
Improved Algorithms for Debugging Problems
on Erroneous Reversible Circuits

Yuma Inoue1(B) and Shin-ichi Minato1,2

1 Graduate School of Information Science and Technology,
Hokkaido University, Sapporo-shi, Japan

yuma@ist.hokudai.ac.jp
2 JST ERATO MINATO Discrete Structure Manipulation System Project,

Sapporo-shi, Japan

Abstract. Reversible circuits and their synthesis methods have been
actively studied in order to realize reversible computation. However,
there are few known ways to debug erroneous reversible circuits. In this
paper, we propose new algorithms for debugging problems. For single
gate error, we improve the theoretical efficiency of previous methods,
which use worst case exponential time algorithms such as SAT or deci-
sion diagrams. We also propose an algorithm debugging multiple gate
error circuits by using πDDs, decision diagrams for permutation sets.
We evaluate our algorithms theoretically and experimentally, and con-
firm significant improvement.

Keywords: Reversible computation · Circuit design · Permutations ·
Algorithms · Decision diagrams · Dynamic programming

1 Introduction

Reversible computation is a fundamental technology for next generation com-
putation such as quantum computation [11] and optical computing [3].
Computation is reversible if we can determine an input pattern for a given output
pattern. This means reversible computation is information-lossless. Therefore,
reversible computation is also used for low power design [1,8].

Due to the reversible property, a reversible logic circuit has neither fan-
out nor feedback, i.e. formed as a cascade of reversible logic gates. This distin-
guishes synthesis of reversible circuits from irreversible ones, and attracts many
researchers to study synthesis approaches [2,4,9,13,16].

On the other hand, there are few results concerning debugging such circuits,
which is another important process to analyze reversible circuits. Wille et al. [17]
proposed the first algorithm to debug reversible circuits using SAT formu-
lation and solvers based on debugging techniques for irreversible circuits.
Frehse et al. [6] gave a simulation-based approach and combined it with
the SAT-based approach. Since their methods consider only a single gate
error, Jung et al. [7] proposed an extended approach for multiple gate errors.
c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 186–199, 2015.
DOI: 10.1007/978-3-319-20860-2 12

Improved Algorithms for Debugging Problems 187

Tague et al. [14] provided another approach for a single gate error using
πDDs [10], decision diagrams for permutation sets. However, there are two prob-
lems to be considered:

– These algorithms use exponential algorithms or data structures, i.e. they are
intractable in the worst case.

– These algorithms only detect error positions, i.e. cannot fix errors efficiently.

In this paper, we address these tasks with different approaches for a single
error and multiple errors, respectively. For a single error, we propose a theo-
retically improved debugging algorithm. This algorithm uses the lemma in [17],
which states correction is determined by function composition, and valid gate
checking algorithms. For multiple errors, we provide a dynamic programming
approach using πDDs. Although this algorithm has worst-case complexity sim-
ilar to the approach for a single error of Tague et al. [14], it can fix multiple
errors and debug them.

We evaluate the efficiency of our algorithms using computational experi-
ments. For single error circuits, our algorithm achieves a significant improvement
compared with previous approaches. For multiple error circuits, our algorithm
succeeds to fix errors with minimal corrections in circuits with few lines.

The remainder of this paper is organized as follows. Section 2 briefly reviews
reversible circuits and πDDs, which are used in our algorithm. In Section 3,
we define the problem of debugging single error circuits, review previous work,
and introduce our algorithm for debugging single error circuits. In Section 4,
we extend the debugging problem of single error circuits to multiple errors, and
provide our πDD-based debugging method. Experimental results to evaluate the
practical performance of our algorithms are in Section 5 and Section 6 concludes
this paper.

2 Preliminary

In this section, we review reversible functions and circuits before proceeding to
πDDs, which are used in both previous work and our proposed method.

2.1 Reversible Functions and Permutations

A function f : {0, 1}n → {0, 1}n is reversible if it is bijective, i.e., we can deter-
mine an input from the corresponding output. Hence, a function f is considered
as a permutation on {0, 1, . . . , 2n − 1}.

