSTR
Studies

GFA can also be utilized as a powerful tool in the analysis of property and
toxicity of chemicals. A QSPR study was done to evaluate the release of flavor
from i-carrageenan matrix using GFA as the statistical tool. The study showed
that carrageenan polymers only modulate the interaction of aroma compounds
with water molecules (Chana et al. 2006). The characteristic aspects of dielectric
constants of conjugated organic compounds were elucidated by a QSPR study with
the GFA technique. The dielectric constants of the organic compounds depend on
the orientational correlations of the constituent molecules. Hydrogen bonding and
 –  interaction affect the correlations (Lee et al. 2012). A QSPR method with
GFA was used to predict the molecular diffusivity of structurally diverse classes
of non-electrolyte organic compounds in air at 298.15 K and atmospheric pressure
(Mirkhani et al. 2012). Quantitative structure-fate relationship study was employed
using GFA and G/PLS for environmental toxicological fate prediction of diverse
organic chemicals based on steady state compartmental chemical mass ratio. The
models suggest that partition coefficient, degradation parameters, vapor pressure,
diffusivity, spatial descriptors, thermodynamic descriptors and electrotopological
descriptors are important for predicting chemical mass ratios (Pramanik and Roy
2013). Polybrominated diphenyl ethers are used as effective flame retardants.
QSPR models using GFA have been developed for predicting toxic endpoints of
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these compounds in mammalian cells (Rawat and Bruce 2014). GFA and G/PLS
techniques were also applied for a QSPR modeling of bioconcentration factor of
diverse chemicals. The developed model can be used in the context of aquatic
chemical toxicity management (Pramanik and Roy 2014).

20.3.3 Comparison of QSAR/QSPR Models Generated
by Genetic Algorithm with Those Using Other Statistical
Techniques

Several QSAR models were developed for camptothecin analogues having antitu-
mor activity using different statistical methods including GFA. The model devel-
oped from GFA showed the best statistical quality. The results indicate the impor-
tance of partial atomic charges, interatomic distances that define the relative spatial
disposition of three significant atoms such as hydrogen of the hydroxyl group,
lactone carbonyl oxygen and the carbonyl oxygen of the camptothecin analogues
(Fan et al. 2001). 3D-QSAR, comparative molecular field analysis (CoMFA) and
comparative molecular similarity indices analysis (CoMSIA) were carried out
for 1,4 dihydropyridine derivatives showing antitubercular activity. Both CoMFA
and CoMSIA models based on multifit alignment showed better correlative and
predictive properties than other models. The QSAR models with GFA suggest
the importance of spatial properties and conformational flexibility of the side
chain for antitubercular activity (Kharkar et al. 2002). The QSTR modeling of
the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri was performed
with extended topochemical atom (ETA) indices using GFA as the statistical
tool. The developed equation was better in statistical quality than that obtained
previously using principal component analysis as the data processing step (Roy and
Ghosh 2005). Thiazole and thiadiazole derivatives show potent and selective human
adenosine A3 receptor antagonistic activity. QSAR models were developed using
factor analysis followed by MLR (FA-MLR) and GFA-MLR techniques. The best
two equations derived from GFA showed better predicted values than that found
in case of the best equation derived from FA-MLR (Bhattacharya et al. 2005). A
theoretical study was performed by linear free energy related model for 5-phenyl-1-
phenylamino-1H-imidazole derivative possessing anti-HIV activity. Both FA-MLR
and GFA were used as the chemometric tools. In this study, GFA produced the
same best equation as obtained with FA-MLR. The study showed the structural
and physicochemical contributions of the compounds for the cytotoxicity (Roy and
Leonard 2005). Considering the potential of adenosine A3 receptor ligands for
development of therapeutic agents, the A3 receptor antagonistic activity of 1,2,4-
triazolo[4,3-a]quinoxalin-1-one derivatives was subjected to QSAR analysis using
GFA and FA-MLR. Both the techniques led to the development of same equation.
The best equation derived from G/PLS showed a little improvement in the explained
variance. The results suggested that presence of electron withdrawing group at
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the para position of the phenyl ring would be favorable for the binding affinity
(Bhattacharya and Roy 2005).

The assessment of toxicity of organic chemicals with respect to their potential
hazardous effects on living systems is very important. A QSTR analysis was
performed for acute toxicity of benzene derivatives to tadpoles using GFA and
FA-MLR techniques (Roy and Ghosh 2006). The study suggested a parabolic
dependence of the toxicity on molecular size. It was also observed that toxicity
increases with a chloro substituent and decreases with methoxy, hydroxyl, carboxy
and amino groups present in the molecules. The GFA models outperformed the
FA-MLR models in terms of various validation metrics. A QSTR and toxicophore
study of hERG KC channel blockers was performed using GFA and hypogen
techniques respectively. Statistically significant QSTR models were developed
from GFA. The hypogen model showed three important features like hydrophobic
groups, ring aromatic group and hydrogen bond acceptor lipid group for the
hERG KC channel blockers (Garg et al. 2008). The authors commented that
the GFA derived 2D-QSTR model and the toxicophore model could be used in
combination as a preliminary guidance for explaining hERG channel liabilities
in early lead candidates. 1-Aryl-tetrahydroisoquinoline derivatives show anti HIV
activity. A QSAR study was carried out for these types of compounds using GFA
and stepwise regression analysis. The models from both techniques have similar
predictive quality (Chen et al. 2008). Stepwise regression, partial least squares,
GFA and G/PLS were used as the statistical tools in comparative QSAR studies
for flavonoids having CYP1A2 inhibitory activity. The best model was obtained
from G/PLS (Roy and Roy 2008b). Indolyl aryl sulfone derivatives are a class
of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Linear and non-
linear predictive QSAR models were developed using stepwise regression analysis,
partial least squares, FA-MLR, GFA, G/PLS and artificial neural network. The
model from GFA shows the best external predictive capacity (Roy and Mandal
2008). Tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepine derivatives have reverse
transcriptase inhibitory property. Various linear and nonlinear QSAR models were
developed for these compounds. The best internal predictive ability of a model was
obtained from the model developed with GFA (spline) (Mandal and Roy 2009).
The antioxidant activities of hydroxybenzalacetones against lipid peroxidation
induced by t-butyl hydroperoxide, gamma-irradiation and also their 1,1-diphenyl-
2-picrylhydrazyl radical scavenging activity were modeled using different QSAR
techniques such as stepwise regression, GFA and G/PLS. The best models for
these responses are obtained from GFA and G/PLS (Mitra et al. 2009). A QSPR
analysis on amino acid conjugates of jasmonic acid as defense signaling molecules
was carried out using GFA and molecular field analysis. The models derived from
both techniques showed high statistical quality (Li et al. 2009). The prediction of
flashpoint of ester derivatives was determined by development of a QSPR model
using GFA and adaptive neuro-fuzzy inference system (ANFIS) techniques. The
results obtained showed the ability of the developed GFA and ANFIS models for
prediction of flash point of esters (Khajeh and Modarress 2010).
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The above findings suggest the efficient use of genetic algorithm for the
development of best predictive QSAR/QSPR models. However, it is not true
that GFA or genetic methods will always give the best results. For example, a
comparative QSAR modeling was performed for CCR5 receptor binding affinity
of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas using various
statistical techniques like stepwise MLR, FA-MLR, FA-PLS, PCRA, GFA-MLR
and G/PLS. The study showed the importance of structural and physicochemical
parameters towards the activity. However, the GFA derived models show high
intercorrelation among predictor variables. The G/PLS model shows the lowest
statistical quality among all types of models (Leonard and Roy 2006). In another
study, GFA, enhanced replacement method and stepwise regression analysis tech-
niques were used for development of QSAR models for bisphenylbenzimidazoles
as inhibitors of HIV-1 reverse transcriptase. However, the model from enhanced
replacement method showed better statistical quality in comparison to models
obtained from GFA or stepwise regression analysis (Kumar and Tiwari 2013). The
problem of intercorrelation in GFA derived models may be overcome by running
PLS regression using GFA selected descriptors (Roy et al. 2015).

20.4 An Illustrative Example of GFA Model Development

Recently Roy and Popelier reported model development for the chromatographic
lipophilicity parameter (log k0) of ionic liquid cations with extended topochemical
atom (ETA) and quantum topochemical molecular similarity (QTMS) descrip-
tors (Roy and Popelier 2014). Experimental log k0 values obtained from high
performance liquid chromatography for 65 cations were considered for model
development and validation. A total of thirty eight descriptors was computed. The
ETA descriptors were calculated using the PaDEL-Descriptor openware (Yap 2011)
and the QTMS descriptors were computed using the computer program MORPHY
(Popelier 1996). The whole data set was divided into a training set and a test
set (70 % and 30 % respectively of full data set size) using the Kennard–Stone
algorithm (Kennard and Stone 1969). Initially MLR equations were developed
from the training set compounds using various techniques of descriptor selection
like stepwise selection, all possible subset regression, factor analysis and genetic
function approximation. The stepwise selection was based on the F value (FD 4.0
or higher for inclusion and FD 3.9 or lower for exclusion). In case of all-possible-
subset regression, a maximum cut-off inter-correlation of 0.7 and minimum R2 of
0.9 were used. Factor analysis was performed to display multidimensional data in
a space of lower dimensionality with minimum loss of information (i.e., explaining
more than 95 % of the variance of the data matrix) and to extract the basic
features behind the data, and using the factor scores important descriptors were
selected for MLR model development. For GFA-MLR models, a spline option
was used because it partitions the data set into groups having similar features and
can account for non-linear behavior. Finally, partial least squares (PLS) regression
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was performed using the terms appearing in the MLR equations. PLS avoids the
problem of inter-correlation among descriptors as present in MLR. For PLS model
development, optimum number of latent variables was selected through leave-one-
out (LOO) cross-validation. The developed models were validated internally on
LOO validation and Y-randomization test and externally using test set prediction.
Considering all statistical parameters, the PLS model developed using descriptors
obtained from GFA (spline)-MLR was found to be the best one. The model is as
follows:

log k0 D �0:580C 0:484 <
X

˛ � 4:633 > C10:289 < 0:125

�
"A > C11:177 < G � 0:266 >

LVs D 2; R2 D 0:974; Q2
LOO D 0:968; Q2

ext D 0:888 (20.8)

In the above equation, †’ and 
"A are the ETA descriptors and G is a
QTMS descriptor. LV indicates the number of latent variables selected, R2 is the
determination coefficient of the model, Q2

LOO is the leave-one-out cross-validation
metric and Q2

ext is the external validation metric. The data set (training and test
set composition with descriptor values and the response being modeled) for the
model presented in Eq. (20.8) is separately provided with this chapter. The positive
coefficient of the term <†’� 4.633> in the above model indicates that when the
value of †’ is higher than 4.633, it exerts a positive contribution to log k0. The
positive coefficient of the descriptor <0.125�
"A> indicates that when the value
of the descriptor 
"A is lower than 0.125, it contributes positively to the log k0.
The positive coefficient of the descriptor <G� 0.266> indicates that when the value
of G is higher than 0.266, it has a positive contribution to log k0. In this way,
the developed model gives us an idea about different range values for different
descriptors for their contribution to the response being modeled and thus helps the
modeler to select or design samples with optimum ranges of the descriptor values
for optimizing the endpoint.

20.5 Overview and Conclusion

The present chapter has attempted to explain the use of genetic algorithm along
with multivariate adaptive regression splines in regression studies and the role of
GFA and G/PLS in medicinal chemistry as well as in predictive toxicology. The
initial discussion has been made on the algorithm of genetic function approximation
followed by fitness measures in GFA. This is followed by a brief discussion on the
use of GFA-spline techniques in regression studies. Finally the applications of GFA-
MLR and G-PLS in QSAR/QSPR/QSTR studies have been reviewed. An increasing
number of published papers on the use of genetic algorithm in regression based
QSARs show effectiveness and validity of the genetic method as one of popular
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feature selecting algorithms. Another advantage of GA is that it is able to extract
the most information rich combination of descriptors form a complex pool of data.
Although it is computationally expensive but the facilities available now make it
faster and computationally economic. Hybridization of GA with spines can handle
non-linear character in the data. Use of GFA along with MLR and PLS increases
predictive and interpretable nature of the models significantly. Drawbacks of MLR
(collinearity) and PLS (noise problem) can be reduced to some extent by GA and
the combined methods signify themselves to be valuable analysis tools in the case
where the number of data points is much more than the samples. As a result, these
methods infiltrate in different fields of chemistry, biology and chemometrics for
solving different problems as addressed by the users. However, GFA models may
still suffer from the problem of inter-correlation among descriptors which may be
overcome by running PLS regression on the GFA selected descriptor combination.
Again, G/PLS may sometimes show poor performance which may be overcome by
thinning the initial pool of descriptors before applying the genetic method. We have
already discussed the application of GFA-MLR and G/PLS in QSAR and QSPR
as well as toxicity modeling. It is observed that in many cases, genetic methods
can provide statistically more robust models in comparison to other conventional
statistical techniques. LOF and LSE are the fitness measures for GFA and G/PLS
respectively. It is also to be pointed out that the models developed are not assessed
solely on these two parameters. Along with these two parameters (LOF, LSE),
different internal and external validation metrics (Roy and Mitra 2011) are checked
in order to validate the models before their possible application to a new set of data
for ranking and prioritization of chemicals. Therefore, not only hybridization of the
techniques but also combined use of different statistical parameters may yield robust
and predictive models in different QSAR/QSPR and toxicity modeling studies.
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Chapter 21
Trading Volatility Using Highly Accurate
Symbolic Regression

Michael F. Korns

21.1 Introduction

The discipline of Symbolic Regression (SR) has matured significantly in the last
few years. There is at least one commercial package on the market for several years
(http://www.rmltech.com/). There is now at least one well documented commercial
symbolic regression package available for Mathematica (www.evolved-analytics.
com). There is at least one very well done open source symbolic regression package
available for free download (http://ccsl.mae.cornell.edu/eureqa).

In addition to our own ARC system (Korns 2013, 2014), currently used internally
for massive financial data nonlinear regressions, there are a number of other mature
symbolic regression packages currently used in industry including Smits et al.
(2010) and Castillo et al. (2010). Plus there is an interesting work in progress by
McConaghy et al. (2009).

Research efforts, directed at increasing the accuracy and dependability of
Symbolic Regression (SR), have resulted in significant improvements in symbolic
regression’s range, accuracy, and dependability (Korns 2013, 2014). Previous
research has also demonstrated the practicability of estimating corporate forward
12 month earnings, using advanced symbolic regression (Korns 2012a, b). In this
paper we put these prior results and techniques together to select a 100 stock semi-
passive index portfolio (VEP100), from the Value Line Timeliness (Value Line),
which delivers consistent performance in both bull and bear decades.

