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Abstract

Since the discovery of the two cannabinoid receptors, CB1 and CB2, several

molecules, commonly defined as endocannabinoids, able to bind to and function-

ally activate these receptors, have been discovered and characterized. Although

the general thought was that the endocannabinoids were mainly derivatives of the

n-6 fatty acid arachidonic acid, recent data have shown that also derivatives

(ethanolamides) of n-3 fatty acids may be classified as endocannabinoids. Whether

the n-3 endocannabinoids follow the same biosynthetic and metabolic routes of

the n-6 endocannabinoids is not yet clear and so warrants further investigation. In

this review, we describe the primary biosynthetic and metabolic pathways for the

two well-established endocannabinoids, anandamide and 2-arachidonoylglycerol.
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Abbreviations

2-AG 2-Arachidonoylglycerol

2-AGE 2-Arachidonoylglyceryl ether

AA Arachidonic acid

Abh4 Alpha/beta hydrolase 4

ABHD Alpha/beta hydrolase domain

AEA Anandamide

Asp Aspartic acid

CB Cannabinoid

Cis Cysteine

COX-2 Cyclooxygenase-2

DAG Diacylglycerol

DGL Diacylglycerol lipase

DHA Docosahexaenoic acid

DHEA Docosahexaenoyl-ethanolamide

DTT Dithiothreitol

EMT Endocannabinoid membrane transporter

EPA Eicosapentaenoic acid

EPEA Eicosapentaenoyl-ethanolamide

FAAH Fatty acid amide hydrolase

FABP Fatty acid binding protein

FLAT FAAH-like anandamide transporter

GpAEA Glycerophospho-arachidonoylethanolamide

GPR G-protein coupled receptor

GSH Glutathione

HEK Human embryonic kidney

His Histidine

Hsp Heat shock protein

LOX Lipoxygenase

Lys Lysine

MAFP Methylarachidonoylfluorophosphonate

MGL Monoacylglycerol lipase

NAAA N-acylethanolamine-selective acid amidase

NADA N-arachidonoyldopamine

NAE N-acyl-ethanolamine

NAGly N-arachidonoylglycine
NAM N-arachidonoylmaleimide

NAPE N-acylphosphatidylethanolamine

NArS N-arachidonoylserine
NAT N-acyltransferase
OEA Oleoyethanolamide

OLDA N-oleoyl dopamine
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pAEA Phosphoanandamide

PE Phosphatidylethanolamine

PEA Palmitoylethanolamide

PHARC Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, cataract

PL Phospholipase

PPAR Peroxisome proliferator-activated receptor

PUFA Polyunsaturated fatty acid

SEA Stearoylethanolamide

Ser Serine

TRPM Transient receptor potential melastatin

TRPV Transient receptor potential vanilloid

1 Endocannabinoids and Endocannabinoid-Like
Compounds

The discovery, in 1988, of a high-affinity, stereoselective and pharmacologically

distinct cannabinoid receptor in rat brain tissue (Devane et al. 1988), led to a

continuous search for natural endogenous ligands. Since then, several molecules

have been identified and collectively named as “endocannabinoids”.

Endocannabinoids are defined as derivatives (amides, esters and ethers) of a long-

chain polyunsaturated fatty acid (PUFA), mainly arachidonic acid (AA), capable of

binding and functionally activating the cannabinoid receptors (Di Marzo

et al. 2004). Although anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are

the best characterized endocannabinoids (an N-acylethanolamine and a monoacyl-

glycerol, respectively), other endogenous compounds that may also bind to the

cannabinoid receptors have been discovered and suggested to be endocannabinoids:

N-dihomo-γ-linolenoyl ethanolamine and N-oleoyl dopamine (OLDA) (Pertwee

2005), 2-arachidonoylglycerol ether (noladin ether, 2-AGE) (Hanus et al. 2001),

O-arachidonoylethanolamine (virodhamine) (Porter et al. 2002), and N-arachido-
noyldopamine (NADA) (Huang et al. 2002). It is now well established that the two

most studied endocannabinoids (AEA and 2-AG) do not interact only with canna-

binoid CB1 and CB2 receptors, and exhibit instead a degree of promiscuity that

applies also to the less-studied arachidonic acid-derived endocannabinoids

(Zygmunt et al. 1999; Hanus et al. 2001; Huang et al. 2002; Porter et al. 2002;

