Stream Processing with Secure Information
Flow Constraints

Indrakshi Ray' ™), Raman Adaikkalavan?, Xing Xie!, and Rose Gamble?

1 Computer Science, Colorado State University, Fort Collins, Colorado
{iray,xing}@cs.colostate.edu
2 Computer and Information Sciences and Informatics,
Indiana University South Bend, South Bend, Indiana
raman@cs.iusb.edu
3 Computer Science, University of Tulsa, Tulsa, Oklahoma
gamble@utulsa.edu

Abstract. In the near future, clouds will provide situational monitoring
services such as health monitoring, stock market monitoring, shopping
cart monitoring, and emergency control and threat management. Offer-
ing such services requires securely processing data streams generated
by multiple, possibly competing and/or complementing, organizations,
such that there is no overt or covert leakage of sensitive information.
We demonstrate how an information flow control model adapted from
the Chinese Wall policy can be used to protect against sensitive data
disclosure in data stream management system. We also develop a lan-
guage based on Continuous Query Language that can be used to express
information flow constraints in stream processing and provide its formal
semantics.

1 Introduction

Data Stream Management Systems (DSMSs) [1,5,6,8,9,14,15] are needed for
situation monitoring applications that collect high-speed data, run continuous
queries to process them, and compute results on-the-fly to detect events of inter-
est. Consider one potential situation monitoring application — collecting real-time
streaming audit data to thwart various types of attacks in a cloud environment.
Detecting such precursors to attacks may involve analyzing streaming audit data
belonging to various, possibly competing and/or complementing, organizations.
Sensitive information, such as, company policies and intellectual property, may
be obtained by mining audit data and hence it must be protected from unautho-
rized disclosure and modification. Most research on secure data stream process-
ing focuses on providing access control to streaming data [2,3,12,13,18,19,21].
Controlling access is crucial, but it is also important to prevent illegal informa-
tion flow through overt and covert channels. Towards this end, we emphasize
how lattice-based information flow control models can be adapted and used for
streaming data and provide a query language that supports this model.

The research was funded in part by NIST under award no. TONANB14H059 and by
NSF under award no. CCF-1018711.
© IFIP International Federation for Information Processing 2015

P. Samarati (Ed.): DBSec 2015, LNCS 9149, pp. 311-329, 2015.
DOI: 10.1007/978-3-319-20810-7_22

312 I. Ray et al.

r\j
e

Ver ‘ ically Cor onpa xm } Cloud Manager
S

Session Manager ,,,,,,,,,,

> _ 4.
" I S _s eee _@ \
a \‘, I \@)

ual Client Pros
Client

Security Token Service (STS)

Fig. 1. Multi-Tier architecture of a cloud

In this work our main contribution is formalizing a new language based on
CQL [6] for expressing continuous queries with information flow constraints.
Query processing, in light of information flow constraints, differs from CQL as the
security level of the user issuing the query impacts the responses returned. Our
language allows for the specification of a set of partially ordered security levels
that forms a lattice, where the ordering relation is referred to as the dominance
relation, denoted by <. We provide the formal semantics of our language such
that we can argue about query equivalences and optimization.

The rest of the paper is organized as follows. In Sect. 2, we present an archi-
tecture for processing continuous queries generated from the various tiers in the
cloud. In Sect. 3, we present our information flow control model that formulates
the rules for accessing data streams generated by various organizations in the
cloud. In Sect. 4, we provide the formal semantics of our language. In Sect. 5, we
discuss related work. In Sect. 6, we conclude the paper with pointers to future
work.

2 Example Cloud Architecture

We have a service that aims to prevent and detect attacks in real-time in the
cloud. Such a service provides warnings about various types of attacks, often
involving multiple organizations. Figure 1 shows a multi-tier architecture of the
cloud adopted from [29]. Various types of auditing may take place in the cloud.
The first level is the company auditing tier, not explicitly shown in Fig. 1, that
is represented by the users connected to some service. In this tier, the activities
pertaining to an organization are analyzed in isolation. The next level is the ser-
vice auditing tier, identified by shaded ellipses that contain sets of resources and
services. Each shaded ellipse depicts vertically compatible services or resources;
this implies the services or resources that can be functionally substituted for
each other, possibly on demand. The cloud auditing tier is shown with connect-
ing dark arrows, which depicts the internal communication within the cloud due
to a service invocation chain.

Various types of audit streams must be captured to detect the different types
of attacks that may take place in a cloud. The company auditing tier logs the
activities of the various users in the organization. If the behavior of an authorized
user does not follow his usual pattern, we can perform analysis to determine if the

Stream Processing with Secure Information Flow Constraints 313

user’s authentication information has been compromised. This tier is responsible
for analyzing the audit streams of individual companies in isolation. Typically,
at this layer, the audit streams generated by a single company are analyzed. The
service auditing tier logs information pertaining to the various companies who
provide similar services. Session Manager at this tier can detect whether there is
a denial-of-service attack targeted at a specific type of service. Session Manager
analyzes audit streams generated from multiple competing organizations, so we
need to protect against information leakage and corruption. In short, the Session
Manager needs to analyze data from one or more companies belonging to the
same COI class. The cloud auditing tier collects audit information pertaining to
a service invocation chain and is able to detect the presence of man-in-the-middle
attack. Cloud Manager is responsible for analyzing audit streams from multiple
organizations associated with service invocation chains, but the organizations
may not have conflict of interest. Thus, at this tier, the audit streams from the
companies belonging to one or more COI classes are analyzed.

In order to detect and warn against these attacks, continuous queries must
be executed on the streaming data belonging to various organizations. Queries
must be processed such that there are no overt or covert leakage of informa-
tion across competing organizations. We assign security levels to categorize the
various classes of data that are being generated and collected at the various
tiers. The security level of the data determines who can access and modify it. In
the next section, we discuss how security levels are assigned to various classes
of data.