We intend to produce our VEP100 buy list on a weekly basis using automated
ftmEPS prediction involving the analysis of many securities, involving multiple
training regressions each on hundreds of thousands of training examples. Plus the
timeliness issue will require that our analytic tools be strong and thoroughly
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matured. Our new VEP100 semi-passive index fund should have great appeal to
many high net worth clients, enjoy low management costs, and be easily acceptable
to the compliance and regulatory authorities.

Valuation of securities via their forward 12 month price earnings ratio (ftmPE)
is a very common securities valuation method in the industry. Obviously the ftmPE
valuation depends heavily on the estimate of forward 12 month corporate earnings
per share (ftmEPS). Obvious inputs to the ftmEPS prediction process are the past
earnings time series plus one or more analyst predictions.

Valuation via ftmEPS is a necessary but not a sufficient attraction for a semi-
passive index fund. So we will introduce the advantages of trading volatility. Our
thesis will be that emotional trading patterns tend to make markets less efficient.

The efficient market hypothesis assumes rational trading patterns and equal
and open access to information. Trading on insider information is illegal in most
developed securities markets; but, trading when others are emotional is unregulated.
In this paper we will develop a set of factors—all of which incorporate a measure
of volatility indicating possible overly emotional trading patterns. The theme of our
new VEP100 semi-passive index fund will be “Buy value from those who are selling
in a highly emotional state”.

Now would be a good time to provide an overview general introduction to
symbolic regression as follows.

Symbolic Regression is an approach to general nonlinear regression which is
the subject of many scholarly articles in the Genetic Programming community. A
broad generalization of general nonlinear regression is embodied as the class of
Generalized Linear Models (GLMs) as described in Nelder and Wedderburn (1972).
A GLM is a linear combination of I basis functions Bi; iD 1,2, : : : , I, a dependent
variable y, and an independent data point with M features xD<x1, x2, x3, : : : , xm>:
such that

y D ” .x/ D C0 C
XI

iD1
ciB

i
.x/C err (21.1)

As a broad generalization, GLMs can represent any possible nonlinear formula.
However the format of the GLM makes it amenable to existing linear regression
theory and tools since the GLM model is linear on each of the basis functions Bi.

For a given vector of dependent variables, Y, and a vector of independent
data points, X, symbolic regression will search for a set of basis functions and
coefficients which minimize err. In Koza (1992) the basis functions selected by
symbolic regression will be formulas as in the following examples:

B1 D x3 (21.2)

B2 D x1 C x4 (21.3)

B3 D sqrt .x2/ = tan .x5=4:56/ (21.4)
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B4 D tanh .cos .x2 � :2/ � cube .x5 C abs .x1/// (21.5)

If we are minimizing the least squared error, LSE, once a suitable set of basis
functions fBg have been selected, we can discover the proper set of coefficients
fCg deterministically using standard univariate or multivariate regression. The value
of the GLM model is that one can use standard regression techniques and theory.
Viewing the problem in this fashion, we gain an important insight. Symbolic
regression does not add anything to the standard techniques of regression. The value
added by symbolic regression lies in its abilities as a search technique: how quickly
and how accurately can SR find an optimal set of basis functions fBg.

The immense size of the search space provides ample need for improved search
techniques In standard Koza-style tree-based Genetic Programming (Koza 1992)
the genome and the individual are the same Lisp s-expression which is usually
illustrated as a tree. Of course the tree-view of an s-expression is a visual aid,
since a Lisp s-expression is normally a list which is a special Lisp data structure.
Without altering or restricting standard tree-based GP in any way, we can view the
individuals not as trees but instead as s-expressions such as this depth 2 binary tree
s-exp: (/ (Cx2 3.45) (*x0 x2)), or this depth 2 irregular tree s-exp: (/ (Cx2 3.45) 2.0).

In standard GP, applied to symbolic regression, the non-terminal nodes are all
operators (implemented as Lisp function calls), and the terminal nodes are always
either real number constants or features. The maximum depth of a GP individual is
limited by the available computational resources; but, it is standard practice to limit
the maximum depth of a GP individual to some manageable limit at the start of a
symbolic regression run.

Given any selected maximum depth k, it is an easy process to construct a maximal
binary tree s-expression Uk, which can be produced by the GP system without
violating the selected maximum depth limit. As long as we are reminded that each f
represents a function node while each t represents a terminal node, the construction
algorithm is simple and recursive as follows.

U0 W t

U1 W .f t t/

U2 W .f .f t t/ .f t t//

U3 W .f .f .f t t/ .f t t// .f .f t t/ .f t t///

Uk W .f Uk-1Uk-1/
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Any basis function produced by the standard GP system will be represented by at
least one element of Uk. In fact, Uk is isomorphic to the set of all possible basis
functions generated by the standard GP system.

Given this formalism of the search space, it is easy to compute the size of the
search space, and it is easy to see that the search space is huge even for rather simple
basis functions. For our use in this chapter the function set will be the following
functions: FDfC � * / abs sqrt square cube cos sin tan tan h log exp max
min@g (where @(a,b)D@(a)D a). The terminal set is the features x0 thru xm and
the real constant c, which we shall consider to be 264 in size. Where jFjD 17,
MD20, and kD 0 , the search space is S0DMC 264D 20C 264D 1.84� 1019.
Where kD 1, the search space is S1DjFj * S0 * S0D 5.78� 1039. Where kD 2,
the search space grows to S2DjFj * S1 * S1D 5.68� 1080. For kD 3, the search
space grows to S3DjFj * S2 * S2D 5.5� 10162. Finally if we allow three basis
functions BD 3 for financial applications, then the final size of the search space
is S3 * S3 * S3D 5.5� 10486.

21.2 Methodology

Creating the weekly buy list for a modern semi-passive index fund requires many
fully automated multiple regressions, all of which must be run in a timely fashion,
and all of which must fit together seamlessly without human intervention. Our
methodology is influenced by the practical issues of applying symbolic regression
to the real world investment finance environment. First there is the issue that form
of each symbolic regression must be preapproved by the regulatory authorities, the
compliance officer, management, and clients. Second there is the issue of adapting
symbolic regression to run in a real world financial application with massive
amounts of data. Third there is the issue of modifying symbolic regression, as
practiced in academia, to conform to the very difficult U.S. Securities Exchange
Commission regulatory compliance environment.

Weekly preparation of our VEP100 semi-passive index fund buy list will require

1502 fully automated regressions (as many as there are Value Line Timeliness
stocks that week). For each of the 
1500 Value Line Timeliness stocks, a set of
pre-approved earnings estimate inputs will be fed into a multiple linear regression
for each stock, resulting in an interim forward 12 month earnings per share estimate
for the stock. This will require 
1500 regressions; but, they are relatively quick
multiple linear regressions. Next, a set of preapproved earnings estimate inputs
plus the interim ftmEPS estimate produced by the linear regressions will be input
to a nonlinear weighted regression on all 
1500 stocks. This expensive nonlinear
weighted regression will produce a final ftmEPS estimate for each of the Value
Line stocks. Finally, a set of preapproved z Score factor inputs plus the interim
ftmEPS estimate produced by the linear regressions will be input to a nonlinear
logistic regression on all 
1500 stocks. This final very expensive nonlinear logistic
regression will produce a final expected forward 12 month total return estimate for
each of the Value Line stocks.
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We use only statistical best practices out-of-sample testing methodology. For
each regression, a matrix of independent variables will be constructed solely from
the prior 10 years of historical data—520 weeks. No forward looking data will be
allowed. This is very important because it will be the subject of detailed regulatory
due diligence reviews. Then the preapproved regression model will be applied to
produce the dependent variable.

For the forward estimation of corporate earnings, this paper uses an historical
database of the Value Line stocks with daily price and volume data, weekly analyst
estimates, and quarterly financial data from January 1990 to the December 2009.
The data has been assembled from reports published at the time, so the database
is highly representative of what information was realistically available at the point
when trading decisions were actually made. No forward looking data is included in
any historical point in the database.

From all of this historical data, 20 years (1990 thru 2009) have been used to
produce the results shown in this research. This 24 year period includes a historically
significant bull market decade followed by an equally historically significant bear
market decade.

Multiple vendor sources have been used in assembling the data so that single
vendor bias can be eliminated. The construction of this point in time database has
focused on collecting weekly consolidated data tables, collected every Friday from
January 3, 1986 to the present, representing detailed point in time input to this study
and cover the Value Line stocks on a weekly basis. Each stock record contains
daily price and volume data, weekly analyst estimates and rankings, plus quarterly
financial data as reported. The primary focus is on gross and net revenues.

Our historical database contains 1050 weeks of data between January 1990 and
December 2009. In a full training and testing protocol there is a separate symbolic
regression run for each of these 1050 weeks. Each SR run consists of predicting the
ftmEPS for each of the Value Line stocks available in that week, using the 520 prior
weeks as the training data set for that week. A sliding training/testing window will
be constructed to follow a strict statistical out-of-sample testing protocol.

For each of the 1050 weeks, the 520 prior weeks training examples will be
extracted from records in the historical trailing 10 years behind the selected record
BUT not including any data from the selected week or ahead in time. The training
dependent variable will be extracted from the historical data record exactly 52 weeks
forward in time from the selected record BUT not including any data from the
selected week or ahead in time. Thus, as a practical observation, the training will
not include any records in the first 52 weeks prior to the selected record—because
that would require a training dependent variable which was not available at the
time.

For each of the 1050 weeks, the testing samples will be extracted from records
in the historical trailing 10 years behind the selected record including all data from
the selected week BUT not ahead in time. The testing dependent variable will be
extracted from the historical data record exactly 52 weeks forward in time from the
selected record.
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Each experimental protocol will produce approximately 
1500 linear
regressions and 2 symbolic regression runs over an average of 
780,000
(
1500� 520) records for each training run and for
1500 records for each testing
run. Ten hours will be allocated for training. Of course separate R-Square statistics
will be produced for each experimental protocol. We will examine the R-Square
statistics for evidence favoring the addition of swarm intelligence over the base line
and for evidence favoring one swarm intelligence technique over another.

Finally we will need to adapt our methodology to conform to the rigorous
United States Securities and Exchange Commission oversight and regulations
on investment managers. The SEC mandates that every investment firm have a
compliance officer. For any automated forward earnings prediction algorithm, which
would be used as the basis for later stock recommendations to external clients or
internal portfolio managers, the computer software code used in each prediction, the
historical data used in each prediction, and each historical prediction itself, must be
filed with the compliance officer in such form and manner so as to allow a surprise
SEC compliance audit to reproduce each individual forward prediction exactly as
it was at the original time of publication to external clients or internal portfolio
managers.

Of course this means that we must provide a copy of all code, all data, and each
forward prediction for each stock in each of the 1050 weeks, to our compliance
officer. Once management accepts our symbolic regression system, we will also
have to provide a copy of all forward predictions on an ongoing basis to the
compliance officer.

Furthermore there is an additional challenge in meeting these SEC compliance
details. The normal manner of operating GP, and symbolic regression systems in
academia will not be acceptable in a real world compliance environment. Normally,
in academia, we recognize that symbolic regression is a heuristic search process and
so we perform multiple SR runs, each starting with a different random number seed.
We then report based on a statistical analysis of results across multiple runs. This
approach produces different results each time the SR system is run. In a real world
compliance environment such practice would subject us to serious monetary fines
and also to jail time.

The SEC compliance requirements are far from arbitrary. Once management
accepts such an SR system, the weekly automated predictions will influence the flow
of millions and even billions of dollars into one stock or another and the historical
back testing results will be used to sell prospective external clients and internal
portfolio managers on using the system’s predictions going forward.

First the authorities want to make sure that as time goes forward, in the
event that the predictions begin to perform poorly, we will not simply rerun the
original predictions again and again, with a different random number seed, until we
obtain better historical performance and then substitute the new better performing
historical performance results in our sales material.

Second the authorities want to make sure that, in the event our firm should own
many shares of the subsequently poorly performing stock of “ABC” Corp, that
we do not simply rerun the current week’s predictions again and again, with a
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different random number seed, until we obtain a higher ranking for “ABC” stock
thus improperly influencing our external clients and internal portfolio managers to
drive the price of “ABC” stock higher.

In order to meet SEC compliance regulations we have altered our symbolic
regression system, used in this chapter across all experiments, to use a pseudo
random number generator with a pre-specified starting seed. Multiple runs always
produce exactly the same results.

21.3 Investing Strategies

Value investing (Graham and Dodd 2008) has produced several of the wealthiest
investors in the world including Warren Buffet. Nevertheless, value investing has
a host of competing strategies including momentum (Bernstein 2001) and hedging
(Nicholas 2000).

One of the most difficult challenges in devising a securities investing strategy
is the a priori identification of pending regime changes. For instance, momentum
investing strategies were very profitable in the 1990s and not so profitable in the
2000s while value investing strategies were not so profitable in the 1990s but
turned profitable in the 2000s. Long Short hedging strategies were profitable in the
1990s and early 2000s but collapsed dramatically in the late 2007 thru 2008 period.
Knowing when to switch from Momentum to Value, Value to Hedging, and Hedging
back to Value was critical for making consistent above average profits during the 20
year period from 1990 thru 2009.

The challenge becomes even more difficult when one adds the numerous
technical and fundamental buy/sell triggers to currently popular active management
investing strategies. Bollinger Bands, MACD, Earning Surprises, etc. all have com-
plex and dramatic effects on the implementation of securities investing strategies,
and all are vulnerable to regime changes. The question arises, “Is there a simple
securities investing strategy which is less vulnerable to regime changes than other
strategies?”.

An idealized value investing hypothesis is put forward: “Given perfect foresight,
buying stocks with the best future earning yield (Future12MoEPS/CurrentPrice)
(ftmEP) and holding for 12 months will produce above average securities investing
returns”.

Of course the ideal hypothesis is impossible to implement because it requires
perfect foresight which is, in the absence of time travel, unobtainable. Nevertheless
the ideal hypothesis represents the theoretical upper limit on the profits realizable
from a strategy of buying future net revenue cheaply; yet, the theoretical profits
are so rich that one cannot help but ask the question, “Are there revenue prediction
models which will allow one to capture some portion of the profits from the ideal
hypothesis?”.

The easiest revenue prediction model involves simply using the current year’s
trailing 12 month revenue as a proxy for future revenue.
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Table 21.1 Returns for SP100 High ttmEP/ftmEP 100

Year SP100 stocks 100ttmEP stocks 100 ftmEP stocks

1990 (6 %) (17 %) 3 %
1991 24 % 40 % 111 %
1992 3 % 22 % 56 %
1993 8 % 9 % 46 %
1994 0 % 6 % 18 %
1995 36 % 22 % 49 %
1996 23 % 28 % 38 %
1997 28 % 27 % 51 %
1998 32 % 12 % 12 %
1999 31 % 38 % 22 %
2000 (13 %) 14 % 45 %
2001 (15 %) 11 % 56 %
2002 (24 %) (15 %) 8 %
2003 24 % 52 % 67 %
2004 4 % 13 % 45 %
2005 (1 %) 17 % 43 %
2006 16 % 7 % 19 %
2007 3 % (5 %) 20 %
2008 (37 %) (28 %) (17 %)
2009 19 % 43 % 120 %
CAGR% 6 % 14 % 37 %
Volatility 20 % 20 % 30 %
CAGR% 1990s 17 % 18 % 38 %
CAGR% 2000s (4 %) 8 % 37 %

Note: Per annum total returns for each year

The data supports the conclusion that even using this current revenue proxy
model buying the top one hundred stocks with the highest (current12MoEPS/
currentPrice) (ttmEP) and holding for 1 year produces above average securities
investing profits, as least for the Value Line stocks, as shown in Table 21.1.