Rozenfeld and Devi 2008; den Boon et al. 2012). Anandamide (AEA), from the

Sanskrit word ananda, which means bliss, was the first endogenous cannabinoid

identified (Devane et al. 1992; Hanus 2007). This is the ethanolamide of

arachidonic acid and behaves as a partial agonist at both cannabinoid CB1 and

CB2 receptors (Pertwee et al. 2010). Interestingly, it is now well established that

AEA possesses an ability to interact also with other receptors, such as the transient

receptor potential vanilloid 1 (TRPV1) (Zygmunt et al. 1999) and the peroxisome

proliferator-activated receptor (PPAR) family (O’Sullivan 2007). Indeed, some of

the effects of AEA are non-CB1/non-CB2 receptor mediated (Breivogel et al. 2001;
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Monory et al. 2002). 2-Arachidonoylglycerol (2-AG) is the arachidonate ester of

glycerol that was isolated from peripheral tissues. This molecule can activate both

CB1 and CB2 receptors with similar potency and efficacy (Mechoulam et al. 1995;

Sugiura et al. 1995) as well as γ-aminobutyric acid receptors (Sigel et al. 2011).

2-Arachidonoy-glyceryl ether (noladin ether) binds to CB1 receptors, and very

weakly to CB2 receptors, and also affects AEA uptake (Fezza et al. 2002; Páldyová

et al. 2008). Recently, its classification as an endocannabinoid has been questioned

because of its very low concentration in the brain (Oka et al. 2003). Virodhamine

(from the Sanskrit word virodha, which means opposite) is the ester of arachidonic
acid, and it has been reported to behave as a full agonist at CB2 receptors and as

both a partial agonist/antagonist at CB1 receptors and a weak inhibitor of AEA

uptake (Porter et al. 2002). This molecule can also interact with PPAR-α receptors

(Sun et al. 2006) and GPR55 receptors (Sharir et al. 2012). N-arachidonoyl-dopa-
mine (NADA), like AEA, behaves both as an endovanilloid and an

endocannabinoid (Bisogno et al. 2000; Huang et al. 2002). It also interacts with

PPAR-ƴ receptors (O’Sullivan 2007) and can antagonize the melastatin type-

8 (TRPM8) cation channel (De Petrocellis et al. 2007).

We recently discovered that in addition to n-6 long-chain PUFA

endocannabinoids, the ethanolamides of two n-3 fatty acids derived mainly from

fish oils in the human diet, DHA (C22:6) and EPA (C20:5), should also be classified

as endocannabinoids (Brown et al. 2010; Cascio 2013). These n-3 fatty acid

ethanolamides are docosahexaenoyl-ethanolamide (DHEA) and eicosapentaenoyl-

ethanolamide (EPEA), both of which bind to and partially activate CB1 and CB2

receptors and are produced both in vivo and in vitro after administering fish oil or

individual n-3 long-chain PUFA (Sugiura et al. 1996; Bisogno et al. 1999; Berger

et al. 2001; Brown et al. 2010, 2011; Maccarrone et al. 2010; Cascio 2013). These

n-3 endocannabinoids show anti-inflammatory properties in macrophages and

adipocytes (Fezza et al. 2014) and can inhibit cell growth in breast cancer by

triggering autophagy via PPAR-γ receptors (Fezza et al. 2014). Interestingly, we

recently reported evidence that both DHEA and EPEA possess cannabinoid

receptor-dependent and -independent anti-proliferative effects in androgen

receptor-positive and -negative prostate cancer cell lines (Brown et al. 2010).

Finally, endocannabinoids are produced together with cannabinoid receptor-

inactive saturated and mono- or di-unsaturated compounds that are defined as

endocannabinoid-like compounds. These compounds have been reported to exert

their cannabimimetic effects by acting as “entourage molecules” that prevent

endocannabinoids being degraded by specific metabolic enzymes (Cascio 2013).

