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Abstract. Reversible languages are programming languages where all
programs can run both forwards and backwards. Reversible functional
languages have been proposed that use symmetric pattern matching and
data construction. To be reversible, these languages require linearity:
Every variable must be used exactly once, so no references are copied and
all references are followed exactly once. Copying of values must use deep
copying. Similarly, equality testing requires deep comparison of trees.

A previous paper describes reversible treatment of reference counts,
which allows sharing of structures without deep copying, but there are
limitations. Applying a constructor to arguments creates a new node
with reference count 1, so pattern matching is by symmetry restricted to
nodes with reference count 1. A variant pattern that does not change the
reference count of the root node is introduced to allow manipulation of
shared data. Having two distinct patterns for shared and unshared data,
however, adds a burden on the programmer.

We observe that we can allow pattern matching on nodes with arbi-
trary reference count if we also allow constructor application to return
nodes with arbitrary reference counts. We do this by using maximal shar-
ing: If a newly constructed node is identical to an already existing node,
we return a pointer to the existing node (increasing its reference count)
instead of allocating a new node with reference count 1.

To avoid searching the entire heap for an identical node, we use hash-
consing to restrict the search to a small segment of the heap. We estimate
how large this segment needs to be to give a very low probability of allo-
cation failure when the heap is less than half full. Experimentally, we find
that overlapping segments gives dramatically better results than disjoint
segments.

1 Introduction

A reversible first-order functional language RFUN [16] has been suggested. Steps
towards an implementation were made by first implementing a simple heap man-
ager [1] and later [6], a full translation of RFUN to reversible machine language
was made. This translation uses linearity and deep copying, so all heap nodes
have exactly one reference. Other reversible functional languages that rely on
linearity include Theseus [7] and Ψ -Lisp [2].
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By extending Axelsen’s heap manager [1], a previous paper [12] studied
reversible treatment of reference counts, which allows copying of values by
pointer sharing. This did, however, not constitute true garbage collection, as
the functional language used in this paper required explicit distinction of shared
and unshared nodes, so unshared nodes are explicitly deallocated at pattern
matching and shared nodes are explicitly preserved at pattern matching, using
two different forms of pattern for constructor nodes with one or several refer-
ences.

In this paper, we will implement a heap manager that does true garbage
collection, so high-level languages using this manager do not have to distinguish
between shared and unshared nodes and nodes are automatically collected once
the last reference is used. In order to make construction and deconstruction
symmetric we must, however, make construction use maximal sharing: If a node
identical to the node being built exists anywhere in the heap, no new node is
built. Instead, a new pointer to the existing node is returned and its reference
count is increased. Conversely, deconstructing (by pattern matching) a shared
node removes a pointer to the node and deconstructing an unshared node deallo-
cates it. To make searching for existing identical nodes efficient, we will employ
hash-consing [4,5], which limits the search space to a small segment of the heap.
We estimate how large this segment must be to make the probability of alloca-
tion failure very small if the heap is less than half full. We find that a segment
that can contain four to eight nodes suffice for a 32-bit address space.

We implement heap operations including a node construction/deconstruction
procedure in a low-level reversible intermediate language RIL.

2 The Reversible Intermediate Language RIL

We define a reversible low-level language RIL, similar to a language of the same
name in [13]. RIL is inspired by Janus [10], using unstructured jumps in the
style of the Janus variant described in [11]. We use RIL instead of Janus because
it is closer to a machine language but not specific to any particular machine
architecture. RIL can be considered as a reversible alternative to three-address
code and is mainly a vehicle for presenting code in a machine-independent form.
Its design is in itself not a significant contribution.

A RIL program consists of an unordered set of basic blocks, each consisting
of an entry point followed by either updates and exchanges or a subroutine call
and is terminated by an exit point. We will describe each of these below.

RIL uses 32-bit words using two’s complement number representation.
Addresses are to 8-bit bytes, but will be truncated to the nearest 32-bit bound-
ary at memory transfers. We will use an unbounded number of named variables
to represent registers, relying on register allocation to map these to a finite set
of numbered registers.
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2.1 Entry and Exit Points

An entry point has one of the forms

l ← where l is a label,
l1; l2 ← c where c is a condition and l1 and l2 are labels, or
begin l where l is a label.

