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Abstract. Mental workload is difficult to quantify because it results from an
interplay of the objective task load, ambient and internal distractions, capacity of
mental resources, and strategy of their utilization. Furthermore, different types of
mental resources are mobilized to a different degree in different tasks even if
their perceived difficulty is the same. Thus, an ideal mental workload measure
needs to quantify the degree of utilization of different mental resources in
addition to providing a single global workload measure. Here we present a novel
assessment tool (called PHYSIOPRINT) that derives workload measures in real
time from multiple physiological signals (EEG, ECG, EOG, EMG). PHYSIO-
PRINT is modeled after the theoretical IMPRINT workload model developed by
the US Army that recognizes seven different workload types: auditory, visual,
cognitive, speech, tactile, fine motor and gross motor workload. Preliminary
investigation on 25 healthy volunteers proved feasibility of the concept and
defined the high level system architecture. The classifier was trained on the EEG
and ECG data acquired during tasks chosen to represent the key anchors on the
respective seven workload scales. The trained model was then validated on
realistic driving simulator. The classification accuracy was 88.7 % for speech,
86.6 % for fine motor, 89.3 % for gross motor, 75.8 % for auditory, 76.7 % for
visual, and 72.5 % for cognitive workload. By August of 2015, an extended
validation of the model will be completed on over 100 volunteers in realistically
simulated environments (driving and flight simulator), as well as in a real
military-relevant environment (fully instrumented HMMWV).
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1 Introduction

The construct of mental workload – defined as the degree to which mental resources are
consumed by the task at hand - is difficult to quantify. This is due largely to the nature
of the construct, a latent or hidden variable that results from an interplay of several
other variables such as the objective task load, external distractions (task-irrelevant
stimuli that draw one’s attention and temporarily occupy mental resources), internal
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distractions (e.g. task-related stress, task-irrelevant mentation), capacity of one’s mental
resources and strategy of their utilization (Fig. 1). The overall capacity of mental
resources and strategy of allocating them to the tasks are, in turn, strongly dependent on
individual traits (e.g. personality profile, stress resiliency), previous training and factors
such as motivation, fatigue and stress. Furthermore, for any given individual, different
types of mental resources such as attention, audio-visual perception, cognition or motor
control will be mobilized to a different degree in different tasks even though the
subjective perception of their ‘difficulty’ may be the same [1, 2]. An ideal measure of
mental workload therefore needs to be multifaceted and diagnostic, such that is had the
ability to quantify the engagement levels of each of mental resources before eventually
combining them into a single global measure. Moreover, it should be able to model the
impact of individual traits and psychophysiological states onto the capacity and utili-
zation of mental resources to a degree that does not hamper its ease of use.

The standard techniques for workload assessment include self-report scales,
performance-based metrics, and physiological measures. Self-report scales are popular
due to their low cost and consistency (assuming that the individual is cooperative and
capable of introspection). Some of these scales are one-dimensional such as the Rating
Scale of Mental Effort (RMSE) and the Modified Cooper-Harper scale (MHC) [3],
whereas some scales comprise subscales that measure specific mental resources, e.g.,
NASA Task Load Index (TLX) [6], Subjective Workload Assessment Technique
(SWAT) [5], and Visual Auditory Cognitive Psychomotor method (VACP) [4]. The
major drawback of these measures is that they cannot be unobtrusively administered
during the task, but are assessed retrospectively at its conclusion. Furthermore, the
inherent subjectivity of self-ratings makes across-subjects comparisons difficult. Self-
report scales are, therefore, often complemented with performance measures, such as
reaction time to different events or accuracy of responses. The performance assessment
is relatively unobtrusive and can be accomplished in real time at low cost, but it is not
sensitive enough because of the complex relationship between the two variables [7, 8].
Moreover, performance measures cannot tap into all cognitive resources with

