
Chapter 3
Development of Distributed Embedded
Controllers

3.1 Proposed Model-Based Development Approach

The MBD approach proposed in this work is presented in this section. This approach
supports the development of GALS-DECs (a set of controllers in asynchronous
interaction where each controller is synchronously executed). The distributed
system is specified through a single Petri net model that simultaneously supports
its documentation, validation (using simulation and model-checking tools), and
implementation (using automatic code generator tools). This Petri net model is
platform-independent, supporting the controller implementation in heterogeneous
platforms. Additionally, this model is also network-independent, supporting the
interaction through heterogeneous communication networks. Therefore this model
provides high flexibility in the implementation phase (to select several types of
platforms and communication networks), facilitating the achievement of the desired
performance, power consumption, EMI, and cost. The proposed MBD approach is
presented in Fig. 3.1 through a UML activity diagram (UML 2015).

The proposed MBD approach comprises several development steps. Each step
is in the scope of: the controllers’ modeling, the models’ simulation, the models’
behavioral verification, the controllers’ implementation, or the controllers’ testing.
The development steps are:

• the creation or the selection of the controllers’ sub-models. Each controller is
specified through one or more Petri net sub-models, each one having synchronous
and deterministic execution semantics. These sub-models may be or become
reusable. This work proposes the use of Petri nets extended with the time-domain
(TD) concept (presented in Sect. 3.4), with priorities (Sect. 3.3), and with inputs
and outputs (Sect. 3.2), to create the sub-models of each controller;

• the validation (simulation and verification) of each reusable sub-model. If the
sub-model does not present the desired behavior or if it is not possible to create

© Springer International Publishing Switzerland 2016
F. Moutinho, L. Gomes, Distributed Embedded Controller Development with Petri
Nets, SpringerBriefs in Electrical and Computer Engineering 150,
DOI 10.1007/978-3-319-20822-0_3

19

20 3 Development of Distributed Embedded Controllers

Create or select a set of reusable sub-models
(using Petri nets with IOs, TDs, and priorities)

Create the global GALS-DEC model
(using the reusable sub-models,

setting TDs, and adding ACs)

Simulate and verify the global GALS-DEC model
behavior using simulation and model-checking tools

[not ok]

If possible, automatically update place bounds
into the global GALS-DEC model (using model-
checking tools) to optimize its implementation

[ok]

Correct/
change/split
the reusable
sub-models

Deployment into the platforms

Select components implementation
platforms and IOs mapping

Select communication networks, their
implementation platforms, and IOs mapping

Automatic code generation
(components)

Automatic code generation
(communication channels)

Automatically decompose the global GALS-DEC
model into a set of implementable sub-models

(removing ACs, adding IO events and sub-nets)

[all the available networks and platforms were tested]

[match the required requirements]

Tests (performance, power consumption, EMI, ...)

[else]

[else]

Simulate and verify each reusable sub-model
behavior using simulation and model-checking tools

Automatically add place bounds into the
reusable sub-models (using model-checking

tools) to support their implementation

[not ok][ok]

Fig. 3.1 The proposed model-based development approach for GALS-DECs

3.1 Proposed Model-Based Development Approach 21

the full state-space of that sub-model, then the sub-model must be changed,
corrected, or split into several sub-models, and then each sub-model must be
validated again. It is required to generate the full state-space, to verify the bound
of each place (the maximal number of tokens that can be in each place);

• the automatic addition of the place bounds into the reusable sub-models. If it
is possible to generate the full state-space, it is possible to calculate the place
bounds and automatically add them into the sub-models. The place bounds are
the bounds of the memory elements that will be used to implement the places.
This is required to ensure that these sub-models can be implemented;

• the creation of the global GALS-DEC model. The global model is created
using the reusable sub-models, changing their time-domains (to ensure that sub-
models from different components have different time-domains), and connecting
asynchronous-channels (presented in Sect. 3.5) to their sources and targets (the
transitions that are channel-sources and channel-targets). It is important to note
that the reusable sub-models should be created and the asynchronous-channels
should be connected, in such a way that it is not possible to simultaneously have
more than one message in each asynchronous-channel. This ensures that it is
not required to generate the full state-space of the global GALS-DEC model, in
order to generate the communication nodes required to support the components
interaction (the asynchronous-channels implementation);

• the simulation and the verification of the global GALS-DEC model. If the global
model does not specify the desired behavior, the reusable sub-models must be
corrected or changed, and the previous steps must be repeated;

• if possible, the automatic update and addition of the place bounds and
asynchronous-channel bounds into the global GALS-DEC model. If it is possible
to generate the full state-space of the global model, then the place bounds
can be automatically updated and the asynchronous-channel bounds can be
automatically added. If it is not possible to generate the full state-space, but the
global model was created to ensure that the asynchronous-channel bounds are not
bigger than one, then place bounds are not updated and the asynchronous-channel
bounds can be automatically added and assigned the value one. This bounded
model supports the components and the communication nodes implementation;

• the automatic decomposition of the global GALS-DEC model into a set of imple-
mentable sub-models. Each of these sub-models will support the implementation
of a synchronous component. An algorithm to support this decomposition is
presented in Sect. 3.8;

