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Preface

This book provides a detailed description of a model-based development
approach for Globally-Asynchronous Locally-Synchronous Distributed Embedded
Controllers (GALS-DECs) development.

Embedded controllers can be seen as computer systems performing dedicated
tasks. They are usually embedded in larger systems, such as industrial machines,
vehicles, buildings, home appliances, as well as in some safety-critical systems and
medical devices. Most of the time, embedded controllers are forced to exhibit deter-
ministic behavior allied to real-time constraints, offer high performance associated
with low power consumption, and are normally constrained by a reduced time-to-
market.

Currently, specification of embedded controllers and GALS-DECs is mainly
supported by software programming languages and Hardware Description Lan-
guages (HDLs), complemented by specific modeling languages. These controllers
are commonly implemented in heterogeneous platforms and validated through code
simulations and tests.

In complex controllers with millions of possible states, methods relying on
simulations and prototype testing are time-consuming tasks and cannot ensure that
the controller is free of bugs, as far as it is not possible to cover all possible
evolutions and reachable states.

In this sense, model-based development approaches are of special interest to
circumvent those weaknesses. These approaches use models not only to improve
the level of abstraction of the specification (enhancing the understanding of the
behavior of the distributed controller as well as the communication among the
stakeholders), but also to provide support to other development phases, namely
simulation, verification, implementation using automatic code generators, and final
deployment into specific platforms.

This book proposes a model-based development approach that improves the
model-based development approaches previously proposed. The new approach aims
to avoid a limitation from previous approach, where it was required: (1) to generate
the state-space of the global model or (2) to generate the state-space of the reduced
model, to make a proper implementation. However, sometimes (1) it is not possible
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vi Preface

to generate the full state-space (because it is too big) and (2) it is not possible to
reduce the model (to a size that enables the state-space generation) or it is not easy to
do it. The proposed approach relies on Petri nets extended with a few new concepts,
namely time-domains and asynchronous-channels, to support the specification of
distributed embedded controllers. Those Petri net models allow the creation of
platform- and network-independent models supporting the use of design automation
tools. These models support distributed controllers simulation, verification, and
implementation, using the cloud-based IOPT-Tools framework, that, among others,
includes a simulation tool, a model-checking tool, and automatic code generators,
which improve productivity, reducing the development time and eliminating errors
from manual coding.

This book is structured in five chapters. The first chapter is devoted to an
introduction to the topic and is composed by six sections. Embedded controllers
and distributed embedded controllers are defined in the first section. Then, usual
development approaches are briefly described. After that, the concept of model-
based development is introduced. A list of modeling formalisms is presented in the
fourth section, and in the following section the use of Petri nets is justified. Finally,
the model-based development approach proposed in this book is introduced.

The second chapter addresses the characterization and comparison with other
related works using Petri nets, presenting Petri nets and several extensions that
make them suitable to develop embedded controllers and distributed embedded
controllers. Petri nets are introduced in the first section and then non-autonomous
Petri nets classes are presented. After that, execution semantics, priority concept
(used to solve conflicts), boundedness concept, and test arcs are presented. After-
wards, the IOPT (Input-Output Place-Transition) Petri nets class, resulting from
the extension of Place-Transition nets with a set of characteristics amenable to
describe the interaction of the controllers with the environment, is described. Petri
nets classes supporting the specification of GALS (Globally-Asynchronous Locally-
Synchronous) systems are also presented, and finally a list of communication
channels used in several Petri nets proposals is briefly described.

The third chapter is devoted to the presentation of the proposed model-based
development approach and Petri nets extensions to support it. The proposed
approach is described in the first section of the chapter, then the Petri nets class
in use is extended to support this approach, and finally algorithms to support the
verification and the implementation of the created models are described. The pro-
posed approach supports the model-based development of Globally-Asynchronous
Locally-Synchronous Distributed Embedded Controllers (GALS-DECs) through
platform- and network-independent Petri net models. These models support the
documentation, the simulation, the verification, and the implementation. To support
this development approach, the Petri nets class in use is extended with a set of
concepts, among which are time-domains and asynchronous-channels. Three types
of asynchronous-channels are proposed, one covering the simple asynchronous
communication between two sub-models, while the other two addressing the status
of communication completeness in former asynchronous-channels. An algorithm
to support the state-space generation (which supports the verification) and one
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algorithm to decompose the global model into a set of sub-models (that support
the components implementation) are presented. Finally, the meta-model of the
Place/Transition nets extended with time-domains and asynchronous-channels is
presented.

The fourth chapter is devoted to illustrate the applicability of the approach using
an example of a distributed controller targeting a traffic application managing the
number of vehicles in a restricted area. The distributed controller is composed by a
set of modules, each of them specified using a Petri net model, and interconnected
using a set of asynchronous communication channels. Overall, the controller can
be seen as a Globally-Asynchronous Locally-Synchronous Distributed Embedded
Controller. The development of the distributed embedded controller starts validating
each of the components separately, and ending up with the validation of the overall
model.

Finally, the fifth chapter presents conclusions and points to some future works.
Differences between the model-based development approach proposed in this
book and similar model-based development approaches previously proposed are
discussed.

Caparica, Portugal Filipe Moutinho
June 2015 Luís Gomes
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Chapter 1
Introduction

1.1 Distributed Embedded Controllers

Embedded controllers are normally seen as computer based systems performing
specific tasks. These systems are embedded in larger systems such as industrial
machinery, medical devices, buildings, and vehicles of all kinds. An embedded
controller can be named as a Distributed Embedded Controller (DEC) if composed
by several components in interaction (Wolf 2008). Several embedded controllers
(understood as components) in interaction to perform specific tasks also become a
distributed embedded controller.

On the other hand, Globally-Asynchronous Locally-Synchronous approaches
play an important role when handling parallelism in distributed embedded
controllers’ development. A distributed embedded controller is Globally-
Asynchronous Locally-Synchronous (GALS) (Chapiro 1984) if each of its
components is synchronous, but they are not synchronized among themselves
(not globally-synchronous). Synchronous systems are usually deterministic and
can benefit from having real-time responses, making them suited for safety-critical
systems. Embedded controllers are often used to control safety-critical systems,
such as medical devices and automation systems. This book proposes a model-based
development approach to develop Globally-Asynchronous Locally-Synchronous
Distributed Embedded Controllers (GALS-DECs). A GALS-DEC is understood in
this book as a System-on-Chip (SoC), as a system-off-chip (in a single platform or
even geographically distributed), or as a mix of both.

The development of distributed embedded controllers (in opposition to cen-
tralized embedded controllers) presents advantages and disadvantages. One major
advantage is the reuse of previously developed components, which is pointed in
Grkaynak et al. (2004) as a strength of GALS systems, making them suited to
implement large systems (supporting scalability). The creation of GALS circuits
instead of large synchronous circuits reduces the clock tree (which carries the

© Springer International Publishing Switzerland 2016
F. Moutinho, L. Gomes, Distributed Embedded Controller Development with Petri
Nets, SpringerBriefs in Electrical and Computer Engineering 150,
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2 1 Introduction

clock signal to all memory elements) design effort (Grkaynak et al. 2004; Krstić
et al. 2007) and simplifies the electronic components positioning. However, the
development of distributed controllers introduces additional challenges due to
components interaction (Nolte and Passerone 2009), this is because it is required
to design, validate, implement, and test the communication/interaction among
components. Concurrency introduces non-deterministic execution, which needs to
be adequately managed.

Embedded controllers and DECs can also be implemented in heterogeneous
platforms. These platforms can be general purpose computer platforms, specific
micro-controllers, Digital Signal Processors (DSPs), Field-Programmable Gate
Arrays (FPGAs), and Application-Specific Integrated Circuits (ASICs). To support
the controllers interaction, heterogeneous communication networks and protocols
can be used, such as Modbus, Profibus, and Controller Area Network (CAN), among
many others.

1.2 The Usual Development Approach

To support the embedded controllers and Distributed Embedded Controllers (DECs)
analysis (to visualize and think about the system’s behavior), to improve the
communication among stakeholders, and to support the behavioral and structural
specification, several modeling languages are often used. The Unified Modeling
Language (UML) (UML 2015) includes a set of different formalisms and notations
that provide different views of the system, and are usually divided in structure
diagrams and behavior diagrams. The Modeling and Analysis of Real-Time and
Embedded systems (MARTE) (UML MARTE 2015) and Systems Modeling Lan-
guage (SysML) (OMG SysML 2015) are UML extensions to support embedded
systems development. The created diagrams/models are then used to guide the
controllers’ specification through software programming languages and hardware
description languages.

Implementation code for embedded controllers and DECs are most of the time
manually produced using software programming languages and Hardware Descrip-
tion Languages (HDLs), relying on the usage of hardware–software co-design
development techniques. Software programming languages, such as C, CCC, and
Ada, are used to support the implementation in software-based platforms, such
as micro-controllers. Hardware description languages, such as VHSIC Hardware
Description Language (VHDL), Verilog, and even schematics, are used to support
the implementation in hardware-based platforms, such as FPGAs. However, the
manual coding has some drawbacks, from which we highlight: (1) is error prone;
(2) if the same controller has to be deployed in several (significantly different)
platforms, the same code has to be manually written several times; and (3) the initial
models will probably not document the implementation code.

The implementation code is usually validated through simulations and prototype
tests. Usually, a large set of simulations and prototype tests, reproducing not only
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common use cases but also strange scenarios, is used to validate the controller
behavior. However, this validation approach has some drawbacks: (1) if the set of
simulations and tests is large, it is a time-consuming task; and (2) it is usually not
possible to simulate/test all scenarios, which means that it is not possible to ensure
that the system is free of errors.

1.3 Model-Based Development

Model-Based Development (MBD) is a broad term that embraces other terms,
such as model-driven engineering, model-driven development, and Model-Driven
Architecture (OMG Model Driven Architecture 2015). MBD approaches use
models not only to think about and document the system’s behavior, but also
to support other development stages, namely the simulation (using simulation
tools), validation and verification (using validation and verification tools), and the
implementation (using automatic or semi-automatic code generators). The use of
validation and verification tools, such as model-checking tools, provides a high level
of trustworthiness about the specification behavior, ensuring that the specification
meets specific requirements. The use of automatic code generators avoids the
manual codification errors, ensuring compliance with the specification, which
means that the specification documents the real implementation (this is usually not
true when the code is manually written). MBD approaches, if supported by suitable
tools, can avoid the drawbacks mentioned in previous Sect. 1.2.

MBD approaches often use platform independent models. This means that the
same model can support the implementation code generation for several heteroge-
neous platforms, providing high flexibility in the implementation phase to select
the most appropriate platform (namely in terms of costs, energy consumption, and
performance).

Many MBD approaches have been proposed to develop embedded controllers,
such as those described in Schatz et al. (2002), Gomes et al. (2005b), de Niz et al.
(2006), Bunse et al. (2007), Di Natale et al. (2010), Bicchierai et al. (2012), and
Estevez and Marcos (2012). Additionally, there are several tool frameworks that
support MBD, which are worth to be mentioned, such as the SCADE solutions
from Esterel Technologies (Esterel Technologies 2015), the CPN-AMI (Hamez et al.
2006; CPN-AMI 2015), and the well-known Simulink products (Simulink 2015).

1.4 Modeling Formalisms

There are several modeling formalisms that have been used to support model-based
development approaches for embedded controllers (Gomes et al. 2005a; Gomes and
Fernandes 2010). Some of those formalisms are: Finite State Machines; StateCharts;
system-level languages; synchronous languages; and Petri nets.
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Finite State Machines (FSMs) are a widely known modeling formalism used by
system designers from different areas of engineering, and StateCharts (Harel 1987)
extend FSMs introducing depth and orthogonality concepts (supporting hierarchical
structuring and concurrency modeling), as well as a global communication mecha-
nism. These formalisms are appropriated to specify and develop reactive systems
(Harel 1987). The created models can be verified using model-checking tools
(Bhaduri and Ramesh 2004; Zhao and Krogh 2006) and translated into software
programming languages and hardware description languages (Mehmood Khan
2010). StateCharts extend FSMs with hierarchy, concurrency, and communication,
which means that the resulting models are smaller (when compared to FSMs)
and often composed by several sub-models in interaction, which simplifies the
sub-models reuse. Another modeling language extending state machines is the
Specification and Description Language (SDL) (SDL 2015).

The Unified Modeling Language (UML) (UML 2015) is composed by thirteen
modeling formalisms and notations, which are structure diagrams or behavior dia-
grams. Among the UML diagrams, we highlight the State Machine diagrams and the
Activity diagrams, which are two behavior diagrams, where State Machine diagrams
inherit from StateCharts, and Activity diagrams have similarities with Petri nets. An
UML profile to support real-time and embedded systems development was proposed
in Modeling and Analysis of Real-Time and Embedded Systems (MARTE) (UML
MARTE 2015). Additionally, an extension to a subset of UML diagrams and
two additional types of diagrams were proposed in Systems Modeling Language
(SysML) (OMG SysML 2015) to support hardware and software development.

System-level languages, such as SystemC (2012) and SpecC (Gajski et al.
2000), support the model-based development and the hardware/software co-design
of embedded systems. These textual languages have higher abstraction level than
regular software programming languages and HDLs, and support the specification
of software and hardware components (Berry et al. 2003). SystemJ (Malik et al.
2010) and DSystemJ (Malik et al. 2011) are system-level languages supporting the
development of GALS systems.

Synchronous languages, such as Esterel (Boussinot and De Simone 1991),
Lustre (Halbwachs et al. 1991), and Signal (LeGuernic et al. 1991), support
the use of formal methods to develop real-time embedded systems (Benveniste
et al. 2003). These textual languages are suited to model, specify, validate, and
implement safety-critical embedded systems (Benveniste et al. 2003). Esterel is
an imperative language, whereas Lustre and Signal are declarative and dataflow
languages. Esterel can be graphical represented by SyncCharts (André 1996) and
by Safe State Machines (André 2003), which have graphical representations similar
to StateCharts. Lustre (Halbwachs et al. 1991) and Signal (LeGuernic et al. 1991)
can also have graphical representations. Another language that can be seen as a
synchronous language is the GRAFCET (André and Peraldi 1993) (later integrated
in IEC61131 standard as SFC—Sequential Function Charts), which is a formalism
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with some similarities with Petri nets that is used to specify Programmable Logic
Controllers (PLCs). There are several works (such as: Esterel Technologies 2005;
Doucet et al. 2006; Gamatie and Gautier 2010; Ramesh et al. 2004; Garavel and
Thivolle 2009), extending synchronous languages or combining them with other
languages, to develop GALS systems.

Petri nets (Reisig 1985; Murata 1989) are a modeling formalism that supports the
model-based development of computer-based systems (Zurawski and Zhou 1994;
Girault and Valk 2003). This graphical formalism explicitly supports modeling
of concurrency, conflicts, resource sharing, mutual exclusion, and synchronization
(Girault and Valk 2003). The whole family of Petri nets variants is normally divided
into low-level Petri nets classes (Murata 1989) and high-level Petri nets classes
(such as Jensen 1992). The former are suited to specify systems with emphasis
on control, whereas the latter are suited to specify systems with emphasis on data
processing. Finally, it is important to note that Petri nets have well-defined execution
semantics and mathematical representation, supporting the production of rigorous
project documentation, as well the use of tools to support the different phases of
the development process. In this sense, Petri nets can be simulated, verified, and
translated into implementation code, using design automation tools.

1.5 Why Petri Nets?

Petri nets have several suitable characteristics that make them suited to support the
model-based development of distributed embedded controllers. As already referred,
Petri nets are a graphical formalism that naturally support modeling of concurrency,
synchronization, and conflicts (Girault and Valk 2003), making them suited to
specify concurrent tasks, parallel tasks, their synchronization and conflicts, which
are common in embedded controllers. Structuring mechanisms can be added to Petri
net models and used to adequately manage models size/complexity (Gomes and
Barros 2003, 2005). It is important to note that Petri nets enable the simultaneously
specification of the controllers behavior and structure. Petri nets have a well-defined
execution semantics and mathematical definition, enabling their support by design
automation tools, such as simulation tools, model-checking tools, and automatic
code generators. Petri net models are intrinsically platform independent, which
means that they can support the implementation in heterogeneous platforms, but
they can be augmented with some characteristics coming from the physical world
(leading to the so-called non-autonomous classes of Petri nets), namely input and
output signals and events, as well as time dependencies. Finally, given that the same
model can support the simulation (using simulation tools), the verification (using
model-checking tools), and the implementation (using automatic code generators), it
documents the real implementation, which can be verified (checking its proprieties)
and be free of manual coding errors.



