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Abstract With Advanced Driver Assistance Systems becoming increasingly
complex, testing methods must keep up to efficiently test and validate these sys-
tems. This paper focuses on a method of testing vision-based Advanced Driver
Assistance Systems on a state-of-the-art hardware-in-the-loop test bench. Virtual
driving scenarios are being used for functional testing. This paper suggests a
framework where the driving scenarios are constructed using a stochastical
approach. This allows the testing of the parameter combinations that might other-
wise be forgotten or disregarded by a human creating the scenarios. The first step of
this framework, a road generator, is introduced. Generic courses of roads are cre-
ated using the Markov Chain and Markov Chain Monte Carlo methods recon-
structing real-life scenarios by analyzing map data.
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1 Introduction

As Advanced Driver Assistance Systems (ADAS) are becoming more and more
complex, testing and validation processes and methods must keep up. The auto-
mation of driving functions is key for future mobility, facilitating greener cars with
reduced fuel consumption, as well as improved road safety, by the minimization of
hazardous situations in assisting the driver to react more quickly. However, auto-
mation of safety critical driving functions requires a minimum risk of failures, as
described by norm ISO 26262. According to literature, a valid validation of auto-
mated driving functions in compliance with ISO 26262 demands a very large
amount of testing kilometers [1], which will make the system expensive and hinder
market penetration.

As a step towards a more efficient validation process, this paper looks at a new
approach for subsystem integration using a state-of-the-art Hardware-In-the-Loop
(HIL) test bench with a focus on vision-based ADAS demonstrated by the example
of a lane detection system. HIL testing is a vital step in subsystem integration. It
offers a test platform in early development stages and is cost-efficient, since the
development can be started earlier. It also helps reduce the number of prototype
vehicles needed.

In HIL environments, a variety of approaches are being employed to test and
validate ADAS today: A fixed set of scenarios is being used and recorded scenes are
being reprocessed or transferred to virtual environments: for example, using recorded
sensor data to automatically transfer and create a scenario [2]. Augmented reality, as
proposed in [3], is yet another approach that is being used as a Vehicle-In-The-Loop
(VEHIL) setup. These approaches are either labor intensive or cannot adequately cope
with the high complexity of future systems. Until now, the designing principle of
intervening systems is not to try to cover all possible scenarios where a system could
help but, rather, to focus on situations where a system will prove beneficial [4]. This,
however, will change with increasing automation in driving, where vehicles will have
to cope with many situations without the help of their driver. When looking into the
future towards autonomously driving vehicles, a fixed catalogue will have to include
thousands of tests to cover a sheer infinite number of scenarios. Creating them by hand
will takemuch timeand labor. It is said to take50×108 km[1]of road testing to reliably
validate autonomous driving functions.With this high amount of required kilometers,
more efficient methods of validation must be implemented along the entire validation
process throughout the development stages.

The goal is to automatically create virtual driving scenarios for testing image
processing functions of vision based ADAS with an optimized parameter distri-
bution to focus on more critical parameter ranges. One approach is to use combi-
natorics for the creation of test scenarios, as discussed in [5]. Scenarios are created
by calculating all possible combinations of parameters and using equivalency class
formation to reduce the number of scenarios to be tested.

This paper, however, proposes a stochastical approach. SinceHIL testing is usually
done in real time, it is not economically reasonable to test millions of possible
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outcomes and scenarios. Thus, a selection process has to be implemented. The
parameters’ influence on ADAS is analyzed using a design of experiment
(DOE) approach. By doing this, the influence of parameters and their ranges on the
correct functionality of the image processing algorithms of ADAS are evaluated. The
likelihood of occurrence of parameter values for generating virtual driving scenarios
will be higher in ranges where faults are more likely to occur, thereby focusing on
critical areas while still testing the entire parameter ranges. As will the described in
Chap. 2, realworld statistical data to formdistribution functions of road characteristics
is obtained by analyzing map data as a basis for road generation. These functions
describing road characteristics are then influenced towards the obtained critical ran-
ges. This will be done in a future step, as described in the conclusion. Virtual envi-
ronments have the advantage of knowing their properties. In that sense, fundamental
information is known to which measurements of the ADAS can be compared. To
evaluate the large number of generated scenarios, an automatic evaluation process
must also be implemented. By testing a significant amount, depending on the ADAS
function to be tested, of scenarios a qualitative statement can bemade about the correct
functionality of an ADAS function. Thereby a fast overview about an ADAS system
can be obtained during the development stages. The method will be tested on
vision-based ADAS; more specifically, on a lane detection system as a base for
expansion towards more complex functions like lane keeping and congestion assis-
tance systems, which, again, are a base for automated driving functions.