Audit data generated by the services are sent to the DSMS. For this paper,
we consider a centralized DSMS architecture. Compatible services are grouped
and they interact based on client needs. Servers contain event detectors that
monitor and detect occurrence of interesting events. The detectors sanitize and
propagate the events to the data stream management system, which arrive at the
stream source operator. This operator checks for the level of the incoming audit
events and propagates them to the appropriate query processor’s input queue.
The query processor architecture is based on the replicated model, where there
is a one-to-one correspondence between query processors and security levels.
A query specified by a user at a particular level is executed by the query processor
running at that level. Also a query processor at some level can only process data
that it is authorized to view. After processing, the query results are disseminated
to authorized users via the output queues of queries. In addition to the query
processors and stream source operator the data stream management system
contains various other components (trusted and untrusted).

3 Continuous Queries with Information Flow Constraints

Secure Information Flow Model. We provide an information flow model that
is adapted from the lattice structure for Chinese Wall proposed by Sandhu [23].
We have a set of companies that provide services in the clouds that are parti-
tioned into conflict of interest classes based on the type of services they provide.

314 I. Ray et al.

Companies providing the same type of service are in direct competition with
each other. Consequently, it is important to protect against disclosure of sen-
sitive information to competing organizations. We begin by defining how the
conflict of interest classes are represented.

Definition 1 [Conflict of Interest Class Representation:]. The set of com-
panies providing service to the cloud are partitioned into a set of n conflict of
interest classes, which we denote by COIy, COIs, ..., and COI,. Fach con-
flict of interest class is represented as COI;, where 1 < i < n. Conflict of
interest class COI; consists of a set of m; companies, where m; > 1, that is
COI; ={1,2,3,...,m;}.

On the other hand, a set of companies, who are not in competition with each
other, may provide complementing services in the cloud. A single company can
provide some service, and sometimes multiple companies may together offer a
set of services. In the following, we define the notion of complementing interest
(CI) class and show how it is represented.

Definition 2 [Complementing Interest Class Representation:]. The set
of companies providing complementing services is represented as an n-element
vector [i1, 12, ... ,1,], where iy, € COI, U {Ll} and 1 < k < n. iy =L signifies
that the CI class does not contain services from any company in the conflict of
interest class COlIy. iy, € COIy indicates that the CI class contains services from
the corresponding company in conflict of interest class COI. Our representa-
tion forbids multiple companies that are part of the same COI class from being
assigned to the same complementing interest class.

We next define the security structure of our model. Each data stream, as well as
the individual tuples constituting it, is associated with a security level that cap-
tures its sensitivity. Security level associated with a data stream dictates which
entities can access or modify it. Input data stream generated by an individual
organization offering some service has a security level that captures the organi-
zational information. Input streams may be processed by the DSMS to generate
derived streams. Derived data streams may contain information about multiple
companies, some of which are in the same COI class and others may belong to
different COI classes. Before describing how to assign security levels to derived
data streams, we show how security levels are represented.

Definition 3 [Security Level Representation:]. A security level is repre-
sented as an n-element vector [i1,12,...,1,], wherei; € COI; U {L} U {T}
and 1 < j < n.i; =L signifies that the data stream does not contain information
from any company in COI;; i; =T signifies that the data stream contains infor-
mation from two or more companies belonging to COI;; i; € COI; denotes
that the data stream contains information from the corresponding company

Consider the case where we have 2 COI classes, namely, COI; and COI5 as
shown in Fig.2. COI; has two companies denoted by 1 and 2 and COI; has

Stream Processing with Secure Information Flow Constraints 315

Fig. 2. Lattice-Based Information Flow for the Chinese Wall

two companies denoted by A and B. The audit stream generated by Company
2 in COI4 has a security level of [2, L]. Similarly, the audit stream generated by
Company B in COI; has a security level [L, B]. When audit streams generated
from multiple companies are combined, the information contained in this derived
stream has a higher security level. For example, audit stream having level [1, B|
contains information about Company 1 in COI; and Company B in COI,. It
is also possible for audit streams to have information from multiple companies
belonging to the same C'OI class. For example, a security level of [L, T] indicates
that the data stream does not have information from any company in COI;, but
has information from both companies in COI>. We also have a level [L, 1] which
we call public and that has no company specific information. The level [T, T]
correspond to level trusted and it contains information pertaining to multiple
companies in each COI class and can be only accessed by trusted entities. We
next define dominance relation between security levels.

Definition 4 [Dominance Relation:]. Let L be the set of security levels, Ly
and Lo be two security levels, where L1,Ly € L. We say security level L1 is
dominated by Lo, denoted by L1 < Lo, when the following conditions hold: (Viy, =
1,2,...,n)(L1[ix] = Lalir] V L1[ix] =L VLslig] = T). For any two levels, L,, L,
€ L, if neither L, X Lg, nor Ly =X Ly, we say that L, and L, are incomparable.

The dominance relation is reflexive, antisymmetric, and transitive. In Fig. 2 the
level public, denoted by [L, L], is dominated by all the other levels. Similarly,
the level trusted, denoted by [T, T], dominates all the other levels. Note that
the dominance relation defines a lattice structure, where level public appears
at the bottom and the level trusted appears at the top. Incomparable levels are
not connected in this lattice structure. In our earlier example, level [1,1] is
dominated by [1,B] and [1,T]. [L,2] is dominated by [T, T]. That is, [1, L] <
[1,B] and [1, 1] < [1,T]. [L,2] and [1, L] are incomparable.

