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Preface

These proceedings comprise invited and contributed papers presented at the 6th
International Conference “Physics of Liquid Matter: Modern Problems”
(PLMMP-2014) which was held during 23–27 May 2014 in Kyiv, Ukraine.
Understanding of Liquid Matter properties is the foundation stone for many sci-
entific and engineering disciplines including physics, chemistry, chemical engi-
neering, and materials science. It provides the basis for research in different fields
from biological objects to supernovae behavior. The combination of experiments,
theory, and simulation allows scientists to study the complex systems on molecular
and macroscopic levels. The PLMMP-2014 Conference was organized by the Taras
Shevchenko National University of Kyiv, Institute for Safety Problems of Nuclear
Power Plants and Bogolyubov Institute for Theoretical Physics of the National
Academy of Sciences of Ukraine. The scientific program covered the most recent
developments in the broader field of liquid state, including interdisciplinary prob-
lems. The format of the conference was based on invited lectures, oral presenta-
tions, and posters. The presented papers are divided into four parts: (i) Structure of
Liquids in Confined Systems, (ii) Phase Transitions, Supercritical Liquids &
Glasses, (iii) Colloids, and (iv) Medical and Biological Aspects. The presented
objects include liquids, solutions, soft polymers, colloids, amphiphiles, micelles,
emulsions, and liquid crystals. On behalf of the organizing committee we would
like to thank all the plenary and invited speakers for their valuable contributions.
We would like also to thank the International Advisory Board and Local
Organizing Committee for helping to organize the scientific program and operation
of the PLMMP-2014 Conference.

Kyiv, Ukraine Leonid Bulavin
Nikolai Lebovka
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Part I
Structure of Liquids in Confined Systems



Chapter 1
Thermodynamics of Molecular Liquids
in Random Porous Media: Scaled Particle
Theory and the Generalized Van der
Waals Equation

Myroslav Holovko, Volodymyr Shmotolokha and Taras Patsahan

Abstract A new approach to the theoretical description of molecular liquids
confined in random porous media is proposed in order to study their thermody-
namic properties. The models applied in our study are characterized by the inter-
molecular interactions consisting of repulsive and attractive parts, both of which are
of the anisotropic nature. To take into account an anisotropy of the repulsion the
scaled particle theory (SPT) is extended for the system of a hard convex body
(HCB) fluid in a quenched matrix of hard particles forming a random porous
medium. A contribution of the anisotropic attractive interaction is considered on the
level of the mean-field or Van der Waals approximation. Therefore, combining the
obtained analytical results within the framework of the perturbation theory the
equation of state for confined liquids is derived. On the basis of the developed
approach we can consider a fluid in a random matrix using various models.
A reliability of the SPT theory is proved on the examples of hard sphere and hard
spherocylinder fluids in different matrices. For a spherocylinder fluid with attractive
intermolecular interaction the phase transition diagrams are constructed to study a
vapour-liquid-nematic equilibrium and the effect of confinement on it. It is shown
that a matrix porosity decrease leads to decreasing of the critical temperature and
the critical density of vapour-liquid phase transition. In the case of long sphero-
cylinders (L1=D1 ¼ 10) the vapour-liquid transition of a fluid in a matrix can
disappear completely being suppressed by the isotropic-nematic phase transition.
On the other hand the coexistence between vapour and nematic phases is observed
for a spherocylinder fluid at the conditions comparable to the Onsager limit

M. Holovko (&) � V. Shmotolokha � T. Patsahan
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine,
1 Svientsitskii Str, Lviv 79011, Ukraine
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(L1=D1 ¼ 80). The anisotropy of attractive potential causes the broadening of the
liquid-nematic coexistence region and in the case of essentially high rates of
anisotropy the vapour-liquid transition vanishes. It is noticed that the presence of
porous medium enhances this effect. The presented review is aimed to illustrate an
application of the SPT approach which developed recently for fluids of
non-spherical molecules confined in random porous media.

1.1 Introduction

Many different materials such as silicas and zeolites, activated carbons and clays,
cements and ceramics, metal foams and others can be considered as porous media.
Molecular fluids confined in such porous materials with pore sizes ranging from a
few nanometers to hundreds nanometers can undergo drastic modifications in their
physical and physicochemical properties. For example, it is well established that
confinement can induce drastic shifts of phase equilibria, e.g. narrowing of the
vapour-liquid coexistence curve, lowering of the pore critical temperature,
decreasing of the critical density and the appearance of new types of phase transi-
tions, which are not observed in the bulk [1]. Besides its fundamental interest, a
thorough understanding of the influence of confinement on the physical and
chemical properties of fluids is highly useful in many areas of applied science and
engineering, geosciences, biophysics, material science etc. Different porous mate-
rials are widely used in the chemical, oil and gas, food and pharmaceutical industries
for pollution control, mixture separation, and as catalyst or catalyst support for
chemical reactions. In parallel with experimental studies a lot of different molecular
models were introduced for the investigation of the properties of fluids in porous
media within the framework of computer simulations and theoretical approaches.
Atomistic molecular simulations methods have been widely used to characterize
adsorption in porous materials [2, 3], including the structure and dynamics of
adsorbed phases, thermodynamics of adsorption, the influence of structural hetero-
geneity of pores and chemical heterogeneity of pore surface [4, 5], the influence of
porous media on the isotropic-nematic phase transition like in confined liquid
crystals fluids [6, 7]. Also numerous computer simulation studies have been devoted
to the same problems, but in isolated pores of slit-like or cylindrical shapes.
Theoretical approaches used for the description of fluids in porous media are mostly
based on the method of Ornstein-Zernike equations [8–11] and the method of
density functional theory [12, 13]. In the present review we consider fluids confined
in porous materials with a random or disordered structure, in which pores are formed
by randomly distributed solid particles. In these materials the pore shapes and sizes
are not well defined, they are not isolated but build a network with very complex
topology. The systems of such a kind cannot be described by a single pore model,
thus in theoretical approaches as well as in computer simulations one should take
into account the whole variety of statistically probable configurations of pores.

4 M. Holovko et al.



Much theoretical efforts have been devoted within the framework of statistical
mechanical methods to a study of fluids in random porous media during the last
three decades starting from the pioneering work of Madden and Gland [8]. In this
work a porous medium is presented as a quenched configuration of randomly
distributed spherical particles that form so-called matrix [8]. The specific of
description of fluids in such porous media is connected with the double
quenched-annealed averages: the annealed average is taken over all fluid configu-
rations and the additional quenched average should be taken over all realizations of
the matrix. One standard approach to solve this problem is based on the replica
method. It consists in the description of a fluid in a random porous medium as the
ðsþ 1Þ component equilibrium mixture of a matrix and s replicated copies of a
fluid, which do not interact with each other, and then the limit s ! 0 is to be taken.
Using the replica Ornstein-Zernike (ROZ) integral equation theory [9], the statis-
tical mechanics approach of liquid state was extended to a description of different
models of a fluid confined in random porous matrices [14, 15] including the
chemical reacting fluids adsorbed in porous media [16, 17]. However, unlike bulk
fluids, no analytical result have been obtained from the ROZ integral equations
approach even for the simplest model such as a hard-sphere fluid in a hard sphere
matrix.

The first rather accurate analytical results for a hard sphere fluid in hard-sphere
(HS) and overlapping hard-sphere (OHS) matrices were obtained quite recently
[18–20] by extending the classic scaled particle theory (SPT) [21–23]. The SPT
approach is based on a combination of the exact treatment of a point scaled particle
in a HS fluid with the thermodynamic consideration of a finite size scaled particle.
The exact result for a point scaled particle in a HS fluid confined in a random matrix
was obtained in [18]. However, the approach proposed in [18] and named as SPT1
contains a subtle inconsistency appearing when a size of matrix particles is
essentially larger than a size of fluid particles. Later, this inconsistency was elim-
inated in a new approach named as SPT2 [20].

The expressions obtained in SPT2 include two types of porosities. One of them
is defined by a pure geometry of porous medium (geometrical porosity /0 char-
acterizing the free volume for a fluid) and the second one is defined by the chemical
potential of a fluid in the limit of infinite dilution (probe particle porosity / char-
acterizing the adsorption of a fluid in an empty matrix). On the basis of SPT2
approach the approximation SPT2b was proposed, and it was shown that it
reproduces the computer simulation data with a very good accuracy at small and
intermediate fluid densities. However, the expressions obtained in the SPT2 and
SPT2b approximations contain a divergence at the packing fraction of fluid equal to
the probe particle porosity /. Consequently, the prediction of thermodynamic
properties at high densities of a fluid can be inaccurate, especially when it reaches
close packing conditions. An accuracy of SPT2 and SPT2b approximations also
becomes worse when fluid and matrix particles are of comparable sizes [20]. Later,
in the investigation of one-dimensional hard rode fluid in a random porous medium
[24] a series of the new approximations SPT2b1, SPT2b2 and SPT2b3 were pro-
posed, which are free of the mentioned drawbacks. Two last approximations

1 Thermodynamics of Molecular Liquids in Random Porous Media … 5



contain the third type of porosity /� defined by the maximum value of packing
fraction of fluid in a porous medium. It was shown that these new approximations
essentially improve the SPT predictions at high fluid densities. The application of
the SPT theory and generalization of the SPT2b1 approximation to the case of HS
fluid confined in random matrices were reviewed recently in [25], where thermo-
dynamic properties of fluid were calculated. A comparison of obtained results with
computer simulation data proved applicability and high reliability of the SPT for the
wide range of fluid densities and different matrix parameters.

A remarkable feature of the SPT theory is a possibility of its generalization for
the description of non-spherical hard convex body fluids in the bulk, which can be
done using one [26, 27] and two [28] scaling parameters. The SPT theory can also
be applied for the description of nematic ordering in hard convex body
(HCB) fluids [28–30]. Recently, the SPT theory was extended for HCB fluids
confined in random matrix [31]. The generalization of the SPT theory for a HCB
fluid confined in a random porous medium with a use of two scaling parameters was
presented, and the effect of porous media on the orientational ordering in a HCB
fluid was studied [32].

In this chapter the extension of SPT theory for the description of thermodynamic
properties of non-spherical molecular fluids confined in random porous media is
reviewed. First we present the generalization of SPT theory for a HCB fluid in
random porous media. Then we consider the SPT theory with two scaling
parameters for the description of a hard spherocylinder fluid in a random matrix.
After that a system of hard spherocylinders in a matrix is used as the reference
system [33, 34] in the generalization of Van der Waals equation for anisotropic
fluids confined in random porous media. Finally, the derived equations are applied
to investigate the effect of porous media on the vapour-liquid-nematic phase
equilibria in molecular fluids.

1.2 HCB Fluids in Random Porous Media: SPT with One
Scaling Parameter

Hard convex body (HCB) particles are characterized by three geometrical param-
eters—the volume V, the surface area S and the mean curvature R with a factor
1=4p. For example, for a frequently considered case of a system of spherocylin-
drical rods with the length L and the diameter D, these parameters are

V ¼ 1
4
pD2Lþ 1

6
pD3; S ¼ pDLþ pD2; R ¼ 1

4
Lþ 1

2
D: ð1:1Þ

The basic idea of the SPT approach is an insertion of an additional scaled
particle of a variable size into a fluid. To this aim we introduce the scaling
parameter ks in such a way that the volume Vs, the surface area Ss and the curvature
Rs of scaled particle are modified as

6 M. Holovko et al.



Vs ¼ k3sV1; Ss ¼ k2s S1; Rs ¼ ksR1; ð1:2Þ

where V1; S1 andR1 are the volume, the surface area and the mean curvature of a
fluid particle respectively. Hereafter, we use the conventional notations [9, 14, 15],
where the index ‘‘1’’ is used to denote fluid component and the index ‘‘0’’ denotes
matrix particles. For scaled particles the index ‘‘s’’ is used.

Procedure of insertion of the scaled particle into a fluid is equivalent to a creation
of cavity, which is free of any other fluid particles. The key point of considered
reformulation of the SPT theory consists in a derivation of the excess chemical
potential of a scaled particle lexs , which is equal to a work needed to create the
corresponding cavity. In the presence of a porous medium the expression of excess
chemical potential for a small scaled particle in a HCB fluid can be written in the
form

blexs ¼ bls � lnðq1K3
1K1RÞ ¼ ln p0ðksÞ

� ln 1� g1
p0ðksÞ 1þ 3ksa1 þ 3k2sa1 þ k3s

� �� �
;

ð1:3Þ

where b ¼ 1=ðkBTÞ; kB is the Boltzmann constant, T is the temperature, g1 ¼ q1V1

is the fluid packing fraction, q1 is the fluid density, K1 is the fluid thermal wave
length, the quantity K�1

1R is the rotational partition function of a single molecule
[35], and a1 ¼ R1S1

3V1
is the non-sphericity parameter of a fluid particle. The term

p0ðksÞ ¼ expð�bl0s Þ is defined by the excess chemical potential of the scaled
particle confined in an empty matrix l0s , and it has a meaning of probability to find a
cavity created by the scaled particle in the matrix in the absence of fluid particles.

For the large scaled particle the excess chemical potential is given by the
thermodynamical expression for the work needed to create a macroscopic cavity
inside a fluid confined in a porous medium. It can be presented as follows

blexs ¼ wðksÞ þ bPVs

p0ðksÞ ; ð1:4Þ

where P is the pressure of fluid, Vs is the volume of scaled particle. The multiplier
1=p0ðksÞ appears due to an excluded volume occupied by matrix particles, which
can be considered as a probability to find a cavity created by a scaled particle in the
matrix in the absence of fluid particles. This probability is related directly to two
different types of the porosities [20]. The first one corresponds to the case of ks ¼ 0
and gives the geometrical porosity

/0 ¼ p0ðks ¼ 0Þ; ð1:5Þ

which depends only on a structure of matrix and it is related to the volume of a void
between matrix particles. The second type of porosity corresponds to the case of
ks ¼ 1 and gives the probe particle porosity [20]

1 Thermodynamics of Molecular Liquids in Random Porous Media … 7



/ ¼ p0ðks ¼ 1Þ; ð1:6Þ

which is defined by the excess chemical potential of a fluid in the limit of infinite
dilution l01. Thus, it depends also on a nature of fluid under study.

According to the ansatz of the SPT theory [18–25], wðksÞ can be presented in the
form of expansion

wðksÞ ¼ w0 þ w1ks þ 1
2
w2k

2
s : ð1:7Þ

The coefficients of this expansion can be found from the continuity of lexs and its
corresponding derivatives @lexs =@ks and @2lexs =@k

2
s at ks ¼ 0. Consequently, one

derives the following expressions [25–31]:

w0 ¼ � lnð1� g1=/0Þ;

w1 ¼ g1=/0

1� g1=/0
3a1 � p00

/0

� �
;

w2 ¼ g1=/0

1� g1=/0
6a1 � 6a1

p00
/0

þ 2
p00
/0

� �2

� p000
/0

" #

þ g1=/0

1� g1=/0

� �2

3a1 � p00
/0

� �2

;

ð1:8Þ

where p00 ¼ @p0ðksÞ
@ks

and p000 ¼ @2p0ðksÞ
@k2s

at ks ¼ 0.

After setting ks ¼ 1 the expression (1.4) leads to the relation between the
pressure P and the excess chemical potential lex1 of a fluid in a matrix

b lex1 � l01
� � ¼ � ln 1� g1=/0ð Þ þ A

g1=/0

1� g1=/0
þ B

ðg1=/0Þ2
ð1� g1=/0Þ2

þ bP
q1

g1
/
;

ð1:9Þ

where the coefficients A and B define the porous medium structure and the
expressions for them are as follow:

A ¼ 3a1 � p00
/0

þ 1
2

6a1 � 6
p00
/0

a1 þ 2
p00
/0

� �2

� p000
/0

" #
;

B ¼ 1
2

3a1 � p00
/0

� �2

:

ð1:10Þ

Using the Gibbs-Duhem equation
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@P
@q1

� �
T
¼ q1

@l1
@q1

� �
T

ð1:11Þ

one derives the fluid compressibility

b
@P
@q1

� �
T
¼ 1

1� g1=/ð Þ þ ð1þ AÞ g1=/0

1� g1=/ð Þ 1� g1=/0ð Þ

þ ðAþ 2BÞ g1=/0ð Þ2
1� g1=/ð Þ 1� g1=/0ð Þ2

þ 2B
g1=/0ð Þ3

1� g1=/ð Þ 1� g1=/0ð Þ3 ;

ð1:12Þ

which makes it possible to obtain the total chemical potential,
bl1 ¼ lnðq1K3

1K1RÞ þ blex1 , and the pressure of a fluid, and a result of integration
of (1.12) over the fluid density leads to [31]:

bðlex1 � l01Þ ¼ � lnð1� g1=/Þ þ ðAþ 1Þ /
/� /0

ln
1� g1=/
1� g1=/0

þ ðAþ 2BÞ /
/� /0

g1=/0

1� g1=/0
� /
/� /0

ln
1� g1=/
1� g1=/0

� �

þ 2B
/

/� /0

1
2

ðg1=/0Þ2
ð1� g1=/0Þ2

� /
/� /0

g1=/0

1� g1=/0

"

þ /2

ð/� /0Þ2
ln

1� g1=/
1� g1=/0

#
;

ð1:13Þ

bP
q1

¼ � /
g1

ln
1� g1=/
1� g1=/0

þ ð1þ AÞ /
g1

/
/� /0

ln
1� g1=/
1� g1=/0

þ ðAþ 2BÞ /
/� /0

1
1� g1=/0

� /
g1

/
/� /0

ln
1� g1=/
1� g1=/0

� �

þ 2B
/

/� /0

1
2

g1=/0

ð1� g1=/0Þ2
� 2/� /0

/� /0

1
1� g1=/0

"

þ /
g1

/2

ð/� /0Þ2
ln

1� g1=/
1� g1=/0

#
:

ð1:14Þ

The expressions (1.13) and (1.14) are the result of SPT2 approach. At high fluid
densities the obtained expressions have two divergences, which appear in g1 ¼ /
and g1 ¼ /0 respectively. Since /\/0 the first divergence in g1 ¼ / occurs at
lower densities than the second one. From geometrical point of view such a
divergence should appear at higher densities close to the maximum value of fluid
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packing fraction gmax
1 available for a fluid in a given matrix. The different correc-

tions and improvements of the SPT2 approach were proposed in [20, 24, 25, 31].
First corrections were given in [20], where on the basis of SPT2 four approxima-
tions were developed. One of them called SPT2b can be derived if / is replaced by
/0 everywhere in (1.12) except the first term. As a result, (1.13) and (1.14) can be
rewritten in the following form

b lex1 � l01
� �SPT2b ¼ � lnð1� g1=/Þ þ ð1þ AÞ g1=/0

1� g1=/0

þ 1
2
ðAþ 2BÞ ðg1=/0Þ2

ð1� g1=/0Þ2
þ 2
3
B

ðg1=/0Þ3
ð1� g1=/0Þ3

;

ð1:15Þ

bP
q1

� �SPT2b

¼ � /
g1

ln 1� g1
/

� �
þ /0

g1
ln 1� g1

/0

� �
þ 1

1� g1=/0

þ A
2

g1=/0

ð1� g1=/0Þ2
þ 2B

3
ðg1=/0Þ2

ð1� g1=/0Þ3
:

ð1:16Þ

The second approximation proposed in [24, 25] is called SPT2b1 and it corrects
SPT2b by removing the divergence at g1 ¼ / through an expansion of the loga-
rithmic term in (1.15)

� ln 1� g1=/ð Þ � � ln 1� g1=/0ð Þ þ g1ð/0 � /Þ
/0/ð1� g1=/0Þ

: ð1:17Þ

Therefore, one obtains the expressions for the chemical potential and pressure
within the SPT2b1 approximation as follows

b lex1 � l01
� �SPT2b1 ¼ � lnð1� g1=/0Þ þ ð1þ AÞ g1=/0

1� g1=/0
þ g1ð/0 � /Þ

/0/ð1� g1=/0Þ

þ 1
2
ðAþ 2BÞ ðg1=/0Þ2

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ3
ð1� g1=/0Þ3

;

ð1:18Þ

bP
q1

� �SPT2b1

¼ 1
1� g1=/0

/0

/
þ /0

/
� 1

� �
/0

g1
ln 1� g1

/0

� �

þ A
2

g1=/0

ð1� g1=/0Þ2
þ 2B

3
ðg1=/0Þ2

ð1� g1=/0Þ3
:

ð1:19Þ

Two other approximations called SPT2b2 and SPT2b3 contain the third type of
porosity /� defined by the maximum value of packing fraction of a fluid in a porous
medium and provide the more correct description of thermodynamic properties of a
fluid in the high-density region, which corresponds to the close packing condition.
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To introduce /� in the expression for the chemical potential (1.15) the logarithmic
term is modified in the following way

� lnð1� g1=/Þ � � lnð1� g1=/
�Þ þ g1ð/� � /Þ

/�/ð1� g1=/
�Þ : ð1:20Þ

Consequently, the SPT2b2 approximation is derived as

b lex1 � l01
� �SPT2b2 ¼ � lnð1� g1=/

�Þ þ g1=/0

1� g1=/0
ð1þ AÞ

þ g1ð/� � /Þ
/�/ð1� g1=/

�Þ þ 1
2
ðAþ 2BÞ ðg1=/0Þ2

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ3
ð1� g1=/0Þ3

;

ð1:21Þ

bP
q1

� �SPT2b2

¼ � /�

g1
ln 1� g1

/�

� �
þ /0

g1
ln 1� g1

/0

� �
þ 1

1� g1=/0

þ /� � /
/

ln 1� g1=/
�ð Þ þ g1=/

�

1� g1=/
�

� �
:

þ A
2

g1=/0

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ2
ð1� g1=/0Þ3

:

ð1:22Þ

Finally, the SPT2b3 approximation can be obtained similar to the SPT2b2
approximation through an expansion of the logarithmic term lnð1� g1=/

�Þ in the
expression (1.21) for the chemical potential. As a result we obtain

b lex1 � l01
� �SPT2b3 ¼ � lnð1� g1=/0Þ þ g1=/

�

1� g1=/0
þ g1ð/� � /Þ

/�/ð1� g1=/
�Þ

þ A
g1=/0

1� g1=/0
þ 1

2
ðAþ 2BÞ ðg1=/0Þ2

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ3
ð1� g1=/0Þ3

;

ð1:23Þ

bP
q1

� �SPT2b3

¼ /� � /
/

ln 1� g1
/�

� �
þ g1=/

�

1� g1=/
�

� �
þ 1

1� g1=/0

þ /0 � /�

/� lnð1� g1=/0Þ þ g1=/0

1� g1=/0

� �

þ A
2

g1=/0

ð1� g1=/0Þ2
þ 2

3
B

ðg1=/0Þ2
ð1� g1=/0Þ3

:

ð1:24Þ

In [24] it was shown on the example of one-dimensional system of a fluid in a
random matrix that /� is related to /0 and / with the following relation
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1=/� ¼ 1=/� 1=/0ð Þ= ln /0=/ð Þ: ð1:25Þ

Since (1.25) is presented in the general form and does not depend directly on the
dimensionality of the system, we extend its application to the three-dimensional
case. In the bulk all the porosities are equal / ¼ /0 ¼ /� ¼ 1. Therefore, the
expressions for pressure and chemical potential of bulk hard sphere (HS) and HCB
fluids have the same divergence at g1 ¼ 1 [33, 34]. In the case of a fluid in a porous
medium one gets an inequality /\/� \/0. It should be noted that in the case
when matrix particles size is essentially larger than a size of fluid particles, i.e. a size
ratio of fluid to matrix particles tends to zero, hence the porosities tend to the same
value / � /0 � /� and all the considered approximations lead to the same result,
which is equivalent to a bulk fluid with the effective density ĝ1 ¼ g1=/0.

An application of the developed theory is illustrated for two models of porous
medium in [31]. The first model is a HCB matrix and the second model is an
overlapping hard convex body (OHCB) matrix. The geometrical porosities for these
models have the form [31]

/0 ¼ 1� g0 ð1:26Þ

for a HCB matrix and

/0 ¼ e�g0 ð1:27Þ

for an OHCB matrix, where g0 ¼ q0V0, q0 ¼ N0
V , N0 is the number of matrix par-

ticles, V0 is the volume of a matrix particle and V is the total volume of system.
Using the SPT theory [27] the following expression for the probe particle

porosity / is derived

/ ¼ e�bl01 ¼ ð1� g0Þ exp � g0
1� g0

3a0
R1

R0
þ S1
S0

� �
þ V1

V0

� ���

þ 3a0g20
2ð1� g0Þ2

3a0
R2
1

R2
0
þ 2

V1

V0

� �
þ 3a20g

3
0

ð1� g0Þ3
V1

V0

!# ð1:28Þ

for the case of a HCB matrix and

/ ¼ e�bl01 ¼ exp �g0 1þ 3a0
R1

R0
þ 3a0

S1
S0

þ V1

V0

� �� �
ð1:29Þ

for the case of an OHCB matrix, where S0 and R0 are the surface area and the mean
curvature of matrix particles respectively, a0 ¼ R0S0=3V0 is the parameter of
non-sphericity of matrix particles.

The probability to find a place for the scaled particle in a HCB matrix is equal to
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p0ðksÞ ¼ 1� g0 1 þ 3a0
R1ks
R0

þ 3a0
k2s S1
S0

þ k3s
V1

V0

� �
: ð1:30Þ

The corresponding derivatives from (1.30) used for the SPT ansatz are

p00 ¼ �3g0a0
R1

R0
; p000 ¼ �6g0a0

S1
S0

: ð1:31Þ

Similarly, in the case of OHCB matrix one can obtain an expression for the
probability p0ðksÞ:

p0ðksÞ ¼ exp �g0 1þ 3a0
R1

R0
ks þ 3a0

S1
S0

k2s þ
V1

V0
k3s

� �� �
ð1:32Þ

as well as the expressions for its derivatives

p00 ¼ �3g0a0
R1

R0
/0; p000 ¼ �3g0a0 2

S1
S0

� 3g0a0
R1

R0

� �2
 !

/0: ð1:33Þ

Therefore, using (1.10) the coefficients A and B can be derived as

A ¼ 3 2a1 þ a0
g0

ð1� g0Þ
R1

R0
ð1 þ 3a1Þ þ a0

S1
S0

g0
ð1� g0Þ

þ 3a20
R2
1

R2
0

g20
ð1� g0Þ2

" #
;

B ¼ 9
2

a1 þ a0
R1

R0

g0
1� g0

� �2

ð1:34Þ

for a HCB fluid in a HCB matrix and as

A ¼ 3 2a1 þ a0g0
R1

R0
ð1 þ 3a1Þ þ a0

S1
S0

g0 þ 3a20
R2
1

R2
0
g20

� �
;

B ¼ 9
2

a1 þ a0
R1

R0
g0

� �2 ð1:35Þ

for a HCB fluid in an OHCB matrix.
An accuracy of the approximations proposed in [31] were tested by a compar-

ison with computer simulation data obtained from the grand-canonical Monte Carlo
(GCMC) simulations [36]. In this study a model of a HS fluid in a OHCB matrix
was investigated. Four different OHCB matrices with parameters presented in
Table 1.1 were considered. Using the different approximations the chemical
potential depending on the fluid density (packing fraction) is calculated (Fig. 1.1).
As one can see at low fluid densities all approximations are correct except the SPT2
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approach, which overestimates the chemical potential at intermediate densities in a
comparison with the GCMC data. On the other hand, the SPT2b approximation
improves essentially the results for intermediate fluid densities. In the most con-
sidered cases the results of SPT2b coincide with other approximations (SPT2b1,
SPT2b2 and SPT2b3) and the observed deviations are comparable with the sta-
tistical errors of the simulations (0.5 %). However, as it was shown in [31] in the
case of a large difference between the porosities / and /0, at high fluid densities the
approximations SPT2b1, SPT2b2 and SPT2b3 give better results than the SPT2b
approach.

Table 1.1 Parameters and
characteristics of matrices for
the systems A, B, C and D

System L0 D0 g0 /0 / a0
A 2.0 3.0 0.282 0.754 0.556 1.111

B 3.0 2.0 0.271 0.762 0.493 1.346

C 5.0 2.0 0.099 0.9052 0.781 1.658

D 10.0 1.0 0.167 0.846 0.491 4.125

Fig. 1.1 The excess chemical potential blex1 versus the fluid packing fraction g1 for a HS fluid in
random OHCB matrices. The parameters of matrices are presented in Table 1.1. A comparison of
the different approximations (lines) with the GCMC simulation results (symbols)
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1.3 Hard Spherocylinder Fluid in Random Porous Media:
SPT with Two Scaling Parameters

Generally, if a shape of hard convex body particles is not strictly specified or it is
rather complex, it is acceptable to restrict oneself by one scaling parameter. On the
other hand, particles of spherocylindrical shape are characterized only by two
measures, i.e. by their length and diameter. Therefore, applying the SPT formalism
it is reasonable to change sizes of scaled particle along exactly these two measures.
We consider two scaling parameters generalization of the SPT theory for the
description of thermodynamic properties of a hard spherocylinder (HSC) fluid in
random matrices. We also apply these results to a study of the effect of porous
medium on the isotropic-nematic orientational transition appearing in this fluid.

As it was mentioned above a hard spherocylinder system is defined by the
volume V, the surface area S and the mean curvature R given by (1.1). According to
the general idea of the SPT theory [28, 29, 32] we introduce in a confined HSC fluid
an additional hard spherocylinder with the scaling diameter Ds and the scaling
length Ls:

Ds ¼ ksD1; Ls ¼ asL1; ð1:36Þ

where D1 and L1 are the diameter and the length of fluid spherocylinders respec-
tively. The excess chemical potential for the small scaled particle in a HSC fluid
confined in a matrix can be written in the form

blexs ¼ � ln p0ðas; ksÞ � ln 1� g1
V1p0ðas; ksÞ

p
6
D3

1ð1þ ksÞ3
��

þ p
4
D2

1L1ð1 þ ksÞ2ð1 þ asÞ

þ p
4
D1L

2
1ð1 þ ksÞas

Z
f ðX1Þf ðX2Þ sin#12dX1dX2

��
;

ð1:37Þ

where g1 ¼ q1V1 is the fluid packing fraction and q1 is the fluid density; p0ðas; ksÞ
is the probability to find a cavity created by a scale particle in the empty matrix and
it is defined by the excess chemical potential l0s of the scale particle in the limit of
infinite dilution of a fluid; X ¼ ð#;uÞ is the orientation of particles defined by the
angles # and u; dX ¼ 1

4p sin#d#du is the normalized angle element; #12 is the
angle between orientational vectors of two molecules; f ðXÞ is the single orienta-
tional distribution function normalized in such a way that

Z
f ðXÞdX ¼ 1: ð1:38Þ

For the large scale particle the excess chemical potential is given by a thermody-
namic expression, which can be presented in the form similar to (1.4):
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blexs ¼ wðas; ksÞ þ bPVs=p0ðks; asÞ; ð1:39Þ

where wðas; ksÞ is the following:

wðks; asÞ ¼ w00 þ w10ks þ w01as þ w11asks þ w20k
2
s

2
: ð1:40Þ

According to the ansatz of SPT theory [28, 29, 32] the coefficients of the expansion
(1.40) can be found from the continuity of the excess chemical potential given in
(1.37) and (1.39), as well as from the corresponding derivatives @lexs =@ks,
@lexs =@as, @

2lexs =@as@ks and @2lexs =@k
2
s . As a result one derives the following

coefficients

w00 ¼ � ln 1� g1=/0ð Þ; ð1:41Þ

w10 ¼ g1=/0

1� g1=/0

6c1
3c1 � 1

� p00k
/0

� �
; ð1:42Þ

w01 ¼ g1=/0

1� g1=/0

3ðc1 � 1Þ
3c1 � 1

þ 3ðc1 � 1Þ2
3c1 � 1

sðf Þ � p00a
/0

 !
; ð1:43Þ

w11 ¼ g1=/0

1� g1=/0

6ðc1 � 1Þ
3c1 � 1

þ 3ðc1 � 1Þ2sðf Þ
3c1 � 1

� p000ak
/0

 

þ 2
p00ap

0
0k

/2
0

� 3ðc1 � 1Þ þ 3ðc1 � 1Þ2sðf Þ
3c1 � 1

p00k
/0

� 6c1
3c1 � 1

p00a
/0

!

þ g1=/0

1� g1=/0

� �2 6c1
3c1 � 1

� p00k
/0

� �

� 3ðc1 � 1Þ
3c1 � 1

þ 3ðc1 � 1Þ2sðf Þ
3c1 � 1

� p00a
/0

 !
;

ð1:44Þ

w20 ¼ g1=/0

1� g1=/0

6 1þ c1ð Þ
3c1 � 1

� 12c1
3c1 � 1

p00k
/0

þ 2
p00k
/0

� �2

� p000kk
/0

 !

þ g1=/0

1� g1=/0

� �2 6c1
3c1 � 1

� p00k
/0

� �2

;

ð1:45Þ

where

c1 ¼ 1þ L1
D1

; ð1:46Þ
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sðf Þ ¼ 4
p

Z
f ðX1Þf ðX2Þ sin#12dX1dX2: ð1:47Þ

If both the scale parameters equal to zero as ¼ ks ¼ 0, the probability p0 is
equivalent to the geometrical porosity:

/0 ¼ p0 as ¼ ks ¼ 0ð Þ; ð1:48Þ

and in the case of HSC matrix or overlapping HSC matrix it is defined by the
relations (1.26) or (1.27) respectively.

Setting as ¼ ks ¼ 1 in the (1.39) leads to the expression similar to (1.9), the
chemical potential lex1 of a fluid in a matrix. However, now the constants A and
B have more general and complicated form

Aðsðf ÞÞ ¼ 6þ 6 c1 � 1ð Þ2sðf Þ
3c1 � 1

� p00k
/0

4þ 3 c1 � 1ð Þ2sðf Þ
3c1 � 1

 !
� p00a

/0
1þ 6c1

3c1 � 1

� �

� p000ak
/0

� 1
2
p000kk
/0

þ 2
p00ap

0
0k

/2
0

þ p00k
/0

� �2

;

ð1:49Þ

Bðsðf ÞÞ ¼ 6c1
3c1 � 1

� p00k
/0

� �

� 3 2c1 � 1ð Þ
3c1 � 1

þ 3 c1 � 1ð Þ2sðf Þ
3c1 � 1

� p00a
/0

� 1
2
p00k
/0

 !
;

ð1:50Þ

where p00k ¼ @p0ðas;ksÞ
@ks

; p00a ¼ @p0ðas;ksÞ
@as

; p000ak ¼ @2p0ðas;ksÞ
@as@ks

; p000kk ¼ @2p0ðas;ksÞ
@k2s

are the cor-

responding derivatives at a ¼ k ¼ 0. Also the probe particle porosity / can be
obtained from

/ ¼ p0 as ¼ ks ¼ 1ð Þ: ð1:51Þ

In order to derive expressions for the chemical potential we repeat the calcula-
tions presented in the previous section. Using the Gibbs-Duhem equation we get an
expression for the compressibility in the form (1.12). After integration of this
expression over the fluid density we obtain the excess chemical potential lex1 and
the pressure of a fluid in the form similar to the SPT2 approximation (1.13)–(1.14).
On the basis of SPT2 result we construct the SPT2b approximation in the form
(1.15) to (1.16). Following to the the scheme presented in the previous section we
also derive the expressions for the SPT2b1, SPT2b2 and SPT2b3 approximations in
the form like (1.18)–(1.19), (1.21)–(1.22) and (1.23)–(1.24) respectively. The only
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difference in the new expressions of the chemical potential in a comparison with
ones obtained in the previous section is an additional entropic term rðf Þ:

rðf Þ ¼
Z

f ðXÞ ln f ðXÞdX: ð1:52Þ

As an example we present here the expression for the chemical potential of a
fluid confined in a matrix using the SPT2b approximation:

bðlex1 � l01ÞSPT2b ¼ rðf Þ � lnð1� g1=/Þ þ ð1þ Aðsðf ÞÞÞ g1=/0

1� g1=/0

þ 1
2
ðAðsðf ÞÞ þ 2Bðsðf ÞÞÞ ðg1=/0Þ2

ð1� g1=/0Þ2

þ 2
3
Bðsðf ÞÞ ðg1=/0Þ3

ð1� g1=/0Þ3
:

ð1:53Þ

From the thermodynamic relationship

bF
V

¼ bl1q1 � bP ð1:54Þ

one can obtain the expression for the free energy. Within the SPT2b approximation
the free energy of a confined fluid is the following

bV�1FSPT2b ¼ q1rðf Þ þ q1ðlnðK3
1q1Þ � 1Þ þ bl01q1 � q1 lnð1� g1=/Þ

þ q1/
g1

lnð1� g1=/Þ � q1/0

g1
lnð1� g1=/0Þ

þ q1
Aðsðf ÞÞ

2
g1=/0

1� g1=/0
þ q1

Bðsðf ÞÞ
3

g1=/0

1� g1=/0

� �2

:

ð1:55Þ

Now we return to the orientational distribution function f ðXÞ introduced in the
beginning of this section. Distribution function f ðXÞ can be determined from a
minimization of the free energy with respect to variations in this distribution. This
procedure leads to the nonlinear integral equation

ln f ðX1Þ þ 1þ C
Z

f ðX2Þ sin#12dX2 ¼ 0; ð1:56Þ

where
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C ¼ g1=/0

1� g1=/0

3ðc1 � 1Þ2
3c1 � 1

1� p00k
2/0

� �"

þ g1=/0

ð1� g1=/0Þ
ðc1 � 1Þ2
3c1 � 1

6c1
3c1 � 1

� p00k
/0

� �#
:

ð1:57Þ

The (1.56) should be solved together with the normalization condition (1.38). The
solution of the (1.56) can be calculated numerically using an iteration procedure
according to the algorithm proposed in [37]. We should note that the (1.56) for the
singlet distribution function f ðXÞ has the same structure as the corresponding
equation obtained by Onsager [38] for the hard spherocylinder fluid in the limit
L ! 1, D1 ! 0, while the dimensionless density of fluid c ¼ 1

4 pL
2
1D1q1 is fixed.

Therefore, in the Onsager limit one has

C ! c ¼ 1
4
pL21D1q1: ð1:58Þ

This result within the framework of the SPT theory was generalized for a HSC fluid
with the finite value of L1 and D1 [39, 40], and in this case

C ¼ g1
1� g1

3ðc1 � 1Þ2
3c1 � 1

þ g1
1� g1

6c1ðc1 � 1Þ2
ð3c1 � 1Þ2

" #
: ð1:59Þ

It is not difficult to show that the expression (1.59) corresponds to the bulk case
ð/0 ¼ 1; p00k ¼ 0Þ of our result (1.57).

From the bifurcation analysis of (1.56) it is found that this equation has two
characteristic points ci and cn [41]. For the Onsager model in the bulk [41, 42]

ci ¼ 3:290; cn ¼ 4:191; ð1:60Þ

where ci corresponds to high densities of stable isotropic fluid and cn is related with
the minimal density of stable orientational ordering, i.e. a nematic state of fluid.

In the presence of a porous medium for the Onsager model we obtain

ci=/0 ¼ 3:290; cn=/0 ¼ 4:191: ð1:61Þ

It means that the isotropic-nematic phase transition in the presence of a matrix
shifts to lower densities of a fluid.

For finite values of L1 and D1 we can put

Ci ¼ 3:290; Cn ¼ 4:191; ð1:62Þ
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where Ci and Cn are defined from (1.57). The values in (1.62) define the
isotropic-nematic phase diagram for a HSC fluid in a matrix depending on the ratio
L1=D1 and the parameters of a matrix.

As an example we consider a porous medium formed by a HS matrix. The
probability to find scaled spherocylinder in an empty HS matrix is equal to

p0ðas; ksÞ ¼ 1� g0
1
V0

p
2

1
3
ðD0 þ ksD1Þ3 þ 1

2
asL1ðD0 þ ksD1Þ2

� �
: ð1:63Þ

From (1.63) one can find the derivatives needed for the description of thermody-
namic properties of a confined fluid:

p00a ¼ �3
D1

D0
g0; p00a ¼ � 3

2
g0

L1
D0

; p000ak ¼ �3g0
L1
D0

D1

D0
;

p000kk ¼ �6g0
D2

1

D2
0
;

ð1:64Þ

where g0 is the packing fraction of HS matrix particles. The probe particle porosity
in this case is equal to [32]

Fig. 1.2 Coexistence lines of isotropic-nematic phases of a hard spherocylinder fluid in a hard
sphere matrix for L1=D1 ¼ 20 and D0 ¼ L1 presented as a dependence of the spherocylinder fluid
density c ¼ 1

4 pq1L
2
1D1 on the matrix packing fraction g0. The GEMC simulation results taken from

[7] are shown as circles, from [43] are shown as squares and triangles (GDI). The isotropic phase
are denoted by open symbols and the nematic phase—by filled symbols. Solid lines corresponds to
the SPT theory. The notations ‘‘I’’ and ‘‘N’’ mean isotropic and nematic phases respectively
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/ ¼ ð1� g0Þ exp � g0
1� g0

D1

D0

3
2
ðc1 þ 1Þ þ 3c1

D1

D0

� �
� g20

ð1� g0Þ2
9
2
c1

D2
1

D2
0

"

� g0
ð1� g0Þ3

ð3c1 � 1Þ 1
2
D3

1

D3
0
ð1þ g0 þ g20Þ

#
:

ð1:65Þ

The analysis of the phase diagrams of a fluid in a matrix [32] obtained according
to (1.57) and (1.62) shows that the isotropic-nematic phase coexistence shifts to
smaller densities with decreasing of the value of L1=D1 as well as with decreasing
of the matrix porosity /0. In Fig. 1.2 one can observe how the matrix porosity
affects the phase coexistence in the case of the HSC fluid with L1=D1 ¼ 20 and the
HS matrix with L1=D0 ¼ 1. For comparison in this figure it is also presented the
results of computer simulation of Schmidt and Dijkstra [7] obtained by the method
of Gibbs ensemble Monte Carlo (GEMC). For the bulk case (g0 ¼ 0) the results of
Bolhuis and Frenkel [43] are shown in Fig. 1.2 as well. These results were obtained
using the common GEMC method and GEMC combined with the modified
Gibbs-Duhem integration (GDI) method. As one can see in Fig. 1.2 our theory
overestimates the effect of porous medium, especially it is noticeable for the iso-
tropic branch of phase coexistence. On the other hand, the nematic branch looks
rather satisfactory.

We should note that for isotropic-nematic coexistence lines can also be found
from the condition of thermodynamic equilibrium. According to this the isotropic
and nematic phases have the same pressure and the same chemical potential:

PiðciÞ ¼ PnðcnÞ; liðciÞ ¼ lnðcnÞ: ð1:66Þ

In [41] it was shown for the Onsager model in the bulk case that the results obtained
from bifurcation analysis and from the thermodynamic consideration coincide
exactly. Evidently, we can expect the same for the Onsager model in the case of the
porous medium presence. We observed in [32] that for the finite value of L1=D1

there is some deviation between the results obtained from the thermodynamic and
bifurcation analysis, which increases slightly with increasing of the ratio L1=D1.

1.4 Generalization of Van der Waals Equation
for Anisotropic Fluid in Random Porous Media

It is well established that the short-range order in simple and molecular liquids is
determined by the repulsive part of intermolecular interaction [33, 34]. Such a
short-range structure is essentially related to the packing of hard core particles,
which can be modeled by hard spheres (HS) in the case of simple fluid or hard
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convex bodies (HCB) system in the case of molecular fluid. Similar to the bulk case
[33, 34, 44] the results obtained from the SPT theory for HS and HCB fluids
confined in random matrices can be used as the reference system within the per-
turbation theory of fluids. In this section as the first step we consider the possibility
of an extension of the Van der Waals Equation of state to a simple and anisotropic
molecular fluid in a random porous medium.

Considering the case of a simple fluid with a pair potential of interaction, which
consists of a HS repulsive and an attractive parts, we start from the well-known Kac
potential [45, 46]

UattðrÞ ¼ c3UðcrÞ; ð1:67Þ

where r is a distance between two particles. In the same way as for a bulk fluid in
the limit c ! 0 the pressure of a confined fluid can be presented in the form [44, 45]

bP
q1

¼ bP
q1

� �
HS
�12ag1b; ð1:68Þ

where bP
q1

� 	
HS

is a contribution of a HS interaction, which can be obtained from

(1.16) within the SPT2b approximation, and b ¼ 1=kBT . Therefore, a HS fluid
confined in a random matrix is taken as a reference system. The second term in
(1.68) is a contribution of the attractive interaction defined by the constant a, which
can be calculated from the following expression:

a ¼ � 1
/0D

3
1

Z1
0

c3UðcrÞr2dr; ð1:69Þ

where the factor 1=/0 excludes the volume occupied by matrix particles, since this
volume does not contribute to the fluid attraction. We also introduce a size of hard
core of fluid particles D1, which means a diameter of HS particles.

As an example, we substitute an attractive pair potential UattðrÞ with the
Lennard-Jones potential [44] in the form

UattðrÞ ¼ 4e1 D1
r

� �12 � D1
r

� �6h i
; r�D1

0; r\D1

(
: ð1:70Þ

Using the Gibbs-Duhem relationship one can derive the expression of chemical
potential from (1.68). Having the analytical expressions for the equation of state
and the chemical potential one can build the liquid-vapour phase diagram in
coordinates g1 � T�, where T� is dimensionless temperature T� ¼ kT=e1 ¼ 1=be1.

In Fig. 1.3 the liquid-vapour coexistence curves are presented for a simple fluid
in HS matrices of the different porosities /0. One can see that the coexistence
curves shift toward lower temperatures and lower fluid densities if the matrix
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porosity decreases. Therefore, the critical density gc and critical temperature T�
c

decrease with matrix porosity decreasing. This behavior is very common for fluids
in random confinements [11, 25, 47].

It is worth mentioning that the interpretation of experimental results for the phase
behaviour of fluid in random porous media [48] is enough controversial. From one
point of view a fluid in a quenched disorder or in a random matrix can be considered
as experimental realization of the random-field Ising model [49]. Within this model
the random field describes the spatially varying preference of the porous media for
different fluid phases. From the other point of view the behaviour of a fluid in a
porous medium can be described in terms of the wetting states of the two phases in a
single pore of ideal geometry [50]. We do not focus here specially on the influence of
porous media on the behaviour of fluid near the critical point. However, since the
conventional Van der Waals Equation of state for the bulk fluid gives the mean field
description, one can consider that our analog of the Van der Waals equation for a
fluid in a random porous matrix leads to the same critical exponents.

A description of molecular fluids requires a corresponding generalization of
(1.68), which takes into account an anisotropic nature of the interaction between
molecules. An extension of the expression (1.68) to the case of a system
non-spherical particles with orientations starts from the following

bP
q1

¼ bP
q1

� �
HCB

�12ag1b; ð1:71Þ

where bP
q1

� 	
HCB

is the hard convex body contribution of the reference system. In our

study the HCB particles are considered as hard spherocylinders (HSC). Also we
restrict ourselves to the approximation SPT2b.

The attraction term depends on the constant a which is expressed in the general
form as

Fig. 1.3 Liquid-vapour
coexistence curves
(T� ¼ kT=e1 is a reduced
temperature, g1 is a fluid
packing fraction) calculated
from a generalized Van der
Waals (1.68) for a simple
fluid in a HS matrix of the
different porosity /0
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a ¼ � 1
/0V1

Z
f ðX1Þf ðX2ÞUattðr12X1X2Þd�r12dX1dX2; ð1:72Þ

where V1 is the volume of a spherocylindrical molecule. One can see that the
attractive pair potential Uattðr1X1X2Þ in (1.72) is orientational dependent.
Therefore, except the anisotropic repulsive interaction of HSC particles the
attractive part of intermolecular interaction is anisotropic as well. We introduce an
orientational dependence for the potential Uatt by modifying the Lennard-Jones
potential in the following way

Uattðr12X1X2Þ ¼ ULJ
rðX1X2XrÞ

r12

� �
1þ vP2ðcos#12Þ½ �; ð1:73Þ

ULJ
rðX1X2XrÞ

r12

� �
¼ 4e1

rðX1X2XrÞ
r12

� 	12
� rðX1X2XrÞ

r12

� 	6� �
; r12 � rðX1X2XrÞ

0; r12 \ rðX1X2XrÞ

8<
:

ð1:74Þ

where P2ðcos #12Þ ¼ 1
2 3 cos2 #12 � 1ð ÞÞ is the second Legendre polynomial, the

relative orientation #12 corresponds to the angle between the principal axes of the
two molecules. rðX1X2XrÞ is the contact distance between molecules, and it
depends on the orientations of two interacting molecules as well as on the orien-
tation of a distance vector~r12 between their centers. It is worth noting that in the
case of the repulsive part of the potential is spherically symmetric (r is fixed) the
expression for the potential (1.73) reduces to the Maier-Saupe potential [51].

One can see that (1.73) is a sum of two Lennard-Jones potentials, where the first
one is related to the isotropic attraction and another one corresponds to the
anisotropic attraction. The ratio of the well depths of these two potentials v ¼ e2=e1
specifies a rate of anisotropy in the attraction of the resulted potential (1.73).

Following the traditional scheme [52], taking into account that d�r ¼ r2drdXr

and using a dimensionless intermolecular distance r� ¼ r=rðX1X2XrÞ one obtains

a ¼ � 1
/0V1

Z
dX1dX2f ðX1Þf ðX2Þ 1þ vP2ðcos#12Þ½ �

� Vexc
1 ðX1X2Þ3

Z1
0

r�2dr�bULJðr�Þ;
ð1:75Þ

where

VexcðX1X2Þ ¼ 1
3

Z
dXr½rðX1X2XrÞ�3 ð1:76Þ
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is excluded volume formed by two hard spherocylinders with the orientations X1

and X2.
In order to study the anisotropy effect only in the repulsive part of intermolecular

interaction, we put v ¼ 0. For this case the phase diagrams for the system of HSC
fluid with L1=D1 ¼ 5 and L1=D1 ¼ 10 in the bulk (/0 ¼ 1:0) and in the porous
matrices (/0 \ 1:0) are presented in Fig. 1.4. Similar as it was shown for the bulk
[52], for our model three regions of liquid phase equilibria are apparent. At low and
intermediate densities the phase equilibrium between vapour (V) and isotropic
liquid ðLÞ states is observed. The coexistence region between the isotropic liquid
ðLÞ and the anisotropic nematic ðNÞ states appears at high densities. The
isotropic-nematic (I-N) transition is related mainly to the non-spherical shape of
molecules, hence the position of this transition does not change with the temper-
ature. In the high-temperature limit the liquid-nematic (L-N) transition vanishes and
the system tends to that for a HSC fluid in a matrix. In contrast to this the tem-
perature decrease leads to the L-N region becomes broader. At sufficiently low
temperatures, the region merges into the continuous vapour-liquid region at the
vapour-liquid-nematic (V-L-N) triple point. Below the triple point temperature only
the vapour-nematic (V-N) coexistence is seen. In the porous matrix presence all the
phase diagrams shift to the region of lower temperatures and lower densities similar
as it was observed in the case of simple fluids (Fig. 1.3).

With increasing of the ratio L1=D1 to 10 the liquid-nematic region becomes much
more extensive (Fig. 1.4). The vapour-liquid region for L1=D1 ¼ 10 is essentially
narrower than in the case of L1=D1 ¼ 5, while the liquid-nematic region covers a
wide range of densities. As one can see in Fig. 1.4 a porous medium for L1=D1 ¼ 10
can modify the phase behaviour of a fluid qualitatively. For instance, for the porosity
/0 ¼ 0:8 the vapour-liquid coexistence region in the case of L1=D1 ¼ 10 is very
small. Therefore, for such a fluid in matrices with porosities lower than /0 ¼ 0:8

Fig. 1.4 The temperature-density phase diagram (T� ¼ kT=e1 is a reduced temperature, g1 is a
fluid packing fraction) calculated from the generalized Van der Waals (1.71) for the attractive
spherocylinder fluid in a bulk and in HS matrices of porosity /0 ¼ 1:0 (solid lines), /0 ¼ 0:8
(dashed lines) and /0 ¼ 0:6 (dotted lines). The horizontal lines correspond to the vapour-
liquid-nematic three-phase coexistence separating the vapour-liquid (VL), liquid-nematic (L-N)
and vapour-nematic (V-N) regions. Two ratios of length to diameter of spherocylinder molecules
are considered: L1=D1 ¼ 5 (left panel) and L1=D1 ¼ 10 (right panel)
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the vapour-liquid coexistence region can disappear completely. Such a situation is
observed for /0 ¼ 0:6 in Fig. 1.4.

It was also observed that for considerably high values of L1=D1 ¼ 40 the
vapour-liquid coexistence region disappears even in the bulk and the presence of
porous medium for these cases does not change this (Fig. 1.5, left panel). Only the
isotropic-nematic transition (I-N) is observed for the ratio L1=D1 ¼ 40. One can see
that the porosity decrease leads to the narrowing of the I-N region and it shifts to the
lower densities. Since in the Onsager limit L1 ! 1, D1 ! 0 the isotropic-nematic
transition shifts to the lower densities we can expect an appearance of vapour-liquid
coexistence in nematic region. Such a situation is observed for L1=D1 ¼ 80 and it is

Fig. 1.5 The same as in Fig. 1.4, but for the ratios of length to diameter of spherocylinder
molecules L1=D1 ¼ 40 (left panel) and L1=D1 ¼ 80 (right panel). For L1=D1 ¼ 80 the coexisting
region of nematic vapour and nematic liquid ðNI � NIIÞ with corresponding critical point is
observed. The horizontal lines correspond to the vapour-nematic-nematic three phase coexistence,
which separates the vapour-nematic ðV � NIÞ, nematic I-nematic II ðNI � NIIÞ and vapour-nematic
II ðV � NIIÞ regions

Fig. 1.6 The temperature-density phase diagram (T� ¼ kT=e1 is a reduced temperature, g1 is a
fluid packing fraction) calculated from the generalized Van der Waals (1.69) for the spherocylinder
fluid with L1=D1 ¼ 5 in a bulk (left panel) and in a HS matrix of porosity / ¼ 0:8 (right panel).
The different anisotropic rates of the attractive potential are considered: v ¼ 0:0 (solid lines),
v ¼ 0:1 (dashed lines) and v ¼ 0:4 (dotted lines)
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presented in Fig. 1.5 (right panel). It is seen that below the triple point temperature
of vapour-nematic-nematic transition there is a relatively broad region of V-N
coexistence. A decrease of the matrix porosity causes the vapour-nematic region to
be more pronounced.

Finally, we focus on the effect of anisotropic attractive interaction on the fluid
phase behaviour in a random confinement. The temperature-density projection of
the phase behaviour in the case of L1=D1 ¼ 5 spherocylinder fluid with the different
rates of anisotropic attractive interactions v is presented in Fig. 1.6. As it can be
expected the introduction of the anisotropic attractive interaction enhances an
ability of the fluid to form orientationally ordered states. The liquid-nematic region
broadens out significantly if v increases, while the vapour-liquid coexistence curve
remains unchanged. As a consequence, one can see an increase of the
vapour-liquid-nematic triple point. For sufficiently large anisotropy (v ¼ 0:4) the
triple and critical points merge, and as a result only the I-N phase behaviour is
found. The presence of porous medium as usually shifts the phase diagram to lower
densities and temperatures. Although quantitatively the phase behaviour in the bulk
(Fig. 1.6, left panel) and in the presence of porous medium with the porosity
/0 ¼ 0:8 (Fig. 1.6, right panel) are practically the same.

1.5 Conclusions

The development and the application of the scaled particle theory (SPT) for a study
of the thermodynamic properties of molecular liquids in random porous media are
reviewed in this chapter. Within the proposed approach a series of different
approximations are considered and tested by a comparison with computer simu-
lations. It is shown that the SPT2b approximation fits the simulation results with a
good accuracy at low and intermediate fluid densities. The SPT2b1 approximation
improves the description at high densities and for the case when sizes of fluid and
matrix particles are comparable. For a hard spherocylinder fluid confined in a
random matrix the SPT2 approach is extended with a use of two scaling parameters.
The results obtained for a hard spherocylinder fluid with two scaling parameters
make it possible to study the effect of a porous medium on the isotropic-nematic
phase transition. The proposed theory predicts that this transition is of the first order
and a decrease of porosity shifts the phase diagrams toward lower fluid densities
and temperatures. This prediction is supported by computer simulations [7] and also
at least for enough large pores by experimental results [53, 54].

We have demonstrated that the results obtained within the framework of the SPT
theory for a system of hard convex body fluid and in particular for a hard sphe-
rocylinder fluid can be used as a reference system for an extension of the Van der
Waals equation of state to the case of molecular anisotropic fluid in a random
porous matrix. Starting from this generalization the Van der Waals equation has
made it possible to examine the evolution of vapour-liquid-nematic phase equi-
librium depending on the anisotropy of fluid molecules and the porosity of a
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random confinement. As it is known [33, 34] the principal defect of the Van der
Waals equation is related with a neglect of a fluid structure. Recently [55], we
applied the Barker-Henderson perturbation theory [44] for the description of the
liquid-vapour phase transition of a simple fluid in a random matrix. The pair
distribution function of a hard sphere fluid in a porous medium needed for this
theory was taken from numerical calculations of the replica Ornstein-Zernike
equations [8, 9, 14, 15]. However, it is observed that the effect of porous medium
on the vapour-liquid phase diagram qualitatively comparable with the prediction
obtained from the Van der Waals equation. We plan in future to generalize the
Barker-Henderson perturbation theory for anisotropic molecular fluids in random
porous media.

Another way of a development of the presented theory is related to taking into
account of association effects in molecular fluids confined in random porous media.
Recently [47], within the framework of the SPT theory we have obtained the
analytical expression for the contact value of a pair distribution function of a hard
sphere fluid in random matrices. This allowed us to apply the thermodynamic
perturbation theory [56, 57] to the treatment of association effects and to construct
the phase diagrams of network-forming fluids confined in random matrices. We
hope to generalize this approach for molecular anisotropic fluids in random porous
media as well.

The developed theory opens new possibilities for the modeling of porous media.
Within the framework of the SPT theory a porous medium can be presented as
quenched HCB or OHCB particles, thus one can get a description of fluids in wider
range of porous structures than those considered in other studies before. However,
we should note that a structure of real porous materials can be much more com-
plicated. As it was noted in [1], sometimes the simulation and theory can be used to
study the behaviour of adsorbates confined in hypothetical porous materials that do
not necessarily correspond to real materials. In order to establish the relation
between such simple models of porous medium and more realistic ones we can use
the morphological principle of mapping between the thermodynamic properties of a
fluid in various matrices [25]. According to this principle the fluid in two different
matrices has the same thermodynamic properties if the both matrices have the same
probe particle porosity /, the specific pore area s, the mean curvature and the
Gaussian curvature. It was shown in [25] that these four morphological measures of
a porous medium is enough to make a prediction of the thermodynamic properties
of a confined fluid.

Finally, we should emphasize that in this review we focus on the consideration
of the effect on fluids caused by porous media exceptionally with a random
structure. However, major conclusions made for the case of random porous
materials are valid for the case of regular porous materials as well, at least for
materials with a high porosity. An understanding of the effect of a non-regular
porous structure on confined fluid in a comparison with ordered porous materials
needs deeper analysis and it will be studied elsewhere.
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Chapter 2
Dimensional Crossover in Liquids
in Reduced Geometry

Alexander V. Chalyi

Abstract Problem of finding the pair correlation function G2 and correlation length
ξ of order parameter fluctuations in liquids in restricted geometry is discussed. Two
types of dimensional crossover (DC) are studied. The 1st type (DC-1) corresponds
to transition from 3D bulk to 3D bounded liquids. In this case the dependence of
physical properties on thermodynamic variables (temperature, density, pressure,
etc.) in bulk liquids with linear sizes L ≫ ξ may convert into dependence of these
properties on linear sizes in bounded liquids with L < ξ. The 2nd type (DC-2)
corresponds to the case when a further decreasing of linear sizes in confined liquids
may be treated under certain conditions as the change of spatial dimensionality
D (for example, 3D , 2D crossover in slit-like pores or 3D , 1D crossover in
cylindrical pores). Smooth transition of effective critical exponents (say, from
ν = 0.625 for D = 3 to ν = 1 for D = 2) as well as theoretical results versus
experimental data are examined for liquids in reduced geometry.

2.1 Introduction

Phase transitions and critical phenomena in reduced geometry have been actively
investigated in recent years. Many systems of experimental and theoretical interest
are spatially bounded and have different forms of reduced geometry, such as thin
surface layers, interfaces, porous media, biological membranes, vesicles, synaptic
clefts, etc. This review paper is aimed at studying peculiarities of dimensional
crossover in liquid systems in reduced geometry.

The problem going to be mainly discussed: how results of 3D systems transfer
to results of 2D systems and vice versa. Obviously, such a 3D, 2D transition which
may be called “dimensional crossover” or “dimensionality crossover” should be
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smooth and without discontinuities. While describing such a dimensional crossover
(DC), one has to take into account the main theoretical ideas of bulk scaling and
finite-size scaling (FSS) as well as experimental results (see e.g. [1–15]).

The topics under consideration are as follows: (a) pair correlation function and
correlation length of order parameter fluctuations in liquids in reduced geometry;
(b) effects of spatial limitation and two types of dimensional crossover; (c) com-
parison of theoretical results and experimental data in liquids in reduced geometry.

2.2 Pair Correlation Function and Correlation Length
of Order Parameter Fluctuations

The major problem of the statistical physics approach is to find the pair correlation
function G2 and correlation length ξ of order parameter fluctuations in bounded
systems undergoing phase transitions and critical phenomena. This problem is
studied in liquid volumes in reduced geometry in the form of plane-parallel layers
and cylindrical samples [4, 16].

To receive the pair correlation function of scalar order parameter fluctuations,
namely density fluctuations for a single-component liquid near the critical point,
one can use the well-known method of the statistical physics based on the
Ornstein-Zernike (OZ) equation

G2ðrÞ ¼ CðrÞ þ\q[
Z

G2ðr � r0ÞCðr0Þdr0: ð2:1Þ

Here C(r) is the direct correlation function and <ρ> is the average density. The direct
correlation function C(r) is usually short-range for real intermolecular potentials.
It allows using the following differential equation instead of the integral (2.1):

ðD� j2ÞG2ðrÞ ¼ �CðrÞ=C2; ð2:2Þ

where κ2 = (1 – C0)/C2 is the quantity related to the inverse isothermal com-
pressibility, while C0 ¼ \q[

R
CðrÞdr; C2 ¼ 1

6\q[
R
CðrÞr2dr are the zero

and the second spatial moments of the direct correlation function.
In order to obtain the pair correlation function G2(r) one usually substitutes the

short-range direct correlation function C(r) in (2.2) with the delta function δ(r).
Then G2(r) can be found as the Green function for the Helmholtz operator
L̂ ¼ D� j2, where Δ is the Laplacian.

Using this method, it is easy to obtain the OZ correlation function

G2ðrÞ ¼ A expð�r=nÞ=r ð2:3Þ
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for the 3-dimensional infinite system with zero boundary conditions. One has
indeed for the pair correlation function G2(r)→ 0 if r = |r1 – r2|→∞. Here in (2.3)
A is the constant coefficient, ξ = κ–1 is the correlation length of order parameter
fluctuations. It is important to mention that the anomalous growth of the correlation
length ξ and the long-range behavior of the pair correlation function G2(r) ∼ r–1

take place at the phase transition or critical points only for spatially infinite systems.
Let us consider the geometry of our problem in the form of a plane-parallel

layer: –∞ < x, y < ∞, –L0 < z < L0. It is possible to find the Green’s function of the
Helmholtz operator for such a layer with zero boundary conditions at the surfaces
z = ±L0 in the following form [4]:

G2ðq; zÞ ¼ 1
4pL0

X
n� 0

1� ð�1Þn½ ��

K0 qðj2 þ n2p2=4L20Þ3=2
h i

cosðnpz=2L0Þ;
ð2:4Þ

where ρ = (x2 + y2)1/2 and K0(u) is the cylindrical Macdonald function.
The pair correlation function G2(r) may be obtained also by another method

based on the result of acting the inverse Helmholtz operator L̂�1 on the delta
function δ(r). It first requires the expression for the delta function constructed of
orthonormal eigenfunctions of the operator L̂ with zero boundary conditions and
with eigenvalues λn satisfying the relation λn = kx

2 + ky
2 + kz

2 + κ2. Components of
wave vector kx, ky change continuously (–∞ < kx, ky < ∞), while kz is discrete
(kz = n2π2/4L0

2, n = 0, 1, 2, …). The following formula for δ(r) satisfies all these
conditions:

dðrÞ ¼ 1
8pL0

X
n� 0

ZZ
1� ð�1Þn½ � cosðnpz=2L0Þ exp iðkxxþ kyyÞ

� �
dkxdky: ð2:5Þ

With taking (5) into account, an expression for G2(r) can be obtained in the form

G2ðrÞ ¼ L̂�1dðrÞ

¼ 1
8p2L20

X
n� 0

ZZ
cosðnpz=2L0ÞeiðkxxþkyyÞ

k2x þ k2y þ ðnp=2L0Þ þ j2
dkxdky:

ð2:6Þ

Using polar coordinates kx = kxycosφ, ky = kxysinφ and integrating (6) with such
formulae for cylindrical functions

expðikqcosuÞ ¼ J0ðkqÞ þ 2icosuJ1ðkqÞ þ 2i2cos2uJ2ðkqÞ þ . . .;Z1
0

kJ0ðkqÞdk
k2 þ a2

¼ K0ðqaÞ:
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one can obtain the result given by formula (2.4) for the pair correlation function of a
plane-parallel layer.

As in the previous case of a plane-parallel layer, let us find a solution of the
differential OZ equation for a spatially restricted system in the form of a cylindrical
sample (0 ≤ x, y ≤ a, – Z0 < z < Z0, Z0 ≫ a). The cylinder radius a is supposed to be
much smaller than distance Z0 along the cylinder axis. While solving the OZ
equation in cylindrical coordinates

1
r
@

@r
r
@G2

@r
þ @G2

@z2
� j2G2 ¼ 0; ð2:7Þ

the nonsingular solution can be found as follows [16]:

G2ðr; zÞ ¼
X
n� 1

DnJ0ðln
r
a
Þ exp �ðj2 þ l2n=a

2Þ1=2 zj j
h i

: ð2:8Þ

Here J0(u) is the Biessel function, μn are its nodes, i.e. the solutions of the
equation J0(μn) = 0, and Dn are coefficients. The solution (2.8) is valid for all
r except the nearest vicinity of the point r = 0.

The iterative procedure was proposed to find a non-singular solution of the OZ
equation in [17]. The first iterations for the pair and direct correlation functions of
scalar order parameter fluctuations near the critical point were found for bounded
systems with geometry of a cylinder. These results, being valid even at r = 0, were
used to study the shifts of the critical parameters.

The main contributions in both expressions (2.6) and (2.8) for the pair corre-
lation function are given by the first terms with small n. Therefore, one has in the
case of a plane-parallel layer

G2ðq; zÞ ¼ 1
2pL0

K0 qðj2 þ n2p2=4L20Þ1=2
h i

cosðpz=2L0Þ; ð2:9Þ

and in the case of a cylindrical sample

G2ðr; zÞ ¼ D1J0ðl1r=aÞ exp �ðj2 þ l21=a
2Þ1=2 zj j

h i
: ð2:10Þ

Correlation functions (2.4) and (2.8) demonstrate an oscillatory behavior in the
z direction for plane-parallel layers and in the r direction for cylindrical samples
confirming the theoretical results and computer-simulation studies (see e.g. [18,
19]) for the radial distribution function g(r) in liquids in restricted geometry).

The limiting case of the Ornstein-Zernike approximation (2.3) for an infinite
system can be obtained from formulae (2.4) and (2.8) for G2 with zero boundary
conditions
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G2ðq; zÞ ¼ 1
4pL0

2L0
p

� �2Z1
0

K0 qðj2 þ n2p2=4L20Þ1=2
h i

cosðkzzÞdkz

¼ 1
4p

exp �jðq2 þ z2Þ1=2
h i

=ðq2 þ z2Þ1=2;

G2ðr; zÞ ¼
Z1
1

e�x zj jJ0ðr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � j2

p
Þdx ¼ expð�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p ;

in geometries of plane-parallel layers and cylindrical samples, correspondingly.
As is seen from (2.4), (2.8–2.10), the pair correlation functions of liquids in

reduced geometry have a non-exponential shape. Therefore, it is natural to deter-
mine the correlation length ξ of order parameter fluctuations in such bounded
liquids according to the following relation:

n ¼ ffiffiffiffiffiffi
M2

p
;M2 ¼

R
G2ðrÞr2drR
G2ðrÞdr ; ð2:11Þ

where M2 is the second normalized spatial moment of the pair correlation function.
In the case of a plane-parallel layer, taking into account the formula (2.9) for the

pair correlation function G2(r) and expression for the cylindrical Macdonald
function Kν(u) and gamma-function C(u) [20]

Z1
0

xlKmðaxÞdx ¼ 2l�1a�l�1C
1þ lþ m

2

� �
C

1þ l� m
2

� �
;

one can derive the following formula for the correlation length ξ of order parameter
fluctuations:

n ¼ n0
4

j2 þ p2=4L20
þ 1
4
ð1�8=p2ÞS2

� �1=2
: ð2:12Þ

In the case of a cylindrical geometry in accordance with the main contribution
for pair correlation function (2.10) and values of integrals [20]

Za
0

J0ða=aÞrdr ¼ ða=aÞJ1ðaaÞ;

Za
0

J0ðarÞr3dr ¼ a
a
ða2 � 1

a2
ÞJ1ðaaÞ þ 2a2a2J0ðaaÞ;
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the correlation length ξ can be written as

n ¼ n0
2

ðn�1
0 jÞ2 þ l21=S

2
þ ð1� 4

l21
ÞS2

" #1=2
: ð2:13Þ

Thecorrelation length ξ in (2.12) and (2.13) depends not only upon thermody-
namic variables (because of relationships between κ and temperature, density, etc.)
but also on the thickness d = 2L0 or the radius a, i.e. on the geometric factors S = d/
ξ0 or S = a/ξ0 related to the number of molecular monolayers along the direction of
spatial limitation.

Let us summarize the approximations used to derive expressions for the pair
correlation function G2 and correlation length ξ:

(a) Here two methods have been used: (1) method of the OZ integral (2.1) which
was transformed into the differential (2.2) with two spatial moments of the
short-range direct correlation function. This method is quite equivalent to the
well-known OZ approximation in the fluctuation theory of critical phenomena
giving the critical exponent η = 0 in an scaling formula for the pair correlation
function G2(r) = A exp ( – r/ξ)/r1+η [21]; (2) method of the inverse Helmholtz
operator L̂ ¼ D� j2 acting on the delta function and giving G2 as the Green
function for this operator.

(b) We used here only the main contributions to correlation function G2 given by
the first terms in (2.4) and (2.8). It was shown [22, 23] that next contributions,
say, for a cylindrical sample are decreasing with the growth of number n of the
Biessel function nodes μn (μ1 = 2.4048, μ2 = 5.5201, μ3 = 8.8537,
μ4 = 11.7915, etc.) and due to reduction of cylindrical and exponential
functions in (2.8) and (2.10) with increasing of their arguments. So, at
|z|/κa ≈ 1 ratios of successive terms in (2.8) have such orders of magnitudes:
a2/a1 ≈ 10–1 ∼ 10–2, a3/a1 ≈ 10–3, a4/a1 ≈ 10–4.

(c) The pair correlation functions (2.4), (2.8–2.10) in liquids in reduced geometry
are obtained for zero boundary conditions. The case of the arbitrary boundary
conditions for the pair correlation function G2(r = a, z) = F(z) was studied for a
cylindrical geometry in [22, 23]. Numerical values of the arbitrary function F
(z) depend on the concrete problems and change within the interval 0 ≤ F ≤ 1.
The case F = 0 corresponds to “hydrophobic” surfaces, the case F = 1 – to
“hydrophilic” surfaces. The intermediate case 0 < F< 1 describes obviously the
situation of the so-called “incomplete wetting”. Omitting immaterial details,
one can receive finally the solution of the OZ differential (2.2) in the form (2.8)
with the only important difference: values μn, being the nodes of the Biessel
function and satisfying the equation J0(μn) = 0, have to be substituted in the
formula (2.8) for the arbitrary boundary conditions by values ξn which are the
nodes of the transcendental equation J0(ξn) = F(z) exp [– (κ2 + ξn

2/a2)1/2|z|].
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2.3 Comparison with the Fisher Scaling Hypothesis,
Anisotropic Effects in Finite-Size Scaling

Fisher [2] and other authors (see e.g. [8–10, 12, 13]) have proposed the FSS
hypothesis for systems in reduced geometry. According to this hypothesis (here we
shall formulate it for classical liquids), the fluctuation part of the thermodynamic
potential ΔФs and the correlation length ξ depend not only on the thermodynamic
variables (the reduced temperature τ, etc.) and external fields h but on the linear size
L of a system:

DUs ¼ L�dfUðasL1=m; bhLbd=mÞ; n ¼ Lf nðasL1=m; bhLbd=mÞ; ð2:14Þ

where a and b are nonuniversal constants (amplitudes).
The first scaling argument in (2.14) x = aτL1/ν in both scaling functions fФ and fR

can be obtained from the following formulae:

n� s�n; s� n�1=m; x� s

n�1=m
� sL1=m ðn ! LÞ: ð2:15Þ

In analogous way one can easily obtain the expression for the second scaling
argument y = bhLβδ/ν with taking such formulae into account

n� s�m �u�m=b � h�m=bd;u� sb;u� h1=d; s�u1=b;

h� n�bd=m; y� h

n�bd=m
� hLbd=mðn ! L):

ð2:16Þ

Here φ = (ρ – ρc)/ρc is the order parameter for classical liquids, i.e. the reduced
density.

The isothermal compressibility of liquids in reduced geometry in nonzero
external fields may be written as

bT ¼ ð@2DUs=@h2Þs ¼ L�dþ2bd=m fbðx; yÞ; fb ¼ bðfUÞ00h ;
� d þ 2bd=m ¼ c=m:

ð2:17Þ

The Fisher FSS hypothesis formulated for the susceptibility χ in [2]

v ¼ Sx F ðShsÞ: ð2:18Þ

Equation (2.18) was stated for systems in reduced geometry in a zero external
field. Here S = L/a0 is the geometric factor and F(x) is the scaling function of the
susceptibility (the isothermal compressibility in liquids).
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The most important consequences of (2.18) are as follows:

• the critical exponent ω = 2 – η;
• the critical exponent θ = 1/ν;
• the scaling function F(x) has such an asymptotic formula for large arguments

x = Sθτ ≫ 1 : F(x) * x–γ, where γ = (2 – η)ν is the critical exponent of the
susceptibility for bulk systems.

Let us compare the Fisher FSS hypothesis for the susceptibility with results
obtained above for liquids in reduced geometry of a plane-parallel layer. In
accordance with the formula (2.12), one has such an expression for the suscepti-
bility for a plane-parallel layer

v ¼ v0S
2 4½S2s2mf1 xð Þ þ p2��1 þ ð1�8=p2Þ=4
n o

; ð2:19Þ

where χ0 is the amplitude of the susceptibility.
Equation (2.19) has the form analogous to the FSS hypothesis (2.18).

Comparison between these formulae gives the following results:

(a) According to (2.18) and (2.19) the critical exponent ω = 2. Taking into
account ω = γ/ν = 2 – η and the fact that the Helmholtz differential operator
L̂ ¼ D� j2 corresponds to the OZ approximation with zero value of the
critical exponent η, this result confirms the first consequence of the Fisher FSS
hypothesis (2.18).

(b) Scaling function F(x) in (2.19) depends on the argument x = S2/γτ for a zero
external field, i.e. in the vicinity of the critical isochore. Therefore, for η = 0
one has 2/γ = 1/ν = θ in accordance with the second consequence of the scaling
hypothesis (2.18).

(c) With increasing the thickness of a plane-parallel layer one has the following
result for the scaling function F(x) from (2.19) for large arguments x = S2/γτ ≫
1:F(x) ∼ x–1 ∼ x–γ in accordance with the third consequence of the FSS
hypothesis (2.18).

Idea of universality and isomorphism seems to be one of the most important
features in the physics of critical phenomena and phase transitions. [5, 9–11, 24].
Within a certain universality class, critical behaviour of physical properties in bulk
and confined systems is similar and allows generalizing on systems not only
physical but also other nature.

There is another problem that is actively discussed in physics of the critical
phenomena for bulk and confined systems [25–29]. Namely, influence of anisot-
ropy on such quantities as ratios of amplitudes and scaling functions. Influence of
anisotropy and universality on FSS was investigated in [25] on the basis of analysis
of the critical Binder cumulant of a 2D Ising model. The Binder cumulant [26]
characterizes the distribution of order parameter fluctuations and is defined by such
a relation U = 1 − <M4>/(3 <M2>2), where M is the magnetization per
spin, <M2> and <M4> are its second and fourth spatial moments. Results obtained
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in [25] support the validity of universal FSS for critical behavior of physical
properties in the presence of a weak anisotropy. It is worthy to mention, that in our
present approach using integral equations for the pair correlation function with the
short-ranged direct correlation, the critical Binder cumulant U = 1 because of the
OZ approximation in which <M4> = 0. Correlative behavior of anisotropic binary
liquid system were studied by the methods of integral equations in the
three-moment approximation in [27] with taking into account the 3rd spatial
moment of the direct correlation function.

Important results related to the problem of universality and effects of anisotropy
were obtained in supercooled water [28] and in ionic fluids [29]. The authors [28]
analyzed the critical behavior of supercooled water on the basis of twomodels: (1) the
lattice-gas model used to describe the physical properties of liquid-vapor transitions,
and (2) the lattice-liquid model, associated with an entropy-driven separation. The
critical behavior of supercooled water appeared to be closer to the lattice-liquid model
behavior, while the critical behavior of the lattice-gas model being equivalent to the
critical behavior of Ising model for incompressible anisotropic ferromagnets.