Nevertheless, buying a stock with high EP, but whose future 12 month earnings
will plummet bringing on bankruptcy, is an obviously poor choice. So why is
high EP investing so successful given that future 12 month earnings can vary
significantly? Placing current earnings yield investing in this context puts a new spin
on this standard value investing measure. In this context we are saying that current
earnings yield (also known as high EP investing) works precisely to the extent that
current earnings are a reasonable predictor of future earnings! In situations where
current earnings are NOT a good predictor of future earnings, then current earnings
yield investing loses its efficacy.
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This agrees with our common sense understanding. For instance, given two
stocks with the same high current earnings yield, where one will go bankrupt next
year and the other will double its earnings next year; we would prefer the stock
whose earnings will double. Implying that, in the ideal, current earnings are just a
data point. We want to buy future earnings cheap!

Precisely because the per annum returns from this current revenue prediction
model are far less than the returns achieved with perfect prescience, we must now
look for more accurate methods of net revenue prediction.

21.3.1 Estimating Forward 12 Month EPS

Each week we will perform 
1500 linear regressions, one for each of the Value
Line stocks. The preapproved linear regressions are expressed by the following
Regression Query Language RQL (Korns 2013) expression:

regress .x0; x1; x2; x3; x4; x5; x6/ where fg

For each of the 
1500 Value Line stocks in the current week, from each of the
520 trailing historical weeks for that stock (see our methodology section above) the
following seven input (independent) variables will be collected:

1. Estimated12MoEPS(x0) Wall Street analysts 12Mo forward EPS estimate
2. Forward12MoEPS(x1) CurrentEPSC (CurrentEPS-Past1YrEPS)
3. Projected12MoEPS(x2) CurrentEPSC ((CurrentEPS-Past1QtrEPS) * 4)
4. EstimatedS12MoEPS(x3) (Wall Street analysts 12Mo forward SPS estimate) *

CurrentMargin
5. ForwardS12MoEPS(x4) (CurrentSPSC (CurrentSPS-Past1YrSPS)) *

CurrentMargin
6. ProjectedS12MoEPS(x5) (CurrentSPSC ((CurrentSPS-Past1QtrSPS) * 4)) *

CurrentMargin
7. WeeksSinceLastReport(x6) Absolute count of weeks since last quarterly report

Each of the 
1500 linear regressions produces an ftmEPS estimate for each of
the Value Line stocks for that week (LRegress12MoEPS). This regression output
is then used as an input to a single preapproved nonlinear weighted regression on
the following input variables:

The preapproved nonlinear weighted regression is expressed by the following
Regression Query Language RQL (Korns 2013) expression:
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1. Estimated12MoEPS (x0) Wall Street analysts 12Mo forward EPS estimate
2. Forward12MoEPS(x1) CurrentEPSC (CurrentEPS-Past1YrEPS)
3. Projected12MoEPS(x2) CurrentEPSC ((CurrentEPS-Past1QtrEPS) * 4)
4. EstimatedS12MoEPS(x3) (Wall Street analysts 12Mo forward SPS estimate) *

CurrentMargin
5. ForwardS12MoEPS(x4) (CurrentSPSC (CurrentSPS-Past1YrSPS)) *

CurrentMargin
6. ProjectedS12MoEPS(x5) (CurrentSPSC ((CurrentSPS-Past1QtrSPS) * 4)) *

CurrentMargin
7. WeeksSinceLastReport(x6) Absolute count of weeks since last quarterly report
8. LRegress12MoEPS(x7) Result of the linear regression for the stock in

question

model
�
c0 � f0 .x0; v0/ ; c1 � f1 .x1; v1/ ; c2 � f2 .x2; v2/ ;

c3 � f3 .x3; v3/ ; c4 � f4 .x4; v4/ ; c5 � f5 .x5; v5/ ;

c6 � f6 .x6; v6/ ; c7 � f7 .x7; v7/
�

where
n
op .@;C;�; min; max/

c0 .0:0; 1:0/ c1 .0:0; 1:0/ c2 .0:0; 1:0/ c3 .0:0; 1:0/ c4 .0:0; 1:0/

c5 .0:0; 1:0/ c6 .0:0; 1:0/ c7 .0:0; 1:0/
o

This nonlinear weighted regression will achieve regulatory and client preap-
proval because it is so intuitive and so easy to explain. Let us start with the simplest
case where the functions (f0 thru f7) are all noopsD@, then the final result will
always be like the following example:

NLREstimated12MoEPS .y/ D :34 � x0C :16 � x1C :81 � x2C :54 � x3

C :26 � x4C :72 � x5C :59 � x6C :21 � x7

We have eight inputs in the form of dollar values for next year’s estimated EPS.
Our model simply assigns a weight (0.0 <D 1.0) to each estimate—with the added
benefit that, in the past 520 weeks for all 
1500 Value Line stocks, these weights
have been the most successful in predicting next year’s EPS values for the Value
Line stocks. Now moving on to the case where one of more of the functions (f0
thru f7) are other than noops, then the final result will always be something like the
following example:
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NLREstimated12MoEPS .y/ D :34 � x0C :16 � x1C :81 �max .x2; x0/

C :54 � x3C :26 � x4C :72 � x5C :59 � x6

C :21 � x7

Again we have eight inputs in the form of dollar values for next year’s estimated
EPS. Our model simply assigns a weight (0.0 <D 1.0) to each possible simple
combination of those estimates—with the added benefit that, in the past 520 weeks,
these weights and these combinations have been the most successful in predicting
next year’s EPS values for the SP100 stocks.

In all cases we are simply weighting simple estimates or simple combinations
of estimates with combinations that will never get unruly or out of hand and with
weights which will always remain safely between 0.0 and 1.0. For this intuitive
nonlinear weighted regression, Regulatory and client preapproval will be easy to
obtain.

21.3.2 Estimating Forward 12Mo Total Return

A close examination of the Efficient Market Hypothesis (EMH) shows that the
expectation of rational investing decisions plays a significant role in the EMH
conclusions in favor of passive index investing. Therefore, in addition to attempting
to purchase cheap stocks (via some estimate of future 12Mo earnings), we would
also like to purchase stocks from sellers whose decisions may not be as rational as
the EMH might hope.

Normally each stock trades within its own average trading volume over the
course of weeks and months. This trading volume can be expressed as a percent
WeeksVolumeD (total number of shares traded today)/(total shares outstand-
ing). For any given stock there will be periods of calm when weekly trading
percent (WeeksVolume) is light compared to the its historical average, and periods
of frenzy when the weekly trading percent (WeeksVolume) is very high compared to
its historical average. Our assertion is that when a trading frenzy is underway the
buyer AND seller are less rational than on normal trading days.

The following nine input factors (each of which combines some measure of
trading frenzy or intrinsic value or both) will be converted to z Scores (Anderson
et al. 2002) and are defined as follows:

First we see that z Panic Level is computed from the nonlinear regression future
12Mo EPS estimate divided by the week’s closing price (i.e. the estimated future
EPS yield) times the percent of outstanding shares traded that week (Weeks Volume)
times the current week’s trading percent as in comparison with the prior 52 weeks
trading percent (Volume52WeekRange). This input will be high when the estimated
future earnings yield is high (the stock is cheap), when a high percent of outstanding
shares traded this week (Weeks Volume), and when this week’s trading volume is on
the high side compared to the previous 52 week trading history for this stock. This
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1. zPanicLevel (x0) ((NLRFuture12MoEPS/WeeksClose) * WeeksVolume *
Volume52WeekRange))

2. zPriceMomentum(x1) (Past52WeekReturn * WeeksVolume)
3. zDollarVolume(x2) (WeeksVolume * Shares * WeeksClose)
4. zFutureEPSYield(x3) (NLRFuture12MoEPS/WeeksClose)
5. zSalesAttractiveness(x4) (Current12MoSPS/WeeksClose) * WeeksVolume
6. zCurrentValuation(x5) (CurrentVPS/WeeksClose)
7. zValuationAttractiveness(x6) (CurrentVPS/WeeksClose) * WeeksVolume
8. zWallStreetRank(x7) Current Wall Street analysts ranking as a z Score
9. zFinancialRank(x8) Current Wall Street financial ranking as a z Score

is a stock selling on much higher volume than normal with a very cheap future
earnings yield. We use this input as a measure of panic on the seller’s side. Since
each of these inputs are z Scores, a high value for this input indicates that this stock
is in a greater trading frenzy relative to other stocks this week.

Second we see that z Price Momentum is computed from the stock’s past 52
week total return (Past52WeekReturn) times the week’s trading volume (Weeks
Volume). This input will be high for stocks with strong momentum selling on high
trading volume. This is a popular stock, and we use this input as a measure of price
momentum on the buyer’s side. Since each of these inputs are z Scores, a high value
for this input indicates that this stock enjoys greater momentum relative to other
stocks this week.

Third we see that z Dollar Volume is an estimate of the total dollar value of the
shares traded this week. This is a popular stock, and we use this input as a measure
of relative dollar flow through this stock as opposed to other stocks this week. Since
each of these inputs are z Scores, a high value for this input indicates that more
dollars are flowing through this stock than other stocks this week.

Fourth we see that z Future EPS Yield is a measure of how cheap the future
12Mo EPS estimate divided by the week’s closing price (i.e. the estimated future
EPS yield) is compared to other stocks this week. This input will be high when
the estimated future earnings yield is high (the stock is cheap). Since each of these
inputs are z Scores, a high value for this input indicates that this stock is cheaper
relative to other stocks this week.

Fifth we see that z Sales Attractiveness is computed from the current 12Mo SPS
divided by the week’s closing price (i.e. the current sales yield) times the percent
of outstanding shares traded that week (Weeks Volume). This input will be high
when the current sales yield is high (the stock is cheap), and when a high percent
of outstanding shares traded this week (Weeks Volume. This is a stock selling on
high volume with a very cheap current sales yield. We use this input as a measure
of attraction on the buyer’s side.

Sixth we see that z Current Valuation is a measure of the current enterprise
value divided by the week’s closing price (i.e. the current VPS yield). This input
will be high when the current VPS yield is high (the stock is cheap). Since each
of these inputs are z Scores, a high value for this input indicates that this stock is
cheaper relative to other stocks this week.
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Seventh we see that z Valuation Attractiveness is a measure of the current
enterprise value divided by the week’s closing price (i.e. the current VPS yield)
times this week’s trading volume (Weeks Volume). This input will be high when the
current VPS yield is high (the stock is cheap), and trading volume is high. Since
each of these inputs are z Scores, a high value for this input indicates that this stock
is more attractive to buyers relative to other stocks this week.

Eighth we see that z Wall Street Rank is a measure of the current Wall Street
analysts’ rank for this stock. This input will be high when the Wall Street analysts’
rank for this stock is high. Since each of these inputs are z Scores, a high value
for this input indicates that this stock enjoys a higher Wall Street analyst ranking
relative to other stocks this week.

Ninth we see that z Financial Rank is a measure of the current Wall Street
analysts’ financial rank for this stock. This input will be high when the Wall Street
analysts’ financial rank for this stock is high. Since each of these inputs are z Scores,
a high value for this input indicates that this stock enjoys a higher Wall Street analyst
financial ranking relative to other stocks this week.

The following single output factor (what we train on) will be converted to
sigmoid score (Kleinbaum et al. 2010; Anderson et al. 2002) and is defined as
follows:

1. sFuture12MoReturn (y) The actual Future 12Mo Total Return—as a sigmoid-score

Obviously we are not trying to predict actual future 12 month total return so much
as we are trying to predict relative future 12 month total return. We don’t really
need to know actual future total 12 month returns. We only need to select the 100
Value Line stocks with the highest relative estimated future total 12 month return.
This allows us the luxury of converting the output variable (sFuture12MoReturn)
to a sigmoid factor, which allows us to perform a nonlinear logistic regression
(Kleinbaum et al. 2010) of the following form.

logit
�
f0 .x0; v0/ ; f1 .x1; v1/ ; f2 .x2; v2/ ; f3 .x3; v3/ ; f4 .x4; v4/ ; f5 .x5; v5/ ;

f6 .x6; v6/ ; f7 .x7; v7/ ; f8 .x8; v8/
�

where fop .@;C;�; min; max/g

This simple and extremely intuitive nonlinear logistic regression will easily
win regulatory and client preapproval. First of all this nonlinear regression will
never produce unexpected or wild output. It will produce an orderly estimate for
(sFuture12MoReturn) which will always lie between 0.0 and 1.0 for each stock. In
essence, this nonlinear regression model will automatically rank each stock between
0.0 and 1.0 in terms of estimated future 12 month total return (with 1.0 being the
most desirable and 0.0 being the least desirable). Let us start with the simplest case
where the functions (f0 thru f8) are all noopsD@, then the final result will always
be like the following example:



544 M.F. Korns

sFuture12MoReturn.y/ D sigmoid
�
:34 � x0C :16 � x1C :81 � x2

C :54 � x3C :26 � x4C :72 � x5C :59 � x6

C :21 � x7C :91 � x8
�

We have nine inputs in the form of z Scores for factors combining some measure
of relative value and/or trading frenzy. Our model simply projects each weighted
factor onto a relative ranking between 0.0 and 1.0—with the added benefit that, in
the past 520 weeks, these weights have been the most successful in predicting next
year’s relative future 12Mo total return for the Value Line stocks.

Now moving on to the case where one of more of the functions (f0 thru f8) are
other than noops, then the final result will always be something like the following
example:

sFuture12MoReturn.y/ D sigmoid
�
:34 � x0C :16 � x1C :81 �max .x2; x0/

C :54 � x3C :26 � x4C :72 � x5C :59 � x6

C :21 � x7C :91 � x8
�

Again we have nine inputs in the form of z Scores for factors combining some
measure of relative value and/or trading frenzy. Our model projects each weighted
factor or simple combination of factors onto a relative ranking between 0.0 and
1.0—with the added benefit that, in the past 520 weeks, these weights and these
combinations have been the most successful in predicting next year’s relative future
12Mo total return for the Value Line stocks.

