
Chapter 1
Thermodynamics of Molecular Liquids
in Random Porous Media: Scaled Particle
Theory and the Generalized Van der
Waals Equation

Myroslav Holovko, Volodymyr Shmotolokha and Taras Patsahan

Abstract A new approach to the theoretical description of molecular liquids
confined in random porous media is proposed in order to study their thermody-
namic properties. The models applied in our study are characterized by the inter-
molecular interactions consisting of repulsive and attractive parts, both of which are
of the anisotropic nature. To take into account an anisotropy of the repulsion the
scaled particle theory (SPT) is extended for the system of a hard convex body
(HCB) fluid in a quenched matrix of hard particles forming a random porous
medium. A contribution of the anisotropic attractive interaction is considered on the
level of the mean-field or Van der Waals approximation. Therefore, combining the
obtained analytical results within the framework of the perturbation theory the
equation of state for confined liquids is derived. On the basis of the developed
approach we can consider a fluid in a random matrix using various models.
A reliability of the SPT theory is proved on the examples of hard sphere and hard
spherocylinder fluids in different matrices. For a spherocylinder fluid with attractive
intermolecular interaction the phase transition diagrams are constructed to study a
vapour-liquid-nematic equilibrium and the effect of confinement on it. It is shown
that a matrix porosity decrease leads to decreasing of the critical temperature and
the critical density of vapour-liquid phase transition. In the case of long sphero-
cylinders (L1=D1 ¼ 10) the vapour-liquid transition of a fluid in a matrix can
disappear completely being suppressed by the isotropic-nematic phase transition.
On the other hand the coexistence between vapour and nematic phases is observed
for a spherocylinder fluid at the conditions comparable to the Onsager limit
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(L1=D1 ¼ 80). The anisotropy of attractive potential causes the broadening of the
liquid-nematic coexistence region and in the case of essentially high rates of
anisotropy the vapour-liquid transition vanishes. It is noticed that the presence of
porous medium enhances this effect. The presented review is aimed to illustrate an
application of the SPT approach which developed recently for fluids of
non-spherical molecules confined in random porous media.

1.1 Introduction

Many different materials such as silicas and zeolites, activated carbons and clays,
cements and ceramics, metal foams and others can be considered as porous media.
Molecular fluids confined in such porous materials with pore sizes ranging from a
few nanometers to hundreds nanometers can undergo drastic modifications in their
physical and physicochemical properties. For example, it is well established that
confinement can induce drastic shifts of phase equilibria, e.g. narrowing of the
vapour-liquid coexistence curve, lowering of the pore critical temperature,
decreasing of the critical density and the appearance of new types of phase transi-
tions, which are not observed in the bulk [1]. Besides its fundamental interest, a
thorough understanding of the influence of confinement on the physical and
chemical properties of fluids is highly useful in many areas of applied science and
engineering, geosciences, biophysics, material science etc. Different porous mate-
rials are widely used in the chemical, oil and gas, food and pharmaceutical industries
for pollution control, mixture separation, and as catalyst or catalyst support for
chemical reactions. In parallel with experimental studies a lot of different molecular
models were introduced for the investigation of the properties of fluids in porous
media within the framework of computer simulations and theoretical approaches.
Atomistic molecular simulations methods have been widely used to characterize
adsorption in porous materials [2, 3], including the structure and dynamics of
adsorbed phases, thermodynamics of adsorption, the influence of structural hetero-
geneity of pores and chemical heterogeneity of pore surface [4, 5], the influence of
porous media on the isotropic-nematic phase transition like in confined liquid
crystals fluids [6, 7]. Also numerous computer simulation studies have been devoted
to the same problems, but in isolated pores of slit-like or cylindrical shapes.
Theoretical approaches used for the description of fluids in porous media are mostly
based on the method of Ornstein-Zernike equations [8–11] and the method of
density functional theory [12, 13]. In the present review we consider fluids confined
in porous materials with a random or disordered structure, in which pores are formed
by randomly distributed solid particles. In these materials the pore shapes and sizes
are not well defined, they are not isolated but build a network with very complex
topology. The systems of such a kind cannot be described by a single pore model,
thus in theoretical approaches as well as in computer simulations one should take
into account the whole variety of statistically probable configurations of pores.

4 M. Holovko et al.



Much theoretical efforts have been devoted within the framework of statistical
mechanical methods to a study of fluids in random porous media during the last
three decades starting from the pioneering work of Madden and Gland [8]. In this
work a porous medium is presented as a quenched configuration of randomly
distributed spherical particles that form so-called matrix [8]. The specific of
description of fluids in such porous media is connected with the double
quenched-annealed averages: the annealed average is taken over all fluid configu-
rations and the additional quenched average should be taken over all realizations of
the matrix. One standard approach to solve this problem is based on the replica
method. It consists in the description of a fluid in a random porous medium as the
ðsþ 1Þ component equilibrium mixture of a matrix and s replicated copies of a
fluid, which do not interact with each other, and then the limit s ! 0 is to be taken.
Using the replica Ornstein-Zernike (ROZ) integral equation theory [9], the statis-
tical mechanics approach of liquid state was extended to a description of different
models of a fluid confined in random porous matrices [14, 15] including the
chemical reacting fluids adsorbed in porous media [16, 17]. However, unlike bulk
fluids, no analytical result have been obtained from the ROZ integral equations
approach even for the simplest model such as a hard-sphere fluid in a hard sphere
matrix.

The first rather accurate analytical results for a hard sphere fluid in hard-sphere
(HS) and overlapping hard-sphere (OHS) matrices were obtained quite recently
[18–20] by extending the classic scaled particle theory (SPT) [21–23]. The SPT
approach is based on a combination of the exact treatment of a point scaled particle
in a HS fluid with the thermodynamic consideration of a finite size scaled particle.
The exact result for a point scaled particle in a HS fluid confined in a random matrix
was obtained in [18]. However, the approach proposed in [18] and named as SPT1
contains a subtle inconsistency appearing when a size of matrix particles is
essentially larger than a size of fluid particles. Later, this inconsistency was elim-
inated in a new approach named as SPT2 [20].

The expressions obtained in SPT2 include two types of porosities. One of them
is defined by a pure geometry of porous medium (geometrical porosity /0 char-
acterizing the free volume for a fluid) and the second one is defined by the chemical
potential of a fluid in the limit of infinite dilution (probe particle porosity / char-
acterizing the adsorption of a fluid in an empty matrix). On the basis of SPT2
approach the approximation SPT2b was proposed, and it was shown that it
reproduces the computer simulation data with a very good accuracy at small and
intermediate fluid densities. However, the expressions obtained in the SPT2 and
SPT2b approximations contain a divergence at the packing fraction of fluid equal to
the probe particle porosity /. Consequently, the prediction of thermodynamic
properties at high densities of a fluid can be inaccurate, especially when it reaches
close packing conditions. An accuracy of SPT2 and SPT2b approximations also
becomes worse when fluid and matrix particles are of comparable sizes [20]. Later,
in the investigation of one-dimensional hard rode fluid in a random porous medium
[24] a series of the new approximations SPT2b1, SPT2b2 and SPT2b3 were pro-
posed, which are free of the mentioned drawbacks. Two last approximations
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contain the third type of porosity /� defined by the maximum value of packing
fraction of fluid in a porous medium. It was shown that these new approximations
essentially improve the SPT predictions at high fluid densities. The application of
the SPT theory and generalization of the SPT2b1 approximation to the case of HS
fluid confined in random matrices were reviewed recently in [25], where thermo-
dynamic properties of fluid were calculated. A comparison of obtained results with
computer simulation data proved applicability and high reliability of the SPT for the
wide range of fluid densities and different matrix parameters.