6 1 Introduction

1.6 The Proposed Development Approach

A model-based development approach for distributed embedded controllers,
considered as globally-asynchronous locally-synchronous systems, is presented
in this book. Petri net models are used to specify the controllers’ behavior and
structure, as well as the controllers’ interaction, and then are used to support several
development phases. The under development distributed controller is specified
through a Petri net graphical model, allowing an intuitive interpretation and making
easier the communication among the stakeholders. The model is amenable to
be simulated and verified (using simulation and model-checking tools) to check
its correctness. Petri nets were enriched with time domains and communication
channels, to support the modeling of distributed embedded controllers with
globally-asynchronous locally-synchronous nature. The validated model is then
used as input in code generator tools that automatically generate the implementation
code (avoiding manual codification errors). As the created model starts as platform-
independent, the automatic code generators can generate code to implement the
controllers and the communication nodes in software-based platforms (such as
micro-controllers) and in hardware-based platforms (such as FPGAs). Additionally,
given that the model is network-independent, different types of communication
nodes can be automatically generated. Finally, it is important to note that the model
that supports the system validation and implementation (using the IOPT-Tools
computational development framework freely available in the web at http://gres.
uninova.pt/IOPT-Tools/) exactly documents the implemented system and supports
future maintainability and porting to new platforms.

http://gres.uninova.pt/IOPT-Tools/
http://gres.uninova.pt/IOPT-Tools/


Chapter 2
Related Work

2.1 Petri Nets

A Place/Transition net (PT-net), which is the most well-known class of Petri nets
(PNs), is a graph with two types of nodes (places and transitions), connected through
directed and weighted arcs, and with an initial marking (the net marking is given by
the number of tokens in each place) (Murata 1989). A Petri net is given by Eq. (2.1).

PN D .P; T; F; W; M0/ (2.1)

where:

• P D fp1; p2; : : : ; pmg is a finite set of places;
• T D ft1; t2; : : : ; tmg is a finite set of transitions;
• F � .P�T/[.T �P/ is a finite set of directed arcs (also known as flow relation);
• W W F ! N is the weight function, where N D f1; 2; 3; : : :g;
• M0 W P ! N0 is the initial marking function, where N0 D f0; 1; 2; 3; : : :g.

Petri nets are mostly used as a graphical modeling formalism, as it is common to
use a graphical notation to represent the models. Places are represented by circles
(or ellipses) with their marking (number of tokens) represented by dots or positive
integers placed inside the circles (when the number of tokens is zero, it is omitted).
Transitions are represented by squares, rectangles, or bars. Arcs are represented by
arrows and their weights are represented by positive integers near the arrows (when
the arc weight is one, it is omitted).

The marking of a Petri net can only change if and only if one or more transitions
fire. Only enabled transitions can fire. A transition (t) is enabled if and only if the
number of tokens of each input place (p 2 �t where �t D fp j .p; t/ 2 Fg) is bigger
or equal than the weight of the associated arc (M.p/ � w.p; t/). If a transition

© Springer International Publishing Switzerland 2016
F. Moutinho, L. Gomes, Distributed Embedded Controller Development with Petri
Nets, SpringerBriefs in Electrical and Computer Engineering 150,
DOI 10.1007/978-3-319-20822-0_2
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Fig. 2.1 A Petri net model

fires, the number of tokens in each input place (p 2 �t) decreases (MiC1.p/ D
Mi.p/ � w.p; t/) and the number of tokens in each output place (op 2 t� where
t� D fop j .t; op/ 2 Fg) increases (MiC1.op/ D Mi.op/ C w.t; op/).

A Petri net model is presented in Fig. 2.1. In this model place “P1” has two tokens
(M.P1/ D 2) and the arc that connects place “P1” to transition “T1” has weight two
(w.P1; T1/ D 2). When transition “T1” fires, two tokens are destroyed from place
“P1”, one token is created in place “P2” and two tokens are created in place “P3”.
Transition “T4” is enabled when places “P4” and “P5” are marked (have one or
more tokens).

The meta-model that describes the core concepts and the structure for all Petri
nets classes is presented in Fig. 2.2. This meta-model is specified through UML
class diagrams, complemented by constraints expressed by the Object Constraint
Language (OCL). It was proposed in the international standard ISO/IEC 15909-2
(ISO/IEC 2011). The meta-model presents the Petri nets main concepts, without
presenting the concrete syntax (Petri Net Markup Language—PNML), which is
presented in ISO/IEC (2011). The core concepts presented in the Fig. 2.2 are:

• each Petri net document (a PNML file) has one or more Petri nets;
• each Petri net has one or more pages (pages enable the partial visualization of

models, improving their readability);
• each Petri net page can have several objects;
• an object is a page, a node (a place node or a transition node), or an arc;
• each arc connects a source node to a target node;
• the source node and the target node must be in the same page (specified by the

OCL);
• a place node is a place or a reference place;
• a transition node is a transition or a reference transition;
• reference places and reference transitions are used to specify the connection of

nodes from different pages.
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Fig. 2.2 The PNML core model (figure adapted from ISO/IEC 2011)

The meta-model of the PT-nets is presented in Fig. 2.3. It extends the core model
of Fig. 2.2 with two additional annotations and one constraint:

• each place has initial marking, specifying the number of tokens in each place
(zero or more);

• each arc has weight, specifying the number of tokens that will be destroyed or
created in the associated place (one or more);

• each arc never connects places to places or transitions to transitions (it always
connects a place node to a transition node, or a transition node to a place node).
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Fig. 2.3 The PT-net meta-model (figure adapted from ISO/IEC 2011)

2.2 Non-autonomous Petri Nets

Different types of Petri nets have been proposed in the literature, referred as Petri
nets classes. Each Petri nets class has a unique combination of characteristics, in
terms of concepts supported in the modeling, as well as in terms of execution
semantics. In previous section Place-Transition nets syntax was presented. Different
taxonomies can be used to classify Petri nets classes. One of the most well-
known taxonomy, with particular interest when dealing with controller modeling
considers that each Petri nets class can be classified as autonomous or non-
autonomous. Autonomous Petri nets are those that their execution is not affected
by the environment (Silva 1993). The transition firing of autonomous Petri nets
is non-deterministic, which makes them suited to model distributed systems and
unsuited to model deterministic systems/controllers. Non-autonomous Petri nets
classes are affected by the environment, which means their transitions firing depends
on external conditions. In a non-autonomous class the net evolution may depend on:
(1) time, such as in Timed Petri nets (Ramchandani 1974) and Stochastic Petri Nets
(Balbo 2000); (2) external signals and/or events; or (3) both. This book proposes the
use of non-autonomous classes, where the net evolution depends on external signals
and events, to specify the interaction between the controller and the environment.
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2.2.1 Petri Nets with External Inputs and Outputs

Several Petri nets classes consider extensions with inputs and outputs (making
them non-autonomous) to specify the interaction between the controller models and
the controller environment. Inputs reflect the environment status, whereas outputs
affect the environment. Inputs are usually associated with transitions, triggering or
constraining their firing. Outputs are usually associated with places and transitions,
being affected by the net marking and by the transition firing. Net Condition/Event
Systems (NCES) (Rausch and Hanisch 1995; Hanisch and Lüder 2000), the Signal
Net Systems (SNS) (Vyatkin and Hanisch 2000; Starke and Roch 2002), the Signal
Interpreted Petri Nets (Minas and Frey 2002), and the Input-Output Place-Transition
(IOPT) nets (Gomes et al. 2007a, 2014) are non-autonomous Petri nets classes
including inputs and outputs in their characteristics, making them adequate to
explicitly model controllers and their behavior.

A Petri nets model integrating input and output dependencies is presented in
Fig. 2.4. It is an IOPT-net (Gomes et al. 2007a) model with one input signal
(“InputSignal1”), one input event (“InputEvent1”), one output signal (“OutputSig-
nal1”), and one output event (“OutputEvent1”). Concepts of signal and event
are used; while a signal refers to the current value of a physical (or logical)
variable, an event refers to a change in the environment or in one of those signals.
Transition “T1” cannot fire if “InputSignal1” is different from zero. Transition “T2”
cannot fire if “InputEvent1” does not occur. Whenever transition “T1” fires, the
“OutputEvent1” is generated. The “OutputSignal1” is equal to one when place “P2”
is marked, and is equal to zero (default for “OutputSignal1”) when “P2” is not
marked.

2.2.2 Synchronized Petri Nets

Synchronized Petri nets, such as the ones proposed in Moalla et al. (1978) and
David and Alla (2010b), are those that have their transitions synchronized with input
events. Each transition fires when it is enabled and its synchronizing event occurs

Fig. 2.4 An IOPT-net model
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(it is enabled if its input places provide the required tokens and the other input
signals/events do not disable the transition firing). Given that several transitions can
have the same synchronizing event, several transitions can fire simultaneously when
that event occurs. This makes synchronized Petri nets suited to model synchronous
and deterministic controllers. A synchronized Petri net is a totally synchronized
Petri net if none of its transitions is synchronized with the always occurring event
(Moalla et al. 1978; David and Alla 2010b). The IOPT-nets class, which will be
used as the underlying Petri nets class in this book, is a totally synchronized Petri
nets class, where all transitions have the same synchronizing event. In IOPT-nets the
synchronizing event is implicit and determines the beginning of the execution step.

2.3 Single- vs Infinite-Server Semantics

Within synchronized Petri nets body of knowledge single-server semantics or
infinite-server semantics were defined. In synchronized Petri nets with single-server
semantics (Moalla et al. 1978), when the synchronizing event of a transition occurs,
that transition fires at most once at that moment. Whereas, when the infinite-
server semantics (David and Alla 2010b) is considered, each transition fires as
many times as possible (when its synchronizing event occurs), until it become
disabled. Execution semantics using single-server and infinite-server strategies are
also applicable to other Petri nets classes.

2.4 Priority

Priorities can be associated with transitions and used to solve conflicts generated
among a set of transitions, avoiding ambiguities and allowing Petri net models to
become deterministic. Petri nets intrinsically support the specification of conflicts,
which is a great advantage over other modeling formalisms; however, to use Petri
nets to model controllers with a deterministic behavior, it is required to solve
beforehand these conflicts.

There are structural conflicts (David and Alla 2010a) and effective conflicts
(David and Alla 2010c). If two (or more) transitions share the same input place,
they are in a structural conflict. This structural conflict becomes an effective conflict
if there are global marking states where both transitions are enabled, but the firing
of a transition disables the firing of the other.

Conflicts can be a-priori solved assigning different priorities to the transitions
involved in the conflict set. In a global marking state where two transitions are
in an effective conflict, only the one with higher priority fires. This makes Petri
net models unambiguous and deterministic, without losing the valuable ability to
specify conflicts. Several Petri nets classes use priorities to solve conflicts (Moalla
et al. 1978; David and Alla 2010b; Gomes et al. 2007a).
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2.5 Bounded Petri Nets

A Petri net is bounded if the maximal number of tokens in each place (the place
bound) is smaller or equal than a finite number: 8p2P.M.p/ � k/, where P is the
finite set of places of the net, M is the marking function, and k is a finite number
(Murata 1989).

Bounded Petri nets can be implemented. Petri net places are implemented
as memory resources, which can be registers in hardware implementations and
software variables in software implementations. To know the required register sizes
or software variable types, it is required to have bounded Petri nets and know the
places bound.

Boundedness characteristic also has a strong impact in the validation and
verification processes. Bounded Petri nets have limited state-spaces (also known
as reachability graphs) that support full behavioral verification.

2.6 Test Arcs

Test arcs, also known as read arcs, always connect places to transitions and never
remove tokens upon transition firing. A test arc allows checking the marking of a
place, enabling or disabling a transition. The transition firing does not decrease the
number of tokens in the place (if it is only connected to this transition through test
arc). In IOPT-nets, the test arcs are represented by a line with an arrow in the middle.

2.7 IOPT-Nets

IOPT-nets (Gomes et al. 2007a, 2014) are a totally synchronized and bounded
Petri nets class, with single-server semantics, and extended with input signals,
input events, output signals, output events, priorities, and test arcs. It is a totally
synchronized Petri nets class (where all transitions are synchronized by an implicit
event) and has single-server semantics, making it suited to model synchronous
systems. Input signals, input events, output signals, and output events are used to
specify the interaction between the controller and the environment. Priorities are
used to solve conflicts, ensuring determinism in totally synchronized Petri nets. Test
arcs are a very useful modeling mechanism, used, for instance, to solve conflicts.
Finally, IOPT-nets are bounded, to enable their implementation. This Petri nets
class was proposed to develop synchronous and deterministic systems, such as
automation and embedded systems.

The global synchronizing event defines an execution step, which is considered
in IOPT-nets to be periodic. From the execution semantics point of view, a cycle-
accurate semantics is adopted for IOPT-nets, meaning that signal evolution and all
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events occurring between two consecutive synchronizing events will be considered
in the next execution step. Additionally, IOPT-nets adopt maximal step semantics,
meaning that all transitions ready to fire in one execution step will concurrently fire.

It is important to note that IOPT-nets are supported by a cloud-based design
automation tools framework (IOPT-Tools) that are available online at http://gres.
uninova.pt/IOPT-Tools/. The current framework is a natural evolution of a former
attempt to have an integrated development framework (Costa et al. 2008). The main
tools of the IOPT-Tools framework are: a model edition tool (Pereira et al. 2012b)
that supports the models creation, a simulation tool (Pereira and Gomes 2015) and
a model-checking tool (Pereira et al. 2012a) that supports the validation of models,
and an automatic C code generator (Pereira et al. 2012a; Campos-Rebelo et al. 2011)
and an automatic VHDL code generator (Pereira and Gomes 2013), which support
the implementation code generation.

2.8 GALS Systems Development Using Petri Nets

Totally synchronized Petri nets, with single-server semantics (Moalla et al. 1978)
or infinite-server semantics (David and Alla 2010b), can be used to model GALS
systems. The model of a GALS system (composed by two synchronous components
in interaction) is presented in Fig. 2.5. This model is a totally synchronized Petri net
model. The model is composed by three parts: (1) the sub-model of one controller
at the left; (2) the sub-model of the other controller at the right; (3) two places
(“P7” and “T8”) at middle specifying the communication between components.
The left sub-model is composed by nodes “P1”, “T1”, “P2”, “T2”, “P3”, and “T3”,
and by the arcs that connect these nodes. The left sub-model has all transitions
synchronized by event “<a>”. The right sub-model is composed by nodes “P4”,
“T4”, “P5”, “T5”, “P6”, and “T5”, and by the arcs that connect these nodes. It has
all transitions synchronized by event “<b>”.

Fig. 2.5 A synchronized Petri net model specifying a GALS system

http://gres.uninova.pt/IOPT-Tools/
http://gres.uninova.pt/IOPT-Tools/
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Fig. 2.6 A PTL-net model specifying a GALS system

Place/Transition nets were extended with the notion of locality in Kleijn et al.
(2006) to model and analyze GALS systems. Place/Transition nets with Local-
ities (PTL-nets) support the specification of synchronous components and their
interaction. The sub-model of a component has all transitions with the same
locality, different sub-models have different localities, and the components inter-
action is specified through places (buffers). All transitions with the same locality
are synchronously executed (all enabled transitions with the same locality fire
simultaneously) and executed in a maximal concurrent manner (transitions fire as
many times as possible, in a single execution step, until become disabled). This is
similar to the execution semantics of the totally synchronized Petri nets with infinite-
server semantics.

