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Preface

This volume contains the proceedings of RC 2015, the 7th International Conference on
Reversible Computation. RC 2015 took place during July 16–17, 2015, in Grenoble,
France, and was hosted by Inria, the French National Research Institute on Computer
Science and Control, at its Grenoble research center.

RC 2015 was the seventh event in a series of annual meetings designed to gather
researchers from different scientific disciplines for the discussion and dissemination of
recent developments in all aspects of reversible computation. Reversible computation
refers to computing models where computational processes are in some sense reversible,
whether in a physical sense (e.g., as in isentropic processes) or logical (e.g., as in undoable
or invertible programs). Reversible computation ideas have appeared in a broad range of
areas, including, for instance, low-power circuit design, quantum computing,
coding/decoding, program debugging, scientific computation, discrete event simulation,
database systems, robotics, and the modeling of biochemical systems. Previous RC events
took place in York, UK (2009), Bremen, Germany (2010), Ghent, Belgium (2011),
Copenhagen, Denmark (2012), Victoria, Canada (2013), and Kyoto, Japan (2014).

The RC 2015 conference included two invited talks by Vincent Danos and Elham
Kashefi, and six technical sessions. RC 2015 attracted 30 submissions. All papers were
reviewed by three members of the Program Committee or their designated
sub-reviewers. From these, the Program Committee selected 15 full papers and four
short papers for inclusion in these proceedings and for presentation at the conference.

We would like to thank all who contributed to making RC 2015 a successful event:
the authors for submitting the results of their research to RC 2015; our two invited
speakers for their inspiring talks and their time; the Program Committee of RC 2015 and
their sub-reviewers for their hard work under tight time constraints, and their dedication
to the quality of the conference; the Steering Committee of the Reversible Computation
series, with special mention of Irek Ulidowski and Robert Wille, for their guidance and
wisdom; the attendees of the events for their interest in the presentations and the con-
structive discussions; the people at the University of Bremen for running the conference
website and dealing with the publicity aspects, with special thanks to Lisa Jungmann
and Robert Wille; the people at Inria Grenoble for taking care of the organization of the
event and the myriad details that go into it, with special thanks to Sophie Azzaro,
Martine Consigney, Alain Kersaudy, Clara Peuget, and Vanessa Peregrin.

We benefited greatly from the EasyChair conference management system, which
simplified greatly the handling of the submission, review, discussion, and proceedings
preparation processes. Finally we would like to express our appreciation to Inria for
supporting RC 2015.

July 2015 Jean Krivine
Jean-Bernard Stefani
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Moment Semantics for Reversible
Rule-Based Systems

Vincent Danos1(B), Tobias Heindel2, Ricardo Honorato-Zimmer2,
and Sandro Stucki3

1 Département d’Informatique, École Normale Supérieure, Paris, France
vincent.danos@gmail.com

2 School of Informatics, University of Edinburgh, Edinburgh, UK
3 Programming Methods Laboratory, EPFL, Lausanne, Switzerland

Abstract. We develop a notion of stochastic rewriting over marked
graphs – i.e. directed multigraphs with degree constraints. The approach
is based on double-pushout (DPO) graph rewriting. Marked graphs are
expressive enough to internalize the ‘no-dangling-edge’ condition inher-
ent in DPO rewriting. Our main result is that the linear span of marked
graph occurrence-counting functions – or motif functions – form an alge-
bra which is closed under the infinitesimal generator of (the Markov chain
associated with) any such rewriting system. This gives a general proce-
dure to derive the moment semantics of any such rewriting system, as
a countable (and recursively enumerable) system of differential equat-
ions indexed by motif functions. The differential system describes the
time evolution of moments (of any order) of these motif functions under
the rewriting system. We illustrate the semantics using the example of
preferential attachment networks; a well-studied complex system, which
meshes well with our notion of marked graph rewriting. We show how
in this case our procedure obtains a finite description of all moments of
degree counts for a fixed degree.

Keywords: Stochastic processes · Moment semantics · Reversible
Computing · Graph rewriting · Rule-based systems

1 Introduction

To explain the purpose of this paper, we start with a simple case of stochastic
Petri net (PN) using the following pair of reactions:

A
k0−−⇀ 2A (ρ0)

A
k1−−⇀ ∅ (ρ1)

This work was sponsored by the European Research Council (ERC) under the grants
DOPPLER (587327) and RULE (320823).

c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 3–26, 2015.
DOI: 10.1007/978-3-319-20860-2 1



4 V. Danos et al.

The PN has a single species (or place) A and two reactions (or transitions)
modelling the birth and death of cells. Given a mother cell, reaction ρ0 will
produce one daughter cell. Reaction ρ1 models the death of cells. The firing rate
of the reactions is given by the law of mass action and depends on the number N
of cells present in the system as well as the rate constants k0, k1 of the reactions:

θ0 = k0N, θ1 = k1N.

The physical interpretation of the law of mass action states roughly that the
propensity of a reaction is proportional to the concentration of the reactants,
that is, the occupants of the left-hand side (LHS) of the reaction. We get a
more computational interpretation by treating reactions such as ρ0 and ρ1 as
rewrite rules over the state space of the PN. In order to apply a rule, we first
need to pattern-match its LHS against the current state of the PN. The PN
itself can then be seen as a labelled transition system, where transitions are rule
applications, that is, they are identified by a rule together with an associated
match of the LHS in the current state. If we assign the same constant transition
rate to all applications of a given rule, the overall firing rate of that rule is exactly
the product of said rate constant and the number of matches of the LHS in the
current state. Returning to our birth and death model, the activity of the rule ρ0
is k0 times the number of ways one can match a single cell in a population of N ,
which is just k0N . These transitions and associated rates define a continuous-
time Markov chain (CTMC), which provides the stochastic semantics of the PN.
The CTMC is often expressed as a so-called master equation (ME), a system of
differential equations describing the time evolution of the probability of finding
the PN in a particular state [27].

As far as PNs go, the birth and death model is simple. Yet, because ρ0 creates
cells, its state space is countably infinite, and so is the number of equations in the
ME. Nonetheless, the average evolution of the number of cells can be compactly
described by the single rate equation (RE)

d
dt E(N) = k0 E(N) − k1 E(N).

Indeed, the average occurrence count of any species in a given PN can always be
approximated by a finite set of REs, providing us with a differential semantics
for PNs [17,27].

1.1 Our Goal

In this paper, we wish to investigate similar REs but for models of dynamic
networks that are more richly structured than PNs. We are looking for the
following two ingredients:

1. a simple formal language that is flexible enough to capture a broad class of
network dynamics

2. a method to generate REs for motif functions for any model of the above
class
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Regarding point 1, we propose a notion of stochastic marked graph rewriting
which follows the general guidelines of the theory of graph transformation sys-
tems (GTS) [6,7,15,16,25,29]. Stochastic processes are modelled as rewrite rules
over directed multigraphs with marks allowing for pre- and post-conditions on
node degrees. Marked graphs double as a simple query language for identifying
subgraphs subject to degree constraints. This provides a formal modeling frame-
work in which we develop the method of point 2. We show how to generate (in
general) countable systems of ordinary differential equations (ODEs) describing
the mean evolution of marked graph motifs counts, or any higher-order statistics
thereof. In fact, these ODEs completely describe the dynamics of the moments of
marked graph observables. We therefore refer to them as the moment semantics
of the rewrite system.

1.2 Preferential Attachment

We can elaborate on our basic birth and death model to illustrate these ideas. In
the following, unless stipulated otherwise, graph is short for directed multigraph.

We start by endowing the model with a network structure. While the PN
model allows us to track the evolution of a population over time, it does not cap-
ture mother-daughter relationships among cells. We now extend the PN model
to a simple GTS that will do exactly that. The state of the PN is replaced by
a directed multigraph with cells as nodes and edges pointing from daughters
to mothers; the reactions of the PN are replaced by graph rewrite rules. This
extension allows us to track “genealogical patterns” such as the number of sibling
relationships. The updated rules of the birth and death model are

A
k0−−⇀ A � A′ (α0)

A
k1−−⇀ ∅ (α1)

The birth rule α0 introduces a new node A′ (the daughter indicated by a prime)
and a new edge A � A′ representing the mother-daughter relationship; the
death rule α1 is identical to its counterpart ρ1 from the PN model.

We can express sibling relationships through the motif

A′
� A � A′′

Tracking the number of such motifs amounts to counting the number of sub-
graphs in the state of our system that are isomorphic to the sibling graph.

So far, the sole purpose of edges in our model is to track relationships. This
does not do justice to the expressive power of our rewrite formalism. In particu-
lar, there is no reason edges should not also influence the dynamics of the model.
Let us add a third rule to illustrate this principle.

A′
� A

k2−−⇀ A′
� A � A′′ (α2)

On their own, the rules α0, α1 model the evolution of a culture of rather uniform
cells: any cell can divide or die at any time. Rule α2, on the other hand, reflects
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the fact that some cells may be more prolific than others: if a cell already has a
daughter, it is likely to divide again. This positive feedback, known as preferential
attachment (PA) or the Matthew effect, appears in many real-world complex
systems and has been extensively studied [3,4,11,12].

At a first glance, the preferential attachment rule α2 looks rather innocuous.
It seems to be just a special case of the birth rule α0. However, having a closer
look at the right-hand side (RHS) of α2, we realise that this rule directly creates
siblings. Hence, we should expect a high k2/k0 ratio to increase the occurrence
of siblings dramatically.

Just as for the simpler PN system, we can employ an RE to describe the
evolution of the average number of sibling relationships over time. The RE con-
sists in the following system of ordinary differential equations (ODE), with S, N
and E counting siblings, cells (single nodes) and mother-daughter relationships
(single edges), respectively:

d
dt E(S) = 2(k0 + k2)E(E) + 2k2 E(S) − 3k1 E(S)
d
dt E(N) = k0 E(N) + k2 E(E) − k1 E(N)
d
dt E(E) = k0 E(N) + k2 E(E) − 2k1 E(E)

It is easy enough to convince ourselves that (in the absence of parallel edges) this
system of ODEs does indeed describe the evolution of the preferential attach-
ment process: the equations for N and E follow the law of mass action (modulo
symmetry factors); the equation for S essentially says that one needs to create
daughters in order to create siblings. Note also the positive feedback of E on
itself: thanks to the positive dependency of S on E, a high k2/k0 ratio will indeed
lead to an explosion in siblings. With these intuitions in mind, a clever modeller
could certainly have come up with these equations. Yet, this manual process is
error-prone and does not scale well. The combinatorics involved are non-trivial:
as we will see later, more complex models can involve hundreds or thousands of
equations. This prompts the need for tools to automate the derivation of REs
from GTS similar to those available for PNs.

Consider now a more complex motif (which can be expressed directly using
marked graphs). Define Ni(G) as the number of nodes in the graph G that have
in-degree exactly i (i.e. mothers with exactly i daughters). Note that Ni does
indeed more than counting subgraphs: contrary to what one might think, Ni

does not count the number of subgraphs in G that consist of a central node
with i incident edges (i.e. i-stars) as that would also cover all the nodes in G
with in-degree larger than i. In particular, N2 is not the sibling pattern. Instead,
we think of Ni as counting the number of matches of the single-node graph A
in G, subject to the condition that the matching node have exactly i incident
edges. For reasons that will become clear later, we call such pairs of graphs and
associated degree conditions marked graphs. Perhaps surprisingly, we can write
REs even for marked graph observables. The RE system for Ni, i ∈ N (which is
derived explicitly in the next Section) is given by the following system of ODEs:
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Fig. 1. Mean number of vertices with in-degree 3 (N3) for various k0, k1, k2

d
dt E(Ni) = (k0 + k2(i − 1))E(Ni−1) − (k0 + k1(i + 1) + k2i)E(Ni) for i ≥ 1
d
dt E(N0) = k0 E(N) + k2 E(E) − (k0 + k1)E(N0)

Combined with the equations above for E and N , we have a set of equations
which allows for a complete determination of the mean number of nodes of a
given degree (with the size of the system being linear in the degree).

Fig. 1 shows the solutions of the RE for the case of i = 3 and various
combinations of rates k0, k1, k2. Note that the mean number of degree-three
nodes is unbounded for low death rates, decays for high death rates, but reaches
an equilibrium if the rates are suitably balanced. Yet it is unclear from these
results alone (i) if N3 converges in variance, and (ii) if its distribution around
the mean is skewed. To answer (i) and (ii) we need to look at the higher-
order moments of Ni. Luckily, we can derive ODEs not just for the mean but
for arbitrary higher-order moments of marked graph observables. Due to the
combinatorics involved, the resulting system of ODEs consists of 2097 equations!
We therefore confine ourselves to presenting a plot (Fig. 2) summarising its
solutions for the choice k0 = 1, k1 = 2 and k2 = 2 of rates,1 which shows that,
despite the mean reaching an equilibrium, the skew and variance of Ni diverge
over time. Clearly, the manual derivation of such an RE is beyond hope. We
therefore developed a small, proof-of-concept tool for generating the REs in this
example. The source code of our tool is freely available [1], and demonstrates
that our construction can indeed be automated.

1 It took approx. half a minute to generate the 2097 equations and another 33 minutes
to solve them using GNU/Octave on a Intel Core i7 CPU.
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Fig. 2. The first three moments for the number of vertices with in-degree 3 (N3) when
k0 = 1, k1 = 2, k2 = 2. The mean E(N3) converges while the other moments may not.

1.3 A Sketch of the Solution

Let us briefly sketch our solution of the problem. Given a marked graph observable
[G̃](X), meaning a function counting the occurrences of the marked graph G̃ in
the state X, we generate an ODE which describes the rate at which the mean
occurrence count E([G̃](X(t))) changes over time. Careful inspection reveals
that terms in the ODE are derived from the set of minimal gluings (MG) of the
pattern G̃ with the LHS and RHS of the extant rules describing X(t). (Note that
the construction can thus be made incremental in the set of rules considered.)
In particular, each term in [G̃]’s ODE depends on the current state only via
expressions of the form E([H̃]) for H̃ a pattern defining a new observable. This
key property is referred to in the main part as jump-closure of graph observables.
Each fresh observable [H̃] can then be submitted to the same treatment.

To obtain higher-order moments, we exploit the commutative algebra struc-
ture of the linear space of pattern observables. We can compute E([G̃][H̃]),
i.e. covariances, etc. by expressing the product [G̃][H̃] as a linear combination of
motifs corresponding to the (minimal) gluings of G̃ and H̃. Though finite, the
number of terms in the resulting expression is subject to the potentially high
combinatorics of repeated pattern gluing.

As the generation of moment semantics is a symbolic procedure we can pursue
it in principle to any order. This means that the order of the approximation is no
longer limited to the humanly computable, and can be pushed further to acquire
more accurate dynamics.
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1.4 Related Work

Rate equations, and more generally mean field theories (MFT), are ubiqui-
tous in the study of complex dynamics. Examples include, walkers on bio-
polymers [18,35]; models of epidemic spreading [21]; and of the evolution of
social networks [13]. These examples witness both the power and universality of
MFTs, and the fact that they are pursued in a seemingly ad hoc, and case-by-
case fashion.

Conversely, various tools have been developed to automate the generation
and solution of the ME and REs for the case of PNs [19,30,36]. But they suffer
the limited expressivity of PNs as discussed above.

This paper follows ideas on applying the methods of abstract interpretation
to the differential semantics of site graph rewriting [9,20,22]. From the GTS
side, the theory of site graph rewriting had long been thought to be a lucky
anomaly until a recent series of work showed that most of its ingredients could
be made sense of, and given a much larger basis of applications, through the
use of algebraic graph-rewriting techniques [2,23,24]. These latter investigations
motivated us to try to address these questions at a higher level of generality [8].
Another more remote influence is Lynch’s finite-model theoretic approach to rate
equations [32].

1.5 Outline

The paper is organised as follows: §2 introduces the algebraic blueprint to build
moment semantics and the notion of jump-closure of an algebra of observ-
ables; preferential attachment networks are used as an illustration; §3 introduces
marked graphs and develops a formal stochastic graph transformation (GTS)
framework based on double-pushout (DPO) rewriting of marked graphs; marks
on graphs serve as simple application conditions and give rise to an algebra of
marked graph observables, which are shown to be jump-closed with respect to
the Markov chains generated by marked rewrite rules in §4; this is sufficient to
derive the associated moment semantics.

2 The Blueprint of Moment Semantics

In this section we establish sufficient conditions for the existence of moment
semantics for observables of suitable stochastic processes. These conditions pro-
vide the foundation on which we develop the moment semantics of concrete class
of graphical rule-based systems in §3. We start with the necessary probabilistic
preliminaries.

2.1 Markov Chains, Master Equation

Let S be an at most countable set, and write R
S for the vector space of real

sequences indexed by S. We think of S as the state space of some process and
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of elements of R
S as real-valued observables on that process. Let Xt, t ≥ 0

be a continuous-time Markov chain (CTMC) with state-space S and row-finite
rate matrix Q; we say an S × S matrix is row-finite if it has only finitely many
non-zero coefficients per row. Write px(t), or simply px, for the probability of
Xt being at x, and let p(t), or simply p, be the vector in R

S with coordinates
px. Note that Q is a linear operator on R

S . The evolution of p can be described
by the forward equation, also known as the master equation (ME), which is the
following linear ordinary differential equation (ODE) with values in R

S [27,33]:

d
dtp

T = pT Q (1)

In explicit coordinate form:

d
dtpx =

∑
y pyqyx − px

∑
y qxy.

The ME has unique (minimal non-negative) solutions at all times and for all
initial conditions [33]. One caveat is that for explosive Xt, which have non-zero
probability to complete countably many jumps in finite time, the resulting p is
a sub-probability.

Example 1 (CTMC of the PA example). For the case of preferential attachment,
we take the state space S to be a countable set of finite directed graphs G with
finite node and edge sets VG, EG. We associate rate matrices Qi, i = 0, 1, 2 to
each of the rules αi, where the rate qi

GH of transitioning from a graph G to a
graph H via the rule αi, is given by the number of ways in which the LHS of
αi occurs as an isomorphic subgraph in G in such a way that replacing said
subgraph with the RHS of αi in G produces H:

q0GH = |{n ∈ VG | H = G+(n)}|
q1GH = |{n ∈ VG | H = G−(n)}|
q2GH = |{e ∈ EG | H = G+(t(e))}|

where t(e) denotes the target node of the edge e, and G+(n), G−(n) are the
graphs obtained, respectively, by adding a new node to G and connecting it to
n, and by removing the node n and its edges from G. The overall rate matrix Q
is given by Q =

∑
i kiQi.

2.2 ODEs of Means

The rate matrix Q defines a linear transformation on R
S as follows:

(Qf)(x) =
∑

y qxy(f(y) − f(x)). (2)

Since the sum above is finite, Qf is indeed a well-defined element of R
S . We call

Qf the jump of f relative to Q. Intuitively, Qf is the expected rate of change in
f given that the process sits at x. This interpretation of Q as a linear operator
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on observables (rather than probabilities) is similar to predicate transformer
semantics [5].

Given an observable f , we write Ep(f) := pT f for the expected value of f
according to p. From the (1) we can derive formally the following:

d
dt Ep(f) = d

dtp
T f = pT Qf = Ep(Qf), (3)

giving us an equation for the rate of change of the mean of f(Xt). As such this
equation is not very useful, R

S being an even larger index set than S. Indeed,
unless S is finite, R

S does not even have a countable basis. But, suppose we are
given a linear subspace A of R

S which (i) has a countable basis B, and (ii) is
jump-closed in the sense that QB ⊆ A . Jump-closure means that for g in B,
one can write its jump Qg as:

Qg =
∑

h∈B ag,hh,

with finitely many non-zero coefficients ag,h. By substituting this expression
in (3), we get a linear ODE indexed by B:

d
dt Ep(g) =

∑
h∈B ag,h Ep(h). (4)

Note that the dependence in the probability distribution p(t) of Xt has vanished!
Thanks to jump-closure, (4) completely bypasses the probabilistic behaviour of
the model, and predicts directly the mean evolution of the processes gt for g in
B. The mean of any other observable f in A can then be expressed as a linear
combination of the solutions of (4).

The vector space R
S can be equipped with the product topology. A linear

map on R
S is continuous for that choice of topology iff it is row-finite. By a result

of Shkarin [34, Theorem 2.3], any row-finite linear system of differential equations
over R

S has solutions defined at all times and for all initial conditions. As B is
countable, Shkarin’s Theorem guarantees all-time (but, in general, non-unique)
solutions for (4).

Example 2 (REs for Preferential Attachment). We will illustrate this idea by
deriving the REs for the fixed-degree node-counting observable Ni from §1. We
start by computing the jump of Ni with respect to Q0 as given in Example 1.
Expanding the definition of Q0 in (2) and simplifying a bit, we get

(Q0Ni)(G) =
∑

n∈VG

(Ni(G+(n)) − Ni(G)).

It is easy to verify that, for all i ≥ 1, the difference under the sum is equal to
−1 if n has in-degree i, to 1 if n has in-degree (i − 1), and to 0 otherwise. Hence
the above simplifies to

Q0Ni = Ni−1 − Ni, for i ≥ 1.

Proceeding similarly for Q1Ni and Q2Ni, one obtains

QNi = (k0 + k2(i − 1))Ni−1 − (k0 + k1(i + 1) + k2i)Ni
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Fig. 3. The eleven graph patterns (S3 + S3), G1, . . . , G9 and S3 corresponding to base
observables of the vector space containing ([S3])

2. Dotted nodes and edges represent
negative existence conditions, i.e. ths absence of an additional edge; later to be repre-
sented by marks (see next Section).

for i ≥ 1, suggesting {Ni}i∈N as a candidate for the basis B. However, the
jump of N0 depends on two additional observables, namely N(G) = |VG| and
E(G) = |EG|, counting the number of nodes and edges, respectively, in G:

QN0 = k0N + k2E − (k0 + k1)N0.

Expressing N as the infinite sum N =
∑∞

i=0 Ni does not solve the problem as a
linear combination may only involve a finite number of vectors. Similarly, it is
not clear how one would express the observable E in terms of Ni. Fortunately,
the jumps of N and E do not involve any additional observables:

QN = k0N + k2E − k1N

QE = k0N + k2E − 2k1E

and we conclude that B = ∪iBi with Bi = {N,E}∪{Nk}i
k=0 form a jump-closed

basis which indexes the RE for the Ni motifs. In this favourable case, each finite
Bi spans a finite-dimensional subspace which is already jump-closed. Hence,
solutions of the RE exist and are unique for all times and initial conditions.

2.3 Higher-Order Moments

So far, we have only considered the mean evolution of observables f in A . One
might also be interested in higher-order statistics of f , such as its standard
deviation or skewness. Suppose then that A = lin(B) is a subspace of R

S as
above, and additionally, that A is closed under (pointwise) product. One can
write the powers of any f in A , as a linear combination

fn =
∑

h∈B bf,h,nh, n ≥ 1,

where only finitely many of the coefficients bf,h,k are non-zero. Thus, solutions
of (4) already describe arbitrary moments of observables. (Considerations on the
existence and uniqueness of solutions remain the same.)

Example 3 (Higher moments of Ni). Suppose we want to compute the variance
of Ni with respect to p, that is,

Vp(Ni) = Ep

(
(Ni − Ep(Ni))2

)
= Ep

(
(Ni)2

) − Ep(Ni)2.
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We already have an RE describing the mean of Ni, and we need one for the
second moment of Ni, Ep((Ni)2). To apply the above idea, it is enough to find a
sub-algebra A which contains B and has a countable basis; the linear span of B
alone does not work as we cannot even express the square N2 of its “simplest”
observable N as a linear combination in Bi.

At this point it is worth making the following observation: all of the observ-
ables we have considered so far count the occurrences of degree-constrained
graph patterns, that is, given a graph G, they count the number of subgraphs in
G that are isomorphic to a fixed graph, subject to conditions fixing the degrees of
some nodes. For example, the observable Ni(G) counts the number of occurrences
of the single-node graph in G that have in-degree i, while the observable E(G)
counts the number of single-edge graphs with no additional conditions. Later,
we call such graph-counting functions marked graph observables and prove that
they span a sub-algebra of R

S . (A proof of this fact along with a more detailed
account of marked graph observables is given in §3.3.)

To illustrate this point, consider first the simple node-counting observable
N . Writing A for the single-node pattern (with no extra conditions), A + A for
its disjoint union, the two-node pattern, and [P ] for the observable counting the
pattern P , we can express the second moment of N as the sum

Ep(N2) = Ep

(
([A])2

)
= Ep([A + A] + [A])

= Ep([A + A]) + Ep([A]) = Ep([A + A]) + Ep(N).

Intuitively, we can write the product of any two pattern observables [P1], [P2]
as a sum over all possible overlaps of P1 and P2 (including the trivial one). In
the case of the pattern A, there are just two such overlaps, namely the trivial
one, A + A, and the complete overlap A. We make this intuition precise in §3.3
by introducing the notion of minimal gluings.

A more complex example is the pattern Sk, which we define to be the k-star,
that is, the graph consisting in a hub node n with k neighbours m1, . . . , mk,
each connected to the hub through a spoke (mi, n). Furthermore, we impose the
condition on Sk that the in-degree of its hub be exactly k. The motifs Nk and
[Sk] are related through the equation [Sk] = k!Nk, where the factor k! is due
to the internal symmetries of Sk. Hence it is enough to express Ep(([Sk])2), to
complete the example.

To find this expression, we proceed as in the simple case above and compute
all overlaps of S3 with itself (Fig. 3). The square [Sk]2 can then be expressed as

[S3]2 = [S3 + S3] + 9[G1] + 36[G2] + 9[G4] + 36[G5]
+ 6[G6] + 18[G7] + 6[G9] + 36[G3] + 18[G8] + 6[S3].

where the patterns (S3 + S3), G1, . . . , G9 and S3 are those shown in Fig. 3
(in that order). The combinatorial integer coefficients are the multiplicities of
non-isomorphic overlaps resulting in the same graph; e.g. we can obtain G1 in
9 = 3 × 3 different ways, as each copy of S3 must decide independently which of
its three peripheral nodes to share with the other copy.
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For more complex patterns, such as Sk, the manual enumeration of over-
laps becomes difficult due to the combinatorics involved. They are therefore
best automated. To this end, we developed a small, proof-of-concept tool [1] for
generating ODEs of higher-order moments of Sk. In fact, the equation and dia-
grams in this example and those of the previous section have been automatically
generated.

We can summarise the above discussion.
Suppose given a triple (S,Q,A ), with S an at most countable set, Q a row-

finite S×S rate matrix, and A a linear sub-space of R
S with a countable basis B

such that QB ⊆ A (jump-closure). We can define a linear ODE system indexed
by B:

d
dt Ep(g) =

∑
h∈B ag,h Ep(h),

with finitely many non-zero coefficients ag,h. The ODE can be described more
concisely as d

dtX = QT
BX with QB the restriction of Q to B (which exists by

jump closure), and X(t) ∈ R
B. One sees this to be just the master equation (1)

restricted to B.
If in addition A is a sub-algebra of R

S , by linear combinations, we can derive
from the above equations for any moment formed over B.

It remains now to build an interesting example of this situation. In the next
section we develop our concrete graphical framework of stochastic rule-based
systems and associated observables, for which moment semantics can be built.

3 Reversible Stochastic Graph Rewriting

We turn now to the GTS framework for which we will derive moment semantics
as outlined in §2. We build on a well-known approach from algebraic graph
rewriting, namely the double pushout (DPO) approach [7,28]. The reasons for
this choice are twofold: first, we profit from a solid body of preexisting work, and
second, it allows for an “axiomatic” presentation abstracting over the details of
the graph-like structures that are being rewritten. Indeed, while we only treat
the case of directed multigraphs (graphs with an arbitrary number of directed
edges between any two nodes), the theory generalizes to DPO rewriting in other
adhesive categories [29] with negative application conditions [14,26].

We start with preliminaries on directed multigraphs, followed by a brief sum-
mary of the DPO approach and its stochastic semantics [25]. Next, we introduce
marked graphs as a means to add simple application conditions to graph rewrite
rules. We establish two key properties of marks: firstly, we show that marks
are sufficient to internalize the reversibility conditions inherent in DPO rewrit-
ing into rewrite rules; secondly, marked graphs give rise naturally to a class of
observables over graphs with the algebraic structure outlined in §2. As we will
see in §4, such observables are jump-closed with respect to CTMCs defined by
any finite set of marked rewrite rules.
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3.1 Graph-Theoretic Preliminaries and DPO Rewriting

A finite directed multigraph (henceforth simply graph) G consists of a finite set of
nodes VG, a finite set of edges EG, and source and target maps sG, tG : EG → VG.
A morphism f : G → H between graphs G and H is a pair of maps fV : VG → VH ,
fE : EG → EH on edges and nodes, such that for every edge e in EG,

sH(fE(e)) = fV (sG(e)) and tH(fE(e)) = fV (tG(e)).

The graphs G and H are called the domain and codomain of f , respectively.
Given a pair f : F → G, g : G → H of morphisms, their composition (g ◦ f) : F →
H is defined as (g ◦ f) = (gV ◦ fV , gE ◦ fE). A graph morphism f : G → H is a
monomorphism, or simply a mono, if fV and fE are injective; it is a graph
inclusion if both fV and fE are inclusion maps, in which case G is a subgraph
of H and we write G ⊆ H. Every morphism f : G → H defines a subgraph
f(G) ⊆ H called the direct image (or just the image) of f in H, such that
Vf(G) = fV (VG) and Ef(G) = fE(EG). Finally, a graph morphism f : G → H
is an isomorphism, or simply an iso, if fV and fE are bijections. Given an iso
f : G → H, we say that G is isomorphic to H and write G � H.

Graph morphisms provide us with a notion of pattern matching on graphs.
We restrict pattern matching to monos: a match of G in H is a mono f : G → H.
This restriction ensures that f(G) � G if f is a match, that is, matches of G
in H identify subgraphs in H that are isomorphic to G. It is easy to verify that
the composition of two matches is again a match. We write [G; H] for the set of
matches of G in H.

The main ingredient for graph rewriting are rewrite rules. A rule α : L ⇀ R
with left-hand side (LHS) L and right-hand side (RHS) R is a pair α1 : K → L,
α2 : K → R where both α1 and α2 are monos. Given a rule α : L ⇀ R, we define
its inverse α† : R ⇀ L as (α1, α2)† = (α2, α1).

By combining matches and rules, we obtain derivations, the basic rewrite
steps of a GTS. We first describe them informally. Fig. 4 shows a derivation
with a match f : L → G on the left and a rule α : L ⇀ R on top. The match f
identifies the subgraph in G that is to be modified, while the rule α describes
how to carry out the modification. In order to obtain the comatch g : R → H on
the right, one starts by removing nodes and edges from f(L) which do not have
a preimage under f ◦ α1 (colored red in the figure). This operation is allowed
only if it leaves no edges dangling in G, that is, a node may be removed only if
all its incident edges are also removed. To complete the derivation, one extends
the resulting match h : K → D by adjoining to D the nodes and edges in R that
do not have a preimage under α2 (colored green in the figure). The two monos
β1 and β2 witness, respectively, the deletions from G and additions to D, and
form the corule of the derivation.

Derivations constructed in this way have the defining property of being dou-
ble pushouts (DPO): they consist of a pair of pushout squares (PO) of graph
morphisms [7,28].

There are certain points worth noting. Firstly, not every pair f : L → G,
α : L ⇀ R of compatible matches and rules gives rise to a derivation. The reason
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L K R

G D H

f h

α1 α2

g

β1 β2

Fig. 4. A simple derivation or rewrite step: one starts with a match f for the left-hand
side L of the rule in G; then, one constructs D by deleting nodes in G which correspond
to nodes in L with no preimage in K; finally, one adds nodes and edges found in R but
not in K

f

α1

h

β1

f ′

α1

Fig. 5. The pair f , α1 of monos has a POC, while the pair f ′, α1 does not

is that the required left-hand PO does not exist for every pair f : L → G,
α1 : L → K of monos. A suitable pair h : K → D, β1 : D → G of monos, called
pushout complement (POC) of f and α1, exists iff the removal of nodes from G
does not result in dangling edges. Fig. 5 illustrates this point. If a POC h, β1

exists for f , α1, then it is unique up to (unique) iso on D. Secondly, given a pair
h : K → D, α2 : K → R of monos, the right-hand PO always exists, and the
corresponding pair g : R → H, β2 : D → H of monos is unique up to (unique)
iso on H. Thirdly, if there is a derivation of g from f by α, then by symmetry,
there is also a derivation of f from g via α†.

Importantly, derivations compose and split (Fig. 6). Given a derivation of
g1 from f1 by α with corule γ (the top DPO) and a derivation of g2 from f2
by γ with corule β (the bottom DPO), one obtains a composite derivation of
g = g2 ◦ g1 from f = f2 ◦ f1 via α with corule β, by pasting together the two DPO
diagrams. Conversely, derivations split along factorizations of matches: given the
outer and top derivations of g from f and g1 from f1 via α, with corules β and
γ, respectively, there is, for every f2 such that f = f2 ◦ f1, a unique bottom
derivation with rule γ, comatch g2 and corule β, such that g = g2 ◦ g1.

Whenever there is a derivation with match f , comatch g and rule α, we
say g is α-derivable from f and write f ⇒α g. A pair of matches f : G → H,
f ′ : G → H ′ of a graph G is said to be isomorphic if there is an iso u : H → H ′

such that f ′ = u ◦ f . It follows directly from the above discussion that the binary
relation ⇒α is (i) partial, in that not every match of the LHS of α extends to a
derivation, (ii) functional up to iso, that is, if f ⇒α g and f ⇒α g′ then g � g′,
and (iii) injective up to iso, that is, if f ⇒α g and f ′ ⇒α g then f � f ′.

The fact that derivations are only defined up to iso is convenient as it allows
us to invert them without paying attention to the concrete naming of nodes and
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L K R

E C F

G D H

f1

f

h1

α1 α2

g1

g

f2 h2

γ1 γ2

g2

β1 β2

Fig. 6. A vertical composition of derivations

edges. Indeed, the inverse of ⇒α is just (⇒α)−1 = (⇒α†). On the other hand,
when defining the stochastic semantics of rule-based systems, it is more conve-
nient to restrict ⇒α to a properly functional relation. To this end, we fix once
and for all a (countable) set G of representatives from every isomorphism class
of graphs, and denote by α(f) and f(α), for any given rule α : L ⇀ R and match
f ∈ dom(⇒α), the unique comatch α(f) : R → H and corule f(α)1 : D → G,
f(α)2 : D → H of the unique derivation for which both D and H are in G . Note
that the partial maps α(−) and α†(−) need not be inverses. Indeed, if α involves
node deletions, one cannot choose α(−) and α†(−) such that α†(α(f)) = f for
all f ∈ dom(⇒α) because the node and edge sets of the respective codomains
differ in general.

Given a rule α : L ⇀ R, define the rate matrix Qα over G as

qα
GH = |{f ∈ [L;G] | f ∈ dom(⇒α) and α(f) ∈ [R; H]}| for G 
= H,

qα
GG =

∑

H �=G

−qα
GH otherwise.

Given a finite set of rules R and a rate map k : R → R
+, let

Q(R, k) =
∑

α∈R

k(α)Qα.

This defines a CTMC over G . As R is finite, the rate matrix Q(R, k) is row-finite.

3.2 Marked Graphs

So far, our notion of pattern matching is rather limited. While monos identify
(isomorphic) images of a “pattern” (i.e. their domain) in other graphs, they
provide no way of imposing additional conditions on the image of the pattern.
We have seen examples in §1 and §2 where such conditions were used to count the
number of nodes with a particular in-degree. But conditions are also useful for
rewriting: by equipping the LHS and RHS of rules with conditions, one obtains
more expressive rewrite formalisms. A particular case which has been studied
in the DPO setting is that of negative application conditions (NAC), where the
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L̃ K̃ R̃

G̃ D̃ H̃

f̃ h̃

α̃1 α̃2

g̃

β̃1 β̃2

Fig. 7. A marked derivation

set of derivations under a rule α is restricted to instances where the match
and comatch respect conditions associated with the LHS and RHS of α [14,26].
In this section, we extend graphs with simple degree conditions which we call
marks. Marks can be seen as a very simple type of NAC. Yet, they are expressive
enough to cover the example patterns2 form §1 and §2, and to internalize the
dangling-edge conditions seen in the previous section into the LHS of rules.

A marked graph G̃ is a graph G together with a marking predicate MG ⊆ VG

over nodes. We say a node x ∈ VG is marked if x ∈ MG and unmarked otherwise.
We write MG for the complement VG\MG of the marking MG. We say a marked
graph G̃ is complete if all its nodes are marked, that is, MG = VG.

A marked morphism f̃ : G̃ → H̃ is a graph morphism f : G → H that pre-
serves marks, that is, fV (MG) ⊆ MH . Marked morphisms compose as their
underlying graph morphisms. The definitions of subgraphs, inclusions and monos
generalize straightforwardly to marked graphs and morphisms. It is easy to see
that isos reflect marks, that is, a marked morphism f̃ : G̃ → H̃ is a marked iso
if its underlying graph morphism f is an iso and fV (MG) = MH . We define
the marking of the direct image f̃(G̃) of a marked morphism f̃ : G̃ → H̃ by
Mf̃(G̃) = fV (MG), that is, marks on nodes in f(H) that are provided only by H̃

are not considered part of the marking of f̃(G̃). Fig. 7 shows a marked version
of Fig. 4 where marked nodes are colored in dark gray, unmarked nodes in white.
The graphs in the bottom row of Fig. 7 are complete while those in the top row
are not. All morphisms in the figure are marked monos.

We interpret marks as conditions on node degrees: a marked match of G̃
in H̃ is a marked mono f̃ : G̃ → H̃ that preserves and reflects the degrees
of marked nodes, that is, for all x ∈ MG, indegH(fV (x)) = indegG(x) and
outdegH(fV (x)) = outdegG(x). Given a marked graph G̃, and an unmarked
match f : G → H, we say f extends to a marked match f̃ : G̃ → H̃ if there is
at least one marking on H for which f̃ is a marked match. Such an extension
will exist iff nodes marked in G̃ are mapped by f to nodes of same degree in H.
The composition of marked matches is again a marked match. We write [G̃; H̃]

2 Strictly speaking, the example patterns in §1–2 require a slightly more expressive
type of NACs than the one described in this section. In particular, they require sepa-
rate conditions on in and out-degrees of nodes, where as we only consider conditions
on the overall node degree here. However, the theory extends straight-forwardly to
the case where in and out-degrees are represented by separate markings. We have
implemented the more general case in [1].
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for the set of marked matches of G̃ in H̃. All the morphisms in Fig. 7 except β̃1

and β̃2 are marked matches.
By allowing rules to be marked, we obtain a simple form of NACs. Marks in

the LHS act as preconditions on a rule, marks in the RHS as postconditions. We
further restrict the type of morphisms that may appear in rules to rigid monos:
we say a marked mono f̃ : G̃ → H̃ is rigid if every node in H̃ is marked unless it
is the image of an unmarked node in G̃, that is, MH = fV (MG). A marked rule
α̃ : L̃ ⇀ R̃ is a pair α̃1 : K̃ → L̃, α̃2 : K̃ → R̃ of rigid marked monos. We say α̃ is
minimally marked if MK = ∅. We write α̃† for the inverse (α̃2, α̃1) of a marked
rule α̃. The rules α̃ and β̃ in Fig. 7 are marked but only α̃ is minimally marked.
(Minimally marked rules are used later to embed normal DPO rewriting into
our marked graph rewriting.)

The rigidity condition on rules ensures that rules are well-behaved in the
following way: given a marked rule α̃ : L̃ ⇀ R̃ with underlying (unmarked) rule
α and an unmarked match f : L → G of its LHS,

1. there is a g such that f ⇒α g if f extends to a marked match, and
2. g extends to a marked match if f does.

The first point internalizes the no-dangling-edge condition into rules and roughly
corresponds to a notion of type safety: if both the rule α and its “argument” f
are “well-marked”, then α can be applied safely to f . The second point is remi-
niscent of a predicate transformer semantics: the marking on R̃ is the “strongest
postcondition” given the marking on the LHS L̃. Conversely, the marking on L̃
is the “weakest precondition” given R̃. Note that, by symmetry, the same holds
for α̃† so that the pre and postcondition uniquely determine each other.

A PO of a pair f̃ : G̃ → H̃, f̃ ′ : G̃ → H̃ ′ of marked morphisms, is a commut-
ing square of marked morphisms (see (5) below), where the underlying graph
morphisms form a PO (6), and MF = gV (MH) ∪ g′

V (MH′).

G̃ H̃ ′

H̃ F̃

f̃ ′

f̃ g̃′

g̃

(5)
G H ′

H F

f ′

f g′

g

(6)

A marked derivation is a DPO of marked monos such as in Fig. 7, with f̃ , g̃, h̃
marked matches and α̃, β̃ marked rules. We call g̃ the marked comatch and β̃
the marked corule of the derivation.

POs of marked monos have interesting properties when one mono is rigid.

Lemma 1. A pair of marked monos f̃ : G̃ → H̃, g̃ : H̃ → F̃ where f̃ is rigid,
has a POC if g̃ is a marked match. (If in addition, G̃ is markless, then g̃ must
be a marked match for a POC to exist.)
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Lemma 2. Let (5) be a PO of marked monos, with f̃ ′ rigid. Then

1. g̃ is rigid,
2. f̃ is a marked match iff g̃′ is,
3. the pair f̃ , g̃ is the unique (up to unique iso) POC of f̃ ′, g̃′ and

MH = g−1
V (MF \ g′

V (MH′)) ∪ fV (MG).

The two lemmas above are sufficient to establish the properties of marked rules
outlined before; besides they also allow one to prove that marked derivations
compose and split along marked matches (which is key to the proof in the next
section).

Write f̃ ⇒α̃ g̃ if g̃ is α̃-derivable from f̃ . Just as its unmarked counterpart,
the binary relation ⇒α̃ is functional and injective up to iso. However, contrary
to ⇒α, the relation ⇒α̃ is also total (by Lemma 1). We fix again a (countable)
set G̃ of representatives from every isomorphism class of marked graphs. Given
any marked rule α̃ : L̃ ⇀ R̃ and match f̃ : L̃ → G̃, the definitions of the maps
α̃(−) and f̃(−), as well as the G̃ × G̃ rate matrix Qα̃ associated with α̃, are
completely analogous to those for the unmarked case.

At this point, the reader might be wondering whether the restrictions imposed
on marked rules cause any loss of expressivity with respect to unmarked DPO
rewriting. They do not. Indeed, one can build an embedding of unmarked DPO
rewriting in the marked variant. We start by noticing that for every (unmarked)
graph G there is a unique complete marked graph G̃K , and for every (unmarked)
rule α : L ⇀ R there is a unique minimally marked rule α̃min : L̃min ⇀ R̃min. To
every match f : L → G of an LHS L in some G corresponds a unique marked
mono f̃ : L̃min → G̃K . By Lemma 1, there is a derivation f ⇒α g for some
g : R → H iff f̃ is a marked match and by Lemma 2 this uniquely determines an
extension g̃ : R̃min → H̃K of g to a marked match. Note that due to the rigidity
of α̃min, the codomain H̃K of g̃ must be complete.

Although we have only presented the case of directed multigraphs, marked
stochastic DPO rewriting also straight-forwardly extends to other graph-like
structures, such as typed graphs or hypergraphs. Another example is that of
PNs, when seen as rewriting discrete typed graphs (graphs with no edges). Since
nodes in a discrete graph have degree zero, any match trivially extends to a
marked match.

3.3 Minimal Gluings and the Algebra of Marked Graph Observables

Given a marked graph G̃ in G̃ , define the marked graph observable [G̃] : G̃ → N

to be the integer-valued function [G̃](H̃) = |[G̃; H̃]| counting the number of
occurrences (i.e. marked matches) of G̃ in any given graph H̃ in G̃ . Marked graph
observables turn out to be the natural choice of observable functions over which
to construct moment semantics for marked DPO rewriting. In this section, we
present their algebraic structure, establishing the connection to the framework
developed in §2. To do so, we first need to introduce a key ingredient: minimal
gluings (MG).
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μ̃1

η̃1
ũ

μ̃2

η̃2

Fig. 8. Left: a gluing η̃ of the marked graphs L̃ and R̃ from Fig. 7 and the corresponding
MG μ̃. Right: the codomains of the MGs in L̃∗ L̃ ordered by (non mono) marked graph
morphisms among them

Given a pair of subgraphs G1 ⊆ H, G2 ⊆ H of a graph H, the union of G1 and
G2 in H is the unique subgraph G1∪G2 of H, such that V(G1∪G2) = VG1∪VG2 and
E(G1∪G2) = EG1 ∪ EG2 . The union G̃1 ∪ G̃2 ⊆ H̃ of a pair of marked subgraphs
G̃1 ⊆ H̃, G̃2 ⊆ H̃ has G1 ∪ G2 as its underlying graph and MG1 ∪ MG2 as
its marking. A gluing η̃ of a pair G̃1, G̃2 of marked graphs is a pair of marked
matches η̃1 : G̃1 → Ũ , η̃2 : G̃2 → Ũ with common codomain cod(η̃) = Ũ . We say
η̃ is minimal if cod(η̃) = η̃1(G̃1)∪ η̃2(G̃2). Two gluings η̃ and μ̃ are isomorphic if
there is a marked iso ũ : cod(η̃) → cod(μ̃), such that μ̃1 = ũ ◦ η̃1 and μ̃2 = ũ ◦ η̃2.
Write G̃1 ∗� G̃2 for the set of isomorphism classes of minimal gluings of G̃1

and G̃2, and G̃1 ∗ G̃2 for a choice of representatives from each class in G̃1 ∗� G̃2

such that cod(μ̃) ∈ G̃ for all μ̃ in G̃1 ∗ G̃2. It is easy to verify the following:

Lemma 3. Let G̃1, G̃2 be marked graphs, then (i) G̃1 ∗ G̃2 has O(2N+M ) ele-
ments, with N = |VG1 | + |VG2 |, M = |EG1 | + |EG2 |, and (ii) for every glu-
ing η̃ of G̃1 and G̃2, there is a unique MG μ̃ in G1 ∗ G2 and marked match
ũ : cod(η̃) → cod(μ̃) such that η̃1 = ũ ◦ μ̃1 and η̃2 = ũ ◦ μ̃2.

Fig. 8 shows a gluing η̃ and its corresponding MG μ̃ on the left, and the
codomains of a set of minimal self-gluings on the right.

Thanks to MGs, marked graph observables form an algebra.

Theorem 1. Let B be the set of marked graph observables. The linear space
A = lin(B) spanned by B is a sub-algebra of R

G̃ , that is, poly(A ) = A .

Proof. As A is a linear subspace of R
G̃ , it suffices to show that B is closed under

product. First, note that the product of any two marked graph observables [G̃1]
and [G̃2] in B counts exactly the number of gluings G̃1 → H̃ ← G̃2 of marked
matches in some common H̃ ∈ G̃ . By Lemma 3, we can express such products
as a (finite) linear combination of observables [cod(μ̃)] corresponding to the
(codomains of) the MGs under G̃1 and G̃2:

[G̃1](H̃)[G̃2](H̃) = |[G̃1; H̃]| · |[G̃2; H̃]| = |{G̃1
η̃1−−→ H̃

η̃2←−− G̃2 | η̃ a gluing}|
=

∑

μ̃∈G̃1∗G̃2

[cod(μ̃)](H̃).

Since cod(μ̃) ∈ G̃ for all μ̃ in G̃1 ∗ G̃2, the result is again in A . 
�
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Note that the set G̃ contains the empty graph ∅, which makes A a unitary
algebra with unit [∅].

4 Jump-Closure of Marked Graph Observables

We now have all the ingredients in place to derive moment semantics for (DPO-
based) marked graph rewriting. The set G̃ forms a countable state space over
which we generate CTMCs from finite sets of marked rules and associated rate
maps. The space A spanned by marked graph observables provides us with a
candidate sub-algebra of R

G̃ . It remains to show that A is jump-closed with
respect to the CTMCs generated by marked rules.

Theorem 2. Let R be a finite set of marked rules with associated rate map
k : R → R

+, and B the set of marked graph observables. The linear subspace
A of R

G̃ spanned by B is closed under the action of the infinitesimal generator
Q(R, k). In particular, for each marked rule α̃ : L̃ ⇀ R̃ in R and marked graph
G̃ in G̃ , we have

Qα̃[G̃] =
∑

μ̃∈R̃∗G̃

[cod(α̃†(μ̃1))] −
∑

μ̃∈L̃∗G̃

[cod(μ̃)].

Proof. Let F̃ be some marked graph in G̃ and α̃ : L̃ ⇀ R̃ a rule in R. By (2)
and the definition of Qα̃, we have

(Qα̃[F̃ ])(G̃) =
∑

H̃∈G̃

qα̃
G̃H̃

([F̃ ](H̃) − [F̃ ](G̃))

=
∑

f̃∈[L̃;G̃]

|[F̃ ; cod(α̃(f̃))]| −
∑

f̃∈[L̃;G̃]

|[F̃ ; G̃]|.

Recall that α̃(f̃) denotes the representative comatch derived from f̃ by α̃, and
hence cod(α̃(f̃)) is just the marked graph derived from G̃ via α̃ and f̃ . The action
of Qα̃ at G̃ thus naturally decomposes into two terms Q+

α̃ and Q−
α̃ describing,

respectively, the production and consumption of instances of F̃ . By Lemma 3,
the consumption term Q−

α̃ is equal to

Q−
α̃ [F̃ ](G̃) = |[L̃; G̃]| · |[F̃ ; G̃]| =

∑

μ̃∈L̃∗F̃

|[cod(μ̃); G̃]|

which is a linear combination of a finite number of elements in B.
Applying the same decomposition Lemma 3 to the production term Q+

α̃ , we
obtain a more complicated expression:

Q+
α̃ [F̃ ](G̃) =

∑

μ̃∈R̃∗F̃

∑

f̃∈[L̃;G̃]

|{ũ ∈ [cod(μ̃); cod(α̃(f̃))] | ũ ◦ μ̃1 = α̃(f̃)}|.
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To simplify this expression, we use properties of marked derivations seen in §3.2.
First, recall that the relation ⇒α̃ between marked matches under L̃ and R̃
has ⇒α̃† as its inverse. The first match μ̃1 of any MG μ̃ in R̃ ∗ F̃ thus has
a preimage α̃†(μ̃1) under ⇒α̃, as well as an associated corule μ̃1(α̃†). Write μ̃†

1

for α̃†(μ̃1), α̃†
μ for μ̃1(α̃†), and Ũ , Ũ† for the codomains of μ̃1, μ̃†

1. Recall that
α̃†

μ : Ũ ⇀ Ũ† is again a marked rule, and hence there is an associated map α̃†
μ(−)

between matches under Ũ and Ũ†. As α̃(f̃) ⇒α̃† f̃ , the fact that derivations split
along factorizations of matches means that α̃†

μ(−) restricts to a bijection

{ũ ∈ [Ũ ; cod(α̃(f̃))] | ũ ◦ μ̃1 = α̃(f̃)} � {ṽ ∈ [Ũ†; G̃] | ṽ ◦ μ̃†
1 = f̃}

which allows us to simplify our previous expression for Q+
α̃ [F̃ ] to

Q+
α̃ [F̃ ](G̃) =

∑

μ̃∈R̃∗F̃

∑

f̃∈[L̃;G̃]

|{ũ ∈ [Ũ ; cod(α̃(f̃))] | ũ ◦ μ̃1 = α̃(f̃)}|

=
∑

μ̃∈R̃∗F̃

∑

f̃∈[L̃;G̃]

|{ṽ ∈ [Ũ†; G̃] | ṽ ◦ μ†
1 = f̃}| =

∑

μ̃∈R̃∗F̃

|[Ũ†; G̃]|.

This is again a linear combination of a finite number of elements in B, concluding
the proof of Theorem 2. 
�
Before we move on, a few remarks about the above theorem and its proof are in
order. Firstly, the theorem is a statement about marked graph observables rather
than individual derivations. Although the observables in question depend on the
LHS and RHS of rules, the explicit dependency of (2) on the rate matrix Qα̃

has vanished along with the corresponding dependencies on derivations in the
definition of Qα̃. This is made possible by two key insights from §3.2 and §3.3,
namely (i) that rules internalize application conditions and hence every marked
match of an LHS extends to a derivation, and (ii) that application conditions in
rules can be combined algebraically, by means of minimal gluings, with those in
marked graph observables.

Secondly, the proof makes use of reversibility of derivations in several places.
Nevertheless, Theorem 2 also holds for CTMCs generated by a significant class
of irreversible graph transformation systems. In particular, our approach extends
to single pushout (SPO) and sesqui-pushout (SqPO) rewriting, both of which
deal with irreversible derivations [6,15,31]. In both cases the rigidity constraints
on (marked) rules need to be relaxed as they would otherwise force rules to be
reversible. For Theorem 2 to hold, it is sufficient to restrict rules to spans of
monos and impose a strongest postcondition on their RHS (note that the latter
does not restrict the expressivity of rules). Although ⇒α̃† is no longer the inverse
of ⇒α̃ in this setting, it can still be used to split derivations “backwards” along
factorizations of comatches, leading to a bijection argument akin to that in the
above proof.

Combining Theorems 1 and 2, we obtain the moment semantics for any finite
rule set R and associated rate map k. In particular, the expected value of a
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marked graph observable G̃ will satisfy the following differential equation:

d
dt Ep([G̃]) =

∑

α̃∈R

k(α̃)
∑

μ̃∈R̃(α̃)∗G̃

Ep([cod(α̃†(μ̃1))]) −
∑

α̃∈R

k(α̃)
∑

μ̃∈L̃(α̃)∗G̃

Ep([cod(μ̃)])

(7)

where L̃(α̃) and R̃(α̃) denote, respectively, the LHS and RHS of the marked rule
α̃. Since, poly(A ) = A , ODEs for the higher moments can be generated by the
exact same procedure.

The number of terms in (7) depends on the size of the relevant sets of left
and right-hand MGs, which is worst-case exponential in the size of the graphs
involved (Lemma 3). In practice, one often finds many pairs of irrelevant MGs,
the terms of which cancel out exactly. This reduces the effective size of the
equations but not the overall complexity of generating them.

Second, as said in §1.3, the repeated application of (7) will lead to an infinite
expansion in general. In practice, the system of ODEs needs to be truncated. For
concrete models, static analysis might help finding invariants in the underlying
rewrite system and find a finite closure even for models where the set of reachable
states is demonstrably infinite [10]. We have seen a simple example in §1.

5 Conclusion

Consider again the example of preferential attachment presented in the first two
sections. In this case, we can automatically derive systems of ODEs that are
finite; however, we have to cope with the combinatorial blow-up. This bring us
to the most exciting direction for future work: mean field approximations of
moment semantics. In the literature, one often finds graphical approximation
techniques based on conditional independence assumptions to control the size
of patterns used in observables, such as so-called pair approximation [13,21].
It is known that these methods can be more accurate than naive truncation of
ODEs. In a natural next step, we would like to understand if and how these can
be brought inside our formal approach.
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Abstract. Reversible Turing machines with a working tape and a one-
way or two-way read-only input tape are considered. We investigate the
classes of languages acceptable by such devices with small time bounds in
the range between real time and linear time, i.e., time bounds of the form
n+r(n) where r ∈ o(n) is a sublinear function. It is shown that there exist
infinite time hierarchies of separated complexity classes in that range.
We then turn to the question of whether reversible Turing machines
in the range of interest are weaker than general ones or not. This is
answered in the affirmative by proving that there are languages accepted
by irreversible one-way Turing machines in real time that cannot be
accepted by any reversible one-way machine in less than linear time.

Keywords: Reversible Turing machines · Structural computational
complexity · Time hierarchies · Fast computations · Real time vs. linear
time

1 Introduction

One of the great early results of computational complexity is that for single-tape
Turing machines, the real-time and linear-time complexity classes are equal [5].
Although a wonderful result, for deterministic machines this is quite sensitive
to variations in static resources, in particular the number and character of the
input and work tapes. There are languages that can be accepted in real-time by
deterministic Turing machines equipped with a one-way read-only input tape
and a separate work tape, but which cannot be accepted in real-time by one-
tape deterministic Turing machines.1 Also, for multi-tape models, linear time is
strictly more powerful than real time, in the strong sense that there are languages
that can be accepted in linear time with a one-way read-only input tape and a
single work tape, but which are not real-time for any number of tapes [12].
Furthermore, for such machines there are infinite hierarchies between real-time

1 Consider the mirror language of marked palindromes, w$wR.
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and linear-time computations, among the languages accepted under time bounds
of form n + r(n) with r ∈ o(n) [7], where n is the input length.

In contrast, the structural complexity theory of fast reversible computations
is not well-understood. Although techniques exist that can yield inclusion results
between deterministic and reversible complexity classes, these techniques usually
rely on reversible simulation of irreversible machines, cf. [2,8,14]. In [6] reversible
one-tape Turing machines are studied from the viewpoint of invertible functions.
The invertible partial functions are exactly those that can be computed without
surplus information by such Turing machines. Moreover, the question is raised
whether the invertible functions that can be computed in polynomial time can
also be computed in reversible polynomial time. Reversible simulation introduces
static resource or complexity overheads, e.g. extra tapes and larger alphabets, or
increased time or space complexities, which are then inherited by the machine
performing the simulation. For instance, using a history to simulate irreversible
Turing machines requires the addition of an extra work tape. This can take us
out of the model under consideration if the number of work tapes is an issue,
but removing the tape from the simulation apparently requires (reversible) tape
reduction such as in [1], incurring a time penalty which may also take us out of
the range of interest. This limits the usefulness of reversible simulation techniques
in discerning reversible structural complexity, in particular in the lower end of
the spectrum, such as the fast (irreversible) computations mentioned above.

Here, we investigate the range between real time and linear time for reversible
Turing machines with a one-way or two-way read-only input tape and a single
work tape. It is evident that reversible simulation is too costly for the reversible
machines to inherit the deterministic hierarchies, so we shall here show directly
that there exists such infinite reversible hierarchies. To this end we develop
a notion of time constructibility for reversible Turing machines. We then give
languages Lr such that if r is the inverse of a reversibly time-constructible func-
tion, then Lr can be accepted by a one-way reversible Turing machine in time
n + r(n), but not by any two-way RTM in less time. Since the languages that
witness the separations in the reversible case are different from the ones that
witness separation in the irreversible case [7], we cannot derive the relation-
ship between the reversible and deterministic classes from this result alone. By
carefully combining incompressibility and crossing sequence arguments, we find
that the reversible and deterministic machines in this range have different com-
putational capacities: we show that there are languages accepted by one-way
deterministic Turing machines in real-time that cannot be accepted in less than
linear time by any one-way reversible Turing machine. Although fine-grained,
to the best of our knowledge this is the first such unconditional separation of
reversible and deterministic classes for Turing machines.

2 Preliminaries

We denote the non-negative integers {0, 1, 2, . . . } by N. The empty word is
denoted by λ and the reversal of a word w by wR. For the length of w we



A Hierarchy of Fast Reversible Turing Machines 31

x1 x2 x3 x4 x5 x6 x7 x8

S

Fig. 1. Turing machine with a working tape and an input tape

write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions. For a function
f : N → N we denote its i-fold composition by f [i], i ≥ 1. A function f is said to
be increasing if m < n implies f(m) ≤ f(n). The inverse of an increasing func-
tion f : N → N is defined as f−1(n) = min{m ∈ N | f(m) ≥ n }. The identity
function n �→ n is denoted by id. As usual we define the set of functions that
grow strictly slower than f by

o(f) = { g : N → N | lim
n→∞

g(n)
f(n)

= 0 }.

In terms of orders of magnitude, f is an upper bound of the set

O(f) = { g : N → N | ∃ n0, c ∈ N : ∀ n ≥ n0 : g(n) ≤ c · f(n) }.

Conversely, f is a lower bound of the set Ω(f) = { g : N → N | f ∈ O(g) }, and
Θ(f) is defined to be O(f) ∩ Ω(f).

A deterministic Turing machine consists of an initially blank read-write work-
ing tape, a read-only input tape whose inscription is the input word in between
two endmarkers, and a finite-state control. At the outset of a computation the
Turing machine is in the designated initial state, and the head of the input
tape scans the left endmarker. Dependent on the current state and the currently
scanned symbols on the tapes, the Turing machine changes its state, rewrites
the current symbol on the working tape, and moves the heads independently one
cell to the left, one cell to the right, or not at all. The machines have no separate
output tape and the states are partitioned into accepting and rejecting states;
this is a model for language acceptance. Fig. 1 shows the conceptual layout of a
Turning machine in this model.

Definition 1. A deterministic two-way Turing machine (abbreviated as 2DTM)
is a system M = 〈S, Γ,Σ,�,�, δ, s0, F 〉, where

1. S is the finite set of internal states,
2. Γ is the finite set of tape symbols, containing the blank symbol �,
3. Σ is the finite set of input symbols,
4. � /∈ Γ ∪ Σ is the left and � /∈ Γ ∪ Σ is the right endmarker,
5. s0 ∈ S is the initial state,
6. F ⊆ S is the set of accepting states, and
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7. δ : S × (Σ ∪ {�,�}) × Γ → S × {−1, 0, 1} × Γ × {−1, 0, 1} is the partial
transition function, where −1 means to move the head one square to the
left, 0 means to keep the head on the current square, and 1 means to move
one square to the right.

It is understood that the head of the input tape never moves beyond the
endmarkers. Moreover, if the head of the input tape may never move to the left,
we call the Turing machine one-way and abbreviate it as 1DTM.

A configuration of a Turing machine M = 〈S, Γ, Σ,�,�, δ, s0, F 〉 is a quin-
tuple (s, w, h0, β, h1), where s ∈ S is the current state, w ∈ Σ∗ is the input,
h0 ∈ {0, 1, . . . , |w| + 1} is the current head position on the input tape, β : Z → Γ
is a function that maps the tape cells of the working tape to their current con-
tents, and h1 ∈ Z is the current position of the working tape head. The initial
configuration for input w is set to (s0, w, 0, β�, 0), where β� maps all cells to the
blank symbol. During the course of its computation, M runs through a sequence
of configurations. One step from a configuration to its successor configuration is
denoted by relation �, defined by

(s, w, h0, β[h1 �→ a], h1) � (t, w, h0 + d0, β[h1 �→ b], h1 + d1),

if δ(s, wh0 , a) = (t, d0, b, d1), with w0 = �, wn+1 = � for input w = w1w2 · · · wn.
A Turing machine halts if the transition function is undefined for the current

configuration. An input word w is accepted if the machine halts at some time
in an accepting state, otherwise it is rejected. The language accepted by M is
L(M) = { w ∈ Σ∗ | w is accepted by M }.

Let t : N → N, t(n) ≥ n + 1, be a function. A Turing machine is said to be
t-time-bounded or of time complexity t if and only if it halts on every input of
length n after at most t(n) time steps.

The family of all languages which can be accepted by 1DTM (resp. 2DTM)
with time complexity t is denoted by 1DTIME(t) (resp. 2DTIME(t).) If t is the
function id + 1 then acceptance is said to be in real-time.

Now we turn to reversible (one-way) Turing machines. Basically, reversibility
is meant with respect to the possibility of stepping the computation back and
forth. So, the machines have also to be backward deterministic. In particular for
the read-only input tape, the machines reread the input symbol which they read
in a preceding forward computation step. So, for reverse computation steps of
one-way machines the head of the input tape is either moved to the left or stays
stationary.

A 1DTM (or 2DTM) is said to be reversible, abbreviated as 1RTM (respec-
tively 2RTM), if for any two distinct transitions

δ(p, x0, x1) = (q, d0, y1, d1) and
δ(p′, x′

0, x
′
1) = (q′, d′

0, y
′
1, d

′
1),

if q = q′, then (d0, d1) = (d′
0, d

′
1) and (x0, y1) �= (x′

0, y
′
1).

The first condition means that transitions yielding the same state all have to
move the heads the same way. The second condition says that for any configu-
ration the predecessor state and the predecessor work tape symbol are uniquely



A Hierarchy of Fast Reversible Turing Machines 33

determined by the state (which then implies the head movements), the input
tape symbol read, and the work tape symbol written.

As above, the families of all languages accepted by 1RTM and 2RTM in time t
is denoted by 1RTIME(t) respectively 2RTIME(t), with id + 1 being real-time.

In order to prove tight time hierarchies in almost all cases constructible
time bounding functions are required. Usually the notion “constructible” is con-
cretized in terms of computations with respect to the device in question.

Definition 2. A function f : N → N is said to be 1RTM-time-constructible iff
there exists a 1RTM that (i) reads its unary input w in |w| + 1 time steps, (ii)
halts after exactly f(|w|) time steps, and (iii) halts with its work tape head on
the rightmost (or leftmost) square of a distinguishable block of length |w|.

The third condition of this definition means that there are |w| consecutive
tape squares with inscriptions from some known set of symbols, and that these
squares are bordered by symbols not belonging to that set. This condition has
been added to the definition with an eye towards later applications.

In order to clarify this notion we continue with an example of a 1RTM that
time-constructs a fast-growing function.

Example 3. There is an increasing function of order Θ(22
n

) which is 1RTM-time-
constructible. We construct a 1RTM M = 〈S, Γ, Σ,�,�, δ, p0, F 〉 as follows. Set

S = {p0, p1, p2, pf , qa, qe, ql, qr, qY , qZ , ra, re, rr, rX},

Γ = {�, 0, 1, !, 0̄, 1̄, !̄, $,X, Y, Z},

Σ = {a} and F = ∅.

In a first phase, M reads the input am and writes the string Xm−1!$ to its
working tape:

1. δ(p0,�, �) = (p0, 1, �, 0)
2. δ(p0, a, �) = (p1, 1, �, 1)
3. δ(p1, a, �) = (p1, 1,X, 1)

4. δ(p1,�, �) = (p2, 0, !, 1)
5. δ(p2,�, �) = (qZ , 0, $, 1)

In a second phase, M successively increases a binary counter with the sym-
bols from {0, 1, !}, where ! denotes the leading 1. The counter is realized in the
X-block of the working tape, starting on the right of the block with the most
significant bit on the left. Separated by the $, on the right of the counter a string
of the form Y ∗Z is established, where one symbol is added for each incrementa-
tion of the counter. State qa is used to increment the counter, where state qe is
entered when the length of the counter has to be increased. After the incremen-
tation, state qr is used to move back to the $ symbol. The phase ends when the
extension of the counter would exceed the X-block:
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6. δ(qZ ,�, �) = (ql, 0, Z,−1)
7. δ(ql,�, $) = (qa, 0, $,−1)
8. δ(ql,�, Y ) = (ql, 0, Y,−1)
9. δ(qa,�, 0) = (qr, 0, 1, 1)

10. δ(qa,�, 1) = (qa, 0, 0,−1)

11. δ(qa,�, !) = (qe, 0, 0,−1)
12. δ(qr,�, 0) = (qr, 0, 0, 1)
13. δ(qr,�, $) = (qY , 0, $, 1)
14. δ(qe,�,X) = (qr, 0, !, 1)
15. δ(qe,�, �) = (rX , 0, �, 1)

After having reached the $ in state qr, M uses the states qY , qZ , and ql to add
a new symbol to the string of the form Y ∗Z and to return to the beginning of
the counter. Subsequently, the counter is increased again:

16. δ(qY ,�, Y ) = (qY , 0, Y, 1) 17. δ(qY ,�, Z) = (qZ , 0, Y, 1)

The third phase is preceded by a sweep from the left end of the counter to its right
end in state rX , whereby the digits (only 0 may appear) are overwritten by X
again (this will be the distinguishable block required by Definition 2). After
the sweep, a second binary counter with symbols from {0̄, 1̄, !̄} is successively
increased. The counter is realized in the Y -block of the working tape, starting
on the left of the block with the most significant bit on the right. Similar as in the
second phase, state ra is used to increment the counter, where state re is entered
when the length of the counter has to be increased. After the incrementation,
state rr is used to move back to the $ symbol. The phase ends in state pf which
is entered when the extension of the counter would exceed the Y -block, that is,
when the Z appears. State pf is finally used to move the head of the working
tape to the left until the rightmost of the m consecutive symbols X appears.
The block of m consecutive symbols X is bordered by � and $.

18. δ(rX ,�, 0) = (rX , 0,X, 1)
19. δ(rX ,�, $) = (re, 0, $, 1)
20. δ(re,�, Y ) = (rr, 0, !̄,−1)
21. δ(re,�, Z) = (pf , 0, Z,−1)
22. δ(rr,�, $) = (ra, 0, $, 1)
23. δ(rr,�, 0̄) = (rr, 0, 0̄,−1)

24. δ(ra,�, 0̄) = (rr, 0, 1̄,−1)
25. δ(ra,�, 1̄) = (ra, 0, 0̄, 1)
26. δ(ra,�, !̄) = (re, 0, 0̄, 1)
27. δ(pf ,�, 0̄) = (pf , 0, 0̄,−1)
28. δ(pf ,�, $) = (pf , 0, $,−1)

The reversibility of M is straightforwardly verified by inspecting the transi-
tion function and checking the two conditions from above. So, the running time
of M remains to be considered.

The first phase takes m + 3 time steps. For calculating the number of steps
of the second and third phase, we apply the known result that a Turing machine
needs no more than O(f(n)) steps for successively increasing the binary counter
from 1 to f(n). (For example, note that during every second incrementation
only the least significant bit has to be changed. See e.g. [10] for further details.)
Clearly, the task takes also at least f(n) steps. In addition, for every incremen-
tation the string Y ∗Z is extended by one symbol. Since the counter is increased
up to 2m, altogether the extension of the string takes Θ(22m) steps. Therefore,
the second phase is performed by M in Θ(22m) steps. During the third phase,
the second counter is incremented up to 22

m

and the head is finally moved to
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the leftmost X. This together takes Θ(22
m

) steps. So, we conclude that M obeys
a time bound of Θ(22

m

). �

The following definition summarizes the properties of reversibly constructible
functions and names them.