An exit point has one of the forms:

→ l where l is a label,
c → l1; l2 where c is a condition and l1 and l2 are labels, or
end l where l is a label.

Each label in the program must occur in exactly one entry point and exactly one
exit point. Furthermore, a label that occurs in a begin entry point must also
occur in an end exit point.

Conditions are of the form L �� R, where a left-value L is either a named
variable x or of the form M [x], representing the memory location pointed to by
a variable x. A right-value R is either a left-value or a signed constant in the
range −231 to 231 − 1, and �� is an operator from the set ==, <, >, !=, <=, >=
and &, using notation from the programming language C. We use 0 to represent
false and any non-zero value to represent true, so the condition L &R is true if
the result of the bitwise AND is non-zero.

begin and end represent beginnings and ends of subroutines. The start and
end of the entire program are entry and exit points with the label main. An
exit point of the form → l constitutes an unconditional jump to the (unique)
entry point where l occurs. An exit point of the form c → l1; l2 constitutes a
conditional jump: If c is true, the jump goes to l1, otherwise to l2. An entry point
of the form l ← unconditionally accepts incoming jumps. An entry point of the
form l1; l2 ← c conditionally accepts incoming jumps: Jumps to l1 are accepted
if c is true and jumps to l2 are accepted if c is false. If the incoming jump is not
accepted, a run-time error occurs.

2.2 Updates and Exchanges

A basic block can hold a (possibly empty) sequence of updates and exchanges.
An update is of the form L ⊕= R1 � R2, where L is a left-value, R1

and R2 are right-values and ⊕= is one of the update assignments +=, -= or
^= with the same semantics as in the programming language C. � is an infix
arithmetic operation that can be either +, -, ^, &, |, >>, or <<, again with the
same semantics as in C. Specifically, & and | are bitwise AND/OR and >> and
<< are bitwise shifts.

An exchange is of the form L1 ↔ L2, where L1 and L2 are left-values. The
effect is that the values in the two specified locations are swapped.

In order to ensure reversibility, the following restrictions apply to updates
and exchanges:

– In an update of the form L ⊕= R1 � R2, the same named variable can
not occur both to the left and to the right of the update operator ⊕=.
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– In an update of the form L ⊕= R1 � R2, memory accesses (left-values of
the form M [x]) can not be used on both sides of the update operator ⊕=.

– In an exchange of the form L1 ↔ L2, the same named variable can not occur
both to the left and to the right of the exchange operator ↔.

2.3 Subroutine Calls

Instead of exchanges and updates, a basic block can hold a single subroutine call.
A subroutine call is done using the instructions call l and uncall l. There can
be several calls to the same subroutine. We use an implicit stack to store return
information.

A subroutine call must be in a basic block of the form l1 ← call l → l2 or
l1 ← uncall l → l2.

In such a block, call l stores l2 on the implicit stack and jumps to the entry
point begin l until it reaches end l, at which point it pops the stack and jumps
to the label l2 that is stored on the top of the stack.

RIL (like Janus) also supports running subroutines backwards: uncall l
stores l2 on the implicit stack, and then runs the subroutine l backwards, start-
ing from the exit point end l and ending with begin l, again returning via the
stack to l2.

2.4 Formal Semantics

Figure 1 shows a formal semantics for execution of RIL as rules for state transi-
tions. A state consists of the program P (which never changes), an environment
ρ, that maps named variables to integers, a memory store σ, that maps word-
aligned addresses to integers, a stack S that stores return labels, and the current
label l. A transition of the form P ρ σ S l � P ρ′ σ′ S l′ states that a state
P ρ σ S l will lead to the state P ρ′ σ′ S l′ in one or more steps.

The semantics shows how execution of a basic block makes a transition from
a label to another while changing the environment and store. The transition
is bidirectional, so it describes both forwards and backwards execution. This is
used in the rule for uncall, where the transition relation is used in the reverse
order for executing the subroutine.