Each data stream is associated with a security level. Each of the tuples consti-
tuting the data stream also has a security level assigned to it. Thus, the schema
of the data stream has an attribute called level that captures the security level of
tuples. The level attribute is generated automatically by the system and cannot

316 I. Ray et al.

be modified by the users. Note that, the security level of an individual tuple in
a data stream is dominated by the level of the data stream. When a DSMS oper-
ation is executed on multiple input tuples, each having its own security level,
an output tuple is produced. The security level of the output tuple is the least
upper bound (LUB) of the security levels of the input tuples.

In our work, various types of queries are executed to detect security and per-
formance problems. Each continuous query @;, submitted by a process, inherits
the security level of the process. We require a query); to obey the simple
security property and the restricted x-property of the Bell-Lapadula model [10].

1. Query Q; with L(Q;) = C can read a data stream z only if L(z) < C.
2. Query Q; with L(OP;) = C can write a data stream z only if L(z) = C.

Note that, for our example, a process executing at level [5, L, T] can read streams
belonging to Company 5 in COI; and all companies in COI3 and also streams
derived from them. Thus, the process is trusted w.r.t. COI3, but not w.r.t. the
other COI classes. Our information flow model thus provides a finer granularity
of trust than provided by the earlier models. Our goal is to allow information flow
only from the dominated levels to the dominating ones. All other information
flow, either overtly or covertly, should be disallowed by our architecture.

Continuous Queries for Motivating Example. Consider a simple applica-
tion that tries to detect example denial-of-service attacks in the cloud. We have
two conflict of interest classes denoted by COI; and COI5. The constituent
companies in each COI class is given by, COI, = {1,2} and COI, = {A, B,C}.
Examples of security levels in our configuration are [L, L] (public knowledge),
[T,T] (completely trusted), [1, L] (data from 1), [L,T] (trusted w.r.t. COIy),
[1, B] (data from 1 and B), [1,T] (data from 1 in COI; and trusted w.r.t. COI5).
Continuous queries are executed at various tiers to detect performance delays
and possibly denial-of-service (DoS) attacks. In any given tier, different types
of DoS attacks may occur — some involving the data belonging to single organi-
zations, others involving data belonging to multiple organizations. Thus, a tier
can have query processors at different levels, each of which executes queries on
data that it is authorized to view and modify.

We consider a single data stream, called MessageLog, that contains the
audit stream data associated with message events, such as send and receive.
MessageLog is obtained from SystemLog by filtering the events related to sending
and receiving the messages. Note that, MessageLog in reality may contain many
other fields, but we only deal with those that are pertinent to this example. The
various attributes in MessageLog are serviceld, msgType, sender, receiver,
timestamp, outcome. serviceld is a unique identifier associated with each ser-
vice; msgType gives the type of message which is either send or receive; sender
(receiver) gives the id of the organization sending (receiving) the message;
timestamp is the time when the event (send or receive) occurred; outcome
denotes success or failure of the event. In addition to these attributes, we
have an attribute referred to as level that represents the security level of the
tuple. The level attribute is assigned by the system and it cannot be modified
by the user.

Stream Processing with Secure Information Flow Constraints 317

MessagelLog(serviceld, msgType, sender, receiver, timestamp, outcome)

The queries are expressed using the CQL language [6]. We describe the various
types of queries that can be executed at the various tiers.

Company Auditing Tier. In the company auditing tier, companies have
access only to their own audit records. We give some sample queries that are
executed by Companyl to detect performance delays and DoS attacks. All the
queries are executed at level [1, 1].

Query 1 (Q1):
Companyl requests service from CompanyB. It is trying to check the times when

such message could be successfully delivered.

SELECT timestamp FROM MessageLog WHERE msgType = "send" AND outcome = "success"
AND receiver = "CompanyB"

Query 2 (Q2):
Companyl requests service from CompanyB. It is trying to check the times when

such message could not be successfully delivered.

SELECT timestamp FROM MessagelLog WHERE msgType = "send" AND outcome = "failure"
AND receiver = "CompanyB"

Service Auditing Tier. Service auditing tier receives log records from all the
companies making use of some service. However, as the queries below demon-
strate, not all the queries need to access all the data from the same COI class.

Query 3 (Q3): Level [L, B]

Log records received at the service auditing tier can be analyzed by the Session
Manager to find out whether CompanyB is not available for some service.

SELECT timestamp FROM MessageLog WHERE msgType = "send" AND outcome = "failure"
AND receiver = "CompanyB"

Query 4 (Q4): Level [L,T]

Session Manager may wish to find out whether all companies in COI; are target
of some DoS attacks.

SELECT timestamp FROM MessagelLog WHERE msgType = "send" AND outcome = "failure"
AND receiver = "CompanyB" OR receiver = "CompanyA" OR receiver = "CompanyC"

318 I. Ray et al.

Cloud Auditing Tier. Cloud auditing tier gets log records pertaining to all
the services. However, the various queries will have different types of security
requirements.

Query 5 (Q5): Level [1, B|

Cloud Manager may want to look at all records pertaining to serviceId 5
and measure the delays in order to detect possible man-in-the-middle attack.
serviceId 5 involves Companyl from COI; and CompanyB from COIs.

SELECT MIN(timestamp), MAX(timestamp) FROM MessageLog [ROWS 100]
WHERE outcome = "success" AND serviceId = "5"

Query 6 (Q6): Level [1, B]

Cloud Manager wants to find the delay encountered by Company! between send-
ing the request and receiving the service from CompanyB for the last 100 tuples.

SELECT R.timestamp - S.timestamp AS delay
FROM MessageLog R[Rows 100], MessageLog S[Rows 100]
WHERE S.msgType = "send" AND S.outcome = "success" AND R.msgType = "receive" AND

R.outcome = "success" AND R.receiver "Companyl" AND R.sender = "CompanyB" AND

S.receiver = "CompanyB" AND S.sender "Companyl" AND S.serviceld = R.serviceld

Query 7 (Q7): Level [T,T)

Cloud Manager may want to find out the delay incurred in the different service
invocation chains.

