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Preface

The biennial ECSQARU conferences constitute a forum for advances in the theory and
practice of reasoning under uncertainty. Contributions typically come from researchers
who are interested in advancing technology and from practitioners using uncertainty
techniques in real-world applications. The scope of the conference series encompasses
fundamental issues, representation, inference, learning, and decision making in quali-
tative and numeric uncertainty paradigms.

Previous ECSQARU events were held in Marseille (1991), Granada (1993),
Fribourg (1995), Bonn (1997), London (1999), Toulouse (2001), Aalborg (2003),
Barcelona (2005), Hammamet (2007), Verona (2009), Belfast (2011), and Utrecht
(2013). The 13th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty was held in Compiègne, France, during July 15–17, 2015.
The 49 papers presented at the conference and included in this volume were selected
from 69 submitted manuscripts. Each submission underwent rigorous reviewing by at
least two members of the ECSQARU Program Committee.

ECSQARU 2015 further included keynote talks by three outstanding researchers in
the field: Edith Elkind (University of Oxford), Teddy Seidenfeld (Carnegie Mellon
University) and Marco Zaffalon (Istituto “Dalle Molle” di Studi sull’Intelligenza
Artificiale, IDSIA).

We would like to thank all those who have contributed with their papers to this
volume, the Program Committee members and the additional referees for their efforts,
as well as our sponsors for their financial support.

May 2015 Sébastien Destercke
Thierry Denoeux



Organization

Program Committee

Leila Amgoud IRIT-CNRS, France
Alessandro Antonucci IDSIA, Switzerland
Nahla Ben Amor Institut Supérieur de Gestion de Tunis, Tunisia
Boutheina Ben Yaghlane LARODEC-ISG, IHEC Carthage, Tunisia
Salem Benferhat Cril, CNRS UMR8188, Université d’Artois, France
Philippe Besnard IRIT-CNRS, France
Martin Caminada University of Aberdeen, UK
Giulianella Coletti University of Perugia, Italy
Fabio Cozman Universidade de Sao Paulo, Brazil
Fabio Cuzzolin Oxford Brookes University, UK
Cassio De Campos Queen’s University Belfast, UK
Luis M. De Campos University of Granada, Spain
Thierry Denoeux Université de Technologie de Compiegne, France
Sébastien Destercke CNRS, UMR Heudiasyc, France
Didier Dubois IRIT/RPDMP, France
Zied Elouedi Institut Supérieur de Gestion de Tunis, Tunisia
Helene Fargier IRIT-CNRS, France
Lluis Godo Artificial Intelligence Research Institute, IIIA-CSIC
Andreas Herzig IRIT-CNRS, France
Anthony Hunter University College London, UK
Gabriele Kern-Isberner Technische Universität Dortmund, Germany
Sébastien Konieczny CRIL-CNRS, France
Rudolf Kruse University of Magdeburg, Germany
Christophe Labreuche Thales R&T, France
Jérôme Lang LAMSADE, France
Pedro Larranaga University of Madrid, Spain
Jonathan Lawry University of Bristol, UK
Jan Lemeire Vrije Universiteit Brussel, Belgium
Philippe Leray LINA/DUKe - Nantes University, France
Churn-Jung Liau Academia Sinica, Taipei, Taiwan
Weiru Liu Queen’s University Belfast, UK
Peter Lucas Radboud University Nijmegen, The Netherlands
Thomas Lukasiewicz University of Oxford, UK
Pierre Marquis CRIL-CNRS and Université d’Artois, France
Vincenzo Marra University of Milan, Italy
Andres R. Masegosa University of Granada, Spain
David Mercier Université d’Artois, France



Thomas Meyer Centre for Artificial Intelligence Research, UKZN
and CSIR Meraka, South Africa

Enrique Miranda University of Oviedo, Spain
Serafin Moral University of Granada, Spain
Vincent Mousseau LGI, Ecole Centrale Paris, France
Kristian Olesen Aalborg Universtet, Denmark
Ewa Orlowska National Institute of Telecommunications
Odile Papini LSIS UMR CNRS 6168, France
Simon Parsons University of Liverpool, UK
Jose M. Peña Linköping University, Sweden
Henri Prade IRIT-CNRS, France
Erik Quaeghebeur Centrum Wiskunde & Informatica, The Netherlands
Steven Schockaert Cardiff University, UK
Roman Slowinski Poznan University of Technology, Poland
Matthias Troffaes Durham University, UK
Linda C. van der Gaag Utrecht University, The Netherlands
Leon van der Torre University of Luxembourg, Luxembourg
Barbara Vantaggi Università La Sapienza, Italy
Paolo Viappiani CNRS and LIP6, Université Pierre et Marie Curie,

France
Jirka Vomlel Academy of Sciences, Czech Republic

Additional Reviewers

Braune, Christian
Doell, Christoph
Halland, Ken
Held, Pascal
Kratochvíl, Václav
Liao, Beishui

Manfredotti, Cristina
Pichon, Frédéric
Pouyllau, Hélia
Quost, Benjamin
Rens, Gavin
Varando, Gherardo

VIII Organization



Contents

Decision Theory and Preferences

Minimizing Regret in Dynamic Decision Problems . . . . . . . . . . . . . . . . . . . 3
Joseph Y. Halpern and Samantha Leung

Extracting Decision Rules from Qualitative Data Using Sugeno Integral:
A Case-Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Didier Dubois, Claude Durrieu, Henri Prade, Agnès Rico,
and Yannis Ferro

Elicitation of a Utility from Uncertainty Equivalent Without Standard
Gambles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Christophe Labreuche, Sébastien Destercke, and Brice Mayag

Possibilistic Conditional Preference Networks . . . . . . . . . . . . . . . . . . . . . . . 36
Nahla Ben Amor, Didier Dubois, Héla Gouider, and Henri Prade

Argumentation

On Supported Inference and Extension Selection in Abstract Argumentation
Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Sébastien Konieczny, Pierre Marquis, and Srdjan Vesic

Representing and Reasoning About Arguments Mined from Texts
and Dialogues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Leila Amgoud, Philippe Besnard, and Anthony Hunter

Dialogue Games for Argumentation Frameworks with Necessities . . . . . . . . . 72
Farid Nouioua and Sara Boutouhami

Explaining Bayesian Networks Using Argumentation. . . . . . . . . . . . . . . . . . 83
Sjoerd T. Timmer, John-Jules Ch. Meyer, Henry Prakken, Silja Renooij,
and Bart Verheij

Conditionals

Transitive Reasoning with Imprecise Probabilities . . . . . . . . . . . . . . . . . . . . 95
Angelo Gilio, Niki Pfeifer, and Giuseppe Sanfilippo

On the Algebraic Structure of Conditional Events . . . . . . . . . . . . . . . . . . . . 106
Tommaso Flaminio, Lluis Godo, and Hykel Hosni

http://dx.doi.org/10.1007/978-3-319-20807-7_1
http://dx.doi.org/10.1007/978-3-319-20807-7_2
http://dx.doi.org/10.1007/978-3-319-20807-7_2
http://dx.doi.org/10.1007/978-3-319-20807-7_3
http://dx.doi.org/10.1007/978-3-319-20807-7_3
http://dx.doi.org/10.1007/978-3-319-20807-7_4
http://dx.doi.org/10.1007/978-3-319-20807-7_5
http://dx.doi.org/10.1007/978-3-319-20807-7_5
http://dx.doi.org/10.1007/978-3-319-20807-7_6
http://dx.doi.org/10.1007/978-3-319-20807-7_6
http://dx.doi.org/10.1007/978-3-319-20807-7_7
http://dx.doi.org/10.1007/978-3-319-20807-7_8
http://dx.doi.org/10.1007/978-3-319-20807-7_9
http://dx.doi.org/10.1007/978-3-319-20807-7_10


In All, but Finitely Many, Possible Worlds: Model-Theoretic Investigations
on ‘Overwhelming Majority’ Default Conditionals. . . . . . . . . . . . . . . . . . . . 117

Costas D. Koutras and Christos Rantsoudis

Game Theory

The Robustness of Periodic Orchestrations in Uncertain Evolving
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Jorge Castro, Joaquim Gabarro, Maria Serna, and Alan Stewart

Uncertainty in the Cloud: An Angel-Daemon Approach to Modelling
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Alan Stewart, Joaquim Gabarro, and Anthony Keenan

Game-Theoretic Resource Allocation with Real-Time Probabilistic
Surveillance Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Wenjun Ma, Weiru Liu, and Kevin McAreavey

Belief Update

Belief Update Within Propositional Fragments . . . . . . . . . . . . . . . . . . . . . . 165
Nadia Creignou, Raïda Ktari, and Odile Papini

Private Expansion and Revision in Multi-agent Settings . . . . . . . . . . . . . . . . 175
Thomas Caridroit, Sébastien Konieczny, Tiago de Lima,
and Pierre Marquis

Contraction in Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Thomas Caridroit, Sébastien Konieczny, and Pierre Marquis

Classification

Multi-classifiers of Small Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Arnoud Pastink and Linda C. van der Gaag

Balanced Tuning of Multi-dimensional Bayesian Network Classifiers . . . . . . 210
Janneke H. Bolt and Linda C. van der Gaag

A New View of Conformity and Its Application to Classification . . . . . . . . . 221
Myriam Bounhas, Henri Prade, and Gilles Richard

Inconsistency

Using Shapley Inconsistency Values for Distributed Information Systems
with Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

John Grant and Anthony Hunter

X Contents

http://dx.doi.org/10.1007/978-3-319-20807-7_11
http://dx.doi.org/10.1007/978-3-319-20807-7_11
http://dx.doi.org/10.1007/978-3-319-20807-7_12
http://dx.doi.org/10.1007/978-3-319-20807-7_12
http://dx.doi.org/10.1007/978-3-319-20807-7_13
http://dx.doi.org/10.1007/978-3-319-20807-7_13
http://dx.doi.org/10.1007/978-3-319-20807-7_14
http://dx.doi.org/10.1007/978-3-319-20807-7_14
http://dx.doi.org/10.1007/978-3-319-20807-7_15
http://dx.doi.org/10.1007/978-3-319-20807-7_16
http://dx.doi.org/10.1007/978-3-319-20807-7_17
http://dx.doi.org/10.1007/978-3-319-20807-7_18
http://dx.doi.org/10.1007/978-3-319-20807-7_19
http://dx.doi.org/10.1007/978-3-319-20807-7_20
http://dx.doi.org/10.1007/978-3-319-20807-7_21
http://dx.doi.org/10.1007/978-3-319-20807-7_21


Consistency-Based Reliability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 246
Laurence Cholvy, Laurent Perrussel, William Raynaut,
and Jean-Marc Thévenin

Handling Revision Inconsistencies: Towards Better Explanations . . . . . . . . . 257
Fabian Schmidt, Jörg Gebhardt, and Rudolf Kruse

On Measuring Inconsistency Using Maximal Consistent Sets . . . . . . . . . . . . 267
Meriem Ammoura, Badran Raddaoui, Yakoub Salhi,
and Brahim Oukacha

Graphical Models

On the Analysis of Probability-Possibility Transformations: Changing
Operations and Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Salem Benferhat, Amélie Levray, and Karim Tabia

Computing Concise Representations of Semi-graphoid Independency
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Stavros Lopatatzidis and Linda C. van der Gaag

Learning Structure in Evidential Networks from Evidential DataBases . . . . . . 301
Narjes Ben Hariz and Boutheina Ben Yaghlane

Evaluating Product-Based Possibilistic Networks Learning Algorithms. . . . . . 312
Maroua Haddad, Philippe Leray, and Nahla Ben Amor

Bayesian Networks

Every LWF and AMP Chain Graph Originates from a Set of Causal
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Jose M. Peña

Factorization, Inference and Parameter Learning in Discrete AMP
Chain Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Jose M. Peña

A Differential Approach for Staged Trees . . . . . . . . . . . . . . . . . . . . . . . . . 346
Christiane Görgen, Manuele Leonelli, and James Q. Smith

CPD Tree Learning Using Contexts as Background Knowledge . . . . . . . . . . 356
Gerard Ramstein and Philippe Leray

Relevance of Evidence in Bayesian Networks. . . . . . . . . . . . . . . . . . . . . . . 366
Michelle Meekes, Silja Renooij, and Linda C. van der Gaag