We use I to indicate an unspecified instruction (update or exchange), E to
indicate an unspecified entry point, X to indicate an unspecified exit point and
c to indicate an unspecified condition. Abusing notation, we use ⊕, � and ��
to represent both the syntactic and semantic versions of operators. We use the
same rules for evaluating expressions and conditions, using 0 to represent false
and any non-zero value to represent true.

2.5 Shorthands

To make code more readable, we introduce a number of shorthands when dis-
playing RIL code in the paper.

We will use L ⊕= R as an abbreviation of L ⊕= R + 0.
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Basic blocks:

(l1 ← call l → l2) ∈ P P ρ σ (l2 : S) l � P ρ′ σ′ (l2 : S) l
P ρ σ S l1 � P ρ′ σ′ S l2

(l1 ← uncall l → l2) ∈ P P ρ′ σ′ (l2 : S) l � P ρ σ (l2 : S) l
P ρ σ S l1 � P ρ′ σ′ S l2

(E I X) ∈ P E � ρ σ l1 I |= ρ σ ↽⇀ ρ′ σ′ X � ρ′ σ′ l2
P ρ σ S l1 � P ρ′ σ′ S l2

P ρ σ S l1 � P ρ′ σ′ S l2 P ρ′ σ′ S l2 � P ρ′′ σ′′ S l3
P ρ σ S l1 � P ρ′′ σ′′ S l3

Entry points:

l ← � ρ σ l begin l � ρ σ l
ρ σ � c � 0

l1; l2 ← c � ρ σ l2
ρ σ � c �� 0

l1; l2 ← c � ρ σ l1

Exit points:

→ l � ρ σ l end l � ρ σ l
ρ σ � c � 0

c → l1; l2 � ρ σ l2
ρ σ � c �� 0

c → l1; l2 � ρ σ l1

Updates and exchanges:

ρ σ � e � v w = u ⊕ v
x ⊕= e � ρ[x 	→ u] σ ↽⇀ ρ[x 	→ w] σ

ρ σ � e � v w = u ⊕ v
M [x]⊕= e � ρ[x 	→ a] σ[a 	→ u] ↽⇀ ρ[x 	→ a] σ[a 	→ w]

x ↔ y � ρ[x 	→ u, y 	→ v] σ ↽⇀ ρ[x 	→ v, y 	→ u] σ

x ↔ M [y] � ρ[x 	→ u, y 	→ a] σ[a 	→ v] ↽⇀ ρ[x 	→ v, y 	→ a] σ[a 	→ u]

|= ρ σ ↽⇀ ρ σ
I1 |= ρ σ ↽⇀ ρ′ σ′ I2 |= ρ′ σ′ ↽⇀ ρ′′ σ′′

I1 I2 |= ρ σ ↽⇀ ρ′′ σ′′

Expressions and conditions:

k is a constant
ρ σ � k � k ρ[x 	→ v] σ � x � v ρ[x 	→ a] σ[a 	→ v] � M [x] � v

ρ σ � R1 � v1 ρ σ � R2 � v2 w = v1 � v2
ρ σ � R1 � R2 � w

ρ σ � R1 � v1 ρ σ � R2 � v2 w = v1 �� v2
ρ σ � R1 �� R2 � w

Fig. 1. Semantics of RIL
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Two blocks E I1 → l and l ← l I2 X, where E in an entry point, X is
an exit point and I1 and I2 are updates, exchanges or calls, will be abbreviated
to a single extended basic block E I1 I2 X. This abbreviation can be applied
repeatedly, so arbitrarily many basic blocks connected by unconditional exit
and entry point pairs will be shown as a single extended block. Similarly, when
a block with a conditional exit point where the second label (corresponding to
a false condition) occurs in an unconditional entry point of another block, these
will be merged and the conditional exit point will be shown as a conditional jump
with one target (and fall-through when the condition is false). For example, a
block ending with c → l1; l2 will be merged to a block starting with l2 ← joined
by the one-way jump c → l1. Symmetrically, a block with an unconditional exit
point can be merged with another block with a conditional entry point: → l2
and l1; l2 ← c are joined to l1 ← c.