SELECT MIN(timestamp), MAX(timestamp) FROM MessageLog[ROWS 100]
WHERE outcome = "success" GROUP BY serviceld

Challenges of Continuous Queries with Information Flow Constraints.
In this section, we describe why existing DSMS are unsuitable for handling
continuous queries in the cloud. The audit queries may be handled by a DSMS
that is processing streaming data generated by the various organizations. The
DSMS receives data from various stream sources. The stream shepherd system
operator [6] receives the incoming data, cleans them, and converts them into a
stream with a well-defined schema that can be acted upon by the DSMS. For
processing streaming data, CQL has three types of operators, in addition to the
shepherd operator: (i) stream-to-relation (S2R), (ii) relation-to-relation (R2R),
and (iii) relation-to-stream (R2S). The S2R operators (time, tuple, partitioned
by sequential-window) convert input streams to relations. The R2R operators
(select, project, join, aggregate) process tuples in the relations produced by
the S2R operators and output relations. The R2S operators (istream, dstream,
rstream) convert the relations produced by R2R operators back to streams.

In order to securely process queries, the basic requirement is to have an
attribute that maintains the sensitivity level of a tuple and that cannot be tam-
pered with by a user. We introduce an attribute termed level which is the security
level of the tuple and is system generated. It can be queried or used as part of
select condition, but cannot be modified by the user. Schemas of all relations

Stream Processing with Secure Information Flow Constraints 319

and streams in our secure DSMS must have this attribute. The results returned
depend on the query level. Thus, when the queries @; and @;, which look iden-
tical, but issued at levels [1, 1] and [T, L] respectively are executed, different
results are returned.

— Qi([1,L]): SELECT COUNT FROM MessageLog [ROWS 100] WHERE msgType =

"send" AND outcome = "success" AND receiver = "CompanyB"
— Q;([T, L]): SELECT COUNT FROM MessageLog [ROWS 100] WHERE msgType =
"send" AND outcome = "success" AND receiver = "CompanyB"

The response to @Q; only involve information sent by Company! whereas the
response to (); involve information sent by all companies in COI;. One may
argue that rewriting @); by adding an additional clause involving the security
level, shown below as query Q;, may produce the same result as Q;.

- (Q;(KF,JJ):SELECT COUNT FROM MessageLog [ROWS 100] WHERE msgType = "send" AND
outcome = "success" AND receiver = "CompanyB" AND level = [1,L]"

In other words, rewriting @Q; as Q;-, does not give the same result as @;. Thus,
post-processing ; cannot give us ;. Moreover, the window operator in Q;
should not know about the existence of the other types of tuples as that may
constitute leakage of sensitive information.

In order to handle the above and other cases, one or more of the operators of
types S2R, R2R, or R2S must be modified. In order to process @;, the R2R oper-
ator (count) which is at the second stage should receive 100 tuples that only have
level [1, 1] from the window operator at the first stage. This cannot be achieved
by using another R2R operator such as select (via a filtering condition as shown
in Q;) in the second stage as the window is created in the first stage. Thus, the
S2R operator in the first stage should create time varying relations with 100 tuples
that are at level [1, L] from the input stream and propagate it to the R2R operator
in the second stage. This cannot be done by existing S2R operators. Moreover, in
existing systems, an S2R operator is shared by queries accessing the same input
stream to reduce resource usage. The input streams may have tuples belonging
to different sensitivity levels. Consequently, allowing queries at different levels to
read from the same S2R operator violates the information flow policies.

The final issue is the processing of the specified queries. The query processor
should be able to execute the queries with different sensitivity levels without
leaking information. Leakage can occur through overt or covert channels. Overt
channels occur when a process reads or writes data at a different sensitivity level.
Covert channels occur when a process at some sensitivity level manipulates the
use of shared resources (such as CPU and memory) to pass information on to a
process at a different sensitivity level. Current DSMS query processors are not
equipped to provide protection against such illegal channels. For example, the
scheduler in a DSMS is responsible for executing all the queries — by manipulat-
ing the time taken to execute certain queries, information can be passed from
one security level to another. We need to redesign query processors in light of
information flow constraints.

320 I. Ray et al.

4 Formal Semantics of the Language

We begin with discussing the formal semantics of the language used to express
streaming queries with information flow constraints. We present our language
and semantics in a manner similar to that proposed by Arasu and Widom [7].
We have adapted the approach for our language, which we call SIF-CQL (Secure
Information Flow Continuous Query Language). To make the paper self con-
tained, we have used some definitions from [7].

In our secure DSMS, we have two types of data: streams and relations. Each
stream or relation is associated with a schema consisting of a set of attributes as in
the traditional relational model together with a system defined security attribute
which we refer to as a level. We also assume the existence of a discrete and totally
ordered time domain 7 = {0, 1,...}. An element in 7 is referred to as time instant
or instant.

We can have two types of streams: trusted and single level. A trusted stream
consists of inputs from various sources and is not associated with any specific
security level, but consists of tuples each of which is associated with a security
level. The assumption is that in a trusted stream the individual tuples are pro-
tected and information is not passed from one level to another. In contrast, we
may have single level streams which are associated with a specific security level.
A single level stream contains tuples, each of whose security level is dominated
by the level of the stream. For example, a single level stream at [1, L] level can
contain tuples at [L, L] or [1, L] level. The formal definitions of these two types
of streams appear below.

Definition 5 [Trusted Stream]. A trusted stream SS is not associated with
any security level and consists of a possibly infinite bag of elements < s,l,7 >,
where < 8,1 > is a tuple belonging to the schema of S, 7 € T is a timestamp
and l € L is the security level of the tuple.