A PTL-net model specifying two synchronous components in interaction is
presented in Fig. 2.6. This model is similar to the one presented in Fig. 2.5, but with
localities instead of events. Both models have the same execution semantics (if it is
considered the infinite-server semantics in Fig. 2.5). Localities are graphically rep-
resented by annotations inside transitions. The model from Fig. 2.6 has transitions
with locality “1” and transitions with locality “2”.

Totally synchronized Petri nets (Moalla et al. 1978; David and Alla 2010b) and
PTL-nets (Kleijn et al. 2006) support the modeling and analysis of GALS systems;
however, they are not suited to fully support the implementation of GALS systems.
These Petri nets classes either: (1) do not rely on inputs and outputs (to explicitly
specify the interaction between the controller and the environment); or (2) do not
rely on priorities (to a-priori solve conflicts); or (3) do not assure boundedness (to
support the memory resources scaling). Additionally, using these classes to specify
GALS systems, as presented in Moutinho and Gomes (2014), can result in models
that are not: (1) distributable; (2) network-independent; and (3) free of structural
ambiguities, disabling their implementation. Totally synchronized Petri nets and
PTL-nets enable the creation of models with transitions from different components
in conflict (such as the M-structure described in van Glabbeek et al. 2009 and
Glabbeek et al. 2012), making the models not distributable.
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Fig. 2.7 Another PTL-net model specifying a GALS system. This model is network-independent
but has structural ambiguities

The use of places (simple buffers) to specify the interaction between components,
such as in Fig. 2.5 and in Fig. 2.6, makes the models not network-independent.
This is because the tokens created in the buffer places (“P7” and “P8”) become
immediately available to the target transitions (“T5” and “T3”); however, this is
not true when messages are sent through network communication channels. In
network communication channels there is a delay between the sending instant and
the arriving instant. Simple places are suited, for instance, to specify the interaction
through shared variables.

It is possible to create network-independent models using synchronized Petri
nets or PTL-nets, as illustrated in Fig. 2.7; however, it is not possible to ensure
that the created models are free of structural ambiguities. Instead of using single
places to specify the interaction between components, sub-model can be used,
as illustrated in Fig. 2.7. The model from Fig. 2.7 is similar to the model from
Fig. 2.6, but instead of using single places to specify the components interaction,
sub-models with two places and one transition are used. This makes the model
from Fig. 2.7 network-independent; however, the use of sub-models to specify the
interaction makes the model structural ambiguous. Ambiguous in the sense that
design automation tools cannot identify which are the components’ sub-models,
which are the communication channels sub-models, and the boundaries between
them. This way it is not possible to use design automation tools to automatically
generate the components implementation code and the communication nodes
implementation code.

2.9 Petri Nets with Communication Channels

The structural ambiguity (described in Sect. 2.8) can be avoided if the components
interaction is clearly identified in the models. To specify the interaction between
Petri net sub-models, several Petri nets classes were extended with communication
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channels. A brief survey on communication channels in Petri nets is presented in this
section. These channels are classified as symmetrical or asymmetrical (directed),
and as synchronous or asynchronous. This survey excludes works that use Petri
nets to model communication protocols, such as in Wang et al. (1994), Han and
Billington (2004), and Billington et al. (2009). The section concludes discussing if
the presented communication channels are suited to specify the interaction between
distributed components.

The concept of synchronous communication channel was proposed in Chris-
tensen and Damgaard Hansen (1994) to extend colored Petri nets (CPN). These
channels were proposed to support a modular approach, enabling the creation of
more compact and comprehensive models. These channels are symmetrical, which
means that no direction is specified in the communication. The communication can
be bi-directional or unidirectional. A Petri net model with several transitions con-
nected through a synchronous communication channel specifies the same behavior
as in an equivalent model but where the channel is removed and the associated
transitions are merged. In this sense, as far as it is possible to find a behaviorally
equivalent model to the one with synchronous communication channels, addition of
synchronous communication channels does not represent an extension to Petri nets
(but an alternative, more compact way, to model the system).

Synchronous communication channels where the direction is specified are named
as asymmetrical synchronous channels. The Object Colored Petri Nets (OCP-Nets),
proposed in Maier and Moldt (2001), extend CPNs with object oriented pro-
gramming concepts and with asymmetrical synchronous channels. Asymmetrical
synchronous channels are used in this work to connect objects that consume/provide
services. The object that consumes the service uses one channel to make the
request (to the provider) and another channel to receive the result. Asymmetrical
synchronous channels were also used in Sibertin-Blanc (1994) and Kummer (1998).
In Communicative Nets (Sibertin-Blanc 1994) the interaction is specified between
send-transitions and accept-places.

The Net Condition/Event systems (NCES), proposed in Rausch and Hanisch
(1995), rely on two types of signals (event signals and condition signals) to specify
the interaction between sub-models. Event signals are directed arcs connecting
transitions (they are asymmetrical communication channels). When the source
transition fires, the target transition also fires (at the same time instant) if enabled.
Condition signals are directed arcs connecting places to transitions, disabling or not
the transitions.

Directed synchronous channels, composed by one source transition and one
or more target transitions, were also proposed in Costa and Gomes (2007) and
Costa and Gomes (2009) to support the decomposition of a model into disjoint
synchronously executed concurrent sub-models. The source transition is named as
master transition, whereas the target transition is named as slave transition. When
the master transition fires, the slave transition also fires (at the same time instant) if
enabled.
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Shared transitions and shared places were used in several works to specify
synchronous and asynchronous interactions among sub-models (Christensen and
Petrucci 2000; Bruno et al. 1995; Liu et al. 2012). Shared transitions are symmetrical
synchronous channels. Shared places are asynchronous channels, where each
sub-model creates or consumes tokens that are consumed or created by other sub-
models.

Input and output channel places are used in several works, such as in Liu et al.
(2012) and Bruno et al. (1995), to specify sub-models interactions. When a sub-
model sends a message to another sub-model, the sender creates a token in an
output place, and then the token is sent (in zero time delay) to the target sub-model,
appearing in the associated input place, to be consumed. To obtain a single model
using several input and output places, it is required to merge these places.

Petri nets with localities (Kleijn et al. 2006), proposed to model and analyze
GALS systems, propose the use of (buffer) places to specify the interaction among
synchronous components. Such as with shared places, the use of buffer places
specify the asynchronous communication among components.

To conclude, it is important to note that none of the mentioned channel
mechanisms support the network-independent specification of distributed GALS
controllers. Synchronous channels (symmetrical or asymmetrical/directed) specify
communication in zero time delay, not supporting the asynchronous interaction
among distributed controllers (with communication time different from zero). Asyn-
chronous channels, such as input and output places, shared places, and buffer places,
are suited to specify the asynchronous interaction, for instance, through shared
variables; however, they are not suited to specify the exchange of messages through
communication networks, where the sent messages are not immediately available
to the target components (there is a delay). Network-independent asynchronous
channels that avoid structural ambiguities are presented in the following Chap. 3.



Chapter 3
Development of Distributed Embedded
Controllers

3.1 Proposed Model-Based Development Approach

The MBD approach proposed in this work is presented in this section. This approach
supports the development of GALS-DECs (a set of controllers in asynchronous
interaction where each controller is synchronously executed). The distributed
system is specified through a single Petri net model that simultaneously supports
its documentation, validation (using simulation and model-checking tools), and
implementation (using automatic code generator tools). This Petri net model is
platform-independent, supporting the controller implementation in heterogeneous
platforms. Additionally, this model is also network-independent, supporting the
interaction through heterogeneous communication networks. Therefore this model
provides high flexibility in the implementation phase (to select several types of
platforms and communication networks), facilitating the achievement of the desired
performance, power consumption, EMI, and cost. The proposed MBD approach is
presented in Fig. 3.1 through a UML activity diagram (UML 2015).

The proposed MBD approach comprises several development steps. Each step
is in the scope of: the controllers’ modeling, the models’ simulation, the models’
behavioral verification, the controllers’ implementation, or the controllers’ testing.
The development steps are:

• the creation or the selection of the controllers’ sub-models. Each controller is
specified through one or more Petri net sub-models, each one having synchronous
and deterministic execution semantics. These sub-models may be or become
reusable. This work proposes the use of Petri nets extended with the time-domain
(TD) concept (presented in Sect. 3.4), with priorities (Sect. 3.3), and with inputs
and outputs (Sect. 3.2), to create the sub-models of each controller;

• the validation (simulation and verification) of each reusable sub-model. If the
sub-model does not present the desired behavior or if it is not possible to create
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Create or select a set of reusable sub-models
(using Petri nets with IOs, TDs, and priorities)

Create the global GALS-DEC model
(using the reusable sub-models,

setting TDs, and adding ACs)

Simulate and verify the global GALS-DEC model
behavior using simulation and model-checking tools

[not ok]

If possible, automatically update place bounds
into the global GALS-DEC model (using model-
checking tools) to optimize its implementation

[ok]

Correct/
change/split
the reusable
sub-models

Deployment into the platforms

Select components implementation
platforms and IOs mapping

Select communication networks, their
implementation platforms, and IOs mapping

Automatic code generation
(components)

Automatic code generation
(communication channels)

Automatically decompose the global GALS-DEC
model into a set of implementable sub-models

(removing ACs, adding IO events and sub-nets)

[all the available networks and platforms were tested]

[match the required requirements]

Tests (performance, power consumption, EMI, ...)

[else]

[else]

Simulate and verify each reusable sub-model
behavior using simulation and model-checking tools

Automatically add place bounds into the
reusable sub-models (using model-checking

tools) to support their implementation

[not ok][ok]

Fig. 3.1 The proposed model-based development approach for GALS-DECs
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the full state-space of that sub-model, then the sub-model must be changed,
corrected, or split into several sub-models, and then each sub-model must be
validated again. It is required to generate the full state-space, to verify the bound
of each place (the maximal number of tokens that can be in each place);

• the automatic addition of the place bounds into the reusable sub-models. If it
is possible to generate the full state-space, it is possible to calculate the place
bounds and automatically add them into the sub-models. The place bounds are
the bounds of the memory elements that will be used to implement the places.
This is required to ensure that these sub-models can be implemented;

• the creation of the global GALS-DEC model. The global model is created
using the reusable sub-models, changing their time-domains (to ensure that sub-
models from different components have different time-domains), and connecting
asynchronous-channels (presented in Sect. 3.5) to their sources and targets (the
transitions that are channel-sources and channel-targets). It is important to note
that the reusable sub-models should be created and the asynchronous-channels
should be connected, in such a way that it is not possible to simultaneously have
more than one message in each asynchronous-channel. This ensures that it is
not required to generate the full state-space of the global GALS-DEC model, in
order to generate the communication nodes required to support the components
interaction (the asynchronous-channels implementation);

• the simulation and the verification of the global GALS-DEC model. If the global
model does not specify the desired behavior, the reusable sub-models must be
corrected or changed, and the previous steps must be repeated;

• if possible, the automatic update and addition of the place bounds and
asynchronous-channel bounds into the global GALS-DEC model. If it is possible
to generate the full state-space of the global model, then the place bounds
can be automatically updated and the asynchronous-channel bounds can be
automatically added. If it is not possible to generate the full state-space, but the
global model was created to ensure that the asynchronous-channel bounds are not
bigger than one, then place bounds are not updated and the asynchronous-channel
bounds can be automatically added and assigned the value one. This bounded
model supports the components and the communication nodes implementation;

• the automatic decomposition of the global GALS-DEC model into a set of imple-
mentable sub-models. Each of these sub-models will support the implementation
of a synchronous component. An algorithm to support this decomposition is
presented in Sect. 3.8;

• the selection of the implementation platforms and of the communication net-
works, and the mapping of the models inputs and outputs, to the platform
physical connectors;

• the automatic code generation. The components implementation code can be
automatically generated using the tools presented in Campos-Rebelo et al.
(2011), Pereira et al. (2012a), and Pereira and Gomes (2013). The communi-
cation nodes implementation code can also be automatically generated; however,
currently no tools are available to perform this task;
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• the code deployment into the implementation platforms;
• the platform tests. If GALS-DEC presents the desired behavior and matches the

required requirements (performance, power consumption, and so on), then the
distributed controller is finished, otherwise other implementation platforms
must be selected and tested, or even other communication networks should be
considered. If the available platforms and communication networks were tested,
without matching the desired requirements, then the reusable sub-models must
be changed, to check if a different distributed controller that also has the desired
behavior can match the desired requirements.

Most of these development steps were used in the application example presented in
Chap. 4, illustrating the proposed model-based development approach.

3.2 Petri Nets Extended with Inputs and Outputs

To explicitly specify the interaction between the controllers and their environment,
Petri nets must integrate input and output dependencies. When these controllers
interact through communication channels, the inputs and outputs also support the
specification of the interaction between the controllers and the communication
channels. The use of three types of inputs and outputs is proposed in this book:

• input signals and output signals;
• input events and output events; and
• channel targets (are inputs) and channel sources (are outputs).

Signals and events must be used in the reusable sub-models, in the global GALS-
DEC models, and in the implementable sub-models, to specify the interaction
between the controllers and the environment. In the reusable sub-models, channel
targets and channel sources are used to specify how the controllers are affected by
and affect the communication channels, whereas in the implementable sub-models,
events (automatically introduced during the global model decomposition) are used
to specify the interaction between the controllers and the communication channels.
The channel targets and channel sources, which are associated with transitions, are
ignored during: (1) the validation, if the transitions have asynchronous channels
connected to them; and (2) the automatic code generation. In this work, such as in
other works (like in Gomes et al. 2007a), it is proposed that: (1) input and output
signals should be verified and assigned within Boolean expressions and assignment
expressions; and (2) input and output events should be associated with transitions.
The channel targets and channel sources should also be associated to transitions.

A Petri nets class with these inputs and outputs and associated expressions is
given by:

PNIO D .PN; IO/ D .P; T; F; W; M0; IO/ (3.1)
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where PN is a tuple with the common sets to define a Petri nets class [Eq. (2.1)] and
IO is given by:

IO D .ie; oe; ct; cs; is; os/ (3.2)

ie, a partial function associating transitions with sub-sets of input events:

ie W T 0 ! P.IE/ (3.3)

where P.IE/ is the power set of IE (the set of all subsets of IE), and IE is the set
of input events. This means that a set of input events can be associated with each
transition.

oe, a partial function associating transitions with sub-sets of output events:

oe W T 0 ! P.OE/ (3.4)

where P.OE/ is the power set of OE, and OE is the set of output events. This means
that a set of output events can be associated with each transition.

ct, a partial function identifying some transitions as being channel targets:

ct W T 0 ! CT (3.5)

where CT is the set of channel targets. This means that each transition can be target
of a communication channel.

cs, a partial function identifying a set of transitions as being channel sources
(sources of communication channels):

cs W T 0 ! CS (3.6)

where CS is the set of channel targets.
is, a partial function associating transitions with Boolean expressions:

is W T 0 ! BE (3.7)

where BE is the set of Boolean expressions checking input signal values.
os, a partial function associating places with assignment expressions:

os W P0 ! P.AE/ (3.8)

where P.AE/ is the power set of AE, and AE is the set of assignment expressions
assigning the result of mathematical expressions to output signals.

Inputs constrain the net evolution (the transitions firing), whereas outputs are
affected by the net evolution and by the net marking (the number of tokens). An
input event that is associated with a transition disables the transition firing when-
ever it does not occur. Channel targets constrain transitions in a similar way as
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input events. A Boolean expression (associated with a transition) disables the
transition firing when false. An output event is generated when the associated
transition fires. Finally, an output signal is assigned to the result of the associated
expression when the associated place is marked.

