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Abstract. An important problem in knowledge-based systems is incon-
sistency handling. This problem has recently been attracting a lot of
attention in AI community. In this paper, we tackle the problem of eval-
uating the amount of conflicts in knowledge bases, and provide a new
fine grained inconsistency measure, denoted MCSC, based on maximal
consistent sets. In particular, it is suitable in systems where inconsistency
results from multiple consistent sources. We show that our measure sat-
isfies several rational postulates proposed in the literature. Moreover, we
provide an encoding in integer linear programming for computing MCSC.

1 Introduction

In classical logics, the principle of explosion is a law which states that any formula
can be deduced from a contradiction using the inference process. This principle
means that the inference process alone in classical logic does not allow to rea-
son under inconsistency. To remedy this problem, several approaches have been
proposed in the literature, such as argumentation theory, paraconsistent logics,
belief revision, etc. The main goal of these approaches is to deal with inconsis-
tency as an informative concept. In the same vein, inconsistency measures have
been introduced in order to be used in analyzing inconsistency. In the literature,
an inconsistency measure is defined as a function that associates a value to each
knowledge base [1]. Several inconsistency measures have been proposed in the
literature (e.g. [1–8]), and it has been shown that they are suitable for various
applications such as e-commerce protocols [9], software specifications [10], belief
merging [5], news reports [11], requirements engineering [1], integrity constraints
[12], databases [13], ontologies [14], semantic web [14], network intrusion detec-
tion [15], and multi-agent systems [8].

In [1], Hunter and Konieczny have proposed four axiomatic properties that
any inconsistency measure should satisfy. Namely, the properties of consistency,
monotony, free-formula independence, and dominance. However, in a recent arti-
cle [16], Besnard has provided objections to the axiomatic properties of free-
formula independence and dominance. Indeed, the author has pointed out in
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his article undesirable consequences of these properties, such as ignoring cer-
tain conflicts, and has provided alternative properties in order to avoid these
consequences.

Inconsistency is often measured by quantifying its origin in a monodimen-
sional way, such as the number of minimal inconsistent subsets. However, no
value alone can capture the multiple aspects of inconsistency. Indeed, incon-
sistency in a knowledge base may result from several reasons and has to be
measured in a multi-dimensional way. For instance, let us consider the knowl-
edge base K = {p,¬p ∧ q,¬p ∧ r,¬p ∧ s}. Clearly, the inconsistency of K results
from the conflict between the formula p and the subformula ¬p in the other
formulæ. If we use the inconsistency measure ILPm

defined in [4] and based
on Priest’s three-valued logic [17], then we can capture the conflict between a
and ¬a (ILPm

(K) = 1). However, since ILPm
consider K as a single formula,

it does not reveal the fact that there are three conflicts between the formulæ
of K. To this end, one can use the measure IMI [1] defined as the number of
minimal inconsistent subsets of K (IMI(K) = 3). The measure IMI is not more
informative than ILPm

and conversely, but the two measures provide informa-
tion about incomparable facets of inconsistency. In other words, two measures
are not necessarily comparable in the sense that one is better than the other,
they can capture incomparable aspects that constitute inconsistency. We think
that Besnard’s objections to the properties of free-formula independence and
dominance may be used to argue in this sense. For instance, the property of
free-formula independence has a sense when we do not consider the internal
structure of the formulæ in a knowledge base. Indeed, it simply means that
adding a new formula which is not involved in a conflict does not change the
amount of inconsistency.

In this work, we introduce an inconsistency measure, denoted MCSC, by
following an approach based on the use of maximal consistent subsets. This app-
roach consists in considering that the inconsistency of a knowledge base is a
consequence of the fact that its pieces of information are received from ignored
multiple consistent sources, where each possible source is identified by a con-
sistent subset of formulæ. In this context, the degree of conflict of a knowledge
base can be seen as the smallest number of pieces of information that cannot
be shared by possible sources covering all the elements of this base. Clearly,
computing this value can be performed by considering only the possible sources
identified by the maximal consistent subsets since the objective consists in min-
imizing the number of non shared pieces of information.

