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Abstract. Evidential networks have gained a growing interest as a good
tool fusing belief function theory and graph theory to analyze complex
systems with uncertain data. The graphical structure of these models is
not always clear, it can be fixed by experts or constructed from existing
data. The main issue of this paper is how to extract the graphical struc-
ture of an evidential network from imperfect data stored in evidential
databases.

1 Introduction

Data in real-world problems are generally characterized by different forms of
imperfection: imprecision, uncertainty and/or inconsistency. Many theories have
been proposed to deal with this problem of imperfection, one of the most popular
is the belief function theory. It is a general framework that handles both partial
and total ignorance and offers interesting rules for combining evidence.

Based on this theory, evidential networks are considered as a powerful and
flexible tool for modeling complex systems by combining belief function theory
and graph theory. Among the most popular evidential graphical models are the
evidential networks with conditional belief functions proposed by Xu et al. [23]
and the directed evidential networks with conditional belief functions proposed
by Ben Yaghlane et al. [4].

As in Bayesian networks, evidential networks are based on two parts: the
qualitative part represented by a directed acyclic graph and the quantitative part
including a set of parameters modeled by conditional belief functions. The graph-
ical structure of these networks is not always clear, specially in real complex
systems. Therefore, a good way for constructing this structure is to estimate it
from data.

We address in this paper the issue of learning structure in evidential net-
works from evidential databases, by extending the classical methods widely used
for learning structure in Bayesian networks to the belief functions framework.
More precisely, we are interested in generalizing learning methods based on tests
of independency, including for example the algorithms proposed by Pearl and
Verma [22] and the algorithms proposed by Spirtes et al. [20]. Our learning
process is based on evidential chi-square test Eχ2, a generalization of the statis-
tical chi-square test in the belief functions framework.
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The rest of the paper is organized as follows: we first recall some basic con-
cepts of belief function theory and evidential databases, then we present briefly
evidential networks and a short review of the most important algorithms used
for learning structure in Bayesian networks. In the main part of the paper, we
present our learning process and the evidential chi-square independency test.
In the last part of the paper we more explain our approach by an illustrative
example.

2 Belief Function Theory and Evidential DataBases

The belief function theory, evidence theory or also Dempster-Shafer theory
[17,19], is a mathematical framework commonly used for handling imperfection
in data. In the following, we present briefly some theoretical aspects of evidence
theory and we introduce databases based on this theory.

2.1 Basic Concepts of Belief Function Theory

Let N = {N1, ..., Nn} be a set of random variables.

Definition 1. Each variable Ni takes its values from a set of exclusive and
exhaustive elements called the frame of discernment and denoted by ΩNi

.

Definition 2. We denote by 2ΩNi the set of all subsets (propositions or events)
from ΩNi

.

Definition 3. The degree of belief accorded exactly to a proposition A, is called
the basic belief assignment or a mass function (bba). It is a mapping from 2ΩNi

to [0, 1] such that: ∑

A⊆Ω

mΩ(A) = 1 (1)

Definition 4. Any event A ∈ ΩNi
with mΩNi (A) > 0 is called a focal element,

and the set of all these elements is denoted by �(mΩNi ).

Definition 5. Let mΩNi [B](A) denote the conditional basic belief assignment of
A given B, it is defined by Dempster’s rule of conditioning:

mΩNi [B](A) =
∑

C⊆B

mΩNi (A ∪ C), (2)

where B̄ is the complement of the proposition B.

More details about the rules of conditioning in the belief function theory can be
found in [18,21].
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2.2 Evidential DataBases

An Evidential DataBase (EDB) is a database storing data with different forms of
imperfection: certain, probabilistic, possibilistic, missing and/or evidential data,
modeled in the belief functions framework. More details and examples about this
notion can be found in [1,8].

Definition 6. Let EDB(L,C) denote an evidential database with L lines
(records) and C columns (variables), each variable Ni define its possible values
in a frame of discernment denoted by ΩNi

.

Definition 7. Let Vlc be the evidential value of cell in the lth line and cth col-
umn, Vlc is defined by a mass function mlc from 2ΩNi to [0, 1] such as:

m
ΩNi

lc (∅) = 0 and
∑

A⊆ΩNi

m
ΩNi

lc (A) = 1 (3)

3 Evidential Networks

Evidential networks or belief function networks are graphical models based on
the belief functions framework for modeling uncertainty. These models are con-
sidered as a generalization of Bayesian networks for handling different types of
uncertainty and taking into account both total and partial ignorance.