• the selection of the implementation platforms and of the communication net-
works, and the mapping of the models inputs and outputs, to the platform
physical connectors;

• the automatic code generation. The components implementation code can be
automatically generated using the tools presented in Campos-Rebelo et al.
(2011), Pereira et al. (2012a), and Pereira and Gomes (2013). The communi-
cation nodes implementation code can also be automatically generated; however,
currently no tools are available to perform this task;

22 3 Development of Distributed Embedded Controllers

• the code deployment into the implementation platforms;
• the platform tests. If GALS-DEC presents the desired behavior and matches the

required requirements (performance, power consumption, and so on), then the
distributed controller is finished, otherwise other implementation platforms
must be selected and tested, or even other communication networks should be
considered. If the available platforms and communication networks were tested,
without matching the desired requirements, then the reusable sub-models must
be changed, to check if a different distributed controller that also has the desired
behavior can match the desired requirements.

Most of these development steps were used in the application example presented in
Chap. 4, illustrating the proposed model-based development approach.

3.2 Petri Nets Extended with Inputs and Outputs

To explicitly specify the interaction between the controllers and their environment,
Petri nets must integrate input and output dependencies. When these controllers
interact through communication channels, the inputs and outputs also support the
specification of the interaction between the controllers and the communication
channels. The use of three types of inputs and outputs is proposed in this book:

• input signals and output signals;
• input events and output events; and
• channel targets (are inputs) and channel sources (are outputs).

Signals and events must be used in the reusable sub-models, in the global GALS-
DEC models, and in the implementable sub-models, to specify the interaction
between the controllers and the environment. In the reusable sub-models, channel
targets and channel sources are used to specify how the controllers are affected by
and affect the communication channels, whereas in the implementable sub-models,
events (automatically introduced during the global model decomposition) are used
to specify the interaction between the controllers and the communication channels.
The channel targets and channel sources, which are associated with transitions, are
ignored during: (1) the validation, if the transitions have asynchronous channels
connected to them; and (2) the automatic code generation. In this work, such as in
other works (like in Gomes et al. 2007a), it is proposed that: (1) input and output
signals should be verified and assigned within Boolean expressions and assignment
expressions; and (2) input and output events should be associated with transitions.
The channel targets and channel sources should also be associated to transitions.

A Petri nets class with these inputs and outputs and associated expressions is
given by:

PNIO D .PN; IO/ D .P; T; F; W; M0; IO/ (3.1)

3.2 Petri Nets Extended with Inputs and Outputs 23

where PN is a tuple with the common sets to define a Petri nets class [Eq. (2.1)] and
IO is given by:

IO D .ie; oe; ct; cs; is; os/ (3.2)

ie, a partial function associating transitions with sub-sets of input events:

ie W T 0 ! P.IE/ (3.3)

where P.IE/ is the power set of IE (the set of all subsets of IE), and IE is the set
of input events. This means that a set of input events can be associated with each
transition.

oe, a partial function associating transitions with sub-sets of output events:

oe W T 0 ! P.OE/ (3.4)

where P.OE/ is the power set of OE, and OE is the set of output events. This means
that a set of output events can be associated with each transition.

ct, a partial function identifying some transitions as being channel targets:

ct W T 0 ! CT (3.5)

where CT is the set of channel targets. This means that each transition can be target
of a communication channel.

cs, a partial function identifying a set of transitions as being channel sources
(sources of communication channels):

cs W T 0 ! CS (3.6)

where CS is the set of channel targets.
is, a partial function associating transitions with Boolean expressions:

is W T 0 ! BE (3.7)

where BE is the set of Boolean expressions checking input signal values.
os, a partial function associating places with assignment expressions:

os W P0 ! P.AE/ (3.8)

where P.AE/ is the power set of AE, and AE is the set of assignment expressions
assigning the result of mathematical expressions to output signals.

Inputs constrain the net evolution (the transitions firing), whereas outputs are
affected by the net evolution and by the net marking (the number of tokens). An
input event that is associated with a transition disables the transition firing when-
ever it does not occur. Channel targets constrain transitions in a similar way as

24 3 Development of Distributed Embedded Controllers

input events. A Boolean expression (associated with a transition) disables the
transition firing when false. An output event is generated when the associated
transition fires. Finally, an output signal is assigned to the result of the associated
expression when the associated place is marked.

3.3 Petri Nets with Priorities

Priorities are proposed in this work to solve Petri net conflicts, as in Gomes et al.
(2007a). Two (or more) transitions with the same input place are in a structural
conflict, which is also an effective conflict if during the net evolution there are
states where both transitions are enabled, but cannot fire simultaneously. If two
transitions are enabled, but cannot fire simultaneously, which one should fire?
To solve this ambiguous situation and allow autonomous execution of the model,
different priorities must be assigned to transitions in conflict. This way becomes
clear which of the transitions will fire. Priorities simultaneously solve structural
conflicts and effective conflicts. A Petri net with a priority function is given by:

PNP D .PN; pr/ (3.9)

where pr is a partial function associating transitions with positive integers (N D
f1; 2; 3; : : :g), given by:

pr W T 0 ! N (3.10)

The transition associated with the lower value is the one with higher priority. The
priority function must ensure that any two transitions in a structural conflict must
have different priorities:

8.p1�t1/;.p1�t2/2F.t1 2 T ^ t2 2 T ^ t1 ¤ t2) pr.t1/ ¤ pr.t2// (3.11)

A Petri net model with one solved conflict is presented in Fig. 3.2. Transitions
“T1” and “T2” are in conflict, competing for the token that is in place “P1”. This
conflict is solved assigning priority 1 (“pr:1”) to transition “T2” and priority 2
(“pr:2”) to transition “T1”. This means that transition “T2” has higher priority than
transition “T1”.

