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Abstract. When applied on some particular quantum entangled states,
measurements are universal for quantum computing. In particular,
despite the fondamental probabilistic evolution of quantum measure-
ments, any unitary evolution can be simulated by a measurement-based
quantum computer (MBQC). We consider the extended version of the
MBQC where each measurement can occur not only in the {X,Y }-plane
of the Bloch sphere but also in the {X,Z}- and {Y, Z}-planes. The exis-
tence of a gflow in the underlying graph of the computation is a nec-
essary and sufficient condition for a certain kind of determinism. We
extend the focused gflow (a gflow in a particular normal form) defined
for the {X,Y }-plane to the extended case, and we provide necessary and
sufficient conditions for the existence of such normal forms.

1 Introduction

Performing one-qubit measurements on an initially entangled state called
graph state [8] is a universal model for quantum computation introduced by
Raussendorf and Briegel [14,15]. This model is very promising for the physi-
cal implementation of a quantum computer [13,16]. The measurement-calculus
[4,5] is a formal framework for measurement-based quantum computation. In
the original model introduced by Briegel and Raussendorf, all measurements are
applied in the so called {X,Y }-plane of the Bloch sphere, however the model can
be extended to other planes, namely {X,Z}- and {Y,Z}-planes. For instance,
measurements in the {X,Z}-planes are universal [12] for quantum computa-
tion, with the particular property that only real numbers are used in this case.
The Extended Measurement-Calculus [5] is an extension of the Measurement-
Calculus in which the three possible planes of measurement are available.

The question of the reversibility is central in measurement-based
quantum computation since the key ingredient of this model – the quantum mea-
surement – has a fundamentally probabilistic evolution. Reversibility is essential
for the simulation of quantum circuits, and as a consequence for the universality
of the model. For deciding whether an initial resource (a graph state) can be
used to implement a reversible evolution, a graphical condition called gflow has
been introduced [2,3].
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Gflow is not unique in general. In the non-extended case a focused gflow [10]
is nothing but a gflow in some normal form. We consider three natural extensions
of the focused gflow for the extended measurement based quantum computation
and we study in which cases these normal forms exist.

2 Extended Measurement-Based Quantum Computation

In this section, a brief description of the extended measurement-based quantum
computation is given, a more detailed introduction can be found in [4,5]. A
measurement-based quantum computation (MBQC) is:

(i) Initialisation. An open graph (G, I,O) which describes the initial entan-
glement (G = (V,E) is a simple undirected graph), the inputs (I ⊆ V ) and
outputs (O ⊆ V ) of the computation. The initial entanglement is obtained
by applying the following preparation map N which associates with every
arbitrary input state located on the input qubits the initial entangled state
of the MBQC:

N : C{0,1}I → C
{0,1}V

|x〉 �→ 1√
2|Ic|

∑

y∈{0,1}Ic

(−1)|G[x,y]| |x, y〉

where G[x, y] denotes the subgraph of G induced by the supports of x
and y and |G[x, y]| its size. In other words |G[x, y]| is the number of edges
(u, v) ∈ E such that (x(u)=1 ∨ y(u)=1) ∧ (u(v)=1 ∨ y(v)=1);

(ii) Measurements. For every non output qubit u ∈ Oc, α(u) ∈ [0, 2π) and
two distinct Pauli operators λ1(u), λ2(u) ∈ {X,Y,Z} describe the plane
{λ1(u), λ2(u)} and the angle α(u) according to which the qubit u is mea-
sured i.e., u is measured according to the observable

cos(α(u))λ1(u) + sin(α(u))λ2(u)

Measurement of qubit u produces a classical outcome (−1)su where su ∈
{0, 1} is called signal, or simply classical outcome with a slight abuse of
notation;

(iii) Corrections. Two maps x, z : Oc → 2V called corrective maps. Corrections
work as follows: for every non output qubit u, the measurement of qubit u
is followed by the application of Xsu on the qubits in x(u) and Zsu on the
qubits in z(u). A vertex v ∈ x(u)∪z(u) is called a corrector of u. The maps
x, z should be extensive in the sense that there exists a partial order ≺ over
the vertices of the graph s.t. any corrector v of a vertex u is larger than u,
i.e. v ∈ x(u) ∪ z(u) implies u ≺ v. The extensivity of x and z guarantees
that the corrections are applied on qubits which are no yet measured.
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The extended variant of MBQC refers to the possibility to perform mea-
surements in the three possible planes {X,Y }, {X,Z} and {Y,Z} of the Bloch
sphere, whereas all measurements are performed in the {X,Y }-plane in the orig-
inal measurement-based quantum computation.