Additionally, we will at entry and exit points for subroutines, i.e., after begin
and before end, add assertions of the form assert c, where c is a condition.
Variables occurring in these assertions are the input and output parameters
for the subroutine, and they specify preconditions and postconditions for the
subroutine and can be seen either as comments that specify an invariant or as
conditions that are actively checked at runtime. In the latter case, an assertion
assert c can be expanded into a conditional jump and a conditional entry
point: c → l1; l2 and l1; l2 ← true, where true represents any tautology, e.g.,
x==x. We will in assertions, additionally, allow conjunction of simple conditions
using the && operator. Such conjunctions can be expanded to sequences of simple
assertions.

3 Implementation of a Heap Manager

We will now show implementations of a heap manager in RIL, using the short-
hands described in Section 2.5. In particular, we use assertions to describe partial
pre and post conditions1. If code compiled from a high-level language to RIL
statically ensures that these assertions are true, they can be omitted.

3.1 Data Representation

Our heap manager will use LISP-like values. A value can be either a symbol,
an integer or a pair of two values a and d, written as Cons(a,d). We represent
these in the following way on a machine with 32-bit words:

– The value 0 is used for uninitialised variables and heap nodes.
– An integer is represented by a machine word ending in 1. The integer value

is given by the first 31 bits.
– A symbol is represented by a machine word that ends in 10.
– Cons(a,d) is represented by a three-word-aligned address A (so ending in

00), where H ≤ a ≤ lastH, where lastH is the address of the last node in
the heap. A points to a node consisting of three words: A reference count

1 The assertions are not strong enough to describe full pre and post conditions.
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and two fields a and d, representing the elements of a pair Cons(a,d). In
an unallocated node, all three words are zero, and in an allocated node, all
three words are non-zero.

We assume that the fields a and d in a pair Cons(a,d) can not be destructively
updated, which is true in functional languages. This allows us to share identical
pairs.

Note that we can test if a value v is a node pointer by checking if the two
least significant bits are 00, i.e., that the condition v & 3 is 0, representing false.

3.2 Value Copying

This subroutine copies a value stored in the variable copyP to the variable copyQ,
which must initially be zero, while maintaining reference counts if the value is a
pointer.

begin copy

assert copyP > 0 && copyQ == 0

copyP & 3 → copyNonPointer

M[copyP] += 1

copyNonPointer ← copyP & 3

copyQ += copyP

assert copyP > 0 && copyQ == copyP

end copy

Note that only copying of pointer fields update reference counts.
Calling copy in reverse requires that the two values are identical. Though the

reference count of the node decreases when calling copy in reverse, it can never
reach zero, as the equality assertion implies that there are at least two pointers
to the node before the decrement.

3.3 Copying the Fields of a Cons Node

We sometimes want to access the fields of a Cons node while keeping the pointer
to the node. This will not change the reference count to the node, but it will
increase the reference count to its fields (if they are pointers).

begin fields

assert fieldsP >= H && fieldsA == 0 && fieldsD == 0

fieldsP += 4

fieldsA += M[fieldsP]

fieldsA & 3→ nonPointerA

M[fieldsA] += 1

nonPointerA ← fieldsA & 3

fieldsP += 4

fieldsD += M[fieldsP]

fieldsD & 3 → nonPointerD

M[fieldsD] +=1

nonPointerD ← fieldsD & 3

fieldsP -= 8

assert fieldsP >= H && fieldsA > 0 && fieldsD > 0

end fields
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When called in reverse, it is implicitly assumed that fieldsA and fieldsD are
equal to the fields of fieldsP. fieldsA and fieldsD are cleared by subtract-
ing from these the two fields of fieldsP and reducing the reference counts of
these (if pointers). If, when fields is called in reverse, fieldsA and fieldsD
are not equal to the fields of fieldsP, the assertion that they are zero after
begin fields will fail.

3.4 Naive Implementation of Construction / Destruction of Nodes

The above subroutines neither allocate nor free data, as reference counts are
non-zero both before and after calling these subroutines.