The correlation length ξ in (2.12), (2.13) demonstrates an anisotropic behavior.
Consider for definition the case of a plane-parallel layer, then correlation length

ellipse related to (2.12) is determined by two contributions n ¼ ðn2xy þ n2z Þ1=2 where
nxy ¼ 2=ðj2 þ p2=4S20Þ1=2 is the correlation length in the xy plane, and nz ¼
S0=2ð Þð1�8=p2Þ1=2 is thecorrelation length in the z direction. In certain sense this
result reminds the correlation length ellipse for a 2D Ising model with weak
anisotropy caused by different amplitudes ξ0,> and ξ0,< above and below the critical
point [25].

2.4 Effects of Spatial Limitation, Two Types
of Dimensional Crossover

Spatial limitation of systems undergoing critical phenomena and 2nd order phase
transitions causes the change of critical parameters and critical exponents. The most
important feature of critical phenomena in bulk systems is the divergence of the
bulk correlation length ξ in the critical point according to the formula

n ¼ n0jsj�m; ð2:20Þ

where ξ0 is the amplitude of correlation length which has the same order of mag-
nitude as a0, s ¼ ðT � Tcð1ÞÞ=Tcð1Þ is the temperature variable for a bulk liquid
with the critical temperature Tcð1Þ.

However, the natural desire of investigators to study critical phenomena in
systems in reduced geometry and perfect experimental technique allow one to
realize a situation in which the correlation length becomes the same order of
magnitude as the characteristic linear size of the sample. Thereby, theoretical and
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experimental results in such bounded systems yield not bulk critical parameters and
bulk theoretical critical exponents but its effective values depending on linear sizes.

Here the problem of critical behavior of systems in reduced geometry is dis-
cussed for single-component liquids with scalar order parameters. Special attention
is given to the dimensional crossover (DC) effects of two types as follows [30]:

1. The first type of dimensional crossover (DC-1) corresponds to transition from
3D bulk to 3D liquids in reduced geometry. In this case one has a situation in
which dependence of physical properties on thermodynamic variables (tem-
perature, density, pressure, etc.) in bulk liquids with linear sizes L ≫ ξ may
convert into dependence of these properties on linear sizes in confined liquids
with L < ξ.

2. The second type of dimensional crossover (DC-2) corresponds to the case when
a further decreasing of linear sizes in confined liquids may be treated under
certain conditions as the change of spatial dimensionality D (for example, 3D ,
2D crossover in slitlike pores or 3D , 1D crossover in cylindrical pores).

2.4.1 Dimensional Crossover DC-1

Let us first consider the shifts of the critical parameters in liquids in reduced
geometry. Table 2.1 contains formulae for the temperature Tc(S), density qcðSÞ and
pressure Pc(S) in bounded single-component liquids (3rd column) which are
analogous to the critical temperature Tcð1Þ, critical density qcð1Þ and critical
pressure Pcð1Þ in bulk liquids (2nd column). An important difference between
these parameters of bulk and confined liquids consist in as follows: while the
critical parameters Tcð1Þ; qcð1Þ; Pcð1Þ of bulk liquids characterize coordinates
of singularities for physical properties on the thermodynamic space, the analogous
parameters TcðSÞ; qcðSÞ; PcðSÞ give coordinates of points in which these physical
properties have only its rounding maxima or minima.

As an example, the shift of the critical temperature can be calculated for a slitlike
pore with the geometric factor S = 10 and the pore’s thickness H ≈ 3 nm filled by
water with the bulk critical temperature Tcð1Þ � 647 K. The result of calculation
of Tc(S) according to (21) for the critical exponent ν = 0.628 gives TcðSÞ � 587 K.
In this case the shift of the critical temperature is negative and rather large: DTc ¼
Tc Sð Þ � Tc 1ð Þ � �60K Analogues of other critical parameters—the critical

Table 2.1 Critical parameters for bulk and confined systems

Critical parameters Bulk systems Confined systems

Critical temperature Tc ¼ Tcð1Þ TcðSÞ ¼ Tcð1Þ½1þ ðG=SÞ1=m��1 (2.21)

Critical density qc ¼ qcð1Þ qcðSÞ ¼ qcð1Þ½1þ ðG=SÞb=m��1 (2.22)

Critical density Pc ¼ Pcð1Þ PcðSÞ ¼ Pcð1Þ½1þ ðG=SÞbd=m��1 (2.23)
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density and pressure—may be calculated for any liquid in reduced geometry with
help of formulae (2.22) and (2.23).

Let us now derive relationships between thermodynamic variables in bulk and
confined liquids. Namely, between the dimensionless deviation of temperature from
its critical value τ = [T – Tc(∞)]/Tc(∞) in a bulk liquid system and the temperature
variable τ(S) = [T – Tc(S)]/Tc(S) in a confined liquid system. For this purpose one
has to substitute the formula (2.21) for the analogue of critical temperature
Tc(S) into τ(S) and obtains the following expression as a result of obvious algebraic
transformations:

sðS; nÞ ¼ ðG=SÞ1=m þ ½1þ ðG=SÞ1=m� sj jsigns: ð2:24Þ

Taking (2.20) into account, the formula (2.24) for the temperature variable in a
confined system can be rewritten in a quite equivalent form

sðS; nÞ ¼ ðG=SÞ1=m þ ½1þ ðG=SÞ1=m�ðn0=nÞ1=msigns: ð2:25Þ

Here in (2.24) and (2.25) G is the geometrical factor depending on the low
crossover dimensionality (geometrical form) of a liquid volume (thus, for
plane-parallel layers or slit-like pores G = π, while for cylindrical samples
G = μ1 = 2.4048 being the first zero of the Biessel function J0(z)); S = L/a0 is the
number of molecular layers, where L is a linear size such as a layer’s thickness or
cylinder’s radius in direction of system’s spatial limitation, a0 is an average
diameter of molecule.

Quantity τ(S, ξ) in (2.24) and (2.25) can be considered as the temperature
variable for confined systems. For relatively large sizes L≫ ξ it is easy to find from
(2.25) that due to factor S = L/a0 ≫ 1 the correlation length ξ is approaching its bulk
value ξ = ξ0τ

–ν. In reduced geometry if an opposite inequality L ≪ ξ is valid, the
first term in (2.25) becomes more important than the second one. It means that the
correlation length ξ does not depend on thermodynamic variables and equals a
system’s linear size.

Similar to the temperature variable τ(S, ξ) in liquids in reduced geometry given
by (2.25), the density Δρ(S, ξ) and pressure Δp(S, ξ) variables may be introduced
according to the following formulae:

DqðS; nÞ ¼ G
S

� �b
m

þ 1þ G
S

� �b
m

 !
n0
n

� �b
m

signDq; ð2:26Þ

DpðS; nÞ ¼ G
S

� �bd
m

þ 1þ G
S

� �bd
m

 !
n0
n

� �bd
m

signDp: ð2:27Þ

Equations (2.26) and (2.27) give correct asymptotical expressions for the cor-
relation length in bulk liquids with L ≫ ξ, namely n ¼ n00Dq

�m=b; n ¼ n000Dp
�m=bd.
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Here the amplitudes ξ0
’ , ξ0

’’ of the correlation length have such relationships with the

amplituden0 : n
0
0 ¼ n0B

m=b
0 ; n000 ¼ n0ðB0=D0Þm=bd. The coefficients B0 and D0 char-

acterize the shapes of the coexistence curve Δρ = B0|τ|
β and the critical isotherm

Δρ = D0Δp
1/δ in the close vicinity of the bulk critical point.

Let us illustrate effects of spatial limitation and dimensional crossover of the 1st
type (DC-1) on the temperature dependence of diffusion coefficient described by
the following formula in confined liquids:

D ¼ faR þ a0S½sðS; nÞ��mgð@l=@qÞ0T½sðS; nÞ�c: ð2:28Þ

Here aR is the regular part and as
0 is the amplitude of the singular part of the

Onsager coefficient, ð@l=@qÞ0T is the amplitude of the inverse isothermal suscep-
tibility. For small volumes (ξ≫ L) the term (G/S)1/ν for τ(S, ξ) in (2.25) will prevail.
This is a reason why the diffusion coefficient D in formula (2.28) is decreasing at
the fixed temperature with increasing linear sizes S of liquid volumes. For large
volumes (L ≫ ξ) the term (1/ξ)1/ν for τ(S, ξ) in (2.25) has a greater role with
increasing linear sizes S = L/a0. That is why the diffusion coefficient D in (2.28) will
increase and asymptotically approach its value D0 for spatially infinite liquid
volumes.

Another important consequences of finite-size effects on the critical behavior of
the diffusion coefficient are as follows: the temperature variable sMðSÞ ¼ ½TM �
Tcð1Þ�=Tcð1Þ corresponding to the minimum value of the diffusion coefficient, i.e.
the shift of the critical temperature in liquids in restricted geometry, (i) has a
negative value in agreement with the FSS theories [2, 8–10, 12, 13]; (ii) goes to
zero with increasing the geometric factor S (linear size L) of a system; (iii) increases
with transition from plane-parallel to cylindrical geometry, in other words, while
the lower crossover dimensionality dLCD decreases.

Table 2.2 explains the notion of the lower crossover dimensionality which has to
be introduced to characterize the type of restricted geometry [30, 31]. For real
confined 3D systems (1st column) the lower crossover dimensionality dLCD (2nd
column) determines the spatial dimensionality of limiting geometrical objects (3rd
column) for cases when system’s linear sizes in directions of spatial limitation are
approaching its minimum possible value.

The effects of spatial dispersion (nonlocality) being neglected gives unreal con-
sequences for physical properties with approaching the critical and 2nd order phase
transitions points in bulk systems as well as its analogous points in confined systems.

Table 2.2 Lower crossover dimensionality

Real confined 3D systems Lower crossover
dimensionality

Limiting geometric
objects

Plane-parallel layer, slit-like pore,
membrane, synaptic cleft

2 Molecular plane

Cylindrical pore, bar, ionic channel 1 Molecular line

Sphere, cube, vesicle 0 Point (one
molecule)
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Namely, in bulk systems the isothermal compressibility, magnetic susceptibility,
isobaric and isochoric heat capacities have infinite values, while the diffusion coef-
ficient, thermal conductivity, and sound velocity approach zero values. To take
effects of spatial dispersion into account, such an idea has to be used [32]: spatial
dispersion contributions must be added to the quantities which become zero in the
bulk critical point (e.g. added to the diffusion coefficient or to the reverse isothermal
compressibility, etc.). Thus, the self-diffusion coefficient has a minimum nonzero
value at the bulk critical temperature in accordance with the following formula [30]:

DminðLmaxÞ ¼ D0
ðG=SmaxÞc=m þ 4pB=L2max

ðG=SmaxÞc=m þ 4pb=L2max

: ð2:29Þ

Here Smax = Lmax/a0 is the number of molecular layers in the direction of a
maximum system’s linear size Lmax, B and b are the coefficients describing the
effects of spatial dispersion in the Ornstein-Zernike approximation.

Figure 2.1 illustrates this result. Here, the solid curve corresponds to bulk liq-
uids. The data are also presented for a plane-parallel (dotted curve) and cylindrical
(curve with points) reduced geometry.

As is seen from Fig. 2.1, the self-diffusion coefficient D(τ, S, k) demonstrates an
asymmetrical behavior with change of sign of the temperature variable s ¼
½T � Tcð1Þ�=Tcð1Þ in accordance with the inequalities Dðs; S; kÞ[Dð� sj j; S; kÞ,
D0,τ>0 > D0,τ<0. Such an asymmetry of the self-diffusion coefficient is confirmed by
theoretical studies in [33].

2.4.2 Dimensional Crossover DC-2

While describing the dimensional crossover DC-2, the fact of different numerical
values of the critical exponents in 3D and 2D liquids [11] (see Table 2.3) and the
results of computer experiment [15] are taken into account.

For definition let us consider confined liquids in slitlike pores. While reducing
linear sizes L (for plane-parallel geometry—the thickness H of pores or number of
its molecular layers S = H/a0, a liquid system will transfer from 3D to 2D geometry.
This transition should be resulting in change of the critical exponents of classical
liquids belonging to the Ising-model universality class. For example, the critical
index ν describing the temperature dependence of the correlation length ξ has to
shift its value from 0.638 to 1.0 (see Table 2.3).

The following expression for any effective critical exponents neff is proposed to
study a smooth transition between its 3D value n3 and 2D value n2 [30]:

neff ¼ n3 þ 2
p
arctanðax� bÞ � 1

� �
n3 � n2

2
: ð2:30Þ

2 Dimensional Crossover in Liquids in Reduced Geometry 43



Here in (2.30) x = H/Hcr is the dimensionless size (in fact—thickness H) of a
plane-parallel layer; Hcr is the layer’s thickness at which the 3D , 2D crossover
occurs (authors [15] consider Hcr ≈ 2, 4 nm for a slitlike pore filled by water
molecules).

As an example, formula (2.30) illustrates the 3D , 2D crossover for the critical
exponent ν of the correlation length ξ in a slitlike pore. Figure 2.2 shows the
theoretical dependence ν(S) on number of monolayers S in accordance with (2.30).

As is mentioned before, there are always factors which distort the idealized bulk
critical behavior and give the effective values of critical parameters and exponents.
Among these factors: effects of spatial limitation, crossover effects, external fields,
temperature gradients, impurities, multiple-scattering effects, etc. [34–39].

Fig. 2.1 Relative
self-diffusion coefficient in
bulk D/D0 versus the
temperature variable s ¼
ðT � Tcð1ÞÞ=Tcð1Þ in bulk
and confined liquids

Table 2.3 Numerical values of critical exponents in 3D and 2D Ising models [11]

Physical property Critical exponents 3D Ising model 2D Ising model

Heat capacity α 0.125a 0(CV * ln|τ|)

0.110b

Coexistence curve β 0.3125a 1/8

0.325b

Isothermal compressibility γ 1.250a 7/4

1.241b

Critical isotherm δ 5.0a 15

4.8b

Correlation length υ 0.638a 1

0.630b

Correlation function η 0.041a 1/4

0.031b

a sum of series; b RG-approach
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The problem of the effective critical parameters and critical exponents is examined
in detail in a number of papers (see e.g. references in [14]).

Table 2.4 demonstrates the dependence of the effective critical exponent νeff on
number of molecular layers S (dimensionless thickness H of a slitlike pore) cal-
culated in accordance with (2.30) for water molecules.

Parameters a and b characterizing slope and position of the 3D , 2D crossover
were chosen to fit the following condition: 2D value of the critical exponent ν = 1
corresponds to a system’s thickness consisting of almost one molecular layer.

Such an interpolation (2.30) looks similar in a certain sense to approach used in
[40] to receive the crossover between hydrodynamic and fluctuation regions for the
central Rayleigh component of the light-scattering spectrum in mode-mode cou-
pling version of the dynamical theory of critical phenomena.

2.5 Theoretical Results Versus Experimental Data
in Confined Liquids

In this section the relationship between theoretical and experimental data will be
analyzed with taking into account effects of spatial limitation and dimensional
crossover in liquids in reduced geometry.

Fig. 2.2 Dimensional 3D ,
2D crossover in the critical
exponent ν versus number of
molecular layers S

Table 2.4 Dependence of the
effective critical exponent νeff
on S

S 1.0 2.4 3.1 3.5 5.6 8.0

H, (nm) 0.3 0.7 0.9 1.1 1.7 2.4

νeff 1.0 0.95 0.85 0.75 0.65 0.64
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Experimental studies (see e.g. references in [41]) of the size dependence of the
diffusion coefficient D of water molecules in a porous glass allow considering the
dimensional crossover of the 1st type (DC-1) in cylindrical pores. These results give
also an opportunity to investigate the asymptotical transition of the diffusion
coefficient D from its values in liquid in restricted geometry to the bulk value
D0 = 2.3 ·10−9 m2/s for water molecules. Table 2.5 demonstrates the size experi-
mental dependence of Dexp(R) on the pore’s radius R together with results of the
theoretical calculation Dtheor(R) for G = 2.4048 and S = R/ξ0 in the case of a large
pore’s radius (R ≫ ξ) [42].

Thus, asymptotical transition of the diffusion coefficient D of water molecules to
its bulk value takes place in cylindrical pores if a pore’s radius R ≥ 150 nm. It is
possible to conclude that experimental and theoretical results of study the depen-
dence of water diffusion coefficient on size of cylindrical pores demonstrate not
only qualitive, but also quantitive agreement with average deviation about 4,8 %.

The computer experiment [15] allows verifying the interpolation formula (2.30)
with taking into account the size dependence of the critical temperature of a fluid
in a pore. Figure 2.3 (see black circles) demonstrates computer experiment results
for dependence of the critical temperature Tc(H)/Tc(∞)on the pore’s size, i.e. on the
thickness H of a slitlike pore filled by water.

To compare the interpolation formula (2.30) with results of computer experiment
[15], we substitute the size dependence of the critical exponent ν(H) into formula
(2.21) for the critical temperature Tc(H) of a fluid in a pore. The agreement between
computer experiment data and theoretical calculations seems to be quite good. The
lowest experimental point corresponds to the critical temperature of almost 2D
water in slitlike pore with its thickness H = 0.5 nm. This value of thickness H refers
to almost one monolayer plane with taking into account that the diameter of water
molecule equals d ≈ 0.3 nm. It is interesting to stress that the beginning of the
dimensional crossover DC-2 from 3D to 2D critical behavior takes place at the
slitlike pore’s thickness Hcr ≈ 2.4 nm. This value of Hcr was mentioned in [15] and
corresponds to approximately 8 molecular layers of water molecules in slitlike
pores.

Finally we would like to compare theoretical and experimental shifts of the
critical temperature in confined liquids. Table 2.6 (2nd line) contains experimental
results for shifts of the water critical temperature DTc ¼ Tcð1Þ � TcðRÞ in cylin-
drical pores of different radius R obtained by different experimental methods (see

references in review [15]). Results of theoretical caculation DTc ¼ Tcð1Þ �
TcðRÞ� ðl1n0=RÞ1=m in accordance with the formula (2.21) are presented in the 3rd
line of Table 2.6 [23, 43].

Table 2.5 Diffusion
coefficient of water molecules
in cylindrical pores [41, 42]

R (nm) 62.5 88.0 117.0 130.0 150.0

Dexp 10
−9 (m2/s) 1.59 1.95 2.13 2.19 2.30

Dtheor 10
−9 (m2/s) 1.79 2.00 2.11 2.14 2.17
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In spite of that is qualitative agreement between experimental and theoretical
data, these and other results demonstrate a considerable enough distinction of the
data received by different methods for the same liquid in pores with approximately
equal radius.

2.6 Conclusion

In this paper we studied critical phenomena in liquid in restricted geometry.
Thermodynamic, kinetic and correlation properties of confined liquids are essen-
tially different from those properties of bulk systems. The influence of spatial
limitation effects (among them—effects of dimensional crossover) is more pro-
nounced in cases when linear sizes L of systems are less or the same order of
magnitude as the correlation length ξ of order parameter fluctuations.

The study of critical phenomena and 2nd order (continuous) phase transitions in
systems in reduced geometry allows one to formulate important conditions of
universality classes for confined soft matter. Namely, to the following well-known
basic conditions of universality classes in bulk systems with L ≫ ξ:

(a) the same space dimensionality;
(b) the same dimensionality of order parameter;

Fig. 2.3 Related critical
temperature of a fluid in a
pore Tc(H)/Tc(∞) versus the
thickness H of a slitlike pore
(black circles correspond to
the data computer experiment
[15]; solid curve was obtained
using the formulae (2.21) for
Tc(H) and (2.30) for ν [30])

Table 2.6 Experimental and
theoretical shifts of the critical
temperature

Pore radius R (nm) 3.9 5.0 11.0 12.1 15.7

DTc=Tcð Þexp 0.047 0.044 0.033 0.029 0.0015

DeltaTc=Tcð Þtheor 0.065 0.044 0.013 0.011 0.0071
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(c) the same type of intermolecular interaction (short- or long-range);
(d) the same symmetry of Hamiltonian (fluctuation part of thermodynamic

potential), it is necessary to add the following conditions of universality
classes in confined systems with L ≤ ξ;

(e) the same type of system’s geometry (lower crossover dimensionality);
(f) the same type of boundary conditions;
(g) the same type of physical properties under consideration.

The last factor appears to be important because coordinates of maxima or
minima in systems in restricted geometry, being analogues of bulk critical
parameters, are different (nonuniversal) for various physical properties.

The verification of theoretical results for critical phenomena in confined systems
needs experimental studies which are much more complicated than those experi-
mental studies in bulk systems. Nevertheless, we hope that the attractive FSS
hypothesis of finite-size scaling for the diverse critical phenomena and phase
transitions in the nano- and mesoscale world around and inside us will prove
experimentally to be correct.
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Chapter 3
Global Isomorphism Approach: Main
Results and Perspectives

Leonid Bulavin, Vadim Cheplak and Vladimir L. Kulinskii

Abstract In this chapter we review main results of the Global Isomorphism
approach and discuss possible routes for further studies. The approach is based on
the minimal geometric reformulation of the (approximate) linearities of the binodal
diameter and the unit compressibility line (Batschinsky law). Explicit relations
between the thermodynamic functions of the Lattice Gas model and the fluid within
the framework of the approach proposed earlier in [V.L. Kulinskii, J. Phys. Chem.
B 114 2852 (2010)] are discussed. On this basis we show that the critical com-
pressibility factor of molecular fluids can be related with that of the lattice gas. We
show how the associative properties of a fluid can be taken into account via the
structure of the isomorphic lattice. Also we derive the relation between the entro-
pies of a fluid and its lattice analog. The entropy of the fluid is decomposed into
symmetrical and asymmetrical parts. We demonstrate that such decomposition is
consistent with the basic Clausius-Clapeyron relation and the binodal asymmetry
represented by the law of the rectilinear diameter.

3.1 Introduction

The idea of similarity for the physical properties of the systems is widely used in
physics. It is based on the possibility to introduce dimensionless quantities which
are invariant with respect to the scaling transformations. Since the seminal work of
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van der Waals [1] his phenomenological equation plays important role in the theory
of Soft Matter. In the theory of Liquid Matter the classical result of van der Waals
(vdW)—the Principle of Corresponding States (PCS) is one of its cornerstones.
Despite pure phenomenological and rather crude approximation the vdW equation
has many remarkable features. This made it the basic model of the equation of state
(EoS) for different fluids.

Two competitive effects: the attraction due to long ranged polarizational forces
and the repulsion because of hardness of the electronic molecular shells bring the
critical state where liquid and vapor become indistinguishable. In accordance with
the PCS the critical compressibility factor Zc ¼ Pc

nc Tc
is the same for all substances

with similar interaction potentials. For vdW EoS Zc ¼ 3=8 while for real substance
Zc varies in the interval 0:1\Zc\0:5 [2]. Therefore additional parameters should
be added to characterize the classes of thermodynamic universality. In fact, the PCS
in rigorous sense is valid for the systems with the potentials which can be related
via simple scaling transformation of the parameters [3].

Due to interaction of long range fluctuations the critical universality emerges in
the fluctuational region. Functional form of the critical asymptotics of thermody-
namic quantities is universal and determined by the general symmetries of the
system. Critical behavior of the molecular fluids belongs to the universality class of
the Ising model [4]. Thus there are two notions of thermodynamic universality. The
similarity of the EoS in a sense of the PCS and the isomorphism of the critical
behavior. It is clear that the first one is much stronger and implies the similarity of
the critical behavior. In particular, the critical amplitudes for the systems of the
same class of thermodynamic similarity can be related by some factors which
depend on the parameters of the interaction.

Despite the fact that vdW EoS fails to predict the critical behavior for the system
with realistic potentials some relations can be derived on its basis. Long time these
relations were considered as mere curious facts restricted to simplified structure of
the vdW EoS. But as the body of thermophysical data expanded it appeared that
these relations could be applied to much wider class of substances than the vdW
EoS itself.

One of the well-known relation is the law of the rectilinear diameter (LRD) [5, 6].
It states that the diameter of the coexistence curve in terms of density-temperature is
the straight line:

~nd ¼ nl þ ng
2nc

¼ 1þ A
Tc � T
Tc

; A[ 0; ð3:1Þ

where ni; i ¼ l; g are the densities of the liquid and the gas phases correspondingly,
nc is the critical density, T is the temperature. Further we put the Boltzmann
constant to unit: kB ¼ 1. Actually, for the vdW EoS the diameter is not straight but
the curvature is indeed very small.
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Another simple linear relation is the Batschinski law [7] for the vdW EoS:

P ¼ nT
1� nb

� an2 ; ð3:2Þ

where P—is the pressure. It states that the set of points of unit compressibility
factor Z ¼ P=ðnTÞ, i.e. Z ¼ 1 ; is the straight line:

T
TB

þ n
nB

¼ 1 ; ð3:3Þ

where TB ¼ a=b and nB ¼ 1=b. In general, the line on on n� T plane where Z ¼ 1
is called the Zeno line [8]. The parameter TB is the Boyle temperature:

B2ðTBÞ ¼ 0 ð3:4Þ

and the characteristic density nB is determined by the relation [8]:

nB ¼ TB
B3 TBð Þ

dB2

dT

����
T¼TB

: ð3:5Þ

Here Bn is the virial coefficient of nth order [9]. Additionally, it is known that the
Zeno line is tangent to the extension of the binodal into the low temperature region so
that the binodal appears to be inscribed into the triangle formed by the T-axis and the
Zeno line [2, 10]. Apfelbaum and Vorob’ev also revealed a number of correlations
between the critical point parameters Tc; nc and those of Zeno line TB; nB [11–13].

Recently, simple geometrical formulation of the results on the Zeno line, the
LRD and the triangle of liquid-gas states was proposed in [14] and developed in
series of publications [15–17]. It is based on the fact that the lines of the phase
equilibria determine the partitions for the space of thermodynamic states. These
partitions are topologically equivalent (see Fig. 3.1). The linear character of (3.1)
and (3.3) allows to search the isomorphism in a form of the correspondence
between the phase diagram of the projective 1–1 mapping the LG and the
liquid-vapor states of the Lennard-Jones fluid and the lattice gas (Ising model). This
approach provides the explanation for some the phenomenological findings of

Fig. 3.1 Phase diagrams of the Lattice Gas (Ising model) (left) simple fluid (right)
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Apfelbaum and Vorob’ev concerning the triangle of liquid-gas states and the line of
the critical points [18]. The generalizations of this approach of Global Isomorphism
have been proposed recently in [19–21].

In this contribution we review main results of the Global Isomorphism approach.
They include the coordinates of the Lennard-Jones (LJ) fluids in different dimen-
sions and the relation with thermodynamical potential of the lattice gas (Ising
model). Discussion of physical basis of the linearities (3.1) and (3.3) on the
liquid-vapor part of the phase diagram of the fluids follows the results of [14, 16].
We expand some arguments of [16], and give corrected interpretation of the
Batchinski law in a way consistent with the van der Waals approximation for the
EoS. Also we derive the relation between the thermodynamic potentials for the
continuum and the lattice models of fluids. On this basis we obtain the relation
between the entropies of these systems and show that this relation is consistent with
the basic thermodynamic Clausius-Clapeyron relation. Also we present recent
results on the critical compressibility factor values of molecular fluids [22] and
discuss routes for further research. The structure of the paper is as follows. In
Sect. 3.2 we give the basic grounds for the Global Isomorphism approach and
relation of the parameters of the transformation with the microscopic (model)
potential. Section 3.3 is devoted to the relation between thermodynamic potentials
and its consequences for the calculation of the critical point loci for the fluids with
Mie-class potentials. In particular we derive the relation between the critical values
of compressibility factor for fluid and lattice gas. In Sect. 3.4 we derive the relation
between the entropies of the LG and LJ fluid and consider its consequences from
the point of view of symmetrization of the liquid-gas binodal. The results and
perspectives are summarized in Discussion section.

3.2 Global Isomorphism

The idea of Global Isomorphism between liquid system which demonstrate the
linearities like LRD and the Zeno line and the lattice gas model is very simple. It
starts with the fact that all this linearities trivially hold in simple Ising model due to
its symmetry spin-flip symmetry:

H ¼ 1
2

X
i;j

Jijrirj þ h
X
i

ri : ð3:6Þ

where ri ¼ �1 as the random variables, h is the “magnetic” field and Jij is the
interaction strength between cites i; j. The lattice gas (LG) representation is given in
terms of the occupation number variables: xi ¼ 1þ ri

2 ¼ 0:1. Correspondingly the
order parameters magnetization (in terms of the Ising model) m ¼ rih i and the
density x ¼ xih i (for the LG representation) are related as: m ¼ 2x� 1. Because of
the spin flip symmetry ri ! �ri the phase diagram of the LG is symmetrical with
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respect to the line x ¼ 1=2 which is the diameter of the binodal. Other obvious
linear elements are the lines x ¼ 0 and x ¼ 1 which are the tangents to the binodal
in corresponding points. The lattice models are widely used in statistical physics.
For the continuous systems they serve as useful approximations suitable for
numerical simulations. Yet in the thermodynamic limit the continuum and discrete
systems are assumed to demonstrate the same behavior. This idea is the basis of the
modern theory of the phase transitions and critical phenomena (see [23, 24]). The
critical behavior of many liquids has the same asymptotics as the Ising model. The
latter is equivalent to the u4

field theory [23, 25].
Apart from the universal critical characteristics which are determined by the long

range fluctuations there are nonuniversal quantities, e.g. the locus of the CP, the
critical amplitudes. Such quantities depend on the details of the interparticle
interactions and are governed by the noncritical fluctuations of short scales.
Similarly the linearities of the Zeno-line and binodal diameter lie beyond the critical
region and obviously are not connected with the critical universality.

The analog of the Zeno-line for the LG obviously is the line x ¼ 1 where the
“holes” are absent. This is consistent with the basic expression for the compress-
ibility factor [9]:

Z ¼ P
nT

¼ 1� 2pn
3T

Z
r3
@UðrÞ
@ r

g2ðr ; n;TÞd r ; ð3:7Þ

If x ¼ 1 then the perfect configurational order takes place and the site-site cor-
relation function for (3.6) vanishes:

rirj
� �� � ¼ rirj

� �� rih i rj
� � ¼ 0 :

The critical isochore xc ¼ 1=2 coincides with the diameter. The Zeno-line is the
tangent to the binodal which in this case expands up into the region t ! 0.

The empirical linearities of the Zeno-line and the binodal diameter allow to state
that:

n ¼ n�
x

1þ z t
; T ¼ T�

z t
1þ zt

; ð3:8Þ

where

z ¼ Tc
T� � Tc

: ð3:9Þ

The inverse transformations has the form:

x ¼ n=n�
1� T=T�

; t ¼ 1
z

T
T� � T

: ð3:10Þ
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Here n; T are the density and the temperature of the LJ fluid, t ¼ t=tc is the
temperature variable of the LG reduced to its critical value tc, n� and T� are the
parameters of the Zeno element [15].

The transformation (3.8) is uniquely determined by the correspondence between
the characteristic linear elements on the phase diagrams of the fluid and the LG
(see Fig. 3.2). In particular, the line x ¼ 1 of the lattice gas corresponds to the
Zeno-element:

n
n�

þ T
T�

¼ 1 : ð3:11Þ

Here T� is the Boyle temperature in the van der Waals approximation [26]:

T� ¼ a
b
; ð3:12Þ

where

a ¼ � 2p
Zþ1

r

UattrðrÞr2 dr ð3:13Þ

and UattrðrÞ is the attractive part of the full potential UðrÞ, r is the effective diameter
of the particle so that b ¼ 2p

3 r3. The definition for the density parameter n� is
analogous to (3.5):

n� ¼ T�
B3 T�ð Þ

dB2

dT

����
T¼T�

: ð3:14Þ

In general, T� and n� are different from commonly used Zeno-line parameters TB
and nB and therefore (3.11) is not the classical Zeno-line determined by (3.3). They
are the same only in a case of the vdW EoS. The Mie-potentials are introduced as
follows:

Fig. 3.2 Correspondence between the linear elements of the phase diagrams. Zeno-line, generally,
is not linear and we introduce the linear element T=T� þ n=n� ¼ 1 [14]
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Mieðr;m; qÞ ¼ eU0ðq=mÞ r
r

� �q
� r

r

� �m� �
; q[m : ð3:15Þ

U0ðq=mÞ ¼ m
q� m

q
m

� �q=ðq�mÞ
:

We consider the case with m ¼ 6 and 7� q� 18. The value of T� is as follows:

T�=e ¼
q
m

� � q
q�m

ðm=d � 1Þðq=m� 1Þ : ð3:16Þ

Note that at q ! 1 we get the Sutherland potential:

USðr;mÞ ¼ 1 r� r;
� e

rm r[ r :

	
ð3:17Þ

with TB � 1:17; nB � 1:79 [27]. Further we use common dimensionless units for
the temperature T ! T=e and the density n ! nrd , where d is the dimension. In
general d-dimensional case the following dimensionless representation of the sec-
ond virial coefficient is useful:

B2ðTÞ=v0 ¼ d2d�1
Z1
0

1� e�UðrÞ=T
� �

rd�1 dr; ð3:18Þ

where Sd ¼ pd=2=C d
2

� �
is the area of unit sphere in d-dimensional space, v0 ¼

Sd=d r=2ð Þd is the d-dimensional volume of the particle with the diameter r. Of
course, the spatial scale defined by r is determined by the repulsive part of the
interaction and in the absence of hard wall has some arbitrariness. Only for the
Sutherland potential (3.17) r is determined unambiguously. In this particular case
(q ¼ 1) the integration in (3.18) can be performed analytically. E.g. in 3D:

B2ðTÞ=v0 ¼ 8
3

ffiffiffiffi
p
T

r
erfi

1ffiffiffiffi
T

p
� �

� e
1
T

� �
: ð3:19Þ

If the potential UðrÞ can be splitted into repulsive and attractive part via intro-
duction of some short scale then the high-temperature expansion of (3.18) has the
form [26]:

B2ðTÞ=v0 ¼ d2d�1 1� T�=Tð Þ þ oð1=TÞ : ð3:20Þ

The binodals of the systems with the Mie-potentials obey the LRD (3.1) as it
follows from the simulations [28, 29]. The natural restriction here is the stability of
whole liquid-gas region which is fulfilled is the attractive part is not too short
ranged [30–33], i.e. if m is not very big (m\8 in 3D) [34].
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In view of the “fluid–lattice model” isomorphism the usage of T� instead of TZ
can be supported by the following argument. In lattice gas model (Ising model)
there is only attractive part of the interaction. The repulsive part of the potential is
substituted by the strict filling rule—“one site–one particle” which contribute to the
configurational entropy. From this point of view the usage of T� which depend only
on the attractive part of the potential appears to be consistent. Also this option can
be tested via the calculation of the CP locus and the binodal of the LJ fluid using the
corresponding information about lattice gas (Ising model). This was done in [16,
17]. In following section we review these results.

3.3 The Relation Between the Thermodynamic Potentials
of the Fluid and the Lattice Gas

The transformation (3.8) states the 1–1 correspondence between the thermodynamic
states within the liquid-gas triangle of the LJ fluid and the corresponding region
t[ 0; 0\x\1 of the lattice gas. Naturally, this relation is equivalent to the
statement about the relation between the thermodynamic potentials of these systems.

Let us consider the thermodynamic potentials of the grand canonical ensembles
for the LG and the fluid:

Gðh; t;NÞ ¼ Ngðh; tÞ ; and JðT ; l;VÞ ¼ PðT; lÞV ; ð3:21Þ

Here N is the number of sites in a lattice. First it is natural to state the following
relation N ¼ n�V between the extensive variables of these ensembles. The results
of [35] allow to interpret 1=n� as the volume per particle in the ideal crystal state at
T ! 0. Such a state defines the lattice which may serve as the basis for the
determination of the corresponding Lattice Gas model.

Using the standard definitions:

n ¼ 1
V
@ J
@l

����
T

; x ¼ 1
N

@G

@ h

����
t

ð3:22Þ

and taking into account that in accordance with (3.8) T depends on t only, we get
the following relation between the potentials:

Jðl; T;VÞ ¼ G hðl; TÞ; tðTÞ;Nð Þ ) Pðl; TÞ ¼ n�g hðl; TÞ; tðTÞð Þ : ð3:23Þ

In terms of the potentials it is as follows:

PðT ; lÞV ¼ GðtðTÞ; hðl; TÞÞ ; ð3:24Þ
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Further we will use the dimensionless quantities ~n ¼ n=n�, ~T ¼ T=T�,
P ¼ P=P�; P� ¼ n�T�. Since the pressure of the lattice gas Pðh; tÞ is related with
the grand canonic potential (see e.g. [36]):

G ¼ Pðh; tÞV ð3:25Þ

therefore:

PðT ; lÞ ¼ PðtðTÞ; hðl; TÞÞ : ð3:26Þ

From (3.8) the relation between the density of the fluid and the density of the LG
can be written as following:

nðl; TÞ=n� ¼ xðhðl; TÞ; tðTÞÞ 1� T=T�ð Þ : ð3:27Þ

Taking into account that:

@

@l

����
T

¼ @ h
@l

����
T

@

@ h

����
t

;

from (3.22), (3.23) and (3.27) we get the following relation:

hðl; TÞ ¼ 1� ~T
� �

~l� ~l0ðTÞð Þ ; ð3:28Þ

or:

~l� ~l0ðTÞ ¼ h 1þ ztð Þ : ð3:29Þ

Note that this relation is consistent with the basic relation between chemical
potential and pressure:

~lðP; TÞ � ~l0ðTÞ ¼
ZP

P0ðTÞ

dp
nðp; TÞ ; ð3:30Þ

where P0 is the saturation pressure.
We remind that h ¼ 0 below CP is the coexistence line for the LG and is mapped

onto the saturation curve of the continuum fluid. Therefore l0ðTÞ should be
identified with the chemical potential along the saturation curve below the critical
point T\Tc.

Let us use the obtained relation (3.23) for the calculation of the critical properties
of the fluids basing on the information about lattice model. According to (3.8) it is
possible to calculate the state the LJ fluids based on the information about the lattice
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model [17, 22, 37] (see Fig. 3.2). In particular, as it directly follows from (3.8) the
locus of the CP of the LJ fluid is:

nc ¼ n�
2 1þ zð Þ ; Tc ¼ T�

z
1þ z

: ð3:31Þ

As was shown in [17, 37] the parameter z can be related with the scaling
property of the attractive potential UattrðrÞ/ � 1=rm:

z ¼ d=m ð3:32Þ

where d is the dimension [15]. So that for LJ in 2D and 3D we have z ¼ 1=3 and
z ¼ 1=2 correspondingly. This gives the possibility to apply and check the global
isomorphism approach for different dimensions d\6 where T� is finite for the LJ
potential. The results of calculations for the CP locus for the fluid with “6–12” LJ
interaction potential in different dimensions are presented in Table 3.1.

Overall agreement with the numerical result are good and gives the grounds to
apply the approach to potentials of type Mieð6; qÞ. It can be also obtained using
their simple relation with the characteristics of the LJ potential. Indeed, according to
(3.31) the CP locus is determined by the Boyle temperature T� in the vdW
approximation. From (3.15) it follows that attractive part of the potentials Mieð6; qÞ
differs only by the amplitude factor and therefore the parameters T� for such
potentials are related via simple scaling:

T�ð6; q1Þ
T�ð6; q2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 6
q1 � 6

s
q1
6

� � q1
2ðq1�6Þ q2

6

� �� q2
2ðn2�6Þ ð3:33Þ

We choose the standard LJ potential Uðr; 6; 12Þ as the reference case. Then from
simple rescaling following from (3.33) we get the critical temperatures for
Uðr; 6; nÞ potential in 3D:

Table 3.1 The results of computation of CP locus according to (3.31) for LJ potential Mieð6; 12Þ
for different dimensions with the parameters T�; n� of the Zeno-element

LJ “6–12” fluid 2D 3D 4D 5D

T� 2 4 8 20

n� 0.94 0.967 1.36 2.87

Tc 0.5 1.33 3.2 9.1

nc 0.353 0.322 0.41 0.78

T ðnumÞ
c

0.515, [38] 1.312, [39] 3.404, [40] 8.8, [40]

nðnumÞc
0.355, [38] 0.316, [39] 0.34, [40] ?

TZ 1.56 3.418 9.01 40.8

nZ 1.19 1.14 1.21 1.67

The parameters TB; nB are given for comparison

62 L. Bulavin et al.



T�ðqÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
6

q� 6

s
q
6

� � q
2ðq�6Þ ) TcðqÞ ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffi
6

q� 6

s
q
6

� � q
2ðq�6Þ

: ð3:34Þ

The analogous results for other potentials in dimensions D� 5 are in [16, 41].

3.3.1 The Relation Between Critical Compressibility Factors

The critical compressibility factor (CCF) Zc ¼ Pc=ðnc TcÞ is the simplest scaling
invariant widely used in the formulation of the PCS. For the vdW EoS Zc ¼ 3=8.
Simple fluids, e.g. noble gases Ar, Kr, Xe, have Zc ranged between 0:28 and 0:3.
Using (3.23) and the results about the loci of the CP the relation between the critical
compressibility factors of the LJ-fluid and the lattice gas can be derived [22].

With this (3.24) allows to derive the relation between the critical compressibility
factors Zc of a fluid and the corresponding lattice model. Indeed, from (3.8) and
(3.26) we get:

ZðflÞ
c ¼ Pc

nc Tc
¼ ð1þ zÞ2

z
tc
T�

ZðLGÞ
c ; ð3:35Þ

where tc is the critical temperature of the lattice gas model and ZðLGÞ
c is its critical

compressibility factor value. In accordance with [36] it is related with the partition

function per spin G1=N of the Ising model ZðLGÞ
c ¼ 2 lnG1=N

c . The value G1=N
c can be

obtained for lattice models using (high) low-temperature expansions [42, 43].

E.g. in 3D case of cubic lattice tc � 4:51J [44] and ZðLGÞ
c ¼ 0:221 [36].

To consider the case of the LJ-fluid we take into account that for the LJ potential:

VLJðrÞ ¼ 4e
r
r

� �12
� r

r

� �6
� �

; ð3:36Þ

T� ¼ 4e and the relation between the LJ parameter e and the spin-spin interac-
tion J of the Ising model is e ¼ 4J [45]. We assume that the LJ parameter e can be
identified with the interaction constant of the lattice gas. This is based on the fact
that e is the energy of the LJ interaction at equilibrium distance. The latter can be
identified with the period of the cubic lattice. Further we use conventional
dimensionless units for the temperature T ! T=e density n ! nr3 and pressure
P ! Pr3=e.

Calculation of the factors in (3.35) results in:

ZðflÞ
c � 1:27ZðLGÞ

c ¼ 0:281 ; ð3:37Þ
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which correlates well with the CCF value for simple fluids. This also clarifies the
nature of the difference between value of Zc for simple fluids and that of classical
vdW EoS. The possibility to include the Pitzer’s acentric factor into consideration
was considered in [20, 22].

The estimate for the value of critical pressure is:

Pc ¼ 0:121 ; ð3:38Þ

and agrees well with the result of simulations [46] Pc ¼ 0:126 for the 3D LJ fluid.
Our main result (3.35) can be also applied in 2D case. From the Onzager’s

solution we know the basic quantities exactly:

ZðLGÞ
c � 0:097 ; tc � 2:27J ;

and we get the estimate:

ZðflÞ
c � 1:513ZðLGÞ

c ¼ 0:146 : ð3:39Þ

The value of the critical pressure of the 2D LJ fluid is:

Pc ¼ ZðflÞ
c nc Tc � 0:026 ; nc ¼ 0:353 ; Tc ¼ 0:5 : ð3:40Þ

The estimates for critical density and temperature are consistent with known
results for two dimensional LJ fluid [38]. The values of Zc and Pc lower than those
obtained within perturbation theory Pc ¼ 0:046 and in simulations Pc ¼ 0:037 [47].
Possible explanation of this fact is that these approaches underestimate the flatness
of the binodal of the 2D LJ fluid. This is due to the global power law behavior with
the critical exponent b ¼ 1=8 because of the global isomorphism with the 2D Ising
model [17]. For convenience all the parameters and the results obtained are sum-
marized in Table 3.2.

As has been shown recently in [18] the relation (3.35) can be easily modified so
that to include the associative properties of the fluids in near critical region. From
the point of view of the global isomorphism approach it is natural to relate the
associative property of a fluid and the structure of the lattice. Namely, the preva-
lence of q-mers (dimers, trimers etc.) contribution into the density can be inter-
preted in terms of the isomorphic lattice with q particles per unit cell. The formula
(3.35) is modified as follows:

ZðflÞ
c ¼ 1

q
ð1þ zÞ2

z
tc
T�

ZðLGÞ
c : ð3:41Þ

Table 3.2 The results for the critical point parameters of LJ fluid in 2D (z ¼ 1=3) and 3D
(z ¼ 1=2) cases [15]

LJ “6–12” fluid Pc ZðflÞ
c ZðLGÞ

c

2D 0.026 0.147 0.097

3D 0.122 0.281 0.221
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The results for the lattices are given in Table 3.3. The comparison of theoretical
estimates (3.41) for Zc shows good correlation with the data (see Table 3.4). Because
of high temperature CP and indirect measurements the uncertainty in value Zc is quite
high especially for light alkali metals like lithium and sodium (see e.g. [49]). The
extrapolation methods for the low temperature data are used to obtain the parameters
of the critical state. Commonly, such extrapolation exploits the extrapolation based
on (3.1) (see e.g. [50]). For light alkali metals we choose the values for Zc from [51]
basing on the similarity reasonings and identity of their electronic structure with more
heavier alkali metals. For high temperature metals like Zn, Pb and Au such analysis
was performed in [52]. As the result the values Zc � 0:22 for Au and Zc � 0:29 for
Zn and Pb were obtained. In view of the difference of the electronic structure of these
metals it could be explained easily. The electronic configuration of Au is 6s1 which is
qualitatively identical with alkali metals, while electronic structure of Zn and Pb is
give by 4s2 and 6p2 correspondingly. This makes the non universal critical properties
of these metals close to those of monoatomic molecular fluids leading to the value Zc
similar to that of noble gases.

From the results obtained above we can conclude that water, ammonia and alkali
liquid metals fall into the same class of the ILM with q ¼ 2 which reflects their
dimerization near the critical point. Methanol is known for the abundance of the
tetramers in saturated vapor [53] and identified with q ¼ 4. Thus low values of Zc
for the associative LJ fluids can be explained by the significant contribution of the
associates in the critical density.

As a summary we note the main result (3.26) of the Global Isomorphism approach.
It allows to get the well known critical compressibility factor Zc � 0:28 of classical LJ
fluids like noble gases basing on the critical parameters of the Ising model.

3.3.2 Mapping the Binodals

Additionally to the calculations of the critical points (3.8) gives the possibility to
obtain the binodal of the LJ fluid as the image of the binodal of the lattice model [17].

Table 3.3 Critical parameters (tc and ZðLGÞ
c ) of the isotropic Ising model on different 3D lattices

taken from [42, 48] and corresponding values of ZðflÞ
c for the LJ fluid obtained using (3.41)

q tc ZðLGÞ
c ZðflÞ

c

sc 1 4.51 0.221 0.281

bcc 2 6.35 0.239 0.214

fcc 4 9.80 0.246 0.17

Table 3.4 Experimental values of Zc for some molecular fluids and liquid metals [51]

Li Na K Rb Cs CH3OH [54] H2O [54] NH3 [54]

Zc 0.21 0.23 0.21 0.22 0.21 0.19 0.23 0.25
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Indeed, the transformation (3.8) allows to map the binodal TbinðnÞ of the
Lennard-Jones fluid onto the binodal tbinðxÞ of the corresponding lattice gas model.
In parametric form it is as follows:

nðxÞ ¼ n�
x

1þ z tbinðxÞ ; TbinðxÞ ¼ T�
z tbinðxÞ

1þ z tbinðxÞ : ð3:42Þ

Due to the particle-hole symmetry of the Hamiltonian the lattice gas binodal has
explicitly symmetric shape with respect to the critical isochore xc ¼ 1=2:
tbinðxÞ ¼ tbinð1� xÞ. For 2D Ising model the binodal is given by the relations:

tbinðxÞ=tc ¼ ArcSinh1

ArcSin 1

1�ð2x� 1Þ8ð Þ1=4
� � : ð3:43Þ

where tc ¼ 2=ArcSinh1 � 2:269 is the critical temperature of the 2D Ising model.
Applying the transformation (3.42) according to (3.8) with T� ¼ 2; n� ¼ 0:94 and
z ¼ 1=3 we get the binodal of the 2D LJ fluid (see Fig. 3.3). To check the approach
the available numerical data [55, 56] on the liquid-vapor equilibrium in 2D LJ fluid
were processed using (3.42) with T� and n� as fitting parameters [17] (see Fig. 3.4).
The agreement between theoretical values and numerical data is quite good.

As has been noted above the projective form of the transformation (3.8) is due to
the linear character of the density diameter of the binodal and the Zeno-line. Both
these linearities seem to be rather approximations than the strict laws. From the
general point of view (3.8) can be viewed as the restoration of the the binodal
symmetry in proper variables. Thus one can treat (3.8) as the procedure of the
symmetrization of the phase diagram. Indeed, suppose that ndðTÞ is the dependence
of the density diameter. Then the variable n=ndðTÞ is symmetrical over the binodal.
Thus the symmetrization of the fluid binodal is given by:

Fig. 3.3 The result of
transformation (3.42) the
binodal of 2D lattice gas
(3.43) with T� ¼ 2 ; n� ¼
0:94 and z ¼ 1=3
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x ¼ n
2ndðTÞ ; ð3:44Þ

with

~T ¼ 1� f ðxÞ ; ð3:45Þ

being the equation of the binodal. Here the parametrization function f is chosen so
that to fulfil the conditions of the thermodynamic equilibrium:

PðngðTÞ; TÞ ¼ PðnlðTÞ; TÞ: ð3:46Þ

The equality of the chemical potentials is fulfilled due to symmetry of the
binodal of the “lattice” variables x; t. Clearly, (3.44) assumes that the equation for
the Zeno-element which is the image of the line x ¼ 1 is:

n=n� � 2ndðTÞ ¼ 0 ; ð3:47Þ

but in general it is different from the Zeno-line Z ¼ 1.
To illustrate this procedure let us consider the classical vdW EoS (3.2) for which

the diameter is slightly nonlinear. In view of this and the symmetry with respect to
the diameter xc ¼ 1=2 it is convenient to represent the densities of the coexisting
phases as following:

~ng ¼ xf ðxÞ ; ~nl ¼ ð1� xÞ f ðxÞ : ð3:48Þ

Substituting these relations into (3.46) and taking into account that the pressure
P is given by (3.2) we get simple algebraic equation for the function f :

Fig. 3.4 Fitting the binodal
of two dimensional LJ fluid
(3.42) with z ¼ 1=3 to the
results of the simulations [55,
56]. Best fitting gives T� ¼
2:0 and n� ¼ 0:971. Also the
locus of the CP is shown
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1� 2f þ f 2 þ f 3 ðx� 1Þx ¼ 0 : ð3:49Þ

The result is shown in Fig. 3.5. The corresponding coordinates of the critical
point are:

~n ¼ 1
2
f ð1=2Þ ¼ 0:352 ; ~Tc ¼ 1� f ð1=2Þ � 0:296 ; ~Pc � 0:037 : ð3:50Þ

The difference between the exact values:

~nc ¼ 1=3 ; ~Tc ¼ 8=27 ; ~Pc ¼ 1=27 ;

is caused by the deviation of the diameter for the vdW EoS form the linear
behavior. As we see the differences are rather small. Of course, the example of EoS
considered is not adequate for real fluids and therefore the symmetrical EoS in
coordinates ðx; tÞ may not correspond to any realistic lattice model. Nevertheless,
this approach allows to avoid ambiguity in extrapolation of the binodal into the
region T ! 0 [10] because 0� x� 1.

3.4 Relation Between the Entropies of the LG and LJ
Fluid

In this section we derive the relation between the entropies and check it using the
available data for argon as the classical example of the LJ simple fluid.

Fig. 3.5 The symmetrization of the vdW binodal using the parametrization (3.48) with (3.49)
corresponding to the linear approximation for the diameter

68 L. Bulavin et al.



According to the definition, from (3.23) we get:

~sðl; TÞ ¼ @~P

@~T

����
l

¼ dt
dT

@g

@t

����
h
þ@h
@T

����
l

@g

@h

����
t

¼ ð1þ ztÞ2
z

sh þ ~l0 � ~lþ 1� ~T
� � � d ~l0

d ~T

� � �
x:

ð3:51Þ

Here ~s is the dimensionless entropy of a fluid per unit volume, sh is the entropy
of the lattice gas (per site), ~l ¼ l=T� is the dimensionless chemical potential. Let us
consider (3.51) along the coexistence curve, where l ¼ l0ðTÞ:

~sðl0; TÞ ¼
ð1þ ztÞ2

z
sbin þ 1� ~T

� � � d ~l0ðTÞ
d ~T

� �
xðtÞ: ð3:52Þ

Here sbin is the entropy of the LG along the binodal which according to the
particle-hole symmetry is the same for the coexisting phases. From (3.52) one can
obtain the latent heat for the transition liquid-gas of the fluid:

L1!2 ¼ TðSgas � SliqÞ ¼ T 1� ~T
� � � d ~l0ðTÞ

d ~T

� �
N x�ðtÞ � xþðtÞð Þ : ð3:53Þ

From this we get:

x�ðtÞ � xþðtÞð Þ ¼ ðsgas � sliqÞ
1� ~T
� � � d ~l0ðTÞ

d ~T

� � ; ð3:54Þ

where s ¼ S=N. Taking into account (3.27) it is easy to see that (3.54) is nothing
but the Clausius-Clapeyron relation:

dl0ðTÞ
dT

¼ sliq � sgas
~ngas � ~nliq

: ð3:55Þ

This shows the consistency of the approach based on the relations (3.23)–(3.28)
with the basic thermodynamic relations of phase equilibrium. As is clear from the
consideration above the relation (3.54) is reduced to the relation (3.27). In its turn
(3.27) is based on the LRD. The LRD is valid for wide range of molecular fluid and
liquid metals except for the fluctuational region where the most strong jsj2b and
jsj1�a anomalies of the binodal diameter emerge [57]. To exclude such singularities
from the consideration we use the EoS for the lattice gas (Ising model) of the form:

xðtÞ ¼ 1
2

1� sb b0 þ b1sþ bD s
D

� �� �
; ð3:56Þ
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and check the relation

x�ðtÞ � xþðtÞð Þ ¼ ngas � nliq
1� ~T

; ð3:57Þ

substituting the available equation for the densities nliq;gas from NIST [54]. The
result of such fitting is on Fig. 3.6. We use Tc=T� as the fitting parameter and match
the value of critical amplitude b0 for argon to the value b0 � 1:7 for 3D Ising model
obtained in [58] with b � 0:327. The gives Tc=T� ¼ 0:315 (see Fig. 3.7) which is
close to the theoretical estimation Tc=T� ¼ 1=3 for 3D LJ fluid. Also this justifies
the estimate for the amplitude of the 3D LJ fluid obtained in [37]. The results for the
amplitude of the isomorphic lattice gas model b0 obtained from (3.57) are shown in
Fig. 3.8 as the linear correlation with the value of Zc:

b0 ¼ 5:5ð1� 2:3ZcÞ : ð3:58Þ

Fig. 3.6 Fitting [54] using
(3.57) and (3.56) (dashed
line) for the density difference
along the binodal (points) for
argon (NIST)

Fig. 3.7 Dependence of the
amplitude b0 on Tc=T� for
argon
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One can note that methanol stays far from the main body of the correlation
(3.58). Numerically this happened because of anomalously low values of both of
Zc � 0:19 and B0 � 1:6 obtained using NIST database. E.g. according to the data of
direct measurements of Abdulagatov et al. [59] B0 � 1:86, Zc � 0:22. But it still
does not allow to put methanol to the correlation (3.58). We attribute this to the
strong self-associative properties of this fluid [53] noted above (see Sect. 3.3.1).

Since the critical amplitudes of the binodal for the fluid and the isomorphic
lattice model differ by the scaling factor we can compare this result with that for
fluid binodal amplitude B0 in [60]:

B0 ¼ 4:2ð1� 2:0ZcÞ : ð3:59Þ

It was obtained by processing the data in close vicinity of the CP
10�4\s\10�2ð Þ with the exponent b ¼ 0:338. As we see, despite the difference
between (3.58) and (3.59) in absolute values, caused by the different methodology
and the data range, the slopes for the amplitude Zc-dependence of normalized
values are close to each other (2:0 and 2:3 correspondingly). This reflects the fact
that the slope of the normalized value of the amplitude should be universal.

3.5 Discussion

The idea that the difference between irregularity configuration for continuum fluids
and regularity of configurations of lattice models is unimportant for consideration of
the order-disorder transitions in the fluctuational region belongs to K.S. Pitzer (see
[61]). However, beyond the fluctuational region the shape of the holes in real or
continuum liquid and that in the lattice gas causes the main difference between the
configurations of these systems. From this point of view the global character of the
transformation (3.8) shows that the particle-hole simplified picture still can be
useful. Though, it is not the particle density which reflects such symmetry. Rather

Fig. 3.8 The values of b0 and
Zc for different molecular
liquids
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the combination of the density of the particles and the density of the holes (i.e. the
entropy) is the symmetrical variable [62]. This statement generalizes the idea of N.
Mermin and J. Rehr about the symmetrization of the description of the critical EoS
(see also complete scaling approach of Fisher [63]). This rehabilitates the hole
theory for expanded liquids [36, 64]. Such caricature picture of the liquid state gives
the possibility to relate the thermodynamic functions of these systems using (3.23).

The main results of the proposed concept of the global isomorphism obtained up
to now include the calculation of the nonuniversal critical parameters like the
critical point locus and the compressibility factor Zc for the LJ fluids and their
binodals in dimensions D ¼ 2; 3 using the corresponding information for Ising
model. The applications to the surface tension and the spinodal are also possible
[65]. It is interesting to elaborate the approach to other potentials like Yukawa or
square well which also known to lead to the linearities of the diameter and the
Zeno-line for corresponding range of parameters (see [27] and references therein).
Here the invariant z should be related with the parameters of these potentials
function. One of the obvious options is to use the second virial coefficient as the
general characteristic because it does not depend on fine details of the potential. All
these results signify that classical vdW corresponding states similarity can be
included into broader context of the Global Isomorphism between continuum fluid
and discrete lattice model.

It should be noted that the fluid-lattice gas isomorphism formalized by the
transformation (3.8) refers only to the states inside the liquid-gas triangle. Solid
phase is excluded from the consideration because the lattice is considered as
incompressible. This is because the oscillatory degrees of freedom were not taken
into account. Their contribution becomes important in the vicinity of the triple point
where the stability of the liquid phase terminates. It is interesting option to incor-
porate the compressibility of the lattice into consideration in order to expand the
isomorphism ideology over the liquid—solid coexistence where lattice models can
be used extensively. For solid state thermodynamic potential the contribution from
the phonon part is essential and should be taken into account along with the
particle-hole configurational part.

In addition to obvious problem of microscopic derivation of the transformation
(3.8) based on some model Hamiltonians there is the route of its phenomenological
generalization for those substances where the deviations from the linearity of both
the Zeno line and the binodal diameter are essential. Note that for the diameter of
the density binodal these deviations should be distinguished from the nonlinear
fluctuational corrections to the mean-field behavior in fluctuational region. The
approach developed in [66, 67] for the construction of Ising like variables through
the canonical form of the Hamiltonian can be considered as the nonlinear variant of
(3.8) in the fluctuational region. From such point of view (3.8) can be viewed as the
linearized mean-field version of the nonlinear canonical transformation of the
density order parameter [67].
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Chapter 4
Collective Excitations in Supercritical
Fluids

Taras Bryk, Federico Gorelli, Giancarlo Ruocco, Mario Santoro
and Tullio Scopigno

Abstract Recent progress in theoretical and simulation studies of collective
excitations in supercritical fluids is reviewed. We discuss a methodology of fit-free
estimation of dispersion of longitudinal and transverse excitations in simple fluids.
The issue of vanishing positive sound dispersion—a viscoelastic increase of the
speed of sound from adiabatic one to its high-frequency (elastic) value—with
reduction of density, as it was observed in inelastic X-ray scattering experiments on
supercritical Ar, is discussed from the point of view of finding distinctions in
collective dynamics of low—and high-density supercritical fluids. On the basis of
several theoretical models within the extended hydrodynamic description of
density-density correlations in liquids analytical expressions for positive sound
dispersion are obtained and applied for analysis of time correlation functions
obtained from molecular dynamics simulations. A location of a crossover from the
liquid-like to gas-like types of collective dynamics is discussed based on general
findings for spectra of collective excitations in supercritical Ar and soft sphere
fluids.
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4.1 Introduction

Collective excitations in disordered systems being one of the most sophisticated and
fascinating problems of modern condensed matter physics attracted focus of many
theoretical, experimental and simulation groups. An interplay of different spatial
and temporal scales makes the probes of collective excitations in liquids and glasses
by scattering experiments and computer simulations very important for unveiling
details of their dispersion at different thermodynamic conditions. In particular, the
change in collective dynamics of fluids above the liquid-gas critical point can reveal
fundamental dissimilarities in collective behaviour of matter in different states—
from a liquid-like type of dynamics for dense fluids to a gas-like one for rarified
fluids.

In his Nobel lecture Johannes van der Waals told that “I conceived the idea that
there is no essential difference between the gaseous and the liquid state of matter”
[1]. Until recently the supercritical fluids have been considered as a unique state
with intermediate properties of the liquid and gas phases. There exists a traditional
point of view on liquid and gas as phases of the same symmetry, that implies these
phases cannot be distinguished above the critical point where they do not coexist.
Structural studies of supercritical fluids completely support this point of view.
However, there are examples, like the liquid-glass transition when the structure of
both liquid and glass phases is of the same symmetry while the dynamic properties
and in particular the behaviour of density-density time-dependent correlations
reveal fundamental difference connected with the non-ergodicity of the glass state
[2]. According to [2] below the glass transition temperature the density-density time
correlation functions have non-vanishing with time tail, which is a measure of
the non-ergodicity of the system. This effect corresponds to the dynamical arrest of
particles in contrast to the liquid state for which the density-density correlations
decay with time to zero. This example of the dissimilarity of collective dynamics
for liquids and glasses reflects a sensitivity of dynamic quantities to the states of
matter and implies a possibility to find some dynamic dissimilarities in the col-
lective dynamics of liquids and gases.

Recent inelastic X-ray scattering (IXS) experiments performed for supercritical
Oxygen [3] and Argon [4, 5] and experimentally obtained dispersions of collective
excitations in these supercritical fluids revealed a strong reduction of a typical for
dense fluids viscoelastic effect known as positive sound dispersion (PSD) with the
decrease of density of the fluids. The viscoelasticity of liquids [6] is manifested in
their collective dynamics mainly via several effects: (i) existence of a deviation
from the linear hydrodynamic dispersion law for acoustic excitations towards
higher frequencies-PSD, (ii) emergence of the short-wavelength shear waves
(SW) and (iii) a crossover between thermal and structural relaxations as the main
contributions to the relaxing behaviour of density-density correlations in long- and
short-wavelength regions. It is known that liquids do not sustain macroscopic shear
and therefore macroscopic transverse sound waves cannot propagate in liquids [7],
however on molecular length scales the microscopic elasticity of fluids can cause
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emergence of the short-wavelength transverse collective excitations-SW, which
however are quite overdamped. The dynamic features of fluids due to their
viscoelasticity-PSD and SW-can be the candidates to find dissimilarities in
liquid-like and gas-like types of dynamics in supercritical region.

On the theoretical side the description of collective excitations in fluids must
account for different space and time scales in dynamics of the studied systems. On
macroscopic scales the analytical results must recover hydrodynamic expressions
[8–12] for collective modes. The hydrodynamic theory [7, 13, 14] being a col-
lection of fundamental local conservation laws treats the fluid as continuum without
any atomistic structure. Therefore any extension of hydrodynamic theory must
account for dynamic processes occuring on molecular space and time scales.
Namely the generalized hydrodynamic models [7, 14] should be applied for correct
understanding the origin of the viscoelastic effects. It is important to stress that the
theoretical description of collective dynamics in fluids will be performed for the
weakly nonequilibrium states of fluids and all the fluctuations are quite small that
allows to neglect non-linear hydrodynamic fluctuations.

The paper is organized as follows: in the next section we will discuss the
extended models of collective dynamics of liquids which enable calculations of
dispersion of collective excitations and description of the viscoelastic effects such
as positive sound dispersion and shear waves. The third section gives information
on the computer simulations for supercritical Ar and application of the developed
theoretical schemes to analysis of time correlation functions obtained in molecular
dynamics simulations. A crossover in collective dynamics of supercritical fluids is
discussed in the fourth section, and the last section contains conclusions of this
study.

4.2 Theoretical Models of Collective Dynamics in Fluids

4.2.1 Hydrodynamic Approach

Perhaps historically first analytical treatment of collective modes in liquids was
performed by Landau and Placzek [15] who published (without any details—just
mentioning that the hydrodynamic equations were used) a very short communi-
cation on their famous Landau-Placzek ratio for the integral intensities of the
scattered light in liquids that reads

IR
2IB

¼ c� 1:

Here c ¼ CP=CV is the ratio of specific heats at constant pressure and volume, IR
and IB are the integral intensities of the Rayleigh and Brillouin peaks of dynamic
structure factor Sðk;xÞ with k and x being wave number and frequency, respec-
tively. The Landau-Placzek ratio is applicable only for essentially small wave

4 Collective Excitations in Supercritical Fluids 79



numbers. The dynamic structure factor as a function of wave number and frequency
contains all the information about the spectral distribution of the scattered light by
fluid, and for essentially small wave numbers the Sðk;xÞ, as it was observed in the
light-scattering experiments, has a three-peak shape. The Rayleigh peak centered at
zero frequency is due to thermal relaxation while two side (Brillouin) peaks of
Sðk;xÞ at frequencies

�xBðkÞ ¼ �csk; ð4:1Þ

are coming from acoustic collective excitations that propagate with the adiabatic
speed of sound

cs ¼ ½ c
qjT

�1=2;

where q is mass density and jT is isothermal compressibility. The Landau-Placzek
ratio is a measure of the visibility of the Brillouin peaks in Sðk;xÞ for small wave
numbers. Since the dynamic structure factor is connected with the density-density
time correlation function Fnnðk; tÞ ¼ hnðk; tÞn�ðk; t ¼ 0Þi via time-Fourier
transformation

Sðk;xÞ ¼
Z1
0

Fnnðk; tÞe�ixtdt ð4:2Þ

the main focus in theoretical studies is on obtaining analytical expressions for the
density-density time correlation functions. In the definition of Fnnðk; tÞ the nðk; tÞ
denotes the spatial-Fourier component of fluctuations of number density.

Active theoretical studies of hydrodynamic collective modes and their contri-
butions to the density-density time correlation functions for simple and binary fluids
have been performed during the period 1960–1970s [8–12]. The hydrodynamic
approach for collective excitations in simple one-component fluids consists in
solving a system of three equations—continuity equation, longitudinal part of
Navier-Stokes equation and balance equation for energy—in terms of dynamic
eigenmode. These three equations represent balance equations for three conserved
quantities: total number of particles, longitudinal component of total momentum
and total energy. Within the linearized hydrodynamics the transverse component of
total momentum is decoupled from the other equations—hence, transverse collec-
tive modes in the long-wavelength can be treated separately. For transverse
dynamics there exists only one balance equation for conserved quantity, which is
the transverse component of total momentum.

According to [9] three balance equations for the longitudinal dynamics in
hydrodynamic treatment can be represented in the Laplace-transformed matrix form
as follows
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½zIþ ~Mðk; z ¼ 0Þ�~Fðk; zÞ ¼ Fðk; t ¼ 0Þ; ð4:3Þ

where the 3� 3 matrices of time correlation functions Fðk; tÞ, its Laplace transform
~Fðk; zÞ and others are defined on the set of three dynamic variables

AðhydÞðk; tÞ ¼ nðk; tÞ; JLðk; tÞ; eðk; tÞ� �
; ð4:4Þ

where JLðk; tÞ and eðk; tÞ correspond to spatial Fourier components of longitudinal
component of density of total momentum and energy density, respectively.
The structure of the matrix equation (4.3) exactly corresponds to the
Laplace-transformed form of the generalized Langevin equation [7, 14] with the
~Mðk; zÞ being the matrix of Laplace-transformed memory functions [16].
Among the eigenmodes of the hydrodynamic model (4.3), (4.4) there are:

a single pure real eigenvalue

d1ðkÞ ¼ DTk
2; Re½z1�ðkÞ ¼ d1ðkÞ;

where DT is thermal diffusivity, and a pair of complex-conjugated eigenvalues

z�ðkÞ ¼ Ck2 � icsk;

where the imaginary part corresponds to the hydrodynamic dispersion law

xðkÞ ¼ csk

and real part describes damping of collective excitations with the damping
coefficient

C ¼ 1
2
½DL þ ðc� 1ÞDT �;

which depends on thermal diffusivity DT and longitudinal kinematic viscosity DL.
The eigenvectors associated with the eigenvalues result in amplitudes of mode
contributions to the density-density time correlation functions

Fnnðk; tÞ ¼ Anne
�DTk2t þ ½Bnn cos cskt þ DnnðkÞ sin cskt�e�Ck2t; ð4:5Þ

where Annðk ! 0Þ ¼ 1� c�1, Bnnðk ! 0Þ ¼ c�1 and DnnðkÞ ¼ 3C�DL
ccs

k:

An important insight for the propagation of macroscopic sound in fluids can be
obtained from application of a perturbation approach [17, 18] for cross-correlations
in the hydrodynamic model. In particular, if the cross-correlations between thermal
and viscous processes are small, i.e. for small ratio of specific heats c, it is easily to
show that the macroscopic sound propagation in fluids is caused by coupled fluc-
tuations of nðk; tÞ and JLðk; tÞ while the cross-correlation with thermal processes
renormalizes its propagation speed from the isothermal cT to the adiabatic cs value.
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4.2.2 Extended Hydrodynamic Approach

In order to account for the short-time dynamic processes on molecular spatial and
temporal scales in addition to hydrodynamic ones (which correspond to very small
wave numbers and are quite slow) one has to apply generalized hydrodynamics for
analysis of time-dependent correlations. A straightforward way is to introduce in
addition to the hydrodynamic set of three variables some new ones
(non-hydrodynamic variables of fluctuations of non-conserved quantities) which
would describe more short-time processes. Suppose that the non-hydrodynamic
variables are chosen to be “orthogonal” to the hydrodynamic ones in the sense of
statistically independent correlation of corresponding fluctuations, i.e. their
cross-correlators are zero

\Ahydð�kÞAnon�hydðkÞ[ � 0;

that allows them to describe dynamic processes in liquids beyond the hydrody-
namic regime [7, 14]. Henceforth we will denote by angle brackets an average over
the equilibrium canonic ensemble. The most obvious choice for the
non-hydrodynamic variables is to sample the first time derivatives of the hydro-
dynamic ones, because [7]

\Að�kÞ @
@t

AðkÞ[ ¼ \Að�kÞ _AðkÞ[ � 0:

In [19, 20] it was proposed to generate an extended set of Nv dynamic variables
by taking the first and next time derivatives of the hydrodynamic variables, generate
the Nv � Nv generalized hydrodynamic matrix, find its Nv eigenvalues and asso-
ciated eigenvectors and construct from them the theoretical density-density time
correlation function, which can be compared either with the simulation-derived
Fnnðk; tÞ, or via the time-Fourier transform compared with the experimental
dynamic structure factor Sðk;xÞ. Such an approach is known in the literature as the
approach of generalized collective modes (GCM). While the approach of
deSchepper and Cohen [19] makes use of fitting parameters connected with
unknown wavenumber-dependent transport coefficients, the methodology proposed
by Mryglod, Omelyan and Tokarchuk [20] allows to have the unknown for the
theory wavenumber dependences of different correlation times sijðkÞ via their direct
estimation in molecular dynamics (MD) simulations. Extensive studies of gen-
eralized collective modes [21, 22] showed a convergence of the GCM eigenvalues
with systematic extension of the set of dynamic variables up to the third time
derivatives of the hydrodynamic ones. The GCM methodology is very close to the
generalized hydrodynamic theory by Kivelson and Keyes [23, 24] developed for
molecular fluids. The microscopic theory of extended collective modes enables
correct description of the hydrodynamic modes as well as of the well-defined
short-wavelength collective excitations for large wave numbers [25, 26].
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In general within the GCM approach the extended set of Nv dynamic variables is
used for estimation of the matrix elements of the generalized hydrodynamic matrix
TðkÞ obtained from the matrix of time correlation functions Fðk; tÞ and its Laplace
transform ~Fðk; zÞ taken in Markovian approximation ðz ¼ 0Þ

TðkÞ ¼ Fðk; t ¼ 0Þ~F�1ðk; z ¼ 0Þ: ð4:6Þ

The Nv eigenvalues and associated eigenvectors yield GCM expression for any
time correlation function between two dynamic variables of the given set of Nv ones
via a separable sum of contributions from Nv collective modes

FGCM
ij ðk; tÞ ¼

XNv

a

Ga
ijðkÞe�zaðkÞt: ð4:7Þ

Here the sum is over Nv mode contributions, the zaðkÞ and weight coefficients
Ga

nnðkÞ are in general case complex functions of wave number k. The mode con-
tributions can be transformed to purely real weight coefficients as it was proposed in
[27].

Very important is the issue of exact sum rules which should satisfy the theo-
retical time correlation functions Fijðk; tÞ. Any time correlation function between
dynamic variables of the classical system has the following short-time expansion [7,
14]

Fijðk; tÞ ¼ Fijðk; t ¼ 0Þ½1� 1
2!
hx2iijðkÞt2 þ

1
4!
hx4iijðkÞt4 �

1
6!
hx6iijðkÞt6 þ . . .�:

ð4:8Þ

Here the wavenumber-dependent coefficients hx2niijðkÞ, n ¼ 0; 1; 2; . . . are the
normalized 2nth frequency moments of corresponding spectral function (dynamic
structure factor for the case of density-density fluctuations)

hx2niijðkÞ ¼
1

2pFijðk; t ¼ 0Þ
Z1
�1

x2nSijðk;xÞdx: ð4:9Þ

Since the dynamic structure factors are even functions of frequency for classical
systems—all odd frequency moments are equal to zero

hx2nþ1iijðkÞ � 0 n ¼ 0; 1; 2; . . .

For the density-density time correlation functions there exist exact analytical
expressions for first eight frequency moments [7]. The zeroth and second frequency
moments in the expansion of the density-density time correlation function have
very simple form
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hx0innðkÞ � 1; hx2innðkÞ ¼
kBT
mSðkÞ k

2:

The higher even frequency moments of dynamic structure factor are expressed
via spatial integrals involving effective interactions and their spatial derivatives [7,
14]. The extended sets of dynamic variables enable derivation of theoretical
expressions for time correlation functions (4.7) with different level of the sum rules
fulfilled. As it was shown in [20] if the model included in the extended set of
variables all time derivatives of a hydrodynamic variable Aðk; tÞ up to the sth order,
then the corresponding GCM time correlation function FGCM

AA ðk; tÞ would exactly
fulfill first 2sþ 1 sum rules for corresponding frequency moments.

The eigenvalues and corresponding eigenvectors of the generalized hydrody-
namic matrix represent the dynamic eigenmodes that can exist in fluids on the
spatial scale 	 2p=k for the given wave number k. The eigenvalues of TðkÞ are
either real numbers daðkÞ or pairs of complex-conjugated numbers
zaðkÞ ¼ raðkÞ � ixaðkÞ. The formers correspond to relaxing mode with the relax-
ation time d�1

a ðkÞ, while the latters—to propagating modes with dispersion xaðkÞ
and damping raðkÞ. The GCM methodology was developed in spirit of the tradi-
tional for solids eigenvalue problem for dynamic matrix, however it is free from an
assumption of local potential energy minima for atoms and additionally allows to
study relaxing modes and their effects on the dispersion of collective excitations.
Analysis of the dispersion xðkÞ of acoustic modes should clarify the issue of the
existence and behaviour of positive sound dispersion and non-hydrodynamic modes
in supercritical fluids in very wide range of densities.

In the long-wavelength limit one knows the exact asymptotes of the correlation
times and different correlators, that allows analytical studies of non-hydrodynamic
collective modes in fluids [28]. Below we will show how analytical results can be
obtained within the GCM approach for the positive sound dispersion in supercritical
fluids. The GCM approach was successfully applied in analytical theories of
non-hydrodynamic optic-like excitations in binary liquids [29, 30], “fast sound”
excitations in binary liquids with disparate masses [31] and propagating charge
modes in molten salts [32], and all the analytical results were supported by the MD
simulations.

4.2.3 Viscoelastic Model

A simple dynamical model for longitudinal dynamics of fluids, which consists of
three dynamical variables

AðveÞðk; tÞ ¼ nðk; tÞ; JLðk; tÞ; _JLðk; tÞ� �
; ð4:10Þ
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is well known as the viscoelastic one, because in addition to the hydrodynamic
variables of particle density and longitudinal component of mass-current density, a
non-hydrodynamic variable connected with the elastic properties of the liquid is
taken into account. Since the extended variable _Jðk; tÞ is connected to the stress
tensor rabðk; tÞ via [33]:

d
dt
Jðk; tÞ ¼ ikr̂ðk; tÞ;

there appear in the viscoelastic approach the elastic quantities connected with
microscopic forces acting on particles. From the point of view of exact sum rules
the density-density time correlation function obtained from this model will have
exact first five sum rules satisfied, that is two more than within the hydrodynamic
description.