We show that our inconsistency measure satisfies several desirable proper-
ties proposed in the literature, such as Free Formula Independence and Super-
additivity. We also provide properties of bounds on MCSC. Then, we study the
relationship between our measure and the inconsistency metric proposed in [18].
This study comes from the fact that these two measures satisfy a fundamental
property, called Independent MIS-additivity. Finally, we show that our measure
can be formulated as an integer linear program by providing an encoding allow-
ing its computation.
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2 Formal Setting

In this section, we define the syntax and the semantics of propositional logic. Let
Prop be a countably set of propositional variables. We use the letters p, q, r, etc.
to range over Prop. The set of propositional formulæ, denoted Form, is defined
inductively started from Prop, the constant ⊥ denoting absurdity, the constant
� denoting true, and using the logical connectives ¬, ∧, ∨, →. Notationally, we
use the greek letters φ, ψ to represent formulæ. Given a syntactic object S, we
use P(S) to denote the set of propositional variables appearing in S. For a set
S, we denote by |S| its cardinality.

A Boolean interpretation I of a formula φ is defined as a function from P(φ)
to {0, 1} (0 corresponds to false and 1 to true). It is inductively extended to
propositional formulæ as usual. A formula φ is consistent if there exists a Boolean
interpretation I of φ such that I(φ) = 1. φ is valid or a theorem, if every Boolean
interpretation is a model of φ.

It is worth noticing that we can restrict the language to the connectives
¬ and ∧, since we have the following equivalences: φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ) and
φ → ψ ≡ ¬φ ∨ ψ. A knowledge base K is a finite set of propositional formulæ.

Definition 1. Let K be a knowledge base. M is a minimal inconsistent subset
(MIS) of K iff (i) M ⊆ K, (ii) M 	 ⊥ and (iii) ∀φ ∈ M , M \ {φ} � ⊥.

We denote by MISes(K) the set of all minimal inconsistent subsets of K.

Definition 2. Let K be a knowledge base and M a subset of K. M is a maximal
consistent subset (MCS) of K iff (i) M ⊆ K, (ii) M � ⊥, (iii) ∀φ ∈ K \ M ,
M ∪ {φ} 	 ⊥.

We denote by MCSes(K) the set of all maximal consistent sets of K.

Definition 3. Let K be a knowledge base and φ a knowledge in K. φ is a free
knowledge in K iff φ /∈ M for every M ∈ MISes(K).

We use Free(K) to denote the set of free knowledge in K.
In recent years, inconsistent data reasoning has seen a revival in interest

because of number of challenges in terms of collecting, modelling, representing,
and querying the information. In this context, various logic-based approaches
have been proposed in the literature for quantifying the amount of inconsis-
tency. Therefore, several properties have been defined to characterize such mea-
sures. More specifically, in [1] the authors propose axiomatic properties that any
inconsistency measure should satisfy. An inconsistency measure I is called a basic
inconsistency measure if it satisfies the following properties, for all knowledge
bases K and K ′, and for all formulæ φ and ψ:

– Consistency : I(K) = 0 iff K is consistent;
– Monotony : I(K) ≤ I(K ∪ K ′);
– Free Formula Independence: if φ ∈ free(K), then I(K) = I(K \ {φ});
– Dominance: if φ 	 ψ and φ � ⊥, then I(K ∪ {ψ}) ≤ I(K ∪ {φ}).
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It is worth noticing that Besnard has provided in [16] objections on the properties
of free formula independence and dominance. In particular, the objection to the
property of free formula independence comes from the fact that a free formula
may be involved in a conflict and in this case it has to increase the amount
of inconsistency. Let us consider, for instance, the following knowledge base
proposed in [16]: K = {p∧r, q∧¬r,¬p∨¬q}. The knowledge base K has a single
minimal inconsistent subset M = {p ∧ r, q ∧ ¬r} and, consequently, ¬p ∨ ¬q is a
free-formula in K. Using the property of free-formula independence, we should
have I(M) = I(K). However, p and q are compatible and p ∧ q is contradicted
by the free-formula ¬p ∨ ¬q. Consequently, one can consider that K contains
more conflicts than M and in this case the free-formula independence property
fails. Let us note that to detect whether free-formulæ are involved in a conflict,
we have to consider the internal structure of formulæ.

We agree with Besnard’s objections in the sense that it is not suitable to
require Hunter and Konieczny’s basic properties for any inconsistency measure.
However, we think that inconsistency is a multi-dimensional concept and a sin-
gle inconsistency measure is insufficient to capture all the information about
the amount of inconsistency. In this context, to capture certain aspects that
constitute inconsistency, we need inconsistency measures satisfying Hunter and
Konieczny’s properties. In particular, aspects which are not related to internal
structure of formulæ in knowledge bases.