Contents XI

http://dx.doi.org/10.1007/978-3-319-20807-7_22
http://dx.doi.org/10.1007/978-3-319-20807-7_23
http://dx.doi.org/10.1007/978-3-319-20807-7_24
http://dx.doi.org/10.1007/978-3-319-20807-7_25
http://dx.doi.org/10.1007/978-3-319-20807-7_25
http://dx.doi.org/10.1007/978-3-319-20807-7_26
http://dx.doi.org/10.1007/978-3-319-20807-7_26
http://dx.doi.org/10.1007/978-3-319-20807-7_27
http://dx.doi.org/10.1007/978-3-319-20807-7_28
http://dx.doi.org/10.1007/978-3-319-20807-7_29
http://dx.doi.org/10.1007/978-3-319-20807-7_29
http://dx.doi.org/10.1007/978-3-319-20807-7_30
http://dx.doi.org/10.1007/978-3-319-20807-7_30
http://dx.doi.org/10.1007/978-3-319-20807-7_31
http://dx.doi.org/10.1007/978-3-319-20807-7_32
http://dx.doi.org/10.1007/978-3-319-20807-7_33


Hybrid Time Bayesian Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Manxia Liu, Arjen Hommersom, Maarten van der Heijden,
and Peter J. F. Lucas

Learning Bounded Tree-Width Bayesian Networks via Sampling . . . . . . . . . 387
Siqi Nie, Cassio P. de Campos, and Qiang Ji

Learning Conditional Distributions Using Mixtures of Truncated Basis
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Inmaculada Pérez-Bernabé, Antonio Salmerón, and Helge Langseth

MPE Inference in Conditional Linear Gaussian Networks. . . . . . . . . . . . . . . 407
Antonio Salmerón, Rafael Rumí, Helge Langseth, Anders L. Madsen,
and Thomas D. Nielsen

Belief Functions

Dynamic Time Warping Distance for Message Propagation Classification
in Twitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Siwar Jendoubi, Arnaud Martin, Ludovic Liétard,
Boutheina Ben Yaghlane, and Hend Ben Hadji

A Reliably Weighted Collaborative Filtering System . . . . . . . . . . . . . . . . . . 429
Van-Doan Nguyen and Van-Nam Huynh

A Comparison of Plausibility Conflict and of Degree of Conflict Based
on Amount of Uncertainty of Belief Functions . . . . . . . . . . . . . . . . . . . . . . 440

Milan Daniel

Weighted Maximum Likelihood for Parameters Learning Based on Noisy
Labels in Discrete Hidden Markov Models. . . . . . . . . . . . . . . . . . . . . . . . . 451

Pablo Juesas Cano and Emmanuel Ramasso

Evidential Editing K-Nearest Neighbor Classifier . . . . . . . . . . . . . . . . . . . . 461
Lianmeng Jiao, Thierry Denœux, and Quan Pan

Learning Contextual Discounting and Contextual Reinforcement
from Labelled Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

David Mercier, Frédéric Pichon, Éric Lefèvre, and François Delmotte

Logic

Symbolic Possibilistic Logic: Completeness and Inference Methods. . . . . . . . 485
Claudette Cayrol, Didier Dubois, and Fayçal Touazi

Probabilistic Common Knowledge Among Infinite Number of Agents . . . . . . 496
Siniša Tomović, Zoran Ognjanović, and Dragan Doder

XII Contents

http://dx.doi.org/10.1007/978-3-319-20807-7_34
http://dx.doi.org/10.1007/978-3-319-20807-7_35
http://dx.doi.org/10.1007/978-3-319-20807-7_36
http://dx.doi.org/10.1007/978-3-319-20807-7_36
http://dx.doi.org/10.1007/978-3-319-20807-7_37
http://dx.doi.org/10.1007/978-3-319-20807-7_38
http://dx.doi.org/10.1007/978-3-319-20807-7_38
http://dx.doi.org/10.1007/978-3-319-20807-7_39
http://dx.doi.org/10.1007/978-3-319-20807-7_40
http://dx.doi.org/10.1007/978-3-319-20807-7_40
http://dx.doi.org/10.1007/978-3-319-20807-7_41
http://dx.doi.org/10.1007/978-3-319-20807-7_41
http://dx.doi.org/10.1007/978-3-319-20807-7_42
http://dx.doi.org/10.1007/978-3-319-20807-7_43
http://dx.doi.org/10.1007/978-3-319-20807-7_43
http://dx.doi.org/10.1007/978-3-319-20807-7_44
http://dx.doi.org/10.1007/978-3-319-20807-7_45


Towards Lifted Inference Under Maximum Entropy for Probabilistic
Relational FO-PCL Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Christoph Beierle, Nico Potyka, Josef Baudisch, and Marc Finthammer

Probabilistic Graphical Models for Scalable Data Analytics

Towards Gaussian Bayesian Network Fusion . . . . . . . . . . . . . . . . . . . . . . . 519
Irene Córdoba-Sánchez, Concha Bielza, and Pedro Larrañaga

Early Recognition of Maneuvers in Highway Traffic . . . . . . . . . . . . . . . . . . 529
Galia Weidl, Anders L. Madsen, Viacheslav Tereshchenko,
Dietmar Kasper, and Gabi Breuel

Variable Elimination for Interval-Valued Influence Diagrams . . . . . . . . . . . . 541
Rafael Cabañas, Alessandro Antonucci, Andrés Cano,
and Manuel Gómez-Olmedo

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Contents XIII

http://dx.doi.org/10.1007/978-3-319-20807-7_46
http://dx.doi.org/10.1007/978-3-319-20807-7_46
http://dx.doi.org/10.1007/978-3-319-20807-7_47
http://dx.doi.org/10.1007/978-3-319-20807-7_48
http://dx.doi.org/10.1007/978-3-319-20807-7_49


Decision Theory and Preferences



Minimizing Regret in Dynamic Decision
Problems

Joseph Y. Halpern and Samantha Leung(B)

Cornell University, Ithaca, NY 14853, USA
{halpern,samlyy}@cs.cornell.edu

Abstract. The menu-dependent nature of regret-minimization creates
subtleties when it is applied to dynamic decision problems. It is not
clear whether forgone opportunities should be included in the menu. We
explain commonly observed behavioral patterns as minimizing regret
when forgone opportunities are present. If forgone opportunities are
included, we can characterize when a form of dynamic consistency is
guaranteed.

1 Introduction

Savage [12] and Anscombe and Aumann [3] showed that a decision maker max-
imizing expected utility with respect to a probability measure over the possible
states of the world is characterized by a set of arguably desirable principles.
However, as Allais [2] and Ellsberg [4] point out using compelling examples,
sometimes intuitive choices are incompatible with maximizing expected utility.
One reason for this incompatibility is that there is often ambiguity in the prob-
lems we face; we often lack sufficient information to capture all uncertainty using
a single probability measure.

To this end, there is a rich literature offering alternative means of making
decisions (see, e.g., [1] for a survey). For example, we might choose to represent
uncertainty using a set of possible states of the world, but using no probabilistic
information at all to represent how likely each state is. With this type of rep-
resentation, two well-studied rules for decision-making are maximin utility and
minimax regret. Maximin says that you should choose the option that maximizes
the worst-case payoff, while minimax regret says that you should choose the
option that minimizes the regret you’ll feel at the end, where, roughly speaking,
regret is the difference between the payoff you achieved, and the payoff that you
could have achieved had you known what the true state of the world was. Both
maximin and minimax regret can be extended naturally to deal with other rep-
resentations of uncertainty. For example, with a set of probability measures over
the possible states, minimax regret becomes minimax expected regret (MER)
[10,15]. In this paper, we consider a generalization of minimax expected regret

Work supported in part by NSF grants IIS-0812045, IIS-0911036, and CCF-1214844,
by AFOSR grants FA9550-08-1-0438, FA9550-09-1-0266, and FA9550-12-1-0040, and
by ARO grant W911NF-09-1-0281.

c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 3–13, 2015.
DOI: 10.1007/978-3-319-20807-7 1



4 J.Y. Halpern and S. Leung

called minimax weighted expected regret (MWER) that we introduced in an
earlier paper [7]. For MWER, uncertainty is represented by a set of weighted
probability measures. Intuitively, the weight represents how likely the proba-
bility measure is to be the true distribution over the states, according to the
decision maker (henceforth DM).

Real-life problems are often dynamic, with many stages where actions can be
taken; information can be learned over time. Before applying regret minimization
to dynamic decision problems, there is a subtle issue that we must consider. In
static decision problems, the regret for each act is computed with respect to a
menu. That is, each act is judged against the other acts in the menu. Typically,
we think of the menu as consisting of the feasible acts, that is, the ones that
the DM can perform. The analogue in a dynamic setting would be the feasible
plans, where a plan is just a sequence of actions leading to a final outcome. In a
dynamic decision problem, as more actions are taken, some plans become forgone
opportunities. These are plans that were initially available to the DM, but are
no longer available due to earlier actions of the DM. Since regret intuitively
captures comparison of a choice against its alternatives, it seems reasonable for
the menu to include all the feasible plans at the point of decision-making. But
should the menu include forgone opportunities?

Consequentialists would argue that it is irrational to care about forgone
opportunities [8,11]; we should simply focus on the opportunities that are still
available to us, and thus not include forgone opportunities in the menu. And,
indeed, when regret has been considered in dynamic settings thus far (e.g., by
Hayashi [10]), the menu has not included forgone opportunities. However, intro-
spection tells us that we sometimes do take forgone opportunities into account.
For example, when considering a new job, one might compare the available
options to what might have been available if one had chosen a different career
path years ago. As we show, including forgone opportunities in the menu can
make a big difference in behavior. Consider procrastination: we tell ourselves
that we will start studying for an exam (or start exercising, or quit smoking)
tomorrow; and then tomorrow comes, and we again tell ourselves that we will do
it, starting tomorrow. This behavior is hard to explain with standard decision-
theoretic approaches, especially when we assume that no new information about
the world is gained over time. However, we give an example where, if forgone
opportunities are not included in the menu, then we get procrastination; if they
are, then we do not get procrastination.

This example can be generalized. Procrastination is an example of preference
reversal : the DM’s preference at time t for what he should do at time t + 1
reverses when she actually gets to time t + 1. We prove in Sect. 3 that if the menu
includes forgone opportunities and the DM acquires no new information over
time (as is the case in the procrastination problem), then a DM who uses regret
to make her decisions will not suffer preference reversals. Thus, we arguably get
more rational behavior when we include forgone opportunities in the menu.

What happens if the DM does get information over time? It is well known
that, in this setting, expected utility maximizers are guaranteed to have no
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preference reversals. Epstein and Le Breton [5] have shown that, under minimal
assumptions, to avoid preference reversals, the DM must be an expected utility
maximizer. On the other hand, Epstein and Schneider [6] show that a DM using
MMEU never has preference reversals if her beliefs satisfy a condition they call
rectangularity. Hayashi [10] shows that rectangularity also prevents preference
reversals for MER under certain assumptions. Unfortunately, the rectangularity
condition is often not satisfied in practice. Other conditions have been pro-
vided that guarantee dynamic consistency for ambiguity-averse decision rules
(see, e.g., [1] for an overview).

We consider the question of preference reversal in the context of regret.
Hayashi [10] has observed that, in dynamic decision problems, both changes
in menu over time and updates to the DM’s beliefs can result in preference
reversals. In Sect. 4, we show that keeping forgone opportunities in the menu is
necessary in order to prevent preference reversals. But, as we show by example,
it is not sufficient if the DM acquires new information over time. We then pro-
vide a condition on the beliefs that is necessary and sufficient to guarantee that
a DM making decisions using MWER whose beliefs satisfy the condition will not
have preference reversals. However, because this necessary and sufficient condi-
tion may not be easy to check, we also give simpler sufficient condition, similar
in spirit to Epstein and Schneider’s [6] rectangularity condition.

2 Preliminaries

2.1 Static Decision Setting and Regret

Given a set S of states and a set X of outcomes, an act f (over S and X)
is a function mapping S to X. We use F to denote the set of all acts. For
simplicity in this paper, we take S to be finite. Associated with each out-
come x ∈ X is a utility: u(x) is the utility of outcome x. We call a tuple
(S,X, u) a (non-probabilistic) decision problem. To define regret, we need to
assume that we are also given a set M ⊆ F of acts, called the menu. The rea-
son for the menu is that, as is well known, regret can depend on the menu.
We assume that every menu M has utilities bounded from above. That is,
we assume that for all menus M , supg∈M u(g(s)) is finite. This ensures that
the regret of each act is well defined. For a menu M and act f ∈ M , the
regret of f with respect to M and decision problem (S,X, u) in state s is
regM (f, s) =

(
supg∈M u(g(s))

) − u(f(s)). That is, the regret of f in state s
(relative to menu M) is the difference between u(f(s)) and the highest utility
possible in state s among all the acts in M . The regret of f with respect to M

and decision problem (S,X, u), denoted reg(S,X,u)
M (f), is the worst-case regret

over all states: maxs∈S regM (f, s). We typically omit superscript (S,X, u) in
reg(S,X,u)

M (f) if it is clear from context. The minimax regret decision rule chooses
an act that minimizes maxs∈S regM (f, s). In other words, the minimax regret
choice function is Creg,u

M (M ′) = argminf∈M ′ maxs∈S regM (f, s); the choice func-
tion returns the set of all acts in M ′ that minimize regret with respect to M .
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Note that we allow the menu M ′, the set of acts over which we are minimizing
regret, to be different from the menu M of acts with respect to which regret is
computed. For example, if the DM considers forgone opportunities, they would
be included in M , although not in M ′.

