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Abstract. When dealing with complex knowledge, inconsistencies
become a big problem. Due to the complexity of modern knowledge
systems, usually a manual elimination of inconsistencies by a domain
expert is preferable, since automated systems are most of the time not
able to properly model and use the domain knowledge of an expert. In
order to eliminate an inconsistency correctly, with respect to the specific
domain, an expert needs a proper understanding of that inconsistency
respectively the components that constitute it. Especially in our focus
area of inconsistencies that occur during the revision of probability dis-
tributions, creating useful explanations is in most cases still a manual
and hence expensive effort. In this work we discuss how to automatically
create groupings of partitions created by revision assignments and how
explanations can benefit from those grouped partitions.

1 Introduction

One important aspect of managing knowledge is the need to react to changes in
beliefs quickly and frequently. Methods have been developed to adapt knowledge
to new beliefs. In order to adapt knowledge properly, the principle of minimal
change [10] should be respected. This principle states that no changes are to
be made to the knowledge base that are not necessary to incorporate given
new beliefs. This means the knowledge base after the incorporation of the new
beliefs should be the closest knowledge base to the original one, in an information
theoretic sense. The revision operation has been introduced as belief change
operation that applies new beliefs respecting the principle of minimal change [7].
Further properties a revision operation should satisfy have been formulated as
postulates in [1,3]. How to approach revision algorithmically has been outlined in
[5] and computational considerations have been made in [12]. This work focusses
on the revision of probability distributions. In this field the revision operation
has been successfully implemented for Markov networks [6,8]. Markov networks
are a member of a class of so called graphical models [2,11,13,17], which are
techniques to decompose high-dimensional probability spaces into a number of
smaller low-dimensional probability spaces.

The growing complexity and interconnectedness of knowledge bases and
increasing number of new beliefs lead almost inevitably to inconsistencies. Incon-
sistencies in knowledge bases however, pose a threat to the usability of any
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knowledge system and should consequently be addressed. Handling inconsisten-
cies is a multi-facet problem. In this work we focus on the handling of incon-
sistencies during the revision of probability distributions. Different important
aspects of that problem have been introduced in [15]. Furthermore, two types of
inconsistencies and a revision control algorithm have been described in [9].

One important aspect of handling inconsistencies properly is to try to elim-
inate them. Two types of elimination can be differentiated: the first type is the
automated elimination during the revision; the second type is the manual elim-
ination by domain experts that normally happens after the revision operation.
In order to manually eliminate inconsistencies, domain experts need to gain a
proper understanding of the underlying contradictions at the core of inconsis-
tencies. Therefore, the creation of meaningful explanations for inconsistencies
is important. Different components of explanations have been described in [14].
Furthermore, one automated method for creating explanations has been pro-
posed in [15]. In that approach, a minimal explaining set of revision assignments
is determined and used as explanation. In this work, we will discuss the grouping
of partitions created by revision assignments and how they can be used to create
easier to understand explanations that also work with more complex problems.

In Sect. 2 of this paper, we will formally introduce the revision operation, the
revision factor and revision inconsistencies. Section 3 then discusses the grouping
of partitions. Additionally, we will introduce our example application and present
some test results. In Sect. 4, we conclude our work and give some ideas for further
research.

2 Fundamentals

In this section we will describe revision assignments, the revision operation, the
revision factor and what inconsistencies are in that context.

2.1 The Revision Operation

This paper focusses on the revision of probability distributions and we therefore
define it in this context.

As mentioned before, the goal of (probabilistic) revision is to compute a pos-
terior probability distribution which satisfies given new distribution conditions,
only accepting a minimal change of the quantitative interaction structures of the
underlying prior distribution.

More formally, in our setting, a revision operation (see [6,9]) operates on a
joint probability distribution P (V ) on a set V = {X1, ...,Xn} of variables with
finite domains Ω(Xi), i = 1, ..., n. The purpose of the operation is to adapt
P (V ) to new sets of beliefs. The beliefs are formulated in a so-called revision
structure Σ = (σs)S

s=1. This structure consists of revision assignments σs,
each of which is referred to a (conditional) assignment scheme (Rs|Ks) with a
context scheme Ks, Ks ⊆ V , and a revision scheme Rs, where ∅ �= Rs ⊆ V
and Ks ∩ Rs = ∅. The pair (P (V ), Σ) is called revision problem.
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For example, in the revision assignment (NAV=nav1 | Country=France) :=
0.2, which sets the probability for the navigation system nav1 in the country
France to 0.2, the context scheme Ks is {Country} and the revision scheme Rs

is {NAV }.
Revision assignments partition the probability space with respect to their

context and revision schemes. Expanding on the previous example, suppose there
are five different values for the variable NAV and three revision assignments,
namely:

