
Reversible Ordered Restarting Automata

Friedrich Otto1(B), Matthias Wendlandt2, and Kent Kwee1

1 Fachbereich Elektrotechnik/Informatik, Universität Kassel,
34109 Kassel, Germany

{otto,kwee}@theory.informatik.uni-kassel.de
2 Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392, Giessen, Germany
matthias.wendlandt@informatik.uni-giessen.de

Abstract. Stateless deterministic ordered restarting automata charac-
terize the class of regular languages. Here we introduce a notion of
reversibility for these automata and show that each regular language
is accepted by such a reversible stateless deterministic ordered restarting
automaton. We study the descriptional complexity of these automata,
showing that they are exponentially more succinct than nondeterministic
finite-state acceptors. We also look at the case of unary input alphabets.

Keywords: Restarting automaton · Reversibility · Descriptional com-
plexity

1 Introduction

Reversibility is a property that has been investigated for various types of
automata. It means that every configuration has a unique successor configu-
ration and a unique predecessor configuration, that is, the automaton consid-
ered is forward and backward deterministic. The main motivation for studying
this notion is the observation that information is lost in computations that are
not reversible. Each Turing machine can be simulated by a reversible Turing
machine [1], which shows that reversible Turing machines are just as expressive
as general Turing machines. On the other hand, reversible deterministic finite-
state acceptors (DFAs) are strictly less expressive than DFAs [13]. The notion of
reversibility has also been studied for other types of automata, e.g., for pushdown
automata [5] and for queue automata [6].

Here we introduce a notion of reversibility for a rather restricted class of
restarting automata, the stateless deterministic ordered restarting automata. The
restarting automaton was introduced in [4] as a formal device to model the lin-
guistic technique of analysis by reduction. Since then many variants and exten-
sions of the basic model have been introduced and studied (for an overview, see,
e.g., [11]), and several classical families of formal languages, like the regular lan-
guages, the deterministic context-free languages, and the context-free languages,
have been characterized by certain types of restarting automata.
c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 60–75, 2015.
DOI: 10.1007/978-3-319-20860-2 4

Reversible Ordered Restarting Automata 61

The deterministic ordered restarting automaton (or det-ORWW-automaton)
was introduced in [10] in the setting of picture languages. A det-ORWW-auto-
maton has a finite-state control, a tape with end markers that initially con-
tains the input, and a window of size three. Based on its state and the content
of its window, the automaton can perform one of three types of operations:
it may perform a move-right step, it may perform a combined rewrite/restart
step, or it may perform an accept step (see Section 2 for details). The nonde-
terministic variant of the ordered restarting automaton accepts some languages
that are not even context-free, but the deterministic variant accepts exactly the
regular languages [10]. In fact, each det-ORWW-automaton can be simulated
by a det-ORWW-automaton with only a single state [12]. As for the latter,
states are essentially useless, they are called stateless det-ORWW-automata, or
stl-det-ORWW-automata for short. In [12] the descriptional complexity of stl-
det-ORWW-automata is investigated, using the size of the working alphabet as
a complexity measure. It is shown that there is a double exponential trade-off
when changing from a stl-det-ORWW-automaton to an equivalent DFA. Accord-
ingly, we think that the stl-det-ORWW-automaton is a very interesting type of
automaton, as it is a simple deterministic device that, nevertheless, yields suc-
cinct representations for the regular languages.

Here we introduce a notion of reversibiliy for stl-det-ORWW-automata, and
we show that each regular language is accepted by a stl-det-ORWW-automaton
that is reversible by presenting a transformation that turns a given stl-det-
ORWW-automaton into an equivalent stl-det-ORWW-automaton that is revers-
ible. This construction yields an exponential upper bound for the size increase
of this transformation, but unfortunately we do not yet have a matching lower
bound. Then we investigate the descriptional complexity of a reversible stl-det-
ORWW-automaton in relation to the size of an equivalent DFA or NFA. We
recall a simulation of stl-det-ORWW-automata by NFAs from [7], which also
applies to stl-det-ORWW-automata that are reversible, and by considering a
specific class of example languages we show that the resulting trade-off is indeed
exponential. For DFAs, the corresponding trade-off is even double exponential.
Finally, we consider the problem of turning a unary NFA into an equivalent
stl-det-ORWW-automaton that is reversible. Here we obtain a quadratic size
increase, but it remains open whether there is a matching lower bound. The
paper closes with a short summary and a list of open problems.

2 Stateless Deterministic Ordered Restarting Automata

A stl-det-ORWW-automaton is a one-tape machine that is described by a 6-
tuple M = (Σ,Γ,�,�, δ, >), where Σ is a finite input alphabet, Γ is a finite
tape alphabet such that Σ ⊆ Γ , the symbols �,� �∈ Γ serve as markers for the
left and right border of the work space, respectively,

δ : (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��}) ��� {MVR} ∪ Γ ∪ {Accept}
is the (partial) transition function, and > is a partial ordering on Γ . The tran-
sition function describes three different types of transition steps:

62 F. Otto et al.

(1) A move-right step has the form δ(a1a2a3) = MVR, where a1 ∈ Γ ∪ {�} and
a2, a3 ∈ Γ . It causes M to shift the window one position to the right.

(2) A rewrite/restart step has the form δ(a1a2a3) = b, where a1 ∈ Γ ∪ {�},
a2, b ∈ Γ , and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes M to replace
the symbol a2 in the middle of its window by the symbol b and to restart,
that is, the window is repositioned on the left end of the tape.

(3) An accept step has the form δ(a1a2a3) = Accept, where a1 ∈ Γ ∪{�}, a2 ∈ Γ ,
and a3 ∈ Γ ∪ {�}. It causes M to halt and accept. In addition, we allow an
accept step of the form δ(��) = Accept.

If δ(u) is undefined for some u, then M necessarily halts, when it sees u in
its window, and we say that M rejects in this situation. Further, the letters in
Γ � Σ are called auxiliary symbols.

A configuration of a stl-det-ORWW-automaton M is a pair of words (α, β),
where |β| ≥ 3, and either α = λ (the empty word) and β ∈ {�} · Γ+ · {�} or
α ∈ {�} · Γ ∗ and β ∈ Γ · Γ+ · {�}; here αβ is the current content of the tape,
and it is understood that the window contains the first three symbols of β. In
addition, we admit the configuration (λ,��). A restarting configuration has the
form (λ,�w �) (usually simply written as �w�); if w ∈ Σ∗, then (λ,�w �) is
also called an initial configuration. Further, we use Accept to denote an accepting
configuration, which is a configuration that M reaches by an accept step.