Definition 4. The set of all increasing, unbounded 1RTM-time-constructible
functions f with the property O(f(n)) ≤ f(O(n)) is denoted by T (1RTM). The
set of their inverses is T−1(1RTM) = { f−1 | f ∈ T (1RTM) }.

The properties increasing and unbounded are straightforward. The property
O(f(n)) ≤ f(O(n)) means that

∀ c ≥ 1 : ∃n0, c
′ ≥ 1 : ∀n ≥ n0 : c · f(n) ≤ f(c′ · n).

That is, f grows fast enough that any post-application constant factor can be
overcome by a pre-application constant factor. At first glance this seems to be
restrictive, but it is not: it is easily verified that almost all of the commonly con-
sidered time complexities have this property. We shall use this property for the
hierarchy separation result. Currently, there is no well-developed theory of time-
constructible functions for reversible Turing machines. However, it is evident that
Example 3 can be modified to show that there are functions of order Θ(2n) as
well as Θ(2n ◦ 2n ◦ · · · ◦ 2n) belonging to T (1RTM), where · ◦ · denotes function
composition.

3 The Hierarchy Between Real-Time and Linear-Time

This section develops the strict and tight hierarchy between real time and linear
time. To this end, we use witness languages as follows. Let r be a function from
T−1(1RTM), i.e., that there exists a function f ∈ T (1RTM) so that r = f−1.
We set

Lr = { ambf(m)−m#v1$v2$ · · · $vk¢$k−iu | k,m ≥ 1, i ∈ {1, 2, . . . , k},

|#v1$v2$ · · · $vk| = m, vi = uR, |u| ≥ 1, vj ∈ {a, b}∗, 1 ≤ j ≤ k }.

That is, Lr consists of words of the form of m occurrences of a, followed by
exactly f(m) − m occurrences of b, followed by a delimited sequence of $-
separated words over {a, b}∗ with total length m. One of these subwords, indexed
by a subsequent number of $’s, is then repeated in reverse at the end of the word.

Any non-constant time-constructible function grows faster than id, but since
here we are interested in sublinear functions r, the inverses of constructible
functions are used. Next we show that the languages Lr are on a certain level of
the hierarchy.

Lemma 5. For all functions r ∈ T−1(1RTM), the language Lr belongs to the
class 1RTIME(id + r).
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Proof. Let C = 〈Sc, Γc, Σc,�,�, δc, s0,c, ∅〉 be a 1RTM that time-constructs f .
In order to show the assertion, a 1RTM M = 〈S ∪ Sc, Γ ∪ Γc, Σ,�,�, δ, s0,c, F 〉
is constructed, with

S = {s0, sm, sd, sa, sb, sf , sacc},

Γ = {�, a, b, #, $},

Σ = {a, b, #, $, ¢} and F = {sacc},

where the unions are disjoint, and which works as follows.
In a first phase, M basically simulates C on the input prefix ambq#. By

definition, C reads its unary input (here am) without stationary moves on the
input tape. Then, C continues its computation with the input head scanning
the right endmarker. Here C is modified so that it reads one input symbol b in
each step, instead of stationarily scanning the endmarker. The phase succeeds
if the simulation would halt at that time step the input head has moved out
of the b’s, that is, the head is moved onto the new symbol #. In this situation
q = f(m) − m has been verified, and the working tape head is located on the,
say, rightmost square of a distinguishable block of length m. For simplicity we
may safely assume that this block has the form Xm. Let M be in state pf at
this time. Next, M performs the transition:

1. δ(pf , #,X) = (s0, 1, #,−1)

The reversibility of C (and, thus, of M) is not affected by the modifications.
Phase 1 requires f(m) + 2 time steps.

In the second phase, the condition |#v1$v2$ · · · $vk| = m is verified. To this
end, M continues to read its input and stores its reversal onto the distinguished
block (now of the form Xm−1#.) The condition is satisfied if and only if the ¢
is read from the input exactly at the time at which the first symbol outside
the distinguished block is read from the working tape (here we use the blank
symbol � for simplicity2):

2. δ(s0, a,X) = (s0, 1, a,−1)
3. δ(s0, b,X) = (s0, 1, b,−1)

4. δ(s0, $,X) = (s0, 1, $,−1)
5. δ(s0, ¢, �) = (sm, 1, �, 0)

Phase 2 requires m time steps.
In the third phase, the head of the working tape is moved onto the last

symbol of the subword vi whose reverse has to be matched with u. State sm is
used to move the working tape head one subword ahead for each $ read in the
input (using state sd to move across the subword.) Once no more $’s are read,
matching of the current subword and u can begin, using sa or sb to store the
initial symbol of u.

2 To see that these simplifying assumptions about the distinguished block are sound,
consider the use of two distinct tracks on the work tape: one for the simulation of C
and one for the copy of the $-separated sequence.
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6. δ(sm, $, �) = (sd, 0, �, 1)
7. δ(sm, a, �) = (sa, 1, �, 1)
8. δ(sm, b, �) = (sb, 1, �, 1)
9. δ(sm, $, $) = (sd, 0, $, 1)

10. δ(sm, a, $) = (sa, 1, $, 1)

11. δ(sm, b, $) = (sb, 1, $, 1)
12. δ(sd, $, a) = (sd, 0, a, 1)
13. δ(sd, $, b) = (sd, 0, b, 1)
14. δ(sd, $, $) = (sm, 1, $, 0)

Finally, in a fourth phase, M uses the states sa and sb to verify vi = uR.
Comparison between the input and the work tape is performed one step out of
sequence, and the lengths of these two subwords are identical if and only if after
the comparison the input head reads the right endmarker (for the first time) and
the working tape head scans the separating symbol $ or #. This is checked by
the state sf , and the sole accepting state is sacc:

15. δ(sa, a, a) = (sa, 1, a, 1)
16. δ(sa, b, a) = (sb, 1, a, 1)
17. δ(sa,�, a) = (sf , 0, a, 1)
18. δ(sb, a, b) = (sa, 1, b, 1)

19. δ(sb, b, b) = (sb, 1, b, 1)
20. δ(sb,�, b) = (sf , 0, b, 1)
21. δ(sf ,�, $) = (sacc, 0, $, 0)
22. δ(sf ,�, #) = (sacc, 0, #, 0)

During the third and fourth phase, the working tape head is moved in every
step across the tape inscription (#v1$v2$ · · · $vk)R, except for the very last step
and steps where a $ is read. So, both phases together require at most m+(k− i)
time steps.

We conclude that the total running time of M is at most

f(m) + 2 + m + m + (k − i) = f(m) + 2m + 2 + (k − i).

The length n of the whole input is f(m) + m + 1 + (k − i) + |u|. Therefore, M
takes m + 1 − |u| time steps beyond id. Since |u| ≥ 1 this is at most m. On the
other hand, since f belongs to T (1RTM) it is increasing and therefore r = f−1

is increasing as well. So, we obtain

r(n) = r(f(m) + m + 1 + (k − i) + |u|) ≥ r(f(m)) = f−1(f(m)) = m

and, thus, the time complexity id + r is obeyed by M . ��
Now we move on to show that the witness languages Lr cannot be accepted

with time complexities whose part beyond id grows strictly slower than r, even
for two-way reversible Turing machines. Due to the small time bounds the
machines are too weak for diagonalization, so counting arguments are applied
in order to separate the complexity classes. The method has, at least implicitly,
been used several times in connection with real-time computations – for example
in [4,7,12] for Turing machines and in [3] for iterative arrays.

Lemma 6. Let r : N → N and r′ : N → N be two functions. If r ∈ T−1(1RTM)
and r′ ∈ o(r) then language Lr does not belong to the class 2RTIME(id + r′).

Proof. For the purpose of contradiction, assume that language Lr is accepted
by some 2RTM M = 〈S, Γ,Σ,�,�, δ, s0, F 〉 with time complexity id +r′.
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Recall that r is the inverse of a time-constructible function f . We now
consider words of the form ambf(m)−m#v1$v2$ · · · $vk where vi ∈ {a, b}k for
all 1 ≤ i ≤ k, vi �= vj for i �= j, and |#v1$v2$ · · · $vk| = m. So, we have
m = k(k + 1) = k2 + k. The number of distinct such words is trivially bounded
below by the number of different k-element sets {v1, v2, . . . , vk}, vi ∈ {a, b}k.
Given that |{a, b}k| = 2k, this is

(
2k

k

)

≥
(

2k

k

)k

=
(
2k−log k

)k ≥ 2
k2
2 = 2Ω(k2)

for all sufficiently large k, with the inequalities provided by
(
n
k

) ≥ (
n
k

)k and
k
2 ≥ log k.

Next we provide these words as input prefixes to M and consider the possible
situations M could be in immediately after processing the prefix in an accepting
computation. The length of the remaining input is at most 2k for accepting
computations. The remaining computation depends only on the current internal
state and the contents of the at most 2(2k + r′(n)) + 1 reachable squares on
each tape: there are at most 2k + r′(n) steps left of the time bound id +r′, and
the factor of 2 is due to M being two-way. Let 	 = max{|Σ|, |Γ |, |S|}. For the
2(2k + r′(n)) + 1 squares of both tapes there are at most 	4(2k+r′(n))+2 different
inscriptions. Including the current state we obtain at most 	4(2k+r′(n))+3 different
situations.

In general, r′ is not necessarily increasing. Therefore, let r′′(1) = r′(1) and
r′′(n) = max{r′(n), r′′(n − 1)}, for n ≥ 2. Clearly, r′ ≤ r′′ and we obtain

	4(2k+r′(n))+3 ≤ 	4(2k+r′′(n))+3.

For accepted words with the given prefix, the word length is

n ≤ f(m) + m + 2k ≤ f(m) + m + 2m ≤ 4 · f(m) = 4 · f(k2 + k),

since f ≥ id, as f is increasing and unbounded by belonging to T (1RTM).
Because r′′ is increasing by construction, this gives us

	4(2k+r′′(n))+3 ≤ 	4(2k+r′′(4·f(k2+k)))+3

≤ 	4(2k+1)+4·r′′(4·f(k2+k)).

From r = f−1 it follows that r is increasing. By r′ ∈ o(r) and the construction
of r′′ we conclude r′′ ∈ o(r). Furthermore, we know O(f(n)) ≤ f(O(n)), so we
obtain for sufficiently large k:

	4(2k+1)+4·r′′(4·f(k2+k)) ≤ 	4(2k+1)+4·r′′(f(c1(k2+k))), for some c1 ≥ 1

= 	4(2k+1)+4·o(r(f(c1(k2+k))))

= 	4(2k+1)+4·o(c1(k2+k))

= 	4(2k+1)+o(k2)

= 	o(k2)

= 2o(k2).



A Hierarchy of Fast Reversible Turing Machines 39

So, there are more words than situations. This means that there are two dif-
ferent words w = ambf(m)−m#v1$v2$ · · · $vk and w′ = ambf(m)−m#v′

1$v
′
2$ · · · $v′

k

of the form above for which the situation for the remaining computation is iden-
tical if the remaining input has the same length. Since w and w′ are different,
there exists an i ∈ {1, 2, . . . , k} with vi �= v′

i. Moreover, since w¢$k−ivR
i belongs

to Lr and, thus, is accepted by M , w′¢$k−ivR
i is accepted by M as well. However

w′¢$k−ivR
i does not belong to Lr, contradicting that M accepts Lr. ��

Now the tight and infinite hierarchies in between real-time and linear-time
follow immediately from Lemmas 6 and 5.

Theorem 7. Let r : N → N and r′ : N → N be two functions. If r ∈ T−1(1RTM)
and r′ ∈ o(r) then

1RTIME(id + r′) ⊂ 1RTIME(id + r) and 2RTIME(id + r′) ⊂ 2RTIME(id + r).

A taste of the hierarchies is given in the following example.

Example 8. As mentioned above, Example 3 can be generalized in a straightfor-
ward way to show that there are functions in Θ((2n)[i]), for all i ≥ 1, that belong
to T (1RTM). So, the functions log[i], i ≥ 1, belong to T−1(1RTM). Therefore,
an application of the hierarchy theorem yields

1RTIME(id +1) ⊂ · · · ⊂ 1RTIME(id + log[i+1])

⊂ 1RTIME(id + log[i]) ⊂ · · · ⊂ 1RTIME(id + id).

and

2RTIME(id +1) ⊂ · · · ⊂ 2RTIME(id + log[i+1])

⊂ 2RTIME(id + log[i]) ⊂ · · · ⊂ 2RTIME(id + id).

�

Here we have considered reversible Turing machines with a read-only input
tape and a read-write working tape. Further natural variants for consideration
would be one-tape machines and multitape machines.

For the one-tape variant, where there is only one read-write tape on which
the input is provided, there is no hierarchy between real-time and linear-time, as
mentioned above. By the results in [5,13] the real-time and linear-time classes for
such not necessarily reversible machines coincide, and characterize the regular
languages. Since every regular language can be accepted already by a reversible
one-tape Turing machine, also the reversible classes coincide.3

In the proof of Lemma 6 it has been argued that the number of distinguishable
situations for processing the last at most 2k input symbols depends on the
3 Even though these classes characterize the regular languages, reversible finite

automata are strictly less powerful than irreversible finite automata in general [11],
so the capabilities of the Turing machine model are required to force this collapse.
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current internal state and the contents of the at most 2(2k + r′(n)) + 1 reachable
squares on each tape. In the calculation of the number of different situations,
the number of tapes therefore manifests itself only as a constant factor in the
exponent. So, the order of magnitude 2o(k2) is not affected by the number of
tapes. Therefore, the hierarchy results hold for m-tape machines as well (cf. [7]
for similar results for not necessarily reversible Turing machines).

4 Reversibility Versus Irreversibility

We now turn to the question whether reversible Turing machines in the range of
interest are weaker than general ones or not; it turns out that they are. In fact,
there are languages accepted by irreversible one-way Turing machines in real time
that cannot be accepted by any reversible one-way machine in less than linear
time. The basic idea of the proof is to use the mirror language with a particular
regular language in the center, utilizing that not all regular languages can be
recognized by reversible finite automata. Irreversible Turing machines can check
the infix from the regular language without moving the working tape head. How-
ever, if the regular language cannot be accepted by any reversible deterministic
finite automaton, a reversible one-way Turing machine has to use its working
tape to check the infix. This is exploited to force the working tape head away
from any information stored to verify the mirror language part of the input.

We first develop the regular language and consider reversible Turing machines
that accept it. To this end, we will use Kolmogorov complexity and incompress-
ibility arguments. General information on this technique can be found, for exam-
ple, in the canonical textbook [9, Ch. 7]. Let w ∈ {0, 1}∗ be an arbitrary binary
string. The Kolmogorov complexity C(w) of w is defined to be the minimal size
of a program (Turing machine) describing w. The following key component for
using the incompressibility method is well known: there are binary strings w of
any length so that |w| ≤ C(w).

We encode words w ∈ {0, 1}∗ as follows. From left to right the digits are
represented alternating by a’s and b’s so that a 0 is represented by a single
letter and a 1 by a double letter. For example, the word 010110 is encoded as
abbabbaab. Let t(w) denote the code of w. Clearly, the set of code words for all
w ∈ {0, 1}∗ form the regular language Lbin = ((aa + a)(bb + b))∗(aa + a + λ).

Lemma 9. Any 1RTM accepting Lbin uses Ω(|w|) working space for infinitely
many inputs w.

Proof. Assume for the purpose of contradiction that Lbin is accepted by some
1RTM M = 〈S, Γ,Σ,�,�, δ, s0, F 〉 that uses o(|w|) working space for all
inputs w. We now choose a (long enough) word w ∈ {0, 1}∗ with C(w) ≥ |w|,
consider an accepting computation on t(w), and show that w can be compressed.

Ignoring the second (input) component w, every configuration (s, w, h0, β, h1)
of M can be encoded with



A Hierarchy of Fast Reversible Turing Machines 41

O(log(|S|) + log(|w|) + log(|Γ |o(|w|)) + log(o(|w|)))
= O(log(|w|) + o(|w|)) = O(o(|w|)) = o(|w|)

bits. If we know the Turing machine M , the length of w, and the accepting
configuration without the input w, we can reconstruct w as follows. For each
candidate string x of length |w|, simulate M on x. If the simulation accepts
in the (known) accepting configuration of M on w, we have x = w and, thus,
reconstructed w.

In order to show the correctness of the reconstruction, i.e., that only w is
accepted in the given configuration, assume on the contrary that there is a
string x �= w such that x accepted by M in the accepting configuration of w.
Let w = w1w2 · · · wn and x = x1x2 · · · xn. From the accepting configuration,
run M backwards (using the reversibility of M) for as long as the suffixes of w
and x are identical. This eventually reaches configurations (s, w, h0, β, h1) and
(s, x, h0, β, h1), differing only in their inputs, such that wi = xi for h0 ≤ i ≤ n,
and wh0−1 �= xh0−1. Because M is one-way, this implies that M behaves identi-
cally in the two configurations on all input symbols from this point on, not just
the particular suffix shared by x and w. Now, wh0 is either a or b, say b. That
is, wh0 = xh0 = b and wh0−1 �= xh0−1. This implies that precisely one of wh0−1

and xh0−1 is b, say, wh0−1 = b and xh0−1 = a. Since the string x1x2 · · · xh0b
belongs to Lbin it is accepted by M , and because M is one-way, the computa-
tion must reach configuration (s, x1x2 · · · xh0b, h0, β, h1). Since M , when run
on input w1w2 · · · wh0b, must reach configuration (s, w1w2 · · · wh0b, h0, β, h1),
w1w2 · · · wh0b must also be accepted by M . However, the input w1w2 · · · wh0b
ends with three b’s and, thus, does not belong to Lbin . Thus only w is accepted
in the given accepting configuration.

However, we then have C(w) ≤ C(M) + log(|w|) + o(|w|) + |p| = o(|w|),
where |p| is the constant size of the above program reconstructing w. We conclude
C(w) < |w|, for w long enough, contradicting that C(w) ≥ |w|. Therefore, M
cannot accept Lbin in o(|w|) space. ��
Lemma 10. There is a language accepted by a 1DTM in real time that cannot
be accepted by any 1RTM in less than linear time.

Proof. The witness language for the assertion is

L = {wuwR | w ∈ {0, 1}∗, u ∈ Lbin , |u| ≥ 1 }.

Language L is accepted by a 1DTM in real time as follows. First, the leading
w ∈ {0, 1}∗ is copied to the working tape. When the first symbol from {a, b}
appears in the input, the infix u starts. Now, the working tape head is kept at its
current position, and the internal states of the machine are used to verify that u
belongs to the regular language Lbin . If yes, upon reading the first symbol from
{0, 1}, the machine starts to compare the trailing wR with the tape inscription,
whereby the working tape head is moved from the end of the inscribed w to its
beginning, accepting if these are equal.
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It remains to be shown that L is not accepted by any 1RTM in less than linear
time. Assume on the contrary that there is a 1RTM M = 〈S, Γ, Σ,�,�, δ, s0, F 〉
which accepts L in time id +o(id).

By Lemma 9, we know that there are words u of arbitrary lengths so that M
has to use Ω(|u′|) working tape space for any prefix u′ of u. More precisely, there
is a constant c0 ≥ 1 so that M extends the length of the non-blank working tape
inscription by i symbols for each block of at most c0 · i input symbols.

Now we consider input prefixes wu and take a closer look at three particular
configurations. The first configuration is reached at the first time step at which
the word w has been read and the working tape head is located at an end of the
non-blank part of the working tape. At this point w and possibly some symbols
from u have been read. Let v be the inscription of the working tape and u1 be the
prefix of u that has been read at this time. From above we derive that the length
of u1 is at most c0 · |w|. Denote this configuration Cw,1 = (p, wu1, |wu1|, v, |v|).

The second configuration is reached when M has extended its working tape
inscription by another |w| symbols and the working tape head is located at the
(same) end of the non-blank part of the working tape. Let v′v1 be the inscrip-
tion of the working tape at that time, where |v′| = |v| and |v1| = |w|, and
let u2 be the next part of the input that has been read to reach this configu-
ration. Again, from above we derive |u2| ≤ c0 · |w|. Denote this configuration
Cw,2 = (q, wu1u2, |wu1u2|, v′v1, |v′v1|).

The third configuration is reached when M has extended its working tape
inscription by another 2|w| symbols, so that the working tape head is located
at the (same) end of the non-blank part of the working tape. Similar to before,
let v′′v′

1v2 be the inscription of the working tape at that time, where |v′′| = |v|,
|v′

1| = |v1| = |w|, and |v2| = 2|w|, and let u3 be the next part of the input that
has been read to reach this configuration. We know |u3| ≤ 2c0|w| from above.
Denote this configuration Cw,3 = (s, wu1u2u3, |wu1u2u3|, v′′v′

1v2, |v′′v′
1v2|).

In the next step of the proof, extended crossing sequences are used. The
notion of crossing sequences was introduced in [5] for one-tape machines. In that
setting, the crossing sequence at location i was defined to be the sequence of
states a Turing machine is in when its head crosses the boundary between tape
square i and i + 1. Since here we are dealing with an additional input tape, the
notion is extended as follows. Crossing sequences are now defined for the squares
of the working tape, such that for each state in the sequence, the current input
head position is also listed. Such crossing sequences are denoted CS i(x), for a
Turing machine run on input x.

Next we consider a word ŵ ∈ {0, 1}∗ such that |w| = |ŵ| and w �= ŵ, and
determine the configurations

Cŵ,1 = (p̂, ŵû1, |ŵû1|, v̂, |v̂|),
Cŵ,2 = (q̂, ŵû1û2, |ŵû1û2|, v̂′v̂1, |v̂′v̂1|), and
Cŵ,3 = (ŝ, ŵû1û2û3, |ŵû1û2û3|, v̂′′v̂′

1v̂2, |v̂′′v̂′
1v̂2|)



A Hierarchy of Fast Reversible Turing Machines 43

as for w with the same u. That is, û1û2û3 is again a prefix of u. Let u1u2u3

be longer than û1û2û3 (if not, interchange the roles played by w and ŵ in the
following.)

Now we consider the complete inputs wu1u2u3w
R and ŵu1u2u3ŵ

R, both
belonging to L. Assume that one of the crossing sequences appearing on the
working tape somewhere in the inscription v′

1, that is, CS i(wu1u2u3w
R), for

some |v′′| ≤ i ≤ |v′′v′
1|, is the same as one of the crossing sequences appearing

on the working tape somewhere in the inscription v̂′
1, that is, CS j(ŵu1u2u3ŵ

R),
for some |v̂′′| ≤ j ≤ |v̂′′v̂′

1|. Since input positions and, thus, the input symbol
associated with the states in the crossing sequence are the same, the behavior
of M to the right of i is identical to the behavior to the right of j.

The total lengths of both inputs are at most |w| + 4c0|w| + |w| ∈ O(|w|).
Since |v2| = 2|w| there is not enough time to move the working tape head
back across v2 while processing the suffix wR, as doing this would imply a time
complexity of at least linear time. So, the working tape head remains to the
right of location i. This would imply that ŵu1u2u3w

R is accepted by M as
well, but ŵu1u2u3w

R /∈ L. In turn, this means that all the crossing sequences
CS i(wu1u2u3w

R), for |v′′| ≤ i ≤ |v′′v′
1|, must be different from all the crossing

sequences CS j(ŵu1u2u3ŵ
R), for |v̂′′| ≤ j ≤ |v̂′′v̂′

1|.
We now consider the length of these crossing sequences. There are 2|w| differ-

ent input prefixes of length |w| for which all the crossing sequences in the loca-
tions under question have to be different. Further, for M to use only id + o(id)
time, most of these crossing sequences have to be short. Now, with only |S| differ-
ent states and at most 3c0|w| input positions between |wu1| and |wu1u2u3| there
are at most

∑3c0
i=0(|S| ·3c0|w|)i < (|S| ·3c0|w|)3c0+1 possible crossing sequences of

length 3c0 or less available. Since this is only polynomial in |w|, there is an input
prefix of length |w| for which all the |w| crossing sequences in the locations under
question are at least of length 3c0 + 1 (these do not have to be all different.)
This implies that M spends at least 3c0|w|+ |w| time steps for performing these
crossing sequences, while processing at most |u2u3| ≤ 3c0|w| of the input, and
so M spends at least id+ |w| steps in total on this particular input. Because the
total length of the input was of order O(|w|), this means that M uses strictly
more than id + o(id) time steps on some words in L. ��

As an immediate corollary to Lemma 10 we get the proper inclusions of the
following theorem.

Theorem 11. Let r : N → N be a function so that r ∈ o(id). Then

1RTIME(id +r) ⊂ 1DTIME(id +r).

5 Conclusion

In this paper, Turing machines equipped with one working tape and a one-way or
two-way read-only input tape have been investigated toward their ability to per-
form fast reversible computations. A main result is that there exist infinite hier-
archies in between real time and linear time for such reversible Turing machines.
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Furthermore, this result holds for multitape Turing machines as well. One essen-
tial step for proving these hierarchies was to translate the notion of time con-
structibility from arbitrary Turing machines to reversible Turing machines.

A primary motivation was the question of whether reversible Turing machines
are less powerful than irreversible Turing machines under the above conditions.
Here, the result is that Turing machines with one working tape and one-way
input tape working in any given time complexity in between real time and linear
time become less powerful when their computations have to be reversible. It is
currently not clear, and an interesting topic for further research, whether the
latter result can be generalized to Turing machines with a two-way input tape,
or to Turing machines with more than one working tape.

Acknowledgments. H.B. Axelsen was supported by the Danish Council for Inde-
pendent Research | Natural Sciences under the Foundations of Reversible Computing
project. Thanks are due to Robin Kaarsgaard for comments on a draft of this paper.
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Abstract. Bennett has shown how to simulate arbitrary forwards-only
computations by fully reversible computation. In particular he has given
a space-efficient linear time simulation. After describing a different linear-
time reversible simulation with improved space efficiency, we initiate the
study of real-time simulations. In addition to being linear-time, these
must offer continuous progress, meaning that the delay between succes-
sive forward events must be bounded by a constant.

1 Introduction

Intel’s co-founder Gordon E. Moore famously predicted in 1965 that the com-
putational performance of modern computers would double every 18 months
(Moore’s Law). At the moment his law is being obeyed, due to continuous
development in the area of minimising elements which make up the computer.
As pointed out in [3], a linear increase in clock frequency is associated with a
quadratic increase of elementary gates per unit area, leading to a cubic increase
in heat dissipation if the energy expended per event remains constant. Thus the
increase under Moore’s Law has only been possible due to a vast increase in
energy efficiency of elementary logical gates.

However there exists a physical limit of kT ln 2 which is about 3×10−21 Joule
at room temperature. This is the minimum amount of energy that a computer
must waste to perform a calculation. With current advances following Moore’s
Law, this limit will be reached in about ten years [9]. Therefore in the near
future something drastic will need to be done for computation power to be able
to increase at the pace defined by Moore’s Law.

A possible solution to this problem was suggested by Landauer [4], who
argued that the thermodynamic limit of kT ln 2 only applies to calculation per-
formed in a irreversible way. Therefore if the calculation is performed in a
reversible way then the cost of a calculation operation can be below the limit
kT ln 2 given by thermal noise.

Lecerf and Bennett continued this line of thought, proving independently
that an irreversible Turing Machine can be simulated by a reversible Turing
machine [1,6].

The next development in reversible computation was more space efficient
reversible simulation. Bennett [2] showed how to obtain a more space optimised
version of reversible computation. Li and Vitányi [8] also looked at trade-offs
between space and time, and trade-offs between space and irreversible erasure.
c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 45–59, 2015.
DOI: 10.1007/978-3-319-20860-2 3



46 T. Pesu and I. Phillips

Lange, McKenzie and Tapp [5] gave a method to perform reversible simulation
in linear space; however it comes at the cost of exponential time. Williams [10]
generalised the results of [2,5]. Buhrman, Tromp and Vitányi proved an upper
bound on the trade-off between time and space, and showed that one can simul-
taneously achieve sub-exponential time and sub-quadratic space [3].

In this paper we are interested in real-time reversible simulations. Such sim-
ulations must in particular be linear-time, but we identify a further stronger
property they should satisfy, which we call continuous progress. This means that
the simulation of each forward step should not be indefinitely delayed. More
precisely, there is a fixed finite bound p, independent of the time taken by the
original forwards-only computation, such that when p steps of the simulation
are performed, at least one step of advancement is made with respect to the
original forwards-only computation. As far as we are aware, real-time reversible
simulations have not been studied previously.

If interactive systems or systems that need to stream out data at constant
intervals are ever implemented in practice with reversible computation, then it is
critical that the algorithm that performs the simulation satisfies the definition of
continuous progress. For example users of said computer would quite quickly get
frustrated if the execution of their program occasionally stalled for an undefined
amount of time.

An example of a program that needs to stream out data at a constant rate
is an mp3 decoder/player. If the program stalls and fails to send frequency
information to the physical speakers at a constant rate the listening experience
will be poor. Therefore it is a necessary condition that all reversible computation
simulations for playing music and displaying video use an algorithm that satisfies
continuous progress.

Plenty of examples can also be found in computation systems in finance. For
example in algorithmic trading the trading systems emit information about the
market and if the sending of the information is delayed it might be too late to
trade based on this information.

Given that details on how exactly reversible computation will work with
programs where information is non-deterministically streamed in computation
have not yet been fully studied, it is hard to say how exactly continuous progress
will fit in. However, it can be said with high confidence that continuous progress
is a crucial requirement once a physical reversible computer can be built and
actual real world programs are run on these computers.

As far as linear-time simulations are concerned, the most efficient presently
known is due to Bennett [2]. We offer an improvement on his linear-time algo-
rithm, which we call the k-ratic algorithm. This operates at essentially the same
rate as Bennett’s algorithm, but uses roughly half as much space.

Neither algorithm satisfies the continuous progress property, since an
unbounded amount of time is taken up in periodic releasing of memory. We
show how to modify each algorithm to ensure continuous progress, using multi-
ple threads.

The paper is organised as follows. In Section 2 we look at the relevant previous
work. Then in Section 3 we introduce the k-ratic algorithm. In Section 4 we
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describe changes to Bennett’s linear-time algorithm and to the k-ratic algorithm
to allow them to make continuous progress. We finish with some conclusions.

2 Previous Work on Linear-Time Simulations

This section will review existing research related to linear-time reversible simula-
tions of forwards-only computation. The section starts off with Bennett’s original
1973 algorithm. We then discuss the pebble game, a tool commonly used in the
study of reversible computation. Finally we look at Bennett’s 1989 algorithm,
which has improved space efficiency compared to the original 1973 version.

2.1 Bennett’s 1973 Simulation

The basic idea of Bennett’s simulation is to construct reversible versions of all
the elementary operations of a Turing machine. Doing this for a universal Tur-
ing machine will mean that all possible computer programs can be reversibly
simulated.

We simulate a 1-tape Turing machine with a 3-tape Turing machine. The
three tapes of the simulating machine are the work tape, the history tape and the
output tape. At the beginning, the work tape contains the input of the machine
and the other two tapes are empty. In the first stage the original computation
is performed and at the same time the history tape is filled with padding from
each single computational step to make the computation reversible. In the second
stage the output is copied from the work tape onto the output tape. Finally in
the third stage the work tape is converted back to the initial input with the help
of the history tape. We are left with the input on the work tape and the output
on the output tape, with the history tape empty.

Let the original computation take space S and time T , and let the reversible
version of this computation take space S′ and time T ′. The work tape will take
up space S. The history tape will at worst take up space O(T ). Finally the
output will in the worst case take as much space as the work tape. Therefore
space usage will be in the worst case S′ = 2S + T = O(S + T ). Performing the
first stage will take time O(T ). In the worst case the output will be as big as
the amount of computation done, and so the second stage takes at most O(T ).
Finally the third stage also takes O(T ). This sums up to T ′ = O(T ).

Bennett’s simulation is very memory hungry. Note that T can be as much as
O(2S), so that S′ = O(2S) in terms of S alone. Considering that most modern
computers can perform more computations per second than they have bytes of
RAM, the simulation is infeasible in practice. Therefore a better implementation
for reversible simulation that uses less space is needed.

2.2 The Pebble Game

The pebble game was briefly introduced by Bennett in [2], and later taken up by
other researchers [8]. The pebble game has a board with an unbounded number
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of squares labelled with natural numbers from 1 upwards, and the player is given
m pebbles. Each pebble represents δ steps of computation. The kth square on
the board represents computation from the (k − 1)δth step to the kδth step in
the original forwards-only computation. If a pebble is placed on the kth square
it means that enough information is stored so that the kth segment of δ steps
can be performed reversibly using Bennett’s 1973 method.

The pebble game has the following rules.

– Initially all the squares of the board are not pebbled.
– The player can place a pebble on the board either at square 1, or at square k

if the (k − 1)th square has been pebbled.
– The player can remove a pebble either at square 1 or at a square k if the

(k − 1)th square has been pebbled.
– The objective of the game is to place a pebble as far as possible in the list

of squares and then clear the board to a situation where only the furthest
pebble (the one with the greatest advancement) remains on the board.1

– The player can have a maximum of m pebbles on the board at the same
time.

The number of pebbles allowed represents the space usage of the reversible
simulation. Bennett’s 1973 algorithm can be interpreted in the pebble game as
follows. To advance n squares with n pebbles, first lay down n pebbles in order
from square 1 to square n. Then remove the pebbles in reverse order by starting
from n − 1 and going down back to 1.

2.3 Bennett’s 1989 Simulation

In 1989 Bennett presented an algorithm to reversibly simulate a machine running
in time T and space S. Given a constant k, he shows how to place pebbles on
up to kn squares using n(k − 1) + 1 pebbles, with (2k − 1)n moves in the pebble
game.

Bennett proved that the simulation operates in time T ′ = O(T 1+ε) (so non-
linear) and space O(S log T ). His analysis was later refined by Levine and Sher-
man [7], who demonstrated that there is a big constant factor in the memory
bound that grows exponentially in terms of ε−1. They state the time and space
bounds as T ′ = Θ(T 1+ε/Sε) and S′ = Θ(S(1 + ln(T/S)) with a constant factor
in the space bound of approximately ε21/ε.

In Bennett’s algorithm, k is constant while n varies. Bennett remarks briefly
that a linear-time variant can be obtained by holding n fixed and varying k. We
next look at this in more detail. Note that we swap over n and k to reflect their
new statuses.

Let us denote Bennett’s algorithm for parameters n and k by B(n, k). It
works as follows. Let the original forwards-only computation use space S. Each

1 In the game as described in [8] all pebbles are removed from the board, but the
present formulation, matching Bennett’s original description, is more convenient for
the algorithms considered here.
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square in the pebble game represents m ≈ S steps in the original computation.
Using the 1973 algorithm these m steps can be performed in time O(S) and
space O(S).

In order to advance by nk squares in the pebble game, we pebble n blocks
of nk−1 by calling B(n, k − 1) successively on blocks 1 to n. This gives us single
pebbles at the end of each of the n blocks. We refer to the computation so far
as the advancement phase. We then use B(n, k − 1) in reverse on blocks n − 1
down to 1. We are left with a single pebble at square nk. We refer to this latter
part of the computation as the clearing phase. For the base case k = 0 a single
pebble is placed on the first square.

Remark 2.1. The case for k = 1 is effectively Bennett’s original 1973 algorithm.

The recurrence relation for the number of steps of B(n, k) is

R(n, 0) = 1
R(n, k + 1) = (2n − 1)R(n, k) (k ≥ 0)

with solution R(n, k) = (2n − 1)k.

Remark 2.2. Note that we count the number of steps in the pebble game, even
though in fact each pebble placed represents m ≈ S steps.

The number of pebbles used by B(n, k) is given by

P (n, 0) = 1
P (n, k + 1) = P (n, k) + n − 1 (k ≥ 0)

with solution P (n, k) = k(n − 1) + 1.
The time T taken by the original computation is mnk. The time T ′ taken by

B(n, k) satisfies T ′ = O(T ), since

R(n, k)
nk

=
(

2n − 1
n

)k

≤ 2k. (1)

So the algorithm runs in linear time. The space usage is S′ = (k(n−1)+1)O(S) =
O(ST 1/k).

3 The k-ratic Algorithm

We present a new linear-time reversible simulation algorithm, which we call the
k-ratic algorithm. Like Bennett’s algorithm, it splits the computation into blocks.
However they are no longer of equal size; each successive block is smaller than
its predecessor. In a sense the algorithm is greedier in using pebbles; Bennett’s
algorithm leaves more pebbles unused when executing the earlier blocks.

Let the k-ratic algorithm with parameters n and k be denoted by K(n, k). It
will use n pebbles, and works as follows. We first call K(n− 1, k − 1) on block 1.
This will leave a single pebble at the end of the block. We then successively
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call K(n − 2, k − 1), . . . , K(1, k − 1) on blocks 2, . . . , n − 1, respectively. We are
now left with pebbles at the end of n − 1 blocks. We place the final pebble
after block n − 1. As with Bennett’s algorithm, we refer to the computation so
far as the advancement phase. If we stop at this point we refer to this as the
advancement-only k-ratic algorithm.

For the full k-ratic algorithm we must remove the first n − 1 pebbles rep-
resenting intermediate checkpoints. We do this by successively calling each of
K(1, k − 1), . . . , K(n − 1, k − 1) in reverse. We are left with a single pebble
immediately after the end of the last block. As before, we refer to this latter
part of the algorithm as the clearing phase.

In the base case for k = 0 we simply place a pebble on the first square and
terminate.

Remark 3.1. In the case for k = 1, note that K(n, 1) is the same as B(n, 1),
and is effectively Bennett’s original algorithm of [1]. Just place n pebbles on
successive squares, and then remove pebbles n − 1, . . . , 1 to leave only the last
pebble.

A graphical demonstration of the method for k = 2 can be seen in Figure 1.

advancement phase

clearing phase

Fig. 1. Performing the k-ratic algorithm with n = 7 and k = 2

Let us call the number of the square with the last pebble the advancement
of K(n, k); we denote it by A(n, k). We get the following recurrence relation:

A(n, 0) = 1
A(n, k + 1) = 1 +

∑n−1
i=1 A(i, k) (k ≥ 0)

Thus A(n, 1) = n and

A(n, 2) = 1 +
n−1∑

i=1

A(i, 1) = 1 +
n−1∑

i=1

i =
n(n − 1)

2
+ 1 .
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The recurrence relation for the number of steps of K(n, k) is

S(n, 0) = 1
S(n, k + 1) = 1 + 2

∑n−1
i=1 S(i, k) (k ≥ 0)

Thus S(n, 1) = 2n − 1 and

S(n, 2) = 1 + 2
n−1∑

i=1

S(i, 1) = 1 + 2
n−1∑

i=1

(2i − 1) = 2(n − 1)2 + 1 .

Let us denote the running time of the advancement-only k-ratic algorithm by
SA(n, k). Then

SA(n, k) =
S(n, k) + 1

2
.

We now calculate an estimate of the advancement A(n, k), using the following
standard result.

Lemma 3.2. Let f : R → R be continuous and non-decreasing on the range
[0, n]. Then

∫ n−1

0

f(x) dx ≤
n−1∑

i=1

f(i) ≤
∫ n

1

f(x) dx .

Proposition 3.3. For any n ≥ 1, k ≥ 1 we have A(n, k) = (nk/k!) + O(nk−1).

Proof. We first show A(n, k) ≤ (nk/k!) + O(nk−1) by induction on k. Clearly
A(n, 1) ≤ n1 + O(1). Suppose that A(n, k) ≤ (nk/k!) + O(nk−1). Then using
Lemma 3.2

A(n, k + 1) = 1 +
∑n−1

i=1 A(i, k)
≤ 1 +

∑n−1
i=1 (ik/k!) +

∑n−1
i=1 O(ik−1)

≤ 1 +
∫ n

1
xk/k! dx +

∑n−1
i=1 O(ik−1)

= 1 + (nk+1 − 1)/(k + 1)! + (n − 1)O(nk−1)
= (nk+1/(k + 1)!) + O(nk)

We now show A(n, k) ≥ (nk/k!) + O(nk−1). Clearly A(n, 1) ≥ n1 + O(1).
Suppose that A(n, k) ≥ (nk/k!) + O(nk−1). Then using Lemma 3.2

A(n, k + 1) = 1 +
∑n−1

i=1 A(i, k)
≥ 1 +

∑n−1
i=1 (ik/k!) +

∑n−1
i=1 O(ik−1)

≥ 1 +
∫ n−1

0
xk/k! dx +

∑n−1
i=1 O(ik−1)

= 1 + (n − 1)k+1/(k + 1)! + (n − 1)O(nk−1)
= (nk+1/(k + 1)!) + O(nk)

We deduce that A(n, k) = (nk/k!) + O(nk−1) as required. ��
The running time of K(n, k) is no more than 2k times the advancement:
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Proposition 3.4. For any n ≥ 1, k ≥ 0 we have S(n, k) ≤ 2kA(n, k).

Proof. By induction on k. It clearly holds for k = 0. Suppose S(n, k) ≤ 2kA(n, k).
Then

S(n, k + 1) = 1 + 2
∑n−1

i=1 S(i, k)
≤ 1 + 2

∑n−1
i=1 2kA(i, k)

= 2k+1(1 +
∑n−1

i=1 A(i, k)) − (2k+1 − 1)
= 2k+1A(n, k + 1) − (2k+1 − 1)
≤ 2k+1A(n, k + 1)

��
The k-ratic algorithm K(n, k) achieves advancement of A(n, k) squares in S(n, k)
steps. As before, each square in the pebble game corresponds to m ≈ S steps in
the original computation. So we simulate T = O(A(n, k)) steps of the original
computation in time T ′ = O(S(n, k)). It is clear from Proposition 3.4 that the
k-ratic algorithm runs in linear time since T ′ = O(T ), just as for Bennett’s algo-
rithm. Indeed the ratio of 2k of the number of steps of the simulating algorithm to
the advancement achieved is the same in both cases, comparing Proposition 3.4
and Equation (1). The space usage is S′ = nO(S) = O(ST 1/k) as in Bennett’s
algorithm.

However if we look in more detail at space, the k-ratic algorithm improves
on Bennett’s. Let us fix values for T/S, and for k. Bennett’s algorithm uses
p1 = k(n − 1) + 1 pebbles with nk = T/S. Thus p1 ≈ (kkT/S)1/k. The k-ratic
algorithm uses p2 = n pebbles with nk/k! ≈ T/S. Thus p2 ≈ (k!T/S)1/k. This
gives us a ratio of p1/p2 = (kk/k!)1/k.

Proposition 3.5.
lim

k−>∞
(kk/k!)1/k = e

Proof. This is a consequence of Stirling’s formula n! ∼ √
2πn(n/e)n. ��

By Proposition 3.5, p1/p2 tends to e as k increases; in fact it has a value ≥ 2
for k ≥ 6. Thus the k-ratic algorithm uses roughly half as much space, a modest
improvement.

The improvement is larger if we consider how much advancement can be
made for a given amount of space (number of pebbles). Suppose we are given
k(n − 1) + 1 pebbles as in Bennett’s algorithm. Then B(n, k) advances by nk

squares. The k-ratic algorithm can advance by

A(k(n − 1) + 1, k) = ((k(n − 1) + 1)k/k!) + O(nk−1) = (kk/k!)nk + O(nk−1)

The ratio kk/k! is of course simply a constant, but it is quite large for even small
values of k:

Proposition 3.6. For k ≥ 1, kk/k! ≥ 2k−1.



Real-Time Methods in Reversible Computation 53

Proof. By induction. It clearly holds for k = 1. We have

(k + 1)k+1

(k + 1)!
=

(k + 1)k

k!
≥ kk + k.kk−1

k!
= 2

kk

k!

Hence result. ��
In fact 1010/10! = 2755.7. Thus even for modest values of k we get an improve-
ment on advancement for the same amount of space usage.

We now turn to the issue of how to choose a suitable value of the parameter k.
Even though the reversible simulation of T steps is linear with respect to T , the
constant factor 2k grows exponentially. This makes it in practice necessary to
choose a small value of k. This is further supported by the diminishing returns
of lower memory usage as k increases.

T ′ = Θ(2kT ) (2)

S′ = Θ(S k
√

(T/S)k!) (3)

In the formal definition of big-O notation the k! and 2k should not exist in the
notations as they are constant. However in this case they are quite large and
might in practice have a significant impact on the computation time and space
usage.

We now consider what value of k we should choose for optimal results, given
a particular value of T/S. By Proposition 3.5 we have k

√
k! = Θ(k), which using

Equation (3) gives us
S′ = Θ(kS k

√
(T/S)) .

To find the value of k for which S′ reaches a minimum, we differentiate the
function y = x(T/S)1/x:

dy/dx = (T/S)1/x(x − ln(T/S))/x

meaning that k ≈ ln(T/S) is the minimum.
As an example, if T/S = 1020, space S′ would improve up to roughly ln 1020 =

46.05. However such a value of k would be far too large as far as time is concerned,
given the 2k slowdown in Equation (2). As far as space is concerned, after about
k = 7 diminishing returns set in on the improvement in memory compared to
the extra time.

Clearly there is a trade-off between space and time when choosing the value
of k. How to resolve this will depend on the particular application. However
we can estimate a suitable value of k based on the following heuristic. For a
given value of T/S we decide on a value of k by finding the greatest k such that
increasing from k − 1 to k doubles the space usage. Increasing k further would
mean that we were doubling the time taken but not halving the space. Call this
value kM (T/S). See Figure 2 for a plot of kM for values up to 10100, yielding
e.g. a value of 17 for T/S = 10100. Note that the horizontal axis is log-scale.
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Fig. 2. Plot of kM (T/S) against log10(T/S)

4 Continuous Progress

We are interested in real-time reversible simulations of forwards-only compu-
tations. As stated in the Introduction, we identify continuous progress as a
requirement for a simulation to be real-time. It will be convenient to allow mul-
tiple threads in the simulating program. A single step of the simulation means
that each of its threads makes a step (or idles). Simulating programs can take
a variable parameter n which allows for the capacity to simulate an indefinitely
increasing number of steps depending on n (with a corresponding increase in
memory usage).

Definition 4.1. A (multi-threaded) simulation program Sim(n) makes continu-
ous progress if and only if there is some constant p ∈ N (not depending on n)
such that for every n, the program that is being simulated advances at least one
computational step for every p steps of computation performed by the simulat-
ing program Sim(n). If such a p exists, we call it the progression factor of the
simulation.

Remark 4.2. If the simulation is reversible, it may have to perform further com-
putation after reaching maximum advancement, i.e. after the forward computa-
tion has been fully simulated. We will still allow such a simulation to satisfy the
condition for continuous progress.

A progression factor greater than one does not prevent a simulation in real time,
as long as the simulating computation is run on a faster processor than the
original computation.



Real-Time Methods in Reversible Computation 55

From Definition 4.1 it follows that the simulation operates in linear time
compared to the program being simulated. If the latter makes T steps, then the
former makes ≤ pT = O(T ) steps. However continuous progress is a stricter
requirement than just linear time simulation, as it could be the case that on
average the simulation advances linearly, but occasionally progress hangs for
arbitrarily long time.

Example 4.3. Consider a simulation that takes the following amount of steps per
progression of the program being simulated; it is linear time but not continuously
progressing:

F (n) =
{

n if n is a power of 2
1 otherwise

Letting k = �log n� we have

n∑

i=0

F (i) = (n + 1) − (k + 1) +
k∑

j=0

2j = (2k+1 − 1) + n − k ≤ 3n .

Therefore on average to progress n steps in the original computation approxi-
mately 3n steps need to be performed by the simulation. Hence the simulation
is linear time. However it is not continuously progressing due to the increas-
ing stalls in progress that happen at powers of two. Such stalls also occur in
Bennett’s algorithm B(n, k) described in Section 2.3, and in the k-ratic method
K(n, k) described in Section 3; in both cases the interval between successive
advancement steps can be as much as O(nk−1) steps of simulation.

Lemma 4.4. If a q-threaded algorithm has a progression factor of p then there
is a corresponding single-threaded algorithm with progression factor qp.

Proof. Simply schedule the q threads onto a single thread in a round-robin
fashion. ��
In particular cases where different threads carry out different amounts of work,
we may be able to improve on the bound given by Lemma 4.4, of course.

Both Bennett’s 1989 linear-time algorithm (Section 2.3) and the k-ratic algo-
rithm (Section 3) fail to exhibit continuous progress, due to the interruptions
to forward progress for the clearing phases. We now look at how to reprogram
them onto multiple concurrent threads to ensure continuous progress. Multiple
threads are not essential by Lemma 4.4, of course.

A natural point to utilise multi-threading in algorithms such as we have
considered is at the point when the advancement phase for a block finishes. At
this point there is a need to backtrack and erase previously laid pebbles before
proceeding to the next block. It is possible to multi-thread this part by having
one thread continue forward while another thread frees the pebbles laid down in
the past.

We start by allowing a comparatively large number of threads, namely O(2k),
where k is the constant parameter in the algorithms described earlier. In the case
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of Bennett’s algorithm by using 2k−1 threads we can get a progression factor of
one.

Theorem 4.5. For k ≥ 1, we can program B(n, k) onto 2k−1 threads with a
progression factor of 1.

Proof. By induction. The base case k = 1 with a single thread is clear. To
perform B(n, k + 1) on n blocks, we divide the 2k threads into 2k−1 used for
advancement, and an equal number used for clearing. We start by using the
advancement threads to perform the advancement phase of B(n, k) on block 1.
We know by induction that the progression factor is 1. Then for i = 1, . . . , n−1,
we simultaneously perform the clearing phase of B(n, k) on block i and the
advancement phase of B(n, k) on block i + 1. Again the progression factor is 1.
Hence result. ��
By using 2k−1 threads we have improved the parallel time for the advancement
phase to be equal to the advancement nk. This is a 2k−1 speed-up compared to
the sequential version. The total number of pebbles used is given by

P ′(n, 1) = n
P ′(n, k + 1) = 2P ′(n, k) + n − 2 (k ≥ 1)

with solution P ′(n, k) = (2k−1)(n−1)+1. This may be compared with P (n, k) =
k(n − 1) + 1 for the original algorithm.

Suppose now that we have fewer than 2k−1 threads available. Let the number
of threads be 2j where 0 ≤ j < k. Then we can run the algorithm of Theorem 4.5
on 2j threads by time-sharing as in Lemma 4.4. We still get continuous progress,
with a progression factor of 2k−1−j . The pebble usage will still be P ′(n, k).

In particular, if we take the 2k−1-thread version and schedule it onto a single
processor, we get a progression factor of 2k−1. The pebble usage is of course
greater than the P (n, k) of the original algorithm, though only by a constant
factor.

If we wish to economise on memory, as an alternative to Theorem 4.5 we can
use k threads instead of 2k−1.

Theorem 4.6. For k ≥ 2, we can program B(n, k) onto k threads with a pro-
gression factor of 2k−2.

Proof. By induction on k. For k = 1 we have one thread and we have a progres-
sion factor of 1 = 2k−1.

Suppose true for k ≥ 1. The threaded algorithm for k + 1 uses k + 1 threads.
The algorithm divides the work into n blocks 1, 2, . . . , n, each of size nk. We
perform each successive advancement of block i using threads 1 to k, but slowed
down by a factor of 2 compared to the threaded algorithm for k, except if k = 1,
when we proceed at the usual rate. Once block i is finished we clear it up using
thread k + 1 operating at the normal rate, while threads 1 to k are advancing
through the next block i + 1. The time taken by thread k + 1 is R(i, k)/2 ≤
2k−1nk using Equation (1). The time taken by threads 1 to k on block i + 1 is
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2.2k−2nk = 2k−1nk if k ≥ 2, and 1.2k−1nk = 2k−1nk if k = 1. Hence thread k+1
will finish no later than threads 1 to k. The progression factor is 2k−1. Hence
result. ��
When scheduling onto a single processor we get a progression factor of k2k−2,
which is not quite as good as the 2k−1 offered by Theorem 4.5. However the
space usage improves. The method of Theorem 4.6 uses P ′′(n, k) pebbles where

P ′′(n, 1) = P (n, 1)
P ′′(n, k + 1) = P ′′(n, k) + P (n, k) + n − 2 (k ≥ 1)

with solution P ′′(n, k) = k(k + 1)(n − 1)/2 + 1.
We can obtain a result similar to Theorem 4.6 for the k-ratic algorithm, but

the progression factor increases by a multiple of two, due to the blocks being of
different sizes, rather than all the same size. We first state a lemma concerning
the advancement A(n, k) of the k-ratic algorithm K(n, k).

Lemma 4.7. For n ≥ 2 and k ≥ 0 we have A(n, k) ≤ 2A(n − 1, k).

Proof. By induction on k. We easily check the case for k = 0. Suppose A(n, k) ≤
2A(n − 1, k) for all n ≥ 2.

A(n, k + 1) = 1 +
∑n−1

i=1 A(i, k)
= 1 + A(1, k) +

∑n−1
i=2 A(i, k)

≤ 1 + A(1, k) +
∑n−1

i=2 2A(i − 1, k)
= 1 + A(1, k) + 2

∑n−2
i=1 A(i, k)

= 1 + 1 + 2(A(n − 1, k + 1) − 1)
= 2A(n − 1, k + 1)

��
The ratio of 2 in Lemma 4.7 is the best possible in general, since e.g. A(1, 2) = 1
and A(2, 2) = 2.

Remark 4.8. In fact for any k ≥ 0, limn→∞ A(n, k)/A(n − 1, k) = 1. To see this
note that it is easy to show that A(n, k) = A(n − 1, k) + A(n − 1, k − 1) for any
k ≥ 1, n ≥ 2. Also by Proposition 3.3 we have limn→∞ A(n, k − 1)/A(n, k) = 0.

Theorem 4.9. The k-ratic algorithm K(n, k) can be programmed with k threads
with a progression factor of 2k−1.

Proof. By induction on k. For k = 1 we have one thread. The progression factor
is clearly 1 = 2k−1.

Suppose true for k. The threaded algorithm for k +1 uses k +1 threads. The
algorithm divides the work into n−1 blocks 1, 2, . . . , n−1, where block i has size
A(n − i, k). We perform each successive advancement of block i using threads 1
to k, but slowed down by a factor of two compared to the threaded algorithm
for k. Once block i is finished we clear it up using thread k + 1 operating at the
normal rate, while threads 1 to k are advancing through the next block i + 1.



58 T. Pesu and I. Phillips

Fig. 3. Multi-threading with k = 4

We illustrate this in Figure 3, which shows the way in which different erasure
threads (in red) have to operate at increasing rates in order to keep up with
forward progression (in green).

The time taken by thread k + 1 is S(i, k)/2 ≤ 2kA(i, k)/2 ≤ 2kA(i − 1, k)
using Proposition 3.4 and Lemma 4.7. The time taken by threads 1 to k on block
i + 1 is 2.2k−1A(i − 1, k) = 2kA(i − 1, k). Hence thread k + 1 will finish no later
than threads 1 to k. The progression factor is 2.2k−1 = 2k. Hence result. ��
The number of pebbles used by the method of Theorem 4.9 is k(n − 1) − 1,
compared to n for the original algorithm K(n, k).

5 Conclusions

We have studied real-time reversible simulations of forwards-only computations.
As far as we are aware, such simulations have not been studied previously.

The first part of this paper presented a new algorithm for reversible compu-
tation called the k-ratic method. The k-ratic method is a technique to reversibly
simulate a forward-only computation. Letting T and S be the time and space
used by the forwards-only computation, the k-ratic method uses O(2kT ) time
and O(kS k

√
T/S) space, where k is a constant. It also uses up to a factor of e

less space than Bennett’s linear-time algorithm. We considered how to pick a
suitable value for k, taking into account the trade-off between time and space.

The latter part of the paper introduced the notion of continuous progress.
For a program to satisfy the condition of continuous progress it is necessary that
a upper bound must exist on the number of steps the simulating program can
advance without the advancement of the program being simulated. The paper
then explored how Bennett’s technique and the k-ratic method can be modified
with the help of multi-threading to satisfy the definition of continuous progress.

Two different ways to achieve continuous progress are discussed. The first
method uses O(2k) threads and increases memory usage by a factor of O(2k).
However it is able to achieve an upper bound of one for continuous progress.
The second method increases memory usage by a factor of O(k). However it is
only able to provide a continuous progress upper bound of O(2k).
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Abstract. Stateless deterministic ordered restarting automata charac-
terize the class of regular languages. Here we introduce a notion of
reversibility for these automata and show that each regular language
is accepted by such a reversible stateless deterministic ordered restarting
automaton. We study the descriptional complexity of these automata,
showing that they are exponentially more succinct than nondeterministic
finite-state acceptors. We also look at the case of unary input alphabets.

Keywords: Restarting automaton · Reversibility · Descriptional com-
plexity

1 Introduction

Reversibility is a property that has been investigated for various types of
automata. It means that every configuration has a unique successor configu-
ration and a unique predecessor configuration, that is, the automaton consid-
ered is forward and backward deterministic. The main motivation for studying
this notion is the observation that information is lost in computations that are
not reversible. Each Turing machine can be simulated by a reversible Turing
machine [1], which shows that reversible Turing machines are just as expressive
as general Turing machines. On the other hand, reversible deterministic finite-
state acceptors (DFAs) are strictly less expressive than DFAs [13]. The notion of
reversibility has also been studied for other types of automata, e.g., for pushdown
automata [5] and for queue automata [6].

Here we introduce a notion of reversibility for a rather restricted class of
restarting automata, the stateless deterministic ordered restarting automata. The
restarting automaton was introduced in [4] as a formal device to model the lin-
guistic technique of analysis by reduction. Since then many variants and exten-
sions of the basic model have been introduced and studied (for an overview, see,
e.g., [11]), and several classical families of formal languages, like the regular lan-
guages, the deterministic context-free languages, and the context-free languages,
have been characterized by certain types of restarting automata.
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The deterministic ordered restarting automaton (or det-ORWW-automaton)
was introduced in [10] in the setting of picture languages. A det-ORWW-auto-
maton has a finite-state control, a tape with end markers that initially con-
tains the input, and a window of size three. Based on its state and the content
of its window, the automaton can perform one of three types of operations:
it may perform a move-right step, it may perform a combined rewrite/restart
step, or it may perform an accept step (see Section 2 for details). The nonde-
terministic variant of the ordered restarting automaton accepts some languages
that are not even context-free, but the deterministic variant accepts exactly the
regular languages [10]. In fact, each det-ORWW-automaton can be simulated
by a det-ORWW-automaton with only a single state [12]. As for the latter,
states are essentially useless, they are called stateless det-ORWW-automata, or
stl-det-ORWW-automata for short. In [12] the descriptional complexity of stl-
det-ORWW-automata is investigated, using the size of the working alphabet as
a complexity measure. It is shown that there is a double exponential trade-off
when changing from a stl-det-ORWW-automaton to an equivalent DFA. Accord-
ingly, we think that the stl-det-ORWW-automaton is a very interesting type of
automaton, as it is a simple deterministic device that, nevertheless, yields suc-
cinct representations for the regular languages.

Here we introduce a notion of reversibiliy for stl-det-ORWW-automata, and
we show that each regular language is accepted by a stl-det-ORWW-automaton
that is reversible by presenting a transformation that turns a given stl-det-
ORWW-automaton into an equivalent stl-det-ORWW-automaton that is revers-
ible. This construction yields an exponential upper bound for the size increase
of this transformation, but unfortunately we do not yet have a matching lower
bound. Then we investigate the descriptional complexity of a reversible stl-det-
ORWW-automaton in relation to the size of an equivalent DFA or NFA. We
recall a simulation of stl-det-ORWW-automata by NFAs from [7], which also
applies to stl-det-ORWW-automata that are reversible, and by considering a
specific class of example languages we show that the resulting trade-off is indeed
exponential. For DFAs, the corresponding trade-off is even double exponential.
Finally, we consider the problem of turning a unary NFA into an equivalent
stl-det-ORWW-automaton that is reversible. Here we obtain a quadratic size
increase, but it remains open whether there is a matching lower bound. The
paper closes with a short summary and a list of open problems.

2 Stateless Deterministic Ordered Restarting Automata

A stl-det-ORWW-automaton is a one-tape machine that is described by a 6-
tuple M = (Σ,Γ,�,�, δ, >), where Σ is a finite input alphabet, Γ is a finite
tape alphabet such that Σ ⊆ Γ , the symbols �,� �∈ Γ serve as markers for the
left and right border of the work space, respectively,

δ : (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��}) ��� {MVR} ∪ Γ ∪ {Accept}
is the (partial) transition function, and > is a partial ordering on Γ . The tran-
sition function describes three different types of transition steps:
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(1) A move-right step has the form δ(a1a2a3) = MVR, where a1 ∈ Γ ∪ {�} and
a2, a3 ∈ Γ . It causes M to shift the window one position to the right.

(2) A rewrite/restart step has the form δ(a1a2a3) = b, where a1 ∈ Γ ∪ {�},
a2, b ∈ Γ , and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes M to replace
the symbol a2 in the middle of its window by the symbol b and to restart,
that is, the window is repositioned on the left end of the tape.

(3) An accept step has the form δ(a1a2a3) = Accept, where a1 ∈ Γ ∪{�}, a2 ∈ Γ ,
and a3 ∈ Γ ∪ {�}. It causes M to halt and accept. In addition, we allow an
accept step of the form δ(��) = Accept.

If δ(u) is undefined for some u, then M necessarily halts, when it sees u in
its window, and we say that M rejects in this situation. Further, the letters in
Γ � Σ are called auxiliary symbols.

A configuration of a stl-det-ORWW-automaton M is a pair of words (α, β),
where |β| ≥ 3, and either α = λ (the empty word) and β ∈ {�} · Γ+ · {�} or
α ∈ {�} · Γ ∗ and β ∈ Γ · Γ+ · {�}; here αβ is the current content of the tape,
and it is understood that the window contains the first three symbols of β. In
addition, we admit the configuration (λ,��). A restarting configuration has the
form (λ,�w �) (usually simply written as �w�); if w ∈ Σ∗, then (λ,�w �) is
also called an initial configuration. Further, we use Accept to denote an accepting
configuration, which is a configuration that M reaches by an accept step.

A computation of a stl-det-ORWW-automaton M consists of certain phases.
A phase, called a cycle, starts in a restarting configuration, the head is moved
along the tape by MVR steps until a rewrite/restart step is performed and
thus, a new restarting configuration is reached. If no further rewrite operation
is performed, any computation necessarily finishes in a halting configuration –
such a phase is called a tail. By �c

M we denote the execution of a complete cycle,
and �c∗

M is the reflexive transitive closure of this relation.
An input w ∈ Σ∗ is accepted by M , if the computation of M which starts

with the initial configuration �w � ends with an accept step. The language
consisting of all words that are accepted by M is denoted by L(M).

Theorem 1. [10,12] REG = L(det-ORWW) = L(stl-det-ORWW).

3 Reversibility for stl-det-ORWW-Automata

Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton. A combined
rewrite/restart step of the form δ(abc) = b′ takes M from a configuration of
the form (�u, abcv�) to the restarting configuration �uab′cv�. Now it is not at
all clear how a reverse transition function could be designed that would trans-
form the latter configuration back to the former configuration. Therefore, we
consider a different notion of reversibility for our automata, a notion that is
more in the spirit of restarting automata.

Definition 2. A stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >) is called
reversible, if there exists a reverse transition function

δR : ((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ��� {MVR} ∪ Γ
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such that, for all restarting configurations �w� and �w′� that can occur within
computations of M , �w� �c

M �w′ � iff � w′� �cR

M �w � . Here �cR

M denotes a
cycle that is realized by using the reverse transition function δR. We describe the
above reversible stl-det-ORWW-automaton as M = (Σ,Γ,�,�, δ, δR, >), and we
use the prefix rev- to denote reversible automata.

Observe that in the definition above, we require that a cycle must be
reversible by δR only for the case that the corresponding restarting configu-
rations occur in a valid computation of M , that is, there exists an input x ∈ Σ∗

such that �w� is reached from the initial configuration �x� of M . This corre-
sponds to the way reversibility is defined for queue automata in [6].

Obviously, rev-stl-det-ORWW-automata can only accept certain regular lan-
guages. However, in contrast to the situation for DFAs, they actually accept all
regular languages, as we have the following result.

Theorem 3. For each stl-det-ORWW-automaton M working on an alphabet
with n letters, there exists a rev-stl-det-ORWW-automaton R with 2O(n) letters
such that L(R) = L(M) holds.

For deriving this result we need the following normal form result for stl-det-
ORWW-automata. Here the right distance of a cycle C : �uabcv� �c

M �uab′cv�
of a stl-det-ORWW-automaton M is defined as Dr(C) = |v|+1, where |v| denotes
the length of the word v. Thus, Dr(C) is the distance from the window to the
right end of the tape at the time of rewriting in cycle C.

Definition 4. A stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >) is said to be
in normal form if it satisfies the following two conditions:
1. In any computation (C0, C1, C2, . . . , Cm) of M , |Dr(Ci) − Dr(Ci−1)| ≤ 1

holds for all i = 1, . . . , m.
2. M only accepts with the right delimiter � in its window.

Lemma 5. For each stl-det-ORWW-automaton M working on an alphabet with
n letters, there exists an equivalent stl-det-ORWW-automaton M̂ with an alpha-
bet of size at most 2(n + 1) that is in normal form.

Proof. From M we obtain an equivalent stl-det-ORWW-automaton M ′ =
(Σ,Γ,�,�, δ′, >′) that only accepts with the right delimiter in its window by
using one extra symbol, that is, |Γ | = n + 1 [7]. From M ′ we construct the
stl-det-ORWW-automaton M̂ = (Σ,Δ,�,�, δ, >) as follows:

– Δ = Γ ∪ { a | a ∈ Γ }, which implies that |Δ| = 2 · |Γ | = 2(n + 1);
– a > a for all a ∈ Γ , and a > b for a, b ∈ Γ , if a >′ b holds;
– the transition function δ is defined as follows, where a, b, c, d ∈ Γ :

δ(�a�) = δ′(�a�) for a ∈ Γ ∪ {λ}, δ(ab�) = δ′(ab�),

δ(�ab) =

{
c, if δ′(�ab) = c,

a, if δ′(�ab) = MVR,
δ(abc) =

{
d, if δ′(abc) = d,

b, if δ′(abc) = MVR,

δ(�ab) =

{
c, if δ′(�ab) = c,

MVR, if δ′(�ab) = MVR,
δ(a bc) =

{
d, if δ′(abc) = d,

MVR, if δ′(abc) = MVR,

δ(�a b) = MVR, δ(a b c) = MVR.
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The automaton M̂ simulates a computation of M ′ by proceeding as follows.
Assume that on input x = x1 . . . xm, M ′ will perform the cycle

(λ,�x�) = (λ,�x1 . . . xi−1xixi+1 . . . xm�) �c
M (λ,�x1 . . . xi−1axi+1 . . . xm�).

Then M̂ will first rewrite xj , j = 1, . . . , i − 1, into xj , and then it will rewrite
xi into a, producing the restarting configuration (λ,�x1 . . . xi−1axi+1 . . . xm�).
For the next cycle of M ′, there are three possibilities:

1. M ′ may rewrite xi−1 into a symbol b. Then M̂ will rewrite xi−1 into b.
2. M ′ may rewrite a into a symbol b. Then so will M̂ .
3. Finally, M ′ may rewrite a symbol xj for some j ≥ i + 1 into a symbol b.

Then M̂ will replace the symbols a, xi+1, . . . , xj−1 from left to right by the
symbols a, xi+1, . . . , xj−1, and then it will rewrite xj into b.

Thus, in each cycle M̂ either rewrites the first symbol from Γ from the left, or
it rewrites the last symbol from Δ � Γ from the left. It now follows easily that
M̂ is in normal form, and that L(M̂) = L(M ′) = L(M) holds. 	


Now we can give the proof of Theorem 3.

Proof. Let M = (Σ,Γ,�,�, δM , >) be a stl-det-ORWW-automaton with n =
|Γ |. Without loss of generality we can assume that M only accepts with the
right marker � in its window. By Lemma 5 we can construct a stl-det-ORWW-
automaton M̂ = (Σ, Γ ,�,�, δ̂, >) that is equivalent to M and in normal form.
Here Γ = Γ ∪ Γ , where Γ = { a | a ∈ Γ }, and hence, M̂ has 2n letters.

From M̂ we construct a rev-stl-det-ORWW-automaton R = (Σ,Δ,�,�,
δ, δR, >) such that L(R) = L(M̂) = L(M) as follows:

– The tape alphabet Δ contains the input alphabet Σ and all triples of the
form (L,W,R), where

• W is a sequence of letters W = (w1, . . . , wk) from Γ of length 1 ≤ k ≤ 2n
such that w1 > w2 > · · · > wk,

• L is a sequence of positive integers L = (l1, . . . , lk−1) of length k−1 such
that l1 ≤ l2 ≤ · · · ≤ lk−1 ≤ 2n, and

• R is a sequence of positive integers R = (r1, . . . , rk−1) of length k − 1
such that r1 ≤ r2 ≤ · · · ≤ rk−1 ≤ 2n.