A remarkable feature of the SPT theory is a possibility of its generalization for
the description of non-spherical hard convex body fluids in the bulk, which can be
done using one [26, 27] and two [28] scaling parameters. The SPT theory can also
be applied for the description of nematic ordering in hard convex body
(HCB) fluids [28–30]. Recently, the SPT theory was extended for HCB fluids
confined in random matrix [31]. The generalization of the SPT theory for a HCB
fluid confined in a random porous medium with a use of two scaling parameters was
presented, and the effect of porous media on the orientational ordering in a HCB
fluid was studied [32].

In this chapter the extension of SPT theory for the description of thermodynamic
properties of non-spherical molecular fluids confined in random porous media is
reviewed. First we present the generalization of SPT theory for a HCB fluid in
random porous media. Then we consider the SPT theory with two scaling
parameters for the description of a hard spherocylinder fluid in a random matrix.
After that a system of hard spherocylinders in a matrix is used as the reference
system [33, 34] in the generalization of Van der Waals equation for anisotropic
fluids confined in random porous media. Finally, the derived equations are applied
to investigate the effect of porous media on the vapour-liquid-nematic phase
equilibria in molecular fluids.

1.2 HCB Fluids in Random Porous Media: SPT with One
Scaling Parameter

Hard convex body (HCB) particles are characterized by three geometrical param-
eters—the volume V, the surface area S and the mean curvature R with a factor
1=4p. For example, for a frequently considered case of a system of spherocylin-
drical rods with the length L and the diameter D, these parameters are

V ¼ 1
4
pD2Lþ 1

6
pD3; S ¼ pDLþ pD2; R ¼ 1

4
Lþ 1

2
D: ð1:1Þ

The basic idea of the SPT approach is an insertion of an additional scaled
particle of a variable size into a fluid. To this aim we introduce the scaling
parameter ks in such a way that the volume Vs, the surface area Ss and the curvature
Rs of scaled particle are modified as
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Vs ¼ k3sV1; Ss ¼ k2s S1; Rs ¼ ksR1; ð1:2Þ

where V1; S1 andR1 are the volume, the surface area and the mean curvature of a
fluid particle respectively. Hereafter, we use the conventional notations [9, 14, 15],
where the index ‘‘1’’ is used to denote fluid component and the index ‘‘0’’ denotes
matrix particles. For scaled particles the index ‘‘s’’ is used.

Procedure of insertion of the scaled particle into a fluid is equivalent to a creation
of cavity, which is free of any other fluid particles. The key point of considered
reformulation of the SPT theory consists in a derivation of the excess chemical
potential of a scaled particle lexs , which is equal to a work needed to create the
corresponding cavity. In the presence of a porous medium the expression of excess
chemical potential for a small scaled particle in a HCB fluid can be written in the
form

blexs ¼ bls � lnðq1K3
1K1RÞ ¼ ln p0ðksÞ

� ln 1� g1
p0ðksÞ 1þ 3ksa1 þ 3k2sa1 þ k3s

� �� �
;

ð1:3Þ

where b ¼ 1=ðkBTÞ; kB is the Boltzmann constant, T is the temperature, g1 ¼ q1V1

is the fluid packing fraction, q1 is the fluid density, K1 is the fluid thermal wave
length, the quantity K�1

1R is the rotational partition function of a single molecule
[35], and a1 ¼ R1S1

3V1
is the non-sphericity parameter of a fluid particle. The term

p0ðksÞ ¼ expð�bl0s Þ is defined by the excess chemical potential of the scaled
particle confined in an empty matrix l0s , and it has a meaning of probability to find a
cavity created by the scaled particle in the matrix in the absence of fluid particles.

For the large scaled particle the excess chemical potential is given by the
thermodynamical expression for the work needed to create a macroscopic cavity
inside a fluid confined in a porous medium. It can be presented as follows

blexs ¼ wðksÞ þ bPVs

p0ðksÞ ; ð1:4Þ

where P is the pressure of fluid, Vs is the volume of scaled particle. The multiplier
1=p0ðksÞ appears due to an excluded volume occupied by matrix particles, which
can be considered as a probability to find a cavity created by a scaled particle in the
matrix in the absence of fluid particles. This probability is related directly to two
different types of the porosities [20]. The first one corresponds to the case of ks ¼ 0
and gives the geometrical porosity

/0 ¼ p0ðks ¼ 0Þ; ð1:5Þ

which depends only on a structure of matrix and it is related to the volume of a void
between matrix particles. The second type of porosity corresponds to the case of
ks ¼ 1 and gives the probe particle porosity [20]
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/ ¼ p0ðks ¼ 1Þ; ð1:6Þ

which is defined by the excess chemical potential of a fluid in the limit of infinite
dilution l01. Thus, it depends also on a nature of fluid under study.

According to the ansatz of the SPT theory [18–25], wðksÞ can be presented in the
form of expansion

wðksÞ ¼ w0 þ w1ks þ 1
2
w2k

2
s : ð1:7Þ

The coefficients of this expansion can be found from the continuity of lexs and its
corresponding derivatives @lexs =@ks and @2lexs =@k

2
s at ks ¼ 0. Consequently, one

derives the following expressions [25–31]:

w0 ¼ � lnð1� g1=/0Þ;

w1 ¼ g1=/0

1� g1=/0
3a1 � p00

/0

� �
;

w2 ¼ g1=/0

1� g1=/0
6a1 � 6a1

p00
/0

þ 2
p00
/0

� �2

� p000
/0

" #

þ g1=/0

1� g1=/0

� �2

3a1 � p00
/0

� �2

;

ð1:8Þ

where p00 ¼ @p0ðksÞ
@ks

and p000 ¼ @2p0ðksÞ
@k2s

at ks ¼ 0.

After setting ks ¼ 1 the expression (1.4) leads to the relation between the
pressure P and the excess chemical potential lex1 of a fluid in a matrix

b lex1 � l01
� � ¼ � ln 1� g1=/0ð Þ þ A

g1=/0

1� g1=/0
þ B

ðg1=/0Þ2
ð1� g1=/0Þ2

þ bP
q1

g1
/
;

ð1:9Þ

where the coefficients A and B define the porous medium structure and the
expressions for them are as follow:

A ¼ 3a1 � p00
/0

þ 1
2

6a1 � 6
p00
/0

a1 þ 2
p00
/0

� �2

� p000
/0

" #
;

B ¼ 1
2

3a1 � p00
/0

� �2

:

ð1:10Þ

Using the Gibbs-Duhem equation
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@P
@q1

� �
T
¼ q1

@l1
@q1

� �
T

ð1:11Þ

one derives the fluid compressibility

b
@P
@q1

� �
T
¼ 1

1� g1=/ð Þ þ ð1þ AÞ g1=/0

1� g1=/ð Þ 1� g1=/0ð Þ

þ ðAþ 2BÞ g1=/0ð Þ2
1� g1=/ð Þ 1� g1=/0ð Þ2

þ 2B
g1=/0ð Þ3

1� g1=/ð Þ 1� g1=/0ð Þ3 ;