A computation of a stl-det-ORWW-automaton M consists of certain phases.
A phase, called a cycle, starts in a restarting configuration, the head is moved
along the tape by MVR steps until a rewrite/restart step is performed and
thus, a new restarting configuration is reached. If no further rewrite operation
is performed, any computation necessarily finishes in a halting configuration –
such a phase is called a tail. By �c

M we denote the execution of a complete cycle,
and �c∗

M is the reflexive transitive closure of this relation.
An input w ∈ Σ∗ is accepted by M , if the computation of M which starts

with the initial configuration �w � ends with an accept step. The language
consisting of all words that are accepted by M is denoted by L(M).

Theorem 1. [10,12] REG = L(det-ORWW) = L(stl-det-ORWW).

3 Reversibility for stl-det-ORWW-Automata

Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton. A combined
rewrite/restart step of the form δ(abc) = b′ takes M from a configuration of
the form (�u, abcv�) to the restarting configuration �uab′cv�. Now it is not at
all clear how a reverse transition function could be designed that would trans-
form the latter configuration back to the former configuration. Therefore, we
consider a different notion of reversibility for our automata, a notion that is
more in the spirit of restarting automata.

Definition 2. A stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >) is called
reversible, if there exists a reverse transition function

δR : ((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ��� {MVR} ∪ Γ

Reversible Ordered Restarting Automata 63

such that, for all restarting configurations �w� and �w′� that can occur within
computations of M , �w� �c

M �w′ � iff � w′� �cR

M �w � . Here �cR

M denotes a
cycle that is realized by using the reverse transition function δR. We describe the
above reversible stl-det-ORWW-automaton as M = (Σ,Γ,�,�, δ, δR, >), and we
use the prefix rev- to denote reversible automata.

Observe that in the definition above, we require that a cycle must be
reversible by δR only for the case that the corresponding restarting configu-
rations occur in a valid computation of M , that is, there exists an input x ∈ Σ∗

such that �w� is reached from the initial configuration �x� of M . This corre-
sponds to the way reversibility is defined for queue automata in [6].

Obviously, rev-stl-det-ORWW-automata can only accept certain regular lan-
guages. However, in contrast to the situation for DFAs, they actually accept all
regular languages, as we have the following result.

Theorem 3. For each stl-det-ORWW-automaton M working on an alphabet
with n letters, there exists a rev-stl-det-ORWW-automaton R with 2O(n) letters
such that L(R) = L(M) holds.

For deriving this result we need the following normal form result for stl-det-
ORWW-automata. Here the right distance of a cycle C : �uabcv� �c

M �uab′cv�
of a stl-det-ORWW-automaton M is defined as Dr(C) = |v|+1, where |v| denotes
the length of the word v. Thus, Dr(C) is the distance from the window to the
right end of the tape at the time of rewriting in cycle C.

Definition 4. A stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >) is said to be
in normal form if it satisfies the following two conditions:
1. In any computation (C0, C1, C2, . . . , Cm) of M , |Dr(Ci) − Dr(Ci−1)| ≤ 1

holds for all i = 1, . . . , m.
2. M only accepts with the right delimiter � in its window.

Lemma 5. For each stl-det-ORWW-automaton M working on an alphabet with
n letters, there exists an equivalent stl-det-ORWW-automaton M̂ with an alpha-
bet of size at most 2(n + 1) that is in normal form.

Proof. From M we obtain an equivalent stl-det-ORWW-automaton M ′ =
(Σ,Γ,�,�, δ′, >′) that only accepts with the right delimiter in its window by
using one extra symbol, that is, |Γ | = n + 1 [7]. From M ′ we construct the
stl-det-ORWW-automaton M̂ = (Σ,Δ,�,�, δ, >) as follows:

– Δ = Γ ∪ { a | a ∈ Γ }, which implies that |Δ| = 2 · |Γ | = 2(n + 1);
– a > a for all a ∈ Γ , and a > b for a, b ∈ Γ , if a >′ b holds;
– the transition function δ is defined as follows, where a, b, c, d ∈ Γ :

δ(�a�) = δ′(�a�) for a ∈ Γ ∪ {λ}, δ(ab�) = δ′(ab�),

δ(�ab) =

{
c, if δ′(�ab) = c,

a, if δ′(�ab) = MVR,
δ(abc) =

{
d, if δ′(abc) = d,

b, if δ′(abc) = MVR,

δ(�ab) =

{
c, if δ′(�ab) = c,

MVR, if δ′(�ab) = MVR,
δ(a bc) =

{
d, if δ′(abc) = d,

MVR, if δ′(abc) = MVR,

δ(�a b) = MVR, δ(a b c) = MVR.

64 F. Otto et al.

The automaton M̂ simulates a computation of M ′ by proceeding as follows.
Assume that on input x = x1 . . . xm, M ′ will perform the cycle

(λ,�x�) = (λ,�x1 . . . xi−1xixi+1 . . . xm�) �c
M (λ,�x1 . . . xi−1axi+1 . . . xm�).

Then M̂ will first rewrite xj , j = 1, . . . , i − 1, into xj , and then it will rewrite
xi into a, producing the restarting configuration (λ,�x1 . . . xi−1axi+1 . . . xm�).
For the next cycle of M ′, there are three possibilities:

1. M ′ may rewrite xi−1 into a symbol b. Then M̂ will rewrite xi−1 into b.
2. M ′ may rewrite a into a symbol b. Then so will M̂ .
3. Finally, M ′ may rewrite a symbol xj for some j ≥ i + 1 into a symbol b.

Then M̂ will replace the symbols a, xi+1, . . . , xj−1 from left to right by the
symbols a, xi+1, . . . , xj−1, and then it will rewrite xj into b.

Thus, in each cycle M̂ either rewrites the first symbol from Γ from the left, or
it rewrites the last symbol from Δ � Γ from the left. It now follows easily that
M̂ is in normal form, and that L(M̂) = L(M ′) = L(M) holds. 	

Now we can give the proof of Theorem 3.