Palmitoylethanolamide (PEA) possesses both anti-inflammatory and analgesic

activity, likely mediated by the TRPV1 and PPAR-α receptors (Costa et al. 2008;

Ho et al. 2008; Di Cesare et al. 2013; Esposito et al. 2014), and it also interacts with

GPR55 receptors (Moriconi et al. 2010). Stearoylethanolamide (SEA) produces

anti-inflammatory, immunomodulatory as well as anorexic effects (Maccarrone

et al. 2002; Dalle Carbonare et al. 2008; Ghafouri et al. 2013). Oleoyethanolamide

(OEA) can activate both GPR119 and GPR55 receptors (Overton et al. 2008;

Moriconi et al. 2010), and it regulates food intake in rodents by a mechanism that
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involves the activation of PPAR-α receptors (Rodrı́guez de Fonseca 2004).

Oleamide is an unsaturated fatty acid amide isolated from the cerebrospinal fluid

of sleep-deprived cats (Cravatt et al. 1995) which behaves as a full cannabinoid CB1

receptor agonist (Leggett et al. 2004). Other compounds that have been recently

classified as endocannabinoids-like compounds are N-arachidonoylglycine
(NAGly) and N-arachidonoylserine (NArS). NAGly interacts with both GPR18

and GPR92 receptors (Kohno et al. 2006; Oh et al. 2008; Fezza et al. 2014; McHugh

et al. 2014) and behaves as a FAAH inhibitor (Cascio et al. 2004). The chemical

structures of the endocannabinoids can be found in this volume in Pertwee

“Endocannabinoids and Their Pharmacological Actions”.

2 Biosynthesis of the Endocannabinoids

It is generally accepted that endocannabinoids are not stored in cells awaiting

release, but are rather synthesized on demand in a Ca2+-dependent manner in

response to physiological and pathological stimuli (Di Marzo and Deutsch 1998).

However, recent data suggest that AEA can also be stored inside the cell (Oddi

et al. 2008). AEA as well as other N-acyl-ethanolamines were initially considered

as terminal products of post mortem tissue degradation, and their physiological role

remained controversial until the identification of their biosynthetic and metabolic

pathways (Piomelli 2014).

The principal pathway of AEA biosynthesis includes a first step, catalysed by a

calcium-dependent N-acyltransferase (NAT), in which an acyl chain is transferred

from the sn-1 position of a glycerophospholipid to the amino group of the

hydroxyethyl moiety of phosphatidylethanolamine (PE), and a second step in

which the generated N-acylphosphatidylethanolamine (NAPE) is hydrolysed to

NAE and phosphatidic acid, through a reaction catalysed by a phosphodiesterase

of the phospholipase D-type (NAPE-PLD) (Fig. 1). NAPE-PLD, that is chemically

and enzymatically distinct from other known PLDs, is a member of the β-lactamase

family of zinc-metal hydrolases, is highly conserved in mouse, rat and human, is

stimulated by calcium, is highly expressed in the brain as well as in kidney, spleen,

lung, heart and liver and is involved in the formation of other, cannabinoid-receptor

inactive, N-acyl-ethanolamines (C16:0, C18:0 and C18:1) (Petersen and Hansen

1999; Ueda et al. 2001a; Liu et al. 2002; Okamoto et al. 2004). Interestingly, studies

performed using NAPE-PLD knockout mice suggested that while an increase in

endogenous levels of NAPEs with saturated and monounsaturated N-acyl chains
was observed, few or no changes were observed in the levels of polyunsaturated

NAPEs and NAEs, thus suggesting the existence of alternative AEA biosynthetic

pathways (Brown et al. 2013; Cascio 2013; Fonseca et al. 2013). There is evidence

too that: (1) AEA is formed from N-acyl-lysophosphatidylethanolamine by a

lysophospholipase-D-enzyme (lyso-PLD) (Sun et al. 2004) (Fig. 1); (2) AEA is

also formed in a pathway in which a crucial role is played by an additional enzyme,

α/β-hydrolase 4 (Abh4), which can act on either NAPE or lyso-NAPE to generate

glycerophospho-arachidonoylethanolamide (GpAEA), that is subsequently
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converted to AEA in the presence of a phosphodiesterase (Simon and Cravatt 2006)

(Fig. 1) and finally (3) that NAPE can also be hydrolysed, by phospholipase C, to

phosphoanandamide (pAEA) which, in turn, is dephosphorylated by phosphatases

to AEA (Liu et al. 2006) (Fig. 1). Interestingly, an alternative biosynthetic pathway

for AEA might also exist that involves direct condensation of free arachidonic acid

and ethanolamine, catalysed by an AEA synthase. However, this pathway requires

high “non-physiological” concentrations of both substrates (Sugiura et al. 1996;

Ueda et al. 1996).