3 MCS-Cover Based Inconsistency Measure

In this section, we introduce a new inconsistency measure, denoted MCSC,
which is based on the use of the MCSes. Intuitively, the main idea behind MCSC
is in considering that the inconsistency is due to the fact that the information
are often received from ignored multiple consistent information sources. In this
context, the degree of conflict corresponds to the smallest number of knowledges
that cannot be shared by possible information sources. The possible information
sources are characterized by the consistent subsets. Since our aim is to mini-
mize non shared knowledges, we only consider the possible information sources
characterized by the MCSes.

Let us first define the following fundamental concepts that will be useful in
the sequel.

Definition 4 (MCS-Cover). Let K be a knowledge base. A MCS-cover C of
K is a subset of MCSes(K) such that

⋃
S∈C S = K.

Let us consider, for instance, the knowledge base K = {¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨
¬r, p, q, r}. The following two sets are MCS-covers of K: C1 = {{¬p ∨ ¬q,¬p ∨
¬r,¬q ∨ ¬r, p}, {p, q, r}}, C2 = {{¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨ ¬r, p}, {¬p ∨ ¬q,¬p ∨
¬r, q, r}}.

We now define a preorder relation on the MCS-covers of a given knowledge
base, denoted �. Let K be a knowledge base. For all C and C′ two MCS-covers
of K, C � C′ if and only if |⋂S∈C S| � |⋂S′∈C′ S′|. Let us consider again the
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previous example. We have C2 � C1 since |{¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨ ¬r, p} ∩
{p, q, r}| = 1 and |{¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨ ¬r, p} ∩ {¬p ∨ ¬q,¬p ∨ ¬r, q, r}| = 2.

Definition 5 (Normal MCS-Cover). Let K be a knowledge base and C an
MCS-cover of K. Then, C is a normal MCS-cover if C′ is not an MCS-cover for
every C′ ⊂ C.

Definition 6 (Maximum MCS-Cover). Let K be a knowledge base and C
a MCS-cover of K. Then, C is said to be a maximum MCS-cover of K if it
is normal and ∀ C′ MCS-cover of K, C � C′. We denote by λ(K) the value
|⋂S∈C S|.
Definition 7 (MCSC). Let K be a knowledge base. The inconsistency measure
of K, denoted MCSC(K), is defined as follows: MCSC(K) = |K| − λ(K).

Regarding the previous example of knowledge base, we have MCSC(K) = 4
since C2 is a maximum MCS-cover.

We now provide a generalization of the inconsistency measure MCSC. The
base idea consists in associating a weight to each formula in a knowledge base
representing the degree of its relevance. In this context, the inconsistency value
corresponds to the smallest weight of non shared knowledge.

Given a knowledge base K, we define a weight function W of K as a function
from K to N

∗.

Definition 8 (Weighted Maximum MCS-Cover). Let K be a knowledge
base, W a weight function of K and C a MCS-cover of K. Then, C is said
to be a weighted maximum MCS-cover of K w.r.t. W if it is normal and∑

φ∈⋂M∈C M W (φ) �
∑

φ∈⋂M∈C′ M W (φ) for every MCS-cover C′. We denote
by λ(K,W ) the value

∑
φ∈⋂M∈C M W (φ).

Definition 9 (WMCSC). Let K be a knowledge base and W a weight function
of K. The inconsistency measure of K, denoted WMCSC(K,W ), is defined as
follows: MCSC(K) = |K| − λ(K,W ).

Clearly, WMCSC can be seen as a generalization of MCSC. Indeed, by using a
weight function W giving the weight 1 to every formula in the knowledge base
K, we get WMCSC(K,W ) = MCSC(K). Let us note that there are several
ways to define a weight function of a knowledge base from the structure of its
formulæ. For instance, the weight of a formula may be defined as the number
of propositional variables occurring in it. Intuitively, this means that the impor-
tance of a knowledge depends on the number of pieces of information which are
binded by it.

4 Properties of MCSC Measure

In the section, we describe some important properties of the inconsistency
measure MCSC. We first show that it satisfies the properties of consistency,
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monotony, free formula independence, and a weak form of the property of dom-
inance. Then, we show that our measure satisfies also the property of super-
additivity.

Proposition 1. MCSC measure satisfies Consistency, Monotony and Free
Formula Independence.

Proof. Consistency. Let K be a consistent knowledge base. Then, {K} is the
unique maximum MCS-cover of K (λ(K) = |K|). Hence, MCSC(K) = 0.

Monotony. Proposition 3 can be seen as a generalization of Monotony.