ð1:12Þ

which makes it possible to obtain the total chemical potential,
bl1 ¼ lnðq1K3

1K1RÞ þ blex1 , and the pressure of a fluid, and a result of integration
of (1.12) over the fluid density leads to [31]:

bðlex1 � l01Þ ¼ � lnð1� g1=/Þ þ ðAþ 1Þ /
/� /0

ln
1� g1=/
1� g1=/0

þ ðAþ 2BÞ /
/� /0

g1=/0

1� g1=/0
� /
/� /0

ln
1� g1=/
1� g1=/0

� �

þ 2B
/

/� /0

1
2

ðg1=/0Þ2
ð1� g1=/0Þ2

� /
/� /0

g1=/0

1� g1=/0

"

þ /2

ð/� /0Þ2
ln

1� g1=/
1� g1=/0

#
;

ð1:13Þ

bP
q1

¼ � /
g1

ln
1� g1=/
1� g1=/0

þ ð1þ AÞ /
g1

/
/� /0

ln
1� g1=/
1� g1=/0

þ ðAþ 2BÞ /
/� /0

1
1� g1=/0

� /
g1

/
/� /0

ln
1� g1=/
1� g1=/0

� �

þ 2B
/

/� /0

1
2

g1=/0

ð1� g1=/0Þ2
� 2/� /0

/� /0

1
1� g1=/0

"

þ /
g1

/2

ð/� /0Þ2
ln

1� g1=/
1� g1=/0

#
:

ð1:14Þ

The expressions (1.13) and (1.14) are the result of SPT2 approach. At high fluid
densities the obtained expressions have two divergences, which appear in g1 ¼ /
and g1 ¼ /0 respectively. Since /\/0 the first divergence in g1 ¼ / occurs at
lower densities than the second one. From geometrical point of view such a
divergence should appear at higher densities close to the maximum value of fluid
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packing fraction gmax
1 available for a fluid in a given matrix. The different correc-

tions and improvements of the SPT2 approach were proposed in [20, 24, 25, 31].
First corrections were given in [20], where on the basis of SPT2 four approxima-
tions were developed. One of them called SPT2b can be derived if / is replaced by
/0 everywhere in (1.12) except the first term. As a result, (1.13) and (1.14) can be
rewritten in the following form

b lex1 � l01
� �SPT2b ¼ � lnð1� g1=/Þ þ ð1þ AÞ g1=/0

1� g1=/0

þ 1
2
ðAþ 2BÞ ðg1=/0Þ2

ð1� g1=/0Þ2
þ 2
3
B

ðg1=/0Þ3
ð1� g1=/0Þ3

;

ð1:15Þ

bP
q1

� �SPT2b

¼ � /
g1

ln 1� g1
/

� �
þ /0

g1
ln 1� g1

/0

� �
þ 1

1� g1=/0

þ A
2

g1=/0

ð1� g1=/0Þ2
þ 2B

3
ðg1=/0Þ2

ð1� g1=/0Þ3
:

ð1:16Þ

The second approximation proposed in [24, 25] is called SPT2b1 and it corrects
SPT2b by removing the divergence at g1 ¼ / through an expansion of the loga-
rithmic term in (1.15)

� ln 1� g1=/ð Þ � � ln 1� g1=/0ð Þ þ g1ð/0 � /Þ
/0/ð1� g1=/0Þ

: ð1:17Þ

Therefore, one obtains the expressions for the chemical potential and pressure
within the SPT2b1 approximation as follows

b lex1 � l01
� �SPT2b1 ¼ � lnð1� g1=/0Þ þ ð1þ AÞ g1=/0

1� g1=/0
þ g1ð/0 � /Þ

/0/ð1� g1=/0Þ

þ 1
2
ðAþ 2BÞ ðg1=/0Þ2

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ3
ð1� g1=/0Þ3

;

ð1:18Þ

bP
q1

� �SPT2b1

¼ 1
1� g1=/0

/0

/
þ /0

/
� 1

� �
/0

g1
ln 1� g1

/0

� �

þ A
2

g1=/0

ð1� g1=/0Þ2
þ 2B

3
ðg1=/0Þ2

ð1� g1=/0Þ3
:

ð1:19Þ

Two other approximations called SPT2b2 and SPT2b3 contain the third type of
porosity /� defined by the maximum value of packing fraction of a fluid in a porous
medium and provide the more correct description of thermodynamic properties of a
fluid in the high-density region, which corresponds to the close packing condition.
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To introduce /� in the expression for the chemical potential (1.15) the logarithmic
term is modified in the following way

� lnð1� g1=/Þ � � lnð1� g1=/
�Þ þ g1ð/� � /Þ

/�/ð1� g1=/
�Þ : ð1:20Þ

Consequently, the SPT2b2 approximation is derived as

b lex1 � l01
� �SPT2b2 ¼ � lnð1� g1=/

�Þ þ g1=/0

1� g1=/0
ð1þ AÞ

þ g1ð/� � /Þ
/�/ð1� g1=/

�Þ þ 1
2
ðAþ 2BÞ ðg1=/0Þ2

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ3
ð1� g1=/0Þ3

;

ð1:21Þ

bP
q1

� �SPT2b2

¼ � /�

g1
ln 1� g1

/�

� �
þ /0

g1
ln 1� g1

/0

� �
þ 1

1� g1=/0

þ /� � /
/

ln 1� g1=/
�ð Þ þ g1=/

�

1� g1=/
�

� �
:

þ A
2

g1=/0

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ2
ð1� g1=/0Þ3

:

ð1:22Þ

Finally, the SPT2b3 approximation can be obtained similar to the SPT2b2
approximation through an expansion of the logarithmic term lnð1� g1=/

�Þ in the
expression (1.21) for the chemical potential. As a result we obtain

b lex1 � l01
� �SPT2b3 ¼ � lnð1� g1=/0Þ þ g1=/

�

1� g1=/0
þ g1ð/� � /Þ

/�/ð1� g1=/
�Þ

þ A
g1=/0

1� g1=/0
þ 1

2
ðAþ 2BÞ ðg1=/0Þ2

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ3
ð1� g1=/0Þ3

;

ð1:23Þ

bP
q1

� �SPT2b3

¼ /� � /
/

ln 1� g1
/�

� �
þ g1=/

�

1� g1=/
�

� �
þ 1

1� g1=/0

þ /0 � /�

/� lnð1� g1=/0Þ þ g1=/0

1� g1=/0

� �

þ A
2

g1=/0

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ2
ð1� g1=/0Þ3

:

ð1:24Þ

In [24] it was shown on the example of one-dimensional system of a fluid in a
random matrix that /� is related to /0 and / with the following relation
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1=/� ¼ 1=/� 1=/0ð Þ= ln /0=/ð Þ: ð1:25Þ

Since (1.25) is presented in the general form and does not depend directly on the
dimensionality of the system, we extend its application to the three-dimensional
case. In the bulk all the porosities are equal / ¼ /0 ¼ /� ¼ 1. Therefore, the
expressions for pressure and chemical potential of bulk hard sphere (HS) and HCB
fluids have the same divergence at g1 ¼ 1 [33, 34]. In the case of a fluid in a porous
medium one gets an inequality /\/� \/0. It should be noted that in the case
when matrix particles size is essentially larger than a size of fluid particles, i.e. a size
ratio of fluid to matrix particles tends to zero, hence the porosities tend to the same
value / � /0 � /� and all the considered approximations lead to the same result,
which is equivalent to a bulk fluid with the effective density ĝ1 ¼ g1=/0.