For 2-AG, the most accepted biosynthetic pathway is the hydrolysis of mem-

brane phospholipids that is catalysed by phospholipase C (PLC) and that produces

1,2-diacylglycerol (DAG), which in turn is converted to 2-AG by diacylglycerol

Fig. 1 Schematic representation of anandamide biosynthesis and degradation. NArPE
N-arachidonoylphosphatidyl-ethanolamine, PLC phospholipase C, PTPN22 protein tyrosine phos-
phatase, PLA2 phospholipase A2, PE phosphatidyl-ethanolamine, PLD phospholipase D, Abh4
α/β-hydrolase 4, PG prostaglandin, HPETEA hydroxyperoxyeicosatetraenoylethanolamide, LOX
lypoxygenase, COX cyclooxygenase, FAAH fatty acid amide hydrolase, NAAA N-acyletha-
nolamine-hydrolysing acid amidase, R1 ethanolamine
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lipase (DGL) (Bisogno et al. 2003) (Fig. 2). DGL exists in two closely related forms

designated α and β, that are both active at pH 7, both stimulated by calcium and

glutathione (GSH) and both inhibited by inhibitors of Ser/Cis-hydrolases, such as p-
hydroxy-benzoate-mercuric and HgCl2 but not by phenylmethylsulphonyl fluoride

(Bisogno et al. 2003). Both enzymes are also inhibited by RHC80267, which is able

to block the formation of 2-AG by intact cells (Bisogno et al. 2003). Pharmacologi-

cal studies have revealed that during neuronal development, localization of DGLα
and DGLβ changes from pre- to post-synaptic elements, i.e. from axonal tracts in

the embryo to dendritic fields in the adult, suggesting a different need for 2-AG

Fig. 2 Main pathways for 2-arachidonoylglycerol biosynthesis and degradation. PLC
phospholipase C, PLA1 phospholipase A1, PI phospatidyl-inositol, DGL diacylglycerol lipase,

HETE-G hydroxyeicosatetraenoyl-glycerol, HPETE-G hydroxyperoxyeicosatetraenoyl-glycerol,

LOX lypoxygenase, COX cyclooxygenase, MGL monoacylglycerol lipase, ABHD α/β-hydrolase
domain, R1 glycerol
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synthesis from the pre- to the post-synaptic compartment during brain development

(Bisogno et al. 2003; Williams et al. 2003). Furthermore, there is evidence too that

DGLα plays an essential role in the regulation of retrograde synaptic plasticity and

neurogenesis (Gao et al. 2010; Tanimura et al. 2010; Savinainen et al. 2012). Like

AEA, 2-AG can also be synthesized via other pathways. However, the physiologi-

cal importance of these proposed pathways is not yet clear.

3 Uptake of the Endocannabinoids: Proposed Mechanisms

Once released into the extracellular space, endocannabinoids exert the majority of

their effects by acting, as retrograde messengers, at CB1 cannabinoid receptors

present on the surface of presynaptic nerve terminals (Piomelli 2014). So far, it is

not clear how the endocannabinoids access their metabolic enzymes. Indeed, while

monoacylglycerol lipase (MGL, the main metabolic enzyme of 2-AG) is localized

pre-synaptically, fatty acid amide hydrolase (FAAH, the main metabolic enzyme of

AEA) is localized post-synaptically, thus at a certain distance from the site of action

of AEA (Piomelli 2014). To explain the mechanism(s) by which AEA would be

taken up by cells, several interesting hypotheses have been proposed (Fowler 2012,

2013). Briefly, AEA is a lipophilic molecule and as such it could easily diffuse

through the cell membrane. However, a simple diffusion through the membrane

would cease once the equilibrium in the AEA gradient between the extracellular

and intracellular environment is reached, unless this equilibrium is prevented by

intracellular metabolism induced by FAAH (Fowler 2012, 2013). However,

although FAAH may, of course, influence the uptake of AEA (at least the speed

with which this process takes place), the uptake is clearly distinct from FAAH.