21.3.3 Historical Returns

Applying all of these tools, techniques, and factors to the task of creating our semi-
passive VEP100 index fund, we perform our 1502 regression runs for the first week
in each year from 1990 thru 2009. We select the 100 Value Line stocks with the
highest sFuture12MoReturn values. And hold them for 1 year. We then compare
the results to the SP100 passive index, buying the 100 stocks with the highest
ttmEP, and buying the 100 stocks with the highest ftmEP and present the results
in Table 21.2.

Our VEP100 semi-passive index produced a much higher compound annual
growth rate (CAGR%) than the SP100 index and the 100 ttmEP method. However,
it cannot compete with the ideal ftmEP method (where one can see into the future).
Nevertheless the total return of our VEP100 semi-passive index is impressive and
will definitely appeal to a wide range of high net worth clients.

So have we beaten the Efficient Market Hypothesis? With a little bit of humor
I can answer with a definite Yes and No.
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Table 21.2 Returns VEP 100

Year SP100 stocks 100 ttmEP stocks VEP100 index fund 100 ftmEP stocks

1990 (6 %) (17 %) (22 %) 3 %
1991 24 % 40 % 47 % 111 %
1992 3 % 22 % 33 % 56 %
1993 8 % 9 % 23 % 46 %
1994 0 % 6 % 0 % 18 %
1995 36 % 22 % 30 % 49 %
1996 23 % 28 % 24 % 38 %
1997 28 % 27 % 31 % 51 %
1998 32 % 12 % 0 % 12 %
1999 31 % 38 % 30 % 22 %
2000 (13 %) 14 % 10 % 45 %
2001 (15 %) 11 % 38 % 56 %
2002 (24 %) (15 %) (6 %) 8 %
2003 24 % 52 % 62 % 67 %
2004 4 % 13 % 30 % 45 %
2005 (1 %) 17 % 29 % 43 %
2006 16 % 7 % 8 % 19 %
2007 3 % (5 %) 13 % 20 %
2008 (37 %) (28 %) (42 %) (17 %)
2009 19 % 43 % 131 % 120 %
CAGR% 6 % 14 % 17 % 37 %
Volatility 20 % 20 % 30 % 30 %
CAGR% 1990s 17 % 18 % 18 % 38 %
CAGR% 2000s (4 %) 8 % 20 % 37 %

Note: Per annum total returns for each year

Yes, because the VEP100 CAGR% of 17 % is a whopping 9 % per annum greater
than the SP100! This is a significant amount which will be of interest to a large class
of serious investors. Furthermore, the performance of the VEP100 is more consistent
across bull and bear decades with a CAGR % of 18 % in the bullish 1990s and a
CAGR% of 20 % in the bearish 2000s. Coupled with the transparent and intuitive
methodology of the VEP100, there is definite added value here.

No, because the EMH does not actually claim that one cannot make higher profits
than the indices. The EMH claims that one cannot increase returns without also
increasing volatility, and this is exactly what happens with the VEP100 semi-passive
index. Volatility increases from 20 % with the SP100 to 30 % with the VEP100. So
in an important way, the VEP100 is a classic confirmation of the Efficient Market
Hypothesis.
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21.4 Summary

Advances in both the industrial strength and accuracy of Symbolic Regression
packages can help overcome the resistance to SR in the investment finance industry.
Management trust, regulatory approval, and client acceptance, are no longer the
severe hurdles that they were in the past. Improvements in SR robustness, result
invariance, demonstrable accuracy, and regression constraint languages, such as
Regression Query Language RQL (Korns 2010, 2013, 2014), now support regu-
latory and client preapproval of important component SR processes.

In this research work, as series of cascade linear and nonlinear SR regressions
are used to create a transparent semi-passive index fund with significantly higher
returns, over the 1990–2009 two decade period, than its Standard &Poors 100 index
benchmark. Because of its transparent and algorithmic nature, the new VEP100
semi-passive index fund could enjoy much lower costs than a standard active fund
and yet enjoy attractive returns—costs similar in nature to the SP100 passive index
fund.

Future research will focus on other semi-passive indices with performance
tailored to various diverse client needs and requirements, and regulatory approval
issues.
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Chapter 22
GPTIPS 2: An Open-Source Software Platform
for Symbolic Data Mining

Dominic P. Searson

22.1 Introduction

Genetic programming (GP; Koza 1992) is a biologically inspired machine learn-
ing method that evolves computer programs to perform a task. It does this by
randomly generating a population of computer programs (usually represented by
tree structures) and then breeding together the best performing trees to create a
new population. Mimicking Darwinian evolution, this process is iterated until the
population contains programs that solve the task well.

When building an empirical mathematical model of data acquired from a
process or system, the process is known as symbolic data mining (SDM). SDM
is an umbrella term to describe a variety of related activities including gener-
ating symbolic equations predicting a continuous valued response variable using
input/predictor variables (symbolic regression); predicting the discrete category of
a response variable using input variables (symbolic classification, e.g. see Espejo
et al. 2010; Morrison et al. 2010) and generating equations that optimise some other
criterion (symbolic optimisation, e.g. GPTIPS was used in this way to generate new
chaotic attractors in Pan and Das 2014).

Symbolic regression is perhaps the most well known of these activities (it is
closely related to classical regression modelling) and the most widely used. Hence,
much of the functionality of GPTIPS is targeted at facilitating it. Unlike traditional
regression analysis (in which the user must specify the structure of the model and
then estimate the parameters from the data), symbolic regression automatically
evolves both the structure and the parameters of the mathematical model from the
data. This allows it to both select the inputs (features) of the model and capture
non-linear behaviour.
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Symbolic regression models are typically of the form:

by D f .x1; : : : ; xM/ (22.1)

where y is an output/response variable (the variable/property you are trying to
predict), ŷ is the model prediction of y and x1, : : : , xM are input/predictor variables
(the variables/properties you know and want to use to predict y; they may or may
not in fact be related to y) and f is a symbolic non-linear function (or a collection of
non-linear functions). A typical simple symbolic regression model is:

by D 0:23x1 C 0:33 .x1 � x5/C 1:23x3
2 � 3:34 cos .x1/C 0:22 (22.2)

This model contains both linear and non-linear terms and the structure and
parameterisation of these terms is automatically determined by the symbolic
regression algorithm. Hence, it can be seen that symbolic regression provides a
flexible—yet simple—approach to non-linear predictive modelling.

Additional advantages of symbolic regression are:

• It can automatically create compact, accurate equations to predict the behaviour
of physical systems. This appeals to the notion of Occam’s razor. In particular,
the use of multigene GP (MGGP) within GPTIPS can exert a ‘remarkable’ degree
of control of model complexity in comparison with standard GP (Gandomi and
Alavi 2011).

• Unlike many soft-computing modelling methodologies—such as feed forward
artificial neural networks or support vector machines (SVMs)—no specialised
modelling software environment is required to deploy the trained symbolic
models. And, because the symbolic models are simple constitutive equations,
a non-modelling expert can easily and rapidly implement them in any modern
computing language. Furthermore, the simplicity of the model form means they
are more maintainable than typical black box predictive models.

• Examination of the evolved equations can often lead to human insight into the
underlying physical processes or dynamics. In addition, the ability of a human
user to understand the terms of a predictive equation can help instil trust in the
model (Smits and Kotanchek 2004). It is hard to overstate the importance of user
understanding and trust in predictive models, although this is not often discussed
in the predictive modelling literature. In contrast, it is extremely difficult, if not
impossible, to gain insight into a neural net model where the ‘knowledge’ about
the data, system or process is encoded as network weights.

• Discovery of a population of models (rather than a single model as in the
majority of other predictive modelling techniques). The evolved population can
be regarded as a model library and usually contains diverse models of varying
complexity and performance. This gives the user choice and the ability to gain
understanding of the system being modelled by examination of the model library.

Note that the human related factors mentioned above, such as interpretation and
deployment of models, are especially important when dealing with data obtained
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from highly multivariate non-linear systems of unknown structure (Smits and
Kotanchek 2004) for which traditional analysis tends to be difficult or intractable.

Hence, symbolic regression (and symbolic data mining in general) has many
features that make it an attractive basis for inducing simple, interpretable and
deployable models from data where the ‘true’ underlying relationships are high
dimensional and largely unknown. However, there has been a relative paucity of
software that allows researchers to actually do symbolic data mining, and in many
cases the existing software is either expensive, proprietary and closed source or
requires a high degree of expertise in software configuration and machine learning
to use it effectively.

GPTIPS (an acronym for Genetic Programming Toolbox for the Identification
of Physical Systems) was written to reduce the technical barriers to using symbolic
data mining and to help researchers, who are not necessarily experts in computing
science or machine learning, to build and deploy symbolic models in their fields of
research. It was also written to promote understanding of the model discovery mech-
anisms of MGGP and to allow researchers to add their own custom implementations
of code to use MGGP in other non-regression contexts (e.g. Pan and Das 2014). To
this end, it was written as a free (subject to the GNU public software license, GPL
v3), open source project in MATLAB.

The use of MATLAB as the underlying platform confers the following benefits:

• Robust, trustable, fast and automatically multi-threaded implementations of
many matrix and vector math algorithms (these are used extensively in GPTIPS).

• Widely taught at the undergraduate level and beyond at educational institutes
around the world and hence is familiar (and site licensed) to a diverse array of
students, researchers and other technical professionals. It is also heavily used in
many commercial, technical and engineering environments.

• Supported, regularly updated and bug fixed and extremely well documented.
• Easy to use interface and interactive environment and supports the import and

export of data in a wide variety of formats.
• A robust symbolic math engine (MuPAD) that is exceptionally useful for the

post-run processing, simplification, visualisation and export of symbolic models
in different formats using variable precision arithmetic.

• Runs on many OS platforms (i.e. Windows, Linux, Mac OSX) using the same
code.

• Increasing emphasis on parallel computing (e.g. GPTIPS 2 has a parallel mode
and can use unlimited multiple cores to evolve and evaluate new models), GPU
computing, cloud computing and other so called ‘big data’ features such as
memory-mapped variables.

This chapter is structured as follows: Sect. 22.2 provides a high level overview
of GPTIPS and, in particular, the new features aimed at multigene regression model
development in GPTIPS2. Section 22.3 is provided to review some different forms
of symbolic regression in the context of classical regression analysis and describes
the mechanisms of MGGP. Note that a basic tutorial level description of ‘standard’
GP is not provided here, as it is readily available elsewhere, e.g. (Poli et al. 2007).
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Section 22.4 is used to demonstrate some of the features of GPTIPS 2, focusing
on the visual analytics tools provided for the development of portable multigene
symbolic regression models. Section 22.5 describes a new gene-centric approach
to identifying and removing horizontal bloat in multigene regression models, with
emphasis on the new visual analysis tool provided in GPTIPS to do this. Finally, the
chapter ends with some concluding remarks in Sect. 22.6.

22.2 GPTIPS 2: Overview

GPTIPS (version 1) has become a widely used technology platform for symbolic
data mining via MGGP. It is used by researchers globally and has been successfully
deployed in dozens of application areas.1

GPTIPS using MGGP based regression has been shown to outperform existing
soft-computing/machine learning methods such as neural networks, support vector
machines etc. on many problem domains in terms of predictive performance and
model simplicity. Examples include:

• Global solar irradiation prediction—MGGP was noted to give clearly better
results than fuzzy logic and neural networks and the resulting equations were
understandable by humans (Pan et al. 2013).

• The automated derivation of correlations governing the fundamental properties
of the motion of particles in fluids, a key subject in powder technology, chemical
and environmental engineering. The evolved models were significantly better (up
to 70 %) than the existing empirical correlations (Barati et al. 2014).

• The reverse engineering of the structure of the interactions in biological tran-
scription networks from time series data, attaining model accuracy of around
99 % (Floares and Luludachi 2014).

• The use of MGGP for the accurate modelling and analysis of data from
complex geotechnical and earthquake engineering problems (Gandomi and Alavi
2011, 2012). It was noted that the evolved equations were highly accurate and
‘particularly valuable for pre-design practices’ (Gandomi and Alavi 2011).

The symbolic engine of GPTIPS, i.e. the mechanism whereby new equations
are generated and improved over a number of iterations, is a variant of GP called
multigene genetic programming (MGGP, e.g. see Searson 2002; Searson et al. 2007,
2010) which uses a modified GP algorithm to evolve data structures that contain
multiple trees (genes). An example of a single tree representing a gene is shown
in Fig. 22.1. This represents the equation sin(x1)C sin(3x1). A typical GPTIPS
multigene regression model consists of a weighted linear combination of genes such
as these.

1A list of research literature using GPTIPS is maintained at https://sites.google.com/site/
gptips4matlab/application-areas.

https://sites.google.com/site/gptips4matlab/application-areas
https://sites.google.com/site/gptips4matlab/application-areas
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Fig. 22.1 Example of a tree
(gene) representing the model
term sin(x1)C sin(3x1). This
tree visualisation was created
as a graphic within an HTML
file using the GPTIPS 2
drawtrees function. The
appearance of the trees is user
customisable using simple
CSS

GPTIPS is a generic tree based GP platform and has a pluggable architecture.
This means that users can easily write their objective/fitness functions (e.g. for
symbolic classification and symbolic optimisation) and plug them into GPTIPS
without having to modify any GPTIPS code.

GPTIPS also has many features aimed specifically at developing multigene
symbolic regression models. This combines the ability to evolve new equation
model terms of MGGP with the power of classical linear least squares parameter
estimation to optimally combine these model terms in order to minimise a prediction
error metric over a data set. It is sometimes helpful to think of GPTIPS multigene
regression models as pseudo-linear models in that they are linear combinations of
low order non-linear transformations of the input variables. These transformations
can be regarded as meta-variables in their own right.

Multigene symbolic regression has been shown to be able to evolve compact,
accurate models and perform automatic feature selection even when there are more
than 1500 input variables (Searson et al. 2010). It has been demonstrated that
multigene symbolic regression can be more accurate and efficient than ‘standard’
GP for modelling nonlinear problems (e.g. see Gandomi and Alavi 2011, 2012).

22.2.1 GPTIPS Feature Overview

GPTIPS is mostly a command line driven modelling environment and it requires
only a basic working knowledge of MATLAB. The user creates a simple con-
figuration file where the data is loaded from file (or generated algorithmically
within the configuration file) and configuration options set (numerous example
configuration files and several example data sets are provided with GPTIPS).
GPTIPS automatically generates default values for the majority of configuration
options and these can be modified in the configuration file. Typical configuration
options that the user sets are population size, maximum number of generations to
run for, number of genes and tournament size. However, there are a large number of
other run configuration options that the user can explore. In addition, GPTIPS 2 has
the following features to support effective non-linear symbolic model development,
analytics, export and deployment:
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• Automatic support for the Parallel Computing Toolbox: fitness and complexity
calculations are split across multiple cores allowing significant run speedup.

• Automatic support for training, validation and test data sets and comprehensive
reporting of performance stats for each.