Proof. Let M = (Σ,Γ,�,�, δM , >) be a stl-det-ORWW-automaton with n =
|Γ |. Without loss of generality we can assume that M only accepts with the
right marker � in its window. By Lemma 5 we can construct a stl-det-ORWW-
automaton M̂ = (Σ,Γ ,�,�, δ̂, >) that is equivalent to M and in normal form.
Here Γ = Γ ∪ Γ , where Γ = { a | a ∈ Γ }, and hence, M̂ has 2n letters.

From M̂ we construct a rev-stl-det-ORWW-automaton R = (Σ,Δ,�,�,
δ, δR, >) such that L(R) = L(M̂) = L(M) as follows:

– The tape alphabet Δ contains the input alphabet Σ and all triples of the
form (L,W,R), where

• W is a sequence of letters W = (w1, . . . , wk) from Γ of length 1 ≤ k ≤ 2n
such that w1 > w2 > · · · > wk,

• L is a sequence of positive integers L = (l1, . . . , lk−1) of length k−1 such
that l1 ≤ l2 ≤ · · · ≤ lk−1 ≤ 2n, and

• R is a sequence of positive integers R = (r1, . . . , rk−1) of length k − 1
such that r1 ≤ r2 ≤ · · · ≤ rk−1 ≤ 2n.

As in [7] the idea is that W encodes the sequence of letters that are pro-
duced by M̂ in an accepting computation for a particular field, and L and R
encode the information on the neighbouring letters to the left and to the right
that are used to perform the corresponding rewrite operations. For example,
the triple (l1, w1, r1) ∈ (L,W,R) means that w1 is rewritten into w2, while
the left neighbouring field contains the l1-th letter of its sequence W ′, and the
right neighbouring field contains the r1-th letter of its sequence W ′′. To sim-
plify the discussion below, we simply interpret a symbol a ∈ Σ ∪ {�,�} as
the triple (L,W,R) = (∅, (a), ∅).

Reversible Ordered Restarting Automata 65

Further, in order to ensure that triples in neighbouring fields are consistent
with each other, the following notion has been introduced in [7]. For two finite
non-decreasing sequences of integers R′ = (r′

1, . . . , r
′
k) and L = (1, . . . , 	s),

where k, s ≥ 0, we define a multiset order(R′, L) as follows:

order(R′, L) = { r′
i + i − 1 | i = 1, . . . , k } ∪ { 	j + j − 1 | j = 1, . . . , s }.

Now a pair of triples ((L′,W ′, R′), (L,W,R)) is called consistent, if
order(R′, L) = {1, 2, . . . , k+s}, that is, it is the integer interval [1, k+s]. This
notion of consistency will be of importance in the definition of the transition
functions below.

– The ordering > on Δ is defined by taking (L,W,R) > (L′,W ′, R′), if there
exist b ∈ Γ and l, r ∈ N such that L′ = (L, l), W ′ = (W, b), and R′ = (R, r).

– For a triple (L,W,R) = ((l1, . . . , lk−1), (w1, . . . , wk), (r1, . . . , rk−1)), we take
π((L,W,R)) = wk and ||(L,W,R)|| = k. The transition function δ is defined
as follows, where A,B,C ∈ Δ ∪ {�,�} satisfy the condition that the pair
(A,B) and the pair (B,C) are both consistent (see above):

δ(ABC) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MVR, if δ̂(π(A)π(B)π(C)) = MVR,

Accept, if δ̂(π(A)π(B)π(C)) = Accept,

((L, ||A||), (W, b), (R, ||C||)), if B = (L,W,R) and
δ̂(π(A)π(B)π(C)) = b.

Thus, instead of replacing the symbol π(B) by the symbol b, as M̂ does,
the automaton R appends the symbol b to the sequence of symbols W at
the corresponding position. In addition, it appends the integers ||A|| and
||C|| to the lists L and R at this position, as these numbers point to the
symbols (within the corresponding lists) that are at this moment contained
in the neighbouring positions. Observe that δ(ABC) is undefined, if any of
the pairs (A,B) or (B,C) is not consistent.

– Finally, the reverse transition function δR is defined as follows, where it is
again required that the pairs (A,B) and (B,C) are consistent:

δR(ABC) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(L,W,R), if B = ((L, l), (W, b), (R, r)), l = ||A||, r = ||C||,
and δ̂(π(A)π((L,W,R))π(C)) = b,

MVR, if C �= � and the above conditions are not met,
undefined, if C = � and the above conditions are not met.

It remains to verify that R accepts the same language as M , and that R is
indeed reversible.

Claim 1. L(R) = L(M).

Proof. Let w ∈ Σ∗ such that w ∈ L(M) = L(M̂) holds. Assume that |w| =
m ≥ 1. As w ∈ L(M̂), the computation of M̂ on input w is accepting, that is,

66 F. Otto et al.

it consists of a sequence of s ≥ 0 cycles and an accepting tail. If s = 0, then M̂
simply scans w from left to right, and it accepts on reaching the symbol �. From
the definition of δ it follows that R does exactly the same on input w, that is,
w ∈ L(R) holds in this case. If s ≥ 1, then the accepting computation of M̂ on
input w looks as follows:

(λ,�w �) �c
M̂

(λ,�w1 �) �c
M̂

· · · �c
M̂

(λ,�ws �) �∗
M̂

(�w′
s, bc�) �M̂ Accept,

where w1, . . . , ws ∈ Γ
m

and ws = w′
sbc for some letters b, c ∈ Γ .

Let us look at the first cycle (λ,�w �) �c
M̂

(λ,�w1 �). It consists of t1 ≥ 0
move-right steps and a rewrite/restart step that replaces the symbol at position
t1 + 1 of w by a smaller symbol from Γ , that is, w = w′aw′′ for some w′ ∈ Σt1 ,
a ∈ Σ, and w′′ ∈ Σm−t1−1, and w1 = w′bw′′ for some b ∈ Γ such that a > b
holds. From the definition of δ we see that, starting from the configuration
(λ,�w�), the automaton R will execute the following cycle:

(λ,�w�) = (λ,�w′aw′′ �) �c
R (λ,�w′Bw′′ �),

where B = ((1), (a, b), (1)). Thus, after simulating the first cycle the tape of R
contains all the information on the tape content of M̂ plus the information on the
rewrite step that was executed during the first cycle. Observe that for all factors
AB occurring on the tape of R during this computation, the corresponding pair
(A,B) is trivially consistent.