Indeed, (1) compounds able to selectively inhibit the cellular uptake of AEA, but

not FAAH, have been identified (De Petrocellis et al. 2000; Di Marzo et al. 2001,

2002; L�opez-Rodrı́guez et al. 2001; Ortar et al. 2003); (2) inhibitors of FAAH

increase, and inhibitors of AEA uptake decrease, the accumulation of AEA within

cells (Kathuria et al. 2003); (3) cells that do not express FAAH rapidly internalize

AEA (Di Marzo et al. 1999; Deutsch et al. 2001); (4) NADA and noladin, although

they are not FAAH substrates, are rapidly internalized by cells (Fezza et al. 2002;

Huang et al. 2002) and (5) a saturable AEA accumulation was observed in

synaptosomes and cells prepared from genetically modified mice that do not

express FAAH (Fegley et al. 2004; Ligresti et al. 2004).

In addition, since endocannabinoid uptake is rapid, temperature-dependent,

selective for anandamide over other acylethanolamides and saturable, the hypothe-

sis that AEA uptake may occur through a facilitated transport mechanism has also

been proposed (Di Marzo et al. 1994; Hillard and Jarrahian 2000; Fezza et al. 2008).

Unfortunately, the protein responsible for this transport, better known as

“Endocannabinoid Membrane Transporter” or EMT, has not yet been cloned and

its existence is supported only by indirect evidence. More recent studies have

shown the existence of carrier proteins that would facilitate diffusion of AEA

through the plasma membranes. Examples are the fatty acid binding proteins

FABP5 and FABP7, but not FABP3 (Kaczocha et al. 2009), the heat shock protein
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70 (Hsp70) and albumin (Oddi et al. 2009), and the most recently identified FAAH-

like anandamide transporter (FLAT). FLAT is a dimeric protein lacking the

membrane-anchoring domain of the FAAH dimer, and its overexpression in

HEK-293 cells increases AEA uptake (Fu et al. 2012). Other hypotheses have

also been proposed (Oddi et al. 2008; Di Pasquale et al. 2009; Fowler 2013).

Several synthetic compounds that are able to inhibit the cellular uptake of AEA

have been developed so far, some examples being AM404, VDM11, UCM707,

OMDM1, OMDM2 and LY21832110 (Pertwee 2014). These compounds have been

reported to possess, at least in animals, promising pharmacological properties for

the treatment of cancer, pain, multiple sclerosis, Parkinson’s disease, Huntington

disease and anxiety (Pertwee 2014). Interestingly, AM404 has also been reported to

be effective against nicotine-seeking behaviour and obsessive compulsive disorders

(Pertwee 2014).

4 Degradation of the Endocannabinoids

Two main metabolic pathways have been identified so far: one hydrolytic and the

other oxidative (Figs. 1 and 2). AEA is mainly hydrolyzed by FAAH (Cravatt

et al. 1996; Giang and Cravatt 1997; Bracey et al. 2002), while 2-AG is mainly

hydrolyzed by MGL (Dinh et al. 2002) and also by FAAH. In addition to these two

enzymes, an N-acylethanolamine-selective acid amidase (NAAA) (Ueda

et al. 1999) and, more recently, a second FAAH (FAAH-2) (Wei et al. 2006), as

well as two other enzymes ABHD6 and ABHD12, (Blankman et al. 2007) have

been reported to participate in the degradation of several endocannabinoids. Both

