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Abstract. Capturing heterogeneous dynamic systems in a probabilis-
tic model is a challenging problem. A single time granularity, such as
employed by dynamic Bayesian networks, provides insufficient flexibility
to capture the dynamics of many real-world processes. The alternative is
to assume that time is continuous, giving rise to continuous time Bayesian
networks. Here the problem is that the level of temporal detail is too pre-
cise to match available probabilistic knowledge. In this paper, we present
a novel class of models, called hybrid time Bayesian networks, which
combine discrete-time and continuous-time Bayesian networks. The new
formalism allows us to more naturally model dynamic systems with reg-
ular and irregularly changing variables. Its usefulness is illustrated by
means of a real-world medical problem.
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1 Introduction

Many real-world systems exhibit complex and rich dynamic behavior. As a con-
sequence, capturing these dynamics is an integral part of developing models of
physical-world systems. Time granularity is an important parameter in charac-
terizing dynamics as it determines the level of temporal detail in the model. In
cases where one time granularity is coarser than another, dealing with multiple
time granularities becomes significantly important, e.g., in the context of mining
frequent patterns and temporal relationship in data stream and databases [1].

Dynamic Bayesian networks (DBNs) are a general framework for modeling
dynamic probabilistic systems. DBNs are an extension of standard Bayesian
networks (BNs) assuming a discretization of time [2], and where the distribution
of variables at a particular time point is conditional on the state of the system
at the previous time point. A problem occurs if temporal processes of a system
are best described using different rates of change, e.g., one temporal part of
the process changes much faster than another. In that case, the whole system
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has to be represented using the finest time granularity, which is undesirable
from a modeling and learning perspective. In particular, if a variable is observed
irregularly, much data on discrete-time points will be missing and conditional
probabilities will be hard to estimate.

As an alternative to DBNs, temporal processes can be modeled as continuous
time Bayesian networks (CTBNs), where time acts as a continuous parameter [3].
In these models, the time granularity is infinitely small by modeling transition
rates rather than conditional probabilities, thus multiple time granularities, i.e.,
slow and fast transition rates, can easily be captured. A limitation from a mod-
eling perspective is that all probabilistic knowledge, for example derived from
expert knowledge, has to be mapped to transition rates which are hard to inter-
pret. Moreover, the transition rates assume that the time until a transition is
exponentially distributed, which may not always be appropriate.

In this paper, we propose a new formalism, which we call hybrid time
Bayesian networks (HTBNs), inspired by discrete-time and continuous-time
Bayesian networks. They facilitate modeling the dynamics of both irregularly-
timed random variables and random variables which are naturally described in a
discrete way. As a result, the new formalism increases the modeling and analysis
capabilities for dynamic systems.

2 Motivating Example

To illustrate the usefulness of the proposed theory, we consider the medical
problem of heart failure and, in particular, one possible cause of heart failure:
heart attack (myocardial infarction). This usually occurs as the result of coro-
nary artery disease giving rise to reduced blood supply to the heart muscle
(myocardium). One consequence is that part of the heart muscle will die, which
is revealed later in a blood sample analysis in the lab by an increased level of
particular heart muscle proteins, in particular troponine. Loss of heart muscle
will inevitably have an impact on the contractability of the myocardium, and
thus heart function will be negatively affected. This is known as heart failure.
In particular, the heart fails with respect to its function as a pump. This will
enforce an increase in the amount of extracellular fluid (the patient is flooded
with water), which can be measured quite simply by means of the body weight.
With regard to treatment, digitalis is considered as one of the drugs to improve
contractability. This causal knowledge is formalized as a directed graph in Fig. 1.

Heart attacks usually happen repeatedly in patients, although after some
interval of time, and this may negatively affect heart function. After adminis-
tration of digitalis it will take some time, in terms of days, before the drug has
a diminishing effect on heart failure. Thus, the course of heart failure will likely
depend on various factors, and how they interact. Of particular importance here
is the dynamic over time of the probability distributions.