If there is a probability measure Pr over the states, then we can consider
the probabilistic decision problem (S,X, u,Pr). The expected regret of f with
respect to M is regPr

M (f) =
∑

s∈S Pr(s)regM (f, s). If there is a set P of
probability measures over the states, then we consider the P-decision problem
D = (S,X, u,P). The maximum expected regret of f ∈ M with respect to M
and D is regP

M (f) = supPr∈P
(∑

s∈S Pr(s)regM (f, s)
)
. The minimax expected

regret (MER) decision rule minimizes regP
M (f).

In an earlier paper, we introduced another representation of uncertainty,
weighted set of probability measures [7]. A weighted set of probability mea-
sures generalizes a set of probability measures by associating each measure
in the set with a weight, intuitively corresponding to the reliability or signif-
icance of the measure in capturing the true uncertainty of the world. Minimizing
weighted expected regret with respect to a weighted set of probability measures
gives a variant of minimax regret, called Minimax Weighted Expected Regret
(MWER). A set P+ of weighted probability measures on a set S consists of
pairs (Pr, αPr), where αPr ∈ [0, 1] and Pr is a probability measure on S. Let
P = {Pr : ∃α(Pr, α) ∈ P+}. We assume that, for each Pr ∈ P, there is exactly
one α such that (Pr, α) ∈ P+. We denote this number by αPr, and view it as
the weight of Pr. We further assume for convenience that weights have been
normalized so that there is at least one measure Pr ∈ P such that αPr = 1.

If beliefs are modeled by a set P+ of weighted probabilities, then we consider
the P+-decision problem D+ = (S,X, u,P+). The maximum weighted expected
regret of f ∈ M with respect to M and D+ = (S,X, u,P+) is

regP+

M (f) = sup
Pr∈P

(

αPr

∑

s∈S

Pr(s)regM (f, s)

)

.

If P+ is empty, then regP+

M is identically zero. Of course, we can define the choice
functions Creg,Pr

M , Creg,P
M , and Creg,P+

M using regPr
M , regP

M , and regP+

M , by analogy
with Creg

M .

2.2 Dynamic Decision Problems

A dynamic decision problem is a single-player extensive-form game where there
is some set S of states, nature chooses s ∈ S at the first step, and does not
make any more moves. The DM then performs a finite sequence of actions until
some outcome is reached. Utility is assigned to these outcomes. A history is a
sequence recording the actions taken by nature and the DM. At every history h,
the DM considers possible some other histories. The DM’s information set at h,
denoted I(h), is the set of histories that the DM considers possible at h. Let s(h)
denote the initial state of h (i.e., nature’s first move); let R(h) denote all the
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moves the DM made in h after nature’s first move; finally, let E(h) denote the set
of states that the DM considers possible at h; that is, E(h) = {s(h′) : h′ ∈ I(h)}.
We assume that the DM has perfect recall : this means that R(h′) = R(h) for all
h′ ∈ I(h), and that if h′ is a prefix of h, then E(h′) ⊇ E(h).

A plan is a (pure) strategy: a mapping from histories to histories that result
from taking the action specified by the plan. We require that a plan specify
the same action for all histories in an information set; that is, if f is a plan,
then for all histories h and h′ ∈ I(h), we must have the last action in f(h) and
f(h′) must be the same (so that R(f(h)) = R(f(h′))). Given an initial state s, a
plan determines a complete path to an outcome. Hence, we can also view plans
as acts: functions mapping states to outcomes. We take the acts in a dynamic
decision problem to be the set of possible plans, and evaluate them using the
decision rules discussed above.

A major difference between our model and that used Epstein and Schneider [6]
and Hayashi [9] is that the latter assume a filtration information structure. With
a filtration information structure, the DM’s knowledge is represented by a fixed,
finite sequence of partitions. More specifically, at time t, the DM uses a partition
F (t) of the state space, and if the true state is s, then all that the DM knows
is that the true state is in the cell of F (t) containing s. Since the sequence of
partitions is fixed, the DM’s knowledge is independent of the choices that she
makes, and her options and preferences cannot depend on past choices. This
assumption significantly restricts the types of problems that can be naturally
modeled. For example, if the DM prefers to have one apple over two oranges at
time t, then this must be her time t preference, regardless of whether she has
already consumed five apples at time t − 1. Moreover, consuming an apple at
time t cannot preclude consuming an apple at time t + 1. Since we effectively
represent a decision problem as a single-player extensive-form game, we can
capture all of these situations in a straightforward way. The models of Epstein,
Schneider, and Hayashi can be viewed as a special case of our model.

In a dynamic decision problem, as we shall see, two different menus are rele-
vant for making a decision using regret-minimization: the menu with respect to
which regrets are computed, and the menu of feasible choices. We formalize this
dependence by considering choice functions of the form CM,E , where E,M �= ∅.
CM,E is a function mapping a nonempty menu M ′ to a nonempty subset of M ′.
Intuitively, CM,E(M ′) consists of the DM’s most preferred choices from the menu
M ′ when she considers the states in E possible and her decision are made rela-
tive to menu M . (So, for example, if the DM is making her choices choices using
regret minimization, the regret is taken with respect to M .) Note that there may
be more than one plan in CM,E(M ′); intuitively, this means that the DM does not
view any of the plans in CM,E(M ′) as strictly worse than some other plan.

What should M and E be when the DM makes a decision at a history h?
We always take E = E(h). Intuitively, this says that all that matters about a
history as far as making a decision is the set of states that the DM considers
possible; the previous moves made to get to that history are irrelevant. As we
shall see, this seems reasonable in many examples. Moreover, it is consistent with
our choice of taking probability distributions only on the states space.
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The choice of M is somewhat more subtle. The most obvious choice (and the
one that has typically been made in the literature, without comment) is that
M consists of the plans that are still feasible at h, where a plan f is feasible at
a history h if, for all strict prefixes h′ of h, f(h′) is also a prefix of h. So f is
feasible at h if h is compatible with all of f ’s moves. Let Mh be the set of plans
feasible at h. While taking M = Mh is certainly a reasonable choice, as we shall
see, there are other reasonable alternatives.

Before addressing the choice of menu in more detail, we consider how to apply
regret in a dynamic setting. If we want to apply MER or MWER, we must update
the probability distributions. Epstein and Schneider [6] and Hayashi [9] consider
prior-by-prior updating, the most common way to update a set of probability
measures, defined as follows: P|pE = {Pr |E : Pr ∈ P,Pr(E) > 0}.

Prior-by-prior updating can produce some rather counter-intuitive outcomes.
For example, suppose we have a coin of unknown bias in [0.25, 0.75], and flip it
100 times. We can represent our prior beliefs using a set of probability mea-
sures. However, if we use prior-by-prior updating, then after each flip of the coin
the set P+ representing the DM’s beliefs does not change, because the beliefs
are independent. Thus, in this example, prior-by-prior updating is not capturing
the information provided by the flips.

We consider another way of updating weighted sets of probabilities, called
likelihood updating [7]. The intuition is that the weights are updated as if they
were a second-order probability distribution over the probability measures. Given
an event E ⊆ S, define P+

(E) = sup{αPr Pr(E) : Pr ∈ P}; if P+
(E) > 0, let

αPr,E = sup{Pr′∈P:Pr′ |E=Pr |E}
αPr′ Pr′(E)

P+
(E)

. Given a measure Pr ∈ P, there may

be several distinct measures Pr′ in P such that Pr′ |E = Pr |E. Thus, we take
the weight of Pr |E to be the sup of the possible candidate values of αPr,E . By
dividing by P+

(E), we guarantee that αPr,E ∈ [0, 1], and that there is some
measure Pr such that αPr,E = 1, as long as there is some pair (αPr,Pr) ∈ P such
that αPr Pr(E) = P+

(E). If P+
(E) > 0, we take P+|lE, the result of applying

likelihood updating by E to P+, to be {(Pr |E,αPr,E) : Pr ∈ P,Pr(E) > 0}.
In computing P+|lE, we update not just the probability measures in P, but

also their weights. Intuitively, probability measures that are supported by the
new information will get larger weights than those not supported by the new
information. Clearly, if all measures in P start off with the same weight and
assign the same probability to the event E, then likelihood updating will give
the same weight to each probability measure, resulting in measure-by-measure
updating. This is not surprising, since such an observation E does not give us
information about the relative likelihood of measures.

Let C
reg,P+|lE
M (M ′) be the set of acts in M ′ that minimize weighted expected

regret when the regret is computed with respect to menu M and beliefs P+|lE.
If P+|lE is empty then C

reg,P+|lE
M (M ′) = M ′. We can similarly define C

reg,P|E
M

and C
reg,Pr |E
M .
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3 Forgone Opportunities

Fig. 1. An explanation for procrastination.

As we have seen, when making a deci-
sion at a history h in a dynamic deci-
sion problem, the DM must decide
what menu to use. In this section we
focus on one choice. Take a forgone
opportunity to be a plan that was ini-
tially available to the DM, but is no
longer available due to earlier actions.
As we observed in the introduction,
while it may seem irrational to consider forgone opportunities, people often do.
Moreover, when combined with regret, behavior that results by considering for-
gone opportunities may be arguably more rational than if forgone opportunities
are not considered. Consider the following example.

Example 1. Suppose that a student has an exam in two days. She can either
start studying today, play today and then study tomorrow, or just play on both
days and never study. There are two states of nature: one where the exam is
difficult, and one where the exam is easy. The utilities reflect a combination of
the amount of pleasure that the student derives in the next two days, and her
score on the exam relative to her classmates. Suppose that the first day of play
gives the student p1 > 0 utils, and the second day of play gives her p2 > 0 utils.
Her exam score affects her utility only in the case where the exam is hard and she
studies both days, in which case she gets an additional g1 utils for doing much
better than everyone else, and in the case where the exam is hard and she never
studies, in which case she loses g2 > 0 utils for doing much worse than everyone
else. Figure 1 provides a graphical representation of the decision problem. Since,
in this example, the available actions for the DM are independent of nature’s
move, for compactness, we omit nature’s initial move (whether the exam is easy
or hard). Instead, we describe the payoffs of the DM as a pair [a1, a2], where a1

is the payoff if the exam is hard, and a2 is the payoff if the exam is easy.
Assume that 2p1 + p2 > g1 > p1 + p2 and 2p2 > g2 > p2. That is, if the

test were hard, the student would be happier studying and doing well on the
test than she would be if she played for two days, but not too much happier;
similarly, the penalty for doing badly in the exam if the exam is hard and she
does not study is greater than the utility of playing the second day, but not
too much greater. Suppose that the student uses minimax regret to make her
decision. On the first day, she observes that playing one day and then studying
the next day has a worst-case regret of g1 − p1, while studying on both days has
a worst-case regret of p1 + p2. Therefore, she plays on the first day. On the next
day, suppose that she does not consider forgone opportunities and just compares
her two available options, studying and playing. Studying has a worst-case regret
of p2, while playing has a worst-case regret of g2 − p2, so, since g2 < 2p2, she
plays again on the second day. On the other hand, if the student had included
the forgone opportunity in the menu on the second day, then studying would
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have regret g1 − p1, while playing would have regret g1 + g2 − p1 − p2. Since
g2 > p2, studying minimizes regret. �	
Example 1 emphasizes the roles of the menus M and M ′ in CM,E(M ′). Here
we took M , the menu relative to which choices were evaluated, to consist of all
plans, even the ones that were no longer feasible, while M ′ consisted of only
feasible plans. In general, to determine the menu component M of the choice
function CM,E(h) used at a history h, we use a menu-selection function μ. The
menu μ(h) is the menu relative to which choice are computed at h. We sometimes
write Cμ,h rather than Cμ(h),E(h).

We can now formalize the notion of no preference reversal.