σ1
Def
= [(NAV = nav1|Country = France) := 0.2]

σ2
Def
= [(NAV = nav2|Country = France) := 0.25]

σ3
Def
= [(NAV = nav3|Country = France) := 0.3]

The revision assignments create the partitions {nav1}, {nav2}, and {nav3} for
the domain Ω(NAV) in the context of Country=France. Since the probabilities
of those three assignments do not sum up to 1, they also together create a fourth
partition containing {nav4,nav5}. We will use this type of partitions later for
our grouping approach.

The result of the revision, and solution to the revision problem, is a proba-
bility distribution PΣ(V ) which

– satisfies the revision assignments (the postulated new probabilities)
– preserves the probabilistic interaction structure as far as possible.

By preserving the interaction structure we mean that, except from the modifi-
cations induced by the revision assignments in Σ, all probabilistic dependencies
of P (V ) are preserved. This requirement ensures that modifications are made
according to the principle of minimal change.

It can be proven (see, i.e. [6]) that in case of existence, the solution of the
revision problem (P (V ), Σ) is uniquely defined. This solution can be determined
using iterative proportional fitting [17]. Starting with the initial probability dis-
tribution, this process adapts the initial probability distribution iteratively, one
revision assignment at the time, and converges to a limit distribution that solves
the revision problem, given there are no inconsistencies.

2.2 Revision Factors

In each iteration of the iterative proportional fitting process, partitions as
explained earlier are multiplied with a so called revision factor in order to
incorporate the current revision assignment. Consider a single revision assign-
ment σ∗ Def

= P ∗(ρs|κs) of a new probability for ρs|κs, with ρs and κs being
single partitions.

With respect to the concept of minimal change, revising P (V ) by σ∗ leads to
the probability distribution Prev(V ) which satisfies the condition Prev(ρs|κs) =
P ∗(ρs|κs) and Prev(V − Ks − Rs, κs, ρs) = P (V − Ks − Rs, κs, ρs).
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Fig. 1. Inner inconsistency

Using the general rule for factorisation, we obtain

Prev(V − Ks − Rs, κs, ρs) = Prev(V − Ks − Rs|κs, ρs)Prev(ρs|κs)Prev(κs)
= P (V − Ks − Rs|κs, ρs)P ∗(ρs|κs)P (κs)

=
P ∗(ρs|κs)
P (ρs|κs)

P (V − Ks − Rs, κs, ρs),

where P ∗(ρs|κs)
P (ρs|κs)

describes the revision factor.
In case of a solvable revision problem (P (V ), Σ) those factors converge

towards one as the revision operation converges.

2.3 Inconsistencies in the Context of the Revision Operation

In case of inconsistencies, the revision will oscillate between multiple limit dis-
tributions. In the worst case there are as many limit distributions as there are
revision assignments where each limit distribution satisfies the incorporation of
one revision assignment. Furthermore, the revision factors will also be oscillat-
ing between different values in order to transfer the probabilities from one limit
distribution to another one.

Inconsistencies have been analysed in [9] and two types of inconsistencies of
revision problems have been distinguished:

Inner consistency of a revision structure Σ is given, if and only if a probability
distribution exists that satisfies the revision assignments of Σ; otherwise we refer
to inner inconsistencies of Σ.

In Fig. 1, a simple example is shown where the given revision assignments
already lead to an inconsistency without the consideration of the underlying
interaction structure. The filled entries in the left table represent the revision
assignments. In the right table consequences for the rest of the table are shown
and one conflict is highlighted.

Given that Σ has the property of inner consistency, it is still possible that due
to the zero probabilities of P (V ) the revision problem (P (V ), Σ) is not solvable,
since a modification of the interaction structure of P (V ) would be necessary
in order to satisfy the given revision assignments. Therefore, a second type of
inconsistency is defined as follows:

Given that Σ has the property of inner consistency, the revision problem
(P (V ), Σ) shows the property of outer inconsistency, if and only if there is
no solution to this revision problem.
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Fig. 2. Outer inconsistency

Figure 2 illustrates an outer inconsistency. In the left table again the numbers
represent revision assignments. This time there are additional circles representing
zero values that cannot be changed during the revision operation. As before, the
right table shows consequences for the remaining table entries as well as an
inconsistency.

For the purpose of creating explanations, we now know that there are two
potential sources of contradictions. Namely, the revision structure Σ and the
interaction structure of P (V ), or more precisely its zero-values.