In modeling processes such as heart failure, it is essential to notice the exis-
tence of different time granularities. There are discrete, regular variables which
are observed regularly such as a routine checkup for body weight and a regular
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Fig. 1. Causal model for heart failure: CM = Contractility Myocardium, DT = Dig-
italis, LHT = Loss Heart Tissues, HA = Heart Attack, TROP = Troponine, HF =
Heart Failure, BW = Body Weight.

intake of a drug. On the other hand, some variables are observed irregularly,
such as the indicator troponine which is elevated after about half an hour after
damage to the heart muscle is obtained; however its measurement is repeated
with time intervals that increase after the patient’s condition has been stabi-
lized. Clearly, it is not possible to obtain a satisfactory representation of the
clinical evolution of heart failure using only discrete time, regular or irregular,
or continuous time. In the remainder of this paper we propose a method to deal
with these heterogeneous time aspects.

3 Preliminaries

We start by introducing Bayesian networks, dynamic Bayesian networks and
continuous time Bayesian networks. In the following, upper-case letters, e.g. X,
Y , or upper-case strings, e.g. HA, denote random variables. We denote the values
of a variable by lower-case letters, e.g. x. We will also make use of a successor
function s, which is defined on a countable, linearly ordered set of numbers Z in
which every element zi ∈ Z with index i is mapped to element s(zi) = zi+1 ∈ Z.

Bayesian Networks. A Bayesian network is a probabilistic graphical model
which represents a joint probability distribution of a set of random variables.
A Bayesian network B is defined as a pair B = (G,P ), where G is an acyclic
directed graph with G = (V (G), E(G)), where V (G) is a set of nodes, and
E(G) ⊆ V (G) × V (G) a set of directed edges or arcs. A joint probability distri-
bution P is defined by a set of conditional probabilities of each random variable
X given its immediate parents π(X) in G, formally: P (V (G)) =

∏
X∈V (G) P (X |

π(X)).

Dynamic Bayesian Networks (DBNs). A DBN is defined as a pair (B0,B→)
over discrete-time variables D, where B0 is taken as the initial Bayesian network
model and B→ is defined as a conditional distribution for a 2-time-slice Bayesian
network (2-TBN). Given a set of discrete time points of interest A ⊆ N0 that
includes 0, the joint distribution for a DBN with |A| slices is defined by a product
of the CPDs in the initial model and in the 2-TBN:

P (DA) =
∏

D∈D

PB0(D0 | π(D0))
∏

D∈D

∏

α∈A\{maxA}
PB→(Ds(α) | π(Ds(α)))
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Fig. 2. A DBN and its corresponding Bayesian network.

where Ds(α) is the random variable D at time s(α). Parent set π(Ds(α)) may be
from the same or the previous time slice. We can obtain a standard Bayesian
network by unrolling the DBN over the time points of interest. In the remainder
it is assumed that the intra-slice arcs of this BN are the same for every α.

Example 1. Consider a dynamic Bayesian network that has two random vari-
ables, HF and BW (see Fig. 1), with an initial model and a transition model
as shown in Figs. 2a and 2b, respectively. Then the joint distribution for the
DBN over time points of interest A with the corresponding Bayesian network as
shown in Fig. 2c is: P (HFA,BWA) = P (HF0)P (BW0 | HF0)

∏|A|−2
α=0 P (BWs(α) |

BWα,HFs(α))P (HFs(α) |HFα).

Continuous Time Bayesian Networks (CTBNs). CTBNs [3] represent
dynamic systems with continuous-time variables as a factorized homogeneous
Markov process parameterized by intensity matrices. An entry (i, j) with i �= j
in an intensity matrix gives the intensity of transitioning from state i to state j.
Furthermore, the main diagonal makes each row sum to zero.

Example 2. Suppose we want to model the random process of body weight as the
variable BW, which describes a patient’s weight. Variable BW has three possible
states, i.e., BW = {low, normal, high}, with a transition matrix as follows:

QBW =

⎛

⎝
−0.13 0.09 0.04
0.13 −0.23 0.1
0.07 0.16 −0.23

⎞

⎠

For example, the entry (3, 2) means that the process will transition from high
at time β to normal at time β + ε with a probability of 0.16/0.23=0.696 if a
transition occurs at β + ε.

The notion of a conditional intensity matrix (CIM) describes the dependence of a
variable C on the current values of its parents π(C). A full amalgamation product
operator is defined over a set of CIMs to compute the joint intensity matrix,
resulting in a single continuous-time Markov process for the entire system.