• An extensive set of functions for tree building blocks is provided: plus, minus,
multiply, divide (protected and unprotected), add3 (ternary addition), mult3
(ternary multiplication), tanh, cos, sin, exp, log10, square, power, abs, cube, sqrt,
exp (� x), if-then-else, �x, greater than (>), less than (<), Gaussian (exp(x2))
and threshold and step functions. Furthermore—virtually any built in MATLAB
math function can be used a tree building block function (sometimes a minor
modification is required such as writing a wrapper function for the built in
function). In general, it is very easy for users to define their own building block
functions.

• Tight integration with MATLAB’s MuPAD symbolic math engine to facilitate
the post-run analysis, simplification and deployment of models.

• Run termination criteria. In addition to number of generations to run for, it is
usually helpful to specify additional run termination criteria in order to avoid
waste of computational effort. In GPTIPS, the maximum amount of time to run
for (in seconds) can be set for each run as well as a target fitness. For example
for multigene regression the target fitness can be set as model root mean squared
error (RMSE) on the training data.

• Multiple independent runs where the populations are automatically merged after
the completion of the runs. It is usually beneficial to allocate a relatively small
amount of computational effort to each of multiple runs rather than to perform
a single large run (e.g. 10 runs of 10 s each rather than a single run of 100 s).
For example this ‘multi-start’ approach mitigates problems with the possible loss
of model diversity over a run and with the GP algorithm getting stuck in local
minima. In addition, GPTIPS 2 provides functionality such that final populations
of separate runs may be manually merged by the user.

• Steady-state GP and fitness caching.
• Two measures of tree complexity: node count and expressional complexity

(Smits and Kotanchek 2004). The latter is a more fine-grained measure of
model complexity and is used to promote flatter trees over deep trees. This has
significant benefits (albeit at extra computation cost) in evolving compact, low
complexity models. For a single tree, expressional complexity is computed by
summing together the node count of itself and all its possible full sub-trees (a
leaf node is also considered a full sub-tree) as illustrated in (Smits and Kotanchek
2004). Hence, for two trees with the same node count, flatter and balanced trees
have a lower expressional complexity than deeper ones. For instance, the tree
shown in Fig. 22.2 has a total node count of 8 and contains 8 possible sub-
trees. The sum of the node counts of the 8 possible full sub-trees gives, in this
case, an expressional complexity of 23. For multigene individuals, the overall
expressional complexity is computed as the simple sum of the expressional
complexities of its constituent trees.
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ŷ =

Fig. 22.2 Naïve symbolic regression. The prediction of the response data y is the unmodified
output of a single tree that takes as its inputs one or more columns of the data matrix X

• Regular tournament selection (considers fitness only), Pareto tournament selec-
tion (considers fitness and model complexity) and lexicographic tournament
selection (similar to regular tournament selection but always chooses the less
complex model in the event of a fitness ‘tie’). The user can set the probability of
a particular tournament type occurring at every selection event (i.e. each time the
GP algorithm selects an individual for crossover, mutation etc.). For example the
user can set half of all selection events to be performed by regular tournament
and half by Pareto tournament. Pareto tournaments of size P for two objectives
are implemented using the O(P2) fast non-dominated sort algorithm described in
(Deb et al. 2002).2

• Six different tree mutation operators.
• Interactive graphical population browser showing Pareto front individuals in

terms of fitness (or for multigene regression models, the coefficient of determina-
tion R2) and complexity on training, validation and test data sets. This facilitates
the exploration of multigene regression models that are accurate but not overly
complex and the identification of models that generalise well across data sets.

• A configurable multigene regression model filter object that enables the pro-
gressive refinement of populations according to model performance, model
complexity and other user criteria (e.g. the presence of certain input variables
in a model).

• Functions to export any symbolic regression model to (a) a symbolic math
object (b) a standalone MATLAB file for use outside GPTIPS (c) snippets of
optimised C code—which may be easily manually ported to other languages such
as Java (d) an anonymous MATLAB function or function handle (e) an HTML
formatted equation (f) a LaTeX formatted equation (g) a MATLAB data structure
containing highly detailed information on the model as well as the individual
gene predictions on training, test and validation data.

• Standalone (i.e. can be viewed in a web browser without the need for MATLAB)
HTML model report generator. This enables a comprehensive performance and
statistical analysis of any model in the population to be exported to HTML
for later reference. The HTML report contains interactive graphical displays of
model performance and model genotype and phenotype structure.

2Currently, the Pareto tournament implementation does not support more than two objectives.
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• Customisable standalone HTML model report generator to visualise the tree
structure(s) comprising an individual/model.

• Standalone HTML Pareto front report generator to allow the interactive visu-
alisation of simplified multigene regression models in tabular format, sortable
by performance (in terms of the coefficient of determination, i.e. model R2) and
model complexity.

• Regression Error Characteristic (REC; Bi and Bennett 2003) curves to allow sim-
ple graphical comparisons of the predictive performance of selected multigene
regression models.

22.3 Multigene Symbolic Regression and MGGP: Overview
and Mathematical Context

In this section, multigene symbolic regression is described in a mathematical
context and compared with some other common symbolic regression methods
as well as multiple linear regression (MLR). In addition, the mechanics of the
MGGP algorithm are described, including a new, simplified high level crossover
operator to expedite the exchange of genes between individuals during the simulated
evolutionary process.

22.3.1 Multigene Symbolic Regression

22.3.1.1 Naïve Symbolic Regression

In early standard formulations of symbolic regression (which will be referred to as
naïve symbolic regression) GP was often used to evolve a population of trees, each
of which is interpreted directly as a symbolic mathematical equation that predicts
a (N � 1) vector of outputs/responses y where N is the number of observations
of the response variable y. The corresponding input matrix X is an (N �M) data
matrix where M is the number of input variables. In general, only a subset of the M
variables are ‘selected’ by GP to form the models. In naïve symbolic regression, the
ith column of X comprises the N input values for the ith variable and is designated
the input variable xi. Figure 22.2 illustrates naïve symbolic regression.

Typically, the GP algorithm will attempt to minimise the sum of squared errors
(SSE) between the observed response y and the predicted response ŷ (where the
(N � 1) error vector e is y� ŷ) although other error measures are also frequently
used, e.g. the mean squared error (MSE) and the root mean squared error (RMSE),
the latter having the advantage that it is expressed in the units of the response
variable y.
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ŷ = b0 +  b1 ×

Fig. 22.3 Scaled symbolic regression. The prediction of the response data y is the vector output of
single tree modified by a bias term b0 and a scaling parameter b1. These are determined by linear
least squares

22.3.1.2 Scaled Symbolic Regression

To improve the efficacy of symbolic regression a bias (offset) term b0 and a
weighting/scaling term b1 can be used to modify the tree output so that it fits y better.
The values of these coefficients are determined by linear least squares and, for any
valid tree, the prediction is guaranteed to be at least as good as the naïve prediction.
It will almost always be better (the only case where it is not is the case b0D 0 and
b1D 1). This method is essentially the same as scaled symbolic regression (Keijzer
2004) because the coefficients b0 and b1 translate and linearly scale the raw output of
the tree in such a way as to minimise the prediction error of y as shown in Fig. 22.3.

Hence, the prediction of y is given by:

by D b0 C b1 t (22.3)

where t is the (N � 1) vector of outputs from the GP tree on the training data. This
may also be written as:

by D Db (22.4)

where b is a (2� 1) vector comprising the b0 and b1 coefficients and D is an (N � 2)
matrix where the 1st column is a column of ones (this is used as a bias/offset input)
and the 2nd column is the tree outputs t. The optimal linear least squares estimate
(i.e. that which minimises the SSE eTe) of b is computed from y and D using the
well known least squares normal equation as shown in (22.5) where DT is the matrix
transpose of D. Note that the optimality of the estimate of b is only strictly true if
a number of assumptions are met such as independence of the columns of D and
normally distributed errors. In practice, these assumptions are rarely strictly met—
but with the use of the Moore-Penrose pseudo-inverse (described in the following
section)—the violations of these assumptions do not appear to prevent the practical
development of effective symbolic regression models.

b D �DTD
��1

DTy (22.5)
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+ ... + bG ×+ b2 ×ŷ = b0 + b1 ×

Fig. 22.4 Multigene symbolic regression. The prediction of the response data y is the vector
output of G trees modified by bias term b0 and scaling parameters b1, : : : , bG

22.3.1.3 Multigene Symbolic Regression

A generalisation of the previous approach is to use G trees to predict the response
data y. GPTIPS uses MGGP to evolve the trees comprising the additive model terms
in each individual and this is referred to as multigene symbolic regression.

Again, there is an offset/bias coefficient b0 and now the coefficients b1, b2, : : : ,
bG are used for scaling the output of each tree/gene. A linear combination of scaled
tree outputs can capture non-linear behaviour much more effectively than using
scaled symbolic regression, in which one tree must capture all of the non-linear
behaviour.

Moreover, by enforcing depth restricted trees and using other strategies such
as Pareto tournaments and expressional complexity, this leads to the evolution of
compact models that tend to have linearly separable terms and so lend themselves
to automated post-run model simplification using symbolic math software. The
structure of multigene symbolic regression models is illustrated in Fig. 22.4.

The prediction of the y training data is given by:

by D b0 C b1 t1 C � � � C bG tG (22.6)

where ti is the (N � 1) vector of outputs from the ith tree/gene comprising a
multigene individual. Next, define G as a (N � (GC 1)) gene response matrix as
follows in (22.7).

G D Œ1t1 : : : tG� (22.7)

where the 1 refers to a (N � 1) column of ones used as a bias/offset input.
Now (22.6) can be rewritten as:

by D Gb (22.8)

The least squares estimate of the coefficients b0, b1, b2, : : : , bG formulated as a
((GC 1)� 1) vector can be computed from the training data as:

b D �GTG
��1

GTy (22.9)
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In practice, the columns of the gene response matrix G may be collinear (e.g.
due to duplicate genes in an individual, and so the Moore-Penrose pseudo-inverse
(by means of the singular value decomposition; SVD) is used in (22.9) instead
of the standard matrix inverse. Because this is computed for every individual
in a GPTIPS population at each generation (except for cached individuals), the
computation of the gene weighting coefficients represents a significant proportion of
the computational expense of a run. In GPTIPS, the RMSE is then calculated from
eTe and is used as the fitness/objective function that is minimised by the MGGP
algorithm.3

Compare this with classical MLR which is typically of the form:

by D a0 C a1x1 C a2x2 C � � � C aNxM (22.10)

Here, the data/design matrix X is defined as:

X D Œ1x1 : : : xM� (22.11)

and this allows the least squares computation of the coefficients a0, a1, : : : aM as:

a D �XTX
��1

XTy (22.12)

where a is a ((MC 1)� 1) vector containing the a coefficients.
This section described how a multigene individual can be interpreted as a linear-

in-the-parameters regression model and how the model coefficients are computed
using least squares. The following section outlines how MGGP actually generates
and evolves the trees that the form the component genes of multigene regression
models.

22.3.2 Multigene Genetic Programming

Here it is outlined how multigene individuals are created and then iteratively
evolved by the MGGP algorithm. This algorithm is similar to a ‘standard’ GP
algorithm except for modifications made to facilitate the crossover and mutation
of multigene individuals. Note that—although GPTIPS uses MGGP primarily for
symbolic regression—the algorithmic implementation of MGGP is independent of
the interpretation of the multigene individuals as regression models. Multigene
individuals can also be used in other contexts, e.g. classification trees (Morrison
et al. 2010). In GPTIPS there is a clear modular separation of the MGGP code
and the code that implements multigene regression. GPTIPS has a simple pluggable

3Although RMSE is the default fitness measure, this can be easily changed to, for example, MSE
by a very minor edit to the file containing the default fitness function.
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architecture in that it provides explicit code hooks to allow the addition of new
code that interprets multigene individuals in a way of the user’s choosing (the
code for performing multigene regression is—by default—attached to these hooks).
Note that MGGP also implicitly assumes that the specific ordering of genes in any
individual is unimportant.

In the first generation of the MGGP algorithm, a population of random indi-
viduals is generated (it is currently not possible to seed the population with partial
solutions). For each new individual, a tree representing each gene is randomly gener-
ated (subject to depth constraints) using the user’s specified palette of building block
functions and the available M input variables x1, : : : , xM as well as (optionally)
ephemeral random constants (ERCs) which are generated in a range specified by the
user (the default range is �10 to 10). In the first generation the MGGP algorithm
attempts to maximise diversity by ensuring that no individuals contain duplicate
genes. However, due to computational expense, this is not enforced for subsequent
generations of evolved individuals.

Each individual is specified to contain (randomly) between 1 and Gmax genes.
Gmax is a parameter set by the user. When using MGGP for regression, a high Gmax

may capture more non-linear behaviour but there is the risk of overfitting the training
data and creating models that contain complex terms that contribute little or nothing
to the model’s predictive performance (horizontal bloat). This is discussed further in
Sect. 22.5. Conversely, setting Gmax to 1 is equivalent to performing scaled symbolic
regression.

As in standard GP, at each generation individuals are selected probabilistically
for breeding (using regular or Pareto tournaments or a mixture of both). Each
tournament results in an individual being selected based on either its fitness or—
for Pareto tournaments—its fitness and its complexity (the user can set this to be
either the total node count of all the genes in an individual or the total expressional
complexity of all the genes in an individual).

In MGGP, there are two types of crossover operators: high level crossover and
the standard GP sub-tree crossover, which is referred to as low level crossover. The
high level crossover operator is used as a probabilistically selected alternative to the
ordinary low level crossover (in GPTIPS the default is that approximately a fifth of
crossover events are high level crossovers).

When low level crossover is selected a gene is randomly chosen from each parent.
These genes undergo GP sub-tree crossover with each other and the offspring genes
replace the original genes in the parent models. The offspring are then copied into
the new population.

When high level crossover is selected an individual may acquire whole genes—
or have them deleted. This allows individuals to exchange one or more genes with
another selected individual (subject to the Gmax constraint).

In GPTIPS 2 the high level crossover operator described in (Searson 2002;
Searson et al. 2007, 2010) has been simplified and is outlined below between
a parent individual consisting of the three genes labelled (G1 G2 G3) and a
parent individual consisting of the genes labelled (G4 G5 G6 G7) where (in this
hypothetical case) GmaxD 5.
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Parents (G1 G2 G3)
(G4 G5 G6 G7)

A crossover rate parameter CR (where 0 < CR < 1) is defined. This is similar to
the CR parameter used in differential evolution (DE, see Storn and Price 1997) and
a uniform random number r between 0 and 1 is generated independently for each
gene in the parents. If r is �CR then the corresponding gene is moved to the other
individual. The default value of CR in GPTIPS 2 is 0.5.

Hence, randomly selected genes (highlighted in boldface above) are exchanged
resulting in two offspring in the next generation.

