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Abstract. As UAS operations continue to expand, the ability to monitor
real-time cognitive states of human operators would be a valuable asset.
Although great strides have been made toward this capability using physio-
logical signals, the inherent noisiness of these data hinders its readiness for
operational deployment. We theorize the addition of contextual data alongside
physiological signals could improve the accuracy of cognitive state classifiers.
In this paper, we review a cognitive workload model development effort con-
ducted in a simulated UAS task environment at the Air Force Research Labo-
ratory (AFRL). Real-time workload model classifiers were trained using three
levels of physiological data inputs both with and without context added. Fol-
lowing the evaluation of each classifier using four model evaluation metrics, we
conclude that by adding contextual data to physiological-based models, we
improved the ability to reliably measure real-time cognitive workload in our
UAS operations test case.
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1 Introduction

Unmanned Aircraft Systems (UAS) have grown to become a central capability of the
modern United States Air Force by providing essential mission support while pre-
serving the safety of its pilots. Although UAS operations physically remove the human
from the aircraft, the human operators of these systems remain an essential component
for achieving mission success. As the volume and complexity of UAS operations
continues to expand, warfighters will become increasingly vulnerable to undesired
cognitive states, such as high workload, stress, fatigue, and vigilance decrements. The
ability to monitor these states throughout a mission would be a valuable asset to
modern Air Force systems. Measuring cognitive states in relation to task and mission
performance would provide the requisite data to detect if, and when, a warfighter has
met his/her limits while diagnosing what intervention is best suited to sustaining good
performance and obtaining the desired outcomes. By introducing this capability,
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assessments of UAS operators would become integral system parameters about the
mission to be proactively monitored and addressed before potential problems occur [1].

There has been a great deal of research on model-based classification techniques to
provide real-time operator state monitoring capabilities. Physiological signals have
been relied upon as a prominent source of data under the assumption that changes in
cognitive activity produce a predictable associated response in physiology. Physio-
logical data are also compelling given their potential to be available at all times and in
any work domain, particularly with the emergence and growing affordability of
wearable sensors. The majority of research has employed some combination of elec-
troencephalography (EEG) [2], electrocardiogram (ECG) [3], pupillometry [4], or
galvanic skin response (GSR) [5]. DARPA’s Augmented Cognition (AugCog) was one
of the first large-scale efforts to bring this research into warfighter applications [6]. In
the Air Force Multi Attribute Task Battery (AF_MATB) environment, Wilson and
Russell [7] introduced a novel application of artificial neural networks (ANNs) trained
to each individual human performer for real-time mental workload classification using
six channels of brain electrical activity, as well as eye, heart, and respiratory signals [7].
Wang et al. (2012) also employed the AF_MATB to introduce a novel hierarchical
Bayesian technique that showed promise for cross-subject workload classification [8].

In spite of the many advancements in this line of research, the potential benefits
remain inhibited by the inherent noisiness of physiological data. The term “noisy data”
refers not only to the robustness of the raw signal itself, but also to the inconsistent and
often ambiguous patterns in the processed signals and derived data features. This
inconsistency can occur not only across humans, but also within the same individual
person over time. Many previous operator state classification efforts have been forced
to cater to these caveats and limitations in a variety of ways. For instance, in order to
achieve 88 % classification accuracy, Wilson and Russell (2003) focused on highly
discrete classifications of “low” versus “high” mental workload, and trained unique
ANN models to each individual person [7]. For Wang et al. (2012) although a
cross-subject workload classification method was introduced with approximately 80 %
classification accuracy across low, medium, and high workload conditions, all eight of
their participants’ data appeared in both the model training and model testing data
sets [8]. Furthermore, the model evaluation metrics reported across much of the pub-
lished literature tend to focus on how well a single output matches that of the intended
condition as a whole, rather than evaluating classifier outputs at specific points in time.

While prior research has provided the necessary stepping stones toward a
deployable solution, there remains significant room for further innovation. Our recent
work has sought to fill several key gaps in physiological-based cognitive state
assessment through the development of the Functional State Estimation Engine
(FuSE?), a system designed to derive real-time cognitive state measurements that
update frequently (e.g., second-by-second) and provide high-granularity measurement
(e.g., 0-100 scale). The FuSE” system was initially developed and tested in the
AF_MATB [9], and more recently has been applied within a realistic UAS simulation,
the Vigilant Spirit Control Station (VSCS) [10]. Although FuSE? is capable of on-line
supervised learning to adapt to an individual for improving model accuracy, we restrict
the scope of this paper solely to cross-subject workload classification since a universal
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“plug and play” model that does not require per-subject training would be an ideal
technological milestone.