Fig. 3.2 A Petri net model
with one conflict solved
through priorities

3.4 The Time-Domain Concept 25

3.4 The Time-Domain Concept

The time-domain concept, described in Moutinho and Gomes (2014), introduces
the globally-asynchronous locally-synchronous execution semantics into Petri nets,
and ensures that the created models always specify distributed systems, supporting
their implementation, as desired in this work. Time-domains make Petri nets totally
synchronized Petri nets with single-server semantics (such as those proposed in
Moalla et al. 1978). The totally synchronized Petri nets presented in Moalla et al.
(1978) are suited to model GALS systems; however, they do not ensure that the
created models can be implemented as distributed systems, whereas the use of
Petri nets extended with time-domains ensures that the created models have well-
delimited synchronized domains, supporting their implementation as distributed
controllers.

3.4.1 Petri Nets Extended with Time-Domains

A Petri nets class extended with time-domains is given by:

PNTD D .PN; td/ D .P; T; F; W; M0; td/ (3.12)

where td is the time-domain function. td is a function associating Petri net places
and transitions with positive integers (N D f1; 2; 3; : : :g), as defined in Eq. (3.13).

td W .P [T/ ! N (3.13)

To ensure that each sub-model cannot specify more than one component, in a Petri
net model with time-domains each arc always connects two nodes (places and
transitions) with the same time-domain, as defined in Eq. (3.14).

8.n1�n2/2F.td.n1/ D td.n2// (3.14)

This ensures that the created models are structurally unambiguous and distributable,
in order to support their implementation, and the use of automatic code generators.
For instance, using Petri nets with time-domains, it is not possible to create models:
(1) with structural ambiguities, such as the one presented in Fig. 2.7; and (2) that
are not distributable, such as those that have transitions in conflict with different
time-domains (conflicts must be solved locally).

A Petri net model with time-domains specifying three synchronous and inde-
pendent components is presented in Fig. 3.3. This model has four (disconnected)
sub-models: the sub-model with time-domain 1, where all nodes have time-domain
1 (“td:1”); the sub-models with time-domain 2, where all nodes have time-domain 2
(“td:2”); and the sub-model with time-domain 3, where all nodes have time-domain
3 (“td:3”).

26 3 Development of Distributed Embedded Controllers

Fig. 3.3 A Petri net model with four sub-models specifying three components

3.4.2 Execution Semantics of Petri Nets with Time-Domains

Petri nets with time-domains have the execution semantics of totally synchronized
Petri nets with single-server semantics (Moalla et al. 1978). In a Petri net model
with time-domains all transitions have time-domain and all transitions with the
same time-domain are synchronized by the same external event, which is implicit
for that time-domain. In a specific execution state, when a synchronizing event
occurs, all the associated transitions that are enabled and not in a conflict that
prevent their firing will fire simultaneously in that instant. It was defined that
transitions with different time-domains never fire simultaneously (as they have
different synchronizing events). The Petri net model with time-domains presented
in Fig. 3.3 has the following execution semantics:

• in the sub-model with time-domain 1, only transition “T1” is enabled, and it will
fire when the associated (implicit) event occurs;

• in the sub-model with time-domain 2, both transitions “T6” and “T3” are enabled.
They fire simultaneously when the associated (implicit) event occurs;

• in the sub-model with time-domain 3, no transition is enabled;
• in the initial state two things can happen: transition “T1” fires or transitions “T6”

and “T3” fire. This shows that the behavior of the global distributed model is non-
deterministic (as desired), because each sub-model is independent. However, the
behavior of each sub-model is deterministic (in a specific state for specific input
values, the sub-model has always the same next state), if the existing conflicts are
solved.

3.5 Asynchronous-Channels 27

Fig. 3.4 The state-space of the Petri net model from Fig. 3.3

Transitions “T4” and “T5” are in conflict, which means that this conflict must be
a-priori solved to ensure deterministic and unambiguous sub-models. As previously
mentioned, this book proposes the use of priorities to solve conflicts. The state-
space (also known as reachability graph) that represents the global model (Fig. 3.3)
behavior is presented in Fig. 3.4.

3.5 Asynchronous-Channels

3.5.1 Introduction

Three types of asynchronous communication channels were proposed in Moutinho
and Gomes (2014) to specify the interaction between Petri net sub-models
with time-domains, enabling the specification of globally-asynchronous locally-
synchronous distributed embedded controllers (GALS-DECs). The use of
time-domains ensures that the models have well-delimited synchronized domains
without structural ambiguities. However, it is required to enable sub-models
interaction, to support the specification among the synchronous components. To
support this interaction the following channels were proposed:

• the Simple Asynchronous Channel (SimpleAC);
• the Acknowledged Asynchronous Channel (AckAC);
• the Not-enabled Asynchronous Channel (NotAC).