Offspring (G1 G3 G4 G7)
(G5 G6 G2)

This high level crossover mechanism is referred to as rate based high level
crossover to distinguish it from the two point high level crossover mechanism in
GPTIPS version 1 (which swapped contiguous sections of genes from individuals).
Note that the rate based high level crossover mechanism results in new genes for
both individuals as well as reducing the overall number of genes for one model and
increasing the total number of genes for the other. If an exchange of genes results
in either offspring containing more genes than the Gmax constraint then genes are
randomly deleted until the constraint is no longer violated.

22.4 Using GPTIPS

In this section it will be illustrated how GPTIPS 2 may be used to generate, analyse
and export non-linear multigene regression models, both using command line tools
and visual analytics tools and reports. The example screenshots in the figures
contained in this section are taken from example runs from various data sets using
configuration files and data that are provided with GPTIPS 2. The screenshots were
obtained using MATLAB Release 2014b on OSX.

22.4.1 Running GPTIPS

As discussed in Sect. 22.2.1, the user creates a simple text configuration file that
specifies some basic run parameters and either loads in the data to be modelled from
file or algorithmically generates it. Any unspecified parameters are set to GPTIPS
default values.

To run the configuration file (here called configFileName.m) the rungp
function is used as follows:
gp D rungp(@configFileName)
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where the @ symbol denotes a MATLAB function handle to the configuration file.
The GPTIPS run then begins. When it is complete—the population and all other

relevant data is stored in the MATLAB ‘struct’ variable gp. This is used as a basis
for all subsequent analyses.

22.4.2 Exploratory Post Run Analyses

GPTIPS provides a number of exploratory post-run interactive visualisation and
analysis tools. For instance, a simple summary of any run can be generated using
the summary function and an example is shown in Fig. 22.5.

For multigene symbolic regression this shows in the upper part of the chart—by
default—the log10 value of the best RMSE (this is the error metric that GPTIPS
attempts to minimise over the training data) achieved in the population over the
generations of a run. The lower part of the chart shows the mean RMSE achieved in
the population.
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Fig. 22.5 An example of a run summary in GPTIPS. Generated using the summary function
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Fig. 22.6 Visually browsing a multigene regression model population. Green dots represent the
Pareto front of models in terms of model performance (1�R2) and model complexity. Blue dots
represent non-Pareto models. The red circled dot represents the best model in the population in
terms of R2 on the training data. Clicking on a dot shows a yellow popup containing the model ID
and the simplified model equation. Generated using the popbrowser function

Other tools are intended to help the user to identify a model (or small set of
models) that look promising and worthy of further investigation. One of the most
useful visual analytic tools is the population browser. This interactive tool visually
illustrates the entire population in terms of its predictive performance and model
complexity characteristics. This is generated using the popbrowser function. An
example of this is shown in Fig. 22.6. Each model is plotted as a dot with (1�R2)
on the vertical axis and expressional complexity on the horizontal axis. The Pareto
front models are highlighted in green and it is almost always these models that will
be of the greatest interest to the user. In particular, the Pareto models in the lower
left of the population (high R2 and low complexity) are usually where a satisfactory
solution may be found.

This visualisation may be used with the training, validation or test data sets. For
example Fig. 22.6 was generated using:
popbrowser(gp,’train’)
Another way of displaying information about Pareto front models in a population

is by use of the paretoreport function. This creates a standalone HTML
file—viewable in a web browser—that includes a table listing the simplified
model equations along with the model performance and expressional complexity.
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Fig. 22.7 Extract from a Pareto front model HTML report. GPTIPS 2 can generate a standalone
interactive HTML report listing the multigene regression models on the Pareto front in terms of
their simplified equation structure, expressional complexity and performance on the training data
(R2). The above table is sortable by clicking on the appropriate column header. Generated using
the paretoreport function

The table is interactive and the models can be sorted by performance or complexity
by clicking on the appropriate column header. An example of an extract from such
a report is shown in Fig. 22.7. This report assists the user in rapidly identifying the
most promising model or models to investigate in more detail.

It is also possible to filter populations according to various user criteria using
the gpmodelfilter object. The output of this filter is another gp data structure
which is functionally identical to the original (in the sense that any of the command
line and visual analysis tools may be applied to it) except that models not fulfilling
user criteria have been removed.

For example, if the user wants to only retain models that (a) have an R2 greater
than 0.8 (b) contain the input variables x1 and x2 and (c) do not contain the variable
x4 then the filter can be configured and executed as follows:

Create a new filter object f:
f D gpmodelfilter
Next set the user criteria, i.e. models must have R2 (training data) greater or equal

to 0.8:
f.minR2train D 0.8
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Must include x1 and x2:
f.includeVars D [1 2]
Must exclude x4:
f.excludeVars D 4
Finally, apply the filter to the existing population structure gp to create a new

one gpf:
gpf D f.applyFilter(gp)
At this point the user may apply the exploratory tools (e.g. paretoreport)

to the refined population to zero in on models of interest fulfilling certain criteria.
Other criteria that can be set include maximum expressional complexity, maximum
and minimum number of variables and Pareto front (i.e. exclude all models not on
the Pareto front).

22.4.3 Model Performance Analyses

Once a model (or set of models) has been identified using the tools described above,
the detailed performance of the model can be assessed by use of the runtree
function. This essentially re-runs the model on the training data (and validation and
test data, if present) and generates a set of graphs including predicted vs actual y
and scatterplots of predicted vs actual y. These graphs can be generated using the
numeric model ID (e.g. from the popbrowser visualisation) as an input argument
to runtree or by using keywords such as ‘best’ (best model on training data) and
‘testbest’ (best model on test data), e.g.
runtree(gp,’testbest’)
This is a common design pattern across a large number of GPTIPS functions. An

example of the scatterplots generated by runtree is shown in Fig. 22.8.
Additionally, for any model a standalone HTML report containing detailed

tabulated run configuration, performance and structural (simplified model equations
and trees structures) data may be generated using the gpmodelreport function.
These reports contain interactive scatter charts similar to that in Fig. 22.8. The
reports are fairly lengthy—however—and so are not illustrated here.

A way of comparing the performance of a small set of models simultaneously
is to generate regression error characteristic (REC; Bi and Bennett 2003) curves
using the compareModelsREC function. REC curves are similar to receiver
operating characteristic curves (ROC) used to graphically depict the performance
of classifiers on a data set. An example of REC curves generated using the
compareModelsREC function is shown below in Fig. 22.9. The user can specify
what curves to compare in the arguments to the function, e.g.
compareModelsREC(gp,[2 3 9], true)

where the final Boolean true argument indicates that the best model on the training
data should also be plotted in addition to models 2, 3 and 9.
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Fig. 22.8 Performance scatterplots on training and testing data sets for a selected multigene
regression model. Generated by the runtree function

22.4.4 Model Conversion and Export

Finally, there is a variety of functions provided to convert and/or export models
to different formats, e.g. to convert a model with numeric ID 5 to a standalone
MATLAB M file called model.m then the gpmodel2mfile function may be
used as follows:
gpmodel2mfile(gp,5,’model’)
To convert a model to a symbolic math object, the gpmodel2sym function may

be used in a similar way. A symbolic math object can then be converted to a string
containing a snippet of C code using the ccode function.

22.5 Reducing Model Complexity Using Gene Analysis

22.5.1 Horizontal Model Bloat

GP frequently suffers from the phenomenon of ‘bloat’, i.e. the tendency to evolve
trees that contain terms that confer little or no performance benefit, e.g. see (Luke
and Panait 2006). In terms of model development this is related to the phenomenon
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Fig. 22.9 Regression error characteristic (REC) curves. GPTIPS 2 allows the simple comparison
between multigene regression models in terms of REC curves which are similar to receiver
operating characteristic (ROC) curves for classifiers. The REC curves show the proportion of data
points predicted (y axis) with an accuracy better than the corresponding point on the x axis. Hence,
‘better’ models lie to the upper left of the diagram. Generated using the compareModelsREC
function

of overfitting. GPTIPS 2 contains a number of mechanisms intended to mitigate
this. For instance: the use of fairly stringent restrictions on maximum tree depth (to
ameliorate vertical bloat), the use of tree expressional complexity as a measure of
model complexity (rather than a simple node count) to promote flatter trees over
deeper ones during the simulated evolutionary process, the integration of the train-
validate-test model development cycle, and the use of Pareto tournaments to select
models that perform well (in terms of goodness of fit) and are not overly complex.

However, the use of multigene regression models in GPTIPS leads to another
type of bloat that is referred to here as horizontal bloat. This is the tendency of
multigene models to acquire genes that are either performance neutral (i.e. deliver no
improvement in R2 on the training data) or offer very small incremental performance
improvements. Clearly—in the majority of practical applications—these terms are
undesirable.

Horizontal bloat is the essentially the same behaviour exhibited by non-
regularised MLR models, where it is well known that the addition of model terms
leads to a monotonically increasing R2 on training data even though the terms may
not be meaningful (e.g. they are capturing noise) or allow the model to generalise
well to testing or validation data sets. Multigene regression is a type of pseudo-
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linear MLR model and it suffers from the same problem. A typical way to combat
this behaviour in MLR is to employ a method of regularisation to penalise for
model complexity [e.g. ridge regression (Hoerl and Kennard 1970) and the lasso
(Tibshirani 1996)]. These methods can be difficult to tune in practice, however.

Ostensibly, the simplest way to way to prevent horizontal bloat in multigene
regression is to limit the maximum allowed number of genes Gmax in a model. In
practice, however, it is not usually easy to judge the optimal value of Gmax for any
given problem. An alternative approach—and one that emphasises the human factor
in instilling trust in models—is to provide a software mechanism that guides the
user to take high performance models and delete selected genes to reduce the model
complexity whilst maintaining a relatively high goodness of fit in terms of R2. In the
following section GPTIPS 2 functionality for expediting this process is described.

22.5.2 Unique Gene Analysis

In GPTIPS 2, a new way of analysing the unique genes contained in a population
of evolved models has been developed. This allows the user to visualise the genes
in a population and to identify genes in an existing model that can be removed
thus reducing model complexity whilst having only a relatively small impact on the
model’s predictive performance. The visualisation aspect (i.e. the ability to see the
gene equation and the R2 value if the gene were removed) is important because it
allows the user to rapidly make an informed choice about which model terms to
remove. Often this choice is based on problem domain knowledge of the system
being modelled. For example, the user might want to delete a model term such as
sin(1� x3) because it is inconsistent with his or her knowledge about the underlying
data or system. This gene-centric visualisation allows users to tailor evolved models
to suit their own preferences and knowledge of the modelled data.

An additional benefit of being able to visualise the genes in a model is that it
expedites the process of human understanding of the model and intuition into which
model terms account for a high degree of predictive ability and which account for
lower amounts.

After a GPTIPS run has been completed, the user can extract a MATLAB
data structure containing all of the unique genes in a population using the
uniquegenes function as indicated below:
genes D uniquegenes(gp)
This function does the following:

• Extracts every genotype i.e. tree encoded gene (gene weights are ignored) from
each model in the population.

• Deletes duplicate genotypes.
• Converts the unique genotypes to symbolic math objects (phenotypes) and then

analytically simplifies them using MATLAB’s symbolic math engine (MuPAD).
• Deletes any duplicate symbolic math objects representing genes and assigns a

numeric ID to the remaining unique gene objects.
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Note that it is quite frequent that two different genotypes will, after conversion
to symbolic math objects and automated analytic simplification, resolve to the same
phenotype.

Next—to provide an interactive visualisation of the genes in the population and
a selected model—the genebrowser function is used. In the example below, it is
used on the model that performed best (in terms of R2) on the training data.
genebrowser(gp,genes,’best’)
Clicking on any blue bar shows a yellow popup containing the symbolic version

of the gene and the reduction in R2 that would result if that gene were to be removed
from the model. Conversely, clicking on any orange bar in the lower axis does the
same for genes that are not in the current model and shows the increase in R2 that
would be attained if that gene were added to the model (Fig. 22.10).
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Fig. 22.10 Reducing model complexity using the genebrowser analysis tool. The upper bar
chart shows the gene number and expressional complexity of genes comprising the selected model.
The lower bar chart shows genes in the population but not in the selected model. Clicking on a
blue bar representing a model gene reveals a popup containing the gene equation and the R2 (on
the training data) if that gene were removed from the model. Here it shows that the highlighted
gene/model term 81.382x1x4 cos(x1 � x4) is a horizontal bloat term and could be removed from the
model with a very minor decrease in R2
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Once the user has identified a suitable gene to be removed from the model, a new
model without the gene can be generated using the genes2gpmodel function
using the unique gene IDs as input arguments. The data structure returned from this
function can be examined using the provided tools—as well as exported in various
formats—in exactly the same way as any model contained within the population.

22.6 Conclusions

In this chapter GPTIPS 2, the latest version of the free open source software platform
for symbolic data mining, has been described. It is emphasised that the software
is aimed at non-experts in machine learning and computing science—and that the
software tools provided within GPTIPS are intended to facilitate the discovery,
understanding and deployment of simple, useful symbolic mathematical models
automatically generated from non-linear and high dimensional data.

In addition, it has been emphasised that GPTIPS is also intended as an enabling
technology platform for researchers who wish to add their own code in order to
investigate symbolic data mining problems such as symbolic classification and sym-
bolic optimisation. Whilst this article has focused largely on symbolic regression,
future updates to GPTIPS 2 will include improved out-of-the-box functionality to
support symbolic classification.

Finally, it is noted that GPTIPS 2 provides a novel gene-centric approach
(and corresponding visual analytic tools) to identifying and removing unnecessary
complexity (horizontal bloat) in multigene regression models, leading to the
identification of accurate, user tailored, compact and data driven symbolic models.
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Chapter 23
eCrash: a Genetic Programming-Based Testing
Tool for Object-Oriented Software

José Carlos Bregieiro Ribeiro, Ana Filipa Nogueira, Francisco Fernández
de Vega, and Mário Alberto Zenha-Rela

23.1 Introduction

Modern software products typically contain millions of lines of code; precisely
locating the source of errors can thus be very resource consuming. Most errors
are introduced at the unit stage (Tassey 2002); Unit Testing is thus a key phase
in projects that demand high quality and reliability, and plays a major role in
the total testing efforts. Tools for automating Unit Testing improve this—largely
informal and often human-dependant—process, and have a direct impact on the
quality attributes of the implemented systems.

This paper details the architecture and functionalities of the eCrash tool, which
has recently been deployed for public availability. eCrash implements a Test Data
generation technique driven by an Evolutionary Algorithm (EA); the application of
this type of algorithms to perform Software Testing activities is often Evolutionary
Testing (ET) (Tonella 2004; Wappler and Wegener 2006) or Search-Based Test Case
Generation (SBTCG) (McMinn 2004). In ET, meta-heuristic search techniques are
used to select and produce high-quality Test Data. The search space is the input
domain of the test object, and the problem is to find a set of Test Programs that
satisfies a certain test criterion (e.g., achieving full structural coverage).
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eCrash employs Genetic Programming (GP) for evolving Test Data; it is arguably
the most natural way to represent and evolve Object-Oriented (OO) programs, and
its characteristics allow automating both the Test Object analysis and the Test Data
generation processes. It is publicly available at:

http://sourceforge.net/p/ecrashtesting/

This paper is organised as follows. In Sect. 23.2 relevant concepts and termi-
nology are introduced, and related work is reviewed. In Sect. 23.3, the eCrash
tool is described in detail. Section 23.4 discusses eCrash’s current features and
limitations, as well as topics for future work. Finally, in Sect. 23.5, some concluding
considerations are presented.