An application of the developed theory is illustrated for two models of porous
medium in [31]. The first model is a HCB matrix and the second model is an
overlapping hard convex body (OHCB) matrix. The geometrical porosities for these
models have the form [31]

/0 ¼ 1� g0 ð1:26Þ

for a HCB matrix and

/0 ¼ e�g0 ð1:27Þ

for an OHCB matrix, where g0 ¼ q0V0, q0 ¼ N0
V , N0 is the number of matrix par-

ticles, V0 is the volume of a matrix particle and V is the total volume of system.
Using the SPT theory [27] the following expression for the probe particle

porosity / is derived

/ ¼ e�bl01 ¼ ð1� g0Þ exp � g0
1� g0

3a0
R1

R0
þ S1
S0

� �
þ V1

V0

� ���

þ 3a0g20
2ð1� g0Þ2

3a0
R2
1

R2
0
þ 2

V1

V0

� �
þ 3a20g

3
0

ð1� g0Þ3
V1

V0

!# ð1:28Þ

for the case of a HCB matrix and

/ ¼ e�bl01 ¼ exp �g0 1þ 3a0
R1

R0
þ 3a0

S1
S0

þ V1

V0

� �� �
ð1:29Þ

for the case of an OHCB matrix, where S0 and R0 are the surface area and the mean
curvature of matrix particles respectively, a0 ¼ R0S0=3V0 is the parameter of
non-sphericity of matrix particles.

The probability to find a place for the scaled particle in a HCB matrix is equal to

12 M. Holovko et al.



p0ðksÞ ¼ 1� g0 1 þ 3a0
R1ks
R0

þ 3a0
k2s S1
S0

þ k3s
V1

V0

� �
: ð1:30Þ

The corresponding derivatives from (1.30) used for the SPT ansatz are

p00 ¼ �3g0a0
R1

R0
; p000 ¼ �6g0a0

S1
S0

: ð1:31Þ

Similarly, in the case of OHCB matrix one can obtain an expression for the
probability p0ðksÞ:

p0ðksÞ ¼ exp �g0 1þ 3a0
R1

R0
ks þ 3a0

S1
S0

k2s þ
V1

V0
k3s

� �� �
ð1:32Þ

as well as the expressions for its derivatives

p00 ¼ �3g0a0
R1

R0
/0; p000 ¼ �3g0a0 2

S1
S0

� 3g0a0
R1

R0

� �2
 !

/0: ð1:33Þ

Therefore, using (1.10) the coefficients A and B can be derived as

A ¼ 3 2a1 þ a0
g0

ð1� g0Þ
R1

R0
ð1 þ 3a1Þ þ a0

S1
S0

g0
ð1� g0Þ

þ 3a20
R2
1

R2
0

g20
ð1� g0Þ2

" #
;

B ¼ 9
2

a1 þ a0
R1

R0

g0
1� g0

� �2

ð1:34Þ

for a HCB fluid in a HCB matrix and as

A ¼ 3 2a1 þ a0g0
R1

R0
ð1 þ 3a1Þ þ a0

S1
S0

g0 þ 3a20
R2
1

R2
0
g20

� �
;

B ¼ 9
2

a1 þ a0
R1

R0
g0

� �2 ð1:35Þ

for a HCB fluid in an OHCB matrix.
An accuracy of the approximations proposed in [31] were tested by a compar-

ison with computer simulation data obtained from the grand-canonical Monte Carlo
(GCMC) simulations [36]. In this study a model of a HS fluid in a OHCB matrix
was investigated. Four different OHCB matrices with parameters presented in
Table 1.1 were considered. Using the different approximations the chemical
potential depending on the fluid density (packing fraction) is calculated (Fig. 1.1).
As one can see at low fluid densities all approximations are correct except the SPT2
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approach, which overestimates the chemical potential at intermediate densities in a
comparison with the GCMC data. On the other hand, the SPT2b approximation
improves essentially the results for intermediate fluid densities. In the most con-
sidered cases the results of SPT2b coincide with other approximations (SPT2b1,
SPT2b2 and SPT2b3) and the observed deviations are comparable with the sta-
tistical errors of the simulations (0.5 %). However, as it was shown in [31] in the
case of a large difference between the porosities / and /0, at high fluid densities the
approximations SPT2b1, SPT2b2 and SPT2b3 give better results than the SPT2b
approach.

Table 1.1 Parameters and
characteristics of matrices for
the systems A, B, C and D

System L0 D0 g0 /0 / a0
A 2.0 3.0 0.282 0.754 0.556 1.111

B 3.0 2.0 0.271 0.762 0.493 1.346

C 5.0 2.0 0.099 0.9052 0.781 1.658

D 10.0 1.0 0.167 0.846 0.491 4.125

Fig. 1.1 The excess chemical potential blex1 versus the fluid packing fraction g1 for a HS fluid in
random OHCB matrices. The parameters of matrices are presented in Table 1.1. A comparison of
the different approximations (lines) with the GCMC simulation results (symbols)
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1.3 Hard Spherocylinder Fluid in Random Porous Media:
SPT with Two Scaling Parameters

Generally, if a shape of hard convex body particles is not strictly specified or it is
rather complex, it is acceptable to restrict oneself by one scaling parameter. On the
other hand, particles of spherocylindrical shape are characterized only by two
measures, i.e. by their length and diameter. Therefore, applying the SPT formalism
it is reasonable to change sizes of scaled particle along exactly these two measures.
We consider two scaling parameters generalization of the SPT theory for the
description of thermodynamic properties of a hard spherocylinder (HSC) fluid in
random matrices. We also apply these results to a study of the effect of porous
medium on the isotropic-nematic orientational transition appearing in this fluid.

As it was mentioned above a hard spherocylinder system is defined by the
volume V, the surface area S and the mean curvature R given by (1.1). According to
the general idea of the SPT theory [28, 29, 32] we introduce in a confined HSC fluid
an additional hard spherocylinder with the scaling diameter Ds and the scaling
length Ls:

Ds ¼ ksD1; Ls ¼ asL1; ð1:36Þ

where D1 and L1 are the diameter and the length of fluid spherocylinders respec-
tively. The excess chemical potential for the small scaled particle in a HSC fluid
confined in a matrix can be written in the form

blexs ¼ � ln p0ðas; ksÞ � ln 1� g1
V1p0ðas; ksÞ

p
6
D3

1ð1þ ksÞ3
��

þ p
4
D2

1L1ð1 þ ksÞ2ð1 þ asÞ

þ p
4
D1L

2
1ð1 þ ksÞas

Z
f ðX1Þf ðX2Þ sin#12dX1dX2

��
;

ð1:37Þ

where g1 ¼ q1V1 is the fluid packing fraction and q1 is the fluid density; p0ðas; ksÞ
is the probability to find a cavity created by a scale particle in the empty matrix and
it is defined by the excess chemical potential l0s of the scale particle in the limit of
infinite dilution of a fluid; X ¼ ð#;uÞ is the orientation of particles defined by the
angles # and u; dX ¼ 1

4p sin#d#du is the normalized angle element; #12 is the
angle between orientational vectors of two molecules; f ðXÞ is the single orienta-
tional distribution function normalized in such a way that