28 3 Development of Distributed Embedded Controllers

These three asynchronous-channels provide a network-independent specification
of the components interaction, as they do not specify the transmission time, which
can be unbounded, between zero and infinite (a communication failure). This
means that a global model (with these channels) can support the implementation
using different types of communication networks and protocols. Additionally, the
validation of this global model provides results that are valid regardless of the
implementation support. This provides high flexibility in the implementation phase,
enabling the creation of several heterogeneous prototypes (using a single global
model), test them, and select the most suited one (for instance, the one that provides
the desired performance with lower power consumption).

Each asynchronous-channel is listening one transition of one sub-model (with
a specific time-domain) and based on that sends messages to a set of transitions
of another sub-model (with another time-domain). The SimpleAC, which is an
improved version of the channel introduced in Moutinho and Gomes (2012a), sends
a message to the target sub-model whenever the listened transition (the source
transition) fires. The AckAC sends a message to the target sub-model whenever
the listened transition receives a message from another asynchronous-channel. The
NotAC sends a message to the target sub-model whenever the listened transition
receives a message from another asynchronous-channel and does not fire (reporting
that the transition is not enabled).

When a message arrives the target sub-model, it is simultaneously delivered to
the target transitions of that asynchronous channel. From those transitions, the ones
that can fire, will fire in the next execution step. The message is only available (to
be read) during one execution step, being destroyed after that.

A Petri net model with these three types of channels is presented in Fig. 3.5. This
model has three SimpleACs (“AC1”, “AC3”, and “AC5”), one AckAC (“AC2”), and
one NotAC (“AC4”):

Fig. 3.5 A Petri net model with three SimpleACs, one AckAC, and one NotAC

3.5 Asynchronous-Channels 29

• “AC1” connects transition “T1” of the sub-model with time-domain 1 (“td:1”) to
the transitions “T6” and “T3” of the sub-model with time-domain 2 (“td:2”);

• “AC3” connects transition “T3” of the sub-model with time-domain 2 to the
transition “T8” of the sub-model with time-domain 3 (“td:3”);

• “AC5” connects transition “T8” of the sub-model with time-domain 3 to the
transition “T5” of the sub-model with time-domain 2;

• “AC2” connects transition “T3” of the sub-model with time-domain 2 to the
transition “T2” of the sub-model with time-domain 1;

• “AC4” connects transition “T8” of the sub-model with time-domain 3 to the
transition “T4” of the sub-model with time-domain 2.

Whenever transition “T1” fires, one message is created and sent through the
asynchronous-channel “AC1”, to the transitions “T6” and “T3”. Whenever transition
“T3” receives a message (regardless of its firing), one message is created and sent
through the asynchronous-channel “AC2”, to the transition “T2”. Finally, whenever
transition “T8” receives a message and does not fire, one message is created and
sent through the asynchronous-channel “AC4”, to the transition “T4”.

3.5.2 Asynchronous-Channel Definition

A Petri nets class extended with asynchronous-channels and time-domains is
given by:

PNAC D .PNTD; AC/ D .P; T; F; W; M0; td; AC/ (3.15)

where AC, a set of asynchronous-channels that includes a set of SimpleACs (SAC),
a set of AckACs (AAC), and a set of NotACs (NAC), is given by Eq. (3.16).

AC D .SAC [AAC [NAC/ (3.16)

SimpleACs, AckACs, and NotACs associate transitions with sets of transitions,
as presented in Eqs. (3.17)–(3.19), where P.T/ is the power set of T .

SAC � T � P.T/ (3.17)

AAC � T � P.T/ (3.18)

NAC � T � P.T/ (3.19)

Each asynchronous-channel connects one transition of one component (the
source transition) to a set of transitions of another component (the target transitions).
This means that the target transitions of each asynchronous-channel must have
the same time-domain (as they belong to a single component), as presented in
Eq. (3.20).

30 3 Development of Distributed Embedded Controllers

8t1;t22Ta W .t; Ta/ 2 AC) td.t1/ D td.t2// (3.20)

Two asynchronous-channels cannot have the same target transition:

8t2Ta 6 9t2Tb W .t1; Ta/ 2 AC ^ .t2; Tb/ 2 AC ^ t1 ¤ t2 (3.21)

The AckACs and NotACs are used to provide feedback about the deliv-
ery of messages and about their influence in the target transitions. This means
that: (1) the source of an AckAC is always the target of another asynchronous-
channel [Eq. 3.22], and (2) the source of a NotAC is always the target of another
asynchronous-channel [Eq. 3.23].

8.ts;Ta/2AAC9.t;Tb/2AC W ts 2 Tb (3.22)

8.ts;Ta/2NAC9.t;Tb/2AC W ts 2 Tb (3.23)

3.5.3 Asynchronous-Channels Execution Semantics

Asynchronous-channels were proposed to connect sub-models with different time-
domains, specifying the asynchronous interaction among distributed and syn-
chronous components. Each channel specifies the sending of a specific message
from one component (the source) to another component (the target). These channels
do not specify the communication network, protocol, and delay (the time taken
by each message from the source to the target), ensuring network-independent
specifications.