We now describe a subroutine cons that takes two arguments consA and
consD and returns a pointer consP to a Cons-node that has the values of consA
and consD as fields, while clearing the contents of these variables.

If there is already such a node in the heap, a new reference to this node
is returned. Finding an existing node with the required fields requires a search
through the heap. If there is no suitable node to share, a new node is allocated.
Allocating a new node requires searching backwards through the heap for a node
that has zero reference count (which also implies zeroed fields).

When called in reverse, cons takes a pointer consP and returns the values
of the fields in the variables consA and consD, while clearing consP. If the node
pointed to by consP is unshared (indicated by reference count 1), it is deallocated
by clearing the reference count and the fields to 0. The code for cons is shown
in Figure 2. For readability, we will use indentation to indicate structure.

The loop consSearchSame searches forwards through the heap to find a
matching node. If that succeeds, the block consFoundSame increases the ref-
erence count of the node and decreases the counts of the fields (if they are not
symbols) because it clears consA and consD, that are references to the fields.

If the search for a matching node fails, the loop consSearchEmpty searches
for an unallocated node. If one such is found, a new Cons-node is created in it.

If no empty node is found, no allocation is possible, and a jump to the label
consFail is made. This should do some kind of error handling (not shown).

It should be obvious that the naive implementation of cons is slow: Whenever
a new node is created, the entire heap is walked through to find an existing,
identical node, and if that fails, the heap is walked through again to find an
unallocated node. Since allocations happen near the top of the heap and searches
for existing nodes start from the bottom, the average case is quite bad. So we
will, below, describe an optimised implementation of cons.

3.5 An Optimised Implementation of Cons

We will use an old idea for effective maximal sharing: Hashing field values to
find the address of the node [5]. Rather than searching the entire heap, we search
only a small segment of the heap starting at the address given by a hash code
calculated from the values of the fields. Since we both add and remove nodes,
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begin cons

assert consA != 0 && consD != 0 && consP == 0

consP += H
consSearchSame ← consP > H

M[consP] == 0 → consNext

consP += 4

M[consP] != consA → consNotA

consP += 4

M[consP] == consD → consFoundSame

consP -= 4

consNotA ← M[consP] != consA

consP -= 4

consNext ← M[consP] == 0

consP += 12

consP <= lastH → consSearchSame

consSearchEmpty ← consP <= lastH
consP -= 12

consP < H → consFail

M[consP] != 0 → consSearchEmpty

M[consP] += 1

consP += 4

consA ↔ M[consP]

consP += 4

consD ↔ M[consP]

consP -= 8

consEnd ← M[consP] > 1

assert consP >= H && consA == 0 && consD == 0

end cons

consFoundSame ←
consD & 3 → consNonPointerD

M[consD] -= 1

consNonPointerD ← consD & 3

consD -= M[consP]

consP -= 4

consA & 3 → consNonPointerA

M[consA] -= 1

consNonPointerA ← consA & 3

consA -= M[consP]

consP -= 4

M[consP] += 1

→ consEnd

Fig. 2. Naive reversible implementation of cons
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we can not keep searching until we find either a match or a free node, so we need
a fixed segment size. For efficiency reasons, we want the segment to be small,
but we also want to minimise the risk that the segment we want to allocate into
is full while the heap as a whole is mostly empty. It seems reasonable to require
that the probability of trying to allocate into an already full segment is very
small when less than half the total heap is allocated.

If hashing distributes values uniformly randomly, allocating m Cons-nodes in
a heap with n segments of size b is equivalent to randomly throwing m balls into
n bins, where no bin holds more than b balls. If n < m < n log n, the maximum
number of balls in a bin is [15] with very high probability no more than logn

log n log n
m

.

If the heap is half full, m = bn
2 , and we get a bound of logn

log 2 log n
b

. We want this

not to exceed b, so we want logn

log 2 log n
b

≤ b ⇔ n
log n ≤ eb

b . For b = 12, we get

n ≤ 1.6 · 105, which gives approximately 12 · 1.6 · 105 = 1.8 · 106 nodes.
We will assume a subroutine hash exists that takes a cleared variable hashV

and the values in consA and consD as arguments and returns in the variable
hashV a hash code of consA and consD while preserving the values of consA
and consD. If hashV is the hash code for consA and consD, running hash in
reverse will clear hashV. The hash code should be the start of a segment, i.e.,
H,H+12b,H+24b, . . . , lastH−(12b−12) (the address of the last segment in the
heap). We will in Section 4 discuss how the hash procedure can be implemented.

