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Abstract. Multi-dimensional classifiers are Bayesian networks of
restricted topological structure, for classifying data instances into mul-
tiple classes. We show that upon varying their parameter probabilities,
the graphical properties of these classifiers induce higher-order sensitiv-
ity functions of restricted functional form. To allow ready interpretation
of these functions, we introduce the concept of balanced sensitivity func-
tion in which parameter probabilities are related by the odds ratios of
their original and new values. We demonstrate that these balanced func-
tions provide a suitable heuristic for tuning multi-dimensional Bayesian
network classifiers, with guaranteed bounds on the changes of all output
probabilities.

1 Introduction

The family of multi-dimensional Bayesian network classifiers (MDCs) was intro-
duced to generalise one-dimensional classifiers to application domains that
require instances to be classified into multiple dimensions [6,9]. An MDC includes
multiple class variables and multiple feature variables, which are connected by a
bipartite graph directed from the class variables to the feature variables. Clas-
sifying a data instance amounts to computing the joint probability distribution
over the class variables given the instance’s features, and returning the most
likely joint class combination. MDCs enjoy a growing interest as a suitable tool
for multi-dimensional classification [1,4].

Like more traditional classifiers, multi-dimensional Bayesian network classi-
fiers are typically learned from data. Tailored algorithms are available for fitting
MDCs to the joint probability distributions reflected in the data at hand.
While often available data prove suboptimal already for constructing a one-
dimensional classifier, any skewness properties of the joint or conditional dis-
tributions over the class variables will prove especially problematic for learning
multi-dimensional classifiers. Expert knowledge, for example of expected clas-
sifications, can then be instrumental in correcting unwanted biases by careful
tuning of the parameter probabilities of the learned classifier.

Tuning the parameters of a multi-dimensional classifier requires detailed
insight in the effects of changing their values on the classifier’s output prob-
abilities. For Bayesian networks in general, the technique of sensitivity analysis
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has evolved as a practical tool for studying the effects of changes in a network’s
parameter probabilities. Research so far has focused on one-way sensitivity analy-
ses in which a single parameter is varied. The effects of systematic variation of
multiple parameters have received far less attention, mostly due to the compu-
tational burden of establishing the functions describing these effects. A recent
exception is [2] in which an efficient algorithm for studying the effects of multiple
changes, within a fixed interval, on an established MPE is given. For tuning the
parameters of a multi-dimensional classifier however, more detailed insights in
the effects of simultaneously varying multiple parameters is preferred or even
necessary.

In this paper, we present an elegant method for tuning the output probabili-
ties of a multi-dimensional Bayesian network classifier by simultaneous parame-
ter adjustment. We begin by showing that the topological properties of an MDC
induce higher-order sensitivity functions of restricted functional form which can
be established efficiently. By employing a carefully balanced scheme of parame-
ter adjustment, such a function is reduced to an insightful single-parameter bal-
anced sensitivity function which can be readily exploited as a suitable heuristic
for tuning. The heuristic is shown to incur changes within guaranteed bounds in
all output probabilities over the class variables, thereby providing global insight
in the change in the network’s output distributions.

The paper is organised as follows. In Sect. 2 we review multi-dimensional
classifiers, and sensitivity functions of Bayesian networks in general. In Sect. 3
we derive the general form of a higher-order sensitivity function for MDCs. In
Sect. 4, the concept of balanced sensitivity function is introduced; we describe
how such a function is used for effective parameter tuning in a multi-dimensional
classifier and prove bounds on the changes induced in all output probabilities.
Section 5 illustrates the basic idea of balanced parameter tuning by means of an
example, and Sect. 6 concludes the paper.

2 Preliminaries

We briefly review multi-dimensional classifiers and thereby introduce our nota-
tions. We further describe higher-order sensitivity functions for Bayesian net-
works in general.

2.1 Bayesian Networks and Multi-dimensional Classifiers

We consider a set of random variables V = {V1, . . . , Vm}, m ≥ 1. We will use vi
to denote an arbitrary value of Vi; we will write v and v̄ for the two values of a
binary variable V . A joint value assignment to V is indicated by v. In the sequel,
we will use Vi and V also to indicate the set of possible value assignments to Vi

and V, respectively.
A Bayesian network is a graphical model of a joint probability distribution

Pr over a set of random variables V. Each variable from V is represented by
a node in a directed acyclic graph, and vice versa; (in-)dependencies between



212 J.H. Bolt and L.C. van der Gaag

the variables are, as far as possible, captured by the graph’s set of arcs accord-
ing to the well-known d-separation criterion [7]. Each variable Vi ∈ V further
has associated a set of conditional probability distributions Pr(Vi | πVi

), where
πVi

denotes the set of parents of Vi in the graph; the separate probabilities in
these distributions are termed the network’s parameters. The joint probability
distribution Pr now factorises over the network’s graph as

Pr(V) =
∏

Vi∈V

Pr(Vi | πVi
)

where Vi and πVi
take their value assignments compatible with V. We will use

∼ and � to indicate compatibility and incompatibility of value assignments,
respectively.