The prospect of a cross-subject, physiological-only cognitive state classifier is very
challenging, particularly one that can obtain high-resolution measurement. To some
extent, there is no guarantee that subtle changes in a person’s cognitive state will
consistently be reflected in their physiological signals, and any patterns that exist are
likely to vary across individuals. This begs the question of what other data sources could
be available to help a model classifier “sift through the noise” of physiological signals
and ultimately produce more precise measurements. One approach that has not been
extensively studied in the operator state modeling literature is the addition of “contextual
data” as model inputs alongside a human’s real-time physiological signals. Context can
generally be defined as any information that can be used to better characterize the
situation of an entity [11]. In computer science literature, there is ample evidence that the
utilization of contextual data can be used to greatly improve how system applications
behave for a variety of purposes [12]. A similar approach could be explored to further
optimize physiological-based operator state classification systems. A drawback of this
approach is that a particular model classifier could become closely tied to the specific
task environment on which it was trained. However, this may be an acceptable tradeoff
for system developers since it could reduce a system’s dependency on training separate
model classifiers for each individual human performer. In addition, by selecting con-
textual data that are available in a variety of domains — such as system interactions and
task performance measures — this maintains the possibility that a cross-person classifier
would transfer across some (though assuredly not all) work domains.

The objective of this work was to explore to what extent contextual data inputs can
increase the accuracy of physiological-based cognitive state classifiers in a UAS task
environment. In the following sections we review a UAS study that was used to
produce data for building real-time workload classifiers within the FuSE? system,
followed by an analysis with four model evaluation metrics of both second-by-second
and aggregated model outputs. We specifically opted to examine the effects of adding
two contextual data inputs — human computer interaction (HCI) rate and primary task
performance — since these measures were hypothesized to have a predictive relationship
with cognitive workload in the UAS study environment, and would be obtainable data
inputs in a variety of other task environments.

2 Methods

2.1 Data Collection

Data were collected within a simulated UAS task environment at the Human Universal
Measurement and Assessment Network (HUMAN) Laboratory located at
Wright-Patterson Air Force Base. We focused exclusively on cognitive workload for
this study and the ensuing model development effort so as to constrain the problem
space to a single human functional state that has wide applicability, particularly to UAS
operations, and a large body of literature to draw from as needed. The UAS task
simulation employed the VSCS operator interface (Fig. 1) paired with a Multi-Modal
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Communication (MMC) tool for issuing communication requests [13] and a
custom-built lights and gauges monitoring display. The primary task objective was to
track a high value target (HVT) while keeping the HVT continuously positioned on the
center of the UAS sensor crosshairs. Simultaneously, participants conducted two
secondary tasks: (1) monitor the lights/gauges display and acknowledge each system
event via button presses; and (2) verbally respond to each communication request via
the MMC tool. Task difficulty was manipulated by modifying the HVT speed and
motion complexity, the number of communication requests, and the number of
light/gauge events in each 5 min trial. This task paradigm allowed for a gradual titration
of task difficulty across 15 five-minute conditions ranging from easy to hard, which was
intended to induce variations in workload and performance for each participant.

Fig. 1. The VSCS operator interface

There were 25 participants with each person completing one training session and one
data collection session each. Dependent measures were threefold: (1) a suite of physi-
ological metrics collected during each task condition consisting of six-channel EEG,
ECG, off-body eye tracking, respiratory activity, electrodermal activity, and voice
analysis features; (2) self-reported NASA Task Load Index (TLX) responses collected at
the end of each trial [14]; and (3) system-based performance measures derived from
Aptima, Inc.’s Performance Measurement Engine (PM Engine™) that utilized behav-
ioral and situational data to estimate continuous performance for all three task
requirements. NASA TLX responses and condition difficulties yielded a correlation of
r=0.75 across all subjects and r = 0.89 mean correlation within subjects, suggesting the
manipulations were successful at inducing the intended variance in workload.