In this set of dynamic variables AðveÞðk; tÞ one does not take the energy fluctu-
ations into account, hence the density-density correlation time can be obtained from
the hydrodynamic one snnðkÞ defined as

snnðkÞ ¼ 1
SðkÞ

Z1
0

Fnnðk; tÞdt

by setting c ¼ 1 in the analytical hydrodynamic expression for Fnnðk; tÞ [9]:

snnðkÞ ¼ DL

c2s þ 4D2
Lk2

:

Now the generalized hydrodynamic matrix generated on the basis set (4.10) can
be written down as follows:

TðveÞðkÞ ¼
0 �i km 0
0 0 �1

�imkc2T
c21�c2T
DL

k2c21
c21�c2T
DL

0
@

1
A; ð4:11Þ

where the following shortcut was introduced k2c21 ¼ h _JL _JLi=hJLJLi with c1 being
the high-frequency (elastic) speed of sound. The quantities DL and cT in (4.11) are
the kinematic viscosity and isothermal speed of sound. One can easily find
eigenvalues of the matrix TðveÞðkÞ within the precision of Oðk2Þ, which are a pair
propagating modes

z�ðkÞ ¼ DL

2
k2 � icTk � rðkÞ � ixðkÞ; ð4:12Þ

and a non-hydrodynamic relaxing collective mode
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dveðkÞ ¼ c21 � c2T
DL

� DLk
2 � d0 � DLk

2; ð4:13Þ

which tends to a nonzero constant d0 in the long-wavelength limit. The factor
ðc21 � c2TÞ is usually called as the “strength” of the structural relaxation process.
Besides, the constant d0 goes to zero when the kinematic viscosity tends to infinity,
that means an almost infinite relaxation time of the mode dveðkÞ at the glass tran-
sition. All this implies, that the non-hydrodynamic mode dveðkÞ is connected to the
structural relaxation.

The expression for the sound dispersion (imaginary part of eigenvalues z�ðkÞ)
does not show any effect due to coupling of acoustic excitations with the
non-hydrodynamic mode of structural relaxation dveðkÞ, that can appear only in the
Oðk3Þ order in the sound dispersion. In order to estimate the imaginary part of the
complex eigenvalues corresponding sound dispersion within the precision of Oðk3Þ
one can derive from (4.11) an effective equation for sound eigenmodes by elimi-
nating the known real eigenvalue dveðkÞ (4.13). The effective equation reads

z2 � DLk
2zþ c2Td

0

dveðkÞ k
2 ¼ 0; ð4:14Þ

and now the sound dispersion can be obtained as

xveðkÞ ¼ cTk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DL

d0
k2 � D2

L

4c2T
k2 þ Oðk4Þ

s
¼ cTk þ bvek

3 þ . . . ð4:15Þ

In the expression under the square root there are two contributions proportional
to k2: the first one is positive and comes from the coupling of acoustic excitations
with structural relaxation, and the second contribution, the negative one, is the
standard renormalization down of the dispersion law due to the damping effects.
One can obtain the first correction to the linear viscoelastic dispersion law, pro-
portional to the k3 having the following coefficient:

bve
cT
D2

L

8
5� ðc1=cTÞ2

c21 � c2T
: ð4:16Þ

The most interesting consequence is, that in general the sign of the Oðk3Þ cor-
rection to the linear dispersion law can be different depending on the ratio between
the high-frequency speed of sound and the isothermal one. Note, that the
high-frequency speed of sound is always higher than the adiabatic one cs [34, 35],
which in its turn is

ffiffiffi
c

p
times higher than cT .

For the case of transverse dynamics the viscoelastic model contains just two
dynamic variables
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Aðve;TÞðk; tÞ ¼ JTðk; tÞ; _JTðk; tÞ� �
: ð4:17Þ

These two dynamic variables can be used for estimation of the 2� 2 generalized
hydrodynamic matrix for the transverse case. The two eigenmodes for this model
easily can be obtained [28, 36] in the whole range of wave numbers. In the
long-wavelength region they are purely real eigenvalues corresponding to two (one
hydrodynamic and one non-hydrodynamic) relaxing modes, while starting from a
nonzero wave number

ks ¼
ffiffiffiffiffiffiffi
qG

p
2g

; ð4:18Þ

where G and g are the high-frequency shear modulus and shear viscosity, respec-
tively, in the fluid emerge short-wavelength shear waves (a pair of
complex-conjugated eigenvalues of the generalized hydrodynamic matrix for the
transverse dynamics). The long-wavelength region k\ks in which the transverse
collective excitations are not supported by the fluid is called a propagation gap for
shear waves. The dispersion of the shear waves is

xTðkÞ ¼ hx2iJJðkÞ � r2ðkÞ� �1=2
; ð4:19Þ

where the second frequency moment of the transverse current-current spectral
function

hx2iJJðkÞ ¼ k2GðkÞ=q � h _JTð�kÞ _JTðkÞi
hJTð�kÞJTðkÞi

should be larger than the square of the damping coefficient rðkÞ in order the shear
waves to exist. The GðkÞ in the expression above is the wavenumber-dependent
shear modulus which tends to its macroscopic value G in the long-wavelength limit.
It is seen that for small wave numbers the second frequency moment of the
transverse current-current spectral function tends to zero resulting in the negative
expression under the square root in (4.19) that corresponds to the region where no
transverse propagating modes can exist in the fluid.

4.2.4 Thermoviscoelastic Approach

Now we will take into account the coupling of density fluctuations to thermal processes
and find out how this effect contributes to the deviation of the dispersion curve from the
linear hydrodynamic dispersion law. We want to obtain the analytical expressions for
the eigenmodes in a pure fluid, within a five-variable thermo-viscoelastic model in the
long-wavelength limit [37]. The dynamical model Að5Þðk; tÞ
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Að5Þðk; tÞ ¼ nðk; tÞ; JLðk; tÞ; eðk; tÞ; _JLðk; tÞ; _eðk; tÞ� � ð4:20Þ

contains additionally to the viscoelastic model the energy density eðk; tÞ and the
corresponding extended variable _eðk; tÞ. The five eigenmodes within the precision
of Oðk2Þ for the thermo-viscoelastic model were reported in [37] and contained
three hydrodynamic modes:

d1ðkÞ ¼ DTk
2;

z�ðkÞ ¼ Ck2 � i½csk þ Oðk3Þ�; ð4:21Þ

exactly as they appear in the hydrodynamic approach, and two non-hydrodynamic
relaxing modes:

d2ðkÞ ¼ d02 � DLk
2 þ ðc� 1ÞDk2; ð4:22Þ

and

d3ðkÞ ¼ d03 � cDTk
2 � ðc� 1ÞDk2; ð4:23Þ

where the following shortcuts were introduced:

d02 ¼ c21 � c2s
DL

;

and

d03 ¼ CV

mk
½Gh � ðc� 1Þ

jT
�;

and

D ¼ d02d
0
3

d03 � d02

DT

DLc2s
ðDT � DLÞ2:

The Gh corresponds to the heat rigidity modulus and λ is the thermal conduc-
tivity. The last terms in right hand sides of (4.22) and (4.23) appear only due to
coupling between the heat and density fluctuations. When this coupling is
neglected, i.e. c ¼ 1, one obtains for the non-hydrodynamic modes d2ðkÞ and d3ðkÞ
the same expressions as within the separated treatment of two-variable heat—and
three-variable viscoelastic dynamical models (at c ¼ 1 the non-hydrodynamic mode
d2ðkÞ is reduced to (4.13)).

The complex eigenvalues of the thermo-viscoelastic dynamic model within the
precision of Oðk3Þ are
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zsðkÞ ¼ Ck2 � iðcsk þ bk3Þ; ð4:24Þ

where the coefficient at k3 reads as follows:

b ¼ � C2

2cs
� ðc� 1ÞDT

DL � DT

2cs
þ csDL

2d02
þ ðc� 1Þ csðc� 1ÞDT

2d03
: ð4:25Þ

In the case when c
1 the estimate for the sound dispersion at the boundary of
hydrodynamic regime within the thermo-viscoelastic model reads:

xðkÞ
csk þ csD2
L

8
5� ðc1=csÞ2

c21 � c2s
k3; ð4:26Þ

which is identical to (4.15) and (4.16) for the case of c ¼ 1, with cs being equal to cT .

4.3 Computer Simulations of Time-Dependent
Correlations

Computer molecular dynamics simulations represent a powerfull tool which being
based on laws of microscopic statistical mechanics is in fact a computer experiment
for realistic systems, that allows direct comparison with the output of real experi-
ments. The time correlation functions directly obtained in MD simulations can be
compared via the time-Fourier transform with the experimentally measured
dynamic structure factor Sðk;xÞ. The dispersion of collective excitations can be
obained either directly from observation of the locations of the visible Brillouin
peaks (4.1) in dynamic structure factor, or from a fitting procedure based either on a
simple model of damped harmonic oscillator (DHO) [38, 39] or expressions for
dynamic structure factor obtained within second order memory function approach
[7, 14]. The direct observation of the Brillouin peaks is not really precise meth-
odology because they are well-pronounced only for essentially small wave num-
bers. Therefore the main approach of the direct estimation from MD of the
dispersion of collective excitations is from the peak position in the longitudinal
current spectral function CLðk;xÞ, which according to the continuity equation has
the following relation with the dynamic structure factor [7, 14]

CLðk;xÞ ¼ x2

k2
Sðk;xÞ: ð4:27Þ

The methodology based on identification of the dispersion of collective exci-
tations with the peak locations of CLðk;xÞ also has its drawbacks connected with
the neglect of contributions from relaxation processes to CLðk;xÞ. The strong
contributions from relaxation processes can essentially shift the contribution from
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collective excitations and therefore the apparent peak position of CLðk;xÞ can
essentially differ from the real frequency of the collective excitation.

Therefore more advanced methods of estimation of dispersion of collective
excitations in fluids are based on theoretical expressions for the time correlation
functions or Sðk;xÞ and CLðk;xÞ obtained within generalized hydrodynamic
approach. The theoretical expressions are either fitted (memory function approach)
or directly compared without any fit (GCM approach) with the simulation data.
Several fitting schemes were proposed for the density-density time correlation
functions or dynamic structure factors within different approximations for memory
functions [40–47] with the purpose to estimate dispersion of collective excitations
in liquids while parameter-free calculation of the dispersion was developed only
within the GCM approach.

In order to perform analysis of collective dynamics from MD simulations one
has to calculate hydrodynamic time correlation functions. For this purpose one has
to sample in MD simulations the spatial Fourier components of density of hydro-
dynamic quantities: number density of particles

nðk; tÞ ¼ 1ffiffiffiffi
N

p
XN
j¼1

eikrjðtÞ; ð4:28Þ

where k is the sampled wave vector and rjðtÞ is the trajectory of the jth particle;
longitudinal and transverse components of momentum density

JLðk; tÞ ¼ m

k
ffiffiffiffi
N

p
XN
i¼1

kvjðtÞeikrjðtÞ;

JTðk; tÞ ¼ m

k
ffiffiffi
2

p ffiffiffiffi
N

p
XN
j¼1

½k� vjðtÞ�eikrjðtÞ;
ð4:29Þ

and energy density

eðk; tÞ ¼ 1ffiffiffiffi
N

p
XN
j¼1

ejðtÞeikrjðtÞ: ð4:30Þ

In (4.29) and (4.30) vj and ej are the velocity and single-particle energy of the jth
particle. Note that the dynamic variables of number density and longitudinal com-
ponent of momentum density are connected by the fundamental continuity equation

dnðk; tÞ
dt

¼ ik
m
JLðk; tÞ: ð4:31Þ

The extended dynamic variables are obtained from (4.29) and (4.30) as their first
time derivatives:
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_JLðk; tÞ ¼ m

k
ffiffiffiffi
N

p
XN
j¼1

½kajðtÞ þ i½kvjðtÞ�2�eikriðtÞ;

_J
Tðk; tÞ ¼ m

k
ffiffiffi
2

p ffiffiffiffi
N

p
XN
j¼1

½k� ajðtÞ þ i½k� vjðtÞ�kvjðtÞ�eikrjðtÞ;

_eðk; tÞ ¼ 1ffiffiffiffi
N

p
XN
j¼1

½_ejðtÞ þ iejðtÞkvjðtÞ�eikrjðtÞ;

where the overdot means the time derivative and ajðtÞ is the acceleration of the jth
particle.

The density-density time correlation functions Fnnðk; tÞ in different regions of
wave numbers are shown for supercritical Ar at T ¼ 280K and density
921:885 kg/m3 in Fig. 4.1. The MD simulations [48] were performed for 13 den-
sities along the isothermal line T ¼ 280K for supercritical Ar using systems of
2000 particles interacting via ab initio Woon potentials [49]. Parameters of the
potentials were taken from [50] and cut-off radius was 12 Å. These potentials were
the same as used in the experimental and MD study of supercritical Ar at 573K [5].
The time step in simulations was 2 fs. All the simulations were performed in mi-
crocanonical ensemble. Energy conservation was on very good level: the energy
drift was less than 0:02 percent over the production runs of 480; 000 time steps.
Every sixth configuration was used for sampling of dynamic variables. Dynamic
variables of particle density, momentum density and energy density as well as their
time derivatives needed for GCM analysis were sampled for thirty different wave
numbers directly in MD simulations. The averages of static and time correlation
functions over all possible directions of different wave vectors with the same
magnitude were performed.
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Fig. 4.1 Density-density time correlation functions for supercritical Ar at T ¼ 280K and density
921:885 kg=m3 at six wave numbers as directly obtained in MD simulations. The time scale for
reduction of units is 3:45494276 ps. A progressive vertical shift of 0:2 was applied with decreasing
wave numbers for eye convenience

4 Collective Excitations in Supercritical Fluids 91



In Fig. 4.1 one can see that only for very small wave numbers the
density-density time correlation functions show oscillating behaviour due to
propagating collective excitations, while with increasing wave numbers the oscil-
lations got hidden under the relaxation shape of the Fnnðk; tÞ. It is obvious that the
purely relaxation shape of Fnnðk; tÞ as is observed for k[ 0:5 Å−1 for this ther-
modynamic point of supercritical Ar does not mean the absence of collective
excitations. The corresponding dynamic structure factors are shown in Fig. 4.2.
According to the Landau-Placzek ratio the visibility of the side Brillouin peaks
depends on the ratio of specific heats c, which was obtained in [48] from MD
simulations for this thermodynamic point c ¼ 1:98 in good agreement with the
NIST database [51]. It is seen from Fig. 4.2 that is is impossible to observe the exact
location of the side peak of Sðk;xÞ for wave numbers k[ 0:3 Å�1 that excludes the
possibility to estimate dispersion of collective excitations for these wave numbers
directly from the obtained dynamic structure factors.

Since the fluctuations of density are connected with the fluctuations of the
longitudinal mass-current density via the time derivative of the former, the time
correlation functions FL

JJðk; tÞ show well pronounced oscillations (Fig. 4.3) in the
region of small wave numbers. However even far outside the hydrodynamic region
the longitudinal current-current time correlation functions show negative minimum
at small times that is an evidence of the presence of collective excitations in contrast
to what was observed in the shape of the density-density time correlation functions
at large wave numbers.

The time-Fourier transform of FL
JJðk; tÞ, which is denoted as CLðk;xÞ, shows the

well-pronounced maximum as a function of frequency for all wavenumbers as it is
seen from Fig. 4.4. The maxima positions of CLðk;xÞ give the direct, though being
exact only in the long-wavelength limit and therefore—not really precise for large
wave numbers, way of estimation of the dispersion xðkÞ of longitudinal collective
excitations in fluids.
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The ability of the generalized hydrodynamics to describe correctly the
time-dependent correlations are shown in Fig. 4.5, where density-density,
density-energy and energy-energy time correlation functions obtained from MD
simulations are compared without any fit with the corresponding functions obtained
within the five-variable thermo-viscoelastic GCM approach (4.20). The theoretical
curves (4.7) almost perfectly recover the damped oscillations in the shape of the
MD-derived time correlation functions and nicely reproduce their short-time
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behaviour due to high number of the sum rules fulfilled. This means that the
five-variable thermo-viscoelastic model is able to yield correct dispersion of the
collective excitations in fluids.

Transverse dynamics can be studied via analysis of the transverse current-current
time correlation functions FT

JJðk; tÞ, shown for six wave numbers in Fig. 4.6. An
analytical expression for the FT

JJðk; tÞ that follows from hydrodynamic theory [7] is
valid only for small wave numbers:

FT ;hyd
JJ ðk; tÞ ¼ kBT

m
e�

gk2

q t; ð4:32Þ

where g is shear viscosity. In Fig. 4.6 the time correlation function FT
JJðk; tÞ with the

smallest wave number corresponds well to the single-exponential hydrodynamic
form (4.32). However outside the hydrodynamic region a deviation from the
hydrodynamic form is increasing. For very dense fluids outside the hydrodynamic
region a similar as in longitudinal case (Fig. 4.3) negative minimum at small times
is observed, which is an evidence of emerging in the liquid short-wavelength shear
waves [29, 36].

The time-Fourier transformed transverse functions FT
JJðk; tÞ give transverse

current spectral functions CTðk;xÞ shown in Fig. 4.7. In contrast to the longitudinal
case CTðk; 0Þ 6¼ 0, hence for the transverse spectral functions CTðk;xÞ the con-
tributions from transverse collective excitations can be hidden under the relaxing
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part of CTðk;xÞ. Indeed, the zero-frequency limit of the transverse spectral func-
tions reads CTðk; 0Þ	 q=ðk2gðkÞÞ, where gðkÞ is the wavenumber-dependent shear
viscosity, which tends in the long-wavelength limit to its macroscopic value g. The
issue of the visibility of transverse collective excitations in CTðk;xÞ is not really
well elaborated in the literature, but it is obvious that the absence of the
well-defined peak in CTðk;xÞ does not mean the complete absence of shear waves
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propagating on nanoscales L	 2p=k. Similarly, the absence of a side peak in
dynamic structure factors Sðk;xÞ for large wave numbers does not mean the
absence of short-wavelength longitudinal collective excitations. In fact their con-
tribution simply is too weak in comparison with the one from relaxation processes.
Therefore in the case of transverse dynamics only the proper analysis based on
dynamic eigenmode calculations can reveal the existence of transverse excitations,
their dispersion and contribution to CTðk;xÞ in a wide range of densities.

The two-variable viscoelastic model of transverse dynamics (4.17) is able to
fulfill only first three frequency moments of the transverse current spectral function,
therefore the theoretical curves recover the MD-derived transverse time correlation
functions not so perfectly as it is for the longitudinal case. One should note that the
short-time behaviour of the transverse time correlation functions is exactly the same
as for the regular time correlation function (4.8) and depends on the first few
k-dependent frequency moments. The long-time behaviour though is different in the
small-k and large-k limits. While in the hydrodynamic regime the transverse current
functions have typical single-exponential decay, in the limit of large wave numbers
these function should have Gaussian-type tail of the time dependence [7]. In
Fig. 4.8 theoretical and MD-derived transverse time correlation functions are
compared for three wave numbers. One can see that close to the hydrodynamic
region the quality of theory is very good, while in the region where exist shear
waves the theoretical curves correctly recover the frequency of damped oscillation,
but underestimate their damping. In general one can expect that further extension of
the two-variable set of transverse dynamics would allow better description of the
damping of shear waves. Note that for the highest wave number shown in Fig. 4.8
the Gaussian regime for the long-time behaviour has not been reached.

Having the eigenvalues obtained from the generalized hydrodynamic matrix
in the longitudinal and transverse cases one can compare the dispersion of the
eigenmodes with the dispersion curves estimated from the peak positions of current
spectral functions CL=Tðk;xÞ. In Fig. 4.9 one observes deviation of the dispersion
of longitudinal collective excitations from the linear hydrodynamic dispersion law
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in perfect agreement of theory and MD simulations, that is an evidence of correct
description of the positive sound dispersion within the thermo-viscoelastic dynamic
model. The macroscopic adiabatic speed of sound cs is not an easy task to estimate
from molecular dynamics simulations. We used one of the most reliable approaches
to calculate cs via the long-wavelength extrapolation of a smooth dependenceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðkÞ=SðkÞp
multiplied by the thermal velocity. Here cðkÞ is the

wavenumber-dependent ratio of specific heats which easily can be expressed via
correlators used in the GCM approach [20, 52]. To date this is the most precise
methodology of calculations of adiabatic speed of sound from classical [35, 48] and
ab initio [53–55] simulations. A comparison of the calculated adiabatic speed of
sound for supercritical Ar with the NIST database showed almost perfect agreement
in the whole density range, see [48].

For the transverse case both the GCM theory and MD simulations are in nice
agreement for the existence and the width of the propagation gap for shear waves.
In the region of wave numbers where the density-density time correlation functions
show relaxing behaviour with no oscillations the peak positions of CLðk;xÞ are
located at smaller frequencies with respect to the dispersion obtained from GCM
eigenmodes, that is explained by the neglect of the shift of the frequency to the
apparent one by contributions from relaxing modes. Similar tendency is observed
also for the transverse case. This means that the dispersion of collective excitations
should be estimated with the full account for different contributions to CL=Tðk;xÞ
spectral functions from all relaxing and propagating modes, that would allow
separation of actual contribution from L/T collective excitations to the CL=Tðk;xÞ.
Namely the GCM approach allows such a separation of different contributions to
the spectral functions of interest. In any case the region, where the positive sound
dispersion and emergence of shear waves are observed can be studied by different
methodologies, because they lead to consistent results for dispersion of collective
excitations.
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4.4 Crossover in Collective Dynamics
of Supercritical Fluids

Attempts to identify liquid-like and gas-like features in supercritical fluids have
been undertaken since the derivation of the van der Waals equation of state. More
recent approaches targeted on static density fluctuations [56] or suggested a con-
tinuous phase transformation in the supercritical region [57, 58]. In particular, in
[58] a mesophase in a finite density range separating the low-density gaseous and
high-density liquid phases in supercritical region was studied.

Here we will focus on dynamic manifestations of the possible crossover.
A crossover in collective dynamics from gas-like to liquid-like behaviour was
suggested in [5] on the basis of experimental study of positive dispersion of col-
lective excitations in supercritical Ar. The idea was based on observation that the
positive sound dispersion practically vanished at some low density of the super-
critical fluid, that led to a suggestion that the dense fluids have liquid-like type of
dynamics with nonzero PSD. This was supported by analytical treatment of the
positive sound dispersion caused by coupling of acoustic excitations to structural
relaxation [34]. Later on another specific non-zero positive dispersion was found in
MD simulations of supercritical Argon for low-density states [59]. In was found in
[59] that a weak positive deviation from the hydrodynamic dispersion remains even
for the low-density supercritical fluids, however it is not anymore connected with
the structural relaxation but with coupling with non-hydrodynamic heat waves
which can emerge in fluids on short wave lengths. The coupling to heat waves
causes the “residual PSD” far outside the hydrodynamic region. If the PSD was
solely caused by the structural relaxation it would vanish as it was shown in [34,
35] within the viscoelastic (no coupling with thermal processes) analysis of PSD. In
Fig. 4.10 one can observe how the PSD changes with reduction of the density for
the case of supercritical Ar. The apparent speed of sound estimated as xsoundðkÞ=k
shows rapid increase in the long-wavelength region for the high-density fluid, while
decreasing density causes much wider region of small wave numbers in which the
dispersion remains linear with k. Simulations performed in [34] showed that further
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reduction of the density can cause even a region with “negative” sound dispersion,
possibility of which is also supported by expressions (4.15) and (4.26).

Interestingly, that for model fluids of soft spheres, which do not have liquid-gas
coexistence, the density dependence of collective dynamics was found very similar
as in the supercritical Ar [35]. The apparent speed of sound calculated for soft
sphere fluids [35] gives evidence of a strong positive dispersion for the dense fluids
and its reduction with the decrease of density reaching almost zero-PSD state at
some density. Further decrease of density for soft sphere fluids resulted again in
non-zero PSD, that gives evidence of very similar scenario of behaviour of PSD as
it was observed in the case of Lennard-Jones fluids [5, 59]. This means that for the
systems with and without the gas-liquid binodal and critical point the behaviour of
the PSD is very similar.

In order to make a link between the dynamics of systems with and without the
coexistence gas-liquid binodal in [35] were calculated density dependences of the
thermal diffusivity DT and of the longitudinal kinematic viscosity DL. Their density
dependences were obtained qualitatively similar with a minimum right at the
density where the vanishing PSD was observed. For the soft sphere fluids was
obtained similar density dependence of DT as it was known for real supercritical
fluids [51] and were reported in studies of critical behaviour of thermal diffusivity
DT of CO2, C2H6 [60] and H2O [61]. Both quantities DT and DL define the
behaviour of the PSD as it follows from the analytical expression reported in 4.25.
On the other hand, in more realistic Lennard-Jones supercritical fluids (see [59])
minima in DT and DL have been found to correspond to maxima in the specific heat
CP. Note that in the soft sphere fluids the Widom line is no longer defined (no
gas-liquid coexistence line and its continuation into supercritical regime) however a
link between high frequency dynamics and macroscopic transport/thermodynamic
quantities is retained. Put in different words, when soft sphere potential is turned
into the Lennard-Jones one by adding the attractive part, the correspondence
between the dynamic crossover in PSD and the Widom line is reproduced. In this
sense, the soft sphere fluids support such a relationship. For realistic fluids the
critical behaviour of the thermal diffusivity

DT ¼ k
nCP

depends on the divergence of thermal conductivity k and specific heat at constant
pressure CP at the critical point [62]. The experiments [60, 61] give evidence of a
rapid decay of DT on approaching the critical point, i.e. leading contribution from
the CP, and consequently, the line of the minimum of DTðnÞ for realistic fluids
should be very close to their Widom line. This makes a strong argument in con-
necting the dynamic crossover in system with and without coexistence gas-liquid
binodal. It was suggested [35] that the dynamic crossover in soft sphere fluids takes
place at the line of minima of DTðnÞ, which almost coincides with the line of
minima of DLðnÞ. This is in agreement with the previous observations for super-
critical Ar [59] as well as the very first suggestions on the role of the Widom line in
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the observed dynamic crossover [5]. Both quantities, thermal diffusivity and lon-
gitudinal kinematic viscosity, define the relaxation behaviour of fluids, because they
define the hydrodynamic correlation times and damping of the long-wavelength
collective excitations [7, 14] as well as they define the width of hydrodynamic
regime [34]. It seems that namely these two quantities are responsible for the
dynamic crossover for all fluids: supercritical ones and soft-sphere systems. It is
necessary to stress, that the experimental studies [60, 61] were performed for fluids
near the critical point. Therefore for temperatures far away from the critical region
new simulation studies for Lennard-Jones fluids are required in order to check the
behaviour of positive sound dispersion in a wide range of temperatures: from
critical region up to very high temperatures. So far the only study [59] was per-
formed in this direction on supercritical Ar. Its results were in agreement with the
findings for soft sphere fluids [35] on the connection of thermal diffusivity DT and
kinematic viscosity DL with the non-monotonic behaviour of positive sound dis-
persion. Furthermore, the NIST database [51] allows to follow the non-monotonic
behaviour of the density dependence of DT and DL in very wide temperature and
pressure ranges, that will definitely help in establishing their connection to the
positive sound dispersion far away from the critical region in realistic liquids.

4.5 Conclusions

The positive sound dispersion—a viscoelastic increase of the speed of sound
from the adiabatic one to its high-frequency (elastic) value—changes drastically
with density and practically disappears for gas-like fluids. This was observed in IXS
experiments on supercritical Ar [3, 5] and in MD simulations on many
Lennard-Jones fluids. Such a change of the pressure (density) dependence of PSD
was observed to take place in the supercritical fluids in the region of the Widom line
being a natural extension of the gas-liquid coexistence curve. The only unclear
issue of a possible separation of the liquid-like and gas-like fluids remained the case
of fluids without interparticle attraction which do not have the gas-liquid coexis-
tence and the Widom line. Recently this problem was in the focus of a molecular
dynamics study [35]. That study gave evidence that the PSD behaves in the same
way in soft-sphere fluids as in the Lennard-Jones ones, the crossover in PSD takes
place on the line of minima of thermal diffusivity and kinematic viscosity—the fact
observed for supercritical fluids too [59]. The theory of PSD, developed within the
GCM approach, allowed one to connect the behaviour of PSD with the location of
the Widom line in supercritical fluids above the coexistence curve. The theory is a
general one—it does not depend on the particular interaction potentials. The results
of [35, 59] generalize the behaviour of supercritical and soft-sphere (without the
gas-liquid coexistence) fluids and extend our understanding of dynamic crossover
on all types of fluids.

It is important that the vanishing positive dispersion corresponds to the density
region where the thermal diffusivity DT and kinematic viscosity DL have their
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smallest values. These two transport quantities define the damping of
long-wavelength collective excitations and main hydrodynamic correlation times.
Hence the results [35] for soft sphere fluids and previously for the Lennard-Jones
ones [5, 34, 59] allow to conclude that the dynamic crossover between the
“liquid-like” and “gas-like” states of fluids takes place similarly for fluids with and
without the gas-liquid binodal in the region where thermal diffusivity and kinematic
viscosity have their minima as functions of density. For supercritical fluids the
correspondence between the dynamic crossover in PSD and the Widom line can be
obtained by approaching the critical point [34] and using the relation between
thermal diffusivity and specific heat at constant pressure.
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Chapter 5
Viscous Flow of Glass-Forming Liquids
and Glasses

Olexandr Bakai

Abstract Continuous liquid-to-glass transition is characterized by dramatic chan-
ges of the liquid structure, thermodynamics and dynamics in a comparatively
narrow temperature range. The viscous flow modes of the matter are changing
within this temperature range too. The interplay of the structural, thermodynamic,
mechanical and dynamic parameters at the viscous flow is still a challenge. Near the
glass transition temperature the cooperative diffusion and sliding determine the
shear viscosity of the liquid and glass as well as the fragility and the strain rate
sensitivity of the flow. In this chapter the theoretical aspects of the physics of
viscous flow of glass-forming liquids and glasses are considered within the
framework of the heterophase fluctuations model (HPFM), providing a mesoscopic
description of the heterophase liquid states. Newtonian and non-Newtonian,
Arrhenius and non-Arrhenius flow modes are considered as well as the crossover
from the flow to inhomogeneous deformation of glass. The fragility, the strain rate
sensitivity, and the fragile-to-strong liquid transformation are described.

Abbreviations

AG Adam-Gibbs
CD correlated domains
CRD cooperatively rearranging domain
DVF diffusion-viscous flow
HPF heterophase fluctuations
HPFM heterophase fluctuations model
SRO short-range order
SRS strain rate sensitivity
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STZ shear transformation zone
VFT Vogel-Fulcher-Tamman
WAXS wide-angle X-ray scattering

5.1 Introduction

The Navier-Stokes equation is in use for the description of the Newtonian liquid
flow. The high temperature creep of a solid (which is heterogeneous on small or
medium scales) can be treated as a highly viscous homogeneous flow on macro-
scopic scales. At that the viscosity depends on the topology and kinetic properties
of the structural heterogeneities.

These two modes of the viscous flow of the condensed matter are intercon-
vertible at the liquid-glass transition. The difficulties of a unified description of the
viscous flow of the glass-forming liquids and glasses arise from the uncertainty of
the structural and kinetic properties of the matter in these states. On a deeper level,
this uncertainty is connected with non-equilibrium of the super-cooled liquids and
glasses. Therefore, the structure, properties and flow of a super-cooled liquid and
glass depend on the thermal history and applied external stresses. For this reason,
different reasonable models of the structure and kinetics of the glass-forming liquids
and glasses are used for describing the flow.

The structure of the glass-forming liquids is essentially heterogeneous on mes-
oscopic scales (see, e.g. [1–4] and the references quoted). The structural hetero-
geneities generate the heterogeneity of the relaxational dynamics. The evolution of
these heterogeneities at liquid cooling determines the temperature dependence of
the viscosity. It occurs that the super-cooled liquid flow becomes non-Newtonian
within the glass transition range and the temperature dependence of viscosity does
not obey the Arrhenius law. Schematically the flow states map on the (shear rate,
temperature)-plane is shown in Fig. 5.1 where the data presented in [5–7] are
accounted for.

The region of the non-Arrhenius dynamics lies below the temperature TA which
is, as a rule, above the crystallization temperature, Tm. Transition from the
Newtonian to non-Newtonian but macroscopically homogeneous flow takes place
in the vicinity of the glass transition temperature, Tg. The crossover from the
homogeneous flow to the inhomogeneous deformation occurs with the temperature
decrease. The depicted in Fig. 5.1 left boundary separates the regions of the
homogeneous flow and inhomogeneous plastic deformation of the glass.

Our goal is to describe the flow modes shown in Fig. 5.1. The structural, ther-
modynamic and kinetic properties of matter are described within the framework of
the heterophase fluctuations model (HPFM) [4, 8–13]. The consideration of the
structure and flow of glass is based on results of the theory of polycluster amor-
phous solids [4].
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The chapter is organized as follows. As a background, the viscous flow of the
Newtonian liquid and basic relation of viscosity and diffusion are recounted in
Sect. 5.2. Characteristic features of the flow of glass-forming liquids are considered
in Sect. 5.3. The fragility parameter, as a measure of non-Arrhenian behavior of the
diffusion and viscosity, is introduced in Sect. 5.3.1. The strain rate sensitivity is a
key quantity characterizing the non-Newtonian flow. It is considered and discussed
in Sect. 5.3.2. Basics of the mesoscopic theory of structure, thermodynamics and
cooperative relaxational dynamics of liquids below TA are formulated in Sect. 5.4.
Section 5.4.5 is devoted to the diffusion-viscous flow of the polycluster glass and to
the crossover from the non-Newtonian viscous flow to the inhomogeneous plastic
deformation of glass. The role of the shear banding in establishing the
non-Newtonian mixed viscous flow is elucidated. General discussion of the theo-
retical results and brief comparisons with some experimental data are placed in
Sect. 5.5. Conclusions are formulated in Sect. 5.6.

5.2 Flow of Normal Homophase Liquids

Above Tm a liquid is in the thermodynamically stable (normal) state. The methods
of the statistical physics and kinetics, hydrodynamic approximation and computer
simulations are powerful tools for the research of this state. The discovery of basic
laws of flow of normal liquids became possible after the formulation of the
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principles and equations of motion of the Newtonian mechanics, the Gibbs statis-
tics, and Boltzmann’s kinetics.

In his second book of Principia (1687) Newton derived the relation between the
shear strain rate, _e, and the frictional shear stress, rfr , for liquids, rfr ¼ g_e, η is the
viscosity. At the stationary liquid flow the frictional stress is balanced by the
external shear stress, σ. At that the equation of the homogeneous liquid flow is

r ¼ g_e: ð5:1Þ

Navier has formulated the equations of the liquid continuum flow taking into
account the viscosity (1822). Later Stokes used the Navier-Stokes equation, solved
the problem of the flow past a sphere and derived the expression for the frictional
force exerted on a sphere of radius R [14],

Fg ¼ 6pgR: ð5:2Þ

Calculating the diffusional flux of molecules under the influence of the force
(5.2), Einstein in [15, 16] has obtained the formula determining the connection of
the viscosity and the diffusion coefficient, D,

g ¼ T
6pRD

: ð5:3Þ

The formula (5.3) is the Stokes-Einstein relation. The same relation was also
deduced by Smoluchowski at almost the same time (for details see his overview
paper [17] and Smoluchowski-Einstein correspondence of that time).

For a regular liquid, the radius R in the Stokes-Einstein relation is replaced by
the molecular radius, a. As a result, the proportionality of the viscosity to the ratio
T=aD is stated,

gaD=T ¼ Const: ð5:4Þ

Diffusion is directly connected with the relaxation time, τ. For many liquids, in a
wide temperature range above Tm, the diffusion coefficient has the form D � a2=s
with the Arrhenius dependence of τ on temperature,

s ¼ s0 exp �Eacbð Þ; b ¼ 1=T : ð5:5Þ

Hereafter the Boltzmann constant, kB, is equal to 1. Eac is the activation energy;
the pre-exponential factor s0 is proportional to the period of molecule oscillation.

Thus, if the relation (5.5) is valid, the viscosity can also be presented in the
Arrhenian form,
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g ¼ g0 exp �Eacbð Þ: ð5:6Þ

The basic relations (5.1)–(5.6) are useful for the rationalization and analysis of
the experimental data above TA, but below TA they are not valid as it is shown in
Fig. 5.1.

5.3 Features of the Glass-Forming Liquids Flow

5.3.1 Non-Arrhenius Viscous Flow and Fragility

Rationalization of experimental data using expressions (5.1), (5.6) leads to con-
clusion that below TA the activation enthalpy is deviating from a constant and the
activation energy depends on T, Eac ¼ EacðTÞ. The deviation of the Eac from a
constant value is considerable for all glass-forming liquids but for many of them it
increases dramatically with the temperature decrease below Tm.

Schematically the typical behavior of log g Tð Þ versus X ¼ Tg=T (Angell plots
[18, 19]) of liquids is shown in Fig. 5.2. Two types of liquids are distinguished—
strong and fragile ones [19]. The viscosity of strong liquids is close but somewhat
higher than that given by (5.6) (curve 1 in Fig. 5.2). Fragile liquids are very much
non-Arrhenian (curve 2 in Fig. 5.2). The parameter,
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m_ ¼ d log sð Þ
db

� �
Tg

� d log gð Þ
db

� �
Tg

; ð5:7Þ

determines the measure of the kinetic fragility. This parameter is equal to 10–20 for
strong liquids. For fragile liquids, m_ � 50� 100.

There are some liquids with log gðTÞ having a sigmoid shape (like the curve 3 in
Fig. 5.2). The viscosity of such liquid at high temperatures is similar to that of
typically fragile liquids but the fragility parameter (5.7) (which is a low-temperature
distinctive characteristic) is small, like that of strong liquids. In such liquids the
fragile-to-strong transformation takes place.

The fragility parameter is an informative quantity. It depends on the structure,
thermodynamics and the peculiarities of the relaxation dynamics of the
glass-forming liquids. The correlation of this parameter with different physical
properties of a material is in use at the rationalization of experimental data [20].

A qualitative explanation of the non-Arrhenius viscosity is based on the fact that
below TA the structural rearrangements of a liquid are cooperative and an ele-
mentary rearrangement involves many molecules. The number of molecules within
the cooperatively rearranging domain (CRD) is the cooperativity parameter.
Assuming that it depends on temperature, one obtains a non-Arrhenius law of the
relaxation. The most successful choice of the cooperativity parameter belongs to
Adam and Gibbs (AG).

In the AG model [21] the cooperativity is increasing with the temperature
decrease *(T − T0)

−1. Assuming that T0 is the Kauzmann temperature [22], Adam
and Gibbs connected the cooperativity parameter with the configurational entropy
and deduced a formula for the cooperative α-relaxation time,

sa ¼ s0 exp � E0
ac

T � T0

� �
: ð5:8Þ

With E0
ac equal to the activation energy of the normal liquid this formula reproduces

the expression (5.5) at T � T0. On the other hand, the AG formula reproduces the
Vogel-Fulcher-Tamman (VFT) [23–25] empiric law for the relaxation time. Thus,
this formula with just two free parameters, E0

ac and T0, establishes the intercon-
nection of the thermodynamics and the relaxation kinetics at the glass transition. It
reproduces the empiric VFT law and has a correct high temperature asymptotic. The
intriguing point of this model is that T0 is a practically unachievable temperature
because it is below Tg. Therefore the singularities of the cooperativity parameter
and relaxation time, which are interconnected with the Kauzmann “entropy crisis”
by Adam and Gibbs, are the hypothetical properties which could presumably be
attributed to the “ideal” (equilibrated below Tg) glass.

1

1Mesoscopically equilibrated glasses have non-zero residual configurational entropy at T ! 0
[12].
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As it follows from (5.7), (5.8), in AG model

m_ ¼ T�1
g

d log sð Þ
db

� �
Tg

¼ E0
ac

Tg � T0
� �2

ln 10
: ð5:9Þ

It is just one of many phenomenological expressions proposed for the description of
the fragility [26]. Investigations [27–29] show that the AG model does not correctly
describe the typical features of sa Tð Þ of glass-forming liquids. Nevertheless, it is in
use to fit the experimental data which are close to the curves of type 2 shown in
Fig. 5.2. Evidently, it has nothing to do with the fragile-to-strong transformations
(curve 3 in Fig. 5.2).

A constitutional issue is whether the Stokes-Einstein relation is valid or not
below TA. The experimental data on the viscosity and diffusion (see e.g. [27–29])
show that the relation (5.5) is not satisfied when the temperature is approaching Tg,
especially within the region C, at the non-Newtonian flow. It means that within this
temperature range the flow mode is changing and that there the diffusion coefficient
is not the only the controlling quantity.

5.3.2 Non-Newtonian Flow. Strain Rate Sensitivity

The liquid flow is non-Newtonian if the relation (5.1) is not valid. The strain rate
sensitivity (SRS) parameter,

msrs ¼ @ ln r
@ ln _e

ð5:10Þ

is the measure of the strain rate sensitivity. It is less than 1 for the non-Newtonian
liquids.

A schematic representation of SRS parameter msrs versus strain rate _e near Tg is
shown in Fig. 5.3. With the rate increase the flow becomes non-Newtonian
(Fig. 5.1).

The parameter msrs is connected with the activation volume of flow,

vac ¼ T
@ ln _e
@r

: ð5:11Þ

As it follows from (5.10), (5.11)

msrs ¼ T
rvac

¼ T
g_evac

: ð5:12Þ
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The activation volume of a normal liquid is � a3. In glass-forming liquids and in a
glass near Tg it increases due to the cooperativity of structural rearrangements at the
shear strain.2

5.3.3 Maxwell Relation

In the crossover region C a liquid is highly viscous and behaves as a solid if the
shear time, tsh, is shorter than the stress relaxation time, srel.

The Maxwell relation [30]

srel ¼ g=l ð5:13Þ

connects the shear modulus of glass, μ, with srel and the viscosity near Tg. The
interpolation formula connecting tsh, srel, μ and η, is as follows (see e.g. [31]),

r ¼ le
1þ tsh

srel

: ð5:14Þ

At tsh � srel and e ¼ _etsh the homogeneous viscous flow (5.1) is settled in while at
tsh � srel the elastic deformation, r ¼ le, takes place.
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Fig. 5.3 Schematic
presentation of the SRS
parameter msrs versus the
strain rate _e near Tg

2In Argon’s model of homogeneous creep of metallic glasses the activation volume is taken �30a3
[28].
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It is evident that the Maxwell relation implies two tacit assumptions. Firstly, the
inhomogeneous plastic deformation is absent at tsh � srel. Secondly, the viscous
friction does not depend on the shear strain rate. As the behavior of the stress-strain
curves (Fig. 5.4) shows, these assumptions are unjustified in the crossover region C.
At low strain rate (solid line in Fig. 5.4, region B in Fig. 5.1) the stress behavior
obeys the relation (5.15). At high strain rate (dashed line, region D) the inhomo-
geneous shear strain and fracture of specimens takes place, as it has to occur with
solids. The transient shear strain mode (solid line, region C) is distinguished by the
stress overshoot before the homogeneous flow is established.

The next sections are devoted to the consideration of the viscous flow of
amorphous matter below TA.

5.4 HPFM: Thermodynamics, Structure and Dynamics
of the Heterophase Liquids

5.4.1 Order Parameter and Equation of State

Considering solidification of liquids, Ubbelohde [32] articulated that the observed
pre-crystallization anomalies of the heat capacity and viscosity of liquids above Tm
appear due to the heterophase fluctuations (HPF). HPF are transient solid-like
embryos in fluid. The temperature TA, at which the anomalies are noticeable, is
some tens of degrees above Tm. Ubbelohde attributed the glass transition to the
increase of the solid-like fraction of HPF in a liquid. In effect, this scenario of the
glass transition is described within the framework of HPFM [4, 8–13].
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Fig. 5.4 Schematic representation of stress-strain curves observed in metallic glasses at different
strain rates (_e ¼ 10�2 s−1 and _e ¼ 10�3 s−1 are the dashed and solid lines, respectively) near Tg [6,
7, 56, 57, 63–65]. With the strain rate increase the shear strain mode is changing from the
homogeneous flow (as in the region B) to the inhomogeneous plastic deformation (region D). The
solid line represents the flow within the region C

5 Viscous Flow of Glass-Forming Liquids and Glasses 111



The description of the thermodynamics and structure of heterophase liquids is
based on the equilibrium statistics of mesoscopic species—transient solid-like and
fluid-like clusters (s- and f-fluctuons), which are characterized by the short-range
order (SRO). The fluctuon size, r0, is equal to the SRO correlation length,
r0 ffi nSRO � a which is comparable with the molecular interaction range and with
the molecule size a. Thus a glass-forming liquid is considered as an ensemble of
mutually transforming s- and f-fluctuons.

Let us denote by N the total number of molecules and by Nf ;N1; . . .;Nm the
numbers of molecules belonging to f-fluctuons and to m types of s-fluctuons
respectively,

Nf þ N1 þ � � � þ Nm ¼ N: ð5:15Þ

The (m + 1)-component order parameter of the heterophase liquid is

fcg ¼ ðcf ; c1; . . .; cmÞ; ci ¼ Ni

N
	 0; i ¼ f ; 1; . . .;m: ð5:16Þ

Evidently,

cf þ c1 þ � � � þ cm 
 cf þ cs ¼ 1; ð5:17Þ

cs is the total amount of a solid-like fraction.
The HPFM is a model based on the bounded statistics of the f- and s-fluctuons.

In the bounded statistics the crystalline states are excluded. As a result, just a
non-crystalline (glassy) solid state can be formed while the liquid is cooling down.
There are kinetic conditions which determine the time range of this method
applicability,

sLRO � sobs � sSRO � sa: ð5:18Þ

These conditions connect the observation time, sobs, the crystallization time,
sLRO, and the time of equilibration of SRO of the s- and f-fluctuons, sSRO. The last
one is equal to sa.

In practice, the equilibrium glassy state can not be formed due to the dramatic
slowing down of the structure relaxation. The kinetic glass transition temperature
can be properly estimated as the temperature at which sa Tð Þ� 103s.

The phenomenological equation of state with the multi-component order
parameter (5.16) in the simplest form is as follows [12, 13],

li ¼ l0i þ
X
k

ckgik þ T ln ci; ð5:19Þ

lf ðP; TÞ ¼ l1ðP; TÞ ¼ � � � ¼ lmðP; TÞ; ð5:20Þ
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li is the free energy of the ith fluctuon, l0i is its part irrespective of the order
parameter; coefficients gik describe the fluctuonic pair interactions.

5.4.2 Two-State Approximation

In the two-state approximation (the solid-like and the fluid-like states are implied)

1� 2csð Þ~gsf þ T ln
cs

1� cs
¼ hsf : ð5:21Þ

Here

~gsf ¼ gsf � gss=2; hsf ¼ l0f � l0s � gss=2;

l0s ¼
X
k

c�kg
0
k þ T

X
k

c�k ln c
�
k ;

gss ¼
X

gikc
�
i c

�
k ; c

�
i ¼ ci=cs:

ð5:22Þ

In this approximation the coefficients gsf and gss are considered to be constants
and the differences between the thermodynamic properties of the s-fluctuons of
different types are not taken into account. Both gsf and gss are positive. The former
is the interaction free energy of s- and f-fluctuons, the latter one describes the
interaction of s-fluctuons. It is the structural frustration parameter of the solid-like
fraction [12, 13].

The “external field” hsf ðP; TÞ can be presented in the form of series expansion
near the temperature Te at which hsf ðP; TÞ ¼ 0. In the linear approximation

hsf ðP; TÞ ¼ sf � ss
� �

Te � Tð Þ 
 Dss; f Te � Tð Þ; ð5:23Þ

sf ; ss is the entropy of the f- and s-fluctuon respectively.
The parameters of (5.21)–(5.23) depend on the chemical composition of a liquid

and vary in a wide range of values. Since these coefficients determine the equi-
librium liquid and solid states, the phase diagram can be depicted in terms of the
coefficients and T (parametric phase diagram) [13].

Besides the parameters gsf , gss and Dss; f , there are the specific temperatures
Te; T0

e ; T
1
e , determined by the following equations,

g0f P; T0
e

� � ¼ g0s P; T0
e

� �
;

g0f P; Teð Þ ¼ g0s P; Teð Þ þ gss=2;

g0f P; T1
e

� � ¼ g0s P; T1
e

� �þ gss:

ð5:24Þ
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The physical meaning of these temperatures is as follows. Te is the coexistence
temperature of two heterophase liquid states with cs ¼ cf ¼ 1=2. T0

e is the tem-
perature at which the fluid and the heterophase liquid coexist. T1

e is the coexistence
temperature of equilibrated liquid and (theoretically) equilibrated glass. The
equilibration kinetics is regarded as terminated at the kinetic glass transition tem-
perature. Therefore, T1

e \ Tg.
The parametric phase diagram (the two-state approximation) is shown in

Fig. 5.5. In addition to the specific temperatures (5.26), the temperature T�
F , which

bounds from above the Fischer cluster temperature range [11, 13, 33], is depicted.
The Fischer cluster is the fractal aggregation of s-fluctuons. Typically it has the
correlation length*102–103 nm. It has no impact on the α-relaxation and viscosity.

It is worth noting that at g�ss \ g�ss;c ¼ 2gsf
�

Dss; f T0
e

� � � 4T�
e Pð Þ the 1st order

liquid-liquid phase transition takes place on the line T�
e .

It is convenient to introduce the temperature scaled by T0
e and the frustration

parameter scaled by Dsf ;sT0
e :

T� ¼ T=T0
e ; g

�
ss ¼ gss=Dsf ;sT0

e ; ð5:25Þ
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At that

T0�
e ¼ 1; T�

e ¼ 1� g�ss=2; T1�
e � 1� g�ss: ð5:26Þ

Continuous ðg�ss [ g�ss;cÞ and discontinuous ðg�ss \ g�ss;cÞ solutions csðTÞ of (5.21)
are shown in Fig. 5.6a, b. The loss of the equilibrium of liquid (because of the
violation of the condition (5.18)) restricts the range of validity of the solutions csðTÞ
in the vicinity of Tg.

The experimentally determined temperature dependence of the order parameter
of salol (Fig. 5.6c) confirms this statement.

The schematic picture of the equilibrated liquid and glass structure at different
temperatures is presented in Fig. 5.7a–c. In Fig. 5.8 the heterophase structures
similar to those in Fig. 5.7, but with several types of s-fluctuons, are depicted. In
Fig. 5.8b a fragment of the intercluster boundary, possessing a defective SRO, is
shown. A grainy (polycluster) structure with mosaic amorphous grains composed
by the frozen mesoscopic s-fluctuons is formed due to the loss of equilibrium and a
huge increase of the structure relaxation time at the liquid vitrification. The poly-
cluster structure of metallic glasses is visualized by means of the ion field
microscopy [34–37]. The typical size of the grains is *101 nm.

In [4, 8, 13, 38] different aspects of the physics of the polycluster matter are
considered. The ideas of a grainy mosaic structure of glass-forming liquids near Tg
are also used in [39–42] in the investigations of the relaxational dynamics and
viscous flow.

5.4.3 Phase Transitions Within the Solid-Like Fraction

In fact, in the two-state approximation the multiplicity of the SRO types of
s-fluctuons is ignored. Meanwhile, phase transformations within the solid-like
fraction can induce considerable changes of the order parameter csðTÞ. In this case
the two-state approximation fails to describe the features of the heterophase liquid
and more complicated equations of state (5.20) have to be considered.

The simplest phase transition within the solid-like fraction is induced by the
continuous or discontinuous change of the SRO of s-fluctuons. A minimal model of
this phenomenon is developed in [12, 13]. To describe the transition, at least two
types of s-fluctuons have to be included in consideration. At that, along with (5.21),
the equations for the fractions of s-fluctuons of types 1 and 2 have to be considered.
As follows from (5.20), in this case

1� 2c�1
� �

cs~g12 þ T ln
c�1

1� c�1
¼ h12; c�1 þ c�2 ¼ 1;

~g12 ¼ g12 � cs
g22 � g11

2
; h12 ¼ l02 � l01 þ cs

g22 � g11
2

:

ð5:27Þ
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This equation is similar to (5.21) but its coefficients depend on cs. Therefore,
joint solutions of (5.21), (5.27) have to be found.

For certainty let us consider the case when the solid-solid coexistence temper-
ature, T12, is below Te, cs T12ð Þ is less than 0.5.

At

cs T12ð Þ~g12 [ 2T12; ðl02 � l01
		
T12
¼ 0Þ; ð5:28Þ

cs Tð Þ is discontinuous at T12 while at

cs T12ð Þ~g12 \ 2T12; ð5:29Þ

it is a continuous function.
A graphic representation of the solutions of (5.20) and (5.27) with the condition

(5.28) is shown in Fig. 5.9. The step of csðTÞ at T ¼ T12 is

DcsðT12Þ � s1 � s2ð ÞcsðT12Þ; ð5:30Þ

s1; s2 is the entropy of s-fluctuons 1 and 2 respectively.

Fig. 5.7 Schematic representation of the heterophase liquid structure a near T0
e , with rare

s-fluctuons; b above T1
e , with f-fluctuons in a glass; c near Te

Fig. 5.8 The same structure as in Fig. 5.7, but here several types of non-spherical s-fluctuons and
triple joint of the cluster boundaries in a glass (in b) are shown
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The heat of the phase transition is equal to

DH ¼ Dcs T12ð ÞHfsðT12Þ þ csðT12ÞH12: ð5:31Þ

Here HfsðT12Þ is the heat of the fluid-solid transformation at T ¼ T12 and H12 ¼
ðs1 � s2Þk�1

0 T12 is the heat of the 1 ↔ 2 solid-solid phase transformation. As it
follows from (5.30), (5.31)

DH ¼ csðT12Þ s1 � s2
k0

Hfs þ T12
� �

: ð5:32Þ
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The multiplier s1 � s2ð Þk�1
0 in the right-hand side of (5.32) is the entropy dif-

ference per molecule.
A continuous phase transformation takes place if the condition (5.29) is satisfied.

Instead of a sharp step, a continuous sigmoidal jog appears on csðTÞ with the
inflection point at T ¼ T12 (Fig. 5.10). The jog height can be estimated using (5.30).
The phase transformation heat is determined by the (5.32).

Noting that the entropy jump at the crystallization is usually *1 and that at the
solid-solid phase transformations this quantity is *10−1, from (5.32) we have that
at csðT12Þ ¼ 0:2� 0:4 the phase transformation heat is *10�1Hfs.
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5.4.4 Cooperative Dynamics of the Heterophase Liquid,
Fragility and Fragile-to-Strong Transition

Fluctuons are correlated due to their interactions. The direct correlation function of
fluctuons has a typical for the Ising-type models correlation length, nfl � 2nSRO. The
length nfl determines the size of correlated domains (CD) and the size of the CRD
[10, 11, 13]. The number molecules per CD (cooperativity parameter) is
zCD �ðnfl=aÞ3.

Cooperative rearrangement is thermally activated. Its activation energy depends
on the order parameter and can be presented in the form of an expansion in its
powers [11],

Eac ¼ E0
ac þ E1

accs þ E2
acc

2
s þ � � � ð5:33Þ

Fischer and Bakai [11] have developed a phenomenological model based on the
assumption that CD can be rearranged when all its molecules are in fluid-like state.
This assumption leads to a conclusion that TA � T0

e and that E0
ac is equal to the

activation energy of the homophase fluid state above TA. The resulting expressions
for the α-relaxation time and activation energy are as follows,

sa ¼ m�1
0 exp � E0

ac

T � TK
� zCDcsHfsb

� �
; ð5:34Þ

Eac ¼ E0
ac

1� TK=Tð Þ2 þ zCDcsHfs þ O c2s
� �

: ð5:35Þ

The first term in the right-hand side of (5.35) is the activation energy of the
homophase fluid in the free volume model [43, 44], TK is the Kauzmann temper-
ature. The contribution of this term to Eac below Te, where the flow is essentially
non-Arrhenian, is *10 % [45]. Therefore, the non-Arrhenius behavior of the dif-
fusion and viscosity is determined mainly by the second term.

The diffusion coefficient below TA is Da � a2=sa, but the Stokes-Einstein
relation (5.4) holds valid just at low values of cs. At T=Tg \ 1:1� 1:25, i.e. at
1� cs � 1, it is violated (see e.g. [41, 46–48]) due to the impact of the mesoscopic
structural heterogeneities. In this temperature range the mode of liquid fluidity is
changing.

The validity of the relations (5.34), (5.35) is confirmed by numerous experi-
mental data [49]. As an example, the experimentally measured activation energy of
salol versus the reciprocal temperature and a theoretical curve (5.35) are shown in
Fig. 5.11 [10].
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The kinetic fragility parameter (5.7) is proportional to EacðTgÞ. Combining (5.7)
and (5.35), we have

m_ ¼ 1
Tg

E0
ac

1� TK=Tg
� �2 þ zCDHfs

" #
; Hfs ¼ Dsf ;sTe

k0
: ð5:36Þ

In particular, for salol m_ � 67 [10]. This value is in accord with that obtained by
others, e.g. in [50].

If the two-state approximation is applicable and cs is changing continuously, the
curves of type 2 shown in Fig. 5.2 can be obtained using (5.35). If this approxi-
mation fails (e.g. due to the phase transformation within the solid-like fraction
(Sect. 5.4.2)), the relation (5.35) can be used to estimate the jump of the fragility
parameter at the fragile-to-strong transformation. In this case the two-state
approximation (but with different thermodynamic parameters) is applicable for
the approximation of csðTÞ in the vicinity of TA (state 1) and near Tg (state 2). The
parameters E0; Tk; zcd for both states are nearly the same but the values of Hfs and Tg
are different. The Angell-plot in this case looks like the curve 3 in Fig. 5.2.

A general view of the asymptotic solutions of (5.22) for states 1 and 2 along with
a solution of (5.22), (5.27) (curves 1, 2 and 3 respectively) is shown in Fig. 5.12.

It is noteworthy that Tg1 \ Tg2 and m_ 1 [ m_ 2. As follows from (5.36),

m_ 1 � m_ 2 �m_ 1
Tg;2 � Tg;1

Tg;1
1 þ 2E0

Tg;1 1 � TK=Tg;1
� �

 !
: ð5:37Þ

It is worth pointing out that any phase transformation within the solid-like
fraction induces a fragile-to-strong transition with a larger or smaller jump of the
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fragility parameter. To ensure that, let us consider the impact of such phase
transformation on the phase trajectory on the parametric phase diagram (Fig. 5.5).
The thermodynamically driven transformations lead to the decrease of the free
energy of the solid-like fraction. At that the entropy, ss, and/or the frustration
parameter, gss, is decreasing [13]. As a result, g�ss, T

1
e and Tg increase gradually if

continuous phase transformations, equilibration and ordering of the solid-like
fraction take place. In this case the phase trajectory looks like the curve 1 in
Fig. 5.5. A stepwise or discontinuous evolution of csðTÞ, like that in Figs. 5.10 and
5.12, leads to a congruent behavior of the phase trajectory.

5.4.5 Diffusion-Viscous Flow of a Glass

At the diffusion-viscous flow (DVF) the polycrystalline solids behave as highly
viscous liquids [51–54]. This mode is inherent in the homogeneous plastic defor-
mation of glasses possessing the polycluster structure [4, 8].

Glass inherits heterogeneities of the heterophase liquid. The features of the
polycluster mosaic structure, like those shown in Fig. 5.8b, depend on the com-
position and cooling rate. Some possible forms of the polycluster structure are
shown in Fig. 5.13.

As it was noted, in metallic glasses the locally ordered amorphous
grains * 10 nm are separated by the boundary layers with a width *1–3a [34, 35].
The topologic order within the boundaries is poor, like that within the large-angle
boundaries of polycrystalline alloys. Due to the large density of the boundaries, the
Coble creep of a glass is the dominating DVF mode near Tg at low strain rates [4, 8].
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5.4.5.1 Conservative Diffusion-Viscous Flow of Glass

At the isostructural or conservative DVF the number of grains and the volume of
each of them do not change. DVF takes place at a low stress, r ! 0, when the
viscosity, which is the linear response of flow on the stress, is independent of σ.

It is shown in the Lifshits theory of the conservative DVF [54] that the diffusion
creep is accompanied by the grain boundary sliding. Diffusion provides normal to
grain surface deformation and the self-consistent adjustment of the normal stress
while the tangent stress induces the grain boundary sliding. Therefore, the viscosity
coefficient includes two summands relating to the diffusion viscosity and the sliding
friction respectively,

g ¼ gd þ gsl; ð5:38Þ

gd is the diffusion viscosity, gsl is the sliding resistance viscosity,

gd �
T
aDs

L
hs

� �3

; gsl � csl
L
hs

� �
: ð5:39Þ

Here, L is the mean size of grains, hs is the boundary width, Ds is the coefficient
of the grain boundary diffusion, csl is the sliding friction coefficient. The geometric
factors, depending on the grains geometry, are omitted in (5.39).

Applying the Lifshits theory of conservative DVF to polyclusters we have to
take that L in (5.39) is the mean size of blocks of the locally ordered clusters

(a)
(b)

(c)
(d)

Fig. 5.13 Schematic picture of the polycluster fragments. Locally ordered solid clusters are
separated by boundary layers of different structure and width. In c the density of free volume in the
boundaries of structure b is schematically indicated by the intensity of the boundary lines
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surrounded by connective boundary layers of the mean width hs [4]. The diffusion
within the boundary layer is much faster than that in the blocks. L is comparable
with or larger than the mean size of the cluster, lcl.

The coefficients Ds and csl have to be specified to determine gd and gsl.
At low temperatures ðT \ 0:8TgÞ the boundary diffusion in a glass is a thermally

activated hopping of single atoms in vacant neighboring holes with the volume
�a3. At higher temperatures, typically at T [ Tc1 � 0:8� 0:9Tg, a cooperative
mode of the boundary diffusion is dominating [4, 8]. This mode is connected with
the cooperative fluctuations in the form of disc-like shear loops of size Rl � 4 −
5a.3 Due to the elastic loop-loop interactions, the loop activation energy, Ucoop,
essentially decreases with the increase of their number and at T [ Tc1,

Ucoop � lsa
2Rl

1� vP
; ð5:40Þ

ls is the shear modulus within the boundary, vP is the Poisson coefficient. At that
the diffusion coefficient is

Ds � Ds;coop � 10�2a2mc exp �Ucoopb
� �

: ð5:41Þ

The pre-exponential coefficient *10−2 appears due to the configurational entropy
of the loop.

The sliding friction viscosity controlled by the cooperative diffusion is [4]

gsl �
T
aDs

L
hs

a
Rl

� �2

: ð5:42Þ

As it follows from (5.11), (5.38), at conservative DVF the SRS parameter is

msrs ¼ adgd þ aslgslm
sl
srs

adgd þ aslgsl
; msl

srs ¼ @ ln r
@ ln _esl

; _esl ¼ L
hs

_e: ð5:43Þ

Comparing (5.39) and (5.43), one can see that gsl=gd �ðRlL=ahsÞ2 � 1, i.e. the
sliding viscosity is negligibly small. At that, msrs � 1. Thus the conservative DVF
near Tg is Newtonian (region B).

5.4.5.2 Non-Newtonian Diffusion-Viscous Flow

The conservative DVF is not only the mode of the glass flow. Sliding within the
intercluster boundary is blocked in the triple joint. At the increasing stress the slip

3Cooperative structural fluctuations of such type were introduced by Argon [28]. Later they were
termed “shear transformation zones” STZs [53].
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layer can propagate into the blocking cluster body as it is shown in Fig. 5.14. The
fragmentation of clusters by the propagating slip layers can lead to establishing the
non-conservative (mixed) DVF or to the inhomogeneous deformation and fracture
of a glass. Since the slip rate is much larger than the diffusional creep, the boundary
diffusion can not considerably impact the slipping kinetics. It means that the dif-
fusion and slipping kinetics are decoupled.

Considering the crossover from the conservative DVF to the mixed flow, let us
denote by r� the critical value of the external stress at which the propagation of slip
layers and shear banding occurs. The necessary condition of the crossover to the
non-Newtonian mixed flow is r [ r�[4, 8], i.e.

g_e [ r�: ð5:44Þ

To determine r�, the slip kinetics and shear banding have to be considered. The
scenario of the glass shear banding is as follows. The disordered boundaries are the
regions of easy slipping which is blocked in the triple joints until the concentrated
local shear stress and thermal activation provide the propagation of the slip layer
into the blocking cluster. The propagating slip layer is branching and initiates the
shear band formation due to the translational and rotational movements of the solid
fragments [55].4

The shear band width, hsb, is much larger than that of the intercluster boundary.
It is found that hsb *10–100 nm [57], i.e. hsb is comparable with or larger than lcl.
The viscosity within the shear band is essentially lower that that in the surrounding
matrix due to the formation of multiple slip layers and enhanced diffusion.

Fig. 5.14 The slip layer
formed within the boundary
penetrates into the blocking
cluster body if the stress in the
triple joint exceeds the cluster
strength

4Comprehensive overviews of the inhomogeneous deformation and shear banding of metallic
glasses are presented in [6, 56]. The scenario with two consecutive stages of the shear band
formation is considered in [56] and the references quoted.
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Therefore the shear banding facilitates the flow of a glass. It signifies the crossover
to the stable non-Newtonian mixed flow, i.e. the crossover from the region D to the
region C at g_e� r� due to the increase of the strain rate (Fig. 5.1).

The slip layer is specified by the distribution function, gðrcrÞ, of the local critical
shear stress, rcr, which is randomly changing from site to site. The theory of the slip
within a layer of atomic width with the arbitrary homogeneous distribution gðrcrÞ is
developed in [4, 55]. The ultimate strength and the thermally activated strain rate at
fixed shear stress are the functionals of gðrcrÞ.

The equations of the homogeneous boundary slip are deduced and solved for
specific distributions gðrcrÞ in [4]. The exact solution for an arbitrary distribution
gðrcrÞ is published in [55].

In Fig. 5.15 the potential relief of a layer (it includes a boundary strip and
surrounding cluster body) is shown. The local critical shear stress rcr is propor-
tional to the difference of the potential energy values in the neighboring maxima
and minima.

Since the boundary contains regular and defective sites, as it shown in Fig. 5.15,
the distribution f ðrcrÞ within the boundary layer is bimodal while within the cluster
body, containing the locally ordered sites, it can be taken in a unimodal form
(Fig. 5.16).

The solutions of the equations of a homogeneous boundary slip with the dis-
tributions f ðrcrÞ shown in Fig. 5.16 are presented graphically below.

Fig. 5.15 a Fragment of the slip layer blocked in the cluster body at the point marked by an
arrow; b the potential relief of the slip layer. Atoms are depicted by full circles
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The stress-strain rate curves at different temperatures near Tg are shown in
Fig. 5.17a. Tg is estimated as Tg ¼ 0:012 l0a

3 [58]. Solid and dashed lines corre-
spond to bimodal and unimodal distributions respectively. The stress is given in the
shear modulus units.

The strain rate decreases with the increase of the fraction of sites with large
critical stress. At that the activation volume decreases (Fig. 5.17b). Noteworthy is
that at all temperatures the stress-strain rate curves are merging at the yield stress of
the slip layer, r�sl � 10�2 l. At stresses higher than r�sl the slip is athermic.

The yield stress of the cluster body, r�cl, calculated using the unimodal distri-
bution, is � 10�1 l. It is the counterpart of the theoretical strength of crystals [59].

The growth of the activation volume at the increase of the fraction of the sites
with low local critical stress indicates the increase of the cooperativity due to the
stress concentration on the strong sites after dropping the weak ones.

The short-dashed curve in Fig. 5.17b corresponds to a narrower unimodal dis-
tribution. It demonstrates that the cooperativity effect decreases with diminishing of
the width of distribution f ðrcrÞ.

The slipping resistance coefficient, csl ¼ r=_esl, in units l � s is shown in
Fig. 5.18a. At large strain rates (*100–101 s−1) the csl becomes rather small and
almost independent of temperature. It is much larger at the strain rates less than
10−2 s−1.

The strain rate sensitivity parameter msl
srs is represented in Fig. 5.18b.

Qualitatively the dependence of SRS on the strain rate is compatible with that
shown in Fig. 5.3. It is worth noting that SRS increases with the temperature growth
and at the strain rate decrease. At T ¼ 1:2Tg and _esl \ 10�3 s�1 it approaches 1.
This result indicates that with the temperature increase the homogeneous slip
gradually ceases to play any role.
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Fig. 5.16 Examples of the
unimodal (dashed line) and
bimodal (solid line)
distribution function g of the
ratio of the critical shear stress
and shear modulus rcr/l
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Sliding in the boundary layer of length L leads to the concentration of the stress

on the layer edge stress *ðL=2aÞ1=2r. Therefore, at

r [ r� ¼ 2a
L

� �1=2

r�cl ð5:45Þ

the slip layer propagates in the blocking cluster. The equation

g_e ¼ r� ¼ 2a
L

� �1=2

r�cl ð5:46Þ

determines the boundary between regions B and C shown in Fig. (5.1).
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Fig. 5.17 a Stress-strain rate
curves at temperatures
T1 � 0:8 � Tg, T2 � Tg and
T3 � 1:2 � Tg. Solid and
dashed lines correspond to
bimodal and unimodal
distributions respectively.
b Normalized activation
volume va=a3(a is a molecular
radius) versus the ratio of the
shear stress and shear
modulus r/l. The thin dot
line corresponds to a
unimodal distribution gðrcrÞ
with the smaller width [55]
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The development of the shear banding within the region C leads to the formation
of the glass block structure like that shown in Fig. 5.19. The polycluster blocks are
separated by shear bands. The viscosity of the shear banded glass, gsb, is given by
(5.38) with similar to (5.39) relations

gd ¼ gd;sb ¼
T

aDsb

Lsb
hsb

� �3

; ð5:47Þ

gsl ¼ gsl;sb ¼ csl
Lsb
hsb

� �
qslhsb: ð5:48Þ

The index “sb” denotes the quantities concerning the shear bands; qsl is the
density of slip layers within the shear band.

10-6 10-4 10-2 100 102

10-6

10-4

10-2

100

102

1.2 T
g

T
g

0.8 T
g.

S
lip

pi
ng

 fr
ic

tio
n 

fa
ct

or
 γ

sl

Slipping strain rate ε
sl

, s-1.

10-6 10-4 10-2 100 102

0.0

0.2

0.4

0.6

0.8

1.2T
g

T
g

0.8T
g

.

S
tr

ai
n 

ra
te

 s
en

si
tiv

ity
 m

sl sr
s

.
Slipping strain rate εsl , s

-1

(a)

(b)

Fig. 5.18 a The slipping
friction factor γsl in units l � s
and b the SRS parameter of
sliding msl
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The condition of the mixed flow stability is as follows,

gsb _e ¼
1

aDsbb
Lsb
hsb

� �3

_e\ r�: ð5:49Þ

The multiplication of the shear bands is impossible if this requirement is fulfilled.
The viscosity at themixedflow is less than that at the conservativeDVF, gsb \ gDVF .

Therefore, the conservative DVF is unstable if the condition (5.45) is satisfied.
As it follows from this inequality and (5.38), (5.49), the shear band spacing at

the mixed flow is

Lsb � L�sb ¼ hsblcl
a

qslhsbð Þ1=3 � hsblcl
a

: ð5:50Þ

One can see that with hsb * 10–100 nm and lcl � 10 nm the shear band spacing
is of micron and submicron scale.

The decrease of the viscosity due to the shear banding leads to the decrease of the
stress at a constant strain rate. As a result, a peak of the stress (stress overshoot) appears
on the stress-strain curve (see Fig. 5.4). The stress overshoot, Drover, is equal to

Drover ¼ r� � rflow ¼ r� � gsb _e: ð5:51Þ

To determine the location of the boundary between regions C and D we have to
formulate the condition at which the formation of shear bands, provided by the

Fig. 5.19 Shear banded piece
of a polycluster. Dark strips
represent the shear bands
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inequality (5.49), leads to the inhomogeneous glass deformation and fracture. The
fracture occurs at large strain rates when there is no time for the initiation of the
DVF and the consecutive mixed flow. The stress-strain curve is changing in the
process (see Fig. 5.4). The ultimate strain, eult, is relatively small, typically it does
not exceed 10−1.

The establishment of DVF requires the formation of the self-consistent sec-
ondary stress field which provides adapting of the diffusion-governed deformation
and boundary sliding [54, 60]. The stress field relaxation depends on the kinetics
features [54, 60]. In polyclusters near Tg, as it is noted in Sect. 5.4.3, the diffusional
relaxation of the normal stress on the boundaries is the slowest relaxation mode. Its
characteristic time is

sdrel � L2=Ds: ð5:52Þ

If the ultimate strain is attained at a time much shorter than sdrel, the relaxation of the
concentrated stress does not occur during the initiation of the boundary slip layers
and the formation of the catastrophic shear bands. Thus, the inequality

_esdrel [ eult � 10�1 ð5:53Þ

determines the range of strain rates at which the crossover from region C to region
D takes place.

In essence, the inequality (5.53) reproduces the Maxwell condition of the
crossover from the viscous flow to the mechanical deformation in accord with the
interpolation formula (5.14).

The relations (5.42), (5.47), (5.52) and (5.53) determine the temperature range of
the region C, DTC.

Assuming that Ucoop � 1 eV � 104 K [61, 62], Tg=a3 � 10�2 l [58],
L=a � 102, and r�=l � 10�2 [7], we have

DTC ffi 0:04Tg: ð5:54Þ

This estimation is in harmony with the experimental data for metallic glasses [7, 56,
63–65].

The strain rate sensitivity parameter (5.44) becomes small (*10−1) at the
crossover from region C to region D.

5.4.5.3 Diffusion Crossover Near Tg

The α-relaxation in the region B is connected with the “spherical” cooperative
rearrangements of CDs. Incidentally the diffusion coefficient is Da � a2=sa.

Considering the diffusion in a glass near Tg, we have taken into account that the
elementary cooperative fluctuation is the disc-like shear loop within the intercluster
boundary. At that the diffusion coefficient is determined by (5.41). Therefore the
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liquid-glass transformation is accompanied by the diffusion mode changing within
the crossover range of regions B and C. To get the diffusion crossover temperature,
T�
diff , it is necessary to equate the diffusion coefficients in the glassy and liquid

states,

10�2a
L

exp �Ucoopb
� � ¼ exp �zCDHfsb

� �				
T�
diff

: ð5:55Þ

The solution of this equation is

T�
diff ¼ zCDHfs � Ucoop

2 ln 10þ lnðL=aÞ ffi 10�1 zCDHfs � Ucoop
� �

: ð5:56Þ

Evidently, this solution makes sense if zCDHfs [ Ucoop, i.e. if the activation
enthalpy of the boundary diffusion in a glass is less than that of the bulk diffusion in
a liquid. The experimental data on the diffusion in metallic glasses [61] show that
the mean frequency of the cooperative rearrangements in a glass at Tg has a small
pre-exponential factor, in (5.41) it is *10�2ða=LÞ, but the activation enthalpy is
considerably less than that in a liquid. This feature is in accord with the adduced
above expressions for Ds and Da and estimations of zCDHfs and Ucoop.

Equation (5.56) can be taken as an alternative definition of the kinetic glass
transition temperature, T�

diff � Tg.
Recovering of the ergodicity above Tg is connected with the rearrangements of

the solid-like clusters. At that nfl and nSRO � r0 become the only scales of the
structural heterogeneity of the liquid. To get an interpolative expression for the
viscosity in the crossover range, L in (5.38) has to be considered as a quantity
decreasing with temperature. With L ! nfl and hs ! r0 the geometric factor

ðL=hsÞ3 becomes not very large as compared with ðL=hsÞ, and the ratio gsl=gd can
not be considered as a small quantity.

5.5 Discussion

The changes of the viscous flow mode shown in Fig. 5.1 are caused by the liquid
structure evolution of the relaxation kinetics. There are thermodynamically and
mechanically driven structure rearrangements. The equilibrated fluid state above TA
(region A) is characterized by just one structural characteristic—SRO-correlation
length, nðAÞ ¼ nSRO � a. In this region the viscous flow is isostructural because the
structure relaxation on the scale nðAÞ is much faster than the shear strain. Therefore,
the viscosity is independent of the strain rate. The diffusion, characterized by the
dominating type of the local rearrangements of SRO, obeys the Arrhenius law. At
that the Newtonian law and the Stokes-Einstein relation are valid.
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In the region B the thermodynamically driven equilibration of the local order and
mesoscopic structure is still independent of the shear strain and the flow is iso-
structural. Along with that, the heterophase state is specified by the order parameter
{c} (5.16) and by the mesoscopic correlation length, nðBÞ ¼ nfl � 8a, character-
izing the fluctuonic SRO. The state of the heterophase liquid is determined by the
interaction coefficients of the fluctuations (Fig. 5.5). Its flow is Newtonian but the
relaxation time depends on csðTÞ (5.34) and for this reason it is non-Arrhenian.

The mechanically driven cooperative structural rearrangements dominate in a
glass (region D) while in the heterophase liquid they become considerable just in
the vicinity of the glass transition temperature in the region C at a large strain rate
initiating the mixed flow. The interplay of the thermodynamically and mechanically
driven structural rearrangements leads to the shear banding of the liquid and to the
appearance of the new correlation length determining the shear band spacing,
nðCÞ ¼ L� � hsblcl=acl. On the scales l � L� the liquid flow is isostructural. The

macroscopic viscosity of the shear banded liquid (5.48), which is much less than
that within the block, essentially depends on the strain rate.

The decoupling of the viscosity and diffusion (the violation of the
Stokes-Einstein relation), the appearance of the strain rate sensitivity of viscosity,
the non-Arrhenian relaxations and non-Newtonian flow of glass-forming liquids are
the principal features of the viscous flow of the glass-forming liquids and glasses.
They are caused by three kinds of cooperative structural rearrangements of different
spatial scales:

(i) Cooperative α-relaxation in the heterophase liquid controlled by the rear-
rangements of CDs of size nfl;

(ii) Cooperative disc-like shear fluctuations of size 4–5a within the inter-cluster
boundaries;

(iii) Initiation and coherent cooperative propagation of slip layers which induces
the formation and propagation of the shear bands. The shear band spacing,
L�sb � hsblcl=a, is much larger than the regular cluster size lcl.

The cooperativity (i) is responsible for the non-Arrhenian character of the vis-
cosity and for the increase of fragility due to the changes of the heterophase
structure at the temperature evolution. In particular, the fragile-to-strong transfor-
mation is induced by the phase transformation of the solid-like fraction. The
depression of this kind of cooperativity (as it is in the covalently bonded liquids)
decreases the fragility.