For a homogeneous Markov process over variables C with an intensity matrix
QC and an initial distribution P (C0), we can compute the distribution over the
values of C at a particular time point or the joint distribution at different time
points. The distribution at a point β is given by:
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P (Cβ) = P (C0) exp(QCβ)

The distribution over a finite set of time points of interest B is given by:

P (CB) = P (C0)
∏

β∈B\{maxB}
exp(QC(s(β) − β))

4 Hybrid Time Bayesian Networks

In this section, we define hybrid-time Bayesian networks, the semantics of these
models in terms of its factorization, and finally, we show how such models can be
interpreted as regular Bayesian networks. The latter is particularly important for
practical purposes, as this implies that we may (dynamically) generate discrete-
time versions of the model given time points for which we have observations, and
in which we would like to compute marginals. After that, we can use existing
methods for probabilistic inference in BNs.

4.1 Model Definition

The formal definition of hybrid time Bayesian networks is as follows.

Definition 1 (Hybrid Time Bayesian Networks (HTBNs)). A hybrid
time Bayesian network is a triple H = (G,Φ,Λ), where G = (V (G), Et(G),
Ea(G)) is a directed graph with each vertex in V (G) either a continuous-
time variable, collectively denoted by C, or a discrete-time variable, collectively
denoted by D, Et(G) and Ea(G) are temporal and atemporal arcs, respectively,
such that (V (G), Ea(G)) is acyclic, Φ is a set of conditional probability distribu-
tions for variables D, and Λ is a set of conditional intensity matrices and initial
distributions for variables C.

Furthermore, graph G has the following properties:

(i) Arcs connecting continuous-time and discrete-time variables are atemporal;
(ii) Arcs connecting continuous-time variables are temporal;
(iii) A continuous-time variable has a temporal arc to itself.

Property (iii) indicates that a discrete-time variable does not necessarily have
temporal dependences on itself. It is worthwhile to notice that the temporal
cyclic property is inherited from discrete-time and continuous-time Bayesian
networks. A temporal cycle is possible in two cases, either between continuous-
time variables or between discrete-time variables. However, an atemporal cycle is
not allowed, that is, there is no cycle in the graph involving both continuous-time
and discrete-time variables.

Example 3. In the example discussed in Sect. 2, regular variables, i.e., BW, DT,
HF and hidden variable CM can be represented in a discrete-time manner. The
irregular variables, i.e., LHT,TROP,HA are modeled as continuous-time vari-
ables. The example is then represented in a hybrid time Bayesian network H as
shown in Fig. 3.
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Fig. 3. An HTBN for the heart failure problem. Continuous-time variables are graph-
ically represented by double-edged blue circles, atemporal arcs are solid, and temporal
arcs are dashed.

4.2 Factorization

The joint probability distribution for hybrid time Bayesian networks is defined by
multiplying the conditional joint probabilities for continuous-time and discrete-
time Bayesian networks. To this end, we first need to introduce some new notions.

The skeleton G∼ of a directed graph G is obtained by changing the arcs in
G by (undirected) edges. Every directed graph can be defined as the union of
connected components by an equivalence relation X −Y , meaning that vertex Y
can be reached by an undirected path from vertex X in its skeleton. Vertex X
and Y are then members of the same equivalence class [X] and the corresponding
graph is a connected component. A graph G′ = (V (G′), E(G′)) is said to be an
induced subgraph of G if E(G′) = (V (G′) × V (G′)) ∩ Et(G) and V (G′) = C,
called a continuous-time induced subgraph, denoted as GC, or E(G′) = (V (G′)×
V (G′)) ∩ (Et(G) ∪ Ea(G)) and V (G′) = D, when it is called a discrete-time
induced subgraph, denoted as GD.

Both GC and GD can be decomposed into connected components; each indi-
vidual connected component is indicated by KC and KD, respectively. Clearly
connected components are disjoint as they represent equivalence classes and
together the connected components form partitions of the continuous-time and
discrete-time subgraphs, respectively. A subset X ⊆ V (GD) is said to consti-
tute the parents of V (KC), denoted as π(V (KC)), if and only if there exists an
arc (D,C) in G, C ∈ V (KC), for every D ∈ X. Parents π(V (KD)) are defined
analogously. In the example shown in Fig. 3, there is only one continuous-time
connected component with V (KC) = {LHT,TROP,HA} and one discrete-time
connected component with V (KD) = {DT,CM,HF,BW}.