3.3 Petri Nets with Priorities

Priorities are proposed in this work to solve Petri net conflicts, as in Gomes et al.
(2007a). Two (or more) transitions with the same input place are in a structural
conflict, which is also an effective conflict if during the net evolution there are
states where both transitions are enabled, but cannot fire simultaneously. If two
transitions are enabled, but cannot fire simultaneously, which one should fire?
To solve this ambiguous situation and allow autonomous execution of the model,
different priorities must be assigned to transitions in conflict. This way becomes
clear which of the transitions will fire. Priorities simultaneously solve structural
conflicts and effective conflicts. A Petri net with a priority function is given by:

PNP D .PN; pr/ (3.9)

where pr is a partial function associating transitions with positive integers (N D
f1; 2; 3; : : :g), given by:

pr W T 0 ! N (3.10)

The transition associated with the lower value is the one with higher priority. The
priority function must ensure that any two transitions in a structural conflict must
have different priorities:

8.p1�t1/;.p1�t2/2F.t1 2 T ^ t2 2 T ^ t1 ¤ t2 ) pr.t1/ ¤ pr.t2// (3.11)

A Petri net model with one solved conflict is presented in Fig. 3.2. Transitions
“T1” and “T2” are in conflict, competing for the token that is in place “P1”. This
conflict is solved assigning priority 1 (“pr:1”) to transition “T2” and priority 2
(“pr:2”) to transition “T1”. This means that transition “T2” has higher priority than
transition “T1”.

Fig. 3.2 A Petri net model
with one conflict solved
through priorities
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3.4 The Time-Domain Concept

The time-domain concept, described in Moutinho and Gomes (2014), introduces
the globally-asynchronous locally-synchronous execution semantics into Petri nets,
and ensures that the created models always specify distributed systems, supporting
their implementation, as desired in this work. Time-domains make Petri nets totally
synchronized Petri nets with single-server semantics (such as those proposed in
Moalla et al. 1978). The totally synchronized Petri nets presented in Moalla et al.
(1978) are suited to model GALS systems; however, they do not ensure that the
created models can be implemented as distributed systems, whereas the use of
Petri nets extended with time-domains ensures that the created models have well-
delimited synchronized domains, supporting their implementation as distributed
controllers.

3.4.1 Petri Nets Extended with Time-Domains

A Petri nets class extended with time-domains is given by:

PNTD D .PN; td/ D .P; T; F; W; M0; td/ (3.12)

where td is the time-domain function. td is a function associating Petri net places
and transitions with positive integers (N D f1; 2; 3; : : :g), as defined in Eq. (3.13).

td W .P [ T/ ! N (3.13)

To ensure that each sub-model cannot specify more than one component, in a Petri
net model with time-domains each arc always connects two nodes (places and
transitions) with the same time-domain, as defined in Eq. (3.14).

8.n1�n2/2F.td.n1/ D td.n2// (3.14)

This ensures that the created models are structurally unambiguous and distributable,
in order to support their implementation, and the use of automatic code generators.
For instance, using Petri nets with time-domains, it is not possible to create models:
(1) with structural ambiguities, such as the one presented in Fig. 2.7; and (2) that
are not distributable, such as those that have transitions in conflict with different
time-domains (conflicts must be solved locally).

A Petri net model with time-domains specifying three synchronous and inde-
pendent components is presented in Fig. 3.3. This model has four (disconnected)
sub-models: the sub-model with time-domain 1, where all nodes have time-domain
1 (“td:1”); the sub-models with time-domain 2, where all nodes have time-domain 2
(“td:2”); and the sub-model with time-domain 3, where all nodes have time-domain
3 (“td:3”).
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Fig. 3.3 A Petri net model with four sub-models specifying three components

3.4.2 Execution Semantics of Petri Nets with Time-Domains

Petri nets with time-domains have the execution semantics of totally synchronized
Petri nets with single-server semantics (Moalla et al. 1978). In a Petri net model
with time-domains all transitions have time-domain and all transitions with the
same time-domain are synchronized by the same external event, which is implicit
for that time-domain. In a specific execution state, when a synchronizing event
occurs, all the associated transitions that are enabled and not in a conflict that
prevent their firing will fire simultaneously in that instant. It was defined that
transitions with different time-domains never fire simultaneously (as they have
different synchronizing events). The Petri net model with time-domains presented
in Fig. 3.3 has the following execution semantics:

• in the sub-model with time-domain 1, only transition “T1” is enabled, and it will
fire when the associated (implicit) event occurs;

• in the sub-model with time-domain 2, both transitions “T6” and “T3” are enabled.
They fire simultaneously when the associated (implicit) event occurs;

• in the sub-model with time-domain 3, no transition is enabled;
• in the initial state two things can happen: transition “T1” fires or transitions “T6”

and “T3” fire. This shows that the behavior of the global distributed model is non-
deterministic (as desired), because each sub-model is independent. However, the
behavior of each sub-model is deterministic (in a specific state for specific input
values, the sub-model has always the same next state), if the existing conflicts are
solved.
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Fig. 3.4 The state-space of the Petri net model from Fig. 3.3

Transitions “T4” and “T5” are in conflict, which means that this conflict must be
a-priori solved to ensure deterministic and unambiguous sub-models. As previously
mentioned, this book proposes the use of priorities to solve conflicts. The state-
space (also known as reachability graph) that represents the global model (Fig. 3.3)
behavior is presented in Fig. 3.4.

3.5 Asynchronous-Channels

3.5.1 Introduction

Three types of asynchronous communication channels were proposed in Moutinho
and Gomes (2014) to specify the interaction between Petri net sub-models
with time-domains, enabling the specification of globally-asynchronous locally-
synchronous distributed embedded controllers (GALS-DECs). The use of
time-domains ensures that the models have well-delimited synchronized domains
without structural ambiguities. However, it is required to enable sub-models
interaction, to support the specification among the synchronous components. To
support this interaction the following channels were proposed:

• the Simple Asynchronous Channel (SimpleAC);
• the Acknowledged Asynchronous Channel (AckAC);
• the Not-enabled Asynchronous Channel (NotAC).
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These three asynchronous-channels provide a network-independent specification
of the components interaction, as they do not specify the transmission time, which
can be unbounded, between zero and infinite (a communication failure). This
means that a global model (with these channels) can support the implementation
using different types of communication networks and protocols. Additionally, the
validation of this global model provides results that are valid regardless of the
implementation support. This provides high flexibility in the implementation phase,
enabling the creation of several heterogeneous prototypes (using a single global
model), test them, and select the most suited one (for instance, the one that provides
the desired performance with lower power consumption).

Each asynchronous-channel is listening one transition of one sub-model (with
a specific time-domain) and based on that sends messages to a set of transitions
of another sub-model (with another time-domain). The SimpleAC, which is an
improved version of the channel introduced in Moutinho and Gomes (2012a), sends
a message to the target sub-model whenever the listened transition (the source
transition) fires. The AckAC sends a message to the target sub-model whenever
the listened transition receives a message from another asynchronous-channel. The
NotAC sends a message to the target sub-model whenever the listened transition
receives a message from another asynchronous-channel and does not fire (reporting
that the transition is not enabled).

When a message arrives the target sub-model, it is simultaneously delivered to
the target transitions of that asynchronous channel. From those transitions, the ones
that can fire, will fire in the next execution step. The message is only available (to
be read) during one execution step, being destroyed after that.

A Petri net model with these three types of channels is presented in Fig. 3.5. This
model has three SimpleACs (“AC1”, “AC3”, and “AC5”), one AckAC (“AC2”), and
one NotAC (“AC4”):

Fig. 3.5 A Petri net model with three SimpleACs, one AckAC, and one NotAC
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• “AC1” connects transition “T1” of the sub-model with time-domain 1 (“td:1”) to
the transitions “T6” and “T3” of the sub-model with time-domain 2 (“td:2”);

• “AC3” connects transition “T3” of the sub-model with time-domain 2 to the
transition “T8” of the sub-model with time-domain 3 (“td:3”);

• “AC5” connects transition “T8” of the sub-model with time-domain 3 to the
transition “T5” of the sub-model with time-domain 2;

• “AC2” connects transition “T3” of the sub-model with time-domain 2 to the
transition “T2” of the sub-model with time-domain 1;

• “AC4” connects transition “T8” of the sub-model with time-domain 3 to the
transition “T4” of the sub-model with time-domain 2.

Whenever transition “T1” fires, one message is created and sent through the
asynchronous-channel “AC1”, to the transitions “T6” and “T3”. Whenever transition
“T3” receives a message (regardless of its firing), one message is created and sent
through the asynchronous-channel “AC2”, to the transition “T2”. Finally, whenever
transition “T8” receives a message and does not fire, one message is created and
sent through the asynchronous-channel “AC4”, to the transition “T4”.

3.5.2 Asynchronous-Channel Definition

A Petri nets class extended with asynchronous-channels and time-domains is
given by:

PNAC D .PNTD; AC/ D .P; T; F; W; M0; td; AC/ (3.15)

where AC, a set of asynchronous-channels that includes a set of SimpleACs (SAC),
a set of AckACs (AAC), and a set of NotACs (NAC), is given by Eq. (3.16).

AC D .SAC [ AAC [ NAC/ (3.16)

SimpleACs, AckACs, and NotACs associate transitions with sets of transitions,
as presented in Eqs. (3.17)–(3.19), where P.T/ is the power set of T .

SAC � T � P.T/ (3.17)

AAC � T � P.T/ (3.18)

NAC � T � P.T/ (3.19)

Each asynchronous-channel connects one transition of one component (the
source transition) to a set of transitions of another component (the target transitions).
This means that the target transitions of each asynchronous-channel must have
the same time-domain (as they belong to a single component), as presented in
Eq. (3.20).
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8t1;t22Ta W .t; Ta/ 2 AC ) td.t1/ D td.t2// (3.20)

Two asynchronous-channels cannot have the same target transition:

8t2Ta 6 9t2Tb W .t1; Ta/ 2 AC ^ .t2; Tb/ 2 AC ^ t1 ¤ t2 (3.21)

The AckACs and NotACs are used to provide feedback about the deliv-
ery of messages and about their influence in the target transitions. This means
that: (1) the source of an AckAC is always the target of another asynchronous-
channel [Eq. 3.22], and (2) the source of a NotAC is always the target of another
asynchronous-channel [Eq. 3.23].

8.ts;Ta/2AAC9.t;Tb/2AC W ts 2 Tb (3.22)

8.ts;Ta/2NAC9.t;Tb/2AC W ts 2 Tb (3.23)

3.5.3 Asynchronous-Channels Execution Semantics

Asynchronous-channels were proposed to connect sub-models with different time-
domains, specifying the asynchronous interaction among distributed and syn-
chronous components. Each channel specifies the sending of a specific message
from one component (the source) to another component (the target). These channels
do not specify the communication network, protocol, and delay (the time taken
by each message from the source to the target), ensuring network-independent
specifications.

These three types of channels have similar execution semantics. The difference
is that they report different events in the source components:

• the SimpleAC sends a message whenever its source transition fires;
• the AckAC sends a message whenever its source transition fires receives a

message;
• the NotAC sends a message whenever its source transition fires receives a

message but does not fire (because it is disabled).

The execution semantics of a Petri net model with asynchronous-channels (such
as the one presented in Fig. 3.5) can be expressed through a Petri net model where
the asynchronous-channels were replaced by behaviorally equivalent sub-models
(such as the one presented in Fig. 3.6). In the model from Fig. 3.6, the asynchronous-
channels “AC1”, “AC2”, “AC3”, “AC4”, and “AC5” from Fig. 3.5 were replaced
their behaviorally equivalent sub-models (with different coloring nodes).

The SimpleACs, the AckACs, and the NotACs behaviorally equivalent Petri
net sub-models are presented in Figs. 3.7, 3.8, and 3.9. The algorithm presented
in Sect. 3.6 supports the transformation of Petri net models with asynchronous-
channels into Petri net models without asynchronous-channels. In all the behav-
iorally equivalent models:
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Fig. 3.6 The model that specifies the execution semantics of the model from Fig. 3.5, but without
asynchronous-channels

Fig. 3.7 The SimpleAC
behaviorally equivalent Petri
net sub-model

Fig. 3.8 The AckAC
behaviorally equivalent Petri
net sub-model

Fig. 3.9 The NotAC
behaviorally equivalent Petri
net sub-model
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• the place pGoing is used to count the number of messages that were sent and that
have not yet arrived into the target component;

• the transition tDeliver firing specifies the arriving of a message. It fires when
the associated event (IE) occurs. When the transition tDeliver fires, the target
transitions if enabled also fire. tDeliver consumes the tokens from place pGoing,
ensuring that each message is only available (to enable the target transitions)
during one execution step of the target component, being destroyed after that;

• the input event IE is non-deterministic, ensuring that these channels do not
specify the communication time, as desired to obtain network-independent
specifications.

Any of these behaviorally equivalent models has two target transitions (“tTarget1”
and “tTargetN”); however, they can have one or more target transitions. Each
asynchronous-channel can have a non-zero positive integer number of target
transitions.

The models from Figs. 3.7, 3.8, and 3.9 have similar execution semantics;
however, they react (create and send messages) to different types of events in the
source transitions:

• the SimpleAC creates and sends a message whenever the source transition fires,
as specified in Fig. 3.7 (when the source transition fires one token is added to
place “pGoing” specifying that a message is going to the target component);

• the AckAC creates and sends a message whenever the source transition receives
a message from another asynchronous-channel. When the source transition
receives a message, the transition “tDeliverSource” (Fig. 3.8) also receives a
message. Given that “tDeliverSource” is enabled (it is always enabled), it fires
and one token is created in place “pGoing” specifying that a message is going to
the target component;

• the NotAC creates and sends a message whenever the source transition receives a
message from another asynchronous-channel and does not fire. When the source
transition receives a message, the transition “tNot” (Fig. 3.8) also receives a
message. The transition “tNot” fires if and only if the source transition does not
fire (“tNot” has lower priority than the source transition and “pXor” ensures that
they cannot fire simultaneously). When “tNot” fires one token is generated in
place “pGoing” specifying that a message is going to the target component.

The model presented in Fig. 3.6 supports the validation of the model from
Fig. 3.5, but not its implementation or documentation. It does not support its
implementation because not all nodes have time-domain and the arcs do not always
connect nodes with equal time-domain. However, the use of Petri nets extended
with time-domains without fulfilling all the assumptions described in Sect. 3.4 is
not a problem if the models are only used for validation purposes.



3.6 Distributed GALS Models Validation 33

3.6 Distributed GALS Models Validation

Petri net models with time-domains and asynchronous-channels can be simulated
(using simulation tools) and verified (using state-space model-checking tools). An
algorithm, which specifies the translation of Petri net models with time-domains
and asynchronous-channels into behaviorally equivalent models with time-domains
but without asynchronous-channels, is presented in this section. This algorithm was
implemented in the IOPT-Tools online framework (Pereira et al. 2012a), to allow the
use of their simulation and model-checking tools to simulate and verify distributed
GALS models. The translation algorithm is presented in Algorithm 1 and described
in the following items:

• line 1—the Petri net model (“globalPNname”) with asynchronous-channels is
copied into the “globalPN” data structure;

• line 2—the “globalPN” is cloned into the data structure (“translatedPN”) that
will have the translated model;

• line 3—for each asynchronous-channel of the “translatedPN” data structure:
• lines 4, 5, and 6—it is added the place “pGoing,” the transition “tDeliver,” and

an arc connecting them;
• lines 7 to 10—it is also added a test arc connecting the place “pGoing” to each

target transition, where it is also associated an input event;
• lines 11 to 13—if it is a SimpleAC, an arc connecting the source transition to the

place “pGoing” is added into the “translatedPN” data structure;
• lines 14 to 16—if it is an AckAC, an arc connecting the transition “tDeliver” of

the source component to the place “pGoing” is added into the “translatedPN”
data structure;

• lines 17 to 27—if it is a NotAC, the following items are added to the “translat-
edPN” data structure: the transition “tNot”, the place “pXor”, arcs interconnect-
ing them and connecting “pXor” to the source transition, priorities to the source
transition and to “tNot”, an arc connecting “tNot” to “pGoing”, and a test arc
connecting the place “pGoing” of the behaviorally equivalent sub-model of the
asynchronous-channel that is source of the current source transition;

• line 28—the asynchronous-channel is removed from “translatedPN”;
• line 30—the obtained model is saved into a PNML file.