We define notations of permutations. A permutation on {0, 1, . . . ,m − 1},
m-permutation for short, is written in a one-line form π = π(0)π(1) . . . π(m−1).
The identity m-permutation is denoted by em, which satisfies em(i) = i for each
0 ≤ i ≤ m−1. We denote by π−1 the inverse permutation of π, which satisfies
π ∗ π−1 = π−1 ∗ π = em, where ∗ means composition of permutations: p = q ∗ r
means p(i) = r(q(i)) for all i.

188 Y. Inoue and S-i. Minato

x1

x2

x3 y3

y2

y1

0

0

1

0

1

1

1

1

1

1

1

0

g1 g2 g3

0
1

2
3

4

5
6
7

x1 x2 x3 y3y2y1

0 0 0
0 0
0 0
0

1
1
1 1
0 0
0

0
1

1
1 11

1
1
1

0 0 1
0 0 0

0 01
0 1 1

0 11
011

1 11
0 01

G = g1g2g3f

πf

: controls : targets

Fig. 1. Truth table of a reversible function f and a reversible circuit G realizing f

We denote by πf the permutation corresponding to f such that we con-
sider input and output bit vectors as binary representations of integers. For
example, πf corresponding to the reversible function f on the left of Fig. 1 is(

0 1 2 3 4 5 6 7
1 0 3 2 5 6 7 4

)
, which is briefly written as πf = 10325674.

2.2 Reversible Circuits and Gates

Reversible circuits realize reversible functions and consist of reversible gates.
A reversible circuit for an n-bit Boolean function has n lines as shown on the
right of Fig. 1. Reversible circuits have no fan-out or feedback due to their
reversible properties. Therefore, a reversible circuit is a cascade of reversible
gates. Several reversible gates have been invented to synthesize reversible cir-
cuits, such as Toffoli [15], Fredkin [5], and Peres [12] gates. In this paper, we
focus on Toffoli gates.

Let L = {1, . . . , n} be a set of lines. Toffoli gates have multiple (possibly
zero) control lines C = {c1, . . . , ck} ⊂ L and one target line t ∈ L \ C. For
example, the Toffoli gate g3 in Fig. 1 has the control lines C = {1, 3} and the
target line t = 2. A Toffoli gate inverts the target line when all control lines are 1.
Let xi and yi be the i-th line’s input and output of a Toffoli gate, respectively.
Then, we formally define Toffoli gates as follows:

yt = xt ⊕ xc1 · · · xck ,

yi = xi if i �= t.

Since a Toffoli gate itself represents a reversible function, we can represent the
function corresponding to a Toffoli gate as a permutation. We denote by πg the
permutation corresponding to a gate g as well as a reversible function. Then the
permutation representation πG of the function realized by a reversible circuit
G = g1 · · · gd equals πg1 ∗ · · · ∗ πgd .

2.3 πDD

First, we define a transposition τi,j as the permutation such that τi,j(i) = j
and τi,j(j) = i, but τi,j(k) = k for other k. Any n-permutation can be uniquely

Improved Algorithms for Debugging Problems 189

1

1

0

0 τ1,4

τ3,4

τ2,3 τ1,2

Fig. 2. The πDD representing
{2431, 4231, 1423} = {τ1,2 ∗
τ1,4, τ1,4, τ2,3 ∗ τ3,4}

(1) sharing rule (2) deleting rule

τx,y τx,y τx,y τx,y

P0 P1 P0 P1 P0

P0

0 10 1

Fig. 3. Two reduction rules of πDDs

decomposed into a composition of at most n − 1 transpositions by the following
algorithm: we start with en and repeat swaps to move π(k) to the k-th position
in its one line form, where k runs from right to left.