Definition 6 [Single Level Stream]. A single level stream S is associated
with a single security level Ls and consists of a possibly infinite bag of elements
< s,l, 7 >, where < s,1 > is a tuple belonging to the schema of S, 7 € T is a
timestamp and | is the security level of the tuple such that | < Lg and Lg € L.

We have only single level relations (or just relations) that are associated with
one security level.

Definition 7 [Single Level Relation]. A single level relation or a relation R
is a mapping from T x L to a finite but unbounded bag of tuples belonging to the
schema of R each of which is associated with a security level. A relation R is
associated with a security level Lr which is the input to the mapping function.
The security level of each tuple in R is dominated by Lp € L.

A stream is a collection of timestamped tuples each of which is associated with a
security level. The element < s, [, 7 > signifies that tuple s arrives on S at time 7
and is associated with the security level I. For a relation R, R(7) denotes the bag
of tuples, each associated with a security level, in the relation at time instant 7.

Stream Processing with Secure Information Flow Constraints 321

In secure DSMS, continuous queries submitted by users operate only on single
level streams that have the same level as the query level. Continuous queries are
composed from secure operators belonging to three classes: stream-to-relation
(S2R), relation-to-relation (R2R), and relation-to-stream (R2S).

— A secure S2R operator takes an input stream, time instant 7, and security level
I and produces a relation at level [. Each tuple of the relation is associated
with a level that equals the level of the corresponding element in the stream
as a stream can contain tuples at different levels. Note that, the level of each
tuple of the relation is dominated by . The bag of tuples in the output relation
at time instant 7 and security level [depends only on input stream elements
with timestamps < 7 and security level < [.

— A secure R2R operator takes one or more relations as input together with
a security level [and produces another relation at level | as output. When
the input has one relation, the level of each tuple in the output relation is
same as the corresponding input tuples. When there is more than one input
relation, the level of each output tuple is the least upper bound of the levels
of the corresponding input tuples. Here again, the level of the output relation
dominates the level of tuples in that relation. The bag of tuples in the output
relation at time 7 depends on the bag of tuples in the input relations at 7 and
their security levels.

— A secure R2S operator takes an input relation, timestamp 7, and a security
level I, and produces a stream at level [. The security level of each element
of the stream depends on the security level of the corresponding tuple in
the relation. Note that, the security level of the elements of the stream is
dominated by the level of the stream [. The elements of the stream with
timestamp 7 depend only on the relation tuples at time instants < 7 and
whose security level <.

The trusted stream shepherd operator, a secure stream-to-stream operator (S2S-
Op), takes as input a trusted stream and creates single level streams for each
security level.

We define the following domains.

— Time domain (T) is the domain of time instants. 7 = {0,1,...}.

— Security level domain (L) (defined in Sect. 3) is the domain of security levels.
We use [; < [; to denote that [; dominates I; where I;,1; € L.

— Tuple domain (TP) is the domain of tuples consisting of all but the security
attribute.

— Tuple multiset domain (X) is the domain of finite but unbounded bag of tuples.

— Relation domain (R) is the domain of functions that map time instants and
security levels to bags of tuples. The security levels of the bags equal the input
security level. Each tuple in the bag is also associated with a security level that
is dominated by the input security level. We denote thisas R =7 xL — Xx L.

— Trusted stream domain (SS) is the domain of possibly infinite multisets over

TP x LxT.

322 I. Ray et al.

— Single level stream domain (S) is the domain of functions that map security
levels to possibly infinite multisets over 7P x £ x 7. We denote this as S =
L—>TPxLxT.

— Relational operator domain (R.p) is the domain of functions that produce a
bag of tuples from one or more bags of tuples and an input security level. Each
input bag is associated with a security level which dominates the security level
of tuples in the bag. The output bag is associated with a security level that
is input to the operator. The security levels of the tuples in the output bag
depend on the security levels of the corresponding input tuples. We formally
denote this as: Rop = (X x L) x L — ¥ x L, where n represents the number
of input bags.

— Syntactic domains are the domains associated with syntactic terms.

— Relation lookup domain (RelLookUp) is the domain of functions that map
an identifier to its corresponding relation. We denote it as: RelLookUp =
Identifier — R

— Stream lookup domain (StrLookUp) is the domain of functions that map
an identifier to its corresponding stream. We denote it as: StrLookUp =
Identifier — S

The abstract syntax for language is given below. Table 1 has the symbol descrip-
tions and domains.

Q n=Qr | Qs

Qr :=RName | R2R-Op (Qk,..., Q%)
| S2R-Op (Qs)

Qs ::= SName | R2S-Op (Qr)

SName ::= S2S-Op (SSName)

SSName ::= Id

RName := Id

We are now ready to provide a denotational semantics [24], similar to the
work in [7], for SIF Continuous Queries that are expressed using our language

Table 1. Symbol descriptions and domains

Symbol | Description Domain

Q Continuous Query (CQ) in SZF — COL | Query

Qr CQ producing a relation RelQuery
Qs CQ producing a stream StrQuery
S2S-Op | Stream-to-Stream Operator S5250p
S2R-Op | Stream-to-Relation Operator S2ROp
R2R-Op | Relation-to-Relation Operator R2ROp
R2S-Op | Relation-to-Stream Operator R250p
RName | Relation Name Identifier
SSName | Stream Name Identifier
Id Identifier Identifier

Stream Processing with Secure Information Flow Constraints 323

Table 2. Meaning Functions

Query Part | Meaning | Signature

Q M Query — (RelLookUp x StrLookUp X L x T —
(BUS) x L)

Qr Mr RelQuery — (RelLookUp x StrLookUp x L x T —
Y x L)

Qs Mg StrQuery — (RelLookUp x StrLookUp x L X T —
SXxL)

S2S-Op Msgas | S250P — (SS X L — S x L)
S2R-Op Msar | S2ROp — (SXLXT - XX L)
R2R-Op Mpgar R2ROp — Rop

R2S-Op Mpas |R250p - (RXLXT =8 xL)

which we denote as S. A denotational semantics is specified by a meaning func-
tion that we denote as M. Function M applied to a continuous query @, which
we represent as M[Q], takes as input the streams and relations referred to in
Q together with a time instant 7 and security level [, and produces an output
consisting of a new relation or stream corresponding to the time instant 7. The
security level of this output relation or stream is | and it consists of tuples or
elements each of whose security level is dominated by [. Table 2 describes the
meaning functions that we use.