The optimised implementation of cons is shown in Figure 3. We start by
computing hashV, which is the address of the start of the segment to search, and
segEnd, which is the address of the last node in this segment. We then search
as before, but constrained to the interval between hashV and segEnd. When we
find the matching or empty node we need, we uncompute hashV and segEnd.

4 Reversible Hashing

We want a procedure hash that expects variables consA and consD to con-
tain non-zero values and hashV to be zero. After the call, consA and consD
are unchanged and hashV holds a value between H and lastH − (12b − 12) in
increments of 12b. We will assume that b is a power of 2, as this eases scaling.

We base our hash function, shown in Figure 4, on Jenkins’ 96-bit reversible
mix function [8] that is well tested and has good statistical properties. This mixes
three integers, so we use a constant as the third. The three values are stored in
variables hashA, hashB and hashC that are globally initialised to constants ka,
kb and kc. hashA and hashB are XOR’ed with consA and consD, Jenkins’ mix
function is executed, and a scaled version of the resulting hashC is used as the
hash code hashV. Uncalling hash resets hashA, hashB and hashC to their original
values and hashV to zero.

Since hashV needs to be between H and lastH − (12b − 12) in increments of
12b and hashC can be any 32-bit integer, we need to mask and scale this to the
right range. We first choose H and lastH so H = lastH − 12b · 2m +12 for some
m. We can then do the scaling by bitwise ANDing hashC with b · 2m+2 − 4b,
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begin cons

assert consA != 0 && consD != 0 && consP == 0 && hashV == 0 && segEnd == 0

call hash

consP += hashV

segEnd += hashV + (12b − 12)
consSearchSame ← consP > hashV

M[consP] == 0 → consNext

consP += 4

M[consP] != consA → consNotA

consP += 4

M[consP] == consD → consFoundSame

consP -= 4

consNotA ← M[consP] != consA

consP -= 4

consNext ← M[consP] == 0

consP += 12

consP <= segEnd → consSearchSame

consSearchEmpty ← consP <= segEnd

consP -= 12

consP < H → consFail

M[consP] != 0 → consSearchEmpty

segEnd -= hashV + (12b − 12)
uncall hash

M[consP] += 1

consP += 4

consA ↔ M[consP]

consP += 4

consD ↔ M[consP]

consP -= 8

consEnd ← M[consP] > 1

assert consP >= H && consA == 0 && consD == 0 && hashV == 0 && segEnd == 0

end cons

consFoundSame ←
segEnd -= hashV + (12b − 12)
uncall hash

consD & 3 → consNonPointerD

M[consD] -= 1

consNonPointerD ← consD & 3

consD -= M[consP]

consP -= 4

consA & 3 → consNonPointerA

M[consA] -= 1

consNonPointerA ← consA & 3

consA -= M[consP]

consP -= 4

M[consP] += 1

→ consEnd

Fig. 3. Optimised reversible implementation of cons
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giving 4b times an m-bit integer. We then multiply this by 3 (getting a multiple
of 12b) and add H. The maximum value will, hence, be 3(b · 2m+2 − 4b) + H =
12b · 2m − 12b + lastH − 12b · 2m + 12 = lastH − (12b − 12), as we wanted.

begin hash

assert hashV == 0 && hashA == ka && hashB == kb && hashC == kc

hashA ^= consA

hashB ^= consD

hashA -= hashB + hashC

hashA ^= hashC >> 13

hashB -= hashC + hashA

hashB ^= hashA << 8

hashC -= hashA + hashB

hashC ^= hashB >> 12

hashA -= hashB + hashC

hashA ^= hashC >> 12

hashB -= hashC + hashA

hashB ^= hashA << 16

hashC -= hashA + hashB

hashC ^= hashB >> 5

hashA -= hashB + hashC

hashA ^= hashC >> 3

hashB -= hashC + hashA

hashB ^= hashA << 10

hashC -= hashA + hashB

hashC ^= hashB >> 15

hashV += hashC & (b · 2m+2 − 4)
hashV += hashC & (b · 2m+2 − 4)
hashV += hashC & (b · 2m+2 − 4)
hashV += H
end hash