Inductively it can be shown that R simulates the above computation of M̂
cycle by cycle, in each rewrite/restart step not only simulating the corresponding
rewrite/restart step of M̂ , but also encoding information on this very step. Hence,
R accepts on input w, too, which shows that L(M) is contained in L(R).

Now assume conversely that w ∈ Σ∗ is accepted by R. As w ∈ L(R), the
computation of R on input w is accepting, that is, it consists of a sequence of
s ≥ 0 cycles and an accepting tail. If s = 0, then it follows from the definition
of δ that R simply scans w from left to right and accepts on reaching the right
delimiter �. However, this means that on input w, M̂ does exactly the same,
that is, w ∈ L(M) also holds in this case. Finally, if s ≥ 1, then the computation
of R on input w looks as follows:

(λ,�w �) �c
R (λ,�W1 �) �c

R · · · �c
R (λ,�Ws �) �∗

R (�W ′
s, BC �) �R Accept,

where W1, . . . , Ws ∈ Δm and Ws = W ′
sBC for some letters B,C ∈ Δ. Interpret-

ing π as a morphism from Δ∗ to Γ
∗
, it follows that the computation of M̂ on

input w looks as follows:

(λ,�w �) �c
M̂

(λ,�π(W1)�) �c
M̂

. . .

�c
M̂

(λ,�π(Ws)�) �∗
M̂

(�π(W ′
s), π(B)π(C)�) �M̂ Accept,

which means that w ∈ L(M). Here the consistency of each pair (A,B) that cor-
responds to a factor AB of the tape contents of R implies that the corresponding
steps of M̂ are indeed possible. It follows that L(R) = L(M) holds. 	

Reversible Ordered Restarting Automata 67

We now complete the proof of Theorem 3 by establishing the following claim.

Claim 2. The stl-det-ORWW-automaton R is reversible.

Proof. Let w, z ∈ Δm such that (λ,�w �) �c
R (λ,� z �) holds. Then w = uAv

and z = uBv for some u ∈ Δr, A,B ∈ Δ, and v ∈ Δm−r−1, that is, u = U1 . . . Ur,
V = V1 . . . Vm−r−1 for some U1, . . . , Ur, V1, . . . , Vm−r−1 ∈ Δ, and

(λ,�w �) �r
R (�U1 . . . Ur−1, UrAV1 . . . Vm−r−1 �)

�R (λ,�U1 . . . UrBV1 . . . Vm−r−1 �).

From the definition of δ we can conclude the following properties:

1. The pairs (�, U1), (U1, U2), . . . , (Ur−1, Ur), (Ur, A), (A, V1) are all consistent,
as the factors �U1, U1U2, . . . , Ur−1Ur, UrA, and AV1 are all scanned by R
during this cycle.

2. δ(�U1U2) = δ(U1U2U3) = · · · = δ(Ur−1UrA) = MVR, and so MVR =
δ̂(�π(U1)π(U2)) = δ̂(π(U1)π(U2)π(U3)) = · · · = δ̂(π(Ur−1)π(Ur)π(A)).

3. δ(UrAV1) = B, and so δ̂(π(Ur)π(A)π(V1)) = π(B), where A = (L,W,R)
and B = ((L, ||Ur||), (W, b), (R, ||V1||)).
It follows immediately that also the pairs (Ur, B) and (B, V1) are consistent.

Now we apply the reverse transition function δR starting with the configura-
tion (λ,� z �) = (λ,�U1 . . . UrBV1 . . . Vm−r−1 �). It looks for the first position
from the left where a rewrite can be ‘undone.’ Obviously, if the factor UrBV1 is
reached, then B = ((L, ||Ur||), (W, b), (R, ||V1||)) is rewritten into A = (L,W,R),
which yields the cycle

(λ,� z �) �cR

R (�U1 . . . Ur−1, UrAV1 . . . Vm−r−1 �) = (λ,�w �).

So we must argue that there is no factor Ui−1UiUi+1, 1 ≤ i ≤ r, such that δR

would rewrite the letter Ui. Assume to the contrary that such an index exists,
that is, Ui = ((L′, l′), (W ′, b′), (R′, r′)) such that ||Ui−1|| = l′, ||Ui+1|| = r′, and
δ̂(π(Ui−1)π((L′,W ′, R′))π(Ui+1)) = b′ for some i ≤ r. Hence, starting from the
configuration (λ,�π(U1) . . . π(Ui−1)π((L′,W ′, R′))π(Ui+1) . . . π(Vm−r−1 �), M̂
would rewrite the letter π((L′,W ′, R′)) into the letter b′. As M̂ is in normal
form, its next rewrite would occur at position i − 1, i, or i + 1, which means
that R, which simulates M̂ step by step, would also perform a rewrite at one of
these positions when starting from the configuration (λ,�w �). Thus, it follows
that i = r, that is, we have Ur = (((L′, l′), (W ′, b′), (R′, r′)), ||Ur−1|| = l′, and
||B|| = r′. However, as the right sequence (R′, r′) of Ur ends with r′ = ||B||,
while the left sequence (L, ||Ur||) of B ends with the number ||Ur||, we see that
the pair ((R′, r′), (L, ||Ur||)) is not consistent, which contradicts our observation
above. Thus, when using the reverse transition function δR, the above cycle is
indeed inverted. 	

This completes the proof of Theorem 3. 	

Hence, we obtain the following characterization.

Corollary 6. REG = L(rev-stl-det-ORWW).

68 F. Otto et al.

4 Descriptional Complexity

We are interested in the descriptional complexity of rev-stl-det-ORWW-auto-
mata and its relation to that of DFAs and NFAs, where we use the number of
states as a measure for the size of a DFA or NFA, and we use the number of
symbols in its tape alphabet as the complexity measure for a stl-det-ORWW-
automaton.

Theorem 7. For each DFA A = (Q,Σ, q0, F, ϕ), there exists a rev-stl-det-
ORWW-automaton M = (Σ,Γ,�,�, δ, δR, >) such that L(M) = L(A) and
|Γ | = |Q| · (|Σ| + 1).