The theory of the fragile-to-strong transformation of glass-forming liquids
(Sect. 5.4.2) is in accord with the experimental data obtained in [66–70] at inves-
tigation of the glass transition in multicomponent metallic glasses.

The equation of state in the two-state approximation (5.21) provides the
abbreviated description of the heterophase liquid. It can be used to get the
approximate solution csðTÞ above Tg when the effects such as fragile-to-strong
transformation are not important. On the other hand, it is useful in piecewise
approximations at derivation of asymptotic solutions like those shown in Fig. 5.12.
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Let us notice that the piecewise approximations in [66–68] are based on the AG
relation while in [70, 71] another heuristic model is used.

It has to be noted that (5.21) belongs to the class of equations which is used in
different two-state models of the continuous and discontinuous phase transforma-
tions including the gas-to-fluid and fluid-to-glass transition (e.g. in [71–85]). The
equations of HPFM, describing the mesoscopic fluid-solid heterophase states with
multiple SRO types, enable to consider the heterophase systems beyond the range
of the two-state approximation.

The cooperative fluctuations within the boundary layers (cooperativity (ii)) in the
absence of the external shear field can be interpreted as the β-relaxation weakly
impacting the diffusion until the dislocation melting of the boundaries occurs
(above the temperature Tc1). Then these fluctuations determine the boundary dif-
fusion and the sliding velocity under stress. The β-relaxation described in [62] and
its interplay with the α-relaxation and diffusion in metallic glasses reveals itself
below Tg within the temperature range Tg � Tc1 ffi 0:3� 0:2Tg. The diffusion
coefficient of a metallic glass is continuously changing with temperature near Tg but
a kink of the activation enthalpy and a pre-exponential factor [61] indicates the
crossover of the diffusion mode near Tg (Sect. 5.4.5.3).

The formation and propagation of slip layers (cooperativity (iii)) and consecutive
formation of the shear bands in the heterophase liquid and in a glass displays itself
as the softening of matter and settling of the non-Newtonian flow with stress
overshoot on the stress-strain curve. It is worth noting that the strain rate sensitivity
is directly connected with slipping (5.43). Hence the decrease of msrs is a mani-
festation of the increasing contribution of the slip friction factor in the viscosity. In
particular, the strain rate sensitivity parameter of the inhomogeneously deforming
metallic glasses (region D) is usually much less than 1 [56, 63–65, 86].

The interconnection of the shear banding of a liquid and the non-Newtonian flow
is substantiated by direct observations of the shear band formation at the shear flow
of non- Newtonian liquids [87].

To check the relevance of the obtained theoretical results to the flow properties
in the region C, one can compare them with the experimental data (see overviews
[7, 57] and the references quoted). In [63, 64] the comprehensive researches of the
plasticity and viscous flow of metallic glasses near Tg (region C) are performed. The
comparisons confirm the relevance of the theoretical predictions (Sect. 5.4.5). In
particular, taking the strain rate sensitivity and the stress overshoot as attributes of
the mixed flow, one can empirically determine the boundaries of the region C using
the data of [63]. The results are in harmony with the estimations (5.46) and (5.53).

The validity of the stress overshoot formula (5.51) is confirmed by the com-
parison with data represented in Fig. 5.12 of [63]. The experimentally observed
sigmoidal shape in log rflow versus log _e is explained by the relation (5.45) taking
into account that the contribution of the sliding friction into the viscosity increases
at shear banding and the msl

srs decreases as it is shown in Fig. 5.17b. The relation
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@gsb
@ ln _e

¼ msrs � 1; ð5:57Þ

which follows from the definition of rflow (5.51), is in accord with the data rep-
resented in Figs. 5.8 and 5.11 in [63]. These data also allow estimating the con-
tribution of the sliding friction into viscosity using the following formula,

gsl
gsb

¼ 1� msrs

1� msl
srs

: ð5:58Þ

This relation follows from (5.44) and (5.57). In particular, as it is shown in
Fig. 5.17, near Tg at _esl � 10�1 � 100s�1 the msl

srs is considerably less than 1 and

gsl � gsb 1� msrsð Þ: ð5:59Þ

Taking into account that msrs � 0:5 at these values of the _esl, one can conclude that
the diffusion viscosity and the sliding resistance of the shear-banded liquid are
comparable.

5.6 Conclusions

1. The validity of classic laws of the Newtonian liquid flow with Arrhenian
structure relaxation and the Stokes-Einstein relation fails due to the appearance
of the HPF at T \ TA.

2. The transformation of the mesoscopic structure of a heterophase liquid from
fluid to glassy state takes place within the TA; Tg


 �
temperature range (region B).

At that the liquid flow is Newtonian but non-Arrhenius due to the changes of the
phase structure. The fragility is scaled by the cooperativity parameter,

zCD � nfl=a
� �3

, and by the enthalpy of the solid-fluid transformation.
3. The continuous and discontinuous phase transformation in the solid-like fraction

(seen as a week phase transformation of a liquid) induces the continuous sig-
moidal or stepwise change of the viscosity and the fragile-to-strong transfor-
mation of the glass-forming liquid.

4. The domination of the solid-like fraction near Tg induces the increase of the
contribution of the solid-solid sliding resistance in the viscosity at a growing
strain rate.

5. The crossover from the Newtonian DVF to the non-Newtonian mixed flow near
Tg (region C) is accompanied by the shear banding of the solid-like fraction. As
a result, the stress overshoot on the stress-strain curve appears.

6. The sliding resistance, occurring in the slip layers, is a strain rate sensitive
quantity. Therefore, the strain rate sensitivity parameter becomes less than 1 at
the mixed flow.
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7. The fact that the derivative of viscosity with respect to ln _e is equal to the
deviation of the strain sensitivity parameter from 1, allows determining the
contribution of the sliding friction in viscosity.

Acknowledgments I express my thanks to Dr. N.P. Lazarev for valuable comments.
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Chapter 6
The Generalized Similarity Laws
and Isocontours in the Thermodynamics
of Simple Liquids

Evgeny Apfelbaum and Vladimir Vorob’ev

Abstract Several new similarity relations regarding the universal lines on the
density-temperature plane are described. The first of them—the line of the unit
compressibility factor or the Zeno-line—gives rise to the general equation for the
liquid binodal branch and the universal correlation between the critical and the
Zeno-line parameters. The latter relations have allowed us to estimate the critical
points of metals, which can not be measured up to now. Besides, there is projective
transformation between the linear elements of the lattice gas phase diagram and that
of the continuous systems. The relation for the saturation pressure has been
obtained on the basis of this correspondence. The other regularities concern to the
lines of the ideal enthalpy, the enthalpy minima and the isothermal compressibility
maxima. Although initially they were obtained for the van der Waals equation, they
have appeared to be valid for the real substances and models described by com-
pletely different equations of state.
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6.1 Introduction

The similarity laws are the scalable volumetric rules which observed for a wide class
of substances and models. The development of the similarity laws has started almost
simultaneously with the appearance of the equations of states—namely, with the
famous van der Waals equation (vdW). The principle of corresponding states is the
most known example of this kind of regularities. It was initially derived from vdW
equation [1, 2]. Then the law of rectilinear diameter was formulated by Cailletet,
Mathias on the experimental basis for the real substances [3]. Later both these laws
have been generalized for many other models and real materials, although there are
exclusions, like metals [4]. After that many other similarity relations were obtained
like, for example, Pitzer factor [5]. To find the theoretical grounds for various
similarity laws the powerful techniques of statistical physics (see, for instance the
monograph by I.Z. Fisher [6]) can be used [7]. In general the similarity conception is
appeared to be very fruitful. In particular the scaling concepts, developed by many
scientists (see the review by M. Fisher [8] for details), are close in ideology to
similarity laws. But in present study we would like to pay attention to some “geo-
metrical” peculiarities of the similarity laws. Let us note that the law of rectilinear
diameter points on some general line at the density-temperature plane. So a natural
question has arisen—do the other analogous universal lines exist?

The positive answer was given more than 100 years ago in the research by
Batchinskii [9]. Namely, if one considers the curve of unit compressibility factor for
the vdW system, then this curve is appeared to be the straight line over the all
density-temperature plane. The compressibility factor Z is defined as the ratio of the
pressure to that of an ideal gas. That is Z = P/(nT), where P is the pressure, n is the
particle density, T is the temperature (measured in energy units). This is one of
the most important dimensionless parameter of thermodynamics.When Z = 1 then the
pressure coincides with the pressure of an ideal gas. In [9] some measurements had
been done as well, to confirm the linear dependence of Z = 1 contour for the real
substances. Nevertheless, during next 50 years this fact was considered as some
curiosity. But then it was experimentally confirmed for many real substances. Among
them there are the noble gases, the hydrocarbons [10–13], the water (partially), and
other nonmetallic materials [14]. So the idea that this property is of general nature was
supposed in study by Holleran [12]. In our studies we have also confirmed that the
phase diagrams of two metals (mercury and cesium) possess this property at least for
liquid domain [15–19]. As a result, the linear contour Z = 1 has appeared to have a
wider area of applicability than the corresponding states principle or the law of
rectilinear diameter. And now the line Z = 1 is referred to as the Zeno-line [14] (below
also the Z-line) or the Batchinskii line. It extends from the Boyle point of the dilute
supercritical gas (where n→ 0 and the second virial coefficient vanishes) down to the
triple point. So, if the Z-line remains straight along all the range, it means that
the pressure of corresponding substance is described by the ideal gas equation even in
the domain of dense liquid (of course, along this line only). This property can be very
important when the equations of state are considered [12].
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The subsequent investigations of the Z-line have resulted in some additional
properties of this contour. It was shown in study by Filippov [20] and later in our
researches [16–19] that the Z-line is the tangent to the liquid branch of the
liquid-gas binodal when T → 0. More exactly, it is the tangent to the extension of
binodal beyond the triple point. This property is kept even in the case when Z-line is
not the straight over all the plane density-temperature! So it is possible to derive the
equation for the liquid branch of the binodal, which will be discussed below.
Besides, to check the considered findings and to establish the limits of their
applicability one can use the model systems with known interaction potentials.
Corresponding analysis has been done in [21]. Its results will be also discussed
below. But here we should note that there are at least two cases when Z-line is not
the straight. This occurs when the attractive part of the interaction potential is too
short-ranged or too long-ranged.

Another direction of investigations was found by Kulinskii [22, 23]. He noted
that in the famous Ising model for the lattice gas (LG) the Zeno-line and the binodal
diameter are the straight lines exactly. Farther, using this fact, he established the
isomorphism between the linear elements of the phase diagrams of the lattice gas
and the continuous systems (including the real substances too). This approach has
some limitations, because there is no unambiguous correspondence between any
arbitrary point or line of real and lattice systems [24]. But it allows one to find the
interrelation between different regularities, like, for instance, the Zeno-line and the
Pitzer acentric factor [25]. It also provides the natural explanation for the linearity
of the Zeno-line and the binodal diameter, their correlation, and the asymptotic
congruence with the liquid binodal branch [22, 23]. Moreover, as we will see
below, we can apply the above isomorphism to investigate various thermodynamic
properties.

Besides the Zeno line, the vdW equation generates many other “ideal curves” in
the form of the straight lines [26]. “Ideal curves” are the contours, where some
property of the system coincides with that of an ideal gas. So, in the vdW system
there are the straight lines of the ideal enthalpy, the ideal internal energy and others
[27]. In real substances the linear dependence for these “ideal curves” are less
frequent than the Zeno line. Nevertheless all they are used in the analysis and
construction of the model and reference equations of state [12, 25–27].

Along any of “ideal curves” corresponding thermodynamic value is described by
the same dependence as in an ideal gas (even in the high-density region). Then, as it
is stated in [27], “plots of certain ‘‘ideal curves’’ are useful in assessing the behavior
of an equation of state in regions away from the available data as well as in
revealing inconsistencies in the available data sets”. Besides they can be used to
check consistence of various theoretical models for fluids. For example, in recent
study [25] it was shown that the Peng-Robinson equation of state has significant
curvature for its own Z = 1 contour. This model is widely used in chemical
engineering. But the substances (like argon, carbon dioxide etc.) where it is used
have accurate linear Z-line. This evident discrepancy points to an inexactness of the
Peng-Robinson model and necessity to correct it [25]. Thus, the investigated lines
are very important not only in the theory but in practical applications too.
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One more important remark should be noted. In supercritical region there are
many other remarkable curves that initially were obtained for the vdW system [28–
30]. Some of them start at the critical point (CP), so they are connected with the
divergence of various physical values at CP. The volume expansion coefficient, the
isothermal compressibility and others are the examples of these values. Another
one, as the Joule–Thompson inversion curve and others, do not cross the critical
point and do not diverge. Nevertheless, there is the link between the “ideal curves”
discussed above and some of the supercritical curve. The interrelation will be also
considered below.

The subsequent text will be organized as the following. At first, we will consider
the properties of the Zeno line and show how they correlate with the binodal
position and critical point coordinates. The limits of applicability of these properties
will be discussed as well. The CP estimates for a number of metals will be pre-
sented either. Then we will show how the Kulinskii isomorphism can be applied to
the real substances. Finally we will consider the other “ideal curves” and their
property. The conclusions will complete present communication.

6.2 Zeno Line and Its Properties

The linear dependence in the Zeno line contour was shown for the first time for the
vdW equation [9]. Let us rewrite the latter as

P ¼ nT
1� bn

� an2 ¼ nT þ n2
bT þ abn� a

1� bn
: ð6:1Þ

Here a, b are the usual material constants of the vdW equation [1, 2]. Evidently,
Z = P/(nT) = 1, when

bT=aþ bn ¼ 1: ð6:2Þ

One can see that (6.2) describes the linear contour at T–n plane, which cut on the
axes T and n the segments [0, b/a] and [0, 1/b] respectively. Of course, the vdW
equation does not describe the real substances with acceptable accuracy. But for the
real substances at low densities the virial expansion can be applied. So when n → 0
it is possible to show exactly [16, 20] that the Zeno line is also the straight. It is
described by the following equation:

T=TB þ n=nB ¼ 1: ð6:3Þ

The parameters TB, nB are defined by means of the second (B2) and the third
(C) virial coefficients. Namely, TB is appeared to be the well-known Boyle tem-
perature. That is why the subscript “B” is used for the Z-line parameters. We will
also call the parameter nB as the Boyle density. Their definitions are [21]:
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TB : B2ðTBÞ ¼ 0; nB ¼ dB2

dT

� �
TB

TB
CðTBÞ ; ð6:4Þ

So, for given interparticle potential the Boyle parameters can be calculated
directly. It allows us to find the Z-line for model systems and to check whether it is
the straight line at all T–n plane. But, at first, we would like to draw your attention
to additional regularities related to the Z-line. The analysis has shown that the liquid
branch of the binodal (or its extension beyond the triple point) and the Z-line should
coincide at the limit T → 0. Moreover, this “tangential” behavior is kept inde-
pendently of the Z-line form [16, 20]. This fact has allowed us to connect the
binodal liquid branch and the Z-line [19]. We have used the famous 3-term equation
for the binodal n(T):

nðTÞ ¼ nc þ A1sþ A2s
b
; s ¼ 1� T=Tc: ð6:5Þ

In (6.5) the subscript “c” relates to the critical point, while the index β defines the
class of criticality of the system [2]. This equation was introduced by van der Waals
himself with index β = 0.5. Later it has been expanded for real substances with
various values of β [31, 32]. The constants A1, A2 can be defined by different ways.
Generally the liquid and the gas binodal branches should have each own values, i.e.
ðAliq

1 ;Aliq
2 Þ; ðAGas

1 ;AGas
2 Þ But if the binodal is symmetrical relative to its diameter,

then Aliq
1 ¼ AGas

1 ;Aliq
2 ¼ �AGas

2 . And, moreover, when nGasðT ! 0Þ ! 0, then
AGas
2 þ AGas

1 ¼ �nc [20]. Besides, one can use simple fitting to experimental data.
As an example, in [33] the binodals for 108 substances were fitted this way.
However, the fitting can be used only when the coexistence curve is known. So we
decided to use the above asymptotical properties of the Zeno line and binodal.
Namely, we have required for the liquid binodal branch that at T → 0 (6.5) should
be transformed into (6.3) for the Z-line [17–19, 21]. It unambiguously defines the
coefficients as:

ALiq
1 ¼ ðTc=TB � bÞnB þ bnc

1� b
; ALiq

2 ¼ ð1� Tc=TBÞnB � nc
1� b

: ð6:6Þ

One can see that the coefficients (6.6) and the binodal (6.5) depend upon both the
critical and the Boyle parameters. This fact points on possible link between these two
sets of parameters. Corresponding relation was considered initially in [16–19, 21].
The experimental data analysis for real materials has shown that it is possibly also
linear, namely:

x
Tc
TB

þ y
nc
nB

¼ 1: ð6:7Þ

In (6.7) “x” and “y” are the numerical factors. At first in [16] we have set x = 1,
y = 0.5, so the corresponding line was the median in the triangle composed by the
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n and T axes and the Zeno line. But more detailed analysis, applied to the model
systems, has shown [19] that it should be sooner the line parallel to the Z-line:

Tc
TB

þ nc
nB

¼ S1: ð6:8Þ

The application of (6.8) to the Lennard-Jones (LJ) system as well as to some real
substances [17, 19] have resulted in S1 ≈ 0.67. But for the vdW system S1 = 17/27 ≈
0.63. Note, that LJ and real substances belong to the so-called “Ising” class of
criticality, while vdW belongs to the “mean-field” models [2]. Then we have
investigated various models with given potentials [21], belonging to different
criticality classes. In result the values of S1 have varied in dependence of the
criticality class. So we supposed that that parameter S1 should depend on it. Farther,
for symmetrical binodal ALiq

1 � ALiq
2 ¼ nc. The substitution (6.6) into the latter

equation gives

Tc
TB

þ nc
nB

¼ 1þ b
2

: ð6:9Þ

For Ising class β ≈ 0.326. It gives S1 ≈ 0.663, which is very close to 0.67. But for
vdW (β = 0.5) (6.9) gives 0.75, which is far from 0.63. That means that dependence
of S1 on kind of substance is more complicated than given by (6.9). But we have
decided to kept the general dependence S1 = S1(β). Schematically the phase diagram
density-temperature of a simple liquid is presented in Fig. 6.1 in the units reduced to
the Boyle parameters.

To find out whether Fig. 6.1 corresponds to the real situation we have investi-
gated the phase diagram for many substances [16–19] and models with given
potentials [21]. Corresponding pictures have been published earlier in our works

S
1

0.5 S
1

1

TP

T
/T

B

n/n
B

CP

Zeno-line

Median

S1

Binodal

1

Fig. 6.1 The phase diagram density-temperature (n-T) of a simple liquid in the units reduced to
the Boyle parameters TB and nB defined by (6.4). CP is the critical point, TP is the triple point. The
Zeno-Line is defined by (6.3). The critical points line, marked S1, and the value S1 are defined by
(6.8). “Median” is defined by (6.7)
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[16–19, 21]. It was found that the phase diagrams of the investigated substances are
qualitatively corresponds to that one presented in Fig. 6.1, although there are
exclusions (see below). To find the quantitative agreement we have also compared
(6.3)–(6.8) with the available data of measurements and calculations. For real gases
and liquids we have used the NIST database [34]. For models there is variety of the
numerical simulations data (see [21] and references therein). Unfortunately, among
the metal the binodals were measures only for Hg and Cs, because they have the
critical point located at relatively low temperatures [35, 36]. In result, we have
come to the following conclusions:

1. The contour defined by the Zeno-line is appeared to be the straight for many real
substances. But there are exclusions like, for instance, water and helium. The
former does not obey to any similarity relations, while the latter discovers
quantum properties. More detailed discussion is presented in [19].

2. The model systems with pair-wise central potentials have discovered two cases
when the Zeno-line is not linear. (We do not consider the third—evident—case
of purely repulsive potential, when always Z > 1). The first one is when the
attractive part of the potential is too short-ranged. In this case the liquid-gas
transition can be metastable with respect to the solid–liquid transition (see [21]
and references therein). The opposite situation—too long-ranged (attraction)
potential—is the second case. Here the triple point has too high temperature
approaching to the critical point.

3. Equations (6.5) and (6.6) describes the liquid binodal branches of the real
substances (with β = 0.326) within few percents accuracy. Exclusion is Hg. We
will discuss it in the section devoted to the critical points of metals. The same
accuracy is found for the model systems with different β as well (if the Z-line is
the straight).

4. Equation (6.8) was initially tested in [16–19, 21] and good agreement was
obtained. In [37] corresponding pictures for the model and real systems were
constructed. In present study we have included additional substances and
models into consideration. The results are given in Fig. 6.2a, b. The description
of the models presented in Fig. 6.2b one can find in [21]. They are defined by
corresponding potentials i.e. “Square Well” means the system of particles
interacting via the Square Well potential, “Morse”—via the Morse potential etc.
(see [21]). The value S1 = 0.67 corresponds to the LJ system (with β = 0.326),
while S1 = 0.63 corresponds to the vdW equation (with β = 0.5). The other S1
values are for the intermediate β values. One can see that (6.8) is confirmed for
all substances, excluding for the water and hydrogen. For model systems the
dispersion is greater, because of possible inaccuracy in the critical point coor-
dinates and because the Z-line is not always straight in case of model systems
[21]. This fact can also points on possible limitations for (6.8).

All above conclusions have been obtained under assumption that the considered
system has the same chemical composition when the density changes from gaseous
to liquid values. That is the interparticle potential does not change in all gas-liquid
and fluid domains. Otherwise there is the problem with definition of what the
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density is and how the compressibility factor should be defined. We will return to
this problem when the critical points of metals will be discussed.

6.2.1 The Critical Pressure and the Zeno-Line

The Zeno-line equation is an explicit T–n relation. It does not include the pressure
directly. That is why it is interesting to obtain the relation for the critical pressure
analogous to (6.8). It would link the latter with the Boyle parameters. Initially such
a relation was offered in [17, 19]. It was denoted as S2 and had the form:
S2 ¼ ðncTc � PcÞ=ðnBTBÞ. For LJ S2 = 0.076, while for the vdW system S2 = 5/81 ≈
0.062. For the real substances we have set S2 = 0.076 too. We have also supposed
the dependence of the criticality class: S2 = S2(β) (like in case of S1). But the
subsequent analyses [37] have shown that S2 relation is less accurate in comparison
with S1. So we have addressed to the Timmermans relation [38]. Although initially
it was obtained as purely empirical basis there are some theoretical grounds for it
(see [20, 54] for details). It connects the critical point compressibility factor with the
Boyle density, namely: Zc � Pc=ðncTcÞ ¼ nc=nB. In [39] we have corrected it and
have presented in the form

Pc

ncTc
¼ nc

nB

� �1þp

: ð6:10Þ

Here p is the small fitting factor. It was introduced in [39] only as the empirical
parameter on the basis of analysis of experimental data. The least squares fitting for
different substances gives us p = 0.019, which also corresponds LJ system. If we
take into account S1 relation (6.8) then
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Fig. 6.2 The ratio of temperatures TC/TB versus the ratio of densities nC/nB. The comparison of
prediction of (6.8) with the data for the real substances (a) and with the data for the models (b) (the
models are described in the text). The subscripts “C” and “B” correspond to the critical and the
Boyle parameters respectively. The lines S1 = 0.67 and S1 = 0.63 are described by (6.8) with the
values of parameter S1 corresponding to LJ and vdW models respectively (see text)
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Pc

nBTB
¼ S1 � nc

nB

� �
nc
nB

� �2þp

¼ S1 � Tc
TB

� �2þp Tc
TB

� �
: ð6:11Þ

To check whether (6.11) is applicable to real substances in [39] we have con-
structed corresponding pictures. In present report we have extended one of these
pictures by inclusion of additional substances (Fig. 6.3a). (Remind, S1 = 0.67 for
real substances like previously). The quantum liquids (He, He3 and partially H2)
and water fall out from the dependence under study. We should also note that for
alkali metals (besides Cs) we have presented only the estimates, as far as there are
no final data for their critical points. But other substances demonstrate very good
agreement with (6.11).

We have also constructed analogous picture for the model systems (Fig. 6.3b).
At first, we have marked, that for the vdW equation the correction factor is nega-
tive, namely p = −0.107. So, we have considered two cases: first one is the LJ-like
systems with S1 = 0.67 and p = 0.019, the other one is the vdW-like systems with
S1 = 0.63 and p = −0.107. One can see in Fig. 6.3b, that the agreement is worse in
comparison with the case of real substances. The situation is analogous to the
results presented in Fig. 6.2a, b. So, the inaccuracy in the critical points coordinates
can be important. But the example of the vdW system has shown that the problem
can be also in correction factor p which has been introduced only by means of
fitting. Possibly this parameter should be variable too. This question requires further
studies.

Besides the relation for the critical point, it is interesting to connect the Boyle
parameters with the whole saturation curve Psat(T), analogously to (6.5), (6.6).
Corresponding attempt was made in [40]. We have succeeded in substantiation of the
Riedel equation [41] in partial case. But the accuracy of the obtained expression was
too low. So this problem is still waiting for its solution. Below we will return to it.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05  - Ar, Ne,Kr ,Xe
 - NH

3
, O

2
, CO

2
, CO,  

        F
2
, N

2
,

 - CH
4
, C

2
H

4
,

            C
2
H

6
, C

3
H

4
,C

8
H

18

            C
6
H

14
, R

13
, R

22
, R

32

He
3

H
2

Rb
Cs
Li,K
Na

P
C
/(

n B
T

B
)

T
C
/T

B

Hg

He Water

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

vdW-like

P
C
/(

n B
T

B
)

T
C
/T

B

 Square Well
 LJm-n
 Sutherland
 Yukawa HCA
 Buckingham
 vdW

LJ-like

(b)

Fig. 6.3 The ratio of the reduced critical pressure versus the reduced critical temperature. The
comparison of prediction of (6.11) with the data for the real substances (a) and with the data for the
models (the models described in the text) (b). The solid lines correspond to (6.11) with various
values of S1 (see text)
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6.2.2 The Critical Point Coordinates Estimates for Some
Metals

The similarity relations considered in the previous sections have allowed us to make
the estimates of the critical points coordinates for a number of metals. These metals
are Al, Cu, W, U, Zr, Fe, Be. They are not amiable to the measurements at the
temperatures higher than approximately 5000 K. As a result, there are only
low-temperature liquid data along the isobars or other curves [42]. Nevertheless, it is
well-known fact that the liquids at low temperatures have a very low compressibility.
The latter circumstance, in turn, results in the fact that the isobars almost coincidewith
the liquid binodal branch (see, for instance, Fig. 6.2 in [36]). In this case the liquid
binodal can be reconstructed by various approaches [20, 43, 44]. Consequently, the
critical point coordinates can be estimated as well. The similarity relations presented
above have been also used for this purpose. Corresponding procedure are described in
details in our researches [17–19, 45]. So here we present only the results. But, before
proceeding with it, we should make the following important remark.

Usually in the measurements the mass density ρ is the input data. For an
one-component system the particle density n is defined simply as n = ρ/ma, where
ma is the atom (or molecule) mass of a single particle. Then, the compressibility
factor is Z = P ma/(ρT). Thus, for the most of non-metallic substances (which are
one-component in the region under study) the relation between n and ρ is unam-
biguous. But the metals are generically the two-component systems (electrons and
positive ions). At low temperatures and gaseous densities the electrons recombine
with ions [46]. Under these conditions we can consider a metal as an atomic
one-component system with the above relation between n and ρ. But when someone
starts to compress this metallic gas along the isotherm, then the ionization starts too.
When the state of liquid or dense fluid is achieved, the metal is really the two
component system with ρ = mene + mini, where the subscript “e” or “i” denotes the
electrons or ions. In this case there is no single particle density n, so the definition
of Z becomes ambiguous. To overcome this problem it is possible to consider a
metal as the one-component system consisting of “effective” atoms with the particle
density, defined just likes in the case of gaseous state. These effective atoms interact
via some “effective” potential. The problem is that the “effective” potential are
usually completely different from the potential between the real atoms in gaseous
phase. Moreover, the most exact “effective” potentials in liquid phase are not
pair-additive [47]. Thus, the definition of the Zeno-line becomes also unambiguous.
In particular, we have shown [15] that for liquid Hg the Zeno-line is the straight if
we suppose that Hg consists of above “effective” atoms. But our study was limited
from the down by the densities higher than the critical one. The extrapolation to the
lower densities gives rise to TB = 6350 K for Hg. Meanwhile, the spectroscopic data
analysis at low densities has shown that Z-line has sharp turn when the density
increases, which give rises to TB = 2874 K [48]. The close value was also obtained
in the analysis of the potential for the mercury dimer [49]. The analogous situation
is possible for other metals too. In our studies of metals (besides Cs and Hg) we can
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use the data only for the liquid state. So the Boyle temperature is obtained by
extrapolation to the zero density, which can be different from “gaseous” TB.

The results for the critical points of the metals mentioned above presented in the
Table 6.1. For Pc we have used (6.11) like in [30] (not S2).

Our estimates for the critical pressure are lower in comparison with the data of
other investigators. As far as ρc is of the same magnitude of value with these data,
the difference in pressure can be ascribed to inaccuracy in our definition of ρB for
metals (see [45] for details). But the critical pressure of other researchers presented
in Table 6.1 has big inaccuracy too. The critical pressure is usually calculated by
means of a subtraction of two big quantities responsible for thermal and potential
part. This effect is especially evident in metals. The subtraction has been used in the
estimates of other researchers but not in our approach. So it is difficult to say now
which of the estimates is the most reliable.

6.3 The Isomorphic Transformation Between the Lattice
Gas and the Real Substances

For the substances and model systems considered previously there is no strict prove
that the Z-line is the straight. But there is the model where it is truly straight. It is the
famous Ising model for the lattice gas (LG) [2]. Moreover it has also strictly linear

Table 6.1 The estimates of
the critical point coordinates
for the metals. Likalter [50],
Fortov [43], Hess [51],
Filippov [20], Beutl [52],
Lomonosov [53]

Metal Tc (K) ρc (g/cm
3) Pc (atm) Method

Al 6380 0.45 2174 Present work

8860 0.28 4680 Likalter

8000 0.64 4470 Fortov

Cu 7090 1.95 4262 Present work

7620 1.40 5770 Likalter

8390 2.40 7460 Fortov

W 12,400 4.92 6978 Present work

12,500 4.52 11,000 Hess

21,010 5.87 15,830 Fortov

U 7000 3.30 1972 present work

9000 2.80 5000 Likalter

11,600 5.30 6100 Fortov

Zr 15,200 1.00 3432 Present work

Fe 6500 1.36 4620 Present work

7650 1.63 1534 Filippov

9250 1.21 8856 Beutl

Be 5400 0.26 1917 Present work

9200 0.35 12,200 Likalter

8080 0.55 11,700 Fortov

8877 0.398 2870 Lomonosov
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binodal diameter. The binodal of the model is also absolutely symmetrical relative
to the diameter. These facts are valid both for 2D and 3D cases, but below we will
consider only 3D system. On the basis of the symmetry of Ising 3D model,
Kulinskii [22, 23] has offered the isomorphic transformation between the linear
elements of LG and corresponding contours of a continuous system. The linear
elements of LG are the critical isotherm, the Zeno-line and the diameter. The latter
should be transformed into the median of the triangle at phase diagram of con-
tinuous model (see Fig. 6.1). The form of Kulinskii transformation is:

n ¼ nB
x

1þ at
; T ¼ TB

at
1þ at

; a ¼ Tc
TB � Tc

: ð6:12Þ

Here (n, T) are the particle density and the temperature of a continuous system;
(x, t) are the analogous values for LG. The LG critical point is (xc, tc) = (0.5, 1). The
Zeno line for LG is described by equation x = 1, while the equation x = 0.5 cor-
responds to the binodal diameter. Consequently, the Boyle temperature is tB = ∞
for LG and the binodal diameter coincides with the median. Unfortunately, (6.12) is
not valid for any points at phase diagram. For instance, it does not transform the
critical point of the lattice gas to that one of a continuous system. Namely, the
substitution of (xc, tc) = (0.5, 1) into (6.12) gives rise to the relation: n = 0.5 nB
(1 − Tc/TB) and T = Tc. So there is the correspondence only between the critical
temperatures. To remove this inconsistency we have changed (6.12) as [24]

n ¼ nB
xc

1þ at
; T ¼ TB

at
1þ at

;

a ¼ Tc
TB � Tc

; c ¼ � log2½ncð1þ aÞ=nB�:
ð6:13Þ

The exponent γ has been fitted to provide the transformation between the critical
points. Note that (6.13) is no more isomorphism in comparison with (6.12). Both
transformations are also limited by T < TB.

To apply (6.12) or (6.13) to any other lines (besides the initial linear elements) it
is necessary to know the equation of states (EOS) for LG. That is if π = π (x,t) is the
equation for the LG pressure π, then it is possible to consider the LG isotherm. Then
one can check whether the pressure at this isotherm (in reduced units) would
correspond to the pressure of a continuous system at the isotherm, obtained from
the above transformations. The same relates to the isochors, isobars, binodals and
other lines. Unfortunately, there is no analytical EOS for 3D Ising models. But there
are several approximated EOS. In our study [24] we have used the well-known
Bragg-Williams and Bethe-Guggenheim EOS. We have checked the isotherms and
binodals for the models (vdW, LJ) and substances (Hg, NH3 and others). As a result
we have found that only the critical isotherm can be reproduced within sufficient
accuracy. The more the difference |T−Tc| was, the greater the discrepancy in
pressure along the isotherms was observed. The same concerns the isobars. To
illustrate this situation we present below in the Fig. 6.4 the binodals for SF6
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constructed on the basis of the experimental data [34] and by means of the trans-
formation (6.13). The details of the latter are presented in [24].

So we can see that the transformation between LG and continuous systems can not
reproduce exactly any line at the phase diagram with acceptable accuracy. But it can
be applied for the substantiation of the various similarity laws, which previously have
only semi-empirical grounds. For instance, the critical points line, like as (6.7), (6.8),
can be deduced from the Kulinskii transformation (6.12) [22]. Recently, it was used to
estimate the critical points coordinates [54]. It also was used in [55] to investigate the
volume expansion coefficient (VEC). This value is denoted as ξ and is defined as

n ¼ � 1
n

@n
@T

� �
P
: ð6:14Þ

We have discussed above that at low temperatures the isobars almost coincide
with the liquid binodal branch. So we can take the derivative along this branch,
using 3-term (6.5), (6.6). It gives rise to the expression

n ¼ A1 þ A2bsb�1

Tcðnc þ A1sþ A2sbÞ ; s ¼ 1� T=Tc: ð6:15Þ

The coefficients A1;A2 are defined by (6.6), while β is the critical index (as
previously). So VEC can be also expressed by means of the Boyle parameters. Let
us formally consider the limit T → 0. We have already mentioned above, that the
application of all Zeno-line relations in this limit is unphysical, because below the
triple point a liquid becomes a crystal. However, it gives the lower boundary for the
VEC under conditions T → 0, P → 0. Thus, (6.15) gives

n0 ¼ lim
T!0;P!0

nðTÞ ¼ 1=TB: ð6:16Þ
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Fig. 6.4 The liquid-gas
coexistence curve for SF6.
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data [34], solid line is
constructed by (6.13)
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The latter relation has no rigorous theoretical grounds. But the isomorphism
(6.12) allows us to solve this problem. The limit T → 0 corresponds to t → 0 as
well. In this case, the density derivative over the temperature can be expressed by
means of (6.12) as

dn
dT

¼ n0xx
0
t þ n0t

T 0
xx

0
t þ T 0

t
) � 1

n
dn
dT

¼ 1þ at
TB

þ ð1þ atÞ2
aTB

� 1
x
dx
dt

� �

)
t!0

� 1
n
dn
dT

¼ 1
TB

þ 1
aTB

� 1
x
dx
dt

� �
:

ð6:17Þ

The term dx
dt

� �! 0 at T → 0 according to the third law of thermodynamics [55].
Below in Fig. 6.5 we present the comparison of experimental data for VEC of Ar at
various pressures and the calculated values according to (6.15).

When the isobars really coincide with the binodal, (6.15) is in good agreement
with the experimental data at lower temperatures. The inconsistence starts at higher
temperatures, as expected.

6.3.1 LG Transformations and the Saturation Pressure

We have already said above (end of the Sect. 6.2.1) that we have not succeeded yet
to construct the equation for the saturation pressure Psat(T). But we may check what
the considered transformations can offer for this task.

Let us start from the symmetric expression for binodal of LG as suggested in
[24]. Here we somewhat modify it by introducing an additional parameter α1 (in
[24] the condition α1 = β has been used). We present the lattice binodal as
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Fig. 6.5 Volume expansion
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obtained by (6.15), the
symbols are the experimental
data [56]
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xl;gðt; a1; bÞ ¼ 1
2

1� 1� e�
ð1�t1=bÞ

a1 t

� �b
 !

: ð6:18Þ

Here α1 и β are determined by the shape of LG binodal. The subscripts “l”, “g”
as well as the sign “±” relate to the liquid or gas binodal branch.

The expansion of (6.18) near the critical point gives |x − 0.5| * (1 − t)β.
Consequently, the parameter β is the corresponding critical exponent for LG. On the
other hand, the gas density along the binodal at t → 0 changes according to (6.18)
as xg(t) = 0.5 β exp(−1/(α1t)). So, it decreases exponentially with the temperature.
This asymptotic form corresponds to the general dependence on the temperature for
the gas density along the binodal at t→ 0 for an arbitrary system. The parameter α1
determines the rate of this decrease.

Our task is to describe the dependence of the saturation density and pressure on
the temperature in a wide range of variation of the latter (not only in the CP
vicinity). Therefore, now the parameters β and α1 will play the role of fitting
parameters. Their values will be found from the condition of a mean deviation
minimization of the calculated pressure from the experimental (or tabulated) one.
The ability to use (6.18) for different lattice models have been established earlier
[24]. Comparison of the binodal curves, calculated by means of the corresponding
choice of a parameter β = α1, has shown good agreement with the analytical results
[22] and simulations [57, 58]. We should also note, that the projective transfor-
mation offered in [22] can map with some accuracy LG binodal xBin(t) into the real
fluid binodal nBin(T). But it gives no correspondence for the critical densities. So, it
is more correct to make basis on our transformation (6.13). Now we need some
relation for the pressure. Let us boldly supposed that the Timmermans relation is
valid not only for the compressibility factor at the critical point Zc but along the all
binodal, namely

Zl;gðn; TÞ � PsatðTÞ
nl;gðTÞT ¼ nl;gðTÞ

nB
: ð6:19Þ

Here nl,g(T) denotes the binodal density (at both branches), while Psat(T) is the
desired expression of the saturation pressure. The direct application of (6.19) to
the real substances and models does not give enough accuracy. Moreover, near the
critical point (6.19) gives rise to incorrect asymptotic behavior [40]. But what will
happen if we express nl,g(T) through xl,g(t) by means of (6.13), (6.18)?
Corresponding consideration was given in [59]. After some transformation (see
details in [59]) the following equation for the saturation pressure can be obtained

PðT ; a1; bÞ ¼ TnBð1� T=TBÞ½xgðt; b; a1Þ�c½xlðT=Tc; b; a1Þ�
ln Zc

ln ð1=2Þ: ð6:20Þ

This expression depends on the critical and Z-line parameters as well as on two
fitting parameters α1 and β. The values of these parameters are found from the
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condition of a mean deviation minimization of the calculated pressure from the
experimental (or tabulated) one. The mean deviation is found as

eðb; aÞ; % ¼
Pn
i¼1

Pðb;aÞ
Pexp

� 1
��� ���

n
� 100; ð6:21Þ

where Pexp is the experimental or tabulated saturation pressure. The sum in (6.21) is
taken over entire massive of the experimental (table) data along the liquid-gas
coexisting line.

The detailed investigation of (6.20) is given in [59]. So here we give only as
example the parameters, entering (6.20), for two models and three real substances.
We have chosen LJ and Square-Well (SW) systems as the models. The latter is
characterized by the well-width λ. In Table 6.2 there are 3 values of λ. The tem-
peratures and the densities for the model systems are given in dimensionless LJ
units (see [21]). For substances they are presented in Кelvins and g/cm3. The critical
point data for the models one can find in [21, 60].

The data given in Table 6.2 show that the method suggested above facilitates a
unified way to calculate the saturation pressure in a wide temperature range for the
different model systems and substances. In additional, it covers a wide temperature
range, which could not be described with similar accuracy by the approaches
known earlier.

6.4 The Other “Ideal” Curves

Now we proceed with the other remarkable curves. Some of them can be also
deduced from the vdW equation. In recent study [26] there is the description of
several “ideal” curves besides the Zeno-line. Among them let us mark the ideal

Table 6.2 The values of the calculated parameters for (6.20)

Model Substances

L-J SW Ar Hg Cs

λ = 1.5 1.75 2

Tc 1.31 1.217 1.809 2.68 150.86 1751 1938

nc 0.31 0.308 0.265 0.251 0.536 5.8 0.39

Zc 0.308 0.248 0.263 0.294 0.29 0.39 0.2

TB 3.418 2.846 4.842 7.484 393 6650 4120

nB 1.14 1.375 1.0 0.844 1.97 14.4 1.96

α1 0.5 0.67 0.57 0.6 0.485 0.49 0.756

β 0.545 0.435 0.48 0.405 0.55 0.435 0.555

ε (%) 3.4 1.2 2.8 3 2.7 2.4 2.8
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enthalpy line (below the H-line) and the ideal internal energy line (the U-line). The
definition of this contours are analogous to the Zeno-line. Namely, corresponding
properties (H or U) at these contours are the same as that one of an ideal gas. The
enthalpy H and internal energy U for vdW and an ideal gas (“id”) are:

HvdW ¼ 3
2
NT � 2aNnþ NT

1� bn
;Hid ¼ cidP NT ;

UvdW ¼ 3
2
NT � aNn;Uid ¼ cidV NT :

ð6:22Þ

Here the temperature is measured in energy units as previously, N is the particle
number (n = N/V, where V is the volume), cidP ; c

id
V are the heat capacities of an ideal

gas per particle at a constant pressure and at a constant volume respectively. The
vdW model is supposed to be a mono-atomic system (cidP ¼ 2:5; cidV ¼ 1:5).
Corresponding U-line in this case is expressed simply, as n = 0. It is of course the
trivial result, because any system should be ideal at zero density. Moreover, the
analysis of the measurements data from [34] has not discovered any other U-line,
besides this trivial one. The situation with the H-line is much more interesting.
Equation (6.22) gives the following relation for it:

bnþ bT=ð2aÞ ¼ 1: ð6:23Þ

Thus, the H-line in the vdW system is also the straight as like as the Zeno-line.
Its parameters below are marked by subscript “H”. For vdW nH = nB = 1/b, while
TH = 2TB = 2a/b (see (6.2)). Farther, we have analyzed the virial EOS for the
enthalpy [30] (just like in case of the Zeno line). If we suppose that the H-line is
described by the linear dependence:

n=nH þ T=TH ¼ 1; ð6:24Þ

then the virial expansion gives rise to the following expressions for TH and nH:

TH : B2ðTÞ � T
dCðTÞ
dT

� �
T¼TH

¼ 0; nH ¼ �T2 d2B2ðTÞ
dT2

CðTÞ � 0:5T dCðTÞ
dT

" #
T¼TH

; ð6:25Þ

Here B2 and C are the virial coefficients, like previously. Now we can test (6.24)
for the real substances and model systems. But before, we would like to pay
attention to several other curves in supercritical region. These curves are not the
straight, but there are indications, that they can also have a universal character.
Initially these curves have also been obtained for the vdW system [28–30]. It is the
line of the minima for the enthalpy isotherms (below Hmin line). This curve coin-
cides as well with the inversion curve for the Joule-Thompson effect, as far as the
latter are defined by the enthalpy minimum [61]. Its equation for the vdW system
directly follows from (6.22), (6.25):
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THmin ¼ 2TBð1� n=nBÞ2; ð6:26Þ

Another line is the line of maxima of isothermal compressibility. The latter is
defined as 1 ¼ Tð@n=@PÞT . It is also the same as the value of the structure factor at
the zero wave vector S(0) [2]. That is why we denote this line as S0. The maximum
of 1 corresponds to the minimum of 1=1. So it is defined by condition
ð@2P=@2nÞT ¼ 0. For the vdW equation it gives

TS0min ¼ TBð1� n=nBÞ3; ð6:27Þ

One more line is the line of maxima for VEC. VEC is defined by (6.14). Line of
its maxima along the isotherms for the vdW system is expressed as

TVECmax ¼ THð1� 2n=nBÞð1� n=nBÞ2; ð6:28Þ

All these lines are described in details in [28, 30]. The resulting phase diagram of
the vdW system with all these lines are presented in Fig. 6.6. Note: the lines (6.26)–
(6.28) are not the straight contours! Nevertheless their form can be the same for
some other system as we will see below.

Now let us consider how the above lines are located in the models and real
substances. Corresponding picture for LJ system was constructed in [30]. For the LJ
system the H-line is also straight with TH = 6.431 and nH = 1.24. So qualitatively
the LJ phase diagram has the same features as the vdW phase diagram. Here we
present also the phase diagram for another model system—Exp-6 (or Buckingham)
potential. This potential has already been studied by us, when Z-line was investi-
gated [21]. It has the form

UðrÞ ¼
e

1� 6=a1

6
a1

exp a1 1� rm
r

h i	 

� rm

r

	 
6� �
; r� rmax;

0; r\rmax:

8><
>: ð6:29Þ

Here ε, rm, and α1 are the model parameters. Parameter rm is the distance where
the potential reaches its minimum. It is usually used as the length unit, while ε is
used as the energy unit. The cutting distance rmax is necessary because the potential
has unphysical maximum near r = 0. The hard wall is introduced for the segment
[0, rmax) to remove this incorrect behavior. The parameter α1 generates the family of
potentials, which can be applied to describe the noble gases and various organic
matters [62]. In particular, it was shown in [62] that the methane (CH4) binodal can
be reproduced if α1 = 15. So we have also chosen this value. The phase diagram of
Exp-6 system with α1 = 15 is presented in Fig. 6.7. The binodal and the critical
point (CP) were calculated in [62], while the Zeno-line and H-line were obtained by
means of MC NVT simulation in present research. The simulations details are the
same as in our study for LJ [30]. The results presented in Fig. 6.7, confirm that both
lines are the straight ones.

156 E. Apfelbaum and V. Vorob’ev



Note that all above H-line studies are valid for mono-atomic systems only. For
dimers the specific heat is cidP ¼ 3:5, for more complicated molecules (with more
than 2 atoms) this value is cidP ¼ 4. It is necessary to take into account this cir-
cumstance. It is well known fact that the LJ and Exp-6 potentials describe well
enough the mono-atomic systems (like argon) with cidP ¼ 2:5. The comparison of
Z and H-lines for the LJ model and argon in [30] have shown a good agreement.
Besides, we have said above that the Exp-6 potential reproduces the CH4 binodal
with good accuracy. But the H-line for methane does not correspond to that one,
presented in Fig. 6.7, because the methane consists of polyatomic molecules. The
same picture arises under application of central potential models to the many-atomic
materials. Namely, the contours, like the binodals or Z-lines, can be reproduced in
such models, while the contours, like H-line, can not. To illustrate this situation in
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Fig. 6.8 we present the phase diagram of the real methane and calculations of the
Z and H lines with the Exp-6 potentials. According to [62], the following values for
its parameters were chosen: ε/kB = 160.3 K, rm = 4.188 Angstrem, α1 = 15,
rmax = 0.168245rm. “kB” is the Boltzmann constant. The experimental binodal, the
Z and H-lines were taken from NIST database [34]. Unfortunately the temperature in
the database is limited from above by T = 625 K. So we can reconstruct H-line from
the measurements data only up to this temperature. The least squares fitting gives for
methane TH = 1834 K, ρH = 0.523 g/cm3. But the database has allowed us to find the
inversion curve of Joule- Thompson effect. It is also the curve Hmin (see (6.21) and
its description.). In Fig. 6.8 we have presented the experimental line Hmin and that
one given by (6.26) (line 1). The maximum error was 5.8 % at higher temperatures.
Besides we have drawn the freezing line according to data of [63].

One can see that the Exp-6 potential can reproduce the Z-line but fails with
H-line as expected.

6.5 Conclusions

In this study we have presented several new similarity laws related to the existence
of the universal lines on the density-temperature plane. The lines can be divided in
two groups. The first one includes the “ideal” curves (Z-line, H-line and the others).
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The latter are defined as the contours, where corresponding property (pressure,
enthalpy etc.) are the same as in an ideal gas. These lines can be the straight ones
over all plane density-temperature. Another group is the “supercritical” curves,
which initially have been obtained for the vdW system (the line of the enthalpy
minima along the isotherms, the line of maxima of isothermal compressibility and
others).

The Z-line (the line of unit compressibility factor) is appeared to be the most
fruitful among others. Its geometrical property (the straightness) has allowed us to
obtain the general equation for the liquid binodal branch and to establish the
relation between the critical and Zeno-line parameters. After that the estimates of
the CP coordinates (temperature and density) have been made for a number of
metals, where it is impossible to carry out measurements. Together with the
Timmermans relation the offered Zeno-line relations allow us to estimate the critical
pressure as well. Both these relations have also resulted in the expression for the
saturation pressure close to the Riedel formula. But it is appeared to be not very
accurate. The inaccuracy witnesses about the possible limitations of the considered
similarities. We have found as well the other limitations of our relations. They
concern the range of the interaction potentials for models and the quantum prop-
erties for substances.

Besides, the study of the Z-line for the lattice gas has given rise to the global
isomorphism (introduced by Kulinskii [22, 23]) between two types of systems
(continuous and LG). Although the transformation does not establish complete
correspondence between any point or line of lattice and continuous systems it
allows one to investigate various thermodynamic properties (like the volume
expansion coefficient). The modification of initial transformation has resulted in the
more accurate relation for the saturation pressure. But it contains two fitting
parameters.

We have also marked that besides the Z-line there are other universal curves. The
relations, describing them, initially were derived for the vdW system. But, if these
relations are expressed in the Boyle parameters (6.24)–(6.28), then they are valid
for other systems too. Thereupon we would like to emphasize the especial role of
the Z-line parameters (the Boyle temperature and density). They can be used as the
reduced units. In this case the variation of the saturation pressure in the chosen
reduced units is very small—for all substances the value of the critical pressure
changes in a rather narrow range from about 0.02 to 0.04. The same relates to the
critical density and temperature.

Finalizing, we would like to point upon the task which is still waiting for the
solution. It is the problem of construction of the relation for the saturation pressure
with acceptable accuracy analogously to (6.5), (6.6) for the liquid binodal branch
without fitting parameters.

Acknowledgments The work is supported by RFBR Grants No 14-08-00536, 14-08-00612,
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Chapter 7
Structure of Polyglycols Doped
by Nanoparticles with Anisotropic Shape

Eduard Lysenkov, Iryna Melnyk, Leonid Bulavin, Valeriy Klepko
and Nikolai Lebovka

Abstract The structure of polyglycols (polyethylene glycol and polypropylene
glycol) doped by nanoparticles with anisotropic shape (carbon nanotubes and
inorganic nanoplatelets) is discussed. Various experimental methods such as X-ray
scattering, optical microscopy, impedance spectroscopy, differential scanning cal-
orimetry and electrical conductivity measurements have been used. Introduction of
such nanoparticles results in noticeable changes in the polymer structure even at
rather small concentration of fillers (0.3–0.5 wt%). The percolation behaviour is
typical for fluid and semicrystalline polyglycols doped with carbon nanotubes. In
the vicinity of percolation threshold the entangled network of nanotubes is formed.
This network has impact on the kinetics of polymer crystallization, degree of
crystallinity, electrical and thermal properties of the composites. Different types of
electrical conductivity in these systems were identified. The structure of polyglycols
doped with nanoplatelets depends upon the type of the filler. The data evidence the
presence of partial intercalation of macromolecules inside the interlayer space of
nanoplatelets of organo-modified montmorillonite and the complete exfoliation of
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organo-modified laponite platelets inside the polymer matrix. The doping by
nanoplatelets also improved the dispersion of nanotubes inside polyglycols. The
effects of nanofillers on the behaviour of polymer electrolytes on the base of
polyglycols are also discussed. The doping allows decreasing the degree of ionic
association, resulting in higher concentration of the free ions and increased elec-
trical conductivity.

List of Symbols and Abbreviations

Symbols
a Aspect ratio
C Concentration
Cn Concentration of nanotubes
Cn
c Percolation concentration

Df Fractal dimension
Df
e Fractal dimensions of the nanocomposite-electrode interface

Df
c Fractal dimensions of the polymer-MWCNT interface

di Interlayer distance in MWCNT
Ea Activation energy
ΔHm Melting enthalpy
ΔHm

0 Melting enthalpy of 100 % crystalline polymers
h Thickness of a sample
I Scattering intensity
KI Association constant of individual ions
KT Association constant of triplets
k Thermal conductivity exponent
Lс Size of a correlation zone
l Length of nanotubes
lp Persistence length
Mw Molecular weight
n Avrami exponent
qi Charge of the ions
T Temperature
Tm Melting temperature
t Time
tc Critical conductivity exponent
Vc Cooling rate
Vh Heating rate
Z′ Real part of the impedance
Z′′ Imaginary part of the impedance
αI The fractions of individual ions
αP The fractions of ion pairs
αT The fractions of ion triplets
β Width of peak at half-height
χ Fractional crystallinity of polymer composites
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ϕn
c Volume percolation concentration of nanotubes

λ Specific thermal conductivity
σ Electrical conductivity
σdc DC-electrical conductivity
σ0 Electrical conductivity at infinite temperature
θ Diffraction angle
θm Half of the diffraction angle
φ Angle in Cole-Cole plot
ω Cyclic frequency

Abbreviations
CNTs Carbon nanotubes
CPE Constant phase element
CTAB Cetyl-trimethyl ammonium bromide
DC Direct current
DSC Differential scanning calorimetry
Lap Laponite
LapO Organo-modified laponite
MMT Montmorillonite
MMTO Organo-modified montmorillonite
MWCNTs Multi-walled carbon nanotubes
PE Polymer electrolyte
PEG/PEO Polyethylene glycol/oxide
PPG/PPO Polypropylene glycol/oxide
SAXS Small-angle X-ray scattering
WAXS Wide-angle X-ray scattering

7.1 Introduction

Composites based on polyglycols such as polyethylene glycol (PEG) and poly-
propylene glycol (PPG) doped by nanoparticles of anisotropic shape (e.g., carbon
nanotubes (CNTs) and nanoplatelets (silicate layers)), are attractive as materials
with improved ionic and thermal conductivity, electrical, optical and mechanical
properties [1].

Nanotube-based composites on the base of these polymers are expected to show
good performance. Good wetting of multi-walled carbon nanotubes (MWCNTs)
was observed using both polymers [2]. Dispersions of surface-modified CNTs in
water-soluble (PEG) and water-insoluble (PPG) polymers have been studied [3].
The general guidelines to produce uniform dispersions using a dispersive agent
and/or surface treatment in these polymers were discussed. The combination of
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PEG with rod-like CNTs allows improvement of dispersion stability in common
solvents [4].

Functionalization of CNTs by the so-called PEGylation [5] increases their sol-
ubility in water and aqueous solutions [6]. PEG-grafted MWCNTs exhibited
excellent hydrophilicity, good bioelectrocatalytic activity and biocompatibility [7].
The high selectivity chemical vapour and gas sensors [8, 9], taste and
bio-nanosensors [10–12] based on PEG-functionalized CNTs have been already
developed, showing fast response, good reproducibility and high selectivity.

Recently, PEO + MWCNT composites had attracted attention as potential
materials for protection of optical sensors from high-intensity beams [13].
Polypropylene grafted CNTs were also synthesized [14, 15], with CNTs surrounded
by the polymer chains with an average thickness of ≈2 nm. The electro-induced
shape memory polymer composites on the base of the poly(butylene succinate)-
PEO multiblock copolymer have been synthesized [16]. The fine dispersion of
CNTs in the matrix enabled it to form a percolation network at ≈0.5 wt% of the
filler. Moreover, CNTs served as a nucleating agent for both PBS and PEG seg-
ments. It resulted in increase in crystallization temperature and crystallinity of both
segments. MWCNTs + polyurethane foams with shape memory properties have
been synthesized on the base of polypropylene glycol [17].

PEG and PPG in combination with nanoplatelets (montmorillonite and laponite)
have also been intensively studied. It was demonstrated that the combination of
these polymers with montmorillonite (MMT) or organo-modified montmorillonite
(MMTO) (so-called, PEG + MMT hybrids) improves barrier [18], mechanical,
viscoelastic and thermal [19–21] properties of polymeric films.

MMTO + PEG hybrids have been used as effective modifiers of rheological
behaviour and mechanical properties of ultrahigh molecular weight polyethylene
[22]. Intercalation in MMT was observed only with oxyethylene units containing
polyglycols [23]. Oxyethylene sequences of 5–6 units proved to be sufficient for
intercalation. The MMT preferentially absorbed the higher mass fractions of PEG
[24]. PEG chains can penetrate inside the interlayer of MMT and MMTO galleries
[24–26]. Moreover, PEG can be used as a modifier for preparation of organoclays
[27]. The PEG + MMT hybrids were shown to be useful for improving the rheo-
logical and mechanical properties of polypropylene [27–29]. The effects of PEG
and PPG on aqueous laponite suspensions was studied with small-angle neutron
scattering (SANS) [30]. It was demonstrated that for comparable molecular
weights, Mw, PPO speeds up the gelation more efficiently than PEO.

The high interest in polyglycols doped with Li salts is due to their technological
applications as solid polymer electrolytes in electrochemical devices such as lithium
rechargeable batteries and fuel cell, display devices and sensors [31, 32]. Their
attractive properties are stipulated by the relatively high melting point, good
structural integrity, low glass transition temperature, which permits ion transport at
ambient temperatures, low toxicity and biocompatibility. However, the applica-
tion of such polymer electrolytes is restricted by their low ionic conductivity at
ambient temperatures limits. The incorporation of nanofillers to the PEO–LiCF3SO3

allowed improving the ionic conductivity [33]. The nanocomposite polymer
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electrolytes are rather attractive in applications for lithium batteries [34]. The
introduction of MMTO in polymeric nanocomposite electrolytes based on poly
(ethylene oxide)–LiClO4 resulted in noticeable increases in ionic conductivity [35].
This effect was attributed to a reduction in the degree of crystallinity.
Nanocomposite polymeric electrolyte based on PEO–LiClO4-doped with
MWCNTs has also been studied [36]. The addition of MWCNT to PEO–LiClO4

resulted in noticeable enhancement of ionic conductivity. The effect was attributed
to enhanced amorphization by local modification of PEO chains from crystalline to
disordered arrangements.

This work discusses phase behaviour, microstructure and percolation effects in
PEG and PPG doped by MWCNTs, MMT, laponite or their organo-modified
species studied by different experimental methods (X-ray scattering, optical
microscopy, impedance spectroscopy, differential scanning calorimetry and mea-
surements of electrical conductivity).

7.2 Materials and Methods

7.2.1 Materials

7.2.1.1 Polyglycols

Polyethylene glycols (PEG-300, PEG-400, PEG-1000, PEG-10000) and polypro-
pylene glycol (PPG-400) were the Aldrich products. Polyethylene glycols and
polypropylene glycols are the typical polyglycols with many different applications.
The term glycol is reserved for low molecular weight polymer while the term oxide
is used for high molecular weight polymer. The structures of PEG and PPG are
presented in Fig. 7.1.

At room temperature PEGs with a molecular weight, Mw, up to 600 are fluids,
PEGs with a molecular weight between 800 and 2000 are pasty, and with molecular
weights above 3000 the PEGs are solids. Degree of PEG crystallinity, χ, increases
with increasing molecular weight. PEG is a hydrophilic nonionic polymer and it has
the remarkable solubility in water [37].

It can be explained by the hydrogen bonding between the ether oxygen atoms of
PEG and water molecules. At high temperatures the hydrogen bonds become
broken and this results in clouding of PEG aqueous solutions. PEG is also soluble
in methanol, ethanol and benzene and is insoluble in hexane.

CH3
(a) (b)

Fig. 7.1 Chemical structure of a PEG/PEO (a) and PPG/PPO (b) macromolecules

7 Structure of Polyglycols Doped by Nanoparticles with Anisotropic Shape 169



At room temperature PPGs with a molecular weight between 250 and 4000 are
fluids and have melting temperatures below ≈250 K. The solubility of PPG in water
is lower than that of PEG. PPG of low molecular weights are completely soluble in
water. With high molecular weights, they are partially soluble, and their solubility
decreases with increasing of temperature or molecular weight of PPG, Mw.

7.2.1.2 Carbon Nanotubes

In this work, multi-walled carbon nanotubes were used. They were prepared from
ethylene using the chemical vapour deposition (CVD) method (TM Spetsmash Ltd.,
Kiev, Ukraine) with FeAlMo as a catalyst [38]. MWCNTs were further treated by
alkaline and acidic solutions and washed by distilled water until reaching the distilled
water pH values in the filtrate. The typical outer diameter, d, of MWCNTs was ≈30–
50 nm [39], their length, l, was≈5–10 μmandmean aspect ratio was a = l/d≈ 100–300.

The specific surface area of the powders determined by N2 adsorption was
S = 130 ± 5 m2/g. The electrical conductivity, σ, of the powder of MWCNTs
compressed at 15 TPa was about 10 S/cm along the axis of compression. The
density of the MWCNTs was assumed to be the same as the density of pure
graphite, 2045 kg/m3.

7.2.1.3 Nanoplatelets (Montmorillonite, Laponite)

The pristine montmorillonite was the MMT of Pygevskii deposit (Ukraine). The
crude mineral was preliminarily refined to remove impurities. For facilitation of
MMT transfer into the organic form, it was initially transferred into the sodium
form through its multiple (5 times) treatment by 0.1 M solution of NaCl during 24 h
at 340 K. The solid/liquid ratio was kept as 1/100. Then MMT was centrifuged and
washed several times by deionised water to remove surplus NaCl salt. The prepared
sample of homoionic clay contained highly pure MMT, which was confirmed by
X-ray and chemical analysis, and had the exchange capacity of 1.05 μmol-equ/g
and the specific surface (determined by methylene blue adsorption) 640 m2/g.

The nanoplatelets of laponite RD (Rockwood Additives Ltd., UK) are composed
of rigid disk-shaped charged sheets with 0.92 nm thickness and the average
diameter about 25–30 nm. It is a synthetic swelling layered clay of 2:1 structural
type with molecular formula Na0.7[(Si8Mg5.5Li0.4)O20(OH)4]. Its specific surface
area is ≈370 m2/g, the surface charge density of individual discs is 0.4 e/unit cell,
and the specific particle density is 2650 g/cm3. The sheets are bearing negative
surface charge related to isomorphic substitution of Mg by Li atoms. Their negative
charge is counterbalanced by the positive charge of exchangeable sodium ions
present in the interlayer. Each sheet had a central layer composed of Mg2

+ cations
in octahedral coordination to oxygen atoms or hydroxyl groups. In Laponite RD,
the concentration of negative charges, defined as a cation exchange capacity was
equal to 0.75 mequiv/g.
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The organo-modified MMT (MMTO) and Laponite (LapO) were prepared by
ion-exchange reactions. The long chain cetyl-trimethyl ammonium bromide ions
(C16H33N(CH3)3

+·Br−, CTAB, Merck) were chosen as a swelling agent for inter-
calation into MMT platelets. The aqueous solution of CTAB (1 wt%) was slowly
added to the aqueous platelet dispersion (1 wt%) and stirred vigorously 24 h at
360 K. The quantity of solutions corresponded to the required 1:1 stoichiometric
ratio of the exchange capacity of clay and CTAB. After incubation, the dispersion
was filtered using disc filter funnel and centrifuged. Finally, the obtained samples
were freeze-dried for preserving its high dispersion ability in organic media.

The interlayer distance, di, between nanoplatelets was measured using the
method of wide-angle X-ray scattering (WAXS). Figure 7.2 presents WAXS pat-
terns for MMT, MMTO, Lap and LapO samples in powder air-dry state [40]. The
derived interlayer distances were about 1.30, 1.90, 1.32 and 1.58 nm for MMT,
MMTO, Lap and LapO samples, respectively. The increase in interlayer distance,
Δdi, in organoclays MMTO (Δdi ≈ 0.6 nm) and LapO (Δdi ≈ 0.26 nm) evidenced
that CTAB successfully penetrate into the clay interlayer. In the organo-modified
samples the alkylammonium cations are strongly bound to the negatively charged
platelets.

7.2.1.4 Preparation of the Samples

The composite samples were prepared by adding the appropriate weights of filler
(MWCNTs, MMTO, Lap, LapO) to the polymers (PEG or PPG) in the liquid state
with subsequent 20 min sonication of the mixture using a UZDN-2T ultrasonic
disperser. After sonication, the composites were cooled down to the solid state and
kept at room temperature until further experiments.
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7.2.2 Methods

7.2.2.1 Differential Scanning Calorimetry (DSC)

The kinetics of isothermal crystallisation was studied using the crystallisation
isotherms. These isotherms were obtained using the differential scanning calorim-
eter DSC-2 Instrument (Perkin Elmer, Waltham, MA, USA) upgraded and supplied
with signal processing software by IFA GmbH, Ulm. Before each measurement the
sample was heated up to 375 K, incubated for a 3 min and then cooled down to
263 K at the cooling rate, Vc, (1–20 K/min) [41].

The melting temperature, Tm, and melting enthalpy, ΔHm, were measured with a
TA Q2000 Instrument (TA Instruments Ltd. West Sussex, England) in the regime
of heating from 273 to 333 K at the heating rate, Vh, of 2 K/min. The samples (20–
30 mg) were packed in the aluminium pans.

The fractional crystallinity of polymer composites, χDSC, was calculated as

vDSC ¼ DHm=DH
0
m
; ð7:1Þ

where ΔHm is the melting enthalpy of the composite under investigation and ΔHm
0 is

the melting enthalpy of 100 % crystalline polymers (=165.5 J/g for PEG [42, 43]).
Though application of the enthalpy method for estimation of the crystallinity

degree is controversial [44], it is widely used for determination of the fractional
crystallinity of PEGs [45] and it is useful in applications with small filler content.

7.2.2.2 Thermal Conductivity

The thermal conductivity was measured by the method of dynamic calorimetry with
an IT-λ-400 meter (Russia, measurement accuracy ±10 %). The instrument was
calibrated with the aid of sample measures of thermal conductivity made of fused
quartz and copper. Measurements were carried out using a monotonous regime
method. The specific thermal conductivity of the sample, λ, was calculated as

k ¼ h=Rs; ð7:2Þ

h is the sample thickness, Rs is thermal resistance.

7.2.2.3 X-Ray Scattering

The structure of composite at a small spatial scale was investigated using a
wide-angle X-ray scattering (WAXS) instrument DRON-2 (Bourevestnik, Inc., St.
Petersburg, Russia.) with CuKα source of emission at a wavelength 0.154 nm.
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The size of correlation zone, Lc, was estimated from Scherrer equation [46]:

Lc ¼ ak=b cos hm; ð7:3Þ

where α is the coefficient accounting for the form of correlation zone (it is close to
unity, α ≈ 0.9), β is the width of a peak at half-height expressed in radians of 2θ
(width measured in 2θ degrees and then multiplied by π/180), θm is half of the
diffraction angle corresponding to position of the scattering peak. For calculation of
Lc, the most intensive maximum in the WAXS pattern was used.

WAXS patterns were used also for derivation of the fractional crystallinity of
PEG-1000 based composites, χXRD, defined as a ratio [47]:

vXRD ¼ Qc=Qt: ð7:4Þ

Here, Qc is the area fraction under the diffraction peak that corresponds to the
crystalline structure and Qt is the total area under diffraction peak.

The interlayer distance of the nanoplatelets, di, (MMT, MMTO, Lap, LapO) was
calculated from Bragg formula [46]:

di ¼ k=2sinhm: ð7:5Þ

Small-angle X-ray scattering (SAXS) investigations were done in the diapason
of the scattering angles, θ, between 0.05° and 4° using a Kratky-camera system.
The Kα radiation was selected with a filter and data, measured by step scanning with
a scintillation counter, were obtained.

7.2.2.4 Electrical Conductivity

The concentration dependences of DC-electrical conductivity, σdc, were estimated by
impedance spectroscopy method using Z-2000 (Elins, Inc., Moscow, Russia)
instrument in the frequency range within 1Hz–2MHz. The real, Z′, and imaginary, Z′′
parts of the sample impedance were measured using a plate geometry cell with
0.11mm distance between the electrodes. The complex impedance plane plots (Z′′ vs.
Z′) were used to separate the bulk material and the electrode surface polarization
phenomena. The frequency-dependent value of complex impedancewas evaluated as:

Z�ðxÞ ¼ Z 0 � jZ 00 ¼ R

1þ ðxCRÞ2 � j
xCR2

1þ ðxCRÞ2 ; ð7:6Þ

where ω = 2πf is the angular frequency, C and R are the capacitances and the
equivalent parallel resistance of the cell with sample, respectively.

The direct current electrical conductivity, σdc,was estimated from analysis of a
complex impedance plane plots (Z′′ vs. Z′) in the limit of very small frequencies [48].

The electrical conductivity, σ, was also estimated by the inductance, capacitance
and resistance (LCR) meter 819 Instek, 12 Hz–100 kHz (Instek America
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Corp. Chino, CA, USA) in a cell equipped with two horizontal platinum electrodes
(diameter of 12 mm, inter-electrode space of 0.5 mm). The applied external voltage
was U = 1.275 V. The measuring frequency of 10 kHz was chosen in order to avoid
polarization effects on the electrodes and the electric field-induced asymmetric
redistribution of MWCNTs between the electrodes [49].

7.2.2.5 Microstructure

The optical microscopy images were obtained using an OI-3 UHL 4.2 microscope
(LOMO, Russia). The microscope detector unit was interfaced with a digital camera
and a personal computer.

The digital images were captured with magnification of 10–100, the layer
thickness was 50 µm. In order to obtain 2D projections of the MWCNT aggregates,
the focal plane was located, approximately, on the middle plane of the aggregates.
The binary images were analysed using the box-counting method with the help of
the image analysis software ImageJ v1.42q. The fractal dimension, Df ; was
obtained from dependence of the number of boxes necessary to cover the boundary
of an aggregate, Nb, versus the box size, Lb [50]:

Nb / LDf

b : ð7:7Þ

7.2.2.6 Statistical Analysis

All experiments and measurements of characteristics were repeated using, at least,
five replicates. One-way analysis of variance was used for statistical analysis of the
data using the Statgraphics plus (version 5.1, Statpoint Technologies Inc.,
Warrenton, VA). For each analysis, significance level of 5 % was assumed. The
error bars presented on the figures correspond to the standard deviations.

7.3 Polyglycols Doped by Carbon Nanotubes

The polymers doped by carbon nanotubes can display high electrical conductivity
even at very low content of nanotubes. The dielectric-conductor percolation
threshold can be smaller than 0.01 wt% and is dependent on aspect ratio of
nanotubes a, type of polymer and dispersion method [51].

7.3.1 PEG

Nanocomposites on the base of PEG doped with MWCNTs display many intriguing
physical properties. For example, such systems have unique percolation behaviour
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of electrical and thermal parameters. One of the reasons of such unique percolation
behaviour may be related to the impact of nanofiller on the structure of the polymer
matrix. Different studies were devoted to the behaviour of PEGs + MWCNT sys-
tems [39–41, 52–59].

SAXS method was applied to study the samples of PEG-1000 doped with
MWCNTs [39]. SAXS profiles for pure PEG-1000 and for MWCNTs (1.5 wt%)
dispersed in PEG-1000 are presented in Fig. 7.3. Doping with nanotubes resulted in
a noticeable increase in scattering intensity, I. The estimated mean external diameter
of MWCNTs was 40 nm. However, other parameters of MWCNTs were different
for the free species and solvated species inside PEG matrix. For example, the
persistence length, lp, was ≈100 and ≈ 50 nm for the free and solvated species,
respectively. From other hand, the fractal dimension, Df, was ≈2.1 and ≈2.4 for the
free and solvated species, respectively. These changes in lp and Df reflected the
more flexible state for solvated species.

The decrease in persistence length upon transferring the MWCNTs inside
PEG-1000 can reflect the effect of sonication that used for preparation of composite.
It can be speculated that two effects are responsible for such behaviour. Sonication
can provoke the decrease of the length of nanotubes (Fig. 7.4a) and the increase in
their flexibility due to the disentanglement of aggregates (Fig. 7.4b) [39].

WAXS method was applied to study the samples of PEG-300 + MWCNTs [61].
The half-width of diffraction peak increased systematically from 7.7° to 9.8° with
increasing of MWCNT content.

That corresponded to a decrease in the size of a correlation zone, Lc, (a zone with
the long range order) up to 0.87 nm. This fact is an evidence of the presence of
supplementary disorder of amorphous polymer matrix under the influence of
nanofiller particles. This disorder reflects the restriction of conformational sets of
polymer chains. WAXS data for the samples PEG-1000 + MWCNTs evidenced that
the degree of crystallinity, χXRD, decreases from 82 to 62.5 % with increasing
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MWCNT content [39]. These data for χXRD were good agreement with the esti-
mation of the degree of crystallinity, χDSC, obtained from the DSC method [40].

The examples of thermal characteristics (melting Tm, and enthalpy of melting,
ΔHm) and the degree of crystallinity, χDSC, for the samples PEG-10000 + MWCNTs
estimated from the DSC data are presented in the Table 7.1 [58].

A rather complex dependence of the degree of crystallinity, χDSC, versus the
concentration of nanotubes, Cn, was observed (Fig. 7.5). The value of χDSC
increased monotonically, reaching a maximum at Cn = 0.5 %, and then decreased to
a minimum at Cn = 0.6 %, and then started to increase again [58].

The increase of crystallinity of PEG in the concentration range Cn = 0–0.5 wt%
was explained by the fact that the nanotubes could serve as the centres of hetero-
geneous nucleation of crystalline phase. With increase of the concentration of these
centres the crystallization rate and degree of crystallinity of the polymer matrix are

(a) (b)

Fig. 7.4 Impact of sonication on the persistence length of MWCNTs. Sonication can provoke the
decrease of the length of nanotubes (a) and the increase in their flexibility due to the
disentanglement of aggregates (b)

Table 7.1 Thermal
characteristics (melting
temperature, Tm, and
enthalpy, △Hm) and the
degree of crystallinity, χDSC,
obtained for the samples
PEG-10000 + MWCNTs
from the DSC measurements
[58]

Cn (wt%) Tm (K) △Hm (J/g) χDSC (%)

0 334.6 128.1 77.6

0.2 335.7 132.7 80.4

0.3 335.8 134.0 81.2

0.35 335.5 132.9 80.5

0.4 336.8 133.7 81.0

0.45 335.2 137.8 83.5

0.5 336.0 142.6 86.4

0.55 335.3 130.3 78.9

0.6 336.3 122.3 74.1

0.8 336.6 124.6 75.5

1 337.0 126.2 76.5

2 338.5 130.7 79.2

5 340.0 128.9 78.1
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also increasing. As the result a more perfect structure of the polymer with a higher
degree of crystallinity was realized. Sharp reduction in crystallinity in the con-
centration diapason 0.5–0.6 wt% (Fig. 7.5, dashed area) can be explained by the
effect of surface of the nanotubes on the studied thermal characteristics. At
Cn ≈ 0.6 wt% the processes of thermal motions of macromolecular chains are
restricted owing to the presence of well-developed surface of nanotubes. The
presence of steric barriers for macromolecules of PEG results in losing of their
mobility and thus in ability to form a crystalline structure. However, at higher
concentrations (Cn > 0.6 wt%) the strong aggregation of carbon nanotubes inside
PEG matrix was observed. This aggregation resulted in reducing the surface of the
nanotubes, available to interact with the PEG matrix.

It is interesting to note that practically for all samples at different Cn the
single-peak DSC crystallization thermograms were observed. It reflects the mech-
anism of volume crystallization of PEG. However, for the concentration
Cn ≈ 0.5 wt% the additional crystallization peak was observed. The presence of this
peak reflected the crystallization of PEG macromolecules that are in close contact
with the surface of MWCNTs.

The degree of crystallinity, χDSC, was dependent also on the cooling rate, Vc,
during the experiment. Figure 7.6 presents the typical dependences of the degree of
crystallinity, χDSC, of PEG-10000 (a) and of PEG-10000 + 0.5 wt% MWCNTs
(b) versus the time of crystallization, t, at different rates of cooling [41].

To determine the kinetic parameters of the non-isothermal crystallization the
modified Avrami equation was used [62]:

vDSCðtÞ=vDSCð1Þ ¼ 1� exp �Ktnð Þ; ð7:8Þ

where K is a rate constant and n(1−4) is an Avrami exponent.
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The Avrami exponent can indicate the mechanism of crystallization. For
example, the value n = 4 corresponds to the three dimensions of growth. It may be
also related with the fractal dimension of the growing crystallites, Df, [63]:

Df ¼ n�1: ð7:9Þ

Figure 7.7 presents the Avrami exponent, n, versus the concentration of nano-
tubes, Cn, for the samples PEG-10000 + MWCNTs at different rates of cooling
[41].

It is interesting that the Avrami exponent, n, goes through a minimum in the
same concentration range Cn = 0.5–0.6 wt% where the minimum of a degree of
crystallinity, χDSC, is observed (Fig. 7.5). The similarity in behaviour of n(Cn) and
χDSC(Cn) suggests the strong development of aggregation at Cn = 0.5–0.6 wt%,
resulting in a decrease of the surface contact between PEG and MWCNTs [41].

The examples of aggregates for PEG-1000 doped by MWCNTs at different
concentrations, Cn, are presented in Fig. 7.8 [40]. The similar aggregation was
observed also for PEG-300, PEG-400 and PEG-10000.