Free Formula Independence. Let K be a knowledge base and φ a free formula
in K. Let C = {S1, . . . , Sn} be a maximum MCS-cover of K \ {φ}. Since φ ∈
Free(K), Si ∪{φ} � ⊥ holds for every 1 � i � n. Thus, {S1 ∪{φ}, . . . , Sn ∪{φ}}
is a maximum MCS-cover of K and we obtain λ(K) = λ(K \ {φ}) + 1. As a
consequence, MCSC(K) = |K| − λ(K) = |K \ {φ}| + 1 − λ(K \ {φ}) − 1 =
MCSC(K \ {φ}).

Proposition 2. Let K be a knowledge base and φ and ψ two formulæ such that
φ � ⊥ and φ	ψ. If φ /∈ K or ψ ∈ K, then MCSC(K∪{ψ}) ≤ MCSC(K∪{φ}).

Proof. Let C be a maximum MCS-cover of K ∪ {φ}. We consider w.l.o.g. that
ψ /∈ K since MCSC satisfies the property of monotony. Clearly, by replacing in
C the formula φ with ψ we obtain a set of satisfiable subsets of K ∪ {ψ}. As a
consequence, we have λ(K ∪ {ψ}) � λ(K ∪ {φ}). Thus, we obtain MCSC(K ∪
{ψ}) = |K ∪ {ψ}| − λ(K ∪ {ψ}) � |K ∪ {φ}| − λ(K ∪ {φ}) = MCSC(K ∪ {φ}).

Let us note that MCSC does not satisfy Dominance. Consider for instance
the knowledge base K = {p ∧ (p → q),¬q}. We have p ∧ (p → q) � ⊥,
p ∧ (p → q) 	 q and λ(K) = 0. Moreover, λ(K ∪ {q}) = 0 holds. Then, we
have MCSC(K ∪ {q}) = 3 > MCSC(K ∪ {p ∧ (p → q)}) = 2.

Other rational postulates than those of the basic system have been proposed
in the literature. In particular, we consider the following additivity properties
introduced in [1,19]:

– Super-additivity : if K ∩ K ′ = ∅, then I(K ∪ K ′) � I(K) + I(K ′).
– MIS-additivity : if MISes(K) = MISes(K ′) � MISes(K ′′), then I(K) =

I(K ′) + I(K ′′).

One can easily see that Super-additivity is a generalization of Monotony.

Proposition 3. MCSC measure satisfies Super-additivity.

Proof. Let K and K ′ be two knowledge bases such that K ∩ K ′ = ∅ and C a
maximum MCS-cover of K ∪ K ′. Clearly, for all S ∈ MCSes(K ∪ K ′), there
exist S′ ∈ MCSes(K) and S′′ ∈ MCSes(K ′) such that S ⊆ S′ ∪ S′′. Then,
there exist MCS-covers C′ and C′′ of K and K ′ respectively such that

⋂
S∈C S ⊆

(
⋂

S′∈C′ S′)∪(
⋂

S∈C′′ S′′). As a consequence, we have λ(K∪K ′) � λ(K)+λ(K ′).
Therefore, MCSC(K ∪ K ′) � MCSC(K) + MCSC(K ′) holds.
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In the following proposition, we show that MCSC measure satisfies a property
generalizing Super-additivity.

Proposition 4. Given two knowledge bases K and K ′, we have:

MCSC(K ∪ K ′) � MCSC(K) + MCSC(K ′) − |K ∩ K ′|.
Proof. We have, for all S ∈ MCSes(K ∪ K ′), S′ = S ∩ K and S′′ = S ∩ K ′

are both consistent. Let C = {S1, . . . , Sn} be a maximum MCS-cover of K ∪ K ′.
Then, C′ = {S1 ∩ K, . . . , Sn ∩ K} and C′′ = {S1 ∩ K ′, . . . , Sn ∩ K ′} are sets
of consistent subsets. Moreover,

⋂
S∈C S = (

⋂
S′∈C′ S′) ∪ (

⋂
S′′∈C′′ S′′). Thus,

λ(K ∪ K ′) � λ(K) + λ(K ′) holds and, consequently, MCSC(K ∪ K ′) � |K ∪
K ′| − λ(K) − λ(K ′) holds. Since |K ∪ K ′| = |K| + |K ′| − |K ∩ K ′|, we deduce
that MCSC(K ∪ K ′) � MCSC(K) + MCSC(K ′) − |K ∩ K ′|.
It is worth noticing that MCSC does not satisfy MIS-additivity. Consider, for
instance, K = {a, b,¬a ∧ ¬b}, K1 = {a,¬a ∧ ¬b} and K2 = {b,¬a ∧ ¬b}. It is
easy to see that MCSC(K) = 3, MCSC(K1) = 2 and MCSC(K2) = 2. We
have MISes(K) = MISes(K1) � MISes(K2), but MCSC(K) �= MCS(K1) +
MCS(K2).