Proof. Let A = (Q,Σ, q0, F, ϕ) be a DFA that accepts a language L ⊆ Σ∗. We
take Γ = Σ ∪ (Q × Σ), define a > (q, a) for all a ∈ Σ and all q ∈ Q, and define
the transition functions δ and δR as follows, where a, b, c ∈ Σ and p, q, q′ ∈ Q:

δ(��) = Accept, if λ ∈ L(A), δ(�(q, a)b) = MVR,
δ(�a�) = Accept, if a ∈ L(A), δ(�(q, a)(p, b)) = MVR,
δ(�ab) = (q, a), if ϕ(q0, a) = q, δ((p, a)(q, b)(q′, c)) = MVR,
δ((q, a)bc) = (p, b), if ϕ(q, b) = p, δ((p, a)(q, b)c) = MVR,
δ((q, a)b�) = (p, b), if ϕ(q, b) = p, δ((q, a)(p, b)�) = Accept, if p ∈ F,

δR(�(q, a)b) = a, if ϕ(q0, a) = q, δR(�(p, a)(q, b)) = MVR,
δR((p, a)(q, b)c) = b, if ϕ(p, b) = q, δR((p, a)(q, b)(q′, c)) = MVR.
δR((p, a)(q, b)�) = b, if ϕ(p, b) = q,

Thus, given w = a1 . . . an as input, where n ≥ 2 and a1, . . . , an ∈ Σ, M
rewrites w from left to right into the word (q1, a1) . . . (qn−1, an−1)(qn, an), where
qi = ϕ(q0, a1 . . . ai), 1 ≤ i ≤ n, and this word is then accepted in a tail
computation if qn ∈ F , that is, M accepts on input w iff ϕ(q0, a1 . . . an) =
ϕ(ϕ(q0, a1 . . . an−1), an) = ϕ(qn−1, an) = qn ∈ F , that is, iff A accepts on
input w. Hence, we see that L(M) = L holds.

From the definition of δR it follows immediately that by δR, a restarting con-
figuration of the form �(q1, a1) . . . (qi−1, ai−1)(qi, ai)ai+1 . . . an� is transformed
back into the restarting configuration �(q1, a1) . . . (qi−1, ai−1)aiai+1 . . . an�.
Thus, M is indeed reversible in the sense of the above definition. 	

Hence, each DFA can be simulated by a rev-stl-det-ORWW-automaton of
about the same size and, correspondingly, each NFA of size n can therefore be
simulated by a rev-stl-det-ORWW-automaton of size O(2n). Unfortunately, we
do not yet have a corresponding lower bound.

Next we turn to the converse transformation. In [7] the following result
is shown, which, of course, also holds for stl-det-ORWW-automata that are
reversible.

Theorem 8. [7] For each stl-det-ORWW-automaton M with n letters, there
exists an NFA A with 2O(n) states such that L(A) = L(M) holds.

Reversible Ordered Restarting Automata 69

In particular, it follows that, for each (reversible) stl-det-ORWW-automaton
M with n letters, there exists an equivalent DFA B with 22

O(n)
states. We will

now prove that these upper size bounds for turning a rev-stl-det-ORWW-auto-
maton into an equivalent NFA (DFA) are sharp (up to the O-notation). For
this, we consider a collection of example language Bn (n ≥ 3) that are slight
variations of languages considered in [14].

Let Σ = {0, 1,#, $}. For n ≥ 3, let Bn be the following regular language:

Bn = { v1#v2# . . . #vm$u | m ≥ 1, v1, . . . , vm, u ∈ {0, 1}n, ∃ i : vi = u }.

Using standard techniques the following results can be shown on Bn.

Lemma 9. (a) Every NFA for Bn has at least 2n states.
(b) Every DFA for Bn has at least 22

n

states.

Now the following technical result yields the intended lower bounds.

Proposition 10. The language Bn is accepted by a rev-stl-det-ORWW-automa-
ton that has a tape alphabet of size O(n).

Proof. It has already been observed in [12] that the language Bn is accepted by
a stl-det-ORWW-automaton that only uses O(n) letters, but here we have to
show that this also holds for a stl-det-ORWW-automaton that is reversible.

The rev-stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >) for Bn will work
in n phases. Let w = v1# . . . #vm$u be given as input, where m ≥ 1 and
v1, . . . , vm, u ∈ {0, 1}n, and let vj = vj,1 . . . vj,n, 1 ≤ j ≤ m, and let u = u1 . . . un.
In phase i, M will shift the information about the letter ui to the left until this
information reaches the letter v1,i. While doing so, it compares this letter to
the letter vj,i for all j = 2, . . . , m, storing the results of these comparisons by
replacing the symbol vj,i by some appropriate auxiliary symbol. Finally, after
phase n has been completed, M moves across the current tape content and checks
whether there is a syllable vj all of its letters have been matched successfully.
Now we describe the automaton M in some detail.

First we define the tape alphabet Γ as

Γ = Σ ∪ { [∗, s, a, i, b] | 1 ≤ i ≤ n, a ∈ Σ, b ∈ {0, 1}, s ∈ {+,−}}∪
{ [b, i], [a, i, b], [s, a, i, b] | 1 ≤ i ≤ n, a ∈ Σ, b ∈ {0, 1}, s ∈ {+,−}}∪
{ [b, i], [a, i, b], [s, a, i, b] | 1 ≤ i ≤ n − 1, a ∈ Σ, b ∈ {0, 1}, s ∈ {+,−}},

that is, Γ contains 68n − 22 ∈ O(n) letters. Next we define the partial order on
Γ as follows, where a, b1, b2, b3 ∈ {0, 1} and s ∈ {+,−}:

a > [a, i] > [a, i, b1] > [s, a, i, b2] > [∗, s, a, i, b3] for all 1 ≤ i ≤ n,

[$, i, b1] > [$, i, b1] > [$, i + 1, b2] for all 1 ≤ i ≤ n − 1,

[#, i, b1] > [#, i, b1] > [#, i + 1, b2] for all 1 ≤ i ≤ n − 1,

[s, a, i, b1] > [a, i] > [a, i, b1] > [s, a, i, b2] > [a, i + 1, b3] for all 1 ≤ i ≤ n − 1.

Finally, we define the transition functions δ and δR, dividing this description
into n phases as mentioned above.