2.2 Model Development

Using the data collected from this study, a set of model-based classifiers was developed
within the FuSE? system using machine learning techniques that train each classifier to
output second-by-second workload estimates on a 0-100 scale. Adhering to the
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approach in Durkee et al. [9], we first applied a noise injection algorithm to all
NASA TLX responses under the assumption that workload does not remain perfectly
static over time. This algorithm derives an estimate of “ground truth” on a
second-by-second basis to which the model classifiers are subsequently trained.
Because it is impractical to obtain operator responses at very frequent intervals, this
algorithm relies on a theoretically-grounded correlate of workload as the basis for
injecting this noise. We refer to each series of ground truth estimates as the “desired
model output” given each model classifier’s attempt to find the best fit based on its
feature inputs. A comprehensive training set was then prepared containing all selected
feature inputs and the desired model outputs. The training set included data from 19 of
the 25 study participants, while the other six participants were randomly selected for
model evaluation. A training process was initiated to derive model weights for each
classifier based on minimizing error between the feature inputs and the desired model
outputs. Three levels of physiological inputs were selected: (1) a “reduced” model
consisting of three EEG channels (Fz, Pz, O2) and ECG; (2) a “standard” model
consisting of six EEG channels (Fz, Pz, O2, F7, F8, T3) and ECG; and (3) an
“expanded” model consisting of the same physiological inputs as the standard model,
but with pupillometry included. For each level of physiological input, one classifier
was trained with contextual data included and another classifier was trained without
contextual data included. A seventh model was also trained consisting solely of con-
textual data inputs (i.e., no physiological inputs).

2.3 Model Evaluation

After completing the model training process, the next objective was to produce test
results in order to evaluate the accuracy of each workload classifier, particularly to
assess how the addition of contextual data impacted model accuracy. Workload clas-
sifier results were produced through a batch playback of data collected from the six
participants excluded from the training set. All six test participants completed the same
15 five-minute trials used to train the model classifiers, thus totaling 90 trials used for
evaluation. The batch playback process simulated the production of real-time classifier
results by outputting one workload estimate per second on a 0—100 scale for each of the
seven models, totaling 300 values per model within each trial. Model accuracy was
analyzed via summary statistics in two general ways: (1) second-by-second classifier
results (see Sect. 3.1); and (2) aggregated classifier results averaged over entire 5 min
trials (see Sect. 3.2). Two model evaluation metrics (similarity score and relative
classification accuracy) were used to assess the degree to which each classifier accu-
rately replicated the desired model outputs on a second-by-second basis. In contrast,
two other metrics (correlation and absolute difference between average model output
and NASA TLX) were used to assess how closely mean classifier output for each trial
resembled its respective NASA TLX rating. These four metrics — described further in
Sect. 3 — were chosen to balance analyses across the micro- and macro-levels, and to
evaluate both patterns and absolute differences compared to ground truth estimates.
A secondary objective was to assess the degree to which model accuracy changed as
the volume of physiological data inputs is manipulated. A graphical plot is provided for
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each of the four model evaluation metrics along with discussion of observable trends.
Each figure includes results for the three physiological-based model configurations
(reduced, standard, and expanded inputs) both with and without contextual data inputs.
Results for the context-only model using the specified evaluation metric are also
provided as a basis for comparison. Error bars in each graphical plot are shown to
illustrate the standard error derived from averaging each metric across the 90 trials.

3 Results and Discussion

3.1 Second-by-Second Workload Classifier Results

The first model evaluation metric is a nonlinear similarity measure known as the
correntropy coefficient [15]. For this analysis, we refer to this metric as a “similarity
score” in which a higher score indicates a higher degree of pattern similarity between a
particular model’s actual outputs and the desired model outputs. For the 90 test trials, a
correntropy coefficient was derived and each coefficient was adapted to a 0—100 scale
to represent the similarity score. A zero value indicates there is no degree of similarity
between actual and desired model output, while 100 indicates the actual and desired
outputs are identical. We consider the similarity score to be a particularly important
metric because it directly gauges how closely each model’s second-by-second classifier
outputs and trending information matches that of our desired model outputs. This
metric’s strength is that it focuses squarely on the shape of the trend line for each trial’s
second-by-second model output, while not taking into account whether each individual
state classification is at the desired level in an absolute sense. This supplements our
other second-by-second model evaluation metric, relative classification accuracy.

Model Comparison With vs. Without Context using
Mean Similarity Scores between Actual & Desired Model Outputs

24.0

20.0
16.0
12.0
8.0
4.0
-

Reduced Inputs Standard Inputs Expanded Inputs Context-Only
(3-EEG, ECQG) (6-EEG, ECG) (6-EEG, ECG, Pupil) (Perf, HCI Rate)

Mean Similarity Score

H No Context Inputs B With Context Inputs

Fig. 2. Comparison of with-context and without-context results for each model configuration
using mean similarity scores between 6 test participants’ actual & desired model outputs.
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Figure 2 illustrates the mean similarity scores for each model as averaged across the
90 test trials. The six physiological-based models yielded two primary trends. First, the
additional of contextual data inputs increased the mean similarity score for all three
levels of physiological model inputs; the reduced input model increased by 35 %, the
standard input increased by 61 %, and the expanded input model increased by 39 %. By
comparison, immediately it can be seen this metric highlights a key limitation with the
context-only model configuration. With a mean similarity score of only 2.2, the con-
textual data features by themselves were not able to closely produce the desired model
output trend. This is a particularly notable finding given that a context-only model
achieved a very low similarity score, yet the addition of contextual data to physio-
logical data produced similarity scores considerably higher than either model could
achieve alone. Secondly, as a more general finding, the mean similarity scores
increased as the number of physiological inputs increased, resulting in the expanded
input model with context producing the highest mean similarity score (24.6). To some
extent this pattern is not surprising since this metric most directly reflects the machine
learning processes employed during model training. Thus, by increasing the number of
feature inputs, the chances of finding reliable model weights will typically increase.