We are now in the position to define a conditional distribution of connected
components given their parents.

Definition 2 (Conditional Joint Distribution for Component KD).
Given a discrete-time component KD, the conditional joint distribution for KD
over time points of interest A is defined as:



382 M. Liu et al.

P (V (KD)A | π(V (KD))A) =
∏

D∈V (KD)

(P (D0 | πa(D)0)
∏

α∈A\{0}
P (Dα | πa(D)α, πt(D)α−1))

where πt(D) are the temporal and πa(D) are the atemporal parents of D.

Definition 3 (Conditional Joint Distribution for Component KC).
Given a continuous-time component KC over variables V (KC) with an initial
distribution P (V (KC)0) and corresponding parents π(V (KC)) over time points
of interest A. The conditional joint distribution for KC over a finite set of time
points of interest B, {0} ⊂ A ⊆ B ⊂ R

+, is defined as:

P (V (KC)B | π(V (KC))A)

= P (V (KC)0)
∏

β∈B\{maxB}
exp(QV (KC)|π(V (KC))a

(s(β) − β))

a = max{α | α ≤ β, α ∈ A}
where QV (KC)|π(V (KC))a

is the conditional intensity matrix for variables V (KC)
given the values of parents π(V (KC)) at time a.

Now we can define the full joint probability distribution of a hybrid-time BN
given sets of time points of interest.

Definition 4 (Joint Probability Distribution). Given a hybrid time
Bayesian network H and sets of components KD, KC with associated time
points of interest A, B. The joint distribution for H over B is defined as:

P (V (G)B) =
∏

KC∈KC

P (V (KC)B | π(V (KC))A)
∏

KD∈KD

P (V (KD)A | π(V (KD))A)

The following propositions establish that HTBNs are proper generalizations of
both DBNs and CTBNs.

Proposition 1. A DBN (B0,B→) with random variables D, and an HTBN
(G,Φ, ∅) define the same joint probability distribution for any set of time points
of interest A, if V (G) = D; Ea(G), Et(G) correspond to the temporal and atem-
poral arcs of B→, and Φ are the parameters of the DBN.

Proposition 2. A CTBN with graph G and parameters Λ and an HTBN
(G, ∅, Λ) define the same probability distribution for any set of time points of
interest B.

4.3 Discrete-Time Characterization

A natural question is whether the joint distribution defined on a HTBN, given
the fixed time points of interest, can also be graphically represented as a reg-
ular (discrete-time) Bayesian network. The benefit is that the parameters of
the resulting Bayesian network are conditional probabilities, which are easier to
understand for domain experts. Furthermore, this construction is convenient as
it enables the use of standard software for inference in HTBNs.
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(c) Different time points of interest: A �= B

Fig. 4. Discretization of an HTBN.

Below we show that there is a construction to a regular Bayesian network
possibly at the expense of introducing additional hidden variables that model the
dependence structure of continuous-time variables. The reason for these hidden
variables is as follows. Consider a simple structure X → Y → Z. In a regular
Bayesian network, it holds that Z is independent of X given its parent Y. Inter-
preting this graph as a continuous-time component (where arcs are temporal),
a continuous-time variable is conditionally independent of its non-descendants
given the full trajectories of its parents. In the structure given, we thus can only
conclude that Z at time β is independent of X given the full trajectory for Y
from time 0 to time β, otherwise X and Z are dependent. In order to represent
this, we introduce additional dependences between X and Z at each time point
of interest using auxiliary hidden variables. We illustrate the process in Fig. 4.

Proposition 3 (Discretization). Given a hybrid time Bayesian network H
described by a graph G with associated probability distribution P and time
points of interest, there exists a Bayesian network B = (GB, PB), PB(V (G)) =
P (V (G)), which represents all independences of H.

Proof (Sketch). We only show the construction of this Bayesian network B.
Let GB = (V (GB), E(GB)). Set V (GB) are variables mapped from vari-

ables V . Set V (GB) is composed of three parts, i.e., V (GB) = Δ ∪ Ω ∪ Θ,
where: 1) Δ are variables D induced by time points A, 2) Ω are variables
C induced by time points B, 3) Θ are hidden variables induced by temporal
dependence between continuous-time variables and time points of interest B,
Θ = {Hij

β | (Ci, Cj) ∈ Et, β ∈ B}, where Hij
β models the dependence between

variable Ci and Cj.
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Fig. 5. Effects of heart attack and digitalis on heart failure. ‘DT’ indicates that dig-
italis was administered at that moment in time. ‘HA’ indicates that a heart attack
was observed. Note that observations for HA are continuous-time, so observed at an
arbitrary point in time; digitalis is observed once a week at most.