Z
f ðXÞdX ¼ 1: ð1:38Þ

For the large scale particle the excess chemical potential is given by a thermody-
namic expression, which can be presented in the form similar to (1.4):
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blexs ¼ wðas; ksÞ þ bPVs=p0ðks; asÞ; ð1:39Þ

where wðas; ksÞ is the following:

wðks; asÞ ¼ w00 þ w10ks þ w01as þ w11asks þ w20k
2
s

2
: ð1:40Þ

According to the ansatz of SPT theory [28, 29, 32] the coefficients of the expansion
(1.40) can be found from the continuity of the excess chemical potential given in
(1.37) and (1.39), as well as from the corresponding derivatives @lexs =@ks,
@lexs =@as, @

2lexs =@as@ks and @2lexs =@k
2
s . As a result one derives the following

coefficients

w00 ¼ � ln 1� g1=/0ð Þ; ð1:41Þ

w10 ¼ g1=/0

1� g1=/0

6c1
3c1 � 1

� p00k
/0

� �
; ð1:42Þ

w01 ¼ g1=/0

1� g1=/0

3ðc1 � 1Þ
3c1 � 1

þ 3ðc1 � 1Þ2
3c1 � 1

sðf Þ � p00a
/0

 !
; ð1:43Þ

w11 ¼ g1=/0

1� g1=/0

6ðc1 � 1Þ
3c1 � 1

þ 3ðc1 � 1Þ2sðf Þ
3c1 � 1

� p000ak
/0

 

þ 2
p00ap

0
0k

/2
0

� 3ðc1 � 1Þ þ 3ðc1 � 1Þ2sðf Þ
3c1 � 1

p00k
/0

� 6c1
3c1 � 1

p00a
/0

!

þ g1=/0

1� g1=/0

� �2 6c1
3c1 � 1

� p00k
/0

� �

� 3ðc1 � 1Þ
3c1 � 1

þ 3ðc1 � 1Þ2sðf Þ
3c1 � 1

� p00a
/0

 !
;

ð1:44Þ

w20 ¼ g1=/0

1� g1=/0

6 1þ c1ð Þ
3c1 � 1

� 12c1
3c1 � 1

p00k
/0

þ 2
p00k
/0

� �2

� p000kk
/0

 !

þ g1=/0

1� g1=/0

� �2 6c1
3c1 � 1

� p00k
/0

� �2

;

ð1:45Þ

where

c1 ¼ 1þ L1
D1

; ð1:46Þ
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sðf Þ ¼ 4
p

Z
f ðX1Þf ðX2Þ sin#12dX1dX2: ð1:47Þ

If both the scale parameters equal to zero as ¼ ks ¼ 0, the probability p0 is
equivalent to the geometrical porosity:

/0 ¼ p0 as ¼ ks ¼ 0ð Þ; ð1:48Þ

and in the case of HSC matrix or overlapping HSC matrix it is defined by the
relations (1.26) or (1.27) respectively.

Setting as ¼ ks ¼ 1 in the (1.39) leads to the expression similar to (1.9), the
chemical potential lex1 of a fluid in a matrix. However, now the constants A and
B have more general and complicated form

Aðsðf ÞÞ ¼ 6þ 6 c1 � 1ð Þ2sðf Þ
3c1 � 1

� p00k
/0

4þ 3 c1 � 1ð Þ2sðf Þ
3c1 � 1

 !
� p00a

/0
1þ 6c1

3c1 � 1

� �

� p000ak
/0

� 1
2
p000kk
/0

þ 2
p00ap

0
0k

/2
0

þ p00k
/0

� �2

;

ð1:49Þ

Bðsðf ÞÞ ¼ 6c1
3c1 � 1

� p00k
/0

� �

� 3 2c1 � 1ð Þ
3c1 � 1

þ 3 c1 � 1ð Þ2sðf Þ
3c1 � 1

� p00a
/0

� 1
2
p00k
/0

 !
;

ð1:50Þ

where p00k ¼ @p0ðas;ksÞ
@ks

; p00a ¼ @p0ðas;ksÞ
@as

; p000ak ¼ @2p0ðas;ksÞ
@as@ks

; p000kk ¼ @2p0ðas;ksÞ
@k2s

are the cor-

responding derivatives at a ¼ k ¼ 0. Also the probe particle porosity / can be
obtained from

/ ¼ p0 as ¼ ks ¼ 1ð Þ: ð1:51Þ

In order to derive expressions for the chemical potential we repeat the calcula-
tions presented in the previous section. Using the Gibbs-Duhem equation we get an
expression for the compressibility in the form (1.12). After integration of this
expression over the fluid density we obtain the excess chemical potential lex1 and
the pressure of a fluid in the form similar to the SPT2 approximation (1.13)–(1.14).
On the basis of SPT2 result we construct the SPT2b approximation in the form
(1.15) to (1.16). Following to the the scheme presented in the previous section we
also derive the expressions for the SPT2b1, SPT2b2 and SPT2b3 approximations in
the form like (1.18)–(1.19), (1.21)–(1.22) and (1.23)–(1.24) respectively. The only
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difference in the new expressions of the chemical potential in a comparison with
ones obtained in the previous section is an additional entropic term rðf Þ:

rðf Þ ¼
Z

f ðXÞ ln f ðXÞdX: ð1:52Þ

As an example we present here the expression for the chemical potential of a
fluid confined in a matrix using the SPT2b approximation:

bðlex1 � l01ÞSPT2b ¼ rðf Þ � lnð1� g1=/Þ þ ð1þ Aðsðf ÞÞÞ g1=/0

1� g1=/0

þ 1
2
ðAðsðf ÞÞ þ 2Bðsðf ÞÞÞ ðg1=/0Þ2

ð1� g1=/0Þ2

þ 2
3
Bðsðf ÞÞ ðg1=/0Þ3

ð1� g1=/0Þ3
:

ð1:53Þ

From the thermodynamic relationship

bF
V

¼ bl1q1 � bP ð1:54Þ

one can obtain the expression for the free energy. Within the SPT2b approximation
the free energy of a confined fluid is the following

bV�1FSPT2b ¼ q1rðf Þ þ q1ðlnðK3
1q1Þ � 1Þ þ bl01q1 � q1 lnð1� g1=/Þ

þ q1/
g1

lnð1� g1=/Þ � q1/0

g1
lnð1� g1=/0Þ

þ q1
Aðsðf ÞÞ

2
g1=/0

1� g1=/0
þ q1

Bðsðf ÞÞ
3

g1=/0

1� g1=/0

� �2

:

ð1:55Þ

Now we return to the orientational distribution function f ðXÞ introduced in the
beginning of this section. Distribution function f ðXÞ can be determined from a
minimization of the free energy with respect to variations in this distribution. This
procedure leads to the nonlinear integral equation

ln f ðX1Þ þ 1þ C
Z

f ðX2Þ sin#12dX2 ¼ 0; ð1:56Þ

where
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C ¼ g1=/0

1� g1=/0

3ðc1 � 1Þ2
3c1 � 1

1� p00k
2/0

� �"

þ g1=/0

ð1� g1=/0Þ
ðc1 � 1Þ2
3c1 � 1

6c1
3c1 � 1

� p00k
/0

� �#
:

ð1:57Þ

The (1.56) should be solved together with the normalization condition (1.38). The
solution of the (1.56) can be calculated numerically using an iteration procedure
according to the algorithm proposed in [37]. We should note that the (1.56) for the
singlet distribution function f ðXÞ has the same structure as the corresponding
equation obtained by Onsager [38] for the hard spherocylinder fluid in the limit
L ! 1, D1 ! 0, while the dimensionless density of fluid c ¼ 1

4 pL
2
1D1q1 is fixed.