The next metric is classification accuracy of each model’s second-by-second out-
puts relative to desired model output. This metric is intended to supplement the sim-
ilarity score by examining how frequently the desired amount of workload is
successfully being measured at any point in time. For this metric we first identified four
discrete categories of workload — low, medium-low, medium-high, and high — the
boundaries of which were derived from the distribution of all NASA TLX responses.
Each individual classifier result was then compared to desired model output at each
corresponding point in time for all seven models. Values were flagged as either correct
or incorrect based on its “relative” classification state, in which the actual value
occurred within one category away from the desired workload category. Though rel-
ative classification lacks granularity, it accounts for the possibility of slight misalign-
ment in time between the actual and desired outputs. Additionally, this metric allows
for a fairly direct comparison to many prior published approaches that classify “high
versus low” workload [7, 8], which is useful as a basis for further model evaluation
against alternate approaches.
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Model Comparison With vs. Without Context using
Mean Classification Accuracy of Sec-by-Sec Model Output
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Fig. 3. Comparison of with-context and without-context results for each model configuration
using mean classification accuracy of 6 test participants’ second-by-second model output.

Figure 3 illustrates the mean classification accuracy of each model’s second-by-second
outputs across all 90 test trials. Overall, there is low variability across the seven models with
arange from 67 % to 82 %. However, there is a consistent trend that by adding context to
each of the three physiological-based model configurations, classification accuracy
improved in all three cases. The most notable improvement occurred for the standard input
model, which produced the lowest classification accuracy without context, yet produced
the highest classification accuracy with context added. Furthermore, by adding context to
the reduced input and standard input models, this provided another example (much like
similarity score) of combining physiological and contextual inputs to provide more
accurate classifications than either set of inputs could alone.

3.2 Aggregated Workload Classifier Results

The remaining two model evaluation metrics are: (1) correlation between average
model output and NASA TLX; and (2) absolute difference between average model
output and NASA TLX. For the correlation analysis, we believed it would be most
suitable to derive a Pearson’s correlation coefficient (r) on a per-person basis to better
reflect how a given model tends to track any given person’s cognitive workload across
the entire length of each trial. As such, the correlation coefficients for each of the six
individual test participants and for all seven model classifiers are illustrated in Fig. 4.

Perhaps the most noticeable finding in Fig. 4 is the high correlations achieved by
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Model Comparison With vs. Without Context using
Per-Subject Correlation between Average Model Output & NASA TLX

Reduced Inputs Standard Inputs Expanded Inputs Context-Only
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Fig. 4. Comparison of with-context and without-context results for each model configuration
using per-subject correlation of NASA TLX and 6 test participants’ average model output.

the context-only model (r = 0.95-0.99). Although a strong relationship was anticipated
between performance, HCI rate, and NASA TLX responses given the nature of the task
environment, this result was more pronounced than expected. Another key finding is
the degree to which adding context to the three physiological-based models consis-
tently improves each correlation. While these correlations are not quite as high as the
context-only model, half of the correlation coefficients are boosted to approximately
r = 0.90 or higher with the addition of context, and only three of the 18 coefficients
remain below r = 0.70. Considering the physiological-based models also achieved
considerably higher mean similarity scores than the context-only model (see Sect. 3.1),
as well as comparable relative classification accuracy, this suggests the blend of
physiological and contextual data features may provide the ideal real-time workload
assessment capability within this UAS test case. Lastly, one final observation from
Fig. 4 is that the correlation coefficients tend to decrease overall as the number of
physiological inputs increases. At face value, this finding appears to contrast the
observation from mean similarity scores in which a larger number of physiological
features resulted in a higher similarity score. This may simply be random chance due to
the small number of test participants, or could imply an undesired effect caused by the
additional physiological inputs that is not observable in the other metrics. Further
evaluation work is needed to gain deeper insight into this observation.

The final model evaluation metric is the absolute difference between average model
output and NASA TLX for each trial. This metric provides insight into each model’s
ability to produce workload classifications that accurately reflect the overall workload
induced over the course of an entire trial.