These three types of channels have similar execution semantics. The difference
is that they report different events in the source components:

• the SimpleAC sends a message whenever its source transition fires;
• the AckAC sends a message whenever its source transition fires receives a

message;
• the NotAC sends a message whenever its source transition fires receives a

message but does not fire (because it is disabled).

The execution semantics of a Petri net model with asynchronous-channels (such
as the one presented in Fig. 3.5) can be expressed through a Petri net model where
the asynchronous-channels were replaced by behaviorally equivalent sub-models
(such as the one presented in Fig. 3.6). In the model from Fig. 3.6, the asynchronous-
channels “AC1”, “AC2”, “AC3”, “AC4”, and “AC5” from Fig. 3.5 were replaced
their behaviorally equivalent sub-models (with different coloring nodes).

The SimpleACs, the AckACs, and the NotACs behaviorally equivalent Petri
net sub-models are presented in Figs. 3.7, 3.8, and 3.9. The algorithm presented
in Sect. 3.6 supports the transformation of Petri net models with asynchronous-
channels into Petri net models without asynchronous-channels. In all the behav-
iorally equivalent models:

3.5 Asynchronous-Channels 31

Fig. 3.6 The model that specifies the execution semantics of the model from Fig. 3.5, but without
asynchronous-channels

Fig. 3.7 The SimpleAC
behaviorally equivalent Petri
net sub-model

Fig. 3.8 The AckAC
behaviorally equivalent Petri
net sub-model

Fig. 3.9 The NotAC
behaviorally equivalent Petri
net sub-model

32 3 Development of Distributed Embedded Controllers

• the place pGoing is used to count the number of messages that were sent and that
have not yet arrived into the target component;

• the transition tDeliver firing specifies the arriving of a message. It fires when
the associated event (IE) occurs. When the transition tDeliver fires, the target
transitions if enabled also fire. tDeliver consumes the tokens from place pGoing,
ensuring that each message is only available (to enable the target transitions)
during one execution step of the target component, being destroyed after that;

• the input event IE is non-deterministic, ensuring that these channels do not
specify the communication time, as desired to obtain network-independent
specifications.

Any of these behaviorally equivalent models has two target transitions (“tTarget1”
and “tTargetN”); however, they can have one or more target transitions. Each
asynchronous-channel can have a non-zero positive integer number of target
transitions.

The models from Figs. 3.7, 3.8, and 3.9 have similar execution semantics;
however, they react (create and send messages) to different types of events in the
source transitions:

• the SimpleAC creates and sends a message whenever the source transition fires,
as specified in Fig. 3.7 (when the source transition fires one token is added to
place “pGoing” specifying that a message is going to the target component);

• the AckAC creates and sends a message whenever the source transition receives
a message from another asynchronous-channel. When the source transition
receives a message, the transition “tDeliverSource” (Fig. 3.8) also receives a
message. Given that “tDeliverSource” is enabled (it is always enabled), it fires
and one token is created in place “pGoing” specifying that a message is going to
the target component;

• the NotAC creates and sends a message whenever the source transition receives a
message from another asynchronous-channel and does not fire. When the source
transition receives a message, the transition “tNot” (Fig. 3.8) also receives a
message. The transition “tNot” fires if and only if the source transition does not
fire (“tNot” has lower priority than the source transition and “pXor” ensures that
they cannot fire simultaneously). When “tNot” fires one token is generated in
place “pGoing” specifying that a message is going to the target component.

The model presented in Fig. 3.6 supports the validation of the model from
Fig. 3.5, but not its implementation or documentation. It does not support its
implementation because not all nodes have time-domain and the arcs do not always
connect nodes with equal time-domain. However, the use of Petri nets extended
with time-domains without fulfilling all the assumptions described in Sect. 3.4 is
not a problem if the models are only used for validation purposes.

3.6 Distributed GALS Models Validation 33

3.6 Distributed GALS Models Validation

Petri net models with time-domains and asynchronous-channels can be simulated
(using simulation tools) and verified (using state-space model-checking tools). An
algorithm, which specifies the translation of Petri net models with time-domains
and asynchronous-channels into behaviorally equivalent models with time-domains
but without asynchronous-channels, is presented in this section. This algorithm was
implemented in the IOPT-Tools online framework (Pereira et al. 2012a), to allow the
use of their simulation and model-checking tools to simulate and verify distributed
GALS models. The translation algorithm is presented in Algorithm 1 and described
in the following items:

• line 1—the Petri net model (“globalPNname”) with asynchronous-channels is
copied into the “globalPN” data structure;

• line 2—the “globalPN” is cloned into the data structure (“translatedPN”) that
will have the translated model;

• line 3—for each asynchronous-channel of the “translatedPN” data structure:
• lines 4, 5, and 6—it is added the place “pGoing,” the transition “tDeliver,” and

an arc connecting them;
• lines 7 to 10—it is also added a test arc connecting the place “pGoing” to each

target transition, where it is also associated an input event;
• lines 11 to 13—if it is a SimpleAC, an arc connecting the source transition to the

place “pGoing” is added into the “translatedPN” data structure;
• lines 14 to 16—if it is an AckAC, an arc connecting the transition “tDeliver” of

the source component to the place “pGoing” is added into the “translatedPN”
data structure;