A πDD is a rooted directed graph representing a set of permutations com-
pactly, and has efficient set operations for permutation sets [10]. πDDs consist
of five components: labeled internal nodes, 0-edges, 1-edges, the 0-sink, and the
1-sink. Fig. 2 shows an example of a πDD. Each internal node has exactly two
edges, a 0-edge and a 1-edge. Each path to the 1-sink in a πDD represents a
permutation in the set represented: if a 1-edge originates from a node with label
τx,y, the decomposition of the permutation contains τx,y, while a 0-edge means
that the decomposition excludes τx,y.

A πDD becomes a compact and canonical form by fixing its transposition
order and applying the following two reduction rules (Fig. 3):

(1) sharing rule: share all nodes which have the same labels and child nodes.
(2) deleting rule: delete all nodes whose 1-edge points to the 0-sink.

In many practical cases, πDDs demonstrate high compression ratio, although
πDD size (i.e. the number of nodes) in the worst case is exponential in the length
of permutations.

In addition, πDDs support efficient set operations such as union and inter-
section on permutation sets. In particular, Cartesian product operation P × Q,
which returns the union set of compositions of all pairs p ∈ P and q ∈ Q, is
important and useful for our algorithm to be described later. Since the compu-
tation time of these operations depends on the size of πDDs, compactness helps
to speed-up πDD operations.

3 Debugging Single Error

We define the single error debugging problem of reversible circuits. Let f :
{0, 1}n → {0, 1}n be a reversible function and G = g1 · · · gd be a reversible
circuit with n lines such that πG = πf . We define G′ to be a single error circuit
for f if πG′ �= πf and G′ has:

190 Y. Inoue and S-i. Minato

x1 x2 x3 y3y2y1

0 0 0
0 0
0 0
0

1
1
1 1
0 0
0

0
1

1
1 11

1
1
1

1
0 0 0

0 1
0 1

01
01

11
01

f

11

0
1
0

0
0
1

x1

x2

x3 y3

y2

y1
g1 g2 g3 g4 g5 g6

G

x1

x2

x3 y3

y2

y1
g1 g2 g3 g4 g5 g6

x1

x2

x3 y3

y2

y1
g1 g3 g4 g5 g6g2

g

Fig. 4. An erroneous circuit G′ and two fixed circuits realizing f

– a replaced error: there is a gate g′ �= gi s.t. G′ = g1 · · · gi−1g
′gi+1 · · · gd,

– an inserted error: there is a gate g′ s.t. G′ = g1 · · · gi−1g
′gigi+1 · · · gd, and

– a removed error: G′ = g1 · · · gi−1gi+1 · · · gd.
The goal of the single error debugging problems is to find the position of

an error in an erroneous circuit G′ and fix it in order to realize f correctly. We
note that even if the number of embedded errors is only one, sometimes there
are several ways to debug the circuit. For example, Fig. 4 describes an erroneous
circuit G′ and an objective function f . At this instance, we have the two ways
to debug G′: replacing g2 with g′

2 or inserting g′ between g3 and g4. In general,
we cannot determine which of them the original error is. Therefore, we set our
goal to list all ways to debug G′.

3.1 Related Work

Wille et al. proposed a debugging method using SAT solvers [17]. They used
SAT (Boolean satisfiability) formulation for debugging problems and solved it
with SAT solvers. This method has three problems to be overcome:

– There are O(nd) variables in SAT formula. Though state-of-the-art SAT
solvers work practically fast, solving SAT is believed to require exponential
time in the worst case. This is therefore not scalable for a large d.

– Their method can find only error candidates, which may include non-errors.
– Their method can debug only a replaced error.

We also note that this method requires verification preprocess to obtain some
counterexamples.

Frehse et al. provided a simulation-based debugging algorithm [6]. Their
method eliminates error candidates based on the fact that an error gate must be

Improved Algorithms for Debugging Problems 191

activated (i.e. all the inputs of control lines are 1) for all counterexamples. This
method is fast because it runs in linear time with respect to the number of gates
and lines. However, outputs of this method also can contain non-errors, since
the activation property is a necessary condition but not a sufficient condition.