3 Reversibility, Determinism, and Generalized Flow

Despite of the probabilistic evolution of quantum measurements, the correction
mechanism can be used to make the overall evolution of an MBQC reversible
which means that there exists an isometry U (U†U = I) from the input to
the output qubits such that, whatever the classical outcomes of the measure-
ments during the computation are, the evolution implemented by the MBQC
is U . In the context of measurement-based quantum computation this form
of reversibility is called determinism [3]. Determinism is an essential feature
which is used for instance for proving that any quantum circuit can be sim-
ulated by an MBQC. Thus, this is a key ingredient for the universality of
the model for quantum computing. The existence of a correction strategy
that makes an MBQC deterministic crucially depends on the initial entangled
state, i.e. on the open graph (G, I,O) and the planes of measurement: given
λ : Oc → {{X,Y }, {X,Z}, {Y,Z}} a map which associates with every non out-
put qubit its plane of measurement, an extended open graph (G, I,O, λ) is uni-
formly deterministic if for any measurement angles α : Oc → [0, 2π), there exist
two corrective maps x and z such that the corresponding MBQC is deterministic.

Significant efforts have been made to characterize the open graphs that guar-
antees uniform determinism. Flow [3], and generalised flow (gflow) [2] are graphi-
cal conditions which are sufficient for uniform determinism. Gflow can be defined
as follows for the extended open graphs:

Definition 1 (GFlow). An extended open graph (G, I,O, λ) has a gflow if there
exists g : Oc → 2Ic

s.t. u �→ g(u) ∪ Odd(g(u)) is extensive and for any u ∈ Oc,

λ(u) = {X,Y } ⇒ u ∈ Odd(g(u)) \ g(u)
λ(u) = {X,Z} ⇒ u ∈ g(u) ∩ Odd(g(u))
λ(u) = {Y,Z} ⇒ u ∈ g(u) \ Odd(g(u))

where Odd(A) = {w ∈ V | |N(w)∩A| = 0 mod 2} is the odd neighbourhood of A
and a map f : Oc → 2V is extensive if there exists a partial order ≺ such that for
any u ∈ Oc, u is smaller than its image by f i.e., ∀v ∈ V \{u}, v ∈ f(u) ⇒ u ≺ v.

Concretely, if an extended open graph (G, I,O) has a gflow g then for
any measurement angles α : Oc → [0, 2π) the corrective maps defined as
∀u ∈ Oc, x(u) := g(u) \ {u} and z(u) := Odd(g(u)) \ {u} guarantees that the
corresponding MBQC is deterministic [2].

With someadditional assumptions gflow is not only sufficient but also necessary
for determinism in measurement-based quantum computing. More precisely, there
are mainly two cases to consider, depending on the number of inputs and outputs
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of the computation. When there are as many inputs as outputs, determinism cor-
responds to the notion of unitary evolution (evolution U s.t. U†U = UU† = I). In
this particular case, the gflow condition is necessary for strong – i.e., all measure-
ments occur with the same probability – uniform determinism [10]. In the general
case, when the number of inputs and outputs may differ, determinism corresponds
to isometries (also called unitary embedding). In this general case, gflow character-
izes stepwise stronguniformdeterminism(roughlyspeakingtheadditional stepwise
conditionmeans that anypartial computation is also deterministic) [2]. Notice that
it is not known whether the strong and stepwise conditions are required: there is no
knownexampleofuniformlydeterministicMBQCwhichcorrespondingopengraph
does not have a gflow.

Notice that if an extended open graph has a gflow then all the input qubits
must be measured in the {X,Y }-plane:

Property 1. If an extended open graph (G, I,O, λ) has a gflow then ∀u ∈ I ∩Oc,
λ(u) = {X,Y }.

Proof. Let g be a gflow for (G, I,O, λ), and u ∈ I ∩ Oc, since for any u ∈ Oc,
g(u) ⊆ Ic, u /∈ g(u), thus according to the definition of gflow, λ(u) �= {X,Z}
and λ(u) �= {Y,Z}. �

4 Focused Gflow and Normal Forms

The gflow of an (extended) open graph is not unique in general. In the non
extended case i.e., when all measurements are performed in the {X,Y }-plane
several classes of gflow have been identified: the maximally delayed gflow which
depth is minimal and which is produced by a polytime algorithm [11]; and the
focus gflow which guarantees that the z corrective map acts only on the out-
put qubits. The definition of focused gflow is as follows: Given an open graph
(G, I,O), a gflow g is focused [10] if ∀u ∈ Oc, Odd(g(u)) ∩ Oc = {u}. Since any
gflow can be transformed into a focused gflow by means of signal shifting [4] for
instance, focused gflow can be used to characterize the open graphs that have a
gflow:

