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Abstract. Qualitative and quantitative systems to deal with uncer-
tainty coexist. Bayesian networks are a well known tool in probabilistic
reasoning. For non-statistical experts, however, Bayesian networks may
be hard to interpret. Especially since the inner workings of Bayesian
networks are complicated they may appear as black box models. Argu-
mentation models, on the contrary, emphasise the derivation of results.
However, they have notorious difficulty dealing with probabilities. In
this paper we formalise a two-phase method to extract probabilistically
supported arguments from a Bayesian network. First, from a BN we con-
struct a support graph, and, second, given a set of observations we build
arguments from that support graph. Such arguments can facilitate the
correct interpretation and explanation of the evidence modelled in the
Bayesian network.

Keywords: Bayesian networks · Argumentation · Reasoning · Expla-
nation · Inference · Uncertainty

1 Introduction

Reasoning about probabilities and statistics, and independence in particular, is
a difficult task that easily leads to reasoning errors and miscommunication. For
instance in the legal or medical domain the consequences of reasoning errors can
be severe. Bayesian networks, which model probability distributions, have found
a number of applications in these domains (see [9] for an overview). However,
the interpretation of BNs is a difficult task, especially for domain experts who
are not trained in probabilistic reasoning. Argumentation is a well studied topic
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in the field of artificial intelligence (see Chap. 11 of [12] for an overview). Argu-
mentation theory provides models that describe how conclusions can be justified.
These models closely follow the same reasoning patters present in human rea-
soning. This makes argumentation an intuitive and versatile model for common
sense reasoning tasks. This justifies a scientific interest in models of argumenta-
tion that incorporate probabilities. In this paper we formalise a new method to
extract arguments from a BN, in which we first extract an intermediate support
structure that guides the argument construction process. This results in numer-
ically backed arguments based on probabilistic information modelled in a BN.
We apply our method to a legal example but the approach does not depend on
this domain and can also be applied to other fields where BNs are used.

In previous work [10] we introduced the notions of probabilistic rules and
arguments and an algorithm to extract those from a BN. However, exhaustively
enumerating every possible probabilistic rule and argument is computationally
infeasible and also not necessary because many of the enumerated antecedents
will never be met, and many arguments constructed in this way are superflu-
ous because they argue for irrelevant conclusions. Improving on this work we
proposed [11] a new method that solves these issues. We split the process of
argument generation into two phases: from the BN we construct a support graph
at first, from which argument can be generated in a second phase. We introduced
an algorithm for the first phase but the second phase has only been described
informally. In the current paper we show a number of properties of the support
graph formalisms and we fully formalise the argument generation phase.

In Sect. 2 we will present backgrounds on argumentation and BNs. In Sect. 3
we formally define and discuss support graphs. Using the notion of a support
graph we present a translation to arguments in Sect. 4. One of the advantages
of this method is that the support graph presents a dynamic model of evidence
because when observations are added to the BN it does not need to be recom-
puted. Only the resulting argumentation changes.

2 Preliminaries

2.1 Argumentation

In argumentation theory, one possibility to deal with uncertainty is the use of
defeasible inferences. A defeasible (as opposed to strict) rule can have exceptions.
In a defeasible rule the antecedents do not conclusively imply the consequence
but rather create a presumptive belief in it. Using (possibly defeasible) rules,
arguments can be constructed. Figure 1, for instance, shows (on the left) an
argument graph with a number of arguments connected by two rules. From a
psychological report it is derived that the suspect had a motive and together with
a DNA match this is reason to believe that the suspect committed the crime.
Different formalisation of such systems exist [5,7,8,14]. In this paper we will
construct an argumentation system where the rules follow from the BN. Since a
BN captures probabilistic dependencies the inferences will be defeasible. Figure 1
also shows a possible counter-argument. Undercutting and rebutting attacks
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between arguments with defeasible rules have been distinguished [7]. A rebuttal
attacks the conclusion of an argument, whereas an undercutter directly attacks
the inference (as in this example). An undercutter exploits the fact that a rule is
not strict by posing one of the exceptional circumstances under which it does not
apply. Using rebuttals and undercutters, counter-arguments can be formulated.
Arguments can be compared on their strengths to see which attacks succeed
as defeats. Then Dung’s theory of abstract argumentation [1] can be used to
evaluate the acceptability status of arguments.

Crime took place

Suspect had motive DNA matches

Psychologists confirms

Suspect has identical twin

Fig. 1. An example of complex arguments and an undercutting counter-argument.

2.2 Bayesian Networks

A Bayesian network (BN) contains a directed acyclic graph (DAG) in which
nodes correspond to stochastic variables. Variables have a number of mutu-
ally exclusive and collectively exhaustive outcomes: upon observing the variable,
exactly one of the outcomes will become true. Throughout this paper we will
consider variables to be binary for simplicity.