• lines 17 to 27—if it is a NotAC, the following items are added to the “translat-
edPN” data structure: the transition “tNot”, the place “pXor”, arcs interconnect-
ing them and connecting “pXor” to the source transition, priorities to the source
transition and to “tNot”, an arc connecting “tNot” to “pGoing”, and a test arc
connecting the place “pGoing” of the behaviorally equivalent sub-model of the
asynchronous-channel that is source of the current source transition;

• line 28—the asynchronous-channel is removed from “translatedPN”;
• line 30—the obtained model is saved into a PNML file.

The algorithm that describes how to generate the state-spaces (also known
as reachability graphs) of Petri net models with time-domains was proposed in
Moutinho and Gomes (2011) and refined in Moutinho (2014). This algorithm,
which was implemented in the IOPT-Tools, generates the state-spaces and saves
them into hierarchical XML files. To analyze and verify the state-spaces (searching
proprieties), standard tools for XML, like XPath and XQuery (W3C 2013) and the
IOPT query engine (Pereira et al. 2012a) can be used. The state-spaces support not
only the behavioral verification, but can also provide the places bounds, which are
the sizes of the memory resources needed to implement the controllers.

34 3 Development of Distributed Embedded Controllers

Algorithm 1 The translation algorithm that replaces asynchronous-channels by their
behaviorally equivalent sub-models
Require: globalPNname
1: globalPN Read.globalPNname/

2: translatedPN globalPN
3: for all ac 2 translatedPN:AC do
4: translatedPN:AddNewPlace.pGoing; ac:id/

5: translatedPN:AddNewTransition.tDeliver; ac:id; translatedPN:td.ac:TargetsŒ0�/; IE/

6: translatedPN:AddNewArc.pGoing; tDeliver; ac:id/

7: for all tTarget 2 ac:Targets do
8: translatedPN:AddNewTestArc.pGoing; tTarget; ac:id/

9: translatedPN:AddEventToTransition.tTarget; IE; ac:id/

10: end for
11: if ac 2 globalPN:SAC then
12: translatedPN:AddNewArc.ac:Source; pGoing; ac:id/

13: end if
14: if ac 2 globalPN:AAC then
15: translatedPN:AddNewArc.tDeliver; ac:Source; pGoing; ac:id/

16: end if
17: if ac 2 globalPN:NAC then
18: translatedPN:AddNewTransition.tNot; ac:id; IEdeliver; ac:Source/

19: translatedPN:AddNewPlace.pXor; marking D 1; ac:id/

20: translatedPN:AddNewArc.tNot; pXor; ac:id/

21: translatedPN:AddNewArc.pXor; tNot; ac:id/

22: translatedPN:AddNewArc.ac:Source; pXor; ac:id/

23: translatedPN:AddNewArc.pXor; ac:Source; ac:id/

24: translatedPN:AddNewPriorityHigherLower.ac:Source; tNot; ac:id/

25: translatedPN:AddNewArc.tNot; pGoing; ac:id/

26: translatedPN:AddNewTestArc.pGoing; ac:Source; tNot; ac:id/

27: end if
28: translatedPN:RemoveAC.ac/

29: end for
30: SaveNewPNML.translatedPN/

The state-space of the model from Fig. 3.5, which of course is also the state-
space of the behaviorally equivalent model presented in Fig. 3.6, is presented in
Fig. 3.10. This state-space was generated in the IOPT-Tools state-space generator
for GALS (Moutinho and Gomes 2012b), which implements the algorithm proposed
in Moutinho and Gomes (2011) and refined in Moutinho (2014).

The model from Fig. 3.5 has the following behavior:

• whenever transition “T1” fires, one message is sent through the asynchronous-
channel “AC1” (in the behaviorally equivalent model one token is inserted in
place “PAC1”);

• when the “AC1” message arrives the target component (in the behaviorally
equivalent model, the event “IEAC1” occurs), one message is sent through the
asynchronous-channel “AC2” (in the behaviorally equivalent model one token is
inserted in place “PAC2”), and transitions “T6” and “T3” fire (if enabled);

3.6 Distributed GALS Models Validation 35

Fig. 3.10 The state-space (reachability graph) of the models from Figs. 3.5 and 3.6

• when “AC2” message arrives to the target sub-model (in the behaviorally
equivalent model, this is specified by the occurrence of event “IEAC2”), the
transition “T2” fires (if enabled);

• when transition “T3” fires, one message is sent through the asynchronous-
channel “AC3”;

36 3 Development of Distributed Embedded Controllers

• when the “AC3” message arrives to the target component (in the behaviorally
equivalent model, the event “IEAC3” occurs), one message is sent through the
asynchronous-channel “AC4” (in the behaviorally equivalent model one token is
inserted in place “PAC4”) because transition “T8” is disabled;

• however, if transition “T8” was enabled, then a message would be sent through
the asynchronous-channel “AC5” instead of “AC4”.