To reach this goal, the presented research will implement and test a number of
steps. The first step is a road generator, which is the focus of this paper. It is the
basis for creating driving scenarios and to establish and test this framework. This
road generator will be explained in more detail in the next chapter.

2 System Model

In this section, the system model in charge of generating stochastic scenarios is
described. Stochastic scenarios are the representation of the road’s static elements,
traffic, and surrounding elements, which are modeled according to probabilities
computed by statistical analysis using different types of statistical methods. These
scenarios seek a good approximation to scenarios that attempt to reflect reality as
precisely as possible so that the ADAS can be properly tested.

Since close-to-reality scenarios are being pursued, the stochastic scenarios are
based on statistical analysis on routes which actually exist. Essential characteristics
such as geometry, type, and number of lanes, among others, are deduced from
routes selected in OpenStreetMap. The system model takes this information,
develops a database, and produces a probability density function (pdf) or condi-
tional probabilities, depending on the attribute, for each aspect that needs to be
evaluated to generate a scenario. Pdfs and conditional probabilities are a part of the
statistical methods, thereby creating a statistical model in charge of generating roads
with specific attributes.
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A road is designed according to probabilities computed by the statistical analysis
using different types of statistical methods. The following two methods are used for
the evaluation and generation of scenarios: the Metropolis algorithm and the
Markov Chain.1

These algorithms are directly influenced by the route chosen in OpenStreetMap.
They are also indirectly influenced by constraints added to the system inside these
algorithms to ensure its right functionality. Each time a new route is selected as base
for the statistical analysis in OpenStreetMap, it results in a new pdf. This models the
probability of attributes being sampled in the statistical methods, in turn influencing
the resulting scenarios. Meanwhile, the constraints can also impact the road features
depending on how they are set.

2.1 Building Statistical Analysis

The building of a statistical analysis, or, more precisely, the creation of a Bayesian
statistical analysis, usually requires some fundamental analysis steps [6]. However,
some posterior distributions are too complex to be calculated analytically and they
are too time-consuming to sample. Using Markov Chain Monte Carlo (MCMC)
algorithms, such as the Metropolis Hastings algorithm, can be very helpful for
tackling both of these problems.

The algorithms used for the statistical analysis of the scenario’s attributes are
chosen according to the degree of complexity by the calculation of the posterior
distribution and its high dimensional sampling. Two methods have been selected.
One of them is the Metropolis algorithm (the special case of the Metropolis
Hastings algorithm for symmetrical distributions) and the other is the Markov
Chain. The Metropolis algorithm is in charge of creating the road geometry. This
algorithm generates a random walk of points distributed according to a target
distribution [7]. In this case, the points are being distributed according to the pdf
that is a result of the analysis of the curvatures of the selected OpenStreetMap road.
Since the resulting distribution for the geometry factor requires high dimensional
sampling and can be too time-consuming with conventional Monte Carlo algo-
rithms or Markov Chains, a MCMC algorithm is selected. Further points regarding
this decision on the statistical methods are explained in 2.2.

On the other hand, a Markov Chain is required for those attributes where the
Markov property also has to be fulfilled, but where sampling is not that
time-consuming (e.g. setting the number of lanes on the road) and where algorithms
for high dimensional distributions are not required. There are also attributes that
possess constant values or are user-defined-data and, therefore, no algorithm is
needed for their analysis.

1“Markov Chain” is used as reference to indicate a Markov process with a finite number of states.
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2.1.1 Metropolis Algorithm Construction Steps

This algorithm works according to the structure presented in Fig. 1. The algorithm
works by choosing an initial position x(0) [Step 1], then a proposed move x* is
generated from the proposal distribution [Step 2]. This move will be either accepted
or rejected according to an acceptance criterion A(x(i), x*), where x(i) represents the
last accepted move and x* represents the proposed move. After performing a
number of steps, the Metropolis Hastings algorithm generates a number of points,
which construct the Markov Chain. These points will be distributed according to the
desired distribution. The proposal distribution in the algorithm impacts the accep-
tance criterion. Therefore, it should be chosen in such a manner that it covers the
target distribution completely. However, it is also important that it converges
quickly and effectively. For continuous components, the Gaussian distribution or
heavier-tailed distributions, e.g. Student’s t distributions with low degrees of free-
dom, are commonly used [8]. Both of them are symmetric, which makes the
acceptance criterion easy to overcome and produces a quick convergence. Another
requirement of the Metropolis algorithm is to specify the target distribution.