As in [7] the idea is that W encodes the sequence of letters that are pro-
duced by M̂ in an accepting computation for a particular field, and L and R
encode the information on the neighbouring letters to the left and to the right
that are used to perform the corresponding rewrite operations. For example,
the triple (l1, w1, r1) ∈ (L,W,R) means that w1 is rewritten into w2, while
the left neighbouring field contains the l1-th letter of its sequence W ′, and the
right neighbouring field contains the r1-th letter of its sequence W ′′. To sim-
plify the discussion below, we simply interpret a symbol a ∈ Σ ∪ {�,�} as
the triple (L,W,R) = (∅, (a), ∅).
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Further, in order to ensure that triples in neighbouring fields are consistent
with each other, the following notion has been introduced in [7]. For two finite
non-decreasing sequences of integers R′ = (r′

1, . . . , r
′
k) and L = (	1, . . . , 	s),

where k, s ≥ 0, we define a multiset order(R′, L) as follows:

order(R′, L) = { r′
i + i − 1 | i = 1, . . . , k } ∪ { 	j + j − 1 | j = 1, . . . , s }.

Now a pair of triples ((L′,W ′, R′), (L,W,R)) is called consistent, if
order(R′, L) = {1, 2, . . . , k+s}, that is, it is the integer interval [1, k+s]. This
notion of consistency will be of importance in the definition of the transition
functions below.

– The ordering > on Δ is defined by taking (L,W,R) > (L′,W ′, R′), if there
exist b ∈ Γ and l, r ∈ N such that L′ = (L, l), W ′ = (W, b), and R′ = (R, r).

– For a triple (L,W,R) = ((l1, . . . , lk−1), (w1, . . . , wk), (r1, . . . , rk−1)), we take
π((L,W,R)) = wk and ||(L,W,R)|| = k. The transition function δ is defined
as follows, where A,B,C ∈ Δ ∪ {�,�} satisfy the condition that the pair
(A,B) and the pair (B,C) are both consistent (see above):

δ(ABC) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MVR, if δ̂(π(A)π(B)π(C)) = MVR,

Accept, if δ̂(π(A)π(B)π(C)) = Accept,

((L, ||A||), (W, b), (R, ||C||)), if B = (L,W,R) and
δ̂(π(A)π(B)π(C)) = b.

Thus, instead of replacing the symbol π(B) by the symbol b, as M̂ does,
the automaton R appends the symbol b to the sequence of symbols W at
the corresponding position. In addition, it appends the integers ||A|| and
||C|| to the lists L and R at this position, as these numbers point to the
symbols (within the corresponding lists) that are at this moment contained
in the neighbouring positions. Observe that δ(ABC) is undefined, if any of
the pairs (A,B) or (B,C) is not consistent.

– Finally, the reverse transition function δR is defined as follows, where it is
again required that the pairs (A,B) and (B,C) are consistent:

δR(ABC) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(L,W,R), if B = ((L, l), (W, b), (R, r)), l = ||A||, r = ||C||,
and δ̂(π(A)π((L,W,R))π(C)) = b,

MVR, if C �= � and the above conditions are not met,
undefined, if C = � and the above conditions are not met.

It remains to verify that R accepts the same language as M , and that R is
indeed reversible.

Claim 1. L(R) = L(M).

Proof. Let w ∈ Σ∗ such that w ∈ L(M) = L(M̂) holds. Assume that |w| =
m ≥ 1. As w ∈ L(M̂), the computation of M̂ on input w is accepting, that is,
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it consists of a sequence of s ≥ 0 cycles and an accepting tail. If s = 0, then M̂
simply scans w from left to right, and it accepts on reaching the symbol �. From
the definition of δ it follows that R does exactly the same on input w, that is,
w ∈ L(R) holds in this case. If s ≥ 1, then the accepting computation of M̂ on
input w looks as follows:

(λ,�w �) �c
M̂

(λ,�w1 �) �c
M̂

· · · �c
M̂

(λ,�ws �) �∗
M̂

(�w′
s, bc�) �M̂ Accept,

where w1, . . . , ws ∈ Γ
m

and ws = w′
sbc for some letters b, c ∈ Γ .

Let us look at the first cycle (λ,�w �) �c
M̂

(λ,�w1 �). It consists of t1 ≥ 0
move-right steps and a rewrite/restart step that replaces the symbol at position
t1 + 1 of w by a smaller symbol from Γ , that is, w = w′aw′′ for some w′ ∈ Σt1 ,
a ∈ Σ, and w′′ ∈ Σm−t1−1, and w1 = w′bw′′ for some b ∈ Γ such that a > b
holds. From the definition of δ we see that, starting from the configuration
(λ,�w�), the automaton R will execute the following cycle:

(λ,�w�) = (λ,�w′aw′′ �) �c
R (λ,�w′Bw′′ �),

where B = ((1), (a, b), (1)). Thus, after simulating the first cycle the tape of R
contains all the information on the tape content of M̂ plus the information on the
rewrite step that was executed during the first cycle. Observe that for all factors
AB occurring on the tape of R during this computation, the corresponding pair
(A,B) is trivially consistent.

Inductively it can be shown that R simulates the above computation of M̂
cycle by cycle, in each rewrite/restart step not only simulating the corresponding
rewrite/restart step of M̂ , but also encoding information on this very step. Hence,
R accepts on input w, too, which shows that L(M) is contained in L(R).

Now assume conversely that w ∈ Σ∗ is accepted by R. As w ∈ L(R), the
computation of R on input w is accepting, that is, it consists of a sequence of
s ≥ 0 cycles and an accepting tail. If s = 0, then it follows from the definition
of δ that R simply scans w from left to right and accepts on reaching the right
delimiter �. However, this means that on input w, M̂ does exactly the same,
that is, w ∈ L(M) also holds in this case. Finally, if s ≥ 1, then the computation
of R on input w looks as follows:

(λ,�w �) �c
R (λ,�W1 �) �c

R · · · �c
R (λ,�Ws �) �∗

R (�W ′
s, BC �) �R Accept,

where W1, . . . , Ws ∈ Δm and Ws = W ′
sBC for some letters B,C ∈ Δ. Interpret-

ing π as a morphism from Δ∗ to Γ
∗
, it follows that the computation of M̂ on

input w looks as follows:

(λ,�w �) �c
M̂

(λ,�π(W1)�) �c
M̂

. . .

�c
M̂

(λ,�π(Ws)�) �∗
M̂

(�π(W ′
s), π(B)π(C)�) �M̂ Accept,

which means that w ∈ L(M). Here the consistency of each pair (A,B) that cor-
responds to a factor AB of the tape contents of R implies that the corresponding
steps of M̂ are indeed possible. It follows that L(R) = L(M) holds. 	
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We now complete the proof of Theorem 3 by establishing the following claim.

Claim 2. The stl-det-ORWW-automaton R is reversible.

Proof. Let w, z ∈ Δm such that (λ,�w �) �c
R (λ,� z �) holds. Then w = uAv

and z = uBv for some u ∈ Δr, A,B ∈ Δ, and v ∈ Δm−r−1, that is, u = U1 . . . Ur,
V = V1 . . . Vm−r−1 for some U1, . . . , Ur, V1, . . . , Vm−r−1 ∈ Δ, and

(λ,�w �) �r
R (�U1 . . . Ur−1, UrAV1 . . . Vm−r−1 �)

�R (λ,�U1 . . . UrBV1 . . . Vm−r−1 �).

From the definition of δ we can conclude the following properties:

1. The pairs (�, U1), (U1, U2), . . . , (Ur−1, Ur), (Ur, A), (A, V1) are all consistent,
as the factors �U1, U1U2, . . . , Ur−1Ur, UrA, and AV1 are all scanned by R
during this cycle.

2. δ(�U1U2) = δ(U1U2U3) = · · · = δ(Ur−1UrA) = MVR, and so MVR =
δ̂(�π(U1)π(U2)) = δ̂(π(U1)π(U2)π(U3)) = · · · = δ̂(π(Ur−1)π(Ur)π(A)).

3. δ(UrAV1) = B, and so δ̂(π(Ur)π(A)π(V1)) = π(B), where A = (L,W,R)
and B = ((L, ||Ur||), (W, b), (R, ||V1||)).
It follows immediately that also the pairs (Ur, B) and (B, V1) are consistent.

Now we apply the reverse transition function δR starting with the configura-
tion (λ,� z �) = (λ,�U1 . . . UrBV1 . . . Vm−r−1 �). It looks for the first position
from the left where a rewrite can be ‘undone.’ Obviously, if the factor UrBV1 is
reached, then B = ((L, ||Ur||), (W, b), (R, ||V1||)) is rewritten into A = (L,W,R),
which yields the cycle

(λ,� z �) �cR

R (�U1 . . . Ur−1, UrAV1 . . . Vm−r−1 �) = (λ,�w �).

So we must argue that there is no factor Ui−1UiUi+1, 1 ≤ i ≤ r, such that δR

would rewrite the letter Ui. Assume to the contrary that such an index exists,
that is, Ui = ((L′, l′), (W ′, b′), (R′, r′)) such that ||Ui−1|| = l′, ||Ui+1|| = r′, and
δ̂(π(Ui−1)π((L′,W ′, R′))π(Ui+1)) = b′ for some i ≤ r. Hence, starting from the
configuration (λ,�π(U1) . . . π(Ui−1)π((L′,W ′, R′))π(Ui+1) . . . π(Vm−r−1 �), M̂
would rewrite the letter π((L′,W ′, R′)) into the letter b′. As M̂ is in normal
form, its next rewrite would occur at position i − 1, i, or i + 1, which means
that R, which simulates M̂ step by step, would also perform a rewrite at one of
these positions when starting from the configuration (λ,�w �). Thus, it follows
that i = r, that is, we have Ur = (((L′, l′), (W ′, b′), (R′, r′)), ||Ur−1|| = l′, and
||B|| = r′. However, as the right sequence (R′, r′) of Ur ends with r′ = ||B||,
while the left sequence (L, ||Ur||) of B ends with the number ||Ur||, we see that
the pair ((R′, r′), (L, ||Ur||)) is not consistent, which contradicts our observation
above. Thus, when using the reverse transition function δR, the above cycle is
indeed inverted. 	


This completes the proof of Theorem 3. 	

Hence, we obtain the following characterization.

Corollary 6. REG = L(rev-stl-det-ORWW).
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4 Descriptional Complexity

We are interested in the descriptional complexity of rev-stl-det-ORWW-auto-
mata and its relation to that of DFAs and NFAs, where we use the number of
states as a measure for the size of a DFA or NFA, and we use the number of
symbols in its tape alphabet as the complexity measure for a stl-det-ORWW-
automaton.

Theorem 7. For each DFA A = (Q,Σ, q0, F, ϕ), there exists a rev-stl-det-
ORWW-automaton M = (Σ,Γ,�,�, δ, δR, >) such that L(M) = L(A) and
|Γ | = |Q| · (|Σ| + 1).

Proof. Let A = (Q,Σ, q0, F, ϕ) be a DFA that accepts a language L ⊆ Σ∗. We
take Γ = Σ ∪ (Q × Σ), define a > (q, a) for all a ∈ Σ and all q ∈ Q, and define
the transition functions δ and δR as follows, where a, b, c ∈ Σ and p, q, q′ ∈ Q:

δ(��) = Accept, if λ ∈ L(A), δ(�(q, a)b) = MVR,
δ(�a�) = Accept, if a ∈ L(A), δ(�(q, a)(p, b)) = MVR,
δ(�ab) = (q, a), if ϕ(q0, a) = q, δ((p, a)(q, b)(q′, c)) = MVR,
δ((q, a)bc) = (p, b), if ϕ(q, b) = p, δ((p, a)(q, b)c) = MVR,
δ((q, a)b�) = (p, b), if ϕ(q, b) = p, δ((q, a)(p, b)�) = Accept, if p ∈ F,

δR(�(q, a)b) = a, if ϕ(q0, a) = q, δR(�(p, a)(q, b)) = MVR,
δR((p, a)(q, b)c) = b, if ϕ(p, b) = q, δR((p, a)(q, b)(q′, c)) = MVR.
δR((p, a)(q, b)�) = b, if ϕ(p, b) = q,

Thus, given w = a1 . . . an as input, where n ≥ 2 and a1, . . . , an ∈ Σ, M
rewrites w from left to right into the word (q1, a1) . . . (qn−1, an−1)(qn, an), where
qi = ϕ(q0, a1 . . . ai), 1 ≤ i ≤ n, and this word is then accepted in a tail
computation if qn ∈ F , that is, M accepts on input w iff ϕ(q0, a1 . . . an) =
ϕ(ϕ(q0, a1 . . . an−1), an) = ϕ(qn−1, an) = qn ∈ F , that is, iff A accepts on
input w. Hence, we see that L(M) = L holds.

From the definition of δR it follows immediately that by δR, a restarting con-
figuration of the form �(q1, a1) . . . (qi−1, ai−1)(qi, ai)ai+1 . . . an� is transformed
back into the restarting configuration �(q1, a1) . . . (qi−1, ai−1)aiai+1 . . . an�.
Thus, M is indeed reversible in the sense of the above definition. 	


Hence, each DFA can be simulated by a rev-stl-det-ORWW-automaton of
about the same size and, correspondingly, each NFA of size n can therefore be
simulated by a rev-stl-det-ORWW-automaton of size O(2n). Unfortunately, we
do not yet have a corresponding lower bound.

Next we turn to the converse transformation. In [7] the following result
is shown, which, of course, also holds for stl-det-ORWW-automata that are
reversible.

Theorem 8. [7] For each stl-det-ORWW-automaton M with n letters, there
exists an NFA A with 2O(n) states such that L(A) = L(M) holds.
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In particular, it follows that, for each (reversible) stl-det-ORWW-automaton
M with n letters, there exists an equivalent DFA B with 22

O(n)
states. We will

now prove that these upper size bounds for turning a rev-stl-det-ORWW-auto-
maton into an equivalent NFA (DFA) are sharp (up to the O-notation). For
this, we consider a collection of example language Bn (n ≥ 3) that are slight
variations of languages considered in [14].

Let Σ = {0, 1,#, $}. For n ≥ 3, let Bn be the following regular language:

Bn = { v1#v2# . . . #vm$u | m ≥ 1, v1, . . . , vm, u ∈ {0, 1}n, ∃ i : vi = u }.

Using standard techniques the following results can be shown on Bn.

Lemma 9. (a) Every NFA for Bn has at least 2n states.
(b) Every DFA for Bn has at least 22

n

states.

Now the following technical result yields the intended lower bounds.

Proposition 10. The language Bn is accepted by a rev-stl-det-ORWW-automa-
ton that has a tape alphabet of size O(n).

Proof. It has already been observed in [12] that the language Bn is accepted by
a stl-det-ORWW-automaton that only uses O(n) letters, but here we have to
show that this also holds for a stl-det-ORWW-automaton that is reversible.

The rev-stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >) for Bn will work
in n phases. Let w = v1# . . . #vm$u be given as input, where m ≥ 1 and
v1, . . . , vm, u ∈ {0, 1}n, and let vj = vj,1 . . . vj,n, 1 ≤ j ≤ m, and let u = u1 . . . un.
In phase i, M will shift the information about the letter ui to the left until this
information reaches the letter v1,i. While doing so, it compares this letter to
the letter vj,i for all j = 2, . . . , m, storing the results of these comparisons by
replacing the symbol vj,i by some appropriate auxiliary symbol. Finally, after
phase n has been completed, M moves across the current tape content and checks
whether there is a syllable vj all of its letters have been matched successfully.
Now we describe the automaton M in some detail.

First we define the tape alphabet Γ as

Γ = Σ ∪ { [∗, s, a, i, b] | 1 ≤ i ≤ n, a ∈ Σ, b ∈ {0, 1}, s ∈ {+,−}}∪
{ [b, i], [a, i, b], [s, a, i, b] | 1 ≤ i ≤ n, a ∈ Σ, b ∈ {0, 1}, s ∈ {+,−}}∪
{ [b, i], [a, i, b], [s, a, i, b] | 1 ≤ i ≤ n − 1, a ∈ Σ, b ∈ {0, 1}, s ∈ {+,−}},

that is, Γ contains 68n − 22 ∈ O(n) letters. Next we define the partial order on
Γ as follows, where a, b1, b2, b3 ∈ {0, 1} and s ∈ {+,−}:

a > [a, i] > [a, i, b1] > [s, a, i, b2] > [∗, s, a, i, b3] for all 1 ≤ i ≤ n,

[$, i, b1] > [$, i, b1] > [$, i + 1, b2] for all 1 ≤ i ≤ n − 1,

[#, i, b1] > [#, i, b1] > [#, i + 1, b2] for all 1 ≤ i ≤ n − 1,

[s, a, i, b1] > [a, i] > [a, i, b1] > [s, a, i, b2] > [a, i + 1, b3] for all 1 ≤ i ≤ n − 1.

Finally, we define the transition functions δ and δR, dividing this description
into n phases as mentioned above.
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1. M moves its read/write window to the letter u1, rewrites u1 into [u1, 1], and
moves the information on u1 to the left. Here the following transitions are
used, where a1, a2, a3, b ∈ {0, 1} and s ∈ {+,−}:

δ(�a1a2) = MVR, δ(a1a2[$, 1, b]) = [a2, 1, b],
δ(a1a2a3) = MVR, δ(a1a2[a3, 1, b]) = [a2, 1, b],
δ(a1a2#) = MVR, δ(#a1[a2, 1, b]) = [+, a1, 1, b], if a1 = b,
δ(a1#a2) = MVR, δ(#a1[a2, 1, b]) = [−, a1, 1, b], if a1 �= b,
δ(#a1a2) = MVR, δ(a1#[s, a2, 1, b]) = [#, 1, b],
δ(a1a2$) = MVR, δ(a1a2[#, 1, b]) = [a2, 1, b],
δ(a1$a2) = MVR, δ(�a1[a2, 1, b]) = [∗,+, a1, 1, b], if a1 = b,
δ($ba2) = [b, 1], δ(�a1[a2, 1, b]) = [∗,−, a1, 1, b], if a1 �= b.

δ(a1$[b, 1]) = [$, 1, b],

It is easily seen that these steps can be reversed by defining the reverse
transition function δR accordingly.

2. In the following n−1 phases M does the same with the remaining letters of u.
In each of these phases M first marks all letters previously rewritten by an
underline until it reaches the next symbol of u. Here we skip the transitions
for these rewrite steps, continuing with those transitions that are used when
ui is encountered. Here a1, a2, a3, b, b1 ∈ {0, 1} and s1, s2 ∈ {+,−}:

δ([a1, i − 1]ba2) = [b, i] for 2 ≤ i ≤ n − 1,

δ([a1, n − 1]b�) = [b, n],

δ([$, 1, b1][b1, 1][b, 2]) = [b1, 2, b],

δ([a1, i − 1, b1][b1, i − 1][b, i]) = [b1, i, b] for 3 ≤ i ≤ n,

δ([a1, i − 1, b1][$, i − 1, b1][a2, i, b]) = [$, i, b] for 2 ≤ i ≤ n,

δ([$, i − 1, b1][a1, i − 1, b1][a2, i, b]) = [a1, i, b] for 3 ≤ i ≤ n,

δ([a1, i − 1, b1][a2, i − 1, b1][a3, i, b]) = [a2, i, b] for 2 ≤ i ≤ n,

δ([a1, i − 1, b1][a2, i − 1, b1][$, i, b]) = [a2, i, b] for 2 ≤ i ≤ n,

δ([+, a1, i − 1, b1][b, i − 1, b1][a3, i, b]) = [+, b, i, b] for 2 ≤ i ≤ n,

δ([+, a1, i − 1, b1][a2, i − 1, b1][a3, i, b]) = [−, a2, i, b] for 2 ≤ i ≤ n

and a2 �= b,
δ([−, a1, i − 1, b1][a2, i − 1, b1][a3, i, b]) = [−, a2, i, b] for 2 ≤ i ≤ n,

δ([#, i − 1, b1][s1, a2, i − 1, b1][s2, a3, i, b]) = [s1, a2, i, b] for 2 ≤ i ≤ n,

δ([a1, i − 1, b1][#, i − 1, b1][s1, a2, i, b]) = [#, i, b] for 2 ≤ i ≤ n,

δ([a1, i − 1, b1][a2, i − 1, b1][#, i, b]) = [a2, i, b] for 2 ≤ i ≤ n − 1,

δ([+, a1, n − 1, b1][b, n − 1, b1][#, n, b]) = [+, b, n, b],

δ([+, a1, n − 1, b1][a2, n − 1, b1][#, n, b]) = [−, a2, n, b] for a2 �= b,

δ([−, a1, n − 1, b1][a2, n − 1, b1][#, n, b]) = [−, a2, n, b],

δ([s1, a1, i − 1, b1][s2, a2, i − 1, b1][s3, a3, i, b]) = [s2, a2, i, b] for 3 ≤ i ≤ n,

δ([∗, +, a1, n − 1, b1][b, n − 1, b1][#, n, b]) = [∗, +, b, n, b],

δ([∗, +, a1, n − 1, b1][a2, n − 1, b1][#, n, b]) = [∗, −, a2, n, b] for a2 �= b,

δ([∗, −, a1, n − 1, b1][a2, n − 1, b1][#, n, b]) = [∗, −, a2, n, b],

δ([∗, +, a1, i − 1, b1][b, i − 1, b1][a2, i, b]) = [∗, +, b, i, b] for 2 ≤ i ≤ n − 1,

δ([∗, +, a1, i − 1, b1][a2, i − 1, b1][a2, i, b]) = [∗, −, a2, i, b] for 2 ≤ i ≤ n − 1

and a2 �= b,
δ([∗, −, a1, i − 1, b1][a2, i − 1, b1][a2, i, b]) = [∗, −, a2, i, b] for 2 ≤ i ≤ n − 1.
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From the information stored within the letters that are used to replace the
letters v1,1 to v1,n it is easily seen that also these transitions can be reversed
by defining δR accordingly.

3. Finally M checks whether the final tape contents contains a factor of
the form [∗,+, a1, n, b][∗,+, a2, n, b][#, n, b], [+, a1, n, b][+, a2, n, b][#, n, b],
[∗,+, a1, n, b][∗,+, a2, n, b][$, n, b], or [+, a1, n, b][+, a2, n, b][$, n, b], and it
accepts in the affirmative.

It remains to argue that L(M) = Bn holds. From the construction it is rather
straightforward to see that M accepts all words from the language Bn. Hence,
it remains to show that M does not accept any other words.

So let w ∈ Σ∗ be a given input word that M accepts. We must show that w
meets all of the following properties:

(a) w = v1#v2# . . . #vm$u, where m ≥ 1 and v1, . . . , vm, u ∈ {0, 1}∗.
(b) |u| = n.
(c) |v1| = . . . = |vm| = n.
(d) There exists an index i ∈ {1, . . . , m} such that vi = u holds.

In each phase i, the rewriting process is initialised by rewriting the letter ui

into the symbol [ui, i]. The symbol [u1, 1] can only be rewritten if it is imme-
diately to the right of the symbol $, and, for 2 ≤ i ≤ n, the symbol [ui, i] is
produced only immediately to the right to a symbol [ui−1, i − 1]. Finally, [un, n]
can only be written immediately to the left of the symbol �. This ensures prop-
erty (b). In addition, the MVR steps of the initial phase make sure that (a) holds.
The rules for the comparison mark exactly one letter of vi in each phase, which
ensures property (c), and the final scan only accepts if there is a syllable vi that
coincides with u, which proves (d). Thus, L(M) = Bn follows. 	


Together with Theorem 8 these results show the following.

Corollary 11. (a) There is an exponential trade-off for turning a rev-stl-det-
ORWW-automaton into an equivalent NFA.

(b) There is a double exponential trade-off for turning a rev-stl-det-ORWW-
automaton into an equivalent DFA.

5 Unary Languages

From Theorem 7 we know that a DFA with n states and an input alphabet of
size m can be converted into an equivalent rev-stl-det-ORWW-automaton that
has an alphabet of size n · (m+1). For an NFA with n states, we thus obtain an
equivalent rev-stl-det-ORWW-automaton with an alphabet of size 2n · (m + 1).
Here we prove that in the unary case, that is, if m = 1, we can do better.

Theorem 12. From an NFA A with n states that accepts a unary language
L(A), an equivalent rev-stl-det-ORWW-automaton M with an alphabet of size
O(n2) can be constructed.
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Proof. In [2] it is shown that each NFA with n states can be converted into an
equivalent NFA with O(n2) states that is in Chrobak normalform, which means
that the latter NFA consists of a chain of states of length at most n2 which leads
to a finite number of disjoint loops that have altogether at most n states.

So from A we first construct an NFA B = (S, {a}, s0, F, δB) in Chrobak
normalform, where S = C ∪P . Here C = {s0, c1, . . . , ck} is a chain of length k ≤
n2 and P =

⋃l
i=1 Pi, where, for i = 1, . . . , l, Pi = {(0, pi), (1, pi), . . . , (pi −1, pi)}

is a loop of length pi such that
∑l

i=1 pi ≤ n.
The tape alphabet of the rev-stl-det-ORWW-automaton M = ({a}, Γ,

�,�, δ, δR, >) is

Γ = {a} ∪ C ∪ (P × {<,>}) ∪ (P × {0, 1, . . . , l − 1}),

where the components {<,>} are used to locate the cell where the last rewrite
operation has been performed. We see that Γ contains O(n2) letters.

M works as follows. As long as B is still within the chain C, M processes the
input letter by letter from left to right by replacing each letter a by the state
which B reaches by reading the current input symbol:

δ(�aa) = c1 and δ(ciaa) = ci+1 for 1 ≤ i ≤ k − 1.

After each restart M has to find the next a. In addition, M must accept if
it reaches the right end in a final state:

δ(�c1a) = MVR,
δ(�c1c2) = MVR,

δ(cici+1ci+2) = MVR for 1 ≤ i ≤ k − 2,
δ(cici+1a) = MVR for 1 ≤ i ≤ k − 1,
δ(cici+1�) = Accept, if ci+1 ∈ F.

Clearly this part is reversible.
If the length of the input am exceeds the length k of the chain C, M

simulates the computations of B for all loops Pi, 1 ≤ i ≤ l, simultaneously.
For that l subsequent symbols (il, pl, zl), (il−1, pl−1, zl−1), . . . , (i1, p1, z1), where
zl, . . . , z1 ∈ {<,>}, are used to represent the states within the different loops
that B could be in. So for an input ak+l+r, M will reach the tape content

�c1 · · · ck(il, pl, zl)(il−1, pl−1, zl−1) · · · (i1, p1, z1)ar�

after k + l cycles. This is interpreted as follows: B is in the state (i1, p1) after
reading ak+l and using the first loop P1, it is in state (il−1, pl−1) after reading
ak+2 and using the loop Pl−1, and it is in state (il, pl) after reading ak+1 and
using the loop Pl. So the different possible ways B can use are tried sequentially
by M . The computation continues by shifting the information on the various
loops to the right step by step, beginning with the state of loop P1. Here the
third components zj ∈ {<,>} are used to indicate the position at which the
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next rewrite must be performed. After processing another factor aj , the tape
contains the prefix �c1 · · · ck, which is followed by the factor

(il,0, pl, zl,0)(il,1, pl, zl,1) · · · (il,j , pl, zl,j)(il−1,j , pl−1, zl−1,j) · · · (i1,j , p1, z1,j),
which is followed by the suffix a · · · a�. The corresponding transitions are defined
as follows:

δ((i, pj , >)(i′, pj′ , >)a) = MVR,
δ((i, pj , >)(i′, pj′ , >)(i′′, pj′′ , >)) = MVR,
δ((i, pj , >)(i′, pj′ , >)(i′′, pj′′ , <)) = MVR, if pj′ �= pj′′ ,
δ((i, pj , >)(i′, pj′ , <)(i′′, pj′′ , <)) = (i′, pj′ , >),
δ((i, pj , >)(i′, pj′ , >)(i′′, pj′′ , <)) = (i + 1 mod pj , pj , <), if pj′ = pj′′ and i′ < l,
δ((i, pj , >)(i′, pj′ , >)(i′′, pj′′ , <)) = MVR, if pj′ = pj′′ and i′ = l,

δ((i, p1, >)aa) = (i + 1 mod p1, p1, <).

In the above situation there are two possibilities for further rewrite steps. If,
for each letter t = (i, pj , z) it holds that z =>, then the previous rewrite just
took place at the rightmost of these symbols, and the next rewrite operation has
to rewrite the first of the remaining letters a.

The other possibility is that there is exactly one position on the tape where
the components > and < are side by side, that is, there is a factor of the form t0t1,
where t0 = (i, pj , >) and t1 = (i′, p′

j , <). Then the next rewrite operation either
rewrites t0 or t1. If pj = p′

j and j < l, then M is in the process of shifting the
current cycle simulations one step to the right, and accordingly, the next rewrite
operation is applied to t0. Otherwise, M starts a new shifting process and so, it
must find the right end. Accordingly, the next rewrite operation is applied to t1.
Together with the fact that the previous inscription can be restored from the
information in the left and right neigbouring letters this ensures the property of
working reversibly. Of course, there must be special transitions for moving from
the chain states to the loop states of B, and also the special case of an empty
chain must be taken care of.

Finally, when the rewrites of M reach the right end of the tape, then it must
be checked whether at least one of these cycles accepts. For this, M sends a
signal to the left that tests, for one loop after another, whether it would lead to
acceptance at the right end of the input:

δ((i, p2, >)(i′, p1, >)�) = Accept, if (i′, p1) ∈ F,
δ((i, p2, >)(i′, p1, >)�) = (i′, p1, 0), if (i′, p1) �∈ F,
δ(s(i, pj , >)(i′, pj′ , r)) = Accept, if (i′ + r mod pj′ , pj′) ∈ F,
δ(s(i, pj , >)(i′, pj′ , r)) = (i, pj , r + 1), if (i′ + r mod pj′ , pj′) �∈ F,

where 1 ≤ j ≤ l, and s ∈ (P × {>,<}) ∪ C ∪ {�}.
Again this part is reversible, since the letter (i, pj , r), where the last rewrite

step has been executes, is the first one with a number r. If the input is not in
L(M), then none of these tests is successful. It follows that L(M) = L(B) = L(A)
holds. 	
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The main idea of the construction in the proof of Theorem 12 can be also used
to get an exponential lower bound for the conversion of a rev-stl-det-ORWW-
automaton into a DFA or an NFA. In [2] the simulation costs between DFAs
and NFAs and two-way DFAs (2DFAs) are investigated. In many cases an upper
bound for the simulation costs is given by the Landau function [8,9]

F (n) = max{ lcm(p1, p2 . . . , pl) | p1, p2, . . . , pl ≥ 1 and p1 + p2 + · · · + pl = n },

where lcm denotes the least common multiple. The best known approximation
for F is shown in [15]. Bounds derived from this result [3] are

F (n) ∈ Ω
(
e
√

n·ln(n)
)

and F (n) ∈ O
(
e
√

n·ln(n)(1+o(1))
)

.

It can be concluded from the results of [2] that a DFA as well as an NFA
needs at least F (n) states for accepting the language Ln = { am | m mod pi ≡
0 for all 1 ≤ i ≤ l }, where the pi are chosen such that p1, p2, . . . , pl ≥ 2, p1 +
p2 + · · · + pl ≤ n, and lcm(p1, p2, . . . , pl) = F (n).

We now modify the behavior of M from the proof of Theorem 12 so that it
accepts L with O(n) symbols. Again M simulates the computation of all loops
P1, P2, . . . , Pl. It works in the same way as above until the signal of p1 reaches the
right end, but then the modified M checks whether all of the l possible loops
fit the input. This can be achieved easily by a modification of the accepting
transitions. Thus, we have the following lower bound result.

Corollary 13. For each n ∈ N, there is a rev-stl-det-ORWW-automaton with
O(n) tape symbols that accepts a unary language L such that any DFA or NFA
for L needs at least F (n) states.

6 Conclusion and Open Problems

We have introduced a type of reversible stl-det-ORWW-automaton and shown
that it characterizes the regular languages. We have studied its descriptional
complexity by taking the size of the tape alphabet as the complexity measure for
such an automaton, and we have established an exponential (double exponential)
trade-off for turning a rev-set-det-ORWW-automaton into an equivalent NFA
(DFA). For the converse transformation we have an exponential upper bound
in the case of NFAs, and we have presented a transformation that turns any
stl-det-ORWW-automaton into an equivalent rev-stl-det-ORWW-automaton at
the cost of an exponential increase in size. However, the following questions are
still open:

1. What is the trade-off for turning a stl-det-ORWW-automaton into an equiv-
alent stl-det-ORWW-automaton that is reversible? In Theorem 3 an expo-
nential upper bound is given. Can this bound be improved, or is there a
matching lower bound?
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2. What is the trade-off for turning an NFA into an equivalent rev-stl-det-
ORWW-automaton? Based on Theorem 7 we have an exponential upper
bound. Can this bound be improved, or is there a matching lower bound?

3. In the unary case we have a quadratic trade-off for turning an NFA into an
equivalent rev-stl-det-ORWW-automaton (Theorem 12). Is there a matching
lower bound?
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Abstract. Reversible languages are programming languages where all
programs can run both forwards and backwards. Reversible functional
languages have been proposed that use symmetric pattern matching and
data construction. To be reversible, these languages require linearity:
Every variable must be used exactly once, so no references are copied and
all references are followed exactly once. Copying of values must use deep
copying. Similarly, equality testing requires deep comparison of trees.

A previous paper describes reversible treatment of reference counts,
which allows sharing of structures without deep copying, but there are
limitations. Applying a constructor to arguments creates a new node
with reference count 1, so pattern matching is by symmetry restricted to
nodes with reference count 1. A variant pattern that does not change the
reference count of the root node is introduced to allow manipulation of
shared data. Having two distinct patterns for shared and unshared data,
however, adds a burden on the programmer.

We observe that we can allow pattern matching on nodes with arbi-
trary reference count if we also allow constructor application to return
nodes with arbitrary reference counts. We do this by using maximal shar-
ing: If a newly constructed node is identical to an already existing node,
we return a pointer to the existing node (increasing its reference count)
instead of allocating a new node with reference count 1.

To avoid searching the entire heap for an identical node, we use hash-
consing to restrict the search to a small segment of the heap. We estimate
how large this segment needs to be to give a very low probability of allo-
cation failure when the heap is less than half full. Experimentally, we find
that overlapping segments gives dramatically better results than disjoint
segments.

1 Introduction

A reversible first-order functional language RFUN [16] has been suggested. Steps
towards an implementation were made by first implementing a simple heap man-
ager [1] and later [6], a full translation of RFUN to reversible machine language
was made. This translation uses linearity and deep copying, so all heap nodes
have exactly one reference. Other reversible functional languages that rely on
linearity include Theseus [7] and Ψ -Lisp [2].
c© Springer International Publishing Switzerland 2015
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By extending Axelsen’s heap manager [1], a previous paper [12] studied
reversible treatment of reference counts, which allows copying of values by
pointer sharing. This did, however, not constitute true garbage collection, as
the functional language used in this paper required explicit distinction of shared
and unshared nodes, so unshared nodes are explicitly deallocated at pattern
matching and shared nodes are explicitly preserved at pattern matching, using
two different forms of pattern for constructor nodes with one or several refer-
ences.

In this paper, we will implement a heap manager that does true garbage
collection, so high-level languages using this manager do not have to distinguish
between shared and unshared nodes and nodes are automatically collected once
the last reference is used. In order to make construction and deconstruction
symmetric we must, however, make construction use maximal sharing: If a node
identical to the node being built exists anywhere in the heap, no new node is
built. Instead, a new pointer to the existing node is returned and its reference
count is increased. Conversely, deconstructing (by pattern matching) a shared
node removes a pointer to the node and deconstructing an unshared node deallo-
cates it. To make searching for existing identical nodes efficient, we will employ
hash-consing [4,5], which limits the search space to a small segment of the heap.
We estimate how large this segment must be to make the probability of alloca-
tion failure very small if the heap is less than half full. We find that a segment
that can contain four to eight nodes suffice for a 32-bit address space.

We implement heap operations including a node construction/deconstruction
procedure in a low-level reversible intermediate language RIL.

2 The Reversible Intermediate Language RIL

We define a reversible low-level language RIL, similar to a language of the same
name in [13]. RIL is inspired by Janus [10], using unstructured jumps in the
style of the Janus variant described in [11]. We use RIL instead of Janus because
it is closer to a machine language but not specific to any particular machine
architecture. RIL can be considered as a reversible alternative to three-address
code and is mainly a vehicle for presenting code in a machine-independent form.
Its design is in itself not a significant contribution.

A RIL program consists of an unordered set of basic blocks, each consisting
of an entry point followed by either updates and exchanges or a subroutine call
and is terminated by an exit point. We will describe each of these below.

RIL uses 32-bit words using two’s complement number representation.
Addresses are to 8-bit bytes, but will be truncated to the nearest 32-bit bound-
ary at memory transfers. We will use an unbounded number of named variables
to represent registers, relying on register allocation to map these to a finite set
of numbered registers.
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2.1 Entry and Exit Points

An entry point has one of the forms

l ← where l is a label,
l1; l2 ← c where c is a condition and l1 and l2 are labels, or
begin l where l is a label.

An exit point has one of the forms:

→ l where l is a label,
c → l1; l2 where c is a condition and l1 and l2 are labels, or
end l where l is a label.

Each label in the program must occur in exactly one entry point and exactly one
exit point. Furthermore, a label that occurs in a begin entry point must also
occur in an end exit point.

Conditions are of the form L �� R, where a left-value L is either a named
variable x or of the form M [x], representing the memory location pointed to by
a variable x. A right-value R is either a left-value or a signed constant in the
range −231 to 231 − 1, and �� is an operator from the set ==, <, >, !=, <=, >=
and &, using notation from the programming language C. We use 0 to represent
false and any non-zero value to represent true, so the condition L &R is true if
the result of the bitwise AND is non-zero.

begin and end represent beginnings and ends of subroutines. The start and
end of the entire program are entry and exit points with the label main. An
exit point of the form → l constitutes an unconditional jump to the (unique)
entry point where l occurs. An exit point of the form c → l1; l2 constitutes a
conditional jump: If c is true, the jump goes to l1, otherwise to l2. An entry point
of the form l ← unconditionally accepts incoming jumps. An entry point of the
form l1; l2 ← c conditionally accepts incoming jumps: Jumps to l1 are accepted
if c is true and jumps to l2 are accepted if c is false. If the incoming jump is not
accepted, a run-time error occurs.

2.2 Updates and Exchanges

A basic block can hold a (possibly empty) sequence of updates and exchanges.
An update is of the form L ⊕= R1 � R2, where L is a left-value, R1

and R2 are right-values and ⊕= is one of the update assignments +=, -= or
^= with the same semantics as in the programming language C. � is an infix
arithmetic operation that can be either +, -, ^, &, |, >>, or <<, again with the
same semantics as in C. Specifically, & and | are bitwise AND/OR and >> and
<< are bitwise shifts.

An exchange is of the form L1 ↔ L2, where L1 and L2 are left-values. The
effect is that the values in the two specified locations are swapped.

In order to ensure reversibility, the following restrictions apply to updates
and exchanges:

– In an update of the form L ⊕= R1 � R2, the same named variable can
not occur both to the left and to the right of the update operator ⊕=.
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– In an update of the form L ⊕= R1 � R2, memory accesses (left-values of
the form M [x]) can not be used on both sides of the update operator ⊕=.

– In an exchange of the form L1 ↔ L2, the same named variable can not occur
both to the left and to the right of the exchange operator ↔.

2.3 Subroutine Calls

Instead of exchanges and updates, a basic block can hold a single subroutine call.
A subroutine call is done using the instructions call l and uncall l. There can
be several calls to the same subroutine. We use an implicit stack to store return
information.

A subroutine call must be in a basic block of the form l1 ← call l → l2 or
l1 ← uncall l → l2.

In such a block, call l stores l2 on the implicit stack and jumps to the entry
point begin l until it reaches end l, at which point it pops the stack and jumps
to the label l2 that is stored on the top of the stack.

RIL (like Janus) also supports running subroutines backwards: uncall l
stores l2 on the implicit stack, and then runs the subroutine l backwards, start-
ing from the exit point end l and ending with begin l, again returning via the
stack to l2.

2.4 Formal Semantics

Figure 1 shows a formal semantics for execution of RIL as rules for state transi-
tions. A state consists of the program P (which never changes), an environment
ρ, that maps named variables to integers, a memory store σ, that maps word-
aligned addresses to integers, a stack S that stores return labels, and the current
label l. A transition of the form P ρ σ S l � P ρ′ σ′ S l′ states that a state
P ρ σ S l will lead to the state P ρ′ σ′ S l′ in one or more steps.

The semantics shows how execution of a basic block makes a transition from
a label to another while changing the environment and store. The transition
is bidirectional, so it describes both forwards and backwards execution. This is
used in the rule for uncall, where the transition relation is used in the reverse
order for executing the subroutine.

We use I to indicate an unspecified instruction (update or exchange), E to
indicate an unspecified entry point, X to indicate an unspecified exit point and
c to indicate an unspecified condition. Abusing notation, we use ⊕, � and ��
to represent both the syntactic and semantic versions of operators. We use the
same rules for evaluating expressions and conditions, using 0 to represent false
and any non-zero value to represent true.

2.5 Shorthands

To make code more readable, we introduce a number of shorthands when dis-
playing RIL code in the paper.

We will use L ⊕= R as an abbreviation of L ⊕= R + 0.
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Basic blocks:

(l1 ← call l → l2) ∈ P P ρ σ (l2 : S) l � P ρ′ σ′ (l2 : S) l
P ρ σ S l1 � P ρ′ σ′ S l2

(l1 ← uncall l → l2) ∈ P P ρ′ σ′ (l2 : S) l � P ρ σ (l2 : S) l
P ρ σ S l1 � P ρ′ σ′ S l2

(E I X) ∈ P E � ρ σ l1 I |= ρ σ ↽⇀ ρ′ σ′ X � ρ′ σ′ l2
P ρ σ S l1 � P ρ′ σ′ S l2

P ρ σ S l1 � P ρ′ σ′ S l2 P ρ′ σ′ S l2 � P ρ′′ σ′′ S l3
P ρ σ S l1 � P ρ′′ σ′′ S l3

Entry points:

l ← � ρ σ l begin l � ρ σ l
ρ σ � c � 0

l1; l2 ← c � ρ σ l2
ρ σ � c �� 0

l1; l2 ← c � ρ σ l1

Exit points:

→ l � ρ σ l end l � ρ σ l
ρ σ � c � 0

c → l1; l2 � ρ σ l2
ρ σ � c �� 0

c → l1; l2 � ρ σ l1

Updates and exchanges:

ρ σ � e � v w = u ⊕ v
x ⊕= e � ρ[x 	→ u] σ ↽⇀ ρ[x 	→ w] σ

ρ σ � e � v w = u ⊕ v
M [x]⊕= e � ρ[x 	→ a] σ[a 	→ u] ↽⇀ ρ[x 	→ a] σ[a 	→ w]

x ↔ y � ρ[x 	→ u, y 	→ v] σ ↽⇀ ρ[x 	→ v, y 	→ u] σ

x ↔ M [y] � ρ[x 	→ u, y 	→ a] σ[a 	→ v] ↽⇀ ρ[x 	→ v, y 	→ a] σ[a 	→ u]

|= ρ σ ↽⇀ ρ σ
I1 |= ρ σ ↽⇀ ρ′ σ′ I2 |= ρ′ σ′ ↽⇀ ρ′′ σ′′

I1 I2 |= ρ σ ↽⇀ ρ′′ σ′′

Expressions and conditions:

k is a constant
ρ σ � k � k ρ[x 	→ v] σ � x � v ρ[x 	→ a] σ[a 	→ v] � M [x] � v

ρ σ � R1 � v1 ρ σ � R2 � v2 w = v1 � v2
ρ σ � R1 � R2 � w

ρ σ � R1 � v1 ρ σ � R2 � v2 w = v1 �� v2
ρ σ � R1 �� R2 � w

Fig. 1. Semantics of RIL
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Two blocks E I1 → l and l ← l I2 X, where E in an entry point, X is
an exit point and I1 and I2 are updates, exchanges or calls, will be abbreviated
to a single extended basic block E I1 I2 X. This abbreviation can be applied
repeatedly, so arbitrarily many basic blocks connected by unconditional exit
and entry point pairs will be shown as a single extended block. Similarly, when
a block with a conditional exit point where the second label (corresponding to
a false condition) occurs in an unconditional entry point of another block, these
will be merged and the conditional exit point will be shown as a conditional jump
with one target (and fall-through when the condition is false). For example, a
block ending with c → l1; l2 will be merged to a block starting with l2 ← joined
by the one-way jump c → l1. Symmetrically, a block with an unconditional exit
point can be merged with another block with a conditional entry point: → l2
and l1; l2 ← c are joined to l1 ← c.

Additionally, we will at entry and exit points for subroutines, i.e., after begin
and before end, add assertions of the form assert c, where c is a condition.
Variables occurring in these assertions are the input and output parameters
for the subroutine, and they specify preconditions and postconditions for the
subroutine and can be seen either as comments that specify an invariant or as
conditions that are actively checked at runtime. In the latter case, an assertion
assert c can be expanded into a conditional jump and a conditional entry
point: c → l1; l2 and l1; l2 ← true, where true represents any tautology, e.g.,
x==x. We will in assertions, additionally, allow conjunction of simple conditions
using the && operator. Such conjunctions can be expanded to sequences of simple
assertions.

3 Implementation of a Heap Manager

We will now show implementations of a heap manager in RIL, using the short-
hands described in Section 2.5. In particular, we use assertions to describe partial
pre and post conditions1. If code compiled from a high-level language to RIL
statically ensures that these assertions are true, they can be omitted.

3.1 Data Representation

Our heap manager will use LISP-like values. A value can be either a symbol,
an integer or a pair of two values a and d, written as Cons(a,d). We represent
these in the following way on a machine with 32-bit words:

– The value 0 is used for uninitialised variables and heap nodes.
– An integer is represented by a machine word ending in 1. The integer value

is given by the first 31 bits.
– A symbol is represented by a machine word that ends in 10.
– Cons(a,d) is represented by a three-word-aligned address A (so ending in

00), where H ≤ a ≤ lastH, where lastH is the address of the last node in
the heap. A points to a node consisting of three words: A reference count

1 The assertions are not strong enough to describe full pre and post conditions.
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and two fields a and d, representing the elements of a pair Cons(a,d). In
an unallocated node, all three words are zero, and in an allocated node, all
three words are non-zero.

We assume that the fields a and d in a pair Cons(a,d) can not be destructively
updated, which is true in functional languages. This allows us to share identical
pairs.

Note that we can test if a value v is a node pointer by checking if the two
least significant bits are 00, i.e., that the condition v & 3 is 0, representing false.

3.2 Value Copying

This subroutine copies a value stored in the variable copyP to the variable copyQ,
which must initially be zero, while maintaining reference counts if the value is a
pointer.

begin copy

assert copyP > 0 && copyQ == 0

copyP & 3 → copyNonPointer

M[copyP] += 1

copyNonPointer ← copyP & 3

copyQ += copyP

assert copyP > 0 && copyQ == copyP

end copy

Note that only copying of pointer fields update reference counts.
Calling copy in reverse requires that the two values are identical. Though the

reference count of the node decreases when calling copy in reverse, it can never
reach zero, as the equality assertion implies that there are at least two pointers
to the node before the decrement.

3.3 Copying the Fields of a Cons Node

We sometimes want to access the fields of a Cons node while keeping the pointer
to the node. This will not change the reference count to the node, but it will
increase the reference count to its fields (if they are pointers).

begin fields

assert fieldsP >= H && fieldsA == 0 && fieldsD == 0

fieldsP += 4

fieldsA += M[fieldsP]

fieldsA & 3→ nonPointerA

M[fieldsA] += 1

nonPointerA ← fieldsA & 3

fieldsP += 4

fieldsD += M[fieldsP]

fieldsD & 3 → nonPointerD

M[fieldsD] +=1

nonPointerD ← fieldsD & 3

fieldsP -= 8

assert fieldsP >= H && fieldsA > 0 && fieldsD > 0

end fields
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When called in reverse, it is implicitly assumed that fieldsA and fieldsD are
equal to the fields of fieldsP. fieldsA and fieldsD are cleared by subtract-
ing from these the two fields of fieldsP and reducing the reference counts of
these (if pointers). If, when fields is called in reverse, fieldsA and fieldsD
are not equal to the fields of fieldsP, the assertion that they are zero after
begin fields will fail.

3.4 Naive Implementation of Construction / Destruction of Nodes

The above subroutines neither allocate nor free data, as reference counts are
non-zero both before and after calling these subroutines.

We now describe a subroutine cons that takes two arguments consA and
consD and returns a pointer consP to a Cons-node that has the values of consA
and consD as fields, while clearing the contents of these variables.

If there is already such a node in the heap, a new reference to this node
is returned. Finding an existing node with the required fields requires a search
through the heap. If there is no suitable node to share, a new node is allocated.
Allocating a new node requires searching backwards through the heap for a node
that has zero reference count (which also implies zeroed fields).

When called in reverse, cons takes a pointer consP and returns the values
of the fields in the variables consA and consD, while clearing consP. If the node
pointed to by consP is unshared (indicated by reference count 1), it is deallocated
by clearing the reference count and the fields to 0. The code for cons is shown
in Figure 2. For readability, we will use indentation to indicate structure.

The loop consSearchSame searches forwards through the heap to find a
matching node. If that succeeds, the block consFoundSame increases the ref-
erence count of the node and decreases the counts of the fields (if they are not
symbols) because it clears consA and consD, that are references to the fields.

If the search for a matching node fails, the loop consSearchEmpty searches
for an unallocated node. If one such is found, a new Cons-node is created in it.

If no empty node is found, no allocation is possible, and a jump to the label
consFail is made. This should do some kind of error handling (not shown).

It should be obvious that the naive implementation of cons is slow: Whenever
a new node is created, the entire heap is walked through to find an existing,
identical node, and if that fails, the heap is walked through again to find an
unallocated node. Since allocations happen near the top of the heap and searches
for existing nodes start from the bottom, the average case is quite bad. So we
will, below, describe an optimised implementation of cons.

3.5 An Optimised Implementation of Cons

We will use an old idea for effective maximal sharing: Hashing field values to
find the address of the node [5]. Rather than searching the entire heap, we search
only a small segment of the heap starting at the address given by a hash code
calculated from the values of the fields. Since we both add and remove nodes,
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begin cons

assert consA != 0 && consD != 0 && consP == 0

consP += H
consSearchSame ← consP > H

M[consP] == 0 → consNext

consP += 4

M[consP] != consA → consNotA

consP += 4

M[consP] == consD → consFoundSame

consP -= 4

consNotA ← M[consP] != consA

consP -= 4

consNext ← M[consP] == 0

consP += 12

consP <= lastH → consSearchSame

consSearchEmpty ← consP <= lastH
consP -= 12

consP < H → consFail

M[consP] != 0 → consSearchEmpty

M[consP] += 1

consP += 4

consA ↔ M[consP]

consP += 4

consD ↔ M[consP]

consP -= 8

consEnd ← M[consP] > 1

assert consP >= H && consA == 0 && consD == 0

end cons

consFoundSame ←
consD & 3 → consNonPointerD

M[consD] -= 1

consNonPointerD ← consD & 3

consD -= M[consP]

consP -= 4

consA & 3 → consNonPointerA

M[consA] -= 1

consNonPointerA ← consA & 3

consA -= M[consP]

consP -= 4

M[consP] += 1

→ consEnd

Fig. 2. Naive reversible implementation of cons
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we can not keep searching until we find either a match or a free node, so we need
a fixed segment size. For efficiency reasons, we want the segment to be small,
but we also want to minimise the risk that the segment we want to allocate into
is full while the heap as a whole is mostly empty. It seems reasonable to require
that the probability of trying to allocate into an already full segment is very
small when less than half the total heap is allocated.

If hashing distributes values uniformly randomly, allocating m Cons-nodes in
a heap with n segments of size b is equivalent to randomly throwing m balls into
n bins, where no bin holds more than b balls. If n < m < n log n, the maximum
number of balls in a bin is [15] with very high probability no more than log n

log n log n
m

.

If the heap is half full, m = bn
2 , and we get a bound of log n

log 2 log n
b

. We want this

not to exceed b, so we want logn

log 2 log n
b

≤ b ⇔ n
log n ≤ eb

b . For b = 12, we get

n ≤ 1.6 · 105, which gives approximately 12 · 1.6 · 105 = 1.8 · 106 nodes.
We will assume a subroutine hash exists that takes a cleared variable hashV

and the values in consA and consD as arguments and returns in the variable
hashV a hash code of consA and consD while preserving the values of consA
and consD. If hashV is the hash code for consA and consD, running hash in
reverse will clear hashV. The hash code should be the start of a segment, i.e.,
H, H+12b,H+24b, . . . , lastH−(12b−12) (the address of the last segment in the
heap). We will in Section 4 discuss how the hash procedure can be implemented.

The optimised implementation of cons is shown in Figure 3. We start by
computing hashV, which is the address of the start of the segment to search, and
segEnd, which is the address of the last node in this segment. We then search
as before, but constrained to the interval between hashV and segEnd. When we
find the matching or empty node we need, we uncompute hashV and segEnd.

4 Reversible Hashing

We want a procedure hash that expects variables consA and consD to con-
tain non-zero values and hashV to be zero. After the call, consA and consD
are unchanged and hashV holds a value between H and lastH − (12b − 12) in
increments of 12b. We will assume that b is a power of 2, as this eases scaling.

We base our hash function, shown in Figure 4, on Jenkins’ 96-bit reversible
mix function [8] that is well tested and has good statistical properties. This mixes
three integers, so we use a constant as the third. The three values are stored in
variables hashA, hashB and hashC that are globally initialised to constants ka,
kb and kc. hashA and hashB are XOR’ed with consA and consD, Jenkins’ mix
function is executed, and a scaled version of the resulting hashC is used as the
hash code hashV. Uncalling hash resets hashA, hashB and hashC to their original
values and hashV to zero.

Since hashV needs to be between H and lastH − (12b − 12) in increments of
12b and hashC can be any 32-bit integer, we need to mask and scale this to the
right range. We first choose H and lastH so H = lastH − 12b · 2m +12 for some
m. We can then do the scaling by bitwise ANDing hashC with b · 2m+2 − 4b,
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begin cons

assert consA != 0 && consD != 0 && consP == 0 && hashV == 0 && segEnd == 0

call hash

consP += hashV

segEnd += hashV + (12b − 12)
consSearchSame ← consP > hashV

M[consP] == 0 → consNext

consP += 4

M[consP] != consA → consNotA

consP += 4

M[consP] == consD → consFoundSame

consP -= 4

consNotA ← M[consP] != consA

consP -= 4

consNext ← M[consP] == 0

consP += 12

consP <= segEnd → consSearchSame

consSearchEmpty ← consP <= segEnd

consP -= 12

consP < H → consFail

M[consP] != 0 → consSearchEmpty

segEnd -= hashV + (12b − 12)
uncall hash

M[consP] += 1

consP += 4

consA ↔ M[consP]

consP += 4

consD ↔ M[consP]

consP -= 8

consEnd ← M[consP] > 1

assert consP >= H && consA == 0 && consD == 0 && hashV == 0 && segEnd == 0

end cons

consFoundSame ←
segEnd -= hashV + (12b − 12)
uncall hash

consD & 3 → consNonPointerD

M[consD] -= 1

consNonPointerD ← consD & 3

consD -= M[consP]

consP -= 4

consA & 3 → consNonPointerA

M[consA] -= 1

consNonPointerA ← consA & 3

consA -= M[consP]

consP -= 4

M[consP] += 1

→ consEnd

Fig. 3. Optimised reversible implementation of cons
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giving 4b times an m-bit integer. We then multiply this by 3 (getting a multiple
of 12b) and add H. The maximum value will, hence, be 3(b · 2m+2 − 4b) + H =
12b · 2m − 12b + lastH − 12b · 2m + 12 = lastH − (12b − 12), as we wanted.

begin hash

assert hashV == 0 && hashA == ka && hashB == kb && hashC == kc

hashA ^= consA

hashB ^= consD

hashA -= hashB + hashC

hashA ^= hashC >> 13

hashB -= hashC + hashA

hashB ^= hashA << 8

hashC -= hashA + hashB

hashC ^= hashB >> 12

hashA -= hashB + hashC

hashA ^= hashC >> 12

hashB -= hashC + hashA

hashB ^= hashA << 16

hashC -= hashA + hashB

hashC ^= hashB >> 5

hashA -= hashB + hashC

hashA ^= hashC >> 3

hashB -= hashC + hashA

hashB ^= hashA << 10

hashC -= hashA + hashB

hashC ^= hashB >> 15

hashV += hashC & (b · 2m+2 − 4)
hashV += hashC & (b · 2m+2 − 4)
hashV += hashC & (b · 2m+2 − 4)
hashV += H
end hash

Fig. 4. Reversible hash subroutine based on Jenkins’ mix function

5 Performance Analysis and Experiments

When analysing the time used by cons, we count the number of instructions
executed. We do not count assert instructions, as these are assumed to be
invariants that need not be checked at runtime, and we will count an uncondi-
tional jump to an unconditional entry point as free (as code layout can in most
cases make it so), but we count a conditional jump to a conditional entry point
as two instructions because two conditions are checked. We also count call and
uncall as two instructions each, as we count the cost of the return into the cost
of the call, but otherwise we do not distinguish the cost of instructions. This is,
admittedly, a gross simplification, but a more precise costs measure depends on
the choice of machine that RIL is translated to and the cost model of this.
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begin hash

assert hashV == 0 && hashT == ka

hashT ^= consA << 7

hashT += consA >> 1

hashT ^= consD << 5

hashT += consD >> 3

hashV += hashT & (b · 2m+2 − 4)
hashV += hashT & (b · 2m+2 − 4)
hashV += hashT & (b · 2m+2 − 4)
hashV += H
end hash

Fig. 5. Simplified hash subroutine

In the best case, a call to cons will have symbols as arguments and find a
match in the first node it encounters. This will use 71 instructions, 52 of which
are used by the two calls to hash. If the arguments to cons are pointers, add
two instructions to update their reference counts. In the worst case, no matching
node is found (but consA matches the head of all nodes in the segment) and the
only free node is the last searched. This will use 15b + 58 instructions, 52 of
which are, again, used by hash.

We have tested the heap manager with different heap sizes to find how full
the heap is when an allocation fails. This is (rather naively) done by adding
pseudo-random numbers to a list until allocation fails. For each heap size, we
have run the test twenty times using different random numbers (so hashing
yields different numbers), and for each heap size we have listed the average and
maximum number of free nodes when allocation fails. Our first test uses b = 8.

Heap size (nodes) average free nodes maximum free nodes spread
210 135 13% 639 62% 177 17%
214 3139 19% 10291 63% 2891 18%
218 56373 22% 144783 55% 40769 16%
222 1014423 24% 2194523 52% 713904 17%

The worst-case utilisation is with all heap sizes under 50%, though the average
case is around 80%. Our estimate was that a bin size of 12 would be needed for
heaps up to 106 nodes, so it is hardly surprising that the results are bad. The
reason we have chosen a smaller bin size is to compare the setup above with a
variant where the bins overlap: Instead of using hash values that point to the
start of disjoint 8-node segments, we change it so hash values can point to any
node start in the heap. We still use a bin size of 8, so the changes to the code are
minimal: The mask used in the hash subroutine needs changing, so it instead of
b ·2m+2 −4b is b ·2m+2 −4. Additionally, b−1 extra nodes must be added to the
heap, so there are b nodes to search from the largest generated address onwards.
The results are shown below
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Heap size (nodes) average free nodes maximum free nodes spread
210 69 7% 171 17% 52 5%
214 767 5% 2170 13% 553 3%
218 13708 5% 34229 13% 12403 5%
222 384618 9% 974626 23% 239922 6%

The difference is quite dramatic: In none of the tests was more than 23% of
the heap unused, and the average heap utilisation is between 91% and 95%,
depending on heap size.

Hashing takes a significant fraction of the time for allocating nodes, so using
a simpler hashing function might be worthwhile, even if this gives a higher risk
of collision. As an experiment, we have replaced the hash function with the very
simple function shown in Figure 5 and repeated the above tests. Reducing the
body of hash from 24 to 8 instructions reduces the number of instructions for
executing cons by 32 (as hash is called twice). The results of using the simplified
hash function are shown below.

Heap size (nodes) average free nodes maximum free nodes spread
210 79 8% 215 21% 73 7%
214 438 3% 1022 6% 372 2%
218 10266 4% 24673 9% 7484 3%
222 215346 5% 597394 14% 168784 4%

The results are not significantly different from the previous, but that may be
due to the simplicity of the tests. More testing is required to verify if this or
another cheap hash function is adequate for more realistic use.

We have also made experiments using a smaller segment size, i.e., searching
only 4 nodes instead of 8 for matching or empty nodes. This will reduce the cost
of executing cons, but the expectation is that this will make allocation failure
happen when a larger fraction of the heap is empty. The table below shows heap
utilisation with a segment size of 4 (using the simple hash function).

Heap size (nodes) average free nodes maximum free nodes spread
210 107 10% 293 29% 94 9%
214 1311 8% 6546 40% 1860 11%
218 15871 6% 43784 17% 12874 5%
222 802967 19% 1884954 45% 539114 13%

The heap utilisation is, as expected, not as good as with the larger segment size,
but it is not below 50% in any of the tests. So if space is not tight, it can be a
good choice to reduce the segment size to 4.

6 Conclusion and Discussion

We have presented a reversible intermediate language RIL and implementations
in RIL of a reversible heap manager that uses reference counts and hash-consing
to achieve garbage collection: The heap manager does all the necessary man-
agement of reference counts, and nodes are automatically reclaimed when their
reference count becomes zero.
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The key insight is that to get symmetric construction and destruction of val-
ues, either linearity (no sharing) or maximal sharing is needed. Previous works
assume linearity, but we implement maximal sharing by a reversible hash-cons sub-
routine. This allows copying of values just by copying pointers (and updating ref-
erence counts) and structural equality testing by comparison of pointers. This is,
we believe, the first real reversible garbage collection method that does not rely on
linearity.

Our use of fixed-size segments (bins) to handle hash-code collisions means
that a segment can be filled long before the heap is full. We have calculated
a segment size that makes this very unlikely before the heap is at least half
full. The calculation is based on results from the literature for non-overlapping
bins and gives a fairly large segment size. We have also tested overlapping bins,
which has not been studied much in the literature, and found that the results
are dramatically better when overlapping bins are used. Overlapping bins have
proved to be beneficial for cuckoo hashing [9], so it is, perhaps, not so surprising.
Experimentally, we have found that a segment size of 8 gives heap utilisation
above 75% in the worst case and better than 90% in the average case, while a
segment size of 4 gives heap utilisation around 55% in the worst case and better
than 80% in the average case.

The hashing and searching used during node construction has a significant
cost, so construction and deconstruction of nodes is relatively expensive. This
is, however, partially offset by vey cheap equality testing and copying of data.

We have made preliminary tests of two different hash functions and found no
significant difference in results, though one is much simpler than the other. Further
trials with more realistic allocation/freeing patterns are needed to draw a firm
conclusion. Further trials could also investigate more different hash functions.

Our use of a fixed segment/bin size makes reversibility simple at the cost
of relatively low heap utilisation. More advanced hashing techniques such as
two-way chaining [3] may improve heap utilisation with small segment sizes at
the cost of increasing the hashing cost. Cuckoo hashing [9,14] offer high util-
isation with short searches, but this (or any other) hash-table technique that
moves nodes around after they are allocated are not suitable for our purpose, as
changing the address of a node requires modifying pointers globally.

A limitation of the heap manager is that heap nodes can only be pairs. It
is easy enough to modify the heap manager to another fixed size of nodes, but
mixing nodes of several sizes in the same heap will require all nodes to be padded
to the largest size. A simple solution is to have separate heaps for different node
sizes, but that can be very wasteful. Larger tuples can be built from pairs, but
that requires an average of one node per field in the tuple. A compromise might
be to let nodes be four words including reference count. This will waste one word
when building pairs but there will be less waste when building larger tuples, as
an average of two fields can be stored in each node. A node size that is a power
of two can also save some instructions when scaling the hash code to a multiple
of the node size.



94 T.Æ. Mogensen

References

1. Axelsen, H.B., Glück, R.: Reversible representation and manipulation of construc-
tor terms in the heap. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS,
vol. 7948, pp. 96–109. Springer, Heidelberg (2013)

2. Baker, H.G.: Nreversal of fortune — the thermodynamics of garbage collection. In:
Bekkers, Y., Cohen, J. (eds.) Memory Management. Lecture Notes in Computer
Science, vol. 637, pp. 507–524. Springer, Berlin Heidelberg (1992)

3. Broder, A.Z., Mitzenmacher, M.: Using multiple hash functions to improve IP
lookups. In: Proceedings of the Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2001), vol. 3, pp. 1454–1463.
IEEE Comput. Soc. Press (2001)

4. Ershov, A.P.: On programming of arithmetic operations. Communications of the
ACM 1(8), 3–6 (1958)

5. Goto, E.: Monocopy and associative algorithms in an extended lisp. Technical
Report TR 74–03, University of Tokyo (1974)

6. Hansen, J.S.K.: Translation of a reversible functional programming language.
Master’s thesis, DIKU, University of Copenhagen, December 2014

7. James, R.P., Sabry, A.: Theseus: a high-level language for reversible computation.
In: Reversible Computation - Booklet of work-in-progress and short reports (2014).
http://www.reversible-computation.org

8. Jenkins, B.: Hash functions. Dr. Dobb’s Journal of Software Tools 22(7) (1997)
9. Lehman, E., Panigrahy, R.: 3.5-Way cuckoo hashing for the price of 2-and-a-bit.

In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 671–681. Springer,
Heidelberg (2009)

10. Lutz, C.: Janus: a time-reversible language. A letter to Landauer (1986). http://
www.tetsuo.jp/ref/janus.pdf

11. Mogensen, T.Æ.: Partial evaluation of janus part 2: assertions and procedures.
In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162,
pp. 289–301. Springer, Heidelberg (2012)

12. Mogensen, T.Æ.: Reference counting for reversible languages. In: Yamashita, S.,
Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 82–94. Springer, Heidelberg (2014)

13. Oh, C.W.: Reversible intermediate language for the translation of reversiblepro-
gramming languages. Master’s thesis, DIKU, University of Copenhagen, November
2009

14. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
15. Raab, M., Steger, A.: “Balls into bins” - a simple and tight analysis. In:

Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518,
pp. 159–170. Springer, Heidelberg (1998)

16. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer,
Heidelberg (2012)

http://www.reversible-computation.org
http://www.tetsuo.jp/ref/janus.pdf
http://www.tetsuo.jp/ref/janus.pdf


Reverse Code Generation for Parallel Discrete
Event Simulation

Markus Schordan(B), David Jefferson, Peter Barnes,
Tomas Oppelstrup, and Daniel Quinlan

Lawrence Livermore National Laboratory, Livermore, USA
{schordan1,jefferson6,barnes26,oppelstrup2,dquinlan}@llnl.gov

Abstract. Reverse computation has become a central notion in discrete
event simulation over the last decade. It is not just a theoretical line of
research, but an immensely practical one that is necessary to achieve
high performance for large parallel discrete event simulations (PDES).
The models that are implemented for PDES are of increasing complexity
and size and require various language features to support abstraction,
encapsulation, and composition when building a simulation model. In
this paper we focus on parallel simulation models that are written in
C++ and present an approach for automatically generating reverse code
for C++. The strategy we have adopted for our approach is to first assure
that we can correctly handle event methods that use the entire C++
language. Although a significant runtime overhead is introduced with
our technique, the assurance that the reverse code is always generated
fully automatically is an enormous win that can open the door to routine
optimistic simulation with models that can be implemented using the
entire C++ language.

1 Introduction

Reverse computation has become a central notion in discrete event simulation
over the last decade [1,2]. It is not just a theoretical line of research, but an
immensely practical one necessary to achieve high performance for large parallel
discrete event simulations. In fact, the most highly parallel and fastest discrete
event simulation benchmarks ever executed have made essential use of it [3]. In
this paper we will briefly describe the connection between reverse computation
and simulation, and then describe how we produce efficient reverse code for
simulations written in standard C++.

1.1 Discrete Event Simulation

Discrete event simulation (DES) is a simulation paradigm suitable for systems
whose states are modeled as changing discontinuously and irregularly at dis-
crete moments of simulation time. DES is event-driven in that the times at
which state changes occur are calculated dynamically rather than statically as
c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 95–110, 2015.
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in time-stepped simulations. Example applications include simulations of digital
communication networks, vehicular traffic flow, markets and economies, epidemi-
ological models, logistical models, ecological and population models, tactical and
strategic military models, and many others. Most systems whose behavior is not
describable by continuous equations and that are not suitable for simple time-
stepped models are candidates for DES.

The general sequential DES algorithm is very straightforward. It is based
on an event queue, i.e. a priority queue of events (scheduled simulation state
changes) in which the priority value is simulation time. The algorithm is simply
to repeatedly remove the event with the lowest simulation time from the event
queue and execute it. An event execution generally will cause a change in the
simulated system state and/or will insert new future events into the event queue.
This algorithm guarantees the basic simulation correctness conditions that all
events are executed once and only once in increasing (or at least non-decreasing)
simulation time order, and that causal relationships between events are directed
only forward in simulation time, with no backward-in-time causality.

1.2 Parallel Discrete Event Simulation

Efficient parallel discrete event simulation (PDES) is much more complex than
this, however. The general approach is to divide the simulation and its state
into semi-independent parallel units called LPs (logical processes) that each
have their own event queues and that generally execute concurrently and asyn-
chronously. Each simulated event is now executed within one LP only and affects
only that LP’s state. An event may also schedule other events for future simula-
tion times, either for the same LP (self) or for others. Events scheduled for other
LPs must be transmitted to them as event messages with a timestamp indicating
the simulation time when the event should be executed. Arriving event messages
get enqueued in the event queues of the receiving LPs in increasing time stamp
order.