70 F. Otto et al.

1. M moves its read/write window to the letter u1, rewrites u1 into [u1, 1], and
moves the information on u1 to the left. Here the following transitions are
used, where a1, a2, a3, b ∈ {0, 1} and s ∈ {+,−}:

δ(�a1a2) = MVR, δ(a1a2[$, 1, b]) = [a2, 1, b],
δ(a1a2a3) = MVR, δ(a1a2[a3, 1, b]) = [a2, 1, b],
δ(a1a2#) = MVR, δ(#a1[a2, 1, b]) = [+, a1, 1, b], if a1 = b,
δ(a1#a2) = MVR, δ(#a1[a2, 1, b]) = [−, a1, 1, b], if a1 �= b,
δ(#a1a2) = MVR, δ(a1#[s, a2, 1, b]) = [#, 1, b],
δ(a1a2$) = MVR, δ(a1a2[#, 1, b]) = [a2, 1, b],
δ(a1$a2) = MVR, δ(�a1[a2, 1, b]) = [∗,+, a1, 1, b], if a1 = b,
δ($ba2) = [b, 1], δ(�a1[a2, 1, b]) = [∗,−, a1, 1, b], if a1 �= b.

δ(a1$[b, 1]) = [$, 1, b],

It is easily seen that these steps can be reversed by defining the reverse
transition function δR accordingly.

2. In the following n−1 phases M does the same with the remaining letters of u.
In each of these phases M first marks all letters previously rewritten by an
underline until it reaches the next symbol of u. Here we skip the transitions
for these rewrite steps, continuing with those transitions that are used when
ui is encountered. Here a1, a2, a3, b, b1 ∈ {0, 1} and s1, s2 ∈ {+,−}:

δ([a1, i − 1]ba2) = [b, i] for 2 ≤ i ≤ n − 1,

δ([a1, n − 1]b�) = [b, n],

δ([$, 1, b1][b1, 1][b, 2]) = [b1, 2, b],

δ([a1, i − 1, b1][b1, i − 1][b, i]) = [b1, i, b] for 3 ≤ i ≤ n,

δ([a1, i − 1, b1][$, i − 1, b1][a2, i, b]) = [$, i, b] for 2 ≤ i ≤ n,

δ([$, i − 1, b1][a1, i − 1, b1][a2, i, b]) = [a1, i, b] for 3 ≤ i ≤ n,

δ([a1, i − 1, b1][a2, i − 1, b1][a3, i, b]) = [a2, i, b] for 2 ≤ i ≤ n,

δ([a1, i − 1, b1][a2, i − 1, b1][$, i, b]) = [a2, i, b] for 2 ≤ i ≤ n,

δ([+, a1, i − 1, b1][b, i − 1, b1][a3, i, b]) = [+, b, i, b] for 2 ≤ i ≤ n,

δ([+, a1, i − 1, b1][a2, i − 1, b1][a3, i, b]) = [−, a2, i, b] for 2 ≤ i ≤ n

and a2 �= b,
δ([−, a1, i − 1, b1][a2, i − 1, b1][a3, i, b]) = [−, a2, i, b] for 2 ≤ i ≤ n,

δ([#, i − 1, b1][s1, a2, i − 1, b1][s2, a3, i, b]) = [s1, a2, i, b] for 2 ≤ i ≤ n,

δ([a1, i − 1, b1][#, i − 1, b1][s1, a2, i, b]) = [#, i, b] for 2 ≤ i ≤ n,

δ([a1, i − 1, b1][a2, i − 1, b1][#, i, b]) = [a2, i, b] for 2 ≤ i ≤ n − 1,

δ([+, a1, n − 1, b1][b, n − 1, b1][#, n, b]) = [+, b, n, b],

δ([+, a1, n − 1, b1][a2, n − 1, b1][#, n, b]) = [−, a2, n, b] for a2 �= b,

δ([−, a1, n − 1, b1][a2, n − 1, b1][#, n, b]) = [−, a2, n, b],

δ([s1, a1, i − 1, b1][s2, a2, i − 1, b1][s3, a3, i, b]) = [s2, a2, i, b] for 3 ≤ i ≤ n,

δ([∗, +, a1, n − 1, b1][b, n − 1, b1][#, n, b]) = [∗, +, b, n, b],

δ([∗, +, a1, n − 1, b1][a2, n − 1, b1][#, n, b]) = [∗, −, a2, n, b] for a2 �= b,

δ([∗, −, a1, n − 1, b1][a2, n − 1, b1][#, n, b]) = [∗, −, a2, n, b],

δ([∗, +, a1, i − 1, b1][b, i − 1, b1][a2, i, b]) = [∗, +, b, i, b] for 2 ≤ i ≤ n − 1,

δ([∗, +, a1, i − 1, b1][a2, i − 1, b1][a2, i, b]) = [∗, −, a2, i, b] for 2 ≤ i ≤ n − 1

and a2 �= b,
δ([∗, −, a1, i − 1, b1][a2, i − 1, b1][a2, i, b]) = [∗, −, a2, i, b] for 2 ≤ i ≤ n − 1.

Reversible Ordered Restarting Automata 71

From the information stored within the letters that are used to replace the
letters v1,1 to v1,n it is easily seen that also these transitions can be reversed
by defining δR accordingly.

3. Finally M checks whether the final tape contents contains a factor of
the form [∗,+, a1, n, b][∗,+, a2, n, b][#, n, b], [+, a1, n, b][+, a2, n, b][#, n, b],
[∗,+, a1, n, b][∗,+, a2, n, b][$, n, b], or [+, a1, n, b][+, a2, n, b][$, n, b], and it
accepts in the affirmative.

It remains to argue that L(M) = Bn holds. From the construction it is rather
straightforward to see that M accepts all words from the language Bn. Hence,
it remains to show that M does not accept any other words.

So let w ∈ Σ∗ be a given input word that M accepts. We must show that w
meets all of the following properties:

(a) w = v1#v2# . . . #vm$u, where m ≥ 1 and v1, . . . , vm, u ∈ {0, 1}∗.
(b) |u| = n.
(c) |v1| = . . . = |vm| = n.
(d) There exists an index i ∈ {1, . . . , m} such that vi = u holds.