3 Explaining Revision Inconsistencies

In the case of inconsistency the revised distribution Prev does not exist. After
cancelling the revision we obtain Pappr, a distribution that approximates Prev.
Due to the inconsistency there exists at least σ ∈ Σ where Pappr(σ) �= P ∗(σ).
In order to support the manual elimination of inconsistencies, our explanations
aim to highlight the core contradiction that caused Pappr(σ∗) �= P ∗(σ∗) for
one chosen revision assignment σ∗. In previous works we proposed a minimal
explaining set of revision assignments that together constitute the contradiction
as described in [15] as explanation. Such set is effective as long as the number of
elements in it is moderately small, or the explained inconsistency doesn’t spread
over too many dimensions. With an increasing number of participating variables
and items in the set, explanations get more and more incomprehensible. There-
fore, even after the introduction of an automated method for finding minimal
explaining sets, there are still requests for manual analysis of inconsistencies,
because the automatically created explanation is not sufficient.

We identified two aspects that most manually created explanations cover, and
are currently not incorporated into our automated system: A relevant extract of
the interaction structure as well as a meaningful grouping of partitions, created
by the revision assignments. In this work, we focus on the automated acquisition
of meaningful groupings of partitions.

3.1 Grouping

Grouping together partitions, created by the revision structure Σ, has two pos-
itive effects on explanations. First, it reduces the number of elements presented
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to a domain expert. And second, it magnifies the core feature of the interac-
tion structure that contributes to an inconsistency. To visualise this effect, Fig. 3
shows the interaction structure between two variables. On the left side the origi-
nal interaction structure is shown. The right side presents the condensed version
after the manual grouping of partitions. Relations between the groups of ele-
ments are more clearly visible on the right side.

Fig. 3. Left: original interaction structure, right: interaction structure after manual
grouping

The biggest challenge when grouping elements automatically is to find a
suitable similarity measure in order to decide which elements should be grouped.
For the grouping of partitions created by revision assignments, we found that the
revision factor can be used. The revision factor is applied to partitions created
by the revision structure in every iteration of the revision operation in order
to adapt probabilities according to the specified revision structure. During the
revision operation very often partitions that would be grouped together by a
data analysis expert, are adapted with the same or very similar revision factors.
The revision factor converges for every partition once the revision operation
converges. In the case that the revision converges towards exactly one limit
distribution (and hence does not show inconsistencies), the revision factors will
converge towards one. Otherwise, the revision factors will differ and provide a
suitable similarity measure. The fact that they are converging means that we
can use them as a base for further analysis, and in our case as a measure of
similarity.

One of the most common class of methods to group objects by similarity
are clustering algorithms. In order to choose a suitable algorithm from that
class we have to analyse our grouping problem. In general, we are interested
in a result that has the least possible number of clusters, but still explains the
chosen inconsistency. The exact number of clusters is unknown and most likely
changes between problems. Another aspect is the number of elements we need to
cluster. In our case we are dealing with somewhere between a couple of hundred
to a couple of thousand revision assignments. However, that number can usually
already drastically be reduced before starting the clustering. We decided to use
hierarchical clustering [4,16], since the hierarchy provides us with an easy method
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Fig. 4. Above: original interaction structure, below: interaction structure after auto-
mated grouping by revision factors

to progressively test groupings with an increasing number of clusters until we
found the best solution.

The resulting algorithm groups partitions that are derived from the revision
structure Σ and clusters them using the revision factors that are observed when
the revision operation converges. The result is a set of groupings of partitions
that can then be used to create a more concise view on the relevant part of the
interactions structure of the resulting probability distribution Prev.

The grouping created in Fig. 3 could technically be achieved by deriving
it from the interaction structure. However, this is a very simple example we
choose to illustrate the effect of grouping. In real applications, the interaction
structure is only one component that influences the similarity between different
partitions. The clustering of partitions using the revision factors is able to also
find similarity between structurally different partitions. Furthermore, partitions
that look structurally similar in certain projections might indeed have differences
caused by higher level dependencies that remain hidden during a structural
analysis of a given projection.

Figure 4 shows an example where using revision factors finds groupings that
would not have been visible through structural analysis alone. When analysing
the structure of the table above, one would find three partitions for the vari-
able NAV. Namely {nav1,nav3,nav4}, {nav2}, and {nav5,nav6}. Similarly for
the variable MODEL: {mod1,mod2}, {mod3,mod4}, and {mod5}. However, the
analysis of the revision factors revealed that there is an even more concise group-
ing shown in the table below.