Tague et al. gave a debugging method using πDDs for a removed error [14].
They considered a gate as a permutation, and used πDDs to represent the set of
gates. They insert a πDD into an erroneous circuit G′ as an arbitrary gate, and
calculate the compositions by Cartesian product operations. If the compositions
contain πf , it means G′ has a removed error. This method also has two problems:

– The size of πDDs for a set of N -permutations is O(2N
2
), and now N = 2n.

It is not scalable for even small n.
– Their method can detect an error but cannot find its position and fix it.

In the next subsection, we provide an algorithm overcoming these problems.
More precisely, we propose a worst-case O(n2nd) time algorithm, which can find
and fix all the three types of errors.

3.2 Proposed Method for Single Error

Our method is based on Lemma 3 in [17]:

Theorem 1 (Lemma 3 in [17]). Let F be an error-free circuit of a reversible
function and G = G1giG2 be an erroneous circuit of F . Then G can be fixed by
replacing any gate gi of G with a cascade of gates Gfix

i = G−1
1 FG−1

2 .

This theorem states that, if Gfix
i can be represented by a Toffoli gate, the

i-th gate is a replaced error and we can fix it by replacing it with the Toffoli
gate corresponding to Gfix

i . Hereafter, we assume the objective function f and
each gate gi are represented as permutations, and a cascade of gates means
the composition of permutations. Then the single replaced error circuit problem
can be solved as follows: checking whether Grep

i = g−1
i−1 · · · g−1

1 fg−1
d · · · g−1

i+1 can
be represented as a single Toffoli gate for all 1 ≤ i ≤ d. Similarly, debugging
problems for other types of errors can be solved too:

– an inserted error: checking whether Gins
i = g−1

i−1 · · · g−1
1 fg−1

d · · · g−1
i+1 can be

represented as an identity permutation e2n for all 1 ≤ i ≤ d.
– a removed error: checking whether Grem

i = g−1
i · · · g−1

1 fg−1
d · · · g−1

i+1 can be
represented as a single Toffoli gate for all 0 ≤ i ≤ d.

Note that the position of a removed error is between two gates or two ends. We
say a removed error occurs at the 0-th position if the error position is the left g1,
and at the i-th position if the error position is the right of gi.

We let N = 2n for brevity. If we had an O(h(n)) time algorithm checking
whether a given permutation represents a Toffoli gate, we could solve the single
error circuit problem in O(d(Nd+h(n))) by calculating the products Grep

i , Gins
i ,

and Grem
i of O(d) N -permutations and running a checking algorithm for all

0 ≤ i ≤ d. We can improve this complexity by using the following properties:

192 Y. Inoue and S-i. Minato

– Grep
i = Gins

i ,
– Grem

i = g−1
i Gins

i ,
– Gins

i = Grem
i−1 gi.

That is, incremental calculation of Gx
i from Gy

i−1 costs only O(N) time, hence
we can solve a single error circuit problem in O(d(N +h(n))). Algorithm 1 gives
the entire procedure.

Algorithm 1. Debugging single error circuits
1: procedure DebugSingleError(f, G)
2: Grem

0 ← fg−1
d g−1

d−1 · · · g−1
1

3: if isToffoli(Grem
0) then

4: Report a removed error: the gate Grem
0 is removed at the 0-th position.

5: end if
6: for i = 1 to d do
7: Gins

i ← Grem
i−1 gi

8: if Gins
i = eN then

9: Report an inserted error: gi is an extra gate.
10: else if isToffoli(Gins

i) then
11: Report a replaced error: gi should be replaced by Gins

i .
12: end if
13: Grem

i ← g−1
i Gins

i

14: if isToffoli(Grem
i) then

15: Report a removed error: the gate Grem
i is removed at the i-th position.