The fundamental issue that makes PDES so complex is the synchronization
problem. Every LP must execute all events from its own event queue in strictly
non-decreasing timestamp order despite the fact that it does not generally know
which LPs might be sending it events, or how many, or what timestamps they
may carry. Furthermore there is no guarantee that event messages will arrive at
an LP in increasing timestamp order. The asynchronous concurrent execution of
the LPs means that at any hypothetical snapshot taken at a single instant of wall
clock time some LPs will be ahead in simulation time and some will be behind.
Furthermore, which LPs are ahead or behind may change during execution. As
a result, there is a danger of a causality violation when an LP that is behind in
simulation time, e.g. at t1, sends an event message with a (future) timestamp
t2 > t1 that arrives at a receiver that has already simulated to time t3 > t2. In
that case the receiver has already simulated past the simulation time when it
should have executed the event at t2, and yet it would be incorrect to execute
events out of order. This is the essence of the PDES synchronization problem.
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There are two broad approaches to resolving the PDES synchronization
issue, called conservative and optimistic [4]. Conservative synchronization uses
conventional process blocking primitives along with extra knowledge about the
simulation model (called lookahead information) to prevent the execution from
ever getting into a situation in the first place in which an event message arrives
at an LP with a timestamp in its past. This seems like the natural approach,
but it is generally model-dependent and surprisingly complex. In many cases it
is not the most efficient approach, and in some cases where there is no useful
lookahead information it cannot yield good performance at all.

Optimistic synchronization, by contrast, does not try to prevent the simula-
tion from getting into a causality violation situation in which an event arrives
at an LP in its past, i.e. with a timestamp t2 < t3. Whenever that occurs, the
simulator rolls back the LP from t3 to the state it was in at time t2, executes
the arriving event, and the re-executes forward from time t2 to t3 and beyond.
Another way to look at optimistic synchronization is that all event executions are
speculative or provisional, and are always subject to rollback if the simulation
gets into local synchronization trouble. Most of the time that does not happen
and the simulation proceeds forward in parallel. But occasionally a causality
violation occurs that has to be corrected by rollback and, after that minor per-
formance penalty, the simulation continues forward again. There is considerably
more to it than we have space to convey here, but that is the basic idea. And
it is sufficient to motivate our interest in reverse computation. For more detail
see [2].

1.3 Motivation for Reverse Code Generation

So how exactly does reverse computation help with PDES? In this paper we
assume the parallel simulation model is written in C++. Each event is the exe-
cution of some event method E() that makes changes to the state variables of the
simulation. If that event has to be rolled back to deal with a causality violation,
then the simulator needs another method E′() that exactly reverses all of the
side effects of E() to return the simulation to the exact state it was in before
E() was executed.

However, the situation is more complicated because in general a C++ method
E() will destroy information during its forward execution. It will usually over-
write or update some state variables, destroy control information (e.g. by for-
getting which branch it took at a conditional) and also possibly deallocate data
structures on the heap. It is not possible in general to write an E′() that can
restore information that was actually destroyed by E(). But we can frame the
problem differently and achieve our purpose.

Instead, for an event method E() written in C++ (with return type void),
we generate two derived methods, E+() and E−(). E+() is identical to E()
except that it is instrumented to save in a side data structure a trace of all of
the information that E() would destroy. E−() uses that saved trace information
to undo the side effects of E+(), and also destroys the side data structure that
E+() created. As a result we can write the reverse computation equation
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{E+();E−()} = {}
(where {} is a skip or no-op)

If E() does any memory deallocation, we do not actually do the deallocation
in E+() since it cannot be reversed in E−() if need be. Instead we defer the
actual deallocation of an object (but not the call to the destructor) to be done
in a commit method E∗(), which is only called at commit time when we can
be sure that E+() will never need to be reversed. Once the entire simulation is
progressed (on all nodes) beyond a certain simulation time t, it is guaranteed
that no event at a simulation time < t will ever need to be reversed. At this point
the commit function is called for all events at simulation times earlier than t.
The computation equation involving the commit method is

{E+();E∗()} = {E()}
The commit method is also used in the handling of I/O and certain other

issues, but they are beyond the scope of this paper.
In Section 2 we describe in detail our approach for automatically generating

E+(), E−(), and E∗() from an arbitrary C++ function E(), and present an
evaluation on small benchmarks with dynamic memory allocation. In Section 3
we describe a complete PDES model for which we automatically generate reverse
code and evaluate the performance of our generated reverse code running under
the parallel discrete event simulator ROSS on LLNL’s parallel Blue Gene/Q
machine V ulcan, and also compare the performance of different compilers. In
Section 4 we describe the related work for our approach.

2 Reverse Code Generation

Our approach is a variant of incremental check pointing and the forward-reverse-
commit paradigm ([2], Chapter 7.3). This paradigm applies to situations when a
program fragment can be executed “ahead of time”, but is found to be incorrect,
and requires re-execution from a previous state of execution.

In parallel discrete event simulation with optimistic synchronization, we need
to reverse events if they turn out to be not on the correct execution path (e.g.
because an event that was transmitted on the network arrives with a timestamp
that is older than the one that has already been simulated).

Our approach requires only that we generate new code for the forward event.
The transformed forward code records additional information in a data structure
that is used by the reverse and commit methods. No code is generated for the
reverse and commit method. They share the same implementation for all variants
of transformed forward event codes. We have implemented our approach in a
tool called Backstroke as source-to-source transformation based on the compiler
infrastructure ROSE [5].

In the following sections we describe the code transformation operations,
recorded data at runtime, and how the recorded data is used by the reverse and
commit methods in the following sections.
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2.1 Code Transformations for Intercepting All Memory Modifying
Operations

For our approach it is sufficient to intercept all memory modifying operations.
Measured in bits we store more information than necessary, but we do not need to
store control flow information, which simplifies the handling of branch constructs,
virtual method calls, and exceptions.

We consider three kinds of operations as memory modifying operations:
assignment operators, memory allocation, and memory deallocation. C++ offers
15 different assignment operators, which can modify the memory for all built-in
types, two operators for memory allocation (single object and arrays) and two
operators for memory deallocation (single object and arrays).

In the following section we define the transformations for the C++ operators
by specifying its semantics. In subsequent sections we present how concrete C++
code can be generated.

2.2 Forward Code Generation for Assignment Operators

C++ offers 15 assignment operators

1. Assignment: E1 = E2

2. Assignment with additional operation: E1 op E2

where op ∈ {+=, -=, *=, /=, %=, &=, |=, ˆ=, <<=, >>=}
3. pre/post increment/decrement operators: op E, E op where op ∈ {++,--}

For Assignment operators we define the transformation α which intercepts
all forms of assignments. The transformation is applied to all 15 operators as a
unified operation (including pre- and post-increment/decrement operators). The
transformation α is introduced as follows for the different kinds of assignment:

1. E1 = E2 =⇒ α(E1) = E2

2. E1 op E2 =⇒ α(E1) op E2

3. op E =⇒ op α(E), E op =⇒ α(E1) op

For example, let p be a pointer to an object and x be a data member of
this object. Then we introduce for the assignment p->x=y the transformation
α such that α(p->x)=y.

2.3 Addressing Dynamic Memory Allocation

To address memory allocation we introduce transformation β and for dealloca-
tion we introduce transformation γ.

Let T be a built-in type or a user defined type (class, struct, or union) and n
be the size of an array to be allocated or deallocated. Then for every occurrence
of the operators new and delete in a program, we introduce the following
transformations

1. new T() =⇒ β1(T).
2. new T()[E] =⇒ β2(T ,E).
3. delete E =⇒ γ1(E).
4. delete[] E =⇒ γ2(E).
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2.4 Semantics of the Transformation Operators

To generate forward code, the transformation operators α, β, γ, are applied and
C++ code with function calls to the Backstroke Runtime Library are introduced.
Next we specify the semantics of the generated forward code with the functions
in Table 1.

Table 1. Functions used for specifying the semantics of transformations α, β, γ

address(E) → a computes the address a of the l-value denoted by
expression E and returns that address a.

allocateArray(sa, se) → p allocates array of size sa with element type size
se. Register the pointer to the allocated memory
region

callArrayElemDestrs(Te, p) → p calls destructor for each array element of type Te

of array at address p in reverse order and returns
p.

cast(T, E) casts the type of expression E to type T .

dereference(p) dereference pointer p.

etypeof(E) → Te determines element type Te of array denoted by
E.

new T () → p performs C++ operation new and returns pointer
p.

ptr(T ) denotes a pointer to an object of type T .

pstore(p) → p stores pointer p in the state store and returns the
same pointer p.

rdestructor(T ) calls the reversed destructor for Type T .

registerAllocation(p) → p registers the pointer p referring to allocated mem-
ory to be deallocated by reverse functions and
returns p.

registerArrayAllocation(p, E) → p registers the pointer p referring to allocated array
memory to be deallocated by reverse functions
and returns p. The size of the array is defined by
expression E.

registerArrayDealloc(p) registers the pointer p referring to memory to be
deleted by commit.

registerDeallocation(p) registers the pointer p referring to memory to be
deleted by commit functions and returns p.

store(a) → a stores memory address a of a built-in data type
(not being a pointer) and returns a.

typeof(E) → T determines type T of expression E.

To generate forward code for the C++ new and delete operators we gen-
erate code that involves calls to generated forward-code of constructors and
destructors, and the introduced backstroke library function calls perform the
recording of allocated memory and the deferred deallocation of memory. Mem-
ory deallocation is deferred until an event is committed, and memory allocation
is undone with memory deallocation in case an event is reversed.
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In Table 2 the transformations α, β, γ are defined. For intercepting assign-
ments, α1 introduces code that (i) computes the address of expression E. Expres-
sion E represents the l-value of an assignment and therefore denotes a memory
address to which the address operator can be applied. (ii) This address is passed
(as pointer) to a function that stores this pointer. In the C++ Code (described in
Section 2.5) the store function corresponds to a Backstroke Run Time Library
call. The store function returns the same pointer that was passed to it. (iii)
The returned pointer is dereferenced. This produces an l-value to which the
right-hand side of the assignment can be assigned. Intercepting assignments in
this way allows to perform transformations on expressions source-to-source. This
also holds for all other transformations. Therefore the generated forward code
remains readable in comparison to the original forward code. Further beautifi-
cations are possible by using templated wrapper functions. For α1 all computed
addresses are pointers to built-in types with one level of indirection. For α2 we
pass all pointers that represent more than one level of indirection and those are
cast to a pointer of level one to any type. This allows to cover also pointers of
arbitrary levels of indirection.

Let any denote a pointer to any type, and T , E, as above. We define the
required transformations in Table 2. The transformation operators α1,2 introduce
the transformations required for assignments, β1,2 introduce the transformations
for C++ memory allocation operators, and γ1,2 for C++ memory deallocation
operators.

Table 2. Transformation specification (uses specified functions from Table 1)

α1(E) ::= dereference(store(address(E)))
α2(E) ::= dereference(cast(typeof(E),(pstore(cast(any,address(E))))))
β1(T ) ::= cast(ptr(T),registerAllocation(cast(any,new T())))
β2(T, E) ::= cast(ptr(T),registerArrayAllocation(cast(any,new T()),E))
γ1(E) ::= rdestructor(typeof(E)),registerDeallocation(cast(any,E))
γ2(E) ::= registerArrayDealloc(cast(any,callArrayElemDestrs(etypeof(E),E)))

Pointers are cast to any because we want to maintain all pointers to allocated
memory of a given program in the same data structure. Only level-one point-
ers are not cast (α1) because we maintain separate stacks for all built-in data
type values, and one stack for all pointer values (of the original program). We
therefore cast each pointer value to any and cast the return value of the register-
functions to its original pointer type. In the following sections we describe in more
detail how these pointer values are used in C++ to store and restore program
states. For the assignment of objects of user-defined types we assume that the
assignment operator is implemented (and thus, can be reversed). Otherwise an
implementation of the default assignment operator needs to be generated.

β transformations use the C++ operator new and only register the pointer
to the allocated memory. The constructors involved are functions that have been
reversed as well. In contrast, the γ transformations break up the original C++
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delete operator into an explicit call of the reversed constructor and a register
function that maintains the pointer to the memory to be deallocated. It is impor-
tant that the destructor is called but only the actual deallocation of memory is
deferred until the event is committed.

Array deallocation has the additional complication that we also need to (i)
know the size of the array (which is not explicitly provided in the source code),
(ii) apply the destructor for each array element in reverse order (of the array),
and finally (iii) deallocate the memory allocated for the array and the memory
location storing the size.

Our current implementation utilizes the fact that C++ compilers (to the best
of our knowledge) generate code for array allocation/deallocation that stores the
array size in a memory word of size size_t before the array elements (and the
entire size of the allocated memory region is adjusted to the additional size
information).

2.5 C++ Code Generation

We generate C++ code for the functions specified in Table 1 and compose them
according to Table 2 to implement the introduced transformation operators α,
β, and γ. The generated code contains functions that are implemented in the
Backstroke Runtime library. The Runtime Library is linked with the transformed
forward code. The execution of the forward code computes all data necessary to
restore any previous state in the computation of the forward function by calling
the reverse function of the runtime library. When the commit function is called,
all registered memory deallocations are performed.

In Listings 1.1 and 1.2, we show the original and forward codes for inserting
an element into a list. The forward codes show the applied α, β and γ transfor-
mations. In Section 2.7 we present an evaluation of benchmarks involving above
list manipulating functions.

2.6 Stack vs Heap - The Necessary Check

The Backstroke Runtime Library must ensure that data stored on the runtime
stack of the event is not restored in the reverse function because once the event
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function has been executed, all elements on the event function’s runtime stack are
popped from the stack by the C++ runtime system. Therefore a compiler/system
dependent test is performed with each pointer that is requested to be stored in
the Run Time State Storage (RTSS). If the pointer refers to a stack address,
then the pointer is not stored in the RTSS. This is necessary, because otherwise
we would restore memory (in the reverse function) that is no longer allocated
on the runtime stack after the event function has been executed (in the forward-
function). On the other hand, if it is a heap pointer, then the pointer is stored in
the RTSS and the reverse and commit functions use this information to perform
the proper operations to restore the memory state.

The Backstroke Runtime Library is initialized at the beginning of the simu-
lation. It stores the current start address and end address of the thread’s stack
(currently we use POSIX pthread library function calls to determine the stack’s
start address and the length of the stack). Using this information we perform
this check for every stored pointer whether it is stored on the event’s runtime
stack or in the heap. Using this check we ensure that only heap pointers are
restored.

2.7 Evaluation

We evaluate the performance of the Backstroke generated code with two bench-
marks that exercise a specific set of operations, such that we can assess the
introduced overhead independent of the impact of the simulator. In Section 3
we also evaluate the performance of a PDES simulation using generated reverse
code.

Benchmark Array, performs 0 to 250 array operations per event. The array
operation is an addition to one random element of the array. In the very first
event the array is allocated, in all subsequent events the array is modified. The
List benchmark also performs 0 to 250 operations per event. The list operation
is the insertion of an element in a sorted list and the subsequent deletion of
the very first element of the list. Similar to the Array benchmark, the list is
allocated in the very first event. In subsequent events the list is modified. Thus,
both benchmarks also contain a control flow, selecting the very first event by
checking whether the container has already been allocated. The size of the array
is 100,000 elements and the length of the list is 100 in the benchmarks. In both
benchmarks the event function is executed 100,000 times, followed by either
100,000 reverse or commit function calls. Furthermore, we also evaluate the
performance difference of two modes of the Backstroke Runtime State Storage
(RTSS). Mode A is the default mode, and Mode B performs an object reuse of
event records used for storing all required information of an event function call
to be able to reverse or commit the event later.

In Fig. 1 we show the penalty factor for generated forward code in com-
parison to the original code for both benchmarks, Array and List, running in
both modes A+B. Mode B reuses allocated event function call records inside
the RTSS and avoids re-initialization of this data structures. As shown in Fig. 3,
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Fig. 1. Shown is the penalty factor for the forward event function E+() in comparison
to the original event function E() for both benchmarks Array and List and both RTSS
allocation modes, denoted A and B

Fig. 2. Comparison of the two RTSS allocation modes (denoted A and B) for the
Array Benchmark
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Fig. 3. Array benchmark: comparison of execution times for E(),E+(), E−(), E∗()

the execution time for the initialization of the internal data structure for an
event (Forward Init) in Mode B is only a very small fraction of Mode A. This
significantly reduces the initialization cost (Forward Init) and improves the per-
formance comparatively more as fewer operations are performed in a single event.
The total execution time for a generated forward event code is the sum of the
three execution times, Forward Init, Forward Exec (actual execution of the func-
tion), and Forward Finalize, shown in the stacked bars in Fig. 3.

With Mode B the generated forward functions show a penalty factor between
2 and 3 (depicted in Fig. 1). Without this pre-allocation optimization of Mode
B, the penalty can go up to 8.6 (Array) and 4.2 (List) for 25 operations. The
more operations are performed, the less significant becomes the initialization
time. In Fig. 2 we also show the execution times for the Original, Forward (total
execution time), Reverse, and Commit functions.

The benchmarks were performed on a system with Intel(R) Core(TM) i7
CPU X 980, 3.46GHz, CPU and 1600 MHz DDR3 memory. The presented
results were computed with Backstroke, version 2.0.4, whereas previous versions
of Backstroke [6] implemented other approaches requiring to take control flow
information into account and turned out to be difficult to apply to full C++ – in
particular in the presence of C++ exceptions. Backstroke 2 addresses full C++
but without templates. Future versions will also address templates.
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3 Models

3.1 ROSS Simulator

ROSS is a general purpose discrete event simulator developed at RPI by C.
Carothers et. al. [7]. Within ROSS, a simulation consists of a set of logical
processes (LP’s) that communicate with each other through time-stamped event
messages. A discrete event process formulated in this way is called a ROSS
model. To implement a new model in ROSS one needs to write an initialization
function that sets off the initial state of each LP, and an event function which
is responsible for processing a received event message for a given LP. The event
function also has the opportunity to send further event messages.

After initialization the simulation logically progresses by processing any event
messages in simulation time order using the provided event functions for the
LP’s.

ROSS has been developed over more than 10 years, and is a mature soft-
ware. It has the capability of running simulation in parallel. The Time Warp
mechanism is the versatile and scalable option in ROSS for running simulations
in parallel. Time Warp is an optimistic approach, where each processor employs
speculative execution to process any event messages it is aware of. Causality con-
flicts, such as when a previously unknown message which should already have
been processed is received, are handled through local roll back. During roll back
the effects of messages that were processed in error are undone.

In order to use Time Warp in a ROSS model, a reverse event function must
be provided. For a given event message it is responsible for undoing the state
changes that the forward event function incurred for the same message.

The power of Backstroke in this context is that it can automatically generate
the appropriate reverse event function for a given forward event function. For
complicated discrete event models, this greatly increases productivity since less
code needs to be written by hand. In addition, it is much less error prone and
lessens the code maintenance burden, compared to hand written reverse code.
It can not be enough stressed that even a very minute bug in the reverse code,
so that it only almost reverses the effect of the forward event code, is disastrous
for Time Warp simulations. Small state differences can make the code address
out of bounds, cause exceptions, and result in infinite loops.

3.2 Diffusion Model

In order to test the Backstroke concept and its implementation and runtime
library, we have written a small ROSS model that simulates a simplistic process
of diffusing particles. In this model, particles are sent between LP’s, and an event
message consists of a set of particles. An event is processed by the receiving LP
adding the particles in the event message to its local pool of particles. Then a
subset of the local particles are sent to a different LP, scheduled to arrive to the
destination at a future time drawn from an exponential distribution.
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In Listings 1.3 and 1.4 the original C++ code for the implementation of the
model is shown and the generated forward code. The forward code also involves
a call at the beginning of the function to obtain the proper instance of the
Backstroke Run Time Library event record for the respective LP (function call
rossLpMapping(lp)). For the calls to the ROSS random number generators, three
calls to the respective reverse function of the random number generator must
be performed. We have added those 3 function calls manually to the generated
forward code (the next version of Backstroke will allow to mark such a function
with a C++ pragma and generate the respective function call automatically).

Employing the Time Warp parallel option in ROSS, we have run simula-
tions with this diffusion model both using hand-written reverse code, and using
Backstroke generated code. To study portability and the performance impact of
using Backstroke, we run simulations on two different architectures, using two
different compilers on each platform. In all cases, the simulation ran correctly.

On the Intel cluster, we observed that in the version with Backstroke code,
event processing was about half the speed compared to the original code in the
(normal) case where there are few (<5%) rollbacks (i.e. executions of reverse
code), and about the same speed to 30% slower when there are lots of rollbacks
(>70%). On the IBM BlueGene/Q machine the Backstroke code also processes
events about half as fast as the original code in the low rollback case and about
1.5 to 2 times slower for lots of rollbacks. In general, there is less variability in
performance impact on the BlueGene/Q machine compared to the Intel cluster.
The performance impact ranges are shown in Table 3, with a more detailed graph
in Figure 4.
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Table 3. Performance impact on gross event processing of using Backstroke to obtain
reverse event code, compared to original manually written reverse code

Architecture Compiler Impact of Backstroke
Intel x86 Intel icc/icpc 1.05 − 2.20
Intel x86 GNU gcc / g++ 1.05 − 2.22
IBM BlueGene/Q IBM xlc / xlxcxx 1.50 − 1.95
IBM BlueGene/Q GNU gcc / g++ 1.50 − 1.90
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Fig. 4. Performance impact on gross event processing of using Backstroke to obtain
reverse event code, compared to original manually written reverse code

4 Related Work

In [8] Jefferson started the subject of rollback-based synchronization in 1984. The
paper discusses rollback implemented by restoring a snapshot of an old state, but
today we are interested in using reverse computation for that purpose. Also, this
paper is written as if discrete event simulation is one of several applications of
virtual time, but in fact it was then and is now the primary application. Although
the term ”virtual time” is used, you can safely read it as ”simulation time”.

In 1999 Carothers et. al published the first paper [1], that suggests using
reverse computation instead of snapshot restoration as the mechanism for roll-
back. But it does not contemplate using a reversible language. It is written in
terms of very simple and conventional programming constructs (C-like rather
than C++ -like) and instrumenting the forward code to store near minimal
trace information to allow reversing of side effects when needed.
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Barnes et. al demonstrated in 2013 [3], how important reverse computation
can be in a practical application area. The fastest and most parallel discrete event
simulation benchmark ever executed was done at LLNL on one of the world’s
largest supercomputers using reverse computation as its rollback method for
synchronization. But the reverse code was hand-generated, and methodologically
we know that this is unsustainable. So we need a way of automatically generating
reverse code from forward code, and this is what we address with the work
presented in this paper - to have a tool available, Backstroke2, for generating
reverse code that can be applied to full C++.

Kalyan Perumalla and Alfred Park discuss the use of Reverse Computation
for scalable fault tolerant computations [9]. The paper is limited in a number of
ways, but they make a fundamental point, which is that Reverse Computation
can be used to recover from faults by mechanisms that are much faster than
check pointing mechanisms.

In [10] Justin LaPre et. al discuss reverse code generation for PDES. The
presented method is similar to one of our previous approaches in the work on
Backstroke [6] as it takes control flow into account and generates code for com-
puting additional information required to reconstruct the execution path that
had been take in the forward code. Our presented approach in this paper is
different as we do not need to take any control flow information into account,
and therefore our approach allows to address full C++ by considering only a
small subset of the language constructs, and by regenerating all other constructs
unmodified in the forward code. However, the drawback of our approach is that
it is likely to generate a higher overhead in the forward code. In specific cases
with complicated control flow but only very few updates on the simulation state,
our approach can store less information and can be faster - but those are specific
cases.

5 Conclusion

We have demonstrated an approach to reverse computation that can be applied
to full C++. In contrast to other approaches for generating reverse code, we do
not need to explicitly take any control flow information into account, but instead
store address-value pairs of modified memory locations and record information
about all dynamic memory allocation and deallocation. This information is used
in the reverse code to restore the original memory state of the program (in PDES
an event method).

The main advantage of our approach is that we need to address only a small
number of language constructs, in fact only the memory-manipulating operations
in C++. This allows to address full C++ and perform the reverse code genera-
tion as a transformation of the original code by only considering forms of assign-
ment and memory allocation and deallocation functions. All other constructs
can remain unmodified in the transformation. The drawback is the overhead in
the forward code and a higher memory consumption (in most cases) than with
approaches that take control flow into account.
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Most of the future Backstroke research will be devoted to improving static
analysis of the code to eliminate more and more of the runtime checks (though
we will never get rid of them all). The strategy is also to incorporate algorithms
for reconstructing the initial state variables from the final values where feasible,
and for substituting trusted abstract reverse methods for Backstroke-generated
ones when we have them, e.g. hand-written reverse number generates as used in
ROSS.

In future work we plan to incorporate approaches that address reversible lan-
guages into Backstroke, by detecting reversible subsets in event method imple-
mentations, and delegate the reconstruction of the program state for those parts
of the program to the generated overhead-free reverse code (of reversible code).
This may motivate users who implement PDES models, to write more and more
parts of their models in reversible subsets of C++ (with possibly some exten-
sions) to achieve better performance. Similar, other approaches, taking control
flow into account, may also be applicable to subsets of C++.

Thus, possibly in the long run, some kind of hybrid reversible and conven-
tional language, may turn out to be the best strategy for implementing PDES
models in the future, if users can combine both languages. That remains to be
seen.
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Abstract. Programming industrial robots for small-sized batch produc-
tion of assembly operations is challenging due to the difficulty of precisely
specifying general yet robust assembly operations. We observe that as
the complexity of assembly increases, so does the likelihood of errors.
We propose that certain classes of errors during assembly operations can
be addressed using reverse execution, allowing the robot to temporarily
back out of an erroneous situation, after which the assembly operation
can be automatically retried. Moreover, reversibility can be used to auto-
matically derive a disassembly sequence from a given assembly sequence,
or vice versa.

This paper presents the initial design of the RASQ domain-specific
language (DSL) for specifying such assembly sequences, based on initial
experiments using an industrial case study. The language is defined in
terms of a formal semantics corresponding to a realistic execution model
currently under implementation. The DSL is used as part of a software
framework that aims at tackling uncertainties through a combination of
reverse and probabilistic execution.

1 Introduction

Bringing robotics to small-sized batch production is highly important for future
industrial development [3,5]. The traditional approach within automation has
relied on highly precise and deterministic behavior for avoiding errors during
operations. Avoiding operational errors by precision and determinism is however
a time-consuming and costly process. For small-sized production, where each
automation sequence is only run in small numbers, this is often not a viable
option. Moreover, we note that as the complexity of an assembly increases, so
does the likelihood of errors.

We observe that certain classes of critical errors occurring during experiments
with an industrial case study (described later) could in practice have been solved
by backtracking and then repeating part of the assembly sequence. Based on this
observation, we hypothesize that certain classes of errors during assembly oper-
ations can be addressed using reverse execution of the robot controller, allowing
the robot to temporarily back out of an erroneous situation, after which the
assembly operation can be automatically retried. Moreover, we hypothesize that
c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 111–126, 2015.
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reverse execution can facilitate programming of assembly operations in general:
reverse execution could enable automatic derivation of certain required opera-
tions from their forwards counterparts, and more generally an entire disassem-
bly sequence could be derived from an assembly sequence, or vice versa. We are
however not aiming for a theoretical model; we are interested in physical robots
performing realistic and practically useful assembly sequences, which include a
mix of reversible operations (moving objects, attaching a bolt to a nut) and
non-reversible operations (drilling holes, welding and bending materials).

To explore the above hypotheses further in this setting, in particular through
physical experimentation, we are developing a domain-specific language (DSL)
for specifying reversible assembly sequences, for control of an industrial robot
(a robot arm, as described below.) The underlying principle for reverse exe-
cution is statement-level program inversion [14]. However, physical constraints
necessitate the ability to explicitly specify the meaning of reverse execution for
a subset of operations. Concretely, we propose program inversion as the default
mechanism to handle errors and inversion of assembly sequences, while allowing
the programmer to override the default program inversion semantics in special
cases.

This paper presents the initial design of the DSL, named RASQ (Reversible
Assembly SeQuence.) The language is defined in terms of a formal semantics
corresponding to a realistic execution model currently under implementation.
The RASQ DSL is used as part of a software framework that aims at tackling
uncertainties through a combination of reverse and probabilistic execution [2,6].
In general, our approach assumes that operational errors are inevitable and
will eventually appear at some point during the assembly. Therefore, instead
of trying to avoid errors altogether, the errors are to be managed and rectified.
The current paper exclusively concerns the issue of reversible execution. Initial
works on probabilistic execution and error recovery were discussed in previous
work [2,6], and we return to these issues in the conclusion.

The rest of this paper is organized as follows: First, we discuss the overall
concept of what it means to perform reversible execution of assembly operations
(Sec. 2). Then follows a presentation of the high-level RASQ language (Sec. 3),
its translation to a low-level language (Sec. 4), and the semantics of this low-
level language (Sec. 5). Last, we elaborate on a few perspectives and conclude
the paper (Sec. 6).

2 The Reversible Assembly Concept

We now present background information on our industrial case study and the
use of reversibility in robotics. This is followed by a discussion on the conceptual
idea of executing assembly sequences in reverse.

2.1 Robotic Assembly

In the context of this paper, unless otherwise noted, the term robot refers to
an industrial robot, more precisely a robot arm, as depicted in Fig 1. Usually,
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Fig. 1. Our experimental setup: The robot is seen performing a pick-and-place sequence
composed of several sub-commands. Commands instruct the robot in where and how
to move, as well as controlling the gripper.

general-purpose robot arms consist of 6 or more joints connected in series, and are
programmed using a dedicated language containing basic structures for branch-
ing and loops as well as a rather limited set of motion and I/O commands. The
I/O commands are used to communicate with attached peripheral equipment
such as grippers and sensors.

Our experimental setup is shown in Fig. 1, where the robot is seen per-
forming a pick-and-place operation. This operation is a small part of a larger
assembly case where several objects have to be placed in a fixture before they are
joined together using screws. The case comes from the company VOLA and is an
example of a small-sized batch run that includes an assembly case that the com-
pany is currently performing manually. In the specific case there is a relatively
large number of objects that need to be aligned and placed with high accuracy,
plus a number of other requirements and problems that only become apparent
when attempting to divide the assembly into smaller steps. A real-world case for
demonstration provides real-life complexities and challenges, which otherwise
might have been ignored: Humans are good at handling and adapting many of
these challenges, but for robots these problems are a significant challenge, since
they lack the constant feedback that a human naturally uses when performing
such operations.

2.2 Reversibility and Robotics

Robotics represent a real-world application area where computational reversibil-
ity has a physical counterpart: Several kinds of actions performed by robots
can be physically reversed, for example changing the direction in which a mobile
robot is driving, or reversing an industrial assembly process to perform disassem-
bly. Specifically, in this paper we investigate the use of a reversible programming
language to control physically reversible robot behavior. We observe that reverse
execution is a feature of the mainstream KUKA Robotics Language, but mainly
intended as a tool for debugging [7]. Moreover, reversibility is not supported in
recent proposals for a revised programming platform, due to the difficulty of
integrating reversibility with a general-purpose language [1].
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Reversibility has been investigated for the specific case of self-reconfigurable
robots. Self-reconfigurable, modular robots are distributed robotic devices that
can autonomously change their physical shape [13]. Self-reconfiguration from one
shape to another is typically achieved through a specific sequence of actuation
operations distributed across the modules of the robot. Automatically reversing
the sequence of operations brings the robot back to its initial shape, as has been
experimentally demonstrated using the DynaRole reversible language [9]. Dyna-
Role however only allows simple sequences of operations to be reversed, such as,
e.g., extension or retraction of connectors followed by rotational movement. This
capability is suitable for reversing self-reconfiguration sequences, but lacks the
generality needed to implement more complex behaviors, such as the assembly
operations addressed in this paper.

Initial ideas on generalizing the DynaRole language to support a wider range
of modular robot control scenarios retain the possibility of reversing distributed
sequences [10,11]. In this paper, reversibility is investigated as a practical feature,
reducing the programming task of the programmer, and allowing error recovery
by backing out of an error state using reverse execution. We have investigated the
generalization using informally specified prototype implementations in limited
scenarios, providing preliminary evidence in support of our hypotheses. With the
work documented in this paper we give an exact formal semantics for a precisely
defined language, providing a basis for a rigorous investigation of reversibility in
robotic assembly.

2.3 Executing Assembly Sequences in Reverse

We are interested in reversible programming of assembly sequences for two rea-
sons: (1) Increased robustness through backtracking when certain errors occur,
and (2) Increased software reuse through invocation of the same sequence of
operations both forwards and backwards. We believe that an appropriately
defined concept of reverse execution can be used to fulfill both of these goals.
Our approach is similar in principle to the notion of reversible computing from
Zuliani [15] and Stoddart et al [12], but where their primary concern is the use
of backtracking to search a state space, we use a mix of forwards and reverse
execution to deal with unexpected errors in the environment.

We are concerned with controlling physical robots performing realistic and
practically useful assembly sequences, which include drilling holes, welding and
bending materials, and moving objects in an environment with gravity. Reverse
execution of assembly sequences is thus never going to be time-invertible;
although certain classes of operations tend to be time-invertible, in practice
robotic control seems to require different kinds of operations to implement time-
inverse behaviors. For example, removing a peg from a tightly-fitting hole simply
requires pulling the peg out of the hole, whereas reinserting the peg into the same
hole is most easily done by edging the peg into the hole at an angle [8].

We observe that although the goal is to establish a kind of bidirectional trans-
formation between different robot and world states, similarly to the bidirectional
tree transformations of Foster et al [4], the presence of a physical environment
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object nut

object bolt

sequence attach_nut_bolt {

state begin_nut_bolt (...tool pos...) bolt:(...pos...) nut:(...pos...)

moveto (...pos above table...)

pickup (nut, fixed_gripper, (...pos of nut...))

moveto (...)

try 3 (force<1) {

moveto (...pos on bolt...)

call apply_and_turn_nut

}

release (nut, fixed_gripper, (...))

moveto (...pos above table...)

}

sequence apply_and_turn_nut { ...commands... }

reverse { ...commands that undo apply_and_turn_nut... }

grip fixed_gripper (nut) { ...commands for gripping a nut... }

Fig. 2. Sample RASQ program, vector constants are omitted for clarity, only the body
of attach nut bolt is shown

and the requirement of dealing with unpredictable errors requires a different kind
of semantics where reverse execution of an operation might require a completely
different set of operations compared to the forwards execution of the operation.
Nevertheless, concepts from bidirectional transformation might eventually prove
useful for reasoning about the execution of reversible assembly operations at a
higher level of abstraction; this is, however, left as future work.

3 The RASQ Language

We now present the RASQ language. We start by giving a small, expository
example of a RASQ program for attaching nuts to bolts, showing the key features
of RASQ. We then give a grammar for RASQ in the form of an EBNF, and
present our considerations on defining the RASQ semantics.

3.1 RASQ by Example

We now introduce the key features of the RASQ language, using the small
example shown in Fig. 2. A RASQ program consists of declarations of objects,
sequences and grips. Objects are to be manipulated by sequences of commands,
using grips to pick up and release objects (an object is moved by moving the
robot while the object is gripped.) The example program declares two objects,
named nut and bolt. Object declarations introduce names that serve a dual pur-
pose: they are used to select which gripping operation to use, and they can be
used to specify assertions on the current state of the system as a whole.
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The program declares two sequences, attach nut bolt and apply and

turn nut. The sequence attach nut bolt only specifies a single (forwards) body
for both forwards and reverse execution, so reverse execution will inversely eval-
uate the forwards body in reverse order, as specified later. The first statement
is a state assertion, named begin nut bolt, specifying the spatial positioning of
the tool and the respective positions of the bolt and nut objects:

state begin_nut_bolt (...) bolt:(...) nut:(...)

The positions of the bolt and nut objects are not known precisely but must be
estimated, for example using a vision system. (Its implementation is not specified
as part of the semantics of the language.) Should the assertion fail, e.g., by failing
to find an object in the asserted location, an error will be triggered, identified by
the state assertion name. Triggering an error reverses the direction of execution,
up until the boundary of an enclosing try block handling the corresponding error
(as defined by using the state assertion name for the restriction of the try block.)

The next statement of the program is a move, which moves the robot to the
given position (again, the position is given as a constant, not shown):

moveto (...pos above table...)

Unlike DynaRole, we do not require the programmer to explicitly provide infor-
mation to make move operations locally invertible, but we shall see later that
the program does provide sufficient detail for reversibility, nonetheless. A move
command can be guarded by an enclosing try block that can define the amount
of force that is maximally allowed to be exerted to complete the move; exceeding
this force triggers an execution-reversing error.

After the move follows a pick up instruction:

pickup (nut, fixed_gripper, (...nut pos...))

This causes the pickup sequence associated with the name fixed gripper and
the object nut to be evaluated, using a local frame corresponding to the position
given as the last argument. All movement is done relative to a frame defining a
position and an orientation. Evaluating a grip or release sequence using a specific
local frame allows the commands to be defined relative to the object they are
manipulating.

A try block follows the pickup instruction, which specifies to perform the
given statements using a force that does not exceed 1N (1 Newton), and to try
this at most 3 times:

try 3 (force<1) {

moveto (...pos on bolt...)

call apply_and_turn_nut

}

Should a movement statement in the body of the try (or in any sequence or
grip invoked herein) exceed 1N of force, an error will be triggered reversing the
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direction of execution, until it reaches the boundary of the try block. From there
the execution direction will change again to try evaluating the body once more.
Exit from the try block can be in either direction of execution, but must either
be in the same direction as the block was entered, or in reverse direction once
the block has been evaluated 3 times. The try block in the example contains a
move and a call of another sequence; calling a sequence is similar to invocation
of a procedure, but since a sequence can have different forwards and backwards
implementations by specifying a reverse block, the appropriate one is called
based on the current direction of execution.

After the try block a release statement is used, releasing the object currently
being held at the given position:

release (nut, fixed_gripper, (...))

The release is in this case performed by evaluating the corresponding pickup in
reverse direction, since no specific “reverse pickup” implementation is specified
for the grip.

The last operation is the declaration of the second sequence apply and

turn nut, which is not shown in detail, but has both a forwards and a reverse body,
so forwards execution evaluates the forwards body in forwards order, and reverse
execution evaluates the reverse body in forwards order (i.e., in the order written
in the program). The program also declares a single grip, fixed gripper, which
only applies to the object nut (although it may be defined for other objects, too.)
The gripper is defined using a single body consisting of arbitrary commands that
can do anything except using other grips. This grip body is used both for forwards
evaluation (gripping an object) and reverse evaluation (releasing it.)

3.2 Syntax

The syntax of the RASQ language is given by the grammar shown in Fig. 3.
A RASQ program consists of a number of declarations of named objects, a num-
ber of command sequences of which one is considered the main sequence, and a
number of grip sequences. Named objects O are used to statically decide which
grip sequence to use for a given grip operation, and their position can be asserted
using the command state. Sequences S are lists of commands, sequences can
invoke other sequences and make grips, but cannot be recursive. Grips G are
named and are defined separately for each specific object similarly to static over-
loading; grips can invoke arbitrary commands including sequences but excluding
other grips (the semantics of gripping during a grip currently results in an error).

The command moveto moves the robot to the given position, moving any
object that has been gripped. The commands pickup and release perform grips
and releases of objects. The command call evaluates the named sequence in the
same direction as the current execution direction, whereas the command uncall

evaluates the named sequence using the opposite direction. The command io

activates low-level I/O operations, for example for operating the gripper or acti-
vating some other tool. Moreover, I/O operations can also activate operations
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Program P ::= (O|S|G)∗

Object O ::= object NO

Sequence S ::= sequence NS { C∗ } (reverse NS { C∗ })?
Command C ::= moveto(V ) | pickup(NO, NG, V ) | release(NO, NG, V ) | call NS

| uncall NS | try(n) R∗ { C∗ } | io NI (n0 . . . ni;V0 . . . Vj)

| wait n | state (NR : V )? (NO : V )∗ | error
Grip G ::= grip NG (N∗

O) { C∗ } (reverse NG { C∗ })? where no C grips
Restriction R ::= force < n | state NR

NO, NS , NG, NI , NR ∈ name space of corresponding construct
V ∈ R

k, n, k ∈ N, R real numbers, N natural numbers.

Fig. 3. EBNF grammar of high-level RASQ programs

from an underlying library of preprogrammed actions that are automatically
parameterized and randomized using a probabilistic approach described in ear-
lier work [2], see Sec. 6 for a discussion. Whether an I/O operation is reversible
is dependent on its implementation, which is checked dynamically during exe-
cution. The command wait waits a number of seconds before proceeding exe-
cution. The command state asserts the current state of the system, optionally
including the position of the robot and the current estimated position of any of
the named objects. The command error terminates the program, and can thus
be used to specify the implementation of sequences or grips that can only evalu-
ate in one direction. A forwards-only sequence can for example be implemented
by providing a reverse body that only contains the command error.

3.3 RASQ Semantics: High-Level and Low-Level Languages

Rather than defining the semantics in terms of the RASQ language, we describe
a translation to a low-level graph-based language, and then provide a semantics
for this low-level language. This approach closely mirrors our current imple-
mentation of the RASQ language, and the semantics thus serves as a formal
specification of this implementation. Moreover, we found that formally express-
ing the semantics of arbitrary program point execution reversal was more easily
done using an explicit graph-based based representation. The translation and
low-level semantics are presented in the next two sections.

4 Low-Level Language

Execution of RASQ programs is defined in terms of the low-level language
L-RASQ, based on a graph representation. This section defines the language,
the translation from RASQ, and a forwards analysis used to annotate movement
commands with the position that they move from, used for reverse execution.
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4.1 Language Definition

We define an L-RASQ program PL as a graph with nodes X, each node repre-
senting a single command to be executed. Forwards edges F are used for forwards
execution of the program, and backwards edges B are used for backwards exe-
cution of the program:

PL = (X,F,B),X = L(GL) × {F ,B}, F ⊆ X × X,B ⊆ X × X

Nodes are also annotated with their execution direction: F indicating forwards
and B indicating backwards. Execution of a node in the opposite direction of
its indicated direction requires inversion of the command contained within the
node (e.g., a movement command from p1 to p2 contained in a node will move to
p2 when executed in the direction of the node annotation and move to p1 when
executed in the opposite direction). The operator ←↩ yields the reverse direction,
e.g., ←↩ F = B and ←↩ B = F . The nodes contain commands that are elements
of the language defined by the grammar GL, given by the following EBNF (using
definitions from Fig. 3):

L ::= l : movefromto(V, V ) | l : trying(l′, n,R) | l : gripping(V ) | l : skip
| l : wait(n) | l : error | l : state NR : V (NO : V )∗
| l : io NI (X;Y )

X ∈ N
i, Y ∈ R

j , i, j,∈ N

During translation each command is annotated with a unique label l, explicitly
making distinct values from identical commands. Additional labels are used to
match the beginning and end of a try-block.

4.2 Translation from RASQ

The translation from RASQ to L-RASQ is defined by recursive descent on RASQ
terms using the function T that builds the L-RASQ graph according to the
RASQ control flow by appending nodes corresponding to each term. With the
exception of sequence calls and grips the translation rules generate a chain; for
sequence calls and grips separate branches are generated for the forwards and
reverse translations. The function T is defined as follows:

T (f,Δ)[t] = (x, y,G)

Here f is the unique node that should execute immediately before the translation
of t in forwards execution, Δ is the current execution direction, t is the term to
translate, x is the unique node that should be executed first in forwards execution
of the translation of t, y is the unique node that should be executed last (and
vice versa for x and y for backwards execution), and lastly, G is a subgraph of
the resulting translated program representing the translation of t.

The key translation rules are shown in Fig 4, with similar and trivial rules
are omitted for brevity. The rule [T:Mov] translates a single move command
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x = (l : movefromto(⊥, V ), Δ) l is fresh

T (f, Δ)[moveto(V )] = (x, x, ({x}, {(f, x)}, {x, f}))
[T:Mov]

x = (lx : trying(l, n, r), Δ) y = (ly : trying(l, n, r), Δ)
T (f, Δ)[C1 . . . Cn] = (z1, zn, (Z, F, B)) l, lx, ly are fresh

Z′ = {x, y} ∪ Z
F ′ = {(f, x), (x, z1), (zn, y)} ∪ F B′ = {(x, f), (z1, x), (y, zn)} ∪ B))

T (f, Δ)[try(n) r { C1 . . . Cn }] = (x, y, (Z′, F ′, B′))
[T:Try]

ξ = {1, . . . , n} T (fi−1, Δ)[Ci] = (xi, fi, (Zi, Fi, Bi)), i ∈ ξ
Z =

⋃
i∈ξ Zi

F = {(fi−1, xi)|i ∈ ξ} ∪⋃i∈ξ Fi B = {(xi, fi−1)|i ∈ ξ} ∪⋃i∈ξ Fi

T (f0, Δ)[C1 . . . Cn] = (x1, fn, (Z, F, B))
[T:Seq]

(Δ0, Δ1) = (Δ, ←↩ Δ)
s0 = (l0 : skip, Δ0) s1 = (l1 : skip, Δ1) l0, l1 are fresh

lookupΔ0
S (z) = C0

1 . . . C0
n0 lookupΔ1

S (z) = C1
1 . . . C1

n1

T (sj , Δj)[C
j
1 . . . Cj

nj
] = (xj , yj , (Zj , Fj , Bj)), j ∈ 0, 1

Z = {s0, s1} ∪ Z0 ∪ Z1 F = {y0, s1} ∪ F0 ∪ F1 B = {y1, s0} ∪ B0 ∪ B1

T (f, Δ)[call z] = (s0, s1, (Z, F, B))
[T:Cal]

lookupΔ
S (z) = the direction Δ definition of sequence z

Fig. 4. Translation from RASQ to L-RASQ (selected rules)

into a move node, adding edges to attach this node to the predecessor in the
graph. The first argument of the move instruction is left undefined (indicated
by ⊥), and will be defined in a later phase, described in Sec 4.3. The translation
rules for wait, io, state and error all work in the same way, adding a single
node to the graph that attaches to the predecessor.

The rule [T:Try] basically translates a try block into a sequence of nodes
defining the body of the block, delimited by nodes x and y with the same content,
that define the borders of the try region. Due to execution symmetry, entering
a try region has the same semantics whether execution is forwards or reverse.

The rule [T:Seq] defines how to translate a sequence of statements by trans-
lating each statement independently, always attaching a given statement to the
predecessor: either the node preceding the whole sequence as a base case, or the
translation of the previous statement as the induction case.

The rule [T:Cal] defines the translation of a sequence call into a DAG with
common start and end nodes (the si skip nodes). From the node s0 forwards
execution leads into the forwards branch, whereas from the node s1 reverse exe-
cution leads into the backwards branch. As all other nodes are fully connected in
both directions, this is our reason for separating forwards and backwards edges.
The uncall command is defined similarly, except that the backwards definition
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of the sequence is laid out as the forwards branch, and vice versa. The pickup

and release commands are similar to call and uncall, except that they use
the special gripping instruction in the places of the skip nodes. Note that since
sequences are non-recursive, it is safe to translate calls by unfolding.

4.3 From-Position Analysis

Both the high-level RASQ and low-level L-RASQ language rely on most state-
ments being reversible. The movement statement moveto is translated into the
instruction movefromto, which explicitly includes the position that the robot is
moving from, making statement reversal trivial (e.g., moving from x to y is
reversed by moving from y to x). The translation however does not define the
from-position; this position can be derived either off-line using a simple static
analysis, or on-line using an execution trace.

The off-line static analysis starts with the root node of the L-RASQ graph,
at which point the robot position must be known, either by being predefined
outside the program or using the state assertion to define the state of the robot.
The robot position is then simply propagated in a depth-first traversal of the
graph and used to annotate all movefromto nodes. Since sequence calls and grip
invocations are always fully expanded, and there are no conditionals or loops, in
a given node in a program the robot position will always be uniquely defined.

The on-line approach simply records the robot positions as the program
executes, in principle similar to recording an execution trace and then using
it for backtracking, as was done by Stoddart et al [12]. This approach has the
advantage that it reverses unexpected behaviors more precisely, for example after
collision with an object in the environment. Since assembly sequence executions
normally will consist of a relatively limited number of moves, saving such an
execution trace only consumes a limited amount of memory.

We are currently implementing the off-line approach for use with our experi-
mental platform, due to its simplicity and the ability to run a program in reverse
without first having executed it forwards. We however expect that the on-line
approach will be valuable for the error handling case, and plan to eventually
use a combination of both.

5 Semantics

The L-RASQ semantics are defined as a small-step operational semantics that
uses two sets of evaluation rules: graph evaluation that transfers control between
nodes, and node evaluation that evaluates the current node of the graph.

In more detail, graph evaluation steps → are of the following form:

〈E, f, l1 : (α, δ)〉Δ
L

τ→ 〈E′, f ′, l2 : (β, δ′)〉Δ′
L′

Where E is the current environment mapping labels to error-tracking informa-
tion, f is the current frame for movement commands, l1 : (α, δ) is the node
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dir(Δ, δ), E, f, L � α ⇒ (E′, f ′, continue, τ, L′)

〈E, f, l1 : (α, δ)〉Δ
L

τ→ 〈E′, f ′,nextΔ(l1)〉Δ
L′

[G:Con]

dir(Δ, δ), E, f, L � α ⇒ (E′, f ′, reverse, τ, L′) Δ′ =←↩ Δ

〈E, f, l1 : (α, δ)〉Δ
L

τ→ 〈E′, f ′, backτ (Δ′, l1 : (α, δ))〉Δ′
L′

[G:Rev]

dir(Δ, δ) =

{
Δ, Δ = δ
←↩ Δ, otherwise

nextF (l1) = l2 : (β, δ′), where (l1 : (α, δ), l2 : (β, δ′)) ∈ F for P L = (X, F, B)

nextB(l1) = l2 : (β, δ′), where (l1 : (α, δ), l2 : (β, δ′)) ∈ B for P L = (X, F, B)

backτ (Δ, l : (α, δ)) =

{
nextΔ(l), τ = [none]
l : (α, δ), otherwise

Fig. 5. Graph evaluation rules

to evaluate with instruction α and translation direction δ, Δ is the execution
direction, L is the current set of error-condition labels used for the try com-
mand, τ is the effect of the command in the node (e.g., moving the robot), E′

is the resulting environment, f ′ is the resulting frame, l2 : (β, δ′) is the next
node to evaluate, Δ′ is the execution direction in which this next node should
be evaluated, and L′ is the resulting set of error-condition labels.

Program execution is defined by iterated graph evaluation, which starts with
an empty environment E, an undefined frame f (meaning to use the global frame
in which the robot operates), either the head or tail node of the program graph
as l1 : α with the appropriate corresponding execution direction Δ (F when
starting with the head node, B when starting with the tail node), and an empty
set of labels L.

Node evaluation rules ⇒ are of the following form:

Δ,E, f, L � α ⇒ (E′, f ′, r, τ, L′)

Where Δ is the execution direction, E is the current environment, f is the current
frame for movement commands, L is the current set of error-condition labels,
α is the term of the node being evaluated, E′ is the resulting environment, f ′

is the resulting movement frame, r is the result of the evaluation (whether to
continue execution, reverse execution, or fail), τ is the effect of the command,
and L′ is the resulting set of error-condition labels.

5.1 Graph Evaluation

The graph-level evaluation strategy is defined using the two rules in Fig. 5. In
both cases, the direction in which the statement of a node is evaluated depends
on the current execution direction and the direction annotation of the node,
as expressed by the function dir: if these match the current direction is used,
otherwise the reverse direction is used (i.e., executing a reverse body in forwards
execution mode inverts each statement). The rule [G:Con] defines the reaction
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to a statement that succeeded and resulted in “continue”: execution continues
in the same direction with the next node according to this direction. The rule
[G:Rev] defines the reaction to a statement that failed in a controlled way and
resulted in “reverse”: the direction of execution is reversed, and if there was no
effect we continue with the next node, otherwise the current node is repeated but
with reverse execution semantics (this potentially allows undoing the effect of a
halfway-completed operation.) The reaction to a statement that fails is simply
to stop evaluation of the program.

5.2 Node Evaluation

Node evaluation rules are defined in Fig. 6. All rules are symmetric in the execu-
tion direction Δ. Some of these rules are defined in terms of primitives: functions
that correspond to operating the robot and reading the result; primitive names
are always underlined.

Movement is defined using the three rules [Mov:Con], [Mov:Rev], and
[Mov:Fail]. These rules all select their goal position according to the current
execution direction Δ, using the select function:

selectF (p1, p2) = p1, selectB(p1, p2) = p2

All movement rules make use of the movement primitive move(p, E, f) which
moves the robot to position p while observing any restrictions in E and moving
relative to the frame f if defined (otherwise the global frame of the robot is
used.) The return value of move either indicates success with ok, the label l of
an exceeded restriction, or severe failure (e.g., robot shutdown) with fail.

The try statement is defined using three rules. The rule [Try:Begin]

describes first entering a try block with the unique label l, in this case the
repetition counter from the try block is stored in the environment. The rule
[Try:End] describes finishing a try block, either because the maximum number
of attempts has been reached, or because it is being exited in the same execu-
tion direction as it was entered. Last, the rule [Try:Rev] describes reaching the
boundary of a try block, but with the opposite execution direction from which
it was entered; in this case the direction is reversed and the block is retried with
a decreased attempts counter value.

Gripping is defined using the two rules [Grip:On] and [Grip:Off], that sim-
ply define and undefine the local frame. When defined, the movement primitive
is relative to this local frame, otherwise the movement primitive is relative to
the global frame.

I/O is defined according to the three rules [IO:Con], [IO:Rev], and
[IO:Fail]. These rules all make use of the primitive io(Δ, op, x, y): This primi-
tive invokes the corresponding I/O function in direction Δ with the parameters
x and y, depending on whether the primitive succeeds execution either continues
(I/O success), reverses (I/O failure), or stops if the primitive is undefined for
the given execution direction (indicated by a return value of ⊥).
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p = selectΔ(p1, p2) move(p, E, f) = ok

Δ, E, f, L � movefromto(p1, p2) ⇒ (E, f, continue, [move : p], L)
[Mov:Con]

p = selectΔ(p1, p2) move(p, E, f) = l, l is a label

Δ, E, f, L � movefromto(p1, p2) ⇒ (E, f, reverse, [move:fail], L ∪ {l}) [Mov:Rev]

p = selectΔ(p1, p2) move(p, E, f) = fail

Δ, E, f, L � movefromto(p1, p2) ⇒ (E, f, fail, [move:fail], L)
[Mov:Fail]

E(l) = ⊥
Δ, E, f, L � trying(l, n, r) ⇒ (E[l �→ (Δ, r, n)], f, continue, [none], L)

[Try:Begin]

E(l) = (Δ′, r, n′) (Δ = Δ′ ∨ n′ = 1)

Δ, E, f, L � trying(l, n, r) ⇒ (E[l �→ ⊥], f, continue, [none], L\{l}) [Try:End]

l ∈ L E(l) = (Δ′, r, n′) (Δ 
= Δ′ ∧ n′ > 1)

Δ, E, f, L � trying(l, n, r) ⇒ (E[l �→ (Δ′, r, n′ − 1)], f, reverse, [none], L\{l}) [Try:Rev]

f = ⊥
Δ, E, f, L � gripping(v) ⇒ (E, v, continue, [none], L)

[Grip:On]

f 
= ⊥
Δ, E, f, L � gripping(v) ⇒ (E, ⊥, continue, [none], L)

[Grip:Off]

io(Δ, op, x, y) = ok

Δ, E, f, L � io op (x;y) ⇒ (E, f, continue, [io : op, x, y], L)
[IO:Con]

io(Δ, op, x, y) = fail

Δ, E, f, L � io op (x;y) ⇒ (E, f, reverse, [none], L)
[IO:Rev]

io(Δ, op, x, y) = ⊥
Δ, E, f, L � io op (x;y) ⇒ (E, f, fail, [io:fail], L)

[IO:Fail]

state(x, E, v0, {(o1, v1), . . . , (on, vn)}) = ok

Δ, E, f, L � state x : v0 o1 : v1 . . . on : vn ⇒ (E, f, continue, [none], L)
[St:OK]

state(x, E, v0, {(o1, v1), . . . , (on, vn)}) = l, l is a label

Δ, E, f, L � state x : v0 o1 : v1 . . . on : vn ⇒ (E, f, reverse, [none], L ∪ {l}) [St:Fail]

Δ, E, f, L � wait(n) ⇒ (E, f, continue, [wait : n], L) [Wait]

Δ, E, f, L � error ⇒ (E, f, fail, [none], L) [Error]

Fig. 6. Node evaluation rules

The state assertion is defined according to the two rules [St:OK] and
[St:Fail] that use the primitive state(x,E, v0, OV ): This primitive uses sensors
to check the assertion that the robot position (if given) is v0 and that the object
positions given by OV are correct (the precision of this assertion is not defined
by the language semantics). If the assertion fails, a label l from E mapping to a
tuple holding a restriction named x is returned (if the assertion fails and no such
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label exists, the behavior is undefined). The rule [St:OK] describes an assertion
that succeeds (and hence has no effect). The rule [St:Fail] describes a failed
assertion that causes the execution to switch direction. The label corresponding
to the state assertion is added to the set of error-signaling labels, so that a try
restricting the same name can catch the error condition.

Last, waiting is defined as an effect using the rule [Wait], and unrecoverable
errors are defined using the rule [Error].

6 Conclusion and Future Work

We have presented the formal definition of the RASQ language, a DSL for
describing reversible execution of assembly scenarios. RASQ is unique in being
a reversible language that incorporates inversion as the default error han-
dling mechanism, but allows the programmer to override the default with an
explicit reverse implementation of selected operations. In general, we believe
that robotics is an interesting application area for reversible computing, and that
implementing reversible languages for robotic control can contribute to a better
understanding of reversible computing, reversible programming languages, and,
in general, reversible phenomena in nature.

In terms of future work, we are currently implementing L-RASQ as execution
engine for the CARMEN platform [2]. A key goal is determining the degree of
reversibility required in practice. For example, the current semantics allow the
execution direction to change at any point, even while performing backtracking
using reverse execution: the robot can be backtracking due to an error when
another error happens, causing the robot to move forwards again. However, in
practice this situation may be so rare that it is not relevant to support in the
semantics of the language. The CARMEN platform incorporates a library of
probabilistic actions that are optimized in simulation, essentially allowing I/O
operations (such as insertion of a rod into a hole) to be varied every time,
using an optimized range of randomized parameters. We believe that combining
this probabilistic approach with error recovery based on reverse execution has
potential for significantly improving the robustness of loosely specified assembly
operations, since actions can execute differently every time they are retried.
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Abstract. When applied on some particular quantum entangled states,
measurements are universal for quantum computing. In particular,
despite the fondamental probabilistic evolution of quantum measure-
ments, any unitary evolution can be simulated by a measurement-based
quantum computer (MBQC). We consider the extended version of the
MBQC where each measurement can occur not only in the {X,Y }-plane
of the Bloch sphere but also in the {X,Z}- and {Y,Z}-planes. The exis-
tence of a gflow in the underlying graph of the computation is a nec-
essary and sufficient condition for a certain kind of determinism. We
extend the focused gflow (a gflow in a particular normal form) defined
for the {X,Y }-plane to the extended case, and we provide necessary and
sufficient conditions for the existence of such normal forms.

1 Introduction

Performing one-qubit measurements on an initially entangled state called
graph state [8] is a universal model for quantum computation introduced by
Raussendorf and Briegel [14,15]. This model is very promising for the physi-
cal implementation of a quantum computer [13,16]. The measurement-calculus
[4,5] is a formal framework for measurement-based quantum computation. In
the original model introduced by Briegel and Raussendorf, all measurements are
applied in the so called {X,Y }-plane of the Bloch sphere, however the model can
be extended to other planes, namely {X,Z}- and {Y,Z}-planes. For instance,
measurements in the {X,Z}-planes are universal [12] for quantum computa-
tion, with the particular property that only real numbers are used in this case.
The Extended Measurement-Calculus [5] is an extension of the Measurement-
Calculus in which the three possible planes of measurement are available.

The question of the reversibility is central in measurement-based
quantum computation since the key ingredient of this model – the quantum mea-
surement – has a fundamentally probabilistic evolution. Reversibility is essential
for the simulation of quantum circuits, and as a consequence for the universality
of the model. For deciding whether an initial resource (a graph state) can be
used to implement a reversible evolution, a graphical condition called gflow has
been introduced [2,3].
c© Springer International Publishing Switzerland 2015
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Gflow is not unique in general. In the non-extended case a focused gflow [10]
is nothing but a gflow in some normal form. We consider three natural extensions
of the focused gflow for the extended measurement based quantum computation
and we study in which cases these normal forms exist.

2 Extended Measurement-Based Quantum Computation

In this section, a brief description of the extended measurement-based quantum
computation is given, a more detailed introduction can be found in [4,5]. A
measurement-based quantum computation (MBQC) is:

(i) Initialisation. An open graph (G, I,O) which describes the initial entan-
glement (G = (V,E) is a simple undirected graph), the inputs (I ⊆ V ) and
outputs (O ⊆ V ) of the computation. The initial entanglement is obtained
by applying the following preparation map N which associates with every
arbitrary input state located on the input qubits the initial entangled state
of the MBQC:

N : C{0,1}I → C
{0,1}V

|x〉 �→ 1√
2|Ic|

∑

y∈{0,1}Ic

(−1)|G[x,y]| |x, y〉

where G[x, y] denotes the subgraph of G induced by the supports of x
and y and |G[x, y]| its size. In other words |G[x, y]| is the number of edges
(u, v) ∈ E such that (x(u)=1 ∨ y(u)=1) ∧ (u(v)=1 ∨ y(v)=1);

(ii) Measurements. For every non output qubit u ∈ Oc, α(u) ∈ [0, 2π) and
two distinct Pauli operators λ1(u), λ2(u) ∈ {X,Y,Z} describe the plane
{λ1(u), λ2(u)} and the angle α(u) according to which the qubit u is mea-
sured i.e., u is measured according to the observable

cos(α(u))λ1(u) + sin(α(u))λ2(u)

Measurement of qubit u produces a classical outcome (−1)su where su ∈
{0, 1} is called signal, or simply classical outcome with a slight abuse of
notation;

(iii) Corrections. Two maps x, z : Oc → 2V called corrective maps. Corrections
work as follows: for every non output qubit u, the measurement of qubit u
is followed by the application of Xsu on the qubits in x(u) and Zsu on the
qubits in z(u). A vertex v ∈ x(u)∪z(u) is called a corrector of u. The maps
x, z should be extensive in the sense that there exists a partial order ≺ over
the vertices of the graph s.t. any corrector v of a vertex u is larger than u,
i.e. v ∈ x(u) ∪ z(u) implies u ≺ v. The extensivity of x and z guarantees
that the corrections are applied on qubits which are no yet measured.
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The extended variant of MBQC refers to the possibility to perform mea-
surements in the three possible planes {X,Y }, {X,Z} and {Y,Z} of the Bloch
sphere, whereas all measurements are performed in the {X,Y }-plane in the orig-
inal measurement-based quantum computation.

3 Reversibility, Determinism, and Generalized Flow

Despite of the probabilistic evolution of quantum measurements, the correction
mechanism can be used to make the overall evolution of an MBQC reversible
which means that there exists an isometry U (U†U = I) from the input to
the output qubits such that, whatever the classical outcomes of the measure-
ments during the computation are, the evolution implemented by the MBQC
is U . In the context of measurement-based quantum computation this form
of reversibility is called determinism [3]. Determinism is an essential feature
which is used for instance for proving that any quantum circuit can be sim-
ulated by an MBQC. Thus, this is a key ingredient for the universality of
the model for quantum computing. The existence of a correction strategy
that makes an MBQC deterministic crucially depends on the initial entangled
state, i.e. on the open graph (G, I,O) and the planes of measurement: given
λ : Oc → {{X,Y }, {X,Z}, {Y,Z}} a map which associates with every non out-
put qubit its plane of measurement, an extended open graph (G, I,O, λ) is uni-
formly deterministic if for any measurement angles α : Oc → [0, 2π), there exist
two corrective maps x and z such that the corresponding MBQC is deterministic.

Significant efforts have been made to characterize the open graphs that guar-
antees uniform determinism. Flow [3], and generalised flow (gflow) [2] are graphi-
cal conditions which are sufficient for uniform determinism. Gflow can be defined
as follows for the extended open graphs:

Definition 1 (GFlow). An extended open graph (G, I,O, λ) has a gflow if there
exists g : Oc → 2Ic

s.t. u �→ g(u) ∪ Odd(g(u)) is extensive and for any u ∈ Oc,

λ(u) = {X,Y } ⇒ u ∈ Odd(g(u)) \ g(u)
λ(u) = {X,Z} ⇒ u ∈ g(u) ∩ Odd(g(u))
λ(u) = {Y,Z} ⇒ u ∈ g(u) \ Odd(g(u))

where Odd(A) = {w ∈ V | |N(w)∩A| = 0 mod 2} is the odd neighbourhood of A
and a map f : Oc → 2V is extensive if there exists a partial order ≺ such that for
any u ∈ Oc, u is smaller than its image by f i.e., ∀v ∈ V \{u}, v ∈ f(u) ⇒ u ≺ v.

Concretely, if an extended open graph (G, I,O) has a gflow g then for
any measurement angles α : Oc → [0, 2π) the corrective maps defined as
∀u ∈ Oc, x(u) := g(u) \ {u} and z(u) := Odd(g(u)) \ {u} guarantees that the
corresponding MBQC is deterministic [2].

With someadditional assumptions gflow is not only sufficient but also necessary
for determinism in measurement-based quantum computing. More precisely, there
are mainly two cases to consider, depending on the number of inputs and outputs
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of the computation. When there are as many inputs as outputs, determinism cor-
responds to the notion of unitary evolution (evolution U s.t. U†U = UU† = I). In
this particular case, the gflow condition is necessary for strong – i.e., all measure-
ments occur with the same probability – uniform determinism [10]. In the general
case, when the number of inputs and outputs may differ, determinism corresponds
to isometries (also called unitary embedding). In this general case, gflow character-
izes stepwise stronguniformdeterminism(roughlyspeakingtheadditional stepwise
conditionmeans that anypartial computation is also deterministic) [2]. Notice that
it is not known whether the strong and stepwise conditions are required: there is no
knownexampleofuniformlydeterministicMBQCwhichcorrespondingopengraph
does not have a gflow.

Notice that if an extended open graph has a gflow then all the input qubits
must be measured in the {X,Y }-plane:

Property 1. If an extended open graph (G, I,O, λ) has a gflow then ∀u ∈ I ∩Oc,
λ(u) = {X,Y }.

Proof. Let g be a gflow for (G, I,O, λ), and u ∈ I ∩ Oc, since for any u ∈ Oc,
g(u) ⊆ Ic, u /∈ g(u), thus according to the definition of gflow, λ(u) �= {X,Z}
and λ(u) �= {Y,Z}. �

4 Focused Gflow and Normal Forms

The gflow of an (extended) open graph is not unique in general. In the non
extended case i.e., when all measurements are performed in the {X,Y }-plane
several classes of gflow have been identified: the maximally delayed gflow which
depth is minimal and which is produced by a polytime algorithm [11]; and the
focus gflow which guarantees that the z corrective map acts only on the out-
put qubits. The definition of focused gflow is as follows: Given an open graph
(G, I,O), a gflow g is focused [10] if ∀u ∈ Oc, Odd(g(u)) ∩ Oc = {u}. Since any
gflow can be transformed into a focused gflow by means of signal shifting [4] for
instance, focused gflow can be used to characterize the open graphs that have a
gflow:

Property 2. An open graph (G, I,O) has a gflow if and only if there exists g :
Oc → 2Ic

extensive such that ∀u ∈ Oc,

Odd(g(u)) ∩ Oc = {u}
Focused gflow is a simpler but equivalent variant of gflow, which can be used

for instance as a tool for quantum circuits translation and optimisation [1,6,7].
So far, there is no definition of ‘focused’ gflow in the context of the extended

MBQC. By symmetry, there are three natural kinds of ‘focused’ extended gflow:
those for which Odd(g(u)) ∩ Oc ⊆ {u}; those for which g(u) ∩ Oc ⊆ {u}; and
finally those for which g(u) ⊕ Odd(g(u)) ∩ Oc ⊆ {u}, ⊕ denotes the symmetric
difference. We define the corresponding three normal forms (NF for short) for
extended gflows:
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Definition 2 (Normal forms). A gflow g of an extended open graph
(G, I,O, λ) is

– X-NF if ∀u ∈ Oc,
Odd(g(u)) ⊆ {u} ∪ O

– Y -NF if ∀u ∈ Oc,
(Odd(g(u)) ⊕ g(u)) ⊆ {u} ∪ O

– Z-NF if ∀u ∈ Oc,
g(u) ⊆ {u} ∪ O

Intuitively a σ-NF, for σ ∈ {X,Y,Z}, guarantees that in the corresponding
MBQC all the correctors applied on the non output qubits are Pauli-σ operators.
For instance, given a Z-NF gflow, in the corresponding MBQC ∀u ∈ Oc, x(u) =
g(u) \ {u} ⊆ O which implies that all Pauli correctors applied on non output
qubits are Z operators. Given a Y-NF gflow, in the corresponding MBQC ∀u ∈
Oc, x(u)∩Oc = z(u)∩Oc which means that all the Pauli correctors applied on non
output qubits are products of X and Z which is nothing but Pauli-Y operators
(up to a global phase). Notice that given an open graph (G, I,O), g is a focused
gflow of (G, I,O) if and only if g is a X-NF gflow of (G, I,O, u �→ {X,Y }).