23.2 Background and Related Work

Software Testing is the process of exercising an application to detect errors and to
verify that it satisfies the specified requirements. When performing Unit Testing,
the goal is to warrant the robustness of the smallest units—the Test Objects—by
testing them in an isolated environment (Naik and Tripathy 2008). Unit Testing is
performed by executing the Test Objects in different scenarios using relevant and
interesting Test Programs (or Test Cases); a Test Set is said to be adequate with
respect to a given criterion if the entirety of Test Cases in this set satisfies this
criterion.

A Unit Test Case for OO software consists of a Method Call Sequence (MCS),
which defines the test scenario (Harman et al. 2009). During Test Program execu-
tion, all participating objects are created and put into particular states through a
series of method calls. Each Test Case focuses on the execution of one particular
public method—the Method Under Test (MUT) that belongs to a specific Class
Under Test (CUT). It is not always possible to test the operations of a class in
isolation; testing a single method involves other classes, e.g., the classes that appear
as parameter types in the method signatures of the CUT. Thus, the unit testing
process includes the creation of auxiliary objects that will be used by the MUTs;
the transitive set of classes which are relevant for testing a particular class is called
the test cluster (Wappler and Wegener 2006).

In OO programs, an object stores its state in fields and exposes its behaviour
through methods. Hiding internal state and requiring all interaction to be performed
through an object’s methods is known as data encapsulation—a fundamental
principle of Object-Oriented programming. This principle is related to the state
problem (McMinn and Holcombe 2003) which occurs with objects that exhibit
state-like qualities by storing information in fields that are protected from external
manipulation, and that can only be accessed through the public interface. The state
problem is a major challenge when automating the test data generation process
for unit testing of OO systems. Defining a test set that achieves full structural
coverage may, in fact, involve the generation of complex and intricate test cases

http://sourceforge.net/p/ecrashtesting/
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in order to define elaborate state scenarios, and requires the definition of carefully
fine-tuned methodologies that promote the traversal of problematic structures and
difficult control-flow paths. The metrics required for evaluating whether the test set
is suitable can be collected by abstracting and modelling the programs’ behaviours
which are exhibited during execution. For this purpose, a Control-Flow Graph
(CFG) is usually used to model the program representation (Vincenzi et al. 2006).
Through dynamic analysis, which involves the execution and monitoring of the
object under analysis, it is possible to observe which structural entities are traversed
during the execution of unit test cases; it can be achieved by instrumenting the test
object (Kinneer et al. 2006).

EAs use simulated evolution as a search strategy to evolve candidate solutions
for a given problem, using operators inspired by genetics and natural selection. The
application of EA to test data generation is often referred to in the literature as ET
or SBTCG (Tonella 2004; McMinn 2004). The goal of ET problems is to find a set
of test cases that satisfies a certain test criterion—such as full structural coverage
of the test object. The test objective must be defined numerically; suitable fitness
functions, which provide guidance to the search by telling how good each candidate
solution is, must be defined (Harman 2007). The search space is the set of possible
inputs to the test object—the input domain; in the particular case of OO programs,
the input domain encompasses the parameters of the test object’s public methods—
including the implicit parameter (this). As such, the goal of the evolutionary search
is to find Test Programs that define interesting state scenarios for the variables which
will be passed, as arguments, in the call to the MUT.

GP (Koza 1992), in particular, is a specialization of Genetic Algorithm (GA)
usually associated with the evolution of tree structures; it focuses on automatically
creating computer programs by means of evolution, and is thus especially suited
for representing and evolving test programs. The nodes of a GP tree are usually not
typed—i.e., all the functions are able to accept every conceivable argument. Non-
typed GP approaches are, however, unsuitable for representing test programs for
OO software. Conversely, Strongly-Typed Genetic Programming (STGP) (Montana
1995) allows the definition of types for the variables, constants, arguments and
returned values; the data type for each element must be specified beforehand in
the Function Set. These specifications ensure that the initialization process and the
various genetic operations only construct syntactically correct trees. Nevertheless,
these syntactically correct and compilable MCS can originate unfeasible test cases.
Unfeasible test cases abort prematurely during execution due to the occurrence
of a runtime exception (Wappler and Wegener 2006); the exception prevents the
evaluation of the individual (GP tree) because the final instruction of the MCS is
never reached, i.e., the call to the MUT is not performed. Contrastingly, feasible test
cases are successfully executed and terminate with the invocation of the MUT.

The first approach to the field of Object-Oriented Evolutionary Testing (OOET)
was presented in (Tonella 2004); in this work, a technique for automatically
generating input sequences for the structural Unit Testing of Java classes by
means of GAs is proposed. Possible solutions are represented as chromosomes,
which consist of the input values to use in test program execution; the creation of
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objects is also accounted for. A population of test programs is evolved in order
to increase a measure of fitness accounting for their ability to satisfy a branch
coverage criterion; new test programs are generated as long as there are targets to
be covered or a maximum execution time is reached. The eToc framework software
was implemented and made available as a result of this research.

Several OOET techniques as methodologies were proposed in the following
years. However, the test data generation frameworks developed are seldom publicly
available, with the only exceptions known to the authors being eToc,1 Testful,2

EvoSuite,3 and (more recently) eCrash.
TestFul (Miraz et al. 2009; Baresi et al. 2010; Baresi and Miraz 2010) uses a

holistic, incremental approach to the generation of test data for OO software, as the
internal states reached with previous test programs are utilized as starting points
to subsequent individuals. Strategies for enhancing the efficiency of the approach
include local search (integrating the global evolutionary search in order to form a
hybrid approach), seeding (providing an initial population so as to speed up the
start of the evolutionary process) and fitness inheritance (replacing the evaluation of
the fitness function by replacing the fitness of some individuals with and estimated
fitness inherited from their parents). A multi-objective approach is used to combine
coverage and length criteria. Test program quality is evaluated with a technique
which merges black-box analysis (to evaluate the behaviours of tested classes and
reward test programs accordingly) and white-box analysis (which utilizes coverage
criteria).

EvoSuite (Fraser and Arcuri 2011a,b, 2013) applies a hybrid approach—
integrating hybrid search, dynamic symbolic execution and testability
transformation—for generating and optimizing test suites, while suggesting possible
oracles by adding assertions that concisely summarize the current behaviour. It
implements a “whole test suite” approach towards evolving test data, meaning that
optimization is performed with respect to a coverage criterion, rather than individual
coverage goals. The rationale for this methodology is related with the observation
that coverage goals are not independent nor equally difficult, and are sometimes
unfeasible; test suites are thus evolved with the aim of covering all coverage goals
at the same time, while keeping the total size as small as possible. The EvoSuite
tool has been utilized as a platform for research and experimentation. In Pavlov
and Fraser (2012), a semi-automatic test generation approach based on EvoSuite
is presented; a human tester is included in the test generation process, and given
the opportunity to improve the current solution (an editor window is presented to
the user with a preprocessed version of the current best individual) if and when the
search stagnates, under the assumption that where the search algorithm struggles a
human tester with domain knowledge can often produce solutions easily. In Fraser
et al. (2013), the issue of primitive value (e.g., numbers and strings) optimization

1http://star.fbk.eu/etoc/.
2https://code.google.com/p/testful/.
3http://www.evosuite.org/.

http://www.evosuite.org/
https://code.google.com/p/testful/
http://star.fbk.eu/etoc/
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is addressed by extending the global search applied in EvoSuite with local search
on the individual statements of method sequences: at regular intervals, the search
inspects the primitive variables and tries to improve them.

eCrash (Ribeiro 2010) employs STGP for evolving test programs. Its devel-
opment supported a series of studies on defining strategies for addressing the
challenges posed by the OO paradigm, which include: methodologies for sys-
tematizing both the Test Object analysis (Ribeiro et al. 2007a,b) and the Test
Data generation (Ribeiro et al. 2007b; Ribeiro 2008) processes; introducing an
Input Domain Reduction methodology, based on the concept of Purity Analysis,
which allows the identification and removal of entries that are irrelevant to the
search problem because they do not contribute to the definition of relevant test
scenarios (Ribeiro et al. 2008, 2009); proposing an adaptive strategy for promoting
the introduction of relevant instructions into the generated test cases by means of
Mutation, which utilizes Adaptive EAs (Ribeiro et al. 2010); and defining an Object
Reuse methodology for GP-based approaches to Evolutionary Testing, which allows
that one object instance can be passed to multiple methods as an argument (or
multiple times to the same method as arguments) and enables the generation of
test programs that exercise structures of the software under test that would not
be reachable otherwise (Ribeiro et al. 2010). Special attention is put on bridging
and automating the static test object analysis and the iterative test data generation
processes; the Function Set is computed automatically with basis on the Test Cluster,
and the test programs are evolved iteratively solely with basis on Function Set
information.

23.3 The eCrash Tool: Features, Architecture
and Methodology

In this Section, the approach for automatic Test Data Generation employed by the
eCrash framework is described. Figures 23.1 and 23.2 provide an overview of
this framework and of the way in which its components interoperate. eCrash is
composed of the following four core modules (Fig. 23.1):

• Test Object Instrumentation (TOI) Module— executes the tasks of building the
CFG and instrumenting the Test Object.

• Automatic Test Object Analysis (ATOA) Module—performs the Test Object
analysis; its main tasks are those of defining the Test Cluster, generating the
Function Set and parameterising the Test Program generation process.

• Test Program Generation (TPG) Module—iteratively evolves potential solutions
to the problem with basis on the GP paradigm.

• Test Program Evaluation and Management (TPEM) Module—synthesises, exe-
cutes and evaluates Test Programs dynamically, and selects the Test Programs to
be included into the Test Set.
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Fig. 23.1 eCrash’s Architecture at the level of packages

Furthermore, there are three other modules that are critical to eCrash’s
operation:

• Statistics Module—generates statistical data.
• Configuration Module—deals with the system’s configurations.
• Orchestration Module—coordinates the different tasks and modules involved in

the test data generation process.

The eCrash’s architecture (Fig. 23.1) includes third-party frameworks to provide
part of the functionality, namely: a component for byte code instrumentation—the
ASM library4; and a GP processing component—the Evolutionary Computation
in Java (ECJ) framework (Luke 2013). ASM allows the CFG extraction from
the classes under analysis, and the code instrumentation for structural coverage
measurement purposes. ECJ provides the EA’s infrastructure, i.e., it evolves and
evaluates the genetic trees that represents each test case candidates.

Other third-party libraries were also included, namely: Soot,5 Velocity6 and
BeanShell.7 Soot is responsible for the Purity Analysis (Ribeiro et al. 2009)

4http://asm.ow2.org/.
5http://www.sable.mcgill.ca/soot/.
6http://velocity.apache.org/.
7http://www.beanshell.org/.

http://www.beanshell. org/
http://velocity.apache.org/
http://www.sable.mcgill.ca/soot/
http://asm.ow2.org/
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Fig. 23.2 Cross-Functional Diagram of the eCrash Framework (Ribeiro 2010)
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functionalities implemented in order to reduce the input search space for test case
generation. Velocity allows the separation of the contents of the generated files from
the format by means of the creation of templates. Finally, BeanShell allows the
dynamic execution of Java code snippets at runtime.

In Fig. 23.2 it is possible to observe the two distinct processes in which the
eCrash’s modules operate, namely the Test Object Analysis process and the Test
Data Generation process.

In order for the Test Data Generation process to take place, a preliminary analysis
of the test object must take place. Test Object Analysis is thus performed offline and
statically and, as a result, the TPEM Module is provided with the instrumented test
object and the CFG, which are required for assessing the quality of the generated
test programs; and the TPG Module is provided with the Parameter and Function
Files, which contain all the information necessary for the ECJ component of this
module to iteratively evolve test cases.

The outputs of the TPG and TPEM modules include: the Test Set (defined in
accordance to JUnit’s8 specifications); and several statistics about the Test Data
Generation process, e.g. the level of coverage attained, the number of test programs
generated, and the time spent performing the task.

The operation of the core modules is explained with further detail in the
following subsections.

23.3.1 Test Object Instrumentation (TOI) Module

The first stage of the Test Object Analysis process is performed by the TOI Module
(Fig. 23.3), and involves: (1) the creation of a CFG providing a representation of
the MUT; and (2) the instrumentation (i.e., the probe insertion) of the CUT. This
will allow evaluating the quality of the generated test programs through a dynamic
analysis process that requires executing each test program, and tracing the CFG
nodes traversed in order to gather coverage data.

The CFG building and instrumentation are performed statically (as opposed to
the dynamic process of the EA) with the aid of ASM. The instrumentation and
CFG computation steps are performed at the Java Bytecode level; working at this
level allows an object to be tested even when its source code is unavailable, thus
enabling eCrash to perform structural testing on third-party components (Ribeiro
et al. 2007a).

8http://junit.org/.

http://junit.org/
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Fig. 23.3 Test Object Analysis (Adapted from Ribeiro 2010)

23.3.2 Automatic Test Object Analysis (ATOA) Module

The second stage of the Test Object Analysis process is performed by the ATOA
Module (Fig. 23.3). It is in charge of generating all the data structures and files
required by the Test Data Generation process, including: (1) the test cluster; (2) the
ECJ Function Files; and (3) the ECJ Parameter Files. The test cluster gathers all the
types, members and constant values that can be used to test a specific MUT, and
its specification is essential to the generation of the ECJ’s configuration files, which
will subsequently be used by the GP algorithm to create suitable Test Data for the
MUT.

23.3.2.1 Test Cluster Definition

The transitive set of classes which are relevant for testing a particular class is
designated the Test Cluster for that class; its definition has great impact in the test
data generated by the proposed evolutionary strategy, given that it contains the set
of classes, methods, constructors and constants available for building the test cases.
A call to the search method of the Stack class,9 for example, requires both a
Stack instance and an Object instance (the one to be searched) to be previously
created. As such, both the Object and the Stack classes must be present in the
Test Cluster.

9http://docs.oracle.com/javase/7/docs/api/java/util/Stack.html.

http://docs.oracle.com/javase/7/docs/api/java/util/Stack.html
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Even though the selection of the classes and members that constitute the Test
Cluster is largely human-dependant, an automated mechanism for its definition
is proposed; its output can then be complemented utilizing the user’s inputs. For
each MUT, the ATOA Module statically examines the data types that compose
the MUT’s signature, i.e., the data types of the parameters list and the return
type; this is performed by means of the Reflection API10 (Zakhour et al. 2006).
When non-concrete data types are found (abstract classes and interfaces), the ATOA
searches for the set of concrete classes that can instatiate those non-concrete types,
as suggested in (Tonella 2004).