Fig. 4. Reversible hash subroutine based on Jenkins’ mix function

5 Performance Analysis and Experiments

When analysing the time used by cons, we count the number of instructions
executed. We do not count assert instructions, as these are assumed to be
invariants that need not be checked at runtime, and we will count an uncondi-
tional jump to an unconditional entry point as free (as code layout can in most
cases make it so), but we count a conditional jump to a conditional entry point
as two instructions because two conditions are checked. We also count call and
uncall as two instructions each, as we count the cost of the return into the cost
of the call, but otherwise we do not distinguish the cost of instructions. This is,
admittedly, a gross simplification, but a more precise costs measure depends on
the choice of machine that RIL is translated to and the cost model of this.
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begin hash

assert hashV == 0 && hashT == ka

hashT ^= consA << 7

hashT += consA >> 1

hashT ^= consD << 5

hashT += consD >> 3

hashV += hashT & (b · 2m+2 − 4)
hashV += hashT & (b · 2m+2 − 4)
hashV += hashT & (b · 2m+2 − 4)
hashV += H
end hash

Fig. 5. Simplified hash subroutine

In the best case, a call to cons will have symbols as arguments and find a
match in the first node it encounters. This will use 71 instructions, 52 of which
are used by the two calls to hash. If the arguments to cons are pointers, add
two instructions to update their reference counts. In the worst case, no matching
node is found (but consA matches the head of all nodes in the segment) and the
only free node is the last searched. This will use 15b + 58 instructions, 52 of
which are, again, used by hash.

We have tested the heap manager with different heap sizes to find how full
the heap is when an allocation fails. This is (rather naively) done by adding
pseudo-random numbers to a list until allocation fails. For each heap size, we
have run the test twenty times using different random numbers (so hashing
yields different numbers), and for each heap size we have listed the average and
maximum number of free nodes when allocation fails. Our first test uses b = 8.

Heap size (nodes) average free nodes maximum free nodes spread
210 135 13% 639 62% 177 17%
214 3139 19% 10291 63% 2891 18%
218 56373 22% 144783 55% 40769 16%
222 1014423 24% 2194523 52% 713904 17%

The worst-case utilisation is with all heap sizes under 50%, though the average
case is around 80%. Our estimate was that a bin size of 12 would be needed for
heaps up to 106 nodes, so it is hardly surprising that the results are bad. The
reason we have chosen a smaller bin size is to compare the setup above with a
variant where the bins overlap: Instead of using hash values that point to the
start of disjoint 8-node segments, we change it so hash values can point to any
node start in the heap. We still use a bin size of 8, so the changes to the code are
minimal: The mask used in the hash subroutine needs changing, so it instead of
b ·2m+2 −4b is b ·2m+2 −4. Additionally, b−1 extra nodes must be added to the
heap, so there are b nodes to search from the largest generated address onwards.
The results are shown below
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Heap size (nodes) average free nodes maximum free nodes spread
210 69 7% 171 17% 52 5%
214 767 5% 2170 13% 553 3%
218 13708 5% 34229 13% 12403 5%
222 384618 9% 974626 23% 239922 6%

The difference is quite dramatic: In none of the tests was more than 23% of
the heap unused, and the average heap utilisation is between 91% and 95%,
depending on heap size.

Hashing takes a significant fraction of the time for allocating nodes, so using
a simpler hashing function might be worthwhile, even if this gives a higher risk
of collision. As an experiment, we have replaced the hash function with the very
simple function shown in Figure 5 and repeated the above tests. Reducing the
body of hash from 24 to 8 instructions reduces the number of instructions for
executing cons by 32 (as hash is called twice). The results of using the simplified
hash function are shown below.