Among the most popular evidential graphical models Directed EVidential
Networks with conditional belief functions (DEVNs) proposed by Ben Yaghlane
et al. [4] and Evidential Networks with Conditional belief functions (ENCs)
proposed by Xu et al. [23]. DEVNs are developed to extend ENCs for handling
n-ary relations between variables.

As in probabilistic networks, evidential graphical models are based essen-
tially on two parts: the qualitative part describing the graphical structure of
the network and the quantitative part describing the conditional dependencies
between variables.

3.1 Qualitative Part

ENCs and DEVNs have the same graphical structure which is similar to the
graphical structure of Bayesian networks (BNs). This structure is modeled by
a Directed Acyclic Graph (DAG) G = (N,E) characterized essentially by a set
of nodes N = {N1, ..., Nx} representing the different variables of the problem
and a set of edges E = {E1, ..., Ey} coding conditional dependencies between
variables.

It is important to note that the graphical properties and concepts of a DAG
are maintained in evidential networks including conditional independency criteri-
ons such as the d-separation, the converging connection (also called v-structure)
and the CPDAG (Completed Partially Directed Acyclic Graph). More details
about these notions can be found in [3,14].
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3.2 Quantitative Part

The quantitative level is represented by a set of parameters θ modeled by condi-
tional belief functions. Each node Ni in an evidential network is a representation
of a random variable taking its values on a frame of discernment ΩNi

. Each root
node is associated with an a priori mass function, other nodes are associated with
a conditional mass function. DEVNs are more flexible then ENCs in modeling
conditional beliefs. In DEVNs the conditional mass function can be defined in
two manners: per edge or per child node.

In this paper we are interested in the qualitative part of evidential networks.
As both ENCs and DEVNs have the same qualitative part we adopt for the rest
of the paper a general notation for evidential networks (ENs).

4 Learning Structure in Bayesian Networks

Learning the graphical structure of Bayesian networks from data remains an
interesting topic of research. In this section we present a short overview of the
literature on learning Bayesian network structure, more details can be found in
[10,12,13].

The structure learning methods in BNs are grouped on three essential
families:

Constrained based methods. These methods are based on the test of the
conditional dependencies between variables in order to build the requested
graph.

Score based methods. The main idea of these methods is to find the best
structure from the search space of possible DAGs by maximizing a scoring
function.

Hybrid methods. Combine constrained based methods and score based meth-
ods in order to deal with more complex problems.

In this work we will mainly interest on the methods based on testing the con-
ditional dependencies between variables. The majority of these methods follow
the same approach which is based on three steps:

1© Build an undirected graph according to a statistical test.
2© Detect the V-structures.
3© Get a CPDAG by propagating some edges orientation.

This family of methods includes two principal groups of algorithms:

– The algorithms proposed by Pearl and Verma [15,22] such as IC and IC*. The
main idea of these algorithms is to start from an empty graph and try to add
edges between dependent variables according to the result of the statistical test.

– The algorithms proposed by Spirtes, Glymour and Scheines [20] such as SGS
and PC. These algorithms are based also on a statistical test to delete edges
between independent variables from a complete graph.
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One of the most statistical tests commonly used for measuring the conditional
independency between variables in learning structure algorithms is the chi-square
(χ2) test. This metric will be generalized in the next section for dealing with
uncertain data.

5 Learning Structure in Evidential Networks

In this part, we focus on the main purpose of this paper which is how to build the
graphical part of an evidential network from data stored in evidential databases.

As we mentioned previously, we are interested in this work in generalizing
the constrained based methods, the extension of the other methods of structure
learning will be the object of further works.

5.1 Evidential Independency Test

The idea of extending the statistical tests of independency (essentially the χ2

test) to the belief function theory comes from the principle of the generaliza-
tion of the maximum likelihood estimation to the evidence framework originally
introduced in [7] and applied to learn parameters in evidential networks in [2].

As in probability theory these tests are based on a relation between the
observed data and the expected one.

Let us consider X and Y two variables, and Z a set of variables from our
EDB(L,C).