Definition 1 (Bayesian Network). A Bayesian network is a pair 〈G,P 〉
where G is a directed acyclic graph (V,E), with variables V as the set of nodes
and edges E, and P is a probability function which specifies for every variable Vi

the probability of its outcomes conditioned on its parents Par(Vi) in the graph.

We will use Cld(Vi) and Par(Vi) to denote the sets of children and parents
respectively of a variable Vi in a graph. Cld(V′) (and Par(V′)) will likewise
denote the union of the children (and parents respectively) of variables in a set
V′ ⊆ V.

Given a BN, observations can be entered by instantiating variables; this
update is then propagated through the network, which yields a posterior proba-
bility distribution on all other variables, conditioned on those observations. A BN
models a joint probability distribution with independences among its variables
implied by d-separation in the DAG [6].

Definition 2 (d-Separation). A trail in a DAG is a simple path in the under-
lying undirected graph. A variable is a head-to-head node with respect to a partic-
ular trail iff it has two incoming edges on that trail. A variable on a trail blocks
that trail iff either (1) it is an unobserved head-to-head node without observed
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descendants, or (2) it is not a head-to-head on that trail and it is observed. A trail
is active iff none of its variables are blocking it. Subsets of variables VA and VB

are d-separated by a subset of variables VC iff there are no active trails from
any variable in VA to any variable in VB given observations for VC .

If, in a given BN model, VA and VB are d-separated by VC , then VA and
VB are probabilistically independent given VC . An example of a BN is shown
in Fig. 2. This example concerns a criminal case with five variables describing
how the occurrence of the crime correlates with a psychological report and a
DNA matching report. The variables Motive and Twin model the presence of
a criminal motive and the existence of an identical twin. The latter can result
in a false positive in a DNA matching test. In the following we will also require
the notions of a Markov blanket and Markov equivalence [13].

Definition 3 (Markov Blanket). Given a BN graph, the Markov blanket
MB(Vi) of a variable Vi is the set Cld(Vi) ∪ Par(Vi) ∪ Par(Cld(Vi)). I.e., the
parents, children and parents of children of Vi.

Definition 4 (Markov Equivalence). Given a BN graph, an immorality is
a tuple 〈Va, Vc, Vb〉 of variables such that there are directed edges Va Vc

and Vb Vc in the BN graph but no edges Va Vb or Vb Va.
Given two BN graphs, they are Markov equivalent if and only if they have the
same underlying undirected graph, and they have the same set of immoralities.

Psych report
Motive true false

true 0.6 0.1
false 0.4 0.9

Crime
Motive true false

true 0.5 0.01
false 0.5 0.99

Twin
true 0.01

false 0.99

Motive
true 0.05

false 0.95

DNA match
Crime true false
Twin true false true false

true 1.0 1.0 1.0 10−6

false 0.0 0.0 0.0 1 − 10−6

Fig. 2. A small BN concerning a criminal case. The conditional probability distribu-
tions are shown as tables inside the nodes of the graph.

3 Support Graphs

We will split the construction of arguments for explaining a BN in two steps. We
first construct a support graph from a BN, and subsequently establish arguments
from the support graph. In this section we define the support graph and its
construction.

Given a BN and a variable of interest V �, the support graph is a template for
generating explanatory arguments. As such, it does not depend on observations
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of variables but rather models the possible structure of arguments for a particular
variable of interest. This means that it can be used to construct an argument
for any variable of our choice given any set of evidence, as we will show in the
next section. When new evidence becomes available the same support graph can
be reused. This means that the support graph should be able to capture the
dynamics in d-separation caused by different observations. To enable this, each
node in the support graph (which we will refer to as support nodes from here
on) will be labelled with a forbidden set of variables F . Moreover, since one BN
variable can be represented more than once in a support graph, a function V is
used to assign a variable to every support node. The support graph can now be
constructed recursively. Initially a single support node N� is created for which
V(N�) = V � and F(N�) = {V �}.

Definition 5 (Support Graph). Given a BN with graph G = (V,E) and a
variable of interest V �, a support graph is a tuple 〈G,V,F〉 where G is a directed
graph (N,L), consisting of nodes N and edges L, V : N �→ V assigns variables
to nodes, and F : N �→ P(V) assigns sets of variables to each node, such that
G is the smallest graph containing the node N� (for which V(N�) = V � and
F(N�) = {V �}) closed under the following expansion operation:

Whenever possible, a supporter Nj with variable V(Nj) = Vj is added as a
parent to a node Ni (with Vi = V(Ni)) iff Vj ∈ MB(Vi) \ F(Ni). The forbidden
set F(Nj) of the new support node is

– F(Ni) ∪ {Vj} if Vj is a parent of Vi

– F(Ni) ∪ {Vj} ∪ {Vk ∈ Par(Vj)|〈Vi, Vj , Vk〉is an immorality}
if Vj is a child of Vi

– F(Nj) ∪ {Vj} ∪ (Cld(Vi) ∩ Cld(Vj)) otherwise

If a support node with this forbidden set and the same V(Nj) already exists, that
node is added as the parent of Ni, otherwise a supporting node Nj is created.