With this approach, the user’s intervention is minimised as he/she only needs to
specify the name for the CUT, which must be a non-abstract class. The jar files11

stored in the dependencies folder(s), as well as some of the libraries from the Java
environment, must contain all the classes participating in the Test Cluster analysis.

Specifically, the current methodology for performing the Test Cluster definition
involves adding the following members to the Test Cluster:

• the CUT;
• all the public members (methods and constructors) of the CUT; these members

form the set of MUT.
• all the data types (both reference and primitive) appearing as parameters in the

CUT’s members;
• the default constructors (i.e., constructors with no explicit parameters) of all the

reference data types, if available;
• if the default constructors are not available for a data type, then the following

attempts are executed (in order):

– search for constructors with parameter types already included in the Test
Cluster; if not available, then

– search for methods (already included in the Test Cluster) that return an object
of the data type; if not available, then

– search for constructors that may add new reference data types to the Test
Cluster.

• a default constant set for each of the primitive Java data types, which includes
acceptable and boundary values, and is used to sample the search space in
accordance to the methodology proposed in (Kropp and Siewiorek 1998); other
values can be added by the user.

• null constants for the reference types included into the Test Cluster; if the CUT
is listed as a parameter type then a null constant is added, otherwise it is not
included.

10http://java.sun.com/javase/6/docs/api/java/lang/reflect/package-summary.html.
11Archive of Java classes or libraries.

http://java.sun.com/javase/6/docs/api/java/lang/reflect/package-summary.html
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An alternative methodology for specifying the Test Cluster is available; it
consists of giving the user the possibility of providing the eCrash tool with a XML
file containing a specification of the data types to be included.

After the Test Cluster is defined, the ATOA module proceeds to automatically
generate the Function Set and, finally, all the configuration files required by ECJ to
evolve test programs.

23.3.2.2 Function Set Generation

eCrash’s testing methodology involves encoding and evolving candidate test pro-
grams as STGP trees. Each STGP tree must subscribe to a Function Set that defines
the STGP nodes legally permitted in the tree.

The first task of the Function Set Generation process is that of modelling the
call dependencies of the data types and members existing in the Test Cluster by
employing an Extended Method Call Dependence Graph (EMCDG) (Wappler and
Wegener 2006).

The eCrash’s Function Set generation process incorporates a technique for Input
Domain Reduction used to remove irrelevant variables, with the goal of decreasing
the number of distinct test programs that can be possibly created while searching
for a particular test scenario. A strategy employing Purity Analysis (Ribeiro et al.
2009) was used to reduce the input domain of the search problem addressed by the
eCrash’s approach. Parameter Purity Analysis is performed on the parameters of the
methods included in the Test Cluster, and consists of annotating them with a label
that identifies whether the parameter is read-only or is read-write. With basis on the
resulting information, the EMCDG is pruned to remove irrelevant edges. Finally, the
Function Set is derived from the purified EMCDG (by means of a process detailed in
Ribeiro et al. (2009)), which in turn will be used to generate the ECJ configuration
files.

23.3.2.3 ECJ Parameter and Function Files Generation

The evolution of potential solutions is performed by the TPG module, which
is supported by the STGP mechanisms available in the ECJ framework. On the
other hand, the ATOA module is responsible for automating the generation of
the problem-specific ECJ configuration files, which are required for evolving the
potential solutions: the Parameter and Function Files. The former parametrise
the EA’s configuration, whereas the latter are utilised to store the information
contained by a particular Function Set entry and, consequently, the data which will
be contained in the STGP trees’ nodes. Therefore, the generation of these files is
intrinsically based upon on the Function Set specification.
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The set of Parameter Files comprises three distinct types of files:

• General Parameters—mostly encompass GP’s configurations (e.g., termination
criteria, population size, evolutionary operators, selection strategy, and tree
builders).

• Test Object Specific Parameters—defined with basis on Function Set informa-
tion; encode all problem-related configurations, and include the definition of the
data types and GP node constraints.

• MUT Specific Parameters—define the root node of the STGP tree, which must
necessarily be the MUT.

Function Files encode all the information that will be included into the Method
Call Tree (MCT)’ nodes, which will subsequently be used to decode the STGP tree
into the Test Program (by means of the process conducted by the TPEM module).
Relevant information includes the type of node (constructor, method, or constant),
the member’s parameters data types, and the return value data type.

23.3.3 Test Program Generation (TPG) Module

This Section details how the TPG module operates: it starts by describing the
preparatory steps which precede the evolutionary run; and then, the iterative process
by means of which candidate solutions to the problem are created.

23.3.3.1 Setting Up the Evolutionary Run

The main goal of each evolutionary run is to find a set of Test Programs that achieves
full structural coverage of the CFG representing a particular MUT; as such, before
commencing the evolutionary process, a list of the CFG nodes remaining—which
initially includes all the CFG nodes—is created. At the beginning, all CFG nodes
are assigned a predefined weight value (Ribeiro et al. 2009), and then the weights
are re-evaluated in every generation.

Another preparatory step for the creation of the initial population of candidate
solutions is that of initialising the constraints’ selection probabilities. This particular
parameter is related with the adaptive strategy implemented and described in Ribeiro
et al. (2010), which promotes the introduction of relevant instructions into the
generated Test Programs by means of Mutation.

23.3.3.2 Evolving Test Programs

Test Programs are evolved while there are CFG nodes left to be covered, or until a
predefined number of generations is reached.
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The initial population is composed by individuals created randomly by means of
the selected tree building algorithm (e.g., Full and Grow); the seed for the random
generator is also configurable by the user. Subsequent populations are formed by
individuals originated from those existing in the preceding population, which may
either be cloned directly or altered before being copied. Distinct probabilities of
selecting the breeding operators may also be defined.

Each individual must be decoded into the corresponding Test Program, compiled
and executed, so as to allow verifying if it should be included into the Test Set.
Whenever a Test Case “hits” an unexercised CFG node, that node is removed from
the list of remaining CFG nodes, and the Test Case is added to the Test Set.

The TPEM module is responsible for evaluating and providing feedback regard-
ing the generated test programs; that feedback will determine whether there is the
need to continue to evolve individuals—the evaluation process is described in more
detail in the following subsections.

23.3.4 Test Program Evaluation and Management
(TPEM) Module

Test program quality evaluation involves the execution of the generated test
programs, with the intention of collecting trace information with which to derive
coverage metrics. The TPEM module is the one responsible for: the process of
transforming the individuals’ genotypes—the MCT—into the phenotypes—the Test
Programs; and the procedure of ascertaining the quality of test programs and
computing the corresponding individuals’ fitness.

23.3.4.1 Decoding Test Programs

Decoding an MCT into the Test Program for execution is a two step process
involving: (1) the linearisation of the MCT, so as to obtain the MCS; and (2) the
translation of the MCS into the Test Program. Therefore:

1. the MCS corresponds to the internal representation of the Test Program; specif-
ically, it corresponds to the linearised MCT. Listing 1 depicts a MCS obtained
from the linearisation of the MCT depicted in Fig. 23.4. Algorithm 2 details the
depth-first transversal algorithm utilised to linearise the trees.

2. the Test Program corresponds to the syntactically correct, compilable, and
executable version of the MCS, according to the Java programming language.
Listing 2 contains the Java Test Program synthesised from the MCS shown in
Listing 1.



588 J.C.B. Ribeiro et al.

Fig. 23.4 Example Method
Call Tree. The Method Under
Test is the search method
of the Stack class

Listing 1 Example MCS, resulting from the linearisation of the MCT depicted in Fig. 23.4.
1 0.0.0.0 Stack()
2 0.0.0 Stack.peek() [0.0.0.0 Stack]
3 0.0.1 Object()
4 0.0 Stack.push(Object) [0.0.0 Stack.peek(), 0.0.1 Object()]
5 0.1 Object()
6 0 Stack.search(Object) [0.0 Stack.push(Object), 0.1 Object()]

Algorithm 2: Algorithm for Method Call Tree linearisation.
Data: Method Call Tree
Result: Method Call Sequence

Global Variables:
Current Node Root Node;
Previous Method Information Object (MIO) null;
MCS empty sequence;

begin Function linearizeMCT(Current Node)
if Current Node¤ Root Node then

Previous MIO get MIO from Parent Node of Current Node;

Current MIO get MIO from Current Node;
if Previous MIO¤ null then

add Current MIO to Parameter Providers List of Previous MIO;

Child Nodes List get Child Nodes List from Current Node;
foreach Child Node in Child Nodes List do

call linearizeMCT(Child Node);

add Current MIO to MCS;

Listing 2 Example Test Program, synthesised with basis on the MCS depicted in Listing 1.
1 Stack stack1 = new Stack();
2 stack1.peek();
3 Object object2 = new Object();
4 stack1.push(object2);
5 Object object3 = new Object();
6 stack1.search(object3);
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Listing 2 depicts an example Test Program for Object-Oriented software; the
MUT is the search method of the Stack class. In this program, instructions 1, 3
and 5 instantiate new objects, whereas instructions 2 and 4 aim to change the state
of the stack0 instance variable that will be used, as the implicit parameter, in the
call to the MUT at instruction 6.

The Test Program’s source-code synthesis is performed by translating MCS into
Test Programs using the information contained in each MCS entry. Specifically,
each MCS entry contains a MIO, which encloses the information contained in the
Function Files, such as a method’s name and class, parameter types and return type;
and references to other MIOs providing the parameters (if any) for that method.

23.3.4.2 Evaluating Test Programs

The quality of a particular test program is related to the CFG nodes of the MUT
which are the targets of the evolutionary search at the current stage of the search
process. Test cases that exercise less explored CFG nodes and paths are favoured,
with the objective of finding a set of test cases that achieves full structural coverage
of the test object.

The issue of steering the search towards the traversal of interesting CFG nodes
and paths was addressed by assigning weights to the CFG nodes; the higher the
weight of a given node, the higher the cost of exercising it, and hence the higher
the cost of traversing the corresponding control-flow path. The weights of the CFG
nodes are re-evaluated at the beginning of every generation; nodes which have been
recurrently traversed in previous generations and/or lead to uninteresting paths are
penalised.

For feasible test cases, the fitness is computed with basis on their trace infor-
mation; relevant trace information includes the “Hit List”—i.e., the set of traversed
CFG nodes. This strategy causes the fitness of feasible test programs that exercise
recurrently traversed structures to fluctuate throughout the search process. Fre-
quently hit nodes will have their weight increased, thus worsening the fitness of
the test cases that exercise them.

For unfeasible test cases, the fitness of the individual is calculated in terms of the
distance between the runtime exception index (i.e., the position of the method call
that threw the exception) and the MCS length. Also, an unfeasible penalty constant
value is added to the final fitness value, so as to penalise unfeasibility. With this
methodology, and depending on the value of the unfeasible penalty constant and on
the fitness of feasible test cases, unfeasible test cases may be selected for breeding at
certain points of the evolutionary search, thus favouring the diversity and complexity
of MCSs.

The test program evaluation procedure utilized is described with detail in Ribeiro
et al. (2008) and Ribeiro et al. (2009).
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23.4 Discussion

Even though eCrash is still in a prototype development stage, it is applicable to
a vast array of OO test objects. Preliminary empirical studies were conducted
on container classes (e.g., Stack, Vector, and BitSet) in order to support the
integration of research steps and establish the suitability of the proposed ET
technique. Recent enhancements allowed performing experimental studies on larger,
real-world software products; in (Nogueira et al. 2013) eCrash was utilised to
generate structural test data for the Apache Ant project12 release 1.8.4. In this
context, eCrash’s performance was compared to that of two other well-known
and established test data generation tools: the Randoop (Pacheco and Ernst 2007)
random testing tool; and the EvoSuite ET tool. The custom-made test suite provided
by the Apache Ant’s distribution was also considered.

Results of recent experiments provided positive and solid indicators of the
effectiveness and efficiency of the eCrash tool, as well as of its robustness and
applicability to large and complex software products. Also, and most importantly,
they allowed pinpointing several topics for future work. eCrash was unable to
generate tests for some instance methods that enter infinite loops; and for some static
methods in classes that are not able to provide instances of that data type (namely,
when public constructors are not defined). Also, eCrash faced some difficulties
when testing specific problematic methods that implement: instructions from the
Reflection API; class loaders; input handlers; task and thread handlers; file and
folder managers; managers for email and download; compilers; audio and image
processors; and encapsulators of Unix commands. The difficulty in testing classes
related to certain system’s features and functionalities had, in fact, already been
reported in the literature (Fraser and Arcuri 2012). Some Java’s specific features
which must also be addressed in future work include: the support for Generics; and
enabling the testing of non-abstract classes.

Still, the positive feedback obtained from recent empirical results supported our
decision to publish the eCrash tool for public usage. Currently, a prototype that can
be executed via command-line is available, accompanied by tutorials which serve
as a quick-start guide. We are actively working on developing an IDE-integrated
version of the tool, which is expected to be more user-friendly and usable by
Software Testers in a production environment and ET researchers alike.

23.5 Conclusions

eCrash is an automated test data generation tool for Object-Oriented software.
This paper details the Evolutionary Testing methodology implemented by this

12http://ant.apache.org/.

http://ant.apache.org/
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framework, as well as its functionalities and architecture. Even though eCrash is
currently on a prototype development stage, it has already been applied to software
products of considerable complexity, and has recently been deployed for public
availability.

eCrash’s methodology for Test Data generation involves instrumenting the Test
Object, executing it with the generated Test Cases, and tracing the structures
traversed in order to derive coverage metrics. The primary goal is that of finding
a set of Test Programs that achieves full structural coverage of the Test Object. Test
Programs are encoded and evolved as STGP individuals.

This process is divided into two major moments: the Test Object Analysis phase
and Test Data Generation phase. The Test Object Analysis phase includes the
instrumentation of the CUT so as to allow the posterior coverage analysis task.
Also, all the details regarding the CUT must be retrieved, such as the methods,
dependencies and objects required to build interesting states for the class. Finally,
the construction of specific configuration files takes place; these files will be
provided as inputs for the ET algorithm. The Test Data Generation phase involves
the creation and evaluation of Test Program candidates with the aid of the ECJ
framework. This process outputs the generated test suite in JUnit compatible format.

Future work involves fixing some of the eCrash’s limitations identified in recent
experiments, which focused on applying this tool to large and complex software
products. It also entails the implementation of specific features that will allow
eCrash to achieve better results in specific application scenarios, such as the
support for the generation of test data for non-public members and abstract classes.
Moreover, we expect to be able to use eCrash to gather information on several
quality attributes of the software under test with basis on the characteristics of the
automatically generated test suite.

eCrash is publicly available at:

http://sourceforge.net/p/ecrashtesting/
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