A multi-dimensional classifier now is a Bayesian network of restricted topol-
ogy. Its set of variables is partitioned into a set C of class variables and a set
F of feature variables, and its digraph does not allow the feature variables to
have class children [6,9]. An MDC is used to assign a joint value assigment, or
instance, f to a most likely combination of class values c, that is, it is used to
establish argmaxc Pr(c | f). In this paper we focus specifically on classifiers with-
out any direct relationships between their class variables, yet in which no further
topological assumptions are made; we will denote such classifiers by MDC (C,F).
For a feature variable Fi ∈ F, we will use FFi

= F ∩ πFi
to denote its set of fea-

ture parents, and CFi
to denote its parents from C. Specific value assignments

to these sets are indicated by fFi
and cFi

respectively.

2.2 Sensitivity Functions of Bayesian Networks

Upon systematically varying multiple parameter probabilities x = {x1, . . . , xn},
n ≥ 1, of a Bayesian network in general, a higher-order sensitivity function
results which expresses an output probability Pr(y | e) of interest in terms of
these parameters x. More specifically, the result is a function of the following
form:

Pr(y | e)(x) =

∑
xk∈P(x)

(
ck · ∏

xi∈xk
xi

)
∑

xk∈P(x)

(
dk · ∏

xi∈xk
xi

)

where P(x) is the powerset of the set of network parameters x and where the
constants ck, dk are determined by the non-varied network parameters. We will
use xo = {xo

1, . . . , x
o
n} to indicate the original values of the parameters x in the

network under study, Pro to indicate original probabilities, that is, probabilities
computed with the original values of all parameters involved, and Oo to indicate
original odds.

Upon varying a parameter xj for a variable Vi, the other parameters of the
same conditional distribution over Vi are co-varied to let the distribution sum to
1. In the most commonly used co-variation scheme, these parameters are varied
proportionally with xj . Since other schemes may also be appropriate [8], we
will formulate our results in the sequel without assuming any specific scheme of
co-variation.
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3 The n-way Sensitivity Function of an MDC

Establishing a higher-order sensitivity function for a Bayesian network in gen-
eral is computationally expensive, as the number of additive terms involved,
and hence the number of constants to be computed, can be exponential in the
number of parameters being varied. In this section, we show that, due to its
restricted topological structure and dedicated use, a multi-dimensional classifier
allows more ready calculation of the n-way sensitivity functions for its output
probabilities. We show more specifically, that an output probability Pr(c | f) for
a given c can be expressed in terms of the original output probability and the
original and new values of all parameters compatible with the instance f . The
form of the sensitivity function is given in the proposition below; the proofs of
all propositions in this paper are provided in the appendix.

Proposition 1. Let MDC (C,F) be a multi-dimensional classifier as defined
above. Let f be an instance of F, and let x = {x1, . . . , xn}, n ≥ 1, be the set of
network parameters compatible with f . Then, for all c ∈ C,

Pr(c | f)(x) =

Pro(c | f) · ∏
xi∼c,xj�c

xi · xo
j

∑
c∗∈C

(
Pro(c∗ | f) · ∏

xi∼c∗,xj�c∗
xi · xo

j

)

The sensitivity function Pr(c | f)(x) stated above includes all parameters of the
feature variables which are compatible with the instance f to be classified. The
parameters Pr(f ′

i | πFi
) of a feature variable Fi with f ′

i incompatible with f
do not occur in the function since these parameters are not involved directly
in the computation of the output probability: upon variation of such a para-
meter, the output probability is affected only indirectly by the co-variation of
Pr(fi | πFi

) with fi ∼ f . Without loss of generality, we thus include just the
parameters compatible with f , which implies that the proposition holds for any
co-variation scheme used for the parameters of the feature variables. Also all
parameters Pr(ci) of a class variable Ci are included in the sensitivity function.
These parameters cannot be varied freely however, as their sum should remain 1.
By assuming a specific co-variation scheme, we could have included the depen-
dent parameters implicitly, as with the feature parameters. By their explicit
inclusion, however, the function is independent of the co-variation scheme used
for the class parameters and can be further tailored to a specific scheme upon
practical application.