AEA and 2-AG can also be degraded by enzymes of the arachidonate cascade, such

as cyclooxygenase-2 (COX-2), lipoxygenases (LOXs) as well as cytochrome P450

enzymes, to produce the corresponding hydroxy- (in the case of lipoxygenases) and

epoxy- (in the case of cytochrome P450 monooxidases) derivatives or to produce

prostamides and prostaglandin glycerol esters (in the case of cyclooxygenases and

prostaglandin synthases) (Piscitelli and Di Marzo 2012) (Figs. 1 and 2). While both

hydroxy- and epoxy-endocannabinoids have been reported to act at both cannabi-

noid CB1 and CB2 receptors as well as at the vanilloid receptors, TRPV1 (hydroxy-

endocannabinoids) and TRPV4 (epoxy-endocannabinoids), both prostamides and

prostaglandin-glycerol esters are inactive at cannabinoid receptors. It has been

suggested that they act at new, not yet identified, receptors (Piscitelli and Di

Marzo 2012). Below, we report a brief description of the enzymes involved in the

hydrolysis of endocannabinoids.

4.1 FAAH and NAAA

FAAH, which was first cloned by Cravatt et al. (1996), is an integral membrane

protein widely distributed in various tissues of rat (Desarnaud et al. 1995; Cravatt

et al. 1996; Katayama et al. 1997), mouse (Sun et al. 2005), and human (Giang and
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Cravatt 1997). This enzyme, active at pH 8–10, is mainly localized on microsomal

membranes and contains 597 amino acids, with a short “amidase” sequence

enriched in glycine and serine residues. The isolation of FAAH was made possible

by the previous development of potent transition state inhibitors, one of which was

used to carry out affinity chromatography purification (Cravatt et al. 1996;

Petrosino and Di Marzo 2010). A covalent inhibitor, instead, was used to facilitate

the formation of crystals of a slightly modified, soluble form of FAAH and to obtain

its structure by X-ray crystallography (Bracey et al. 2002; Petrosino and Di Marzo

2010). FAAH catalytic triad is composed of Ser-Ser-Lys, in which Ser241 plays a

critical role as both acid and base in the hydrolytic cycle, whereas Lys142 is the

activator of Ser241, and Ser217 participates in the catalytic mechanism of FAAH

by facilitating the nucleophile attack and the exit of the leaving group (Petrosino

and Di Marzo 2010). Importantly, it has been reported that the promoter region of

the FAAH gene is up-regulated by progesterone and leptin and down-regulated by

estrogens and glucocorticoids (Puffenbarger et al. 2001; Waleh et al. 2002;

Maccarrone et al. 2003a, b). Ergetova and co-workers (Egertová et al. 1998)

analysed the distribution of FAAH in rat brain and compared its cellular localiza-

tion with CB1-type cannabinoid receptors using immunocytochemistry. High

concentrations of FAAH were detected in the cerebellum, hippocampus and neo-

cortex, which are enriched with cannabinoid receptors. Immunocytochemical anal-

ysis of these brain regions revealed a complementary pattern of FAAH and CB1

expression with CB1 immunoreactivity occurring in fibres surrounding FAAH-

immunoreactive cell bodies and/or dendrites (Egertová et al. 1998). In the cerebel-

lum, FAAH was expressed in the cell bodies of Purkinje cells and CB1 was

expressed in the axons of granule cells and basket cells, neurons which are

presynaptic to Purkinje cells (Egertová et al. 1998).

FAAH is also able to metabolize other fatty acid amides such as N-arachidonoyl-
dopamine and a large number of mono-unsaturated and saturated compounds (Ueda

2002; Fegley et al. 2005; Ho and Hillard 2005; Lo Verme et al. 2005). Examples are

PEA (De Petrocellis et al. 2001; Ueda et al. 2001b; Ueda 2002; Lo Verme

et al. 2005), oleoylethanolamide, N-arachidonoylserine and N-arachidonoylglycine,
the latter two of which have also been reported to be FAAH inhibitors (Sheskin

et al. 1997; Bradshaw and Walker 2005; Ho and Hillard 2005). Recently, a second

isoform of FAAH, FAAH-2, has been identified. It shows ~20 % sequence similar-

ity with FAAH at the amino acid level and is expressed in several species, including

human, primates, frog, chicken, pufferfish and zebrafish, but not in rodents (Wei

et al. 2006). FAAH-1 and FAAH-2 are located on the cytosolic and luminal sides of

intracellular membranes, respectively. Both FAAH enzymes have distinct tissue

distribution. Indeed, FAAH-2 was detected in the heart and ovary, but not in the

brain, small intestine or testis, which are known to express FAAH-1. However,

FAAH-1 and FAAH-2 were both detected in the prostate, lung, kidney and liver

(Wei et al. 2006). FAAH is also involved in the hydrolysis of 2-AG (Di Marzo and

Deutsch 1998), although it has been observed that levels of 2-AG, unlike those of