In each phase i, the rewriting process is initialised by rewriting the letter ui

into the symbol [ui, i]. The symbol [u1, 1] can only be rewritten if it is imme-
diately to the right of the symbol $, and, for 2 ≤ i ≤ n, the symbol [ui, i] is
produced only immediately to the right to a symbol [ui−1, i − 1]. Finally, [un, n]
can only be written immediately to the left of the symbol �. This ensures prop-
erty (b). In addition, the MVR steps of the initial phase make sure that (a) holds.
The rules for the comparison mark exactly one letter of vi in each phase, which
ensures property (c), and the final scan only accepts if there is a syllable vi that
coincides with u, which proves (d). Thus, L(M) = Bn follows. 	

Together with Theorem 8 these results show the following.

Corollary 11. (a) There is an exponential trade-off for turning a rev-stl-det-
ORWW-automaton into an equivalent NFA.

(b) There is a double exponential trade-off for turning a rev-stl-det-ORWW-
automaton into an equivalent DFA.

5 Unary Languages

From Theorem 7 we know that a DFA with n states and an input alphabet of
size m can be converted into an equivalent rev-stl-det-ORWW-automaton that
has an alphabet of size n · (m+1). For an NFA with n states, we thus obtain an
equivalent rev-stl-det-ORWW-automaton with an alphabet of size 2n · (m + 1).
Here we prove that in the unary case, that is, if m = 1, we can do better.

Theorem 12. From an NFA A with n states that accepts a unary language
L(A), an equivalent rev-stl-det-ORWW-automaton M with an alphabet of size
O(n2) can be constructed.

72 F. Otto et al.

Proof. In [2] it is shown that each NFA with n states can be converted into an
equivalent NFA with O(n2) states that is in Chrobak normalform, which means
that the latter NFA consists of a chain of states of length at most n2 which leads
to a finite number of disjoint loops that have altogether at most n states.

So from A we first construct an NFA B = (S, {a}, s0, F, δB) in Chrobak
normalform, where S = C ∪P . Here C = {s0, c1, . . . , ck} is a chain of length k ≤
n2 and P =

⋃l
i=1 Pi, where, for i = 1, . . . , l, Pi = {(0, pi), (1, pi), . . . , (pi −1, pi)}

is a loop of length pi such that
∑l

i=1 pi ≤ n.
The tape alphabet of the rev-stl-det-ORWW-automaton M = ({a}, Γ,

�,�, δ, δR, >) is

Γ = {a} ∪ C ∪ (P × {<,>}) ∪ (P × {0, 1, . . . , l − 1}),

where the components {<,>} are used to locate the cell where the last rewrite
operation has been performed. We see that Γ contains O(n2) letters.

M works as follows. As long as B is still within the chain C, M processes the
input letter by letter from left to right by replacing each letter a by the state
which B reaches by reading the current input symbol:

δ(�aa) = c1 and δ(ciaa) = ci+1 for 1 ≤ i ≤ k − 1.

After each restart M has to find the next a. In addition, M must accept if
it reaches the right end in a final state:

δ(�c1a) = MVR,
δ(�c1c2) = MVR,

δ(cici+1ci+2) = MVR for 1 ≤ i ≤ k − 2,
δ(cici+1a) = MVR for 1 ≤ i ≤ k − 1,
δ(cici+1�) = Accept, if ci+1 ∈ F.

Clearly this part is reversible.
If the length of the input am exceeds the length k of the chain C, M

simulates the computations of B for all loops Pi, 1 ≤ i ≤ l, simultaneously.
For that l subsequent symbols (il, pl, zl), (il−1, pl−1, zl−1), . . . , (i1, p1, z1), where
zl, . . . , z1 ∈ {<,>}, are used to represent the states within the different loops
that B could be in. So for an input ak+l+r, M will reach the tape content

�c1 · · · ck(il, pl, zl)(il−1, pl−1, zl−1) · · · (i1, p1, z1)ar�

after k + l cycles. This is interpreted as follows: B is in the state (i1, p1) after
reading ak+l and using the first loop P1, it is in state (il−1, pl−1) after reading
ak+2 and using the loop Pl−1, and it is in state (il, pl) after reading ak+1 and
using the loop Pl. So the different possible ways B can use are tried sequentially
by M . The computation continues by shifting the information on the various
loops to the right step by step, beginning with the state of loop P1. Here the
third components zj ∈ {<,>} are used to indicate the position at which the

Reversible Ordered Restarting Automata 73

next rewrite must be performed. After processing another factor aj , the tape
contains the prefix �c1 · · · ck, which is followed by the factor

(il,0, pl, zl,0)(il,1, pl, zl,1) · · · (il,j , pl, zl,j)(il−1,j , pl−1, zl−1,j) · · · (i1,j , p1, z1,j),
which is followed by the suffix a · · · a�. The corresponding transitions are defined
as follows:

δ((i, pj , >)(i′, pj′ , >)a) = MVR,
δ((i, pj , >)(i′, pj′ , >)(i′′, pj′′ , >)) = MVR,
δ((i, pj , >)(i′, pj′ , >)(i′′, pj′′ , <)) = MVR, if pj′ �= pj′′ ,
δ((i, pj , >)(i′, pj′ , <)(i′′, pj′′ , <)) = (i′, pj′ , >),
δ((i, pj , >)(i′, pj′ , >)(i′′, pj′′ , <)) = (i + 1 mod pj , pj , <), if pj′ = pj′′ and i′ < l,
δ((i, pj , >)(i′, pj′ , >)(i′′, pj′′ , <)) = MVR, if pj′ = pj′′ and i′ = l,

δ((i, p1, >)aa) = (i + 1 mod p1, p1, <).

In the above situation there are two possibilities for further rewrite steps. If,
for each letter t = (i, pj , z) it holds that z =>, then the previous rewrite just
took place at the rightmost of these symbols, and the next rewrite operation has
to rewrite the first of the remaining letters a.

The other possibility is that there is exactly one position on the tape where
the components > and < are side by side, that is, there is a factor of the form t0t1,
where t0 = (i, pj , >) and t1 = (i′, p′

j , <). Then the next rewrite operation either
rewrites t0 or t1. If pj = p′

j and j < l, then M is in the process of shifting the
current cycle simulations one step to the right, and accordingly, the next rewrite
operation is applied to t0. Otherwise, M starts a new shifting process and so, it
must find the right end. Accordingly, the next rewrite operation is applied to t1.
Together with the fact that the previous inscription can be restored from the
information in the left and right neigbouring letters this ensures the property of
working reversibly. Of course, there must be special transitions for moving from
the chain states to the loop states of B, and also the special case of an empty
chain must be taken care of.