These aggregates have a fractal structure. The fractal dimension, Df, was esti-
mated from analysis of 2D projections (7.7). The value Df depicts morphology of
the aggregates and it varies between 1 (corresponding to a linear aggregate) and 2
(corresponding to a compact aggregate). It was an increasing function of Cn, which
is typical for behaviour of the percolating MWCNT networks (Fig. 7.9).

At small concentration of nanotubes (Cn < 0.01 wt%) the aggregates were rather
small (<10 μm) and isolated. The increase of Cn results in increase of aggregate
sizes and at the certain critical concentration they coalesce into the infinite perco-
lation cluster that spans through the system. This concentration dependence of the
microstructure of the composites is rather typical for different systems doped by
nanotubes [40, 56, 58, 59, 64]. The microstructure can be affected by the func-
tionalization of the surface of nanotubes [59] or by the changing the method applied
for their dispersion inside matrix [64].
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Doping of PEG by nanotubes noticeably affect the system electro-physical
behaviour. Figure 7.10 presents temperature dependencies of electrical conductivity
of PEG with different molecular weight undoped (dashed lines) and doped (solid
lines) with 0.1 wt% MWCNTs. For PEG-400 sample no significant hysteresis in the
heating-cooling cycle was observed. However, for PEG-1000 and PEG-10000
samples the hysteresis loop in the heating-cooling cycle in the vicinity of the
melting-freezing temperatures was observed.

In general, with increasing molecular weight of the polymer, Mw, and increasing
degree of its crystallinity, a significant decrease in electrical conductivity was
observed. This effect can be attributed to a decrease in electrical charge mobility
with increase of the crystallinity.

The rather unexpected effect was observed in the temperature dependence of
electrical conductivity for the PEG-10000 sample. In the vicinity of the
melting-freezing temperatures the electrical conductivity passed through a minimum.
The negative temperature coefficient of conductivity in the vicinity of 290–325 K can
be explained by the effect of the temperature on the conductive pathways in a polymer
matrix in this temperature interval. PEG-10000 has a rather high degree of crystal-
linity, and its structure can be represented as a mixture of crystalline grains with small
electrical conductivity covered by amorphous films with large electrical conductivity.
The observed changes in electrical conductivity near the melting/freezing points can
reflect the thermal expansion of the polymer crystalline grains [65].

Introduction of 0.1 wt% of MWCNTs have resulted in a significant increase in
the electrical conductivity. For PEG-400 doping by MWCNTs did not resulted in
significant hysteresis behaviour of electrical conductivity. However, for PEG-1000
and PEG-10000 hysteresis loops became large and were observed in a wider
temperature range (Fig. 7.10).
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The noticeable increase in electrical conductivity, σ, was observed for MWCNT
concentrations, Cn, above the percolation threshold (≥0.1 wt%). The percolation
theory predicts the following scaling law for the concentration dependence of
electrical conductivity [66]:

r / ðCn � Cc
nÞtc atCn [Cc

n; ð7:10Þ

where tc is a critical conductivity exponent, and Cn
c is a percolation concentration of

the conductive filler.
The critical exponent, tc, depends on the system dimensionality and type of

percolation. For the random percolation problem the estimated values are tc ≈ 1.33
in two and tc ≈ 2 in three dimensions [66]. A value of tc ≈ 2.5 has been derived for a
continuum ‘‘Swiss cheese” model with distributed bond strengths or contact
resistances [66].

For homogeneously distributed particles (statistical percolation) the theoretically
predicted dependence of the percolation threshold on the aspect ratio (a = l/d) is
usually fulfilled, 2Cn

c * ϕn
c * 0.5/a [67], here ϕn

c is a volume percolation con-
centration. Accounting for the mean aspect ratio a ≈ 100–300 of MWCNTs this
estimation gives Cn

c * 0.08–0.25 wt%.
However, the numerous studies have found that for polymers doped by nano-

tubes the value of Cn
c can reflect the interactions between fillers and polymers, the

homogeneity of distribution of nanotube inside polymer matrices and many other
factors [51]. The experimental data have suggested that the percolation threshold
concentration is inversely proportional to the degree of crystallinity of polymer
matrix, i.e., Cn

c∝1/χ [54, 55]. For example, MWCNT doped systems on the base of
the high crystalline PEG-10000 demonstrated the smaller percolation concentration
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(≈0.4 wt%) than the systems on the base of high amorphous PEG-400(≈0.5 wt%)
(Fig. 7.11) [55].

This observation can be explained accounting for the structure of the
semi-crystalline polymers doped with MWCNTs (Fig. 7.12). The integration of
nanotubes inside the crystalline regions of polymers is restricted due to the compact
packing of the polymer chains inside these regions. On the other hand,
MWCNTs-polymer interaction can immobilize the nanotubes inside the amorphous
regions. During the growth of crystallites in the polymer MWCNTs are expulsed
into in amorphous regions and covers the crystalline grains [55]. The situation is
rather similar to that observed in segregated composites where percolation can be
observed at a very small content of filler [65, 68].

The percolation behaviour and properties of theses composites can be influenced
by the spatial distribution and alignment of MWCNTs inside PEG matrix. The
different characteristics of the samples PEG-1000 doped with MWCNTs prepared
in the presence and absence of direct current electric field (10 kV/cm) were com-
pared [57]. The electric field noticeably affected the melting temperature and
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enthalpy for all concentrations of MWCNTs in composite (0–1 wt%) and its
application resulted in increase of the size of crystallite grains and degree of
crystallinity in the samples. The percolation threshold concentrations were
Cn
c ≈ 0.4 wt% and Cn

c ≈ 0.1 wt% for the samples obtained without and with curing
in the electric field, respectively.

The percolation can be also important in the behaviour of thermal conductivity,
λ, of PEGs doped by MWCNTs. The thermal conductivity strongly depends upon
the interactions between fillers and polymers and the homogeneity of distribution of
nanotubes [58]. Figure 7.13 presents example of the thermal conductivity, λ, versus
the concentration of MWCNTs, Cn, inside PEG-10000 [58].

The concentration dependence of λ was rather complex and it was in corre-
spondence with dependence of the degree of crystallinity, χDSC, (Fig. 7.5) and
Avramy exponent, n, (Fig. 7.7) for same system. Initial increase of λ (region I) can
be explained by the impact of nanotube on the increase of the degree of crystal-
linity. In the region II (C > Cn

c) the increase of λ can be explained by the contri-
bution of the MWCNT networks to the thermal conductivity. The intrinsic thermal
conductivity of the individual MWCNTs may be rather high, λ ≈ 2000–3000 W/
(m K) [69, 70] as compared with those for the pure PEG-1000, λ ≈ 0.4 W/(m K).
However, in the vicinity of the percolation threshold the jump in the electrical
conductivity was noticeably larger (Fig. 7.11) than the changes in the thermal
conductivity (Fig. 7.13). This effect reflects the thermal resistance of contacts
between MWCNTs and presence of well-developed PEG-MWCNT interfaces.

The different models based on approximations of Maxwell-Eucken [71],
Bruggeman [72], Lewis-Nielsen [73], Pal [74], Meredith and Tobias [75], the
percolation theory [76] were developed for theoretical description of concentration
dependence of the thermal conductivity, λ. The percolation theory utilises the
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scaling dependence that is in full analogy with dependence for electrical conduc-
tivity (7.10) [58]:

k�ðCn � Cc
nÞk atCn [Cc

n; ð7:11Þ

where k is the thermal conductivity exponent.

7.3.2 PPG

The polyethylene and polypropylene glycols are quite similar in chemical structure
and properties. However, the PEG has no side branches, whereas PPG has one side
group in each monomer unit. In general, PEG + MWCNT and PPG + MWCNT
composites have many similar properties.

Figure 7.14 presents microscopic images of the PPG-400 doped by MWCNTs at
different concentration of nanotubes [77]. Below the percolation threshold, nanotubes
form many individual non-spanning clusters. In the vicinity of percolation concen-
tration, Cn ≈ Cn

c ≈ 0.4 wt% (Fig. 7.14d, e), the spanning cluster appeared. At higher
concentration the clusters become more developed and compacted (Fig. 7.14f).

This behaviour was in correspondence with the data on the electrical conductivity
for these systems [78–80]. Figure 7.15 presents direct current electrical conductivity,
σdc, versus the concentration of MWCNTs, Cn, for PPG-400 + MWCNT systems
[80]. The sharp jump in the value of σdc was observed at Cn ≈ 0.5 wt% and it was
attributed to the formation of the percolation cluster of MWCNTs.

(a) (b) (c)

(d) (e) (f)

1 mm 1 mm 1 mm

1 mm 1 mm 1 mm

Fig. 7.14 Microscopic images of the PPG-400 doped by MWCNTs at different concentration of
nanotubes, Cn (wt%) = 0.075 (a), 0.1 (b), 0.03 (c), 0.4 (d), 0.5 (e), 0.75 (f) [77]
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The electro-physical properties of PPG 400 + MWCNT systems were also
studied using the impedance spectroscopy [79]. Figure 7.16 shows the real
impedance Z′ versus the imaginary impedance Z′′ (Cole-Cole plots) at different
concentrations of MWCNTs in PPG-400 and temperature T = 283 K. Some parts of
Cole-Cole plots for these systems show linear behaviour in the complex plane with
an angle of φ to the real axis (Fig. 7.16).

The value of φ reflects the mechanism of the charge transport in the system [81].
The classical Cole-Cole response with φ = 45° corresponds to a singular charge
transfer mechanism in the system, e.g., diffusion mechanism. The deviation from
45° can be explained by the presence of several mechanisms. For concentration of
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MWCNTs Cn = 0.1 wt% below percolation threshold the value of φ ≈ 46° was
close to the classical response with the singular mechanism.

For pure PPG-400 this mechanism corresponds to the diffusion of the H+ ions
limited by segmental motions of the polymer chains. From the other hand, for
concentration of MWCNTs Cn = 0.5 wt% above the percolation threshold, the value
of φ ≈ 55° deviated from the classical response. It indicates the occurrence of a
supplementary conductivity mechanism controlled by the charge transport through
the clusters formed by carbon nanotubes. The similar behaviour was observed also
for the samples with higher concentration of MWCNTs (1.0 and 1.5 wt%) [79].

Cole-Cole plots for pure PPG-400 and PPG-400 doped with MWCNTs were
simulated using equivalent circuits with the help of EIS Spectrum Analyser [78, 79]
(Fig. 7.17).

The equivalent circuit 1 for pure PPG (7.17a) includes the total volume resis-
tance, RPPG, and the geometric dielectric capacitance, CPPG, of PPG, and constant
phase element (CPE) that accounts for the behaviour of the imperfect dielectrics.
This element can reflect exponential distribution of parameters of electrochemical
reaction, impedance behaviour related with fractal structure of a sample surface, etc.

The frequency dependence of CPE impedance was simulated using the fol-
lowing relationship:

ZCPE ¼ AðjxÞ�g; ð7:12Þ

where A and g (0 ≤ g ≤ 1) are frequency independent constants, ω is a cyclic
frequency.

The equivalent circuit 1 in Fig. 7.17a allowed a good fitting of the experimental
data for pure PPG-400 and PPG-400 doped with small quantity of MWCNTs
(Cn = 0.1 wt%). From other hand, the equivalent circuit 1 failed to simulate the
experimental data at high concentration of MWCNTs above percolation threshold
(Cn ≥ 0.5 wt%).
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MWCNTs (b). T = 283 K. Symbols are the experimental data, solid lines correspond to the
simulations using the equivalent circuits [78, 79]
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To account for the charge transport through the clusters formed by carbon
nanotubes the equivalent circuit 2 (Fig. 7.17b) was used. In this circuit the element
Rn correspond to the total volume resistance of MWCNTs. The simulation for
circuit 2 allowed obtaining a good fitting of the experimental data at high con-
centration of MWCNTs near and above percolation transition (Fig. 7.17b).

The more complicated equivalent circuits were also tested in order to account for
the processes at the composite-electrodes and PPG-MWCNT interfaces [80]. The
fractal dimensions of the nanocomposite-electrode, Df

e, and PPG-MWCNT, Df
c,

interfaces increase with increase the concentration of MWCNTs (Fig. 7.18).
At small concentration of nanotubes the value of Df

e is close to 2 and it means
that nanocomposite-electrode interface is smooth. However, this interface becomes
rougher near the percolation threshold. From other hand, the fractal dimension of
PPG-MWCNT interface, Df

c, is noticeably higher than Df
e and it approaches to 3 at

Cn ≈ 0.7 wt%. It corresponds to the formation of infinitely rough PPG-MWCNT
interface above percolation threshold.

7.4 Nanoplatelets (Montmorillonite, Laponite)

The structure and properties of nanocomposites based on PEG-1000 doped with
MMTO and LapO were studied in detail using small- and wide-angle X-ray dif-
fraction, differential scanning calorimetry, and impedance spectroscopy [82].
Figure 7.19 shows WAXS patterns of PEG-1000 doped with 5 wt% MMTO (a) and
LapO (b) [82].

The two diffraction reflexes were observed at small angles (at 2θ < 10°) for
PEG-1000 + MMTO composite (Fig. 7.19a) and they corresponded to the different
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Fig. 7.18 Fractal dimensions
of the nanocomposite-
electrode and PPG-MWCNT
interfaces, Df, versus the
concentration of MWCNTs,
Cn, in PPG-400. T = 298 K
[80]
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interlayer distances, di. The first peak (di = 3.7 nm) corresponds to the partial
intercalation of macromolecules inside interlayer space of MMTO and second peak
(di = 1.9 nm) evidences the presence of undamaged tactoids (stacks of parallel clay
platelets). From other hand, these crystalline reflexes were absent for
PEG-1000 + LapO composite (Fig. 7.19b). It evidences the complete exfoliation of
LapO platelets inside PEG-1000 matrix.

Figure 7.20 presents degree of crystallinity determined by different methods
(χDSC and χXRD) of PEG-1000 doped with MMTO and LapO versus the concen-
tration of nanoplatelets [82]. The both DSC and X-ray methods gave the rather
results and the introduction of filler resulted in noticeable decrease of χDSC and
χXRD. It can be explained by the steric restrictions created by a layered silicate
surface. The more significant disordering was produced by LapO than MMTO.
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Fig. 7.19 WAXS patterns of PEG-1000 doped with 5 wt% MMTO (a) and LapO (b). Insets show
the presentations of structure of the composites. T = 298 K [82]
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It can be explained by the more deep integration and exfoliation inside PEG of
LapO than MMTO.

Figure 7.21 presents temperature dependences of direct current electrical con-
ductivity, σdc, for PEG-1000 doped with platelets of MMTO (a) and LapO (b) [82].
For these composites the Arrhenius behaviour of σdc(T) was observed below the
melting temperature, at T < Tm:

rdcðTÞ ¼ r0 exp � Ea

kT

� �
; ð7:13Þ

where Ea is the activation energy, σo is the electrical conductivity at infinite
temperature.

In the crystalline phase the charge transport is dominated by the hopping
mechanism and value of Ea/qi (qi is a charge of an ion) corresponds to the blocking
potential between two potential wells.

However, above the melting temperature the significant increase in electrical
conductivity was observed. The transport of ions at T > Tm is controlled by seg-
mental relaxation of the polymer chains. It was observed that the temperature
dependence of the electrical conductivity at T > Tm can be fitted with high precision
with a Vogel–Tamman–Fulcher (VTF) type equation [40, 53, 78, 79, 82, 83]:

rdc ¼ r0 exp � B
T � T0

� �
; ð7:14Þ

where B is the parameter and T0 is a Vogel temperature.
It is interesting that increase of the filler content resulted in a noticeable increase

in the electrical conductivity, σdc, for MMTO, while insignificant changes were
observed for LapO (Fig. 7.21). Such differences between behaviour of MMTO and
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the melting temperature, at T < Tm, and Vogel–Fulcher–Tammann behaviour above it, at T > Tm
[82]
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LapO fillers were explained by the different effects of these fillers on the free
volume in the polymer matrix [82].

The phase behaviour, microstructure and percolation of PEG-1000 doped by
MWCNTs, MMTO, and MWCNTs + MMTO hybrids were studied in [40]. The
percolation threshold transitions were observed at ≈0.1 wt%, and at ≈0.5–1.0 wt%
for filling of PEG by MWCNTs and MMTO, respectively. It is interesting that
adding of MMTO allowed facilitating the dispersion of MWCNTs inside PEG-1000
matrix (Fig. 7.22).

The increase in electrical conductivity was observed with addition of MMTO
(0–5 wt%) to the PEG-1000 + MWCNTs (0.5 wt%) composition (Fig. 7.23). It is
remarkable because the noticeable improvement of electrical conductivity was
observed above the percolation threshold and at high loadings by both MWCNTs
(=0.5 wt%) and MMTO (5 wt%).

The percolation behavior of polypropylene glycol (PPG-400) doped by with
MWCNTs and Lap or LapO was studied by using different experimental methods
[84].

The Lap and LapO displayed different affinity to PPG-400. The data have evi-
denced finite PPG integration inside Lap and complete exfoliation of LapO stacks
in a PPG matrix. The percolation was observed at Cn ≈ 0.4 wt% for

0.0 % wt  0.5 % wt 

1.0 % wt 2.0 % wt  

500 μm 500 μm

500 μm 500 μm

Fig. 7.22 Microscopic images of PEG-1000 doped by with MWCNTs (0.5 wt%) at different
concentrations of MMTO, Cp. T = 310 K (From [40]. With permission)
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PPG-400 + MWCNT and PPG-400 + MWCNT + Lap systems and at Cn ≈ 0.2 wt%
for PPG-400 + MWCNT + LapO systems (Fig. 7.24). The observed behaviour was
attributed to the effects exerted by LapO on the size of MWCNT aggregates, state of
their dispersion and homogeneity of their spatial distribution [84].
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also shown (From [84]. With permission)
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7.5 Effects of Inorganic Salts

Composite polymer electrolytes on base of polyglycols with added lithium salts
were studied in many works in relation with their wide range of applications in
lithium polymer batteries, fuel cells and sensors [85]. The important characteristic
of these composites is their electrical conductivity. The studies on high (e.g., PEO,
Mw ≈ 106 [86]) or low molecular (e.g., PEG-400 [87], PEG-300 [88], PEG-1000)
weights polymers complexed with lithium salts have been done.

Figure 7.25 shows dependence of direct current electrical conductivity, σdc,
versus the molar concentration of lithium perchlorate, C, at different temperatures
for the system PEG-300–LiClO4 [88]. The electrical conductivity grows signifi-
cantly with increasing of temperature. It reflects an increase in the mobility of the
polymer chain segments. The electrical conductivity passes through a maximum
C = Cm with increase of C. The value of Cm of was ≈1 mol/kg and increases with
increase of temperature.

The increase of σdc in the range C < Cm reflects the increase of concentration of
charge carriers. The increase of σdc in the range C > Cm reflects the formation of
ionic associates. The association degree of ions in lithium electrolytes can be
estimated using a Fuoss-Kraus theory [89]. For lithium perchlorate the following
ion-ion transformation are allowed:

Liþ þ ClO�
4 ,KI

LiClO4;

LiClO4 þ Liþ ,KT
Li2ClOþ

4 ; ð7:15Þ
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Fig. 7.25 Direct current
electrical conductivity, σdc,
versus the molar
concentration of lithium
perchlorate, C, at different
temperatures for the system
PEG-300–LiClO4
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LiClO4 þ ClO�
4 ,KT

Li(ClO4Þ�2 :

Here, KI and KT are the association constants of individual ions and triplets,
respectively.

The formation of triple ions in solution is also accompanies with formation of
ion pairs and free ions. The molar concentration of different ionic species can be
calculated as:

CLiþ ¼ CClO�
4
¼ aI � C;

CLi2ðClO4Þþ ¼ CLiðClO4Þ�2 ¼ aT � C; ð7:16Þ

CLiClO4 ¼ CaP ¼ Cð1� aI � 3aTÞ;

where αI, αP, αT are the fractions of individual ions, pairs and triplets, respectively.
The concentration of non-dissociated molecules of LiClO4 decreases due to the

formation of individual ions and triplets.
The association constants of individual ions and triplets can be calculated from

the following equations:

KI ¼ LiClO4

Liþ � ClO�
4
¼ ð1� aIÞ

a2I � C
;

KT ¼ Li2ðClO4Þþ
Liþ � LiClO�

4
¼ Li(ClO4Þ�2

LiClO4 � ClO�
4
¼ aT

aIð1� aI � 3aTÞC : ð7:17aÞ

In these derivations it was assumed that the species they are spherical and have
the same radii.

The inverse transformations give:

aI ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4KICÞ

p
Þ=ð2KICÞ;

aT ¼ KTaIð1� aIÞC=ð1þ 3KIaICÞ: ð7:17bÞ

So, this approach allows estimation the fractions of individual ions, αI, pairs,
αP = 1− αI − 3αT), and triplets, αT, from the known values of KI and KT.

The constants KI and KT for the system PEG-300–LiClO4 were experimentally
estimated from analysis of σdc(C) dependences [88]. It was shown that value of αI
decreases with increase of concentration, C, and increases with increase of tem-
perature, T. The tendency of the formation of ion pairs, triplets and higher order
aggregates with increasing of salt concentration was observed. This tendency may
be explained using the following mechanism. The interactions between polyglycols
and lithium salts result in formation of inter- or intra-molecular short-cross-links
between polymer chains. These cross-links have limited flexibility and can be
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formed across the Li+ ions or Li2ClO4
+ triplets. The doping of PEG-300–LiClO4

electrolyte by MWCNTs resulted in increase of the fractions of individual ions, αI,
and decrease of the values of αP and αT [88]. It can be speculated that MWCNTs
prevents formation of cross-links between Li+ ions and ether oxygens, or formation
of ionic associates in polymeric electrolytes.

The concentration dependences σdc(C) for the system PEG-1000–LiClO4 also
demonstrated the similar tendencies and the presence of maximums (Fig. 7.26) [90].
The maximum of electrical conductivity for this polymeric electrolyte was observed
at C ≈ 2.5 mol/kg that corresponds to the ratio of Li/O = 1/8. The data of WAXS
and DSC evidence about complete amorphization of this polymeric electrolyte at
Li/O = 1/8. Ion transfer is carried out mainly in the amorphous phase, and therefore
the maximum conductivity can be explained by high mobility of ionic species the
amorphous phase. A further increase of C leads to a decrease of ionic conductivity
that can be explained by the same reasons as for the system PEG-300–LiClO4.

It is interesting that at high concentration of lithium perchlorate (C = 5 mol/kg,
Li/O = ¼) the electrical conductivity become independent of temperature. This
behaviour is atypical for polymeric electrolyte and can be explained by the high
degree of ionic association and formation of high order ionic aggregates. The
existence of such aggregates was confirmed by the data of SAXS. The theoretical
“core-shell” model gives 1.9 and 3.3 nm for the radii of ionic core and ionic core
with shell, respectively.

The similar maximum of electrical conductivity for the system
PPG-400 + LiClO4 was also observed at C ≈ 1 mol/kg (at the ratio of Li/O = 1/20)
[83]. The size of correlation zone, Lc, (of the amorphous clusters) was ≈0.75 nm at
this concentration of electrolyte.
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7.6 Conclusions

The experimental data evidence that doping of polyglycols (polyethylene glycol
and polypropylene glycol) by nanoparticles with anisotropic shape (carbon nano-
tubes and inorganic nanoplatelets) leads to additional disorder in amorphous
polymer matrix. Impact of nanofillers on the structure in these polymer composites
at rather low concentrations (<0.3–0.5 wt%) was observed. Doping of polyglycols
by MWCNTs changes the polymer crystallinity degree. Moreover, the flexibility of
MWCNTs inside the polymer matrix becomes higher. The MWCNTs noticeably
affect the processes of nucleation and growth of crystals inside polymer matrix.
Increase of concentration results in formation of clusters of MWCNTs, which, in
the vicinity of percolation threshold, can merge into the large cluster spanning
through the system. Anomalous behavior of most parameters that characterize the
crystallization kinetics of polyglycols doped with MWCNTs are associated with
percolation threshold in the systems. These behaviors are also typical for the
concentration dependencies of Avramy exponent, fractal dimension of crystallites
and many other properties.

Doping of polyglycols by nanoplatelets of MMTO or LapO resulted in inter-
calation of polymers inside the interlayer space. Moreover, it was established that
partial intercalation was observed for MMTO, whereas the complete exfoliation
was observed of LapO. The more developed amorphization was observed for
doping by LapO than for MMTO. It was demonstrated that variation of nanofiller
loading allows the noticeable changes in the structure and properties of the poly-
meric electrolytes on the base of polyglycols and additives of inorganic salts. The
introduction of small quantity of nanofiller (*5 wt%) results in increase of the
crystallinity degree of polymer electrolyte. The different mechanisms of charge
transfer in the studied systems were realized: activation Arrhenius mechanism and
mechanism evolving the free volume.

Finally, the impact of the temperature and concentration of salt and MWCNTs
on the ion association in PEG + LiClO4 + MWCNTs was analyzed. The increase of
temperature resulted in increase of concentration of individual ions and in decrease
concentration of ionic pars and triplets. With increase of salt concentration the
electrical conductivity growths initially, goes through the maximum at the certain
concentration and then decreases. It can be explained by the ionic association.
Introduction of nanofiller results in the increase of the concentration of the indi-
vidual ions, the decrease of ionic aggregates and give the increase of the electrical
conductivity.
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Chapter 8
Colloidal Solution of 3 nm Bucky
Diamond: Primary Particles of Detonation
Nanodiamond

N.O. Mchedlov-Petrossyan, N.N. Kamneva, E. Ōsawa, A.I. Marynin,
S.T. Goga, V.V. Tkachenko and A.P. Kryshtal

Abstract The nanodiamond (ND) hydrosol with positively charged 2:7� 0:3 nm
primary particles behaves as a hydrophobic colloidal dispersion. The coagulation by
inorganic electrolytes with anion charges of −1, −2, −3, and −4 occurs in line with
the Schulze–Hardy rule for “positive” sols. The single-charged anions are arranged
according to their coagulating ability in the lyotropic series. The sole exception is
the hydrophilic HO− ion, which displays much stronger coagulation impact than
those of Cl− and BF4

− ions. This particularizes the acidic nature of the positive
charge of the colloidal species. The last-named readily adsorb anionic dyes, which
results in batochromic shifts of their absorption bands. Application of an acid-base
indicator bromocresol green allowed estimating the value of the interfacial electrical
potential of the nanodiamond particles W ¼ þ89 to þ 123 mV; depending on the
concentration of the hydrosol. These values are higher as compared with those of
the zeta-potential, 1 ¼ þ43 to þ 62 mV: The size distribution of the dispersed
system is strongly concentration-dependent. The dilution of the initial 5.0 wt/vol%
ND hydrosol by water results in gradual increase in the average particle size, up to
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ca. 30 nm in 0.01 % colloidal solution. These results of dynamic light scattering
were confirmed by transmission electron microscopy. Accordingly, the viscosity of
the hydrosol decreases along with dilution. This phenomenon was explained in
terms of the periodic colloidal structures, or colloidal crystals, formed in concen-
trated solutions.

8.1 Introduction

This report is devoted to colloid properties of the hydrosol formed by the primary
3 nm-sized detonation diamond species recently produced in the NanoCarbon
Research Institute, Japan.

The interests in nanodiamonds (ND) increase rapidly from a variety of different
fields of science and technology [1–3]. In liquid media, the dispersions of ND are
actually a kind of either suspensions or sols. Hence, it is necessary to enlarge our
knowledge of these colloid systems. Though the most common way to obtain the
ND is treating the detonation products, a recently reported new approach should be
mentioned [4]. Among a variety of parameters characterizing a colloid system, the
size of particles is of special importance. The detonation ND contains the smallest
diamond particles available, and generally offered by many vendors as the source of
primary particles 4–10 nm in diameter. However, the commercial powder in fact
consists of rather large hard agglomerates. The last-named appear as a result of
strong electrostatic interactions, which are comparable in bonding energies to
covalent C–C bonds [5]. Attrition milling of aqueous suspension of the crude
detonation ND provides, when performed under optimum conditions, a black
colloidal solution of perfectly disintegrated primary particles [6]. This aqueous
solution of colloidal particles from nanocrystals is kinetically stable, but dilution
often leads to aggregation. The present study was undertaken in order to gain
insight into the colloidal characteristics of the hydrosol formed by single-nano
diamond particles mono-dispersed in water.

8.2 Experimental

8.2.1 Preparation of the ND

The hydrosol consisting of the primary particles of dispersed detonation ND was
prepared by NanoCarbon Research Institute. The commercial crude grey powder of
detonation ND (manufactured by FMD Nano Tech Co., Guangzhou, China) was
disintegrated in portions in a 150 ml attrition mill (constructed by Kotobuki
Industries Co., Tokyo) using 30 μm zirconia beads in distilled water. Milling
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conditions have been locally optimized by applying Taguchi’s Method of quality
engineering [7] and will be disclosed shortly elsewhere [8]. The product of beads
milling is a black but translucent and smooth colloidal solution with 4–5 % con-
centration. The size of the primary particles of detonation ND normally equals to
3.0 ± 0.5 nm, as determined via the Dynamic Light Scattering (DLS) method. The
colloidal solution was used in this work virtually as it is except for light centrifugal
separation at 5000 rpm for 1 h. As an inevitable consequence of attrition milling,
the solid fraction of the product contained 0.4 wt% of zirconia, which is so far
difficult to remove [9].

8.2.2 Materials

Sodium chloride, sulfate, tetrafluoroborate, and tetraphenylborate, potassium
hexacyanoferrate (III) and hexacyanoferrate (II), and hydrochloric acid were of
reagent grade. The aqueous solution of sodium hydroxide was prepared from sat-
urated stock solution using CO2-free water and kept protected from the atmosphere.
Sodium n-dodecylsulfate (99 %), fluorescein isothiocyanate and 5ʹ-aminofluores-
cein were from Sigma-Aldrich, bromocresol green was used in our previous studies
[10]. Toluene, n-hexane, 1-octanol, and trichloromethane were purified by standard
methods. Double-distilled water was used in all the procedures.

8.2.3 Apparatus

Electrical conductance measurements were carried out using platinized platin
electrodes in molybdenum-glass cells with the Precision LCR Meter GW Instek
LCR-817 (Taiwan) apparatus operating at a frequency of 1 kHz. The cells were
calibrated using 12 standard aqueous solutions of potassium chloride, within the
concentration range 1 × 10−4 to 0.01 M (1 M ≡ 1 mol L−1). All the measurements
were done at 25.00 ± 0.05 °C. The pH determinations were performed by using an
R 37-01 potentiometer and pH-121 pH-meter with an ESL-43-07 glass electrode
(Labtech, Russia) in a cell with liquid junction, calibrated using standard buffers at
25 °C. The Cl-selective electrodes ELIS-131Cl (NV Lab, Russia) and Orion
Research Incorporated (USA), Model 93-17 and the NO3-selective electrode
ELIS-121NO3 (NV Lab, Russia) were used for estimating the Cl− and NO3

−

concentrations. For the viscosity measurements, the apparatus VPZh-2 (Labtech,
Russia) with capillary diameter of 0.56 mm was used at 25.0 ± 0.2 °C. The
uncertainty of time measurements was ±0.1 s. The particle size distribution and
zeta-potentials were determined using Zetasizer Nano ZS Malvern Instruments
(Great Britain) apparatus at 25 °C, scattering angle 173o in the National University
of Food Technologies, Kyiv, Ukraine. Some preliminary experiments have been
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made in the Laboratory of Professor Paavo Kinnunen, Department of Biomedical
Engineering and computational science, Aalto University, Espoo, Finland.
Absorption spectra were run with Hitachi U-2000 and SF-46 spectrophotometer
against solvent blanks. For the electron microscopy studies, the Selmi TEM-125 K
microscope (Sumy, Ukraine) was used. The procedure was as follows. In a vacuum
vessel VUP-5 M (Selmi, Sumy, Ukraine), a 10–20 nm carbon film was deposited
from the Volta arc on fresh cleavages of KCl monocrystals at the pressure of
residual gases around 10−5 Torr. After floating off in distilled water, the carbon
films were picked up on copper electron-microscopy grids. The portions of the
examined solutions were deposited on the films and studied after drying in the
bright-field and diffraction modes of the TEM at accelerating voltage of 100 kV.
The images were registered using the CCD camera or photographic plates. For
registering the chemical elements in the sample by the energy-dispersive X-ray
spectroscopy (EDX), a droplet of concentrated ND solution was placed on silicon
wafer and after drying EDX analysis was performed on scanning electron micro-
scope (SEM) JSM-840 (Jeol, Japan) fitted with Selmi EDS-1 spectrometer (Sumy,
Ukraine). The spectrometer is capable to register elements with Z > 5.

8.3 Results and Discussion

8.3.1 Characterization of the Samples

The concentration of the initial ND hydrosol was 5.00 wt/vol%; in some experi-
ments, 3.81 wt/vol% solutions have been used. The pH value of the sols was 4.75–
5.00. The light absorption increases gradually from 700 to 350 nm. The solutions
do not obey the Bouguer–Lambert–Beer law. The primary species were positively
charged. Together with the non-diamond layer, the size of the colloidal particles in
the initial sol was 2.7 ± 0.3 nm as found via DLS, while the entire diamond size was
around 2 nm. The numerical concentration of the primary particles was about
1.1 × 1021 L−1. In the solid phase, the EDX spectra reveal, besides carbon, 0.28 Cl
and 0.28 Zr (wt%, ±0.14 %); no sulfur was detected above 0.02 %. The nitrogen
content was around 2 wt%, as determined by elemental analysis. The IR spectrum
of the dried sample exhibited the bands normally reported for detonation ND; the
presence of adsorbed water, OH, C=O, C–O–C, and (probably) NH groups may be
supposed.

The ND species are sparingly extractable into 1-octanol, chloroform, n-hexane,
and toluene. In the last case, the layer of the very stable emulsion, probably sta-
bilized via the ND particles, is formed between the water and toluene phases
(Fig. 8.1).

Interestingly, the average particle size of 3 nm was registered only in concen-
trated ND solutions. Along with dilution, the particles became larger; this effect was
repeated several times and reproduced in three different laboratories (in Japan,
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Finland, and Ukraine). The results are exemplified in Fig. 8.2. These size changes
are to some extent reversible.

Taking into account the significance of the size of the ND colloidal species for
their versatile applications, this phenomenon became a matter of detailed consid-
eration in the present research. To better understand this and other properties of the
system under study, a comprehensive examining was undertaken.

8.3.2 Charge and Interfacial Potential of the Hydrosol
Particles

The zeta potential of the ND colloidal species varies within the range of ca. +(40–60)
mV depending on the ND concentration. So, for hydrosols of different wt/vol%

Fig. 8.1 Photo of the
distribution of the
nanodiamond particles
between water (bottom layer)
and toluene (upper layer)
phases

Fig. 8.2 The size distribution
for the ND hydrosols of
different concentrations,
wt/vol%: 5.00 (1); 1.00 (2);
0.19 (3); 0.036 (4); and 0.010
(5)
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concentrations, we obtained the following data: 1/mV = +51.9 (2.90 %); +50.1
(2.5 %); +43.3 (0.19 %); and +62.2 (0.036 %).

The confidence range was 0.8–2.7 mV. The specific conductance of 1.00 % ND
solution at 25 °C corresponds to that of 4.84 × 10−4 M KCl; the values are
6.874 × 10−5 and 7.797 × 10−5 S cm−1 respectively. The Cl− content in the same
ND solution was (5.5 ± 1.3) × 10−4 M, as found using the Cl-selective electrode,
whereas the concentration of the NO3

− ions was two orders of magnitude lower.
This chlorine content is in line with the rough estimate by EDX (see above).

The negatively charged dyes are readily adsorbed on the nanoparticles thus
confirming the positive charge of the latter. These results are typified in Fig. 8.3.

Another proof of the positive charge of the species consists in the coagulation of
ND hydrosols by electrolytes. Indeed, the ratio of the reciprocal critical coagulation
concentration, CCC, by NaCl, Na2SO4, K3Fe(CN)6, and K4Fe(CN)6 is
1:16:175:538. This is in accordance with the famous Schulze–Hardy rule and is
typical for “positive” sols. The CCC value for NaCl equals 2.8 mM
(1 mM = 1 × 10−3 M). The coagulation by electrolytes will be considered and
discussed below in a more detailed way.

The above-mentioned 1 values correspond to the slipping area, or surface of
shear. In order to estimate the value of the interfacial potential, W, we made attempt
to use measurement with an acid-base indicator. This approach has been adapted for
micelles of ionic surfactants and well documented for these systems and other
dispersed phases of lyophilic colloids [10–12]. In the case of lyophobic dispersions,
the electrolytes necessary for creation of varying pH values may cause the

Fig. 8.3 Absorption spectra of 5ʹ-aminofluorescein (a) and fluorescein isothiocyanate (b) dianions
in water, λmax = 489 nm (1) and in ND 0.048 wt/vol% solution, λmax = 502 nm (2), with
subtracting the blank
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coagulation of the sols. However, one of the peculiarities of the system under
consideration consists in relatively high CCC value by HCl. This allows utilization
of the hydrochloric acid for creating the pHs within the range of 3–4; the buffer
capacity at lower HCl concentrations is insufficiently small. As a suitable acid-base
indicator, the sulfonephthalein dye bromocresol green was chosen.

If an acid-base indicator is located on the charged interface, the indices of the
so-called apparent ionization constant may be determined by spectrophotometry:

pKapp
a ¼ pH + log

½acidic form�
½basic form� : ð8:1Þ

The pH value refers to the bulk phase and can be measured using the glass
electrode in a cell with liquid junction, whereas the concentration ratio of the
equilibrated acid-base couple is available via the absorption spectra. Thus obtained
pKapp

a value is connected with the interfacial potential or the Stern layer potential,
W, through (8.2) [10–12]:

pKapp
a ¼ pK i

a �
WF

2:303 RT
: ð8:2Þ

Here F is the Faraday constant, R is the gas constant, T is the absolute tem-
perature, and K i

a is the so-called intrinsic ionization constant. Then the W value at
25 °C is equal to:

W=mV ¼ 59:16 ðpK i
a � pKapp

a Þ: ð8:3Þ

The dye bromocresol green displays the color transition from yellow (HR−) to
green-blue (R2−) (Fig. 8.4). Though in the presence of the ND species, the HCl
concentrations over 0.006 M lead to coagulation, the absorption in ND-free water

Fig. 8.4 The spectra of the
indicator bromocresol green
at different pH in 0.024 wt/vol
% ND: the spectrum of R2−

without HCl additions,
pH = 6.2 (1); with HCl
additives, pH = 3.78 (2), 3.59
(3), 3.39 (4), 3.04 (5)

8 Colloidal Solution of 3 nm Bucky Diamond … 205



solutions at pH 1–2 (not shown in Fig. 8.4) in the region around 600–650 nm is
negligible. Thus, this indicator may be considered as a one-color one in this portion
of the spectrum. Similar data for this and other indicator dyes in cationic surfactant
micelles have been considered in a recent paper [13]. The limiting absorption of the
basic form may be measured just in the colloid solution without any additives. The
pKapp

a values are gathered in Table 8.1; the pKa value in water was taken from the
literature [10].

The next problem in the W estimation was the uncertainty of the pK i
a value in

(8.3). In the case of ionic surfactant micelles, the pK i
a value of the given indicator is

usually equated to its pKapp
a in non-ionic micelles, where W ¼ 0; otherwise, some

more complicated algorithms may be used [12]. However, our experiments with
two solvatochromic dyes, methyl orange and Reichardt’s betaine (not shown here),
demonstrated but small band shifts as compared with their spectra in water. This
observation allows concluding that the ND surface being, in fact, the graphene
patches, is well-hydrated. Therefore, the pK i

a value may be equated to the value in
water. Thus determined W values are presented in Table 8.1.

TheW values are rough estimates only, but they look out reasonable, because the
experimentally measured 1 values are 1.5–2 times lower, in agreement with the
theory of the double electrical layer. However, there are two points to be taken into
account. First, as the locus of the adsorbed indicator is probably the Stern layer, the
W value should be more close to that of 1. Such conclusions have been made by
Mukerjee and Banerjee for the dyes bromocresol green and bromophenol blue
associated with micelles of cationic surfactants [14]. Second, taking into account
that the TEM images (Fig. 8.5) give no evidence for tight spherical shape of the ND
secondary aggregates, which are probably porous, the determined W values may
reflect rather the local electrostatic potential in the region where the indicator dye is
situated. In turn, the local positive charges of the primary particles, as revealed via
electrophoresis measurements, repel the tight association in the secondary
aggregates.

The decrease in the pKapp
a values and hence the increase in the W values along

with the rise of ND concentrations may be attributed to the alterations of the
structure of the colloidal species. For instance, the larger secondary aggregates
registered in diluted ND hydrosols are porous and thus the interfacial charge density
is probably lower.

Table 8.1 The pKapp
a values

of bromocresol green and the
estimates of the W values,
at 25 °C

w(ND) (wt/vol %) pKapp
a W=mV

0 4.90 –

0.024 3.40 ± 0.03 +89

0.13 2.82 ± 0.12 +123

0.67 2.99 ± 0.09 +113
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8.3.3 Coagulation of the ND Hydrosols by Electrolytes

The coagulation of the ND hydrosols has been studied at 25 °C using two procedures.
In both cases, the criterion of the rapid coagulation was the distinct increase in the
absorbance (mainly at 525 nm) caused by the turbidity of the systems under study.

First, the absorption spectra of the solutions with constant ND content and
varying electrolyte concentrations have been measured immediately and within a
period of time (Fig. 8.6).

Otherwise, the CCC values have been determined using the procedure of
spectrophotometric titration. In this case, both the (slight, not more than 1.5-fold)
dilution of the initial solution by the electrolyte and alteration of the blank

Fig. 8.5 The TEM images of the 0.036 wt/vol% ND hydrosol after evaporation of water
(representative examples from several series of experiments)

Fig. 8.6 The time
dependence of the absorbance
of 0.024 wt/vol% ND
hydrosol at NaCl
concentrations of 2.0 mM (1),
2.5 (2), 3.2 (3), and 3.5 mM
(4)
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(electrolyte-free) solvent as a result of dilution with corresponding amounts of pure
water (including the deviations from the Bouguer–Lambert–Beer law) were taken
into account (Fig. 8.7).

The increase in the absorption by 15 % due to the turbidity was chosen as a
criterion of the rapid coagulation. The solutions have been prepared and titrated in
such a manner that allowed avoiding the high local concentration of the electrolytes.

Both methods lead to similar results, and the variation of the CCC values along
with the ND concentration is negligible. For instance, the data in Fig. 8.8 dem-
onstrate that the jump of the size, which causes the rise in turbidity, occurs always
at 3 mM NaCl.

Figure 8.8 reflects the peculiar of particle size distribution during the coagulation
process. Note that the lower the ND concentration is, the larger the aggregates are
not only before, but even more after the coagulation. The coagulation by NaCl is
reversible; the peptization of the freshly coagulated hydrosols by dilution is quite
possible. This is typical for the case of coagulation caused by condensing
the diffuse electrical layer around the colloidal species: dilution restores the
pre-threshold salt concentration. After several hours, however, this procedure of the
restoration becomes invalid.

The primary 3 nm particles are evidently too small to be described by the DLVO
theory in its classical version [15]. Even the secondary species, i.e., aggregates, are

Fig. 8.7 The typical titration curves of the 0.19 wt/vol% ND hydrosol by solutions of electrolytes:
NaBF4 (a); NaB(C6H5)4 (b); K3Fe(CN)6 (c); and K4Fe(CN)6 (d)
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well below the limit of ca. 100 nm [16] and probably non-spherical, as follows from
the TEM data. For approximate estimates, the old criterion of the stability of small
colloidal particles proposed by Derjaguin may be used [15, 17]:

Fig. 8.8 The size distribution in the ND hydrosols of various wt/vol% concentrations. a 0.036 %
ND (1); 0.024 % ND with 2 mM (2) and 3 mM NaCl (3); b 0.19 % ND (1); 0.13 % ND with 2 mM
(2) and 3 mM NaCl (3); and c 1.00 % ND (1); and 0.67 % ND with 3 mM NaCl (2)
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4pere0rW2 [ A�: ð8:4Þ

In the case under consideration, the value of the Hamaker constant,
A�¼ 1:19� 10�19 J, originates from the values for diamond, ADD = 28.9 × 10−20 J,
and water, AWW = 3.7 × 10−20 J, selected from the literature data [18, 19]:

A� ¼ A1=2
DD � A1=2

WW

� �2
: ð8:5Þ

For the mean r value of 15 nm, the value W > 30 mV meets the stability
condition. Indeed, the 0.036 wt/vol% ND hydrosol without NaCl additives exhibits
the value of 1 = +62 mV and is quite stable. The W value is evidently even higher.
The additional condition of stability, i.e., 4pere0rW2 [ 20kT [15], also holds
because in our case A� equals to 29kT . However, at NaCl concentrations between 2
and 3 mM (Fig. 8.6), 1 equals to +(32–33) mV, while the coagulation takes place
therein. So, the colloidal system under study is less stable than follows from cri-
terion (8.4). This may originate from the loose structure of the secondary aggregates
existing under the considered conditions. Another possible reason is the interaction
between the facets possessing negative and positive electrostatic potential [20, 21].
More detailed consideration of the applicability of the DLVO theory is given
elsewhere [22].

The CCC values for different electrolytes are collected in Table 8.2. There are
three important conclusions to be made from these data.

Firstly, the CCCs are in line with the positive charge of the colloidal species.
Indeed, the classical Schulze–Hardy rule predicts the sharp increase in the coagu-
lation power of multi-charged well-hydrated inorganic anions in the case of
“positive” sols. The ratio of the reciprocal CCC values for the anions Cl−, SO4

2−,
Fe(CN)6

3−, and Fe(CN)6
4− is as follows: 1:16:175:538.

The DLVO theory in its classical version for highly charged surfaces of colloid
species predicts the following dependence of CCC versus counter ion charge, z:

CCC ¼ const� z�n; ð8:6Þ

Table 8.2 The coagulation
points, CCC/mM, of the
0.19 % ND hydrosol

Electrolyte CCC z (anion) CCCNaCl:CCC

NaCl 2.8 −1 1.00

HCl 5.7 −1 0.5

NaBF4 1.9 −1 1.5

NaOH 0.27 −1 10

C12H25OSO3Na 0.039 −1 72

NaB(C6H5)4 0.027 −1 104

Na2SO4 0.17 −2 16

K3Fe(CN)6 0.016 −3 175

K4Fe(CN)6 0.0052 −4 538
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where n equals 6. Lower n values, such as 2; 2.5; 3.5; or 4 have been usually
explained either in terms of coagulation in the “distant minimum”, i.e., through the
water layers, or by adsorption of counter ions and low interfacial charge, and also
by taking into account the retardation of the molecular forces [23, 24]. In our case,
the average n value is 4.4. For the multi-charged anions Fe(CN)6

3− and Fe(CN)6
4−,

neither compressing of the diffuse part of the double electrical layer nor the neu-
tralization via adsorption alone may lead to the coagulation. Probably, these factors
are acting in concert. Indeed, the significance of the account of specific adsorption
for understanding the Schulze–Hardy rule has been underlined recently by Lyklema
[25]. This may be the reason of the sweep and less distinct shape of the titration
curves in the case of highly charged Fe(CN)6

3− and Fe(CN)6
4− (Fig. 8.7).

Secondly, another universal regularity follows from comparing the coagulation
power of single-charged anions with increasing hydrophobicity. The sequence
Cl− < BF4

− < C12H25OSO3
− < B(C6H5)4

− is in accordance with the so-called lyo-
tropic row (Hofmeister series).

Thirdly, the strong coagulating action of the most hydrophilic anion HO− explores
the acidic nature of the positive charge of ND species. This statement is in line with
the elevated CCC value for HCl: the addition of the acid results not only in the
condensing of the diffuse part of the double electrical layer and screening of the
interfacial charge of the ND particles, but also in protonation of some residual basic
centers. This increases the surface charge and thus additionally stabilizes the hydrosol.

Figure 8.9 reflects the alterations of the size distribution on adding HCl and
NaOH. After coagulation by NaCl around the CCC value, the colloidal system is
easily restored just by immediate slight dilution. However, if the coagulation is
accomplished by the alkali, the addition of a large amount of water displays no
changes in the deposited coagulate.

But the complete neutralization of the alkali by HCl does restore the hydrosol
(Fig. 8.10). Of course, after the neutralization the final electrolyte concentration, in
fact NaCl, should not reach the corresponding CCC value (2.8 mM). This gives
evidence for the occurrence of the acid-base neutralization of the interfacial posi-
tively charged groups by the HO− ions, which is impossible to invert by dilution
with water.

These groups may be protonated alcohols or ethers, pyrones, ammonium groups
or lyonium ions attached to the negatively charged [111] facets of the diamond [26–
31] (Fig. 8.11).

In the last case, the local positive potential of the interfacial [100] facets may
cause the positive zeta-potential of the surface in the case if the negative [111]
graphitized facets are neutralized via protonation.

Interestingly, after about 1 year after preparation of the ND hydrosol, the CCC
values began to rapidly decrease. For instance, for NaCl CCC = 0.33–0.46 mM as
determined for the 0.19 % colloidal solution. The CCC value for HCl, however,
stays unaffected (5.7 mM). Moreover, small addition of the hydrochloric acid to the
sol, 0.16 mM, restores the CCC value for NaCl. Also, the pKapp

a value of the
indicator dye as determined in fresh and aged ND solutions practically coincide.
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Fig. 8.9 The alterations of the particle size distribution along with adding HCl and NaOH.
a 0.19 % ND (solid line, 1); 0.13 % ND with: 0.1 mM HCl (dashed, 2); 0.3 mM HCl (dotted, 3);
1 mM HCl (solid, 4); b 0.19 % ND (1); 0.13 % ND with: 0.08 mM NaOH (2); 1 mM NaOH (3)

OH2
+

OO
H

C

NH3
+

+ +

H3O
+

δ−

Fig. 8.11 Examples of the (possible) positively charged interfacial groups

Fig. 8.10 Photo of the ND hydrosol coagulated by NaOH (right) and the same hydrosol after
restoration via HCl (left). The final NaCl concentration formed after neutralization of the alkali was
below the CCC value of NaCl
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Probably, the acid protonates some basic interfacial centers of the colloidal species
thus enhancing the stability of the sol. But the 1-potential values of the freshly
prepared, aged, and restored via HCl admixtures ND hydrosol differ only within the
error limits.

8.3.4 Concentration-Dependent Size Distribution in the ND
Hydrosols

The mean size of the colloid particles increases along with dilution; the results of
DLS typified in Fig. 8.2 are representative examples from a much larger body of
data. The TEM data for the dried 0.036 and 0.0036 wt/vol% ND solutions (Figs. 8.5
and 8.12) give support to this observation.

At the same time, the viscosity drops (Table 8.3). Similar viscosity data have
been already reported for ND hydrosols [32].

We propose the following explanation. In concentrated solutions, the small
particles interact through the surrounding water layers and form a kind of the
so-called periodic colloidal structures [15, 33, 34], or colloidal crystals [35, 36] that
leads to some structuring of the sol and viscosity enhancement. After dilution, the
distances between the particles became larger, and it becomes more preferable to
form secondary aggregates, much more separated from each other in aqueous
medium.

For such kind of colloidal systems, some peculiarities have been noticed long
ago, mostly for much larger particles of the dispersed phase [33, 34]. The most
significant one is as follows: the “secondary” or “distant” minimum, resulting from
the cooperative interactions, may be deeper as compared with that calculated from
the interaction of two particles only. Namely, the fixation of particles without direct
contact may take place even if the repulsive forces overcome the attractive ones

Fig. 8.12 Some typical TEM images of the 0.0036 wt/vol% ND hydrosol after evaporation of
water. The initial solution was the same as in Fig. 8.5, but was additionally diluted tenfold
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[33]. The structural forces may also hinder the aggregation [33, 34]. Small con-
centrations of the electrolyte may favor the fixation in the distant minimum,
whereas elevated concentrations result in adherence of the species. Note, that at
least ca. 3 mM of Cl− ions are already present in the entire 5.0 % ND hydrosol,
whereas adding NaCl results in coagulation of the more diluted sol at the same CCC
value of ≈3 mM.

The 5.0 wt/vol% ND hydrosol may be considered as a colloidal system being on
the way to gelation. But the zones of periodic colloidal structure do not necessarily
cover the whole solution. Indeed, the polydispersity index, PDI, gradually increases
along with dilution from PDI = 0.58 for 5.00 % to 0.19 for 0.036 % hydrosol.
Probably, some numbers of very large islands of associated species are also present
in concentrated sols, as is demonstrated by the DLS measurements in the volume–
size and intensity–size distributions. Somewhat different interpretation has been
proposed basing on the SANS data for similar systems [37, 38]. Namely, the
presence of fractal aggregates in concentrated ND colloidal solutions has been
deduced following from the dependence of the forward scattering intensity on the
ND volume fraction [37, 38].

On dilution accompanied by stirring, the cooperative interactions become weaker;
the entropy factor (DS[ 0) favors the uniform distribution of species in the enlarged
volume. Instead of the network of small particles, larger aggregates are formed as a
result of tight interaction of several neighboring primary particles (Fig. 8.13). Here,
the driving forces are hydrophobic and van der Waals (dispersive) interactions.
Further coagulation is hindered by the decrease in the ionic concentration in the
bulk and thus expansion of the diffuse parts of the double electrical layer and also
by the Brownian motion and the lower probability of particle collision.

Table 8.3 The DLS and viscosity data of the ND hydrosol at different concentrations; 25 °C

ND conc. (wt/vol%) Average size (nm) Polydispersity index η × 104 (Pa s)

5.00 2.7 ± 0.3 0.58 ± 0.03 17.01

3.40 3.0 ± 0.7 0.585 ± 0.006 14.27

2.90 – – 13.40

2.50 – – 12.58

1.74 – – 11.40

1.00 5.1 ± 1.2 0.532 ± 0.017 10.16

0.50 – – 9.498

0.30 30.9 ± 1.4 0.158 ± 0.006 –

0.19 31 ± 3 0.241 ± 0.007 9.146

0.10 33 ± 4 0.18 ± 0.03 –

0.036 30.2 ± 0.3 0.188 ± 0.002 8.910

0.03 32.0 ± 1.8 0.171 ± 0.008 –

0.027 30.3 ± 0.8 0.180 ± 0.006 –

0.01 34 ± 5 0.19 ± 0.04 –

0 – – 8.900
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It should be noted that the entire concentrated ND sols are inclined to very slow
aging. As a result, the mean size is somewhat increasing and the viscosity
decreases.

8.4 Conclusions

The nanodiamond hydrosol with positively charged colloidal particles behaves as a
typical hydrophobic dispersion. The addition of different electrolytes leads to
coagulation; the latter occurs in accordance with the Schulze–Hardy rule and the
lyotropic (Hofmeister) series. The anomalous coagulation power of the hydrophilic
HO− ion underlines the acidic nature of the positive interfacial charge of the col-
loidal particles.

The batochromic shift of the absorption bands of the anionic dyes gives evidence
for their adsorption on the nanodiamond/water interface. The indices of the
apparent ionization constant of the adsorbed acid-base indicator bromocresol green,
pKapp

a , has been determined. This, in turn, allowed estimating the interfacial elec-
trical potential of the nanodiamond particles, W. The last value depends on the
concentration of the hydrosol, but is always substantially higher as compared with
the zeta-potential.

The colloidal particles in the initial 5.0 wt/vol% hydrosol have the size of
2.7 ± 0.3 nm, whereas the dilution leads to the ca. ten-fold increase in the particle
size. In 0.3–0.01 wt/vol% hydrosol, the average size is around 30 nm. Along with
the growth of colloidal species, the polydispersity index drops from 0.58 to 0.19.
These results have been obtained by dynamic light scattering and confirmed by
transmission electron microscopy images. Taking into account the high viscosity of
the concentrated hydrosol, the results have been explained in terms of structuring of

Fig. 8.13 The schematic picture of the dilution of the colloidal periodic structure
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the system and formation of the so-called periodic colloidal system. After dilution,
the distances between the primary particles became larger, and it becomes more
preferable to form secondary aggregates, much more separated from each other in
aqueous medium.

The further research of the ND colloids is now in progress.
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Chapter 9
Kaolin Suspensions with Negative First
Normal Stress Difference

M. Bombrowski, H.-J. Mögel, M. Wahab and P. Schiller

Abstract It is well known that kaolin suspensions can have a negative first normal
stress difference. We analyze rheological models that relate the flow alignment of
platelets and normal stress differences. Using a freezing technique for arresting the
platelets of sheared kaolin suspensions, X-ray data of the frozen material reveal that
the flow alignment angle and a scalar orientational order parameter depend on the
shear rate. A mesoscopic theoretical approach predicts that a negative value of the
first normal stress difference is not compatible with a stationary flow alignment
regime. If the first normal stress difference is negative, the model suggests a
tumbling or wagging motion of the platelet normals in analogy to the director
dynamics in polymeric liquid crystals under shear.

9.1 Introduction

The rheological properties of aqueous clay suspensions depend on many physical
parameters such as volume density of the dispersed particles, the ionic strength of
the electrolyte solution and the particle shape. The microstructure of clay disper-
sions has a determining influence on the stress arising in shear flows. Kaolinite
particles resemble plates of moderate thickness. Typical aspect ratios in many
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polydisperse natural dispersions of kaolinite platelets vary between about ten and
twenty, the platelet diameter may range between a few hundred nanometers and a
few micrometers. Anisometric particles with negligible pair interaction in diluted
suspensions do not have a stable orientation in a shear flow. Platelets lying in the
shear plane are supposed to rotate around the vorticity axis [1]. In concentrated
colloidal suspensions excluded volume effects are very important. Strong
particle-particle interactions may suppress the flow-induced particle rotation. The
oblate shape of the particles in dense kaolin suspensions favors ordered domains
with parallel platelets. This alignment can be improved in a shear flow [2–5].
Similar to nematic liquid crystals [6], where molecular axes of long molecules align
in a shear flow, the platelet normals have a preferred orientation. In this case a
certain flow alignment angle between the flow gradient vector and the plate normals
appears. Investigating orientational order of the platelets in sheared kaolin disper-
sions by neutron scattering, Brown et al. [3] found a pronounced alignment of the
platelet normals. But in contrast to nematic non-polymeric liquid crystals, where the
flow alignment angle is independent of the shear rate, the angle between kaolinite
platelet normals and the shear gradient vector was found to decrease with increasing
shear rate. The flow alignment angle is a macroscopic quantity defined by the
orientation of domains containing many platelets in a flow field. Orientational
fluctuations of single platelets may be described by an orientational distribution
function, which is a probability density for the orientation of the platelet normal.
A narrowing of the orientational distribution is accompanied with an increase of the
scalar Maier-Saupe order parameter [6]. This parameter describes microscopically
the degree of nematic ordering. It was found that the orientational distribution
becomes narrower with increasing shear rate [3]. Hence, a shear flow in kaolin
suspensions may lead to macroscopic flow alignment and an increase of the nematic
order parameter. Both aspects of ordering are incorporated in the de Gennes tensor
order parameter for nematic liquid crystals. Most papers on flow of anisotropic
fluids, which use this order parameter tensor for describing orientational order,
mainly consider flow alignment instabilities leading to tumbling and wagging of
molecular or particle axes [7–12].

The influence of a shear flow on molecular orientation has been studied both
experimentally and theoretically for polymeric nematic liquid crystals [1, 13–15].
Compared to non-polymer nematic liquid crystals a fixed flow alignment angle does
not occur at low and moderate shear rates. At low shear rates the long molecular
axes tumble in the shear flow, i.e. the long molecules that lie in the shear plane
rotate around an axis parallel to the shear plane normal. At higher shear rates the
tumbling changes into a wagging motion and a further increase of the shear rate to
very large values eventually leads to flow alignment of the long molecules along a
certain direction in the shear plane. The unsteady motion of the molecular axes
causes a non-monotonic dependence of the first normal stress difference on the
shear rate�c as depicted schematically in Fig. 9.1. The flow alignment regime starts
close to the minimum of the first normal stress difference TI. Compared to the vast
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majority of complex fluid materials, the first normal stress difference of polymeric
nematic liquid crystals behaves exceptionally. Most complex fluids have a positive
first normal stress difference satisfying the asymptotic law TI /�c2 at low shear
rates �c. Theoretical considerations for nematic liquid crystals lead to a different
result (Fig. 9.1). The generally accepted Leslie-Erickson theory for non-polymeric
nematic liquid crystals is compatible with the appearance of negative and positive
first normal stress differences. This macroscopic theory predicts a linear dependence
of the first normal stress difference on�c, where TI / j�cj is a non-analytic function at
j�cj ¼ 0.

Investigating concentrated kaolin suspensions, Moan et al. [5] found that the
values of the first normal stress difference were negative and they changed linearly
with _c at low and moderate shear rates. Hence, the first normal stress difference TI
of kaolin can be described by the Leslie-Erickson theory as long as the shear rate is
relatively small. At higher shear rates, however, the first normal stress difference
approaches a constant value in a plateau region as illustrated in Fig. 9.1. At still
higher shear rates�c, the value of TI was no longer constant but increased gradually.
Thus, TI increased linearly from −800 Pa to about −500 Pa after changing�c from 10
to 100 s−1. In our measurements [16] for kaolin suspensions the first normal stress
difference was found to be approximately constant at high shear rates. There was
only a weak minimum of TI and a slight increase above the plateau value, even at
shear rates as high as 100 s−1. It should be noted, however, that the suspensions
used in our measurement have lower pH values and the kaolin platelets are con-
siderably larger than in [5]. Furthermore, we only found negative values of the first
normal stress difference TI for pH values below about 5. At higher pH the value of
TI was positive as shown in Fig. 9.1.

Fig. 9.1 First normal stress
difference TI versus the shear
rate _c for several materials.
The dashed line refers to the
result of the macroscopic
Leslie-Erickson theory in
combination with the
microscopic Baalss-Hess
theory for nematic liquid
crystals
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The observation that the Leslie-Erickson theory can give an acceptable
description of the first normal stress difference at low shear rates (Fig. 9.1) supports
the assumption that the shear flow aligns the kaolinite platelets in analogy to the
flow alignment of non-polymer nematic liquid crystals. However, the approxi-
mately constant value of the first normal stress difference at moderate and high
shear gradients (Fig. 9.1) indicates that a purely macroscopic theory is not sufficient
to describe the rheological data. In this paper we propose a rheological model for
kaolin suspensions which correlates rheological with structural data. For this pur-
pose, we modify a model for polymeric liquid crystals proposed by Farhoudi and
Rey [7, 8]. In order to avoid an excessive large number of unknown viscosity
coefficients, an order parameter expansion of an appropriately defined Rayleighian
is truncated after lowest order terms. This procedure is justified, since the nematic
order of kaolin suspensions is weak. Most material parameters of the rheological
model are related to the orientational order of the platelets. The consequences of the
model are compared with experimental results on structural and rheological data.

9.2 Orientational Distribution and Order Parameter

The orientation of a disk-like platelet is described by the normal m to its face. Since
platelets have two equivalent parallel faces with normals m and –m, any orienta-
tional distribution function f for the orientation of platelet normals m should remain
unchanged if some or all platelet normals m are replaced by –m. The inversion
transformation ðx; y; zÞ ! ð�x;�y;�zÞ of Cartesian space coordinates turns the
normals of each platelet into the opposite direction (m → –m), but the orientational
distribution cannot be influenced by this operation. Using spherical coordinates,
where mx ¼ sin h cos/;my ¼ sin h sin/ and mz ¼ cos hð0� h� p; 0�/\2pÞ,
the inversion is accompanied with the transformation ðh;/Þ ! ðp� h;/þ pÞ.
Hence, an orientational distribution function f h;/ð Þ obtained by averaging over the
orientation of many platelet normals in a nematic domain obeys the condition
f h;/ð Þ ¼ f ðp� h;/þ pÞ. A nematic phase has cylindrical symmetry. If the z-axis
of the Cartesian coordinate system is chosen to be parallel to the symmetry axis, the
orientational distribution is independent of the azimuthal angle ϕ and the condition
f hð Þ ¼ f p� hð Þ restricts the number of allowed terms in an expansion to Legendre
polynomials. This expansion may be expressed as

f hð Þ ¼ 1
4p

þ
X

l¼2;4;6;...

clPl cos hð Þ; ð9:1Þ

where Pl cos hð Þ is a Legendre polynomial [17] and the coefficients cl describe the
degree of nematic orientational order. If the nematic order is weak, it is sufficient to
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consider only lowest order terms. Using the notation c2 ¼ 5S=4p, the lowest order
terms of the series for the orientational distribution (9.1) are written as

f hð Þ ¼ 1
4p

þ 5
4p

SP2 cos hð Þ ð9:2Þ

for l < 4. The scalar order parameter S describes the nematic ordering. S is equal to
zero for the isotropic phase and equal to one for perfectly aligned platelet normals
along the z-axis.

If the preferred direction of the platelet normals is turned away from the z-axis
by an angle hmax, which is caused in our experiments by flow alignment (Fig. 9.2),
the orientational distribution (9.2) of nematic order is transformed into

f ðh;/Þ ¼ 1
4p

þ 5
4p

SP2ðcosxÞ; ð9:3Þ

where cosx is obtained from the addition theorem [17] cosx ¼ cos h
cos hmax þ sin h sin hmax cos /� /maxð Þ. The orientational distribution function
f h;/ð Þ can be obtained experimentally by using techniques based on X-ray or
neutron scattering [3], since the intensity I h;/ð Þ of scattered neutrons or X-rays is
proportional to the orientational distribution function (f h;/ð Þ / I h;/ð Þ). Figure 9.8
(Appendix) gives a brief sketch of our experimental setup, which uses X-ray
scattering on kaolin suspensions frozen after the application of shear stress (see
explanation in the Appendix). Figure 9.3 shows X-ray scattering results for the
sheared kaolin suspension.

The data for the intensity distribution I h;/ð Þ refer to the shear plane (/ ¼ 0 and
/ ¼ p) and perpendicular to it (/ ¼ p=2 and / ¼ 3p=2). Using these data the
scalar order parameter S can be obtained from the relation

S ¼
Z2p
0

d/
Zp

0

P2 cosxð Þf h;/ð Þ sin hdh: ð9:4Þ

Fig. 9.2 Flow alignment angle ψ in the shear plane (x–z—plane). The director n is a unit vector
parallel to the favored alignment of the platelet normals in the shear flow (v, velocity of the upper
rheometer plate)
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At higher shear rates, the narrowing of peaks of the orientational distribution
function indicates an increase of the order parameter S. Furthermore, the maxima of
the functions f ðh;/ ¼ 0Þ; f ðh;/ ¼ pÞ; f h;/ ¼ p=2ð Þ and f h;/ ¼ 3p=2ð Þ indicate
the flow alignment direction of the platelet normals, which is found to lie in the
shear plane as illustrated in Fig. 9.2. It should be noted that the flow alignment
angle ψ and the angle hmax accompanied with a maximum value of f h;/ð Þ are
related by

w ¼ hmax; if / ¼ p;
�hmax; if / ¼ 0:

�
ð9:5Þ

9.3 Flow Alignment of a Nematic Phase:
Macroscopic Theory

9.3.1 Flow Alignment far away from Interfaces

The macroscopic Leslie-Erickson theory [1, 6] of nematic liquid flow is based on
the introduction of a director n ¼ ðnx; ny; nzÞ, which is a unit vector with orientation
parallel to the symmetry axis of the nematic phase. In the case of disk-like platelets

Fig. 9.3 Intensity distribution Iðh;/Þ of the scattered X-ray beam (Fig. 9.8, Appendix) for / ¼
0;p;p=2 and 3p=2. The kaolin suspension (pH ¼ 3:5;U ¼ 0:2) was sheared with a rate of
_c ¼ 25s�1
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the director indicates the preferred direction of the platelet normals. According to
the Leslie-Erickson theory, the effective shear viscosity of a nematic phase depends
on the orientation of the director. It is convenient to use the notation x1 ¼ x, x2 ¼ y
and x3 ¼ z for a Cartesian coordinate system. In expressions with repeating indices
Einstein’s sum convention is applied. Let us consider a nematic phase with director
n ¼ ðn1; n2; n3Þ subjected to a flow with a velocity field v ¼ ðv1; v2; v3Þ that may
vary in space. We introduce the symmetric part of the velocity gradient tensor

Alm ¼ 1
2

@vl
@xm

þ @vm
@xl

� �
; ð9:6Þ

and the vector x ¼ 1
2 curl v with components

xm ¼ 1
2
emks

@vs
@xk

; ð9:7Þ

where emks denotes the totally antisymmetric isotropic tensor of rank three. The
vector N ¼ ðN1;N2;N3Þ with components

Nm ¼ @nm
@t

þ vk
@nm
@xk

� emksxkns ð9:8Þ

is the corotational time derivative of director n. Then the viscous part of the Leslie
stress tensor is defined as [6]

tlm ¼ a1nlnmnknsAks þ a2nlNm þ a3Nlnm þ a4Alm þ a5nlnkAkm þ a6nmnkAkl: ð9:9Þ

The Onsager relation a2 þ a3 ¼ a6 � a5 [6] reduces the number of independent
kinetic coefficients. A flow with non-zero velocity gradients produces a torque that
affects the director alignment. In the balance equation for this torque n × Γ = 0 the
components of vector Γ are obtained from

Cm ¼ � a3 � a2ð ÞNm � a3 þ a2ð Þ nkAkm � nm nknsAksð Þ½ �: ð9:10Þ

It is useful to introduce the flow alignment parameter

k ¼ � a3 þ a2
a3 � a2

: ð9:11Þ

For a simple stationary shear flow of a nematic liquid crystal with oblate
particles the velocity and the director are expressed as v ¼ �cx3; 0; 0ð Þ and
n ¼ � sinw; 0; coswð Þ. A positive angle ψ corresponds to an anticlockwise rotation
about the y-axis (Fig. 9.2). Inserting (9.6)–(9.8) into the torque balance n × Γ = 0
yields
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@w
@t

¼ ��c
2

1þ k cosð2wÞð Þ: ð9:12Þ

Hence, in the stationary case (@w=@t ¼ 0), equation cos 2wð Þ ¼ �k�1 must be
satisfied for the flow alignment angle ψ. Flow alignment without tumbling of the
director requires that condition kj j[ 1 is satisfied. Experiments on lyotropic
polymer and thermotropic non-polymeric nematic liquid crystals with prolate
molecules revealed that the value of kj j is always close to 1. Carlsson and Skarp
[18] emphasized that for discotic liquid crystals consisting of oblate molecules the
condition a3 � a2 [ 0 is expected to be satisfied, so that k is slightly lower than
−1 (�kJ1). Then w ¼ arc cosð�k�1Þ=2[ 0 corresponds to a small anticlockwise
rotation of the director away from the direction of the z-axis (Fig. 9.2).

9.3.2 Influence of Interfaces on Flow Alignment

Equation (9.12) is no longer valid in the vicinity of solid walls such as rheometer
plates. A solid surface aligns the director of particles adjacent to the surface. This
alignment propagates into the bulk due to elastic interactions. In the framework of
the elasticity theory of nematic liquid crystals, the elastic deformation energy
density can be expressed in terms of the spatial gradients of director angles [6].
Using an one constant approximation with equal splay and bend elastic constants
(K11 ¼ K33 ¼ K), (9.12) is replaced by

@w
@t

¼ K
c1

� �
@2w
@z2

��c
2

1þ k cosð2wÞð Þ; ð9:13Þ

where c1 ¼ a3 � a2 denotes the rotational viscosity and z is the distance between
the solid interface and a point in the bulk. We assume that the shear rate �c is
independent of z, although a small change of ψ from zero to wmax produces a slight
disturbance of the flow field homogeneity. Kaolinite particles are homeotropically
aligned at wall interfaces, i.e. wðz ¼ 0; tÞ ¼ 0 [19]. In a stationary flow, when
@w=@t ¼ 0, the flow alignment angle ψ tends to wmax if the distance z from the wall
increases. Equation (9.13) has the implicit solution

Zw
0

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðwmax; vÞ

p ¼ z
n
; ð9:14Þ

with

f ðwmax; vÞ ¼
sinð2wmaxÞ � sinð2vÞ

2
� ðwmax � vÞ cosð2wmaxÞ;
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and the characteristic length

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K
kj j c1 �cj j

s
: ð9:15Þ

Figure 9.4 displays a plot of the director angle ψ in dependence on the reduced
distance z=n for three different values of wmax. If z > 4ξ the condition w’wmax
holds fairly good.

However, for �cj j ! 0 the length ξ diverges to infinity and the angle ψ tends to
zero throughout a finite nematic sample. Actually, investigating nematic probes
before starting the shear flow in the rheometer, the director was found to be aligned
parallel to the normals of the rheometer plates (ψ = 0). This homeotropic alignment
may also be supported by the squeeze flow appearing when the upper rheometer
plate moves down onto the kaolin paste for producing a thin film between the
bounding plates. A squeeze flow during sample preparation cannot be avoided in a
conventional rheometer. After starting the shear flow for recording viscosity and
normal stress data, the flow alignment angle wmax [ 0 should appear first close to
the midplane halfway between the plates. The characteristic length falls

(n / �cj j�1=2) with increasing shear rate �cj j, and thus the region where the condition
w’wmax is satisfied increases. Finally, at high shear rates almost the whole sample
is aligned with the director parallel to the flow alignment direction. In this case the
assumption of a constant shear alignment angle wmax throughout the sample is an
acceptable approximation.

If the shear rate is low, the director alignment is non-homogeneous and an
interpretation of rheological data in terms of structural investigations becomes
intricate. There is an additional source of error due to the attenuation by X-rays. The
penetration depth of an X-ray beam into a dense isotropic powder can be estimated
by using the approximate equation for the intensity attenuation

Fig. 9.4 Flow alignment
angle w versus the reduced
distance z=n from the sample
surface. w tends to wmax for
z=n ! 1
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IðzÞ ¼ I0 exp � 2lz
sin b

� �
; ð9:16Þ

where β is the angle of incidence, z the distance from the powder surface and μ
denotes a material constant, which is proportional to the powder density. The
penetration depth z ¼ nX is defined as the distance where IðzÞ=I0 ¼ 1=e. If β is
equal to the Bragg reflection angle for the (002) peak of a dense kaolin suspension
(2b’ 25�), the value estimated for kaolinite is about nX ’ 10lm. But considering
that the volume density of the solid particles in the suspension (U’ 0:2) is much
smaller than the corresponding density in the dry powder, the penetration depth
should be five times larger, i.e. nX ’ 50lm. On the other hand, the solid rheometer
walls produce a homeotropic alignment (w ¼ 0) of the nematic director on the
kaolin-wall interface z ¼ 0. The thickness of the reorientation region n is propor-
tional to the inverse root of the shear rate (9.15). If the shear rate �c is zero, the
condition w’ 0 is satisfied for small and large values of z. If �cj j is small, even very
small but not equal to zero, both the macroscopic and the mesoscopic theory of flow
alignment predict a finite non-zero flow alignment angle w ¼ wmax far away from
solid walls where z� n (Fig. 9.4). However, for sufficiently small values �cj j the
non-homogeneous boundary region with thickness n / �cj j�1=2 should be even
larger than the X-ray penetration depth nX . In this case X-ray measurements lead to
flow alignment angles ψ that are distinctly smaller than the values of ψ in regions
where the director alignment is homogeneous (z� n). Unfortunately, the thickness
ξ of the region influenced by walls cannot be evaluated, since the material constants
K and c1 in (9.15) are unknown. Hence, the estimation of experimental errors in the
determination of the scalar order parameter S and the flow alignment angle ψ by X-
ray diffraction is hardly possible. Nevertheless, experimental X-ray data are suitable
for deciding wether the flow alignment angle ψ is negative or positive (rotation in a
clockwise or an anti-clockwise direction). Furthermore, it can clearly be distin-
guished between a monotonous and a non-monotonous dependence of S and ψ on
the shear rate �cj j.

9.3.3 Predictions of a Statistical Theory on Viscosity
Coefficients and Normal Stress Differences

Baalss and Hess [20] attempted to derive relations between the Leslie coefficients
and the aspect ratio q of anisometric particles. For spheroids q is equal to B/A,
where the semi-axis A is the equatorial radius and B is the distance from center to
pole of the symmetry axis.

The theory is based on the observation that a fluid of perfectly aligned spheroids
can be transformed into a fluid of spheres by applying an affine coordinate trans-
formation r ⇒ C r (Fig. 9.5), where the determinant of matrix C should satisfy the
condition detðCÞ ¼ 1. Then the volume of the system does not change by the
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transformation. Furthermore, the authors suggest that the pair potential of inter-
acting spheroids is obtained from a spherically symmetric pair potential by

UCðrÞ ¼ UðCrÞ; ð9:17Þ

where r = r2 – r1 is the vector connecting the centers of the spheroids and UðrÞ ¼
U rj jð Þ is a spherically symmetric pair potential.