Although the function stated above includes all parameters compatible with
the instance to be classified, it is easily adapted to a sensitivity function involving
only a subset of these parameters: since each parameter is included exactly once
in each term of the fraction, either by its original value xo or as a variable x,
any non-varied parameter cancels out. The sensitivity function is also readily
adapted to output probabilities Pr(c | g) with G ⊂ F, provided there are no
observed feature variables with unobserved feature parents. The parameters of
the unobserved feature variables then should simply be excluded.
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The sensitivity function stated in Proposition 1 reveals that an output proba-
bility of a multi-dimensional classifier changes monotonically with specific para-
meter adjustments. Proposition 2 details this property of monotonicity.

Proposition 2. Let MDC (C,F) be a classifier as before, and let Pr(c | f) be
its output probability of interest. Let x = {x1 . . . , xn}, n ≥ 1, be the parameters
of MDC (C,F) compatible with f , and let x′, x∗ be two sets of values for these
parameters. Then,

x′
i ≤ x∗

i for all xi∼c and x′
j ≥ x∗

j for all xj �c ⇔ Pr(c | f)(x′) ≤ Pr(c | f)(x∗)

The proposition states that by increasing the parameters in x compatible with
c and decreasing the incompatible ones, the output probability of the class com-
bination c increases. Such a parameter change will be called monotone with
respect to the output probability Pr(c | f). We note that the monotonicity prop-
erty of a parameter change provides information about the direction in which
the separate parameters need to be adjusted to arrive at the intended effect on
the output probability. The following corollary states that this probability takes
its maximum at the parameters’ extreme values.

Corollary 1. Let MDC (C,F), Pr(c | f) and x be as before. The sensitivity
function Pr(c | f)(x) attains its maximum at xi = 1 for all xi ∼ c and xj = 0
for all xj � c. A similar property holds for the minimum of the function.

4 Balanced Tuning of MDCs

In the previous section we showed that the output probability Pr(c | f) of a
multi-dimensional classifier changes monotonically given a monotone parame-
ter adjustment. While this property indicates the direction in which parameters
have to be adjusted, it does not yet suggest the amount of adjustment for arriv-
ing at the intended output. We now introduce for this purpose the concept of
a balancing scheme for parameter adjustment. A balancing scheme governs a
simultaneous change in all parameters x involved, by amounts defined by their
odds ratios xo·(1−x)

(1−xo)·x . Balancing the parameters of a classifier constitutes a simple
and generally applicable approach to parameter tuning; we will show moreover
that the approach comes with guaranteed bounds on the changes of all possible
output probabilities. We now first define the concept of balancing scheme.

Definition 1. Let x, y ∈ 〈0, 1〉 be parameters of an MDC, and let xo and yo

be their original values. We say that a scheme for parameter adjustment bal-
ances y positively with x if xo·(1−x)

(1−xo)·x = yo·(1−y)
(1−yo)·y ; it balances y negatively with x if

xo·(1−x)
(1−xo)·x = (1−yo)·y

yo·(1−y) .

An important property of a balancing scheme for parameter adjustment is that,
if a parameter x is varied over the full value range 〈0, 1〉, then the parameter y
covers the full range 〈0, 1〉 as well, that is, the range of possible values of y is
not constrained by balancing y with x; this property is illustrated for xo = 0.7
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and yo = 0.8 in Fig. 1. We note that we assume that a balancing scheme does
not adjust deterministic parameters and that non-deterministic parameters will
not adopt deterministic values.

Building upon balancing schemes, we now define a balanced sensitivity
function1.

Definition 2. Let Pr(c | f) be the output probability of an MDC as before, and
let x = {x1, . . . , xn}, n ≥ 1, be its parameters compatible with f . A balanced
sensitivity function for Pr(c | f) is a function Pr(c | f)(xi) in a single parameter
xi ∈ x, with all parameters xj ∈ x balanced with xi.