AEA, are not increased in FAAH-knockout mice (Lichtman et al. 2002). Interest-

ingly, recent reports have shown that FAAH is involved in the production of
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symptoms of a variety of disorders and that FAAH inhibitors may be effective at

ameliorating acute, inflammatory, visceral and neuropathic pain as well as

osteoarthritic pain and hyperalgesia induced by bladder inflammation (Pertwee

2014). Importantly, unlike direct CB1 agonists, FAAH inhibitors produce

antinociception in mice at doses that do not induce hypomotility, hypothermia,

catalepsy and hyperphagia or signs of physical or psychological dependence

(Pertwee 2014). A few examples of FAAH inhibitors are URB597, OL135,

O-1887, URB532, AM374 (palmitylsulphonyl fluoride), N-arachidonoylglycine
and N-arachidonoyl serotonin, JNJ1661010 and CAY10401, AM3506 and

AM5206, ST4070, PF3845 and PF04457845 (Pertwee 2014).

One other enzyme involved in AEA hydrolysis is NAAA. This enzyme is a

cysteine hydrolase belonging to the N-terminal nucleophile hydrolase superfamily,

is present in cellular lysosomes or in the Golgi apparatus of cells, is active only at

acidic pH and shows higher selectivity for PEA than for AEA (Brown et al. 2013;

Ueda et al. 2013). Millimolar concentrations of dithiothreitol (DTT) as well as

non-ionic detergents such as Triton X-100 and Nonidet P-40 are required to

promote its full activity (Brown et al. 2013; Ueda et al. 2013). NAAA is highly

expressed in a number of blood cell lines, as well as in macrophages in various

rodent tissues. In humans, NAAA mRNA is expressed most abundantly in prostate

followed by leukocytes, liver, spleen, kidney and pancreas (Ueda et al. 2010).

Prostate cancer cell lines like PC3, LNCaP and DU-145 also express high levels

of NAAA (Ueda et al. 2010). Interestingly, due to its selectivity towards PEA,

selective NAAA inhibitors that can increase local levels of endogenous PEA are

expected to be anti-inflammatory and analgesic drugs (Petrosino et al. 2010; Ueda

et al. 2013).

4.2 MGL, ABHD6 and ABHD12

MGL is a serine hydrolase responsible for about 85 % of the 2-AG hydrolyzing

activity of mouse brain (Blankman et al. 2007). This enzyme of about 303 amino

acids is present in both membrane and cytosolic subcellular fractions and can

recognize other unsaturated monoacylglycerols also as substrates, which in some

cases compete with 2-AG inactivation (Ben-Shabat et al. 1998; Di Marzo and

Deutsch 1998). MGL is sensitive to sulphydryl-specific reagents, and comparison

models strongly suggest that cysteine residues present near its binding site play a

role in the catalytic mechanism (Saario et al. 2005), although the catalytic triad of

this enzyme also involves Ser122, Asp239 and His269 (Karlsson et al. 1997). The

distribution of MGL was studied in rat, and it was shown to be ubiquitous (Karlsson

et al. 1997). Specifically, MGL mRNA was reported to be present in adrenal gland,

heart, adipose tissue, kidney, ovary, testis, spleen, lung, liver, skeletal muscle and

brain (particularly in hippocampus, cortex, thalamus and cerebellum, where CB1

receptors are highly expressed) (Dinh et al. 2002). Ultrastructural localization

studies show that MGL is mainly pre-synaptic and often co-localizes with CB1

receptors in the axon terminals (Savinainen et al. 2012). The complimentary
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localization in the brain for MGL and FAAH, pre-synaptic and post-synaptic,

respectively, has suggested different roles for the two main endocannabinoids in

the central nervous system (Gulyas et al. 2004). Several MGL inhibitors have been

developed so far. Methylarachidonoylfluorophosphonate (MAFP) inhibits MGL

irreversibly but lacks selectivity, since it inhibits most metabolic serine hydrolases