Let us check if hard colloidal particle of axially symmetric ellipsoids satisfy
(9.17). The hard sphere pair potential is defined as UHS rð Þ ¼ 0 if rj j[ r and
UHS rð Þ ¼ 1 if rj j\r, where σ is the diameter of the spheres. If the spheres are
transformed into spheroids by an affine coordinate transformation (r ) Cr), the pair
potential for spheroids UC rð Þ ¼ UHS Crj jð Þ is infinity if the corresponding spheres
overlap and zero if they do not. Thus the potential for hard colloidal spheroids
satisfies the condition (9.17) required for the application of the theory of Baalss and
Hess [20]. Velocity and director are again expressed as v ¼ �cz; 0; 0ð Þ and
n ¼ � sinw; 0; coswð Þ, where ψ is the angle between director and velocity gradient
direction in the shear plane (x–z—plane). Prolate molecules of conventional
non-polymeric nematic liquid crystals align with their long axis almost parallel to the
velocity vector, whereas oblate or plate-like particles are supposed to align with their
director perpendicular to this vector (w’ 0). However, in both cases a small
non-zero flow-induced director tilt angle should be taken into account. Considering
that the flow is parallel to the x-axis and the shear gradient parallel to the z-axis
(Fig. 9.2) the first and second normal stress differences are defined as TI ¼ T11 � T33
and TII ¼ T33 � T22, respectively. Using (9.9), these normal stress differences are

TI ¼�cn1n3 a6 � a5 þ a1 n23 � n21
� �� 	

;

TII ¼ � 1
2
�cn1n3 a1 þ 2a6 þ a1 n23 � n21

� �� 	
:

ð9:18Þ

Assuming�c[ 0, the relation w ¼ arc cosð�k�1Þ=2 for the flow alignment angle
derived in the previous section may also be written as

Fig. 9.5 An anisotropic fluid
of hard parallel spheroids can
be obtained from an isotropic
fluid of hard spheres by an
affine transformation (matrix
C) of space coordinates
r0 ¼ ðx0; y0; z0Þ
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tanw ¼
ffiffiffiffiffi
a2
a3

r
: ð9:19Þ

Using the theory of Baalss and Hess [20], the viscosity coefficients of the
Leslie-Erickson theory for the fluid of aligned hard spheroids are

a1 ¼ � 1
2

q� q�1� �2
gHS;

a2 ¼ 1
2

1� q2
� �

gHS;

a3 ¼ 1
2

q�2 � 1
� �

gHS;

a4 ¼ gHS;

a5 ¼ �a2;

a6 ¼ a3;

ð9:20Þ

where in our case gHS is the shear viscosity of a hard sphere fluid with sphere
volume equal to the volume of a spheroid particle. The flow alignment angle (9.19)
can be expressed as

tanw ¼ q sgnð�cÞ; ð9:21Þ

which corresponds to a counterclockwise tilt of the director with respect to the
z-axis if�c[ 0 (Fig. 9.2). Using (9.11) and the results for a2 and a3 listed in (9.20),
the theoretical value of the flow alignment parameter is found to be
k ¼ 1þ q2ð Þ= q2 � 1ð Þ. Combining (9.11) and (9.19), the flow alignment angle ψ
and λ are related by

tanw ¼
ffiffiffiffiffiffiffiffiffiffiffi
kþ 1
k� 1

r
: ð9:22Þ

Flow alignment requires that condition kj j[ 1 holds, otherwise (9.22) has no
solution and the director tumbles in a shear flow.

Equation (9.21) leads to the director components n1 ¼ �q sgn �cð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
and

n3 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
. Using these expressions for the director components, (9.18)

yields the normal stress differences

TI ¼ � 2gHSq 1� q2ð Þ�cj j
q2 þ 1ð Þ2 ; ð9:23Þ

TII ¼ gHSq 1� q2ð Þ�cj j
q2 þ 1ð Þ2 : ð9:24Þ
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9.4 Mesoscopic Approach for a Weakly Anisotropic Fluid
of Oblate Platelets

9.4.1 Rheological Model

Using the scalar order parameter S and the director n, the components of a sym-
metric second rank tensor

Qkl ¼ S nknl � 1
3
dkl

� �
ð9:25Þ

describe both the degree of nematic order and the preferred direction of the long
molecular axes in space [6]. Furthermore, it is useful to introduce the antisymmetric
tensor Xkl ¼ @vk=@xl � @vl=@xkð Þ=2. The corotational time derivative of this tensor
order parameter

�Qkl ¼
@Qkl

@t
þ vs

@Qkl

@xs
� XksQsl þ QksXsl ð9:26Þ

replaces the corotational time derivative N of the director defined in the framework
of the macroscopic theory [9, 10]. We consider experiments with a rheometer that
produces an approximately homogeneous flow. Our theoretical approach is based
on the Onsager’s principle, which allows to derive kinetic equations by minimizing
a Rayleighian. The principal way to apply this general method is explained by many
examples in the monograph of Doi on soft matter physics [21]. In the present case
the Rayleighian depends on the components of the shear gradient tensor A and the
corotational time derivatives �Qkl (9.26) of the components of tensor Q. The
Rayleighian of a flowing nematic fluid can be written as

RðA;�QÞ ¼ UðA;�QÞ þ�Qkl
@F Qð Þ
@Qkl

: ð9:27Þ

The first term on the right hand side is the dissipation function describing the
entropy production by viscous energy dissipation. The second term accounts for the
change of free energy arising when the nematic order parameter Q relaxes and
accommodates to the flow. F(Q) is the free energy of a nematic liquid crystal in
dependence on the order parameter. Onsager’s principle states that the system
evolves along a path with minimal Rayleighian. Using Onsager’s principle, equa-
tions of motion are obtained from
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@RðA;�QÞ
@�Qkl

¼ 0; and ð9:28Þ

@RðA;�QÞ
@Akl

¼ Tkl; ð9:29Þ

where the components Tkl define the stress tensor T, which is assumed to be
constant in space. T is produced by the external forces applied to the rheometer
plates. The dissipation function UðA;�QÞ is quadratic in the fluxes Akl and Qkl

UðA;�QÞ ¼ Lklst Qð Þ�Qkl
�Qst þMklst Qð Þ �QklAst þ Akl�Qst

� �
þ Nklst Qð ÞAklAst:

ð9:30Þ

The procedure based on a Rayleighian implies that the kinetic coefficients satisfy
Onsager’s reciprocal relations. In the present case these relations are

M klð Þ stð Þ Qð Þ ¼ M stð Þ klð Þ Qð Þ: ð9:31Þ

Introducing the notation Pkl ¼ @RðA;�QÞ=@�Qkl, (9.28) and (9.29) are written as

Pkl ¼ 0; and ð9:32Þ

Tkl ¼ @UðA;�QÞ
@Akl

: ð9:33Þ

Taking into account that the order parameter Q is small, i.e. its matrix norm
satisfies the condition Qk k� 1, the kinetic matrices L, M, and N in (9.30) could be
expanded into a power series of matrix Q. However, there is a simpler way to obtain
the thermodynamic forces utilizing that UðA;�QÞ is a homogeneous Eulerian
function of second order of the tensor components �Qkl and Akl (9.30). Hence, the
dissipation function UðA;�QÞ may be written as a bilinear form in terms of fluxes
and forces as

U ¼ Pkl�Qkl þ TklAkl; ð9:34Þ

where the forces Pkl and Tkl depend linearly on the fluxes �Qkl and Akl. Since the
tensors �Q and A are symmetric and traceless, the dissipation function does not
change if we add multiple of the unit tensors to the tensors P and T In this case
P and T can always be chosen as traceless tensors. Hence, the matrices Pkl and Tkl
may be written in such a way that they are symmetric and traceless without
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changing the dissipated energy UðA;�QÞ. Furthermore, taking into account
Onsager’s reciprocal relation (9.31) and keeping only terms of lowest order of
magnitude, the expansions of the tensors P and T give

Pkl ¼ l0�Qkl � l1Akl � l2 AksQsl þ QksAsl � 2
3
AstQtsdkl

� �

þ l3 �QksQsl þ Qks�Qsl �
2
3
�QstQtsdkl

� �
þ @F Qð Þ

@Qkl
;

ð9:35Þ

and

Tkl ¼ �l1�Qkl þ t1Akl þ t2 AksQsl þ QksAslð Þ � l2 �QksQsl þ Qks�Qsl

� �
; ð9:36Þ

where only the traceless parts of Tkl should be used. If the trace Tss does not vanish,
the components of tensors defined by (9.36) should be replaced by the modified
expression T̂kl ¼ Tkl � 1

3 Tssdkl. Using a different mathematical method, (9.35) has
already been derived by Farhoudi and Rey [7, 8] for a rheological model of
polymeric nematic liquid crystals. The derivative of the free energy F(Q) for the
nematic phase

@F Qð Þ
@Qkl

¼ bQkl � cQksQsl þ dQksQstQtl ð9:37Þ

is obtained from the de Gennes order parameter expansion [6]. In the present stage
of experimental accuracy, it is sufficient to assume an uniaxial ordering of the
kaolin platelets described by the order parameter tensor (9.25). Possible small
corrections due to biaxiality of the nematic order are neglected. The nematic order
parameter (9.25) accounts for the order parameter magnitude S and the flow
alignment angle ψ . Using again the coordinate system shown in Fig. 9.2, the
tensors A and Ω are

Aklð Þ ¼
0 0 1

2�c
0 0 0
1
2�c 0 0

0
@

1
A; ð9:38Þ

Xklð Þ ¼
0 0 1

2�c
0 0 0

� 1
2�c 0 0

0
@

1
A: ð9:39Þ

Taking into account that the director is defined by n ¼ � sinw; 0; coswð Þ the
order parameter tensor Q has the representation
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Qklð Þ ¼
1
6 S 1� 3 cosð2wÞð Þ 0 � 1

2 S sinð2wÞ
0 � 1

3 S 0
� 1

2 S sinð2wÞ 0 1
6 S 1þ 3 cosð2wÞð Þ

0
@

1
A: ð9:40Þ

Using (9.36) the shear stress T13 and the first (TI ¼ T11 � T33) and second
(TII ¼ T33 � T22) normal stress differences are obtained from the relations

T13 ¼ 1
6
�c 3t1 þ t2Sþ 3l1 þ l2Sð ÞS cosð2wÞ½ �; ð9:41Þ

TI ¼ � 1
3
�c 3l1 þ l2Sð ÞS sinð2wÞ; ð9:42Þ

TII ¼ 1
6
�c 3t2 þ 3l1 þ l2Sð ÞS sinð2wÞ: ð9:43Þ

The flow alignment angle may be evaluated by using the matrix relation M = PQ
– QP = 0. The only components of the antisymmetric matrixM which do not vanish
identically are M13 and M31 = –M13. M13 = 0 leads to an equation for the flow
alignment angle

@w
@t

¼ � 1
2
�c 1þ 3l1 þ l2S

Sð3l0 þ l3SÞ
cosð2wÞ


 �
ð9:44Þ

which corresponds to the result of Farhoudi and Rey [7, 8]. If the condition
3l0 � l3Sj j is satisfied the number of adjustable parameters can be reduced. This
condition seems to be reasonable, since the order parameter S for the kaolin platelet
suspension is not large. Thus, we always assume l3 ¼ 0 in the following evalua-
tions. The nematic order parameter magnitude S is obtained from the equation
traceðPQþ QPÞ ¼ 0. The trace contains the term Qst @F Qð Þ=@Qstð Þþ
@F Qð Þ=@Qstð ÞQst, which is a polynomial of degree four in terms of S. This poly-
nomial may be transformed into the product 4dS2 S� Sbð Þ S� S0ð Þ=9, where the
roots Sb and S0 depend on the coefficients c and d in (9.37). S0 is the magnitude of
the nematic order parameter at small shear gradients (S0 ¼ Sð�c ! 0Þ). After some
rearrangements the equation for the trace of PQ + QP and (9.44) are expressed as

@w
@t

¼ � 1
2
�c 1þ kðSÞ cosð2wÞ½ �; ð9:45Þ

and

@S
@t

¼ � 3
4
�cS kðSÞ þ b½ � sinð2wÞ � v Sð Þ S� S0ð Þ; ð9:46Þ
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where the flow alignment parameter kðSÞ and function vðSÞ are defined by

kðSÞ ¼ a
S
þ b and vðSÞ ¼ 4d

9
S S� Sbð Þ ð9:47Þ

with a ¼ l1=l0 and b ¼ l2=3l0. It should be mentioned that a replacement of vðSÞ
by the inverse relaxation time vðS0Þ[ 0 in (9.46) could lead to a further simpli-
fication, which is justified if changes of S remain relatively small as found in our
experiments. Equation (9.45) is related to (9.12) of the macroscopic Leslie-Erickson
theory for nematic liquid crystals. However, in contrast to the Leslie-Erickson
approach the flow alignment parameter in (9.45) is a function of the variable order
parameter S, which depends on the shear gradient�c.

9.4.2 Theoretical Results for Stationary Flow Alignment

Let us consider the stationary shear alignment regime appearing for a shear flow if
kðSÞj j[ 1. Using (9.46), it can be proven that shear alignment implies that
w1 ¼ w �c ! 1ð Þ ¼ 0, if the value of order parameter S at high shear rates
(�c ! 1) does not coincide with the corresponding value S0 at low shear rates
(�c ! 0). Then, using (9.45), for high shear rates the relation kðS1Þ ¼
�1= cosð2w1Þ ¼ �1 results. If suitable experimental data are available for low and
large shear rates, we can use the order parameter magnitude at low shear rates
S0 ¼ S �c ! 0ð Þ, the corresponding flow alignment angle w0 ¼ w �c ! 0ð Þ and the
value of S at high shear rates (S1 ¼ S �c ! 1ð Þ) to evaluate the material constants α
and β in the expression for kðSÞ. Thus we obtain

k Sð Þ ¼ a
S
� a
S0

� 1
cos 2w0ð Þ ; ð9:48Þ

where

a ¼ � S0S1 1� cos 2w0ð Þð Þ
S1 � S0ð Þ cos 2w0ð Þ ; ð9:49Þ

and the parameter β in (9.46) is defined as b ¼ �a=S0 � 1= cosð2w0Þ, or

b ¼ � S1 cosð2w0Þ � S0
S1 � S0ð Þ cos 2w0ð Þ : ð9:50Þ
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For solving (9.45) and (9.46) a perturbation approach S ¼ S0 þ S1�cþ S2�c
2 þ . . .

and w ¼ w0 þ w1�cþ w2�c
2 þ . . . is useful. Inserting these expansions into (9.45)

and (9.46) the lowest order terms of the perturbation expansion are found to be

S ¼ S0 þ 3S0 1� b cosð2w0Þ½ � tan 2w0ð Þ
4vðS0Þ �cþ Oð�c2Þ; ð9:51Þ

and

w ¼ w0 þ
3a 1� b cosð2w0Þ½ � cos 2w0ð Þ

8vðS0ÞS0 �cþ Oð�c2Þ; ð9:52Þ

where we always assume that�c[ 0. The constant vðS0Þ[ 0 may be considered as
an inverse relaxation time, which is proportional to the restoring force when the
order parameter S relaxes. In the case of stationary flows (@S=@t ¼ 0), relation
(9.42) for the first normal stress difference can be simplified. Taking into account
that the flow alignment parameter can be expressed as kðSÞ ¼ ð3l1 þ l2SÞ=3Sl0
(9.47), (9.42) is transformed into

TI ¼ �l0S
2kðSÞ�c sinð2wÞ: ð9:53Þ

As the dissipation function (9.34) must be positive definite, the condition l0 [ 0
holds. If�c is small or moderately high, the perturbation approach leads to the first
normal stress difference TI ¼ �l0S0kðS0Þ�c sinð2w0Þ þ Oð�c2Þ, which is positive,
since kðS0Þ\0 and the experimentally observed flow alignment angle w has a small
but positive value (sinð2wÞ’ 2w[ 0). The value of TI increases with increasing
shear gradient �c[ 0. At higher values of �c, the difference T11 � T33 ¼ TI
approaches a finite limit. For a stationary flow (@S=@t ¼ 0), (9.46) can be used to
replace the product�c sinð2wÞ in (9.53) and we arrive at

TI ¼ 4l0kðSÞvðSÞS S� S0ð Þ
3 kðSÞ þ bð Þ : ð9:54Þ

In this expression the replacement vðSÞ’ vðS0Þ is a reasonable approximation.
Obviously, according to (9.46) the product �c sinð2wÞ remains finite in the shear
alignment regime even if �cj j ! 1. For high shear rates (�cj j ! 1) the insertion of
kðS1Þ ¼ �1 into (9.54) leads to

TI ¼ 4l0vðS0ÞS1 S1 � S0ð Þ
3ð1� bÞ : ð9:55Þ
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If S1 [ S0 (9.49) and (9.50) lead to the conditions a\0 and bj j\1 for small
flow alignment angles w0. In this case (9.54) and (9.55) predict that the first normal
stress difference is positive and approaches a constant positive value when �cj j tends
to infinity. In the whole range of shear rates�c, the structural parameters S and ψ can
be obtained by solving (9.45) and (9.46) numerically. For the stationary state
(@S=@t ¼ 0 and @w=@t ¼ 0) and a parameter choice S0 ¼ 0:30, S1 ¼ 0:40 and
w0 ¼ 0:30, the first normal stress difference (9.53) can be evaluated.

S, ψ and TI=C0 are plotted versus the reduced shear rate �c=vðS0Þ in Fig. 9.6,
where C0 ¼ 3=4l0vðS0Þ is a constant. We use the simplified version of the model
with vðSÞ’ vðS0Þ. In stationary flows, the qualitative behavior of the first normal
stress difference and the structural parameters S and ψ does not change if vðS0Þ
varies. vðS0Þ only defines the time scale of dynamic processes. In the other case, if
S1\S0, the first normal stress difference may be negative. However, a stability
analysis reveals that the director tumbles or waggles if S1\S0. This more involved
case will be discussed more thoroughly in another paper.

Fig. 9.6 Results of the mesoscopic theory for the scalar order parameter S, the flow alignment
angle w and the scaled normal stress difference TI=C0 versus the scaled shear rate _c=vðS0ÞðS0 ¼
0:3; S1 ¼ 0:4;w0 ¼ 0:30 and C0 ¼ 4l0vðS0Þ=3)
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9.5 Comparison of Rheological and Structural Data

Kaolin powder obtained from Sigma Aldrich has a broad particle size distribution.
Using sedimentation analysis of the kaolin powder, the equivalent spherical
diameters d10 ¼ 0:17 lm and d50 ¼ 0:65 lm (10 and 50 % of the particles are
smaller than 17 and 0.65 μm, respectively) were found. The average particle size
determined by laser diffraction was 3.8 μm (Malvern Instruments Mastersizer
2000). Using SEM, an aspect ratio of roughly q’ 0.1 was estimated. In all rhe-
ological experiments the pH� value was 3.5. The solid particles of the kaolin
suspensions had the mass fraction w = 0.4, which corresponds to a volume fraction
of U’ 0:2. At low pH-values a concentrated kaolin suspension at rest is supposed
to form a gel that impedes Brownian motion of the platelets. In this gel network
negatively charged edges are connected to positively charged platelet faces. In a
shear flow, however, the weak particle aggregates become disconnected and
Brownian motion accompanied with particle reorientation is possible.

Fig. 9.7 Apparent scalar nematic order parameter (< S >), flow alignment angle (\w[ ) and first
the normal stress difference TI in dependence on the shear rate _c for a low pH� value (pH ¼ 3:5).
As the first normal stress difference is negative, the director is supposed to waggle or tumble. The
experimentally observed values of < S > and \w[ are considered as averages over many
domains

238 M. Bombrowski et al.



A disadvantage of the X-ray scattering method is the relatively low penetration
depth as discussed in Sect. 3.2. Nevertheless, general structural results can be
compared with the data for TI. Our experimental results demonstrate that the pre-
ferred direction of platelet normals under shear has the azimuthal angle ϕ = 0
(Fig. 9.3). Thus, according to (9.5), the polar angle hmax ¼ �w corresponds to a
clockwise rotation of the platelet normals in the shear plane (ψ < 0). Figure 9.7
shows the apparent scalar order parameter < S>, the apparent flow alignment angle
< ψ > and the first normal stress difference TI in dependence on the shear rate for a
low pH-value of the suspension (pH ¼ 3:5). Both the first normal stress difference
TI and the director tilt angle < ψ > have negative values. If the theory for polymer
nematics were applicable to aligned kaolin platelets, a negative first normal stress
difference would be the result of a non-stationary flow regime. Then the director,
defined as the preferred direction of the platelet normals in a domain, is supposed to
waggle or tumble [1, 14, 15]. In this case, the intensities of the X-ray diffraction
beams from many differently aligned domains superimpose and the experimental
data for S and ψ should be interpreted as averaged values, symbolized by < S > and
< ψ>. The magnitude of the director tilt angle < ψ > is relatively small (Fig. 9.7). TI,
< ψ > and < S > are non-monotonous functions of the shear rate�c. The magnitude
TIj j is maximal where both the order parameter \S[ and the flow alignment
angle \w[ have a relative extremum. Hence, there is a close relation between
platelet alignment and the rheological properties of the suspension.

9.6 Discussion

Let us compare the results of theoretical models with experimental data for con-
centrated kaolin suspensions which have negative values of TI. It should be noted
that there are also other experimental results for modified kaolin suspensions
(pH[ 6 and U	 0:2), which always seem to have a positive first normal stress
difference as shown in Fig. 9.1 [16]. But in this paper we focus our attention on the
case TI\0. For simplicity, we choose the direction of the flow velocity to be
parallel to the positive direction of the x-axis, excluding the antiparallel orientation.
In this case we have �c ¼ �cj j 	 0. The predictions of the macroscopic
Leslie-Erickson theory for nematic liquid crystals in combination with the micro-
scopic Baalss-Hess theory [20] for oblate spheroids (q\1) are summarized as
follows (9.21, 9.23 and 9.24): (a) A stationary shear flow of spheroids is stable,
(b) the flow alignment angle w is small and positive (anticlockwise tilt direction) for
q� 1, (c) the first normal stress difference is negative, (d) the second normal stress
difference is positive, and (e) both normal stress differences are proportional to �cj j.
The observed negative first normal stress difference TI combined with a negative
value of w cannot be explained by the Baalss-Hess theory.
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The mesoscopic approach takes into account the nematic order parameter tensor
Q, which depends on both the director tilt angle w (Fig. 9.2) and the scalar order
parameter S (9.4). Equations (9.41)–(9.46) contain several adjustable material
parameters. In the case of a stable flow alignment, i.e. if the director does not
tumble or waggle, the mesoscopic model provides us rather general predictions
(Sect. 4.2): (a) The flow alignment angle w is positive (anticlockwise rotation) as
depicted in Fig. 9.2, (b) angle w decreases and the scalar order parameter
S increases with increasing shear rate�c, (c) the first normal stress difference TI is
positive and increases linearly with the shear rate�c at low and moderate values of�c,
and (d) at higher shear rates TI approaches a plateau value. A stable stationary
platelet orientation in combination with a negative first normal stress difference is
not compatible with our theoretical model.

Experimentally observed negative values of the first normal stress difference
could have the same origin as in the case of nematic polymeric solutions. If TI\0,
the director is supposed to tumble or waggle, at least in a certain interval at low
shear rates�c. Tumbling or wagging must occur if the flow alignment parameter kðSÞ
(9.47) satisfies the condition kðSÞj j\1, since in this case (9.22) does not yield a real
value for the angle w. It is well known that the value of kðSÞ for disk-like particles is
always negative and very close to −1 [1, 18]. Experimental data are mean values
averaged over many domains of the kaolin sample. In a similar way as for poly-
meric liquid crystals, averaging over many different domains could be replaced by
time averaging over a single domain [15]. Using angle brackets for symbolizing
averaging, (9.42) can be written as

TI ¼ �l0\S2kðSÞ�c sinð2wÞ[ : ð9:56Þ

Equation (9.56) relates the flow alignment angle to the first normal stress dif-
ference. Considering the experimental data in Fig. 9.7, the apparent flow alignment
angle \w[ is negative in the investigated range of shear rates 0\�c\100 s�1.
Since kðSÞ’ � 1, l0 [ 0 and \ sinð2wÞ[\0 , the values of the first normal
stress difference TI (9.56) should be negative in agreement with the experimental
observation. Further insight into the rheological behavior for the non-stationary
regime ( kðSÞj j\1) can be gained by evaluating wðtÞ and SðtÞ. Solving the coupled
differential equations for the dynamics (9.45 and 9.46) requires extensive numerical
computations. Results will be published in a forthcoming paper.

In conclusion, a mesoscopic theoretical approach for modelling rheological
properties of concentrated kaolin suspensions predicts that a stationary shear
alignment is not compatible with a negative first normal stress difference. The
observed negative normal stress difference at pH ¼ 3:5 is suggested to be a con-
sequence of tumbling or wagging of the platelet normals. The platelet normals are
supposed to behave similarly as the director in polymeric liquid crystals under
shear.
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Appendix

Setup for recording the platelet orientational distribution in kaolin suspensions
After shearing the kaolin suspension has been frozen rapidly to fix the platelet

orientation. Figure 9.8 illustrates the experimental setup for recording the intensity
Iðh;/Þ of diffracted X-rays in dependence on the orientation of the rotation table.
Iðh;/Þ is the intensity of the X-ray beam reflected by the crystallographic
ð0; 0; 2Þ—planes (Bragg angle b ffi 12�).

If the Bragg condition is satisfied for a platelet, the platelet normal, the incident
and the diffracted beam lie in the fixed x–z—plane of the Cartesian coordinate x–y–
z–system shown in Fig. 9.8. The angles θ and ϕ are the polar and the azimuthal
angle of the rotation table normal in the fixed x–y–z–system. The orientational
distribution function of the platelet normals is obtained from the intensity distri-
bution of diffracted X-rays by using the relation I h;/ð Þ / f h;/ð Þ.
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Chapter 10
Carbon Nanotubes in Liquid Crystals:
Fundamental Properties and Applications

Longin Lisetski, Marat Soskin and Nikolai Lebovka

Abstract The structure and properties of liquid crystalline suspensions filled by
carbon nanotubes (CNTs) are critically reviewed. Special attention is paid to
interactions between CNTs and molecules of the liquid crystals (LC), which lead to
formation of ordered supramolecular structures. These structures, in turn, determine
unique physical properties of LC + CNT suspensions, including electrical con-
ductivity, dielectric permittivity, phase transitions, optical transmission, memory
effects that can be used in electrooptic and optoelectronic devices, etc. Great variety
of LC phases are considered as a host media, such as nematics, cholesterics,
smectics of different types (including ferroelectrics), lyotropic, chromonic, ionic
and hydrogen-bonded liquid crystals. Alongside multi- and single-walled carbon
nanotubes, the suspensions can also contain the platelets of organoclays used
for facilitation of CNT dispersing. Recent practical applications of LC + CNT
suspensions and nanomaterials based thereon are also outlined.
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d Outer diameter of MWCNTs
di Inner diameter of MWCNTs
dc Effective size dc of a coil
ds Interlayer distance in MWCNT
f Frequency
f(θ) Angular function
H Heat flow
h Thickness of a sample
K Bending stiffness of CNTs
Ke Frank elastic constant
k Degree of impenetrability
kBT Thermal energy
L Length of nanotubes
Lp Persistence length
n Number of walls
n Director vector
r Distance between particles
S Specific surface area
sLC Order parameter in the nematic phase
sn Order parameter of rods (CNTs)
T Temperature
Tcn Crystal-nematic transition temperature
Tni Nematic-isotropic transition temperature
Tr Optical transmission
t Critical conductivity exponent
U Interaction potential
u Voltage
W Surface anchoring energy

Greek Letters
δT Total Hansen parameters
Δε ε∥ − ε⊥, dielectric anisotropy
ε∥ Parallel component of dielectric permittivity
ε⊥ Perpendicular component of dielectric permittivity
γ Angle between the rods
η Viscosity of LC
φ Volume concentration of CNTs
φc Percolation volume concentration of CNTs
Λ Thickness of LC interfacial shells surrounding the MWCNT aggregates
λ Chiral pitch length
θ Angle of the connecting line of the particle centres with the director direction n
ρ Density
σ Electrical conductivity
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τ Time of aggregation
ξ Penetration length

Abbreviations
AC Alternating current
AFM Atomic force microscopy
BLB Beer–Lambert–Bouguer
CNTs Carbon nanotubes
DC Direct current
DSC Differential scanning calorimetry
FLC Ferroelectric liquid crystal
Lap Laponite
LapO Organo-modified laponite
LC Liquid crystal
LLC Lyotropic liquid crystal
MMT Montmorillonite
MMTO Organo-modified montmorillonite
MWCNTs Multi-walled carbon nanotubes
NTC Negative temperature coefficient of conductivity
POM Polarized optical microscopy
SAXS Small-angle X-ray scattering
SEM Scanning electron microscopy
SWCNTs Single-walled carbon nanotubes
TEM Transmission electron microscopy
UV-Vis Ultraviolet and visible

Chemical substances
5CB 4-pentyl-4′-cyanobiphenyl
7OBA p-n-heptyloxybenzoic acid
BBBA 4-butoxybenzylidene-4′-butylaniline
C12E6 n-dodecyl octaoxyethene monoether
C14mimCl 1-tetradecyl-3-methylimidazolium chloride
CB-15 4-(2-methylbutyl)-4′-cyanobiphenyl, chiral dopant
CC Cholesteryl chloride
CB Cholesteryl benzoate
CN Cholesteryl nonanoate
CCN Cholesteryl caprynate
CCL Cholesteryl caprylate
CHP 1-Cyclohexyl-2-pyrrolidone
COC Cholesteryl oleyl carbonate
CTAB Cetyl-trimethyl ammonium bromide, anionic surfactant
DDAM Dodecyldimethylammonium ethyl methacrylate
DMF N,N-dimethylformamide
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DSCG Di-sodium cromoglycate
E7 Commercial mixture of cyanobiphenyl and cyanoterphenyl

components
E63 Commercial mixture similar to the E7 with added cyclohexanes
EBBA 4-ethoxybenzylidene-4′-butylaniline
EAN Ethylammonium nitrate (ionic liquid)
FLC-6304 Deformed helix FLC mixture
KCFLC10S Commercial FLC mixture
LAHS7 Eutectic multicomponent mixture with a phenyl pyrimidine

matrix
MBBA 4-methoxybenzylidene-4′-butylaniline
MLC-6290-000 Commercial nematic mixture (Merck)
MR (2-(N,N-Dimethyl-4-aminophenyl)azobenzenecarboxylic acid),

Methyl Red
NMP N-methyl-2-pyrrolidone
PEG Polyethylene glycol, hydrophilic polymer
PCPBB 4-pentylphenyl 2-chloro-4-(4-pentylbenzoyloxy) benzoate
PSS Poly(sodium styrenesulfonate)
PDADMAC Poly(diallydimethylammonium chloride)
ROTN403/015S Commercial multi-component mixtures of a nematic LCs with

0.1 wt% of CN as chiral dopant
SDS Sodium dodecyl sulfate, cationic surfactant
Triton X-100 Polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether,

non-ionic surfactant
ZhK-440 Commercial azoxy-component mixture of p-n-butyl-p-methoxyaz

oxybenzene (2/3) and p-n-butyl-pheptonoiloxyazoxybenzene (1/3)
ZhK-805 Commercial mixture of 4-butyl-(1/2) and 4-hexyl-trans-cyclo-

hexanecarboxylic acid (1/2)
ZhK-1282 Commercial mixture of several 4-alkyl- and 4-alkoxy-4′-cyano-

biphenyls and nematic cyclohexyl-containing esters
ZLI-811 Benzoic acid, 4-hexyl-,4-[[(1-methylheptyl)oxy]carbonyl]phenyl

ester, chiral dopant

10.1 Introduction

In recent years the suspensions on the base of liquid crystals (LCs) doped by carbon
nanotubes (CNTs) have been studied intensively. The liquid crystalline
self-organization results from anisotropic shape of LC molecules. Supplementary
self-organization in LC doped by rod-like CNTs with extremely high aspect ratio,
a (a = L/d ≈ 100–1000 is the length, L, to diameter, d, ratio) is also expected. Many
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intriguing properties of self-organized CNT systems and LCs doped with CNTs
were already reported. Here, we can refer the recent reviews on the problem [1–21].

This chapter reviews behaviour of CNTs in isotropic and LC suspensions. The
resent experimental works on different physical properties of CNTs in nematic,
smectic, cholesteric and lyotropic LC suspensions are critically analysed.

10.2 A Short Introduction to CNTs

The priority publication related with synthesis of CNTs was issued in 1990 [22] and
then many review works related with properties and structure of CNTs and different
composites on their base were proposed (see, e.g., [23]).

CNTs can be described as wrapped graphene sheets (sp2) into the cylinders.
There exist single-walled (SWCNTs) and multi-walled (MWCNTs) nanotubes with
external diameters d 1−4 nm and 1–100 nm, respectively. The length of CNTs
L can vary within 100 nm–50 μm. The way of wrapping of the graphene sheet is
important and can result in chirality of SWCNTs. The change of chirality causes
significant changes in electrical conductivity (metallic and semiconducting types).

MWCNTs usually display high mechanical strength and a metallic (“ballistic”)
type of electrical conductivity. Figure 10.1 shows examples of scanning electron
microscopy images of MWCNTs. Usually, MWCNTs have wide diversity in their
diameters, d, and lengths, L (Fig. 10.1a). The high resolution TEM image of a
MWCNT reveals that it consists of multiple concentric tubes of graphene
(Fig. 10.1b) [24]. For these MWCNTs the inner and outer diameters were di ≈ 5 nm
and d ≈ 10 nm, respectively and the number of walls n was 7.

0.2 μm

≈30 nm

≈10 nm

10 nm

di≈5 nm
d≈10 nm

n≈7

(a) (b)

Fig. 10.1 Examples of scanning electron microscopy image of MWCNTs in powder (a) and high
resolution electron microscopy image of individual MWCNT (b) (From [24]. With permission).
Here, di and d are the inner and outer diameters, respectively and n is the number of walls
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10.2.1 Specific Surface Area and Density

The specific surface area S and density ρ of MWCNTs can be theoretically esti-
mated as follows [25]. The weight of one CNT, m, is

m ¼ pL
1315

ndi þ 2ds
Xn�1

j¼0

j

 !

¼ pLn
1315

ðdi þ ðn� 1ÞdsÞ ¼ pLn
1315

ðdn � dsðnþ 1ÞÞ:
ð10:1Þ

Here, ds = 0.34 nm is the inter-shell distance in MWCNTs, di = d − 2nds is the inner
diameter and the specific surface area of graphene sheet (≈1315 m2/g) [26] was
taken into account.

For the high aspect ratio MWCNTs, i.e., when a = L/d >> 1, the effects of the
end tips can be neglected. The surface (s = πLdn) and volume (v = πLdn

2/4) of one
CNT can be treated as depending only on the outer diameter d. So, the specific
surface area S and density ρ of MWCNTs can be estimated as:

S ¼ 1315
nð1� ðnþ 1Þds=dÞ ; ð10:2Þ

q ¼ 4nð1� ðnþ 1Þds=dÞ
1315d

: ð10:3Þ

Figure 10.2 presents the calculated specific surface area S and density ρ as functions
of the CNT outer diameter d at different values of n [24]. The values of S and ρ
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Fig. 10.2 Specific surface
area S, (10.2) (a) and density
ρ, (10.3) (b) versus the outer
diameter of MWCNTs, d, at
different numbers of walls, n
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decrease as d increases and these values are also dependent on the number of
walls, n.

The density of CNTs is a useful property to find relation between the volume, φ,
and mass, C, concentrations of CNT in suspensions. These values are related as

u ¼ 1þ ð1=C � 1Þq=qm½ ��1¼ Cqm=q; ð10:4Þ

where ρ and ρm are the densities of CNTs and host medium. In the limit C → 0, we
get φ ≈ Cρm/ρ.

In many practical cases, for composites doped by MWCNTs, the approximation
of φ ≈ 0.5C may be used [27].

10.2.2 Do Carbon Nanotubes Behave Like Rods or Like
Polymers?

A very important characteristic of CNTs is their flexibility or waviness. In many
cases, the shape of CNTs deviates significantly from rod-like geometry and is rather
tortuous when grown randomly by chemical vapor deposition method [28].

For random coil-like CNTs the dependence of the effective size, dc, of the coil
upon the length, L, of CNTs can be approximated as [29]

dc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LpLþ 2L2pðexpð�L=LpÞ � 1Þ

q
; ð10:5Þ

where Lp is the static bending persistence length (i.e., the maximum straight length
that is not bent by a permanent structural deformation).

In the rigid random-coil limit (i.e., when L >> Lp):

dc �
ffiffiffiffiffiffiffiffiffiffi
2LpL

p
: ð10:6Þ

In the rigid-rod limit (i.e., when L ≈ Lp) the effective size of coil, dc, is com-
parable with the length of CNTs, L:

dc � L: ð10:7Þ

Although various theoretical and experimental methods have been used to
estimate the persistence lengths of SWCNTs and MWCNTs, the existing data are
still controversial. The theory predicts that the persistence length of CNTs can be
evaluated as [30]

Lp ¼ K=kBT ; ð10:8Þ
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where kBT ≈ 4.1 · 10−21 J is the thermal energy at T = 273 K and K is a bending
stiffness defined as

K ¼ p
8

Xn�1

j¼0

Cjd
3
j : ð10:9Þ

Here dj = d − 2jds is the diameter of jth shell (See, (10.1)).
According to ab initio calculations [31], C = 345 J/m2 for a plane sheet, or a little

less for CNTs. Finally, we get for the persistence length

Lp ¼ pCnðd � dsðn� 1ÞÞðd2 � 2ddsðn� 1Þ þ 2d2s nðn� 1ÞÞ=8kBT : ð10:10Þ

For SWCNTs with diameter d = 1.4 nm this equation gives Lp ≈ 9.1 μm.
Figure 10.3 presents dependences of the persistence length Lp versus outer

diameter of CNTs d at different values of n. Remarkably, the theoretically estimated
persistence lengths are of macroscopic magnitude, and may exceed 1 m for the
outer diameter of MWCNTs of the order of d ≈ 20 nm. The data of fluorescence
microscopy for SWCNTs in water confirmed that the bending stiffness, K, scales as
the cube of the CNT diameter, d, and the values of Lp range from 26 to 138 μm
[32].

However, the noticeably smaller values of the persistence length were reported
in the literature [33–35]. Neutron scattering data suggested that SWCNTs have a
persistent length of about 160 nm [34]. X-ray scattering data evidenced the absence
of the rod-like morphology over length scales from 1 nm to 50 μm [35]. Analyses of
SEM images of MWCNTs with different diameters 10–50 nm revealed the presence
of a strong Lp(d) dependence [33] (Fig. 10.4a).
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Fig. 10.3 Persistence length
Lp versus outer diameter of
CNTs d, at different numbers
of walls, n. The data were
calculated using (10.7)
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In the random coil limit the CNTs behave like polymers and may be presented as
the porous spheres with diameter dc. The relative density of CNT rolled up into the
coil can be estimated as

qc=q � 3d2L=ð2d3c Þ � 3d2L=ð2ð2LpLÞ3=2Þ: ð10:11Þ

Figure 10.4b presents the effective diameter of the coil dc (≈(2LLp)
0.5) and its

relative density ρc/ρ versus d for CNT with the length L = 10 μm. The increase in
CNT diameter d resulted in an increase in dc and decrease in ρc/ρ. The data evidence
that the packing densities of CNTs in these coils may be rather low.

In the rigid-rod limit (i.e., when L ≈ Lp) the CNTs behave as rigid rods, and their
shape anisotropy becomes essential.

10.3 CNTs in Isotropic Suspensions

Nowadays, it is generally recognized that composites based on carbon nanotubes
(CNTs) dispersed in isotropic media demonstrate many attractive electrical,
mechanical and thermal properties with potential of their applications in engi-
neering, electronics and medicine. On the base of these composites the different
types of sensors, switches, screens, electrical energy and memory storage devices,
supercapacitors, sorbents and filters were already proposed [36–40].
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10.3.1 Dispersing of CNTs

Good functionality of different solvents doped by CNTs are mainly determined by
their temporal stability and reproducibility of their properties [41–43]. Usually,
dispersability of CNTs is rather bad, and they show high tendency to aggregation or
formation of bundles [44, 45]. It presents a serious obstacle to good functionality of
these materials. The quality of CNT dispersion in suspensions and functional
composites based thereon may be particularly important in determination of elec-
trical, mechanical and thermal properties of these systems. Many studies have
shown that shearing processing strongly affected the percolation behavior and
clustering of CNTs in different composites [46–48].

Colloidal processing is a recognized tool for preparation of CNT-based materials
[49, 50] and regulation of their stability [51–54]. In some cases, colloidal sus-
pension of CNTs may serve as a useful intermediate for further processing and
preparation of more complex nanotube-based composites. Because of high
hydrophobicity of CNT surface, water is a bad solvent for CNTs. Colloid stability
of aqueous suspensions may be improved by oxidation or functionalization of
CNTs [55–57] and introduction of different surfactants [51–53, 58–61] or polymers
[62].

The correlations between electrokinetic potential of MWCNTs, dispersability in
different solvents (water, ethanol and hexane), stability of CNT suspensions, sur-
face energy, and oxygen content of MWCNTs modified by functionalization were
discussed in details [63]. It was speculated that CNT dispersability in a liquid is
affected by the hydrophilicity of CNT surface, which is reflected by the electro-
kinetic potential value.

The dispersability of CNTs may be noticeably improved in some non-aqueous
solvents or their mixtures [44, 45, 64–68]. CNTs can be debundled to a significant
degree in such good solvents as DMF, NMP, CHP [45, 64]. e.g., the aprotic CHP
can disperse CNTs up to 3.5 mg/mL with very large populations of individual
MWCNTs [44]. It was suggested [66, 69, 70] that good dispersion ability of solvent
is determined by the values of their Hansen solubility parameters [71]. It was also
speculated that good CNT-dispersing ability of solvents is due to the low energetic
cost of exfoliation of nanotubes, since the surface tensions of solvents successfully
dispersing CNTs are close to 40 mJ/m2 [44]. Application of these arguments for
prediction of CNT-dispersing ability of a mixture of solvents is still unclear.

Recently, the microstructure and electrical conductivity of suspensions of
MWCNTs in binary mixture of good (CHP) and bad (water) solvents were studied
in details [72]. CHP and water have significantly different total Hansen parameters,
δT = 47.8 and 20.5 MPa1/2, respectively [71]. This difference mainly reflects the
differences in dispersion and hydrogen bonding components of Hansen parameters.
The experiments have shown that dispersing quality of CNTs in a mixture CHP +
water can be finely regulated by adjustment of the composition of the mixture. The
electrical conductivity data evidenced the presence of a fuzzy-type percolation with
multiple thresholds in the systems under investigation. This behavior was explained
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by formation of different percolation networks in dependence of MWCNT
concentration.

Dispersability of CNTs can be enhanced also by introduction of supplementary
colloidal particles into the suspension [73–78]. In particular, it was shown that
introduction of charged laponite platelets (Lap) significantly improved the dis-
persability of MWCNTs in aqueous suspensions [77]. It was shown that Lap
platelets prevent the aggregation of MWCNTs and, thus, the Lap could act as a
dispersing agent.

Stabilization of MWCNTs in the presence of Lap was explained by strong
interactions between MWCNTs and Lap and formation of Lap hydrophilic shells on
the surface of MWCNTs (Fig. 10.5). The observed attraction between similarly
charged colloidal particles of MWCNTs and Lap was explained by the highly
heterogeneous distribution of negatively charged functional groups on the surface
of MWCNTs and difference in electrophoretic mobility of MWCNT and Lap
particles [24].

10.3.2 Onsager Ordering

Onsager [79] described the appearance of oriented state in the suspension of rods
from purely entropic reasons. The free energy of suspensions was assumed to
depend only on concentration and shape of the particles, and the eventual phase
transition is athermal. The theory predicted the first order nematic/isotropic tran-
sition, i.e., with the phase coexistence and jump of the order parameter, s, from 0 to
0.8. In the “Onsager” limit L >> d the concentrations (volume fraction of rods, φ) of
the coexisting isotropic and nematic phases are given by φi = 3.29/a and φn = 4.19/
a, where a is the aspect ratio [80].

MWCNT

Lap
onite

plate
lets

Fig. 10.5 Impact of Lap on stabilization of MWCNTs in aqueous suspensions

10 Carbon Nanotubes in Liquid Crystals: Fundamental Properties … 253



The Onsager liquid crystalline ordering in suspensions of CNTs can be expected
for rod-like particles, i.e. CNTs with large persistence length, Lp ≥ L. Several
examples of liquid-crystalline phases of CNTs have been reported [2, 15, 81–87].
Observation of liquid-crystalline ordering requires an effective suppression of
strong van der Waals attractive interactions between the individual CNTs and a
solvent with good ability to disperse CNTs. It can be achieved by using of chemical
functionalization of CNT surface or the use of surfactant-covered or
polymer-wrapped CNTs [4]. Formation of a lyotropic nematic phase by MWCNTs
dispersed in water was reported [81, 82]. The coupling between the degrees of
alignment of CNTs with other type of elongated particles (e.g. for rod-like fd virus
particles) was noted in binary nematic dispersions [88, 89]. The guest particles
(CNTs) were shorter and thinner than the fd virus particles. It was shown that order
parameter of the CNTs was systematically lower than that of the fd virus particles
for the whole nematic range.

10.4 LC-Mediated Interactions Between
Embedded Particles

The extent of the perturbation of the LC structure related to the presence of colloidal
particle can be estimated accounting for the elastic penetration length ξ =Ke/W, where
Ke is a certain average of the Frank elastic constants and W is the surface anchoring
energy. In typical cases for the nematic phase Ke ≈ 10−11 N, W ≈ 10−5–10−10 N/m
[90], and the penetration length is of order of ξ * 1 μm–0.1 m.

For sufficiently small spherical particles with diameter d << 1 μm the condition
of weak anchoring limit d/ξ << 1 is fulfilled. In this limit the nematic LC is
practically unperturbed. In the strong anchoring limit d/ξ >> 1 the nematic ordering
around particles is strongly perturbed. The condition d ≈ ξ corresponds to the
“transition” between the weak and strong anchoring limits. For large surface energy
(W ≈ 10−5 N/m), the elastic penetration length ξ * 1 μm, and this condition
corresponds to the micron-sized particles.

The continuum theory predicted the long-range anisotropic elastic interactions
between colloidal particles in LCmedium [91]. In the weak anchoring regime the pair
interaction potential U depends on the distance between particles r and the angle θ of
the connecting line of the particle centres with the director direction n (Fig. 10.6):

U ¼ W2d3

256Ke

d
r

� �5

f ðhÞ; ð10:12Þ

where f(θ) = 0.3(9 − 90cos2θ + (105)cos2θ).
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The angular function f(θ) follows from an electrostatic analogy for quadrupole−
quadrupole (qq) interactions [92]

Uqq / f ðqÞ=r5: ð10:13Þ

The angular function f(θ) is presented in Fig. 10.6. The particles are repelled
when they are aligned along n or in perpendicular direction and attract each other
when placed at oblique angles.

At the distance of the direct contact d * r the interaction energy is of order
U ≈ W2d3/256 K. The aggregation strength may be characterized by the dimen-
sionless ratio

xa ¼ W2d3

256KkBT
; ð10:14Þ

where kBT ≈ 4.1 · 10−2 J is the thermal energy at T = 273 K.
For the typical values Ke ≈ 10−11 N and W ≈ 10−5 N/m (ξ = 1 μm) we get

ωa = 10 for suspension with micron sized particles (strong aggregation) and ωa = 1
for suspension with smaller particles of size d ≈ 100 nm (weak aggregation).
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Fig. 10.6 Interaction of two particles in LC medium. The attraction and repulsion may be realised
in dependence upon the angle θ of the connecting line of the particle centres with the director
direction n. f(θ) is the angular function in the interaction potential U(r,θ)
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For the dilute suspensions the time of aggregation (the time required for two
particles to move towards each other) was estimated as [91]

s � 0:5gKu�7=3=W2 ¼ 0:5gn2u�7=3=K; ð10:15Þ

where φ is the volume fraction of a colloid and η is a viscosity of LC.
For the typical viscosity of the nematic LC η ≈ 10−1 Pa s, for a volume fraction

of φ = 0.1 and ξ ≈ 1 μm, we obtain the value τ ≈ 10 s.
The mean field Smoluchowski theory estimates τ in the isotropic solvent as

follows [93]

s � ðp=8Þgd3u�1=kBT : ð10:16Þ

For the same values of the parameters and d ≈ 1 μm we obtain the value
τ ≈ 100 s.

The pair interaction potential was tested experimentally using a standard video
microscopy technique [94] and the estimated experimental value of U agreed
qualitatively well with that given in [91]. The proposed potential has the form

U ¼ W2pd3

280K
d
r

� �5

f ðhÞ; ð10:17Þ

where f(θ) = 5(7cos2θ − 4)2/24 − 1. The value of U is minimized for cos2θ = 4/7
and the aggregation strength may be characterized by the ratio ωa = πW2d/
(280KkBT).

For elongated particles, e.g. rods or ellipsoids, two different effects can be
essential:

(i) the elongated particles embedded in the LC solvent may produce the defect
structures around them [95] and

(ii) the nematic phase may act as a temperature dependent external field on
elongated particles [96, 97].

The extent of these effects is controlled by the ratio d/ξ ≈ 1, where d is the
transverse size of the particle (e.g., diameter of the rod) and ξ is the elastic pene-
tration length of the nematic material.

There is no explicit information about colloidal forces between elongated par-
ticles in LC. It can be expected that these forces are long-ranged and anisotropic.
The generalizations of the quadrupole−quadrupole potential for particles of arbi-
trary shapes were derived [98]. The application of mesoscale theory evidenced that
the LC-mediated interactions between the nm-sized spherocylindrical particles are
rather strong and they could be used to assemble the particles into ordered struc-
tures with different morphologies [99]. The numerical analysis of the energetic of
elongated objects immersed in a nematic medium revealed complex topological
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structures around particles, depending on their aspect ratio, a, and the boundary
conditions [100].

In the strong anchoring limit d/ξ >> 1 the large elongated colloidal particles
disturb the alignment of the LC molecules around them. The particles also expe-
rience ordering forces that depend on their orientation. So, in this limit the ordering
is driven by a director field deformation. The defect structures around a elongated
colloidal particle embedded in a nematic LC was studied combining molecular
dynamics and Monte Carlo simulation [101]. The torque on a particle tilted with
respect to the director was determined [95]. The presence of a coil-rod transition at
the isotropic-nematic transition for polymer indebted in the background solvent
(nematic phase of rodlike fd virus) was experimentally demonstrated [102]. The
topological properties of a nematic 5CB in the vicinity of micro-rods was experi-
mentally studied [103]. The strength and separation dependencies of various pair
interaction potentials have been also determined.

The continuum theories for different types of boundary conditions predicted
alignment of the elongated particles along the director in the strong anchoring limit
[104, 105]. It was stated that the distortion energy of a nematic LC is usually
minimal if the long axis of the elongated particle coincides with the director [104].
To put the particle in a perpendicular direction requires an energy of the order of
U = KeL, where Ke ≈ 10−11 N. This energy is rather large (>>kBT) even for
nano-sized particles. The following dependence for the energy of the alignment of
rods in the nematic medium was obtained later on [105]

U / cos2h ð10:18Þ

In the weak anchoring limit d/ξ << 1 the perturbation of LC around particles is
unessential. This limit is valid for the particles of submicron size. However, the
alignment of elongated particles is also possible in this limit due to coupling of the
nematic LC with the anisotropic interfacial tension of the particles [106].

The diameter of CNTs seems to be rather small, d << ξ, and this situation
corresponds to the weak anchoring regime. Typically the individual CNTs are not
able to produce large distortion inside nematic LC matrix. However, it was noted
that the weak anchoring regime may be violated for the chemically treated surfaces
of CNTs that resulted in increasing of the anchoring energy, W, or in the vicinity of
the nematic-isotropic transition [107]. Near the nematic-isotropic transition the
elastic constant decreases as Ke ≈ ksLC

2 and the anchoring energy decreases as
W ≈ wsLC, where sLC is the order parameter in the nematic phase. As the result the
ratio dW/Ke * 1/sLC may be very large in the vicinity of the nematic-isotropic
transition.

The dependence similar to presented by (10.18) was obtained also in the weak
anchoring limit [90]. However, in this limit the preferred orientation of particles
with respect to the nematic director may depend on the boundary conditions [105].
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The induced orientational ordering in the diluted suspension of rods is controlled by
the dimensionless ratio of the surface and thermal energy [90]:

xs ¼ LdW=kBT: ð10:19Þ

In the limit of weak surface anisotropy ωs << 1 the induced order parameter of
rods was estimated as

sn ¼ xsp=15: ð10:20Þ

Accounting for the proportionality of anchoring energy to order parameter inside
the nematic LC, W ≈ wSLC we get a relation between the order parameters of the
two components [90]

sn ¼ ðp=15ÞLdWsLC=kBT : ð10:21Þ

It was demonstrated that orientational order parameter, sn, may be tuned by
varying the particle volume fraction, φ, and the temperature, T [106].

10.5 CNTs in Nematic LCs

10.5.1 Phase Transitions

The effect of presence of CNTs on the thermal stability of the mesophase (i.e., on
temperatures of the nematic-isotropic and other mesomorphic transitions) was
discussed in several works. Typically, the non-mesogenic dopants decrease thermal
stability of mesophases. On the other hand, CNTs, as large anisometric
quasi-macroscopic objects, could play the role of a sort of orienting substrates
favoring the liquid crystal ordering. One can recall the so-called “epitropic meso-
morphism” or ordering effects of annular proteins on the LC phase of phospholipid
membranes [108].

The noticeable increase in the nematic-isotropic transition temperature, Tni, of
5CB (by ≈10 K) upon introduction of MWCNTs in a narrow concentration range
(≈0.1–0.2 wt%) was observed [109]. However, numerous attempts to reproduce
these results in many laboratories did not succeed. No statistically reliable changes
in the nematic-isotropic transition temperature Tni for 5CB + MWCNTs suspen-
sions at concentrations up to 0.15 % were observed [110].

At the same time, for nematic matrices of azomethines (MBBA/EBBA) lowering
of Tni by ≈0.5–1.5 K was noted both in spectrophotometric experiments and DSC
measurements. However, this decrease could also be explained by partial decom-
position of the LC molecules due to known chemical instability of azomethines.
Introduction of 0.05 wt% MWCNTs to EBBA caused an increase in Tni by ≈1 K,
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though subsequent increase in the concentration (up to 0.5 wt%) made this effect
about two times weaker [111].

Introduction of 1.5–4 wt%MWCNTs to the nematic matrix 4-methoxyphenyl-4′-
propylbenzoate decreased Tni by several degrees, which was recorded by thermo-
gravimetry [112]. The authors also did not exclude partial thermal decomposition of
the LC matrix. Impact of CNTs on the thermal stability of the LCs was discussed in
detail in literature [113–116]. The two tendencies were considered:

(i) the CNTs additionally align the adjacent layers of nematic molecules, forming
a region with locally enhanced orientational order, and

(ii) the thermal stability may be affected by stronger decomposition of LC and
introduction of ionic impurities in presence of CNTs.

In general, introduction of the CNTs usually resulted in insignificant decrease of
the measured Tni. We can also recall the paper [117], where MWCNT introduction
to a cholesteric (helically twisted nematic) LC led to an insignificant decrease in the
transition temperature from cholesteric to smectic-A phases (a few tenths of K).

10.5.2 Surface Anchoring and Alignment of CNTs

The theoretical calculations predicted the strong surface anchoring due to π-π
interactions between CNTs and LC molecules with a binding energy of about 2 eV
[118, 119]. The density functional calculations evidenced also the formation of
helical wrapping enhancing the hexagon–hexagon π-overlapping and charge
transfer from LC molecule to CNT. Molecular dynamics simulations have shown
that the mobility 5CB molecules becomes more restricted due to interaction with
the CNT surface [120]. The strong interaction between carbon surface and LC
molecules was also experimentally confirmed by the spontaneous alignment of
nematic liquid crystals on oriented carbon fibers [121] or SWCNTs [122, 123].

It was demonstrated that the strong interaction of 5CB molecules with the sur-
face of NWCNT aggregates is responsible for the formation of micron surface
liquid crystal layers with an irregular field of elastic stresses and a complex
structure of birefringence [124].

Figure 10.7 shows examples of the microphotographs of MWCNT clusters
formed in the nematic (a) and isotropic (b) states. As it can be seen, the surface
liquid crystal layers with a changed structure exist in the nematic phase (Fig. 10.7a).

However, they disappear in the isotropic phase as shown in Fig. 10.7b, where
elastic boundary stresses are absent. It is remarkable that small micron-sized
aggregates of MWCNTs become invisible in this case. Thus, the boundary layer of
the 5CB nematic phase visualizes submicron MWCNT clusters, which are below
the resolution threshold of the usual optical microscope. The effect of perturbation
of the LC structure in the interfacial shells surrounding the MWCNT aggregates
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was visually demonstrated by analyzing the optical microscopy images of aggre-
gates at different values of applied AC voltage, u [125].

The examples of such images for 5CB + MWCNT suspension (C = 0.05 wt%) at
different u are presented in Fig. 10.8. The presence of enlightened shells near the
surface of MWCNT aggregates clearly reflected the strong anchoring of 5CB
molecules to the surface of MWCNTs. The strong anchoring between 5CB mole-
cules and lateral surface of MWCNTs reflect the similarity of carbon hexagons in
5CB and MWCNTs. The observed enlightened shells can be explained by the
presence of complicated three-dimensional 3d fields of elasticity strength inside the
layers of anchored molecules of 5CB. It results, in turn, in perturbation of refractive
index distribution near the surface of MWCNTs.

The thickness of interfacial shells surrounding the MWCNT aggregates, Λ, as
function of the applied AC voltage, u, was estimated (Fig. 10.9) [124].

The value of Λ reached the maximum near some threshold value of u ≈ 3.5 V,
and at higher voltages it decreased. The observed effect of the applied voltage on
the thickness of interfacial LC shells surrounding the MWCNT aggregates, possi-
bly, reflects the electric field-driven enhancement of LC structure perturbation in the
LC interfacial shells near the Freedericks transition. At high voltage (u > 3.5 V)
application of the crossed electric field causes the Freedericks transition of nematic
molecules and they can rotate along field direction even in the interfacial LC shells,
and the value of Λ decreases.

It was also demonstrated that the CNT surface chirality can be transmitted into
the adjacent achiral LCs [126–129]. In the nematic 5CB the chiral pitch length λ
was estimated by measuring the curvature of reverse twist disclination lines in a 90o

twist cell [127]. At small concentration of CNTs (C < 0.15 wt%) the inverse pitch
λ−1 appeared to be approximately linear in C and above 0.2 wt% the apparent
saturation of λ−1 was observed.

100 μm(a) (b)

Fig. 10.7 Microphotographs of 5CB + MWCNT suspensions (C = 0.025 wt%) in the nematic
state at T = 304 K (a), and liquid state at T = 308 K (b). The data were obtained for cell with
thickness of h = 20 µm with planar orientation of 5CB. The polarizer was oriented along direction
of the director and the analyzer was crossed
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This saturation was explained by aggregation of CNTs. The induced chirality
was compared in LCs having either a thioester or oxoester linkage group in the core
[129]. The more pronounced chiral properties (an electroclinic effect and a mac-
roscopic helical twist of the director) were observed for the thioester linkage as
compared to the oxoester linkage. This effect was explained by the differences in
noncovalent interactions of LCs with the chiral dopant. The induced chirality in the
smectic-A phase of 8S5 was also probed by means of the electroclinic effect
(a rotation of the liquid crystal director perpendicular to an applied electric field)
[126]. A bulk-like electroclinic effect in the nematic phase of 8S5 was also observed
[128]. The magnitude of the effect showed shown significant pre-transitional
behavior near the nematic-smectic-A transition.

Effects of aligning and reorientation of CNTs in LC medium have been also
intensively studied experimentally during the last decades. These processes can be
noticeable for the rod-like particles, i.e. CNTs with large persistence length,
Lp ≥ L. This assumption was used in a majority of works devoted to the problem.
The presence of the orientational ordering of CNTs dispersed in 5CB (for small
concentration of CNTs, ≈10−4 %, i.e., 1 nanotube particle per 109 molecules of
5CB) was demonstrated for the first time by Harte in 2001 [130]. He used the

200 μm(a) (b)

(c)

Fig. 10.8 Microphotographs of 5CB + MWCNT suspensions (0.05 wt%) at different applied
voltages: u = 0 V (a), 5 V (b) and 11 V (c). The data were obtained for cell with thickness of
h = 20 µm. The AC voltage, u, at frequency of f = 10 kHz was applied. The polarizer was oriented
along direction of director for planar oriented 5CB molecules and the analyzer was crossed
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external magnetic field to align molecules of 5CB, and the effects of alignment of
nanotubes in the same sample on birefringence and the threshold voltage for the
Freedericks transition were observed. The presence of CNTs produced a consistent
10–30 % increase in the Freedericks transition field.

The orientational ordering of SWCNTs and MWCNTs dispersed in nematic
liquid crystal (LC) was also experimentally observed [131]. CNTs were dispersed
in a LC solvent (5CB and E7) using ultrasonication, deposited onto a porous
polycarbonate membrane substrate. The bulk LC was aligned using a grooved
surface or external (electric or magnetic) fields and then the LC was drained through
the porous membrane. The AFM images showed that in the resulting films the
CNTs were strongly oriented.

Impact of external magnetic fiend on the structure of self-organized LC + CNT
suspension may be rather ambiguous. e.g., the effects of magnetic field on 5CB +
MWCNT suspension were studied by X-ray scattering [132]. It was shown that in
the presence of CNTs the nematic director was aligned perpendicular to the mag-
netic field, whereas it was parallel to it for pure 5CB.

In principle, it is possible to imprint nematic (uniaxial) order on thin films of
elongated particles grown at the LC-solid interface, and this technique of alignment
was noted as “liquid crystal imprinting” [133].

Experimental data evidence that CNTs always try to be aligned parallel to the
local director orientation [134–136]. Orientation of SWCNTs and MWCNTs in E7
was analyzed using polarized light microscopy. The estimated order parameter was
rather high, sn ≈ 0.9. For comparison, similar dispersions of CNT in glycerol

0 1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

u,V

Λ ,
 μ

m

Conductive layer
Alignment film

5CB

MWCNT
Transition 

shells 

u

Glass plate

Fig. 10.9 The thickness of interfacial shells surrounding the MWCNT aggregates, Λ, versus the
applied AC voltage, u. The data were obtained for 5CB + MWCNT suspensions (0.025 wt%) in
the electro-optical cell with thickness of h = 20 µm, the AC voltage at frequency of f = 10 kHz was
applied. The polarizer was oriented along direction of director for planar oriented 5CB molecules
and the analyzer was crossed
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(an isotropic viscous liquid) were used. It allowed accounting for effects related to
orientation of the nanotubes when the CNT suspensions were introduced between
planar walls by capillary forces. Such qualitative evaluation gives the values of the
CNT orientational order parameter at the level of the corresponding values for the
undoped nematic.

For SWCNTs, more definite data on their orientation in the nematic suspension
were obtained by polarization spectroscopy of Raman scattering [137]. The
intensities of the corresponding bands were noticeably different for light polarized
in directions parallel and perpendicular to the director. This method allows
“monitoring” of molecular reorientation during the Freedericks transition under
continuously increased voltage applied to the cell. In the presence of CNTs, the
transition from planar to homeotropic texture became less pronounced and required
higher threshold electric fields.

A non-trivial case of electrically induced supramolecular ordering in LC +
MWCNT suspensions was described in [138]. Under electric field, elongation of
aggregates was observed (by about four times), and some nanotubes could slide out
of the bundles. More complex processes of electrically induced structuring were
also observed.

Reorientation of CNTs in 5CB suspensions in 50–70 μm thick cells under
applied DC electric field (up to 25 V) was studied [139]. Capacitance and electrical
conductivity were measured at 1 MHz with AC voltage of *0.25 V. On reaching
the threshold voltage ensuring Freedericks transition from planar to homeotropic
orientation, increase in capacitance and significantly higher conductivity were
observed. As distinct from the earlier cited papers [135, 136], here the reorientation
of the LC + CNT system was achieved by DC (and not AC) electric field. Further
studies showed [110] that under these conditions the sharp rise of electrical con-
ductivity above a certain voltage value was observed in different nematic matrices
with Δε > 0 (planar to homeotropic reorientation of the nematic molecules) and
Δε < 0 (when either LC planar structure is stabilized by the electric field, or
electrohydrodynamic instabilities appear).

In the latter case, the required “threshold” voltage was notably higher and CNTs
were oriented along the electric field themselves (as particles with large positive
dielectric anisotropy). This phenomenon was studied in detail [113, 114].
Suspensions of MWCNTs in nematic 5CB (0.005 wt%) in a standard LC cell of
20 μm thickness were subjected to AC electric field sufficient for realization of the
Freedericks transition. The measured dielectric permittivity ε significantly
increased. When the field was removed, the dielectric permittivity returned (with a
certain hysteresis) to its initial values. The same experiment was carried out at
higher temperatures corresponding to the isotropic phase and there was no resto-
ration of the initial ε values after the voltage was switched off. In the nematic phase
orientational order of the nematic molecules controls the orientation of CNTs below
and above the Freedericks transition. In the isotropic phase the electric field ori-
ented the nanotubes themselves. Because of the absence of orientational order, there
was no stimulus for the return of the dispersed nanotubes to their initial state. An
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interesting model of the ordering of several layers of nematic molecules adjacent to
the CNTs was proposed [113, 114].

The two relaxation times were observed (by the measured fall of conductivity)
after Freedericks transition and subsequent removal of the electric field in sus-
pensions of SWCNTs in nematics with Δε > 0 [115]. The faster and slower
relaxation processes were associated with the matrix and the nanotubes (that return
to the initial state following the nematic director), respectively.

10.5.3 Aggregation and Incubation

The LC ordering may strongly affect the aggregation of colloidal particles indebted
into LC medium. The experimental and numerical simulation data for suspension of
spherical particles in a micellar nematic revealed rather complex regimes of
aggregation in dependence on the particle size [94]. Evidently the aggregation of
elongated particles, such as CNTs, may be even more complex.

The aggregation of CNTs in LC suspensions is a well-known phenomenon. The
structure of MWCNT aggregates in LC suspensions composites is not stable in time
and change continuously after the sample preparation [140, 141]. Typically, at
small concentration (<0.001 wt%), the individual CNTs are rather uniformly dis-
tributed inside nematic matrix. However, at higher concentration CNTs tend to be
associated into more and more large aggregates. The high quality dispersions of
CNTs in LCs and stabilization of properties of these systems in the equilibrium
state is rather important task [142]. Figure 10.10 presents the microphotographs of
the 5CB + MWCNT (0.1 wt%) suspensions that were “fresh” (a) and “incubated”
for one week at T = 298 K (b) [141].

After long term incubation the obvious changes in the structure of aggregates
were observed. In “fresh” suspension a large quantity of nearly homogeneously
distributed aggregates were formed at C = 0.1 wt% (Fig. 10.10a).

(a) 500 μm (b)

Fig. 10.10 Examples of microphotographs of “fresh” and “incubated” (for one week at
T = 298 K) 5CB + MWCNT suspensions (C = 0.1 wt%) in the cell with thickness of h = 50 µm
(From [141]. With permission)
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During the incubation the most important was transformation to the segregated
state with separated regions filled with compact aggregates and “lakes” of 5CB
depleted of MWCNTs (Fig. 10.10b). This anomaly can be explained by existence
of the mechanism causing compacting of the ramified aggregates formed in the
“fresh” suspension after intensive sonication.

The presence of incubation processes was also quantitatively supported by data
on differential scanning calorimetry (DSC) and changes in optical transmission near
the nematic-isotropic transition [141]. Figure 10.11 presents the DSC traces in the
heating mode with pure 5CB and with 5CB filled by MWCNTs (0.1 wt%). For pure
5CB, the temperature of nematic-isotropic transition Tni (estimated from the max-
imum of heat flow curve H(T)) was ≈308.85 K.

Filling of 5CB with MWCNTs (0.1 wt%) resulted in changes in Tni and
broadening of H(T) peaks. For “fresh” suspension the value of Tni was slightly (by
0.15 K) lower compared to that of pure 5CB. The observed behaviour can be
explained by formation of lyotropic pseudo-nematic phase in the vicinity of
MWCNT surface [113, 114]. However, for “incubated” suspension the value of Tni
was approximately the same as that for pure 5CB. It can be concluded that impact
of MWCNTs on the structure of LC medium become less essential after the
incubation.

The similar incubation processes were also observed for EBBA filled by
MWCNTs [140]. These effects reflected strong agglomeration and rearrangement of
nanotubes during the thermal incubation. The estimates have shown that that the
time required to translate over the distance, corresponding to the MWCNT length,
may be rather large, of order of 250 s at Tni ≈ 352 K for EBBA. Hence, the nature of
incubation can reflect the aggregation caused by Brownian motion of MWCNTs.
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Fig. 10.11 Heat flow
H versus temperature T in
differential scanning
calorimetry experiments
(heating mode) with pure
5CB and 5CB + MWCNT
suspensions (0.1 wt%),
“fresh” and “incubated” 8 h at
T = 298 K (From [141]. With
permission)
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10.5.4 Percolation Transition and Electrical Conductivity

10.5.4.1 Percolation for Partially Oriented Elongated Particles

Many experimental data for nematics filled by CNTs evidenced in favor of the
percolation mechanism of electrical conductivity [13, 111, 124, 125, 140, 143]. The
percolation is accompanied by the abrupt changes in different physical properties of
LC + CNT composite, and this transition may be identified as a geometrical phase
transition related with formation of the spanning network of CNTs [144–147]. The
percolation phenomena were also observed in investigations of magnetic, diffusion,
thermal, optical and many other properties of different composite systems filled by
CNTs. The increase of the CNT content usually results in formation of clusters of
particles, and the percolation threshold corresponds to the concentration (weight Cc

or volume φc ≈ 0.5Cc) when the largest cluster reaches the size of the whole system.
The percolation transition is accompanied by the scaling laws that are typical for

phase transitions. The percolation theory predicts the following power behaviour of
the electrical conductivity σ near the percolation threshold Cp:

r / ðCc � CÞ�s; at C\Cc; ð10:22aÞ

r / ðCc � CÞt; at C[Cc; ð10:22bÞ

where s and t are the exponents of the electrical conductivity. For the random
percolation (when the particles fill the space at random) s = t ≈ 4/3 for
two-dimensional (2d) and s ≈ 0.73, t ≈ 2 three-dimensional (3d) systems [146].

The percolation exponents are universal and their values depend only on the
dimensionality of the system and presence of correlations between the spatial
arrangements of the particles.

For fully penetrable particles the value of Cc or φc can be estimated using c the
values of φc:

1� exp(� FÞ\uc\1� expð�2FÞ; ð10:23Þ

where F ¼ 56ð1þ a sin ch i=pÞ=5. Here γ is the angle between the rods, and <…>
means averaging with account for the distribution of orientations.

For ideally aligned or randomly oriented rods sinch i ¼ 0; sin ch i ¼ p=4, and
(10.23) gives:

0:161\uc\0:295 for ideallyoriented rods; sin ch i ¼ 0; ð10:24aÞ

0:7=r\uc\1:4=r for randomly oriented rods; sin ch i ¼ p=4: ð10:24bÞ

For partially oriented rods the sin ch i versus the order parameter sn = 0.5
(3cos2θ − 1) dependence was numerically estimated (Fig. 10.12) [148]. The case of
sn ¼ �0:5 sin ch i ¼ 2=pð Þ corresponds the situation when all the rods have random
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orientation in the plane. In the case of sn ¼ 0 sin ch i ¼ p=4ð Þ all rods are randomly
oriented in the volume and the case of sn ¼ 1 sin ch i ¼ 0ð Þ corresponds to the
perfect orientation along the preferred direction. The value sin ch i goes through the
maximum with increasing sn and approaches zero at sn → 1.

Figure 10.13 presents the intervals of the volume percolation concentrations φc
as function of the aspect ratio a for partially oriented rods [148]. For the perfectly
oriented rods the percolation concentration does not depends on the aspect ratio, a.
However, even a weak disorder (e.g., sn = 0.95 in Fig. 10.13) may result in strong
φc(a) dependence and significant decrease of φc for the particles with large aspect
ratio. The theory predicts that the values of order φc ≈ 0.1 % may be easily realized
for a = 1000 and sn = 0.

Monte Carlo simulations were applied for estimation of the value of percolation
threshold for partially penetrable rods with the core-shell structure [149]. The
degree of impenetrability k (k = 0–1) was defined as the ratio of the radius of the
core to the outer radius of the soft shell with k = 0 for the soft-core limit and k = 1
for the hard-core limit.

The results evidenced that for the long particles (a = L/d > 500) the dependence
of φc upon a and k become unessential. The conductive soft shells around CNT
particles allow accounting for the tunnelling distance of order 5 nm as suggested in
[150]. The effect of the waviness of rods on the percolation onset φc was also
studied [151]. Enhancement of waviness resulted in increased values of φc.
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Fig. 10.12 The averaged value of sin ch i versus order parameter sn for partially oriented rods.
Here, <…> corresponds to an averaging, accounting for the distribution of orientations. Inset
shows the excluded volume for two rods with the angle γ between them
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10.5.4.2 Electrical Conductivity

Commonly, the electrical conductivity of LC doped by CNTs displays a rather
complex behaviour versus concentration of nanotubes, phase state of the LC matrix
and temperature. Experimental studies of these effects were discussed in details
[13, 111, 124, 125, 140, 143].

Figure 10.14 shows the typical curves of electrical conductivity σ as a function
of concentration of MWCNTs, C, in EBBA [111] and 5CB [124] obtained at the
fixed temperatures that were just above the solid-to-nematic phase transition tem-
peratures. At concentrations exceeding 0.05–0.1 wt% the percolation transition to a
high conductivity state was observed. Such behaviour reflects formation of a
continuous conductive path from conductive nanoparticles inside the isolative LC
matrix. When the content of MWCNTs outreached the percolation threshold con-
centration, the electrical conductivity jumped up by many orders of magnitude.

Detailed analysis has shown that concentration dependencies of electrical con-
ductivity of LC + MWCNT suspension above percolation thresholds can be well
fitted by the power law, equation (10.22b) [13]. It should be noted that, due to
technical difficulties of preparing LC + CNT suspensions with exact values of low
CNT concentrations, C, it is rather difficult to determine the precise values of Cc.
For 5CB + MWCNT suspensions an increase of the percolation threshold, Cc, with
temperature, T, was observed, especially in the vicinity of the nematic-isotropic
transition (Tni ≈ 308 K).

Such character of Cc(T) dependence can be explained by changes in intensity of
Brownian motions of MWCNTs, changes in the thickness and electrical conduc-
tivity of interfacial shells surrounding the MWCNTs, and impact of LC on orien-
tational ordering of MWCNTs. These factors can affect the connectivity between
the MWCNTs and, as a result, the value of the percolation threshold Cc [152].
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Temperature changes in the conductivity exponent t (Equation (10.22b)) for 5CB +
MWCNT suspensions have been also observed [13]. The value of t noticeably
exceeded its classical value (t = 2) in the nematic phase and approached t ≈ 1 for the
temperatures above nematic-isotropic transition.

Impact of the alignment of CNTs on percolation behavior can be expected for the
rod-like particles, i.e. CNTs with large persistence length, Lp ≥ L. It was experi-
mentally demonstrated that the electrical conductivity parallel to the alignment
direction displays a non-monotonic dependence on the degree of CNT alignment,
with the highest conductivity observed for slightly aligned nanotubes rather than for
isotropic case [153]. Similar results were also obtained in the Monte Carlo simu-
lations of the effect of the alignment of CNTs on percolation and electrical con-
ductivity [154–157]. These models also predicted that the peak value of the
conductivity should occur for partially aligned rather than perfectly aligned CNTs.
The peak value of electrical conductivity was significantly greater than that of
perfectly aligned CNTs and was also larger than that of randomly distributed CNTs.

At volume fractions φ above percolation threshold the simulations exhibited an
optimum order parameter sn

o above which the electrical conductivity decreases
dramatically. It can be expected that for perfectly or highly aligned CNTs the
number of intersections between them is small and the connective paths are not
formed.

The temperature dependences of σ for EBBA doped with MWCNTs are pre-
sented in Fig. 10.15 [140]. They appeared to be rather anomalous in the vicinity of
the percolation threshold. The noticeable heating–cooling hysteresis and the effect
of negative temperature coefficient (NTC) of conductivity were observed near the
temperature of the crystal-nematic transition, Tcn ≈ 309 K.

The NTC effect was accompanied by a drastic decrease in electrical conductivity
up to the melting point. The nature of the NTC effect was explained accounting for
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thermal expansion of the LC matrix [111]. The thermal expansion causes damage of
percolation networks, which results in a decrease in electrical conductivity. The
maximum of the NTC effect was observed near the percolation threshold
(C ≈ ← 0.1 wt%), but at higher concentrations (C = 0.5–1.0 wt%) the multiply
connected networks start to form, and the NTC effect becomes less significant [140].

Important information about electrical conductivity mechanism in LC doped by
CNTs can be obtained from the study of voltage and frequency dependencies of
electrical conductivity.

Figure 10.16 presents voltage dependencies of electrical conductivity of EBBA
doped by MWCNTs at different concentrations, C, and temperatures, T [111]. The
pronounced growth of σ with increase of the measuring voltage u was observed.
The similar effects were also observed for E7 doped by SWCNTs and MWCNTs
[135] and 5CB doped by MWCNTs [125]. A possible mechanism of non-linear
behaviour of σ(u) can involve effects of transport through hopping junctions
between different CNTs, induced by electric field [111]. The electric field can
localise on the non-conductive gaps between different MWCNTs and it can enhance
the hopping junction transport through the LC gaps. The most pronounced
non-linear effects were observed in the crystalline phase (see, Fig. 10.16 for EBBA
at T = 298 K). It can be explained by segregated distribution of MWCNTs on the
surface of microcrystals with small gaps between different MWCNTs. In the
nematic and isotropic phase the average distance between MWCNTs increases and
the non-linear effects can diminish, which was in accordance with the experimental
observations (Fig. 10.16).

Hopping/tunneling mechanism of charge transfer through LC interfacial shells
between different CNTs is rather important for explanation of anomalies in elec-
trical conductivity of LC + CNT suspensions. The electrical conductivity of com-
posites doped with CNTs can be limited by tube-tube junction conductivity or own

Fig. 10.15 Electrical
conductivity σψ versus
temperature Tψ in the heating
(→) and cooling (←) cycles
for EBBA doped by
MWCNTs at different
concentrations. Here,
Tcn ≈ 309 K, Tni ≈ 353 K are
the temperatures of
crystal-nematic and
nematic-isotropic phase
transitions, respectively
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conductivity of CNTs [156, 157]. The experiments evidenced that the CNT-CNT
junction conductivity is much smaller than the conductivity of the CNT themselves.
In these systems the electrical transport can be classified as a CNT-CNT junction
limited transport. The anomalous behaviour of electrical conductivity can reflect
impact of CNTs spatial distribution and alignment on the density of low-conductive
contacts and the total length of the conduction paths [157].