Property 2. An open graph (G, I,O) has a gflow if and only if there exists g :
Oc → 2Ic

extensive such that ∀u ∈ Oc,

Odd(g(u)) ∩ Oc = {u}
Focused gflow is a simpler but equivalent variant of gflow, which can be used

for instance as a tool for quantum circuits translation and optimisation [1,6,7].
So far, there is no definition of ‘focused’ gflow in the context of the extended

MBQC. By symmetry, there are three natural kinds of ‘focused’ extended gflow:
those for which Odd(g(u)) ∩ Oc ⊆ {u}; those for which g(u) ∩ Oc ⊆ {u}; and
finally those for which g(u) ⊕ Odd(g(u)) ∩ Oc ⊆ {u}, ⊕ denotes the symmetric
difference. We define the corresponding three normal forms (NF for short) for
extended gflows:
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Definition 2 (Normal forms). A gflow g of an extended open graph
(G, I,O, λ) is

– X-NF if ∀u ∈ Oc,
Odd(g(u)) ⊆ {u} ∪ O

– Y -NF if ∀u ∈ Oc,
(Odd(g(u)) ⊕ g(u)) ⊆ {u} ∪ O

– Z-NF if ∀u ∈ Oc,
g(u) ⊆ {u} ∪ O

Intuitively a σ-NF, for σ ∈ {X,Y,Z}, guarantees that in the corresponding
MBQC all the correctors applied on the non output qubits are Pauli-σ operators.
For instance, given a Z-NF gflow, in the corresponding MBQC ∀u ∈ Oc, x(u) =
g(u) \ {u} ⊆ O which implies that all Pauli correctors applied on non output
qubits are Z operators. Given a Y-NF gflow, in the corresponding MBQC ∀u ∈
Oc, x(u)∩Oc = z(u)∩Oc which means that all the Pauli correctors applied on non
output qubits are products of X and Z which is nothing but Pauli-Y operators
(up to a global phase). Notice that given an open graph (G, I,O), g is a focused
gflow of (G, I,O) if and only if g is a X-NF gflow of (G, I,O, u �→ {X,Y }).

5 Existence of Normal Forms

In this section we consider the problem of the existence of gflow in normal
forms. First notice that some extended open graphs have a gflow but no Z-NF
gflow for instance. The following extended open graph (G, I,O, λ) where G =
({1, 2, 3}, {(1, 2), (2, 3)}), I = {1}, O = {3} and λ(1) = λ(2) = {X,Y } admits
exactly two gflows g and g′ (g(1) = {1}, g′(1) = {2, 3}, and g(2) = g′(2) = {3}),
none of them is in the Z-normal form.

1 2 3

{X,Y }{X,Y }

This simple example points out a crucial difference with respect to the non-
extended case for which any gflow can be turned into a focused gflow. A sufficient
condition for the existence of a σ-NF gflow for an extended open graph with gflow
is that every non-input measurement plane contains σ:

Theorem 1. If an extended open graph (G, I,O, λ) has a gflow then, for any
σ ∈ ⋂

u∈Ic∩Oc λ(u), (G, I,O, λ) has a σ-NF gflow.

Proof. Let g be a gflow for (G, I,O, λ), and σ ∈ ⋂
u∈Ic∩Oc λ(u). We define gσ :

Oc → 2Ic

as follows, depending on σ:
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gX(u) := g(u) ⊕
⎛

⎝
⊕

v∈Odd(g(u))\(O∪{u})
gX(v)

⎞

⎠

gY (u) := g(u) ⊕
⎛

⎝
⊕

v∈(g(u)⊕Odd(g(u)))\(O∪{u})
gY (v)

⎞

⎠

gZ(u) := g(u) ⊕
⎛

⎝
⊕

v∈g(u)\(O∪{u})
gZ(v)

⎞

⎠

Extensivity of u �→ g(u) ∪ Odd(g(u)) guarantees that gσ is well-defined. In the
following we prove that gσ is a gflow, and then that gσ is in σ-NF.
[gflow] Let ≺ a partial order according to which u �→ g(u)∪Odd(g(u)) is extensive,
we show that u �→ gσ(u) ∪ Odd(gσ(u)) is also extensive according to ≺. Indeed,
for any u ∈ Oc and any w ∈ V \ {u}, s.t. w ∈ gσ(u) ∪ Odd(gσ(u)), by induction
if there is no larger elements in Oc then gσ(u) = g(u), so u ≺ w. Otherwise,
w ∈ g(u) ∪ Odd(g(u)) ∪ (