A balanced function Pr(c | f)(xi) is the intersection of the n-way function
Pr(c | f)(x) with the (curved) surface defined by the balancing scheme. It takes
the following form:

Pr(c | f)(xi) =
c0 + c1 · x1

i + . . . + cm · xm
i

d0 + d1 · x1
i + . . . + dm · xm

i

where the constants cj , dj again are determined by the non-varied parameters,
each xk

i is a multiplicative term of degree k, and m is the number of probability
tables from which the parameters are chosen. As an example, Fig. 2 depicts the
two-way sensitivity function Pr(cd | fgh)(x, y) of the MDC from Fig. 3, in the two
parameters x = Pr(f |c) and y = Pr(g |cd̄). The figure further depicts the two sur-
faces determining the balanced sensitivity functions in x and in y separately, that
are derived from the two-way function given a positive and a negative balancing
scheme for the two parameters.

A balanced sensitivity function provides insight in the effects of varying mul-
tiple parameter probabilities according to a balanced scheme of adjustment. For
a required change in the output probability of interest Pr(c | f), the amount
by which the parameter xi is to be adjusted is readily established; the bal-
anced scheme of adjustment then enforces the other parameter probabilities to
be adjusted accordingly. To guarantee that the balanced sensitivity function
covers the same value range for the output probability as the underlying n-way
function, all parameters have to be balanced monotonically with the output
probability of interest.

Given a (not necessarily monotone) balanced change, the changes incurred in
all output probabilities over the class variables are bounded, in terms of the odds
ratio of the original and new probabilities, as stated in the following proposition.

Proposition 3. Let MDC(C,F) be a multi-dimensional classifier and let
G ⊆ F. Let parameters x be balanced with the parameter x and let α ≥ 1 be
such that either x·(1−xo)

(1−x)·xo = α or (1−x)·xo

x·(1−xo) = α. Then,

1
αk

≤ O(C | G)(x)
Oo(C | G)

≤ αk

1 In earlier research, we introduced the related concept of sliced sensitivity function
[3] which specifies an output probability of a Bayesian network in n linearly related
parameters.
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Fig. 1. Positively (solid line) and neg-
atively (dashed line) balanced parame-
ters x and y, with xo = 0.7 and yo = 0.8.

Fig. 2. A two-way sensitivity function
in x=Pr(f|c), y=Pr(g |cd̄), and the sur-
faces defining the balanced sensitivity
functions with xo = 0.7 and yo = 0.8.

where k = s + 2 · t, with s the number of probability tables from which just a
single parameter is in x and t the number of tables with two or more parameters
in x.

Although the bounds stated above are not strict, they do give insight in the
overall perturbation of the classifier’s output distributions.

The idea of measuring the distance between two probability distributions
by their odds ratio was introduced before by Chan and Darwiche [5]. More
specifically, they proposed a measure which strictly bounds the odds ratio of an
arbitrary probability of interest. Given changes in just a single probability table,
their bounds are readily computed from just those changes; computing these
bounds given multiple parameter changes however, is computationally expensive
in general.

5 Tuning an Example Multi-dimensional Classifier

We consider the example classifier from Fig. 3 and its output probability of
interest Pr(cd | fgh). With the original parameter values, we find that Pr(cd |
fgh) = 0.29. Now suppose that domain experts indicate that this probability
should be 0.40, and that we would like to arrive at this value by adjusting the
parameters x = Pr(f |c), y = Pr(g |cd̄) and z = Pr(h |gd̄). By Proposition 1, we
find the sensitivity function:

Pr(cd | fgh)(x, y, z) =
po1 · x · yo · zo

po1 · x · yo · zo + po2 · x · y · z + po3 · xo · yo · zo + po4 · xo · yo · z
=

0.94 · x
0.94 · x+ 3.47 · x · y · z + 0.25 + 1.39 · z

where po1 = Pro(cd | fgh), po2 = Pro(cd̄ | fgh), po3 = Pro(c̄d | fgh) and
po4 = Pro(c̄d̄ | fgh). From this higher-order function, we now derive a balanced
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Fig. 3. An example multi-dimensional
classifier, with Pr(cd | fgh) for its proba-
bility of interest to be tuned.