3.7 Bounded Petri Nets

The state-space analysis not only supports the controllers’ verification, but also
supports their implementation. Each Petri net place will be implemented as a
memory resource (such as a software variable or a hardware register). To select
the variable type or to implement the register, it is required to know its size, which
is given by the place bound. The bound of a place is the maximal number of tokens
that will be simultaneously in that place. The bound of each place can easily be
checked in the state-space. Figure 3.10 not only presents the state-space, but also
the bounds of places and asynchronous-channels.

The model-based development approach (MBD) proposed in Sect. 3.1 includes
steps where the bounds are calculated and updated. After the second step (the
reusable sub-models’ verification) of proposed MBD approach the places bound are
added into the sub-models. Later, after the verification of the global GALS-DEC
model (where the state-space is generated), the bounds are updated, but only if it is
possible to generate the full state-space. Otherwise the bounds added in the second
step will remain the same. Given that the global GALS-DEC model was created
to have asynchronous-channels bounded to one, it is not required to generate the
full state-space to ensure its proper implementation. This is the major difference
between the MBD approach proposed in this book and the MBD approach proposed
in Moutinho (2014).

The places and the asynchronous-channels bounds are given by Eq. (3.24).

8p2.P[PAC/.bound.p/ D max.8m2Œ0::n�.#Mm.p//// (3.24)

where:

• P is the set of places that excludes PAC;
• PAC is the set of places of the behaviorally equivalent sub-models that specify

the asynchronous-channels;
• n C 1 is the number of state-space nodes;
• m is the order of a state-space node;
• #Mm.p/ is the number of tokens that are in the place p in the node m of the

state-space.

3.8 Decomposition into Implementable Sub-models 37

A bounded Petri nets class extended with time-domains and asynchronous-
channels is given by Eq. (3.25).

PNGALS D .PNAC; bound/ (3.25)

bound is a function associating places with non-negative integers:

bound W .P [AC/ ! N0 (3.26)

where N0 D f0; 1; 2; 3; : : :g.

3.8 Decomposition into Implementable Sub-models

After the global GALS-DEC model creation and validation, it must be decomposed
into a set of implementable sub-models that support the components implementation
code generation, potentially using automatic code generators, such as those from
IOPT-Tools. The algorithm that supports this decomposition is presented in this
section. This algorithm (Algorithm 2) reads the global GALS-DEC PNML file
and creates a set of PNML files, where each file contains the sub-models that
specify each component. These files that fully specify the synchronous components
can be used as inputs in automatic code generators. A decomposition tool, which
implements this algorithm, was added into the IOPT-Tools (Pereira et al. 2012a).
The created files can be used as inputs in automatic code generators, such as those
from IOPT-Tools: (1) C code generators (Campos-Rebelo et al. 2011; Pereira et al.
2012a) and (2) VHDL code generators (Gomes et al. 2007b; Pereira and Gomes
2013).

To create the sub-models of each component (with a specific time-domain), the
algorithm:

• reads the PNML file of the global GALS-DEC model;
• removes the nodes (places and transitions) that do not have the time-domain of

that component;
• removes the arcs that were connected to the removed nodes;
• removes the asynchronous-channels and introduces: (1) additional sub-models;

and (2) additional input events and output events (to specify the interaction
between the components and the communication nodes);

• saves the resulting sub-models into a new PNML file.

Describing the algorithm in more detail:

• line 1—the global Petri net model uploaded into the globalPN data structure;
• line 2—a list with all time-domains of the globalPN is created;
• lines 3 to 48—for each time-domain, the model of the associated component is

created;
• line 4—new data structure (componentPN) is created with a copy of the global

model (at the end this new structure will contain the component model);

38 3 Development of Distributed Embedded Controllers

Algorithm 2 The decomposition algorithm that reads the global model and creates
the implementation sub-models of each component
Require: globalPNname
1: globalPN Read.globalPNname/

2: timedomainList GetTimeDomains.globalPN/

3: for all timeD 2 timedomainList do
4: componentPN globalPN
5: for all a D .x; y/ 2 componentPN:A do
6: if td.x/ ¤ timeD_ td.y/ ¤ timeD then
7: componentPN:RemoveArc.a/

8: end if
9: end for

10: for all p 2 componentPN:P do
11: if componentPN:td.p/ ¤ timeD then
12: componentPN:RemovePlace.p/

13: end if
14: end for
15: for all ac D .ts; Tt/ 2 componentPN:AC do
16: if td.ts/ D timeD^ ac 2 SAC then
17: componentPN:AssignOutEvToTransition.ts; ac/

18: end if
19: if 9.tt 2 Tt/ W td.tt/ D timeD then
20: for all tt 2 Tt do
21: componentPN:AssignInEvToTransition.tt; ac/

22: end for
23: if 9.aac D .tt; T/ 2 AAC/ then
24: componentPN:AddNewTransition.0tdeliver0; ac; timeD/

25: componentPN:AssignInEvToTransition.0tdeliver0; ac/

26: end if
27: for all aac D .tt; T/ 2 AAC do
28: componentPN:AddNewOutEvToTransition.0tdeliver0; ac; aac/