We use lambda calculus [22] notations for defining our functions. The expres-
sion A\ri,...,Axr,.F represents a function that takes arguments vy,...v,, and
returns the result of evaluating E by replacing all free occurrences of z; in E by
v; where 1 <14¢ < n. We now present the details of the meaning functions.

— M: The function M[Q] produced by M for query @ takes four parameters.
The first two parameters are functions that map the relation or stream names
in the query to the appropriate relations or streams. The third and fourth
parameters are security level and time instant respectively. M[Q](r,s,l,7)
specifies the output produced by @ at time instant 7 and security level [.
M[Q](r, s,1,7) invokes Mr[Qr](r,s,l,7) if Q@ = Qr produces a relation as
an output and calls Mg[Qs](r,s,l,7) if @ = Qg produces a stream as an
output.

M[QR] = ArAsNAT.MR[QR](r, s,1,7)

M[Qs] = A AsNAT.({{e,l',T) : {e,',7) € Ms[Qs](r,s,1,7)},1)

— Mpg: If Qg is a query producing a relation, Mg[Qr](r,s,1,T) specifies the
bag of tuples in the output relation at time 7 that are dominated by level
. Parameters r and s signify the stream and relation lookup functions. If
Qr = RName, MRg[QRr](r,s,1,7) uses function r to look up the time-varying
relation corresponding to RName and identifies the bag of tuples at time 7 that
are dominated by level [. The security level of the bag is [.
Mpg[RName] = Ar.As AAT.({{e,1') : {e,l') € r(RName)(7) Al <1},1)

324 I. Ray et al.

MR[R2R-0p(QF; - - ., Q%)]
= ArAs AT Mp2r[R2R-0p[(MR[QE] (7, 8,1, 7), . .., MR[QE] (7, 8,1,7),1)

MR[S2R-0p(Qs)] = Ar.As. \AT. Ms2r[S2R-0p] (M5 [Qs] (7, 5,1, 7),1,7T)

- Mg: If Qg is a query producing a stream, Mg[Qs](r, s, 7, 1) specifies the bag
of stream elements in the output stream with timestamp < 7 and security
level < [. The security level of the output stream is [.

M [SName] = Ar.As ALAT.({{e, ', 7") : {e,I',7") € s(SName) AT/ < 7 Al <1},1)

M[R28-0p(Qr)] = Ar.As AT.A.M pas[R28-0p] (AT . MR[QR](r,s,1,7")),1,T)

4.1 Semantics for Example Operators

We present the abstract syntax for a few example operators. The abstract syntax
for these operators presented in BNF like form appears below.

S525-0p ::= StreamShepherd
R2S-0p ::= IStream | DStream | RStream
R2R-0p ::= SemiJoin(i, j) | Filter(s, v)
S2R-0p ::= Now Cond | Range(7") Cond

| Row(IN) Cond
Cond := True | Filter(s,v)

— Mgos: We have only one stream-to-stream operator which is the
StreamShepherd. The StreamShepherd operator takes a multilevel trusted
stream and a security level as its input and creates a single level stream at
the corresponding security level as the output.

Msas[StreamShepherd] = ASSAL.({{e,1'} : {e,I'} € SS A (' <1)},1)

— Mpgas: We have three relation-to-stream operators in SIF-CQL. The IStream
operator takes a time-varying relation R, security level [, and a time instant 7
and streams the new tuples inserted into R at time 7, that is, only those tuples
that appear in R(7) but not in R(7 — 1) whose security level is dominated
by I. The DStream operator streams the tuples that were deleted from R at
time 7, that is, tuples that appear in R(7—1) but not in R(7). Here again only
the tuples whose security level is dominated by [are reported. The RStream
operator streams all tuples in R(7) whose security levels are dominated by .
The security levels of the output streams in each case equals .
Mpas[IStream] = ARATAL.({(e, ', 7"y : 7 < 7 AU <IN {el') € R(T) Ae,l') &
R(r—1)}1)

Mpas[DStream] = ARMNAT.({(e,I',7") : 7 < 7 AU <1 A{el') & R(T) A{e,l') €
R(r—1)}1)

Mpas[RStrean] = ARNAT.({(e,I',7") : 7/ <7 AU <IN {el') € R(T)},1)

Stream Processing with Secure Information Flow Constraints 325

— Mpaogr: We do not give the semantics of all relational operators, but just
present only two as examples. SemiJoin(i,j) performs a semijoin on the i‘"
attribute of its first input with the j** attribute of the second input, where
both inputs are bags of tuples together with the security levels of the tuples.
Filter(i,v) returns all tuples from its input bag having value v in the 7
attribute. The notation e.i denotes the value in the i*" attribute of a tuple e.
MRQR[[SemiJOin(i,U)II =)\El)\Eg)\l({<el, l3> :

<€1,ll> € B A (3(62,[2) € Es Nl <INl <IANepi = e2.J N\ I3 =
lub(ll, lg))}, l)

Mpag[Filter(i,v)] = AEX.({{e,l') : {e,I') e EAlI <IAei=nuv}l)

— Mgar: We first consider three basic sliding window operators. All three oper-
ators take a stream S, a timestamp 7, and security level [as input and return
a bag of tuples together with their security levels as output. The Now oper-
ator returns the tuples with timestamp 7 and security level I’ where I’ < I.
The Range operator specified with parameter 1" returns the tuples of S with
timestamps in the range [T — T, 7] with security level I’ where I’ < I. The Row
operator specified using an integer parameter N, returns the N most recent
tuples of S with timestamps < 7 and security level <.