5 Existence of Normal Forms

In this section we consider the problem of the existence of gflow in normal
forms. First notice that some extended open graphs have a gflow but no Z-NF
gflow for instance. The following extended open graph (G, I,O, λ) where G =
({1, 2, 3}, {(1, 2), (2, 3)}), I = {1}, O = {3} and λ(1) = λ(2) = {X,Y } admits
exactly two gflows g and g′ (g(1) = {1}, g′(1) = {2, 3}, and g(2) = g′(2) = {3}),
none of them is in the Z-normal form.

1 2 3

{X,Y }{X,Y }

This simple example points out a crucial difference with respect to the non-
extended case for which any gflow can be turned into a focused gflow. A sufficient
condition for the existence of a σ-NF gflow for an extended open graph with gflow
is that every non-input measurement plane contains σ:

Theorem 1. If an extended open graph (G, I,O, λ) has a gflow then, for any
σ ∈ ⋂

u∈Ic∩Oc λ(u), (G, I,O, λ) has a σ-NF gflow.

Proof. Let g be a gflow for (G, I,O, λ), and σ ∈ ⋂
u∈Ic∩Oc λ(u). We define gσ :

Oc → 2Ic

as follows, depending on σ:
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gX(u) := g(u) ⊕
⎛

⎝
⊕

v∈Odd(g(u))\(O∪{u})
gX(v)

⎞

⎠

gY (u) := g(u) ⊕
⎛

⎝
⊕

v∈(g(u)⊕Odd(g(u)))\(O∪{u})
gY (v)

⎞

⎠

gZ(u) := g(u) ⊕
⎛

⎝
⊕

v∈g(u)\(O∪{u})
gZ(v)

⎞

⎠

Extensivity of u �→ g(u) ∪ Odd(g(u)) guarantees that gσ is well-defined. In the
following we prove that gσ is a gflow, and then that gσ is in σ-NF.
[gflow] Let ≺ a partial order according to which u �→ g(u)∪Odd(g(u)) is extensive,
we show that u �→ gσ(u) ∪ Odd(gσ(u)) is also extensive according to ≺. Indeed,
for any u ∈ Oc and any w ∈ V \ {u}, s.t. w ∈ gσ(u) ∪ Odd(gσ(u)), by induction
if there is no larger elements in Oc then gσ(u) = g(u), so u ≺ w. Otherwise,
w ∈ g(u) ∪ Odd(g(u)) ∪ (

⋃
v∈g(u)∪Odd(g(u))\(O∪{u}) gσ(v) ∪ Odd(gσ(v))), so either

(i) w ∈ g(u) ∪ Odd(g(u)) which implies u ≺ w, or (ii) ∃v ∈ g(u) ∪ Odd(g(u)) s.t.
w ∈ gσ(v) ∪ Odd(gσ(v)), so u ≺ v and, by induction, v ≺ w which implies u ≺ w.
Regarding the remaining gflow conditions, notice that the extensivity of g and
gσ guarantees that for any u ∈ Oc, gσ(u) ∩ {u} = g(u) ∩ {u} and Odd(gσ(u)) ∩
{u} = Odd(g(u)) ∩ {u} (the linearity of Odd is also used in this second case:
Odd(A ⊕ B) = Odd(A) ⊕ Odd(B)). Thus gσ is a gflow.
[σ-NF] In the following we prove that gσ is in a σ-NF. W.l.o.g. assume σ = Y
(the other two cases are similar). We actually prove by induction that ∀u ∈ Oc,
Odd(gY (u) ⊕ gY (u)) ∩ Oc = {u}. Let u ∈ Oc.

– If there is no larger element according to ≺ (the partial order induced by g
and gY ) in Oc, then Odd(gY (u)) ⊕ gY (u) ⊆ Odd(gY (u)) ∪ gY (u) ⊆ {u} ∪ O
by extensivity of gY , moreover since Y ∈ λ(u), u ∈ Odd(gY (u)) ⊕ gY (u), so
(Odd(gY (u)) ⊕ gY (u)) ∩ Oc = {u}.

– Otherwise, (Odd(gY (u)) ⊕ gY (u)) ∩ Oc =
⎛

⎝Odd(g(u)) ⊕ g(u) ⊕
⎛

⎝
⊕

v∈(g(u)⊕Odd(g(u)))\(O∪{u})
Odd(gY (v)) ⊕ gY (v)

⎞

⎠

⎞

⎠ ∩ Oc

= (Odd(g(u)) ⊕ g(u)) ∩ Oc ⊕
⎛

⎝
⊕

v∈(g(u)⊕Odd(g(u)))\(O∪{u})
(Odd(gY (v)) ⊕ gY (v)) ∩ Oc

⎞

⎠

= (Odd(g(u)) ⊕ g(u)) ∩ Oc ⊕
⎛

⎝
⊕

v∈(g(u)⊕Odd(g(u)))\(O∪{u})
{v}

⎞

⎠

= (Odd(g(u)) ⊕ g(u)) ∩ Oc ⊕ ((g(u) ⊕ Odd(g(u))) \ (O ∪ {u}))
= (Odd(g(u)) ⊕ g(u)) ∩ {u}
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Moreover, since Y ∈ λ(u), u ∈ Odd(g(u)) ⊕ g(u), so (Odd(gY (u)) ⊕ gY (u)) ∩
Oc = {u}. �

As a corollary, any (non extended) open graphs with gflow, admits both X-
and Y-NF gflows. More generally, any extended open graph (G, I,O, λ) with
gflow such that λ is constant over Ic ∩ Oc admits both σ- and σ′-NF gflows
where Ic ∩ Oc ⊆ λ−1({σ, σ′})

Theorem 1 provides a sufficient condition for the existence of a σ-normal
form. The following example points out that this condition is not necessary: in
this extended open graph λ(2) = {X,Z} however it admits the following Y-NF
gflow 1 �→ {4}; 2 �→ {2, 3, 4}.

1 2 3

4

{X,Y } {X,Z}

Notice that in this counter example there are strictly more outputs than
inputs. Indeed, we show that the existence of a σ-NF gflow with σ ∈ {Y,Z},
implies that the number non-input measurement-planes which do not contain σ
is upper bounded by the input defect i.e., the difference between the number of
outputs and inputs:

Theorem 2. Given σ ∈ {Y,Z} and an extended open graph (G, I,O, λ), if
(G, I,O, λ) has a σ-NF gflow then

|{u ∈ Ic ∩ Oc | σ /∈ λ(u)}| ≤ |O| − |I|

Proof. Given (G, I,O, λ) with a σ-NF gflow g where σ ∈ {Y,Z}, we show that
any non-input vertex which is measured in a plane which does not contain σ can
be, roughly speaking, turned into an input vertex. The proof is by induction on
|{u ∈ Ic ∩ Oc | σ /∈ λ(u)}|. If |{u ∈ Ic ∩ Oc | σ /∈ λ(u)}| = 0 the property is
satisfied since determinism implies |I| ≤ |O|. Otherwise, let u0 ∈ Ic ∩ Oc s.t.

σ /∈ λ(u0) and let g′(u) :=

{
g(u) if u = u0 or u0 /∈ g(u)
g(u) ⊕ g(u0) otherwise

. g′ is a σ-NF

gflow s.t. ∀u ∈ Oc \ {u0}, u0 /∈ g′(u).
[Z-NF] If σ = Z, λ(u0) = {X,Y }, so u0 /∈ g′(u0). As a consequence ∀u ∈
Oc, g′(u) ∈ (I ∪ {u0})c, and g′ is a Z-NF gflow of (G, I ∪{u0}, O, λ): in this new
extended open graph the number of measurement-planes which do not contain
Z is decreased by one, as well as the input defect i.e., the difference between the
number of outputs and inputs.
[Y-NF] If σ = Y , a new degree-one vertex u1 is connected to u0, and let g′′ :
Oc → 2(I∪{u0})c be defined as follows
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g′′(u) :=

⎧
⎪⎨

⎪⎩

{u1} if u = u0

g′(u0) ⊕ {u0, u1} if u = u1

g′(u) otherwise
g′′ is a Y-NF gflow for (G′, I ∪ {u0}, O, λ′), where G′ is the graph G augmented

with the dangling vertex u1, and λ′(u) =

⎧
⎪⎨

⎪⎩

{X,Y } if u = u0

{Y,Z} if u = u1

λ(u) otherwise
. In this new open

graph the number of inputs is increased by one, so the input defect decreases
by one, moreover the number of measurement planes which do not contain Y
also decreases by one since u1 is measured in the {Y,Z}-plane in this new open
graph. �

Corollary 1. Given σ ∈ {Y,Z} and an extended open graph (G, I,O, λ) with
gflow such that |I| = |O|, (G, I,O, λ) has a σ-NF gflow if and only if for any
u ∈ Ic ∩ Oc, σ ∈ λ(u).

Theorem 2 shows that in a Z-NF gflow, when a non-input is measured in
the {X,Y }-plane, this non-input somehow behaves as an input. Regarding the
Y-NF gflow when a non-input qubit is measured in the {X,Z}-plane, this qubit
cannot be seen as an input qubit mainly because all inputs have to be measured
in the {X,Y }-plane (Property 1). However, up to a transformation of the graph,
it can be turned into an input (see proof of Theorem 2). One can wonder whether
such a transformation exists for X-NF gflow? Surprisingly, Theorem 2 cannot be
extended to the X-NF case as illustrated by the following counter example where
the number of inputs is equal to the number of outputs and which has a X-NF
gflow (1 �→ {3}; 2 �→ {2, 3}) despite of the measurement of a non-input qubit in
the {Y,Z}-plane:

1 2

3

{X,Y } {Y,Z}

6 Conclusion

We have introduced three kinds of normal forms for extended gflows: X-, Y- and
Z-normal forms: a σ-normal form guarantees that all the corrections are done by
means of σ unitary transformations. These normal forms generalise the notion
of ‘focused’ gflow. Contrary to the non-extended case not every gflow can be
turned into a normal form gflow. We show that if σ appears in every plane of
measurement, then a σ-normal form is possible. This sufficient condition is not
necessary in general. Indeed, it strongly relies on the input defects i.e., on the
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difference between the numbers of inputs and outputs: when σ ∈ {Y,Z}, if a σ-
normal form exists then the number of measurement planes which do not include
σ is at most the input defect. Surprisingly, the X-normal form case behaves
quite differently: there exist X-normal form gflows with no input defect and
measurements in the {Y,Z}-plane. This result breaks the symmetries between
the three Pauli operators X, Y and Z which are used to define the measurement
planes: whereas the Z is known to plays a particular role mainly because the
input qubits must be measured in the {X,Y }-plane, the present result on the X-
normal form is the first result, up to our knowledge, which breaks the symmetries
between the X and the Y directions. It sheds some new light on the interesting
question of the choice of the measurement planes in measurement-based quantum
computation.
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Abstract. We present a quantum circuit representation consisting
entirely of qubit initialisations (I), a network of controlled-NOT gates (C)
and measurements with respect to different bases (M). The ICM repre-
sentation is useful for optimisation of quantum circuits that include tele-
portation, which is required for fault-tolerant, error corrected quantum
computation. The non-deterministic nature of teleportation necessitates
the conditional introduction of corrective quantum gates and additional
ancillae during circuit execution. Therefore, the standard optimisation
objectives, gate count and number of wires, are not well-defined for gen-
eral teleportation-based circuits. The transformation of a circuit into the
ICM representation provides a canonical form for an exact fault-tolerant,
error corrected circuit needed for optimisation prior to the final imple-
mentation in a realistic hardware model.

1 Introduction

Quantum computing promises speed-ups for a number of relevant computational
problems. Building a scalable and reliable quantum computer is one of the chal-
lenges of modern science. As the size of quantum computers increases, the focus
of interest shifts from their basic physical principles to structured design method-
ologies that will allow us to realise large-scale systems.

In general, quantum circuit optimisation methods are used to minimise the
implementation costs like the number of gates or the number of wires [29]. Clas-
sical circuit optimisation assumes fixed gate lists even in the presence of gate
errors, but classical circuits are more robust towards errors, whereas quantum
information is fragile [24, Ch. 8]. Classical gate failures are usually solved either
by hardening the circuit (e.g. modifying transistor sizes), or by introducing vari-
ous types of information redundancies that mitigate the failures. Gate hardening
is not considered realistic in quantum computing architectures, and a feasible
solution requires quantum error-correcting codes (QECC) [11]. The structure
and design of QECC allows encoded quantum gates to be applied directly to the
encoded quantum data.
c© Springer International Publishing Switzerland 2015
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In contrast to the classical case, the most practical implementations of QECC
and fault-tolerant quantum circuits are composed of gates which are non-deter-
ministic even in the absence of errors [14]. They either work correctly or require
a correction, which is only determined during the execution of the circuit. Most
such correction gates do not need to be dynamically included into the executing
circuit, because their effect can be classically tracked through the subsequent
gates [26]. This is not true for all possible corrections occurring during the exe-
cution of a quantum circuit and some need to be actively applied to the quan-
tum data[14]. This means that the overall circuit is dynamic, because its gate
list needs to be modified during its execution based on certain measurement
results. Reducing the incidence of such gates is difficult because when a fully
error-corrected, fault-tolerant circuit is examined, it is exactly these measure-
ment based corrections that appear to give quantum computing its power [15].
In general, fault-tolerant quantum circuits are constructed from Clifford and T
(Section 1.1) gates, and the T gate is the main source of the complications [4]
for which dynamic corrections cannot be avoided.

The separation of circuit gates into Clifford and T gates is generally per-
formed at the higher level circuit design layer in order to make fault-tolerant
error constructions more amenable to practical implementation. The physical
mapping of these circuits to an actual error corrected architecture is then done
with a specific QECC and hardware architecture in mind, preserving fault-
tolerance. Fault-tolerance is understood as the set of procedures by which the
cascade of quantum errors (bit and phase flips) caused by the circuit [11] is
restricted allowing the underlying QECC to be effective when mapped to actual
operations in a hardware model. In standard fault-tolerant constructions (those
that are widely used in state-of-the-art hardware models [10,20,23,31]), the only
dynamic corrections needed are when we implement logical layer corrections for
T gates. These correctional gates are constructed using ancillae initialised into
high-fidelity states (see Section 1.5) and gate teleportation protocols [14]. Our
results are quite similar to those present in Ref. [9], however this work focuses on
producing a representation that is compatible with fault-tolerant error correction
protocols.

The solution to having all the required corrections into the logical layer of the
computation is to translate circuits into a regular representation that replaces
correctional gate dynamics with the dynamics of reading and interpreting the
circuit outputs. Such an approach is similar to the model of measurement based
quantum computing (MBQC) [7], where a computation is solely described by
the interpretation of the measurements performed on a specifically initialised
quantum state. A circuit is described in this work as an ICM sequence, where
the I part contains qubit initialisations, the C part is a sub-circuit consisting
entirely of CNOT gates, and the qubits are measured in the M part. This work
represents a separate and distinct approach from the work of [21], where NCV
(reversible) circuits were mapped into Clifford and T gate circuits, because the
ICM representation is regular and consists entirely of ancillae, CNOTs and mea-
surements.
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The ICM representation is the extension of the methods presented in [15] to
fit into the measurement based paradigm [7]. The presented algorithmic formu-
lation will output the ICM representation for arbitrary quantum and reversible
circuits. Such a formulation, although it requires an increased number of ancillae,
allows us to directly synthesise fully fault-tolerant error corrected circuits for an
underlying higher level circuit (including all required ancillary protocols), repre-
sents the realistic resource requirements of fault-tolerant quantum computations
for state-of-the-art quantum architectures [12,17] and provides an elegant form
for further circuit optimisation techniques for QECC models such as topological
codes [13,25].

The paper is organised as follows: Section 1.1 offers a short introduction to
quantum computing, illustrates the concepts of controlled and rotational gates,
discusses the reversibility aspects of computing and the applications of infor-
mation and gate teleportations. Section 2 details the non-deterministic resource
requirements of arbitrary quantum circuits, introduces the ICM representation
and presents the algorithm used for achieving it. The algorithm is benchmarked
using circuits from the RevLib library and the results are discussed in Section 3.
Finally, conclusions and future work are formulated.

1.1 Quantum and Reversible Computing

Quantum circuits represent and manipulate information in qubits (quantum
bits). The quantum state of a qubit is the vector |ψ〉 = (α0, α1)T = α0 |0〉+α1 |1〉.
Here, |0〉 = (1, 0)T and |1〉 = (0, 1)T are quantum analogues of classical logic val-
ues 0 and 1, respectively. α0 and α1 are complex numbers called amplitudes with
|α0|2 + |α1|2 = 1.

A state may be modified by applying single-qubit quantum gates. Each quan-
tum gate corresponds to a complex unitary matrix, and gate function is given
by multiplying that matrix with the quantum state. The application of X gate
to a state results in a bit flip: X(α0, α1)T = (α1, α0)T . The application of the Z
gate results in a phase flip: Z(α0, α1)T = (α0,−α1)T . The matrices of the Pauli
gates I,X, Y, Z are:

I =

(
1 0
0 1

)
Y =

(
0 −i
i 0

)
X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)

Further important single-qubit quantum gates in the context of this work are
H,P, T , where T 2 = P and P 2 = Z.

H =
1√
2

(
1 1
1 −1

)

P =
(

1 0
0 i

)

T =
(

1 0

0 ei π
4

)

Quantum measurement is defined with respect to a basis and yields one of
the basis vectors with a probability related to the amplitudes of the quantum
state. Of importance in this work are Z- and X-measurements. Z-measurement
is defined with respect to basis (|0〉 , |1〉). Applying a Z-measurement to a qubit in
state |ψ〉 = α0 |0〉+α1 |1〉 yields |0〉 with probability |α0|2 and |1〉 with probability
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|c1〉 • • • • • T

|c2〉 • • • T † �������	 T † �������	 P

|t〉 �������	 H �������	 T † �������	 T �������	 T † �������	 T H

Fig. 1. Toffoli gate using CNOT, T , T † and H gates [24, Ch. 4]

|α1|2. Moreover, the state |ψ〉 collapses into the measured state (i.e. only the com-
ponents of |ψ〉 consistent with the measurement result remains). X-measurement
is defined with respect to the basis (|+〉 , |−〉), where |+〉 = 1√

2
(|0〉 + |1〉) and

|−〉 = 1√
2
(|0〉 − |1〉).

1.2 Rotational Gates

The exponentiation of the Pauli matrices results in the rotational gates Rx, Ry,
Rz parametrised by the angle of the rotation [24, Ch. 4]. Hence the bit flip is a
rotation by π around the X-axis, implying that X = Rx(π), and the phase-flip
is a rotation by π around the Z-axis, such that Z = Rz(π). Furthermore, P =
Rz(π/2) and T = Rz(π/4). The V and V † gates are parametrised X-rotations,
V = Rx(π/2). The Hadamard gate is H = Rz(π/2)Rx(π/2)Rz(π/2) = PV P .

Rx(θ) =
[

cos θ
2

−i sin θ
2

−i sin θ
2

cos θ
2

]

Ry(θ) =
[

cos θ
2

− sin θ
2

sin θ
2

cos θ
2

]

Rz(θ) =
[

e−iθ/2 0
0 eiθ/2

]

CNOT =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦

1.3 Controlled Gates

An n-qubit circuit processes states represented by 2n amplitudes, αy, with y ∈
{0, 1}n and

∑
y |αy|2 = 1. Measuring all qubits of the circuit results in one

basis vector with the probability given by the corresponding amplitude, |αy|2.
Quantum gates may act on several qubits simultaneously. A gate operating on n
qubits is represented by a 2n × 2n complex unitary matrix. One important two-
qubit gate is the controlled-not CNOT(c, t) gate, where the c qubit conditionally
flips the state of the t qubit when set to |1〉. In general, any quantum gate can
be used in a controlled manner, and other versions are controlled-Z (CPHASE),
controlled-V (C-V ) and controlled-V † (C-V †), where V 2 = X.

Similarly to how arbitrary classical Boolean functions can be constructed
entirely from NAND gates, universal quantum computations can be constructed
using a discrete set of gates. The universal gate set has to contain at least one
coupling operation, and the most often used one is CNOT. A commonly used gate
set in fault-tolerant quantum computing is UGSft = {CNOT,H, T} [24, Ch. 4].
There are gate sets that are not universal, an example is the Clifford gate group,
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|c1〉 • • •|c2〉 • �������	 • �������	

|t〉 V V † V

(a)

T † �������	 T �������	

H • T † • H

(b)

Fig. 2. a) Toffoli gate using CNOT, controlled-V and controlled-V † gates [24, Ch. 4].
b) The decomposition of the controlled-V using CNOT, T , T † and H gates

generated by the gates {CNOT,H,P}. Circuits comprised of gates exclusively
from the Clifford group can be efficiently simulated on a classical computer [16],
but the Clifford group together with the T gate is quantum universal. The T
gate is one of the most expensive quantum gates to implement when QECC and
fault-tolerant computation is taken into account [12,17]. Thus, there is ongoing
research into reducing the T gate count of synthesised quantum circuits [4,19,21].

1.4 Reversibility

The linearity of quantum mechanics has the effect that information can not
be erased, therefore, for an arbitrary computation, the number of input qubits
equals the number of output qubits. Reversible circuits, as presented in [27,29],
are the result of enforcing this requirement on classical Boolean circuits. The
interest in classical reversible computing was initially motivated by Landauer’s
principle, which states that the erasure of information is dissipating energy [22].
The hope was that computers might become more energy-efficient if classical
computations would be reversible. Therefore, FANINs and FANOUTs are not
allowed into the circuits. The majority of the classical gates are not linear maps.
For example the inputs a and b of the AND(a, b) = c gate are impossible to
infer from the output c. However, the NOT gate is reversible because its output
is the negation of the input, and no information is erased.

The reversibility of classical circuits is achieved by the Toffoli gate (Fig. 1),
operating on three bits, where two of them control the bit-flip of the third:
toffoli(a, b, c) = (a, b, c ⊕ ab). Arbitrary classical circuits can be completely con-
structed using Toffoli gates [24, Ch. 3]. While a quantum Toffoli performs effec-
tively the same transformation on qubits, the key difference between quantum
and reversible circuits is that the Toffoli gate is not universal for quantum com-
putations because universality also require at least the H gate [2]. Reversible
circuits can be considered restricted quantum circuits operating only on compu-
tational basis states. However, it is possible to decompose the Toffoli gate into
quantum gates (Fig. 1 and Fig. 2a). One decomposition (the quantum version)
uses the gate set {CNOT,H, T} (T † = T 7), while a second decomposition uses
the gates {CNOT, V, V †}. The second representation will be called the reversible
version (although the V gate is quantum), because its lower gate cost makes it
widely used in the designs of reversible circuits [27,29], although these costs
generally don’t account for the true nature of error corrected quantum circuits.
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|ψ〉 • 
� �
�� ��X

|0〉 �������	 Z |ψ〉
(a)

|ψ〉 �������	 
��
����Z

|+〉 • X |ψ〉
(b)

Fig. 3. Circuits for teleporting the state of a source qubit to a neighbouring destination
qubit

1.5 Information and Gate Teleportation

Quantum information (qubit states) cannot be copied [30], but there are ways to
move information from one qubit to another through quantum state teleportation
(Fig. 3) [5]. The most general teleportation technique [24, Ch. 4] is implemented
using a slightly different mechanism, but quantum computing models and archi-
tectures like [10,14,20,23,31] use the two circuits presented herein.

Each of the circuits requires an ancilla initialised into either |0〉 or |+〉. For
the first circuit, after applying the CNOT on the states |ψ〉 = a |0〉 + b |1〉 and
|0〉, the two-qubit state will be a |00〉 + b |11〉. The measurement of the input
qubit, in the X-basis is probabilistic, and depending on its result the final state
of the ancilla will be either |ψ1〉 = a |0〉 + b |1〉 if |+〉 is measured, or |ψ2〉 =
a |0〉 − b |1〉 for |−〉. The execution of the second circuit, where instead a Z-
basis measurement is used, will result in the state of the ancilla being |ψ3〉 =
a |0〉+b |1〉 after measuring |0〉, or |ψ4〉 = a |1〉+b |0〉 after measuring |1〉. For both
teleportations the final state is the desired one with 50% probability (|ψ1〉 and
|ψ2〉), while otherwise correctional gates are required, because |ψ1〉 = Z |ψ2〉 and
|ψ3〉 = X |ψ4〉. The corrections are a direct result of the measurements being
probabilistic. The correction mechanism is illustrated in the circuit diagrams
by the double vertical lines connecting the measurements to the X/Z gates,
indicating a classically controlled gate of either X or Z.

Information teleportation is a linear transformation of the destination qubit,
such that its state is exactly the state of the source, but quantum gates are linear
transformations, too. It follows that it is possible to construct teleported versions
for single-qubit quantum gates. Such constructs are commonly used in the fault-
tolerant implementation of quantum gates. The teleportation-based gate circuits
for the V , T and P gates are shown in Fig. 4. The teleportations are again
probabilistic and the output state requires corrections (derived in [26]). Gate
teleportations are based on magic states [6] like |Y 〉 = 1√

2
(|0〉 + i |1〉) and |A〉 =

1√
2
(|0〉 + ei π

4 |1〉). The utilization of magic states and the above teleportation
circuits is that they can be implemented using fault-tolerant QECC through a
process known as state distillation [6,14], which accounts for the majority of
resources necessary for a large-scale error corrected algorithm [11].

The Rz(π/4)† = T † = Rz(−π/4) rotation is implemented using the same
circuit as the gate T , the only difference being the interpretation of the mea-
surement result in terms of any subsequent correction. Because the T ,T †,V and
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|ψ〉 • 
� �
�� ��X

|Y 〉 �������	 X/Z V |ψ〉
(a)

|ψ〉 �������	 
��
����Z

|A〉 • PX T |ψ〉
(b)

|ψ〉 �������	 
��
����Z

|Y 〉 • XZ P |ψ〉
(c)

Fig. 4. Teleported rotational gates using the magic states |A〉 , |Y 〉. a) The teleported
V gate; b) The teleported T gate; c) The teleported P gate.

V † gates can be implemented by teleportations, it follows that the Toffoli gate (in
both its quantum and reversible versions) can be decomposed into teleportation
sub-circuits.

The magic states in the construction of fault-tolerant gates are assumed to
be high-fidelity (As high as the fidelity of the underlying quantum information
protected by the QECC). Otherwise, high-fidelity instances are obtained after
distilling multiple low-fidelity states using circuits consisting entirely of CNOTs
and measurements [6]. For example, the distillation of a single |Y 〉 state from
low-fidelity |Y 〉 ancillae is reported in [6], reducing the infidelity, p, of the output
from O(p), p < 1, of the seven inputs to O(p3) on the output.

2 The ICM Representation

In state-of-the-art fault-tolerant quantum circuits, two sources of non-
determinism can be distinguished. First, errors can occur during calculation
due to undesired interaction with the environment. The errors are handled by
quantum error-correcting codes [11]. Second, as mentioned above, the realisa-
tion of gates by teleportation is inherently probabilistic. The outcome of the
gate application is correct with 50% probability and requires a correction with
50% probability even in absence of errors.

Circuit gate dynamics, as presented in Section 1, is the consequence of apply-
ing specific quantum gates (e.g. T ) by teleportation. Correctional gates may or
may not be required, depending on the outcome of a measurement that is only
available when the circuit is being executed. A further source of non-determinism
is error-correction, which is not considered herein and is handled at a lower level
in the overall design stack of a quantum circuit [14].

A circuit with a dynamic gate list is difficult to execute on a quantum com-
puter, and is furthermore difficult to optimise. This section introduces the ICM
representation, which replaces the non-deterministic gate dynamics with an exact
gate list. The resulting circuit still contains correctional mechanisms, but these
are controlled by measurement results of introduced ancillae and active feedfor-
ward determining subsequent measurement choices. We essentially fan-out using
extra ancillae to remove the complication of dynamic circuit construction with
fault-tolerant and reversible quantum circuits.
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2.1 Non-deterministic Resource Requirements

Gate corrections may or may not be required after each teleportation. They
consist in applying X, Y , Z or P gates to the calculated result. Therefore, the
total number of gates in the circuit depends on the number of corrections, and
this number is not known a priori because the need for corrections is determined
only during circuit execution (each individual teleportation has a 50:50 chance
of each ancilla measurement result, so the possibilities grow exponentially in the
number of teleported gates). Moreover, corrections require an introduction of
additional ancillae qubits, thus making the computation total number of qubits
unpredictable as well.

It can be shown that X, Y and Z corrections (Pauli corrections) do not
have to be addressed immediately in a quantum way after an unsuccessful gate
application. Instead they can be postponed to the end of calculation using Pauli
tracking [26] and instead of applying an active quantum gate to the data, we
simply reinterpret the meaning of the classical measurement results. However,
this technique does not apply to P corrections necessary for implementing the T
gate (Section 1.5). This is because the P correction does not commute through
either the H gate of the target of a CNOT gate in a straightforward manner
and changes the probability distribution of subsequent X-basis measurements.

For example, in the teleported T gate (Fig. 4b), applying a CNOT on two
qubits |t〉 = 1√

2
(|0〉 + r |1〉) (where r = e

i·π
4 ) and |q〉 = a |0〉 + b |1〉 results in

|qt〉 = (a |00〉+ar |11〉+ b |10〉+ br |01〉)/√2. The |0〉 result of the first qubit’s Z-
measurement will result in the second qubit’s state as if it were directly rotated
by T : a |0〉 + br |1〉. If the measurement result is |1〉, the state is ar |1〉 + b |0〉,
which after a PX correction is required [26], and it can be applied using the
circuit from Fig. 4c.

The P correction requires us to dynamically change the circuit being executed
as this correction cannot be classically tracked. A second ancilla is introduced
in the |Y 〉 = |0〉 + i |1〉 state, a CNOT applied between the ancilla and the state
to be corrected, and the input is measured according to Fig. 4c. For an n-qubit
circuit C with a gate list GL(C), each probabilistic P correction increments the
number of qubits by one, and inserts a P gate into the gate list.

The problem of applying the P gate dynamically is solved by introducing
into the circuit the possibility to operate both a teleported identity gate, used
when no correction is needed, and a teleported P gate. Similarly to a classical
demultiplexer the measurement result of the teleported T gate is used to decide,
at run-time, whether I or P gate is applied. Finally, after performing either the I
or P correction, the corresponding state has to be routed to a single qubit. This is
realised by classically controlled teleportations in a manner similar to a classical
multiplexer with the select signal being the measurement result of the teleported
T gate. Classically controlled teleportations were described in [15], and a circuit
using these mechanisms will have a fixed number of qubits and a determined
gate list. Compared to a dynamically changing circuit, these are larger, but the
predictability of these parameters is useful for circuit optimisation.
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Fig. 5. Teleportations: a) Selective destination; b) Selective source [15]

For selective destination teleportation (Fig. 5) the first group of measurements
(Z1X2 where the subscripts indicate the qubit’s number) will teleport |ψ〉 on the
third qubit where it will be corrected by P . The second group of measurements
(X1Z2) will teleport the state to the fourth qubit where the trivial correction I
is applied, thus leaving the state unchanged. In the selective source teleportation
the X1Z2 measurements will select |ψ1〉 for teleportation on the third qubit,
while the second measurement group (Z1X2) will teleport |ψ2〉 [15]. The selective
teleportation circuits require only Pauli corrections, which are not shown in
the diagrams, because their application can be postponed to the end of the
computation and classically tracked.

As a consequence, Pauli tracking can reduce but not completely eliminate the
non-determinism of fault-tolerant circuits. This implies that standard synthesis
methods which optimise gate count and/or number of qubits are not applicable
to teleportation-based quantum circuits because these numbers are not well-
defined. It is possible to circumvent the non-determinism by using “conditional-
identity construction” which results in the maximal possible number of gates.
The initial gate dynamics of a circuit, with all the classically controlled cor-
rections replaced by classically controlled teleportations, is interpreted as the
dynamics of the measurements.

2.2 ICM Correctness and Construction

The role played by the structured representation of circuits was recognised
in [1], where stabiliser circuits were decomposed into a canonical sequence of
sub-circuits constructed from a single type of gates. In the context of fault-
tolerant quantum computing, the systematic derivations of the circuits [32] uses
teleportation sub-circuits, too. However, the combination of the fault-tolerant
constructions with the regular gate decompositions [28], required for efficient
synthesis algorithms, is limited by the realistic requirements of future quantum
computing architectures. Nevertheless, structured mapping techniques between
various architectures were investigated in [8,18]. These approaches were targeted
at specific quantum hardware properties, such as nearest-neighbour interaction
between qubits, but fault-tolerant constructions were not specifically addressed.

ICM is a structured representation, which consists in the regular repre-
sentation of arbitrary quantum and reversible circuits using the UGSft gate
set, where the single-qubit rotational gates are teleportation-based. Circuits are
transformed into the ICM representation after decomposing all non-UGSft gates
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into UGSft = {CNOT,H, T} component gates, and simultaneously introduc-
ing, where necessary, selective source and destination teleportation circuits into
the resulting circuit.

The correctness of the ICM representation is based on the observation that
the teleported gate circuits (Figs. 4c,4b and 4a) and the selective teleportation
circuits (Fig. 5) consist entirely of qubit initialisations, CNOT gates and qubit
measurements. Thus, decomposing an arbitrary circuit into elements that can
be expressed entirely using the above mentioned sub-circuits, will consist only
of initialisations, CNOTs and measurements. The circuit from Fig. 5a can be
rewritten, such that the P gate will not be directly applied: in general, Rz

rotations (e.g. the P gate) commute with the control of CNOT gates [24, Ch. 4].
As a result, the P gate can be moved on the left side of the CNOT, and P |+〉 =
|Y 〉. The third qubit from Fig. 5a will be initialised into |Y 〉 instead of |+〉.

The ICM representation of an arbitrary quantum circuit is the result of apply-
ing algorithm presented in this paper. The algorithm is taking a circuit composed
of gates from the set {Toffoli, CNOT, C-V and C-V †,H, P, T}, and performs
pattern replacements resulting in the circuit CICM (Line 1) consisting of gates
from UGSft. The Toffoli gates are decomposed into single qubit rotations (either
{V, V †} or {H, T, T †}) and CNOT gates. The Hadamard gates are replaced with
the series of Z- and X-axis rotational gates (P and V gates). Afterwards, each P
and V gate is replaced using the corresponding teleportation-based gate imple-
mentations from Figs. 4c,4b,4a. The effect of replacing a gate G acting on qubit i
is that an ancilla is introduced on the position i+1. Thus, all the gates following
the initial application of G on i are moved to i + 1 (Line 20).

The ICM representation is obtained by moving all the single-qubit measure-
ments to the end of the circuit, and all the ancillae initialisations to the beginning
of the circuit. The middle part of the resulting circuit consists entirely of CNOT
gates. The single qubit measurements are then temporally staggered (e.g. Fig. 6),
such that the results of previous measurements determine the basis choices for
subsequent measurements to teleport data to pre-prepared ancillae. In the case of
the teleported T gate, this procedure dictates to either apply P gate corrections
or not, as required.

2.3 Resource Analysis

Transforming arbitrary quantum and reversible circuits into the ICM represen-
tation requires the introduction of supplemental ancillae, CNOT gates and mea-
surements. The obtained representation is an augmented version of the initial
circuit, and there is a constant resource overhead associated with each gate trans-
formation. In the following the gate cost of implementing a sub-circuit (gate) S
is represented by gc(S), and the ancilla cost is denoted ac(S).

Theorem: The ICM representation of a quantum circuit C with nT T gates, nP

P gates, nV V gates, nH Hadamard gates and nTf Toffoli gates requires ac(C) =
5nT +nP +nV +3nH +42nTf ancillae and gc(C) = 6NT +nP +nV +3nH +55nTf

additional gates.
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Proof: The central quantum gate is T , which requires ac(T ) = 5 ancillae and
gc(T ) = 6 CNOTs. One of the ancillae is the one initialised into |A〉, three
other ancillae are used for the selective destination teleportation sub-circuit,
and, finally, the fifth ancilla is introduced for the selective source teleportation
and represents the output of the teleported T gate.

The P and the V gates introduce a single ancilla ac(P ) = ac(V ) = 1 ini-
tialised into the |Y 〉 state, and because the teleportation circuits require a sin-
gle CNOT gc(P ) = gc(V ) = 1. The Hadamard gate being implemented as a
sequence of P and V gates generates a gate cost of gc(H) = 3gc(P ) = 3, and an
ancilla cost of ac(H) = 3ac(P ) = 3.

The quantum version of the Toffoli gate (denoted Toffoliq) decomposi-
tion contains 6 CNOTs, 7 T gates, one P and two H gates (Fig. 1), and
thus gc(Toffoliq) = 6 + 7gc(T ) + (1 + 2 × 3)gc(P ) = 55 and ac(Toffoliq) =
7ac(T ) + (1 + 2 × 3)ac(P ) = 42.

Note: TheTheoremwas formulated for the ICMdecompositionofquantumToffoli
gates, but can easily be updated to include the reversible version of these gates (in
the following denoted Toffoli2). These gates are decomposed into quantum gates,
and the initial version contains 2 CNOT gates and 3 controlled-V gates (denoted
by CV ), which are further decomposed (Fig. 2b) into 2 Hadamard gates, 3 T and 2
CNOTs. Therefore, because gc(CV ) = 2gc(H) + 3gc(T ) + 2 = 26 and ac(CV ) =
2ac(H) + 3ac(T ) = 21, the gate cost of the reversible Toffoli is gc(Toffoli2) =
3gc(CV ) + 2 = 80 and the ancilla cost ac(Toffoli2) = 3ac(CV ) = 63.

State distillation (see Section 1.5) is not analysed here, as it is an intrinsic
requirement for any type of computation where magic states are required. An
exhaustive and complete analysis of the distillation circuits overhead is presented
in [12] and, as a consequence, the present ICM resource analysis is a continuation
of that work.

3 Discussion

The ICM representation of an arbitrary circuit prepared into a fault-tolerant
manner will not affect its properties. Therefore, fault-tolerance statistics will
not be discussed. The results of executing the implementation of Algorithm 1 on
circuits from the RevLib benchmark are presented in Table 1. The EQ circuits
consisted of gates from the set {CNOT, C-V,C-V †} and the NCT circuits from
the set {Toffoli , CNOT,X}. The best-case non-ICM representation consists of
the teleportation-based gate construction where no P corrections is required
for the T gate. The worst-case non-ICM scenario assumed that all the T gates
require the P correction. For other types of gates the corrections can be tracked
through the circuit [26], but tracking is not possible for the probabilistic P -
correction (see Section 2.1). In order to illustrate the benefit of the ICM repre-
sentation the time required for executing the critical path of the decomposed



150 A. Paler et al.

Require: Circuit C composed from {Toffoli, CNOT, H, P, T}
1: Circuit CICM ← C

2: Replace in CICM the Toffoli gates with their decomposition (Figure 1 or Figure 2a)

3: Replace in CICM the H gates with PV P

4: forall P gates in CICM

5: Introduce the ancilla ap below the qubit having P

6: Construct the circuit for the teleported P gate

7: Move all the gates following the initial P onto ap

8: endfor

9: forall V gates in CICM

10: Introduce the ancilla av below the qubit having V

11: Construct the circuit for the teleported V gate

12: Move all the gates following the initial V onto av

13: endfor

14: forall T gates in CICM

15: Introduce the ancilla ac below the qubit having T

16: Construct the circuit for the teleported T gate

17: Introduce 4 ancillae below the previous ancilla

18: Construct the selective destination circuit where ac corresponds to the first qubit,

and s3 and s4 are the third and fourth qubits respectively

19: Construct the selective source circuit where s3 corresponds to the first qubit,

s4 to the second qubit, and aout is the third qubit

20: Move all the gates following the initial T onto the ancilla aout

21: endfor

22: return CICM

circuits was computed. The model presumed a time cost of 10 for initialisations,
and a cost of 1 for the CNOTs and the measurements.

It can be seen that the time required by ICM circuits is predictable and better
than the worst-case time of circuits before transformation. Note that longer time
translates to higher decoherence and more stringent requirements on quantum
error-correction.

3.1 Example

The systematic transformations of the T gate and of the controlled-V gate
decomposition from Fig. 2b are presented after applying Algorithm 1 and obtain-
ing a circuit composed from UGSft (see Section 1.3). The ICM representation of
the T gate (Fig. 6) takes the |in0〉 qubit, and after performing the CNOT with
the |A〉 ancilla, selectively teleports (the leftmost group of gates) the intermedi-
ary state to either the fourth or the fifth qubit.

The measurement of the first qubit (Z1) is followed by either the measurement
pattern Z2X3 if the result of the teleported T needs a P correction, or the
measurement pattern X2Z3 if the result was correct up to Pauli corrections. The
correctness of the teleported gate application is indicated by the measurement
result. Applying the Z2X3 pattern teleports the intermediary state on the output
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Table 1. Comparison betweeen non-ICM and ICM representation

Original circuit Fault-tolerant circuit
Best-Case Non-ICM Worst-Case Non-ICM ICM

Circuit Qub. X C-X Toff. C-V C-V† Ancilla CNOT Time Ancilla CNOT Time Ancilla CNOT Time
EQ/0410184 170 14 8 33 0 17 16 297 396 255 297 495 736 693 891 435
EQ/3 17 15 3 1 3 0 2 4 54 69 56 54 87 177 126 159 100
EQ/add16 175 49 0 32 0 48 16 576 736 287 576 928 1013 1344 1696 551
EQ/add32 185 97 0 64 0 96 32 1152 1472 543 1152 1856 1973 2688 3392 1063
EQ/add64 186 193 0 128 0 192 64 2304 2944 1055 2304 3712 3893 5376 6784 2087
EQ/add8 173 25 0 16 0 24 8 288 368 159 288 464 533 672 848 295
EQ/c2 182 35 15 121 0 116 53 1521 1980 366 1521 2487 1172 3549 4515 661
EQ/decod24-v0 40 4 1 5 0 2 1 27 38 40 27 47 95 63 83 60
EQ/decod24-v1 42 4 1 5 0 2 1 27 38 41 27 47 87 63 83 59
EQ/decod24-v2 44 4 1 5 0 1 2 27 38 41 27 47 95 63 83 60
EQ/decod24-v3 46 4 0 6 0 1 2 27 39 42 27 48 96 63 84 61
EQ/fredkin 5 3 0 4 0 1 2 27 37 41 27 46 94 63 82 59
EQ/graycode6 48 6 0 5 0 0 0 0 5 16 0 5 16 0 5 16
EQ/miller 12 3 0 5 0 1 2 27 38 42 27 47 95 63 83 60
EQ/peres 8 3 0 1 0 1 2 27 34 38 27 43 92 63 79 57
EQ/toffoli 1 3 0 2 0 2 1 27 35 38 27 44 92 63 80 57
EQ/toffoli double 3 4 0 4 0 2 1 27 37 38 27 46 94 63 82 59
NCT/0410184 169 14 8 27 11 0 0 297 412 248 297 511 788 693 907 431
NCT/add16 174 49 0 32 32 0 0 864 1152 440 864 1440 1514 2016 2592 807
NCT/add32 183 97 0 64 64 0 0 1728 2304 840 1728 2880 2938 4032 5184 1559
NCT/add64 184 193 0 128 128 0 0 3456 4608 1640 3456 5760 5786 8064 10368 3063
NCT/add8 172 25 0 16 16 0 0 432 576 240 432 720 802 1008 1296 431
NCT/c2 181 35 18 35 63 0 0 1701 2240 345 1701 2807 1177 3969 5075 631
NCT/cnt3-5 180 16 0 5 10 0 0 270 355 60 270 445 186 630 805 102
NCT/graycode6 47 6 0 5 0 0 0 0 5 16 0 5 16 0 5 16
NCT/ham7 106 7 0 19 6 0 0 162 229 145 162 283 441 378 499 245

Fig. 6. a) The ICM version of the T gate [15]; b) The arrows sketch the information flow
between the ancillas: a P gate correction is the result of the Z2X3X4Z5 measurement
pattern, and the X2Z3Z4X5 measurement pattern is used if the teleported T gate
application was correct

qubit marked by |out0〉, and the fourth and fifth qubits are measured using X4Z5.
Otherwise, the measurement Z4X5 will result in teleporting the state of the fifth
qubit on the sixth qubit. The measurement of specific qubit groups depends on
the results of previous measurements.

The controlled-V gate ICM representation (Fig. 7 after applying Algorithm 1)
has the input states cin (control) and tin (target) and outputs cout and tout. The
individual decomposition of the single-qubit gates from Fig. 2b is highlighted by
the dashed bounding boxes. The boxes containing three CNOTs are implemen-
tations of the Hadamard gate where for each constituent sub-gate a CNOT and
a |Y 〉-qubit are used. The ancillae introduced by the ICM transformation are
affecting the distance between the control and the target of the initial CNOTs
(not marked by bounding boxes). The order of the measurements is dictated
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Fig. 7. The ICM representation of the controlled-V gate. There are three ICM T -gate
applications (see Fig. 6) and two ICM Hadamard applications (marked by bounding
boxes in which three ancillae are measured using the ZXZ pattern)

.
by the temporal order of the bounding boxes, meaning that the measurements
implementing the leftmost T and H can be applied in parallel. Afterwards, the
measurements associated to the middle bounding boxes can be again executed
in parallel. Finally, the last Hadamard gate from the initial circuit is applied by
measuring the last three qubits.

4 Conclusion

The usual assumptions made for quantum optimisation techniques do not neces-
sarily hold for the fault-tolerant circuits because of their inherent dynamicity. A
regular representation of quantum and reversible circuits was presented starting
from the fault-tolerant implementation of quantum circuits. The ICM represen-
tation is a consequence of the results presented in [15,26] and has the potential,
when combined with the synthesis method from [3,4], to be used for future
circuit optimisation techniques.

The results indicate that, while making a quantum circuit fault-tolerant sig-
nificantly increases its gate count and the number of required ancilla qubits,
the ICM representation outperforms direct mapping without enforcing the ICM
condition with respect to both predictability and worst-case execution time. The
major advantage of this representation is that it produces a deterministic circuit
description for a higher level circuit. A deterministic description is essential to
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allow for more global circuit optimisations in various error corrected implemen-
tations. Future work will investigate quantum circuit synthesis, optimisation and
validation techniques based on the ICM representation.
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Abstract. Communicating Quantum Processes (CQP) is a quantum
process calculus that applies formal techniques from classical computer
science to concurrent and communicating systems that combine quan-
tum and classical computation. By employing the theory of behavioural
equivalence between processes, it is possible to verify the correctness of a
system in CQP. The equational theory of CQP helps us to analyse quan-
tum systems by reducing the need to explicitly construct bisimulation
relations. We add three new equational axioms to the existing equational
theory of CQP, which helps us to analyse various quantum protocols by
proving that the implementation and specification are equivalent. We
summarise the necessary theory and demonstrate its application in the
analysis of quantum secret sharing. Also, we illustrate the approach by
verifying other interesting and important practical quantum protocols
such as superdense coding, quantum error correction and remote CNOT.

Keywords: Quantum Computing · Formal methods · Quantum process
calculus · Verification · Operational semantics · Equational reasoning

1 Introduction

Quantum computing is believed to be the next computing revolution as it
promises to offer a very high degree of improvement over its classical counterpart
by using the principles of quantum mechanics. On the other hand, quantum cryp-
tography and quantum communication have made rapid progress already with
the commercial deployment of the first secure cryptography systems [12,13]. It
has been mathematically proven that quantum cryptographic systems are uncon-
ditionally secure [14] but this doesn’t provide a formal assurance to the security
when these systems are implemented as a whole unit which may also include
classical components. Therefore, there is still the need to develop techniques
that verify the correctness of these systems. This was the prime motivation of
using process calculus (a specialised area in formal methods) in modelling and
analysing quantum information processing (QIP) systems that can be imple-
mented.
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Quantum process calcululi provide the techniques which help us to formally
define the structure and behaviour of systems that are a combination of both
quantum and classical subsystems. We use a particular quantum process calcu-
lus called Communicating Quantum Processes (CQP) [8], developed by Gay and
Nagarajan. The other quantum process calculus which has been established is
qCCS by Feng et al.[4]. The property of behavioural equivalence of processes in
quantum process calculus helps to verify the correctness of a system. The con-
gruence property of equivalence makes it more powerful by preserving the equiv-
alence in any environment. This has been developed for CQP [2] and qCCS [5].

Equational reasoning is essential in mathematics and logics, and plays an
important role in many applications of formal methods in theoretical computer
science. With the use of theorem provers for equational logic, it is possible to
perform automated analysis. The equational axioms reduce the need to explicitly
construct bisimulation relations, which is reported in [2] for CQP with an analysis
of the quantum teleportation protocol (Teleport).

Our Contributions. In this paper, we demonstrate the use of the equational the-
ory of CQP [2] and introduce three new axioms that helps us to take a step
further to analyse various quantum protocols that include: quantum secret shar-
ing (QSS ), superdense coding (SDC ), quantum error correction code (QECC )
and Remote CNOT (RCNOT ). Our results show that the protocols, QSS and
QECC are equivalent to the specification process Identity . We provide a similar
reasoning for other protocols. Using the transitivity property of equivalence, we
also prove that QSS ↔c QECC ↔c Teleport .

The structure of the paper is as follows. First, in Section 2 we provide in
brief the fundamentals of quantum computing. We review the language of CQP
in Section 3 and illustrate it with a model of quantum secret sharing. Section 4
provides a brief summary on the theory of behavioural equivalence of CQP.
Section 5 summarises the equational theory of CQP, which has not previously
been published other than in Davidson’s thesis, and applies it to quantum secret
sharing and other protocols. Section 6 concludes with an indication of directions
of future work.

Related Work. Previous work on automated analysis is based on exhaustive
simulation based on stabiliser formalism. Model checking tools like the QMC [10]
and the equivalence checker [1] were developed for the verification of quantum
protocols. Since the tool uses stabilizer formalism, it is restricted to use only the
operators in the Clifford group. The equational theory of CQP is not based on
the stabilizer formalism and hence is not restricted to Clifford group operations.

2 Preliminaries

We recall briefly the aspects of quantum computing that are relevant for this
paper. For more detailed information we refer to [16]. A qubit is an information
unit comprising two states (|0〉 and |1〉) which are called the standard basis.
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The state space H (or Hilbert space) of a qubit is a vector space that consists
of all superpositions of the basis states: |ψ〉 = α|0〉 + β|1〉 where α and β are
complex amplitudes such that |α|2 + |β|2 = 1. The states can be represented by
column vectors: (

α
β

)

= α

(
1
0

)

+ β

(
0
1

)

= α|0〉 + β|1〉

A system can consist of many qubits (say n qubits) and the Hilbert space is
a 2n dimensional space whose standard basis is |00 . . . 0〉 . . . |11 . . . 1〉. This is
represented by tensor product of unit vectors which is denoted as |0〉⊗|0〉 · · ·⊗|0〉.
The evolution of the quantum state of a system can be described by quantum
operations called unitary transformations. If the state of a qubit is represented
by a column vector, then a unitary transformation is represented by a matrix.
Some unitary transformations which are commonly used are the Hadamard (H)
and the Pauli transformations, denoted by either I,X,Z,Y:

H = 1√
2

(
1 1
1 −1

)

, I =
(

1 0
0 1

)

,X =
(

0 1
1 0

)

,Y =
(

0 −i
i 0

)

,Z =
(

1 0
0 −1

)

The measurement operation changes the quantum state permanently and mea-
suring the above quantum state |ψ〉 gives a result 0 with probability |α|2 and
result 1 with probability |β|2. We will be using the controlled Not transformation
(or CNOT) on a pair of qubits. The action of this operation is that it flips the
second qubit (target qubit) if and only if the first qubit (control qubit) is 1. We
have CNOT|0x〉 = |0x〉 and CNOT|1x〉 = |1y〉 where x, y ∈ {0, 1} and y = x ⊕ 1
with ⊕ denoting addition modulo 2. Entanglement is an important phenomenon
in quantum computing which is observed in a system that comprises of two or
more qubits. This means that the states of the qubits are not separable. For
example, a three qubit state 1√

2
(|000〉+ |111〉) (also called GHZ state) is said to

be entangled and cannot be decomposed into single qubit states. Measurement
of one of the qubits will fix the state of the others even if the entangled qubits
are physically separated.

3 Communicating Quantum Processes (CQP)

CQP is based on the π-calculus [15] with primitives for quantum information.
The language uses the concept that a system can be considered to be made
up of independent components or processes. The processes can communicate by
sending and receiving data along channels and these data are qubits, or classical
bits. A distinctive feature of CQP is its static type system [9], the purpose of
which is to classify classical and quantum data and also to enforce the no-cloning
property of quantum information. In our recent work, we have extended CQP
to describe and verify linear optical quantum computing (LOQC) [6,7].

3.1 Syntax and Semantics of CQP

The syntax of CQP is defined by the grammar as shown in Figure 1. We use
the notation ẽ = e1, . . . , en, and write |ẽ| for the length of a tuple. The syntax
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Fig. 1. (i) Syntax of CQP and (ii) Internal syntax of CQP

consists of types T , values v, expressions e (including quantum measurements
and the conditional application of unitary operators ẽ ∗= e), and processes P .
Values v consist of variables (x,y,z etc), channel names c, literal values of data
types (0,1,..), unitary operators such as the Hadamard operator H. Expressions
e consist of values, measurements measure e1, . . . , en, applications e1, . . . , en ∗=e
of unitary operators and expressions involving data operators such as e+e′ and a
pair of values (e, e). Processes include the nil process 0, parallel composition P |P ,
inputs e?[x̃ : T̃ ].P , outputs e![ẽ].P , actions {e}.P (typically a unitary operation or
measurement), typed channel restriction (new x : [̂T̃ ])P and qubit declaration
(qbit x)P . In order to define the operational semantics we provide the internal
syntax in Figure 1(ii). We assume a countably infinite set of qubit names, ranging
over q, r, . . . and similarly channel names c. Values are supplemented with qubit
names q which are generated at run-time and substituted for the variables used
in qbit declaration. Evaluation contexts for expressions (E[]) and processes (F [])
are used to define the operational semantics [19].

The complete formal semantics are provided in [2] and we explain briefly in
this paper. In CQP, the execution of a system is described by the process term
(which is the case for classical process calculus) and the quantum state. Hence,
the operational semantics are defined using configurations.

Definition 1. A configuration is a tuple (σ;ω;P ) where σ is a mapping from
qubit names to the quantum state and ω is a list of qubit names associated with
the process P

The semantics of CQP consists of labelled transitions between configurations.
For example, the configuration ([q, r �→ |ψ〉]; q; c![q] . P ), means that the global
quantum state consists of two qubits, q and r, in the specified state (|ψ〉); that
the process term under consideration has access to qubit q but not to qubit r;
and that the process itself is c![q] . P .

Example 1. ([q, r �→ |ψ〉]; q; c![q] . P )
c![q]−→ ([q, r �→ |ψ〉]; ∅;P ).
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The example illustrates an output transition where the quantum state (|ψ〉 =
1√
2
(|00〉 + |11〉) is not changed by this output transition. Since qubit q is given

as output, the continuation process P no longer has access to it; the final con-
figuration has an empty list of owned qubits.

3.2 Quantum Secret Sharing

In this paper, we describe a quantum secret sharing [11] protocol that consists
of three users represented by the processes: Alice, Bob and Charlie. Alice would
like to send a message to Bob and Charlie. We analyse a scenario in which
Charlie ends up with the original qubit. Alice encodes her message in a way
such that Bob and Charlie must cooperate with each other to retrieve it. The
protocol begins by applying a Hadamard and CNOT operations to qubits x, y
and z in order to generate the GHZ state as described in previous section. The
qubits are shared between the three users. Alice also possesses the qubit labelled
q which is in some unknown state |ψ〉; this is the qubit she wishes to send. The
CQP definitions of Alice, Bob and Charlie are as follows

Alice(c, e, x)=c?[q :Qbit] . {q, x ∗= CNOT} . {q ∗= H} . e![measure q,measure x] .0
Bob(f, y) = {y ∗= H} . f ![measure y] .0
Charlie(e, f, d, z) = e?[i :Bit, j :Bit] . f?[k :Bit] . {z ∗= Zk} . {z ∗= Xj} . {z ∗= Zi} .
d![z] .0

Alice receives the qubit q from the environment through her channel c and
performs unitary operations (CNOT and H) before measuring her qubits. She
sends the outcomes which are classical bits i and j through channel e to Charlie.
Charlie cannot retrieve the information without the help of Bob. Bob performs
an Hadamard operation on his qubit y before measuring it. Then, he sends
the outcome to Charlie. Using the classical bits from Alice and Bob, Charlie
performs the necessary unitary operations on his qubit z in order to recover the
original state |ψ〉. The complete system is defined as:

QSS (c, d) = (qbit x, y, z)({x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} .
(new e, f)(Alice(c, e, x) | Bob(f, y) | Charlie(e, f, d, z)))

QSS process consists of Alice, Bob and Charlie in parallel. That is the outputs
on e and f in Alice and Bob respectively synchronise with the inputs on e and
f in Charlie. Channel e and f are designated as a private local channels. This
is specified by (new e, f), which is a construct from pi-calculus to dynamically
create fresh channels. The first term, (qbit x, y, z) in QSS , allocates three fresh
qubits, each in state |0〉, and gives them the local names x, y and z. The next
three terms create the GHZ state with qubits x, y and z. The aim is to prove that
QSS is equivalent to its specification process given by the following definition:

Identity(c : [̂Qbit], d : [̂Qbit]) = c?[x :Qbit] . d![x] .0.
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4 Probabilistic Branching Bisimulation of CQP

The equivalence for CQP is a form of probabilistic branching bisimilarity [18],
adapted to the situation in which probabilistic behaviour comes from quantum
measurement. A key point is that when considering matching of input or output
transitions involving qubits, it is the reduced density matrices of the transmitted
qubits that are required to be equal. Here, we summarise the essential definitions
in [2]. Let τ−→+

denote zero or one τ transitions; let =⇒ denote zero or more τ

transitions; and let α=⇒ be equivalent to =⇒ α−→=⇒.

Definition 2 (Probabilistic Branching Bisimulation). An equivalence
relation R on configurations is a probabilistic branching bisimulation on config-
urations if whenever (s, t) ∈ R the following conditions are satisfied.

I. If s ∈ Sn and s
τ−→ s′ then ∃t′, t′′ such that t =⇒ t′ τ−→+

t′′ with (s, t′) ∈ R
and (s′, t′′) ∈ R.

II. If s
c![V,q̃1]−→ s′ where s′ = �j∈{1...m}pjs

′
j and V = {ṽ1, . . . , ṽm} then ∃t′, t′′

such that t =⇒ t′
c![V,q̃2]−→ t′′ with

a) (s, t′) ∈ R,
b) t′′ = �j∈{1...m}pjt

′′
j ,

c) for each j ∈ {1, . . . , m}, ρE(s′
j) = ρE(t′′j ).

d) for each j ∈ {1, . . . , m}, (s′
j , t

′′
j ) ∈ R.

III. If s
c?[ṽ]−→ s′ then ∃t′, t′′ such that t =⇒ t′

c?[ṽ]−→ t′′ with (s, t′) ∈ R and
(s′, t′′) ∈ R.

IV. If s ∈ Sp then μ(s, D) = μ(t, D) for all classes D ∈ S/R.

Here, μ is the probabilistic function that is defined in the style of [18], which
is necessary when calculating the total probability of reaching a terminal state.
This is needed to ensure the matching of probabilistic configurations.

Definition 3 (Probabilistic Branching Bisimilarity). Configurations s
and t are probabilistic branching bisimilar, denoted s ↔ t, if there exists a
probabilistic branching bisimulation R such that (s, t) ∈ R.

Definition 4 (Full Probabilistic Branching Bisimilarity). Processes P
and Q are full probabilistic branching bisimilar, denoted P ↔c Q, if for all
substitutions κ and all quantum states σ, (σ; q̃;Pκ) ↔ (σ; q̃; Qκ).

In order to state the congruence theorem, we need an assumption that processes
are typable. Due to space constraints, we have not presented the type system in
this paper but the idea is to associate each qubit with a unique owning compo-
nent of the process.

Theorem 1 (Full Probabilistic Branching Bisimilarity is a Congruence
[2]). If P ↔c Q then for any context C[], if C[P ] and C[Q] are typable then
C[P ] ↔c C[Q].
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Fig. 2. Axioms for full probabilistic branching bisimilarity

5 Equational Theory of CQP

The congruence property of behavioural equivalence guarantees that equiva-
lent processes remain equivalent in any context, which is the foundation for
equational reasoning. The axioms for full probabilistic branching bismilarity are
shown in Figure 2 and have been proved sound in [2]. The axioms were used
in the analysis of the quantum teleportation protocol which is reported in [2]
but does not help us to verify other quantum protocols like SDC ,QECC etc.
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In this paper, we demonstrate the usefulness of the equational theory of CQP
by introducing additional three new axioms Cv1, Qi3 and Tau1, that helps us
to take a step further to analyse various other important quantum protocols.

c?[x : Bit] . P (x) = c?[x : Bit] . Q(x) if P (x) = Q(x) for all x ∈ {0, 1} (Cv1)

The classical value rule Cv1 enables us to compare processes that are controlled
by the classical bit, say x. This rule will be used when we analyse the SDC
protocol. Rule Qi3 introduced in this paper is an extension of the identity rule
Qi2. This rule, expresses the principle of deferred measurement [16] and helps
us to analyse QECC protocol, where the unitary operator U is controlled by the
measurement of more than one qubit

{ỹ ∗= Umeasure x.measure z}.P = {(x, z), ỹ ∗= CU}.{measure x} . {measure z}.P
(Qi3)

The correctness of QECC has been proved by creating bisimulation relations [3]
and in this paper, we show that we can analyse QECC by not creating bisimu-
lation relations explicitly. Finally, we define the Tau1 rule that helps to remove
the unnecessary τ which arise during the elimination of parallel composition.

α . τ . P = α . P (Tau1)

The new axioms introduced in the paper are proved to be sound [17].

5.1 Analysing Quantum Secret Sharing

Now, we present the use of an axiomatic approach for proving that the processes
are equivalent with respect to full probabilistic branching bisimilarity that is
defined earlier. We begin by applying the expansion law E1 to the definition of
QSS , to get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . (new e, f)
(c?[q] . (Alice ′ | Bob | Charlie) + {y ∗= H} . (Alice | Bob′ | Charlie)+
e?[i, j] . (Alice | Bob | Charlie ′))

(1)

where Alice = c?[q] .Alice ′, Bob = {y ∗= H} .Bob′ and Charlie =
e?[i, j] .Charlie ′. Using the rules R1 and R2 on Eq. 1, the third term of the
sum vanishes to give:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . (new e, f)
(c?[q] . (Alice ′ | Bob | Charlie) + {y ∗= H} . (Alice | Bob′ | Charlie)) (2)

Expanding Eq. 2 as before, we get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . (new e, f)(c?[q] . {y ∗= H} .
(Alice′ | Bob′ | Charlie) + {y ∗= H} . c?[q] . (Alice ′ | Bob′ | Charlie) + {y ∗= H} .
f ![measure y] . (Alice | 0 | Charlie) + c?[q] . {q, x ∗= CNOT} . (Alice ′ | Bob | Charlie))

(3)
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Using restriction rules R1 − R3 and commutative identities, Qc7 and Qc8, we
can commute between the process terms which leads to the first two terms in
Eq. 3 essentially the same and the third term is eliminated to give:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . c?[q] .
({y ∗= H} . (new e, f)(Alice ′ | Bob′ | Charlie) + {q, x ∗= CNOT} .
(new e, f)(Alice ′ | Bob | Charlie))

(4)

Repeating the procedure of expansion and using the reduction rules, we get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . c?[q] . {q, x ∗= CNOT} .
{q ∗= H} . {y ∗= H} . (0+ 0+ (new e, f) . τ . f ![measure y] .0 | f?[k :Bit] .
{z ∗= Zk} . {z ∗= Xmeasure r} . {z ∗= Zmeasure q} . d![z] .0

(5)
where τ represents the communication between Alice and Charlie, which hap-
pens internally. Similarly, the communication between Bob and Charlie gives:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . c?[q] .
{q, x ∗= CNOT} . {q ∗= H} . {y ∗= H} . (new e, f) . τ . τ .
{z ∗= Zmeasure y} . {z ∗= Xmeasure r} . {z ∗= Zmeasure q} . d![z] .0

(6)

After several iterations using R3 and followed by (new e, f) .0 = 0, we get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . c?[q] .
{q, x ∗= CNOT} . {q ∗= H} . {y ∗= H} . τ . τ . {z ∗= Zmeasure y} .
{z ∗= Xmeasure r} . {z ∗= Zmeasure q} . d![z] .0

(7)

Finally, we remove the two τ transitions by using the Tau1 rule and thereby
arrive at the sequentialised definition of QSS .

Proposition 1. QSS (c, d) ↔c Identity(c, d)

Proof. We will now simplify Eq. 7 and transform it into the Identity process
by using the axioms in Figure 2. Rule Qi1 allows us to manipulate quantum
operators by combining the unitary actions into a single operation:

(qbit x, y, z) . {x, y, z ∗= CNOTyz.CNOTxy.Hx} . c?[q] . {q, x, y ∗= Hy.Hq.CNOTqx} .
{z ∗= Zmeasure y} . {z ∗= Xmeasure x} . {z ∗= Zmeasure q} . d![z] .0

The subscripts on the unitary operators indicates to which qubits they are
applied. Applying rule Qi2 to the measurement operations in the above pro-
cess and noting that CX = CNOT, we get:

(qbit x, y, z) . {x, y, z ∗= CNOTyz.CNOTxy.Hx} . c?[q :Qbit] .
{q, x, y ∗= Hy.Hq.CNOTqx} . {y, z ∗= CZ} . {measure y} . {x, z ∗= CNOT} .
{measure x} . {q, z ∗= CZ} . {measure q} . d![z] .0

We can swap the operators around due to commutativity provided that the
operators are not acting on the same qubits. For example, we swap the order
of the measurement on z and the controlled-Z operator on x and y because
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the qubits are independent; mathematically, this is due to the use of the tensor
product. The commutativity of internal operators are expressed by the rules
Qc1-Qc6. Using Qc2 on the above process, we can move the measurements,
and then using Qi1, the unitary operators are combined to give:

(qbit x, y, z) . {x, y, z ∗= CNOTyz.CNOTxy.Hx} . c?[q :Qbit] .
{q, x, y ∗= Hy.Hq.CNOTqx} . {q, x, y, z ∗= CZqz.CNOTxz.CZyz} .
{measure y} . {measure x} . {measure q} . d![z] .0

The rules Qc7-Qc10 consider the commutativity of unitary operations with
input and output actions by applying certain conditions if ỹ ⊆ n(α) and x̃∩ỹ = ∅.
The first condition is important as it ensures that there is no blocking behaviour.
We are also able to commute qubit declarations with input and output actions
since a qubit declaration is never blocking. This is expressed by the rules Qc11
and Qc12. We use these rules to bring the input action to the top and move the
measurement operations after the output to give:

c?[q] . (qbit x, y, z) . {x, y, z ∗= CNOTyz.CNOTxy.Hx}{q, x, y ∗= Hy.Hq.CNOTqx} .
{q, x, y, z ∗= CZqz.CNOTxz.CZyz} . d![z] . {measure y} . {measure x} . {measure q} .0

With the help of the principle of deferred measurement, we were able to swap
classical control for quantum control. Now we consider the principle of implicit
measurement [16] which states that, any qubits at the end of a circuit may be
assumed to be measured. This is provided by the rule Qs1. Applying this rule
to eliminate the measurements and combining the remaining quantum operators
with Qi1, we obtain:

c?[q] . (qbit x, y, z) .
{q, x, y, z ∗= CZqz.CNOTxz.CZyz.Hy.Hq.CNOTqx.CNOTyz.CNOTxy.Hx} . d![z] .0

In a similar way, the unitary operators and qubit declarations are removed by
using the rules Qs2 and Qs3. We see that the qubits y, q and x will each finish
in the state 1√

2
(|0〉+ |1〉). So, we apply the Hadamard operator to each using the

rule Qs2 which allows these operations to be added. Combining these operators
to a single unitary action by using Qc8 and Qi1; we get

c?[q] . (qbit x, y, z) .
{q, x, y, z ∗= Hy.Hq.Hx.CZqz.CNOTxz.CZyz.Hy.Hq.CNOTqx.CNOTyz.CNOTxy.Hx} .
d![z] .0

Next, we insert a permutation in order to swap the output qubit z with q.
Rule Qp1 defines this action where π is the permutation of qubits and the
corresponding permutation on the quantum state is given by Π. Applying this
rule and followed by Qi1, we get

c?[q] . (qbit x, y, z) . {q, x, y, z ∗= U} . d![q] .0 (8)

where π(q) = z, π(z) = q, π(x) = x, π(y) = y and U = Π.Hy.Hq.Hx.CZqz.
CNOTxz.
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Fig. 3. CQP definitions of quantum protocols: (i) Superdense coding (SDC), (ii)
Remote CNOT (RCNOT) and (iii) Quantum error correction (QECC)

CZyz.Hy.Hq.CNOTqx.CNOTyz.CNOTxy.Hx. Now, we have the qubit declaration
(qbit x, y, z) which introduces three qubits in the combined state |000〉. We can
define a linear map Q for which the action of teleportation on the single qubit q
is given by UQ. Based on Qi1, we use a similar rule Qd1 to deal with quantum
operators that appear under qubit declarations.