The detailed studies of electrical conductivity 5CB +MWCNT [13] and PCPBB +
SWCNT [158] suspensions as a function of frequency, f, have shown that up to a
certain frequency fc, the value of σ is essentially independent of f and starts to increase
at higher frequencies. The most pronounced frequency dependence of σ were
observed near the percolation threshold [13]. The effect of dual frequency conduc-
tivity switching was observed when the current through the suspension can be
field-driven by changing the frequency of the applied voltage [158].

The electrical conductivity of cells filled with LC (nematic mixture
MLC-6290-000 with positive dielectric anisotropy, Δε > 0) + MWCNT (0.0001–
0.01 wt%) suspensions was studied [159]. The changes in electrical conductivity as
a function of the time elapsed from field switching were observed.

Here, we would note some aspects that, in our opinion, were largely neglected or
rarely discussed in most studies of electrical conductivity behavior for LC + CNT
suspensions. These aspects are related with impact of length of CNTs, L, the
measurement direction of electrical conductivity and the thickness of the mea-
surement cell, h. In a number of papers, the CNT length varied from *0.5 μm to
10–20 μm and more, but seemingly no need to account for this factor appeared in
the given interpretation of the results. For 5CB + MWCNTs suspensions the dif-
ferences in percolation thresholds, Cc, for long and short CNTs were explained by
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the impact of aspect ratio on the value of Cc [141]. The noticeable effects were
found for “macroscopic” length of CNTs, L ≈ 60 μm, that exceeded the thickness of
the electrooptical LC cell [160]. For nanotubes oriented along the electric field,
“shunting” of the cell was observed and Joule heating resulted in nematic-isotropic
transition in the local heating areas.

For LC + CNT suspensions the electrical conductivity σ dependence upon the
measurement direction was rarely discussed. The temperature variations of the low
frequency (100 Hz) electrical conductivities, parallel (σ||) and perpendicular (σ⊥) to
the nematic director were measured for LC (PCPBB) + SWCNT (0.036 vol%)
suspensions [158]. The value σ|| was slightly higher than the value σ⊥ for both pure
and doped LC suspensions. The same tendency was observed for the the dielectric
constant parallel (ε||) and perpendicular (ε⊥) to the director. Monte Carlo simula-
tions predicted the presence of a strong dependence of electrical conductivity on the
measurement direction for aligned CNTs [155]. Experimental data for epoxy resin +
MWCNT composite evidenced that the electrical conductivity in the aligning
direction was much higher than perpendicularly to the CNTs orientation [161].

The dependence of electrical conductivity σ on the distance between electrodes
h for the random carbon nanotube networks was analyzed [162]. It was noted that
for the short channels, when h ≈ L, the individual CNTs can directly bridge the
electrodes and thus increase the electrical conductivity.

10.5.5 Dielectric Properties

Dielectric properties of 5CB + MWCNT and EBBA + MWCNT suspensions were
studied in detail [13]. The measurements were done at the temperatures within
nematic phase of LC medium, T = 297 K (5CB) and T = 313 K (EBBA). Three
different frequency ranges, namely, f < 102 Hz (A), 102 Hz < f < 105 Hz (B) and
f > 105 Hz (C) have been distinguished. The frequency range (A) reflected the
near-electrode processes and electron exchange between electrodes and ions. The
frequency range (B) corresponded to the bulk polarization and charge transfer. The
frequency range (C) corresponded to the relaxation process caused by transition
from the electronic and dipole polarization to only electronic polarization of LC
phase. At low frequencies (f < 0.5 Hz), increase of the imaginary (AC conductance)
component ε″ was observed by doping of LC (both 5CB and EBBA) with
MWCNTs. It was argued that MWCNTs served as shunts of the double electrical
layers providing paths for the electron exchange between electrodes and impurity
ions inside LC medium.

Electrical impedance model of MWCNT-doped LC cells was recently proposed
and Cole-Cole plots (100 Hz–10 MHz) of LC (MLC-6290-000) + MWCNT
(0.01 wt%) suspension at different DC bias voltages (0.5 Hz, 0–8 V) were analysed
[163]. The initial LC alignment was planar (with the LC director oriented parallel to
the plane of the electrodes). It was demonstrated that the doped LC cell behaves as a
capacitor in parallel with a resistor. The electrical conductivity increased
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dramatically for voltages above Freedericks threshold. It was explained by a
reorientation of the MWCNTs, creating multiple electrical paths between the
electrodes. The data also evidence that a small fraction of MWCNTs is not oriented
as the liquid crystal, but in tilted positions.

The dielectric behaviour of LC filled by SWCNTs and MWCNTs was compared
[164]. Figure 10.17 presents frequency dependences of real e0? (a) and imaginary e00?
(b) perpendicular components of dielectric permittivity for pure nematic 5CB and
5CB doped by 0.01 % SWCNTs and 0.01 % MWCNTs. Large differences in the
obtained values of e0? and e00? for the pure 5CB and 5CB doped by CNTs were
observed in the low-frequency part of the dielectric spectrum. These differences
were more pronounced for SWCNTs than for MWCNTs, which can be easily
explained by large difference in the specific surface areas for SWCNTs and
MWCNTs. The relaxation effects were also clearly observed in e00? (f) plots at higher
frequencies above 1–10 Hz. Characteristic relaxation frequencies were of ≈8 MHz,
≈15 kHz and ≈3 kHz for pure 5CB, 5CB + SWCNT, 5CB + MWCNT samples,
respectively (Fig. 10.17). The observed characteristic frequency of pure 5CB was in
full correspondence with the data reported in [165]. The smaller relaxation fre-
quencies of 5CB + SWCNT and 5CB + MWCNT samples, possibly, reflected the
effect of CNTs on restriction of director dynamics inside nematic LC.

The dynamic response of the average dielectric constant for MWCNTs (0.005 wt
%) dispersed in 5CB as a function of applied AC field (E = 0–250 kV/m, 1 MHz,
30 s duration) in both the nematic and isotropic phases was studied [114]. The
observed dielectric relaxation was explained by a mechanical relaxation mechanism
of the director on turning off the electric field. The measured relaxation time
decreased as E increased and the doped LC system relaxed back faster (for
E > 80 kV/m) than pure 5CB. It was explained by trapping of ions present in the LC
by CNTs. The presence of dielectric hysteresis by cycling the ac field magnitude
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(100 kHz) ranging inside 25 ↔ 250 kV/m was also observed. The field-induced
dielectric response as a function of applied AC voltage (0–7 V) and probing fre-
quency (1–100 kHz) for MWCNTs (0.007 wt%) dispersed in 5CB was also studied
[166]. It was shown that doping of 5CB by MWCNTs may result in dramatic
increase in the dielectric anisotropy of the system. 5CB has a positive dielectric
anisotropy, (Δε = ε∥ − ε⊥ ≈ 10) and so, the applied electric field reorients the
director parallel to it. For the 0.007 wt% suspension of CNTs in 5CB the dielectric
anisotropy at 1 kHz was Δε = + 13.8, indicating an improvement in the orienta-
tional order sLC in 5CB as Δε ∝ sLC [166].

The anomalous behavior of dielectric properties of 5CB + CNT suspensions was
also observed in isotropic phase above the temperature of nematic-isotropic tran-
sition. The data on the dynamic response of the average dielectric constant evidence
that in the isotropic phase the LC molecules and CNTs cooperatively form local
pseudonematic domains due to strong LC-CNT interactions [114, 167]. Moreover,
for 5CB + CNT suspensions non-zero value of dielectric anisotropy Δε was
observed even in isotropic phase that also evidence the presence of local anisotropic
pseudo-nematic domains [113]. These anisotropic domains caused a large dielectric
hysteresis effect in isotropic phase. The observed effects may be attractive for
applications in memory devices.

10.5.6 Optical Properties

10.5.6.1 Optical Transmission

UV-Vis absorption spectra of carbon nanotubes in different solvents were inten-
sively studied (see, e.g. [168]). The practical importance of LC-based optoelec-
tronic devices also stimulated the detailed studies of optical transmission in
different LC systems doped with SWCNTs and MWCNTs.

Figure 10.18 presents examples of UV-Vis absorption spectra (200–800 nm) of
pure 5CB and 5CB + SWCNT suspension (0.02 wt%) measured in the isotropic
(T = 310 K) and nematic (T = 301 K) phases [164]. The cut-off region of the pure
5CB is located below 350 nm (see, e.g., [169–171]. This very broad absorption
band of the LC matrix can be related to the aromatic nature of the substance with
π-electrons.

For LC doped with CNTs another contribution in this range comes from
absorption of CNTs themselves that could be due to π-plasmon absorbance. The
absolute wavelength of the π-plasmon absorbance has been shown to vary with
nanotube diameter d (nm) as [168]

kp nmð Þ � 1240=ð4:8þ 0:7=d2Þ: ð10:25Þ

This empirical relationship gives ≈255 nm for a single sheet of graphene and
≈243 nm for nanotubes with diameter of 15 nm.
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The introduction of MWCNTs into the 5CB results in a noticeable decrease of
the optical transmission in all the spectral range. Such behaviour was typical for LC
matrices doped with CNTs [143, 172]. The cut-off wavelength can slightly change
if we pass from cyanobiphenyl 5CB to nematics of different chemical nature.
However, the general picture of Fig. 10.18 remains the same with different nematics
and different types of CNTs (SWCNTs and MWCNTs).

It is generally known that in conventional nematics the transmission, Tr, in the
nematic phase is always substantially lower than in the isotropic phase. This can be
explained by strong light scattering on spontaneous fluctuations of the LC director
[173]. Upon introduction of CNTs, the measured transmission in the isotropic phase
was only slightly lowered. However, in the nematic phase the transmission decrease
was much stronger. The contribution of CNTs to the total value of transmission
(i.e., absorption+reflectance/scattering) of the LC doped by CNTs may be estimated
as the difference Tr

0 − Tr where Tr
0 and Tr are the measured optical transmissions of

the pure LC and LC + CNT systems [110, 140, 164, 172]. In order to exclude
possible impact of the absorption bands of LC matrix and CNTs, the optical
transmission Tr was analyzed at 700–800 nm wavelength, i.e., far away from the
mentioned cut-off regions. The difference between Tr

0 − Tr values below and above
the nematic-isotropic phase transition temperature Tni can be considered as a
measure of the degree of incorporation of the CNTs into the joint ordered LC
structure.

Figure 10.19 presents examples of stepwise changes in Tr
0 − Tr at the

nematic-isotropic transition (the “transmission jump”) [172]. The supramolecular
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Fig. 10.18 UV-Vis absorption spectra (i.e., optical transmission Tr versus wavelength λ,
200–800 nm) of a 20 μm thin film for pure 5CB and 0.02 % single-walled carbon nanotubes
(SWCNTs) dispersed in 5CB in isotropic (T = 310 K) and nematic (T = 301 K) phases. The cell
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ordering in LC + CNT suspensions in the nematic and isotropic phases is also
schematically shown in Fig. 10.19.

Figure 10.20 presents Tr
0 − Tr differences for the temperatures in the isotropic

phase (T = 310 K) and in the nematic phase (T = 301 K) of 5CB [164]. The values
of Tr

0 − Tr values were much smaller in the isotropic phase than in the nematic
phase. This difference may be a clear indication of strong perturbations of 5CB
medium in the vicinity of carbon nanotube aggregates. The presence of such per-
turbations was demonstrated by recent electrooptical investigations of interfacial
5CB layers trapped by CNTs [124, 125, 174, 175]. The difference in transmission
between undoped and CNT-doped samples became somewhat larger when the
measurement wavelength is increased. i.e., when we move farther away from the
absorption range of the LC matrix, and the contribution from CNT is felt in a more
“pure” form. In the isotropic phase the effects of structural ordering related to the
LC state became irrelevant. The values of Tr

0 − Tr were much lower than in the
nematic phase, reflecting the effects of spatial organization of CNTs in the ordered
media. We could hardly expect such sensitivity of optical transmission to the
changes in phase state in the situation of mechanical mixing CNTs with LC (i.e.,
without interaction between CNTs and LC). It seems natural to assume that CNTs
interact in some way with the LC matrix on the molecular level and are
integrated/incorporated into a joint ordered structure formed in the LC + CNT
suspension. Possible effects of the LC matrix chemical nature on the ordering of
CNT in suspensions was analyzed [110].
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Figure 10.21 shows Tr
0 − Tr as function of ΔT = T − Tni for different nematic

matrices doped with 0.1 wt% MWCNTs. The changes in transmission at the
nematic-isotropic transition were practically fully reversible in subsequent heating
and cooling cycles. For aromatic matrices the measured “transmission jump” was
rather large, which could be due to strong interaction of π-π electron systems of LC
molecules and nanotubes [138]. For a non-aromatic nematic (mixture of alkyl-
cyclohexanecarboxylic acids) the changes in Tr

0 − Tr were substantially smaller,
probably reflecting weaker anisotropic interaction in the system.
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Figure 10.22 presents the optical density, D, versus concentration of CNTs, C,
for 5CB doped by SWCNTs and MWCNTs [164]. The D(c) plots were close to
linear at small C with obvious deviations at higher concentrations. To a first
approximation, the Beer–Lambert–Bouguer (BLB) law can be applied at small
concentration of CNTs. However, the obtained data evidenced significant violations
of BLB law both in cell thickness and concentration dependences [164].

In the isotropic phase the effects of SWCNTs and MWCNTs were nearly iden-
tical, while in the nematic phase the effective extinction coefficient (the D(c) plot
slope) for SWCNTs was about three times higher. These experimental results were
explained accounting for the tortuous shape of CNTs (CNT coils), their physical
properties and aggregation of CNTs, as well as strong impact of perturbations of the
nematic 5CB structure inside coils and in the vicinity of CNT aggregates. The
presence of aggregation was supported by observation of micro-patterns of 5CB
doped by SWCNTs and MWCNTs. Monte Carlo simulation data were applied to
explain the impact of aggregation on direct transmission and violation of BLB law.

Similar changes in Tr
0 − Tr values at the isotropic transition were also observed

LC suspension loaded be nanoplatelets [176]. Data for nematic suspensions of
MWCNTs and platelets of organomodified montmorillonite (MMTO) are compared
in Fig. 10.23. For hybrid 5CB suspensions filled by mixture of particles with
different shapes (rod-like MWCNTs and plate-like MMTO), changes in optical
transmission were approximately additive over concentrations of the dispersed
components [176].

On the contrary, the effects of MWCNT and MMTO nanoparticles on reorien-
tation of 5CB (Δε > 0) were essentially different. It was demonstrated that doping by
MWCNTs facilitated and doping by MMTO hindered the electric field induced
Freedericks transition from planar to homeotropic state in the LC cell.
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10.5.6.2 Electro-optical Applications and Memory Effects

Doping of LC by CNTs was used for testing of different electro-optical applications
of LCs. The presence of undesired impurity ions in LCs can negatively affect the
performance characteristics of LC electro-optical cells. CNTs were shown to be the
good candidates as agents for efficient ion trapping in LC materials [177]. It was
demonstrated that the MWCNTs have good ion trapping characteristics. The CNTs
can serve as traps for charge carriers in LC, which substantially decreases electric
current due to charge transfer (e.g., movement of ions) through the LC cell, thus
eliminating undesirable stray currents in AC field effects [118, 178–181]. These
improved characteristics of electro-optical LC cells and LC displays, in particular,
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lowered the working voltages and allowed achieving the better image clarity. Also,
introduction of CNT can decrease rotational viscosity and achieve shorter response
times of electro-optical effects [182, 183]. These effects are not directly related to
orientation of CNTs in LC matrix and they can be achieved of other types of
nanofillers, e.g. fullerenes, grapheme [3] of nanoplatelets of MMTO [184].

The electro-optical effect in 90° twisted nematic cells of MWCNTs doped liquid
crystals (≈0.02 wt% in 5CB or E7) under an applied dc voltage was studied [185].
It was shown that doping with CNTs reduced the dc driving voltage and improved
the switching behavior. The field-induced switching time for the hybrid CNT + LC
system was tested by means of the electro-optic response. The data evidence that
doping of LC by CNTs results in a reduced rotational viscosity, in enhanced
dielectric anisotropy as well as in acceleration the field-induced switching [186].

Doping of LC by MWCNTs increased the threshold voltage of electrohydro-
dynamic instability in nematics with Δε < 0 (MBBA + EBBA) and initial planar
orientation [110]. Electro-optical memory effect was observed in EBBA +
MWCNT suspensions [13, 187, 188]. The initial orientation of LC with Δε < 0 was
homeotropic before the action of the electric field. Upon the application of electric
field, the CNT-containing nematic was reoriented to the planar texture with a
“memory” effect. Irreversible response on the applied electric field (electro-optical
memory) was revealed. After the switch-on and subsequent switch-off of the field,
the optical transmittance of suspension substantially increased compared to the
initial transmittance typical for homeotropic orientation of LC. The efficiency of
electro-optical memory was depended on the concentration of MWCNTs, C, and
reached its maximum at C = 0.02–0.05 wt%. This effect was even stronger when
the nematic matrix was additionally doped with a small quantity of chiral dopant,
which stabilized the planar texture [189]. The observed data were explained
accounting for possible stabilization of the planar state of LC by the network of
CNTs formed upon the disintegration of aggregates under the action of
electro-hydrodynamic fluxes [188].

10.5.6.3 Related Effects

The diffraction gratings and the orientational photorefractive effect in cells of the
homogeneously aligned liquid-crystal E7 doped with MWCNTs were studied
[190–192]. It was demonstrated that the permanent gratings was associated with
periodically distributed CNTs adsorbed on the inner surfaces of the cells under
prolonged illumination to the 514.5 nm beams [193].

Recently great attention was paid to the dye-doped LC systems. These com-
positions are attractive for applications in guest-host liquid crystal displays with
high quality color and brightness. For these purposes, a high ability of dye to
orientation in the LC matrix is required. In many works, it was demonstrated that
addition of CNTs has positive effect on functionality of dye-doped LC composite.

The effects of SWCNTs (0.002 wt%) on diffraction efficiency in the azo dye
MR–doped LC (E7) were studied [194–196]. An order parameter of sLC = 0.605
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was estimated using polarized absorption measurements. It was shown that
the presence of CNTs enhanced the diffraction efficiency by a factor of 1.8.
Permanent gratings were written in planar nematic LC cells containing hybrid
mixture MR + E7 + SWCNTs [195]. The grating formation was caused by trans-cis
photo-isomerisation of the dye molecules, followed by surface adsorption of the cis-
isomer [196]. It is important that these photonic devices are functional without the
application of external electric fields. Maximum relative diffraction efficiency was
noticeably higher for cells doped with MR and SWCNTs (67 %) than for cells doped
only with MR (28 %). The permanent holographic images in a hybrid cells filled
with MR (0.6 wt%) + E7 + SWCNTs (0.002 wt%) hydrid material were recorded
[197]. The quality of images were higher for the hybrid cells than for cells filled with
MR (0.6 wt%) + E7. Cells filled with hydrid material showed increased conductivity
and capacitance, slower ac-rise switching time and dc-backflow on turn-off [198].
The correlations between ac-field-enhanced diffraction efficiency and Freedericks
threshold voltage were observed.

The effects of addition of SWCNTs on guest-host interaction of some dye-
doped LC was studied [199–205]. It was demonstrated that addition of SWCNTs
resulted in an increase in order parameter sLC. e.g., it was demonstrated that in
hybrid system dye (Red 60) + LC (E63) + SWCNTs the order parameter of
sLC ≈ 0.77 can be attained [202].

The effect of supra-optical nonlinearity and a large electro-optically induced
photorefractive effect in E7 doped by SWCNTs was reported [206, 207]. It was
stated that such supra-nonlinearities are promising for various holographic and
image processing applications and as low-cost alternatives to conventional
liquid-crystal spatial light modulators.

10.6 CNTs in Other Types of LCs

10.6.1 Hydrogen Bonded LCs

Several studies were devoted to the hydrogen bonded LCs doped by MWCNTs.
Dielectric relaxations studies of pure and doped hydrogen bonded ferroelectric LCs
revealed that doping elevated the activation energies considerably [208]. The bi-
stable electrical states were observed in doped LC systems (mixtures of levo tartaric
acid and undecyloxy benzoic acid) and was explained by alignment of CNTs in the
nematic phase [209]. Optical textural observations of these two states were done
and the application of external field allowed realizing an optical shutter.
Considerable hysteresis in dielectric permittivity has been observed in doped
hydrogen bonded LCs (mixture of succenic and pentyloxy benzoic acids) [210].
Moreover, the electric field induced transition in a nematic phase was reveled by
behaviors of electrical conductance, permittivity, and helicoidal structure defor-
mations. These hybrid systems are promising for light modulation applications.
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The hydrogen-bonded LC (7OBA) + SWCNT (0.01–0.007 wt%) suspensions were
studied using optical microtexture analysis, Raman spectroscopy and differential
scanning calorimetry [211]. A cascade of phase transitions and phases not typical
for pure 7OBA were observed. The induction of chirality in all LC phases was
observed in doped systems, whereas pure 7OBA was typically achiral.

10.6.2 Ferroelectric LCs

Ferroelectric liquid crystals (FLCs) possess promising characteristics such as low
driving voltage, better optical contrast and faster response. Several investigations
were devoted to the effects of CNT doping on different properties of FLCs. In
general, the hybrid systems on the of FLCs doped by CNTs have enhanced
parameters for use in practical application, have large electro-optic coefficient, high
dielectric constant, fast switching response [212]. These materials may be prom-
ising for using in memories, capacitors and display devices. In general the enhanced
electro-optic and dielectric responses of CNT doped FLCs were explained
accounting for the screening the spontaneous polarization of the FLC by the π-π
electron system of CNTs and by trapping the ionic impurities by CNTs. The latter
factor may result in significant modification of the internal electric field inside the
cells.

Effect of SWCNTs on dielectric and electro-optical properties of doped FLCs has
been studied [213–215]. A noticeable changes in relaxation behavior as well as
increase of spontaneous polarization and relative permittivity with slight slower
response has been observed for the doped system [214]. The high loss factor in
doped systems was explained by deformation of helix by movement of long CNTs
[215]. It was concluded FLCs doped with low concentration of CNTs are suitable for
enhancement the performance of LC devices operating at low applied electric fields.

The effect of SWCNTs (0.002 wt%) on phase behavior of antiferroelectric LCs
was studied [216]. It was shown that addition of CNTs resulted in radical altering of
phase sequences in the studied systems. The effect of alignment of SWCNTs along
the smectic layers (smectic A phase) of FLC ([4-(3)-(S)-methyl-2-(S)-chloropen-
tanoyloxy)]-4′-nonyloxy-biphenyl) the was observed [217]. Fourier transform
infrared and Raman spectroscopy data evidenced the presence of charge transfer
between contacting hexagonal rings of CNTs and the C = O groups of the FLC
molecules. The effect of alignment was explained by the π-π stacking and charge
transfer effects.

Dielectric and electro-optic properties of planar aligned FLC LAHS7 doped by
MWCNTs revealed that even a small concentration of CNTs greatly affects the
performance of the LC cells [218]. Effect of MWCNTs (0.1 wt%) on the dielectric
spectra (50 Hz–1 MHz) of FLC KCFLC10S was studied at different bias voltages
[219]. The increased effect of the bias voltage on the FLC with the addition of
CNTs was observed and the theory for its explanation was proposed. The DC and
AC electrical properties of FLC + MWCNT suspensions were investigated [220].
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In the doped suspensions AC relaxation was observed and this relaxation was
absent in pure FLC.

The dielectric studies of MWCNT doped FLCs have been done [221].
A decrease in dielectric permittivity (≈40 %) in 0.1 wt% doped FLC sample was
found over 0.05 wt% doped sample. Effect of MWCNTs (0.00–0.03 wt%)
electro-optical and dielectric responses of FLC (KCFLC10R) have been studied
[222]. Doping resulted in fastening of switching time about ≈80 %. It was con-
cluded that MWCNTs doping has good response in terms of increased contrast ratio
and low threshold voltage.

The studies of dielectric dynamic responses (for frequencies up to 1 MHZ) of
MWCNT doped FLC were done [223]. The increase in permittivity in 50 Hz–1 kHz
range was observed. It was attributed to the enhanced orientational order due to
strong anisotropic interactions.

Dielectric and rotational viscosity measurements for FLC (smectic cyclohexane
derivatives) doped (0.01 wt%) by silica nanoparticles (5–15 nm in diameter) and
MWCNTs (110–170 nm in diameter, 5–9 μm in length) were carried out [224]. The
lower value of the rotational viscosity and higher values of permittivity and
dielectric losses were observed for silica-doped sample than those of MWCNT
doped sample. MWCNTs deformed the helix more effectively and exerted stronger
anisotropic interactions on FLC molecules as compared to silica nanoparticles.

The relaxation time, relaxation frequency and dielectric strength for FLC +
MWCNT (0.03–0.10 wt%) suspensions have been studied [225]. Thermo-optic
studies revealed a small shift (≈ 5 K) in the clearing temperature of FLC.

The temperature (323–353 K) and concentration (0–0.04 wt%) dependences of
electro-optic and dielectric properties of FLC + MWCNT suspensions were
investigated [226]. The data evidenced that despite a decreasing tilt angle, the
spontaneous polarization increases and the electro-optic response times slow down
as a function of MWCNT concentration. These effects were explained accounting
for the possible dipole moment due to the presence of the MWCNTs, behavior of
rotational viscosity and other characteristics.

10.6.2.1 Functionalized and Metal Nanoparticle Decorated CNTs

FLC doped with functionalized (–COOH, –OH and –NH2 groups) MWCNTs were
studied using dielectric, electro-optical and photoluminescence measurements
[227]. It was demonstrated that functionalized CNTs have enhanced the dielectric
properties and the photoluminescence intensity remarkably. The order parameter of
the FLC material also increased depending on the functionalizing.

The introduction of copper oxide decorated MWCNTs in FLC allowed fastening
of the response of display device [228]. The dielectric and electro-optical studies
were done and the observed effects have been attributed to decrease in rotational
viscosity of the FLC material and to trapping of ions on the surface of copper oxide
decorated CNTs. The gold nanoparticle-decorated MWCNT doped FLC LAHS 22
material was studied using dielectric relaxation spectroscopy, differential scanning
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calorimetry and polarization optical microscopy [229]. The doping resulted in
enhancement of the dielectric and electro-optical characteristics. e.g., the incre-
ments in dielectric dispersion, absorption, spontaneous polarization and rotational
viscosity of the FLC material were observed.

10.6.2.2 Deformed Helix FLCs

The fastening of the electro-optic response in MWCNT-doped deformed helix FLC
hybrid suspensions has been observed and attributed to the decrease in rotational
viscosity and increase in anchoring energy [230]. The non-zero spontaneous
polarization in para-electric phase for the same system was also reported [231]. It
has been attributed to the possible short range orientational order of LC surrounding
the CNTs. Doping of deformed helix FLC FLC-6304 by CNTs significantly affect
the dielectric parameters in the chiral smectic C phase [232].

10.6.2.3 Chiral Single Walled CNTs

The FLC + chiral SWCNT suspensions were studied using electrooptic and
dielectric measurements [233]. Doping affected greatly the performance of FLC
cells. e.g., the spontaneous polarization, the Goldstone mode dielectric strength and
the rise time were decreased. A switchable grating based on FLC + chiral SWCNT
suspensions was proposed [234]). The presence of CNTs improves the diffraction
profile of the pure FLC. The diffraction efficiency was rather high (>100). The effect
has been explained by the decrease in ferroelectric domain periodicity and optical
activity of the chiral CNTs.

10.6.3 Smectic and Cholesteric LCs

Recently, the phase transitions in smectogenic liquid crystal BBBA doped by
MWCNTs were studied by methods of optical transmission, differential scanning
calorimetry (DSC), measurement of electrical conductivity and analysis of micro-
scopic images. The concentration of CNTs was varied within 0–1 wt%.

Non-monotonous (extremal) changes in temperature, enthalpies and half-width
of the DSC peaks of transitions between different phases (smectic, nematic, iso-
tropic) were observed for CNT concentrations between 0.05 and 0.1 wt%.
A noticeable increase of electrical conductivity σ in the same concentration interval
evidenced the presence of percolation transition and formation of conductive CNT
networks. The detailed analysis of behavior in the whole concentration interval
0–1 wt% revealed the presence of a fuzzy type percolation with multiple thresholds
in the studied BBBA + CNT suspensions. The percolation behaviour was strongly
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dependent on the temperature, and a noticeable step-like drop of σ in the vicinity of
isotropic-nematic transition was observed after the multiple heating-cooling cycles.

Figure 10.24 presents optical transmission Tr versus temperature T for BBBA
doped with CNTs in the vicinity of the nematic-isotropic transition (a) and smectic
transitions (b) [235]. The increase in CNT concentration C leads to non-monotonous
changes in nematic-isotropic transition temperatures Tni (Fig. 10.24a). At certain
concentration, C ≈ 0.05–0.1 wt%, Tni decreases to the minimal value of ≈345.5 K
and then increases up to ≈347.7 K at C = 0.2 wt%. The significant step-wise changes
in optical transmission were observed also at temperatures close to smectic phase
transitions (Fig. 10.24b). Several extremes were present in the temperature depen-
dence of Tr of pure BBBA inside the temperature range of smectic SB and SG phases.

340 345 350

20

40

60

80

T, K

T
r
,%

347.7 K
IN

0% wt

0.01 % wt

0.05 % wt

0.1 % wt

0.2 % wt

Heating

300 305 310 315 320 325

20

40

60

80

T, K

T
r

,%

318.2 K 318.7 K
314 K

S SG SB SA N
281 K

0% wt

0.01 % wt

0.05 %
wt

0.1% wt

0.2 %
wt

Cooling

(a)

(b)

Fig. 10.24 Optical
transmission Tr versus
temperature T for BBBA +
MWCNT suspensions in the
vicinity of nematic-isotropic
transition (a) and smectic
transitions (b). The phases
and temperatures are shown
for pure BBBA (C = 0 %).
A sandwich-type LC cell
(with cell thickness
h = 50 μm) was used for
optical transmission
measurements (From [235].
With permission)

10 Carbon Nanotubes in Liquid Crystals: Fundamental Properties … 285



Doping of BBBA by CNTs affected positions of these extremes and resulted in
their broadening. The observed changes in the temperature dependence of Tr
reflected evidently the perturbations of BBBA structure induced by CNTs. These
perturbations can affect the positional order inside the different smectic phases, e.g.,
partially destroy the network of hexagons within the layers in SB phase or frustrate
three-dimensional order and correlations between the various layers in SG phase. As
a result, the changes in temperature ranges of different smectic phases were
observed with introduction of CNTs.

Accounting for the super-cooling effects, the temperature range corresponding to
the highest optical transmission Tr (Fig. 10.24b) may be attributed to the SB phase.

Introduction of MWCNTs into cholesteric LC [110] apparently resulted in ori-
entation of the dispersed MWCNTs in quasi-nematic layers. The general picture of
Tr
0 − Tr changes was similar to that observed in nematics, with the same differences

between non-aromatic (cholesterol derivatives) and aromatic (5CB + chiral dopant)
cholesteric LC matrices.

Three different cholesteric media were used:

(1) an induced cholesteric composed of 70 wt% of nematic ZhK-1282 and 30 wt%
of chiral dopant CB-15;

(2) a mixture of 80 wt% COC and 20 wt% CC;
(3) a mixture of 60 wt% CN, 20 wt% CCN and 20 % CCL.

In the first two mixtures, MWCNTs (0.05–0.1 wt%) did not significantly affect
the helical twisting properties. In the third case, certain effects on selective
reflection spectra were noted, which, in fact, reflected lowering of the cholesteric—
smectic-A transition temperature in the presence of MWCNTs. This could suggest
that CNTs promoted translational disordering in the smectic-A phase. This is in
good agreement with MWCNT-induced lowering of the nematic—smectic-A
transition temperature [235]. The selective reflection spectra were just slightly
smeared (which is typical for introduction of non-mesogenic dopants), and prac-
tically no effects on helical twisting (selective reflection maximums) were observed.

Effects of SWCNTs on phase behavior and helical pitch of cholesterics (mixture
of 46 wt% CN, 44 wt% COC and 10 wt% CB with different concentrations of CN)
was studied [236]. A well-defined shift of the helical pitch versus temperature plot
was observed in the presence of SWCNTs (0.014 wt%). For the mixtures of a
nematic ROTN-403/015S, introduction of larger amounts of CN accelerated
aggregation and sedimentation of SWCNTs [236]. However, these results, are in
contradiction with results of [237], where introduction of chiral components sub-
stantially stabilized the CNTs in a mixture of nematics and cholesterol esters.

The electrical conductivity σ and dielectric anisotropy, Δɛ, changes (in the
100 kHz–10 MHz range) were studied for a cholesteric liquid crystal (nematic E7 +
chiral dopant ZLI-811) doped by SWCNTs (0.5 wt%) [238]. The pure CLC exhibits
high positive dielectric anisotropy (Δɛ > 0). With increasing frequency, the elec-
trical conductivity first increased and then reached saturation. It was explained by
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reorientation of SWCNTs along the director field. Also, SWCNTs substantially
affected the dielectric anisotropy Δε.

One should also mention the studies of lyotropic cholesteric LC doped with
SWCNTs [239]. The lyotropic LC was formed by dispersing double-stranded DNA
in water solution. The phase behavior and microstructure depended on the relative
concentrations of DNA and SWCNTs. It was shown that such suspensions could be
used for preparation of carbon CNT films with controlled morphology.

It was reported that a hybrid material based on a cholesteric LC mixture and
nanotubes could be used for detection of acetone vapors [240]. When the con-
centration of acetone (absorbed from air by the liquid crystal layer) is relatively low,
the selective reflection maximum is shifted due to helical pitch variation. At higher
acetone concentrations, when cholesteric structure is destroyed, conducting net-
works of nanotubes are formed, and concentration is measured by increased con-
ductivity. Thus, such device is operational as gas detector for a very wide dynamic
range of concentrations.

10.6.4 Lyotropic LCs

10.6.4.1 Typical Aqueous LCs

The surfactant can be effectively used for assisting the dispersing of CNT in water.
SWCNTs (0.05–0.1 wt%) were dispersed in aqueous solution of surfactant (SDS,
1 wt%) [241] [242]. By means of resonant Raman spectroscopy it was demon-
strated that CNTs can be macroscopically aligned and simultaneously well dis-
persed inside self-organized aqueous LLC. It was supposed that SWCNTs are
covered with adsorbed surfactant molecules and form very long rod-like or
disk-like micelles. The estimated order parameter for SWCNTs was sn ≈ 0.6. The
stability of suspensions was very high over time scales of months or longer.

SWCNTs were integrated into hexagonal phase of lyotropic liquid crystal
(LLC) [243]. The hexagonal LLC was prepared by adding of surfactant Triton
X-100 (50 wt%) water, the concentration of SWCNTs was changed within the
interval 0–0.25 wt%. Light microscopy and small-angle X-ray scattering (SAXS)
data indicated that the SWCNTs are well dispersed and aligned along the LC
director. Data of SAXS also evidenced that SWCNTs are intercalated within the
cylinders of the hexagonal LLC.

Many experiments evidenced that incorporating of CNTs in a LLC allowed
obtaining the uniaxial alignment of the CNTs [11, 244, 245]. A new
microfluidic-based method for transferring the LC-dispersed CNTs to a substrate
high alignment of CNTs was described [11, 246]. The possibility of the extraction
of very thin and long filaments with high alignment of CNTs was demonstrated
[245]. Suspension of single-walled CNTs (0.01 wt%) dispersed LLC was studied
by SAXS [247]. LLC was based on 25 wt% aqueous solution of surfactant CTAB.
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This LLC system exhibited nematic (N), hexagonal (H) and isotropic (I) phases
upon heating. SAXS data evidenced that in the nematic and hexagonal phases, the
CNTs exhibit 2-D hexagonal ordering and in the isotropic phase the domains of
CNTs with 1-D ordering are formed.

10.6.4.2 Chromonic LCs

The chromonic LCs are composed of disc-like or plank-like rigid molecules of
aromatic nature. The formation of the supramolecular lyotropic structures in
chromonic LCs is governed by π-π interactions between flat core areas of chro-
monic molecules. The different type of chromonic aggregates and LC phases (e.g.,
hexagonal and nematic phases) can be realized in the chromonic systems [248].
Nematic chromonic LC DSCG + SWCNTs suspensions were studied [249]. It was
demonstrated that chromonic LCs can be considered as the excellent host for
individual CNTs. In water the molecules of DSCG self assemble into the nematic or
hexagonal phase at room temperature and the individual SWCNTs align parallel to
the LC director. The order parameter of CNTs extracted from the polarized coupled
Raman and photoluminescence spectra was unusually large, sn ≈ 0.9. This value
was close to the order parameter of the nematic phase, sLC = 0.97.

10.6.4.3 Composite Polymers with Well Oriented CNTs

The good integration of nanotubes in LLCs can be used for production of nano-
composites of vertically aligned SWCNTs by magnetic alignment [250]. It was
supposed to orient mesophases of hexagonally packed cylindrical micelles by an
applied magnetic field and template the alignment of SWCNTs covered by the
micellar cores. The mesophase can be then polymerized to form the composite
polymer. The similar approach was discussed for the SWCNTs that were dispersed
in LLC on the base of a polymerizable surfactant DDAM in water [251]. At the
concentration of 70 wt% of DDAM, the LLC showed columnar hexagonal phases.
X-ray diffraction analysis evidenced that the CNTs were well incorporated in the
hexagonal phase and induced a swelling of the structure. The suspensions were
photopolymerized by photo-irradiation and a mechanically stable, polymeric LC +
CNT composites were produced. The proposed method is attractive for preparation
of polymeric composited with well-dispersed and highly oriented CNTs.

For effective incorporation of SWCNTs into LLCs the method of phase sepa-
ration in the presence of water soluble polymers was proposed [252–254]. The
method consist of the initial incorporation of CNTs into the LLC phase formed by
an anionic surfactant SDS or a cationic surfactant CTAB [252]. In both systems, the
surfactant phase was condensed into a hexagonal lattice by adding the anionic
polyelectrolyte PSS for the case of SDS and in the presence of a cationic
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polyelectrolyte PDADMAC for the case of CTAB. The obtained LLC + CNT
hybrid systems were studied by polarized optical microscopy (POM) and SAXS.
The produced hybrids showed considerable stability against temperature rise. This
is important for the LLC + CNT hydrids with practical applications at the elevated
temperatures. In the similar work the CNTs were initially incorporated in LLC
formed by C12E6. Then the spontaneous phase separation was induced by addition
of nonionic hydrophilic polymer PEG [253]. The hexagonal and lamellar phases
were observed in dependence of the ratio of PEG to C12E6. It was shown that the
quality of CNT + LLC hydrid was dependent on the temperature and at higher
temperature the aggregation of CNTs was induced.

10.6.4.4 Ionic Liquids

MWCNTs were dispersed in hexagonal LLCs on the base of room temperature
ionic liquid [255]. The hexagonal phase was obtained using the binary mixture of
nonionic surfactants (C16EO6) and a room-temperature ionic liquid EAN. The
strong integration of MWCNTs into the hexagonal LLC was confirmed by analysis
of the texture of hexagonal phase as well by the data of FT-IR and Raman spec-
troscopy and SAXS results. It was shown that the LLCs can impose an alignment
on the CNTs along a director of LLC. The potential application of these hydrid
materials as lubricating materials was noted. In another study MWCNTs were
dispersed in hexagonal (H1) LLCs on the base of a surfactant-like ionic liquid
C14mimCl in an EAN [256]. The data of POM and SAXS evidenced that the
incorporation of CNTs preserves the structure of H1 phase and increases the vis-
cosity of H1 phase.

10.7 Dispersing of CNTs in LCS Assisted by Nanoplatelets

The effective approach for dispersion of MWCNTs into liquid crystals (LC),
suitable for a wide range of concentrations (C ≤ 0.1 wt%) was proposed [257]. It
consists in doping of LC + MWCNT suspensions with organo-modified laponite
(LapO). The LapO platelets have high affinity to the MWCNTs. They can cover the
surface of MWCNTs and prevent their aggregation. This approach avoids problems
of direct organo-modification of CNTs, associated with worsening of their unique
properties. The increased dispersion degree results in drastic changes in dielectric
and electro-optical characteristics of the suspensions. Dispersing and insulating
effects of the LapO platelets on CNTs lead to the absence of classical percolation of
conductivity, linear growth of dielectric constant with CNT concentration, as well
as reduction of Freedericks threshold and significant growth of the contrast ratio of
the E7 + MWCNTs suspensions.

10 Carbon Nanotubes in Liquid Crystals: Fundamental Properties … 289



10.8 Conclusions

Analysis of numerous experimental data, both taken from literature and obtained
with participation of the authors, show that carbon nanotubes, as well as nano-
particles of other types, can be successfully dispersed in various liquid crystal
media, yielding sufficiently homogeneous composite anisotropic systems with
peculiar macroscopic properties. Suspensions doped by nanoparticles can be con-
sidered as promising for many practical applications. The LC phases included
nematics, cholesterics, various smectics, as well as lyotropic or ionic liquid crystals.
In many cases, the observed physical properties of LC + CNT suspension can be
directly derived from the actual structural parameters of the dispersed particles in
the LC media and reflect the formation of complex supramolecular structures. The
observed dependences of thermal, electrophysical and optical properties of these
systems upon the temperature, CNT concentration and influence of external factors
(e.g., applied electric or magnetic fields) are in good agreement with each other and
evidence the important role of mutual interactions between CNTs and LC mole-
cules. Further possibilities for improvement of functional characteristics of LC +
CNT suspension can be offered by incorporation into these systems the particles
with different type of geometry (e.g., platelets), or organic molecules with specific
properties (e.g., dyes). Basic description of such complex systems can be made
using the same general approach.

The review mentioned possible practical applications of LC + CNT based
materials in various electrooptic and optoelectronic devices. Many aspects,
including ways of ensuring high time stability of these systems and further
broadening of the range of involved components, were left outside the scope of our
narration. Such works are now being actively carried out by many researchers
worldwide, including studies in the authors’ laboratories.
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Chapter 11
Structural Study of Star Polyelectrolytes
and Their Porous Multilayer Assembly
in Solution

Weinan Xu, Sidney T. Malak, Felix A. Plamper,
Christopher V. Synatschke, Axel H.E. Müller, William T. Heller,
Yuri B. Melnichenko and Vladimir V. Tsukruk

Abstract Star polyelectrolytes with responsive properties to external stimuli, such
as pH, temperature and ionic condition, were utilized to fabricate layer-by-layer
(LbL) microcapsules. The microstructure of star polyelectrolytes was first studied in
semi-dilute solution by in situ small-angle neutron scattering (SANS). These
measurements show that with the addition of salts, arms of strong cationic star
polyelectrolytes will contract and the spatial ordering of the stars would be inter-
rupted. SANS measurements were also performed on the microcapsules in order to
study their internal structure and responsive properties in solution. The results show
that with the increase of shell thickness, microcapsules undergo a change of fractal
dimension. Microcapsules with thinner shell have a surface fractal structure with
rough interface, while those with thicker shell generally have a mass fractal
structure of 3D random network. With the change of surrounding environment (pH,
temperature, or ionic condition), the morphology and permeability of microcapsules
are changed concurrently, for example, with the addition of multivalent salt, there is
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a surface- to mass-fractal transition, with the correlation length decreasing by
around 50 %. This study provides insight into the mechanism of the responsiveness
of novel star polyelectrolytes and their assembled multilayer structures.

11.1 Introduction

Polyelectrolytes (PEs) are polymers with ionizable groups in their repeating units
and they are usually charged in solution due to ionic dissociation. Due to the
dramatic asymmetry in charge, mass and size between the polyelectrolyte backbone
and counterions, co-ions and solvent molecules, polyelectrolyte solutions have rich
and significantly different phase behaviors compared with that of neutral polymer
solutions [1]. The structure and properties of linear polyelectrolytes have been
extensity studied during the past several decades [2], but reports on the solution
structure of branched polyelectrolytes are rare, and there are many important
unresolved questions. Among many different kinds of branched polyelectrolytes,
star polyelectrolytes constitute a particular class of macromolecules with high rel-
evance in soft matter physics, chemistry, and materials science [3–6]. Due to the
unique architecture of star polyelectrolytes, their conformational state can be easily
affected by the degree of charging, the salt concentration, the valency of counte-
rions and co-ions, as well as the temperature and pH of the solution [7, 8].

Theoretical studies have shown that in addition to the steric repulsion between
star polymers, there are also a relatively short range attraction and a secondary
repulsive barrier at longer distance [9]. Chen et al. [10] calculated the
monomer-monomer structure factors of linear and star polyelectrolytes based on
polymer reference interaction site model theory. They also showed that at lower
polyelectrolyte concentration, the equilibrium distribution of counterions signifi-
cantly depends on the polyelectrolyte conformation; but at higher concentration
(well above the molecular overlap concentration) the association behavior of
counterions has little correlation with polyelectrolyte geometry due to the steric
effect.

One of the most important features of star polyelectrolytes is the strong locali-
zation of the counterions within the star interior, which leads to a stretching of the
arms in salt-free condition. The degree of counterion confinement is stronger for
multivalent ions than monovalent ones, therefore, in the presence of multivalent
counterions, the release of a concomitant number of monovalent ions induces a
significant drop in osmotic pressure within the stars, which results in the collapse of
the star polyelectrolytes. Ballauff et al. [11] studied spherical polyelectrolyte bru-
shes with a finite size polystyrene core, the structure of which is very similar to star
polyelectrolytes, and thus expanded the theory of electrostatic repulsion of star
polyelectrolyte to include particles with a finite core radius. They showed that most
of the counterions are confined within the brush layer. The strong osmotic pressure
thus created within the brush layer dominates the repulsive interaction between two
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such particles. Despite the similarity between star polyelectrolytes and spherical
brushes, the main difference is the distribution of the counterions outside the
intra-molecular volume. For polyelectrolyte stars the counterions are distributed
uniformly in the solution, while for spherical brushes, the correlation of counterions
with the macroion is even higher, so there is a cloud of counterions with thickness
comparable to the brush layer, and only a small fraction of the counterions is
uniformly distributed in the solution [12].

In order to utilize the branched polyelectrolytes in various applications such as
drug delivery, smart surfaces and microreactors, it is necessary to assemble them
into different nano- and micro-structures such as thin films, microcapsules, colloids
and hydrogels. The main assembly techniques include solution assembly, interfacial
assembly and layer-by-layer (LbL) assembly [13–15]. To elucidate the structure
and properties of the assembled hierarchical structure, small angle neutron scat-
tering (SANS) again is one of the most suitable experimental techniques, but there
are actually very few reports on microstructures based on branched polyelectrolytes.
For example, study on various star polymer networks composed of hydrophilic
2-(dimethylamino)ethyl methacrylate (DMAEMA) and hydrophobic methyl
methacrylate (MMA) units, with identical topology but different molecular buildup,
showed significant difference in structure when swollen with water [16]. SANS
measurements showed that for the homopolymer and random copolymer star net-
work, only relatively small structural units were observed; but for the heteroarm star
co-networks, the presence of well-defined hydrophobic domains were observed
indicating pronounced microphase separation in these systems.

Likos et al. [17] studied the complexation of oppositely charged colloidal par-
ticles and polyelectrolyte stars with the molecular dynamics simulations. The results
indicated that besides electrostatic interaction, entropy also plays an important role
in the adsorption of the stars on colloidal surface. The functionality (i.e. arm
number) of the stars has significant influence on the adsorption process: higher
functionality stars will not adsorb with all their arms on the colloid because of the
internal Coulomb interactions between the arms. The maximum load of the PE stars
clearly depends on all quantities, i.e. functionality, the length of the arms, and the
overall charge of the PE stars, as well as the overall size and charge of the colloidal
particles.

In this chapter, we discuss the morphology and responsive behavior of LbL
microcapsules based on branched polyelectrolytes with responsive properties to
external stimuli, such as pH, temperature and ionic condition. SANS is utilized to
elucidate the internal structure of the microcapsule shells with different components
and thickness. Moreover, the structural changes of the shell upon applying external
stimuli, which are responsible for the permeability changes of microcapsules, have
been examined by SANS. By fitting the experimental data with suitable models, we
are able to quantitatively unveil the fractal dimensions and estimate the correlation
length of the complex multilayered structures. We use deuterium labeling to con-
trast the inner nanoporous morphology of branched macromolecules in solution and
in thin shell states.
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11.2 Experimental Section

11.2.1 Materials

Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) star polymers were
synthesized by atom transfer radical polymerization of 2-(N,N-dimethylamino)ethyl
methacrylate employing a core-first route with functionalized polyhedral oligomeric
silsesquioxane (POSS) core [18]. Sugar-based scaffolds as well as silsesquioxane
nanoparticles were used as multifunctional initiators. Subsequent quaternization of
the obtained PDMAEMA stars with methyl iodide yielded their star-shaped quat-
ernized ammonium salts (qPDMAEMA). The rather low efficiency of the initiation
sites (30–75 %) leads to a moderate arm number distribution of the prepared
polyelectrolyte stars. Here, we used PDMAEMA star polymers with arm numbers
of 9.5, 18 and 24 (number average), the number-average degrees of polymerization
per arm are 170, 170 and 240, respectively. Therefore, they are named as
(PDMAEMA170)9.5, (PDMAEMA170)18 and (PDMAEMA240)24, with the
number-average molecular weights of 250, 490 and 950 kg/mol, and polydispersity
index of 1.20, 1.41 and 1.43, respectively.

Linear Poly(ethyleneimine) (PEI) was purchased from Polysciences. Poly
(sodium 4-styrenesulfonate) (PSS, Mw = 70,000 g/mol) was purchased from
Sigma-Aldrich. All commercial polyelectrolytes were used without further purifi-
cation. Silica particles with a diameter of 4.0 ± 0.2 µm and 10 % dispersion in water
were obtained from Polysciences. Hydrofluoric acid (48–51 %) was purchased from
BDH Aristar. Nanopure water (Nanopure system, Barnstead) with a resistivity of
18.2 MΩ cm was used in all experiments. Tris-HCl (1.0 M) was purchased from
Rockland and was diluted to 0.01 M in ultrapure pure water with pH adjusted by
HCl or NaOH for use. To assure high scattering contrast, D2O (99.9 %) was used to
dissolve star polyelectrolytes for SANS experiments (Cambridge Isotope
Laboratories). Sodium deuteroxide (40 wt% in D2O, 99 at.% D) and deuterium
chloride (99 at.% D) were purchased from Sigma-Aldrich, and used to adjust the pH
of the samples.

11.2.2 Preparation of LbL Microcapsules

PSS and PDMAEMA star polyelectrolyte were each dissolved in 0.1 M NaCl
solution with a concentration of 0.2 mg/mL. The preparation of LbL
(PSS/PDMAEMA)n microcapsules have the following steps: the bare, negatively
charged silica particles with average diameter of 4.0 µm were first coated with a PEI
prelayer by incubating in 1.5 mL of PEI solution (1.0 mg/mL) for 15 min, followed
by two centrifugation (3000 rpm for 3 min)/wash cycles. Subsequently, the silica
particles were incubated in 1.5 mL PSS solution (0.2 mg/mL) for 15 min, followed
by two centrifugation (3000 rpm for 3 min)/wash cycles. 1.5 mL of PDMAEMA
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star polyelectrolyte solution was then added and 15 min was allowed for adsorption,
also followed by two centrifugation/wash cycles. The adsorption steps were repe-
ated until the desired number of layers were built on silica particles. Hollow mi-
crocapsules were finally obtained by dissolving silica cores in 1 % HF solution for
2 h, followed by dialysis in Nanopure water for 2 days with repeated change of
water. The preparation of other types of LbL microcapsules in this study follows
similar procedure as described above.

11.2.3 SANS Experiments

The SANS measurements of PSS/qPDMAEMA18 microcapsules were performed
using the EQ-SANS instrument [19] at the Spallation Neutron Source of Oak Ridge
National Laboratory (ORNL) employed a sample-to-detector distance of 4 m. The
instrument was used in 30 Hz mode with a minimum wavelength setting of 2.5 Å,
which gives a second band starting at 9.4 Å. The instrument configuration provides
an effective q-range of *0.005–0.45 Å−1. Scattering data from the EQ-SANS were
reduced using standard procedures with the MANTID software package [20].

SANS measurements of PSS/PDMAEMA18 microcapsules were conducted at
ORNL on the CG2 (GP-SANS) instrument [21] with a wavelength of λ = 4.7Å (Δλ/
λ ≈ 0.14). Polyelectrolyte or microcapsule solutions were loaded into 2 mm thick
quartz cells. Quartz cells were mounted in a temperature-controlled sample holder
(temperature stability and gradients are better than ±0.1 °C), and the samples were
allowed to stabilize at a preset temperature for 10 min before each measurement.
Polymer concentration in our experiments was chosen to be 1 wt% in order to keep
high signal-to-noise ratio and minimize possible interactions between the stars and
large scale aggregate formation. Two sample-detector distances were used (2.0 and
18.5 m with a 40 cm detector offset), which resulted in a range of scattering vectors
q (q = 4π ⋅ sinθ/λ, where 2θ is the scattering angle) covered in the experiment from
0.004 to 0.6 Å−1. The data were corrected for instrumental background and detector
efficiency and converted to an absolute scale (cross section I(q) in units of cm−1) by
means of a pre-calibrated secondary standard, Al-4 [22]. Scattering from the solvent
was subsequently subtracted proportionally to its volume fraction.

11.3 Results and Discussion

11.3.1 Structure and Ion Responsive Behavior of Star
Polyelectrolytes

The star polyelectrolytes discussed here are PDMAEMA stars and their quaternized
salts, the structure of which is shown in Fig. 11.1a. PDMAEMA is a well-known
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weak cationic polyelectrolyte with pH and temperature dual responsive properties
[18, 23]. With the decrease of pH, the degree of protonation of the amine group in
the repeating units increases, which leads to higher charge density and more
extended chains due to electrostatic interaction. On the other hand, with the increase
of temperature, the hydrogen bonding between the polymer chain and water
weakens and the intramolecular hydrophobic interaction becomes stronger, there-
fore, the PDMAEMA chains would retract or collapse at temperature above the
lower critical solution temperature (LCST) [24], as shown in Fig. 11.1b.

Quaternization of PDMAEMA introduces a permanent charge to the repeating
unit, therefore the qPDMAEMA stars are strong cationic polyelectrolytes, and their
charge density does not depend on pH or temperature. However, the conformation
of the qPDMAEMA stars is very sensitive to the addition of multivalent salt.
Plamper et al. [25] showed that adding trivalent hexacyanocobaltate(III) ions leads
to a collapse of the polyelectrolyte star even at low concentrations (Fig. 11.1b);
sufficiently high multivalent counterion concentration leads finally to the precipi-
tation of the polymer from the solution.

The structure of qPDMAEMA stars in a semi-dilute solution is first studied by
SANS, with three different types of stars having different arm numbers and arm
lengths (Fig. 11.2a). The (number-average) arm numbers are 9.5, 18 and 24, while
the degree of polymerization for each arm is either 170 or 240. In contrast to the
weak star polyelectrolytes [42], the SANS for qPDMAEMA stars show sharper
peaks indicating better intermolecular ordering with significant upturn at low q. The
peaks are shifted to lower q indicating increased separation of star macromolecules
as a result of increased repulsion. On the other hand, the excessive zero-angle

Fig. 11.1 a Chemical structure of PDMAEMA and qPDMAEMA star polyelectrolytes,
b suggested structural changes of the two kinds of responsive star polyelectrolytes due to
external condition variations
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scattering at very low q (q < 0.008 Å−1) indicates large-scale concentration
fluctuations and increasing osmotic pressure within solutions of highly charged
stars [26].

In order to get the size information of the star polyelectrolytes from the scat-
tering data, the generalized Kratky analysis can be used, which estimates the radius
of gyration of the stars by plotting I(q)q1/ν versus q, where ν is the excluded volume
parameter [27].

Briefly, in the region around the peak, the form factor can be approximated by
the Gaussian star form factor of Benoit [28]:

PðqÞ ¼ 2

ðfv4Þ v2 � ½1� expð�v2� þ f�1
2 ½1� expð�v2Þ�2

� � ; ð11:1Þ

where

v ¼ f
3f � 2

� �1
2

qRg: ð11:2Þ

This form factor does, in principle, describe star polymers under θ-solvent
conditions, but excluded volume effects for swollen chains are not affecting the q
range around the peak [29].

The position of the maximum of the Benoit form factor, νmax, can be calculated
from the first derivative of expression (11.2) with respect to v, and for star polymer
with large number of arms (f ≫ 1), νmax ≈ 1. The radius of gyration can then be
calculated by comparing νmax to the experimentally obtained qmax, after rear-
rangement of (11.2) we can get

Fig. 11.2 a SANS data of qPDMAEMA star polyelectrolytes solution (1 wt% in D2O, at 25 °C)
with different number of arms or arm length. b Kratky plot for the corresponding quaternized
PDMAEMA star polyelectrolytes (Reprinted from Tsukruk et al. [42] by permission of the
American Chemical Society.)
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Rg ¼ 3f � 2
f

� �1
2vmax

qmax
; ð11:3Þ

or

Rg ¼
ffiffiffi
3

p

qmax
: ð11:4Þ

Previous studies [30] showed the values obtained are very close to those from
the Zimm evaluation. Therefore, for star polymers whose Guinier regime could not
be accessed easily, it is justified to take the Rg value from the Kratky approach.

Kratky analysis of the qPDMAEMA star polyelectrolytes shows a sharp peak in
the low q range (Fig. 11.2b), which is significantly shifted to lower q indicating
increase in effective molecular dimensions. Moreover, the excluded volume
parameter ν in the Kratky analysis is found to be 0.7, while as known ν is 0.5 for
ideal Gaussian chains, and 0.6 for fully swollen coils. This result indicates that the
qPDMAEMA chains have a more expanded local blob structure due to the
increased electrostatic repulsion and osmotic pressure within the star macromole-
cules [31].

The effect of concentration on the structure of qPDMAEMA stars was prelim-
inarily studied as well, as shown in Fig. 11.3a. SANS curves from the 1 and 0.5 wt
% (qPDMAEMA240)24 solution have similar shape, but the characteristic peak
shifts to lower q values was observed in the more dilute solution. The intermo-
lecular distance calculated from the peak position increases from 65.8 to 82.8 nm,
which is exactly the expected value, since dilution by a factor of 2 should increase
the distance by 21/3. Kratky analysis is used to estimate the radius of gyration, and
shows that the Rg increases from 16.5 to 21.3 nm with the dilution. The result
indicates that there is strong electrostatic repulsion between the cationic stars, at

Fig. 11.3 a SANS data of q(PDMAEMA240)24 star polyelectrolytes solution in D2O with different
concentrations and ionic conditions (at 25 °C). bKratky plot for the corresponding samples from (a)
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higher concentration the arms would be forced to retract from fully expanded
conformation due to the strong intermolecular interaction. With the decrease of
concentration, the arm chains recover to more extended conformation which is
accompanied by the increase in the intermolecular distance.

As known, theoretical and experimental studies have already shown that salt
concentration has a significant effect on the structure of polyelectrolytes. Here we
also studied how the addition of mono- and divalent salts affects the conformation
and organization of star polyelectrolytes in solution. As shown in Fig. 11.3, the
most obvious change is that the characteristic peak at low q range disappears after
adding 0.1 M NaCl or MgSO4 to the solution. The Rg estimated from Kratky
analysis (Fig. 11.3b) decreases from 21.3 nm in D2O to 18.5 nm in 0.1 M NaCl and
17.7 nm in 0.1 M MgSO4. The main reason is that the presence of salt can effec-
tively screen the charge on qPDMAEMA chains, which significantly reduces the
electrostatic repulsion between repeating units on the arm as well as between the
stars; and the osmotic pressure within the stars also decreases. As a result, the arm
chains contract and the intermolecular ordering is disrupted. SANS experiments on
the effect of trivalent ions on the conformation and organization of the
qPDMAEMA star polyelectrolytes is more challenging to do, because even a small
amount of trivalent salt can lead to the precipitation of the stars from the solution
[25]. Such experiments are planned for future studies.

11.3.2 Ion Responsive LbL Microcapsules

The responsive star polyelectrolytes were further utilized to fabricate LbL micro-
capsules via electrostatic interaction; the details of the fabrication and properties of
the PSS/qPDMAEMA18 microcapsules can be found in a previous report [32]. In
order to characterize the structure of these thin shell microcapsules, confocal
microscopy, AFM and TEM can be used. However, these techniques usually either
only apply to samples in dry state or partially wetted state, which have significantly
different structure as compared to that in solution. SANS, on the other hand, pro-
vides a powerful and non-destructive way to elucidate the porous morphology of
the microcapsules in solution directly.

SANS measurements were first conducted for PSS/qPDMAEMA18 microcap-
sules with different number of bilayers (Fig. 11.4). The q range of the scattering
data in this experiment corresponds to a distance roughly from 1 to 100 nm, which
actually covers several characteristic dimensions of the microcapsules including
thickness of the shell, star polyelectrolyte size and the mesh size within the shell.
However, considering the fact that the porous shell is filled with D2O, and the
scattering contrast is highest between D2O and the hydrogenated polyelectrolyte
matrix, while the contrast between the hydrogenated domain morphology is much
smaller and can be neglected. Therefore, we suggest that the scattering in this
region is likely dominated by the porous structure filled with D2O within the LbL
shell.

11 Structural Study of Star Polyelectrolytes … 307



Our initial attempt to fit the data utilized a shape-dependent model to describe
the pores within the shell, with the shapes (spherical, ellipsoidal, cylindrical etc.),
dimensions, and their polydispersity to be varied. However, no such model can
provide satisfactory fitting of the entire q range. Therefore, the assumption of a
porous shell with isolated and well-defined closed pores can be excluded from
further consideration. Next, we suggest that the structure of the microcapsule shell
can be more accurately described as randomized interconnected network.

Two shape-independent models which are suitable for weakly-contrasted inho-
mogeneities at multiple length scales were applied to the SANS data of
PSS/qPDMAEMA18 microcapsules with different number of bilayers. The first one
to be used is a power law or Porod model, which corresponds to a probed range
smaller than the scattering object, so that the scattering is related to the local
structure [33]. The scattering intensity can be expressed as I(q) = A/qn + B, where a
power law exponent n between 3 and 4 characterizes rough interfaces, which is
called surface fractal, and the surface fractal dimension Df = 6 − n. A power law
exponent between 2 and 3 is for “mass fractals” such as branched systems (gels) or
networks [34], the mass fractal dimension Dm = n. It can be seen that the power law
model yields relatively good fitting for the scattering data over the entire q range for
microcapsules with different number of bilayers (Fig. 11.4a), and the fractal
dimensions obtained are summarized in Table 11.1.

Importantly, the fitting results from PSS/qPDMAEMA18 microcapsules with
different number of bilayers have obvious differences. The 5 and 8 bilayer mi-
crocapsules have power law exponents of 3.98 and 3.92, which strongly suggests
surface fractal morphology, in other words, a thin shell network of pores and with
rough surface. Measurements from other techniques such as AFM confirm that the
5 and 8 bilayers microcapsules have thin porous shells and rough surfaces, with a
thickness of 12.8 and 16.1 nm in the dry state, respectively [32]. This result is
consistent with SANS characterization of particles like microgels, where a power

Fig. 11.4 SANS data of PSS/qPDMAEMA18 microcapsules with (square) 5 bilayers, (circle) 8
bilayers, and (triangle) 11 bilayers in D2O solution (at 25 °C) that have been fitted with a power
law model (a solid lines) to determine the evolution of the fractal dimension, and
Debye-Anderson-Brumberger (DAB) model (b solid lines) to obtain the correlation length
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law exponent of 4 indicating smooth surfaces, and a power law exponent between 3
and 4 indicating a microporous system with rough surfaces [35].

In contrast, the shells with 11 bilayers have a fractal dimension of 2.84, which
suggests a mass fractal structure. The shell structure corresponds to a network-like
porous morphology with network elements randomly oriented within the shell. This
combination is likely indicative of a denser shell with major elements of high
contrast formed by the swollen hydrogenated polyelectrolyte matrix and the
nanopores filled with deuterated water.

Such a transition from the surface fractal to the mass fractal structure with
increasing shell thickness corresponds to general trends in morphological changes
based on microscopic observations and expected for the growth of LbL structures
[36, 37]. The gradual filling of the initial two-dimensional thin shell by subsequent
polymer layers results in the formation of more uniform films with diminishing
through-pores and decreasing pore dimensions. The occurrence of such a reorga-
nization is further supported by the results from confocal microscopy and AFM
[32], which demonstrate a densification of the surface morphology and a consistent
decrease in the permeability.

Another model to calculate the scattering from a randomly distributed,
two-phase system, the Debye-Anderson-Brumberger (DAB) model, was used to fit
the SANS data of the LbL microcapsules. The two-phase system is characterized by
a single correlation length, which is a measure of the average spacing between
regions of phase 1 and phase 2 [38]. The model also assumes a smooth interface
between the phases and hence exhibits Porod behavior at large q. The scattering
intensity can be expressed as

IðqÞ ¼ scale � n3
ð1þ ðqnÞ2Þ2 þ bck; ð11:5Þ

where ξ is the correlation length, bck is background [39]. The DAB model fits the
SANS data quite well over the entire q-range (Fig. 11.4b) and provides correlation
lengths which can be interpreted as the characteristic dimensions of density inho-
mogeneities represented by pores. The results are shown in Table 11.1. The

Table 11.1 SANS fitting results for from (PSS/qPDMAEMA18)n microcapsules using power-law
model and DAB model

Sample Power-law model DAB model

Power law exponent Fractal type Correlation length (nm)

(PSS/qPDMAEMA18)5 3.98 surface 31.4

(PSS/qPDMAEMA18)8 3.92 surface 26.7

(PSS/qPDMAEMA18)8 with salt 2.63 mass 13.5

(PSS/qPDMAEMA18)11 2.84 mass 13.0

(PSS/qPDMAEMA18)11 with salt 2.12 mass 9.0

The first index indicates the number of arms of the star and the second one the number of bilayers.
The salt added is K3[Co(CN)6]
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correlation length for PSS/qPDMAEMA18 microcapsules with 5, 8 and 11 bilayers
are 31.4, 26.7 and 13.0 nm, respectively, which is in good agreement with the
results estimated from permeability measurements [32].

As we discussed before, adding multivalent salt to the solution of qPDMAEMA
star polyelectrolytes would induce the collapse of the arm chains. Taking advantage
of this unique salt-responsive behavior, it is possible to achieve salt controlled
permeability changes in the PSS/qPDMAEMA18 microcapsules. Our previous
study showed that by adding a small amount of K3[Co(CN)6] salt to the micro-
capsule suspension, the permeability of the microcapsules can be dramatically
reduced, which was proven by the permeability test with FITC-dextran with dif-
ferent molecular weights [32]. To get direct evidence of the structure and mesh size
changes of the microcapsules after adding the multivalent salt, SANS was per-
formed on the microcapsule solution before and after the addition, as shown in
Fig. 11.5. The scattering intensity in the low q range significantly decreased after
adding K3[Co(CN)6] salt, which indicates the characteristic dimension which
related to the structure of the shell decreases.

By fitting with the DAB model, the results in Table 11.1 show that after adding
0.8 mM trivalent salt, the correlation length ξ decreases from 26.7 to 13.5 nm for
(PSS/qPDMAEMA18)8 microcapsules, and from 13.0 to 9.0 nm for
(PSS/qPDMAEMA18)11 ones. Moreover, there is a surface- to mass-fractal transi-
tion upon adding salt for (PSS/qPDMAEMA18)8 microcapsules, and the mass
fractal dimension also significantly decreases for (PSS/qPDMAEMA18)11 micro-
capsules. The decrease in fractal dimension is generally related to the increased
aggregation and roughness in the local structure [40].

Fig. 11.5 Permeability of (PSS/qPDMAEMA18)8 microcapsules to 500 kDa FITC-dextran before
(a) and after (b) adding 0.8 mM K3[Co(CN)6] (Reprinted from Tsukruk et al. [32] by permission of
the American Chemical Society.). c SANS data of (PSS/qPDMAEMA18)8 and
(PSS/qPDMAEMA18)11 microcapsules before and after adding 0.8 mM K3[Co(CN)6] (at 25 °C);
solids lines are fitting by the power law model, the two curves for (PSS/qPDMAEMA18)8 were
shifted upward for clarity
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With the addition of multivalent salt, the residual, entrapped monovalent
counterions are replaced by [Co(CN)6]

3−; on average three I− ions are replaced by
one [Co(CN)6]

3−, with ion exchange process controlled by Donnan effect [41].
Thus the osmotic pressure inside qPDMAEMA18 is reduced by a factor of 3 and
strong contraction of the arm or collapse of the stars occurs. On the other hand, due
to the presence of [Co(CN)6]

3− ions between qPDMAEMA18 stars, there is an
attraction force between the star polyelectrolytes, which induces the decrease of
intermolecular distance. As a result, the mesh size as well as the overall size of the
microcapsule decreases. The results from SANS data analysis well supported the
proposed mechanism of structural organization.

11.3.3 Temperature Responsive LbL Microcapsules

As discussed before, the PDMAEMA star polyelectrolytes are responsive to tem-
perature, which also depends on the pH conditions [24]. Our previous SANS study
[42] on the phase behavior of PDMAEMA stars in semi-dilute solution showed that
at pH values close to the pKa, all PDMAEMA stars studied here are partially
charged and show a core-shell quasi-micellar morphology caused by microphase
separation with the collapsed core region possessing high monomer density and the
hydrated loose brush shell region. Upon increasing the temperature, the
PDMAEMA star polyelectrolytes first experience a contraction in the loose shell
region while the core size remains almost unchanged, and then start to form
intermolecular aggregates within narrow temperature range. With decreasing pH
value, the transition temperature increases and the size of the aggregates decreases.
We suggest that these changes are triggered by the decrease in solvent quality with
increasing temperature, which leads to the transition from an electrostatically
dominated regime to a regime dominated by hydrophobic interactions. The
observed phenomenon is in striking contrast with the behavior of linear
PDMAEMA polyelectrolytes, which show macrophase separation with increasing
temperature under the same conditions.

By applying LbL assembly of PDMAEMA stars and PSS on spherical sub-
strates, hollow microcapsules can be fabricated after dissolving the core. The mi-
crocapsules are dual responsive to pH and temperature, as was demonstrated in our
recent study [43]. Basically, the overall size and permeability of the microcapsules
decrease with increasing temperature (with a shrinkage of 54 % in diameter at 60 °C
as compared to the value at room temperature), thus allowing to reversibly load and
unload the microcapsules with high efficiency. The organization and interaction of
star polyelectrolytes within confined multilayers are the main driving forces for the
responsiveness to external stimuli. In order to elucidate the detailed structural
changes of (PSS/PDMAEMA)n microcapsules during external stimuli, we also
conducted SANS measurements on the microcapsule solutions.

Figure 11.6a shows the SANS data from microcapsules with different number
of bilayers. It can be seen that for thinner shells, the scattering curve has a
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monotonically decreasing trend with increasing q, while for microcapsules with 8
bilayers, there are obviously characteristic humps in the q range from 0.01 to 0.05
Å−1. The reason for such a difference is that the shell consisting of 5 bilayers is thin
enough to be considered as a simple two phase system composed of a hydrogenated
polyelectrolyte shell and D2O inside. Fitting from the power law model gives a
surface fractal dimension of 2.60, which corresponds to surface fractal structure; the
DAB model fitting gives a correlation length of 35.6 nm (Fig. 11.6b), which also
matches with the result from the permeability studies.

Microcapsules with a much thicker shell of 8 bilayers have complex hierarchical
internal structures, which prevents a simple power law model or DAB model to give
a satisfactory fitting. In fact, such characteristic humps in the middle q range are an
indication of lamellar-like structures [44]. Although well-defined lamellar layering is
probably not the accurate description of the shell structure, the result indicates the
thicker shell may have reorganized to microphase separated internal structures.

The lamellar model provides the scattering intensity for a lamellar phase where a
uniform scattering length density and randomdistribution in solution are assumed [45].

The scattering intensity is expressed as:

IðqÞ ¼ 2p
PðqÞ
dq2

; ð11:6Þ

and the form factor is

PðqÞ ¼ 2Dq2

q2
ð1� cosðqdÞÞ; ð11:7Þ

Fig. 11.6 a SANS data of (PSS/PDMAEMA18)n microcapsules with 5 and 8 bilayers at 25 °C and
pH 7 condition, solid curves are fitting from lamellar model. b SANS curves of
(PSS/PDMAEMA18)5 microcapsules at pH 7 condition with increasing temperature, solid curves
are fitting from DAB model (25–40 °C) and lamellar model (45 °C). The curves are mutually offset
by a factor of 2 for better visualization
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where δ is the lamellar thickness. Fitting by the lamellar model gives a thickness of
57.8 nm for the 8 bilayer shells and 33.0 nm for the 5 bilayer shell, which confirms
the increase in shell thickness with increasing number of layers, the results also
match well with thickness from AFM measurements.

The interdiffusion of polyelectrolyte chains as well as the increased thickness
and roughness with bilayer number are the probable driving forces for the
appearance of lamellar-like shell structure.

On the other hand, in situ SANS measurements were conducted for
(PSS/PDMAEMA18)5 microcapsules with increasing temperature, which are shown
in Fig. 11.6b. It can be seen that from 25 to 40 °C, the overall shapes of the
scattering curves are similar, but fitting from power law and DAB models is able to
provide insightful information. Power law model fitting shows that the surface
fractal dimension gradually increases from 2.60 (25 °C) to 2.63 (30 °C), 2.80 (35 °
C) and 2.84 (40 °C), which means that the shell structure has a densification trend
with temperature, although still in the surface fractal range. Accordingly, DAB
model fitting shows that the correlation length decreases from 35.6 nm (25 °C) to
33.8 nm (30 °C), 28.2 nm (35 °C) and 26.3 (40 °C), which provides direct evidence
about the permeability decrease of the microcapsule with increasing temperature.

Moreover, when the temperature further increases to 45 °C, the scattering curve
undergoes a significant change in shape, which is similar to the thicker,
lamellar-like structure as we discussed for the 8 bilayer microcapsules above.
Fitting by the lamellar model for the 45 °C scattering curve gives a thickness of
38.3 nm. Such a transition provides another strong evidence that increasing tem-
perature leads to densification of the shell, which has both a thickness increase and
mesh size decrease.

With the increase of temperature, water becomes a bad solvent for PDMAEMA,
the hydrogen bonding between PDMAEMA chains and water weakens, and the
hydrophobic interaction increases [46], so that the arms of PDMAEMA stars shrink
to a more collapsed conformation [47], which leads to changes in the structure and
permeability of the microcapsule. The decreasing correlation length and increasing
surface fractal dimension of the shell with temperature from SANS analysis is a
strong proof to this hypothesis.

11.4 Conclusions

In conclusion, cationic star polyelectrolytes with responsiveness to pH, temperature
or ionic conditions, were utilized to fabricate LbL microcapsules via electrostatic
interactions. SANS measurements were conducted for the microcapsules with
different composition and thickness. The results indicate that increasing thickness of
the shell leads to a surface- to mass-fractal transition; the correlation length which
represents the mesh size in the shell decreases. Taking advantage of the responsive
properties of the branched polyelectrolytes, the microcapsules also exhibit
responsiveness in shell structure and permeability to pH, temperature or ionic
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conditions. SANS experiments showed the detailed structural changes of the
polyelectrolyte shell with the change of surrounding conditions. Adding multivalent
ions leads to a decrease in correlation length of (PSS/qPDMAEMA18)n micro-
capsules of around 50 %. For the non-quaternized (PSS/PDMAEMA18)n micro-
capsules a temperature increase from 25 to 40 °C leads to an increase in surface
fractal dimension from 2.60 to 2.84, and correlation length from 35.6 to 26.3 nm.
This study is one of the first to reveal the internal structures of multilayer micro-
capsules and their evolution upon applying external stimuli, which is critical for
their applications in drug delivery, as microreactors and self-healing materials.
Nevertheless, there is still much work to be done in this direction, for example, the
adsorption process of branched polyelectrolytes on spherical templates, and the
kinetics of the structure reorganization in the multilayered thin films or shells.
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Chapter 12
Thermodynamic and Phase Behavior
of Nanofluids

Sergey Artemenko, Victor Mazur and Olena Vasilieva

Abstract The importance of thermodynamic and phase behavior of working fluids
embedded with nanostructured materials is fundamental to new nanotechnology
applications. Considering the extremely large number of different both nanoparticle
types and reference fluids, it is obvious that there is need for developing theoretically
sound methods of the prompt estimation thermodynamic properties and phase equ-
libria for emergingworkingmedia. The effect of nanoparticles on the critical point shift
for classical fluids doped by nanoparticles is examined. Global phase diagrams of
two-component fluids with nanoparticles are analyzed. The global phase diagram
studies of binarymixtures provide somebasic ideas of how the requiredmethods canbe
developed to visualize the phase behavior of nanofluid blends. The mapping of the
global equilibrium surface in the parameter space of the equation of state (EoS) model
provides themost comprehensive systemof criteria for predictingbinarymixture phase
behavior. Results of calculations of phase equilibria for some nanofluids are described.

12.1 Introduction

Nanofluids (NF), i.e. fluids embedded with nanostructured materials, have recently
became a subject of growing scientific interest due to reports of greatly enhanced
thermal properties [1–4]. Key features of NF include thermal conductivity
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exceeding those of conventional suspensions, a nonlinear relationship between
thermophysical properties and concentration for NF containing carbon nanotubes,
and a significant increase in critical heat flux in boiling heat transfer [5–7]. NF
phenomena will allow to create a new class of efficient working and bring such
benefits like energy efficiency (e.g., improving heat transfer, reducing pumping
power), lower operating costs, smaller/lighter systems (small heat exchangers) and
cleaner environment (e.g., reducing heat transfer fluid inventory) [3, 5]. The heat
transfer in nanofluids the Thomson Reuters rating agency associates with “Research
Fronts 2013” 100 top-ranked specialties in the sciences and social sciences [8].