We then augment the basic operators with filtering conditions. The
Now Filter(i,v) operator returns the tuples with timestamp 7 and security
level I’ where I’ < I such that the i** attribute of the tuple equals the value v.
The other window operators are augmented with a condition in a similar
manner.

Msagr[Now] = ASNAT.({{e,1') : {e,I',7) € SA (' <D)},1)

Msagr[Now Filter(i,v)] = ASMAT.({{e,I') : {e,l',7,) € SAU' <V A(ei=v)}1)

Msar[Range(T)] = ASATAL({{e, ') : {e,l’,7) € SA (' <) A (max(r — T,0) <
T <7}hD)

Msar[Range(T) Filter(i,v)] = ASATAL.({(e,I') : (e,1',7) € SA (I <)
Amax(r —T,0) <7/ < 7)A(ei=v)},1)

Msar[Row(N)] = ASATAL({{e, ') : (e, l',7y € SAU < D)A(T < 7)A(N >
{{e,I", 7"V € S:
(<" <A@ <AW" <D} DD

Msar[Row(N) Filter(u,v)] = ASATA.({{e,l') : {e,I', 7"} €
(ei=v)AN> |{{ ", 7)eS:(ei=v)AT <" <)N

DA <D} DLD

326 I. Ray et al.

5 Related Work

DSMS Security: Most works on securing DSMSs [2,12,13,18,19,21] focus on
how role-based access control policies can be supported in stream processing.
Punctuation-based enforcement of RBAC over data streams is proposed in [21].
Access control policies are transmitted every time using one or more security
punctuations before the actual data tuple is transmitted. Query punctuations
define the privileges for a CQ. Both punctuations are processed by a special
filter operator (stream shield) that is part of the query plan. Punctuations have
been used to enforce continuous access control for both data and queries [20,21]
where security restrictions can change while the continuous queries are being
executed. While security punctuations are used for enforcing dynamic access
control, our work in this paper is focused on preventing unauthorized access and
illegal information flow. Secure shared continuous query processing is proposed
in [2]. The authors present a three-stage framework to enforce access control
without introducing special operators, rewriting query plans, or affecting QoS
delivery mechanisms. Supporting role-based access control via query rewriting
techniques is proposed in [12,13]. To enforce access control policies, query plans
are rewritten and policies are mapped to a set of map and filter operations. When
a query is activated, the privileges of the query submitter are used to produce the
resultant query plan. The architecture proposed in [18] uses a post-query filter
to enforce stream level access control policies. The filter applies security policies
after query processing but before a user receives the results from the DSMS.
Designing DSMS taking into account multilevel security constraints has been
addressed by researchers [3,4] and the impact of information flow constraints on
the performance has also been presented [30,31].

Chinese Wall Policy and Cloud Computing: Wu et al. [28], show how
the Chinese Wall policy, originally proposed by Brewer and Nash [11] and later
refined by Sandhu [23] can be used for information flow control in cloud com-
puting. The authors enforce the policies at the Infrastructure-as-a-Service layer
and develop a prototype to demonstrate the feasibility of their approach. She
et al. [25] provide a protocol for doing access validation during service composi-
tions for ensuring information flow control. Each service is required to specify its
information flow policy with respect to the other services in the service-chain.
However, the authors shed little light on the structure of the policies themselves.
Hung and Qui [17] also address COI issues using Chinese Wall policy. Each COI
has a set of operations and each service does not perform more than one oper-
ation in the same COI class. However, history information is not maintained
which makes COI possible due to interleaved operation invocation by multi-
ple services. Hsiao and Hwang [16] demonstrate how the Chinese Wall can be
used in the context of workflows. Shen et al. [26] address COI issues in storage
clouds to ensure isolation of data belonging to several companies. If a violation
occurs because of data collaboration, the individual tenants have the right to
approve or disapprove the violations. Tsai et al. [27] discusses how the Chinese
Wall policy can be used to prevent competing organizations virtual machines to

Stream Processing with Secure Information Flow Constraints 327

be placed on the same physical machine. Graph coloring is used for allocating
virtual machines to physical machines such that the Chinese Wall policies are
satisfied and better utilization of cloud resources is achieved. In an earlier work
[31] we proposed an information flow control model suitable for cloud environ-
ments that was adapted from the Chinese Wall policy [23]. Our current work
extends this by providing a formal semantics of the language used to express
continuous queries with information flow constraints.

6 Conclusions and Future Work

Data streams generated by various organizations in a cloud may need to be ana-
lyzed in real-time for detecting critical events of interest. Processing of such data
streams should be done in a careful and controlled manner such that company
sensitive information is not disclosed to competing organizations. We propose a
secure information flow control model, adapted from the Chinese Wall policy,
to be used for protecting sensitive company information. We formalized the lan-
guage for expressing continuous queries using denotational semantics. Our future
plans include doing secure processing over encrypted streams and investigating
how information flow constraints can be maintained while processing such data.