⋃
v∈g(u)∪Odd(g(u))\(O∪{u}) gσ(v) ∪ Odd(gσ(v))), so either

(i) w ∈ g(u) ∪ Odd(g(u)) which implies u ≺ w, or (ii) ∃v ∈ g(u) ∪ Odd(g(u)) s.t.
w ∈ gσ(v) ∪ Odd(gσ(v)), so u ≺ v and, by induction, v ≺ w which implies u ≺ w.
Regarding the remaining gflow conditions, notice that the extensivity of g and
gσ guarantees that for any u ∈ Oc, gσ(u) ∩ {u} = g(u) ∩ {u} and Odd(gσ(u)) ∩
{u} = Odd(g(u)) ∩ {u} (the linearity of Odd is also used in this second case:
Odd(A ⊕ B) = Odd(A) ⊕ Odd(B)). Thus gσ is a gflow.
[σ-NF] In the following we prove that gσ is in a σ-NF. W.l.o.g. assume σ = Y
(the other two cases are similar). We actually prove by induction that ∀u ∈ Oc,
Odd(gY (u) ⊕ gY (u)) ∩ Oc = {u}. Let u ∈ Oc.

– If there is no larger element according to ≺ (the partial order induced by g
and gY ) in Oc, then Odd(gY (u)) ⊕ gY (u) ⊆ Odd(gY (u)) ∪ gY (u) ⊆ {u} ∪ O
by extensivity of gY , moreover since Y ∈ λ(u), u ∈ Odd(gY (u)) ⊕ gY (u), so
(Odd(gY (u)) ⊕ gY (u)) ∩ Oc = {u}.

– Otherwise, (Odd(gY (u)) ⊕ gY (u)) ∩ Oc =
⎛

⎝Odd(g(u)) ⊕ g(u) ⊕
⎛

⎝
⊕

v∈(g(u)⊕Odd(g(u)))\(O∪{u})
Odd(gY (v)) ⊕ gY (v)

⎞

⎠

⎞

⎠ ∩ Oc

= (Odd(g(u)) ⊕ g(u)) ∩ Oc ⊕
⎛

⎝
⊕

v∈(g(u)⊕Odd(g(u)))\(O∪{u})
(Odd(gY (v)) ⊕ gY (v)) ∩ Oc

⎞

⎠

= (Odd(g(u)) ⊕ g(u)) ∩ Oc ⊕
⎛

⎝
⊕

v∈(g(u)⊕Odd(g(u)))\(O∪{u})
{v}

⎞

⎠

= (Odd(g(u)) ⊕ g(u)) ∩ Oc ⊕ ((g(u) ⊕ Odd(g(u))) \ (O ∪ {u}))
= (Odd(g(u)) ⊕ g(u)) ∩ {u}
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Moreover, since Y ∈ λ(u), u ∈ Odd(g(u)) ⊕ g(u), so (Odd(gY (u)) ⊕ gY (u)) ∩
Oc = {u}. �

As a corollary, any (non extended) open graphs with gflow, admits both X-
and Y-NF gflows. More generally, any extended open graph (G, I,O, λ) with
gflow such that λ is constant over Ic ∩ Oc admits both σ- and σ′-NF gflows
where Ic ∩ Oc ⊆ λ−1({σ, σ′})

Theorem 1 provides a sufficient condition for the existence of a σ-normal
form. The following example points out that this condition is not necessary: in
this extended open graph λ(2) = {X,Z} however it admits the following Y-NF
gflow 1 �→ {4}; 2 �→ {2, 3, 4}.

1 2 3

4

{X,Y } {X,Z}

Notice that in this counter example there are strictly more outputs than
inputs. Indeed, we show that the existence of a σ-NF gflow with σ ∈ {Y,Z},
implies that the number non-input measurement-planes which do not contain σ
is upper bounded by the input defect i.e., the difference between the number of
outputs and inputs:

Theorem 2. Given σ ∈ {Y,Z} and an extended open graph (G, I,O, λ), if
(G, I,O, λ) has a σ-NF gflow then

|{u ∈ Ic ∩ Oc | σ /∈ λ(u)}| ≤ |O| − |I|

Proof. Given (G, I,O, λ) with a σ-NF gflow g where σ ∈ {Y,Z}, we show that
any non-input vertex which is measured in a plane which does not contain σ can
be, roughly speaking, turned into an input vertex. The proof is by induction on
|{u ∈ Ic ∩ Oc | σ /∈ λ(u)}|. If |{u ∈ Ic ∩ Oc | σ /∈ λ(u)}| = 0 the property is
satisfied since determinism implies |I| ≤ |O|. Otherwise, let u0 ∈ Ic ∩ Oc s.t.