The key values that define thermodynamic and phase behavior of fluids are the
critical point for pure substance and critical lines for binary mixtures. The mapping
of the global equilibrium surface on the critical parameter space of components
provides the most comprehensive system of criteria for predicting of the binary
mixture phase behavior. These singular properties of nanofluids have not been
studied yet. At present time, neither experimental data nor theoretical assessments
about changes in the singularities of conventional fluids after nanoparticle doping
are available in literature. The presence of nanostructured materials should displace
the singularity allocation and change the phase behavior of mixtures due to critical
point shift of components.

The principal aim of this work is to study the effect of nanoparticle doping on
thermodynamic and phase behavior of conventional fluids and their mixtures.

This work is organized as follows. In the first part, we study the influence of
nanoparticle adding on critical point location in the one-component fluids. We
suggest that regular and singular parts of thermodynamic surface of reference fluid
and nanofluid with small nanoparticle volume concentration (<5 %) are coincided
in reduced form. The shift of critical point for CO2 doped with graphene genealogic
tree nanoparticles (carbon nanotubes, fullerenes, grapheme flakes) and metal oxides
(TiO2) nanoparticles is theoretically predicted. In the second part, we consider
possible changes in the phase behavior of two component fluids under nanoparticle
doping. Analysis of phase behavior is based on global phase diagram of binary
mixtures. These diagrams are not represented in pressure–temperature variables;
instead, they are represented in the space of parameters of an equation of state. For
example, in terms of the van der Waals equation of state the constants a and
b directly related with the critical parameters of pure components. The critical
parameters change for nanofluids leads to a change both combination rules and
equation of state parameters for binary mixture. It can shift the position of char-
acteristic point on the global phase diagram and change the type of phase behavior.
It is demonstrated that carbon nanotube (CNT) doping can provide the transition
from zeotropic to azeotropic state for R1234yf/R161 mixture. Some examples of
the nanoparticle adding effect on liquid–vapor and liquid–liquid equilibria are
given.
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12.2 Influence of Nanoparticle Adding on Critical Point
Location. One-Component Fluids

Critical point identifies thermodynamic behavior of pure substance in wide range of
parameters of state. Adding of nanoparticles changes the intermolecular interactions
between fluid components embedded with nanostructured materials and shifts phase
equilibria in the nanofluids. Here we suggest the fluids with small impurities obey
the corresponding state principle. It is hypothesized that the regular and singular
parts of thermodynamic surface of base fluid and nanofluid with small nanoparticle
volume concentration are coincided in reduced form. The compressibility factor
(Z) of nanofluid is defined via scaled pure reference fluid properties

Z ¼ ZðqCnf =q; T=TCnf Þ; ð12:1Þ

where critical parameters of nanofluid (ρCnf, TCnf) are calculated from available
equation of state in vicinity of critical point. To estimate the critical parameters of
reference fluid—nanoparticles system the fundamental equations of state in reduced
form for industrial fluids [9] are used. To compute thermodynamic properties of
nanofluids under investigation in the range 0–5 % volume concentrations of
nanoparticles (np) the density of nanofluid (nf) calculated via reference fluid density
(rf) by standard relation [10]:

qnf ¼ ð1� uÞqrf þ uqnp: ð12:2Þ

The search algorithm of nanofluid critical parameters is as follows. From the
fundamental EoS of given substance the p–ρ–T data are generated in vicinity of
critical point to establish the power law equations [9]

qr
qc

� 1 ¼ N1 1� Tr
Tc

� �
� N2 1� Tr

Tc

� �b

; ð12:3Þ

where ρσ is the saturation density for the liquid or the vapor; Tσ is the temperature
along saturation curve; ρc, Tc are critical density and temperature; N1, N2, β are
fitting parameters.

This equation is valid only in the critical region. The critical pressures for each
fluid are determined from calculations with the equation of state at the critical
temperature and density. It is assumed that (12.3) is valid both reference substance
and nanofluids. The application of universality to dissimilar critical points is based
on the isomorphism principle, which formulates the conditions for expressing the
theoretical scaling fields through physical field variables. The N1, N2, β are cal-
culated from the ρ–T data set for pure substances and then used to estimate
nanofluid critical parameters at different nanoparticle concentrations. The algorithm
accuracy is checked at limit φ = 0 to reproduce the critical point data for pure
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components. The results of our calculations reproduce the EoS data from [9, 11]
within experimental accuracy of density measurements for given substance.

Here we consider as an example the critical point shift for CO2 embedded with
different types of nanoparticles: graphene genealogic tree (CNT, fullerenes, and
graphene flakes) and some oxides (TiO2, SiO2, ZnO, CuO) which have bulk density
ρCNT = 1330 kg/m3, ρC60 = 1650 kg/m3, ρG = 2230 kg/m3, ρTiO2 = 3900 kg/m3,
ρSiO2 = 2400 kg/m3, ρZnO = 5600 kg/m3, ρCuO = 5400 kg/m3, correspondingly.

Thermodynamic behavior for selected fluids near critical point is generated via
the fundamental equations of state from [9]. The predicted critical temperature
shifts under adding of different nanoparticles are presented in Table 12.1 and
Figs. 12.1 and 12.2. The growth of volume nanoparticle concentration tends to
increase slightly the CO2 nanofluid critical temperature. Changes that are more
significant observed for critical density (Figs. 12.3 and 12.4).

The critical parameters for nanofluids also give an opportunity to calculate their
thermodynamic properties from the reduced EoS (12.1). The speed of sound is most
effective estimator of thermodynamic surface description since includes main
thermodynamic derivatives. In addition, speed of sound is related with different
mechanisms of thermal conductivity enhancement in nanofluids. Phonon transport
speed is related the sound speed as function of the compressibility and the density
of the fluid. We have evaluated the speed of sound via equation of state by con-
ventional thermodynamic relationships.

Figure 12.5 presents the calculation results for sound speed of carbon dioxide
along isobar at different volume fractions of the graphene genealogic tree
nanoparticles.

The change of thermodynamic properties due to the compressibility of the fluid
with nanoparticles suspended is negligible in the low volume fraction limit.
A significant growth of sound speed is appeared at the higher concentrations and
corresponds to similar picture of sound speed increasing at pressure rising. The shift
of critical point parameters can change the landscape of phase behavior in binary
mixtures and requires more detailed analysis which unavailable in literature.

Table 12.1 Critical temperature (ΔTc = Tcnf − TcCO2) and density (Δρc = ρcnf − ρcCO2) shifts in
carbon dioxide embedded with different nanoparticles

Nanoparticle
types

Δρc, kg/m
3 at

φ = 1 %
Δρc, kg/m

3 at
φ = 5 %

ΔTc, K at
φ = 1 %

ΔTc, K at
φ = 5 %

CNT 5.74 22.6 0.01 0.11

C60 7.47 33.2 0.01 0.13

Graphene 12.47 55.7 0.02 0.19

SiO2 12.93 58.0 0.02 0.20

TiO2 22.99 107.1 0.05 0.42

ZnO 34.40 187.4 0.07 0.71

CuO 39.69 162.0 0.08 0.64

320 S. Artemenko et al.



Temperature, K

285 290 295 300 305

D
en

si
ty

, k
g

 / 
m

3

500

600

700

800

900

CO2 [11]

CO2 - CNT

CO2

CO2 - C60

CO2 - Graphene 
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12.3 Global Phase Behavior Binary Mixtures
with Nanostructured Materials

A theoretical analysis of the topology of phase diagrams is a very useful tool for
understanding the phenomena of phase equilibrium that are observed in multi-
component systems. The pioneering work of van Konynenburg and Scott [12]
demonstrated that the van der Waals one-fluid model has wide possibilities of
qualitative reproducing the main types of phase diagrams of binary fluids. The
proposed classification was successful, and is now used as a basis for describing the
different types of phase behavior in binary mixtures. A more rigorous classification
of the typical characteristics of equilibrium surfaces and phase diagrams of binary
mixtures is given in the work of Varchenko [13], in which it is proved that the
number of topologically different rearrangements is eight. At present, the topo-
logical analysis of equilibrium surfaces of binary fluid systems contains 26 sin-
gularities and 56 scenarios of evolution of the p–T diagrams [14]. The various phase
diagrams classes and p–T projections main types of phase diagrams have been

Fig. 12.4 Critical density
shift for CO2 under different
oxides nanoparticle doping
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described in literature. Here for the reader’s convenience we list the main types of
phase behavior in binary mixtures.

12.3.1 Main Types of Phase Behavior in Binary Mixtures

The mapping of the global surface of a thermodynamic equilibrium onto the space
of parameters of an equation of state gives the possibility to obtain the most
extensive and sequential system of criteria for predicting the phase behavior of a
binary mixtures. The effect of model parameters of mixture components on the
topology of phase behavior is visualized using global phase diagrams. Conventional
phase diagrams are a visual representation of the state of a substance as a function
of temperature T, pressure p, and component concentration x. Therefore, they are
used as a tool for visual analysis of the physical picture of the solubility phe-
nomena. These variables are inherently different.

Pressure and temperature are the “field” variables that are the same for all phases
coexisting in equilibrium. The molar fraction is the “density” that is in principle
different for different phases. Global phase diagrams of binary mixtures represent
boundaries between different types of phase behavior in a dimensionless space of
equation of state parameters. For the first time, the idea of mapping the surface
of phase equilibria onto the space of field variables, i.e., parameters of an equation
of state, was proposed by van der Waals.

The boundaries of the global phase diagrams (tricritical points (TCPs), double
critical end points (DCEPs), azeotropic line, etc.) divide the space of model
parameters into the regions that correspond to the different types of phase behavior.
The mapping of the global surface of a thermodynamic equilibrium onto the space
of parameters of an equation of state is the most extensive and sequential system of
criteria for predicting the phase behavior of a binary mixture. The types of phase
behavior within the Van Konynenburg and Scott [12] classification scheme of
interest are characterized as follows (Fig. 12.6).

• Type I: a single permanent critical line between Cl and C2;
• Type II: one critical line connecting Cl and C2, another line going from Cm to a

critical endpoint;
• Type III: one critical line going from Cl to an upper critical endpoint, another

line going from C2 to Cm;
• Type III-H: a subclass of III having hetero-azeotropic three-phase curve.
• Type III-A: a subclass of III with a genuine positive azeotropic line.
• Type IV: one critical line going from Cl to an upper critical endpoint, a second

critical line going from C2 to a lower critical endpoint, a third line going from
Cm to an upper critical endpoint.

• Type V: similar to IV, but without the low temperature critical curve going to
Cm.

• Type V-A: a subclass of V with a genuine negative azeotropic line.
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• Type VI: involving closed-loop liquid-liquid immiscibility at low temperatures
and practically impossible for supercritical conditions.

Here C1 and C2 are critical points of components 1 and 2; Cm is hypothetic
critical point beyond solidification line.

12.3.2 Equation of State Model and Mixing Rules

To describe the thermodynamic properties and phase equilibria in the mixtures we
use the one-fluid model of the Redlich-Kwong equation of state (RK EoS) [15, 16].
The RK EoS is used in its classical, non-modified, form:

p ¼ RT
ðV � bÞ �

a
T0:5VðV � bÞ ; ð12:4Þ

where R is the universal gas constant.
The van der Waals co-volume parameter b as well as the attraction parameter

a of the EoS (12.4) are given by mixing rules as function of the mole fractions xi
and xj:

Fig. 12.6 Main types of
phase behavior binary
mixtures. Notations: solid
lines are vapor pressure
curves; dashed lines are
critical curves; dash-and-dot
lines are three-phase curves

324 S. Artemenko et al.



a ¼
X2
i¼1

X2
j¼1

xixjaij; b ¼
X2
i¼1

X2
j¼1

xixjbij: ð12:5Þ

The convenient set of dimensionless parameters for the Redlich-Kwong model is
as follows [17]:

Z1 ¼ d22 � d11
d22 þ d11

;

Z2 ¼ d22 � 2d12 þ d11
d22 þ d11

;

Z3 ¼ b22 � b11
b22 þ b11

;

Z4 ¼ b22 � 2b12 þ b11
b22 þ b11

;

ð12:6Þ

where

dij ¼
T�
ij bij

biibjj
; T�

ij ¼
Xbaij
RXabij

� �2=3

; Xa ¼ 9 21=3 � 1
� �h i�1

; Xb ¼ 21=3

3
:

The combining rules for the binary interaction parameters are

aij ¼ ð1� kijÞ ffiffiffiffiffiffiffiffiffi
aiiajj

p
; bij ¼ ð1� lijÞ bii þ bjj

2
: ð12:7Þ

where kij and lij are fitting coefficients in the Lorentz-Berthelot combining rule
(kij = lij = 0).

It should be brought to the attention that the dimensionless parameter Z1 rep-
resents the difference of the critical pressures of the components, and that the
dimensionless parameter Z3 represents the difference of the critical volumes
(co-volumes in EoS (12.4)). Therefore, there is a direct correlation of the global
phase behaviour between mixtures and critical properties, i.e. geometry and energy
parameters of real binary fluids.

Global phase diagrams for all realistic models have an extremely similar
structure, particularly for the case of molecules of the same size. For example, the
global phase diagrams of such different models as the Redlich–Kwong [17] or the
Lennard-Jones binary fluid [18] are almost identical, including such sensitive
phenomena as the presence of closed immiscibility regions. Accordingly, most of
assumptions and conclusions based on the above-mentioned models of phase
behavior can be transferred to other cases.
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Figure 12.7 shows the global phase diagram for binary mixtures of equal-sized
molecules, plotted in the two-dimensional (Z1–Z2) space. The tricritical points
(TCP) visualize one of the most important boundaries. This boundary divides the
classes I and V, II and IV, or III and IV. The tricritical state is a state, where the
regions of the liquid-liquid-gas immiscibility shrink to one point, which is named
the TCP. Three phases become identical at a TCP. Another important boundary in
the global phase diagrams is the locus of double critical end-points (DCEP) that
delimits types III and IV, or II and IV. Type IV is characterised by two liquid–
liquid–gas curves. One is at high temperatures and is restricted by two critical end
points [lower critical end point (LCEP) and an upper critical end point (UCEP)]. At
the upper critical end point, the solution becomes immiscible as the temperature is
lowered. At the lower critical end point, the solution separates into two phases as
the temperature is increased. The DCEP occurs in a type IV when LCEP
high-temperature three-phase region joins the UCEP of low-temperature
three-phase region. The DCEP is produced in a type III system when the critical
curve cuts tangentially the three-phase line in a pressure–temperature diagram. The
types I and II, or IV and V, differ in the existence of a three-phase line, which goes
from high pressures to an UCEP. For this case, the boundary situation is defined by
the zero-temperature end point (ZTEP). An appearance of type VI involving
closed-loop liquid-liquid immiscibility at low temperatures has topological origin
rather than more sophisticated explanation via the association interactions in SAFT
or CPA models. Thermodynamic expressions and mathematical tools are given in
the literature [19, 20]. To predict the conventional phase diagrams the computa-
tional schemes of phase equilibria calculations were realized in MATLAB.

Fig. 12.7 Global phase diagram of the Redlich-Kwong model a equal size molecules (Z3 = 0);
b systems with nonadditive co-volumes (Z3 = 0.15). The phase boundaries are represented by
different lines: tricritical (solid), azeotropic (dashed), ZTEP (dashed-dotted) and the Lorentz–
Berthelot combining rule (12.7) (dotted)
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12.3.3 Boundary States Among Phase Diagram Classes

Our aim is to recognise a wide variety of phase diagrams from analysis of variations
in geometry and energy characteristics (e.g., in critical density and critical tem-
perature) of mixture components. The influence of these two parameters on the
phase diagram topology could be conveniently visualised on the master diagram,
called a “global phase diagram”. Such a diagram shows the different areas of
occurrence of the possible phase diagrams as a function of the geometry and energy
factors of the compounds used. Ever since the work of van Konynenburg and Scott
[12], numerous studies have been carried out on other, more realistic EoS [17, 18].
The boundaries, between the various types in the global phase diagram, can be
calculated directly using the thermodynamic description of the boundary states
(tri-critical line, double critical end-points, etc.). The dimensionless co-ordinates
that are used for the representation of the boundary states depend on the equation of
state model, but normally they are designed similar to those proposed by van
Konynenburg and Scott for the van der Waals model [12]. In this case, the global
phase diagrams of all realistic models have a very similar structure, in particular for
the case of equal sized molecules.

The simplest boundary is a normal critical point when two fluid phases are
becoming identical. Critical conditions are expressed in terms of the molar Gibbs
energy derivatives in the following way:

@2G
@x2

� �
p;T

¼ @3G
@x3

� �
p;T

¼ 0: ð12:8Þ

Corresponding critical conditions for the composition—temperature—volume
variables are:

Axx �WAxV ¼ 0;

Axxx � 3WAxxV þ 3W2AxVV � 3W3AVVV ¼ 0;
ð12:9Þ

where A is the molar Helmholtz energy, W ¼ Axx
AVV

; AmVnx ¼ @nþmA
@xn@Vm

� �
T are the

contracted notations for differentiation operation which can be solved for VC and TC
at given concentration x.

At present time, Patel and Sunol [19] developed an automated and reliable pro-
cedure for systematic generation of global phase diagrams for binary systems. The
approach utilizes equation of state, incorporates solid phase and is successful in
generation of type VI phase diagram. The procedure enables automatic generation of
GPD which incorporates calculations of all important landmarks such as critical
endpoints (CEP), quadruple point (QP, if any), critical azeotropic points
(CAP), azeotropic endpoints (AEP), pure azeotropic points (PAP), critical line,
liquid–liquid–vapor line (L1L2 V, if any), solid–liquid–liquid line (SL1L2, if any),
solid–liquid–vapor line (SLV) and azeotropic line. The proposed strategy is
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completely general in that it does not require any knowledge about the type of phase
diagram and can be applied to any pressure explicit equation of state model.
Recently, Cismondi and Michelsen [20] introduced a procedure to generate different
type of phase diagrams classified by van Konynenburg and Scott. Their strategy does
not take into account an existence of solid phase. Figure 12.7 shows the global phase
diagrams for binary mixtures of equal-sized molecules (Fig. 12.7a) and systems with
nonadditive co-volumes (Fig. 12.7b), plotted in the two-dimensional (Z1–Z2) space.

Nanoparticle adding has different influence on the global phase diagram vari-
ables Zi (12.6). Critical temperature variation of nanofluids is not significant to
change the phase behavior types on global phase diagram. Hence, the cohesive
energy density for reference fluid and nanofluid are approximately the same.
Corresponding variables Z1, Z2 which define the type of phase behavior should
remain without changes after nanoparticle doping. Effect of nanoparticles can
appear due to changes in critical density and correspondingly in co-volumes bii for
equation of state model, e.g. for the RK EoS (12.4). The Z3 variation depends on
different scenario of nanofluid preparing. If nanoparticles are added to the first pure
component, the co-volume b11 is changed considerably together with variable Z3.

It can change the type of phase behavior as shown in Fig. 12.7b. An opportunity
to change phase diagrams types allows considering the nanoparticle doping as a
smart tool for phase equilibria control. One of these possible approaches is illus-
trated for zeotropic–azeotropic transitions.

12.4 Azeotropy in Binary Mixtures with Embedded
Nanomaterials

The conditions of azeotropic state are

lli ¼ lgi ; i ¼ 1; 2; xli ¼ xgi : ð12:10Þ

Azeotropy in binary fluids can be easily predicted in the framework of global
phase diagrams. The corresponding boundary state is called the degenerated critical
azeotropic point (CAP) and represents the limit of the critical azeotropy at xi → 0 or
at xi → 1. This results in solving the system of thermodynamic equations for a
degenerated critical azeotrope. One may obtain the relationships for azeotropy
boundaries from the global phase diagram (shaded A(Azeotropy) and H
(Hetero-azeotropy)) regions in Fig. 12.7. The above azeotropic borders are straight
lines in the (Z1, Z2)-plane that cross at a single point near the centre for equal sized
molecules. It opens the opportunity for obtaining the series of inequalities to sep-
arate azeotropic and non-azeotropic regions of the global phase diagram. For the
Redlich–Kwong EoS a corresponding relationship was obtained in the analytical
form [21]:
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Z2 ¼ �Z1 � 0:67ð1� Z1Þ 1� Z4
1� Z3

� 1
� �

: ð12:11Þ

Global phase diagrams of binary fluids represent the boundaries between dif-
ferent types of phase behaviour in a dimensionless parameter space. In a real p–T–x
space, two relatively similar components usually have an uninterrupted critical
curve between the two critical points of the pure components.

Here we consider phase behavior of the R1234yf–R161zeotropic blend and
R1234yf–R161–Fe3O4 nanoparticles as most likely azeotropic system that are
recognized as low global warming potential (GWP) refrigerant to replace the R134a
refrigerant. The equation of state parameter for low-boiling component R1234yf
were taken from [22, 23]: TC = 367.85 К, pC = 3.382 MPa and ω = 0.280. For the
R161 equation of state parameters, corresponding values are as follows:
TC = 375.35К, pC = 4.7 MPa and ω = 0.210. The binary interaction parameters were
fitted by the Lorentz-Berthelot combination rule (kij = lij = 0). The results of phase
equilibria calculations for different temperatures in the pressure–composition and
pressure–temperature diagrams are shown in Figs. 12.8 and 12.9. The R1234yf
doped with the Fe3O4 nanoparticles increases the critical temperature of pure
low-boiling component until 371 K. This shift conduces to transformation from
zeotropic state (Fig. 12.8) to azeotropic state (Fig. 12.10).

The topological predictions based on a global phase diagram will become a
convenient method in the analysis of nanofluid mixtures of scientific and industrial
interest. Topologically, there is no difference in the isoproperty behaviour for any
pure fluid. This fact allows us to find the parameters of the equation of state model,
which can reproduce thermodynamic properties of an arbitrary substance in a local
region of a phase diagram.

If combination rules are known, then it is possible to determine the global phase
diagram via the ratio of critical parameters of pure components only.

The traditional classification of fluid phase behavior can easily be discussed with
the aid of the p–T projections of fluid phase diagrams. There are two kinds of phase

Fig. 12.8 p–x,y diagram of
the R1234yf–R161 binary
blend at different temperatures
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diagrams. Phase diagrams of types I, V, and VI have the vapor pressure curves that
are started and ended in nonvariant points with equilibria where the no solid phase
exist. In the case of types II, III and IV, some critical curves, starting in
high-temperature nonvariant points, are not ended by the nonvariant points from the
lower temperature side, where the solid phase should exist. A solid phase is absent
in calculations of fluid phase diagrams using previously discussed equations of state
and the nonvariant equilibria with solid could not be obtained even at 0 K.
Therefore, the monovariant curves remain incomplete on the theoretical
p–T projections. As a result, these diagrams can be considered as the ‘derivative’
versions. It demonstrates not only the main types of fluid phase behavior but also
the fluid phase diagrams that appear when the heterogeneous fluid equilibria are
bounded not only by another fluid equilibrium but also by the equilibrium with
solid phase that is usually observed in the most real systems.
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12.5 Influence of Nanoparticles on the Shift of Liquid–
Liquid Equilibria

Influence of nanoparticles on the shift of liquid–liquid equilibria we have studied
for the liquid–liquid coexistence curve of the binary fluids nitrobenzene-heptane
and nitrobenzene–heptane–TiO2 nanoparticles. Fitting coefficients kij and lij have
been restored from experimental data Borzenkov, Zhelezny [24]. The RK or other
cubic EoS belong to the mean field models that cannot simultaneously describe
experimental data near critical point and at low temperatures. Here we preferred the
more exact description of near-critical area. Coefficients kij (lij) are 0.01824
(0.01392) for nitrobenzene-heptane mixture and 0.01794 (0.0148) for nitroben-
zene–heptane–TiO2, correspondingly. Deviations of mean field model from
experimental data for binary mixtures of interest are shown in Fig. 12.11. The
changes of coefficients kij and lij displace the liquid–liquid coexistence curve of
binary mixture and location of upper critical end point. Experimental data treatment
show that upper critical end point for the liquid–liquid coexistence curve of the
binary fluids nitrobenzene–heptane and nitrobenzene–heptane–nanoparticles TiO2

are as follows: TUCEP = 292.998 K, xUCEP = 0.519 and TUCEP = 292.46 K,

Fig. 12.11 Liquid–liquid coexistence curves of the binary fluids nitrobenzene–heptane and
nitrobenzene–heptane–nanoparticles TiO2
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xUCEP = 0.531, correspondingly. There is a small divergence between thermody-
namic data Borzenkov, Zhelezny [24] and Shelton, Balzarini [25], which measured
the liquid–liquid coexistence curve by interferometric means.

The value for the critical exponent β is higher than other liquid–liquid equilibria
systems. The value 0.3328 is near classic value 1/3 for pure components. Recent
evidence indicated that critical exponent β for liquid–liquid equilibria is lower than
for pure substance. Nanoparticle adding decreases value of critical exponent
(β = 0.3252) in comparison with liquid–liquid equilibria value.

12.6 Conclusion

This study is one of the first attempts to establish and demonstrate multiple links
existing between the critical point shift in classical fluids and phase equilibria
phenomena in mixtures embedded with nanostructured materials. From the very
beginning of these efforts, the obtained results serve very useful information for
scientists and engineers working in the field of emerging nanotechnology appli-
cations. The examples the critical point shift for CO2 with different types of
nanoparticle doping: graphene genealogic tree (CNT, fullerenes, and graphene
flakes) and some oxides (TiO2, SiO2, ZnO, CuO) are given. A wide variety of phase
diagrams from analysis of variations in geometry and energy characteristics of
mixture components are analyzed via global phase diagrams. As illustration, phase
behavior of systems R1234yf–R161 and R1234yf–R161–nanoparticles that are
recognized as low GWP refrigerants has been studied. Computer modeling has
shown a possible azeotropy appearance in the zeotropic blend with nanoparticle
doping that can pretend to be replacement of conventional refrigerant R134a.
Impact of nanoparticles on the shift of liquid–liquid equilibria are discussed for the
liquid–liquid coexistence curve of the binary fluids nitrobenzene-heptane and
nitrobenzene–heptane–TiO2 nanoparticles. We have shown that the presence of
nanoparticles in a binary critical mixture of two liquids changes the location of
upper critical end point.

There is no doubt that extension of our knowledge about thermodynamic and
phase behavior of nanofluids will lead to the creation of reliable engineering recipes
for solving the actual problems of nanotechnologies.
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Chapter 13
RNA Nanostructures in Physiological
Solutions: Multiscale Modeling
and Applications

Shyam Badu, Roderick Melnik and Sanjay Prabhakar

Abstract In this review chapter we focus on the nucleic acid nanotechnology
research and its application in the biomedical field. We also describe some of our
most recent results on the modeling of ribonucleic acid (RNA) nanotubes and their
characteristics in physiological solutions. This includes the properties that can be
characterised by root mean square deviation (RMSD), radius of gyration and radial
distribution function (RDF) for the RNA nanoclusters, paying special attention to
RNA nanotubes. We describe the distribution of 23Naþ and 35Cl� ions around the
tube as a function of time within a distance of 5 Å from the surface of the tube. The
results obtained from our computational studies are compared with available
experimental results in the literature. The current developments in the coarse grain
modeling of the RNA nanoclusters and other biomolecules are also highlighted.

13.1 Introduction

Extensive studies have been done on nucleic acid nanotechnology research in the
biomedical applications. Among others, we recall that the bacteriophage / 29
motor has been constructed to package the deoxyribonucleic acid (DNA) and the X
ray crystallography has been used to determine the process of DNA packaging [1].
To construct any kind of nanostructure involving biomolecules the self assembly of
small building blocks is very important. One of the notable experimental works has
been the development of the crystalline bacterial cell surface using the streptavidin
protein [2] which has the tendency of self assembling to construct the building
blocks for the nanoclusters that can be used for biomedical applications. The self
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assembly of alkylated peptides can assist in creating the nanobelts in solutions
which can be used for various therapeutic applications [3]. Due to the importance of
therapeutic applications several kinds of polygon-shaped self assemblies have been
developed by using the deoxyribonucleic acid [4–7].

Furthermore, the self assembly of biomolecules, including DNA [8–14], can be
used for various bionanodevices in nanobiotechnology. The DNA nanotubes can be
used for the alignment of the membrane protein, in order to take the NMR spectrum
to determine its crystal structure [15–17]. It has been shown that the stability of the
RNA assemblies is higher than that of the DNA self assembled nanoparticles in
solutions [18–23]. DNA relaxation under internal viscosity was studied for DNA
[24, 25] but no similar study is available for RNA. The thermodynamic stability of
any system is determined by calculating its free energy. The system with smaller
free energy is more stable, i.e., the RNA has smaller free energy in solutions
compared to DNA nanoparticles. The differently shaped structures of the RNA
molecules have been formed from the RNA building blocks as well as from their
complexes with other biomolecules [26–31].

In the current age of scientific discoveries in nanobiotechnology, the RNA plays
a vital role in drug delivery applications. The use of this important molecular
system as a drug delivery object to the human body is due to its flexibility in
structure. One of the most important building blocks of RNA nanoclusters is the
RNAI/II complex. The RNAI and RNAII are defined as the sense and anti sense
plasmids that control the replication of COLE1 plasmid [32, 33]. COLE1 is a DNA
molecule separated from chromosomal DNA that is found in the cell of bacteria.
The sequence for the RNAI is (GGCAACGGAUGGUUCGUUGCC) and the
sequence for the RNAII is (GCACCGAACCAUCCGGUGC) [34]. The schematic
diagram for the RNAI/II complex is shown is Fig. 13.1. Using these building
blocks, the experimental work has been performed to see the varieties of self
assemblies of this complex. Experimentally it has been found that there are varieties
of self assemblies formed by the end of the experiment. Notably, it has been found
that the hexagonal ring is one of the most abundant self assemblies [35] formed
during the experiment performed at the solution phase. The formation of the hex-
agonal nanoring from the pRNA strand has been studied experimentally, and has

Fig. 13.1 Formation of the
RNAI/II complex via base
pairing between two segments
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been later verified theoretically. During the experiment the RNAI/RNAII complex
was put into the vessel and let molecules to assemble following the specific
experimental protocol. The system was heated at first to the 95 °C for 2 min, then
cooled to 4 °C and then warmed to 30 °C and supplied to the buffer solution. Then
the system is supplied to the polycrystalamide gel experiment (PAGE) and TGGE
experiment using a specific experimental setup which is described in [35].

It has been found that the majority of the assemblies are hexagonal rings with
very few assemblies with square and octahedral structures. The low abundance of
the tetramer and the pentamer assemblies of the RNAI/II complexes is due to the
fact that they are less thermostable. Similar situation has been found in the case of
higher order species like septamers and octamers. This result is found to be similar
to the results obtained in [36]. An increasing interest to the field of RNA nanocl-
usters is due to their potential use in the drug delivery, nanodesign, therapy, among
other fields. The ribonucleic acid is the polymer containing four kind of nucleo-
bases; adenine, uracil, cytosine and guanine. These four kinds of the nucleobases
are connected via sugar ring and the phosphate backbone to form the long chain
polymer. A combination of the sugar ring and the nucleobase is known as the
nucleotide. The size of the RNA strand is defined by the number of the nucleotides
present in the polymer which eventually gives the number of possible structures that
can be made from the given set of the nucleotides. The difference between the RNA
and the DNA is that the uracil will be replaced by the thymine in DNA. In their
double strand structure the stability is well described on the basis of the base pairing
between them.

The development of bionanotechnology has facilitated the varieties of the
techniques to detect and diagnose the cancer and other diseases. The use of bio-
nanoparticles consisting of the RNA is due to their small size which let them to
have assess to most of the parts of the body to interact with the infected or damaged
cells. Ultimately, the models for RNA should be coupled with nonlinear dynamics
models of cells [37]. In order to make the modeling of RNA nanoclusters suc-
cessful, it is very important to have the suitable RNA building blocks. The self
assemblies of RNA nanoclusters are performed in two ways. One is templated and
the other is non-templated. If the self assemblies of RNA building blocks are done
by the interaction between them from the external influence then this kind of self
assemblies are known as templated, whereas if there is no external influence, during
the interaction between the building blocks, then that kind of self assemblies are
known as the non-templated self assemblies. Furthermore, the building blocks of
nanorings are engineered in such a way that the RNAI and RNAII ends are com-
plementary to each other. The complexation of these two RNA fragments via sticky
ends is an important feature for constructing nanoclusters like RNA nanorings and
nanotubes. In short, by using six helical building blocks of either one or two types
(RNAI/RNAII) the nanoring is formed by self-assembling them via base pairing
hydrogen bonds. The structure of the nanoring including the links that are used to
form the nanotube is presented in Fig. 13.2. The stability of the nanoring depends
on RNAI/RNAII interactions. The design of the sticking ends helps to assemble the
nanorings to build the nanotubes. The starting structures of the RNAIi/RNAIIi
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complex are taken from the protein data bank with the pdb code (2bj2.pdb) [34].
Recently, RNA has been self-assembled to build nanoscale scaffolds [38] using
computational techniques and experiments. In the literature it is reported that
several forms of RNA motifs can be constructed to provide a proper multifunctional
RNA nanocluster; however only a few of them are found to be useful for drug
delivery [39]. Assembling should be used to build the RNA nanocluster from the
RNA building blocks [40].

RNA has been used to build the higher order self assembly in vitro [41] and
in vivo [42] by assembling the multidimensional RNA structures. It has been used
for the bacterial metabolism. RNA nanotechnology research is still in progress to
achieve complete benefit from it. Furthermore, the RNA molecules can survive at
low pH values that makes RNA to be compatible for the drug delivery and therapy
in vivo. These RNA molecules can produce the self assemblies in vivo. They are
transcribable using the DNA as a template [43–50]. The important factor that needs
to be considered during the drug delivery process is the toxicity and the safety
issues related to nanomaterials used for this process [51, 52].

There are two possible ways to deliver therapeutic drugs into the human body.
Firstly, it can be done by directly including it into the RNA building blocks.
Secondly, it can be done by attaching the drug at some particular ends of the RNA
nanotube. The RNA nanotube can be useful for many applications, in particular for
the delivery of drugs into the human body due to its stable condition at all

Fig. 13.2 RNA nanoring
including three tails to link
them to form the RNA
nanotube
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temperatures as experiments show [53]. The target delivery vehicle, i.e. the RNA
nanoclusters built for the drug delivery, should be stable, so that the modeling of
such kinds of structures is critical. We note that the hairpin-like structure of the
nanocluster has already been modeled [54] from RNA interference polymers. The
discovery of a small interfering RNA (siRNA) [55, 56] is one of the most important
research achievements in this field. The siRNA is basically a synthetic double
stranded RNA with 21 basepairs. The function of siRNA is to suppress the prob-
lematic genes by RNA interference [57]. It also can be used for safe and efficient
delivery of siRNA to cells. The use of the small interfering RNA is somewhat
incomplete until its safe way of the delivery to the human body is determined. For
this purpose the DNA packaging of bacteriophase / 29 has been modified and used
to package the siRNA for safe delivery to the human body [58, 59]. The delivery of
oligonucleotides has also been studied to understand the effectiveness of models of
the cancer therapy in humans [60]. The RNA molecules of the size with 18–30
nucleotides are also important in regulating the gene expression in the cytoplasm
and nucleus [58, 61–63].

Previously, our group [64, 65] studied the mechanical and thermodynamical
properties of RNA nanorings [36] using the molecular dynamics technique, and
such studies on the RNA nanotubes have also been under way. The results obtained
for the nanoring were later supported by experimental results using biochemical and
biophysical techniques [35]. Specifically, the issues addressed in the previous
papers have been the stability of the nanoring versus temperature, effect of the
environment (i.e. solvent and counteractions) on its stability, as well as the con-
formations and dynamics under external forces. Some anomalous behaviour has
been observed with the variation of temperature of the simulation box containing
the nanoring. In a recent study, the properties of human immunodeficiency virus on
hairpin-like subtype-A and subtype-B at different salt concentrations and magne-
sium bindings have been explored using molecular dynamics techniques [66]. Also
an experimental study of the concentration dependence of NaCl and KCl on the free
energy of RNA hairpin folding has been done [67]. Such studies provide additional
motivations to do the molecular dynamics simulations of RNA nanoclusters.
Furthermore, the first coarse-grained model for RNA nanorings has been developed
[68] by utilizing the molecular dynamics simulations method.

13.2 Molecular Dynamics Simulation of Biomolecules

Molecular dynamics simulation involving biomolecules has become very important
to understand the dynamics of biological systems. Specifically, the molecular
dynamics simulation gives the idea about the dynamic behaviour of the biomole-
cules in physiological solutions, it gives the average of the thermal properties of the
biomolecules under study and prediction of the thermally compatible conformation
of the molecules [69, 70]. Theoretical basis of the molecular dynamics lies with
statistical thermodynamics models and solving the Newton’s equations of motion of
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the many particle system involving atoms. Recently, several molecular dynamics
studies have been done on the RNA molecules and their derivatives [71–73]. Some
of the most important structures derived from RNA molecules are the RNA hairpin
loops for which the molecular dynamics simulation has been performed to calculate
potential of mean force as a function of distance between two ends of the loop. The
stability of the hairpin loops has been calculated and compared to the experimental
results which were found to be in close agreement [73]. Furthermore, the molecular
dynamics simulation has been performed on the viral RNA dependent polymers to
understand their function and structure [72]. In our group the molecular dynamics
simulation has been done on the varieties of the RNA nanoclusters. Some of the
most recent results related to the RNA nanoclusters [64, 65] will be briefly pre-
sented in the following sections.

13.3 Multiscale Modeling

In multiscale modeling calculation of the properties of the system at one level is
done using the models from a different level. There are a number of multiscale
modeling methodologies used in applications. Here we describe three of them,
typical for biological applications [74–77], namely:

1. The Boltzmann inversion method
2. The force matching method for developing the coarse-grained modeling
3. Multiscale coupling method for direct transfer of the information from meso-

scopic and atomic scales during the simulation.

The first method commonly used in the multiscale modeling is the Boltzmann
inversion method which has also been used in the coarse-grained modeling of the
RNA nanoclusters. This will be discussed in details in the following section.

In the force matching process [78], the objective function, depending upon the
parameter α, is defined follows

ZðaÞ ¼ ZFðaÞ þ ZcðaÞ; ð13:1Þ

ZFðaÞ ¼ 3
XM

k¼1

Nk

 !�1XM

k¼1

XNk

i¼1

jFkiðaÞ � F0
kij2; ð13:2Þ

ZCðaÞ ¼
XNC

r¼1

WrjArðaÞ � A0
r j2: ð13:3Þ

The integer M in ZF (the force objective function) is the number of configura-
tions, Nk is the number of atoms in the kth configuration and FkiðaÞ is the force on
the ith atom in the kth configuration which is obtained from the parametrization of
α, and the F0

ki is the corresponding reference force obtained from the first principles
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calculations. In the constraint objective function ZC the quantities ArðaÞ are also
physical parameters obtained from parametrization, A0

r are experimental values or
the values calculated from the first principles methods and Wr is the weight factor.
The force objective function defined in (13.1) is minimized for given α to calculate
the classical force parameters by using the force and physical quantities obtained
from ab initio calculations. Therefore, in order to calculate the force objective
function, and constraint objective function it is necessary to do the ab initio cal-
culations. The parameters α defined in the above (13.1, 13.2, 13.3) are calculated by
matching the forces obtained by using the first-principles calculations of the several
configurations of the molecular system and the classical potentials [78–80].

At the mesoscopic level, there exist effective field theories to apply the con-
tinuum mechanics. Also there are particle-based methodologies that have been
developed to give more accurate results in the study than it is possible to deduce
from the mesoscopic scale. Further details on particle-based methods can be found
in [81–83].

13.4 Developments in Coarse-Grained Modeling of RNAs

Although due to the current development of the computational techniques and
feasible computational resources, the theoretical study of the bimolecular systems
has become much easier, preserving the physical information of the molecular
system in the model remains very crucial. In view of this, the coarse-grained models
are designed to explain information about the system at larger scales from the
smaller scale that are modeled from the atomistic classical approach. The developed
coarse-grained models should be easy enough to simulate accurately enough the
physical characteristics of the system. In the coarse-grained modeling we represent
the sum of atoms as a pseudo atom and then define an effective energy function
UCG that determines the thermodynamical properties, which should be identical to
the system’s properties once the proper energy function is predicted. Using
coarse-grained models, the research has been done to study the structural and
physical properties of DNA [84]. There are many other DNA studies found in the
literature to describe the six helical systems [85] using atomic force microscopy.
Also the study has been done for the improved angle potential [86]. In this study the
array of hexagonal six helix bundles are described in 1D and 2D cases.
Furthermore, several studies [87–89] of other bimolecular systems using the
coarse-grained modeling have been done. Recently, the modeling of the
coarse-grained structure of RNA and RNA-Protein using the fluctuation matching
method has been performed [90], in which the authors also followed the assump-
tions used in [68]. There are a number of other investigations done on coarse
grained modeling of RNA for the prediction of the tertiary structures [91–94]. In
one of the earlier studies on the coarse-grained modeling of the RNA 3D structure,
a single nucleobase has been approximated by five pseudo atoms [95]. In order to
determine the forcefield parameters the 688 experimentally determined structures of
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RNA have been used. The transformation of the all atom model to the
coarse-grained model in our typical three bead approximation is demonstrated in
Fig. 13.3 where a part of the RNA nanoring is presented in both all atom and
coarse-grained representations.

13.5 Computational Details

In molecular dynamics simulation the classical equations of motion of a molecular
system are solved by their time dependent integration. The potential of the system
used during the molecular dynamics simulation using CHARMM force field can be
expressed as follows.

Fig. 13.3 a Part of the RNA nanocluster in all atom representation. b Part of the RNA nanocluster
in coarse grained representation
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In (13.4), the first term corresponds to bonds, second corresponding to angle
parameters, the third term corresponds to the potential energy and interactions
arised from the dihedral angles in the molecular system, the fourth term defines the
interaction coming from the hydrogen bonds which includes the base pairing as
well as the hydrogen bonding between the RNA and the water molecules. The fifth
term known as the improper term that arised due to out-of-plane bending of
molecular system and the sixth term is the Urey-Bradley contribution. The improper
term is included in the potential energy expression to maintain the planarity of the
molecule. Finally, the last term in the potential expression represents the long
distance interactions known as the van der Waals’ interactions. We have performed
all-atom molecular dynamics simulations of RNA nanotubes by using the
CHARMM27 force field [96] implemented in the NAMD package [97] as it was
done for the nanoring [64, 65].

The CHARMM is the force field widely used for the molecular dynamics
simulation that is implemented in several molecular dynamics packages like
LAMMP, NAMD and GROMACS. The CHARMM27 force field is one of the
most important force fields which is developed for the nucleic acid through the
empirical force field determinations. This is the most recent force field which is
obtained from the reoptimization of the earlier force field CHARMM22 [97–99].
During the optimization of the force field the importance is given to the balancing
of the properties of the local small molecules to the global system. In the studies
[98, 99] the development of the CHARMM force field was carried out and its
compatibility for the DNA and the RNA has been tested. It was found that the
results are close to the experimental results.

The modeling of the nanotube, visualization and the analysis of the simulation
outputs have been performed using the software visual molecular dynamics (VMD)
[100]. The VMD is a molecular graphics software developed to display the bio-
molecular systems like biopolymers and proteins interactively. In this program the
molecules can be viewed in several colors and several kind of representations. This
can allow us to modify a particular protein structure as needed. In particular, one
can do mutation, delation or addition of bonds between the atoms using VMD tool.
Furthermore, we can display several structures at the same time using VMD.
The trajectory of the molecular dynamics simulation can be displayed as well as
analysed to study the molecular properties. The VMD program is written in C++
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and is provided with the complete documentation with instructions to use it. This
program is compatible with several kinds of molecular dynamics simulation
packages including NAMD, LAMMP, GROMACS etc.

In our typical runs, the RNA-nanotube has been solvated in awater box. The size of
the box is taken in such away that the distance from the surface of the nanocluster to the
wall is slightly larger than the cut off radius used in themolecular dynamics simulation.
In order to make the system neutral we have added 924, and 1254 23Naþ ions for three
ring and four ring nanotubes, respectively. Furthermore, to make the solution
equivalent to physiological solutions we have added extra 924 and 1254 23Naþ and
35Cl� ions to the three ring and four ring nanotube, respectively. The resulting system
has been first simulated at constant temperature and pressure using the NAMD soft-
ware package. The temperature in the system has been controlled by using Langevin’s
methodwith damping g ¼ 5 ps�1. For adding chemical bonds between the segments
in the nanoclusters we have used the topotools available in the VMD.

13.6 Results and Discussions

Advancing further multiscale models for RNA nanoclusters, we have modeled the
RNA nanotubes with multiple nanorings. Some of the most recent results have been
presented in our papers [65, 101]. For the modeling of RNA nanotubes the hex-
agonal nanorings were connected to each other by using the links between them as
described in our earlier studies [64, 65, 101]. Typical sample structures of the three
ring nanotube without water and with water are presented in Fig. 13.4a, b
respectively. The six helical segments are constructed from RNAI and RNAII
building blocks. Also, the tails used to connect the RNA nanorings are the double
strand RNAs with the length of 22 nucleotides.

As we discussed earlier, the RNAIi and RNAIIi are the double strand RNAs. By
using the VMD tools we were able to connect multiple rings via three links at
junctions presented in Fig. 13.4b. The links used in connecting the multiple
numbers of nanorings (to build the RNA nanotube) are composed of helical double
strand RNAs with 22 nucleobases. Three links are used in between two consecutive
rings to connect them to form the nanotubes as shown in Fig. 13.4b. The chemical
bonds between the ring and the links are mediated through the phosphorous of the
phosphate group in the ring and the oxygen in the sugar ring of the corresponding
link or vice versa. Using NAMD, we optimized the chemical bonds added between
different segments of the RNA nanoclusters.

Here at first, we present the results for the RNA nanotube of different sizes
obtained from the molecular dynamics simulation. The results for the simulation of
three the ring nanotube are summarized in Figs. 13.5 and 13.6. Figure 13.5
describes the variation of the energy and temperature as a function of simulation
time. At the beginning of the simulation the energy of the system varies and then
becomes stable once the system becomes stabilized. Here in our results we have
presented only the latter part of the simulation, which is also known as the
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production region of simulation. All our results and analysis of the properties are
presented from this production region of molecular dynamics simulation. The
temperature of the system remains almost stable with some fluctuations. In Fig. 13.6
we present the calculated properties such as the number of ions around the RNA
nanotube within the distance of 5 Å at different temperatures, the number of bonds
per basepairs, the radius of gyration and the root mean square deviation at two
temperatures, 310 and 510 K. The results corresponding to variations of the
parameters are similar to the results obtained for the other nanoclusters described in
our earlier studies [64, 65, 101].

The nature of the radial distribution function plots calculated for the three ring
RNA nanotube is revealed in Fig. 13.7. In particular, four subplots in this figure
present the RDF plots for phosphorous-phosphorous, phosphorous-water,
phosphorous-sodium and phosphorous-chlorine, respectively. From the P–P RDF
plots presented in Fig. 13.7a, we see that there are three well-pronounced peaks
around the same positions at it was observed for other nanoclusters studied in our

Fig. 13.4 a Three ring RNA nanotube and ions without water and b three ring RNA nanotube in a
physiological solution
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Fig. 13.5 a Energy and b temperature versus simulation time for the all-atom molecular dynamics
simulation of three ring RNA nanotube in water and salt
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paper [65]. These peaks actually show the first, second and third nearest neighbours
of the phosphorous atom respectively. The intensity of the peaks is increased on
going from 310 to 510 K. The position of the first peak is at the same position,
whereas the second and third peaks are shifted slightly to the lower distances at
510 K in comparison to their positions at 310 K.

From the P–OH2 RDF plots presented in Fig. 13.7b calculated at temperatures
310 and 510 K, it is clear that for each RDF there is a peak around the distance of 4
Å. This first peak indicates the first solvation shell around the phosphorous atom
taken from the surface of the RNA nanotube. Similarly, the second small peak shows
the second solvation peak for the phosphorous atom in the phosphate backbone of
RNA strands that builds the RNA nanotubes. In the rest of the range, the nature of
the P–OH2 RDF plots remained more or less stable showing that the water mole-
cules are distributed uniformly after certain distance from the surface of the RNA
nanotube. In spite of showing a similar trend at both temperatures, the height of the
first peak is significantly dropped on going from 310 to 510 K. This indicates that a
significant amount of water molecules are expelled out from the surface of the RNA
nanocluster at higher temperatures as demonstrated in our earlier papers [64, 65].

The P–Na RDF plots for the three ring RNA nanotube at both temperatures are
presented in Fig. 13.7c. The RDF plot for P–Na shows the first peak at around 3.5 Å
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at both temperatures, 310 and 510 K. This shows that most of the sodium ions are
around this distance at the final step of all-atom molecular dynamics simulation.
One significant difference between the RDF plots at 310 and 510 K is that the first
peak of the radial distribution function is significantly increased on going from 310
to 510 K. This feature supports the conclusion that we made from the ionic dis-
tribution plots presented in Fig. 13.6a. Furthermore, the P–Cl RDF plots presented
in Fig. 13.6d show that the chloride ions are far away from the surface of the RNA
nanotube at 310 K. When the temperature of the system is increased from 310 to
510 K the 35Cl� ions are also aggregated significantly closer to the surface of the
RNA nanotube as observed from the first peak of RDF plot at 510 K. The height of
the peak at a particular distance from the surface of RNA nanotube in the RDF plot
is proportional to the number of 35Cl� ions at that distance. This means that the
number of 35Cl� ions around the first peak at 510 K are larger in comparison to the
number of 35Cl� ions at 310 K as observed from the plots for the number of 35Cl�

ions at 310 and 510 K presented in Fig. 13.6a.
The results for the four ring RNA nanotube are presented in Figs. 13.8, 13.9 and

13.10. The nature of solvation and the ionic distribution during the molecular
dynamics simulation have been found to be similar to those found in the case of the
three ring nanotube as well as to the results described in our earlier work [64, 65].
For all of these systems we see that the peaks for the P–P RDF remain almost the
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same, for P–OH2 the intensity at the peak is decreased on increasing the temper-
ature, but in the P–Na and P–Cl RDF plots the intensity of the first peaks is
significantly increased on going from 310 to 510 K temperature. From these
observations we can conclude that the 23Naþ and 35Cl� ions are attracted toward
the surface of the nanocluster and the water molecules are pushed away from the
surface as the temperature is increased. In short, we observe that the ions are being
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precipitated around the surface of the RNA nanocluster as the temperature of the
system is increased. This phenomenon of self stabilization was first discovered in
[64] and has recently been observed for a larger class of RNA nanoclusters in our
earlier work [65].

In spite of existing difficulties in the modeling of the nanostructures from the
building blocks consisting of nucleic acids and their derivatives structures, signif-
icant achievements have been observed in the field of RNA nanotechnology.
Clearly, there is a scope for further improvements. Notably that although there are
several state-of-the-art computational software packages developed to predict RNA
nanostructures, only 70 % accuracy has been found in the prediction and folding of
the RNA nanoclusters [102, 103].

13.7 Conclusions

In this chapter we have reviewed some of the aspects of the nucleic acid research
and their potential applications in nanobiomedicine and other related fields. From
the review of the literature, we conclude that the RNA is more versatile and
compatible for the biomedical applications in the human body, compared to other

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  10  20  30  40  50

R
D

F

r/ Å

(a) RDF P−P at 310K
RDF P−P at 510K

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  5  10  15  20  25  30

R
D

F

r/ Å

(b) RDF P−OH2 at 310K
RDF P−OH2 at 510K

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  5  10  15  20

R
D

F

r/ Å

(c) P−Na RDF at 310K
P−Na RDF at 510K

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  10  20  30  40  50  60

R
D

F

r/ Å

(d) RDF P−Cl at 310K
RDF P−Cl at 510K

Fig. 13.10 Radial distribution function for four ring RNA nanotube. a P–P. b P–OH2. c P–Na.
d P–Cl

13 RNA Nanostructures in Physiological Solutions … 351



alternatives, due to its flexibility in structure as well as the absence of toxicity issues
to be addressed. In view of this, we have studied the structure and properties of
RNA self assemblies in physiological solutions. In our earlier investigations [64,
65], the analysis of the physical properties of the nanoring has been reported.
The RNA nanoring is a small system in comparison to the nanotube and has limited
practical applications in bionanotechnology. However, it provides an excellent
testing ground for further studies. In our most recent studies [65, 101]. This
included the optimized structures of nanotubes up to the size of 40 nm have been
analyzed for the first time. The individual RNA nanorings were connected via
double-helical rings mediated by the bonds between the phosphate group and sugar
ring. The newly added bond lengths have been optimized by using algorithms
available in NAMD. Then, starting from nanorings, the results for the
RNA-nanotubes of different sizes have been exemplified in this chapter for three
and four nanoring structures and discussed in details. Similar to our earlier study
[65] we presented some of the results for these RNA nanotube structures via
calculations of the root mean square deviation, radius of gyration, number of
hydrogen bonds per basepair, ion accumulation around the tube, and the radial
distribution functions. From our present analysis it is clear that the quality of the
results are likely to be improved further by doing the molecular dynamics simu-
lation for longer time ranges. Another way to improve the quality of the results lies
with further developing of the multiscale models methodologies specifically for
these structures e.g. coarse-grained modeling methods that would allow one to
perform molecular dynamics simulations for longer ranges of time, closer to the
time scales of real biological phenomena. These kinds of developments are cur-
rently under way in our lab. Furthermore, these new developments will help further
progress in theoretical bionanotechnology, as well as guide the experimentalists
working in this filed. Also, the use of reduced order modeling [104] would increase
the compatibility of the results with the time range better comparable to real bio-
logical processes. So far we have been using the SHARCNET parallel computing
facilities for calculating of the properties of the RNA nanoclusters using the 64
processors for each simulation. Using the clusters such as GPGPUs or Phi
co-processors may make these computations more efficient for larger RNA na-
noclusters as well as for longer time ranges. For drug delivery applications com-
putational efforts will also be dependent on the shape of the nanocluster as well as
on the drug particle to be delivered [105]. In our modeling of the RNA nanocl-
usters, we have control on the size of the nanocluster which gives better potentiality
of their use in the nanomedicine.

Our progress in the development of RNA nanoclusters will boost further their
applications in the therapy, nanodesign and drug delivery, among other fields.
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Chapter 14
Nuclear Spin Catalysis: From Molecular
Liquids to Biomolecular Nanoreactors

Vitaly K. Koltover

Abstract All chemical reactions obey the law of conservation of spin angular
momentum (‘spin’): any reaction is only allowed when the total spin of reactants is
identical to the total spin of products. Correspondingly, free-radical reactions in
molecular liquids can be accelerated by changing in electron spin of the reactants via
magnetic fields of magnetic nuclei, the so-called “magnetic isotope effect” (MIE). In
molecular liquids, the magnetic isotope effects have been discovered for a number of
magnetic isotopes, among them H–D, 13C, 17O, 29Si, 33S, 73Ge, 117,119Sn, 199,201Hg,
and 235U. Recently MIE has been discovered in living cells. It was revealed that the
rate constant of post-radiation recovery of yeast cells is twice higher for the cells
enriched with the magnetic 25Mg when compared to the cells with the nonmagnetic
24Mg. Furthermore, it has been revealed that 25Mg essentially accelerates, 2–2.5
times by comparison to the spin-less 24Mg and 26Mg, the reaction of ATP hydrolysis
catalyzed by myosin, the enzyme isolated from muscle cells. Although detailed
mechanisms of the ability of biomolecular nanoreactors to perceive the nuclear
magnetism require further investigations, the recent developments in this new field
highlight promising venues for future research of the magnetic isotope effects
(‘nuclear spin catalysis’) in molecular liquids and biopolymer nanoreactors with
possible application of the stable magnetic isotopes for control over efficiency and
reliability of molecular nanoreactors in engineering and biomedicine.
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14.1 Introduction

Apart from the energy control (the law of conservation of energy), any chemical
reaction as electron-nuclear rearrangement of reactants into products is controlled
by angular momentum, spin, of reactants. The total spin of products must be
identical to that of reactants. This law of spin conservation immediately follows
from quantum mechanics, from the fundamental and universal Pauli principle: no
two electrons may occupy the same quantum state simultaneously [1].

Correspondingly, acceleration of the free-radical reactions can be achieved
through changes in the total electron spin of reactants by interaction with the
magnetic fields of magnetic nuclei. It is known as magnetic isotope effect (MIE), a
new trend in chemical and biochemical physics within last years (see [2–9] and
references therein). This paper is a brief review of recent developments in this field
highlighting promising venues for future research of magnetic isotope effects
(‘nuclear spin catalysis’) in molecular liquids and biomolecular nanoreactors.

14.2 Nuclear Spin Catalysis in Molecular Liquids

Figure 14.1 illustrates how the law of conservation of the spin gives control over
reactivity of free radicals (R•) in molecular liquids. For example, a pair of free
radicals, each with the electron spin S = 1/2, is to form a chemical bond and the
resultant diamagnetic molecule, the total electron spin of which S = 0 (Fig. 14.1a).
From the law of conservation of spin, it follows that the chemical bond between
these two radicals may happen only if the spin state of the pair at collision is singlet,
i.e., the spins of two electrons are subtracted to give the net S = 0 (spin multiplicity,
2S + 1 = 1). If the spin state of the radical pair is triplet, i.e., the electron spins are
added up to give the net S = 1 (spin multiplicity, 2S + 1 = 3), then the radicals cannot
react immediately. As a result, only one-quarter of encounters, when the total spin
state of the radical pair is singlet, gives the recombination product while
three-quarters of the radical pairs are inhibited from the reaction. Another example is
presented on Fig. 14.1b. Namely, it is the reaction of a radical R• with oxygen, the
molecules of which are normally in the triplet spin state. The total spin of this reagent
pair can be 1/2 when the individual spins are subtracted (spin multiplicity is 2) or 3/2

Fig. 14.1 Spin control over chemical reactions in molecular liquids
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when the individual spins are added up (spin multiplicity is 4). Meanwhile, the
reaction product (peroxyl radical RO2

• ) has the total electron spin 1/2. Hence, from
six possible spin states of the reactants, only two states do not require the change in
the total electron spin of the reactants and, therefore, are permitted for formation of
RO2

• ; other four states are forbidden for the reaction. To lift the ban forced by the spin
conservation law, the spins of the reactants must be changed.

In reality, owing to spin-spin and spin-lattice interactions, the spin state of the
radical pair is an occasional superposition of the singlet and triplet states. As a
consequence, the probability that two radicals during their diffusion meet each other
in the proper spin state and, hence, the probability that the collision results in the
chemical reaction is quite high [10]. In molecular liquids, however, with the time
allotted for any collisions of radicals of order of nanoseconds, neither spin-spin
interaction nor spin-lattice relaxation have time to fit the spin orientation. Moreover,
in organic free radicals, spin-orbit coupling is small. So, magnetic fields are the only
means to change the spin state and, thereby, switch the reaction over the
spin-forbidden and spin-allowed channels.

Accordingly, the probability of chemical reaction is a function of parameters of
the magnetic interactions [2–5]:

P ¼ f ðH;x;H1; J; a; I;mI ; lnÞ:

In this equation H is an applied magnetic field; ω and H1 are frequency and
amplitude of microwave magnetic fields (interaction that produces chemically
detected magnetic resonance and stimulates nuclear polarization); J is exchange
energy (exchange interaction). Correspondingly, acceleration of the free-radical
reaction can be achieved through changes in the total electron spin of reactants by
their interaction with external, applied, magnetic fields. The equation also contains
parameters of hyperfine coupling a, nuclear spin I, nuclear spin projection mI, and
nuclear magnetic moment μn, i.e. the parameters of interactions of electron spins
with magnetic nuclei. Correspondingly, the spin ban can be lift through the relevant
changes in the total electron spin of reactants owing to interactions of the electron
spins with magnetic fields of nuclear spins of the magnetic nuclei.

As a result, the chemical reactions, which involve free radicals or ion-radical
pairs, may exhibit different reaction rates and different yields of products according
to whether the reagents contain magnetic or nonmagnetic isotopes. This is known as
magnetic-isotope effect. MIE is a purely kinetic phenomenon. While the classical
mass-isotope effect selects isotopic nuclei in accordance with their masses, the
magnetic-isotope effect selects isotopic nuclei in accordance with their nuclear spins
and magnetic moments. In molecular liquids, within recent years, the magnetic
isotope effects in chemical reactions have been discovered for a number of magnetic
isotopes, among them H–D, 13C, 17O, 29Si, 33S, 73Ge, 117,119Sn, 199,201Hg, and 235U
(see [5] and references therein).

On its own, MIE unambiguously evidences that the chemical reaction involves a
spin-dependent rate-determining step, namely, the singlet-triplet conversion or vice
versa, that is accelerated by the magnetic field of the isotope’s nuclear spin. Similar
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spin bans arise at transitions between singlet and triplet states of molecules and
macromolecules, in semiconductors, and so on. Likewise, the magnetic fields, be it
exposure to the external field or the field of the magnetic isotope, are the means to
change the spin state and, thus, to lift the spin ban [2–10].

14.3 Nuclear Spin Catalysis in Biomolecular Nanoreactors

All biomolecular nanoreactors, like other cell structures in living Nature, are
composed from atoms of chemical elements, many of which have stable isotopes of
both kinds, magnetic and nonmagnetic ones (see Table 14.1).

Of special interest is magnesium as one of the most abundant cell elements.
Magnesium has three stable isotopes, 24Mg, 25Mg and 26Mg, with natural abun-
dance of approximately 79, 10 and 11 %. Only 25Mg is magnetic (nuclear spin
I = 5/2) whereas 24Mg and 26Mg are nonmagnetic (spin-less, nuclear spin I = 0)
[11]. It is generally known that cations of Mg2+ serve obligate cofactor functions for
the enzymes of synthesis and hydrolysis of ATP and performs many other regu-
latory functions in important cell processes [12, 13]. In order to search for magnetic
isotope effects, we developed procedures for growing living cells in a medium
containing only one magnesium isotope: either the magnetic 25Mg or the non-
magnetic 24Mg or 26Mg [14–17].

Figure 14.2 represents experimental data of our group on influence of the dif-
ferent isotopes of magnesium on the kinetics of post-radiation recovery of yeast
cells, Saccharomyces cerevisiae. The data have been obtained in collaboration with
our colleagues from Department of Radiation Biology, Institute of Cell Biology and
Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, and
Department of Molecular and Radiation Biology, Petersburg Institute of Nuclear
Physics, National Research Center “Kurchatov Institute”, Russia [14, 15].

Survival of the cells transferred to nutrition agar immediately after irradiation
was no more than a few percent. Upon getting so high radiation dose, most of the
cells do not succeed to repair the injured genetic structures before mitosis and, as a
result, nonviable daughter cells are produced. Incubation in the nutrient-free media,
in which cells do not divide, provides them with more sufficient time for the repair
processes and leads to the corresponding increase in survival. From the kinetics
curves represented on Fig. 14.2, one can see that the cells enriched with the
magnetic isotope, 25Mg, are recovered essentially more effectively than the cells
enriched with the nonmagnetic 24Mg. It was found that the recovery rate constant
was 0.058 ± 0.004 h−1 for the cells enriched with 25Mg and almost twice less,
0.032 ± 0.003 h−1, for the cells enriched with 24Mg (the difference between the
means is statistically significant at P = 0.02). Thus, the enrichment of cells with the
magnetic isotope gives the two-fold increase in the rate constant of post-radiation
recovery [14, 15].

The magnetic isotope effects of magnesium-25 were revealed in experiments
with another commonly accepted cell model, bacteria Escherichia coli. The length
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Table 14.1 Stable Isotopes in Biological Nanoreactors

Nucleus Nuclear spin
(I), in units of
h/2π

Natural
abundance,
atom (%)

Nucleus Nuclear spin
(I), in units of
h/2π

Natural
abundance,
atom (%)

1H ½ 99.984 39K 3/2 93.08
2H 1 0.016 41K 3/2 6.91
12C 0 98.89 40Ca 0 96.97
13C ½ 1.11 42Ca 0 0.64

43Ca 7/2 0.13
44Ca 0 2.06
48Ca 0 0.18

14N 1 99.635 50Cr 0 4.31
15N 1/2 0.365 52Cr 0 83.76

53Cr 3/2 9.54
16O 0 99.759 55Mn 5/2 100
17O 5/2 0.037
18O 0 0.204
19F 1/2 100 59Co 7/2 100
23Na 3/2 100 63Cu 3/2 69.09

65Cu 3/2 30.91
24Mg 0 78.7 64Zn 0 48.6
25Mg 5/2 10.13 66Zn 0 27.9
26Mg 0 11.17 67Zn 5/2 4.12

68Zn 0 18.8
28Si 0 92.21 75As 3/2 100
29Si 1/2 4.7
30Si 0 3.09
31P 1/2 100 74Se 0 0.87

76Se 0 9.02
77Se 1/2 7.58
78Se 0 23.52
80Se 0 49.82
82Se 0 9.19

32S 0 95.02 92Mo 0 14.84
33S 3/2 0.74 94Mo 0 9.25
34S 0 4.22 95Mo 5/2 15.92

96Mo 0 16.68
97Mo 5/2 9.55
98Mo 0 24.13
100Mo 0 9.63

35Cl 3/2 75.4 127I 5/2 100
37Cl 3/2 24.6
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of adaptation (lag-phase) of the bacteria to the liquid media supplied with the
magnetic isotope, 25Mg, was found to be essentially shorter than the adaptation to
the media supplied with the nonmagnetic isotopes, 24Mg or 26Mg. Hence, the
bacterial cells essentially faster adapt to the growth media enriched with 25Mg by
comparison to the media enriched with 24Mg or 26Mg [16]. Furthermore, the
striking effect of the magnetic isotope has been revealed after counting the colonies
formed by the cells on the solid nutrient surfaces. The standard nutrient agar
contains all components necessary for normal growth of cells, including magne-
sium. Nevertheless, the colony-forming ability of the cells, which were previously
grown on 25Mg, has turned out to be essentially higher in comparison with the cells
which were previously grown on the nonmagnetic isotopes of magnesium. For the
nonmagnetic isotopes 24Mg and 26Mg no difference was detected [16].

One might suggest that the differences observed in the above mentioned works
were caused by different levels of impurities in the media complemented with the
different isotopes of magnesium. However, according to the data of mass-spectro-
metry and atomic emission spectrometry, the element compositions of the media
were similar for all samples with amounts of contaminants of the order of one
micromole per liter or less, no matter which kind of the magnesium isotopes was
used. Besides, it should be taken into consideration that the amounts of the con-
taminants, that were administered in the media from other basic components, have
significantly exceeded the amounts of the same contaminants administered with
much less additions from the magnesium isotope stock solutions.

The magnesium ions Mg2+ serve the obligate cofactor functions for about three
hundred enzyme reactions. Among these reactions, synthesis and hydrolysis of ATP

Fig. 14.2 The difference in effects of the magnetic and nonmagnetic isotopes of magnesium on
post-radiation recovery of yeast S. cerevisiae. The cells enriched with the magnetic 25Mg or the
nonmagnetic 24Mg were irradiated by the short-wave UV light (λ = 240–260). Survival of the cells
was estimated as their ability to form colonies on nutrition agar: 1—recovery of the cells enriched
with 25Mg; 2—recovery of the cells enriched with 24Mg (Compiled from [14, 15])
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seem to be the most important [12, 13]. It is also known that adaptation of cells to
novel growth conditions, especially reparation from radiation damages, requires a
large variety of stress proteins to be synthesized and, correspondingly, it requires
energy. Reasoning from this knowledge and the common knowledge that ATP is
the main source of energy in cells, it was reasonable to suggest that the magnetic
isotope effects, that have been revealed in living cells, are stemming from the higher
efficiency of the “fuel-energy nanoreactors” in the cells enriched with the magnetic
isotope of magnesium. In the work of A.L. Buchachenko and his co-workers with
mitochondria isolated from rat hearts it was found that the ATP synthesis proceeds
two-three times more effectively with 25Mg than with 24Mg or 26Mg. The similar
magnetic isotope effects were observed by the same group in their studies of
creatine kinase and phosphoglycerate kinase, see the reviews [5, 18] and references
therein. However, the attempts of reexamination of these pioneer works have failed
[19].

Meanwhile, the ions of magnesium, Mg2+, serve cofactor functions for many
other enzymes including transport ATPases, DNA and RNA polymerases and so
on, which catalyze hydrolysis of ATP employing the energy of this exothermic
reaction. Among them, the myosin-type enzymes are responsible for myriad cellular
processes such as muscle contraction, embryogenesis, intracellular cargo transport,
cytokinesis, cell migration, etc. [12, 13]. Muscle myosin has received the most
study. This “molecular motor” catalyzes the reaction of hydrolysis of the end
phosphate bond in ATP molecule, ATP + H2O → ADP + Pi. At this, the released
energy, about 0.54 eV at the physiological conditions, is used to execute muscle
contraction. In essence, not a pure ATP molecule but the complex [ATP4− Mg2+] is
hydrolyzed into [ADP3− Mg2+] and Pi in the active center of any ATP-hydrolase
[12, 13, 20]. Thus, it is instructive to consider if the nuclear spin of 25Mg can have
an impact on operation of this “molecular motor”.

We studied effects of different magnesium isotopes, the magnetic 25Mg and the
nonmagnetic 24Mg and 26Mg, on Mg2+-dependent ATP hydrolase activity of the
catalytic fragment (subfragment-1) of myosin isolated from myometrium muscle.
The work has been performed in cooperation with Department of Muscle
Biochemistry, Palladin Institute of Biochemistry of the National Academy of
Sciences of Ukraine, Kyiv [21]. Three independent experiments have been done
with three enzyme preparations isolated from three different animals (pigs) at dif-
ferent times. Figure 14.3 demonstrates the summary of the measurements.

One can see that 25Mg essentially accelerates the reaction of ATP hydrolysis
catalyzed by the enzyme, 2–2.5 times by comparison to the spin-less 24Mg or 26Mg.
At that, no essential difference in the ATPase activity for the nonmagnetic isotopes
24Mg and 26Mg has been detected. Another important point is that the samples
which contained all components of the reaction solution, except the enzyme, have
manifested no magnetic isotope effect in the non-enzymatic ATP hydrolysis. Thus,
we have documented the magnetic isotope effect in the enzymatic hydrolysis of
ATP, the acceleration of chemo-mechanical cycle of myosin by the nuclear spin of
25Mg [21].
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MIE means that there is a spin-selective “bottle-neck”, a rate-limiting step, in the
ATP hydrolysis driven by myosin. The catalytic effect of 25Mg may be explained in
the following way. Starting from the seventies of last century (see, for example,
[22]), it was experimentally proved that ATP hydrolysis triggers electron-confor-
mational interactions in the ATP-hydrolase’s active center, thereby producing
conformational changes in the enzyme macromolecule. In essence, there is the
deformational excitation of the macromolecule conformation owing to the energy
released from ATP hydrolysis, about 0.54 eV (see, e.g., [23] and references
therein). This energy is not large enough to trigger the electron-conformational
excitation of myosin into the singlet state. It is sufficient to obtain a low-level triplet
state but the transition from the ground singlet state (S = 0) into the triplet state
(S = 1) is forbidden by the law of spin conservation. A different situation occurs
with 25Mg. The 25Mg isotope’s nuclear spin eliminates the spin ban problem
providing the necessary spin conversion from the singlet state into the triplet state.
Figure 14.4 illustrates this idea. A similar mechanism has been suggested to explain
the effects of magnetic fields on mobility of dislocations in solid state physics
[10, 24].

Furthermore, the theoretical investigations holds that an elementary coherent
deformation excitation, the so-called soliton, may arise in the quasi-one-
dimensional protein molecules. The low probability of loss of energy of the ATP
hydrolysis into chaotic motion (into heat phonons) is explained on the basis of high
stability of solitons. Therefore, the conformational energy in the form of the soliton
can be transported along the protein molecule without heat losses [25]. Besides, the
conformational transitions are accompanied by the movements of the electrically
charged groups. Such movements create the magnetic fields and it seems likely that
interactions of the nuclear spins with local magnetic fields should be also taken into

Fig. 14.3 ATPase activity of the myosin subfragment-1 in the reaction solutions supplemented
with different isotopes of magnesium, 5 mM of 24MgCl2,

25MgCl2 or
26MgCl2, in percentage to the

enzyme activity in the reaction solution supplemented with 5 mM of “natural” MgCl2 with natural
isotope abundance. (Compiled from [21])
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account. Besides, apart from the large nuclear spin moment, I = 5/2, the nucleus of
25Mg has the quadrupole moment the value of which is rather large in comparison
with other magnetic nuclei. Correspondingly, interactions of the nuclear quadrupole
moment with the electrically charged groups of the protein macromolecule might be
large enough to affect kinetics of the conformational transition as well as the
conformational relaxation of the macromolecule.

In addition, one should view an ion-radical pair as the spin-selective
“bottle-neck” in the reaction. The exothermic reaction of ATP hydrolysis with
formation of ADP and inorganic phosphate (Pi) follows the basic-acid mechanism
[12, 13]. Hence, in spontaneous non-enzymatic ATP hydrolysis, appearance of an
ion-radical pair as the intermediate of the reaction seems to be unlikely. Indeed, no
magnetic-isotope effect has been detected in our experiments on the non-enzymatic
hydrolysis of ATP [21]. A different situation, however, can arise in the case of the
enzymatic ATP hydrolysis. Accordingly to the quantum-chemistry and molecular
mechanics calculations [20], first catalytic step in the ATPase activation of myosin
during the force generating cycle is stabilization of the γ-phosphate of ATP in a
dissociated metaphosphate state. At this, the myosin-bound ADP and Pi products of
hydrolysis remain in close contact and only release later by myosin, upon rebinding
to the actin filament. It is consistent with the well-known reversibility of ATP
hydrolysis in myosin. The ATP hydrolysis reaction is reversible as long as the
protein remains in the postrecovery–prepower stroke conformation [20].
Meanwhile, in the enzyme’s active center under the conditions of
electron-conformational excitation of the macromolecule there may be a transfer of
the electron spin density onto Mg2+ from ADP3−, or NH2-group of Glu459, for
example, or OH− of the water molecule with formation of the relevant ion-radical
pair. Due to the hyperfine coupling of the 25Mg’s nuclear spin with the ion-radical
pair’s unpaired electron, this myosin-bound intermediate ion-radical pair can be
converted into the triplet state (S = 1). However, the stable ATP-Mg product is to be
in the singlet state (S = 0). Thus, because of the spin ban, the nuclear spin of 25Mg
hampers the reverse reaction of ATP synthesis, thereby promoting the direct
reaction of ATP hydrolysis.

Alternatively, one further explanation of the catalytic effect of the nuclear spin of
25Mg may be considered. At conformational transitions, atomic groups of the
macromolecule change their positions. At this, dehydration and rehydration of the

Fig. 14.4 Nuclear spin catalysis in ATP hydrolysis driven by myosin
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electrically charged groups take place. Meanwhile, it is known that there are two
isomers of water which differ in orientation of the hydrogen nuclear spins, namely,
ortho-H2O with the parallel orientation of proton spins and para-H2O with anti-
parallel proton spins [26]. There are the reasons to believe that ortho-H2O has a
preferential affinity to L-amino acids by comparison with para-H2O [27]. If that is
the case, when tightly bound in macromolecules, the molecules of ortho-H2O are
hard delivered to proper sites for proper processes. Of course, nuclear spin-rotation
interaction occurs but they are weak to be effective in driving the ortho to para
transitions. Again, the magnetic isotope of 25Mg can make a difference eliminating
the spin-ban problem and, thereby, providing the necessary conversion of the water
isomers.

One way or the other, the nuclear spin of 25Mg, via the acceleration of the
chemo-mechanical cycle of the enzyme, helps in setting the myosin macromolecule
for acceptance and hydrolysis of next ATP molecule. The detailed mechanisms,
including quantum mechanics, of the nuclear spin catalysis in biomolecular
nanoreactors require further investigations.

14.4 Conclusions and Outlook

In “molecular motors” which run on nonmagnetic isotopes of magnesium, the
spin-catalysis functions can be served by the nuclear spins of phosphorus and
protons. However, 25Mg has the nuclear spin 5/2, that is five times greater than the
nuclear spins of 31P or 1H. Furthermore, the comparatively high catalytic activity of
the 25Mg’s nuclear spin stems from the specific localization of the Mg2+ ion in the
enzyme active center due to which the magnesium’s nuclear spin creates the
comparatively high values of the magnetic field and hyperfine coupling. That is
why 25Mg proved to be “in the right place at the right time” to light the fine
machinery of the fuel-energy cell nanoreactors.

In living Nature, apart from magnesium, there are other elements which have
both kinds of stable isotopes, nonmagnetic and magnetic ones, including carbon,
oxygen, calcium, zinc, etc. (see Table 14.1). In the magnetic field of Earth, the
strength of which is about 0.05 mT, NMR frequencies of the nuclei fall within the
range between approximately 50 and 2000 Hz. Biological effects of weak
low-frequency magnetic fields are well known for a long time but poorly under-
stood [28, 29]. Inasmuch as the nuclear spin moments of the magnetic isotopes are
prone to external magnetic fields, it may bear a direct relationship to the problem of
the biological effects of weak low-frequency magnetic fields. What’s more, the
geocosmic oscillations in processes of different nature, caused by movement of the
Earth in heterogeneous and anisotropic space-time, have long been known. For
example, the so-called “macroscopic fluctuations” as the anomalous scattering of
the results of measuring the actomyosin enzyme activity were discovered about
60 years ago [30]. Based on the nuclear spin-catalysis background, one can suggest
that the “macroscopic fluctuations” in the actomyosin and some other objects of
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living Nature stem from the interactions of the nuclear spins of the magnetic iso-
topes with the oscillating geocosmic electromagnetic fields. One can speculate that
the stable magnetic isotopes may open the novel ways of control over efficiency and
reliability of biosystems via the interactions of their nuclear spins with the external
electromagnetic fields.

Based on the nuclear spin-catalysis background, one can further speculate that
stable magnetic isotopes hold considerable promise for control over efficiency and
reliability of molecular and biomolecular devices in optical communications,
quantum information processing, computational schemes and the like.
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