29: end for
30: end if
31: componentPN:RemoveAC.ac/

32: end for
33: for all t 2 componentPN:T do
34: if componentPN:td.t/ ¤ timeD then
35: componentPN:RemoveTransition.t/
36: else
37: if 9.nac D .t; T/ 2 NAC/ then
38: componentPN:AddNewTransitionWithLowerPriority.0tnotenabled0; t; timeD/

39: ac W ac D .tx; Tx/ 2 AC ^ t 2 Tx

40: componentPN:AddNewInEvToTransition.0tnotenabled0; t; ac/

41: componentPN:AddNewPlace.0pxor0; marking D 1/

42: componentPN:AddNew4Arcs.t;0 pxor0;0 tnotenabled0/

43: end if
44: for all nac D .t; T/ 2 NAC do
45: componentPN:AddNewOutEvToTransition.‘tnotenabled0; t; nac/

46: end for
47: end if
48: end for
49: CreateNewPNMLfile.componentPN/

50: end for

3.9 The Meta-Model of PNs Extended with TDs and ACs 39

• lines 5 to 9—each arc that connects one node with a different time-domain (from
another component) is removed;

• lines 10 to 14—each place with a different time-domain (from another compo-
nent) is removed;

• line 15—for each asynchronous-channel (AC)
• lines 16 to 18—if its source transition has the (component) time-domain and the

AC is a SimpleAC, an output event is associated with the source transition;
• line 19—if any of the target transitions have the (component) time-domain;
• lines 20 to 22—an input event is associated with each of its target transitions;
• lines 23 to 26—if any of the target transitions is source of an AckAC, a new

transition (“tdeliver”) with an associated input event is added;
• lines 27 to 29—for each AckAC that is source of this target transition, a new

output event is associated with the new transition (“deliver”);
• line 31—the asynchronous-channel is removed;
• line 33—for each transition (“t”);
• lines 34 to 35—if it has a different time-domain (from another component) is

removed;
• lines 36 to 43—else, if the transition is source of a NotAC, a sub-net is added.

This sub-net:

– has a new transition (“tnotenabled”) with an input event and with lower
priority than transition “t’;

– has a new place “pxor” with one token;
– has four new arcs: (1) one connecting the transition “t” to “pxor”; (2) one

connecting “pxor” to the transition “t”; (3) one connecting “tnotenabled” to
“pxor”; and (4) one connecting “pxor” to “tnotenabled”;

• lines 44 to 46—for each NotAC, a new output event is associated to transition
“tnotenabled”;

• line 49—the component model is saved into a PNML file.

The decomposition of the global model presented in Fig. 3.5 produces the sub-
models presented in Fig. 3.11. These sub-models support the implementation of the
components of the GALS-DEC specified in Fig. 3.5. They can be used as inputs in
automatic code generators, such as the C code generator (Pereira et al. 2012a) and
the VHDL code generator (Pereira and Gomes 2013), available in the IOPT-tools
(Pereira et al. 2012a).

3.9 The Meta-Model of PNs Extended with TDs and ACs

The meta-model of Petri nets extended with time-domains and asynchronous-
channels is presented in Fig. 3.12. The proposed meta-model, which is specified
through UML class diagrams and OCLs, extends PT-nets (the PT-net meta-model
is presented in Fig. 2.3), and complements meta-model definition for IOPT-nets,

40 3 Development of Distributed Embedded Controllers

Fig. 3.11 The components implementation sub-models (resulting from the decomposition of the
global model presented in Fig. 3.5)

as in Moutinho et al. (2010) and Gomes et al. (2014). OCLs are used to express
constraints that cannot be expressed in the UML class diagrams. As defined in
Sects. 3.4 and 3.5, this meta-model also defines that:

• each node (a place or a transition) has a time-domain;
• each arc connects two nodes with the same time-domain;
• a reference transition must always refer a transition with the same time-domain;
• a reference place must always refer a place with the same time-domain;
• each asynchronous-channel can be a simple AC, an acknowledged AC, or a not-

enabled AC;
• each asynchronous channel has one source transition and one or more target

transitions;
• each transition cannot be target of more than one asynchronous-channel;
• all target transitions of an asynchronous-channel must have the same time-

domain;
• the source transition of an acknowledged AC or not-enabled AC must be the

target of another asynchronous-channel.

3.9 The Meta-Model of PNs Extended with TDs and ACs 41

Fig. 3.12 The meta-model of Petri nets extended with time-domains and asynchronous-channels

	3 Development of Distributed Embedded Controllers
	3.1 Proposed Model-Based Development Approach
	3.2 Petri Nets Extended with Inputs and Outputs
	3.3 Petri Nets with Priorities
	3.4 The Time-Domain Concept
	3.4.1 Petri Nets Extended with Time-Domains
	3.4.2 Execution Semantics of Petri Nets with Time-Domains

	3.5 Asynchronous-Channels
	3.5.1 Introduction
	3.5.2 Asynchronous-Channel Definition
	3.5.3 Asynchronous-Channels Execution Semantics

	3.6 Distributed GALS Models Validation
	3.7 Bounded Petri Nets
	3.8 Decomposition into Implementable Sub-models
	3.9 The Meta-Model of PNs Extended with TDs and ACs