The algorithm that describes how to generate the state-spaces (also known
as reachability graphs) of Petri net models with time-domains was proposed in
Moutinho and Gomes (2011) and refined in Moutinho (2014). This algorithm,
which was implemented in the IOPT-Tools, generates the state-spaces and saves
them into hierarchical XML files. To analyze and verify the state-spaces (searching
proprieties), standard tools for XML, like XPath and XQuery (W3C 2013) and the
IOPT query engine (Pereira et al. 2012a) can be used. The state-spaces support not
only the behavioral verification, but can also provide the places bounds, which are
the sizes of the memory resources needed to implement the controllers.
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Algorithm 1 The translation algorithm that replaces asynchronous-channels by their
behaviorally equivalent sub-models
Require: globalPNname
1: globalPN Read.globalPNname/

2: translatedPN globalPN
3: for all ac 2 translatedPN:AC do
4: translatedPN:AddNewPlace.pGoing; ac:id/

5: translatedPN:AddNewTransition.tDeliver; ac:id; translatedPN:td.ac:TargetsŒ0�/; IE/

6: translatedPN:AddNewArc.pGoing; tDeliver; ac:id/

7: for all tTarget 2 ac:Targets do
8: translatedPN:AddNewTestArc.pGoing; tTarget; ac:id/

9: translatedPN:AddEventToTransition.tTarget; IE; ac:id/

10: end for
11: if ac 2 globalPN:SAC then
12: translatedPN:AddNewArc.ac:Source; pGoing; ac:id/

13: end if
14: if ac 2 globalPN:AAC then
15: translatedPN:AddNewArc.tDeliver; ac:Source; pGoing; ac:id/

16: end if
17: if ac 2 globalPN:NAC then
18: translatedPN:AddNewTransition.tNot; ac:id; IEdeliver; ac:Source/

19: translatedPN:AddNewPlace.pXor; marking D 1; ac:id/

20: translatedPN:AddNewArc.tNot; pXor; ac:id/

21: translatedPN:AddNewArc.pXor; tNot; ac:id/

22: translatedPN:AddNewArc.ac:Source; pXor; ac:id/

23: translatedPN:AddNewArc.pXor; ac:Source; ac:id/

24: translatedPN:AddNewPriorityHigherLower.ac:Source; tNot; ac:id/

25: translatedPN:AddNewArc.tNot; pGoing; ac:id/

26: translatedPN:AddNewTestArc.pGoing; ac:Source; tNot; ac:id/

27: end if
28: translatedPN:RemoveAC.ac/

29: end for
30: SaveNewPNML.translatedPN/

The state-space of the model from Fig. 3.5, which of course is also the state-
space of the behaviorally equivalent model presented in Fig. 3.6, is presented in
Fig. 3.10. This state-space was generated in the IOPT-Tools state-space generator
for GALS (Moutinho and Gomes 2012b), which implements the algorithm proposed
in Moutinho and Gomes (2011) and refined in Moutinho (2014).

The model from Fig. 3.5 has the following behavior:

• whenever transition “T1” fires, one message is sent through the asynchronous-
channel “AC1” (in the behaviorally equivalent model one token is inserted in
place “PAC1”);

• when the “AC1” message arrives the target component (in the behaviorally
equivalent model, the event “IEAC1” occurs), one message is sent through the
asynchronous-channel “AC2” (in the behaviorally equivalent model one token is
inserted in place “PAC2”), and transitions “T6” and “T3” fire (if enabled);
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Fig. 3.10 The state-space (reachability graph) of the models from Figs. 3.5 and 3.6

• when “AC2” message arrives to the target sub-model (in the behaviorally
equivalent model, this is specified by the occurrence of event “IEAC2”), the
transition “T2” fires (if enabled);

• when transition “T3” fires, one message is sent through the asynchronous-
channel “AC3”;
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• when the “AC3” message arrives to the target component (in the behaviorally
equivalent model, the event “IEAC3” occurs), one message is sent through the
asynchronous-channel “AC4” (in the behaviorally equivalent model one token is
inserted in place “PAC4”) because transition “T8” is disabled;

• however, if transition “T8” was enabled, then a message would be sent through
the asynchronous-channel “AC5” instead of “AC4”.

3.7 Bounded Petri Nets

The state-space analysis not only supports the controllers’ verification, but also
supports their implementation. Each Petri net place will be implemented as a
memory resource (such as a software variable or a hardware register). To select
the variable type or to implement the register, it is required to know its size, which
is given by the place bound. The bound of a place is the maximal number of tokens
that will be simultaneously in that place. The bound of each place can easily be
checked in the state-space. Figure 3.10 not only presents the state-space, but also
the bounds of places and asynchronous-channels.

The model-based development approach (MBD) proposed in Sect. 3.1 includes
steps where the bounds are calculated and updated. After the second step (the
reusable sub-models’ verification) of proposed MBD approach the places bound are
added into the sub-models. Later, after the verification of the global GALS-DEC
model (where the state-space is generated), the bounds are updated, but only if it is
possible to generate the full state-space. Otherwise the bounds added in the second
step will remain the same. Given that the global GALS-DEC model was created
to have asynchronous-channels bounded to one, it is not required to generate the
full state-space to ensure its proper implementation. This is the major difference
between the MBD approach proposed in this book and the MBD approach proposed
in Moutinho (2014).

The places and the asynchronous-channels bounds are given by Eq. (3.24).

8p2.P[PAC/.bound.p/ D max.8m2Œ0::n�.#Mm.p//// (3.24)

where:

• P is the set of places that excludes PAC;
• PAC is the set of places of the behaviorally equivalent sub-models that specify

the asynchronous-channels;
• n C 1 is the number of state-space nodes;
• m is the order of a state-space node;
• #Mm.p/ is the number of tokens that are in the place p in the node m of the

state-space.
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A bounded Petri nets class extended with time-domains and asynchronous-
channels is given by Eq. (3.25).

PNGALS D .PNAC; bound/ (3.25)

bound is a function associating places with non-negative integers:

bound W .P [ AC/ ! N0 (3.26)

where N0 D f0; 1; 2; 3; : : :g.

3.8 Decomposition into Implementable Sub-models

After the global GALS-DEC model creation and validation, it must be decomposed
into a set of implementable sub-models that support the components implementation
code generation, potentially using automatic code generators, such as those from
IOPT-Tools. The algorithm that supports this decomposition is presented in this
section. This algorithm (Algorithm 2) reads the global GALS-DEC PNML file
and creates a set of PNML files, where each file contains the sub-models that
specify each component. These files that fully specify the synchronous components
can be used as inputs in automatic code generators. A decomposition tool, which
implements this algorithm, was added into the IOPT-Tools (Pereira et al. 2012a).
The created files can be used as inputs in automatic code generators, such as those
from IOPT-Tools: (1) C code generators (Campos-Rebelo et al. 2011; Pereira et al.
2012a) and (2) VHDL code generators (Gomes et al. 2007b; Pereira and Gomes
2013).

To create the sub-models of each component (with a specific time-domain), the
algorithm:

• reads the PNML file of the global GALS-DEC model;
• removes the nodes (places and transitions) that do not have the time-domain of

that component;
• removes the arcs that were connected to the removed nodes;
• removes the asynchronous-channels and introduces: (1) additional sub-models;

and (2) additional input events and output events (to specify the interaction
between the components and the communication nodes);

• saves the resulting sub-models into a new PNML file.

Describing the algorithm in more detail:

• line 1—the global Petri net model uploaded into the globalPN data structure;
• line 2—a list with all time-domains of the globalPN is created;
• lines 3 to 48—for each time-domain, the model of the associated component is

created;
• line 4—new data structure (componentPN) is created with a copy of the global

model (at the end this new structure will contain the component model);
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Algorithm 2 The decomposition algorithm that reads the global model and creates
the implementation sub-models of each component
Require: globalPNname
1: globalPN Read.globalPNname/

2: timedomainList GetTimeDomains.globalPN/

3: for all timeD 2 timedomainList do
4: componentPN globalPN
5: for all a D .x; y/ 2 componentPN:A do
6: if td.x/ ¤ timeD_ td.y/ ¤ timeD then
7: componentPN:RemoveArc.a/

8: end if
9: end for

10: for all p 2 componentPN:P do
11: if componentPN:td.p/ ¤ timeD then
12: componentPN:RemovePlace.p/

13: end if
14: end for
15: for all ac D .ts; Tt/ 2 componentPN:AC do
16: if td.ts/ D timeD^ ac 2 SAC then
17: componentPN:AssignOutEvToTransition.ts; ac/

18: end if
19: if 9.tt 2 Tt/ W td.tt/ D timeD then
20: for all tt 2 Tt do
21: componentPN:AssignInEvToTransition.tt; ac/

22: end for
23: if 9.aac D .tt; T/ 2 AAC/ then
24: componentPN:AddNewTransition.0tdeliver0; ac; timeD/

25: componentPN:AssignInEvToTransition.0tdeliver0; ac/

26: end if
27: for all aac D .tt; T/ 2 AAC do
28: componentPN:AddNewOutEvToTransition.0tdeliver0; ac; aac/

29: end for
30: end if
31: componentPN:RemoveAC.ac/

32: end for
33: for all t 2 componentPN:T do
34: if componentPN:td.t/ ¤ timeD then
35: componentPN:RemoveTransition.t/
36: else
37: if 9.nac D .t; T/ 2 NAC/ then
38: componentPN:AddNewTransitionWithLowerPriority.0tnotenabled0; t; timeD/

39: ac W ac D .tx; Tx/ 2 AC ^ t 2 Tx

40: componentPN:AddNewInEvToTransition.0tnotenabled0; t; ac/

41: componentPN:AddNewPlace.0pxor0; marking D 1/

42: componentPN:AddNew4Arcs.t;0 pxor0;0 tnotenabled0/

43: end if
44: for all nac D .t; T/ 2 NAC do
45: componentPN:AddNewOutEvToTransition.‘tnotenabled0; t; nac/

46: end for
47: end if
48: end for
49: CreateNewPNMLfile.componentPN/

50: end for
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• lines 5 to 9—each arc that connects one node with a different time-domain (from
another component) is removed;

• lines 10 to 14—each place with a different time-domain (from another compo-
nent) is removed;

• line 15—for each asynchronous-channel (AC)
• lines 16 to 18—if its source transition has the (component) time-domain and the

AC is a SimpleAC, an output event is associated with the source transition;
• line 19—if any of the target transitions have the (component) time-domain;
• lines 20 to 22—an input event is associated with each of its target transitions;
• lines 23 to 26—if any of the target transitions is source of an AckAC, a new

transition (“tdeliver”) with an associated input event is added;
• lines 27 to 29—for each AckAC that is source of this target transition, a new

output event is associated with the new transition (“deliver”);
• line 31—the asynchronous-channel is removed;
• line 33—for each transition (“t”);
• lines 34 to 35—if it has a different time-domain (from another component) is

removed;
• lines 36 to 43—else, if the transition is source of a NotAC, a sub-net is added.

This sub-net:

– has a new transition (“tnotenabled”) with an input event and with lower
priority than transition “t’;

– has a new place “pxor” with one token;
– has four new arcs: (1) one connecting the transition “t” to “pxor”; (2) one

connecting “pxor” to the transition “t”; (3) one connecting “tnotenabled” to
“pxor”; and (4) one connecting “pxor” to “tnotenabled”;

• lines 44 to 46—for each NotAC, a new output event is associated to transition
“tnotenabled”;

• line 49—the component model is saved into a PNML file.

The decomposition of the global model presented in Fig. 3.5 produces the sub-
models presented in Fig. 3.11. These sub-models support the implementation of the
components of the GALS-DEC specified in Fig. 3.5. They can be used as inputs in
automatic code generators, such as the C code generator (Pereira et al. 2012a) and
the VHDL code generator (Pereira and Gomes 2013), available in the IOPT-tools
(Pereira et al. 2012a).

3.9 The Meta-Model of PNs Extended with TDs and ACs

The meta-model of Petri nets extended with time-domains and asynchronous-
channels is presented in Fig. 3.12. The proposed meta-model, which is specified
through UML class diagrams and OCLs, extends PT-nets (the PT-net meta-model
is presented in Fig. 2.3), and complements meta-model definition for IOPT-nets,
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Fig. 3.11 The components implementation sub-models (resulting from the decomposition of the
global model presented in Fig. 3.5)

as in Moutinho et al. (2010) and Gomes et al. (2014). OCLs are used to express
constraints that cannot be expressed in the UML class diagrams. As defined in
Sects. 3.4 and 3.5, this meta-model also defines that:

• each node (a place or a transition) has a time-domain;
• each arc connects two nodes with the same time-domain;
• a reference transition must always refer a transition with the same time-domain;
• a reference place must always refer a place with the same time-domain;
• each asynchronous-channel can be a simple AC, an acknowledged AC, or a not-

enabled AC;
• each asynchronous channel has one source transition and one or more target

transitions;
• each transition cannot be target of more than one asynchronous-channel;
• all target transitions of an asynchronous-channel must have the same time-

domain;
• the source transition of an acknowledged AC or not-enabled AC must be the

target of another asynchronous-channel.
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Fig. 3.12 The meta-model of Petri nets extended with time-domains and asynchronous-channels



Chapter 4
Application Example

4.1 Introduction

The development of a distributed controller for a traffic application is presented in
this chapter, illustrating the application of the proposed development approach. The
distributed controller manages the number of vehicles that can be simultaneously
in a specific area (represented in Fig. 4.1). The area has an entrance zone and an
exit zone. The area capacity is 200 vehicles; however, due to pollution constraints,
it is desirable not to have more than 100 vehicles simultaneously in the area. At the
entrance there is a semaphore that is normally green, and changes to red when the
number of vehicles inside the area is bigger than 100. Also at the entrance there is a
display presenting the number of vehicles that can enter in the area (keeping the total
number of vehicles under 100). This chapter is structured in two parts (although not
explicitly divided), where the first one describes a simplified distributed controller
for an area without gates composed by six controllers, while the second part extends
the simplified controller with two additional components (to control the gates). The
eight components (where the first six are common to both controllers) fulfill the
following goals:

1. verify if a vehicle passed the entrance zone in the right direction;
2. verify if a vehicle passed the entrance zone in the wrong direction;
3. manage the number of entered vehicles and showing the number of available

places;
4. control the traffic light;
5. verify if a vehicle passed the exit zone in the right direction;
6. verify if a vehicle passed the exit zone in the wrong direction;
7. check the entrance push button and control the entrance gate;
8. check the exit push button and control the exit gate.

© Springer International Publishing Switzerland 2016
F. Moutinho, L. Gomes, Distributed Embedded Controller Development with Petri
Nets, SpringerBriefs in Electrical and Computer Engineering 150,
DOI 10.1007/978-3-319-20822-0_4
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Fig. 4.1 The area where it is
desired to limit the vehicles
access

Along this chapter the model of each controller is described and validated, using
simulation and model-checking tools. The creation and validation of these eight
controller models are the first steps of the proposed model-based development
(MBD) approach (Sect. 3.1). These models are then connected using asynchronous-
channels to obtain the global model of the distributed traffic controller (the next
step of the proposed MBD approach). The global models are then validated (using
the validation tools), decomposed, and used as inputs in automatic code generators
that generate the implementation code (the following steps of the proposed MBD
approach). This distributed controller development was supported by the IOPT-
Tools (available online at http://gres.uninova.pt/IOPT-Tools/).

To conclude this brief introduction, it is important to note that to avoid the
creation of a large global model, the described distributed controller only has one
entrance zone and one exit zone. However, it is very easy to extend the global model
for several entrances and exits, as the approach scales well.