Therefore, in the Onsager limit one has

C ! c ¼ 1
4
pL21D1q1: ð1:58Þ

This result within the framework of the SPT theory was generalized for a HSC fluid
with the finite value of L1 and D1 [39, 40], and in this case

C ¼ g1
1� g1

3ðc1 � 1Þ2
3c1 � 1

þ g1
1� g1

6c1ðc1 � 1Þ2
ð3c1 � 1Þ2

" #
: ð1:59Þ

It is not difficult to show that the expression (1.59) corresponds to the bulk case
ð/0 ¼ 1; p00k ¼ 0Þ of our result (1.57).

From the bifurcation analysis of (1.56) it is found that this equation has two
characteristic points ci and cn [41]. For the Onsager model in the bulk [41, 42]

ci ¼ 3:290; cn ¼ 4:191; ð1:60Þ

where ci corresponds to high densities of stable isotropic fluid and cn is related with
the minimal density of stable orientational ordering, i.e. a nematic state of fluid.

In the presence of a porous medium for the Onsager model we obtain

ci=/0 ¼ 3:290; cn=/0 ¼ 4:191: ð1:61Þ

It means that the isotropic-nematic phase transition in the presence of a matrix
shifts to lower densities of a fluid.

For finite values of L1 and D1 we can put

Ci ¼ 3:290; Cn ¼ 4:191; ð1:62Þ
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where Ci and Cn are defined from (1.57). The values in (1.62) define the
isotropic-nematic phase diagram for a HSC fluid in a matrix depending on the ratio
L1=D1 and the parameters of a matrix.

As an example we consider a porous medium formed by a HS matrix. The
probability to find scaled spherocylinder in an empty HS matrix is equal to

p0ðas; ksÞ ¼ 1� g0
1
V0

p
2

1
3
ðD0 þ ksD1Þ3 þ 1

2
asL1ðD0 þ ksD1Þ2

� �
: ð1:63Þ

From (1.63) one can find the derivatives needed for the description of thermody-
namic properties of a confined fluid:

p00a ¼ �3
D1

D0
g0; p00a ¼ � 3

2
g0

L1
D0

; p000ak ¼ �3g0
L1
D0

D1

D0
;

p000kk ¼ �6g0
D2

1

D2
0
;

ð1:64Þ

where g0 is the packing fraction of HS matrix particles. The probe particle porosity
in this case is equal to [32]

Fig. 1.2 Coexistence lines of isotropic-nematic phases of a hard spherocylinder fluid in a hard
sphere matrix for L1=D1 ¼ 20 and D0 ¼ L1 presented as a dependence of the spherocylinder fluid
density c ¼ 1

4 pq1L
2
1D1 on the matrix packing fraction g0. The GEMC simulation results taken from

[7] are shown as circles, from [43] are shown as squares and triangles (GDI). The isotropic phase
are denoted by open symbols and the nematic phase—by filled symbols. Solid lines corresponds to
the SPT theory. The notations ‘‘I’’ and ‘‘N’’ mean isotropic and nematic phases respectively
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/ ¼ ð1� g0Þ exp � g0
1� g0

D1

D0

3
2
ðc1 þ 1Þ þ 3c1

D1

D0

� �
� g20

ð1� g0Þ2
9
2
c1

D2
1

D2
0

"

� g0
ð1� g0Þ3

ð3c1 � 1Þ 1
2
D3

1

D3
0
ð1þ g0 þ g20Þ

#
:

ð1:65Þ

The analysis of the phase diagrams of a fluid in a matrix [32] obtained according
to (1.57) and (1.62) shows that the isotropic-nematic phase coexistence shifts to
smaller densities with decreasing of the value of L1=D1 as well as with decreasing
of the matrix porosity /0. In Fig. 1.2 one can observe how the matrix porosity
affects the phase coexistence in the case of the HSC fluid with L1=D1 ¼ 20 and the
HS matrix with L1=D0 ¼ 1. For comparison in this figure it is also presented the
results of computer simulation of Schmidt and Dijkstra [7] obtained by the method
of Gibbs ensemble Monte Carlo (GEMC). For the bulk case (g0 ¼ 0) the results of
Bolhuis and Frenkel [43] are shown in Fig. 1.2 as well. These results were obtained
using the common GEMC method and GEMC combined with the modified
Gibbs-Duhem integration (GDI) method. As one can see in Fig. 1.2 our theory
overestimates the effect of porous medium, especially it is noticeable for the iso-
tropic branch of phase coexistence. On the other hand, the nematic branch looks
rather satisfactory.

We should note that for isotropic-nematic coexistence lines can also be found
from the condition of thermodynamic equilibrium. According to this the isotropic
and nematic phases have the same pressure and the same chemical potential:

PiðciÞ ¼ PnðcnÞ; liðciÞ ¼ lnðcnÞ: ð1:66Þ

In [41] it was shown for the Onsager model in the bulk case that the results obtained
from bifurcation analysis and from the thermodynamic consideration coincide
exactly. Evidently, we can expect the same for the Onsager model in the case of the
porous medium presence. We observed in [32] that for the finite value of L1=D1

there is some deviation between the results obtained from the thermodynamic and
bifurcation analysis, which increases slightly with increasing of the ratio L1=D1.

1.4 Generalization of Van der Waals Equation
for Anisotropic Fluid in Random Porous Media

It is well established that the short-range order in simple and molecular liquids is
determined by the repulsive part of intermolecular interaction [33, 34]. Such a
short-range structure is essentially related to the packing of hard core particles,
which can be modeled by hard spheres (HS) in the case of simple fluid or hard
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convex bodies (HCB) system in the case of molecular fluid. Similar to the bulk case
[33, 34, 44] the results obtained from the SPT theory for HS and HCB fluids
confined in random matrices can be used as the reference system within the per-
turbation theory of fluids. In this section as the first step we consider the possibility
of an extension of the Van der Waals Equation of state to a simple and anisotropic
molecular fluid in a random porous medium.

Considering the case of a simple fluid with a pair potential of interaction, which
consists of a HS repulsive and an attractive parts, we start from the well-known Kac
potential [45, 46]

UattðrÞ ¼ c3UðcrÞ; ð1:67Þ

where r is a distance between two particles. In the same way as for a bulk fluid in
the limit c ! 0 the pressure of a confined fluid can be presented in the form [44, 45]

bP
q1

¼ bP
q1

� �
HS
�12ag1b; ð1:68Þ

where bP
q1

� 	
HS

is a contribution of a HS interaction, which can be obtained from

(1.16) within the SPT2b approximation, and b ¼ 1=kBT . Therefore, a HS fluid
confined in a random matrix is taken as a reference system. The second term in
(1.68) is a contribution of the attractive interaction defined by the constant a, which
can be calculated from the following expression:

a ¼ � 1
/0D

3
1

Z1
0

c3UðcrÞr2dr; ð1:69Þ

where the factor 1=/0 excludes the volume occupied by matrix particles, since this
volume does not contribute to the fluid attraction. We also introduce a size of hard
core of fluid particles D1, which means a diameter of HS particles.