Set E(GB) are arcs mapped from Ea and Et, E(GB) ⊆ V (GB)×V (GB). Basi-
cally, the dependence mapping can be categorized by the type of dependences
and variables, denoted as E(GB) = Ξ ∪ Π ∪ Υ ∪ Γ , where: (1) Ξ models the
dependence for discrete-time child while its parents could be continuous-time or
discrete-time, specified as Ξ = {(Xα,Dα) | X ∈ C∪D, (X,D) ∈ Ea, α ∈ A}, (2)
The atemporal dependence for continuous-time variables conditioned on discrete-
time parents is specified as Π = {(Da, Cβ) | (D,C) ∈ Ea, β ∈ B}, where
a = max{α | α < β, α ∈ A}, (3) Temporal dependences for variables C and
D are denoted as Υ : Υ = {(Cβ , Cs(β)) | β ∈ B \ {max B}} ∪ {(Dα,Ds(α)) |
(D,D) ∈ Et, α ∈ A\{max A}}, 4) Γ are additional dependences for continuous-
time variables, Γ = {(Hij

β , Ci
s(β)), (H

ij
β , Cj

s(β)) | Hij
β ∈ Θ, β ∈ B \ {max B}} ∪

{(Ci
β , Cj

s(β)) | β ∈ B \ {max B}}. Thus we have a graph GB = (V (GB), E(GB)).
It can be shown that G and GB represent the same independences on V (G)

on the points of interest. Also, the parameters for B can be derived from H. 
�

5 Experiments

The power of HTBNs is illustrated in the domain of myocardial contractability in
relationship to heart attack, heart failure and its medical treatment, introduced
in Sect. 2 and summarized in Fig. 3. In particular, of interest is the question of
how the dynamics of the occurrence of heart failure is affected by heart attacks
and the administration of digitalis. As discussed in Sect. 2, a single DBN and
CTBN can not provide a satisfactory representation of the evolution of variables
with different rates: changes in the occurrence of heart failure happen often, in
contrast to the more sparse and irregular occurrence of heart attacks.
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We parameterized the model using medical expert knowledge given that
discrete-time transitions occur weekly. Then, we computed the probability dis-
tribution of heart failure for a period of 19 weeks given the observed (regular
or irregular) evidence. Results of this experiment are plotted in Fig. 5. The plot
shows the negative effects of a heart attack (see the jumps at time t = 2, t = 3
and t = 17) and the positive effect of digitalis on heart failure (see the rapid fall at
time t = 7). The model also implies that the condition of the heart stabilizes
after administering the drug through an increase in the contractility. However,
a damaged heart does not fully recover, not even with the help of digitalis.

6 Discussion

We have described hybrid time Bayesian networks for modeling dynamic sys-
tems with different types of time granularities: the proposed models provide a
generalization of continuous-time and discrete-time Bayesian networks. As an
inherited property from CTBNs, the joint distribution is propagated over time
even when evidence is spaced irregularly. In addition, we established a mapping
of hybrid-time networks into a standard BN given time points of interest.

The formalism is related to non-stationary dynamic Bayesian networks,
where the structures and parameters are determined by time points of inter-
est [4,5]. These are related in the sense that non-stationary Bayesian networks
allow for different time granularities of the (complete) temporal process. The
key difference here is that we consider the case where different random variables
evolve at different kinds of rates.

A limitation of HTBN is that so far the granularities of discrete-time variables
are assumed to be fixed, as the focus of this paper has been on the combination
of continuous and discrete-time models. As future work, we will also combine dif-
ferent discrete-time granularities within the hybrid-time framework as proposed
in irregular-time Bayesian networks (ITBNs) [6] and also discussed by van der
Heijden and Lucas [7]. Furthermore, as a final piece of future work, we would
like to extend the formalism to also allow random variables that are completely
atemporal. For example, in classification, one might want to predict a single
outcome indicator based on time-series. This would complete the full spectrum
of temporal models of random variables.
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