Fig. 4. Balanced functions for Pr(cd |
fgh) and Pr(cd̄ | fgh), given a monotone
balancing scheme for x, y, z with respect
to Pr(cd | fgh).

sensitivity function Pr(cd | fgh)(x) by appropriately balancing the parameters y
and z with x. Since x ∼ Pr(cd | fgh), y � Pr(cd | fgh) and z � Pr(cd | fgh), we
balance both y and z negatively with x, to guarantee that the output probability
retains the same value range as with the corresponding higher-order sensitivity
function. We find the balanced function

Pr(cd | fgh)(x) = 0.15 · x − 0.184 · x2 + 0.05 · x3

0.26 + 0.23 · x − 1.07 · x2 + 0.59 · x3

which is depicted in Fig. 4. The expert-provided value 0.4 for Pr(cd | fgh) is
attained at x = 0.81; the other parameters then take the values y = 0.69 and
z = 0.27. The value α of the adjustment is 1.83. As we changed a single para-
meter from three CPTs, we find that [1/αk, αk] = [0.16, 6.10]. In addition to
the monotonically balanced sensitivity function Pr(cd | fgh)(x), the figure also
depicts the function Pr(cd̄ | fgh)(x) found with the same balancing scheme for
the parameters x, y, z. Since this scheme is non-monotone for Pr(cd̄ | fgh), the
resulting balanced function is no longer monotone.

To attain the desired output probability Pr(cd | fgh) = 0.40, also another
combination of parameters can be varied. Varying other parameter combinations
will generally result in another α and hence in other bounds on the changes in
all output probabilities. For example, the desired probability is also found with
Pr(f | c̄) = 0.11, Pr(g | c̄d̄) = 0.34 and Pr(h | cd) = 0.82. For this parameter
combination α = 1.97 is found, from which the interval [1/αk, αk] = [0.13, 7.60]
is established. In uncertainty of the actual changes therefore, the first tuning
option is preferred.

6 Conclusions

Motivated by the observation that available data sets often prove problematic for
learning multi-dimensional classifiers, we presented an elegant method for tuning



218 J.H. Bolt and L.C. van der Gaag

their parameter probabilities based on expert-provided information. We showed
that the topological properties and dedicated use of an MDC induce higher-
order sensitivity functions of restricted functional form which can be established
efficiently. We further designed a scheme of balanced parameter adjustment,
by which a higher-order sensitivity function is reduced to an insightful single-
parameter function which is readily exploited as a suitable heuristic for tuning.
The heuristic was shown to incur changes within guaranteed bounds in all output
probabilities over the class variables. Although not strict, these bounds do give
insight in the changes in the classifier’s output distributions which are incurred
by balanced adjustment of different sets of parameters. In our future research,
we would like to study these bounds with the aim of further tightening them.
We also plan to study optimality properties of balancing parameter probabilities
by their odds ratios in view of the odds-ratio based measure on the output.

The tuning method developed in this paper does not as yet provide for select-
ing parameters for tuning. Parameter selection may be based upon various con-
siderations. An example criterion may be to select parameters which give the
smallest changes in the output distribution as a whole, as was already suggested
in our example. Yet, parameters may also be selected based on the sizes of the
samples from which they were estimated originally. We plan to investigate the
effects of these and other criteria in various real-world applications of multi-
dimensional network classifiers.

Acknowledgements. This work was supported by the Netherlands Organisation for
Scientific Research.

Appendix

Proof of Proposition 1. Let MDC (C,F) be a multi-dimensional classifier as
before. Writing the output probability Pr(c | f) for a given c and f as Pr(c |
f) = (Pr(f |c) · Pr(c)) / (

∑
C Pr(f |C) · Pr(C)), and including terms involving

the original probability values Pro(c | f) and Pro(c), results in

Pr(c | f) =

(
Pr(f |c)·Pr(c)·Pro(f |c)·Pro(c)

Pro(f)·Pro(f |c)·Pro(c)

)

( ∑
C

Pr(f |C)·Pr(C)·Pro(f |C)·Pro(C)
Pro(f)·Pro(f |C)·Pro(C)

) =

(
Pro(c|f)·Pr(f |c)·Pr(c)

Pro(f |c)·Pro(c)

)

(∑
C

Pro(C|f)·Pr(f |C)·Pr(C)
Pro(f |C)·Pro(C)

)

Rearranging its summands into a single fraction gives for the denominator

∑
c∗∈C

(
Pro(c∗ | f) · Pr(f | c∗) · Pr(c∗) · ∏

C\c∗
Pro(f | C) · Pro(C)

)

∏
C

Pro(f | C) · Pro(C)
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where C\c∗ is used to denote the set of all joint assignments to C except c∗.
Substitution and simplification now gives

Pr(c | f) =
Pro(c | f) · Pr(f | c) · Pr(c) ·∏C\c Pr

o(f | C) · Pro(C)
∑

c∗∈C Pro(c∗ | f) · Pr(f | c∗) · Pr(c∗) ·∏C\c∗ Pro(f | C) · Pro(C)