We have UQ = IqxyzQ where Iqxyz is the identity operator on qubits q, x, y, z.
Then by applying Qd1 to Eq. 8, we get c?[q] . {q, x, y, z ∗= I} . d![q] .0. We can
now apply Qi1, Qc8 and Qs3 to give

c?[q] . {q ∗= I} . d![q] .0

This is a special case of Qp1 where we consider identity permutation that results
in the process which we are aiming for: c?[q] . d![q] .0 ��

5.2 Other Quantum Protocols

In this section, we will discuss the analysis of three essential quantum protocols
using our axioms. The CQP definitions of all the protocols are given in Figure 3.
We have omitted the types of channels in our definitions for brevity.
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Fig. 4. Reasoning about Remote CNOT

Superdense Coding (SDC): It involves two users (Alice and Bob) sharing a
pair of entangled qubits. In this protocol, two classical bits are communicated
by exchanging a single qubit. Alice is in possession of the first qubit, while
Bob has possession of the second qubit. By sending the single qubit in her
possession to Bob, it turns out Alice can communicate two classical bits to Bob.
The specification process for this protocol is CIdent .

Proposition 2. SDC (c, d) ↔c CIdent(c, d)

Proof. We begin by eliminating the parallel composition in the process SDC as
we had done earlier for QSS . By applying the expansion law E1 to the definition
of SDC , to get:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . (new e)(c?[a, b] .
(Alice ′ | Bob) + e?[x] . (Alice | Bob′)) (9)

where Alice ′ = c?[a, b] .Aliceand Bob′ = e?[x] .Bob. Using the rules R1−R3 on
Eq. 9, the second term of the sum vanishes and rearranging the terms, we get:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . c?[a, b] . (new e)({x ∗= Xb} . {y ∗= Za} .
e![x] .0 | e?[x] . {x, y ∗= CNOT} . {x ∗= H} . d![measure x,measure y] .0)

(10)
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Expanding Eq. 10 as before and doing similar manipulations, we arrive at:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . c?[a, b] . {x ∗= Xb} . {y ∗= Za} . (new e)
(e![x] .0 | e?[x] . {x, y ∗= CNOT} . {x ∗= H} . d![measure x,measure y] .0)

(11)
The next is a τ transition that happens internally and then performing several
iterations using R3 and followed by (new e) .0 = 0, we get:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . c?[a, b] . {x ∗= Xb} . {y ∗= Za} .
τ . {x, y ∗= CNOT} . {x ∗= H} . d![measure x,measure y] .0 (12)

Then using Tau1 in Eq. 12, we arrive at the sequentialised form of definition of
SDC :

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . c?[a, b] . {x ∗= Xb} . {y ∗= Za}
{x, y ∗= CNOT} . {x ∗= H} . d![measure x,measure y] .0 (13)

Using the rule Qi1 on Eq. 13 to combine the unitary actions to give:

(qbit x, y) . {x, y ∗= CNOTxy.Hx} . c?[a, b] . {xy ∗= Hx.CNOTxy.Za
y.X

b
x}

d![measure x,measure y] .0 (14)

To move the input actions to the top, we apply Qc7 and Qc11 on Eq. 14 to
give:

c?[a, b] . (qbit x, y) . {x, y ∗= CNOTxy.Hx}{xy ∗= Hx.CNOTxy.Za
y.X

b
x}

d![measure x,measure y] .0 (15)

Applying Qi1 on Eq. 15, we arrive at the sequential definition of SDC .

c?[a, b] . (qbit x, y) . {x, y ∗= Hx.CNOTxy .Za
y.X

b
x.CNOTxy .Hx} . d![measure x,measure y] .0

Then by applying the rules Qi1 to combine the unitary operations into a single
action and using Qc7 and Qc11 to move the input action to the beginning of
the process, we get:

c?[a :Bit, b :Bit] . (Qbit : x, y) . {xy ∗= Uab} . d![measure x,measure y] .0 (16)

Here, Uab = Hx.CNOTxy.Za
y.Xb

x.CNOTxy.Hx, is a unitary operator which depends
on the classical bits a and b. Now, let P (a, b) = (Qbit : x, y) . {xy ∗=
Uab} . d![measure x,measure y] .0 and Q(a, b) = d![a, b] .0 be two processes that
are parameterised by the classical bits a and b. It can be proven easily that
P (a, b) ↔c Q(a, b) for all possible values of a and b. Hence using Cv1, Eq. 16
↔c c?[a, b] . d![a, b] .0, which is the specification process CIdent . ��
Remote CNOT (RCNOT ): The protocol [20] demonstrates the concept of
teleporting a quantum logic gate. Our definitions for the protocol are shown in
Figure 3(ii) consisting of four users. Anna and Iven have in their possession
qubits q and r respectively, which they have received from Elsa. Also, Elsa
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Fig. 5. Reasoning about quantum error correction

has prepared an EPR pair with qubits x and y before sharing it with Anna
and Iven. The objective of the protocol is that Anna and Iven would like to
perform a CNOT operation with their qubits q and r, without communicating
any quantum information between them. Anna entangles her qubits q and x
by performing a CNOT and Iven performs the same with his qubits in addition
to a H operation on r before measuring it. He then sends the result to Anna.
She measures her qubit q and performs certain unitary operations on x based on
the outcome of her’s and Iven’s measurements. Also, she sends her measurement
outcome to Iven. Hence, Anna and Iven communicate only their classical results
between them, which are used to perform unitary operation on their EPR pair.
Essentially Iven’s qubit y is a CNOT operation of q and r and they communicate
their EPR pair qubits (x and y) to Bob. The specification of RCNOT is SCNOT .

Proposition 3. RCNOT (a, b) ↔c SCNOT (a, b)

Proof. The proof is provided in Figure 4. ��
Quantum Error Correction (QECC): QECC consists of three processes:
Alice, Bob and Noise. Alice wishes to send a qubit to Bob over a noisy chan-
nel, represented by Noise. She uses a error correcting code based on threefold
repetition [16]. The code is able to correct single bit-flip error in each block of
three transmitted qubits, so for the purpose of this example, in each block of
three qubits, Noise either applies X to one of them or does nothing. Bob uses
the appropriate decoding procedure to recover Alice’s original qubit. The CQP
definitions are provided in Figure 3 (iii) and this system is equivalent to Identity .
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Proposition 4. QECC (a, d) ↔c Identity(a, d)

Proof. The proof is provided in Figure 5 and alternatively given in [3] by con-
structing a bisimulation. In Figure 5, we begin with the sequentialised definition
of QECC which is obtained in the same way as we had done for the previous
protocols. ��
Proposition 5. Teleport ↔c QSS ↔c QECC

Proof. Quantum teleportation (Teleport) is a protocol which allows two users
who share an entangled pair of qubits to exchange an unknown quantum state
by communicating only two classical bits. The CQP definition of Teleport pro-
tocol and the proof that Teleport ↔c Identity are provided in [2]. We prove the
proposition easily using the transitivity of ↔c as we have seen that QECC and
QSS are equivalent to Identity through Propositions 1 and 4. ��

The congruence property helps to analyse a combination of systems.
For example, if we consider a process defined as System (c, d) =
(new a)Teleport(c, a) |QECC (a, d). We can consider this equivalent to a process
(new a)Teleport(c, a) | Identity(a, d) by using Proposition 4. This is also equiva-
lent to (new a)Identity(c, a) | Identity(a, d) which is equivalent to Identity(c, d).

6 Conclusion and Future Work

We have explained the use of the quantum process calculus CQP in analysing
various quantum protocols. We have summarised the theory of equational axioms
based on the concept of behavioural equivalence which is presented in full detail
in [2]. We present the analysis of QSS by using the equational axioms and have
verified the correctness of QSS and other quantum protocols.

Verification of the quantum protocols using the bisimulation relations
requires hard work. First, we need to perform the computation of the System
(that models the system of interest) and the Specification, which expresses the
desired behaviour of System, and then we need to establish a bisimulation rela-
tion. Because of equational reasoning, we show that we can reduce the need to
explicitly construct bisimulation relations. The next step for this line of research
is to prove the completeness of these laws. The axioms provide the additional
advantage for automated reasoning which is our long-term goal following the
recent work on automated equivalence checking [1].
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Abstract. This paper will describe the design and implementation of a MIPS-
based microprocessor using Bennett clocking to implement reversible logic. In 
Bennett clocking the clock signals form a “cascade” that moves information 
forward through logic gates in the compute phase, and then recovers energy 
during a decompute phase, forming a reversible logic circuit. New logic design 
and verification tools were developed, using structural Verilog and extensions 
to ModelSim to address the issues of adiabatic clocking, tools that are currently 
unavailable in commercial packages. The microprocessor is based on a simpli-
fied version of the MIPS architecture. After verification by our design tools it 
was then implemented using CMOS standard cells based on split-level charge 
recovery logic. The final design contains approximately 5700 transistors, and is 
currently being fabricated at MOSIS. 

Keywords: Reversible microprocessor · Adiabatic CMOS · Bennett clocking 

1 Introduction 

In the 1960s computers dissipated a large amount of power and required significant 
cooling, so they were located in rooms with dedicated air conditioning units.  This 
large power dissipation helped drive the transition in the 1970s from BJT-based com-
puters to ones based on MOSFETs.  BJTs were faster, but FETs produced less heat. 
Likewise power dissipation drove the transition in the early 1980s from NMOS to 
CMOS.  NMOS was faster but CMOS produced less heat.  In the 1980s and early 
1990s the power requirements of computers were relatively low and significant com-
puting resources could be placed in a closet with minimal cooling.  During this time 
the need for processing speed was the paramount issue, and the exponential increases 
in power dissipation and heat each year were minor concerns.  But by the late 1990s 
progress in devices had led to systems where power dissipation was again becoming a 
significant problem, and charts extrapolating the exponential increase in dissipation 
showed the heat production per unit area of a processor surpassing that of the sun, ~6 
kW/cm2, by 2017.   
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Clearly something had to change.  Because of power dissipation the progress in 
device size that underlies Moore’s Law could not immediately be translated into a 
performance increase, undermining the business models of semiconductor manufac-
tures.  Unlike previously there was no new device or circuit primitive that could 
 immediately offer lower dissipation.  The solution needed to be at the system level, 
and the approach decided upon was multi-core architectures.  Here, the clock  
frequency was held nearly constant to control power dissipation, but splitting up the 
computing task and spreading it among parallel computing cores produced overall 
performance gains.  Through the 2000s the most important processor design con-
straint was to keep the power dissipation below 200 W/cm2, the practical limit of air-
cooling.  To meet this constraint, it became necessary to turn off parts of the chip at 
certain times to reduce power, a practice known as Dark Silicon.  It has been  
projected that by the 8 nm node 50-80% of a chip will be “dark” at any given time [1], 
which begs the question: why have that many transistors if they can’t be used?   

Today, high-performance computers are back to requiring huge amounts of power 
and cooling.  A number of data centers are being built where the waste heat can be 
used to heat buildings.  Facebook recently opened a data center in Lulea Sweden, near 
the Arctic Circle, located in part to take advantage of the low ambient temperature for 
cooling.  Data Centers consumed approximately 91 billion kilowatt-hours, 2-3% of 
electrical power in the US in 2013, a number that is expected to grow to 140 billion 
kW-hr by 2020 [2].   

There are a number of factors contributing to the power dissipation in computation, 
but processing chips themselves contribute a significant fraction, and the power  
density is limiting chip development and utilization.  Processor clock frequencies 
have not increased in a decade although the transistors used are nearly an order of 
magnitude faster.  Without a significant change in the underlying approach to compu-
tation the rate of increase in computing performance will slow significantly. Moving 
forward requires an approach that combines devices and system architectures. 

Today’s computers encode information with charge stored on capacitors, the 
CMOS gate and interconnect capacitors.  Power dissipation for standard CMOS logic 
is given by the equation 

 PTotal = N αCVDD
2 f + PPassive( )  (1) 

where VDD is the supply voltage, C is the load capacitance at the output of each  
logic gate, N is the number of gates, α  is the activity factor, and f is the operating 
frequency. The first term represents the active power dissipation, i.e., the power  
dissipated in processing information. The second term, the passive power dissipation, 
is power that is simply wasted because a voltage is applied to the circuit.   

Even modest projections of future device density and switching speed highlight the 
severity of the power issue.  By lowering the supply voltage and using ideal switches 
with no leakage it may be possible to lower the switching energy to 100 kBT, consi-
dered a practical limit for error-free computing.  However, a device density of 1011 
cm-2 and a clock frequency of 100 GHz with α=1 will give an active power of 4 
kW/cm2, close to that of the surface of the sun.  Approaches to increase device density 
such as 3D integration will only exacerbate the power density problem.   
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Clearly, lowering the power dissipated per switching event needed, but is there a 
minimum energy that must be dissipated in computation?  In 1961 Landauer [3] post-
ulated that energy must be dissipated as heat only when information is destroyed, an 
idea that has come to be known as the Landauer principle (LP).  The minimum 
amount of energy that must be dissipated is related to a quantity known as the Ulti-
mate Shannon Limit [4], kBT ln(2), the minimum energy needed to make a bit of 
 information distinguishable from noise.  According to LP, if information is not  
destroyed there is no fundamental lower limit to dissipation in computation, just 
 practical limits.  In the last decade there have been suggestions that the Landauer 
principle is incorrect, or at best applicable only in special situations, not in realistic 
systems [5, 6].  Recent experiments at the University of Notre Dame [7, 8]} have 
experimentally shown that the Landauer principle is correct and the dissipation to heat 
in simple, charge-based systems, can be much less than kBT ln(2) if information is not 
destroyed, which requires reversible logic. 

2 Reversible Circuit Design 

A challenge in reversible circuit design is the overhead associated with reversibility.  In 
general this can be viewed as the need to retain enough information about the state of the 
circuit as the computation runs forward, so that in the de-compute phase the energy in  
the circuit can be pushed back to its origin, rather than let it dissipate to heat.  In one 
scheme this overhead is in circuit complexity [9], using reversible gates and implement-
ing the additional circuitry to control the de-compute phase.  Another way to implement a 
reversible computation is to use Bennett clocking, also known as a retractile cascade  
[10, 11].  As explained in more detail below, the inputs to a logic block are held until the 
de-compute phase, and this information is used for energy recovery.  This has the  
advantage of simple implementation, since the design can map easily onto a reversible 
design.  For this reason we chose to use Bennett clocking in our design. 

2.1 Bennett Clock 

In Bennett Clocking power clocks are used to sequentially energize successive levels 
of logic in the compute phase, and then to sequentially de-energize logic in the re-
verse fashion during the de-compute phase.  The timing of a three-level, positive 
going Bennett clock is shown in Fig. 1(a).  

When combined with adiabatic CMOS logic such as split-rail charge recovery log-
ic [12], using both positive and negative going clocks, Fig. 1(b), Bennett clocking can 
be used to simply convert conventional combinational logic to reversible logic.  This 
is accomplished by retaining the inputs during the de-compute phase, as illustrated in 
Fig. 1(c).  In the energizing phase an input is applied to the first gate, and then the 
first level Bennett clock, CLK 1, is ramped up and held.  The output from this first 
gate can then be used as the input to the next gate and then the second level  
Bennett clock is ramped, and so on.  In the de-compute phase the last Bennett level, 
e.g. CLK 3 in Fig. 1, is ramped down first, and since the inputs from previous  
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Fig. 1. (a) Timing diagram of three-level Bennett clocking.  (b) Schematic diagram of a split-
rail charge recovery inverter.  (c) Simplified schematic showing the Bennett clock connections 
to a three-inverter chain. 

levels are held, the energy stored in the gate is recovered by the clock as it ramps 
down. This repeats until the first Bennett level is ramped down. At this point the in-
puts to the Bennett clocked logic block can be changed and the ramping begun for the 
next computation.  In effect Bennett clocking creates temporal reversibility overhead, 
since the inputs to the logic block must be held throughout, limiting the scope of pipe-
lining. 

2.2   Microprocessor Architecture 

A general-purpose microprocessor based on the Bennett clocking scheme was de-
signed to obtain an understanding of the challenges related to the organization and 
timing of relatively complex retractile circuits. The chosen specification follows a 
standard textbook RISC MIPS subset with an 8-bit data word length and a multicycle 
microarchitecture [13], which can be considered as a real-world worst-case scenario 
for the Bennett clocking scheme. 

The processor instruction set and its microarchitecture are not optimized for the 
Bennett clocked implementation, which can recover only the energy in combinatorial 
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logic blocks. Since the microarchitecture uses about 60% of the total number of tran-
sistors in sequential elements, only the signal energy associated with 40% of the tran-
sistors is amenable to adiabatic recovery. However, the sequential elements generally 
have much lower activity rates than the combinatorial blocks, which leads to a better 
rate of energy recovery than suggested by the simple transistor number ratio.The mi-
croprocessor designed is based on a simplified, fully functional, MIPS architecture.  
The instruction word length is 32 bits as in a full modern-day MIPS, but the adiabatic 
processor implements only a subset of the instructions and the datapath word length is 
limited to 8 bits. Only ten instructions are implemented: addition, subtraction, bitwise 
and, bitwise or, set less than, add immediate, branch if equal, jump, load byte and 
store byte; but these enable universal computation.  There are eight 8-bit registers in 
the register file.  These instructions conform to the standard MIPS instructions, details 
of which can be found elsewhere [13]. 

The instruction set is embodied in a relatively straight-forward RISC multicycle 
microarchitecture with the top-level block diagram in Fig. 2. The datapath includes an 
external memory, while internally the datapath has three stages separated by registers: 
register file stage, ALU stage, and memory stage.  The stages correspond to Bennett 
clocking blocks with adiabatically clocked combinational logic.  A 13 state controller 
state machine, with an additional init state, controls the operation of the datapath. 

In the datapath, the partially adiabatic processor simply replaces each combinatorial 
block with a corresponding Bennett clocked block, and the timing constraints are satis-
fied with standard clocking of the interspersed sequential elements. During the cycle of 
the standard clock, the Bennett clocked combinatorial levels run through a full cycle of 
energization and de-energization. The sequential elements sample their input when all 
Bennett levels are fully energized (all signals valid) and change their output when all 
Bennett levels are fully relaxed. 

The controller block provides the multiplexer select and register enable signals, 
which in standard static logic would practically instantaneously have valid logic val-
ues. However, since the adiabatic controller module computes these signals using 
Bennett clocked logic, the energization state of the controls changes according to the  

 

 

Fig. 2. Simplified top-level diagram of the microprocessor 
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power-clocks. A relaxed or ramping control signal cannot be fed into an energized 
datapath block, which would leak current (or produce other erratic behavior) and con-
sequently lose energy. This brings an essential timing constraint into play: the con-
trols must be computed before the controlled block can be energized. 

In our prototype processor, both the control module and the datapath share the 
same set of 12 power-clock pairs. The aforementioned timing constraint can be en-
forced by careful design, taking into account the control dependencies according to 
Fig. 4. With this limited number of Bennett levels, some of the control signals could 
not meet the deadlines if they were computed by Bennett logic from the control state, 
but those controls had to be directly represented by specific bits in the state register. 
The alternatives would have been to include more Bennett levels (more power-clock 
pairs) or implement the control computation partially in standard static logic.  

3 Adiabatic CMOS Design Tools 

Several computer tools were developed for the logic design, design verification, and 
design automation of adiabatic CMOS circuits. While the software tools are applica-
ble to some other styles of energy-recovery logic, they were aimed at and tested with 
Bennett Clocked Adiabatic CMOS. 

Industry standard logic level design tools were extended to enable the faithful 
structural modeling and semi-timing simulation of the Bennett clocked adiabatic cir-
cuits. The hardware design language (HDL) of choice for the development platform 
was SystemVerilog and the utilized simulation environment Mentor Graphics Model-
Sim. 

The signal/circuit models are discrete-level and discrete-time, while still capturing 
the important timing constraints of the retractile circuits. The environment extension 
is divided into two components: Bennett Wrappers Package, and Bennett Gate Model 
Library. 

Bennett Wrappers Package. contains the ramp logic signal type definition and extensive 
signal generator and conversion functions. While the standard Verilog/SystemVerilog 
logic signal type has four states {1, 0, X, Z}, the adiabatic circuits require verification 
using a model which includes the transitional states. The ramp logic signal type has nine 
states {X, RLXD, ACT1, ACT0, REN1, RDE1, REN0, RDE0, Z}, including a relaxed 
(often called “null”) state and separate energization/de-energization transition states for 
both logic 1 and 0. In semi-timing simulation, each signal explicitly transitions through the 
intermediate states when there is a switching event. This enables behaviorally-accurate 
tracking of the structural component energization levels. 

Bennett Gate Model Library. contains modules describing the behavior of the 45 
logic gates in a standard CMOS library with Bennett power-rail modifications. While 
a minimal standard logic gate model defines only the logical mappings between the 
input and output signal spaces, the Bennett gate model explicitly takes as input also 
the power-clocks and defines the behavior based on the energization level of the data 
inputs and the power-clocks, which are both modeled using the 9-state ramp logic 
type. This ensures that a gate model will produce the valid logical output only if also 
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the relative timing and the energization of the inputs and the power-clocks are legal, 
which is a real concern in the retractile cascade circuit having components that turn 
on and off regularly. 

Figure 3 shows a screenshot of the beginning of a simulation run of the Bennett 
MIPS RISC microprocessor. The sawtooth pattern is the repeating activation  
sequence of 12 Bennett levels. 

 

 

Fig. 3. Simulation run of the Bennett microprocessor 

Bennett Energization Sequence Checker 
The Bennett standard gate model library (part of the environment) ensures that the 
logical function of a design is well-specified (and based on the designer effort, also 
correct), but it does not guarantee that the circuit has been connected to the power-
clocks in such a way that it incorporates the desired adiabatic signal energy-recovery. 
It is allowed and often useful to include circuit parts that have the power-clocks tied 
to static VDD and VSS rails, which enables standard CMOS operation with the asso-
ciated loss of all signal energy. However, the main goal of the design effort is to max-
imize the adiabatic recovery and use as few standard statically powered blocks as 
possible. To this extent, the semi-timing simulation should perform automatic check-
ing of the correct adiabatic energization sequence in every node that the designer 
intends to achieve energy-recovery. 

The Bennett Energization Sequence Checker is a package containing SystemVerilog 
assertion functions/tasks and compiler macros to enforce the adiabatic charging and dis-
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charging of the desired circuits nodes as defined by the logic designer. The macros are 
typically called in the definition of a new adiabatic module, where they check the desired 
signals and generate debug output as necessary. Each new adiabatic module should  
contain at least the following assertions: 1. all incoming power-clocks for internal  
consistency, and 2. all incoming data signals for validity during specified time interval. 

The power-clock consistency checker has a vector input port for all positive power-
clocks and all negative power-clocks. The checker produces an assertion error if any 
power-clock pair is not legally complementary or any power-clock below the current 
highest active level has a transition (since all lower levels should be stable active). 

The signal sequence assertions are used to check that a given set of signals ener-
gizes in a specific order and there are no transitions or illegal states below the highest 
active level. For example, it is typical that an adiabatic module requires that all data 
input signals must have a stable active logic value (not relaxed or ramping), before the 
lowest power-clock of that module starts to activate. 

Bennett clocked circuits using split-rail charge recovery logic can be synthesized 
using standard CMOS to with only minor modifications.  We developed a stand-alone 
netlist parsing program, still in its early stages, that can extract the structural netlist 
and identify the Bennet levels.  This tool essentially reads the netlist from the logic 
synthesis, and tags each gate with the logic row (Bennett) level in which it must be 
placed.  Since full synthesis tool are not yet available, the standard cells in the library 
were done by hand. 

4 Synthesis and Spice Simulations 

The transistor-level and layout implementation of the microprocessor are based on the 
HDL model. To verify proper operation of logic gates and modules, electrical simulations 
were conducted using a SPICE engine. For each individual gate, an electric schematic was 
created and verified in simulation before designing the corresponding physical layout. 
Finished layouts underwent netlist extraction including parasitics to ensure equivalence 
between circuit design and physical implementation; and to obtain a closer estimate of 
their real operation.  

To simulate adiabatic operation a testbench that generates the necessary power 
clock waveforms was written using SPICE directives. Figure 4 (c) shows a sample 
waveform for a single power clock phase operating at a frequency of 100 kHz. Elec-
trical simulations showed that all components work as intended and follow the beha-
vioral model. Figure 4 shows typical operation for a minimum size inverter with 
NMOS size 8λ and PMOS size 16λ. For this simulation, the netlist was extracted from 
layout including parasitics for the MOSIS 0.5 µm C5 process [14].  

A frequency-domain analysis was performed for the inverter described above. Since 
the circuit topology is similar to a standard CMOS inverter, the same cell can be used 
in adiabatic or static CMOS mode by connecting it to the power clocks or the DC pow-
er supplies respectively. Both operation modes were simulated in LTspice at various 
frequencies between 100 kHz and 5 GHz. Figure 5 compares power dissipation as a 
function of frequency for the standard CMOS and adiabatic operation modes of  
 



Design and Fabrication of a M

the inverter. The inverter w
half the operating frequency
cases, well above the thresh
 

Fig. 4. Typical operation for a
waveform. (b) Output wavefor

Fig. 5. Frequency-domain ana
tion modes in a minimum size 

Microprocessor Using Adiabatic CMOS and Bennett Clocking 

was loaded with 20 fF for both cases. A square input w
y was fed into the inverter. Rail-to-rail voltage is 5V in b
hold value for the 500 nm process. 

(a) 

(b) 

(c) 

an adiabatic minimum size inverter running at 100 kHz. (a) In
rm. (c) Power clock waveforms. 

 

alysis of power dissipation for adiabatic and static CMOS op
inverter 

181 

with 
both 

 

 

 

nput 

pera-



182 I.K. Hänninen et al. 

In CMOS mode total po
voltage and the power supp
dissipation is static (leakag
until dynamic power takes p
by multiplying the output v
load. Dynamic dissipation 
dissipation in adiabatic mo
and their corresponding dra
orders of magnitude lower t

5 Layouts 

A fully custom IC layout w
As no synthesis tools curre
entirety of the design by h
the bottom-up modular stru
cause it helps lay complex
designs, and is ideal for Ben
logic level and thus, single 

All standard cells compl
process, as recommended b
going fabrication at Notre
process with no additional
same design is used for both

Cells have a height of 7
tive and negative power c
horizontally through the cir

   

Fig. 6. Adiabatic minimum

ower dissipation was found by multiplying the rail-to-
ply current. At low frequencies the main contributor to to
ge) power and consequently it remains roughly const
precedence. Dynamic power in CMOS mode was obtai
voltage by the current flowing in or out of the capacit
is proportional to the operating frequency. Total po

de is the sum of the products of each power clock volt
awn current. For lower frequencies adiabatic dissipatio
than static CMOS.  

was created to implement the Bennett MIPS microproces
ently support adiabatic logic, it was necessary to build 
hand. The layout follows the HDL design closely down
ucture. We decided to use the standard cell technique 
x circuits in an orderly fashion, is well-suited to modu
nnett-clocked systems. Each cell row must contain a sin
power clock phase, minimizing routing issues. 

ly with the design rules of ON Semiconductor’s C5 0.5 
by MOSIS. In addition to this foundry, the design is und
e Dame’s own Nanofabrication Facility using a cust
l design rules and a minimum feature size of 1 µm. T
h processes.  
5λ and contain four power rails: VDD, VSS and the po
lock sources for a single Bennett clock phase. Rails 
rcuit and each row shares the same clock phase. Therefo

  
  (a)                (b) 

m size inverter. (a) Electrical schematic. (b) Physical layout. 

-rail 
otal 
tant 
ined 
tive 
wer 
tage 
n is 

sor. 
the 

n to 
be-

ular 
ngle 

µm 
der-
tom 
The 

osi-
run 

fore, 



Design and Fabrication of a M

all cells in a row need to h
the top to the bottom of th
lexers. Because of this dire
and outputs below. Intercon
optimize transistor density.
Tanner Tools suite. Figure 6
design choices described he

The custom adiabatic st
adiabatic gate definitions 
NAND gates from 2 to 8 
XOR, transfer gate (TG)-b
few complex logic modules
elements such as SRAMs an

The microprocessor layo
Since it was decided to ha
physical placement became
follow the traditional standa
ations were permitted:  log
tiple physical rows to main
in a vertical direction. This
clocks, which amount to a 
trade-off is higher complex

Fig. 7. Final

Microprocessor Using Adiabatic CMOS and Bennett Clocking 

ave the same logic depth in logic design. Data flows fr
he circuit, with the only exception of non-buffered mul
ectionality, it was decided to have inputs above each 
nnections were made on a metal layer on top of the cell
. All layouts were drawn in the L-Edit software from 
6 shows a minimum size inverter layout 6(b) displaying
erein and its corresponding electrical schematic 6(a). 
tandard cells were organized in a library that contains

from the HDL model. This library includes invert
inputs, 2-input NOR, 2-input AND, 2-input OR, 2-in

based multiplexers, a TG-based conditional inverter an
s. Additional to this library, conventional CMOS sequen
nd flip-flops were used in the microprocessor. 

out was assembled by hand using the cells from this libra
ave each row correspond to a single power clock pha
e tied to logic design. Consequently it was not possible
ard cell approach strictly throughout the circuit. Two de
gic levels with too many components were split into m
ntain a reasonable width; and the layout process progres
s method aims to optimize routing space around the pow
large number of signals for Bennett-clocked systems. T
xity in the layout process and some areas of suboptim

 

l layout for the adiabatic MIPS microprocessor 

183 

rom 
ltip-
cell 

ls to 
the 

g all 

s all 
ters, 
nput 
nd a 
ntial 

ary. 
ase, 
e to 
evi-

mul-
ssed 
wer 
The 
mal 



184 I.K. Hänninen et al. 

transistor density. Static CMOS elements within the circuit have no timing require-
ments and can be placed in any convenient space. Throughout the layout design they 
were used to fill gaps and improve transistor density. 

The final layout for the adiabatic MIPS microprocessor is shown in Fig. 7.  The 
chip is approximately 2.3 x 2 mm, using 1 µm design rules, excluding the bondpads.  
Combinatorial logic is fully adiabatic and is located in the mid and lower portion of 
the layout. The upper section is dominated by the register and SRAM memory banks. 
Registers that are closely tied to a combinatorial section (e.g. the state register for the 
state machine) are located near their corresponding logic to optimize routing. The 
total transistor count is 5,766 of which approximately 40% are adiabatic.  

6 Conclusions 

A complete microprocessor for adiabatic computing was designed and synthesized 
using Bennett Clocking and adiabatic CMOS.  While simplified the processor is ca-
pable of general computing and simulations show that it should yield significant pow-
er savings.  In the course of the project we have developed a number of tools that will 
be applicable to a broad range of adiabatic CMOS circuits.  These tools can be used as 
extensions of existing tools, and begin to define and address the specific needs of 
reversible adiabatic circuits. 

Testing of the chip will begin as soon as the fabrication is complete.  In addition 
we are also fabricating portions of the processor as test structures.  Since a Bennett 
clocked logic block can also be run in irreversible mode by connecting the power 
clocks to DC supplies, we will be able to evaluate the dissipation in the subcircuits in 
both reversible and irreversible modes. 

The experience gained in the project will enable us to better evaluate the trade-offs 
necessary in an adiabatic design. Several challenges unique to adiabatic CMOS circuit 
design have been outlined and addressed in the project.  Future automated synthesis 
tools will need to take some of these concerns into account to produce optimized 
adiabatic circuits. 
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Abstract. Reversible circuits and their synthesis methods have been
actively studied in order to realize reversible computation. However,
there are few known ways to debug erroneous reversible circuits. In this
paper, we propose new algorithms for debugging problems. For single
gate error, we improve the theoretical efficiency of previous methods,
which use worst case exponential time algorithms such as SAT or deci-
sion diagrams. We also propose an algorithm debugging multiple gate
error circuits by using πDDs, decision diagrams for permutation sets.
We evaluate our algorithms theoretically and experimentally, and con-
firm significant improvement.

Keywords: Reversible computation · Circuit design · Permutations ·
Algorithms · Decision diagrams · Dynamic programming

1 Introduction

Reversible computation is a fundamental technology for next generation com-
putation such as quantum computation [11] and optical computing [3].
Computation is reversible if we can determine an input pattern for a given output
pattern. This means reversible computation is information-lossless. Therefore,
reversible computation is also used for low power design [1,8].

Due to the reversible property, a reversible logic circuit has neither fan-
out nor feedback, i.e. formed as a cascade of reversible logic gates. This distin-
guishes synthesis of reversible circuits from irreversible ones, and attracts many
researchers to study synthesis approaches [2,4,9,13,16].

On the other hand, there are few results concerning debugging such circuits,
which is another important process to analyze reversible circuits. Wille et al. [17]
proposed the first algorithm to debug reversible circuits using SAT formu-
lation and solvers based on debugging techniques for irreversible circuits.
Frehse et al. [6] gave a simulation-based approach and combined it with
the SAT-based approach. Since their methods consider only a single gate
error, Jung et al. [7] proposed an extended approach for multiple gate errors.
c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 186–199, 2015.
DOI: 10.1007/978-3-319-20860-2 12
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Tague et al. [14] provided another approach for a single gate error using
πDDs [10], decision diagrams for permutation sets. However, there are two prob-
lems to be considered:

– These algorithms use exponential algorithms or data structures, i.e. they are
intractable in the worst case.

– These algorithms only detect error positions, i.e. cannot fix errors efficiently.

In this paper, we address these tasks with different approaches for a single
error and multiple errors, respectively. For a single error, we propose a theo-
retically improved debugging algorithm. This algorithm uses the lemma in [17],
which states correction is determined by function composition, and valid gate
checking algorithms. For multiple errors, we provide a dynamic programming
approach using πDDs. Although this algorithm has worst-case complexity sim-
ilar to the approach for a single error of Tague et al. [14], it can fix multiple
errors and debug them.

We evaluate the efficiency of our algorithms using computational experi-
ments. For single error circuits, our algorithm achieves a significant improvement
compared with previous approaches. For multiple error circuits, our algorithm
succeeds to fix errors with minimal corrections in circuits with few lines.

The remainder of this paper is organized as follows. Section 2 briefly reviews
reversible circuits and πDDs, which are used in our algorithm. In Section 3,
we define the problem of debugging single error circuits, review previous work,
and introduce our algorithm for debugging single error circuits. In Section 4,
we extend the debugging problem of single error circuits to multiple errors, and
provide our πDD-based debugging method. Experimental results to evaluate the
practical performance of our algorithms are in Section 5 and Section 6 concludes
this paper.

2 Preliminary

In this section, we review reversible functions and circuits before proceeding to
πDDs, which are used in both previous work and our proposed method.

2.1 Reversible Functions and Permutations

A function f : {0, 1}n → {0, 1}n is reversible if it is bijective, i.e., we can deter-
mine an input from the corresponding output. Hence, a function f is considered
as a permutation on {0, 1, . . . , 2n − 1}.

We define notations of permutations. A permutation on {0, 1, . . . ,m − 1},
m-permutation for short, is written in a one-line form π = π(0)π(1) . . . π(m−1).
The identity m-permutation is denoted by em, which satisfies em(i) = i for each
0 ≤ i ≤ m−1. We denote by π−1 the inverse permutation of π, which satisfies
π ∗ π−1 = π−1 ∗ π = em, where ∗ means composition of permutations: p = q ∗ r
means p(i) = r(q(i)) for all i.
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Fig. 1. Truth table of a reversible function f and a reversible circuit G realizing f

We denote by πf the permutation corresponding to f such that we con-
sider input and output bit vectors as binary representations of integers. For
example, πf corresponding to the reversible function f on the left of Fig. 1 is(

0 1 2 3 4 5 6 7
1 0 3 2 5 6 7 4

)

, which is briefly written as πf = 10325674.

2.2 Reversible Circuits and Gates

Reversible circuits realize reversible functions and consist of reversible gates.
A reversible circuit for an n-bit Boolean function has n lines as shown on the
right of Fig. 1. Reversible circuits have no fan-out or feedback due to their
reversible properties. Therefore, a reversible circuit is a cascade of reversible
gates. Several reversible gates have been invented to synthesize reversible cir-
cuits, such as Toffoli [15], Fredkin [5], and Peres [12] gates. In this paper, we
focus on Toffoli gates.

Let L = {1, . . . , n} be a set of lines. Toffoli gates have multiple (possibly
zero) control lines C = {c1, . . . , ck} ⊂ L and one target line t ∈ L \ C. For
example, the Toffoli gate g3 in Fig. 1 has the control lines C = {1, 3} and the
target line t = 2. A Toffoli gate inverts the target line when all control lines are 1.
Let xi and yi be the i-th line’s input and output of a Toffoli gate, respectively.
Then, we formally define Toffoli gates as follows:

yt = xt ⊕ xc1 · · · xck ,

yi = xi if i �= t.

Since a Toffoli gate itself represents a reversible function, we can represent the
function corresponding to a Toffoli gate as a permutation. We denote by πg the
permutation corresponding to a gate g as well as a reversible function. Then the
permutation representation πG of the function realized by a reversible circuit
G = g1 · · · gd equals πg1 ∗ · · · ∗ πgd .

2.3 πDD

First, we define a transposition τi,j as the permutation such that τi,j(i) = j
and τi,j(j) = i, but τi,j(k) = k for other k. Any n-permutation can be uniquely
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Fig. 2. The πDD representing
{2431, 4231, 1423} = {τ1,2 ∗
τ1,4, τ1,4, τ2,3 ∗ τ3,4}

(1) sharing rule (2) deleting rule

τx,y τx,y τx,y τx,y

P0 P1 P0 P1 P0

P0

0 10 1

Fig. 3. Two reduction rules of πDDs

decomposed into a composition of at most n − 1 transpositions by the following
algorithm: we start with en and repeat swaps to move π(k) to the k-th position
in its one line form, where k runs from right to left.

A πDD is a rooted directed graph representing a set of permutations com-
pactly, and has efficient set operations for permutation sets [10]. πDDs consist
of five components: labeled internal nodes, 0-edges, 1-edges, the 0-sink, and the
1-sink. Fig. 2 shows an example of a πDD. Each internal node has exactly two
edges, a 0-edge and a 1-edge. Each path to the 1-sink in a πDD represents a
permutation in the set represented: if a 1-edge originates from a node with label
τx,y, the decomposition of the permutation contains τx,y, while a 0-edge means
that the decomposition excludes τx,y.

A πDD becomes a compact and canonical form by fixing its transposition
order and applying the following two reduction rules (Fig. 3):

(1) sharing rule: share all nodes which have the same labels and child nodes.
(2) deleting rule: delete all nodes whose 1-edge points to the 0-sink.

In many practical cases, πDDs demonstrate high compression ratio, although
πDD size (i.e. the number of nodes) in the worst case is exponential in the length
of permutations.

In addition, πDDs support efficient set operations such as union and inter-
section on permutation sets. In particular, Cartesian product operation P × Q,
which returns the union set of compositions of all pairs p ∈ P and q ∈ Q, is
important and useful for our algorithm to be described later. Since the compu-
tation time of these operations depends on the size of πDDs, compactness helps
to speed-up πDD operations.

3 Debugging Single Error

We define the single error debugging problem of reversible circuits. Let f :
{0, 1}n → {0, 1}n be a reversible function and G = g1 · · · gd be a reversible
circuit with n lines such that πG = πf . We define G′ to be a single error circuit
for f if πG′ �= πf and G′ has:
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Fig. 4. An erroneous circuit G′ and two fixed circuits realizing f

– a replaced error: there is a gate g′ �= gi s.t. G′ = g1 · · · gi−1g
′gi+1 · · · gd,

– an inserted error: there is a gate g′ s.t. G′ = g1 · · · gi−1g
′gigi+1 · · · gd, and

– a removed error: G′ = g1 · · · gi−1gi+1 · · · gd.
The goal of the single error debugging problems is to find the position of

an error in an erroneous circuit G′ and fix it in order to realize f correctly. We
note that even if the number of embedded errors is only one, sometimes there
are several ways to debug the circuit. For example, Fig. 4 describes an erroneous
circuit G′ and an objective function f . At this instance, we have the two ways
to debug G′: replacing g2 with g′

2 or inserting g′ between g3 and g4. In general,
we cannot determine which of them the original error is. Therefore, we set our
goal to list all ways to debug G′.

3.1 Related Work

Wille et al. proposed a debugging method using SAT solvers [17]. They used
SAT (Boolean satisfiability) formulation for debugging problems and solved it
with SAT solvers. This method has three problems to be overcome:

– There are O(nd) variables in SAT formula. Though state-of-the-art SAT
solvers work practically fast, solving SAT is believed to require exponential
time in the worst case. This is therefore not scalable for a large d.

– Their method can find only error candidates, which may include non-errors.
– Their method can debug only a replaced error.

We also note that this method requires verification preprocess to obtain some
counterexamples.

Frehse et al. provided a simulation-based debugging algorithm [6]. Their
method eliminates error candidates based on the fact that an error gate must be
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activated (i.e. all the inputs of control lines are 1) for all counterexamples. This
method is fast because it runs in linear time with respect to the number of gates
and lines. However, outputs of this method also can contain non-errors, since
the activation property is a necessary condition but not a sufficient condition.

Tague et al. gave a debugging method using πDDs for a removed error [14].
They considered a gate as a permutation, and used πDDs to represent the set of
gates. They insert a πDD into an erroneous circuit G′ as an arbitrary gate, and
calculate the compositions by Cartesian product operations. If the compositions
contain πf , it means G′ has a removed error. This method also has two problems:

– The size of πDDs for a set of N -permutations is O(2N
2
), and now N = 2n.

It is not scalable for even small n.
– Their method can detect an error but cannot find its position and fix it.

In the next subsection, we provide an algorithm overcoming these problems.
More precisely, we propose a worst-case O(n2nd) time algorithm, which can find
and fix all the three types of errors.

3.2 Proposed Method for Single Error

Our method is based on Lemma 3 in [17]:

Theorem 1 (Lemma 3 in [17]). Let F be an error-free circuit of a reversible
function and G = G1giG2 be an erroneous circuit of F . Then G can be fixed by
replacing any gate gi of G with a cascade of gates Gfix

i = G−1
1 FG−1

2 .

This theorem states that, if Gfix
i can be represented by a Toffoli gate, the

i-th gate is a replaced error and we can fix it by replacing it with the Toffoli
gate corresponding to Gfix

i . Hereafter, we assume the objective function f and
each gate gi are represented as permutations, and a cascade of gates means
the composition of permutations. Then the single replaced error circuit problem
can be solved as follows: checking whether Grep

i = g−1
i−1 · · · g−1

1 fg−1
d · · · g−1

i+1 can
be represented as a single Toffoli gate for all 1 ≤ i ≤ d. Similarly, debugging
problems for other types of errors can be solved too:

– an inserted error: checking whether Gins
i = g−1

i−1 · · · g−1
1 fg−1

d · · · g−1
i+1 can be

represented as an identity permutation e2n for all 1 ≤ i ≤ d.
– a removed error: checking whether Grem

i = g−1
i · · · g−1

1 fg−1
d · · · g−1

i+1 can be
represented as a single Toffoli gate for all 0 ≤ i ≤ d.

Note that the position of a removed error is between two gates or two ends. We
say a removed error occurs at the 0-th position if the error position is the left g1,
and at the i-th position if the error position is the right of gi.

We let N = 2n for brevity. If we had an O(h(n)) time algorithm checking
whether a given permutation represents a Toffoli gate, we could solve the single
error circuit problem in O(d(Nd+h(n))) by calculating the products Grep

i , Gins
i ,

and Grem
i of O(d) N -permutations and running a checking algorithm for all

0 ≤ i ≤ d. We can improve this complexity by using the following properties:
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– Grep
i = Gins

i ,
– Grem

i = g−1
i Gins

i ,
– Gins

i = Grem
i−1 gi.

That is, incremental calculation of Gx
i from Gy

i−1 costs only O(N) time, hence
we can solve a single error circuit problem in O(d(N +h(n))). Algorithm 1 gives
the entire procedure.

Algorithm 1. Debugging single error circuits
1: procedure DebugSingleError(f, G)
2: Grem

0 ← fg−1
d g−1

d−1 · · · g−1
1

3: if isToffoli(Grem
0 ) then

4: Report a removed error: the gate Grem
0 is removed at the 0-th position.

5: end if
6: for i = 1 to d do
7: Gins

i ← Grem
i−1 gi

8: if Gins
i = eN then

9: Report an inserted error: gi is an extra gate.
10: else if isToffoli(Gins

i ) then
11: Report a replaced error: gi should be replaced by Gins

i .
12: end if
13: Grem

i ← g−1
i Gins

i

14: if isToffoli(Grem
i ) then

15: Report a removed error: the gate Grem
i is removed at the i-th position.

16: end if
17: end for
18: end procedure

The Toffoli gate checking problem is also solved in O(nN) time by Algo-
rithm 2. A permutation representing a Toffoli gate works as a transposition
between integers a and b if a and b differ exactly a target bit and their bits in
a control bit set are all 1. Lines 3–22 of Algorithm 2 identify control lines and
a target line, eliminating cases not satisfying necessary conditions. Lines 24–31
check whether control lines and a target line work as an expected Toffoli gate.
This algorithm works as not only a check but also an identification of the corre-
sponding Toffoli gate. That is, we can directly debug G′ using the Toffoli gate.
It costs O(nN) time and therefore we can solve the single error circuit problem
in O(nNd) time.1

We can design checking algorithms for Fredkin gates and Peres gates sim-
ilarly. Generally speaking, given a set of gates, we can solve the single error
circuit problem in O(d(N + h(n))) time if we have an O(h(n)) time checking
algorithm for the gates. We also can easily adapt to deal with negative control
1 If we assume w-bit word RAM model, we can improve it to O(� n

w
�Nd) by adopting

bit parallel techniques to manage control lines C.
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lines. A Toffoli gate with positive and negative control lines inverts its output of
the target line when the inputs of the positive controls are all 1 and the negative
controls are all 0.

Algorithm 2. Checking whether a given permutation represents a Toffoli gate.
1: procedure isToffoli(π)
2: C ← {1, . . . , n}, T ← φ
3: for i = 0 to N − 1 do
4: if ππi �= i then � πi is neither i nor swapped with ππi

5: return False
6: end if
7: if i and πi are swapped then
8: if i and πi differ only the j-th bit in binary then
9: T ← T ∪ {j}

10: if |T | > 2 then � there are two or more candidates of target lines
11: return False
12: end if
13: else � there are two or more candidates of target lines
14: return False
15: end if
16: for j = 1 to n do
17: if the j-th bit of i in binary is 0 then
18: C ← C \ {j} � eliminate candidates of control lines
19: end if
20: end for
21: end if
22: end for
23: � The Toffoli gate corresponding to π must have controls C and a target t ∈ T
24: for i = 0 to N − 1 do
25: if ∀j ∈ C, the j-th bit of πi in binary is 1, but πi = i then
26: return False � all controls are 1 but the target is not inverted
27: end if
28: if ∃j ∈ C, the j-th bit of πi in binary is 0, but πi �= i then
29: return False � some controls are 0 but the target is inverted
30: end if
31: end for
32: return True
33: end procedure

4 Debugging Multiple Errors

We extend single error circuit problems to multiple error circuit problems. We
define that k-error circuits are circuits including k errors. Note that k errors can
consist of different kinds of errors; replaced errors, inserted errors, and removed
errors can be mixed together. We also note that k-error circuits may be debugged
by less than k corrections. For example, two inserted errors of a same Toffoli
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gate at adjacent positions need not to be debugged, in other words these can be
debugged by 0 corrections. In multiple error circuit problems, we set our goal to
find minimum corrections.

4.1 Related Work

Jung et al. [7] proposed a SAT based debugging algorithm for multiple errors,
which is an extension of [6]. They used pruning based on hitting set problems
and encoded it into SAT formulation. Although their method can process large
circuits, it has two problems to be considered:

– Their method can debug only replaced errors.
– Their method can detect only error candidates, which includes non-errors

and cannot fix them directly.

In this section, we try to overcome these problems.

4.2 Näıve Extension of Existing Method

Our proposed method for k-error circuits is derived from Tague’s πDD-based
approach for single error circuits [14]. For an inserted error, this approach tries
to insert a πDD representing usable gates into all possible positions. It can be
easily extend to replaced errors and removed errors. If we insert (or replace,
remove) k πDDs as sets of usable gates at all possible positions for each, we
can detect all error positions and error types. However, there are the following
problems:

– The number of all combinations of k positions are
(
d
k

)
= O(dk). Furthermore,

we consider 3 types of errors for each position, i.e. there are 3k ways of
combinations of error types. That is, this algorithm requires O(3kdk+1) πDD
operations.

– All error positions are can be detected, but correct gates for replaced errors
and removed errors cannot be determined.

We attack these problems with our algorithm proposed in the next subsection.

4.3 Proposed Method for Multiple Errors

We propose a debugging algorithm requiring only O(dk) πDD operations2 for k-
error circuits. Our approach uses dynamic programming calculating Si,j , defined
as a set of permutations representing functions which can be realized by the first
j gates with i errors. The minimum x such that πf ∈ Sx,d is the size of minimum
corrections. We can calculate Si,j by the following recurrence relations:

S0,0 := φ,

Si,j := (Si,j−1 × {gj}) ∪ (Si−1,j−1 × L) ∪ (Si−1,j × L) ∪ Si−1,j−1,

2 Note that each πDD operation costs exponential time in N2 in the worst case.
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where L is a set of usable gates, which are Toffoli gates in this paper. The first
term represents non-error, the second one represents a replaced error, the third
one represents an inserted error, and the last one represents a removed error.

Since each Si,j is a set of permutations, we can use πDDs to represent them.
Further, calculation of recurrence relations requires only permutation set alge-
bra such as union and Cartesian product, which are supported by πDDs. Each
calculation of Si,j requires at most a constant number (i.e. 6) of operations.
Hence this algorithm takes only O(dk) πDD operations. In addition, we can cal-
culate this recurrence relation by incrementing k. This means if the minimum
corrections of a given k-error circuit is k′, this algorithm only costs O(dk′) πDD
operations, instead of O(dk).

This algorithm can determine the minimum corrections, but cannot identify
error positions and types yet. Error identification can be realized by starting from
Sk′,d with πf and reversely traversing to S0,0. For example, if we now consider
Si,j with πx and ({πx} × L−1) ∩ Si−1,j−1 �= φ, an replaced error is detected at
position j. Furthermore, let πy ∈ ({πx}×L−1)∩Si−1,j−1, we identify the original
gate is πx ∗ π−1

y . We then restart reverse traversal from Si−1,j−1 with πy until
the first index is not 0.

5 Experiments

We implemented all algorithms in C++3 and carried out experiments on a
3.20GHz CPU machine with 64GB memory. We randomly generate d Toffoli
gates with n lines and concatenate them to make correct reversible circuits G.
We prepare objective functions f for each circuit by simulating the circuit. Next,
we generate erroneous reversible circuits G′ with k errors based on correct cir-
cuits: we randomly select a position and replace with a random gate, insert a
random gate, or remove a gate k times.

Our implementation uses f and G′ as inputs. For single error circuits, our
implementation detects all corrections but only outputs the number of ways of
corrections in order to reduce I/O time. For multiple error circuits, since the
way of minimum corrections can be huge, our implementation detects only one
way of minimum corrections and outputs it.

5.1 Experiments for Single Error

Computation time of Algorithm 1 for single error circuits (i.e. k=1) is shown
in Table 1. This table shows that our algorithm is linear with the number of
gates d and almost exponential with the number of lines n. It agrees with the
theoretical complexity of our algorithm analyzed in Section 3.

In [17], the SAT solver-based algorithm takes about 2000 seconds or more
for n ≥ 8 and d ≥ 5000 circuits. On the other hand, our algorithm takes under
3 Note that our implementation of Algorithm 2 uses bitwise operations of 64-bit integer

(unsigned long long int in C++) to manage control lines C.
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Table 1. Computation time (seconds) for single error circuits

d
10 50 100 500 1000 5000 10000 50000 100000

n

2 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.10
4 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.09 0.17
6 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.12 0.24
8 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.21 0.41

10 0.00 0.00 0.01 0.01 0.01 0.05 0.11 0.54 1.08
12 0.00 0.00 0.01 0.03 0.04 0.21 0.40 2.05 3.99
14 0.01 0.02 0.04 0.20 0.38 1.90 3.78 8.83 17.64
16 0.03 0.10 0.19 0.89 1.75 8.78 17.61 87.71 149.00
18 0.16 0.52 1.03 4.81 9.46 48.37 97.47 493.42 987.10
20 0.60 1.87 3.88 18.28 35.90 187.28 377.66 — —

1 second for circuits of such scale. Further, in [14], the πDD-based algorithm
takes more than 100 seconds for n ≥ 4 and d ≥ 1000 cases, while our algorithm
takes under 0.01 seconds for these cases. This significant improvement is likely
due to the theoretical improvement of our algorithm, and not simply to hardware
and test case differences.

The simulation-based approach proposed by Frehse et al. in [6] seems to be
faster than or equal to our algorithm: Their method completed simulation to
detect error candedates in 20 seconds for the n = 15 and d = 716934 circuit.
However, their method output over 30000 error candidates, which is impractical
to check manually. In contrast, our algorithm returned only one correction for
the n = 16 and d = 100000 erroneous circuit embedded a replaced error.

5.2 Experiments for Multiple Errors

We also carried out experiments for multiple error circuits. We randomly embed-
ded k errors in circuits consisting of d gates with n lines. Figs. 5–8 show experi-
mental results for 1-, 2-, 3-, and 4-error circuits, respectively.

For 1-error circuits in Fig. 5, i.e. single error circuits, our πDD-based algo-
rithm can perform in 1000 seconds for n = 5 and d = 600 circuits. For 2-error
circuits in Fig. 6, however, all cases with n = 5 are time-outs even at d = 50.
Almost all n = 4 cases also time-out; the algorithm can debug up to 100-gate
circuits. Results in [7] show that the SAT based method is more scalable: e.g. this
method can process n = 8 and d = 637 circuits in about 300 seconds. However,
outputs of this method can include non-errors, and cannot fix them automati-
cally. On the other hand, our method can fix them. For sufficiently small circuits,
our method can provide richer debugging information.

Results of 3- and 4-error circuits in Figs. 7 and 8. Our algorithm seems to
be enough scalable for the circuits with n ≤ 3. Debugging time for 3-errors and
one of 4-errors seems similar. This is because in random circuits we prepared,
the minimum correction of n = 2 circuits is usually 1, and for n = 3 circuits is
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usually 2, regardless of the number of embedded errors. In Fig. 8, d = 50 and
d = 500 in n = 3 cases seem to be somehow outliers. It is true; the minimum
correction size of the d = 50 circuit is 3, and for d = 500 circuit it is 1.

These results indicate that the minimum correction and the number of lines
exponentially affect computation time. On the other hand, the number of gates
seems to affect linearly for small gates (n = 2, 3), but affect quadratically or
exponentially for slightly larger gates (n = 4, 5).

6 Concluding Remarks

For debugging erroneous reversible circuits, we propose two kinds of algorithms.
The first one is an efficient method for circuits having at most one error. This
method uses permutation properties of reversible gates and gate checking algo-
rithms. This method can handle more general gate library by designing gate
checking algorithms. The efficient performance of this method is shown the-
oretically and experimentally, comparing with existing methods. The second
algorithm can debug multiple error circuits based on a dynamic programming
approach and πDDs. Although the scalability of this algorithm is exponentially
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worse than the first one, the algorithm enables us to debug more general erro-
neous reversible circuits.

For future work, we would like to modify the first algorithm to handle circuits
with garbage output lines. Garbage lines can output arbitrary values, i.e. mul-
tiple permutations can realize desired behavior. This means that multiple Gi’s
should be considered. Of course πDDs can handle this, but such an algorithm
will lose the efficiency of our first approach.

For multiple errors, more scalable algorithms are desirable. We are also inter-
ested in expected sizes of minimum corrections for circuits with n lines, d gates,
and k randomly-embedded errors. From experimental results, we guess that min-
imum correction tend to become relatively small with the number of embedded
errors. If we show that the size is sufficiently small with high probability, perhaps
we need not to consider debugging circuits with a large number of errors.

Acknowledgments. We would like to thank Dr. Mathias Soeken and Dr. Robert
Wille for valuable discussion and feedback to write this paper.
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Abstract. Previously, Soeken and Thomsen presented six basic
semantics-preserving rules for rewriting reversible logic circuits, defined
using the well-known diagrammatic notation of Feynman. While this
notation is both useful and intuitive for describing reversible circuits, its
shortcomings in generality complicates the specification of more sophis-
ticated and abstract rewriting rules.

In this paper, we introduce Ricercar, a general textual description lan-
guage for reversible logic circuits designed explicitly to support rewriting.
Taking the not gate and the identity gate as primitives, this language
allows circuits to be constructed using control gates, sequential compo-
sition, and ancillae, through a notion of ancilla scope. We show how the
above-mentioned rewriting rules are defined in this language, and extend
the rewriting system with five additional rules to introduce and modify
ancilla scope. This treatment of ancillae addresses the limitations of the
original rewriting system in rewriting circuits with ancillae in the general
case.

To set Ricercar on a theoretical foundation, we also define a permuta-
tion semantics over symmetric groups and show how the operations over
permutations as transposition relate to the semantics of the language.
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more complex rules, such as moving and deletion rules, can be derived. Rewriting
using such rules can be used not just to reduce the size and cost of reversible cir-
cuits, but also to analyse and explain other optimisation approaches for reversible
circuits. As one example, the templates presented in [12] are all derivable from
these rewriting rules.

The rewriting rules in [14] are based on the diagrammatic notation first intro-
duced by Feynman. This notation gives a very intuitive description of reversible
circuits and the presented rewriting rules inherit this benefit. However, one goal
with rewriting is to provide computer aid to the design of reversible circuits, and
just as intuitive as diagrammatic notation is to understand for humans, just as
hard it is to model for computers. In particular, representing the more general
rules poses a problem.

In this paper we introduce Ricercar, a description language for reversible logic
circuits (Sect. 3.) inspired by work on a reversible combinator language [18] and
the logic of reversible structures [11]. Its only basic atoms are the not gate and the
identity gate (both with named wires) from which other circuits are constructed
using control gates and sequential composition. After describing the syntax and
semantics of the language, we show how to define the graphical rewriting rules
of [14] as textual rewriting rules for Ricercar descriptions (Sect. 4.) To give a
theoretical foundation for Ricercar, we also define a permutation semantics over
symmetric groups (Sect. 2) and show how the operations over permutations as
transposition relate to the semantics of the language (Sect. 3.3).

A notable feature of the language is that it directly supports ancillae. Since
reversible circuit logic does not support arbitrary fan-out, ancillae are often used
to store partial results from computations by means of reversible duplication.
The concept of ancillae have, however, been used in many different ways, but
in this work we take the most strict possible definition. By ancillae we mean a
variable (or a line) that are, for all possible assignments of other defined variables,
guaranteed to be unchanged over the execution of a circuit.

This definition is much more strict than what is normally characterised
by temporary storage, but it is needed if one wants to ensure that informa-
tion is leaked and, thus, the backwards semantics of the circuits can be used
directly. It is, however, still very useful in both high-level programs as well as
reversible circuit constructs. As an example, an n-bit binary adder of linear
depth can be implemented without ancillae, but it requires the use of reversible
gates that have n inputs. However, using just one ancilla line the linear depth
V-shaped adder [5,20] is implemented using only gates with a constant number
of inputs. Furthermore, all current designs for implementing sub-linear depth
adders require a larger number of ancilla lines that is dependent on the input
size [7,17,19]. Using a similar definition, the restore model [4] has been investi-
gated with respect to is computational complexity limits.

In Sect. 5 we discuss the ancilla scope construct of Ricercar and show five
basic rewriting rules for inserting and modifying ancilla wires (Sect. 5.1). This
is interesting given that deciding if a wire is indeed an ancilla wire is difficult;
it can generally be done using equivalence checking, which for reversible circuits
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has been shown to be coNP-complete [10]. Furthermore, we show how to derive
more general rules (Sect. 5.2), and show a non-trivial and useful example of how
these can be used to create reversible circuits with ancilla wires from ancilla-free
circuits (Sect. 5.3). As a result, the proposed rewriting language can serve as a
framework to formally analyse the trade-off between gate count and number of
ancilla lines in reversible circuits. Such trade-offs have so far been investigated
theoretically for Turing machines in e.g. [2,3] and experimentally for reversible
circuit synthesis in [21]. We discuss further related work in Sect. 6.

The main contributions of the paper are the following:

1. An extension of the rewriting rules with rules for circuit rewriting using
ancillae.

2. A textual language to describe rewriting which is more concise than the
diagrammatic notation.

3. Semantics for the rewrite rules based on permutations that is useful to show
soundness of the rules and to formally argue over them.

2 Symmetric Groups as a Theory of Reversible Logic

Every reversible function f computed by a reversible circuit of n input lines
x1, . . . , xn and n output lines y1, . . . , yn can be represented by an element πf

of the symmetric group S2n , i.e., a permutation of the set {0, . . . , 2n − 1}. We
have πf (x) = y whenever f(x1, . . . , xn) = (y1, . . . , yn), where x and y denote the
natural number representations of the bits x1, . . . , xn and y1, . . . , yn, respectively.
This duality has been used for reversible logic synthesis in the last decade [6,13],
but has also seen use as a theoretical foundation for the analysis of reversible
circuit logic [15,16].

Unlike the usual formulation of the symmetric group Sn, we will consider
its elements to be permutations of the set {0, . . . , n − 1} rather than {1, . . . , n}.
However, we will use the standard notation of writing explicit permutations using
square brackets, e.g. π = [0 1 3 2], cycles using parentheses, e.g. π = (2, 3), and
πe for the identity permutation. Under this interpretation, composition of gates
corresponds to multiplication (i.e., composition) of permutations.

The gate library we consider consists of only single-target gates, which are
characterised by changing one circuit line based on a control function that argues
over the variables of the remaining lines. Since all single-target gates are self-
inverse, their respective permutations are involutions with cycle representations
consisting of only transpositions and fixpoints. As pointed out in [15], all such
transpositions are of the form (a, b) where the hamming distance of a and b is 1,
i.e., their binary expansions differ in exactly one position. We refer to the set of
all such transpositions as

Hn = {(a, b) | ν(a ⊕ b) = 1} (1)

where ν denotes the sideways sum. Note that each transposition (a, b) in Hn

corresponds to one fully controlled Toffoli gate with positive and negative control
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lines, acting on line i, where i is the single index for which ai �= bi. The polarity
of the controls is chosen according to the other bits. Based on this observation,
we partition the set Hn into n sets Hn,1,Hn,2, . . . , Hn,n such that

Hn,i = {(a, b) ∈ Hn | a ⊕ b = 2i−1} (2)

contains all transpositions in which the components differ in their i-th bit. Single-
target gates that act on the target line i are all permutations that consist of a
subset of transpositions in Hn,i.

We call gn(f) ∈ S2n a transposition generation function which takes as argu-
ment an injective function f : {0, . . . , 2n − 1} ↪→ {0, . . . , 2n − 1} and returns the
permutation

(0, f(0))(1, f(1)) · · · (2n − 1, f(2n − 1)). (3)

3 Ricercar: A Description Language for Reversible Logic

In this section, we will explain the description language, Ricercar, that is used
to formulate the rewriting rules. We will first explain the syntax (Fig. 1) and
then show two ways to describe the semantics.

3.1 Syntax

Circuit wires (denoted by lower case Latin letters in the end of the alphabet:
. . . , x, y, z) are defined over a set of names Σ that includes both input/output
wires and ancilla wires currently in scope. (For wires without specific names, we
will use lower case Latin letters starting from a.) We define a circuit (denoted
by upper case Latin letters) to be one of the following five forms:

– The identity gate on a wire x, written Id(x), where x ∈ Σ.
– The not gate applied to a wire x, written Not(x), where x ∈ Σ.
– Sequential composition of two circuits, written using the operator “ ; ”.

A, B, C ::= Id(x) | Not(x) Identity and not gate

| A ; B Sequence of circuits

| φ� A Controlled circuit

| αx.A Scope of ancilla variable α; α is part of the syntax

φ, ψ, π ::= x | ¬φ | φ ∧ φ Boolean formulas

| � | ⊥ | φ ∨ φ | φ ⊕ φ Derivable Boolean operators

Fig. 1. Syntax of Ricercar. Note that this grammar does not guarantee reversibility in
itself. By x we mean that variables occurring in Boolean formulas must be elements
from a predefined set of input/output wires or ancilla wires in scope.
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a •
b •
c •
d

(a ∧ b ∧ c)� Not(d)

(a) Three-controlled
Toffoli gate

a • •
b • •
c •
d
e = 0 • 0

αe.((a ∧ b)� Not(e) ; (c ∧ e)� Not(d) ; (a ∧ b)� Not(e))

(b) Sequence of Toffoli gates

Fig. 2. Two (weakly) equivalent reversible circuits and their descriptions in Ricercar.
Here, e denotes an arbitrary ancilla wire.

inv(Id(x)) = Id(x)

inv(Not(x)) = Not(x)

inv(A ; B) = inv(B) ; inv(A)

inv(φ� A) = φ� inv(A)
inv(αx.A) = αx. inv(A)

Fig. 3. The syntactic function inv(·) that defines the inverse of a Ricercar description

– A controlled circuit, denoted with the binary “�” operator, which contains
a control function φ and a controlled circuit A.1 The control function can be
any Boolean formula.

– An ancilla scope for a circuit A, denoted with a functional lambda-style
notation using the symbol α, and a variable denoting a wire which must be
false both before and after A. Without loss of generality, we will assume that
ancillae scopes always introduces fresh variable names.

For readability, we define control gates (�) to bind tighter than sequence ( ; )
and the unary (αx. ).

Figure 2 shows two example circuits, defined using multiply controlled Toffoli
gates, represented in the usual diagram notation due to Feynman, as well as in
Ricercar.

As Ricercar should be reversible, we will define the straight-forward inverse
of all the syntactic constructs. We have chosen not to include inversion as a
basic construct, but will define it as a syntactic function; this simplifies both the
language and the following rewriting rules. Figure 3 shows the inversion function
inv(·).

3.2 Ancillae and Reversibly Well-Formed Properties

Ancillae hold a central place in Ricercar. We follow the idea that there are
always as many ancilla wires available as needed. Consequently ancilla lines do
not need to be declared in advance, but can be introduced on-the-fly. This is not
an unrealistic assumption: remember that we define ancillae to be constant (false)
at both input and output, which permits a large degree of reuse. Furthermore,

1 The “�” notation is borrowed from [11], although with a different semantics.
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rwf(Id(x)) = {x}
rwf(Not(x)) = {x}

rwf(A ; B) = rwf(A) ∪ rwf(B)

rwf(φ� A) = dom(φ) � rwf(A)
rwf(αx.A) = rwf(A)\{x}

Fig. 4. A reversible circuit, A, is reversibly well-formed iff rwf(A) evaluates to a set.
Here, � is the disjoint union and dom(φ) is the domain of the Boolean function φ. We
assume that the disjoint union is undefined whenever the operands are not disjoint.

the actual number of ancilla lines used is limited by the depth of the circuit, and
cannot grow unboundedly. As an example, given that we know the upper bound
of the depth to implement a reversible circuit without ancillae (cf. [1]), this also
gives an upper bound on the number of (useful) ancilla any circuit with smaller
depth can have.

The syntax presented in Fig. 1 does not guarantee reversibility by itself. One
problem comes from the control gate, where we must enforce that the wires of
the control function are disjoint from wires of the circuit being controlled. This is
similar to the concept used in the reversible updates in Janus [22]. Figure 4 shows
a function rwf(·) that implements this check; we say that the circuit is reversibly
well-formed if it upholds this restriction. Given a circuit description A, it returns
the set of all used variable names if and only if A is reversibly well-formed. If a
circuit A is not reversibly well-formed, the disjoint union operation will fail on
the control gate operator, and the result of rwf(A) will thus be undefined.

However, even a reversibly well-formed circuit is not necessarily reversible.2

To ensure that an ancilla variable within an ancilla scope does indeed have ancilla
behaviour (guaranteed false at both input and output), we need a additional
semantic check. However, a circuit without ancillae is reversibly well-formed if
and only if it is reversible. In Sect. 5, we will show how this can be exploited to
introduce ancillae in a way that guarentees reversibility.

3.3 Operational Semantics

The straightforward semantics of Ricercar is shown in Fig. 5; they follow, but also
extend, the logic by Fredkin and Toffoli, and describe the mapping from a circuit
description to a reversible circuit using the well-known gates. More concretely,
this semantics can be used to show that Ricercar is actually reversible.

Theorem 1 (Reversibility). For all mappings σ and circuits A there exists a
mapping σ′ and a circuit B such that

σ � A → σ′ ⇐⇒ σ′ � B → σ.

This theorem and the following two lemmas are easily proven by structural induc-
tion over the circuit A and reference to the operational semantics of Ricercar
(Fig. 5).

2 The other direction holds: all reversible circuits are reversibly well-formed.
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σ : Σ ⇀ B σ � Id(x) → σ

σ � ¬x → b

σ � Not(x) → σ[x 
→ b]
σ � A → σ′′ σ′′ � B → σ′

σ � A ; B → σ′

σ � φ → 1 σ � A → σ′

σ � φ� A → σ′
σ � φ → 0

σ � φ� A → σ

σ � x → b σ[x 
→ 0] � A → σ′ σ′ � x → 0

σ � αx.A → σ′[x 
→ b]

Fig. 5. The semantics of Ricercar. Here, σ is a partial function mapping variable names
to Boolean values; any variable name that is not part of the input is assumed to be
undefined in σ. The semantics uses two judgment forms, σ � A → σ′ for evaluating
circuits, and σ � φ → b for evaluating Boolean formulae, both with respect to σ. The
rules for judgments of the latter form are not shown, but are completely standard.