The target distribution is fixed and calculated according to the data collection of
the feature being analyzed. The calculation in this model is done in 3 steps:

1. Calculation of histogram based on data exported from OpenStreetMap.
2. Estimation of the pdf using kernel density estimation.
3. Specification of the (target) probability distribution according to the calculated

pdf.

Once all requirements are provided, the algorithm is run and the samples related
to the curvature of the road are generated. Unlike the features calculated with
Markov Chains, these samples are not taken directly as attributes for the objects
implemented in the system, but they have to be recalculated so they can be part of
the objects belonging originally to the geometry of the road. This is required, since
the road geometry is defined by spiral, arc, and line elements. These attributes are
created according to the curvature sampled by the algorithm.

Figure 2 is an example of the curvature pdf for the highways around the city of
Munich, calculated via kernel estimation.

The target distribution results from taking the resulting function of the kernel
density estimation and setting the input values of the function as undefined. These
values will be set once the algorithm is running. These undefined values take the

Fig. 1 Metropolis algorithm
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sample values of the Markov Chain, which are built by the Metropolis algorithm
(MA). Figure 3 shows an MA example for the highway around the city of Munich.
This figure represents “x” values being sampled from the resulting pdf of the kernel
estimation according to the Metropolis algorithm being associated with its corre-
sponding pdf(x) value.

Fig. 2 Pdf estimation based on the highways around the city of Munich

Fig. 3 Metropolis algorithm example for the highways around the city of Munich
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2.1.2 Markov Chain Construction Steps

Each Markov Chain is based on states that correspond to the possible values that the
attribute being analyzed can take. Every time the Markov Chain is run, transitions
between states occur according to probabilities given by the transition matrix
P. These transition matrices are created according to the conditional probabilities of
the attribute being analyzed, where each ijth entry represents a particular condi-
tional probability: p (moving to state j| in state i).

These conditional probabilities are calculated from the database of road features
specified in OpenStreetMap. After setting the transition matrices, the stochastic row
vector can be calculated through definition (1), where P represents the transition
matrix and xðnÞ the stochastic row vector at step time n [6], and samples can be
drawn. These resulting samples represent the attributes of the stochastic scenario,
where the Markov property is fulfilled but where the sampling does not consume a
great amount of time.

xðnþ1Þ ¼ xðnÞP ð1Þ

2.2 Statistical Methods

The objective of statistical methods is to make the process of scenario generation as
efficient and productive as possible; hence, a proper selection of statistical methods
is necessary. The most important part of choosing the correct test is to ensure that the
test is appropriate for the type of data that has been collected [9], to observe adequate
distributions of the variables, and to reflect what kind of relationship exists between
them. The data collected for the system model is made up of the features taken from
the route(s) chosen in OpenStreetMap, which are, in turn, the attributes required
for the scenario generation. Some of these feature variables are correlated, meaning
that the probability of a next event can increase or decrease based on the current
event. These variables can be seen in the form of states and can be described with the
help of Markov Chains. This is because a Markov Chain is generated based only on
the previous state making new states likely to be correlated with the preceding state.

Depending on the variable being analyzed, a Markov Chain can be easily
constructed and sampled. This happens by calculating the conditional probabilities
from the database of road features specified in OpenStreetMap and setting the
transition matrices. For the construction of a suitable Markov Chain, every possible
state should be specified. Therefore, a Markov Chain is useful if the number of
states is countable.

However, features for the analysis of the geometry construction of the road exist
where the probability distribution is difficult to calculate and to simulate due to the
high number of parameters. This can be solved by using Markov Chain Monte
Carlo (MCMC) algorithms.
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There are different kinds of MCMC algorithms. Among them, the most com-
monly used are the Metropolis Hastings algorithm and the Gibbs sampler. In the
system model, the Metropolis Hastings algorithm is used instead of the Gibbs
sampler, since, with the Metropolis Hastings algorithm, it is required to know the
full conditional distribution up to a constant [10], while, with the Gibbs sampler, it
is necessary to provide the full conditional distributions of the model in closed form
[11]. This has to take place; otherwise, it is not possible to use the Gibbs sampler.
Hence, the Metropolis Hastings algorithm becomes a more suitable method for the
model. In the system model, the proposal distributions are symmetric; therefore, the
simpler Metropolis algorithm is used instead.