Definition 1 (No Preference Reversal). A family of choice functions Cμ,h

has no preference reversals if, for all histories h and all histories h′ extending
h, if f ∈ Cμ,h(Mh) and f ∈ Mh′ , then f ∈ Cμ,h′(Mh′).

The fact that we do not get a preference reversal in Example 1 if we take forgone
opportunities into account here is not just an artifact of this example. As we
now show, as long as we do not get new information and also use a constant
menu (i.e., by keeping all forgone opportunities in the menu), then there will be
no preference reversals if we minimize (weighted) expected regret in a dynamic
setting.

Proposition 1. If, for all histories h, h′, we have E(h) = S and μ(h) = μ(h′),
and decisions are made according to MWER (i.e., the agent has a set P+ of
weighted probability distributions and a utility function u, and f ∈ Cμ,h(Mh) if f
minimizes weighted expected regret with respect to P+|lE(h)), then no preference
reversals occur.

Table 1. αPr1 = 1, αPr2 = 0.6.

Hard Easy
Short Long Short Long

Pr1 1 0 0 0
Pr2 0 0.2 0.2 0.2
Play-study 1 0 5 0
Play-play 0 3 0 3

Proposition 1 shows that we cannot
have preference reversals if the DM
does not learn about the world. How-
ever, if the DM learns about the world,
then we can have preference reversals.
Suppose, as is depicted in Table 1, that
in addition to being hard and easy,
the exam can also be short or long.
The student’s beliefs are described by
the set of weighted probabilities Pr1

and Pr2, with weights 1 and 0.6, respectively.
We take the option of studying on both days out of the picture by assuming

that its utility is low enough for it to never be preferred, and for it to never
affect the regret computations. After the first day, the student learns whether
the exam will be hard or easy. One can verify that the ex ante regret of playing
then studying is lower than that of playing on both days, while after the first
day, the student prefers to play on the second day, regardless of whether she
learns that the exam is hard or easy.
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4 Characterizing No Preference Reversal

Fig. 2. Two decision trees.

We now consider conditions under
which there is no preference rever-
sal in a more general setting, where
the DM can acquire new informa-
tion. While including all forgone
opportunities is no longer a suffi-
cient condition to prevent prefer-
ence reversals, it is necessary, as the
following example shows: Consider
the two similar decision problems depicted in Fig. 2. Note that at the node after
first playing L, the utilities and available choices are identical in the two prob-
lems. If we ignore forgone opportunities, the DM necessarily makes the same
decision in both cases if his beliefs are the same. However, in the tree to the left,
the ex ante optimal plan is LR, while in the tree to the right, the ex ante optimal
plan is LL. If the DM ignores forgone opportunities, then after the first step,
she cannot tell whether she is in the decision tree on the left side, or the one on
the right side. Therefore, if she follows the ex ante optimal plan in one of the
trees, she necessarily is not following the ex ante optimal plan in the other tree.

In light of this example, we now consider what happens if the DM learns
information over time. Our no preference reversal condition is implied by a well-
studied notion called dynamic consistency. One way of describing dynamic con-
sistency is that a plan considered optimal at a given point in the decision process
is also optimal at any preceding point in the process, as well as any future point
that is reached with positive probability [14]. For menu-independent preferences,
dynamic consistency is usually captured axiomatically by variations of an axiom
called Dynamic Consistency (DC) or the Sure Thing Principle [13]. We define
a menu-dependent version of DC relative to events E and F using the follow-
ing axiom. The second part of the axiom implies that if f is strictly preferred
conditional on E ∩ F and at least weakly preferred on Ec ∩ F , then f is also
strictly preferred on F . An event E is relevant to a dynamic decision problem D
if it is one of the events that the DM can potentially learn in D, that is, if there
exists a history h such that E(h) = E. Given a decision problem D, we take
the measurable sets to be the σ-algebra generated by the events relevant to D.
The following axioms hold for all measurable sets E and F , menus M and M ′,
and acts f and g.

Axiom 1 (DC-M). If f ∈ CM,E∩F (M ′)∩CM,Ec∩F (M ′), then f ∈ CM,F (M ′).
If, furthermore, g /∈ CM,E∩F (M ′), then g /∈ CM,F (M ′).

Axiom 2 (Conditional Preference). If f and g, when viewed as acts, give
the same outcome on all states in E, then f ∈ CM,E(M ′) iff g ∈ CM,E(M ′).

Axiom 3. CM,E(M ′) ⊆ M ′ and CM,E(M ′) �= ∅ if M ′ �= ∅.
Axiom 4 (Sen’s α ). If f ∈ CM,E(M ′) and M ′′ ⊆ M ′, then f ∈ CM,E(M ′′).
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Theorem 1. Given a dynamic decision problem D, if Axioms 1–4 hold, and
μ(h) = M for some fixed menu M , then there will be no preference reversals in D.

We next provide a representation theorem that characterizes when Axioms 1–4
hold for a MWER decision maker. The following condition says that the uncon-
ditional regret can be computed by separately computing the regrets conditional
on E ∩ F and on Ec ∩ F .

Definition 2 (SEP). The weighted regret of f with respect to M and P+ is
separable with respect to |l if for all measurable sets E and F ,

reg
P+|lF
M (f) = sup

Pr∈P+
αPr

(
Pr(E ∩ F )reg

P+|l(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|l(Ec∩F )
M (f)

)
,

and if regP+|l(E∩F )
M (f) �= 0, then

regP+|lF
M (f) > sup

Pr∈P+
αPr Pr(Ec ∩ F )regP+|l(Ec∩F )

M (f). (1)

While (1) may seem complicated, note that a a sufficient condition for satisfying
it for all plans f is that inf(Pr,αPr)∈P+ αPr Pr(E ∩ F ) > 0.

We now show that Axioms 1–4 characterize SEP. Say that a decision prob-
lem D is based on a σ-algebra Σ if Σ is the σ-algebra generated by the set of
events relevant to D. In the following results, we will also make use of an alter-
native interpretation of weighted probability measures. Define a subprobability
measure p on S to be like a probability measure, in that it is a function map-
ping measurable subsets of S to [0, 1] such that p(T ∪ T ′) = p(T ) + p(T ′) for
disjoint sets T and T ′, except that it may not satisfy the requirement that
p(S) = 1. We can identify a weighted probability distribution (Pr, α) with
the subprobability measure α Pr. (Note that given a subprobability measure p,
there is a unique pair (α,Pr) such that p = α Pr: we simply take α = p(S)
and Pr = p/α.) Given a set P+ of weighted probability measures, we let
C(P+) = {p ≥ 0 : ∃c,∃Pr, (c,Pr) ∈ P+ and p ≤ cPr}.

Theorem 2. If P+ is a set of weighted distributions on S such that C(P+) is
closed, then the following are equivalent:

(a) For all decision problems D based on Σ and all menus M in D, Axioms 1–4
hold for the family C

reg,P+|lE
M of choice functions.

(b) For all decision problems D based on Σ, states s ∈ S, and acts f ∈ M〈s〉, the
weighted regret of f with respect to M〈s〉 and P+ is separable with respect to |l.

It is not hard to show that SEP holds if the set P is a singleton. But, in general,
it seems difficult to determine whether a set of weighted probabilities satisfies
SEP. We thus provide a condition on P+ sufficient for SEP to hold that should
be easier to check.

Definition 3 (Richness). A set P+ of weighted probability measures is rich if
for all measurable sets E and F ,
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(a) if (Pr1, α1), (Pr2, α2), (Pr3, α3) ∈ P+, then

αPr3Pr3(E ∩ F )α1Pr1(E∩F )

P+
(E∩F )

Pr1|l(E ∩ F )

+αPr3Pr3(Ec ∩ F )α2Pr2(E
c∩F )

P+
(Ec∩F )

Pr2|l(Ec ∩ F ) ∈ C(P+),

(b) for all (Pr, α) ∈ P+, α Pr(E ∩ F ) > 0, and
(c) for some (Pr, α) ∈ P+|lF , α Pr(E ∩ F ) = P+

(E ∩ F ) and α Pr(Ec ∩ F ) =
P+

(Ec ∩ F ).

As the following result shows, richness is indeed sufficient to give us Axioms 1–4
under likelihood updating.

Theorem 3. If P+ is rich and C(P+) is closed, then Axiom1 holds for the
family of choices C

reg,P+|lE
M .
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Abstract. This paper deals with knowledge extraction from experimen-
tal data in multifactorial evaluation using Sugeno integrals. They are
qualitative criteria aggregations where it is possible to assign weights
to groups of criteria. A method for deriving such weights from data is
recalled. We also present results in the logical representation of Sugeno
integrals. Then we show how to extract if-then rules expressing the selec-
tion of good situations on the basis of local evaluations, and rules to
detect bad situations. We illustrate such methods on a case-study in the
area of water ecosystem health.

1 Introduction

Sugeno integrals are aggregation functions that make sense on any completely
ordered scale, and can then be called qualitative aggregation operations. Like
many aggregation operations in multifactorial evaluation, they return a global
evaluation lying between the minimum and the maximum of the partial rat-
ings. In a Sugeno integral each group of criteria receives an importance weight,
whereby interactions between criteria can be modeled.

Sugeno integrals are used both in multiple criteria decision making and in
decision under uncertainty [2,6,8]. While many results exist proposing formal
characterizations of Sugeno integral [10,11], fewer papers address the identifi-
cation of Sugeno integrals from data, and the interpretation of this aggrega-
tion method in terms of decision rules. The former problem is addressed by
Prade et al. [12,13]: they calculate a family of capacities, if any, that determine
Sugeno integrals that account for a set of empirically rated objects both locally
with respect to criteria, and globally, each object receiving an overall evalu-
ation. The second issue was first addressed by Greco et al. [9]. Representing a
Sugeno integral by a set of rules make it more palatable in practical applications.
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 14–24, 2015.
DOI: 10.1007/978-3-319-20807-7 2
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More recently, a possibilistic logic rendering of Sugeno integral has been pro-
posed, in the form of weighted formulas the satisfaction of which is sufficient
to ensure a minimal global evaluation [5].

Such a possibilistic logic base can be used to obtain some rules associated to
the given data modeled by a Sugeno integral. This paper combines both a tech-
nique for identifying a family of capacities at work in a Sugeno integral applied
to subjective multifactorial evaluation data, and a technique for extracting deci-
sion rules from the obtained family of Sugeno integrals. At the theoretical level
it completes the results obtained in [5] by considering the extraction of decision
rules that give conditions for an object to have a global evaluation less than a
given threshold. Overall, we then get rules that can accept good objects and
rules that can discard bad ones. As an illustration the paper presents an appli-
cation of these results on a case-study on the effects of rainwater pollution on
the development of algae. In a nutshell, this application focuses on the following
question: what do we learn about the given data on algae when representing the
global evaluation by an aggregation of local ones via a discrete Sugeno integral?
Papers using fuzzy set methods in ecology are not so numerous; let us how-
ever mention the use in classification of another family of aggregation functions,
named symmetric sums [15].

The paper is structured as follows: Sect. 2 begins with a brief reminder about
some theoretical results concerning Sugeno integral. Next it presents results on
the identification of Sugeno integral and its expression in the form of rules.
Section 3 presents the data of the case-study. Section 4 deals with the application
of the theoretical results to the given dataset.

2 Interpreting Evaluation Data Using Sugeno Integrals

We use the terminology of multiple criteria decision-making where some objects
are evaluated according to criteria. We denote by C = {1, · · · , n} the set of
criteria, 2C the power set and L a totally ordered scale with top 1, bottom 0,
and the order-reversing operation denoted by ν (ν is involutive and such that
ν(1) = 0 and ν(0) = 1). An object is represented by a vector x = (x1, · · · xn)
where xi is the evaluation of x according to the criterion i.

In the definition of Sugeno integral the relative weights of the set of criteria
are represented by a capacity (or fuzzy measure) which is a set function μ :
2C → L that satisfies μ(∅) = 0, μ(C) = 1 and A ⊆ B implies μ(A) ≤ μ(B).
In order to translate a Sugeno integral into rules we shall also need the notion
of conjugate capacity. More precisely, the conjugate capacity of μ is defined by
μc(A) = ν(μ(Ac)) where Ac is the complementary of A. The Sugeno integral of
function x with respect to a capacity μ is originally defined by [16,17]: Sμ(x) =
maxα∈L min(α, μ(x ≥ α)), where μ(x ≥ α) = μ({i ∈ C|xi ≥ α}). It can be
equivalently written under various forms [3,10,11], especially:

Sμ(x) = max
A⊆C

min(μ(A),min
i∈A

xi) = min
A⊆C

max(μ(Ac),max
i∈A

xi) (1)
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2.1 Eliciting Sugeno Integrals

In this paper, our first aim is to elicit a family of Sugeno integrals that are compat-
ible with a given dataset. Let us recall how to calculate the bounds of this family.