4.2 The Detection Zone

Both the entrance zone and the exit zone have an area to detect if a vehicle has
passed and in which direction. Although it is not expected that a vehicle exits
through the entrance zone or enters through the exit zone, it can occur and the
distributed controller should detect it. Each zone has three presence detectors (“A”,
“B”, and “C”) spaced close together, as illustrated in Fig. 4.2. Each detector provides
a Boolean signal, where the value is one when detecting a vehicle and is zero
otherwise. When a vehicle passes in the right direction the following sequence will
be generated:

1. A D 0 and B D 0 and C D 0
2. A D 1 and B D 0 and C D 0
3. A D 1 and B D 1 and C D 0
4. A D 1 and B D 1 and C D 1

http://gres.uninova.pt/IOPT-Tools/
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Fig. 4.2 The detection zone

5. A D 0 and B D 1 and C D 1
6. A D 0 and B D 0 and C D 1
7. A D 0 and B D 0 and C D 0

When a vehicle passes in the wrong direction the generated sequence is the reverse.
Two controllers are presented in this section, one checks if a vehicle passed in

the right direction and the other checks if a vehicle passed in the wrong direction.
Each controller receives the detectors data and analyzes them to verify if a vehicle
passed in that specific direction. The exit zone also has two similar controllers.

4.2.1 The Model of Controller that Checks the Right Direction

The controller that verifies if a vehicle passed in the right direction is modeled by
a Petri net. The model can be decomposed into two sub-models, one devoted to
analyze signal evolution, and the other one to take care of the communication with
the other components. In this sense, the sub-model analyzing the signals evolution
depends on three input signals (“A”, “B”, and “C”), and associated six input events
generated by the rising and falling edges of the referred signals (“Aup,” “Ad,”
“Bup,” “Bd,” “Cup,” and “Cd”). On the other hand, the sub-model taking care of
the communication with the other components integrates one channel-source (“cs”),
and one channel-target (“ct(1)”). “A”, “B”, and “C” hold the detectors status. The
event “Aup” (“A” goes up) occurs when the signal “A” changes from zero to one,
while the event “Ad” (“A” goes down) occurs when the signal “A” changes from one
to zero; and so on for detectors “B”, and “C”.
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Fig. 4.3 The detection zone controller initial model

Initial model is presented in Fig. 4.3, which was created in the IOPT Web Editor
(Pereira et al. 2012b). It is a simplified model, where only one car at a time
is considered to activate the detectors. A discussion on how to circumvent this
restriction will be addressed later in this chapter.

In brief, the sub-model around places “P1”, “P2”, “P3”, “P4”, “P5”, and “P6”,
handles detectors evolution analysis, while sub-model around “P7”, “P8”, “P9”, and
“P10” handles communication with other controller components. The behavior of
the model from Fig. 4.3 can be briefly described as follows:

• place P1 is initially marked meaning that the entrance zone is free;
• firing of the sequence of transitions from “T1” to “T6” models the activation/de-

activation of the detectors “A”, “B”, and “C” (starting with “Aup”, followed by
“Bup”, “Cup”, “Ad”, “Bd”, and finally “Cd”), in the correct order associated with
an incoming vehicle;

• when “P6” is marked, upon occurrence of “Cd”, both transitions “T6” and
“TpassedABC” will fire, then place “P7” is decremented and place “P8” is
incremented (meaning that one vehicle passed through the detectors area in the
right direction);
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• when places “P8” and “P9” are marked, transition “T9” fires, then place “P9” is
unmarked, the number of tokens from place “P8” is decremented, place “P10”
is marked, and a message is sent through the asynchronous-channel that will be
connected to transition “Ts” (a channel-source—“cs”);

• when place “P10” is marked and a message is received by the channel-target
“ct(1)” (the transition “Tr”), then “Tr” fires, place “P7” is incremented, place
“P10” is unmarked, and place “P9” marked;

• it is expected that the communication time between this controller and the target
controller (to send a message notifying the entrance of a vehicle and receiving
the associated acknowledge) is smaller than the time between the entry of two
vehicles; however, for security reasons the initial marking of place “P7” is 10
(but of course it can be higher), which means that if an acknowledgment takes
longer than the expected time, it is possible to register entrances of up to ten cars
without the controller missing the counting.

The presented model oversimplifies the control of real situations. Several aspects
can be improved. For instance, this model does not address the potential ill-behavior
of the driver, entering into reverse gear after starting the entrance movement. This
behavior can be easily integrated into the model through a set of transitions, as
transitions “T7” up to “T11” in Fig. 4.4.

Fig. 4.4 The detection zone controller model detecting reverse gear movement
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Fig. 4.5 The detection zone controller alternative model

At this point in time, it is also worth to refer the potential flexibility to
produce the models, depending on the modeling style of the designer. This can
be controversial, in the sense that we can explicitly model some specific behavior
based on elementary events (as was done in Figs. 4.3 and 4.4), or alternatively hide
some of these dependencies in model annotations. This can be the case when one
moves from event-based modeling (for instance, the event sequence Aup, Bup, and
Cup modeled by transitions “T1”, “T2”, and “T3” in Fig. 4.3) and encapsulates this
behavior using also signal-based guard condition evaluation. This modeling attitude
was adopted in Fig. 4.5 where the sub-model around “T1”, “T2”, and “T3” from
Fig. 4.3, was substituted by transition “T0” of Fig. 4.5, where the dependency of
event “Cup” was kept, but a dependency on the evaluation of a guard condition
was introduced (“A D 1 AND B D 1”). The model of Fig. 4.5 can also be seen
as an attempt to consider simultaneous presence of two cars at the entrance, so
approaching a complete modeling of real situations. However, even with this model
it is not possible to assure proper control for situations where two different vehicles
get in touch and then move in touch over the detectors (for instance, two vehicles
can enter and the controller only detects one).

In this model (Fig. 4.5), when place “P1” is marked and signal “A” and signal
“B” are both one, the occurrence of event Cup can mean one of four things:

• a vehicle that was passing through the zone in the right direction (pressing
detectors “A” and “B”) is now pressing the three detectors;

• a vehicle was passing through the zone in the right direction (pressing detectors
“A” and “B”), and now another vehicle is trying to pass through the zone in the
wrong direction (it is now pressing “C”);
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• a vehicle was passing through the zone in the wrong direction (being at that
moment pressing only detectors “A” and “B”), and then changed its direction (it
is now also pressing “C”); or

• a vehicle was passing through the zone in the wrong direction (being at that
moment pressing detectors “A” and “B”), and now another vehicle is trying to
pass through the zone (also in the wrong direction, pressing “C”).

In the first two options transition “T0” fires, whereas in the other two options it does
not fire, because place “P5” is unmarked. The sub-model with places “P5” and “P6”
and transitions “T7”, “T8”, and “T88” checks if a vehicle is passing the zone in the
wrong direction. When a vehicle is passing in the wrong direction, place “P5” is
unmarked, disabling the transitions “T0” and “TpassedABC”.

When place “P2” is marked, if signal “B” and signal “C” are both one, and event
“Ad” occurs, transition “T3” fires, place “P2” is unmarked and place “P3” is marked
(meaning that the car starts to move completely in), else if the events “Bd” or “Cd”
occur, transition “T1” or transition “T2” fires, place “P2” is unmarked, and the
model returns to the initial marking. Latter, if event “Bd” occurs and signal “C”
is one, then transition “T5” fires, place “P3” is unmarked and place “P4” is marked
(meaning that the car is almost in), else if the event “Cd” occurs, transition “T4”
fires, place “P3” is unmarked and the model returns to the initial marking. Finally,
having “P4” marked, if event “Cd” occurs, then transition “T6” fires and transition
“TpassedABC” fires (if places “P7” and “P5” are marked), place “P4” is unmarked
and the model returns to the initial marking (one vehicle has passed in the right
direction).

4.2.2 The Model Validation

The model presented in Fig. 4.5 was validated using two tools: a simulation tool
(Pereira and Gomes 2015) and a model-checking tool (Pereira et al. 2012a). These
tools are available online at http://gres.uninova.pt/IOPT-Tool/.

The simulation tool was mainly used during the model creation, where a set of
use cases was simulated, allowing the detection of some errors and the subsequent
model correction/improvement. Some of the simulated use cases were:

• a vehicle passing through the zone in the right direction;
• a vehicle passing through the zone in the wrong direction
• a vehicle stopping at the middle of the detection zone and then going back and

forward;
• two vehicles moving in opposite directions that stop in the detection zone at the

same time, then one goes back and the other goes forward;
• two vehicles moving in opposite directions that stop in the detection zone at the

same time, then both vehicles go back.

http://gres.uninova.pt/IOPT-Tool/
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Table 4.1 The place bounds
of the model presented in
Fig. 4.5

Place Bound

P1 1

P2 1

P3 1

P4 1

P5 1

P6 1

P7 10

P8 9

P9 1

P10 1

After the model simulation, the model-checking tool was used to verify a set of
properties of the model. This tool (Pereira et al. 2012a) is a state-space based tool,
which means that generates the associated state-space (also known as reachability
graph), and during its generation checks a set of proprieties. It was verified that the
model from Fig. 4.5 has:

• 160 states;
• no deadlocks (as expected and required).

The bound of each place (the maximal number of tokens that can be in that place)
was also verified using the model-checking tool. It is required to know the place
bound, to scale the memory resource that will be used to implement that place. The
memory resource capacity has to be bigger or equal than the associated place bound.
The automatic code generators check the place bounds before generating the code.
The place bounds of the model presented in Fig. 4.5 are presented in Table 4.1.

This model-checking tool enables the visualization of small state-spaces, such
as the one presented in Fig. 4.6. Given that the model has 160 states, it is too big
to be presented in a readable single page, and therefore an incomplete state-space
is presented. To analyze state-spaces of arbitrary magnitude (small and large), this
model-checking tool relies on a query engine, which enables the creation of queries
that will be answered during the state-space generation, allowing the verification of
additional proprieties. Four queries were created and used to verify four proprieties,
as presented in Table 4.2.

4.2.3 The Controller that Checks the Wrong Direction

The model of the controller that checks the wrong direction is presented in Fig. 4.7.
As easily verifiable, this model is similar to the model presented in Fig. 4.5, which
checks if a vehicle passes in the right direction. The usual sequence when a vehicle
passes in the wrong direction is:
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Fig. 4.6 The incomplete state-space of the detection zone controller model presented in Fig. 4.5

Table 4.2 The verification queries of the Fig. 4.5 model

Query N states Meaning

P1CP2CP3CP4D 1 160 This query is true in all states, as desired

P5CP6D 1 160 This query is true in all states, as desired

P7CP8CP10D 10 160 This query is true in all states, as desired

P9CP10D 1 160 This query is true in all states, as desired
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Fig. 4.7 The model of the controller that checks the wrong direction

Table 4.3 The place bounds
of the model presented in
Fig. 4.7

Place Bound

P1b 1

P2b 1

P3b 1

P4b 1

P5b 1

P6b 1

P7b 10

P8b 9

P9b 1

P10b 1

1. C D 0 and B D 0 and A D 0
2. C D 1 and B D 0 and A D 0
3. C D 1 and B D 1 and A D 0
4. C D 1 and B D 1 and A D 1
5. C D 0 and B D 1 and A D 1
6. C D 0 and B D 0 and A D 1
7. C D 0 and B D 0 and A D 0

The validation of this model is similar to the validation of the model presented in
Fig. 4.5. Analogous use cases were simulated using the simulation tool, with similar
results. The model-checking tool gave similar results: 160 states; no deadlocks; the
bounds presented in Table 4.3; and the query results presented in Table 4.4.
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Table 4.4 The verification queries of the model from Fig. 4.7

Query N states Meaning

P1bCP2bCP3bCP4bD 1 160 This query is true in all states, as desired

P5bCP6bD 1 160 This query is true in all states, as desired

P7bCP8bCP10bD 10 160 This query is true in all states, as desired

P9bCP10bD 1 160 This query is true in all states, as desired

4.3 The Controller that Counts the Number of Vehicles

The modeling of the controller that counts the number of vehicles in the area is
described in this section. It receives messages from the controllers that check if a
vehicle entered or left the area, increments or decrements the number of vehicles
inside, decrements or increments the availability, and acknowledges the received
messages. The controller is prepared to count until the maximal number of vehicles
that physically fit in the area (200), ensuring this way that even if the drivers do
not respect the semaphore or the gates, it will not miss the count. However, when
the number of vehicles inside becomes 100, this controller sends a message to the
semaphore controller (to turn it red) and waits the acknowledgment, whereas when
the number of vehicles inside becomes less than 100, the controller sends a message
to the semaphore controller (to turn it green) and waits the acknowledgment.

The counter controller model is presented in Fig. 4.8. Transition “in1” is a
channel-target (“ct(1)”) and a channel-source (“cs”), it receives a message whenever
a vehicle enters through the entrance zone, and then an acknowledgment is sent.
Transition “out1” is a channel-target (“ct(2)”) and a channel-source (“cs”), it
receives a message whenever a vehicle exits through the entrance zone, and then
an acknowledgment is sent. Transition “out2” is a channel-target (“ct(3)”) and a
channel-source (“cs”), it receives a message whenever a vehicle exits through the
exit zone, and then an acknowledgment is sent. Transition “in2” is a channel-target
(“ct(4)”) and a channel-source (“cs”), it receives a message whenever a vehicle
enters through the exit zone, and then an acknowledgment is sent. When transition
“Tfull” fires (a channel-source), a message is sent through an asynchronous-
channel to the semaphore controller, to turn the red on and the green off, and
waits the acknowledgment in the transition “ackRed” (a channel-target). When
transition “Tfree” fires, a message is sent through another asynchronous-channel
to the semaphore controller, to turn the green on and the red off, and waits the
acknowledgment in the transition “ackGreen”.

The model presented in Fig. 4.8 was simulated using the IOPT simulation tool
(Pereira and Gomes 2015). The following use cases were simulated:

• the entrance of vehicles;
• the exit of vehicles;
• the scenario where there are more than 100 vehicles inside;
• the scenario where the number of vehicles inside becomes less than 101.
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Fig. 4.8 The counter controller model

Table 4.5 The place bounds
of the counter model

Place Bound

Max 200

In 200

PisGreen 1

PwaitAckRed 1

PisRed 1

PwaitAckGreen 1

Table 4.6 The verification queries used to check the counter model

Query N states Meaning

MaxC inD 200 804 This query is true in all states

PisGreenC PwaitAckRedC PisRedC
PwaitAckGreenD 1

804 This query is true in all states

The validation was performed using the IOPT model-checking tool (Pereira et al.
2012a). This model has:

• 804 states;
• no deadlocks (as expected and required).

The place bounds are presented in Table 4.5. During the verification process two
queries were checked, with the results presented in Table 4.6.
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4.4 The Traffic Light Controller

The traffic light controller is described in this section. It is a very simple controller
that turns on the red light or the green light. When it receives a message to turn on
the red light, it turns it on, turns the green light off, and sends an acknowledgment.
When it receives a message to turn on the green light, it turns it on, turns the red light
off, and sends an acknowledgment. The model of this controller is very simple, with:
two places, two transitions that are simultaneously channel-targets and channel-
sources; and two output signals (one to control the red light and the other to control
the green light), as presented in Fig. 4.9.

This model was then simulated and verified in the IOPT-Tools. It was verified
that the model has:

• two states;
• no deadlocks (as expected and required).

The place bounds are the ones presented in Table 4.7, and the verified query is the
one presented in Table 4.8.

4.5 The Simplified Distributed Controller

The simplified distributed controller model was created using the models from
Figs. 4.5, 4.7, 4.8, and 4.9. The models from Figs. 4.5 and 4.7 were used twice (one
for the entrance zone and the other for the exit zone), which means that the global

Fig. 4.9 The traffic light
controller model

Table 4.7 The place bounds
of the light model

Place Bound

Green 1

Red 1

Table 4.8 The verification
queries of the light model

Query N states Meaning

GreenC redD 1 2 This query is true in all states
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Fig. 4.10 The simplified distributed controller model

model has six sub-models, as presented in Fig. 4.10. The interaction between these
sub-models is specified using 12 asynchronous-channels. All these sub-models were
initially created with the time-domain one (td:1); however, when creating the global
model, each of these sub-models has been assigned to a different time-domain. The
six sub-models are:

• at top-left—the sub-model that specifies the component that verifies if a vehicle
passed the entrance zone in the right direction (entering the area);

• at top-right—the sub-model that specifies the component that verifies if a vehicle
passed the entrance zone in the wrong direction (leaving the area);

• at center-left—the sub-model that specifies the component that controls the traffic
light;
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• at center—the sub-model that specifies the component that counts the number of
vehicles;

• at bottom-left—the sub-model that specifies the component that verifies if a
vehicle passed the exit zone in the right direction (leaving the area);

• at bottom-right—the sub-model that specifies the component that verifies if a
vehicle passed the exit zone in the wrong direction (entering the area).