(Saario et al. 2004; Savinainen et al. 2010, 2012). N-arachidonoylmaleimide

(NAM) selectively, but only partially (85 %), inhibits MGL (Saario et al. 2005;

Blankman et al. 2007; Savinainen et al. 2012). Other MGL inhibitors include the

non-competitive/irreversible inhibitors, URB602 and JZL184, and the reversible

inhibitor, OMDM169 (Petrosino and Di Marzo 2010). Like FAAH inhibitors, MGL

inhibitors have been found to have potential therapeutic applications, as indicated,

for example, by results obtained from experiments using animal models of acute,

visceral, inflammatory, neuropathic or bone cancer pain (Pertwee 2014). Interest-

ingly, MGL inhibitors have also been reported to be efficacious against signs of

breast, ovarian, skin and prostate cancer in animal models (Pertwee 2014). Recent

data have shown that MGL inhibitors such as JZL184 and URB602 can protect

neurons from β amyloid peptide-induced neurodegeneration and apoptosis,

suggesting a therapeutic potential for the treatment of Alzheimer’s disease (Pertwee

2014). Unfortunately, it has been reported that JZL184 shares the ability of direct

CB1 agonists to induce both physical and psychological dependence in mice as well

as tolerance to their antinociceptive effects (Schlosburg et al. 2010; Ghosh

et al. 2013; Pertwee 2014).

2-AG metabolism is also catalysed by two integral membrane proteins,

α/β-hydrolase domain containing protein-6 (ABHD6) and -12 (ABHD12). Both

enzymes belong to the α/β-hydrolase superfamily, with the postulated catalytic triad

serine-aspartic acid-histidine (Savinainen et al. 2012). ABHD6, in neurones, is

localized at sites of 2-AG generation, including post-synaptic dendrites of principal

glutamatergic neurones as well as some GABAergic interneurons (Savinainen

et al. 2012). ABHD12 is highly expressed in microglia, macrophages and

osteoclasts (Fiskerstrand et al. 2010). Interestingly, it was observed that mutations

in the ABHD12 gene are causally linked to a neurodegenerative disease called

PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa and cataract)

(Fiskerstrand et al. 2010; Savinainen et al. 2012).

5 Conclusions

Over the past 20 years, substantial progress has been made in the understanding of

the endocannabinoid system. In particular, new molecules have been classified as

endocannabinoids (e.g., the ethanolamides of two omega-3 fatty acids), and new

targets other than cannabinoid CB1 and CB2 receptors have been identified and held

accountable for some of the effects of the endocannabinoids. Moreover, substantial

progress has also been made in the identification as well as in the characterization of

the enzymes responsible for both the biosynthesis and the metabolism of the main

endocannabinoids, AEA and 2-AG. It still remains to be established whether these
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enzymes catalyse the formation or degradation of other, less studied,

endocannabinoids. In addition, several molecules have been developed that are

able to interact more or less selectively or more or less potently with enzymes or

uptake processes of the endocannabinoid system. Many of these molecules, such as

FAAH and MGL inhibitors as well as endocannabinoid uptake inhibitors, have

been discovered, albeit only in animal models, to possess notable therapeutic

potential for the treatment of diseases such as cancer, pain, neurodegenerative

diseases and so on. Unfortunately, some of these molecules, such as MGL

inhibitors, have also been shown to share the ability of direct CB1 cannabinoid

receptor agonists to cause physical and psychological dependence. This problem

still needs to be overcome. Finally, as recently and elegantly discussed by Piomelli

(Piomelli 2014), one important question about the endocannabinoids that still

remains unresolved is how such lipophilic molecules are able to cover the distance

between their site(s) of action and the site(s) of their enzymatic degradation. This

distance is quite short for 2-AG, whose main metabolic enzyme (MGL) is localized

presynaptically, and thus close to the pre-synaptic CB1 receptors on which 2-AG

acts, but longer for anandamide, which after acting on presynaptic CB1 receptors

must travel trans-synaptically in order to be metabolized by FAAH, which is

primarily postsynaptic. The research on the understanding of the endocannabinoid

system never ends.
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