Acknowledgement. This work was partially supported by the U.S. NSF under
Grants No. 0905232, CCF-1018711, by the NIST under Grant No. 7ONANB14H059
and by Colorado State University under an internal research grant.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik,
S.B.: The design of the borealis stream processing engine. In: Proceedings of the
CIDR, pp. 277-289 (2005)

2. Adaikkalavan, R., Perez, T.: Secure shared continuous query processing. In: Pro-
ceedings of the ACM SAC (Data Streams Track), pp. 1005-1011, Taiwan, March
2011

3. Adaikkalavan, R., Ray, 1., Xie, X.: Multilevel secure data stream processing. In:
Li, Y. (ed.) DBSec. LNCS, vol. 6818, pp. 122-137. Springer, Heidelberg (2011)

4. Adaikkalavan, R., Xie, X., Ray, I.: Multilevel secure data stream processing: archi-
tecture and implementation. J. Comput. Secur. 20(5), 547-581 (2012)

5. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani,
R., Srivastava, U., Widom, J.: STREAM: The Stanford Data Stream Management
System. Technical Report 2004—20, Stanford InfoLab (2004)

6. Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: semantic
foundations and query execution. VLDB J. 15(2), 121-142 (2006)

7. Arasu, A., Widom, J.: A denotational semantics for continuous queries over streams
and relations. SIGMOD Rec. 33, 6-11 (2004)

8. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Proceedings of the PODS, pp. 1-16, June 2002

328

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

1. Ray et al.

Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Cherniack, M., Con-
vey, C., Galvez, E., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik,
S.B.: Retrospective on aurora. VLDB J.: Spec. Issue Data Stream Process. 13(4),
370-383 (2004)

Bell, D.E., LaPadula, L.J.: Secure Computer System: Unified Exposition and MUL-
TICS Interpretation. Technical Report MTR-2997 Rev. 1 and ESD-TR-75-306, rev.
1, The MITRE Corporation, Bedford, MA 01730, March 1976

Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: Proceedings of
the IEEE S & P, pp. 206-214, May 1989

Cao, J., Carminati, B., Ferrari, E., Tan, K.: Acstream: enforcing access control
over data streams. In: Proceedings of the ICDE, pp. 1495-1498 (2009)
Carminati, B., Ferrari, E., Tan, K.L.: Enforcing access control over data streams.
In: Proceedings of the ACM SACMAT, pp. 21-30 (2007)

Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.B.: Monitoring streams - a new class of data man-
agement applications. In: Proceedings of the VLDB, pp. 215-226, August 2002
Chakravarthy, S., Jiang, Q.: Stream Data Processing: A Quality of Service Per-
spective: Modeling, Scheduling, Load Shedding, and Complex Event Processing.
Advances in Database Systems. Springer, Heidelberg (2009)

Hsiao, Y.-C., Hwang, G.-H.: Implementing the chinese wall security model in work-
flow management systems. In: Proceedings of the ISPA, pp. 574-581 (2010)
Hung, P.C.K., Qiu, G.-S.: Specifying conflict of interest assertions in WS-policy
with chinese wall security policy. SIGecom Exchanges 4(1), 11-19 (2003)
Lindner, W., Meier, J.: Securing the borealis data stream engine. In: Proceedings
of the IDEAS, pp. 137-147 (2006)

Nehme, R.V., Lim, H., Bertino, E., Rundensteiner, E.A.: StreamShield: a stream-
centric approach towards security and privacy in data stream environments. In:
Proceedings of the ACM SIGMOD, pp. 1027-1030 (2009)

Nehme, R.V., Lim, H.-S., Bertino, E.: Fence: Continuous access control enforce-
ment in dynamic data stream environments. In: Proceedings of the ACM
CODASPY 2013, pp. 243-254 (2013)

Nehme, R.V., Rundensteiner, E.A., Bertino, E.: A security punctuation framework
for enforcing access control on streaming data. In: Proceedings of the ICDE, pp.
406-415 (2008)

Pierce, B.C.: The Computer Science and Engineering Handbook. In: Tucker, A.B.
(ed.) chapter Foundational Calculi for Programming Languages, pp. 2190-2207.
CRC Press, US (1997)

Sandhu, R.: Lattice-based enforcement of chinese walls. Comput. Secur. 11(8),
753-763 (1992)

Schmidt, D.A.: Programming language semantics. In: Tucker, A.B. (ed.) The Com-
puter Science and Engineering Handbook, pp. 2237-2254. CRC Press, US (1997)
She, W., Yen, I.-L., Thuraisingham, B.M., Bertino, E.: Security-aware service com-
position with fine-grained information flow control. IEEE TDSC 6(3), 330-343
(2013)

Shen, Q., Yang, X., Sun, P., Yang, Y., Wu, Z.: Towards data isolation & collabo-
ration in storage cloud. In: Proceedings of the APSCC, pp. 139-146 (2011)

Tsai, T., Chen, Y., Huang, H., Huang, P., Chou, K.: A practical chinese wall
security model in cloud computing. In: Proceedings of the APNOMS, pp. 1-4
(2011)

Wu, R., Ahn, G., Hu, H., Singhal, M.: Information flow control in cloud computing.
In: Proceedings of the CollaborateCom, pp. 1-7 (2010)

29.

30.

31.

Stream Processing with Secure Information Flow Constraints 329

Xie, R., Gamble, R.: A tiered strategy for auditing in the cloud. In: IEEE Inter-
national Conference on Cloud Computing, June 2012

Xie, X., Ray, I., Adaikkalavan, R.: On the efficient processing of multilevel secure
continuous queries. In: Proceedings of Social Computing, pp. 417-422 (2013)

Xie, X., Ray, I., Adaikkalavan, R., Gamble, R.: Information flow control for stream
processing in clouds. In: Proceedings of the ACM SACMAT, pp. 89-100 (2013)

	Stream Processing with Secure Information Flow Constraints
	1 Introduction
	2 Example Cloud Architecture
	3 Continuous Queries with Information Flow Constraints
	4 Formal Semantics of the Language
	4.1 Semantics for Example Operators

	5 Related Work
	6 Conclusions and Future Work
	References