Finally, when the rewrites of M reach the right end of the tape, then it must
be checked whether at least one of these cycles accepts. For this, M sends a
signal to the left that tests, for one loop after another, whether it would lead to
acceptance at the right end of the input:

δ((i, p2, >)(i′, p1, >)�) = Accept, if (i′, p1) ∈ F,
δ((i, p2, >)(i′, p1, >)�) = (i′, p1, 0), if (i′, p1) �∈ F,
δ(s(i, pj , >)(i′, pj′ , r)) = Accept, if (i′ + r mod pj′ , pj′) ∈ F,
δ(s(i, pj , >)(i′, pj′ , r)) = (i, pj , r + 1), if (i′ + r mod pj′ , pj′) �∈ F,

where 1 ≤ j ≤ l, and s ∈ (P × {>,<}) ∪ C ∪ {�}.
Again this part is reversible, since the letter (i, pj , r), where the last rewrite

step has been executes, is the first one with a number r. If the input is not in
L(M), then none of these tests is successful. It follows that L(M) = L(B) = L(A)
holds. 	

74 F. Otto et al.

The main idea of the construction in the proof of Theorem 12 can be also used
to get an exponential lower bound for the conversion of a rev-stl-det-ORWW-
automaton into a DFA or an NFA. In [2] the simulation costs between DFAs
and NFAs and two-way DFAs (2DFAs) are investigated. In many cases an upper
bound for the simulation costs is given by the Landau function [8,9]

F (n) = max{ lcm(p1, p2 . . . , pl) | p1, p2, . . . , pl ≥ 1 and p1 + p2 + · · · + pl = n },

where lcm denotes the least common multiple. The best known approximation
for F is shown in [15]. Bounds derived from this result [3] are

F (n) ∈ Ω
(
e
√

n·ln(n)
)

and F (n) ∈ O
(
e
√

n·ln(n)(1+o(1))
)

.

It can be concluded from the results of [2] that a DFA as well as an NFA
needs at least F (n) states for accepting the language Ln = { am | m mod pi ≡
0 for all 1 ≤ i ≤ l }, where the pi are chosen such that p1, p2, . . . , pl ≥ 2, p1 +
p2 + · · · + pl ≤ n, and lcm(p1, p2, . . . , pl) = F (n).

We now modify the behavior of M from the proof of Theorem 12 so that it
accepts L with O(n) symbols. Again M simulates the computation of all loops
P1, P2, . . . , Pl. It works in the same way as above until the signal of p1 reaches the
right end, but then the modified M checks whether all of the l possible loops
fit the input. This can be achieved easily by a modification of the accepting
transitions. Thus, we have the following lower bound result.

Corollary 13. For each n ∈ N, there is a rev-stl-det-ORWW-automaton with
O(n) tape symbols that accepts a unary language L such that any DFA or NFA
for L needs at least F (n) states.

6 Conclusion and Open Problems

We have introduced a type of reversible stl-det-ORWW-automaton and shown
that it characterizes the regular languages. We have studied its descriptional
complexity by taking the size of the tape alphabet as the complexity measure for
such an automaton, and we have established an exponential (double exponential)
trade-off for turning a rev-set-det-ORWW-automaton into an equivalent NFA
(DFA). For the converse transformation we have an exponential upper bound
in the case of NFAs, and we have presented a transformation that turns any
stl-det-ORWW-automaton into an equivalent rev-stl-det-ORWW-automaton at
the cost of an exponential increase in size. However, the following questions are
still open:

1. What is the trade-off for turning a stl-det-ORWW-automaton into an equiv-
alent stl-det-ORWW-automaton that is reversible? In Theorem 3 an expo-
nential upper bound is given. Can this bound be improved, or is there a
matching lower bound?

Reversible Ordered Restarting Automata 75

2. What is the trade-off for turning an NFA into an equivalent rev-stl-det-
ORWW-automaton? Based on Theorem 7 we have an exponential upper
bound. Can this bound be improved, or is there a matching lower bound?

3. In the unary case we have a quadratic trade-off for turning an NFA into an
equivalent rev-stl-det-ORWW-automaton (Theorem 12). Is there a matching
lower bound?

References

1. Bennett, C.H.: Logical reversibiliy of computation. IBM J. Res. Dev. 17, 525–532
(1973)

2. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science
47, 149–158 (1986)

3. Ellul, K.: Descriptional complexity measures of regular languages. Master’s thesis,
University of Waterloo (2004)

4. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

5. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. System Sci.
78, 1814–1827 (2012)

6. Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. In: Bensch,
S., Freund, R., Otto, F., (eds.) Proc. Sixth Workshop on Non-Classical Models of
Automata and Applications (NCMA 2014), books@ocg.at, Band 304, pp. 163–178.
Oesterreichische Computer Gesellschaft, Wien (2014)

7. Kwee, K., Otto, F.: On some decision problems for stateless deterministic ordered
restarting automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol.
9118, pp. 165–176. Springer, Heidelberg (2015)

8. Landau, E.: Über die Maximalordnung der Permutationen gegebenen Grades.
Archiv. der Math. und Phys. 3, 92–103 (1903)

9. Landau, E.: Handbuch von der Lehre der Verteilung der Primzahlen, vol. I. Teub-
ner, Leipzig (1909)

10. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431–442. Springer, Heidelberg (2014)

11. Otto, F.: Restarting automata. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. Studies in Computational
Intelligence, vol. 25, pp. 269–303. Springer, Heidelberg (2006)

12. Otto, F.: On the descriptional complexity of deterministic ordered restarting
automata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 318–329. Springer, Heidelberg (2014)

13. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol.
583, pp. 401–416. Springer, Heidelberg (1992)

14. Pr̊uša, D.: Weight-reducing Hennie machines and their descriptional complexity.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)

15. Szalay, M.: On the maximal order in Sn and S∗
n. Acta Arithmetica 37, 321–331

(1980)

	Reversible Ordered Restarting Automata
	1 Introduction
	2 Stateless Deterministic Ordered Restarting Automata
	3 Reversibility for stl-det-ORWW-Automata
	4 Descriptional Complexity
	5 Unary Languages
	6 Conclusion and Open Problems
	References