For those reasons structural analysis in general only gives a partial view on
the picture. Another aspect is that the interaction structure is relatively static
as it does not change during the revision, except from the changes induced by
the revision structure. On the other hand, revision factors change dynamically
in every iteration of the revision and hence reflect the dynamics of the revision
operation to a certain degree. In this way, even dependencies that are not visible
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in a given projection are considered. This is especially important since manual
analysis, most of the time, is restricted to schemes that the data analysis expert
considers important. Furthermore, in case of inconsistencies the way the revision
factors change already gives certain insight into the nature of inconsistencies.

All the mentioned properties of the grouping of partitions using the revision
factor as a similarity measure lead to groupings that can be used to provide a
concise explanation for a given inconsistency.

3.2 Application

The presented approach is tested at the Volkswagen Group in their system for
estimating part demands and managing capacities for short- and medium-term
forecasts, called EPL (EigenschaftsPLanung: item planning). The system com-
bines several heterogeneous input sources such as rules describing buildable vehi-
cle specifications, production history reflecting customer preferences, and market
forecasts leading to stipulations of modified item rates, and capacity restrictions
that are modelled as revision assignments. Those sources are fused into Markov
Networks and the revision operation is then used to estimate the part demands.
More details of the modelling of EPL can be found in [6,7]. EPL is currently the
biggest industrial application for Markov networks. Using EPL the demands for
more than a hundred different model groups from multiple car manufacturers of
the Volkswagen Group are estimated every week. In case of the VW Golf– being
Volkswagens most popular car class–there are about 200 item families with typ-
ically 4 to 8 (but up to 150) values each, that together fully describe a car to be
produced, and many of these families can directly be chosen by the customer.

3.3 Experimental Results

In our productive system we are currently using an explanation based on a min-
imal explaining set of revision assignments as described in [15]. Compared with
that approach we achieved two improvements by using the presented clustering
method. First, we reduced the number of elements needed to explain an inconsis-
tency (see 1). Second, we achieved some significant performance improvements
since we are not searching for a minimal explaining set of revision assignments.

Each example comes from a different model group and planning inconsistency.
In all the provided examples the clustering algorithm finds an explanation with
less elements faster than the algorithm we were using previously. The last exam-
ple in Table 1 is an extreme case. Even with an optimised version of the original
algorithm, the problem is practically not explainable as 680 revision assignments
in the explaining set are hard to understand. Furthermore, with 3 h and 50 min
of processing time, the problem is probably faster analysed manually. The clus-
tering algorithm still finds 169 clusters which are similarly hard to understand.
However, reaching this result in just 7.5 min instead of 3 h and 50 min, means
we can resort to a manual analysis significantly earlier. The three examples were
chosen to show results for problems with different complexity.
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Table 1. Example reduction of the computation time and number of elements in the
explanation when using clustering to group partitions

Example 1 2 3

time using the minimal explaining set algorithm 0.807 s 4.027 s 3h49 min

# revision assignments in the minimal set 10 8 680

time using clustering method 0.229 s 1.996 s 7.5 min

# clusters 3 5 169

Although the clustering algorithm finds smaller explanations faster, the type
of explanation is slightly different compared to a minimal explaining set of revi-
sion assignments and in most cases relies on the dependency structure to under-
stand what the clusters actually mean. The minimal explaining alone is enough
to understand simple problems. However, for more complex inconsistencies the
clustering algorithm becomes the better choice.

4 Conclusion

The maintenance of knowledge is one of the most important topics in our cur-
rent times. Aside from the storage and retrieval of knowledge, adapting it to
ever changing business environments is one of the biggest challenges. Methods
like the revision operation have been introduced in order to suit the need for
proper adaptation of knowledge according to new beliefs. However, with more
complex knowledge and longer lists of changed beliefs, inconsistencies are practi-
cally unavoidable and need to be handled appropriately. One aspect of handling
inconsistencies is their elimination which requires their understanding. In order
to help domain experts to understand inconsistencies, explaining them is an
essential part of the elimination process. In this work we introduced the idea of
grouping partitions created by revision assignments as a method to create more
concise explanations while at the same time we save valuable processing time.
Our experiments showed a significant improvement in both categories but also
revealed some areas for future research.

In this paper, as well as in our previous works, it became quite apparent that
providing explanations without the corresponding excerpt of the dependency
structure reduces the understandability of an explanation considerably. However,
identifying and presenting the relevant parts of the structure, is a non-trivial
task even for data analysis experts. In order to improve the expressiveness of
automatically created explanations, we are interested in finding and presenting
those excerpts of the structure in an automated manner as well.
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