Fig. 1. Schematic presentation of the concept of mental workload and its relationship with
pertinent variables: task load (TL), capacity and management of mental resources (MR, MS),
individual traits and states (e.g. fatigue), and external and internal distractions (ED and ID).
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comparable accuracy. Lately, there has been renewed interest in physiological mea-
sures as workload assessment metrics, and signals [9–16] such as electro-oculography
(EOG), electromyography (EMG), pupil diameter, electrocardiography, respiration,
electroencephalography and skin conductance. Until recently, their utility was limited
by the obtrusive nature of earlier instrumentation, but this has changed with the advent
of miniaturized sensors and embedded platforms capable of supporting complex signal
processing techniques. Still, physiological workload measures have multiple draw-
backs. First, the physiological workload scales are often derived empirically on a set of
tasks assumed to represent different workload levels and selected ad hoc, without
detailed consideration of their ecological validity and ability to tap into different mental
resources (e.g., cognitive, visual, auditory, or motor workload). As a result, the models
trained on such atomic tasks may not perform well when applied to the physiological
signals acquired during other non-atomic tasks even though they seemingly require the
same mental resources. Second, in spite of the well known fact of considerable
between- and within-subject variability of nearly all physiological signals and metrics,
the majority of physiological workload models have been developed and validated on a
relatively small sample of subjects. Third, the classifiers used in the models introduced
hitherto have typically lacked mechanisms for an adjustment of the model’s parameters
in relation to individual traits, which leads to models that do not generalize well.
Finally, the models have mostly ignored the considerable amount of noise inherent in
the acquired physiological signals. Thus, poor performance of some models could be
attributed to their reliance on rather simple mathematical apparatus.

This paper introduces PHYSIOPRINT - a workload assessment tool based on
physiological measures that is built around an established theoretical model called
Improved Performance Research Integration Tool (IMPRINT) [17]. The proposed
model distinguishes among seven different workload types, and is trained on tasks
chosen to represent the key anchors on the respective workload scales. Its mathematical
apparatus is not computationally expensive, so it is applicable in real time on a fine
timescale.

The rest of the paper is organized as follows. In Sect. 2 we outline the experimental
setting while Sect. 3 reports on the experimental results. Finally, in Sect. 4, we sum-
marize our results and give an outlook on future work.

2 Methods

2.1 IMPRINT Workload Model

The IMPRINT Workload Model, developed by the Army Research Laboratory
(ARL) [17], discriminates between seven types of workload: visual, auditory, cogni-
tive, fine motor, gross motor, speech, and tactile. Each workload type is quantified on
an ordinal/interval scale, similar to the VACP scales [4]. Each of the seven scales is
defined by a set of behaviors of increasing complexity that are associated with a
numeric value between 0 and 7. Furthermore, for each point in time, IMPRINT pro-
duces a composite measure of the overall workload, which is defined as a weighted
sum of the type-specific workload values calculated across all tasks that are being
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simultaneously performed. The model has been successfully applied to estimate mental
workload in a number of settings of military relevance, including a strike fighter jet, a
mounted combat system [18], and the Abrams tank [19].

2.2 Study Design

Twenty-two healthy subjects (11 females, 25 ± 3 years) who had reported no significant
previous or existing health problems participated in the study. They were required to
maintain a sleep diary for 5 days prior, and refrain from alcoholic and caffeinated
beverages 24 h prior to the experiment. The experiment would typically start at 9AM,
when the attending technician would set up the subject with the sensors and recording
equipment (Figs. 2 and 3). The wireless X24 sensor headset (Advanced Brain Moni-
toring Inc., Carlsbad, CA, USA) was used to acquire 20 channels of electroencepha-
lography (EEG) along with electrocardiography (ECG), respiration and head
movement data, while a smaller X4 device from the same manufacturer recorded the
forearm electromyography (EMG). Following the setup, the subject would engage in a
series of computer-based auditory, visual, cognitive and memory tasks that corre-
sponded to the key anchors of the respective workload scales from the IMPRINT
model (atom tasks, Table 1). The subject would next perform a set of physical exercises
on a treadmill (3 min of walking at 2 mph at 0° inclination, 3 min of running at 6 mph
at 0° inclination, 3 min of walking at 2 mph at 15° inclination, 3 min of walking at
6 mph at 15° inclination) and with weights (lift-ups with 5–10 lb in each hand). The
subject would then participate in a 30 min session in a driving simulator, and, finally,
repeat the computer-based atom tasks. The entire session was recorded with a micro-
phone and video camera that were mounted on the PC or treadmill displays in front of
the participant. The protocol was approved by a local Institutional Review Board; all
subjects signed an informed consent before the experiment began, and were financially
compensated for their participation in the study.