As an example, we substitute an attractive pair potential UattðrÞ with the
Lennard-Jones potential [44] in the form

UattðrÞ ¼ 4e1 D1
r

� �12 � D1
r

� �6h i
; r�D1

0; r\D1

(
: ð1:70Þ

Using the Gibbs-Duhem relationship one can derive the expression of chemical
potential from (1.68). Having the analytical expressions for the equation of state
and the chemical potential one can build the liquid-vapour phase diagram in
coordinates g1 � T�, where T� is dimensionless temperature T� ¼ kT=e1 ¼ 1=be1.

In Fig. 1.3 the liquid-vapour coexistence curves are presented for a simple fluid
in HS matrices of the different porosities /0. One can see that the coexistence
curves shift toward lower temperatures and lower fluid densities if the matrix
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porosity decreases. Therefore, the critical density gc and critical temperature T�
c

decrease with matrix porosity decreasing. This behavior is very common for fluids
in random confinements [11, 25, 47].

It is worth mentioning that the interpretation of experimental results for the phase
behaviour of fluid in random porous media [48] is enough controversial. From one
point of view a fluid in a quenched disorder or in a random matrix can be considered
as experimental realization of the random-field Ising model [49]. Within this model
the random field describes the spatially varying preference of the porous media for
different fluid phases. From the other point of view the behaviour of a fluid in a
porous medium can be described in terms of the wetting states of the two phases in a
single pore of ideal geometry [50]. We do not focus here specially on the influence of
porous media on the behaviour of fluid near the critical point. However, since the
conventional Van der Waals Equation of state for the bulk fluid gives the mean field
description, one can consider that our analog of the Van der Waals equation for a
fluid in a random porous matrix leads to the same critical exponents.

A description of molecular fluids requires a corresponding generalization of
(1.68), which takes into account an anisotropic nature of the interaction between
molecules. An extension of the expression (1.68) to the case of a system
non-spherical particles with orientations starts from the following

bP
q1

¼ bP
q1

� �
HCB

�12ag1b; ð1:71Þ

where bP
q1

� 	
HCB

is the hard convex body contribution of the reference system. In our

study the HCB particles are considered as hard spherocylinders (HSC). Also we
restrict ourselves to the approximation SPT2b.

The attraction term depends on the constant a which is expressed in the general
form as

Fig. 1.3 Liquid-vapour
coexistence curves
(T� ¼ kT=e1 is a reduced
temperature, g1 is a fluid
packing fraction) calculated
from a generalized Van der
Waals (1.68) for a simple
fluid in a HS matrix of the
different porosity /0
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a ¼ � 1
/0V1

Z
f ðX1Þf ðX2ÞUattðr12X1X2Þd�r12dX1dX2; ð1:72Þ

where V1 is the volume of a spherocylindrical molecule. One can see that the
attractive pair potential Uattðr1X1X2Þ in (1.72) is orientational dependent.
Therefore, except the anisotropic repulsive interaction of HSC particles the
attractive part of intermolecular interaction is anisotropic as well. We introduce an
orientational dependence for the potential Uatt by modifying the Lennard-Jones
potential in the following way

Uattðr12X1X2Þ ¼ ULJ
rðX1X2XrÞ

r12

� �
1þ vP2ðcos#12Þ½ �; ð1:73Þ

ULJ
rðX1X2XrÞ

r12

� �
¼ 4e1

rðX1X2XrÞ
r12

� 	12
� rðX1X2XrÞ

r12

� 	6� �
; r12 � rðX1X2XrÞ

0; r12 \ rðX1X2XrÞ

8<
:

ð1:74Þ

where P2ðcos#12Þ ¼ 1
2 3 cos2 #12 � 1ð ÞÞ is the second Legendre polynomial, the

relative orientation #12 corresponds to the angle between the principal axes of the
two molecules. rðX1X2XrÞ is the contact distance between molecules, and it
depends on the orientations of two interacting molecules as well as on the orien-
tation of a distance vector~r12 between their centers. It is worth noting that in the
case of the repulsive part of the potential is spherically symmetric (r is fixed) the
expression for the potential (1.73) reduces to the Maier-Saupe potential [51].

One can see that (1.73) is a sum of two Lennard-Jones potentials, where the first
one is related to the isotropic attraction and another one corresponds to the
anisotropic attraction. The ratio of the well depths of these two potentials v ¼ e2=e1
specifies a rate of anisotropy in the attraction of the resulted potential (1.73).

Following the traditional scheme [52], taking into account that d�r ¼ r2drdXr

and using a dimensionless intermolecular distance r� ¼ r=rðX1X2XrÞ one obtains

a ¼ � 1
/0V1

Z
dX1dX2f ðX1Þf ðX2Þ 1þ vP2ðcos#12Þ½ �

� Vexc
1 ðX1X2Þ3

Z1
0

r�2dr�bULJðr�Þ;
ð1:75Þ

where

VexcðX1X2Þ ¼ 1
3

Z
dXr½rðX1X2XrÞ�3 ð1:76Þ
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is excluded volume formed by two hard spherocylinders with the orientations X1

and X2.
In order to study the anisotropy effect only in the repulsive part of intermolecular

interaction, we put v ¼ 0. For this case the phase diagrams for the system of HSC
fluid with L1=D1 ¼ 5 and L1=D1 ¼ 10 in the bulk (/0 ¼ 1:0) and in the porous
matrices (/0 \ 1:0) are presented in Fig. 1.4. Similar as it was shown for the bulk
[52], for our model three regions of liquid phase equilibria are apparent. At low and
intermediate densities the phase equilibrium between vapour (V) and isotropic
liquid ðLÞ states is observed. The coexistence region between the isotropic liquid
ðLÞ and the anisotropic nematic ðNÞ states appears at high densities. The
isotropic-nematic (I-N) transition is related mainly to the non-spherical shape of
molecules, hence the position of this transition does not change with the temper-
ature. In the high-temperature limit the liquid-nematic (L-N) transition vanishes and
the system tends to that for a HSC fluid in a matrix. In contrast to this the tem-
perature decrease leads to the L-N region becomes broader. At sufficiently low
temperatures, the region merges into the continuous vapour-liquid region at the
vapour-liquid-nematic (V-L-N) triple point. Below the triple point temperature only
the vapour-nematic (V-N) coexistence is seen. In the porous matrix presence all the
phase diagrams shift to the region of lower temperatures and lower densities similar
as it was observed in the case of simple fluids (Fig. 1.3).

With increasing of the ratio L1=D1 to 10 the liquid-nematic region becomes much
more extensive (Fig. 1.4). The vapour-liquid region for L1=D1 ¼ 10 is essentially
narrower than in the case of L1=D1 ¼ 5, while the liquid-nematic region covers a
wide range of densities. As one can see in Fig. 1.4 a porous medium for L1=D1 ¼ 10
can modify the phase behaviour of a fluid qualitatively. For instance, for the porosity
/0 ¼ 0:8 the vapour-liquid coexistence region in the case of L1=D1 ¼ 10 is very
small. Therefore, for such a fluid in matrices with porosities lower than /0 ¼ 0:8

Fig. 1.4 The temperature-density phase diagram (T� ¼ kT=e1 is a reduced temperature, g1 is a
fluid packing fraction) calculated from the generalized Van der Waals (1.71) for the attractive
spherocylinder fluid in a bulk and in HS matrices of porosity /0 ¼ 1:0 (solid lines), /0 ¼ 0:8
(dashed lines) and /0 ¼ 0:6 (dotted lines). The horizontal lines correspond to the vapour-
liquid-nematic three-phase coexistence separating the vapour-liquid (VL), liquid-nematic (L-N)
and vapour-nematic (V-N) regions. Two ratios of length to diameter of spherocylinder molecules
are considered: L1=D1 ¼ 5 (left panel) and L1=D1 ¼ 10 (right panel)
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the vapour-liquid coexistence region can disappear completely. Such a situation is
observed for /0 ¼ 0:6 in Fig. 1.4.