To ensure that the previously defined inversion (with sequence as composition
function) is indeed inversion, we show the following.

Lemma 1 (Inversion). For all circuits A and states σ,

σ � A ; inv(A) → σ and σ � inv(A) ; A → σ.

Later it will also be useful to know that the inversion function respects involution
symmetry.

Lemma 2 (Involution Symmetry). For all circuits A, and states σ and σ′,

σ � A → σ′ ⇐⇒ σ � inv(inv(A)) → σ′.

3.4 Permutation (Denotational) Semantics

In order to ease the formal analyses using this language, we also express the
functional semantics in terms of permutations. The counterparts to Id, Not, and
‘�’ are provided for this purpose. In contrast to the language, the permutation
description requires an order of variables and therefore we assume a strict total
order ‘>’ on the variables in Σ for the following equations. If x > y, it means
that the variable x corresponds to a more significant bit than y. For the identity
and the not gate we have

Id(x) = πe and Not(x) = (0, 1) if Σ = {x}. (4)

For the following four equations, let G(π, f) be the commutator gn(f) ◦ π ◦
g−1
n (f) for a permutation π ∈ S2n and a function f as in (3). Note that G is an
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endomorphism with respect to composition, since

G(π1 ◦ π2, f) = gn(f) ◦ π1 ◦ π2 ◦ g−1
n (f)

= gn(f) ◦ π1 ◦ g−1
n (f) ◦ gn(f) ◦ π2 ◦ g−1

n (f)
= G(π1, f) ◦ G(π2, f).

For some circuit A, let πA be its permutation representation. Then one can “add
a control line from the bottom,” expressed as

¬x� A = G(πA, x 
→ x) if Σ = rwf(A) ∪ {x}
and x > y for all y ∈ rwf(A) (5)

and

x� A = G(πA, x 
→ x + 2n) with n = | rwf(A)|, if Σ = rwf(A)∪{x}
and x > y for all y ∈ rwf(A). (6)

Similarly, one can “add a control line from the top,” expressed as

¬x� A = G(πA, x 
→ 2x) if Σ = rwf(A) ∪ {x}
and x < y for all y ∈ rwf(A) (7)

and

x� A = G(πA, x 
→ 2x + 1) if Σ = rwf(A) ∪ {x}
and x < y for all y ∈ rwf(A). (8)

The above denotational semantics is not complete. Circuit sequence ( ; ) can
be defined by permutation composition after extending the two permutations to
the same symmetric group, and scoped ancillae can be accommodated by impos-
ing restrictions on the permutation for the more general circuit (i.e., where the
ancilla is considered as any other input line.) It is then not hard to prove equiv-
alence between the operational and denotational semantics. The denotational
semantics is reversible by construction.

4 Rewriting in Ricercar

In this section, we will recap the rewriting rules from [14], and define the rules
with respect to Ricercar, as well as show soundness based on the permutation
semantics.

First, however, note that gate composition is associative; that is, in a cascade
of gates, the order in which we look at the gates does not matter, so in, e.g.
Fig. 2(b), we are free to either look at the two first gates and perform rewriting
on these, or start with the last two gates instead. The identity gate is the identity
element for sequences:

A = Id(x) ; A = A ; Id(x) (ID)
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Furthermore, note that we can always rewrite the controlling Boolean func-
tions and, e.g. use identities from AND-EXOR decomposition:

φ� ψ � A = (φ ∧ ψ)� A and
φ� A ; ψ � A = (φ ⊕ ψ)� A if A = inv(A).

Finally, implicit to rules is that the circuits must always be reversibly well-
formed both before and after a rewriting, and that in any given circuit we can
rewrite any sub-circuit we like.

The first rule presented in [14] is for introducing and eliminating not gates,
and states that we can always rewrite the identity function to two not gates.

x = Id(x) = Not(x) ; Not(x) (R1)
Soundness trivially follows from πe = (0, 1) ◦ (0, 1).

The second rule states that we can “move” a not gate over a control if we
negate the control line.

x •
=

y

x� Not(y) ; Not(x) =
Not(x) ; ¬x� Not(y) (R2)

Similar to [14], we notice that its dual rule with negative control can be
derived using this rule in combination with Rule R1:

¬x� Not(y) ; Not(x)
(R1)
= Not(x) ; Not(x) ; ¬x� Not(y) ; Not(x)

(R2)
= Not(x) ; x� Not(y) ; Not(x) ; Not(x)

(R1)
= Not(x) ; x� Not(y). (R2’)

Soundness follows from Eqs. (5)–(8) and the identity (a, b)(b, c) = (a, c)(a, b) =
(a, c)(b, c).

Third, we can extend a gate by copying it and adding once a positive and
once a negative control line to it.

x •
=

y

Id(x) ; Not(y) =
x� Not(y) ; ¬x� Not(y) (R3)

Soundness follows from Eqs. (7) and (8). In fact, in permutation notation, both
controlled not gates are represented by a single transposition, and combining
them results in the (permutation corresponding to the) not gate. Also, combining
the equation of adding a negative and positive control yields an equation for
adding an empty line.

Next, two arbitrary adjacent gates can be interchanged whenever they have
a common control line with different polarities. Notice how Ricercar captures
the fact that two controlled circuits can have any circuit structure; something
that is not well captured by the diagrammatic notation in [14].
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x • •
A B = B A

x� A ; ¬x� B =
¬x� B ; x� A (R4)

The permutation equations also reveal this property, since the transpositions
resulting from ¬x� A and x� A are disjoint.

Whenever two gates share the same control variable with the same polar-
ity, these two gates can be grouped together, where the group is controlled by
that control line. Again, Ricercar allows for a precise formulation of the idea,
compared to the diagrammatic notation.

x • •
=

A B

•
A B

x� A ; x� B = x� (A ; B) (R5)

This property follows from G being an endomorphism. Finally, we have the rule
for introducing and eliminating groups of wires.

x •
=

y
x� Id(y) = Id(x) ; Id(y) (R6)

4.1 A Note on Completeness

A question raised in [14] regards the completeness of the above rules, in the sense
that every circuit can be rewritten, in a finite number of steps, to any other
equivalent circuit. In this strict sense, the rules are not complete. The counter
example is the two-line swap gate, which can be represented in the following two
ways:

• • •
=

• • •
Given the six rules, it is not possible to rewrite one to the other. This is, of course,
not satisfactory, and a shortcoming that must be solved. The easy solution would
be to add the above equation as a seventh rule, but the extent to which there exist
other counter examples related to this problem is unknown, and the solution is
only an incremental extension that will not add any interesting new insights.

However, this counter example is restricted in that it does not generalise
to more lines. If we have a third line available (no matter its value), it can be
used as an auxiliary line and thereby enable rewriting between the two swap
gates. The question is now if the six rules are complete for circuits of more than
two lines. But there is a possibility that two similar three line circuits exist and
we need to assume a fourth auxiliary line to rewrite between them. The better
solution, that we will follow in the next section, is thus to extend with rules for
ancilla lines.
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5 Ancillae and Rewriting

As mentioned earlier, ancillae is a powerful extension to a reversible language,
but the power comes at a cost. Checking that some defined ancillae are indeed
unchanged for all possible input vectors of an arbitrary description is hard; in
general, one has to test all possible input vectors, which is undesirable. For
a reversible programming language such as Janus [22], this is therefore imple-
mented as a runtime check that checks the reversibility of a program only in rela-
tion to the executing input vector. This is also the case for the syntax described
in Fig. 1.

For this reason, we will pursue a different approach. Given a description with-
out ancillae, we can statically check reversibility using the rwf-function shown in
Fig. 4. From a reversible description without ancillae, we will now define rewrit-
ing rules that can extend the given description with ancilla wires. Hence, instead
of showing reversibility of a description with ancillae (which is hard), we only
have to show that the rewriting rules do not interfere with the ancilla-property
of the wires, and thereby with the reversibility of the circuit; this is much easier.

5.1 The Rewriting Rules

To be able to introduce and remove ancilla wires from a circuit, we have identified
the need for five basic rules.

The first rule is for introducing and removing an ancilla scope. It states that
we can always introduce a scope containing the identity circuit with a fresh
(unused) ancilla wire name.

x =
y

� ��
�

�
�� � Id(x) = αy.Id(x) (A1)

The second rule states that a circuit in an ancilla scope can be removed (or
added) if it is controlled by the ancilla wire. Recall that the ancilla variable is
assumed to be assigned false outside of the ancilla scope, so the control is never
active. For now, the gate must be the only gate within the scope, but we will
show how this can be generalised later.

y •
=

x A
y y

� ��
�
�
�

�
�
�
�

� �

� � ��
�
�
�

�
�
�
�� � �

αy.(y � A) = αy.Id(x), x ∈ rwf(A)
(A2)

The third rule considers the case in which the controlling wire is not the
ancilla wire of the scope. In this case, the control can be pulled out of the ancilla
scope, and thereby control the scope containing the controlled circuit.

x • •
=

A A
y y

� ��

�

�

�
� �

� ��
�
�
�

�
�
�
�

� �

αy.(x� A) = x� αy.A, x �= y (A3)
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The fourth rules states that a not gate on a non-ancilla wire that is positioned
to the immediate left of a circuit it shares a scope with can be pulled out of the
ancilla scope.

x
A A=

y y

� � � ��
�
�
�

�
�
�
�

� � � �

� � ��
�
�
�

�
�
�
�

� � �

αy.(Not(x) ; A) =
Not(x) ; αy.A, x �= y (A4)

In the case where the not gate is on the right, a similar rule can be derived
from the Involution Symmetry Lemma with Rule A4.

x
A A=

y y

� � � ��
�
�
�

�
�
�
�

� � � �

� � ��
�
�
�

�
�
�
�

� � �

αy.(A ; Not(x)) =
(αy.A) ; Not(x), x �= y (A4’)

The fifth and final rule states that if (and only if) an ancilla scope contains
a sequence of two circuits where the first is positively controlled, and the second
is negatively controlled by the same wire, then this scope can be divided into
two; or, in the other direction, merged. Note that x can be equal to y. This rule
is likely the most powerful of the five, and it shows up in the proofs that extend
and generalise the previous rules.

x • •=
A B A B

y y y

� � � � ��
�
�
�

�
�
�
�

� � � � �

� ��
�
�
�

�
�
�
�

� �

� � ��
�
�
�

�
�
�
�

� � �

αy.(x� A ; ¬x� B) =
(αy.x� A) ; (αy.¬x� B) (A5)

That the first four rules (A1 to A4) do not interfere with the ancilla-property
of a wire is clear, but the last rule (A5) requires an argument. Only either A or
B (but not both) is performed as the control on x is exclusive. Thus assuming
that x �= y, any usage of y in A must have uncomputed y to zero again; similarly
any usage of y in B must have assumed it to be zero. Therefore, we can divide
the ancilla scope of y. If x = y then y will always be unchanged (zero) as y is
not used in B.

5.2 Generalisation of Ancilla Rules

Rule A2 has a twin-rule for the case where the gate is negatively controlled by
the ancilla wire. We can derive that this is equal to the controlled gate in the
following way:

αy.(¬y � A)
(ID)
= Id(x) ; (αy.¬y � A)

(A1)
= (αy.Id(x)) ; (αy.¬y � A)

(A2)
= (αy.y � A) ; (αy.¬y � A)

(A5)
= αy.(y � A ; ¬y � A)

(R3)
= αy.A. (A2’)
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This twin-rule can now be used to show the more general rule that if an
ancilla wire controls a circuit in the beginning of a scope it can be removed
entirely:

αy.(y � A ; B)
(R3)
= αy.(y � A ; y � B ; ¬y � B)

(R5)
= αy.(y � (A ; B) ; ¬α� .B)

(A5)
= (αy.y � (A ; B)) ; (αy.¬y � B)

(A2)
= (αy.Id(x)) ; (αy.¬y � B)

(A2’)
= (αy.Id(x)) ; (αy.B)

(A1)
= Id(x) ; αy.B

(ID)
= αy.B. (D8)

Similarly, we can also generalise A3 to the case where the circuit in the ancilla
scope contains more than one gate. Assuming that x �= y, to extract x from the
ancilla scope of y we can do

αy.x� A ; B
(R3)
= αy.(x� A ; x� B ; ¬x� B)

(R5)
= αy.(x� (A ; B) ; ¬x� B)

(A5)
= (αy.x� (A ; B)) ; (αy.¬x� B)

(A3)
= x� (αy.(A ; B)) ; ¬x� αy.B. (D9)

This duplicates B such that it is performed both when x is true, and when it is
false. Assuming that the ancilla wire y does not occur in A (i.e. y /∈ rwf(A)), we
can then use D9 to show by induction on the depth of the control that

αy.(A ; B) = A ; αy.B, y /∈ rwf(A). (D10)

As a special case of this rule, specifically when B = Id(x) for any choice of
x ∈ rwf(A) ∪ {y}, we get that

αy.A = A, y /∈ rwf(A). (D11)

As a closing derived rule, we will show how ancilla wires can be introduced to
perform computations that were otherwise performed by an input wire. In other
words, we can use the rules to introduce ancilla wires that are then used to
control what was previously controlled by x.

x� A
(D11)
= αy.(x� A ; Id(y))

(D1)
= αy.(x� A ; x� y ; x� y)

(D8)
= αy.(y � A ; x� A ; x� y ; x� y)

(D6)
= αy.(x� A ; y � A ; x� y ; x� y)

(D7)
= αy.(x� y ; y � A ; x� y). (D12)

Here D1, D6, and D7 refer to derived rules from [14]. This example increases
the size and depth of the circuit, but if x controls several gates this can be used
to reduce the depth of the circuit considering that gates can be put in parallel.
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5.3 Practical Example of Application of Ricercar

As a final example we show how to derive the circuit depicted in Fig. 2(b) from
the one in Fig. 2(a) using the rewriting rules. Again D1 and D7 refer to derived
rules from [14].

(a ∧ b ∧ c)� Not(d)

(D11)
= αe.((a ∧ b ∧ c)� Not(d))

(D8)
= αe.((c ∧ β)� Not(d) ; (a ∧ b ∧ c)� Not(d))

(D1)
= αe.((a ∧ b)� Not(e) ; (a ∧ b)� Not(e) ; (c ∧ e)� Not(d) ;

(a ∧ b ∧ c)� Not(d))

(D7)
= αe.((a ∧ b)� Not(e) ; (c ∧ e)� Not(d) ; (a ∧ b)� Not(e) ;

(a ∧ b ∧ c)� Not(d) ; (a ∧ b ∧ c)� Not(d))

(D1)
= αe.((a ∧ b)� Not(e) ; (c ∧ e)� Not(d) ; (a ∧ b)� Not(e)).

6 Related Work

This is not the first language that has been designed to describe the concepts of
reversible logic; there exist description languages for both reversible and quan-
tum circuits.

The closest related work is the Reversible Combinator Language (RCL) [18]
that was also made to describe reversible logic; though it is more general than
our work, there are still some common ideas. Taking inspiration from RCL, we
use a similar sequence operator, and the conditional in RCL is (in its semantics)
comparable to our control operator. However, being a combinator language, RCL
does not have variables, but rather a type system in which circuits of arbitrary
size with a given structure can be defined. Also it has more general combinators,
such as a ripple circuit and parallel composition, as basic constructs. RCL also
admits a number of rewriting rules, but compared to Ricercar, RCL’s type system
and larger set of atomic gates makes rewriting more cumbersome.

Although aiming to describe quantum circuits, it is worth mentioning Quip-
per [8,9]. Though Quipper also supports ancilla scopes, in order to uphold
the ancilla-property, the Quipper synthesis results in a symmetric compute-use-
uncompute “Bennett-style” structure of the ancilla wires. In contrast, the ancilla
scopes in Ricercar are more general, but have to be built from the bottom up
with rewriting to uphold the property. The interested reader can find further
references for quantum description languages in the works above.

7 Conclusion

In this paper we have presented Ricercar, a language designed to describe
reversible circuits. A main focus during the design process of the language has
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been rewriting, specifically that rewriting rules should be easy to both define and
apply in the language. The previous approach to rewriting of reversible circuits
was shown for the standard diagrammatic notation, but this notation neither
captures the full intent of all of the six original rules, nor does it provide an
optimal setting for a future computer aided system. Ricercar, with its simple
symbolic description, both captures the complete intent of the original rules,
and has a syntax that is directly implementable.

In addition, Ricercar has support for ancillae as a basic circuit construct in
the form of a scope. Using this construct, we have extended the six original rules
with five basic rules that applies when rewriting ancillae. We have shown how
it is possible to use these rules to derive more general ones that also apply to
ancillae, and as a final example, how to derive a rule that moves the control of
a gate from an input wire to an ancilla wire.

Determining reversibility of a circuit that contains ancillae is generally hard,
but with the presented rewriting rules, it is possible to take an ancillae-free
circuit (for which it is easy to show reversibility) and rewrite it into a circuit
that contains ancillae, and is guaranteed to be reversible. The key here is that
the basic rules (and all of the derived rules) cannot break the ancilla-property
of a wire and, thus, the reversibility of the circuit.

We hope that this approach can further help in the understanding of the
trade-off between ancillae on the one hand, and the size and depth of a reversible
circuit on the other.
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Abstract. Quantum computing offers a promising emerging technol-
ogy due to the potential theoretical capacity of solving many important
problems with exponentially less complexity. Since most of the known
quantum algorithms include Boolean components, the design of quantum
computers is often conducted by a two-stage approach. In a first step,
the Boolean component is realized in reversible logic and then mapped to
quantum gates in a second step. This paper describes a new mapping flow
for determining quantum gate realizations for single-target gates (ST).
Since each ST gate contains a Boolean control function, our method
attempts to find a decomposition based on its BDD representation. It
consists on breaking large ST gate into smaller ones using additional lines.
Experiments show that we obtain smaller realizations when comparing
to standard mapping.

1 Introduction

Quantum computers are one of the most promising emerging technologies, gen-
erating interest from the corporate sector and attracting government investment.
Quantum computers exploit the often counter-intuitive rules of quantum physics
to perform computations in a substantially different and often much more effi-
cient way than classical computers, enabling computational solutions to prob-
lems that are considered intractable for classical systems [1]. The design and
fabrication of these machines has progressed rapidly in the past decade, with
many research groups now routinely fabricating and operating small quantum
computers in multiple physical systems.

Quantum computing does not only provide challenges for physicists but also
offers a variety of challenging and interesting problems to the field of computer
science. Large parts of quantum computers perform classical computations which
can be described in terms of classical Boolean functions instead of arbitrary uni-
tary operations as they are used for general quantum computing. However, since
all quantum computers need to be reversible, also the classical computations
need to be described in terms of reversible Boolean functions [2]. In order to
create a quantum circuit from such a Boolean function, a first intermediate step
c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 219–232, 2015.
DOI: 10.1007/978-3-319-20860-2 14



220 N. Abdessaied et al.

synthesizes a reversible circuit description. The most common gate library for
this step consists of mixed-polarity multiple-controlled Toffoli gates. Toffoli gates
offer a convenient representation to model the functionality of a reversible circuit
but are still too abstract to be used as quantum operations. Many aspects, par-
ticularly those considering fault tolerance and error correction properties, cannot
effectively be considered on that abstraction level. For the latter, quantum gate
libraries are used that consist of a few quantum gates that typically act on at
most 2 qubits: one of the currently prominent libraries is the Clifford+T gate
library [3]. Technology mapping is performed in order to map Toffoli gates to
gates from the quantum gate library and the majority of methods that have
been presented so far originate from [4].

Albeit providing a high-level representation for reversible circuits, the lower
bound of the size of a reversible circuit consisting of Toffoli gates is exponen-
tial [5], i.e., for every number of variables there exists a reversible function for
which the size of the minimal circuit is exponential. In order to avoid this com-
plexity when addressing large reversible functions and circuits, recently single-
target gates are considered as a representation for reversible circuits. They are
a generalization of Toffoli gates and a linear upper bound for reversible circuits
composed of these gates has been shown in [6]. Besides that, synthesis approaches
presented in [6] and [7] are based on this gate representation. However, for tech-
nology mapping into quantum circuits, so far single-target gates are mapped
into cascades of Toffoli gates which are then independently mapped using the
techniques described in [4].

In this paper, we present a technology mapping approach that is directly
based on single-target gates and makes use of Boolean decomposition and a
constant number of ancillary lines. Working on the higher level abstraction allows
significant cost reductions as shown by our experimental evaluations. In the best
case, we were able to reduce the costs of the quantum circuit by 75% and in the
average by about 20% for the Clifford+T gate library.

2 Preliminaries

To keep the paper self-contained, this section reviews definitions and nota-
tions from Boolean functions, function decomposition, reversible circuits, and
reversible synthesis.

2.1 Boolean Functions

Let IB def= {0, 1} denote the Boolean values. Then we refer to Bn,m
def= {f |

f : IBn → IBm} as the set of all Boolean multiple-output functions with n inputs
and m outputs. There are 2m2n such Boolean functions. We write Bn

def= Bn,1

and assume that each f ∈ Bn is represented by a propositional formula over
the variables x1, . . . , xn. Furthermore, we assume that each function f ∈ Bn,m

is represented as a tuple f = (f1, . . . , fm) where fi ∈ Bn for each i ∈ {1, . . . , m}
and hence f(x) = (f1(x), . . . , fm(x)) for each x ∈ IBn. If we emphasize on
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the domain of the function we write f(X) where X refers to the set of input
variables.

2.2 Exclusive Sum of Products

Exclusive sum-of-products (ESOPs, cf. [8]) are two-level descriptions for Boolean
functions in which a function is composed of k product terms that are combined
using the exclusive-or (xor, ⊕) operation. A product term is the conjunction
of li literals where a literal is either a propositional variable x1 def= x or its nega-
tion x0 def= x̄. ESOPs are the most general form of two-level and-xor expressions:

f =
k⊕

i=1

x
pi1
i1

∧ · · · ∧ x
pili
ili

(1)

Several restricted subclasses have been considered in the past, e.g., positive
polarity Reed-Muller expressions (PPRM [8]) in which all literals are posi-
tive. There are further subclasses and most of them can be defined based on
applying one of the following decomposition rules. An arbitrary Boolean func-
tion f(x1, x2, . . . , xn) can be expanded with respect to a variable xi as

f = x̄ifx̄i
⊕ xifxi

(Shannon)
f = fx̄i

⊕ xi(fx̄i
⊕ fxi

) (positive Davio)
f = fxi

⊕ x̄i(fx̄i
⊕ fxi

) (negative Davio)

with co-factors fx̄i
= f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

and fxi
= f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

2.3 Boolean Function Decomposition

Boolean function decomposition describes the problem of finding, for a Boolean
function, two or more simpler functions that being composed are functionally
equivalent. Several types of Boolean function decomposition have been found in
the last decades with the most important ones being:

1. Ashenhurst decomposition [9]: A function f ∈ Bn is decomposed into f(X) =
h(g(X1),X2) with g ∈ B|X1|, h ∈ B|X2|+1, and X = X1 ∪X2. If X1 ∩X2 = ∅,
then the decomposition is called disjoint, otherwise it is called a non-disjoint
decomposition. The set X1 is called bound set and the set X2 is called free
set.

2. Curtis decomposition [10] is a generalization of the Ashenhurst decompo-
sition with several inner functions of which each can have multiple out-
puts, i.e., f(X) = h(g1(X1), g2(X2), · · · , gk(Xk),Xk+1) with gi ∈ B|Xi|,mi

,
h ∈ B|Xk+1|+m1+···+mk

, and X = X1 ∪ X2 ∪ · · · ∪ Xk+1.
3. Factorization [11]: The function is decomposed as f(X) = g(X1) ∧ h(X2) ∨

c(X3), with g ∈ B|X1|, h ∈ B|X2|, c ∈ B|X3| and X = X1 ∪ X2 ∪ X3.
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Fig. 1. Examples of reversible gates

4. Bi-decomposition [12] is also known as simple decomposition. The function is
decomposed into two sub-functions f(X) = g(X1) 
 h(X2), with g ∈ B|X1|,
h ∈ B|X2| and X = X1 ∪ X2. The ‘
’ is any binary Boolean operation
(typically ∨, ∧, ⊕, or ↔).

When X1, X2, and X3 are disjoint, the decomposition is called algebraic,
otherwise Boolean or functional. Functional decomposition is much more pow-
erful because the majority of Boolean functions are likely to have a functional
decomposition rather than an algebraic one. Much work has been presented
on decomposition algorithms based on truth tables [13] or binary decision dia-
grams (BDDs) [14–16].

2.4 Reversible Circuits

Reversible functions of n variables can be realized by reversible circuits that
consist of at least n lines and are constructed as cascades of reversible gates that
belong to a certain universal gate library. Although the Toffoli gate library is the
most common gate library, single-target gates are of interest as they can lead to
better circuits, e.g., lower quantum cost [7] and better circuit complexity [17].

Definition 1 (Single-Target Gate). Given a set of variables X =
{x1, . . . , xn}, a single-target gate (ST) Tg(C, t) with control lines C =
{xi1 , . . . , xik} ⊂ X, a target line t ∈ X \ C, and a control function g ∈ Bk

inverts the variable on the target line if and only if g(xi1 , . . . , xik) evaluates to
true. All other variables remain unchanged.

Definition 2 (Toffoli Gate). Mixed-polarity multiple control Toffoli (MPM-
CT) gates are a subset of the single-target gates in which the control function g

can be represented with one product term or g =
j∧

k=i

xp
i = 1. Multiple-control
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Fig. 2. Reversible circuit

Fig. 3. Quantum mapping of a Toffoli gate

Toffoli gates (MCT) in turn are a subset from MPMCT gates in which the product
terms can only consist of positive literals.

Following from synthesis algorithm implementations, it can easily be shown that
any reversible function f ∈ Bn,n can be realized by a reversible circuit with n
lines when using MCT gates. That is, it is not necessary to add any temporary
lines (ancilla) to realize the circuit. This can be the case if the MCT (or MPMCT)
gates are restricted to a given size, e.g., three bits. For drawing circuits, we follow
the established conventions of using the symbol ⊕ to denote the target line, solid
black circles to indicate positive controls, and white circles to indicate negative
controls.

Example 1. Figure 1a shows a Toffoli gate with positive controls, Figure 1b
shows a Toffoli gate with mixed-polarity control lines, and Figure 1c shows the
representation of a single-target gate based on Feynman’s notation. Figure 2
shows different Toffoli gates in a cascade forming a reversible circuit. The
annotated values demonstrate the computation of the gate for a given input
assignment.

2.5 Cost Metrics

To compare quantum circuits, we define metrics which depend on the gate library.
For the NCV gate library, the quantum cost of a circuit is used while for the
Clifford+T gate library, the T -depth is used. The motivation for that cost mea-
sure origins from the fact that the T gate is significantly larger compared to the
other gates in the circuit.

Definition 3 (NCV-Cost). The NCV-cost is the total number of elementary
gates used in a quantum circuit.

Definition 4 (T -Depth). The T -depth is the number of T -stages in a quantum
circuit where each stage consists of one or more T or T † gates that can be
performed concurrently on separate qubits. The total number of incorporated T
or T † gates in the whole circuit is denoted by T -count.
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Fig. 4. Mapping from [4]

Example 2. The NCV-cost of the circuit shown in fig. 2 is equal to 8 since the
total number of the elementary gates that realize a Toffoli gate is equal to 5.
The circuit has a T -count of 7 and T -depth of 3.

2.6 Young Subgroup Synthesis

The young subgroup based synthesis approach makes use of the following prop-
erty. Given a variable x, every reversible function f ∈ Bn,n can be decomposed
into three functions f = g2 ◦ f ′ ◦ g1 such that f ′ ∈ Bn,n is a reversible func-
tion that does not change in x, and g1, g2 ∈ Bn,n are reversible functions that
can be realized as single-target gates that act on x. By recursively applying
the decomposition on the inner function f ′, one obtains 2n single-target gates
that realize f . After at most n recursive applications f ′ represents the identity
function, i.e., it does not change in any variable anymore. Details of the proof
can be found in [18]. A synthesis algorithm based on the idea has initially been
proposed in [6] that takes as input a reversible function represented by its truth
table. The synthesis algorithm has been extended to work symbolically using
binary decision diagrams in [7], which allows for handling larger functions.

3 Motivation

As mentioned above, a quantum circuits are described in terms of a reversible
Boolean function. In order to derive a quantum circuit for the reversible function,
a two step approach is usually applied: first a circuit description in terms of
reversible gates is derived, which in the second step is mapped to a quantum
circuit composed of gates from a given library. In these steps, reversible gates are
very general; e.g., often MCT gates are used for which the number of controls
is not restricted. More recently, also the use of MPMCT gates became common
practice. Quantum gate libraries are much smaller and usually consist of a few
gates which can act on at most 2 qubits. Two prominent quantum gate libraries
are the NCV gate library and the Clifford+T gate library. In particular, the
latter library is of significant interest in the design of quantum computers due
to its good properties in fault tolerant quantum computing. Minimal quantum
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circuit realizations are known for the 2-controlled Toffoli gate and are shown in
Figure 3.

For larger Toffoli gates a procedure from [4] is applied which, according to
Lemma 7.3 in [4], maps a reversible Toffoli gate with c ≥ 3 controls to a network
consisting of two identical gates with m controls and two other identical gates
with c − m + 1 controls, where m ∈ {2, . . . , c − 2} and each of them are placed
alternately. If no free line is available for the gate, a new helper line must be
added to the circuit. Its value is restored and hence can be reused afterwards.
Finally, each obtained gate is mapped according to Lemma 7.2 in [4]. As a result,
all Toffoli gates have at most 2 control lines. At this point, the mapping given
in Figure 3 can be applied.

Example 3. The procedure is illustrated in Figure 4 for a Toffoli gate with six
control lines. The first circuit depicts the result after the application of Lemma
7.2 in [4], while the second network sketches the obtained circuit from the decom-
position of the first gate in the dashed rectangle after applying Lemma 7.3 in [4].

So far, there is no mapping approach into quantum circuits that directly
targets the single-target gates as it is done for the MPMCT gates. To map
single-target gates, we aim to decompose them into MPMCT gates so that we
can afterwards map each obtained MPMCT gate using the approach explained
above.

The mapping of a single-target gate to an MPMCT cascade is so far done by
computing the xor decomposition of its controlling function, then each cube in
the obtained expression is represented by an MPMCT gate.

Many other Boolean decompositions do exist and have shown good effi-
ciency [14]. Motivated by this, we want to study the impact of applying different
kinds of Boolean decompositions while mapping single-target gates to MPMCT
gates, i.e., unlike the standard mapping, we will not restrict the decomposition
to xor but also to bi-decomposition, Ashenhurst, and Curtis decomposition.

4 Mapping of Single-Target Gates

This section describes how Boolean decomposition can be applied to map
reversible circuits composed of single-target gates into quantum circuits. Only
the Young subgroup synthesis, for both the truth table based variant [6] and the
BDD-based variant [7], makes use of single-target gates, however, due to the com-
plexity of reversible circuits based on Toffoli gates (see, e.g., [17]) single-target
gates are a preferable choice especially for large circuits.

Figure 5 shows how the functional decomposition of a single-target gate’s
control function can be used to generate less complex circuits. In the following we
assume that the control function of the single-target gate that should be mapped
depends on the variables x1, . . . , xn−1. Figure 5(a) shows the mapping approach
for a disjoint Ashenhurst-Curtis decomposition. The variables are partitioned
into four sets of variables represented as bit-vectors x1, x2, x3, and x4. First,
the inner functions g1, g2, and g3 are computed and each of their results is
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Fig. 5. Different types of decomposition

stored on an additional helper line that is initialized with a constant 0 value.
Having the resulting values on these lines the outer function can be computed
and afterwards the constant values on the helper lines are restored by reapplying
the inner functions.

Figures 5(b) and (c) show non-disjoint bi-decompositions based on the and

and or operation, respectively. The sub-function f depends on variables in x1

and x2 and the sub-function g depends on variables in x2 and x3. As can be seen,
the construction follows the representation of the Ashenhurst-Curtis decompo-
sition in Figure 5(a). Whether a decomposition is disjoint or non-disjoint does
not have an effect on the circuit construction but only on the size of the single-
target gates in terms of their support. Also, a decomposition based on the mux

operation can analogously be performed by adding an extra helper line (see
Figure 5(d)).

When using bi-decomposition based on the xor and xnor operator, one can
update the target line directly as can be seen in Figures 5(e) and (f).
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The remainder of this section discusses an example application of the app-
roach illustrated in Figure 6. The starting point is a single-target gate that is
controlled by a control function

f(x1, x2, x3, x4) = x̄1x̄2x̄3x̄4 ∨ x̄1x2x̄3x4 ∨ x1x̄2x3x̄4 ∨ x1x2x3x4

as also illustrated in its specification.
Decomposing the single-target gate using the standard mapping requires

finding an ESOP representation of the function. Since f is given in terms of
its minterms, it already resembles an ESOP representation. However, one can
obtain a smaller one in terms of literals by applying ESOP minimization tech-
niques finally resulting in the Toffoli gate cascade depicted in the upper box of
Figure 6. The circuit consists of 4 Toffoli gates each having 2 controls. Mapping
it into quantum circuits using the algorithm presented in [4] gives quantum costs
of 21 for the NCV gate library (see Figure 3b and note that a Toffoli gate with
two negative controls requires at most 6 NCV gates) and a T -depth of 12 when
using the Clifford+T gate library. Each Toffoli gate has a T -depth of 3 as it is
depicted in Figure 3c.

Applying our proposed flow will first find a disjoint bi-decomposition

f(x1, x2, x3, x4) = g(x1, x3) ∧ h(x2, x4)

with g(x1, x3) = x1 ↔ x3 and h(x2, x4) = x2 ↔ x4. Next, each of the resulting
single-target gates controlled by g and h are mapped to Toffoli cascades as it
is shown in the reversible circuit, each ST gate has two Toffoli gates with only
one control while the last gate computes the and of both sub-functions using a
Toffoli gate with two controls. Finally, the resulting reversible circuit is mapped
to a quantum network with the same algorithm used in the standard flow. The
number of NCV gates of the resulting circuit is 9 (compared to 21) and the
T -depth is 3 (compared to 12).

5 Experimental Evaluation

In order to confirm the benefits of incorporating the Boolean decomposition tech-
nique into the mapping flow of reversible circuits to quantum circuits described
in Section 4, we have implemented the proposed idea in the open source toolkit
RevKit [19]. The starting point is reversible circuits obtained from applying the
BDD-based version of the Young subgroup synthesis [7], which creates reversible
circuits composed of single-target gates1. We used the bds-pga tool [20] to
decompose each control fucntion of a single-target gate to smaller ones. We
restricted the decomposition of each single-target gate to at most 3 smaller
single-target gates to limit the use of additional lines to at most 3. To map the
resulting smaller gates into cascades of Toffoli gates we used the xor minimiza-
tion algorithm implemented in exorcism [21]. Finally, we applied the quantum
1 Benchmarks were taken from http://webhome.cs.uvic.ca/∼dmaslov/ and http://

www.revlib.org

http://webhome.cs.uvic.ca/~dmaslov/
http://www.revlib.org
http://www.revlib.org
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mapping algorithm explained in[4]. The experimental evaluation has been carried
out on an Intel Core i5 processor with 4 GB of main memory.

Table 1 summarizes the obtained results. All benchmark names and original
lines are listed in the first and second column, respectively. Then, the number of
lines (l), the number of gates g, the NCV quantum costs (NCV), the T -depth
(td), the H-count (hc), and the required run-times (time) are provided for
the synthesized circuits based on standard mapping and the synthesized circuits
based on Boolean decomposition as explained in Section 4.

We provide absolute and relative improvement in the last two columns for
quantum costs in terms of the NCV and the Clifford+T gate libraries. The NCV
quantum cost reductions and its relative improvement of the circuits obtained
by the proposed technique with respect to the realized circuits without tak-
ing into account the Boolean decomposition are given in the columns denoted
by Δncv and Imp.ncv, respectively. The procedure presented above yields cir-
cuits with lower NCV quantum cost comparing to circuits obtained by standard
mapping. The table shows a percentage improvement in terms of NCV quantum
cost by approx. 16%. In the best case improvements of up to 67% are observed
(cycle10 2 61 ).

The T -depth cost reductions and its relative improvement are provided in the
columns denoted by Δtd and Imp.TD, respectively. Also for this gate library
realizations with fewer T -depth are obtained when our technique is applied. On
average, the size of the resulting quantum gate cascades was decreased by 20%. In
the best cases, reductions of up to 47916 in the T -depth for the benchmark bw 116
are obtained.
Remarks and Observations. When applying the bds-pga tool to find a
decomposition for a Boolean function that controls a single-target gate, it first
searches for an algebraic decomposition and only looks for a Boolean decompo-
sition if the first attempt is not successful. This process is done recursively for
each resulting sub-function until Boolean functions with at most 2 inputs are
reached. We adapted the tool such that recursion stops after maximum three
decompositions in order to keep a reasonable number of additional lines.

We refer to the common set as the intersection of bound set and free set
in Ashenhurst-Curtis decompositions and as the intersection of supports in bi-
decompositions. We have observed that for large common sets the results of the
standard mapping approach outperforms our approach. To ensure good results,
we only decomposed functions with a small common set.

We further noticed that bi-decompositions based on xor and xnor are less
effective compared to the standard mapping since exorcism finds efficient ESOP
representations. Consequently, we adapted the bds-pga tool such that it does
not try to find bi-decompositions based on xor or xnor.

Finally, factorization with respect to a single variable can usually not improve
the overall result since the incorporation of the variable on the helper line does
not minimize the functional support. We have therefore turned off that option
in the bds-pga tool.
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To summarize, we looked for function decompositions with a small common-
set and allowed bi-decompositions only for the or, and, and mux operator.

6 Conclusions

In this work, we proposed a mapping approach that starts with single-target
gates and therefore significantly differs from the standard mapping approach that
has been state-of-the-art for the last two decades. We observed that incorporating
Boolean decomposition in the mapping process of single-target gates often leads
to better quantum realizations. Motivated by this, we introduced an improved
mapping scheme which uses a constant number of ancillary lines and exploits the
Boolean decomposition when generating the quantum gate cascades for a given
single-target gate. Including our approach results in quantum circuits with a
smaller NCV quantum cost as well as a lower T -depth cost comparing to standard
mapping results.
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Abstract. Hardware Description Languages (HDLs) allow for the effi-
cient synthesis of large and complex circuits. Consequently, researchers
also investigated their potential in the domain of reversible logic. Here,
existing HDL-based synthesis approaches suffer from the significant
drawback of employing additional circuit lines in order to buffer inter-
mediate results. In this work, we investigate the possibility of reducing
this overhead. For this purpose, an alternative synthesis scheme is pro-
posed and evaluated which aims at a more efficient realization of expres-
sions. The general idea is to re-compute (i.e to undo) sub-expressions
as soon as the respective intermediate results are not needed anymore.
The observations and discussions result in initial guidelines on how to
realize expressions more efficiently as well as a better understanding of
the potential of HDL-based synthesis.

Keywords: Reversible circuits · Synthesis · Hardware description lan-
guages · Optimization

1 Introduction

Motivated by applications e.g. in quantum computation [1], low-power design [2],
or encoder and decoder design [3], research in the design of reversible circuits
received significant interest. In the past decade, some substantial progress has
been achieved in the development of corresponding (automated) design methods.
This led to a variety of design solutions for a wide range of design tasks such as
synthesis (see e.g. [4–8]), optimization (see e.g. [9,10]), verification (see e.g. [11,
12]), debugging (see e.g. [13]), and even automatic test pattern generation (see
e.g. [14,15]).

Each design scenario results in a different circuit with equivalent functionality
but with different cost parameters. In general, reversible circuit designers tend
to synthesize circuits with a minimum number of lines. This is mainly motivated
by the possible applications of reversible circuits in the domain of quantum
computing, where circuit lines (realized by so-called qubits) are a very limited
resource [1]. However, circuits with a minimal number of lines can, thus far, only
been guaranteed by approaches that rely on Boolean/truth-table like synthesis
c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 233–247, 2015.
DOI: 10.1007/978-3-319-20860-2 15
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approaches (e.g. [4–6]). These methods expand exponentially depending on the
number of circuit inputs, which lead to the fact that these methods are practically
applicable for simple design problems with a limited number of input signals only.

Investigating design flows that scale better and have the ability to han-
dle complex systems with hundreds of input signals led to the hierarchical
design approaches based on Hardware Description Languages (HDLs). SyReC
is a reversible HDL, which has been introduced to facilitate the description of
reversible circuits by means of simple high level codes [16]. A corresponding syn-
thesis scheme showed the ability to describe and synthesize complex functionality
such as a reversible CPU[17].

However, a major drawback of this approach is that it requires a significant
number of additional circuit lines. These additional lines are used to buffer inter-
mediate results needed in order to realize entire HDL-statements. Although first
approaches aiming at the reduction of additional lines in HDL-based circuits
have been introduced [18], they mainly focused on the realization of entire state-
ments. However, further potential exists when also the realization of expressions
(used in statements) are considered. This is motivated in more detail later in
Section 3.

In this work, we investigate the possibility of improving the realization of
expressions within the HDL-based synthesis of reversible circuits. The general
idea is to re-compute (i.e. to undo) intermediate results of expressions as soon
as they are not needed anymore. While this basically continues the idea of the
“reversible undo” to the circuit realization of expressions, it also leads to new
questions on how to realize the respective expressions in detail. Hence, we discuss
some of the respective cases and provide suggestions on how to handle them
best. Experimental case studies confirm the findings. This eventually provides
new insights as well as ideas on how to improve HDL-based synthesis in general
and leads to a better understanding of the remaining potential.

The remainder of this paper is structured as follows. The next section briefly
reviews the background on reversible circuits, the HDL considered here, as well
as the corresponding HDL-based synthesis scheme. Section 3 provides a motiva-
tion of this work and illustrates the general idea which, eventually, leads to an
improved HDL-based synthesis scheme proposed in Section 4. Observations and
discussions on the applicability of the proposed approach are given in Section 5.
This is finally confirmed by an experimental case study summarized in Section 6
before the paper is concluded in Section 7.

2 Background

This section briefly reviews the basics on reversible circuits, a reversible HDL,
as well as the corresponding HDL-based synthesis. It provides the necessary
background to keep the paper self-contained.
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0 s

cin cout

a −
b −

g1 g2 g3 g4 g5

Fig. 1. Reversible circuit realizing a full adder

2.1 Reversible Circuits

Reversible circuits realize functions f : IBn → IBn with a unique input/output
mapping, i.e. bijections. A reversible circuit G = g1 . . . gd is composed as a
cascade of reversible gates gi [1]. The inverse of G (representing the function f−1

and denoted by G−1) can be obtained by cascading g−1
d g−1

d−1 · · · g−1
1 , where g−1

i

is the inverse gate of gi. Since the self-inverse Toffoli and Fredkin gates are
considered in this paper (see below), gi = g−1

i holds and, thus, G−1 can simply
be obtained by reversing the order of the gates of G.

For a set of Boolean signals X = {x1, . . . , xn}, a reversible gate has the
form g(C, T ), where C = {xi1 , . . . , xik} ⊂ X is the set of control lines and
T = {xj1 , . . . , xjl} ⊆ X with C ∩T = ∅ is the non-empty set of target lines. The
gate operation is applied to the target lines if, and only if, all control lines meet
the required control conditions. Control lines and unconnected lines always pass
through the gate unaltered.

In the literature, several types of reversible gates have been introduced.
Usually, circuits realized by Toffoli gates and Fredkin gates are considered.
A Toffoli gate has a single target line xj and uniquely maps the input
(x1, x2, . . . , xj , . . . , xn) to the output (x1, x2, . . . , xi1xi2 · · ·xik⊕xj , . . . , xn). That
is, a Toffoli gate inverts the target line if, and only if, all control lines are assigned
the logic value 1. A Fredkin gate has two target lines xj1 and xj2 and interchanges
their values if, and only if, the conjunction of all control lines evaluates to 1.

By definition, reversible circuits can only realize reversible functions. In order
to realize non-reversible functions, additional circuit lines with constant inputs
and garbage outputs (i.e. don’t care outputs) are applied (see e.g. [19,20]). Fur-
thermore, additional circuit lines are also used frequently in hierarchical synthesis
approaches (e.g. [7,16]).

Example 1. Fig. 1 shows a reversible circuit realization of a 1-bit adder. Black
circles represent control lines while ⊕ and × represent the target lines of a Toffoli
and Fredkin gate, respectively. Since the adder is a non-reversible function, one
additional circuit line is used to realize this function as a reversible circuit. The
gates g1, g2, g4, and g5 are Toffoli gates, while the gate g3 is a Fredkin gate.

2.2 Reversible HDL

A major motivation of research in the domain of reversible circuit synthesis is
the strive for a better scalability in order to enable the efficient design of complex
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1 module example(in a(16), in b(16), in c(16), out f(16))
2 wire x(16)
3 x ˆ= (a & b)
4 x += (((a * b) + (a / b)) - ((a + c) / b))
5 f ˆ= (((x + b) ˆ c) * ( a - b ))

Fig. 2. Simple SyReC program example

functionality. Consequently, HDLs became a focus of ongoing research. A first
version of an HDL for reversible circuits named SyReC has been introduced
in [16]. SyReC is based on the reversible software language Janus [21], which
has been enriched by further concepts (e.g. declaring circuit signals of different
bit-widths), new operations (e.g. bit-access and shifts), and some restrictions
(e.g. the prohibition of dynamic loops). In the following, we briefly review the
main concepts of this HDL by means of Fig. 2 which depicts a simple SyReC
specification1.

This simple example shows that an HDL-circuit is described as a module. A
module declaration starts by naming the module and, then, declaring the port
signals for this module as in Line 1. This signal list associates each signal name
with a type (i.e. in/out) and a bit-width (16 in the example above). Internal wire
signals are defined within the scope of the module (Line 2) and are intermedi-
ately used to simplify the internal description of a module. These signals are
transparent outside of the module. All signals represent non-negative integers
or, in case of bit-width of 1, a Boolean.

A variety of statements and expressions are available to specify the func-
tionality of the circuit without losing reversibility. Because of this, direct signal
assignments of the form (x = a) are not allowed (as this would lead to a loss of
the original value of x and, hence, will make the computation non-reversible).
Consequently, signal assignments are restricted to so-called reversible assign-
ment operations, i.e. the operations increase (+=), decrease (-=), and bit-wise
XOR (ˆ =). These operations preserve the reversibility (i.e. it is possible to
compute these operations in both directions) and they are generally denoted
by ⊕ =.

In contrast to the reversible operations, binary operations (denoted by �)
which are not necessarily reversible (e.g. arithmetic, bit-wise, logical, or relational
operations) and to be used only in right-hand expressions which preserve the val-
ues of the respective inputs. In doing so, all computations remain reversible since
the input values can be applied to reverse any operation. For example, to specify
the AND-operation in Line 3, a new free signal x in combination with a reversible
assignment operation is applied. That results in the statement x ∧ = (a&b). All
binary operations are written in the form: (Operandleft � Operandright). An
Operand can be a simple signal, an integer, or even another expression that has
1 For a more detailed treatment, we refer to [16] as well as to the detailed documen-

tation provided at the RevLib benchmark webpage [22].
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a
a⊕=b � c⊕

0 0Gb�c G−1
b�c

b b

c c

b. Garbage free

a a⊕=b � c⊕
0 −Gb�c

b b

c c

a. With garbage

Fig. 3. Synthesis scheme

the same form. Nesting binary operations in such hierarchy, gives SyReC the
ability to generate complex functions out of this basic set of binary-operators.

2.3 HDL-Based Synthesis

In order to automatically synthesize the resulting designs, a hierarchical synthesis
method is applied [16]. That is, existing realizations of the individual operations
(i.e. building blocks) are combined so that the desired circuit is built. Fig. 3a
illustrates the resulting scheme for the (generic) statement a ⊕= (b � c). The
⊕-block (�-block) denotes thereby a building block for a reversible assignment
operation (expression). Solid lines that cross the box represent the signals on
the right-hand side of the statement, i.e. the signals whose values are preserved.

More precisely, the following two steps are performed:

1. Compose a sub-circuit G� realizing all the right-hand side expressions in the
statement. For this purpose, use the respective building blocks. The result of
the expression is buffered by means of additional circuit lines with constant
input values.

2. Compose a sub-circuit G⊕ realizing the overall statement using the existing
building blocks of the statement itself together with the buffered results of
the expressions.

Obviously, this procedure leads to a significant number of additional circuit
lines (and corresponding garbage outputs), since new circuit lines with constant
values have to be introduced for each statement. Hence, an alternative has been
evaluated in [18] where partial results (buffered in additional circuit lines) are
inversely re-computed as soon as they are not needed anymore. This process
(also called reversible undo) yields the original (constant) values on the already
existing circuit lines which can be re-used e.g. in order to realize the following
statements. More precisely, the synthesis scheme reviewed above is extended by
a third step (see also Fig. 3b):

3) Add the inverse circuit from Step 1, i.e. G−1
� to the circuit in order to set

the circuit lines buffering the result of the right-hand side expressions back
to the constant 0.
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0 0
⊕ ⊕ ⊕

� � � � � �

6 5
1 1 6 6 4 4

2 6

Fig. 4. Effect of the expression size

In other words, the first sub-circuit Gb�c ensures that the right-hand side
expression is realized, sub-circuit Ga⊕=b�c ensures that the entire statement is
realized, and sub-circuit G−1

b�c sets the circuit lines buffering the result of b � c
back to the constant 0.

3 Motivation and General Idea

Following the synthesis scheme reviewed in Section 2.3, the number of addi-
tionally required lines for the entire circuit depends on the statement with the
“largest” expression. This is illustrated by means of the following example.

Example 2. Consider a sequence of three statements to be synthesized. Addi-
tionally, assume that 1, 6, and 4 circuit lines are needed to realize the respective
expressions. Then, in total max{1, 6, 4} = 6 additional circuit lines are needed to
realize the respective circuit. Fig. 4 illustrates how these circuit lines are applied.

However, in many cases, even large expressions can be realized with a signif-
icantly smaller number of lines. To this end, consider the realization of arbitrary
expressions. Expressions can be formulated as a variety of combinations of binary
operations � over circuit signals and (nested) sub-expressions. Each expression
can thereby be represented as a binary-tree, where each node represents a binary
operator which receives two inputs (operands) and buffers an output. The root
node represents the entire expression, while the leafs represent the circuit sig-
nals. Obviously, it is impractical to provide a building block for each and every of
such combinations. Hence, only building blocks (denoted by GO) for each binary
operation O are provided. Then, an expression E is realized by cascading the
respective building blocks for each binary operation � of E. For this purpose,
additional circuit lines are required in order to buffer the respective intermediate
results. The eventually resulting circuit is denoted by GEi

, whereby i denotes
the index of the root node of the expression E. This circuit requires a total of
(k×w) additional circuits lines in order to buffer the intermediate results of the
binary operations, whereby w denotes the bit-width of the circuit signals and k
is the number of binary-operations (nodes) in the expression.

Example 3. Consider the expression E=(((a * b) + (a / b)) - ((a + c) / b))
which has been taken from Line 4 of the SyReC code shown in Fig. 2 and is com-
posed of six binary expressions over 16-bit signals. The binary tree for this expres-
sion is shown in Fig. 5. Each node represents a binary operation (enumerated
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Eleft Eright

E6

a b a b a c b

−O6

+O3 /
O5

∗
O1

/

O2

+

O4

Fig. 5. The binary tree for the expression in Fig. 2 Line 5

from O1 to O6) to be realized using the respective building blocks (i.e. GO1 , . . . ,
GO6). This leads to a reversible circuit GE6 = GO1 GO2 GO3 GO4 GO5 GO6 which
requires a total of 6×16 = 96 additional circuits lines in order buffer the respective
intermediate results.

When realizing such an expression, it is obvious that, eventually, only the
result of the root operation is of interest. Circuit lines storing intermediate results
can be re-computed back to their initial (constant) value as soon as they are not
required anymore. Then, those lines would, in principle, be available to store
other intermediate results needed in order to compute the overall expression.
As a consequence, even large expressions could be realized with a significantly
smaller number of additional circuit lines compared to the currently applied
synthesis scheme. Again, this is illustrated by means of an example.

Example 4. Consider again the expression E = (((a * b) + (a / b)) - ((a + c) / b))
from Example 3, which contains 6 operations. The actually desired result of the
root operation (the subtractionO6) is obtained using the intermediate results from
the sub-expressions Eleft = ((a * b) + (a / b)) and Eright = ((a + c) / b). The
left sub-expression is realized as GEleft

= GO1 GO2 GO3 which requires a total of
3 × 16 = 48 additional circuit lines. However, once this sub-expression is realized
and its result is buffered, the intermediate results of operations O1 and O2 are not
needed anymore and can be recomputed back to their initial (constant) value –
resulting in a circuit G

′
Eleft

= GO1 GO2 GO3G
−1
O2

G−1
O1

. By this, 32 circuit lines
with constant values become available and can be used in order to realize the right
sub-expression. The entire expression E is then realized as

GE6 = G
′
Eleft

GEright
GO6 = GO1 GO2 GO3 G−1

O2
G−1

O1
GO4 GO5 GO6

and requires a total of 64 additional circuit lines (a significant reduction compared
to the 96 additional circuit lines needed in Example 3).

Note that, in the following, we denote (sub-)circuits which immediately re-
compute all not needed intermediate results back to the initial (constant) value
by G

′
.
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In this work, we are aiming for investigating this potential in more detail.
For this purpose, we propose a revised synthesis scheme for hardware description
languages which re-computes circuit lines buffering intermediate results back
to their initial (constant) value as soon as the respective intermediate value is
not needed anymore. Afterwards, the effect as well as the possibilities of these
changes in HDL-based synthesis are discussed in Section 5 and experimentally
evaluated in Section 6.

4 Line-Aware Synthesis of Expressions

Left and right operands in a binary expression E are independently considered
as shown in Fig. 5. Therefore, they can be synthesized as two different building
blocks GEleft

and GEright
, respectively. Afterwards, the corresponding results are

fed to the building block GOk
realizing the root-operation Ok. Now, realizing the

left sub-expression not according to the original synthesis scheme (i.e. as GEleft
),

but according to the ideas sketched in the previous section (i.e. as G
′
Eleft

), circuit
lines applied in order to store intermediate results from Eleft can be re-used for
the realization of Eright. Then, the overall expression E can be realized as follows:

GEk
= G

′
Eleft

GEright
GOk

This scheme can recursively be applied for all sub-expressions eventually leading
to the following (proposed) synthesis procedure:

Given An expression E to be realized,
An indication whether a circuit G or a circuit G

′
shall be realized

1. IF (E is a circuit signal only), THEN terminate the execution of this
algorithm (base case of the recursion).
ELSE, consider E = Eleft � Eright with � being the root-operation Ok

realized by GOk
.

2. Recursively invoke this algorithm for expression Eleft in order to generate
a sub-circuit G

′
Eleft

realizing the left-operand.
3. Recursively invoke this algorithm in order to to generate a sub-circuit

GEright
realizing the right-operand.

4. Combine the resulting sub-circuits to the following cascade:
G := G

′
Eleft

GEright
GOk

5. IF a circuit G′ shall be realized THEN, re-compute intermediate results
by adding the respective building blocks in a reverse fashion, i.e. extend
the circuit to the following cascade:
G

′
:= G G−1

Eright
G

′−1
Eleft

5 Observations and Discussion

Having the scheme proposed in the previous section, a detailed analysis and dis-
cussion on the potential of re-computing intermediate results as soon as possible
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can be conducted. This section is devoted to that. More precisely, several cases
are discussed showcasing when the application of the proposed algorithm is ben-
eficial and when it may turn out to be disadvantageous. This can be used to get
inspirations for best practices as well as an understanding of the characteristics
that apply when synthesizing HDL descriptions as reversible circuits.

5.1 Reducing the Number of Lines Is Not Always Rewarding

The ideas in the proposed synthesis scheme are based on the desire of reducing
the number of lines in the resulting circuit. The total number of additionally
required circuit lines is still bounded by the number of lines required for synthe-
sizing the largest statement. Hence, improving the number of lines for a “smaller”
statement does not really help in reducing the total number of lines in the cir-
cuit. Moreover, reducing the number of lines for this smaller statement leads to
additional circuit costs, since re-computing intermediate results is conducted by
adding further building blocks in a reverse fashion.

Example 5. Consider again the program from Fig. 2 as well as the sketch of its
realization in Fig. 4. As can be seen, the statement in Line 4 has the largest
expression and would require 6 additional circuit lines when synthesized using
the original synthesis approach2. The statement in Line 5 has the second-largest
expression and would require 4 additional circuit lines.

Now, if the synthesis approach proposed in Section 4 is applied in order to
realize the largest expression, a reduction from 6 additional circuit lines to 4
circuit lines can be achieved. This is worthwhile as it indeed reduces the total
number of circuit lines required for the entire circuit. However, applying the
same scheme in order to improve the the second-largest expression does not lead
to further global reductions. Although the expression itself could be realized
with 3 rather than 4 additional circuit lines, the number of lines for the entire
circuit would not change. Moreover, this reduction would increase the number
of building blocks required for re-computing. Hence, this expression should be
realized using the original synthesis scheme.

5.2 The Shape of the Expression Tree Has an Impact

In contrast to the original synthesis scheme (reviewed in Section 2.3), the pro-
posed synthesis scheme from Section 4 depends on the operation precedence
within the expression. In the worst case, the proposed procedure results in the
same result as when the original scheme would have been applied. This worst
case occurs whenever all operations in the expression have a primary value (i.e. a
signal or a number) as an operand. Then, the circuit lines can not be re-used
until the root operation is calculated. In this case, a circuit with a linear num-
ber of lines results, i.e. with k additional circuit lines and k building blocks (k
2 Note that the number of circuit lines has to be multiplied by the bit-width w of the

circuit signals, however, is assumed to be constant and, hence, omitted for sake of
clarity.
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Fig. 6. Expressions with seven multiplication in different orders of precedence

being the number of operations). An example of such case is shown in Fig. 6a.
This case occurs when the precedence of operations is ordered either from left
to right, or vice versa.

On the other hand, an expression which can be represented by a completely
balanced tree can be realized with a logarithmic number of lines. Then, both
operands always require the same number of lines which can frequently been re-
computed and, hence, re-used. However, as already mentioned above, this comes
with the price of larger gate costs as additional building blocks are required3.
More precisely, this case would result in a circuit with 2 · (	log2(k + 1)
) − 1
additional circuit lines and 3(�log2(k+1)�−1) building blocks. An example of such
a case is shown in Fig. 6b.

The best case, which shows the biggest potential for the proposed procedure
with respect to the number of lines, is observed when, for all the stages of the
expression, the right operand requires exactly one circuit line less than the left
operand. Then, the right operand can always reuse the buffers lines from the left
operand and does not need to allocate an own one. An example of such a case
is shown in Fig. 6c. The number of resulting circuit lines for this best can be
approximated by the function f(n) = f(n− 1) + f(n− 2) + 1, whereby f(0) = 0
and f(1) = 1 (this sequence is related to the Fibonacci sequence), for example, if
there are n = 6 lines, then f(6) = 20, i.e. an expression arranged in the best case
with up to 20 operations, can be calculated by using 6 lines. With increasing
k, the reduction ratio in the number of lines becomes even better – although,
it is, practically, unlikely for such a single expression to occur in typical HDL
statements.

Example 6. The following three expressions are actually equivalent to each other,
each has 7 multiplication operations and the result is simply the product:

1. (((((((a ∗ b) ∗ c) ∗ d) ∗ e) ∗ f) ∗ g) ∗ h)
This case represent the worst case. It requires 7 additional circuit signals
and requires 7 cascaded blocks to be realized.

3 In this sense, the proposed synthesis scheme goes in line with previous observations
on the trade-off between circuit lines and gate costs as e.g. conducted in [23].
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2. (((a ∗ b) ∗ (c ∗ d)) ∗ ((e ∗ f) ∗ (g ∗ h)))
This case is the completely balanced case, which requires 5 additional circuit
signals, but 9 cascaded blocks.

3. ((((a ∗ b) ∗ c) ∗ (d ∗ e)) ∗ ((f ∗ g) ∗ h))
This case is the best case where only 4 additional circuit signals are sufficient
to realize the circuit by cascading 12 basic blocks.

For a designer writing HDL programs to be synthesized as a reversible circuit, it
is important to be aware of the synthesizer features when writing the expression
in order to write expressions, whenever possible, in the way that result in better
circuits.

5.3 Exchanging the Sub-expressions Has an Impact

As long as the left and right sub-expressions of an expression E are calculated
independently, it is possible to exchange the order by which the respective sub-
circuits are synthesized. This can be exploited when the right sub-expression
requires a larger number of additional circuit lines for buffering intermediate
results. Then, the expression E should be realized as G := G

′
Eright

GEleft
GOk

.
This has a slight benefit (precisely one signal is saved) compared to the orig-
inal order: If the larger sub-expression is realized first, more signals can be
re-computed. One of them can be used to buffer the result of the larger sub-
expression. This signal is not needed to realize the other sub-expression since, as
assumed before, this sub-expression is smaller. Because of the recurrent nature
of the procedure, this one line reduction can be accumulated and result in a
tangible reduction in the number of lines.

If the two expressions require the same number of signals, then no improve-
ment with respect to the number of signals can be gained. Nevertheless, even then
it might be beneficial to switch the sub-expressions. In fact, the sub-expression
realized first is subject to an early re-computation. This gets more expensive for
more “costly” operations. Hence, in case both sub-expressions require the same
number of signals, the sub-expression with the “cheaper” building blocks should
be realized first. This is illustrated by the following example.

Example 7. Consider Eleft =((a*b)*(c*d)) and Eright =((a^b)^(c^d)). If
Eleft is synthesized first, a circuit G

′
Eleft

:= GO1 GO2 GO3 G−1
O2

G−1
O1

has to
be generated, i.e. five building blocks for multiplication are required. The right
sub-expression is then realized by GEright

:= GO1 GO2 GO3 , i.e. three building
blocks for the XOR operation are required. Exchanging the order would reverse
that, i.e. result in five building blocks for the XOR operation and three building
blocks for the multiplication. Since the realization of the multiplication requires
a more expensive building block compared to the realization of the XOR oper-
ation, this would result in a much cheaper circuit.

Note that if the realization of the sub-expression is switched, this exchange
must also be reflected in the respective re-computing cascade. That is, a corre-
sponding circuit would have to be defined as G

′
:= G G−1

Eleft
G

′−1
Eright

, i.e. again
with the right and left sub-circuit interchanged.
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6 Experimental Case Studies

In order to experimentally evaluate the proposed concepts as well as the con-
sidered cases, the proposed synthesis approach has been implemented in C++.
The resulting algorithm can be applied to various expressions and determines
the number of lines as well as the number of required building blocks of the
respectively resulting realization.

A main problem for the evaluation is that, thus far, not a very huge variety
of HDL descriptions which are useful for benchmarking are available.

Hence, we manually created an initial benchmark set composed of two types
of expressions which cover different cases, namely a polynomial factored form
and a majority function.

These cases offer properties allowing to evaluate the behavior of representa-
tions e.g. in terms of a balanced tree or in the best possible case as discussed in
Section 5.

In the following, the respective cases will explicitly be discussed. In addi-
tion to that, Table 1 provides a numerical summary. The first columns denote
thereby the name of the respective case (Case), its order (Order, i.e. the size
of the respective instantiation, and the number of operations in the resulting
expression (Op.). Afterwards, the number of additionally required lines (Lines4)
as well as the number of Blocks (Blocks) are provided for (1) the original synthe-
sis approach as reviewed in Section 2.3 (Orig. synth.), (2) the proposed synthesis
approach assuming the expression is/can be represented in terms of a balanced
tree (Balanced tree), and (3) the proposed synthesis approach assuming the
expression is/can be represented in the best case (Best case). In addition to the
absolute values, also the percentual difference to the original synthesis approach
is provided in columns labeled by %.

Already the numerical evaluation shows the potential of the proposed syn-
thesis approach. In fact, significant reductions in the number of lines can be
achieved. As discussed above, this comes at the price of an increased number
of building blocks. In this sense, the proposed synthesis scheme goes in line
with previous observations on the trade-off between circuit lines and gate costs
as e.g. conducted in [23]. More detailed discussions follow with respect to the
considered cases.

6.1 Polynomial Factored Form

The first case considers polynomials in the factored form, i.e. expressions of the
form

(x + a1)(x + a2) . . . (x + am),

where m is the order of the polynomial. This form contains (2×m−1) operations
and has been chosen to demonstrate a fully balanced-tree expression. In fact, this
4 Note that, again, the number of circuit lines has to be multiplied by the bit-width w

of the circuit signals which, however, is assumed to be constant and, hence, omitted
for sake of clarity.
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Table 1. Experimental case studies

Case Order Op. (k) Orig. synth. Balanced tree Best case
Lines Blocks Lines % Blocks Lines % Blocks

4 7 7 7 5 29% 9 5 29% 15
Factored Polynommial 8 15 15 15 7 53% 27 6 60% 41

16 31 31 31 9 71% 81 8 74% 205

Majority function 3 5 5 5 4 20% 7 4 20% 7
5 29 29 29 8 72% 102 8 72% 170

expression can be structured in a fashion so that sub-expressions of equal length
result. This allows to represent the entire expression in terms of a balanced-tree.
We can see from that the tendency to make both operands of the same size can
dramatically decrease the number of additionally required lines. Furthermore, it
can be noticed from Table 1 that the best case is not that much better in terms
of the number of lines. In contrast, this may lead to significantly higher cost
with respect to the needed building blocks.

6.2 Majority Function

The second case is considered in order to evaluate the algorithm on a logi-
cal expression that lacks the possibility to get represented either in form of a
balanced tree or a best case tree. This case is carried out with the majority func-
tion, i.e. a Boolean function defined to determine if the majority of inputs are
set to 1 or not. Two sub-cases are considered: the first is the majority of three
inputs which is defined in the sum-of-products form as (a&b)|(a&c)|(b&c) and
an according version for five inputs. For the first sub-case, this function shows
only a slight change in the number of additionally required circuit lines, while
the second sub-case unveils drastic reductions.

7 Conclusion

In this work, an alternative procedure for HDL-based synthesis has been pro-
posed which focused on a line-aware realization of expressions. The general idea
was to re-compute intermediate results as soon as they are not needed anymore.
By this, a significant amount of circuit lines can be saved. Nevertheless, the
applicability of the proposed scheme significantly depends on the respectively
applied expressions. Hence, we discussed possible cases and, by this, provided a
better insight into the possible potential. Experimental case studies confirmed
the findings. Future work will focus on the development of strategies for code
optimization, e.g. term rewriting techniques that best exploit the potential of
the proposed synthesis method. Besides that, how to reduce the number of
required building blocks and, hence, the resulting gate costs of the obtained
circuit remains an open issue to be addressed.
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Abstract. Quantum computing has been attracting increasing atten-
tion in recent years because of the rapid advancements that have been
made in quantum algorithms and quantum system design. Quantum
algorithms are implemented with the help of quantum circuits. These
circuits are inherently reversible in nature and often contain a sizeable
Boolean part that needs to be synthesized. Consequently, a large body of
research has focused on the synthesis of corresponding reversible circuits
and their mapping to the quantum operations supported by the quantum
system. However, reversible circuit synthesis has usually not been per-
formed with any particular target technology in mind, but with respect
to an abstract cost metric. When targeting actual physical implementa-
tions of the circuits, the adequateness of such an approach is unclear. In
this paper, we explicitly target synthesis of quantum circuits at selected
quantum technologies described through their Physical Machine Descrip-
tions (PMDs). We extend the state-of-the-art synthesis flow in order to
realize quantum circuits based on just the primitive quantum operations
supported by the respective PMDs. Using this extended flow, we evaluate
whether the established reversible circuit synthesis methods and metrics
are still applicable and adequate for PMD-specific implementations.

1 Introduction

Supporting the design of quantum circuits is one of the main applications of
reversible logic. Quantum circuits [1] promise to significantly speed up solu-
tions for computing problems of practical interest. This is enabled by quan-
tum mechanical properties, such as superposition and entanglement. Quantum
circuits execute a sequence of quantum operations. These quantum operations
are inherently reversible. Often, significant parts of a quantum computation
(e.g., database search [2] and modular exponentiation [3]) are Boolean in nature.
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Thus, leveraging existing reversible logic synthesis methods for implementing
those parts is an obvious first step.

Over the past few years, a popular synthesis flow has been to

– realize the desired functionality as a reversible circuit and
– map the resulting reversible circuit to an equivalent cascade of quantum

gates/operations.

A large body of research has been targeted at both these steps (e.g., reversible
circuit synthesis [4–9] and mapping to quantum circuits [10–13]). Most of these
methods target NOT, controlled-NOT, and controlled-V as the set of primitive
quantum operations. This set is popularly referred to as NCV and its use was
originally motivated by one of the first works on reversible-to-quantum circuit
mapping by Barenco et al. [10]. However, several new quantum systems have
emerged in recent years. The ARDA quantum computing roadmap [14] lists
some of them. These systems are described using Physical Machine Descrip-
tions (PMDs) [15]. They describe different technologies for the realization of
quantum circuits based on the respective quantum mechanical properties. More-
over, each PMD supports a specific set of primitive quantum operations. Thus,
mapping a quantum circuit to a PMD is not yet compatible with the established
synthesis flow that targets NCV-based circuit implementations only.