16: end if
17: end for
18: end procedure

The Toffoli gate checking problem is also solved in O(nN) time by Algo-
rithm 2. A permutation representing a Toffoli gate works as a transposition
between integers a and b if a and b differ exactly a target bit and their bits in
a control bit set are all 1. Lines 3–22 of Algorithm 2 identify control lines and
a target line, eliminating cases not satisfying necessary conditions. Lines 24–31
check whether control lines and a target line work as an expected Toffoli gate.
This algorithm works as not only a check but also an identification of the corre-
sponding Toffoli gate. That is, we can directly debug G′ using the Toffoli gate.
It costs O(nN) time and therefore we can solve the single error circuit problem
in O(nNd) time.1

We can design checking algorithms for Fredkin gates and Peres gates sim-
ilarly. Generally speaking, given a set of gates, we can solve the single error
circuit problem in O(d(N + h(n))) time if we have an O(h(n)) time checking
algorithm for the gates. We also can easily adapt to deal with negative control
1 If we assume w-bit word RAM model, we can improve it to O(� n

w
�Nd) by adopting

bit parallel techniques to manage control lines C.

Improved Algorithms for Debugging Problems 193

lines. A Toffoli gate with positive and negative control lines inverts its output of
the target line when the inputs of the positive controls are all 1 and the negative
controls are all 0.

Algorithm 2. Checking whether a given permutation represents a Toffoli gate.
1: procedure isToffoli(π)
2: C ← {1, . . . , n}, T ← φ
3: for i = 0 to N − 1 do
4: if ππi �= i then � πi is neither i nor swapped with ππi

5: return False
6: end if
7: if i and πi are swapped then
8: if i and πi differ only the j-th bit in binary then
9: T ← T ∪ {j}

10: if |T | > 2 then � there are two or more candidates of target lines
11: return False
12: end if
13: else � there are two or more candidates of target lines
14: return False
15: end if
16: for j = 1 to n do
17: if the j-th bit of i in binary is 0 then
18: C ← C \ {j} � eliminate candidates of control lines
19: end if
20: end for
21: end if
22: end for
23: � The Toffoli gate corresponding to π must have controls C and a target t ∈ T
24: for i = 0 to N − 1 do
25: if ∀j ∈ C, the j-th bit of πi in binary is 1, but πi = i then
26: return False � all controls are 1 but the target is not inverted
27: end if
28: if ∃j ∈ C, the j-th bit of πi in binary is 0, but πi �= i then
29: return False � some controls are 0 but the target is inverted
30: end if
31: end for
32: return True
33: end procedure

4 Debugging Multiple Errors

We extend single error circuit problems to multiple error circuit problems. We
define that k-error circuits are circuits including k errors. Note that k errors can
consist of different kinds of errors; replaced errors, inserted errors, and removed
errors can be mixed together. We also note that k-error circuits may be debugged
by less than k corrections. For example, two inserted errors of a same Toffoli

194 Y. Inoue and S-i. Minato

gate at adjacent positions need not to be debugged, in other words these can be
debugged by 0 corrections. In multiple error circuit problems, we set our goal to
find minimum corrections.

4.1 Related Work

Jung et al. [7] proposed a SAT based debugging algorithm for multiple errors,
which is an extension of [6]. They used pruning based on hitting set problems
and encoded it into SAT formulation. Although their method can process large
circuits, it has two problems to be considered:

– Their method can debug only replaced errors.
– Their method can detect only error candidates, which includes non-errors

and cannot fix them directly.

In this section, we try to overcome these problems.

4.2 Näıve Extension of Existing Method

Our proposed method for k-error circuits is derived from Tague’s πDD-based
approach for single error circuits [14]. For an inserted error, this approach tries
to insert a πDD representing usable gates into all possible positions. It can be
easily extend to replaced errors and removed errors. If we insert (or replace,
remove) k πDDs as sets of usable gates at all possible positions for each, we
can detect all error positions and error types. However, there are the following
problems:

– The number of all combinations of k positions are
(
d
k

)
= O(dk). Furthermore,

we consider 3 types of errors for each position, i.e. there are 3k ways of
combinations of error types. That is, this algorithm requires O(3kdk+1) πDD
operations.

– All error positions are can be detected, but correct gates for replaced errors
and removed errors cannot be determined.

We attack these problems with our algorithm proposed in the next subsection.