It was also observed that for considerably high values of L1=D1 ¼ 40 the
vapour-liquid coexistence region disappears even in the bulk and the presence of
porous medium for these cases does not change this (Fig. 1.5, left panel). Only the
isotropic-nematic transition (I-N) is observed for the ratio L1=D1 ¼ 40. One can see
that the porosity decrease leads to the narrowing of the I-N region and it shifts to the
lower densities. Since in the Onsager limit L1 ! 1, D1 ! 0 the isotropic-nematic
transition shifts to the lower densities we can expect an appearance of vapour-liquid
coexistence in nematic region. Such a situation is observed for L1=D1 ¼ 80 and it is

Fig. 1.5 The same as in Fig. 1.4, but for the ratios of length to diameter of spherocylinder
molecules L1=D1 ¼ 40 (left panel) and L1=D1 ¼ 80 (right panel). For L1=D1 ¼ 80 the coexisting
region of nematic vapour and nematic liquid ðNI � NIIÞ with corresponding critical point is
observed. The horizontal lines correspond to the vapour-nematic-nematic three phase coexistence,
which separates the vapour-nematic ðV � NIÞ, nematic I-nematic II ðNI � NIIÞ and vapour-nematic
II ðV � NIIÞ regions

Fig. 1.6 The temperature-density phase diagram (T� ¼ kT=e1 is a reduced temperature, g1 is a
fluid packing fraction) calculated from the generalized Van der Waals (1.69) for the spherocylinder
fluid with L1=D1 ¼ 5 in a bulk (left panel) and in a HS matrix of porosity / ¼ 0:8 (right panel).
The different anisotropic rates of the attractive potential are considered: v ¼ 0:0 (solid lines),
v ¼ 0:1 (dashed lines) and v ¼ 0:4 (dotted lines)
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presented in Fig. 1.5 (right panel). It is seen that below the triple point temperature
of vapour-nematic-nematic transition there is a relatively broad region of V-N
coexistence. A decrease of the matrix porosity causes the vapour-nematic region to
be more pronounced.

Finally, we focus on the effect of anisotropic attractive interaction on the fluid
phase behaviour in a random confinement. The temperature-density projection of
the phase behaviour in the case of L1=D1 ¼ 5 spherocylinder fluid with the different
rates of anisotropic attractive interactions v is presented in Fig. 1.6. As it can be
expected the introduction of the anisotropic attractive interaction enhances an
ability of the fluid to form orientationally ordered states. The liquid-nematic region
broadens out significantly if v increases, while the vapour-liquid coexistence curve
remains unchanged. As a consequence, one can see an increase of the
vapour-liquid-nematic triple point. For sufficiently large anisotropy (v ¼ 0:4) the
triple and critical points merge, and as a result only the I-N phase behaviour is
found. The presence of porous medium as usually shifts the phase diagram to lower
densities and temperatures. Although quantitatively the phase behaviour in the bulk
(Fig. 1.6, left panel) and in the presence of porous medium with the porosity
/0 ¼ 0:8 (Fig. 1.6, right panel) are practically the same.

1.5 Conclusions

The development and the application of the scaled particle theory (SPT) for a study
of the thermodynamic properties of molecular liquids in random porous media are
reviewed in this chapter. Within the proposed approach a series of different
approximations are considered and tested by a comparison with computer simu-
lations. It is shown that the SPT2b approximation fits the simulation results with a
good accuracy at low and intermediate fluid densities. The SPT2b1 approximation
improves the description at high densities and for the case when sizes of fluid and
matrix particles are comparable. For a hard spherocylinder fluid confined in a
random matrix the SPT2 approach is extended with a use of two scaling parameters.
The results obtained for a hard spherocylinder fluid with two scaling parameters
make it possible to study the effect of a porous medium on the isotropic-nematic
phase transition. The proposed theory predicts that this transition is of the first order
and a decrease of porosity shifts the phase diagrams toward lower fluid densities
and temperatures. This prediction is supported by computer simulations [7] and also
at least for enough large pores by experimental results [53, 54].

We have demonstrated that the results obtained within the framework of the SPT
theory for a system of hard convex body fluid and in particular for a hard sphe-
rocylinder fluid can be used as a reference system for an extension of the Van der
Waals equation of state to the case of molecular anisotropic fluid in a random
porous matrix. Starting from this generalization the Van der Waals equation has
made it possible to examine the evolution of vapour-liquid-nematic phase equi-
librium depending on the anisotropy of fluid molecules and the porosity of a
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random confinement. As it is known [33, 34] the principal defect of the Van der
Waals equation is related with a neglect of a fluid structure. Recently [55], we
applied the Barker-Henderson perturbation theory [44] for the description of the
liquid-vapour phase transition of a simple fluid in a random matrix. The pair
distribution function of a hard sphere fluid in a porous medium needed for this
theory was taken from numerical calculations of the replica Ornstein-Zernike
equations [8, 9, 14, 15]. However, it is observed that the effect of porous medium
on the vapour-liquid phase diagram qualitatively comparable with the prediction
obtained from the Van der Waals equation. We plan in future to generalize the
Barker-Henderson perturbation theory for anisotropic molecular fluids in random
porous media.

Another way of a development of the presented theory is related to taking into
account of association effects in molecular fluids confined in random porous media.
Recently [47], within the framework of the SPT theory we have obtained the
analytical expression for the contact value of a pair distribution function of a hard
sphere fluid in random matrices. This allowed us to apply the thermodynamic
perturbation theory [56, 57] to the treatment of association effects and to construct
the phase diagrams of network-forming fluids confined in random matrices. We
hope to generalize this approach for molecular anisotropic fluids in random porous
media as well.

The developed theory opens new possibilities for the modeling of porous media.
Within the framework of the SPT theory a porous medium can be presented as
quenched HCB or OHCB particles, thus one can get a description of fluids in wider
range of porous structures than those considered in other studies before. However,
we should note that a structure of real porous materials can be much more com-
plicated. As it was noted in [1], sometimes the simulation and theory can be used to
study the behaviour of adsorbates confined in hypothetical porous materials that do
not necessarily correspond to real materials. In order to establish the relation
between such simple models of porous medium and more realistic ones we can use
the morphological principle of mapping between the thermodynamic properties of a
fluid in various matrices [25]. According to this principle the fluid in two different
matrices has the same thermodynamic properties if the both matrices have the same
probe particle porosity /, the specific pore area s, the mean curvature and the
Gaussian curvature. It was shown in [25] that these four morphological measures of
a porous medium is enough to make a prediction of the thermodynamic properties
of a confined fluid.

Finally, we should emphasize that in this review we focus on the consideration
of the effect on fluids caused by porous media exceptionally with a random
structure. However, major conclusions made for the case of random porous
materials are valid for the case of regular porous materials as well, at least for
materials with a high porosity. An understanding of the effect of a non-regular
porous structure on confined fluid in a comparison with ordered porous materials
needs deeper analysis and it will be studied elsewhere.
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