Using Context to Optimize a Functional State Estimation Engine 33

Model Comparison With vs. Without Context using
Mean Difference between Average Model Output & NASA TLX
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Fig. 5. Comparison of with-context and without-context results for each model configuration
using mean difference between NASA TLX and 6 test participants’ average model output.

As shown in Fig. 5, the overall trend of these data largely mirrors the correlation
results. The context-only model produced the smallest mean difference (5.0) between
average model output and NASA TLX rating. Likewise, the addition of contextual data
inputs reduced the mean difference for all three levels of physiological-based models
(reduced, standard, and expanded inputs). Out of the physiological-based models, the
standard input model with context produced the smallest mean difference (10.6)
between average model output and NASA TLX ratings, followed closely by the reduced
input model (11.3). The standard input model was boosted the most through the addi-
tional of contextual data inputs by reducing the mean difference by nearly half (from
18.3 to 10.6). The reduced input model (from 12.8 to 11.3) and expanded input model
(from 18.2 to 16.7) were only marginally boosted through the additional of contextual
data, though the reduced input model already had a notably smaller difference than the
other two models before adding context. Similar to the correlation results in Fig. 4, the
model with the largest number of inputs produced the largest mean difference.

4 Conclusions

In summary, we conclude that contextual data collected from our UAS task environ-
ment generally enhanced the FuSE? system’s ability to accurately classify workload for
90 new trials across six test participants. This trend is observed across all four model
evaluation metrics and remains consistent, albeit with differing levels of impact, across
all three levels of physiological data inputs: 3-channel EEG and ECG (“reduced input
model”), 6-channel EEG and ECG (“standard input model”), and 6-channel EEG,
ECG, and pupillometry (“expanded input model”’). Thorough consideration was given
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based on the varying perspectives provided by the four model evaluation metrics, in
which model results were analyzed on both a second-by-second basis and aggregated
basis, as well as analyzing both the absolute differences and patterns of state changes
relative to desired model outputs. These results serve as an example of how carefully
selected context pertaining to a human performer’s behaviors and the mission envi-
ronment can support a model classifier’s ability to translate physiological signals into
meaningful assessments of cognitive state.

From a skeptical viewpoint, some of these results could be attributed to either the
increase of data inputs in general, or perhaps even to the contextual inputs being the
“best” features that account for most of the variance in workload by themselves. While
the scope of our test case and analyses prevents ruling out these possibilities com-
pletely, there is evidence suggesting this is not necessarily the case. First, it should be
noted that the context-only model and reduced input model with context have a small
number of inputs compared to the standard input and expanded input models, yet both
rated highly on three of the four metrics. It can also be observed that for several of the
evaluation metrics, particularly mean difference between average model input and
NASA TLX ratings, the expanded input model actually rated lower than the reduced
input and standard input models. This may reflect the simple fact that each model
depends less on the volume of inputs, and more on having data inputs that provide a
discoverable and generalizable indicator of state changes.

It is also necessary to cover an important and perhaps obvious question stemming
from these results: is it better to rely simply on a context-only model consisting solely
of performance and HCI inputs, while omitting physiological data altogether? This
question bears consideration since the context-only model outperformed the six
physiological-based models when comparing aggregated model output and
NASA TLX ratings (i.e., correlation and absolute difference). At face value, this may
challenge the value of physiological data acquisition and convince system developers
to rely exclusively on task-specific behavioral data, particularly due to the added cost of
introducing physiological sensors. However, there are several counterarguments to this
assertion. First, while the aggregated context-only model output was highly predictive
of NASA TLX ratings, these model assessments are limited to entire 5 min trials and
thus not available on a second-to-second basis. This could be problematic since it may
imply the context-only model would not be capable of detecting a sudden and drastic
shift in workload with sufficient time to intervene. The similarity scores suggest the
physiological-based models with context would be more likely to detect such an
occurrence. Second, it bears mentioning that in most cases, contextual data such as HCI
rates and primary task performance are likely to be very “task-specific”, whereas
physiological signals are always present and have some degree of similarity regardless
of a person’s task requirements. Hence, the accuracy of a context-only model could be
more likely to degrade if it were used to assess human operators in new task envi-
ronments that a trained model has not been exposed to before. Third, it is important to
note that as cognitive state monitoring capabilities are developed and tested in different
work domains, the utility of different types of contextual data as model inputs is likely
to vary substantially. An extensive feature selection process must be accomplished to
identify which task-specific indicators exist within a work domain, and the degree of
utility they provide to optimize physiological-based models for assessment.
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