Proposition 5. Given a knowledge base K, MCSC(K) � |K| − |Free(K)|.
Proof. This property is a direct consequence of the fact that, for all
S ∈ MCSes(K), Free(K) ⊆ S.

Proposition 6. Given a minimal inconsistent set of formulæK such that |K| >
1, we have MCSC(K) = 2.

Proof. Let K = {φ1, . . . , φn} be a minimal inconsistent set such that n > 1.
Then, S = {φ1, . . . , φn−1} and S′ = {φ2, . . . , φn} are MCSes of K, and {S, S′}
are an MCS-cover of K. Then, MCSC(K) � n − (n − 2) = 2 holds. Let us
assume that MCSC(K) = 1. Then, there exist S and S′ in MCSes(K) such
that S �= S′ and |S ∩ S′| � n − 1. Thus, |S| = |S′| = n holds and we get a
contradiction. Therefore, we obtain MCSC(K) = 2.

5 Relationship Between MCSC and ICC Measures

In this section, we study the relationship between our inconsistency measure and
an existing one, denoted ICC , introduced recently by Jabbour et al. in [18]. This
study comes from the fact that the two metrics MCSC and ICC satisfy both a
fundamental property, called Independent MIS-additivity. Firstly, we introduce
the measure ICC as follows. Given a knowledge base K, a MIS-decomposition of
K is a pair 〈{K1, . . . ,Kn},K ′〉 satisfying the following properties: (i)(

⋃n
i=1 Ki)∩

K ′ = ∅; (ii) Ki 	 ⊥ for every 1 � i � n; (iii) Ki∩Kj = ∅ for every 1 � i �= j � n;
(iv) MISes(

⋃n
i=1 Ki) =

⊎n
i=1 MISes(Ki).

Given a knowledge base K, ICC(K) = n if there is a MIS-decomposition
〈D,K ′〉 where |D| = n, and there is no MIS-decomposition 〈D′,K ′′〉 such that
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|D′| > n. In this case, 〈D,K ′〉 is called maximum MIS-decomposition. Intuitively,
this measure can be seen as the maximum number of MISes that can be isolated
by removing formulæ from the knowledge base.

Definition 10 (Independent MIS-Additivity). Let I be an inconsistency
measure. Then, I satisfies the property of independent MIS-additivity1 iff, for all
knowledge bases K and K ′, if MISes(K ∪ K ′) = MISes(K) � MISes(K ′) and
(
⋃

M∈MISes(K) M) ∩ (
⋃

M∈MISes(K′) M) = ∅, then I(K ∪ K ′) = I(K) + I(K ′).

Proposition 7. MCSC measure satisfies the property of independent MIS-
additivity.

Proof. Let K, K1 and K2 be knowledge bases such that MISes(K) =
MISes(K1)�MISes(K2) and, for all M ∈ MISes(K1) and M ′ ∈ MISes(K2),
M ∩ M ′ = ∅. We denote K ′, K ′

1 and K ′
2 the sets

⋃
M∈MISes(K) M ,

⋃
M∈MISes(K1)

M and
⋃

M∈MISes(K2)
M respectively. Let us note that K ′ =

K ′
1 � K ′

2. Using the property of free formula independence, we have
MCS(K) = MCS(K ′), MCS(K1) = MCS(K ′

1) and MCS(K2) = MCS(K ′
2).

Then, using the properties of super-additivity, we have MCSC(K) �
MCS(K1) + MCS(K2). Let S ∈ MCSes(K ′

1) and S′ ∈ MCSes(K ′
2). Since

(
⋃

M∈MISes(K1)
M) ∩ (

⋃
M∈MISes(K2)

M) = ∅, S ∪ S′ is a consistent set in
K ′. Then, using the fact that K ′ = K ′

1 � K ′
2, we have λ(K ′) � λ(K ′

1) +
λ(K ′

2) and, consequently, MCSC(K ′) � MCSC(K ′
1) + MCSC(K ′

2). Thus,
MCSC(K) � MCSC(K1)+MCSC(K2) holds. Therefore, we get MCSC(K) =
MCSC(K1) + MCSC(K2).