Definition 8. The evidential observed values corresponding respectively to X
and Y and to X and Y given Z, denoted by EOxy and EOxy|z, are defined by
the following equations:

EOxy =
L∑

l=1

mΩX

lc (X = x) ∗ mΩY

lc (Y = y) (4)

EOxy|z =
L∑

l=1

mΩX

lc (X = x) ∗ mΩY

lc (Y = y) ∗
∏

j

m
ΩZj

lcj (Zj = zj) (5)

Definition 9. Let EExy and EExy|z denote the evidential expected values such
that:

EExy =
∑L

l=1 mlc(X = x) ∗ ∑L
l=1 mlc(Y = y)

L
(6)

EExy|z =

∑L
l=1 mlc(X = x) ∗∏j m

ΩZj
lcj (Zj = zj) ∗∑L

l=1 mlc(Y = y) ∗∏j m
ΩZj
lcj (Zj = zj)

∑L
l=1
∏

j m
ΩZj
lcj (Zj = zj)

(7)

Definition 10. The evidential test of independency between the two variables
X and Y is defined as follows:
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Eχ2
XY =

2ΩX −1∑

x=1

2ΩY −1∑

y=1

(EOxy − EExy)2

EExy
(8)

with a degree of freedom df = ((2ΩX − 1) − 1)((2ΩY − 1) − 1).

The two variables X and Y are considered independent if the value of Eχ2
XY is

less than the critical value in the chi-squared distribution.

Definition 11. The conditional evidential test of independency between the two
variables X and Y in the context of Z is defined as follows:

Eχ2
XY |Z =

2ΩX −1∑

x=1

2ΩY −1∑

y=1

2ΩZ −1∑

z=1

(EOxy|z − EExy|z)2

EExy|z
(9)

with a degree of freedom df = ((2ΩX − 1) − 1)((2ΩY − 1) − 1)
∏

j(2
ΩZj − 1).

The two variables X and Y are said independent in the context of Z if the value
of Eχ2

XY |Z is less than the critical value in the chi-squared distribution.
The principle of the extension of the χ2 test can be also used for generalizing

other statistical tests such as the likelihood ratio (G2) test or even the score
functions based on the likelihood principle, in order to generalize score based
and hybrid algorithms.

It must be emphasized that, the Eχ2 test has the same major limitation
of the classical χ2 test. This test become inappropriate when the number of
variables is high and the amount of data is not sufficient. In probability theory
Spirates et al. propose an heuristic to overcome this drawback: if the degree of
freedom is higher than L

10 the two variables are considered dependent.
In the evidence theory this problem is even more serious, as we consider in

the calculation process the power set of each variable. Thus we propose, in this
case, to calculate the degree of freedom according to the focal elements of each
variable as follows: df ′ = (|�(mΩX )| − 1)(|�(mΩY )| − 1).

If the problem persists, then the hypothesis of Spirtes et al. can be applied.

5.2 Learning Approach

The generalization of the χ2 test in the belief function framework will be the core
of our learning process. In fact, our goal is to estimate the different dependency
relations between variables from an EDB(L,C) using the Eχ2 test, in order to
get the DAG(N,E) that most closely matches the data. This approach is based
on two main steps:

1© Test the different independency relations between variables:
• Calculate the evidential observed values using Eqs. (4) and (5).
• Calculate the evidential expected values using Eqs. (6) and (7).
• Test the dependency between variables according to the Eχ2 test measured

using Eqs. (8) and (9).
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2© Apply a learning structure algorithm based on independency tests:
• Build an undirected graph according to Eχ2: delete edges between inde-

pendent variables if we started with a complete graph or add edges between
dependent variables if we started with an empty graph.

• Detect the V-structures according to the calculated Eχ2 test.
• Propagate edges to get a CPDAG representing the sought DAG.

Note that, a possible simplification in the first step of our approach is to consider
only focal elements for each variable, in order to reduce the number of values
that must be calculated in the Eχ2 test. In this case we consider df ′ as a degree
of freedom.

This approach generalizes any constrained based method classically used for
estimating the graphical structure of a Bayesian network.

It will be also interesting to compare our learning approach using the Eχ2

test and other independency tests dedicated to uncertain data such as the inde-
pendency tests proposed in [16].

6 Illustrative Example

To further explain the details of our learning method, we introduce in this section
an illustrative example based on the classical problem Asia Chest Clinic first
described in [11]. Table 1 presents a part from an EDB corresponding to the
latter problem.

Our problem includes eight variables {A,S, T, L,B,O,X,D} having the
power sets, respectively: {a, ā, a∪ā}; {s, s̄, s∪s̄}; {t, t̄, t∪t̄}; {l, l̄, l∪ l̄}; {b, b̄, b∪b̄};
{o, ō, o ∪ ō}; {x, x̄, x ∪ x̄} and {d, d̄, d ∪ d̄}.