4.3 Proposed Method for Multiple Errors

We propose a debugging algorithm requiring only O(dk) πDD operations2 for k-
error circuits. Our approach uses dynamic programming calculating Si,j , defined
as a set of permutations representing functions which can be realized by the first
j gates with i errors. The minimum x such that πf ∈ Sx,d is the size of minimum
corrections. We can calculate Si,j by the following recurrence relations:

S0,0 := φ,

Si,j := (Si,j−1 × {gj}) ∪ (Si−1,j−1 × L) ∪ (Si−1,j × L) ∪ Si−1,j−1,

2 Note that each πDD operation costs exponential time in N2 in the worst case.

Improved Algorithms for Debugging Problems 195

where L is a set of usable gates, which are Toffoli gates in this paper. The first
term represents non-error, the second one represents a replaced error, the third
one represents an inserted error, and the last one represents a removed error.

Since each Si,j is a set of permutations, we can use πDDs to represent them.
Further, calculation of recurrence relations requires only permutation set alge-
bra such as union and Cartesian product, which are supported by πDDs. Each
calculation of Si,j requires at most a constant number (i.e. 6) of operations.
Hence this algorithm takes only O(dk) πDD operations. In addition, we can cal-
culate this recurrence relation by incrementing k. This means if the minimum
corrections of a given k-error circuit is k′, this algorithm only costs O(dk′) πDD
operations, instead of O(dk).

This algorithm can determine the minimum corrections, but cannot identify
error positions and types yet. Error identification can be realized by starting from
Sk′,d with πf and reversely traversing to S0,0. For example, if we now consider
Si,j with πx and ({πx} × L−1) ∩ Si−1,j−1 �= φ, an replaced error is detected at
position j. Furthermore, let πy ∈ ({πx}×L−1)∩Si−1,j−1, we identify the original
gate is πx ∗ π−1

y . We then restart reverse traversal from Si−1,j−1 with πy until
the first index is not 0.

5 Experiments

We implemented all algorithms in C++3 and carried out experiments on a
3.20GHz CPU machine with 64GB memory. We randomly generate d Toffoli
gates with n lines and concatenate them to make correct reversible circuits G.
We prepare objective functions f for each circuit by simulating the circuit. Next,
we generate erroneous reversible circuits G′ with k errors based on correct cir-
cuits: we randomly select a position and replace with a random gate, insert a
random gate, or remove a gate k times.

Our implementation uses f and G′ as inputs. For single error circuits, our
implementation detects all corrections but only outputs the number of ways of
corrections in order to reduce I/O time. For multiple error circuits, since the
way of minimum corrections can be huge, our implementation detects only one
way of minimum corrections and outputs it.

5.1 Experiments for Single Error

Computation time of Algorithm 1 for single error circuits (i.e. k=1) is shown
in Table 1. This table shows that our algorithm is linear with the number of
gates d and almost exponential with the number of lines n. It agrees with the
theoretical complexity of our algorithm analyzed in Section 3.

In [17], the SAT solver-based algorithm takes about 2000 seconds or more
for n ≥ 8 and d ≥ 5000 circuits. On the other hand, our algorithm takes under
3 Note that our implementation of Algorithm 2 uses bitwise operations of 64-bit integer

(unsigned long long int in C++) to manage control lines C.

196 Y. Inoue and S-i. Minato

Table 1. Computation time (seconds) for single error circuits

d
10 50 100 500 1000 5000 10000 50000 100000

n

2 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.10
4 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.09 0.17
6 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.12 0.24
8 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.21 0.41

10 0.00 0.00 0.01 0.01 0.01 0.05 0.11 0.54 1.08
12 0.00 0.00 0.01 0.03 0.04 0.21 0.40 2.05 3.99
14 0.01 0.02 0.04 0.20 0.38 1.90 3.78 8.83 17.64
16 0.03 0.10 0.19 0.89 1.75 8.78 17.61 87.71 149.00
18 0.16 0.52 1.03 4.81 9.46 48.37 97.47 493.42 987.10
20 0.60 1.87 3.88 18.28 35.90 187.28 377.66 — —

1 second for circuits of such scale. Further, in [14], the πDD-based algorithm
takes more than 100 seconds for n ≥ 4 and d ≥ 1000 cases, while our algorithm
takes under 0.01 seconds for these cases. This significant improvement is likely
due to the theoretical improvement of our algorithm, and not simply to hardware
and test case differences.