To be able to represent d-separation correctly the forbidden set of variables
assigns to every support node a set of variables that cannot be used in further
support for that node. This forbidden set is inherited by supporters such that
ancestors in the support graph cannot use variables from F either. Figure 3
shows the three cases of the forbidden set definition. The forbidden set of a
new supporter Ni for variable Vi always includes the variable Vi itself which
prevents circular reasoning. In a BN, parents of a common child often exhibit
intercausal-interactions (such as explaining away) which means that the effect of
one parent on the other is not the same as the combined effect from the parent
to the child and then to the other parent. To support a variable Vi with one of
its children and then support this child by a parent would incorrectly chain the
inferences through a head-to-head node even though an intercausal-interaction
is possible. Therefore we forbid the latter step by including any other parents
that constitute immoralities in the second case. A reasoning step that uses the
inference according to the intercausal-interaction is allowed by the third case.

Now let us consider the example BN from Fig. 2 and take Crime as the
variable of interest. The initial support graph contains just one node with this
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Vj

Vi

first case

Vj F = F ′ ∪ {Vj}

Vi F ′

Vj

ViP1 P2

second case

Vj F = F ′ ∪ {Vj , P1, P2, . . .}

Vi F ′

Vj Vi

C1 C2

third case

Vj F = F ′ ∪ {Vj , C1, . . .}

Vi F ′

Fig. 3. Visual representation of the three cases in Definition 5. A support node for
variable Vi can obtain support in three different ways from a variable Vj , depending
on its graphical relation to Vi.

variable and the forbidden set {Crime}. As can be seen in Fig. 4, all of the three
cases for F apply exactly once in this example. The Crime node can be supported
by one parent (Motive), one child (DNA match) and one parent of a child (Twin).
In the first case the forbidden set leaves room to support the Motive node even
further by adding a node for the Psych report variable. This graph represents
all possible dependencies in the BN model, where the actual dependencies will
depend on the instantiation of evidence.

Property 1. Given a BN with G = (V,E), the constructed support graph con-
tains O(|V| ∗ 2|V|) nodes.

Proof (Sketch). Variables can occur multiple times in the support graph but
never with the same F sets (see the definition). This set contains subsets of
other variables and therefore 2|V| is a strict upper bound on the number of
times any variable can occur in the support graph. The total number of support
nodes is therefore limited to |V| ∗ 2|V|. ��

Property 2. In a given BN with a singly connected graph G = (V,E), every
variable occurs exactly once in the support graph and the size of the support
graph is |V|.
Proof (Sketch). A variable can in theory occur multiple times in the support
graph, but this only happens when the graph is loopy (multiply connected). ��
Theorem 1. Given two Markov equivalent BN graphs G and G′, and a variable
of interest V �, the two resulting support graphs are identical.
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Crime
{Crime}

Motive{
Crime
Motive

} Twin{
Crime
Twin

DNA match

} DNA match{
Crime

DNA match
Twin

}

Psych report{
Crime
Motive

Psych report

}

Fig. 4. The support graph corresponding to the example in Fig. 2 with V � = Crime.
For every node Ni we have shown the variable name V(Ni) togehter with the forbidden
set F(Ni).

Proof (Sketch). Consider the BN graph G and the corresponding support graph.
In a Markov equivalent graph G′ an arbitrary number of edges may be reversed
but not if this would create or remove immoralities. Following the three possible
support steps we see that every supporter follows an edge from the skeleton
(which stays the same) or an immorality (which also stays the same). What
remains to be shown is that the forbidden sets will also be equal. Let us consider
the three cases of the F update from Definition 5 (see also Fig. 3). Suppose that
in the support graph of G, Ni for variable Vi is supporting Nj for variable Vj :

– In the first case, reversal of the edge between Vi and Vj would change this to
the second case in which variables Vk with an immorality 〈Vi, Vj , Vk〉 would be
added to F . However, since no immoralities are created those variables either
do not exist, or the reversal is not allowed by the Markov equivalence.

– In the second case, reversal of any of the incoming edges of Vj is not allowed if
Vj is involved in an immorality 〈Vi, Vj , 〉. If that is the case, reversal is allowed
and we end up in the first case but the forbidden set will be exactly the same.

– In the third case, there is no immorality between Vi and Vj through any of
the shared children because if there were, a direct edge exists and either of the
former cases would have taken precedence. None of these edges may therefore
be reversed in G′. ��

What this theorem shows is that Markov equivalent models are mapped to the
same support graph, which means that they will receive the same argumentative
explanation. This takes one of the confusing aspects of BNs away, which is that
the directions of edges do not have a clear intuitive interpretation.