=
Pro(c | f) ·∏i Pr(fi | c, fFi

) · Pr(c) ·∏C\c
∏

i Pr
o(fi | C) · Pro(C)

∑
c∗∈C

(
Pro(c∗ | f) ·∏i Pr(fi | c∗, fFi

) · Pr(c∗) ·∏C\c∗
∏

i Pr
o(fi | C, fFi

) · Pro(C)
)

in which we used that Pr(f | c) =
∏

i Pr(fi | c, fFi
) with fi, fFi

∼ f , and that
Pr(c) =

∏
j Pr(cj) with cj ∼ c. We then find that

Pr(c | f)(x) =
Pro(c | f) · ∏

xi∼c,xj�c xi · xo
j

∑
c∗∈C

(
Pro(c∗ | f) · ∏

xi∼c∗,xj�c∗ xi · xo
j

)
�

Proof of Proposition 2. For the one-way sensitivity function describing the
output probability Pr(c | f) of an MDC in a parameter x ∼ c, we have that
Pr(c | f)(x) = (x · r)/(x · s + t), where r, s, t ≥ 0 since these constants arise
from multiplication and addition of probabilities. The function’s first derivative
equals Pr(c | f)′(x) = (r · t)/(s · x + t)2, which is always positive. Irrespective of
the values of the other parameters in the classifier therefore, an increase in value
of x ∼ c will result in an increase of Pr(c | f). Similarly, the output probability
increases with a decrease in value of x � c. �

Proof of Proposition 3. Let MDC (C,F), G and x be as stated in the proposi-
tion, and let H be such that H = F\G. We first show that the proposition holds
for any value combination c ∈ C given a fixed instance f . Using Proposition 1
we find that

O(c | f)(x) =
Pr(c | f)(x)

1 − Pr(c | f)(x)
=

Pro(c | f) · ∏
xi∼c,xj�c xi · xo

j

∑
c∗∈C\c

(
Pro(c∗ | f) · ∏

xi∼c∗,xj�c∗ xi · xo
j

)

from which we find

O(c | f)(x)
Oo(c | f) =

∑
c∗∈C\c

(
Pro(c∗ | f) · ∏

xi∼c,xj�c xi · xo
j

)

∑
c∗∈C\c

(
Pro(c∗ | f) · ∏

xi∼c∗,xj�c∗ xi · xo
j

)

and hence

minc∗∈C\c

∏

xi∼c,xj�c

xi · xo
j

∏

xi∼c∗,xj�c∗
xi · xo

j

≤ O(c | f)(x)
Oo(c | f) ≤ maxc∗∈C\c

∏

xi∼c,xj�c

xi · xo
j

∏

xi∼c∗,xj�c∗
xi · xo

j
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If x includes all parameters of the classifier, from each probability table
exactely two parameters will not cancel out from the fraction (

∏
xi∼c,xj�c xi ·

xo
j) / (

∏
xi∼c∗,xj�c∗ xi · xo

j). For each such parameter x, the fraction includes
either x

xo or xo

x . Now, for α ≥ 1, we have that x
xo , xo

x ∈ [1/α, α]. With a balanced
sensitivity function therefore, the minimum of the fraction equals 1/αk and the
maximum is αk, where k is two times the number of probability tables. If x
includes just a subset of the classifier’s parameters, we find that k = s + 2 · t,
where s is the number of probability tables from which just a single parameter
is in x and t is the number of tables with two or more parameters in x.

For an instance f ′
� f , we find Pr(c | f ′) by replacing (some of) the parameters

in the fraction above by their proportional co-variant, which gives 1−x
1−xo or its

reciprocal. Since for α ≥ 1, these fractions are in [1/α, α] as well, the proof above
generalises to all instances in F. For a partial instance g we have that Pr(C | g) =∑

H Pr(C | g,H) · Pr(H | g). Since (O(C | gH))/(Oo(C | gH)) ∈ [1/αk, αk] and∑
H Pr(H | g) = 1, we further find that (O(C | g))/(Oo(C | g)) ∈ [1/αk, αk] for

all g ∈ G. �
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ciency virus inhibitors using multi-dimensional Bayesian network classifiers. Artif.
Intell. Med. 57, 219–229 (2013)

5. Chan, H., Darwiche, A.: A distance measure for bounding probabilistic belief
change. Int. J. Approximate Reasoning 38, 149–174 (2005)

6. van der Gaag, L.C., de Waal, P.R.: Multi-dimensional Bayesian network classifiers.
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