In this work, we investigate and evaluate the applicability of the state-of-
the-art NCV-based synthesis flow, which has emerged over the last 10-20 years,
for mapping quantum circuits to a particular PMD [15]. We first review today’s
established NCV-based synthesis steps. Then, we propose extensions to this flow,
e.g., mapping schemes from reversible circuits or NCV-based quantum circuits to
PMD-specific quantum circuits, and analyze the circuit cost. Finally, we perform
an experimental evaluation to a) compare synthesis flows with different exten-
sions and b) investigate whether the established synthesis methods and metrics
are still applicable and adequate for the PMD-specific circuit realization. This
can throw light on the drawbacks and provide potential for improvements in
quantum circuit synthesis.

The remainder of this paper is organized as follows. The next section briefly
reviews the basics of quantum and reversible circuits. Then, a review of the
PMDs targeted in this work is provided in Section 3. Section 4 describes the
synthesis flows. First, the state-of-the-art synthesis flow is discussed, followed by
its extension to a PMD-specific synthesis flow. Then, the cost metrics used in
the evaluation are described in Section 5. The evaluation and discussion follow
in Section 6 and the paper is concluded in Section 7.

2 Background

This section reviews the basics of quantum and reversible circuits.
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2.1 Quantum Circuits

First, we discuss the preliminaries of quantum logic. Quantum operations manip-
ulate qubits rather than classical bits. A qubit can represent 0 or 1 as well as
superpositions of the two. More formally:

Definition 1. A qubit is a two-level quantum system, described by a
two-dimensional complex Hilbert space. Two orthogonal quantum states |0〉 ≡ (

1
0

)

and |1〉 ≡ (
0
1

)
are used to represent Boolean values 0 and 1. The state of a qubit

may be written as |x〉 = α|0〉 + β|1〉, where α and β are complex numbers and
|α|2 + |β|2 = 1.

The quantum state of a single qubit is denoted by the vector
(
α
β

)
. The state

of a quantum system with n > 1 qubits is given by the tensor product of the
respective state spaces and can be represented as a normalized vector of length
2n, called the state vector.

According to the postulates of quantum mechanics, the evolution of a quan-
tum system can be described by a series of transformation operations satisfying
the following:

Definition 2. A quantum operation over n qubits can be represented by a uni-
tary matrix, i.e., a 2n × 2n matrix U = [ui,j ]2n×2n with

– each entry ui,j assuming a complex value and
– the inverse U−1 of U being the conjugate transpose matrix (adjoint

matrix) U† of U (i.e., U−1 = U†).

Every quantum operation is reversible since the matrix that defines any quantum
operation is invertible. At the end of the computation, a qubit can be measured,
causing it to collapse to a basis state. Then, depending on the current state of
the qubit, either a 0 (with probability |α|2) or a 1 (with probability |β|2) results.
The state of the qubit is destroyed by the act of measuring it.

Example 1. Consider the quantum operation H defined by the unitary
matrix H = 1√

2

(
1 1
1 −1

)
, which is the well-known Hadamard operation [1]. Apply-

ing H to the input state |x〉 =
(
1
0

)
, i.e., computing H×|x〉, yields a new quantum

state |x′〉 = 1√
2

(
1
1

)
. In |x′〉, α = β = 1√

2
. Measuring this qubit would either lead

to a Boolean 0 or Boolean 1, each with probability | 1√
2
|2 = 0.5. This computa-

tion represents one of the simplest quantum computers – a single-qubit random
number generator.

Complex quantum operations are usually realized by a quantum circuit, which
executes a series of elementary quantum operations using quantum gates. Such
a composition of gates can be expressed by a direct matrix multiplication of the
corresponding gate matrices. Alternatively, this process can be viewed as the
implementation of a quantum algorithm in which a series of low-level quantum
operations or quantum computational instructions is represented by a sequence
of individual transformation (i.e., gate) matrices.
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Fig. 2. A reversible circuit

Example 2. Consider the 3-qubit quantum circuit shown in Fig. 1. It realizes a
2-controlled NOT operation known as the Toffoli gate. More precisely, the basis
states of the third qubit are swapped if and only if the first and second qubits
are in the |1〉-state. Conventionally, horizontal lines represent qubits. Operations
H (as in Example 1), T with T =

(
1 0
0 eiπ/4

)
, (CNOT ), etc. are applied

successively from left to right.

Several libraries of quantum operations have been presented in the literature.
From a theoretical point of view, the set of arbitrary one-qubit gates (unitary 2×2
matrices) and a single 2-qubit gate, namely the controlled-NOT (CNOT ) gate,
is sufficient to approximate any quantum operation to an arbitrary precision [1].
However, the technologies that are actually used for the physical realization of
quantum circuits support a small subset of quantum operations only. This is
discussed in more detail in Section 3. Moreover, these technologies are much
more fault-prone than classical technologies since the phenomenon of quantum
decoherence forces the qubit states to decay – resulting in a loss of quantum
information. To address this issue, specific fault-tolerant (FT) quantum gate
libraries have been presented for the synthesis of quantum circuits.

2.2 Reversible Circuits

A special case of unitary matrices are permutation matrices. These matrices only
contain entries 0 and 1 (there is a single 1 in every row/column) and represent
classical reversible functions, i.e., Boolean functions f : Bn → B

n that map each
input pattern to a unique output pattern. In other words, reversible functions
are bijections that perform a permutation of the set of input patterns. A large
body of research has focused on synthesizing initial representations of reversible
functions, e.g., in terms of truth tables, two-level representations, binary deci-
sion diagrams, and permutation matrices, to reversible circuits [4–9]. These cir-
cuits commonly consist of a set of lines (corresponding to qubits) and reversible
gates. The most established type of reversible gates is the multiple-controlled
Toffoli (MCT) gate. MCT gates consist of a possibly empty set of control lines
and a single target line that is inverted if and only if all control lines carry the
value 1. Note that the MCT gate library also includes the special cases of NOT
(empty set of controls) and controlled-NOT (CNOT ) gates (singleton set of con-
trols). For historical reasons and for brevity, we will simply use Toffoli gate to
refer to the 2-controlled Toffoli gate.
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Example 3. Consider the reversible circuit shown in Fig. 2 that realizes a modulo
10 counter. More precisely, if the input – taken as a binary number dcba2 – is
less than or equal to (the decimal number) 10, then the output is incremented
and taken modulo 10, i.e., the output is ((dcba + 1)%10)2. For binary numbers
larger than 10, the circuit does not behave according to this formula. However,
it is clear that – due to reversibility – the output also has to be larger than 10.

It is a common phenomenon that, as in the previous example, reversible circuits
have a meaningful output only for a subset of the input patterns. This is because
many reversible functions are obtained by embedding an irreversible function
into a reversible one [16], by adding extra input/output lines in order to ensure
a bijective mapping.

3 Physical Machine Descriptions

The physical realization of quantum circuits is a difficult task – especially for
circuits with a large number of qubits [1]. It needs well-formed qubit states and
their transformation through the time-dependent Hamiltonian of the physical
system [1]. In general, a quantum circuit implements the unitary operator corre-
sponding to the Hamiltonian evolution of the qubit states. A quantum technology
describes a physical system for qubit realization and a set of primitive quantum
operations for realizing the Hamiltonian. A broad survey of quantum systems has
been conducted in the ARDA quantum computing roadmap [14]. This motivates
the consideration of Physical Machine Descriptions (PMDs) [15]. Each PMD is
different in terms of its quantum mechanical properties. This leads to different
Hamiltonians and, hence, a different set of supported (primitive) operations.

In this work, we target PMDs of six quantum systems, namely Quantum
Dots (QD), Superconducting Qubits (SC), Ion Traps (IT), Neutral Atoms (NA),
Linear Photonics (LP), and Non-linear Photonics (NP). In this section, we pro-
vide a brief review of these quantum systems1. Then, we summarize the primitive
quantum operations supported by the respective PMDs. This provides the basis
for a detailed consideration of synthesis issues in the remainder of this paper.
The targeted PMDs are described next.

– Quantum Dots (QD)
In this system, a qubit is defined by the spin state of a single-electron quan-
tum dot, which is confined by electrostatic potential. The desired quantum
operations are implemented by gating of the tunneling barrier between neigh-
boring dots [17].

– Superconducting Qubits (SC)
In a superconducting system, a qubit is simply represented by the two rota-
tion directions of the persistent super-current of Cooper pairs in a super-
conducting ring containing Josephson tunnel junctions [18]. The state of a
qubit is defined by a distribution of voltages or currents, each characterized
by an amplitude and phase, which are functions of time.

1 We keep the respective descriptions brief, but provide references for further reading.
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– Ion Traps (IT)
Ion-trap quantum computation can be implemented by confining a string of
ions in a single trap, exploiting their electronic states as qubit logic levels,
and using mutual Coulomb interaction for transferring quantum information
between ions [19].

– Neutral Atoms (NA)
A system of trapped neutral atoms is a good candidate for implementing
scalable quantum computing [20] [21]. That the atoms are neutral means that
they are feebly coupled to the environment. Hence, decoherence is minimized.
Trapped atoms can be cooled to the motional ground state of the quantized
potential wells, and the initialization of the internal atomic states can be
performed using standard techniques of laser spectroscopy. The different
qubit levels can be described by various motional and internal states of the
neutral atoms.

– Linear Photonics (LP)
In linear photonics, the qubits are represented by the quantum state of single
photons. Quantum logic gates can be constructed using only linear optical
elements, such as mirrors and beamsplitters, additional resource photons,
and triggering signals from a single-photon detector [22].

– Non-Linear Photonics (NP)
In nonlinear photonics, quantum logic gates are implemented using inter-
actions of photons with nonlinear photonic crystals. The photonic crystals
include layers of a Kerr medium [23] and, thus, perform a nonlinear shift of
the photonic wave function.

Each of the PMDs described above relies on a different quantum mechanical
property and, hence, a different set of supported (primitive) quantum operations.
Table 1 provides a list of supported one-qubit and two-qubit operations [15].
More precisely:

– Rx, Ry, and Rz realize rotations around the x, y, and z axis of the Hamil-
tonian, respectively. They are parametrized by a rotation angle θ. The cor-
responding matrices are

Rx(θ)=
( cos( θ

2 ) −i sin( θ
2 )

−i sin( θ
2 ) cos( θ

2 )

)
, Ry(θ)=

(cos( θ
2 ) − sin( θ

2 )

sin( θ
2 ) cos( θ

2 )

)
, and Rz(θ)=

(
e−i θ

2 0

0 ei θ
2

)
.

For FT implementations, the angle θ must be a multiple of π
4 [24].

– The Pauli operations σx (=NOT), σy, and σz (sometimes also denoted by
X, Y , and Z) are special cases of these rotations for θ = π (up to global
phase, i.e., a physically indistinguishable multiplicative factor).

– S =
(
1 0
0 i

)
and T =

(
1 0
0 eiπ/4

)
are special cases of the Rz gate with rotation

angle θS = π
2 and θT = π

4 , respectively (also up to global phase).
– Rxy and Asqu are multi-rotation gates with two parameters. For our purpose,

it is sufficient to know that Rx and Ry are special cases of Rxy and that Rz

rotations can be implemented by two Rxy rotations.
– In the case of two-qubit operations, it is sufficient to know about opera-

tions CZ and G, which perform phase shifts. CZ denotes the controlled-Z
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Table 1. Primitive quantum operations supported by different PMDs

PMD One-qubit operations Two-qubit operations

QD Rx, Rz, σx, σz, S, T CZ

SC Rx, Ry, Rz iSWAP , CZ

IT Rxy, Rz G

NA Rxy CZ

LP Rx, Ry, Rz, σx, σy, σz, S, T , H CNOT , CZ, SWAP , ZENO

NP Asqu, Rx, Ry, Rz, H CNOT

operation (defined analogously to the controlled-NOT operation). It is rep-
resented by the 4 × 4 diagonal matrix CZ = diag(1, 1, 1,−1), whereas the
parametrized G operation is represented by G(θ) = diag(1, eiθ, eiθ, 1).

These different PMD-specific sets of supported operations pose a significant
challenge for synthesis: mapping of the circuit has to be performed to each PMD
separately. Most existing synthesis methods do not target the gate libraries given
in Table 1. Hence, in the remainder of this paper, we address the question of how
we can utilize existing synthesis flows for the synthesis of PMD-specific quantum
circuits.

4 Synthesis Flow

Since synthesis of quantum circuits is a complex task, many (automatic) meth-
ods employ a synthesis flow that does not directly realize the given quantum
functionality, but employs a multiple-step approach. For this purpose, two main
characteristics are exploited, namely

– many important quantum algorithms, like Grover’s database search algo-
rithm [2] and Shor’s factorization algorithm [3], contain a considerable
reversible (Boolean) component that needs to be synthesized, and

– all quantum operations are inherently reversible.

Consequently, the quantum functionality of Boolean components is first realized
as a reversible circuit, rather than a quantum circuit. This significantly reduces
synthesis complexity. Besides, a huge variety of synthesis approaches is already
available (e.g., [4–9]). Then, the resulting reversible circuit is mapped to an
equivalent quantum circuit representation.

In this section, we first review this established synthesis flow and its cur-
rent assumptions. Then, we discuss how this flow can be extended to obtain
PMD-specific realizations that can be executed in the respective technologies.
A comparison of these different extensions at a theoretical level (with respect
to the resulting cost metrics) as well as through an experimental evaluation will
follow in Sections 5 and 6, respectively.
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Desired Functionality

Reversible Circuit (MCT)

Quantum Circuit (NCV)

Intermediate Circuit (NCT)

QD Circuit SC Circuit IT Circuit NA Circuit LP Circuit NP Circuit

(a)

(b)

PMD level optimization

(MCT2PMD)

(NCV2PMD)

Fig. 3. Synthesis flow for reversible circuits

4.1 State-of-the-Art Synthesis

The established synthesis flow for quantum circuits is sketched by solid lines
and boxes in Fig. 3. Starting with the desired functionality (e.g., provided in
the form of truth tables, two-level representations, binary decision diagrams, or
permutation matrices), the first step is to generate a reversible circuit realizing
the corresponding function (Step (a) in Fig. 3). A large body of research has
focused on this step [4–9].

In the following step, the resulting reversible circuit is mapped to an equivalent
quantum circuit representation (Step (b) in Fig. 3). The key to this task can be
found in the seminal work by Barenco et al. [10] for realizing the Toffoli gate at the
quantum level. This is done using the NCV library that is composed of

– NOT gates,
– controlled-NOT (CNOT ) gates, as defined in Section 2,
– controlled-V gates that are defined analogously, but, when activated, per-

form the operation V = 1+i
2

(
1 −i

−i 1

)
, and

– controlled-V† gates2 that realize the inverse operation V† = 1−i
2

(
1 i
i 1

)
.

Fig. 4 shows the mapping of the Toffoli gate (with two control lines) to the
NCV library. This mapping can be extended to MCT gates. A naive way to do
this would be to decompose the MCT gate into a cascade of Toffoli gates that
can, in turn, be mapped to the NCV library (Fig. 4). However, researchers have
come up with highly optimized, direct mapping of MCT gates to the NCV library
(e.g., [10–13]). These mapping methods have had a significant impact on how

2 Since two V gates or two V† gates in a sequence realize a CNOT operation, their
corresponding operation is usually called “the square root of NOT”.
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=
V V V †

Fig. 4. Quantum level decomposition of the Toffoli gate [10]

reversible circuits are optimized. In fact, the number of NCV gates required to
realize an MCT gate has become a major optimization criterion for the synthesis
of reversible circuits in Step (a). This has led to NCV library based quantum cost
to become a widely accepted cost metric for evaluating reversible circuits.

4.2 PMD-Specific Synthesis

Quantum circuits can be mapped to PMDs in a manner similar to how they are
mapped to the NCV library, i.e., actual synthesis is conducted at the reversible
circuit level whereas the desired PMD-specific circuit is obtained through a map-
ping scheme. Since PMD-specific mappings tend to create the potential for fur-
ther circuit minimization at the PMD level, another optimization step is usually
carried out at this level [15,24,25].

The above considerations lead to the synthesis flow for PMD-specific quan-
tum circuits sketched by dashed lines and boxes in Fig. 3. More precisely, the
mapping to PMD-specific circuits can be accomplished in two ways, namely by

– a mapping from a reversible circuit based on MCT gates (MCT2PMD) or
– a mapping from the NCV library based quantum circuit (NCV2PMD).

As neither the MCT nor the NCV library is directly supported by any of the
PMDs (see Table 1), both approaches eventually require a mapping scheme of
the respective gates from these libraries to the PMD level. However, since it is
already a challenging task to find corresponding mappings for gates operating
on a small number of qubits, we do not aim to obtain direct mappings for large
MCT gates with more than two control lines. Instead, we propose to employ
the decomposition of large MCT gates into cascades of Toffoli gates [10]. In
this way, an arbitrary MCT gate can be implemented using the reduced NCT
library composed of only NOT, Controlled-NOT, and Toffoli gates. With this
intermediate representation, a mapping to the PMD level is finally required for
only three gates (NCT). Moreover, these mappings can be reused to also generate
PMD-specific circuits from NCV representations – only one additional mapping,
namely for controlled-V gates, is required for this purpose3.

Mappings for the controlled-NOT, controlled-V, and Toffoli gates are shown
in Fig. 5, Fig. 6, and Fig. 7, respectively4. Note that the presented mappings
3 Note that mappings for the controlled-V† gate are not needed explicitly as they

can be derived by applying the corresponding mapping of the controlled-V gate in
reverse order and with inverted gates.

4 Mappings for the CNOT gate were presented earlier in [15], however, are shown
here for the sake of completeness.
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Fig. 7. Mapping of Toffoli gate to PMDs



258 P. Niemann et al.

Table 2. Gate counts of the mappings from Figs. 5-7

PMD NOT controlled-NOT controlled-V Toffoli

QD 1 5 6 18

SC 1 3 7 15

IT 1 5 6 15

NA 1 3 8 17

LP 1 1 7 13

NP 1 1 7 16

NCV 1 1 1 5

employ an FT quantum gate library [24]. Cheaper mappings are available when
dropping the FT implementation requirement [15]. However, as faults are a major
concern in quantum circuits, the use of FT quantum gates is important. To this
end, the FT gate library which we employ here is ideal to use with quantum
error-correcting (QEC) codes as it is closely related to the Clifford+T library
(as also discussed in [24]). In fact, some post-processing is necessary to use a
specific QEC code, but this is beyond the scope of this paper.

The above mappings enable the application of the two proposed schemes,
MCT2PMD and NCV2PMD, for the synthesis of quantum circuits for direct
execution on the corresponding PMD. We have summarized the respective costs
of single NCT/NCV gates for each PMD in Table 25. As can be seen, the costs
are significantly different across PMDs. Even more importantly, the actual costs
of implementing a CNOT , controlled-V, and Toffoli gate are up to a factor of
8 higher than in the case of the NCV library based quantum cost. The conse-
quences of these cost differences will be further analyzed in the following section.
Then, the efficiency of both schemes will be compared through an experimental
evaluation in Section 6.

5 Resulting Cost Metrics for MCT Circuit Synthesis

In the previous section, we proposed two different extensions to the state-of-the-
art synthesis flow to obtain quantum circuits that can be executed on particular
PMDs. More precisely, in the MCT2PMD scheme, MCT circuits are, first, trans-
formed to an intermediate representation in terms of NCT gates which are, then,
mapped step-by-step to their respective PMD implementations. In contrast, in
the NCV2PMD scheme, highly optimized NCV circuits are mapped directly to
the particular PMD.

We observed that the PMD-specific costs of NCV and NCT gates are sub-
stantially higher compared with the usually applied NCV library based quantum
costs. As a consequence, MCT gates – which are the actual input of both syn-
thesis schemes – are significantly more expensive when realized on PMDs and

5 Recall that an Rz rotation is implemented by two Rxy rotations in NA. Consequently,
an Rz operation has a gate count of 2.
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Table 3. PMD-specific cost metrics for MCT gates

MCT2PMD NCV2PMD

#Contr. N C T QD SC IT NA LP NP N C V QD SC IT NA LP NP

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 5 3 5 3 1 1 1 5 3 5 3 1 1

2 1 18 15 15 17 13 16 2 3 28 27 28 30 23 23

3 4 72 60 60 68 52 64 4 10 80 82 80 92 74 74

4 8 144 120 120 136 104 128 4 16 116 124 116 140 116 116

5 12 216 180 180 204 156 192 8 24 184 192 184 216 176 176

6 26 468 390 390 442 338 416 8 36 256 276 256 312 260 260

7 32 576 480 480 544 416 512 12 44 324 344 324 388 320 320

8 40 720 600 600 680 520 640 14 62 442 476 442 538 448 448

9 48 864 720 720 816 624 768 18 70 510 544 510 614 508 508

10 56 1008 840 840 952 728 896 20 88 628 676 628 764 636 636

the PMD-specific costs differ significantly for the various technologies. Hence, the
NCV library based cost metric is no longer valid for PMD-specific synthesis. This
poses a problem since NCV library based costs are commonly used in almost all
synthesis approaches aimed at generating MCT circuits. Consequently, it could
have a significant impact on the synthesis process if PMD-specific cost metrics
were used when synthesizing MCT circuits.

In fact, the two mapping schemes give rise to their own dedicated cost metrics,
as shown in Table 3. Here, the first column denotes the number of control lines
of the MCT gate. In the following columns, the costs for the MCT2PMD scheme
are given. In the first three columns, the required numbers of NOT, CNOT , and
Toffoli gates for realizing the corresponding MCT gate in the NCT library are
provided (based on the decomposition in [10]). Based on these numbers, PMD-
specific costs are computed using Table 2 and presented in the following six
columns. In the remainder of the table, this procedure is likewise performed for
the NCV2PMD scheme: first, the numbers of NOT, CNOT , and controlled-V
gates are obtained (based on the state-of-the-art mapping [12]) and, then, the
PMD-specific costs are computed and shown in the remaining columns.

Overall, the numbers indicate a significant difference between the two map-
ping schemes with a clear advantage for NCV2PMD. However, the actual dif-
ference between the two approaches and comparison with NCV library based
quantum costs need to be evaluated in practice, especially with respect to opti-
mization performed at the PMD level after technology mapping. This experi-
mental evaluation is conducted in the following section.

6 Experimental Evaluation

In this section, we summarize the experimental evaluations conducted using the
newly proposed synthesis flows: MCT2PMD and NCV2PMD. More precisely,
we investigate which of the two flows actually performs better. In addition, we



260 P. Niemann et al.

also evaluate the difference between the commonly used NCV library based cost
metric and the PMD-specific cost metrics presented in the previous section.

We synthesized various MCT circuits from the RevLib benchmark suite [26]
as PMD-specific quantum circuits using both flows. More precisely, we synthe-
sized medium-sized circuits with an NCV library based quantum cost in the 100
to 15,000 range, such that, on the one hand, the circuits are large enough to
enable a meaningful evaluation and, on the other hand, are still amenable to the
application of highly elaborate NCV optimization.

We used the state-of-the-art NCV library based mapping scheme presented
in [12] to generate the NCV circuits for the NCV2PMD scheme. This scheme
uses optimized mappings for MCT gates and then performs several heuristic
optimizations on the resulting NCV circuit. In both approaches, we used the
FTQLS tool [24] – enriched by the FT mappings presented in Section 4.2 –
to generate the FT PMD-specific implementations from the NCV and NCT
circuits. After this mapping, additional optimization steps, as described in [24],
are performed.

6.1 Comparison of the Synthesis Flows

In the first evaluation, we compared the efficacy of the two proposed synthesis
flows with respect to circuit cost. The results are summarized in Fig. 8. In each
graph, the y axis represents the quantum cost when using the MCT2PMD map-
ping, whereas the x axis represents the quantum cost when using the NCV2PMD
mapping. The diagonal line represents the cost equilibrium, i.e., circuits that
have the same cost for both mapping schemes appear on this line. Circuits that
can be realized cheaper with the MCT2PMD scheme than with the NCV2PMD
scheme appear below this line, whereas circuits that can be realized cheaper
with the NCV2PMD scheme than with the MCT2PMD scheme (modulo better
future mappings of MCT gates in the latter scheme) appear above this line.

In summary, a small advantage of the NCV2PMD scheme can be observed
for all PMDs as indicated by the cost metric presented in Section 5.

6.2 Comparison of PMD and NCV Costs

In the second evaluation, we were interested in the difference between the NCV
library based quantum costs and the two PMD-specific quantum costs (as pro-
posed in Section 5). This is of particular interest because, thus far, reversible
circuits are still being optimized with respect to an NCV library based cost met-
ric. Hence, it is important to understand whether and, if so, what differences
exist between these cost metrics.

For this purpose, we compared the obtained NCV library based quantum
costs of the initial MCT benchmark circuits to their PMD-specific costs. The
relationship between these costs is summarized in Fig. 9 for both mapping
schemes. The x axis depicts benchmarks circuits, whereas the y axis provides
the ratio of the PMD costs to the NCV costs. Average values and standard
deviations for all PMDs are shown in Table 4.
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(a) QD (b) SC

(c) IT (d) NA

(e) LP (f) NP

Fig. 8. MCT2PMD vs. NCV2PMD
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(a) MCT2PMD

(b) NCV2PMD

Fig. 9. NCV library based quantum cost vs. PMD-specific cost

Table 4. Statistics for the ratio between PMD-specific and NCV library based cost

MCT2PMD QD SC IT NA LP NP

Average value 4.54 3.90 3.78 4.27 3.35 3.63

Standard deviation 0.95 0.85 0.70 0.97 0.78 0.79

NCV2PMD QD SC IT NA LP NP

Average value 2.89 2.61 2.28 2.70 2.40 2.40

Standard deviation 0.68 0.61 0.55 0.63 0.56 0.56

First of all, we observe that for many circuits the cost ratio is close to the
average value, i.e., the real cost of the circuit differs from the estimated NCV
library based cost only by a constant, PMD-specific, multiplicative factor. This
holds for both the MCT2PMD and NCV2PMD mapping schemes. In these cases,
NCV library based quantum cost can be used as a useful proxy for actual cost
estimation. However, there are several circuits that significantly deviate from
the average, both towards the top and the bottom. In these cases, using NCV
library based quantum cost is not an adequate proxy.

Overall, the use of PMD-specific cost metrics as optimization criterion is
likely to lead to MCT circuits that are better suited for a later mapping to
PMDs. Nevertheless, the currently popular NCV library based cost metric may
still serve as a useful approximation.
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7 Conclusions

In this paper, we considered the design of PMD-specific quantum circuits. PMDs
correspond to quantum systems whose quantum mechanical properties are used
to implement quantum circuits. As part of its specification, each PMD sup-
ports only a restricted set of primitive quantum operations. Consequently, when
synthesizing quantum circuits for these PMDs, the specific gate library has to
be taken into account. The commonly used synthesis flow for quantum circuits
employs a multiple-step scheme in which a reversible circuit (based on MCT
gates) is realized first and then mapped to an equivalent cascade of quantum
gates. However, this mapping leads to NCV library based quantum circuits that
are not directly supported by any of the PMDs. To overcome this problem, we
proposed extensions to the existing synthesis flow aimed at synthesis of PMD-
specific quantum circuits. To this end, we proposed FT mappings to the PMD
level for various quantum gates (from the NCV and the NCT library). An anal-
ysis showed that these mappings lead to much higher costs for the realization of
MCT gates compared to the commonly used NCV library based quantum costs.
An experimental evaluation indeed indicated that there is no simple relation
between PMD-specific and NCV library based cost. This motivates the need for
a more detailed consideration of PMD-specific synthesis at the reversible circuit
level based on the metrics proposed in this work.
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Abstract. The influence of the power-clock generator on the global energy-
performance relationship of nanoelectromechanical (NEM) switch-based  
quasi-adiabatic logic circuits is investigated in this paper. This investigation is  
undertaken the capacitor bank type generator, it is found that the leakage current of 
the MOSFET switching devices used within the generator constitutes an important 
source of performance degradation. Capacitor type generators are found to be most 
efficient for low operating frequencies (less than a MHz). 

Keywords: Power-clock generator · Adiabatic charging · Adiabatic logic ·  
Quasi-adiabatic logic · Nanoelectromechanical relays 

1 Introduction 

Although reversible and adiabatic computing, that can be traced back to [1], is an 
interesting approach to low power energy efficient computing, solutions based on this 
approach have yet to gain wide adoption. This is in part due to the introduced com-
plexity overhead in the case of reversible and adiabatic logic [2,3], but also due to the 
fact that MOSFET devices are simply not well suited to fully apply such circuits. 

This fact stems from limitations that are inherent to MOSFET devices, mainly their 
leakage and low gradient subthreshold slope. If these two issues are circumvented, then 
reversible and quasi-adiabatic logic become more energy efficient when compared to 
other available alternatives such as subthreshold logic. And while advanced semiconduc-
tor-based solutions are able to promise improvements on current MOSFET performance, 
such as in the case of finFETs [4] and tunnel FETs [5], these solutions remain limited by 
the semiconductor physics itself. Therefore, metal-insulator type combinations are being 
pursued instead of semiconducting ones, this approach explains the recent revival in 
interest in mechanical relay type switches, albeit at the nanoscale [6-10], thus nanoelec-
tromechanical (NEM) switches are a promising and viable candidate to replace MOSFET 
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that the ramp-up and ramp-down times T are significantly larger than the circuit’s 
electrical time constant given roughly by RSCL, (where RS is the circuit equivalent 
series resistance and CL is the interconnect capacitance ), thus T >> RSCL. 

It is now possible to calculate the dissipation that accompanies such charge-
discharge cycle. It is important to note that the dissipation that accompanies such a 
cycle varies widely depending on the ratio of mechanical time constant, i.e. mechanical 
commutation time τMech, to that of the ramp-up and ramp-down periods T. While in 
previous work the case where τMech >> T was explored [11, 12], here circuits operating 
under the condition τMech ≈ T are investigated as this does not require modifying the 
voltage waveforms as proposed in [12] or excessively slow circuit operation [11, 12]. 

Thus, by considering the simplified circuit model shown in Fig. 1(b), it is possible 
to express dissipation during the charging cycle by integrating the power dissipated in 
the series resistance, it is assumed that the discharge cycle dissipates a similar 
amount. Thus the total dissipated energy is given by: 
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where i is the current going through the series resistance RS, the current splits  
into two components, i1 goes through the interconnect capacitance and i2 through the 
NEM relay. 

By using the following equalities: ܸሺݐሻ ൌ ௗܸௗ݂ሺݐሻ, (2.a) 

and ܥሺݐሻ ൌ .ሻݐ଴݃ሺܥ (2.b) 

where V(t) is time varying waveform, f(t) is the time dependence of the waveform, 
C(t) is the NEM relay time dependent capacitance, C0 is the device’s open capacit-
ance, i.e. COPEN, and g(t) is the time dependence expression of the NEM capacitance. 

The energy injected into the NEM switch is obtained from the following integration: 

ூ௡௝௘௖௧௘ௗܧ ൎ න ݅ଶ ௗܸௗ݀ݐ ൌ்
଴ ଴ܥ ௗܸௗଶ න ቆ݃ሺݐሻ ݂݀ሺݐሻ݀ݐ ൅ ݂ሺݐሻ ݀݃ሺݐሻ݀ݐ ቇ ்ݐ݀

଴ (3) 

Thus, the energy dissipated by the NEM switch is given by: 

ோெܧ ൎ ଴ܥ ௗܸௗଶ ቈන ቆ݃ሺݐሻ ݂݀ሺݐሻ݀ݐ ൅ ݂ሺݐሻ ݀݃ሺݐሻ݀ݐ ቇ ்ݐ݀
଴ െ ݃ሺܶሻ2 ቉ (4) 

3 Capacitor Bank Generator 

The capacitive bank generator approximates the ideal trapezoidal power-clock with a 
series of stepwise signals [14]. Therefore the charging of the outputs is not abrupt but  
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Fig. 2. Comparison of different combinations of generators with NEM-based quasi-adiabatic 
logic, NEM baseline (blue plot). The LC resonant generator (red) and the capacitive (black). 

divided into N steps as shown in Fig. 2. The voltages of the tank capacitors are re-

spectively
  ܸ݀݀ܰ , 

 2ܸ݀݀ܰ …  ܸ݀݀ , and it is possible to demonstrate that the system con-

verges towards this equilibrium when the supply voltage is applied [14]. 
To energize the gates, switch 1 is closed and the output is charged to ܸ݀݀/ܰ, then 

switch 1 is opened and switch 2 is closed, the output is then charged to 2ܸ݀݀/ܰ. The 

process continues up to switch N at which point the gates are charged to ܸ݀݀. 
Assuming CMOS technology is used for implementing the staircase generator, it is 

necessary to calculate the adiabatic dissipation in the switching transistors and in the 
charging of their gates, along with the dissipation due to leakage, where the  
leakage dissipation is calculated for the three phases shown in Fig. 2. The optimal 
switching condition established in [14] for the kth transistor is applied, where ܴ݇ is 
the passing resistance of the transistor, thus: 2.2ܴ௞݊ீሺܥ௅ ൅ ଴ሻܥ ൌ ܶܰ

 
(5) 

And by defining the leakage dissipation during phases 1 and 3 as: 

1௟௞ܧ ൌ ෍ ܮܥሺܩ2.2݊ ൅ 0ሻܥ 1ܰ ݌ݔ௧ଶ݁ݒ ൬െ்ܸ݊ݒ௧ ൰ ݁ଵ.଼݁݌ݔ ൬െ ݅ܰ ௗܸௗ݊ݒ௧൰ ݇ െ ݅1 െ ݅ܰ௞ିଵ
௜ୀ଴  

 

(6) 

3௟௞ܧ ൌ ෍ ܮܥሺܩ2.2݊ ൅ 0ሻܥ 1ܰ ݌ݔ௧ଶ݁ݒ ൬െ்ܸ݊ݒ௧ ൰ ݁ଵ.଼݁݌ݔ ൬െ ݅ܰ ௗܸௗ݊ݒ௧൰ ݅ െ ݇1 െ ݅ܰே
௜ୀ௞ାଵ  (7) 
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It is now possible to write the overall dissipated energy as: ܧ ൎ ௜ܥ2ܰ ௗܸௗଶ ൅ 2 ෍ ሺ1ܧ௟௞ ൅ 3௟௞ሻ௞ୀே௞ୀଵ൅ܧ 2.2 ݊ீሺܥ௅ ൅ ݌ݔ௧ଶ݁ݒ଼.଴ሻ݁ଵܥ ൬െ்ܸ݊ݒ௧ ൰ ܰ1 െ 1ܰ
൅ ݊ீሺܥ௅ ൅ ଴ሻܥ ௗܸௗଶܰ ൅ ݊ீሺܥ௅ ൅ ଴ሻܥ ௗܸௗଶܰ ൅ ଴ܥߟீ݊ ௗܸௗଶ  

 

(8) 

The first term in (8) is the switching dissipation of the N command transistors, the 
second term is the leakage energy of the N transistors during phase 1 and 3, the third 
term is the leakage dissipation during the phase 2, the fourth term is the active switch-
ing energy dissipated in the transistors and the last two terms are the adiabatic dissipa-
tion and non-adiabatic residue dissipation in the gates. The fourth and fifth terms are 
equal since the load capacitance is supposed to be the sum of the capacitive loads of 
the gates. The first term is considered negligible. 

By optimizing energy dissipation it is possible to calculate ௢ܰ௣௧ numerically. For 
simplicity the dissipated energy is re-expressed as: ܧ ൌ ݊ீሺܥ௅ ൅ ଴ሻܥ ௗܸௗଶ ݂ሺܰሻ ൅ ଴ܥߟீ݊ ௗܸௗଶ  (9) 

where f(N) represents the function to be minimized. 
By using nominal circuit parameter values of ݊ீ ൌ 10଺, ௅ܥ ൌ 10ିଵହܨ, ଴ܥ ൌ10ିଵହܨ, ߟ ൌ 0.05, ݊ ൌ 1.5, ௗܸௗ ൌ 1 ܸ, ܴ௞ ൎ 1݇Ω it is possible to obtain Nopt = 50 

(VT = 150 mV) and Nopt = 75 (VT = 200 mV), and ௢ܶ௣௧ = 2.10-4s, and 3.10-4s. The  
corresponding optimum operating frequency and optimal energy dissipation are calcu-
lated and summarized in Table 1. Thus the stepwise charging generator is an interest-
ing solution if low operating frequencies are allowed (< 1 MHz). 

Table 1. Comparison of optimal operating frequency and minimal dissipated energy per gate 
for the two generator types 

Generator Optimal frequency Minimal energy
LC [13] 35 MHz 4.8 10-16 J 
Capacitive  5 KHz 1.3 10-16 J 

4 Discussion and Conclusions 

By combining the dissipation expressions obtained for the NEM relays with those of 
the generators it is possible to estimate the optimum operating frequencies and mini-
mum dissipated These optimal values are summarized in Table 1 along with those 
obtained in [13] for the LC generator. Furthermore, the performance of the different 
NEM-generator combinations are plotted in Fig. 3 along with NEM-only baseline plot 
for comparison. 
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From Fig. 3, it is visible that while the NEM-quasi-adiabatic logic combination on 
its own show a very promising energy saving, particularly a somewhat frequency flat 
response for low operating frequencies, its combination with the power-clock genera-
tors changes the performance of the circuit. Each of the two generators shows a dif-
ferent operating minimum, where the LC generator tend to be in the 10s of MHz 
range, while that of the capacitive generator tend to be less than a MHz range. 

In summary this paper presented an analysis of the energy-performance relation of 
NEMS-based quasi-adiabatic logic circuit, the papers mainly aims to explore the per-
formance limitations imposed by the power-clock generators. 
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Abstract. This work in progress report proposes a new metric for esti-
mating nearest neighbor cost at the reversible circuit level. This is in
contrast to existing literature where nearest neighbor constraints are
usually considered at the quantum circuit level. In order to define the
metric, investigations on a state-of-the-art reversible to quantum map-
ping scheme have been conducted. From the retrieved information, a
proper estimation to be used as a cost metric has been obtained. Using
the metric, it becomes possible for the first time to optimize a reversible
circuit with respect to nearest neighbor constraints.

Keywords: Quantum cost · Nearest neighbor cost · Quantum circuit ·
Reversible circuit

1 Introduction

Motivated by the promises of quantum computation [6] researchers started
to investigate how to efficiently synthesize quantum circuits. This eventually
established a design flow for quantum circuits representing Boolean components
which (1) realizes the desired functionality as a reversible circuit (using methods
e.g. proposed in [4,7,11–13]) and (2) maps the resulting circuit in its respective
technological quantum circuit description (using mapping schemes as e.g. pro-
posed in [1,3,5,14]).

However, while this design flow leads to proper results, it does not consider
certain technological constraints. In particular, so-called nearest neighbor con-
straints are not considered by this flow, although many important quantum com-
puting technologies heavily rely on them. In order to satisfy these constraints,
it has to be ensured that computations are only performed between adjacent
(i.e. nearest neighbor) signals.
c© Springer International Publishing Switzerland 2015
J. Krivine and J.-B. Stefani (Eds.): RC 2015, LNCS 9138, pp. 273–278, 2015.
DOI: 10.1007/978-3-319-20860-2 18
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A major problem is thereby that methods considering nearest neighbor
constraints are usually applicable at the quantum circuit level only (see
e.g. [9,10,16]). This is mainly caused by the absence of proper cost metrics
which could be applied at the reversible logic level. In the established design
flow sketched above, the handling of nearest neighbor constraints is indeed con-
sidered as another separate (third) design step which is applied not until the
technology mapping of the second step has been completed.

In this work in progress, we aim for overcoming this drawback and for allow-
ing nearest neighbor optimization at the reversible logic level – the abstraction
level in which the actual synthesis is performed. For this purpose, we propose
a cost metric which, for the first time, can be used to evaluate nearest neigh-
bor constraints for reversible circuits rather than quantum circuits. In order
to define the metric, investigations on a state-of-the-art reversible to quantum
mapping scheme have been conducted. From the retrieved information, a proper
estimation to be used as a cost metric has been obtained.

2 A Nearest Neighbor Cost Metric for the Reversible
Logic Level

In general, the Nearest Neighbor Costs (NNC) for a quantum gate circuit are
defined as the number of SWAP gates needed to make it nearest neighbor com-
pliant. Thus far, the various works that have been reported to make a circuit
nearest neighbor compliant target quantum circuits only and are unable to pro-
vide any cost estimate e.g. for synthesis at the reversible logic level1. In this work,
we propose a cost metric which serves this purpose. To this end, we investigate
a state-of-the-art reversible to quantum mapping scheme and derive systematic
information to be utilized in order to formulate an NNC metric for the reversible
logic level. In this section, the underlying reversible to quantum mapping scheme
is reviewed first. Afterwards, we summarize our analyzes and, eventually, present
the resulting metric.

2.1 Mapping of Reversible to Quantum Circuits

Our investigations are based on the mapping scheme as introduced by Miller
et al. in [5]. The general idea is to partition a Toffoli gate g(C; t) with a set of
control lines C into a cascade of smaller gates including subsets C1, C2 with C =
C1 ∪ C2 and C1 ∩ C2 = ∅. For this purpose, a so-called ancilla line (denoted
by a) with a /∈ C and a �= t is additionally applied. More precisely,

T (C; t) = V (a; t)T (C1; a)V †(a; t)T (C2; a)
V (a; t)T (C1; a)V †(a; t)T (C2; a) (1)

1 Note that the authors of [2] proposed a solution to achieve adjacency of Toffoli gates.
But as discussed in the previous section, this is not sufficient to also ensure nearest
neighbor compliance at the quantum logic level. In [15], nearest neighbor compliance
at the reversible circuit level was investigated. But here a special model (based on
multi-level quantum systems) has been assumed.
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Fig. 1. Reversible to quantum mapping scheme
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Fig. 2. Toffoli gate and its equivalent NCV cascade

is applied where T (C; t) denotes an MCT gate, V (a; t) denotes a V -gate, and
V †(a; t) denotes a V †-gate with the respective control and target lines. Fig. 1
illustrates the resulting structure.

This partitioning is repeated until only Toffoli gates with two control lines
result. While decomposing C1 in the respective iterations, some of the control
lines in C2 can be used as ancilla. However, further ancilla lines may be required
to decompose C2. Those can be chosen as follows:

a) First choice: Use the target line t (this is possible only one time).
b) Second choice: Use any other free line a′ with a′ /∈ C1 ∪ C2 ∪ {t}.
c) Third choice: Use any of the control lines in C1 (this results in higher quan-

tum cost compared to options (a) and (b)).

After all iterations have been completed, a circuit results which is composed of
either V - and V †-gates (which are already quantum gates) or Toffoli gates with
at most two control lines. These Toffoli gates are eventually mapped to quantum
gate cascades as shown in Fig. 2. Overall, the functionality of the original Toffoli
gate has been realized as a quantum circuit.

In [5], further simplifications are conducted which allow for reducing the
number of quantum gates in the resulting cascade by a so-called line labeling
procedure. However, considering those simplifications would make the derivation
an NNC cost metric significantly harder. Hence, they have been omitted in our
investigations. Initial evaluations show that this has an acceptable effect on the
precision of the proposed metric.
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2.2 Investigations and Resulting Cost Metric

The mapping scheme reviewed above provides the basis of our investigations
towards an NNC metric for the reversible logic level. According to Eqn. 1, each
MCT gate T (C; t) is mapped into four quantum gates V (a; t) with the same
control and target lines2, two identical MCT gates T (C1; a), and another two
identical MCT gates T (C2; a). Hence, the NNC resulting from the mapping from
the gate T (C; t) has to be the sum of the NNCs resulting from each of these gates.
This leads to:

NNC (T (C; t)) = 4 ∗ NNC (V (a; t)) + 2 ∗ NNC (T (C1; a))
+ 2 ∗ NNC (T (C2; a)), (2)

The NNC of the quantum gates can directly be determined by considering
the distance between the control and the target line. It is usually assumed that
two SWAP gates are required in order to decrease this distance by one [8] –
(one SWAP gate for moving the control and the target line together; another to
restore the original order). Hence, assuming a numerical encoding of the control
and target lines from the topmost line to the undermost line, the NNC of the
quantum gates is NNC (V (a; t)) = 2(|a − t| − 1).

The NNC of the respective T (Ci; a) gates can be computed by recursively
applying Eqn. 2 together with the following base conditions:

a) |Ci| = 1:

NNC (T ({c}; t)) = 2(|c − t| − 1)

That is, similar to the quantum gates, the NNC is determined by considering
the distance between the control and target lines.

b) |Ci| = 2:

NNC (T ({c1, c2}; t)) = 4(|c1 − c2| − 1)
+ min{4(|c1 − t| − 1), 4(|c2 − t| − 1)}
+ max{2(|c1 − t| − 1), 2(|c2 − t| − 1)}

Here, the mapping of a Toffoli gate T ({c1, c2}; t) into a a cascade of five
quantum gates (shown in Fig. 2) is considered. The NNC value of the two
controlled-NOT gates can be estimated as 4(|c1−c2|−1) – this is reflected in
the first term. Similarly, the second term indicates the NNC value for the two
controlled-V and controlled-V † gates. Finally, the third term contributes to
the NNC due to the controlled-V or controlled-V † from the cascade. For the
latter two terms, the respective configuration of the Toffoli gate T ({c1, c2}; t)
with respect to its control and target lines has to be taken into account. Fig. 3
shows the two possibilities. This motivates the respective application of the
min/max-values.

All these observations eventually result in the following cost metric for nearest
neighbor costs to be applied at the reversible logic level:
2 For simplicity, V and V †-gates are used interchangeably in the following.
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Fig. 3. Toffoli gates and their respective decomposed netlist

Algorithm NNC (C, t, a)

Inputs: MCT gate with a numerical encoding of the set of
control lines C, the target line t, and the ancilla line a

Outputs:NNC of that gate

begin
if (|C| = 1)

then NNC = 2(|c − t| − 1);
else if (|C| = 2)

then NNC = 4(|c − t| − 1)
+ min {4(|c1 − t| − 1), 4(|c2 − t| − 1)}
+ max {2(|c1 − t| − 1), 2(|c2 − t| − 1)};

else
begin

Split C into C1 and C2 such that C1 ∪ C2 = C
and C1 ∩ C2 = φ;

NNC = 4 ∗ NNC (a, t, φ) + 2 ∗ NNC (C1, a, a1)
+2 ∗ NNC (C2, a, a2);

// a1, a2 are selected ancilla lines for the mapping
end

return NNC ;
end

Fig. 4. Algorithm determining the NNC of a reversible gate

Definition 1. Given a reversible circuit G = g1g2 . . . g|G| composed of multiple
control Toffoli gates. The Nearest Neighbor Costs (NNC) of G is defined as the
sum of the NNCs of its gates, i.e. NNC(G) = NNC(g1) + NNC(g2) + · · · +
NNC(g|G|). The NNC of a gate gi is defined as the result of the linear-time
algorithm given in Fig. 4.

3 Conclusions and Future Work

In this work in progress report, we proposed a cost metric that, for the first
time, allows for the consideration of nearest neighbor constraints at the reversible
circuit level. Thus far, corresponding optimizations could usually be applied after
technology mapping only, i.e. rather late in the design process. By investigating a
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state-of-the-art reversible to quantum mapping scheme, we were able to derive a
proper approximation which, eventually, allows those considerations e.g. directly
during the synthesis of the reversible circuit. Evaluations on the accuracy as well
on the applicability of the proposed metric are left for future work.
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Abstract. We describe a new operator for reversible process calculi
that allows us to model locally controlled reversibility. In our setting,
actions can be undone spontaneously or as a part of pairs of so-called
concerted actions, where performing forwards a weak action forces undo-
ing of another action, without the need of a global control or a mem-
ory. We model an example from chemistry, the simple interaction of two
water molecules, and give an informal explanation of the role of the new
operator.

Keywords: Reversible process calculi · Out-of-causal order reversibil-
ity · Local reversibility · Modelling of chemical reactions

1 Introduction

There are many different computation tasks which involve undoing of previously
performed steps or actions. Consider a computation where the action a causes
the action b, written a < b, and where the action c occurs independently of a
and b. There are three executions of this computation that preserve causality,
namely abc, acb and cab. We note that a always comes before b. There are
several conceptually different ways of undoing these actions [15]. Backtracking
is undoing in precisely the reverse order in which they happened. So, undo b
undo c undo a is a backtrack of the execution acb. Reversing is a more general
form of undoing: here actions can be undone in any order provided causality is
preserved (meaning that causes cannot be undone before effects). For example,
undo c undo b undo a is a reversal of acb for the events a, b and c as defined
above.

In biochemistry, however, there are networks of reactions where actions are
undone seemingly out of causal order. The creation and breaking of molecular
bonds between the proteins involved in the ERK signalling pathway is a good
example of this phenomenon [13]. Other examples are given in [6], [11] and
[12]. Let us assume for simplicity that the creation of molecular bonds is repre-
sented by actions a, b, c where, as above, a < b and c is independent of a and
b. In the ERK pathway, the molecular bonds are broken in the following order:
undo a undo b undo c, which seems to undo the cause a before the effect b. The
aim of this short paper is to explore the usefulness of a new operator for rep-
resenting some forms of out-of-causal order reversible computation. We do this
c© Springer International Publishing Switzerland 2015
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by modelling a simple example of reversible chemical reactions. The first pro-
cess calculus for the out-of-causal order reversible computation was proposed in
[13]. It is the calculus CCSK [9,10] which is extended with an execution control
mechanism for managing the pattern and the direction of computation. The con-
trol mechanism is external to the processes it controls, and it can have a global
scope. In contrast our new operator is purely local in character and internal to
(the syntax of) the process itself. This is carefully described in Section 2 which
introduces our process calculus informally, including the new general prefixing
operator (s; b).P , while presenting an intuitive model of the autoprotolysis of
water. A more abstract denotational model of causal and out-of-causal order
reversible computation is given in terms of event structures in [11].

The new prefixing construct (s; b).P , where s is a sequence of actions or exe-
cuted actions and b is a weak action, provides a mechanism for local reversibility.
Informally, actions in s can take place in any order, and b can happen if all actions
in s have already taken place. Once b takes place, one of the executed actions in s
must be undone immediately. We shall model this with a pair of concerted actions:
do b and, at the same time, undo one of the action in s. In our view, this is a simple
but realistic representation of a very common mechanism of covalent bonding.

We demonstrate the usefulness of our calculus by modelling autoprotolysis of
water, where two water molecule interact by exchanging a proton. The two water
molecules are modelled as appropriate compositions of oxygen and hydrogen
atoms. Then, the molecules are composed into a process, and the computation
of the process is represented by a pair of concerted actions.

Starting with Regev et al. [14] process calculi, specifically the π-calculus,
were used to model biochemical systems. For this the biological units in ques-
tion (often macro molecules like proteins) are represented as processes, binding
sites are modelled as channel ports and binding and unbinding is represented as
establishing and breaking a communication, respectively, on a channel. Process
calculi developed in order to model in a better way different aspects of such
systems are causal π-calculus [2] or the κ-calculus [4] amongst others. Apart
from CCSK, other reversible process calculi are RCCS [3] and the variants of
the π-calculus addressed in [7,8] and in [1].

2 Autoprotolysis of Water

In this section we introduce our calculus informally, concentrating on the new
general prefixing operator (s; b).P which produces pairs of concerted actions,
while presenting an intuitive model of the autoprotolysis of water.

We consider a reaction that transfers a proton between two water molecules.
Since the reaction takes place in water it is also known as autoprotolysis of
water. The reaction is shown in Figure 1. It is reversible and it takes place at a
relatively low rate, making pure water slightly conductive.

In order to model this reaction we need to understand what it is that makes it
happen. The main factor is that the oxygen in the water is nucleophilic. Oxygen
has a high electro-negativity, meaning it attracts electrons. Furthermore, oxygen
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Fig. 1. Autoprotolysis of water

has electrons in its outer shell which are not involved in initial bonding (two lone
electron pairs, or four electrons in total). All this makes oxygen nucleophilic: it
tends to connect to another atomic nuclei. Since the oxygen attracts electrons,
the hydrogens in water have a positive partial charge and the oxygen a negative
partial charge. The reaction starts with the oxygen (in a water molecule) being
attracted by a hydrogen in another water molecule due to their charges (this
attraction is called a hydrogen bond). Due to the nucleophilicity of the oxygen,
a covalent bond can form to the hydrogen. This bond is formed out of the
electrons of one of the lone pairs of the oxygen. Since a hydrogen cannot have
more than one bond the creation of a new bond is compensated by breaking of
the existing hydrogen-oxygen bond. These reactions are concerted, namely they
happen together without a stable intermediate configuration. As a result we have
reached the state where one oxygen has three covalent bonds to hydrogens and
is positively charged. And the other oxygen bonds to only one hydrogen and is
negatively charged, having an electron in surplus.

We notice the reaction is reversible: the oxygen, which has lost a hydrogen,
can pull back one of the hydrogens from the other water. This is the case since
the negatively charged oxygen is a strong nucleophile and the hydrogens in the
H3O molecule are all positively charged. Therefore, any of the hydrogens can
be abstracted, making both oxygens formally uncharged, and restoring the two
water molecules.

We shall model the hydrogen and oxygen atoms as processes H and O as
follows, where h, o are actions representing the bonding capabilities of the atoms
and n, p representing negative and positive charges respectively. And, H ′, O′ are
process constants.

H
def
= (h; p).H ′

O
def
= (o, o, n).O′

We use a general prefixing construct (s; b).P where s is a sequence of actions or
executed actions, and b is a weak action. Sometime the weak action is omitted
(as in the definition of O). Informally, actions in s can take place in any order
and b can happen if all actions in s have already taken place. Once b takes place,
it must be accompanied by undoing immediately one of the actions in s.

We use a synchronisation function γ which tells us which actions can combine
to produce bonds between atoms. We define γ in the style of ACP [5], where
actions ho, np, nh, no represent the created bonds:

γ(h, o) = ho γ(n, p) = np
γ(n, h) = nh γ(n, o) = no
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Each water molecule is a structure consisting of two hydrogen atoms and one
oxygen atom which are bonded appropriately. We shall use subscripts to name
the individual copies of atoms and actions; for example H1 is a specific copy of
hydrogen defined by (h1; p).H ′

1, similarly for O1 defined as (o1, o2, n).O′
1. The

atoms are composed with the parallel composition operator “|” using the com-
munication keys (which are natural numbers) to combine actions into bonds.
So a water molecule is modelled by the following process, where the key 1
shows that h1 of H1 has bonded with o1 of O1 (correspondingly for key 2)
and \{h1, h2, o1, o2} is the restriction operator keeping the bonds together.

(h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2}

The system of two water molecules in Figure 1 is represented by the following
process where the restriction \{n, p} represses actions n, p from taking place
separately by forcing them to combine into bonds (according to γ).

(((h1[1]; p).H
′
1 | (h2[2]; p).H

′
2 | (o1[1], o2[2], n).O′

1) \ {h1, h2, o1, o2} |
((h3[3]; p).H

′
3 | (h4[4]; p).H

′
4 | (o3[3], o4[4], n).O′

2) \ {h3, h4, o3, o4}) \ {n, p}

Due to the structural congruence laws for restriction, the process can be repre-
sented equivalently by grouping all the restricted actions as follows:

((h1[1]; p).H
′
1 | (h2[2]; p).H

′
2 | (o1[1], o2[2], n).O′

1 |
| (h3[3]; p).H

′
3 | (h4[4]; p).H

′
4 | (o3[3], o4[4], n).O′

2) \ {h3, h4, o3, o4, h1, h2, o1, o2, n, p}

Now actions n, p can combine, representing a transfer of a proton from one atom
of oxygen to another oxygen. We show the transfer from O2 to O1, where −→ is
a transition relation denoting a reaction taking place, here a creation of a bond:

−→ ((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3[3]; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2) \ {h3, h4, o3, o4, h1, h2, o1, o2, n, p}
The creation of the bond with key 5 forces us to break the bond with key 3
(between H3 and O2) due to the property of the operator (s; b).P discussed
earlier, where � is a transition relation that denates breaking a bond:

� ((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2) \ {h3, h4, o3, o4, h1, h2, o1, o2, n, p}
These two reactions happen almost simultaneously so we model them as a pair
of concerted actions where h3o2 represents that the bond h3o2 is broken:

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3[3]; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2) \ {h3, h4, o3, o4, h1, h2, o1, o2, n, p}
{np[5],h3o2[3]}−−−−−−−−−→

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2) \ {h3, h4, o3, o4, h1, h2, o1, o2, n, p}
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We have now arrived at the state on the right hand side in Figure 1. There
are weak bonds between n and p and strong bonds between hi and oj for all
appropriate i, j. Since H3 is weakly bonded to O1 and its strong capability h3

has become available, the bond 5 gets promoted to a stronger bond, releasing
the capability p of H3. We represent this structural change as a rewrite (and not
as a transition) using a symbol, �:

� ((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3[5]; p).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2) \ {h3, h4, o3, o4, h1, h2, o1, o2, n, p}
After returning restrictions to the original positions we get this process:

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1) | (h3[5]; p).H ′

3)
\ {h1, h2, h3, o1, o2}

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2) \ {h4, o3, o4}) \ {n, p}
Oxygen O1 is still blocked, which represents it being fully bonded (and posi-
tively charged). Oxygen O2 has a free n capability and can abstract any of the
hydrogens from O1. As a result the process can reverse to its original state or to
equivalent states where different hydrogen atoms are bonded to O1 and O2.

Note that in water the n of O1 can combine with the p of one of its hydrogen
atoms, say H1. Due to the property of the operator (h1[1]; p).H ′

1, this must be
followed immediately by breaking the bond 1 on h1 with O1, giving

((h1; p[5]).H ′
1 | (h2[2]; p).H ′

2 | (o1, o2[2], n[5]).O′
1)) \ {h1, h2, h3, o1, o2}.

Now the system is converted to a system which is equivalent to the original
formulation of water by promoting the bond 5 to a strong bond:

((h1[5]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[5], o2[2], n).O′
1)) \ {h1, h2, h3, o1, o2}

3 Conclusion

We have introduced a new operator to a reversible process calculus that allows us
to model locally controlled reversibility by performing pairs of concerted actions,
where the first element of the pair is a creation of a (weak) bond and the second
element is breaking one of the existing bonds. This mechanism has purely a local
character; there is no need for an extensive memory or global control. We have
modelled a simple example of a chemical reaction using our calculus, and we
have seen that this can be modelled realistically.

In the future, we shall give the calculus operational semantics and explore
reachable states with a view to show that some reachable states are not reachable
by computing forwards alone. One of the main motivations for our calculus is
to model faithfully chemical reactions, so we shall consider a wider range of
examples to explore fully the usefulness of our new reversibility mechanism. In
this, we shall aim to address undoing of steps of reactions in both the causal as
well as out-of-causal order.
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Abstract. The design of reversible circuits differs significantly from the
design of conventional circuits. Although many methods to synthesize
reversible functions have been developed, most of them are not scal-
able. In this paper an application of the divide and conquer paradigm is
proposed that adopts for reversible logic synthesis the concept of func-
tional decomposition developed for conventional logic synthesis. The ini-
tial function is decomposed into a network of smaller sub-functions that
are easier to analyze and synthesize into reversible blocks. The final cir-
cuit is then composed of these blocks. The results of experiments reported
here demonstrate the potential of the proposed approach.

Keywords: Reversible circuits · Logic synthesis · Functional
decomposition

1 Introduction

Recently, reversible circuits have attracted much attention as they can be used
in photonic, nano-computing technologies and quantum algorithms. Reversible
logic circuits are also one of the promising alternatives to traditional digital
circuits, as conventional microelectronic technology is going to reach its limits
in the near future.

One of the very important areas of research are methods for reversible cir-
cuit implementation. Designing efficient methods for reversible synthesis is of
particular importance to the development of quantum circuit construction (in
particular, oracles) and may well result in much more powerful computers and
computations [10].

Although there is a variety of synthesis techniques for reversible logic reported
in literature, the scalability of all these approaches is limited, i.e. the methods
are only applicable for relatively small functions – exact approaches reach their
limits with functions having more than 6 variables [2]. Therefore a number of
heuristic approaches have been proposed, e.g. [1,3–5,8]; however, most of them
are also only applicable for functions with up to about 30 variables.

In [11] and [13] a hierarchical synthesis approach has been proposed that
can cope with significantly larger functions. The basic idea is to represent the
function to be synthesized as BDD, then substitute each node of this BDD
c© Springer International Publishing Switzerland 2015
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with a cascade of reversible gates. Since BDDs may include shared nodes caus-
ing fan-outs (which are not allowed in reversible logic), this approach leads to
implementations requiring significant number of additional circuit lines.

In this paper a novel approach is proposed. It is based on the application of the
divide and conquer paradigm. A functional decomposition algorithm developed
for conventional logic synthesis is used to decompose initial Boolean function into
a network of smaller sub-functions, which are easier to analyze and synthesize into
reversible blocks – then the final circuit is composed of these blocks.

2 Functional Decomposition

Functional decomposition relies on breaking down a complex system into a net-
work of smaller and relatively independent co-operating subsystems, in such a
way that the original system’s behavior is preserved. A system is decomposed
into a set of smaller subsystems, such that each of them is easier to analyze and
synthesize.

For a Boolean function F , the set X of the function’s input variables is
partitioned into two subsets: free variables U and bound variables V , such that
U ∪ V = X. Assume that the input variables x1, . . . , xn have been relabeled
in such a way that U = {x1, . . . , xr} and V = {xn−s+1, . . . , xn}. Let G be a
function with s inputs and p outputs, and let H be a function with r + p inputs
and m outputs. The pair (G,H) represents a serial functional decomposition of
F with respect to (U, V ), if F (X) = H(U,G(V )). G and H are called blocks of
the decomposition (Fig. 1).

Fig. 1. Schematic representation of the serial functional decomposition

Functional decomposition is widely recognized as one of the best logic synthe-
sis methods targeting FPGAs (Field Programmable Gate Arrays) [9]. However
it is not limited to logic synthesis of digital circuits. The strong motivation for
developing decomposition techniques comes from such modern research areas
as pattern recognition, knowledge discovery and machine learning in artificial
intelligence [6].

3 Proposed Synthesis Approach

Reversible circuits are digital circuits with the same number of input signals and
output signals that map each input vector to a unique output vector (i.e. they real-
ize bijections). To implement an irreversible specification using reversible gates,
constant inputs and garbage outputs should be added to the original specification.



Application of Functional Decomposition in Synthesis of Reversible Circuits 287

There exist a variety of approaches to reversible logic synthesis that con-
struct reversible circuits satisfying a reversible specification. Since most circuits
of practical interest are too large for optimal synthesis, heuristic algorithms have
been proposed.

Another approach is to apply the divide and conquer paradigm to decompose
the initial circuit into a network of smaller units that are then synthesized into
reversible blocks. Application of the concept of functional decomposition devel-
oped for conventional logic synthesis allows decomposing Boolean function into a
network of smaller sub-functions that are easier to analyze and synthesize. Since
the size of blocks of the decomposition network generated in this process can
be controlled, it is possible to decompose a function into so small sub-functions
that each of them can be synthesized with exact reversible synthesis methods.

This approach is schematically presented in Fig. 2. The description of a
Boolean function to be implemented is given in the espresso format (pla file).
The whole process consists of several main elements.

Fig. 2. Synthesis flow – functional decomposition application approach

1. decomposition – the initial function is decomposed into a network of blocks.
The synthesis can be controlled by setting the maximal size of blocks that can
be obtained in subsequent decomposition steps. The algorithm iteratively
applies decomposition from Fig. 1 to blocks obtained in earlier iterations
until all blocks have the required size. This process results in a network of
blocks (Fig. 3a) each of them described in the espresso format (net file).

2. separation – each block of the decomposition network is extracted from the
net file and placed in a separate pla file. Since, in general, blocks obtained in
the decomposition process are irreversible, at this stage functions represented
by each pla file may be subject to irreversible function embedding if needed
for the subsequent steps. At this stage the information about decomposition
network structure can also be saved, and used at the composition stage if
necessary.

3. reversible synthesis – each function from the set of pla files is synthesized
using a reversible synthesis method of choice and the results are stored as
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real files. Since at the decomposition stage the maximal size of the resulting
blocks can be controlled, at this stage exact synthesis methods can be used
if the blocks are small enough.

4. composition – here the final reversible circuit is formed by composing single
real files from the previous stage into one real file (Fig. 3b).

5. verification – this nonobligatory stage may be used to verify the functional
correctness of the obtained implementation. However, it requires a reference
real file generated using any reversible synthesis method directly from the
description of the initial Boolean function.

Fig. 3. a) Decomposition network. b) Reversible circuit implementing the decomposi-
tion network

4 Experimental Results

For the experiment, several single-output functions have been selected, as well
as single-output functions have been constructed by extracting separate outputs
of several multi-output functions. No argument reduction have been performed.

For the decomposition, a synthesis tool developed for synthesis of combina-
tional circuits targeting programmable logic devices FPGA has been used. Each
function has been decomposed into a network of blocks with no more than three
inputs. Reversible synthesis has been performed using RevKit v1.3 [11].

The synthesis of blocks of the decomposition network has been performed
with an exact algorithm [2], which guarantees to find a network with the minimal
number of gates.

Since exact synthesis cannot be applied to functions with more than six input
variables due to its high computational effort, non-decomposed functions have
been synthesized with heuristic algorithms based on BDDs [13], KFDDs [12],
ESOPs [1] and Reed-Muller spectra [7]. For each of the synthesis methods the
number of gates (G), the number of lines (L) and the quantum cost (Q) have
been reported.

Table 1 presents a comparison of the results obtained with the approach
presented in this paper and the results of the synthesis obtained with the algo-
rithms implemented in RevKit. It can be noticed that the new approach allows
obtaining better results with respect to the gate count and the number of lines
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for almost all functions used in the experiment. Although the exact synthesis
used to synthesize blocks of the decomposition network focuses on optimizing
the gate count, the quantum costs for many of these functions are also lower.

Table 1. Synthesis results comparison

DEC BDD KFDD ESOP RM Spectra
benchmark G L Q G L Q G L Q G L Q G L Q

5xp1f3 25 9 117 20 12 64 30 8 483 23 13 67 142 7 2076
5xp1f4 14 7 66 17 11 53 22 8 259 15 11 39 10 7 79
5xp1f5 5 5 25 7 9 19 13 8 86 6 10 18 4 7 24
5xp1f9 8 10 52 13 12 41 3 8 78 9 13 33 7 8 517
add6f1 4 4 8 5 13 9 13 13 111 5 15 9 5 12 9
add6f2 13 7 33 15 16 43 33 13 481 15 17 35 10 12 50
add6f3 19 10 63 21 17 61 71 13 1451 24 19 64 21 12 249
add6f4 24 12 76 32 20 100 145 13 3869 32 21 92 45 12 913
add6f5 29 14 89 39 22 127 291 13 11391 40 23 120 97 12 2873
add6f6 32 14 100 41 23 141 63 13 3223 41 23 141 63 13 3223
life 40 16 188 66 27 210 468 10 143268 67 26 195 184 10 7172
parity 24 19 32 31 17 31 120133 17 4294956357 31 31 31 15 16 15
rd84f0 7 8 7 15 9 15 461 9 65485 15 15 15 7 8 7
rd84f1 27 9 63 38 15 114 398 9 61358 36 15 116 28 9 140
rd84f2 31 12 123 50 21 158 482 9 82778 51 21 159 70 9 1820
rd84f3 4 12 44 7 15 35 1 9 509 7 15 35 1 9 509
ryy6 47 26 291 39 26 119 128 17 5040 43 29 139 80 17 7569
sym10 49 17 229 77 32 253 2513 11 1713341 81 32 257 266 11 14785
sym6 23 9 99 29 14 93 150 7 6350 27 14 87 36 7 777
sym9 41 15 194 62 27 206 264 10 7137 66 27 222 210 10 4368
t481 59 23 247 52 30 152 1551 17 73352 42 26 118 41 17 481

5 Conclusions

To the author’s best knowledge, the approach that applies the divide and con-
quer paradigm to reversible logic synthesis proposed in this paper has not been
previously investigated in the literature.

The results presented in this paper show that the presented approach may
have great potential for reversible logic synthesis. It is important to notice that
in the experiments reported here a decomposition tool has been used which
was initially developed for synthesis of combinational circuits targeting FPGA
devices. Designing dedicated decomposition algorithms that take into account
specifics of reversible synthesis would certainly improve the quality of results
obtained using the proposed approach. The author believes that this approach
may be a viable initial stage of designing such decomposition methods.



290 M. Rawski

References

1. Fazel, K., Thornton, M., Rice, J.: ESOP-based toffoli gate cascade generation. In:
IEEE Pacific Rim Conference on Communications, Computers and Signal Process-
ing, pp. 206–209. Citeseer (2007)

2. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple-control toffoli
network synthesis with SAT techniques. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 28(5), 703–715 (2009)

3. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic
circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25(11), 2317–2330 (2006)

4. Kerntopf, P.: A new heuristic algorithm for reversible logic synthesis. In: Proceed-
ings of the 41st Annual Design Automation Conference, pp. 834–837. ACM (2004)

5. Khan, M.H., Perkowski, M.: Multi-output ESOP synthesis with cascades of new
reversible gate family. In: Proceedings of the 6th International Symposium on
Representations and Methodology of Future Computing Technology, pp. 144–153
(2003)

6. Lewandowski, J., Rawski, M., Rybinski, H.: Application of parallel decomposition
for creation of reduced feed-forward neural networks. In: Kryszkiewicz, M., Peters,
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