The simplified distributed controller model was also simulated in the IOPT
simulator tool. The following use cases were simulated:

• a vehicle entering the entrance zone;
• a vehicle entering the exit zone;
• a vehicle leaving the entrance zone;
• a vehicle leaving the exit zone;
• the scenario where there are more than 100 vehicles inside;
• the scenario where the number of vehicles inside becomes less than 101.

The simplified distributed controller model was verified in the IOPT model-
checking tool. Due to the tool memory constraints, it was not possible to generate
the full state-space of the model with the initial marking presented in Fig. 4.10.
Therefore, a reduced model (without the sub-models with time-domains “2” and
“4”) with a different initial marking (but still allowing the proprieties verification),
was verified: (1) M.max/ D 20 instead of 200; (2) M.P7/ D 2 instead of 10;
and (3) M.P7x/ D 2 instead of 10. To verify the model with this marking was
required to change: (1) the weight of the test arc that is connected to place “max”
from 101 to 11; (2) the weight of the test arc that is connected to place “in” from
100 to 10; and (3) the expression of place “max”, from “number D max � 100” to
“number D max � 10”. The generated state-space has:

• 290,304 states;
• no deadlocks (as expected and required).

The place bounds, provided by the model-checking tool, are presented in
Table 4.9. Given that the presented bounds were calculated with a different initial
marking, they cannot be used to support the implementation. These bounds were
mainly used for validation purposes. For implementation purposes the place bounds
obtained in the previous sections were used. They are the ones shown in Table 4.10.

The asynchronous-channel bounds of the reduced model are presented in
Table 4.11. The bound of all asynchronous-channels is equal to one, as expected
given that the model was created to have asynchronous-channels with bound 1. The
asynchronous-channel bounds were not verified in the simplified model (Fig. 4.10),
because it was not possible to generate its full state-space. However, this is not
a problem because the model was created to have asynchronous-channels with
bound equal to one. The asynchronous-channel bounds of the simplified model are
presented in Table 4.12.

The validated model is bounded and the bound values are known, this means
that automatic code generators can be used to generate the implementation code.
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Table 4.9 The place bounds
of the reduced distributed
controller model with a
different initial marking

Place Bound

P1,P1x 1

P2,P2x 1

P3P3x 1

P4,P4x 1

P5,P5x 1

P6,P6x 1

P7,P7x 2

P8,P8x 1

P9,P9x 1

P10,P10x 1

Max 20

In 20

PisGreen 1

PwaitAckRed 1

PisRed 1

PwaitAckGreen 1

Green 1

Red 1

Table 4.10 The place
bounds of the simplified
distributed controller model
presented in Fig. 4.10

Place Bound

P1,P1b,P1x,P1bx 1

P2,P2b,P2x,P2bx 1

P3,P3b,P3x,P3bx 1

P4,P4b,P4x,P4bx 1

P5,P5b,P5x,P5bx 1

P6,P6b,P6x,P6bx 1

P7,P7b,P7x,P7bx 10

P8,P8b,P8x,P8bx 9

P9,P9b,P9x,P9bx 1

P10,P10b,P10x,P10bx 1

Max 200

In 200

PisGreen 1

PwaitAckRed 1

PisRed 1

PwaitAckGreen 1

Green 1

Red 1
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Table 4.11 The
asynchronous-channel
bounds of the reduced
distributed controller model
with a different initial
marking

Asynchronous-channel Bound

AC1 1

AC2 1

AC5 1

AC6 1

AC9 1

AC10 1

AC11 1

AC12 1

Table 4.12 The
asynchronous-channel
bounds of the simplified
distributed controller model

Asynchronous-channel Bound

AC1 1

AC2 1

AC3 1

AC4 1

AC5 1

AC6 1

AC7 1

AC8 1

AC9 1

AC10 1

AC11 1

AC12 1

The IOPT-Tools rely on automatic code generators that generate the components
implementation code. With these tools it is possible to generate C code and VHDL
code, supporting the components implementation in software-based platforms (such
as micro-controllers) and in hardware-based platforms (such as ASICs and FPGAs).
However, to use these automatic code generators, it is required to decompose the
distributed global model into a set of models (one for each component). The IOPT-
Tools include a tool to automatically make this decomposition. The IOPT-Tools
is also expected to have in the near future a tool to automatically generate the
asynchronous-channels implementation code. Anyway, as the model was created
to have all asynchronous-channels with bound 1, if a set of communication nodes
(of different types) are available, they can be reused, without the need to generate
new.

4.6 The Entrance Gate Controller

This section starts the second part of the chapter, where the presented distributed
traffic controller is extended. This extended distributed controller additionally
controls one push button and two gates: one at the entrance zone and the other
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Fig. 4.11 The entrance area
with a gate and a push button

at the exit zone. These gates provide an extra security, reducing the possibility of
some vehicle entering with the red light, entering through the exit zone, and exiting
through the entrance zone.

The entrance zone, with a gate and a push button, is illustrated in Fig. 4.11.
When a vehicle is at the entrance zone (sensor “A” is on) and the driver presses
the push button, a request is sent to the counter controller; if the entrance is allowed
the controller opens the gate, whereas if the entrance is not allowed the controller
does not open the gate. When the gate is open and there is no vehicle near the gate
(sensors “B” and “C” off), the gate will be closed. When the gate is closing, if some
vehicle become near the gate (sensors “B” or “C” on), the gate will open again.
Two limit switches tell the controller when to stop the gates. The entrance gate
controller model is presented in Fig. 4.12. It has six inputs (three presence sensors,
two limit switches, and one push button) and two outputs (to move the motor in both
directions).

The model (Fig. 4.12) was validated using the IOPT simulation tool and the IOPT
model-checking tool. Some of the simulated use cases were:

• pressing the push button without a vehicle in the entrance zone;
• pressing the push button with a vehicle in the entrance zone (sensor “A” is on);
• a new vehicle passing the entrance zone when the gate is closing.

After the simulation, the model was validated and it was concluded that the model
has:

• a state-space with five states;
• no deadlocks.

The place bounds are presented in Table 4.13, and the verified query is presented in
Table 4.14.
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Fig. 4.12 The entrance gate controller model

Table 4.13 The place
bounds of the entrance gate
model

Place Bound

stopDown 1

waitResponse 1

goingUp 1

stopUp 1

goingDown 1

Table 4.14 The verification queries

Query N states Meaning

stopDownC waitResponseC goingUp
C stopUpC goingDownD 1

5 This query is true in all states,
as expected

4.7 The Exit Gate Controller

At the exit zone a gate was also introduced, as illustrated in Fig. 4.13. This gate
opens when sensor “A” is on; two limit switches tell the controller to stop the motor;
when gate is open and sensors “B” and “C” are off the gate closes; if sensors “B”
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Fig. 4.13 The exit area with
a gate

Fig. 4.14 The exit gate controller model

Table 4.15 The place
bounds of the exit gate model

Place Bound

stopDown2 1

goingUp2 1

stopUp2 1

goingDown2 1

or “C” became active when the gate is closing the gate opens again. The controller
model is presented in Fig. 4.14. It was simulated and the generated state-space
has:

• a state-space with four states;
• no deadlocks.

The place bounds are presented in Table 4.15, and the verified query is presented in
Table 4.16.
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Table 4.16 The verification queries

Query N states Meaning

stopDown2C goingUp2C
stopUp2C goingDown2D 1

4 This query is true is all states

Fig. 4.15 The extended counter controller model

4.8 The Extended Counter Controller

In order to allow communication with the entrance gate controller, the controller
model presented in Fig. 4.8 was extended with transition “Tcheck” and a test arc,
as presented in Fig. 4.15. This transition was added to check the area availability by
the entrance gate controller (to know if it can open the gate). This model validation
provided the same results as the model presented in Fig. 4.8.

4.9 The Extended Distributed Traffic Controller Model

This section presents the extended distributed traffic controller model, divided into
two figures (Figs. 4.16 and 4.17). To obtain the extended distributed model, starting
with the simplified distributed model (Fig. 4.10), it is required to:
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Fig. 4.16 The extended distributed model (part 1)

Fig. 4.17 The extended distributed model (part 2)
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• to add the gate controller models (Figs. 4.12 and 4.14);
• replace the counter controller model (Fig. 4.8) by the extended counter controller

model (Fig. 4.15);
• add the asynchronous-channels “AC13”, “AC14”, and “AC15”;
• assign different time-domains to different component sub-models.

As in all previous models, this model was also validated using the IOPT
validation tools. The simulated use cases include those simulated in the simplified
distributed model (Fig. 4.10), and a few more, to simulate the gate controllers.
Such as with the simplified distributed model, it was not possible to generate the
full state-space of the extended distributed model. Instead, the state-space of a
reduced model was generated and verified through the set of queries (those used
to verify its sub-models). A model without the sub-models with time-domains
“2” and “4” and with a different initial marking was verified: (1) M.max/ D 1

instead of 200; (2) M.P7/ D 1 instead of 10; and (3) M.P7x/ D 1 instead of 10.
Additionally, the weight of the test arcs that are connected to places “max” and
“in” was changed to “1”. Finally, the expression of place “max” was changed from
“number D max � 100” to “number D max”. This reduced model has:

• a state-space with 227,136 states;
• no deadlocks.

The place bounds of the extended distributed controller model are presented
in Table 4.17, whereas the asynchronous-channel bounds of the same model are
presented in Table 4.18. The place bounds were those obtained during the sub-
models verification, whereas the asynchronous-channel bounds are equal to one,
because the model was created to be that way.

The extended distributed traffic controller model supports the controller imple-
mentation. To decompose this model into a set of models, each one specifying one
controller, the IOPT decomposition tool was used. To illustrate the resulting models,
the extended counter controller model is presented in Fig. 4.18. In order to obtain
disjoint sub-models associated with the different components supporting automatic
code generation for each component, the decomposition of distributed models not
only removes the asynchronous-channels, but also add extra nodes and input and
output events, as illustrated in Fig. 4.18. The obtained models are then used as
inputs to the IOPT automatic code generators that generate C code and VHDL code
to implement the components in software-based platforms and/or hardware-based
platforms.
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Table 4.17 The place
bounds of the extended
distributed controller model

Place Bound

P1,P1b,P1x,P1bx 1

P2,P2b,P2x,P2bx 1

P3,P3b,P3x,P3bx 1

P4,P4b,P4x,P4bx 1

P5,P5b,P5x,P5bx 1

P6,P6b,P6x,P6bx 1

P7,P7b,P7x,P7bx 10

P8,P8b,P8x,P8bx 9

P9,P9b,P9x,P9bx 1

P10,P10b,P10x,P10bx 1

Max 200

In 200

PisGreen 1

PwaitAckRed 1

PisRed 1

PwaitAckGreen 1

Green 1

Red 1

stopDown, stopDown2 1

waitResponse 1

goingUp, goingUp2 1

stopUp, stopUp2 1

goingDown, goingDown2 1

Table 4.18 The
asynchronous-channel
bounds of the extended
distributed controller model

Asynchronous-channel Bound

AC1 1

AC2 1

AC3 1

AC4 1

AC5 1

AC6 1

AC7 1

AC8 1

AC9 1

AC10 1

AC11 1

AC12 1

AC13 1

AC14 1

AC15 1
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Fig. 4.18 The extended counter controller model that supports its implementation



Chapter 5
Conclusions and Future Work

5.1 Conclusions

The proposed model-based development (MBD) approach has been successfully
used in the development of distributed embedded controllers with globally-
asynchronous locally-synchronous execution semantics (GALS-DECs). One of
those distributed controllers is the one presented in Chap. 4.

Petri nets extended with inputs, outputs, time-domains, priorities, and
asynchronous-channels support the synchronous components specification (the
behavior and the structure) and their interaction, namely the modeling of GALS-
DECs. These Petri nets ensure that the created models are GALS, locally
deterministic, distributable, platform-independent, and network-independent, and
that unambiguously specify each component (structure and behavior) and the
components interaction, as required to support the proposed MBD approach. The
IOPT-nets class, which was extended with these concepts, was used during this
work to specify the distributed controllers. It is important to note that the IOPT-nets
also rely on test arcs (also known as read arcs), which are very useful to create the
embedded controller models. The model edition tool (Pereira et al. 2012b) of the
IOPT-nets tool framework (Gomes et al. 2013; Pereira et al. 2014) was extended to
enable the creation of Petri net models with these new attributes.

One important aspect of the approach is that the created models can be validated
(simulated and verified) using tools. These models are composed by sub-models
with deterministic behavior, each of them specifying components with determin-
istic behavior. The global models also include the sub-models interaction, speci-
fied through asynchronous-channels, which have non-deterministic communication
time. All the created models can be validated using the simulation tool (Pereira
and Gomes 2015) and the verification tool (Pereira et al. 2012a), available online at
http://gres.uninova.pt/IOPT-Tools/. This tools framework was extended to support
the validation of Petri net models with the described concepts. The simulation tool
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and the model-checking tool support the behavioral validation; however, the model-
checking tool also provides data (place bounds) that is required to fully support
the controllers implementation. This data must be added into the model, to be used
by the automatic code generators. These models must be bounded to enable their
implementation (as unbounded models cannot be physically implemented).

When the model-checking tool generates the full state-space of the global model,
it also provides the asynchronous-channel bounds. However, given that it is often not
possible to generate the full state-space of distributed controllers (due to the well-
known state explosion problem), the model-based development approach proposed
in this book recommends that the model should be created in order to have the
bounds of all asynchronous-channels equal to one. Following this recommendation,
it is not required to generate the full state-space of the global model to enable its
implementation. This is the main difference between the MBD approach proposed in
this book and the MBD approach proposed in previous works, namely in Moutinho
and Gomes (2013) and Moutinho (2014).

The validated models also enable the distributed controllers implementation,
being used as inputs in automatic code generators and configuration tools. To
generate the implementation code of a component, besides the component model, it
is required to select the type of code and the implementation platform, and map
the models inputs and outputs (IOs) into the platforms IOs (in hardware these
IOs are normally the chip pins, while in software they are normally associated
with physical ports). To generate the communication nodes that will support the
components interaction, it is required to select the desired nodes, configure them
(with addresses, etc.), select the implementation platforms, and map the models
IOs into the platforms IOs. If all asynchronous-channels have bound equal to one,
as recommended, it is easy to scale the buffers required to implement the network
communication nodes. For instance:

• if the asynchronous wrappers described in Krstić et al. (2007) and Ferreira (2010)
are used, one per each asynchronous-channel, as in Moutinho et al. (2012) and
Moutinho (2014), then all their buffers will have size one;

• if network communication nodes are used, where each node has one buffer for
each type of message, as in Moutinho (2014), then all buffers will also have size
one.

The created models support the distributed controllers implementation in hetero-
geneous platforms connected through heterogeneous communication networks. This
is because these models are platform-independent and network-independent. Petri
nets extended with the described concepts have no relation to specific platforms.
The time-domain concept makes each sub-model a synchronized sub-model, but
do not specify the execution frequency, enabling the use of diverse implemen-
tation platforms (with different execution speeds). Additionally, the described
asynchronous-channels do not specify the type of network, namely its topology
(star, ring, etc.) and communication protocol (CAN, Profibus, etc.), enabling the
use of different types of communication networks (with different communication
speeds, reliabilities, securities, etc.).
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The use of platform- and network-independent models provide high flexibility
in the implementation/deployment phase. Considering that it is possible to auto-
matically generate code for different platforms and to implement heterogeneous
communication nodes, different implementation platforms and communication
networks can be tested. Additionally, different execution frequencies and the
communication speeds can be tested. This will provide high flexibility, to create con-
trollers with the desired performance, power consumption, EMI (electromagnetic
interference), and cost. Hardware-based platforms (such as FPGAs) and software-
based platforms (such as micro-controllers), interacting through different types of
communication nodes (such as asynchronous wrappers and RS232 nodes) have
been used, complementing usage of the IOPT-Tools framework. During this work,
the automatic code generators (Campos-Rebelo et al. 2011; Pereira et al. 2012a;
Pereira and Gomes 2013) of the IOPT-Tools were used to generate the controllers
implementation code.