The set of data is a collection of (xk, αk)k where xk are tuples of local evalua-
tions of objects k = 1, . . . , N and αk is the global evaluation of object k. This data
set is supposed to be provided by some expert, or the result of a data collection.
We want to know if there exists a capacity μ such that Sμ(xk) = αk for all k, and if
so, we want to calculate at least one solution. In [14], the following result is proved:

Proposition 1. For a given data item (x, α), {μ|Sμ(x) = α} = {μ|μ̌x,α ≤ μ ≤
μ̂x,α} where μ̌x,α and μ̂x,α are capacities defined by

μ̌x,α(A) =
{

α if {i|xi ≥ α} ⊆ A
0 otherwise and μ̂x,α(A) =

{
α if A ⊆ {i|xi > α}
1 otherwise.

Remark: It is easy to see that μ̌x,α is a necessity measure with respect to the

possibility distribution π̌x,α(i) =

{
1 if xi ≥ α

ν(α) otherwise
, and μ̂x,α(A) is a possibility

measure with respect to the possibility distribution π̂x,α(i) =

{
1 if xi ≤ α

α otherwise
.

Hence we can calculate the bounds of the compatible Sugeno integrals:

Proposition 2. The set of compatible capacities with the given data (xk, αk)k

is {μ|maxk μ̌xk,αk
≤ μ ≤ mink μ̂xk,αk

}.
As a consequence, maxk μ̌xk,αk

and mink μ̂xk,αk
can be any kind of capacity, since

any capacity is the eventwise minimum of necessity measures and the eventwise
maximum of possibility measures [4]. Moreover, it is not always the case that
{μ|maxk μ̌xk,αk

≤ μ ≤ mink μ̂xk,αk
} �= ∅, that is, the set of solutions can be

empty.1

2.2 Extracting If-Then Rules Using Possibilistic Logic

Based on the above results and procedures described in [12], suppose we have a
family of Sugeno integrals compatible with the evaluation data. Now, we try to
express if-then rules associated to these integrals, thus facilitating the interpre-
tation of the data.

Selection Rules. First let us recall how Sugeno integral can be encoded by
means of a possibilistic logic base with positive clauses (see [5] for more details).

1 In order to compare maxk μ̌xk,αk
and mink μ̂xk,αk

it is not necessary to calculate
their values and to compare them on each subset of criteria. It is proved in [14] that
the set of compatible capacities is not empty if and only if for all αk < αl we have
{i|xl

i ≥ αl} �⊆ {i|xk
i > αk}.
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We need to use the inner qualitative Moebius transform of a capacity μ which
is a mapping μ# : 2C → L defined by

μ#(E) = μ(E) if μ(E) > max
B⊂E

μ(B) and 0 otherwise.

A set E such that μ#(E) > 0 is called a focal set. The set of the focal sets
of μ is denoted by F(μ). Moreover we denote by F(μ)α the set of the focal sets
E such that μ(E) = α. Note that Sugeno integral can be expressed in terms of
μ# using Equation (1) as follows: Sμ(x) = max

E∈F(μ)
min(μ#(E),min

i∈E
xi).

Using the definition of the Sugeno integral it is easy to get the following
result [5]:

Proposition 3. The inequality Sμ(x) ≥ γ is equivalent to ∃T ∈ F(μ)γ such
that ∀i ∈ T, xi ≥ γ.

So each focal T of μ with level μ#(T ) corresponds to the selection rule:

Rs
T : If xi ≥ μ#(T ) for all i ∈ T then Sμ(x) ≥ μ#(T ).

This set of rules can be encoded in possibilistic logic as a set of weighted cubes.
Define for each criterion i a family of Boolean predicates xi(α), α > 0 ∈ L such
that xi(α) = 1 if xi ≥ α and 0 otherwise. Then we consider weighted Boolean
formulas of the form [φ, α] which are interpreted as lower possibility distribu-

tions on the set of objects: π−
[φ,α](x) =

{
α if x |= φ;
0 otherwise

. Then the lower possibil-

ity distribution associated to a weighted cube is [∧j∈T xj(α), α] interpreted as

π[T,α](x) =

{
α if xi ≥ α,∀i ∈ T ;
0 otherwise

. Each weighted cube [∧j∈T xj(μ(T )), μ#(T )]

for a focal set T corresponds to a rule Rs
T as stated above.

The lower possibility distributions associated to a set of such weighted formu-
las is interpreted as the maximum of the lower possibility distributions associated
to each weighted formula. Now consider the possibilistic base

B−
μ = {[∧j∈T xj(α), α] : μ(T ) ≥ α > 0, T ∈ F(μ)}

with lower possibility distribution π−
μ (x) = maxμ(T )≥α>0,T∈F(μ) π−

[φ,α](x).

Proposition 4 (Proposition 4 in [5]). Sμ(x) = π−
μ (x).

The proof takes advantage of the max-min form of Sugeno integral in Eq. (1).

Elimination Rules. The above rules and their logical encoding are tailored
for the selection of good objects. Symmetrically, we can obtain rules for the
rejection of bad objects associated to the Sugeno integral. In the following we
prove results similar to those in [5] for the inequality Sμ(x) ≤ γ.

The idea is to use the min-max form of Sugeno integral in Eq. (1), which is
the form of possibility distributions in standard possibilistic logic [1]. The focal
sets of the conjugate of μ are sufficient to calculate the Sugeno integral:
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Proposition 5. Sμ(x) = minT∈F(μc) max(ν(μc
#(T )),maxi∈T xi).

Proof. Note that we can write Sμ(x) = minT⊆C max(ν(μc(T )),maxi∈T xi).
Hence, Sμ(x) is the minimum between minT �∈F(μc) max(ν(μc(T )),maxi∈T xi)
and minT∈F(μc) max(ν(μc

#(T )),maxi∈T xi)).

If we consider T �∈ F(μc) then there exists F ∈ F(μc) such that F ⊆ T and
μc(F ) = μc(T ) = μc

#(F c). Moreover maxi∈F xi ≤ maxi∈T xi which implies that
max(μc

#(F ),maxi∈F xi) ≤ max(μc
#(T ),maxi∈T xi). �

Note that Sμ(x) takes the form “min →” using Kleene implication, like weighted
minimum.

Proposition 6. Sμ(x) ≤ α if and only if ∃F ∈ F(μc) with μc(F ) ≥ ν(α) s.t.
∀xi ∈ F xi ≤ α.

Proof. Sμ(x) ≤ α implies ∃F ∈ F(μc) such that μ#(F c) ≤ α and maxi∈F xi ≤ α.
So we have ν(μc

#(F )) ≤ α, i.e., μc
#(F ) ≥ ν(α) and ∀xi ∈ F xi ≥ α. �

This proposition shows that for each focal set of the conjugate μc we have the
following elimination rule:

Re
F : If xi ≤ ν(μc

#(F )) for all i ∈ F then Sμ(x) ≤ ν(μc
#(F )).

Let us give a possibilistic logic view of elimination rules associated to Sugeno
integral, now as set of weighted clauses. Define for each criterion i a family of
Boolean predicates xi(α), α > 0 ∈ L such that xi(α) = 1 if xi > α and 0
otherwise. It is slightly different from the previous case. It is easy to check that
xi = minα<1 max(xi(α), α).

Here we consider weighted Boolean formulas of the form (φ, β) which are
interpreted as upper possibility distributions on the set of objects:

π+
(φ,β)(x) =

{
1 if x |= φ;
ν(β) otherwise

.

The upper possibility distributions associated to a set of such weighted formu-
las is interpreted as the minimum of the upper possibility distributions associated
to each weighted formula. Then the set of weighted clauses {(

∨
j∈F xj(α), ν(α)) :

α < 1} induces an upper possibility distribution:

πF (x) = min
α<1

max(α,max
j∈F

xj(α)) = max
j∈F

xj .

Each weighted clause (
∨

j∈F xj(μc(F )), ν(μc(F ))) for a focal set F of μc corre-
sponds to the elimination rule Re

T stated above.
A logical rendering of the Sugeno integral in the min-max form is obtained as

follows. First consider the following base of clauses BF
μ = {(

∨
j∈F xj(α), ν(α)) :

ν(μc
#(F )) ≤ α < 1}. We claim it encodes the term max(ν(μc

#(F )),maxi∈F xi).
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Proposition 7. π+
BF

µ
(x) = max(ν(μc

#(F )),maxi∈F xi).

Proof. π+
BF

µ
(x) = min1>α≥ν(μc

#(F )) max(α,maxj∈F xj(α)) =
min1>α max(ν(μc

#(F )),max(α,maxj∈F xj(α))) = max(ν(μc
#(F )),maxi∈F xi).�

Now consider the possibilistic base

B+
μ = {(

∨

j∈F

xj(α), ν(α)) : ν(μc(F )) ≤ α < 1, F ∈ F(μc)}

with upper possibility distribution π+
μ (x) = minF∈F(μc) π+

BF
µ
(x).

Proposition 8. Sμ(x) = π+
μ (x).

3 Data for the Case Study

Samples were collected on retention basins in the Eastern suburbs of Lyon before
groundwater seepage (see [7] for more details). Some samples are obtained by
rainy weather and others are obtained by dry weather. We then speak about
“rain waters” and “dry waters” respectively. The waters contain many pollutants
(like heavy metals, pesticides, hydrocarbons, PCB, ...) and our aim is to assess
their impact on the water ecosystem health. This is why the unicellular algal
compartment is considered hereafter. Algae are chosen for their high ecological
representativeness at the first level of the food chain.

First, algal growth (C) was measured as a global indicator of algal health
with standardized bioassay (NF EN ISO 8692), then bioassays more specific
of different metabolic pathways were carried out: chlorophyll fluorescence (F)
as phosynthesis indicator and two enzymatic activities, Alkaline phosphatase
Activity (APA) and Esterase Activity (EA) as nutrients metabolism indicators.
Assays were performed after 24 h exposure to samples collected during 7 different
rainfall events and for different periods of the year for dry weather. Results,
presented in Table 1 in which each row represents a sample, are expressed as

Table 1. Original data

data under rainy weather data under dry weather

AE APA F C

83 36, 46 185, 45 45, 39
131, 64 25, 88 10, 69 0
35, 6 167, 06 0
16, 36 81, 25 194, 97 7, 17
107, 82 72, 64 167, 04 0
58, 18 116, 57 63, 39
698, 37 42, 15 90, 18 92, 70

AE APA F C

24, 65 104, 93 153, 51 67, 58
17, 6 466, 4 123, 62 15, 76
33, 22 47, 6 163, 58 55, 17
96, 78 35, 17 21, 51 9, 71
74, 06 92, 3 123, 43 26, 59
64, 55 73, 32 163, 08 0
5, 12 206, 87 111, 56 92, 17

AE APA F C

509 55, 02 111, 64 110, 69
209, 28 109, 1 73, 18 102, 30
1964, 58 95, 93 6, 96 0
122, 62 98, 61 137, 09 69, 30

5, 6 143, 12 38, 81
45, 35 78, 27 129, 45 56, 82
64, 88 331, 37 0
143, 63 65, 52

31, 92 44, 23 75, 78
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percent of activity of control (control being algae before exposure to rain waters).
The effects are considered significant when the values are far from 100. The values
obtained are less than 100 in the case of inhibition and greater than 100 in the
case of activation. The expert translates the results to the totally ordered scale
L = {15, 25, 50, 85, 100}. Level 100, interpreted as a complete lack of effect of
the rainwater, is the best evaluation; and the farther an evaluation is from 100,
the worse it is. More precisely we have the following interpretation:

15 25 50 85 100

very strong effect strong effect effect weak effect no effect

With these rescaled data the expert can give a global evaluation (global eval.)
in the scale L. The results are presented in Table 2.

Table 2. Rescaled data

rehtaewyrdrednuatadrehtaewyniarrednuatad

AE APA F C global eval.
85 25 50 50 50
85 25 15 15 25
25 50 15 25
25 85 25 15 25
100 85 50 15 50
50 85 50 50
15 50 100 85 50

AE APA F C global eval.
15 100 50 50 50
15 15 85 25 25
25 50 50 50 50
100 25 25 15 25
85 100 85 25 85
50 85 50 15 50
15 15 100 100 50

AE APA F C global eval.
15 50 100 100 85
15 100 85 100 85
15 100 15 15 25
100 100 85 50 85
15 85 25 50
50 85 85 50 50
50 15 15 25
85 50 50

25 50 85 50

The evaluation scale is equipped with the reversing order map ν defined by:
ν(15) = 100, ν(25) = 85, ν(50) = 50.