The simulation-based approach proposed by Frehse et al. in [6] seems to be
faster than or equal to our algorithm: Their method completed simulation to
detect error candedates in 20 seconds for the n = 15 and d = 716934 circuit.
However, their method output over 30000 error candidates, which is impractical
to check manually. In contrast, our algorithm returned only one correction for
the n = 16 and d = 100000 erroneous circuit embedded a replaced error.

5.2 Experiments for Multiple Errors

We also carried out experiments for multiple error circuits. We randomly embed-
ded k errors in circuits consisting of d gates with n lines. Figs. 5–8 show experi-
mental results for 1-, 2-, 3-, and 4-error circuits, respectively.

For 1-error circuits in Fig. 5, i.e. single error circuits, our πDD-based algo-
rithm can perform in 1000 seconds for n = 5 and d = 600 circuits. For 2-error
circuits in Fig. 6, however, all cases with n = 5 are time-outs even at d = 50.
Almost all n = 4 cases also time-out; the algorithm can debug up to 100-gate
circuits. Results in [7] show that the SAT based method is more scalable: e.g. this
method can process n = 8 and d = 637 circuits in about 300 seconds. However,
outputs of this method can include non-errors, and cannot fix them automati-
cally. On the other hand, our method can fix them. For sufficiently small circuits,
our method can provide richer debugging information.

Results of 3- and 4-error circuits in Figs. 7 and 8. Our algorithm seems to
be enough scalable for the circuits with n ≤ 3. Debugging time for 3-errors and
one of 4-errors seems similar. This is because in random circuits we prepared,
the minimum correction of n = 2 circuits is usually 1, and for n = 3 circuits is

Improved Algorithms for Debugging Problems 197

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000

ru
nt
im

e
(s
ec
)

the number of gates d

n = 2
n = 3
n = 4
n = 5

Fig. 5. Runtime for debugging 1-
error circuits

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000

ru
nt
im

e
(s
ec
)

the number of gates d

n = 2
n = 3
n = 4

Fig. 6. Runtime for debugging 2-
error circuits

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

ru
nt
im

e
(s
ec
)

the number of gates d

n = 2
n = 3

Fig. 7. Runtime for debugging 3-
error circuits

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

ru
nt
im

e
(s
ec
)

the number of gates d

n = 2
n = 3

Fig. 8. Runtime for debugging 4-
error circuits

usually 2, regardless of the number of embedded errors. In Fig. 8, d = 50 and
d = 500 in n = 3 cases seem to be somehow outliers. It is true; the minimum
correction size of the d = 50 circuit is 3, and for d = 500 circuit it is 1.

These results indicate that the minimum correction and the number of lines
exponentially affect computation time. On the other hand, the number of gates
seems to affect linearly for small gates (n = 2, 3), but affect quadratically or
exponentially for slightly larger gates (n = 4, 5).

6 Concluding Remarks

For debugging erroneous reversible circuits, we propose two kinds of algorithms.
The first one is an efficient method for circuits having at most one error. This
method uses permutation properties of reversible gates and gate checking algo-
rithms. This method can handle more general gate library by designing gate
checking algorithms. The efficient performance of this method is shown the-
oretically and experimentally, comparing with existing methods. The second
algorithm can debug multiple error circuits based on a dynamic programming
approach and πDDs. Although the scalability of this algorithm is exponentially

198 Y. Inoue and S-i. Minato

worse than the first one, the algorithm enables us to debug more general erro-
neous reversible circuits.