2.3 Data Processing and Analyses

All computerized tasks, physical exercises and driving scenarios were scored on a
second-by-second basis with respect to the workload they impose in accord with the
IMPRINT workload model [17, 18]. Each EEG channel was processed with proprietary
algorithms to eliminate artifacts and derive spectral features for each subsequent 2-s
data segment with 1 s (50 %) overlap. ECG signals was filtered, QRS complexes were
detected, and beat-to-beat heart rate (HR) were converted into second-by-second val-
ues. Time- and frequency-domain measures of heart-rate variability (HRV) were
derived from the HR data in accord with the literature [20]. EOG signals were

Fig. 2. Sequence of experimental activities and their estimated duration
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processed with our proprietary algorithms for detection for eye blinks and eye fixations.
EMG levels and body and limb motion were quantified in each second of the data using
the bin integration. In addition to these ‘absolute’ or primary variables, a number of
secondary or ‘relative’ variables were derived by computing ratios and/or differences
between different time instances of the same primary variable or between different but
functionally or spatially related primary variables (e.g. anterior-posterior gradient of the
alpha EEG power). Finally, brain-state variables quantifying fatigue, alertness and
distraction were derived using our validated classifiers [15, 16]. Step-wise regression
analysis was used to identify variables derived from the physiological signals that are
most predictive of the IMPRINT workload profiles and performance. The analyses took
into account the existing relationship between specific workload types and certain
physiological signals (e.g. speech workload scale and respiration, gross motor work-
load and heart rate or body/limb motion).

3 Results

3.1 Speech Workload Scale

The impedance-based respiration signal and sound envelope from our X12 device
sufficed for a very precise identification of speech episodes across the pertinent tasks
(A2, A4, C3, C4, S1 and S2). Between-subject variability was not significant, and
overall classification accuracy amounted to 88.7 % (Table 2).

3.2 Fine Motor Workload Scale

The EMG acquired from the forearm was a good source for identification of fine motor
activities in the pertinent tasks (B4, B5, C1, C2, A1, F1). Between-subject variability
was relatively large, and normalization with respect to the baseline EMG activity
(defined as the EMG activity during tasks B1 and B2) was required for obtaining the
classification accuracy of 86.6 % (Table 3). As one can observe, the sensitivity was
high for no activity and short discrete activities (on/off EMG pattern), but there was

Fig. 3. A subject during a driving simulator task (left) and computer-based atom tasks (right)
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Table 1. Low workload PHYSIOPRINT tasks
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more confusion between the continuous activities (steering wheel adjustments vs.
contour tracking).

3.3 Gross Motor Workload Scale

The X-, Y-, and Z-axis signals from the accelerometer within our head-worn EEG
recorder and arm-worn peripheral recorder proved to be an excellent source for dif-
ferentiation of gross motor activities (push-ups and treadmill exercises).
Between-subject variability was not significant, and the classification accuracy reached
89.3 % (Table 4).