These experiment results can be modeled by an aggregation operation: the
four criteria will be APA, AE, F and C, and we try to elicit Sugeno integrals
which represent the given global evaluation. Next the obtained Sugeno integrals
are translated into rules whose conditions use the criteria.

4 Experimental Results

In this section, we try to interpret the above data in terms of selection and
elimination rules built via a Sugeno integral.

Data Under Rainy Weather. We consider the data under rainy weather
and we compute the bounds of the set of compatible capacities μ̌, μ̂ and their
conjugate capacities (Table 3).

We have μ̌ ≤ μ̂ so it is possible to represent the data with a Sugeno integral.
Let us denote by μ a capacity with μ̌ ≤ μ ≤ μ̂.
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Table 3. Weights for criteria groups for rainy weather

criteria µ̌ µ̂ µ̌c µ̂c criteria µ̌ µ̂ µ̌c µ̂c criteria µ̌ µ̂ µ̌c µ̂c

{AE} 15 25 50 15 {APA} 15 25 50 15 {F} 15 25 85 15

{C} 15 50 25 15 {AE,APA} 25 50 50 50 {AE,F} 15 100 100 15

{AE,C} 15 100 100 15 {APA,F} 15 100 100 15 {APA,C} 15 100 100 15

{F,C} 50 50 85 50 {AE,APA,F} 85 100 100 50 {AE,APA,C} 25 100 100 85

{AE,F,C} 50 100 100 85 {APA,F,C} 50 100 100 85 {AE,APA,F,C} 100 100 100 100

Remark 1. As μ̌ ≤ μ ≤ μ̂, μ({F,C}) = 50. Since μ(F ) ≤ 25, either C is a focal
element with level 50 or {F,C} is a focal element with level 50.

Remark 2. Since Sμ̌ ≤ Sμ ≤ Sμ̂, then we are going to consider μ̌ (resp. μ̂c)
to obtain selection (resp. elimination) rules. Indeed, testing μ̌ is larger than a
threshold and μ̂c less than this threshold give sure decisions despite the limited
knowledge about μ.

– Let us consider μ̌. The focal sets are F(μ̌)100 = {{AE,APA,F,C}}, F(μ̌)85 =
{{AE,APA,F}}, F(μ̌)50 = {{F,C}}, F(μ̌)25 = {{AE,APA}}, and we
obtain the following selection rules
• If xAE ≥ 85, xAPA ≥ 85 and xF ≥ 85 then Sμ̌(x) ≥ 85.
• If xF ≥ 50 and xC ≥ 50 then Sμ̌(x) ≥ 50.
• If xAE ≥ 25 and xAPA ≥ 25 then Sμ̌(x) ≥ 25.

– Let us consider μ̂c. We have F(μ̂c)50 = {{APA,AE}, {F,C}}, F(μ̂c)85 =
{{AE,APA,C}, {AE,F,C}, {APA,F,C}}, F(μ̂c)100 = {{AE,APA,F,C}}
which produces the following elimination rules:
• if xAPA ≤ 50 and xAE ≤ 50 then Sμ̂(x) ≤ 50.
• if xF ≤ 50 and xC ≤ 50 then Sμ̂(x) ≤ 50.
• if xAPA ≤ 25 and xAE ≤ 25 and xC ≤ 25 then Sμ̂(x) ≤ 25.
• if xAE ≤ 25 and xF ≤ 25 and xC ≤ 25 then Sμ̂(x) ≤ 25.
• if xAPA ≤ 25 and xF ≤ 25 and xC ≤ 25 then Sμ̂(x) ≤ 25.

Sugeno integral Sμ(x) complies with all rules, hence the following comments:

– If criteria AE, APA and F are satisfied enough then the global evaluation is
good;

– When criterion C has a bad rating, two other criteria also need to have a bad
rating in order to obtain a bad global evaluation.

– However if criteria other than C get bad ratings it is not enough to get a bad
global evaluation.

Let us consider fictitious examples of data and predict the global evaluation given
with Sμ̌ and Sμ̂ obtained above. We get an interval-valued evaluation given by
the range of compatible capacities Sμ̌ ≤ Sμ ≤ Sμ̂. In the left-hand table we
consider that only one criterion is perfect and the others get the worst value. In
the right-hand table we consider that only one criterion has the worst value and
the other are satisfied.
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Some comments concerning the global evaluation: Criterion C is not sufficient
to downgrade it under 85, and it is not sufficient to bring it above 50. No other
criterion is sufficient to alone bring it above 25. Criterion F is not sufficient to
downgrade it under 25, and criteria AE and APA are not sufficient to downgrade
it alone under 50. These remarks give a good idea of the relative importance of
criteria.

Data Under Dry Weather. This section is similar to the previous one. First
we compute the bounds of the capacities as per Table 4. Since μ̌ ≤ μ̂, it is possible
to represent the data with a Sugeno integral. We remark that the set of solutions
μ̌ ≤ μ ≤ μ̂ is not compatible with the previous one since they have an empty
intersection.

Remark 3. We have μ({F,C}) = 85 and since μ(F ) ≤ 50, either C is a focal
element with level 85 or {F,C} is a focal element with level 85.

– Let us consider μ̌. The focal sets form F(μ̌)100 = {{AE,APA,F,C}},
F(μ̌)85 = {{F,C}, {AE,APA,F}}, F(μ̌)25 = {{APA}}. It produces the fol-
lowing rules:
• If xAE ≥ 85, xAPA ≥ 85 and xF ≥ 85 then Sμ̌(x) ≥ 85;
• If xF ≥ 85 and xC ≥ 85 then Sμ̌(x) ≥ 85.
• If xAPA ≥ 25 then Sμ̌(x) ≥ 25.

– Let us consider μ̂c. We have F(μ̂c)25 = {{AE,APA}, {AE,F}, {F,C}},
F(μ̂c)50= {{AE,C}}, F(μ̂c)85 = {{AE,F,C}}, F(μ̂c)100 = {{AE,
APA,F,C}}, which produces the following rules:
• if xAE < 100 and xAPA < 100 then Sμ̂(x) < 100;
• if xAE < 100 and xF < 100 then Sμ̂(x) < 100;
• if xF < 100 and xC < 100 then Sμ̂(x) < 100;
• if xAE ≤ 50 and xC ≤ 50 then Sμ̂(x) ≤ 50;
• if xAE ≤ 25 and xF ≤ 25 and xC ≤ 25 then Sμ̂(x) ≤ 25.

Table 4. Weights for criteria groups for dry weather

Criteria μ̌ μ̂ μ̌c μ̂c Criteria μ̌ μ̂ μ̌c μ̂c Criteria μ̌ μ̂ μ̌c μ̂c

{AE} 15 85 25 15 {APA} 25 25 25 15 {F} 15 50 85 15

{C} 15 85 25 15 {AE,APA} 25 85 25 25 {AE,F} 15 100 85 25

{AE,C} 15 100 85 50 {APA,F} 25 50 100 15 {APA,C} 25 85 100 15

{F,C} 85 85 85 25 {AE,APA,F} 85 100 100 25 {AE,APA,C} 25 100 100 50

{AE,F,C} 85 100 85 85 {APA,F,C} 85 100 100 25 {AE,APA,F,C} 100 100 100 100
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A Sugeno integral Sμ(x), where μ̌ ≤ μ ≤ μ̂, complies with all rules, hence, if C, F
and AE have a bad evaluation then the global evaluation is bad. As previously,
we consider fictitious examples and derive the bounds of the global evaluation
given by Sμ.

AE APA F C Sμ̌ Sμ̂

15 15 15 100 15 85

100 15 15 15 15 85

15 15 100 15 15 50

15 100 15 15 25 25

AE APA F C Sμ̌ Sμ̂

100 100 100 15 85 100

100 100 15 100 25 100

100 15 100 100 15 100

15 100 100 100 85 100

Some comments concerning the global evaluation: Each of C and AE is not
sufficient to alone bring it above 85 or to downgrade it under 85. F is not suffi-
cient to alone bring it above 50 or to downgrade it under 25. APA is not sufficient
to bring it above 25 but it can downgrade it to 15. If C and NF have a good
evaluation the global evaluation will be good. It is the same if C is replaced by
AE and APA.

Discussion. The rules presented in this section include pieces of knowledge
familiar to experts in the application area. For example, parameters C and F are
used to evaluate the global health of algae, unlike APA and AE which refer to
specific pathways metabolism. So, when C and F show no effect or weak effect,
the global evaluation is good, while a significant effect on the APA and EA only,
is known not to allow degradation of the overall score. Moreover, rules extracted
from the obtained Sugeno integrals show stronger effects with rain samples than
those obtained after dry weather samples exposure. These results are in perfect
agreement with those obtained directly with bioassays.

5 Conclusion

This paper shows the usefulness of qualitative aggregation operations such as
Sugeno integrals to extract knowledge from data. The key asset of the approach
is the capability of Sugeno integral to lend itself to a complete logical rendering of
its informative content, which is typical of qualitative approaches, while a direct
handling of the numerical data would make this step more difficult to process.
A comparison between the results obtained by this approach and results obtained
by standard machine learning methods would be worthwhile in a future work.
Of course one objection is that only special kinds of rules can be expressed by
Sugeno integral: a single threshold is used in all conditions of each rule [9]. This
limited expressive power may be a cause of failure of the approach if no capacity
can be identified from the data. Extracting more expressive rules would need
qualitative aggregation operations beyond Sugeno integrals.
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Abstract. In the context of decision under uncertainty, standard gam-
bles are classically used to elicit a utility function on a set X of conse-
quences. The utility of an element x in X is derived from the probability
p for which a gamble giving the best outcome in X with probability p and
the worst outcome in X otherwise, is indifferent to getting x for sure. In
many situations, uncertainty that can be observed on the true value of
X concerns only neighbour values. Uncertainty is then represented by a
probability distribution whose support is an interval. In this case, stan-
dard gambles are unrealistic for the decision maker. We consider uncer-
tainty represented by an equi-probability over an interval of X. This paper
addresses the elicitation of a utility function on X by obtaining the cer-
tainty equivalent of an equi-probability over an interval of X. We show
that not all utility models are suitable to accomplish this task.

1 Introduction

The elicitation of a utility function u over a set X is an important aspect of
decision theory. It can be performed in decision under uncertainty by observing
the attitude of the decision maker towards risk over gambles defined on X [18].
The most classical way to elicit u is based on standard gambles. A standard
gamble (or standard lottery) denotes a vector 〈p, x�; 1 − p, x⊥〉 where the best
outcome x� (resp. the worst outcome x⊥) in X is realized with probability p
(resp. 1 − p). For some x ∈ X, one gets from the decision maker the probability
p for which the standard gamble 〈p, x�; 1 − p, x⊥〉 is indifferent to the sure
outcome x. Under the expected utility (EU) model, one obtains u(x) = p, after
fixing u(x�) = 1 and u(x⊥) = 0 [18,19]. This elicitation approach has been used
for instance to construct the utility of the remaining years to live, for medical
decisions. Such a gamble can be a 50 − 50 gamble resulting in either 20 years of
good health or immediate death [20].

The idea of the previous approach is to elicit u(x) by identifying an uncertain
situation (a probability distribution over the set X of consequences) that has x
as certainty equivalent. The uncertain situation is then a standard gamble based
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 25–35, 2015.
DOI: 10.1007/978-3-319-20807-7 3
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on the extreme consequences x� and x⊥. There are many applications where
standard gambles do not make sense to the decision maker. Let us consider the
following example.

Example 1. In crisis management, if heavy rain is expected, the local authority
would like to forecast the peak flood level in a city. Before the flood arises, the
decision maker only has an uncertain estimate of the peak flood level X. The
problem is then to define a utility function on this variable, to be combined with
other criteria to make a decision on the evacuation of a residential area. The
flood propagation models typically return an extreme value distribution.

In the previous example, it might not be easy to elicit the utility function on X
on the basis of the distribution on the peak flood level provided by the models as
it is relatively complex. We note that this distribution has a support which is a
closed interval of X. Hence it would not be realistic to use standard gambles, like
〈p, 15m; 1 − p, 0m〉, as the decision maker will not face such a situation in a real
crisis management. We propose in this paper to use uniform distribution law on a
close interval like [10m, 14m]. The uniform law can be seen as an approximation
of the extreme value distribution, which is simple to grasp for a decision maker.
We restrict ourselves to uniform probability laws over intervals of X, such as a
uniform probability on [10m, 14m] in Example 1.