Several implementation platforms and communication nodes have been used.
Xilinx FPGAs (http://www.xilinx.com/) as well as Arduinos (http://www.arduino.
cc/) and other micro-controllers have been used as implementation platforms.
The communication nodes used in those prototyping experimentation were: (1)
asynchronous wrappers, as those presented in Ferreira (2010) that were used to
specify the interaction among FPGA-based components; and (2) serial network
communication nodes based on the RS-232 protocol, as those proposed in Ferreira
et al. (2011) and Moutinho et al. (2013), which were used to support the interaction
among FPGA-based components and micro-controller-based components.

As a major benefit of using a model-based development approach, it is important
to note that these models also support future releases of the controllers, porting
to new platforms, using the same or new communication protocols. To make this
possible, it is required to ensure that the design automation tools support these new
platforms and protocols.

In this sense, the model-based development approach proposed in this work,
supported by the IOPT-Tools framework, supports the rapid prototype of distributed
controllers; however, for some controllers, their reliability is more important than
the development time. Safety-critical systems (such as medical devices) must be as
much as possible, free of development errors. The proposed approach is suited for
this type of systems, because: (1) it enables the model verification (using model-
checking tools), allowing the verification of the model (desired properties and
unwanted properties can be verified) that will support controller implementation;
and (2) the code is automatically generated (from the model), avoiding manual
codification errors. Additionally, the models that support the automatic code
generation also document the implementation, ensuring automatic production of
documentation describing the behavior and the structure of the real implementation.
In this respect, it is important to note that the use of asynchronous-channels provides
a suitable visualization/understanding of the components interaction.

http://www.xilinx.com/
http://www.arduino.cc/
http://www.arduino.cc/
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5.2 Future Work

Before concluding, it is worth to mention a set of ongoing works, which are foreseen
to be also integrated in the IOPT-Tools cloud-based framework, and can have a
strong impact in their usage.

First of all, the development of a configuration tool, which is an ongoing work,
will allow to generate implementation specifications for a specific prototype, and
take advantage of automatic code generators (to generate controllers’ code, as well
as communication nodes code). For the examples in this book, the components
implementation code was automatically generated, however, it was necessary to
manually map the model IOs into the platform IOs. Additionally, it was required
to manually pick the communication nodes implementation code, and integrate
it with the components code. To support/simplify these tasks and support a full
development framework, a configuration tool is currently under development.

Another tool that is currently under development is the communication nodes
automatic code generator. Different types of communication nodes (supporting
different communication protocols, as well as different communication media) to be
implemented in different platforms should be automatically generated. If some types
of communication nodes are used, such as the asynchronous wrappers described
in Ferreira (2010), then all nodes will be equal (if and only if the asynchronous-
channels are bounded to one, as recommended in the proposed MBD approach).
For the examples in this book, the communication nodes were manually coded.

As the models associated with real applications are often very large models,
structuring mechanisms are also of paramount importance. In this sense, it is
foreseen to extend IOPT-nets and the associated editor of the IOPT-Tools with
structuring mechanisms, improving scalability and the readability of large Petri net
models.

The proposed MBD approach should also be applicable to high-level Petri nets.
The main advantage of using high-level classes, other than the compactness of the
produced models, is their data processing capabilities, which is very limited in low-
level Petri nets that are more focused on control flow than on data processing. A
high-level Petri nets class will benefit from the adoption of the concepts described
in this book; an associated tool framework is worth to be developed to support this
development approach.



References

André C (1996) SyncCharts: a visual representation of reactive behaviors. Tech. rep. RR 95–52,
rev. RR (96–56). I3S, Sophia-Antipolis

André C (2003) Semantics of S.S.M. (safe state machine). Tech. rep. Esterel Technologies, Sophia-
Antipolis

André C, Peraldi MA (1993) Grafcet and synchronous languages. APII 27(1):95–105
Balbo G (2000) Introduction to stochastic Petri nets. In: Brinksma E, Hermanns H, Katoen JP (eds)

Lectures on formal methods and performance analysis, first EEF/Euro summer school on trends
in computer science, Berg en Dal, The Netherlands, July 3–7, 2000, revised lectures. Lecture
notes in computer science, vol 2090, pp 84–155. Springer, Heidelberg

Benveniste A, Caspi P, Edwards S, Halbwachs N, Le Guernic P, de Simone R (2003) The syn-
chronous languages 12 years later. Proc IEEE 91(1):64–83. doi:10.1109/JPROC.2002.805826

Berry G, Kishinevsky M, Singh S (2003) System level design and verification using a synchronous
language. In: International conference on computer aided design, 2003. ICCAD-2003,
pp 433–439. doi:10.1109/ICCAD.2003.1257813

Bhaduri P, Ramesh S (2004) Model checking of statechart models: survey and research directions.
CoRR cs.SE/0407038

Bicchierai I, Bucci G, Carnevali L, Vicario E (2012) Combining UML-MARTE and preemptive
time Petri nets: an industrial case study. IEEE Trans Ind Inform 9:1806–1818. doi:10.1109/TII.
2012.2205399

Billington J, Vanit-Anunchai S, Gallasch G (2009) Parameterised coloured Petri net channel
models. In: Jensen K, Billington J, Koutny M (eds) Transactions on Petri nets and other models
of concurrency III. Lecture notes in computer science, vol 5800. Springer, Berlin/Heidelberg.
doi:10.1007/978-3-642-04856-2_4

Boussinot F, De Simone R (1991) The ESTEREL language. Proc IEEE 79(9):1293–1304.
doi:10.1109/5.97299

Bruno G, Agarwal R, Castella A, Pescarmona M (1995) CAB: An environment for developing
concurrent application. In: De Michelis G, Diaz M (eds) Application and theory of Petri nets
1995. Lecture notes in computer science, vol 935. Springer, Berlin/Heidelberg, pp 141–160

Bunse C, Gross HG, Peper C (2007) Applying a model-based approach for embedded system
development. In: Proceedings of the 33rd EUROMICRO conference on software engineering
and advanced applications. IEEE Computer Society, Washington

Campos-Rebelo R, Pereira F, Moutinho F, Gomes L (2011) From IOPT Petri nets to C: An
automatic code generator tool. In: 2011 9th IEEE international conference on industrial
informatics (INDIN), pp 390–395

© Springer International Publishing Switzerland 2016
F. Moutinho, L. Gomes, Distributed Embedded Controller Development with Petri
Nets, SpringerBriefs in Electrical and Computer Engineering 150,
DOI 10.1007/978-3-319-20822-0

73

http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1109/ICCAD.2003.1257813
10.1109/TII.2012.2205399
10.1109/TII.2012.2205399
http://dx.doi.org/10.1007/978-3-642-04856-2_4
http://dx.doi.org/10.1109/5.97299


74 References

Chapiro DM (1984) Globally-asynchronous locally-synchronous systems. Ph.D. thesis, Stanford
University

Christensen S, Damgaard HN (1994) Coloured Petri nets extended with channels for syn-
chronous communication. In: Valette R (ed) Application and theory of Petri nets 1994.
Lecture notes in computer science, vol 815. Springer, Berlin/Heidelberg, pp 159–178.
doi:10.1007/3-540-58152-9_10

Christensen S, Petrucci L (2000) Modular analysis of Petri nets. Comput J 43(3):224–242
Costa A, Gomes L (2007) Petri net splitting operation within embedded systems co-design.

In: 2007 5th IEEE international conference on industrial informatics, vol 1, pp 503–508,
doi:10.1109/INDIN.2007.4384808

Costa A, Gomes L (2009) Petri net partitioning using net splitting operation. In: 7th IEEE
international conference on industrial informatics (INDIN 2009), Cardiff. Available at http://
dx.doi.org/10.1109/INDIN.2009.519580410.1109/INDIN.2009.5195804

Costa A, Gomes L, Barros J, Oliveira J, Reis T (2008) Petri nets tools framework supporting
FPGA-based controller implementations. In: 34th annual conference of IEEE industrial
electronics, 2008. IECON 2008, pp 2477–2482. doi:10.1109/IECON.2008.4758345

CPN-AMI Web site (2015). http://move.lip6.fr/software/CPNAMI/
David R, Alla H (2010a) Bases of Petri nets. In: Discrete, continuous, and hybrid Petri nets.

Springer, Berlin/Heidelberg, pp 1–20. doi:10.1007/978-3-642-10669-9_1
David R, Alla H (2010b) Non-autonomous Petri nets. In: Discrete, continuous, and hybrid Petri

nets. Springer, Berlin/Heidelberg, pp 61–116. doi:10.1007/978-3-642-10669-9_3
David R, Alla H (2010c) Properties of Petri nets. In: Discrete, continuous, and hybrid Petri nets.

Springer, Berlin/Heidelberg, pp 21–60. doi:10.1007/978-3-642-10669-9_2
de Niz D, Bhatia G, Rajkumar R (2006) Model-based development of embedded systems: the

SysWeaver approach. In: Proceedings of the 12th IEEE real-time and embedded technology
and applications symposium. IEEE Computer Society, Washington

Di Natale M, Guo L, Zeng H, Sangiovanni-Vincentelli A (2010) Synthesis of multitask implemen-
tations of simulink models with minimum delays. IEEE Trans Ind Inf 6(4):637–651

Doucet F, Menarini M, Krüger IH, Gupta R, Talpin JP (2006) A verification approach for GALS
integration of synchronous components. Electron Notes Theor Comput Sci 146(2):105–131.
doi:10.1016/j.entcs.2005.05.038

Esterel Technologies (2005) The Esterel v7 Reference Manual Version v7.30, initial IEEE
standardization proposal

Esterel Technologies (2015) Home | Esterel Technologies. http://www.esterel-technologies.com/
Estevez E, Marcos M (2012) Model-based validation of industrial control systems. IEEE Trans Ind

Inform 8(2):302–310
Ferreira HA (2010) Petri nets based components within globally asynchronous locally synchronous

systems. Master’s thesis, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.
http://hdl.handle.net/10362/4796

Ferreira R, Costa A, Gomes L (2011) Intra- and inter-circuit network for Petri nets based
components. In: 2011 IEEE international symposium on industrial electronics (ISIE), pp 1529–
1534

Gajski DD, Zhu J, Domer R, Gerstlauer A, Zhao S (2000) SpecC: specification language and
methodology. Kluwer Academic, Boston

Gamatie A, Gautier T (2010) The signal synchronous multiclock approach to the design
of distributed embedded systems. IEEE Trans Parallel Distrib Syst. 21(5):641–657.
doi:10.1109/TPDS.2009.125

Garavel H, Thivolle D (2009) Verification of GALS Systems by combining synchronous languages
and process calculi. In: Proceedings of the 16th international SPIN workshop on model check-
ing software, Springer, Berlin/Heidelberg, pp 241–260. doi:10.1007/978-3-642-02652-2_20

Girault C, Valk R (2003) Petri nets for system engineering: a guide to modeling, verification, and
applications. Springer, Heidelberg

http://dx.doi.org/10.1007/3-540-58152-9_10
http://dx.doi.org/10.1109/INDIN.2007.4384808
http://dx.doi.org/10.1109/INDIN.2009.5195804
http://dx.doi.org/10.1109/INDIN.2009.5195804
http://dx.doi.org/10.1109/IECON.2008.4758345
http://move.lip6.fr/software/CPNAMI/
http://dx.doi.org/10.1007/978-3-642-10669-9_1
http://dx.doi.org/10.1007/978-3-642-10669-9_3
http://dx.doi.org/10.1007/978-3-642-10669-9_2
http://dx.doi.org/10.1016/j.entcs.2005.05.038
http://www.esterel-technologies.com/
http://hdl.handle.net/10362/4796
http://dx.doi.org/10.1109/TPDS.2009.125
http://dx.doi.org/10.1007/978-3-642-02652-2_20


References 75

Glabbeek R, Goltz U, Schicke-Uffmann JW (2012) On distributability of Petri nets. In: Birkedal L
(ed) Foundations of software science and computational structures. Lecture notes in computer
science, vol 7213. Springer, Berlin/Heidelberg, pp 331–345

Gomes L, Barros J (2003) On structuring mechanisms for Petri nets based system design. In: IEEE
conference on emerging technologies and factory automation, 2003. Proceedings. ETFA ‘03,
vol 2, pp 431–438. doi:10.1109/ETFA.2003.1248731

Gomes L, Barros JP (2005) Structuring and composability issues in Petri nets modeling. IEEE
Trans Ind Inform 1(2):112–123

Gomes L, Fernandes JM (eds) (2010) Behavioral modeling for embedded systems and technolo-
gies: applications for design and implementation. IGI Global, Hershey

Gomes L, Barros JP, Costa A (2005a) Modeling formalisms for embedded systems design. In:
Zurawski R (ed) Embedded systems handbook. CRC, Boca Raton, pp 5–1, 5–34

Gomes L, Barros JP, Costa A, Pais R, Moutinho F (2005b) Towards usage of formal methods within
embedded systems co-design. In: ETFA’2005 - 10th IEEE conference on emerging technologies
and factory automation. Facolta’ di Ingegneria, Univ. Catania

Gomes L, Barros J, Costa A, Nunes R (2007a) The input-output place-transition Petri net class
and associated tools. In: Proceedings of the 5th IEEE international conference on industrial
informatics (INDIN’07), Vienna

Gomes L, Costa A, Barros J, Lima P (2007b) From Petri net models to VHDL implementation
of digital controllers. In: Proceedings of the IECON’2007 - the 33rd annual conference of the
IEEE industrial electronics society. The Grand Hotel, Taipei

Gomes L, Moutinho F, Pereira F (2013) IOPT-tools - a web based tool framework for embedded
systems controller development using Petri nets. In: 2013 23rd international conference on field
programmable logic and applications (FPL), pp 1–1. doi:10.1109/FPL.2013.6645633

Gomes L, Moutinho F, Pereira F, Ribeiro J, Costa A, Barros JP (2014) Extending input-output
place-transition Petri nets for distributed controller systems development. In: International
conference on mechatronics and control (ICMC), Jinzhou

Grkaynak FK, Oetiker S, Felber N, Kaeslin H, Fichtner W (2004) Is there hope for GALS in
the future? In: Fourth ACiD-WG workshop of the european commissions fifth framework
programme, Turku

Halbwachs N, Caspi P, Raymond P, Pilaud D (1991) The synchronous data flow programming
language LUSTRE. Proc IEEE 79(9):1305–1320. doi:10.1109/5.97300

Hamez A, Hillah L, Kordon F, Linard A, Paviot-Adet E, Renault X, Thierry-Mieg Y (2006) New
features in CPN-AMI 3: focusing on the analysis of complex distributed systems. In: Sixth
international conference on application of concurrency to system design, 2006. ACSD 2006,
pp 273–275. doi:10.1109/ACSD.2006.15

Han B, Billington J (2004) Experience using coloured Petri nets to model TCP’s connection
management procedures. In: Proc. 5th workshop and tutorial on practical use of coloured Petri
nets and the CPN tools (CPN Workshop 2004), pp 57–76

Hanisch HM, Lüder A (2000) A signal extension for petri nets and its use in controller design.
Fundam. Inform. 41(4):415–431

Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program
8(3):231–274. doi:10.1016/0167-6423(87)90035-9

ISO/IEC (2011) Systems and software engineering – high-level Petri nets – Part 2: Transfer format.
ISO/IEC 15909-2

Jensen K (1992) Coloured Petri nets. Basic concepts, analysis methods and pratical use, vol 1.
Springer, Berlin

Kleijn H, Koutny M, Rozenberg G (2006) Processes of Petri nets with localities. Tech. Rep. CS-
TR-941, School of Computing Science, Newcastle University upon Tyne, Newcastle upon Tyne
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