3.4 Auditory Workload Scale

The classifier attempted to distinguish among 5 conditions: ‘no activity’ (silent breaks
during tasks B1–B3), register a sound (beeps delivered throughout tasks B1–B5),
‘discriminate sounds’ (uni- vs. bilateral beeps in tasks A1 and A4), ‘interpret speech’

Table 2. Classification of speech events

BEHAVIORS

Table 3. Classification of fine motor events

BEHAVIORS
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(digits read during tasks C2 and C4), and interpret sound patterns (different honking
patterns during the driving task). The overall classification accuracy (shown for a
classifier developed on combination of subsets of feature vectors from both times of the
day) amounted to 75.8 % (Table 5).

3.5 Visual Workload Scale

The classifier attempted to distinguish among 5 conditions: ‘no activity’ (silent breaks
during tasks B1–B3), register an image (tasks B4, B5), ‘detect a difference’ (task V4),
‘read a symbol’ (digits read during tasks C1 and C3), and scan/search (task V5). The
overall classification accuracy (shown again for a classifier developed on combination
of subsets of feature vectors from both times of the day) amounted to 76.7 % (Table 6).

3.6 Cognitive Workload Scale

The classifier attempted to distinguish among four (4) conditions: ‘no activity’ (silent
breaks during tasks B1–B3), alternative selection (task A2, A4), ‘encoding/recall’
(tasks C1–C4), and calculation (task C5 and sign task during the driving). The overall

Table 4. Classification of gross motor events

BEHAVIORS

Table 5. Classification of auditory events

CONDITIONS
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classification accuracy (shown again for a classifier developed on combination of
subsets of feature vectors from both times of the day) amounted to 72.5 % (Table 7).

4 Discussion

The current study sought to develop a physiologically-based method for workload
assessment applicable in the challenging automotive setting. We addressed this need by
designing a comprehensive, sensitive, and multifaceted workload assessment tool that
incorporates the already established theoretical workload framework that both:
(1) covers the different types of workload employed in complex tasks such as driving,
and (2) helps define the necessary atomic tasks for building the model. The experi-
mental results suggested that the classifier benefits from combination of complementary
input signals (EEG and ECG), better coverage of the scalp regions by an increased
number of EEG channels, inclusion of concurrent physiological measurement of fatigue
and alertness levels, and short-term signal history. We aimed to overcome the indi-
vidual variability inherent in the physiological data by including the relative PSD
variables in the feature vector. The generalization capability of the trained model was
tested by using leave-one-subject-out cross-validation. The proposed method

Table 6. Classification of visual events

CONDITIONS

Table 7. Classification of gross motor events

BEHAVIORS
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demonstrated that physiological monitoring holds great promise for real time assess-
ment of mental workload.

In the future, we plan to extend the model validation to other simulated environ-
ments (flying simulator at Systems Technology Inc.) and real pertinent environments
(fully instrumented HMMWV at the Operator Performance Laboratory at the Uni-
versity of Iowa). We also plan to refine the existing atom tasks, especially in the
cognitive and visual areas. Alternative classification algorithms such as multi-label
learning [21] will be evaluated to facilitate the process of resolving the conflicts
between different workload types. The classifier will, finally, be validated on a much
larger sample of subjects (target N = 150 subjects).

The ultimate PHYSIOPRINT workload assessment tool is envisioned as a flexible
software platform that consists of three main components: (1) an executable that runs
on a dedicated local (client) machine to acquire multiple physiological signals from one
or more subjects, processes them in real time, and determines global and
resource-specific workload on a fine time scale; (2) a large server-based database of
physiological signals acquired during relevant atomic tasks from a large number of
subjects with different socio-demographic and other characteristics (e.g., degree of
driving experience); and (3) a palette of real-time signal processing, feature extraction,
and workload classification algorithms. The platform will support a number of
recording devices from a wide range of vendors (via the appropriate device drivers),
and enable visualization of the workload measures. The users will essentially be able to
build their own workload assessment methods from the available building blocks of
feature extraction methods and implemented classifiers. Initially, the database will
include 100–150 subjects, but we envision that the database will continue to evolve as
the community grows in the following years.
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