We are interested in constructing a utility function on X from the certainty
equivalent x̂ of a uniform probability law on an interval [a, b] of X. Utility func-
tions are parameterized for elicitation purposes. The certainty equivalent x̂ can
potentially be any element in interval [a, b]. Then a family of parameterized
utility functions is admissible if, for any x̂ ∈ [a, b], there exists a value of the
parameters for which the expected value of the utility function over [a, b] is
equal to x̂. We show that the most commonly used models do not fulfilled this
requirement. We propose some models that satisfy it.

In practice, one cannot expect to identify accurately the certainty equivalent
of a probability law over X. Hence we do not obtain a unique utility function
but rather a family of compatible utility functions, from which decisions are to
be taken. We adopt a cautious approach to recommend decisions [8,16].

Section 2 presents the general elicitation approach. We address in Sect. 3
piecewise affine utility functions, which is a commonly used representation in
multi-criteria decision making. We then consider in Sect. 4 an analytical for-
mula, as it is done in decision under uncertainty. Section 5 presents the related
works. Finally some conclusions are drawn.

2 General Approach for the Elicitation of a Utility
Function

Let X be an interval of R. Without loss of generality, we will consider in the
whole paper only strictly increasing utility functions over X. In an elicitation
phase, one cannot expect to uniquely identify the utility function. Hence we
assume a family U of compatible utility functions, where U is to be determined.
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2.1 Decision Model Under Uncertainty

We define a gamble on X as a probability density function on X. We wish to
represent a preference relation over these gambles, given the set U . Here two
gambles describe two different uncertainties on X, and we are interested in the
attitude of the decision maker toward such uncertainty. Note that this definition
of a gamble is different from that used in subjective probability [6,22], where a
gamble is a reward associated to each state of nature.

The basic decision rule in decision under uncertainty is based on expected
utility:

EUu(g) =
∫

X

u(x) p(x) dx,

where p is the probability density function associated to gamble g. There are
many different decision rules to compare gambles when the parameters of the
model are imprecise: [21] for imprecise probabilities, [8] for imprecise utilities,
and [16] for both imprecise probabilities and utilities. Lower and upper expecta-
tions are often used. We use a cautious way to make a decision on the gambles,
facing U (imprecise utilities), where the relation holds if the preference is true
for all utility functions in U :

g �U g′ (resp. g �U g′ or g ∼U g′) ⇐⇒ (1)
∀u ∈ U, EUu(g) ≥ EUu(g′) (resp. EUu(g) > EUu(g′) or EUu(g) = EUu(g′))

Relation induced by �U is usually incomplete.

2.2 Elicitation Process

Once the utility is known, the decision model �U can be applied to probability
laws p that are very complex (as for the flood peak level in Example 1). However,
during the elicitation process, we restrict ourselves to uniform probability laws
over intervals of X in order to reduce the cognitive load. We denote by 〈1, [a, b]〉
(with [a, b] ⊆ X and b > a) the gamble described by the uniform probability
density function p given by p(x) = 1

b−a if x ∈ [a, b] and p(x) = 0 else. The sure
outcome x ∈ X is also noted 〈1, [x, x]〉. We set GX = {〈1, [a, b]〉 , [a, b] ⊆ X}
including both cases. We have EUu(〈1, [a, b]〉) = 1

b−a

∫ b

a
u(x) dx if b > a, and

EUu(〈1, [a, b]〉) = u(a) if a = b.
In order to ease the elicitation process, we are interested in families of para-

meterized utility functions. This is classically done in decision under uncer-
tainty, with for instance family uλ(x) = xλ [13,17]. We denote by γ the vector
of parameters, by Γ its range, and by uγ the associated utility function. Let
U = {uγ , γ ∈ Γ}. The set of admissible utility functions corresponds to a subset
ΓA of Γ , where U = {uγ , γ ∈ ΓA}.

Generalizing the elicitation process based on standard gambles, ΓA may be
derived by asking to the decision maker the certainty equivalent x̂ of a gamble
〈1, [a, b]〉, given interval [a, b]. The certainty equivalent of gamble 〈1, [a, b]〉 is an



28 C. Labreuche et al.

element x̂ ∈ [a, b] such that 〈1, [a, b]〉 is indifferent to 〈1, [x̂, x̂]〉. Then ΓA is the
set of values γ satisfying relation 1

b−a

∫ b

a
uγ(x) dx = uγ(x̂).

In practice, a decision maker is not expected to provide a value x̂ that is
close to the extreme values a and b. Hence one might often have

〈1, [a + ε, a + ε]〉 ≺U 〈1, [a, b]〉 ≺U 〈1, [b − ε, b − ε]〉 (2)

for some ε > 0 which depends on the attitude of the decision maker. Note that ε
can be very small if the decision maker is extremely risk averse or risk seeking. We
will show in Sect. 3.1, that a classical family of utility functions satisfies (2) with
ε = b−a

4 . This value is relatively large (only half of interval [a, b] is reachable),
and we guess that this family is not versatile enough.

As it is not easy to set some value for ε and we do not want to rule out some
extreme attitudes of decision makers, we would ideally like to represent the case
where the certainty equivalent of gamble 〈1, [a, b]〉 can be any element in the
open interval (a, b).

Condition Comp(a, b) – Completeness (with b > a): For every x ∈ (a, b),

∃γ ∈ Γ
1

b − a

∫ b

a
uγ(x) dx = uγ(x). (3)

Conversely, from the intermediate value theorem, we know that if function uγ

is continuous, then for every γ ∈ Γ , there exists a point x ∈ [a, b] such that (3)
holds.

One can readily see that if function uγ is constant, then condition Comp(a, b)
is trivially satisfied for every interval [a, b]. Hence we consider only strictly
increasing utility functions.

In practice, it is unrealistic to ask directly to the decision maker to provide
the value of the certainty equivalent of a gamble. The certainty equivalent x̂ can
be approximated, by asking questions of the following form (with 〈1, [a, b]〉 ∈ GX

and x ∈ (a, b))

“Is〈1, [a, b]〉 less preferred / preferred / indifferent / incomparable to 〈1, [x, x]〉?” (4)

for different values of x, proceeding by dichotomy on x. The so-obtained
dichotomy process for approximating x̂ given gamble 〈1, [a, b]〉 is called
Certainty Equivalent Estimate (CEE). If the answer is “less preferred”
(resp. “preferred” or “indifferent”), then for all γ ∈ ΓA, EUuγ

(〈1, [a, b]〉) −
uγ(x) < 0 (resp. > 0 or = 0). At the end, ΓA is the set of all values γ satisfying
these constraints. “Incomparability” answers are not explicitly represented as
constraints.

The remaining of this paper is devoted to finding models of utility that fulfil
Comp. We will see that condition Comp is not fulfilled with the most commonly
used classes of utility functions. This condition will be used to select suitable
families U .
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3 Case of Piecewise Affine Utility Functions

Piecewise affine utility functions are classically used in multi-criteria decision
making [1]. The decision maker provides a finite set of elements in X: x1 < x2 <
· · · < xm. We set

uγ(x1) = 0 and uγ(xm) = 1. (5)

The unknowns are the utility at the points x2, . . . , xm−1: γ = (u2, . . . , um−1),
where uk = uγ(xk), u1 = 0 and um = 1. As uγ is strictly increasing, we assume
that u1 < u2 < · · · < um−1 < um. The utility function which interpolates
between the points (x1, u1), . . . , (xm, um), is denoted uPA

γ (where PA stands for
Piecewise Affine):

uPA
γ (x) =

⎧
⎨

⎩

0 if x ≤ x1

uk + x−xk

xk+1−xk
(uk+1 − uk) if x ∈ [xk, xk+1]

1 if x ≥ xm

(6)

We first show that form (6) does not fulfill condition Comp. Then we propose
another form of piecewise affine utility function.

3.1 Verification of Condition Comp with uPA
γ

As the elements x1, . . . , xm have a special meaning to the decision maker, we
can ask questions of the form (4) with the value of a and b being elements in
x1, . . . , xm.

Lemma 1. Condition Comp is not fulfilled with uPA
γ . More precisely, for every

p, q ∈ {1, . . . , m} with q > p, there exists γ such that (3) holds with a = xp and
b = xq iff

x ∈
[
xp + (xp+1 − xp)

xq − 1
2xp+1 − 1

2xp

xq − xp
, xq−1 + (xq − xq−1)

xq − xq−1

2(xq − xp)

]
(7)

Proofs are omitted due to space limitation. The idea is that, in order to allow
having x close to the lower bound a = xp (resp. upper bound b = xq), the
utility function should be close to the Heaviside function at xp (resp. xq) – see
function u1 (resp. u2) in the right part of Fig. 1. Lemma 1 shows that this is
not the case with uPA

γ . Interval in (7) is strictly included in [xp, xq]. For instance
for X = [0, 1], p = 1, q = m = 3 and x1 = 0, x2 = 1

2 , x3 = 1, interval
in (7) is [14 , 3

4 ], to be compared with interval [0, 1]. It follows that the expected
utility EUuPA

γ
(〈1, [xp, xq]〉) cannot take any value in [xp, xq]. This comes from

the fact that the points x1, . . . , xm are fixed. Hence we need to find another
representation.

3.2 Piecewise Affine Function Around a Diagonal

Instead of fixing the value of x and letting the associated utility be a variable,
the idea is to allow both the value of x and its utility to be variable (but not
independently).
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Fig. 1. Piecewise affine utility function around the diagonal (a, d) − (b, c).

We start by defining a utility function, depending on only one parameter γ, in
an interval [a, b] and with fixed values of the utility at the boundary: uγ(a) = c
and uγ(b) = d. The values of a, b ∈ X and c, d ∈ R are fixed. We consider a
piecewise affine function with an intermediate point in the diagonal line between
(a, d) and (b, c) (see the left part of Fig. 1). Let γ ∈ [0, 1]; the intermediate point
has coordinates (a + γ(b − a), c + (1 − γ)(d − c)). On the whole, uγ performs an
affine interpolation between the points (a, c), (a+γ(b−a), c+(1−γ)(d−c)) and
(b, d). We denote this utility function uAD

γ (where AD stands for Affine around
a Diagonal).

In order to elicit γ, we use the Dichotomy method CEE based on Question (4)
with interval [a, b]. The next result shows that it completely makes sense.

Lemma 2. Condition Comp(a, b) is fulfilled with uAD
γ . Moreover, if 〈1, [a, b]〉

is less preferred (resp. preferred or indifferent) to x ∈ (a, b), then γ < x−a
b−a (resp.

γ > x−a
b−a or γ = x−a

b−a ).

The main advantage of this approach is that whatever the answer x of the
decision maker in the interval [a, b], one can find the value of parameter γ ∈ [0, 1].
Moreover the correspondence between x and γ is very simple, as the mean value
of uAD

γ is attained precisely at the breaking point (a+γ(b−a), c+(1−γ)(d−c))
on the diagonal. In particular, the value of γ is independent of the values of
c and d. We will use this property in the next section, where c and d may be
unknown.

The previous pattern can be applied only once to a = x1, b = x2, c = 0
and d = 1.

3.3 Proposal with More Parameters

If we want more intermediate points, we can apply the previous patterns several
times. In Fig. 2, we apply the pattern two times, where the three values x1, x2, x3

are fixed. More precisely, we use the pattern a first time on the input interval
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Fig. 2. Parametric piecewise affine utility function using two patterns.

[x1, x2] and output interval [0, u2], and a second time on the input interval [x2, x3]
and output interval [u2, 1].

We have three unknowns: γ = (γ1, γ2, u2). We use three times the process
Dichotomy method CEE.

The first use of Dichotomy method CEE is on interval [x1, x2]. If 〈1, [x1, x2]〉
is less preferred (resp. preferred or indifferent) to x1,2 ∈ [x1, x2], then, by
Lemma 2

γ1 <
x1,2 − x1

x2 − x1

(
resp. γ1 >

x1,2 − x1

x2 − x1
or γ1 =

x1,2 − x1

x2 − x1

)
. (8)

The identification of γ1 is independent of unknown u2.
The second use of Dichotomy method CEE is on interval [x2, x3]. If

〈1, [x2, x3]〉 is less preferred (resp. preferred or indifferent) to x2,3 ∈ [x2, x3],
then

γ2 <
x2,3 − x2

x3 − x2

(
resp. γ2 >

x2,3 − x2

x3 − x2
or γ2 =

x2,3 − x2

x3 − x2

)
. (9)

The identification of γ2 is independent of unknown u2.
Finally, the last use of Dichotomy method CEE is on the interval [x1, x3].