Proposition 8. Given a knowledge base K, we have MCSC(K) � 2×ICC(K).

Proof. The property is a consequence of Super-additivity and Proposition 6.

We now show that MCSC allows to distinguish knowledge bases which are not
distinguishable by ICC . Consider, for instance, the two knowledge bases K1 = {p∧
q, p∧ r,¬p} and K2 = {p∧ q,¬p}. Then, MISes(K1) = {{p∧ q,¬p}, {p∧ r,¬p}}
andMISes(K2) = {{p∧q,¬p}}. Hence,we have clearly ICC(K1) = ICC(K2) = 1.
Furthermore, C1 = {{p ∧ q, p ∧ r}, {¬p}} and C2 = {{p ∧ q}, {¬p}} are maximum
MCS-covers of K1 and K2 respectively. As a consequence, λ(K1) = λ(K2) = 0.
Thus, MCSC(K1) = 3 and MCSC(K2) = 2 hold.

Conversely, consider the knowledge bases K3 = {p ∧ q1, p ∧ q2,¬p, r,¬r} and
K4 = {p ∧ q1, p ∧ q2, p ∧ q3, p ∧ q4,¬p}. Then, 〈{{p ∧ q1, p ∧ q2,¬p}, {r,¬r}}, ∅〉
and . 〈{{p ∧ q1, p ∧ q2, p ∧ q3, p ∧ q4,¬p}}, ∅〉 are maximum MIS-decompositions
of K3 and K4 respectively and, consequently, ICC(K3) = 2 and. ICC(K3) = 1
hold. Moreover, {{p ∧ q1, p ∧ q2, r}, {¬p,¬r}} and {{p ∧ q1, p ∧ q2, p ∧ q3, p ∧
q4}, {¬p}} are maximum MCS-covers of K3 and K4 respectively. Thus, we obtain
MCSC(K3) = MCSC(K4) = 5.

The previous examples show that MCSC allows to distinguish knowledge
bases which are not distinguishable by ICC and vice versa. As a consequence,
these measures do not capture the same facets in measuring inconsistency.
1 In the original paper, this property is called enhanced additivity.
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6 Integer Linear Programming Formulation

In this section, we show that our measure can be formulated as an integer linear
program (ILP) by providing an encoding defined mainly from the set of the
MCSes of a knowledge base. To do this, each variable used in our encoding is
binary (a 0-1 variable) and corresponds to either a formula or an MCS. The
constraints are defined so that the objective consists in maximizing the function
corresponding to the sum of the variables associated to formulæ.

Variables. We associate a binary variable Xφ having as domain {0, 1} to each
formula φ in K. We also associate a binary variable YM having as domain {0, 1}
to each MCS M of K.

The integer linear program ILP-MCSC(K) is as follows:

minimize |K|
subject to:

−
∑

φ∈K
Xφ

∑

M :φ∈M

YM � 1 for all φ ∈ K (1)

Xφ + YM � 1 for all φ ∈ K and M ∈ MCSes(K) with φ /∈ M (2)

Proposition 9 (Soundness). Given a knowledge base K and a solution S of
ILP-MCSC(K), then MCSC(K) = |K| − |{φ ∈ K | S(Xφ) = 1}|.
Proof. Each solution S1 of the linear inequality (1) means that the set C = {M ∈
MCSes(K) | S1(YM ) = 1} is an MCS-cover of K. Moreover, each solution S2

of the linear inequality (2) means that {φ ∈ K | S2(Xφ) = 1} ⊆ ⋂
L M where

L = {M ∈ MCSes(K) | S2(YM ) = 1}. Thus, since minimizing |K| − ∑
φ∈K Xφ

corresponds to maximizing
∑

φ∈K Xφ, we have λ(K) = |{φ ∈ K | S(Xφ) = 1}|.
As a consequence, MCSC(K) = |K| − |{φ ∈ K | S(Xφ) = 1}| holds.

7 Conclusion and Perspectives

Several approaches for measuring inconsistency have been proposed in the lit-
erature. In this paper, we proposed an original approach based on the use of
maximal consistent sets. The basic idea consists in considering the conflict of
a knowledge base as a consequence of the use of multiple consistent informa-
tion sources. We showed that our inconsistency measure satisfies several desired
rational properties. We also proposed an encoding in integer linear programming
for its computation.

As a future work, we intend to investigate complexity issues related to our
framework. We also plan to define algorithms for the problem of MCSC compu-
tation and conduct experimental evaluations.
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