Heap size (nodes) average free nodes maximum free nodes spread
210 79 8% 215 21% 73 7%
214 438 3% 1022 6% 372 2%
218 10266 4% 24673 9% 7484 3%
222 215346 5% 597394 14% 168784 4%

The results are not significantly different from the previous, but that may be
due to the simplicity of the tests. More testing is required to verify if this or
another cheap hash function is adequate for more realistic use.

We have also made experiments using a smaller segment size, i.e., searching
only 4 nodes instead of 8 for matching or empty nodes. This will reduce the cost
of executing cons, but the expectation is that this will make allocation failure
happen when a larger fraction of the heap is empty. The table below shows heap
utilisation with a segment size of 4 (using the simple hash function).

Heap size (nodes) average free nodes maximum free nodes spread
210 107 10% 293 29% 94 9%
214 1311 8% 6546 40% 1860 11%
218 15871 6% 43784 17% 12874 5%
222 802967 19% 1884954 45% 539114 13%

The heap utilisation is, as expected, not as good as with the larger segment size,
but it is not below 50% in any of the tests. So if space is not tight, it can be a
good choice to reduce the segment size to 4.

6 Conclusion and Discussion

We have presented a reversible intermediate language RIL and implementations
in RIL of a reversible heap manager that uses reference counts and hash-consing
to achieve garbage collection: The heap manager does all the necessary man-
agement of reference counts, and nodes are automatically reclaimed when their
reference count becomes zero.
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The key insight is that to get symmetric construction and destruction of val-
ues, either linearity (no sharing) or maximal sharing is needed. Previous works
assume linearity, but we implement maximal sharing by a reversible hash-cons sub-
routine. This allows copying of values just by copying pointers (and updating ref-
erence counts) and structural equality testing by comparison of pointers. This is,
we believe, the first real reversible garbage collection method that does not rely on
linearity.

Our use of fixed-size segments (bins) to handle hash-code collisions means
that a segment can be filled long before the heap is full. We have calculated
a segment size that makes this very unlikely before the heap is at least half
full. The calculation is based on results from the literature for non-overlapping
bins and gives a fairly large segment size. We have also tested overlapping bins,
which has not been studied much in the literature, and found that the results
are dramatically better when overlapping bins are used. Overlapping bins have
proved to be beneficial for cuckoo hashing [9], so it is, perhaps, not so surprising.
Experimentally, we have found that a segment size of 8 gives heap utilisation
above 75% in the worst case and better than 90% in the average case, while a
segment size of 4 gives heap utilisation around 55% in the worst case and better
than 80% in the average case.

The hashing and searching used during node construction has a significant
cost, so construction and deconstruction of nodes is relatively expensive. This
is, however, partially offset by vey cheap equality testing and copying of data.

We have made preliminary tests of two different hash functions and found no
significant difference in results, though one is much simpler than the other. Further
trials with more realistic allocation/freeing patterns are needed to draw a firm
conclusion. Further trials could also investigate more different hash functions.

Our use of a fixed segment/bin size makes reversibility simple at the cost
of relatively low heap utilisation. More advanced hashing techniques such as
two-way chaining [3] may improve heap utilisation with small segment sizes at
the cost of increasing the hashing cost. Cuckoo hashing [9,14] offer high util-
isation with short searches, but this (or any other) hash-table technique that
moves nodes around after they are allocated are not suitable for our purpose, as
changing the address of a node requires modifying pointers globally.

A limitation of the heap manager is that heap nodes can only be pairs. It
is easy enough to modify the heap manager to another fixed size of nodes, but
mixing nodes of several sizes in the same heap will require all nodes to be padded
to the largest size. A simple solution is to have separate heaps for different node
sizes, but that can be very wasteful. Larger tuples can be built from pairs, but
that requires an average of one node per field in the tuple. A compromise might
be to let nodes be four words including reference count. This will waste one word
when building pairs but there will be less waste when building larger tuples, as
an average of two fields can be stored in each node. A node size that is a power
of two can also save some instructions when scaling the hash code to a multiple
of the node size.
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