Note that in the EDB a is denoted by 0, ā is denoted by 1 and a∪ā is denoted
by {0, 1}. All other propositions are denoted by the same way.

The first step of our approach is to test dependency between variables. In
the following we give some calculation details of the evidential chi-square test
applied to the variables T and O using 20 instances from our EDB (represented
in Table 1).

• EOto =
∑20

l=1 mΩT

lc (T = t) ∗ mΩO

lc (O = o) = 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 0.3 + 1 ∗ 1 + 1 ∗
0.4 + 1 ∗ 1 = 4.7

• By the same manner we get:
EOtō = 5.3 EOtoō = 1 EOt̄o = 4.99 EOt̄ō = 2.41 EOt̄oō = 1.6 EOtt̄o = 0
EOtt̄ō = 0 EOtt̄oō = 0

• EEto =
∑20

l=1 mlc(T=t)∗∑20
l=1 ∗mlc(O=o)

20 = 11∗(0.21+1+1+1+0.3+1+1+0.4+0.2+1)
20 =

3.91
• Applying the same formula:

EEtō = 5.65 EEtoō = 1.43 EEt̄o = 3.19 EEt̄ō = 2.63 EEt̄oō = 1.17 EEtt̄o = 0
EEtt̄ō = 0 EEtt̄oō = 0

• Eχ2
TO = [ (EOto−EEto)

2

EEto
] + ... + [ (EOtt̄oō−EEtt̄oō)

2

EEtt̄oō
] = 2.52

• df = ((22 − 1) − 1) ∗ ((22 − 1) − 1) = 4
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Table 1. EDB corresponding to the Asia Chest Clinic problem

A S T L B O X D

0 0 1 0 0 0(0.21)1(0.79) 0 1

0 0 0 1 0 1 1 1

0(0.5)1(0.5) 0 0 {0,1} 0 0 1 0

1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 1

0 0 1 0 0 0 0 0

{0,1} 0 0 1 0 0 1 1

0 0 0 0 0 0(0.3)1(0.7) 0 0

0(0.22){0,1}(0.78) 0 1 0 0 {0,1} 1 1

0 0 1 0 0 1(0.9){0,1}(0.1) 1 1

0(0.2){0,1}(0.8) 0 1 {0,1} 1 0 1 1

0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 1

0(0.1)1(0.2){0,1}(0.7) 0 0 0 0 {0,1} 1 1

0 0 0 1 0 0(0.4)1(0.6) 0 0

1 0 1 0 0 0(0.2)1(0.3){0,1}(0.5) 0 0

1(0.45){0,1}(0.55) 0 0 0 0 0 1 1

1 0 1 1 0 1 1 1

0 0 0 0 0 1 0 1

0(0.36){0,1}(0.64) 0 0 0 0 1 1 1

Note that, when dealing with perfect data such as the case of variables S, T , B,
X and D, the Eχ2 give the same result as the classical χ2 test.

Assuming that α = 5%, the critical value according to the chi-squared dis-
tribution is equal to 9.488 which is higher then the value of the calculated test
Eχ2

TO. According to this result, the two variables T and O are independent.
However, we should note that the obtained value of Eχ2

TO is not significant,
because the amount of data considered in this example is very small.

After finishing the different calculation steps and applying the PC algorithm,
the result of the evidential learning process from the whole data set is presented
in Fig. 1.

Phase 1, phase 2 and phase 3 represent the different iterations of the first
step of the PC algorithm which is building an undirected graph by eliminating
edges between independent variables from the complete graph, corresponding to
the Asia network.

The next step in the learning process is to detect the different v-structures
in the obtained undirected graph using the calculated Eχ2 test in order to build
a CPDAG modeling the required DAG.
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Fig. 1. Result of the evidential learning process

The last step will be then to pass from the CPDAG to the final network as
shown in Fig. 1, the algorithm of the construction of a DAG from a CPDAG is
detailed in [5].

7 Conclusion

A constrained based approach for learning evidential networks structure from
evidential data has been proposed. This approach generalizes the classical con-
strained based methods usually used for learning structure in BNs by extending
the statistical χ2 test to the belief function framework in order to deal with
different types of imperfection in data.

In the future works, we will tend to investigate different horizons:

– Extend score based methods to deal with evidence data.
– Develop detailed experimental results and compare the efficiency of structure

learning approaches in the evidence framework.
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