2.3 Constraints

For both statistical methods (the Markov Chain and the Metropolis algorithm),
constraints have to be set in order to ensure the right function of the system model.
Conditional requirements vary depending on the attribute being analyzed.

These requirements are included in the algorithm in charge of creating the
attribute during the generation process of stochastic scenarios such as, for example,
to avoid a transition from a two lane-road to a four-lane road to be part of the
stochastic scenarios. This constraint is implemented as part of the Markov Chain of
the driving lanes’ attributes in order to disable this possibility.

3 Performance Study

Different types of scenarios are constructed by varying the chosen route in
OpenStreetMap. To inspect the performance of the system model even closer, the
number of samples in the algorithms and repercussions of constraints in the gen-
eration of stochastic scenarios are evaluated.

3.1 OpenStreetMap Route Selection

When a new route in OpenStreetMap is selected for evaluation in the system model,
the inputs for the algorithms change; in other words, the transition matrix required
for the construction of the Markov Chain and the pdf taken as target distribution for
the Metropolis algorithm change. For example, if a route is selected, where rather
few curves but more straight stretches of road are presented, a pdf similar to Fig. 2
is expected to occur. On such a route, the highest probability resides in the cur-
vature with value 0, and the algorithm tends to sample towards this value. In the
case of routes with a higher probability of curvature, resulting roads with strong
curvatures have a higher probability to appear.
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The transition matrix necessary for the calculation of the Markov Chain changes
when new routes are selected. However, since some of the non- road’s geometry
features, such as road markings, are based on fixed road specifications, their
probabilities do not vary among different selected routes.

3.2 Constraints

Constraints used in the algorithms for the correct functionality can affect the road’s
features in the stochastic scenario depending on how well they are tuned. In the case
of the geometry, a maximum or minimum duration of a curvature can be established
in order to generate stochastic scenarios that fulfill specific characteristics expected
by the user.

For features such as speed limit, constraints can be set so that jumping between
values is not possible but a linear increment is given. This is also a feature set
according to user desire.

Figure 4 shows how varying the constraint set for the geometry attribute can
influence the smoothness of the curve despite maintaining the same probability
density. The three resulting roads represent different curvature constraints where the
spiral in charge of creating the curvature uses less iteration steps on each figure
from left to right. By using a lesser number of iterations to diminish the curvature,
the curvature ends up having a higher tangent and a stronger curve.

Fig. 4 Output roads with different curvature constraints
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3.3 Number of Samples in Statistical Methods

The number of samples or steps the algorithms need to create each road attribute
has an influence on the resulting roads. If the number of samples for the algorithms
increases, the probability of sampling a particular value, which is normally low,
increases as well. Furthermore, in case a constraint determines that an attribute
needs to remain constant for a defined amount of iterations, these already
low-probability values can reach an even lower probability if the number of iter-
ations decreases, and vice versa.

4 Conclusion and Outlook

Using a stochastic approach by employing Markov Chain and Markov Chain
Monte Carlo methods, and using real world data to develop the corresponding
probability density functions for road-generating algorithms, generic but still real-
istic roads can be created. The real world data is being obtained by analyzing roads
exported from OpenStreetMap. The discussed road generator is the basis for gen-
erating virtual driving scenarios and for the suggested framework.

The next steps will include a design of experiment approach to optimize the
probability density functions towards critical parameter ranges. With this approach
the main influencing parameters on the image processing functions of the ADAS,
concerning the road creation, will be evaluated. The critical parameters as well as
their critical value ranges, which cause the most failures of the vision based ADAS,
are of interest. The pdf’s of the road generator will be influenced towards these
more critical ranges. Another step is the expansion of the road generator to include
different road markings, roadside structures as well as construction zones.
Construction zones are challenging for lane detection functions as there are typi-
cally many different markings and structures on the road that make detecting the
correct driving lane more difficult.

This framework contributes a further approach to tackle the challenges of val-
idating complex ADAS with an outlook on automated driving functions.
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