σ /∈ λ(u0) and let g′(u) :=

{
g(u) if u = u0 or u0 /∈ g(u)
g(u) ⊕ g(u0) otherwise

. g′ is a σ-NF

gflow s.t. ∀u ∈ Oc \ {u0}, u0 /∈ g′(u).
[Z-NF] If σ = Z, λ(u0) = {X,Y }, so u0 /∈ g′(u0). As a consequence ∀u ∈
Oc, g′(u) ∈ (I ∪ {u0})c, and g′ is a Z-NF gflow of (G, I ∪{u0}, O, λ): in this new
extended open graph the number of measurement-planes which do not contain
Z is decreased by one, as well as the input defect i.e., the difference between the
number of outputs and inputs.
[Y-NF] If σ = Y , a new degree-one vertex u1 is connected to u0, and let g′′ :
Oc → 2(I∪{u0})c be defined as follows



136 N. Hamrit and S. Perdrix

g′′(u) :=

⎧
⎪⎨

⎪⎩

{u1} if u = u0

g′(u0) ⊕ {u0, u1} if u = u1

g′(u) otherwise
g′′ is a Y-NF gflow for (G′, I ∪ {u0}, O, λ′), where G′ is the graph G augmented

with the dangling vertex u1, and λ′(u) =

⎧
⎪⎨

⎪⎩

{X,Y } if u = u0

{Y,Z} if u = u1

λ(u) otherwise
. In this new open

graph the number of inputs is increased by one, so the input defect decreases
by one, moreover the number of measurement planes which do not contain Y
also decreases by one since u1 is measured in the {Y,Z}-plane in this new open
graph. �

Corollary 1. Given σ ∈ {Y,Z} and an extended open graph (G, I,O, λ) with
gflow such that |I| = |O|, (G, I,O, λ) has a σ-NF gflow if and only if for any
u ∈ Ic ∩ Oc, σ ∈ λ(u).

Theorem 2 shows that in a Z-NF gflow, when a non-input is measured in
the {X,Y }-plane, this non-input somehow behaves as an input. Regarding the
Y-NF gflow when a non-input qubit is measured in the {X,Z}-plane, this qubit
cannot be seen as an input qubit mainly because all inputs have to be measured
in the {X,Y }-plane (Property 1). However, up to a transformation of the graph,
it can be turned into an input (see proof of Theorem 2). One can wonder whether
such a transformation exists for X-NF gflow? Surprisingly, Theorem 2 cannot be
extended to the X-NF case as illustrated by the following counter example where
the number of inputs is equal to the number of outputs and which has a X-NF
gflow (1 �→ {3}; 2 �→ {2, 3}) despite of the measurement of a non-input qubit in
the {Y,Z}-plane:

1 2

3

{X,Y } {Y,Z}

6 Conclusion

We have introduced three kinds of normal forms for extended gflows: X-, Y- and
Z-normal forms: a σ-normal form guarantees that all the corrections are done by
means of σ unitary transformations. These normal forms generalise the notion
of ‘focused’ gflow. Contrary to the non-extended case not every gflow can be
turned into a normal form gflow. We show that if σ appears in every plane of
measurement, then a σ-normal form is possible. This sufficient condition is not
necessary in general. Indeed, it strongly relies on the input defects i.e., on the
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difference between the numbers of inputs and outputs: when σ ∈ {Y,Z}, if a σ-
normal form exists then the number of measurement planes which do not include
σ is at most the input defect. Surprisingly, the X-normal form case behaves
quite differently: there exist X-normal form gflows with no input defect and
measurements in the {Y,Z}-plane. This result breaks the symmetries between
the three Pauli operators X, Y and Z which are used to define the measurement
planes: whereas the Z is known to plays a particular role mainly because the
input qubits must be measured in the {X,Y }-plane, the present result on the X-
normal form is the first result, up to our knowledge, which breaks the symmetries
between the X and the Y directions. It sheds some new light on the interesting
question of the choice of the measurement planes in measurement-based quantum
computation.
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