For future work, we would like to modify the first algorithm to handle circuits
with garbage output lines. Garbage lines can output arbitrary values, i.e. mul-
tiple permutations can realize desired behavior. This means that multiple Gi’s
should be considered. Of course πDDs can handle this, but such an algorithm
will lose the efficiency of our first approach.

For multiple errors, more scalable algorithms are desirable. We are also inter-
ested in expected sizes of minimum corrections for circuits with n lines, d gates,
and k randomly-embedded errors. From experimental results, we guess that min-
imum correction tend to become relatively small with the number of embedded
errors. If we show that the size is sufficiently small with high probability, perhaps
we need not to consider debugging circuits with a large number of errors.

Acknowledgments. We would like to thank Dr. Mathias Soeken and Dr. Robert
Wille for valuable discussion and feedback to write this paper.

References

1. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483(7388), 187–189 (2012)

2. Chattopadhyay, A., Majumder, S., Chandak, C., Chowdhury, N.: Construc-
tive reversible logic synthesis for boolean functions with special properties. In:
Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 95–110. Springer,
Heidelberg (2014)

3. Cuykendall, R., Andersen, D.R.: Reversible optical computing circuits. Optics
Letters 12(7), 542–544 (1987)

4. Donald, J., Jha, N.K.: Reversible logic synthesis with Fredkin and Peres gates.
ACM Journal on Emerging Technologies in Computing Systems (JETC) 4(1), 2
(2008)

5. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical
Physics 219–253 (1982)

6. Frehse, S., Wille, R., Drechsler, R.: Efficient simulation-based debugging of
reversible logic. In: the 40th IEEE International Symposium on Multiple-Valued
Logic (ISMVL), pp. 156–161 (2010)

7. Jung, J.C., Frehse, S., Wille, R., Drechsler, R.: Enhancing debugging of multiple
missing control errors in reversible logic. In: the 20th symposium on Great Lakes
symposium on VLSI (GLVLSI), pp. 465–470. ACM (2010)

8. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development 5(3), 183–191 (1961)

9. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible
toffoli networks. ACM Transactions on Design Automation of Electronic Systems
(TODAES) 12(4), 42 (2007)

10. Minato, S.: πDD: a new decision diagram for efficient problem solving in permu-
tation space. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695,
pp. 90–104. Springer, Heidelberg (2011)

Improved Algorithms for Debugging Problems 199

11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2010)

12. Peres, A.: Reversible logic and quantum computers. Physical Review A 32(6), 3266
(1985)

13. Rahman, M.Z., Rice, J.E.: Templates for positive and negative control toffoli net-
works. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 125–136.
Springer, Heidelberg (2014)

14. Tague, L., Soeken, M., Minato, S., Drechsler, R.: Debugging of reversible circuits
using πDDs. In: the 43rd IEEE International Symposium on Multiple-Valued Logic
(ISMVL), pp. 316–321. IEEE (2013)

15. Toffoli, T.: Reversible Computing. Springer (1980)
16. Wille, R., Große, D., Dueck, G.W., Drechsler, R.: Reversible logic synthesis with

output permutation. In: the 22nd International Conference on VLSI Design,
pp. 189–194. IEEE (2009)

17. Wille, R., Große, D., Frehse, S., Dueck, G.W., Drechsler, R.: Debugging of Toffoli
networks. In: The Conference on Design. Automation and Test in Europe (DATE),
pp. 1284–1289. European Design and Automation Association, IEEE (2009)

	Improved Algorithms for Debugging Problems on Erroneous Reversible Circuits
	1 Introduction
	2 Preliminary
	2.1 Reversible Functions and Permutations
	2.2 Reversible Circuits and Gates
	2.3 DD

	3 Debugging Single Error
	3.1 Related Work
	3.2 Proposed Method for Single Error

	4 Debugging Multiple Errors
	4.1 Related Work
	4.2 Naïve Extension of Existing Method
	4.3 Proposed Method for Multiple Errors

	5 Experiments
	5.1 Experiments for Single Error
	5.2 Experiments for Multiple Errors

	6 Concluding Remarks
	References