4 Argument Construction

In previous work we have already shown a method to identify arguments in a
BN setting and how they can be enumerated exhaustively [10]. A disadvantage
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of the exhaustive enumeration of probabilistic rules and rule combinations is
the combinatorial explosion of possibilities, even for realistically sized models.
Using a support graph can reduce the number of arguments that need to be
enumerated because only rules relevant to the conclusion of the argument are
considered.

Definition 6 (Bayesian Argument). An argument A on the basis of a BN, a
set of observations O, and the corresponding support graph 〈G = (N,L),V,F〉,
is one of the following:

– 〈N, o〉 such that (V(N) = o) ∈ O, for which Obs(A) = {N = o} or
– 〈N1, o1〉, . . . , 〈Nn, on〉 ⇒ 〈N, o〉 such that N1, . . . , Nn are parents of N in the

support graph, 〈N1, o1〉 through 〈Nn, on〉 are arguments, and o is the most
probable outcome of V(N) given the observations Obs(A), in which Obs(A) is
the union of Obs(B) over subarguments B.

In this definition 〈N1, o1〉 through 〈Nn, on〉 are the immediate subarguments of
〈N1, o1〉, . . . , 〈Nn, on〉 ⇒ 〈N, o〉.
Argument attack arises when two arguments assign outcomes to the same vari-
able. We might be tempted to prefer the argument with the highest probability
but that could lead to mistakes. For instance, when A, B and C collectively
support a conclusion, situations can exist where the highest probability of that
conclusion occurs when B is left out. It is, however, usually not acceptable to
ignore evidence. The following definition meets this criterion:

Definition 7 (Superseding). An argument A supersedes another argument B
iff Obs(A) ⊇ Obs(B).

Indeed, we prefer one argument over another iff it includes a superset of evi-
dence. This resembles Pollock’s concept of subproperty defeat of the statistical
syllogism [7]. Superseding can be seen as a special case of undercutting, so attack
and defeat follow naturally:

Definition 8 (Undercutting Attack and Defeat). An argument A under-
cuts another argument B iff it supersedes B or one of the sub-arguments of B.
An undercutting attack always succeeds and therefore A also defeats B.

It can be shown that this instantiates a special case of the ASPIC+ [5] model
of argumentation but a proof of that is omitted for brevity. In this special case
rebuttal and undermining are redundant due to the fact that for every rebuttal
there is also an undercutter resolving the issue.

An interesting property of this approach is that conflicts between observa-
tions are resolved in the probabilistic setting within the argument and that the
resolution is mirrored by the defeat relation of the extracted arguments, rather
than decided by it. This means that the resulting argumentation system is rather
simple which is ideal for a BN explanation method.

If we apply this system to the support graph from our example BN with
the observations that Psych report=true and DNA match=true, we obtain
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(among others) the arguments shown in Fig. 5. The argument on the right is
in fact the formal version of the argument that we already showed in Fig. 1. The
undercutter from that figure was not extracted because no evidence for a twin
was present in the set of observations.

Fig. 5. Arguments resulting from our running example. The argument on the left is
superseded by the one on the right. For readability we have only shown conclusions
inside the nodes.

Property 3. Given a BN, a variable of interest, the resulting support graph and
a set of observations, for every node in the support graph either no argument
for this node exists at all, or exactly one of the arguments that exists supersedes
all other arguments for the same node without itself being superseded.

Proof (Sketch). Suppose no such un-superseded argument exists, then there must
be two arguments A and B that supersede each other, i.e. Obs(A) \ Obs(B) �= ∅
and Obs(B) \ Obs(A) �= ∅. However, in that case an argument C combining the
immediate subarguments of A and B also exists that strictly supersedes both A
and B. ��
Informally, the argument that includes all possible supporters that have ances-
tors in O will supersede any argument that includes fewer supporters. Since this
holds for every node, there is in this argumentation system one unique tree in
which every argument is supported by the maximal number of immediate sub-
arguments given what is derivable from the evidence. Together with the fact that
the outcome of the argument is based on the probability given the used obser-
vations, and that no d-separated paths are used in the argument this exactly
mirrors the probabilistic reasoning.

5 Discussion

In this paper we formalised a two-phase argument extraction method. We have
shown how support graphs help in the construction of arguments because they
capture the argumentative structure that is present in a BN.

Many explanation methods for BNs (see e.g. [3,4]) focus on textual or visual
systems. Other work on argument extraction includes that of Keppens [2], who
focuses on Argument Diagrams. One advantage of structured argumentation is
that counter-arguments can easily be modelled as well. Future research includes
how arguments constructed from a BN can be combined with arguments from
other sources, since often the available evidence is only partially probabilistic.
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