The decision maker is asked to compare 〈1, [x1, x3]〉 with the sure outcome x1,3 ∈
[x1, x3]. As

EUuγ
(〈1, [x1, x3]〉) =

x2 − x1

x3 − x1
(1 − γ1)u2 +

x3 − x2

x3 − x1
(u2 + (1 − γ2)(1 − u2)) ,

(10)

One can derive from (10) constraints on u2, given the answer of the comparison
of 〈1, [x1, x3]〉 with the sure outcome x1,3, and upper and lower bounds on γ1
and γ2.
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4 Parametric Utility Functions

We consider in this section parametric utility functions. We restrict ourselves to
X = [0, 1]. We start with family upow

γ (x) = xγ , with γ > 0, already mentioned
previously [13,17] (see also [7] for a quadratic model). Another family will then
be considered.

4.1 Power Function

Lemma 3. Condition Comp(0, 1) is not fulfilled with upow
γ . More precisely,

there exists γ such that (3) holds with a = 0 and b = 1 iff x ∈(
1
e , 1

)
.

With model upow
γ , the decision maker is not allowed to provide a value of x

outside interval
(
1
e , 1

)
. Utility function upow

γ tends to the Heaviside function
at 0 when γ tends to 0. However it does not imply that condition Comp(0, 1)
is not necessarily satisfied with x arbitrarily close to 0. The shape of upow

γ is
such that its mean value vγ tends to 1 when γ → 1, but (upow

γ )−1(vγ) does not
tend to 0.

4.2 MinMaxVar Parametric Function

As Lemma 3 shows that the power utility function upow
γ is not suitable, we

consider another parametric function called MinMaxVar [5] taking the following
expression:

uMMV
γ (x) = 1 −

(
1 − x

1
γ

)γ

(11)

where uMMV
γ (0) = 0 and uMMV

γ (1) = 1 (see conditions (5)). Parameter γ belongs
to Γ = (0,∞), where function uMMV

γ is convex for γ < 1 and is concave for
γ > 1.

Function uMMV
γ has an useful symmetry property. Indeed one can readily

check that

y = uMMV
γ (x) ⇐⇒ 1 − x = uMMV

γ (1 − y). (12)

Hence points (x, y) and (1−y, 1−x) are symmetric w.r.t. the diagonal connecting
points (1, 0) and (0, 1) (see Fig. 3). As a result, curve uMMV

γ is symmetric w.r.t.
this diagonal. Note that uAD

γ (Sect. 3.2) satisfies a similar property as it is also
symmetric w.r.t. diagonal (a, d) − (b, c).

Moreover, curve uMMV
γ intersects the diagonal (1, 0) − (0, 1) at a point with

coordinates (β, 1 − β), with 1 − β = uMMV
γ (β). Hence

(
1 − β

1
γ

)γ

= β, i.e.

β =
(
1
2

)γ .
The next result shows that Dichotomy method CEE can be used on interval

[0, 1].

Lemma 4. Condition Comp(0, 1) is fulfilled with uMMV
γ .
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Fig. 3. Parametric function uMMV
γ .

Given any x ∈ (0, 1), one can easily find by dichotomy or a Gradient method
the value γ such that

∫ 1

0
uMMV

γ (x) dx = uMMV
γ (x). Moreover, the next lemma

provides bounds on γ given the comparison of the decision maker.

Lemma 5. For any x ∈ (0, 1), there exists a unique γ > 0 such that∫ 1

0
uMMV

γ (x)dx = uMMV
γ (x). Moreover, 〈1, [0, 1]〉 is less preferred (resp. preferred

or indifferent) to x ∈ [0, 1], iff γ > γ (resp. γ < γ or γ = γ).

5 Related Works

The elicitation process based on standard gambles has been enriched in different
ways. It has been used in AI as a baseline technique to elicit elaborate models
such as the Generalized Additive Independence (GAI) model [3,9]. If the set
of possible utilities is U , the decision rule can be the expected expected utility
where the expectation is taken over the set of outcomes but also over the space
U of possible utility functions [2]. The probability over utilities is updated dur-
ing elicitation using Bayes’ rule in [4]. Standard gambles are used to elicit an
imprecise utility in the framework of multi-attribute utility theory in [7].

It has been noticed in the litterature that the elicitation of the utility using
standard gambles may result in wrong assessments of u or in inconsistencies.
Experiments indeed indicate that human beings as subject to a number of biases
that distort their judgment about the perception of uncertainty. A canonical list
of biases can be found in [12]. For further references, see also [11,14]. The most
commonly encountered biases are: (1) probability weighting (individuals do not
treat probabilities linearly, and tend to overestimate small objective probabili-
ties, and under-estimate large ones [20]); (2) loss aversion (individuals are more
sensible to losses than to gains) [13,17].

Under the Expected Utility model, risk averse individuals (they prefer for
instance a sure outcome x to the gamble 〈 12 , 0; 1

2 , 2x〉) are represented by con-
cave utility functions. However, it has been noticed that the standard gamble
method tends to exaggerate the concavity of the utility function to capture risk
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aversion [10]. Rank dependent expected utility treats the probability weighting
bias by transforming the probability with a distortion function [15]. This model
is generalized in the prospect theory, where gains and losses (demarcating a
neutral level) are handled differently [13,17]. Prospect theory models the two
biases.

6 Conclusion

We have proposed in this paper the elicitation of a utility function over a set X by
comparing a gamble proposing x in an interval [a, b] ⊆ X with equiprobability, to
a sure outcome x ∈ X. This is a generalization of the elicitation process based
on standard gambles. A consistency condition called Comp has been defined:
it tells that for any x ∈ [a, b], there shall exist a value γ of the parameters
such that 〈1, [a, b]〉 is indifferent to sure outcome x. The piecewise affine model
uPA

γ and power model upow
λ do not fulfill this condition. We propose the use

of two models that fulfill this condition. The first one uAD
γ is piecewise affine

with an intermediate point where both the abscissa and ordinate numbers varies
at the same time on a diagonal. This pattern can be repeated several times in
adjacent intervals (for instance, in [x1, x2], [x2, x3], etc.). The second one is the
MinMaxVar function uMMV

γ , which shares a symmetry property with uAD
γ . In

both cases, we can derive constraints on the parameters of the utility model
from any comparison of gamble 〈1, [a, b]〉 to the sure outcome x. Risk aversion
occurs when 〈1, [a, b]〉 is strictly less preferred to sure outcome a+b

2 . Under our
models, this implies concavity of utility functions. Similar results are obtained
with standard gambles.

We can extend this work in several directions. We can extend the expected
utility model that we used to represent some cognitive bias. One can think of
rank dependent expected utility which is based on the Choquet integral. One
can also think of other types of uncertainties, such as the reliability of sources.
One would then compare making a decision from a source with low reliability
providing a value x ∈ X to another source with high reliability providing another
value x′ ∈ X. We can also think of other models for information [a, b], such as
the set of probabilities having this support.
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Abstract. The paper discusses the use of product-based possibilis-
tic networks for representing conditional preference statements on dis-
crete variables. The approach uses non-instantiated possibility weights
to define conditional preference tables. Moreover, additional informa-
tion about the relative strengths of symbolic weights can be taken into
account. It yields a partial preference order among possible choices corre-
sponding to a symmetric form of Pareto ordering. In the case of Boolean
variables, this partial ordering coincides with the inclusion between the
sets of preference statements that are violated. Furthermore, this graph-
ical model has two logical counterparts in terms of possibilistic logic and
penalty logic. The flexibility and the representational power of the app-
roach are stressed. Besides, algorithms for handling optimization and
dominance queries are provided.

1 Introduction

Since the direct assessment of a preference relation between elements of Carte-
sian products is usually not feasible, current work in preference modeling aims at
proposing compact preference models achieving a good compromise between elic-
itation easiness and computational efficiency. Conditional preference networks
(CP-nets) [4] are a popular example of such setting. However, in spite of their
appealing graphical nature, CP-nets may induce debatable priorities between
decision variables and lack a logical counterpart. Symbolic possibilistic logic
bases stand as another approach to represent preferences [9]. This setting over-
comes the above mentioned CP-nets limitations. Moreover, it leaves complete
freedom for stating relative priorities between variables. But, it is not a graphi-
cal model.

This paper explores the representation of preferences by possibilistic net-
works, outlined in [1] and establishes formal results about them. This approach
preserves a possibilistic logic representation, while offering a graphical compact
format convenient for elicitation.

The paper is organized as follows. Section 2 provides a formal definition of
product-based possibilistic network with symbolic weights, and shows the nature
of its preference ordering. Section 3 deals with the case of Boolean decision vari-
ables and provides two logical counterparts of this model, in possibilistic logic
and in penalty logic. Section 4 discusses optimization and dominance queries.
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 36–46, 2015.
DOI: 10.1007/978-3-319-20807-7 4



Possibilistic Conditional Preference Networks 37

2 Possibilistic Preference Networks

This section provides a short refresher on possibilistic networks, and then
describes how conditional preferences can be encoded by a possibilistic network.
Moreover, we show that the use of product-based conditioning leads us to define
a preference ordering that amounts to compare vectors by a symmetric extension
of the Pareto ordering.

2.1 Background on Possibilistic Networks

Possibility theory can be used for representing preferences. It relies on the idea
of a possibility distribution π, which is a mapping from a universe of discourse Ω
to the unit interval [0, 1]. Possibility degrees π(ω) estimate how satisfactory the
solutions ω is. Since alternative choices are usually described by means of several
decision variables, we need to manipulate possibility distributions on a Cartesian
product Ω = DA1 ×· · ·×DAN

. Namely, each composite decision ω = (a1, . . . , aN )
(denoted for short by a1 . . . aN ), corresponds to an instantiation of the N vari-
ables V = {A1, . . . , AN}, where Ai ranges on domain DAi

= {ai1, . . . , ain}. If
U ⊆ V , then ω[U ] denotes the restriction of solution ω to variables in U . Condition-
ing is defined from the Bayesian-like equation π(Ai, Aj) = π(Ai|Aj) ⊗ π(Aj) [3],
where ⊗ stands for the product in a quantitative (numerical) setting or for min in
a qualitative (ordinal) setting. Thus, the joint possibility distribution on Ω can be
decomposed using conditional possibility distributions by means of the chain rule
π(A1, ..., AN ) =

⊗
i=1..N π(Ai | Pa(Ai)) where the set Pa(Ai) ⊆ {Ai+1, . . . , AN}

forms the parents of Ai. Ai is conditionally dependent on its parent variables
only. This decomposition has a graphical counterpart, called possibilistic network,
where each node encodes a variable related to each its parents by a directed arc.
In the following, we use possibilistic networks for representing preferences (rather
than uncertainty as it has been the case until now).

2.2 Preference Specification

The user is supposed to express his preferences under the form of comparison
statements between variable instantiations, conditional on some other instanti-
ated variables. Therefore, in the particular case of Boolean variables, we deal
with preferences of the form: “I prefer a to ¬a” if the preference is not con-
ditioned, and of the form “in the context where c is true, I prefer a to ¬a” if
conditioned. More formally,

Definition 1. A preference statement s is a preference relation between values
aik ∈ DAi

of a variable Ai, in the form of a complete preorder, i.e., we have
only 2 different cases:

(i) ui : aik � aim: in the context ui, aik is preferred to aim;
(ii) ui : aik ∼ aim: in the context ui, the user is indifferent between aim and aik,

where ui is an instantiation of all variables that affect the user preferences
concerning the values of Ai. If ui = ∅, then Ai is an independent variable.
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Table 1. Conditional preference
specification

(s1) jb � jr

(s2) pb � pw

(s3) jbpb: sb � sr � sw

(s4) jbpw: sw � sb � sr

(s5) jrpb: sr � sb � sw

(s6) jrpw: sb ∼ sr ∼ sw

π(jb) π(jr)

1 α

π(pb) π(pw)

1 β

PJ

S

π(.|.) jbpb jbpw jrpb jrpw

sb 1 δ3 δ5 1

sr δ1 δ4 1 1

sw δ2 1 δ6 1

Fig. 1. A possibilistic preference
network

The running Example 1, inspired from [4], illustrates such preference statements.

Example 1. Consider a preference specification about an evening dress over 3
decision variables V = {J, P, S} standing for jacket, pants and shirt respectively,
with values in DJ = {Red (jr), Black (jb)}, DP = {White (pw), Black (pb)}
and DS = {Black (sb), Red (sr), White (sw)}. The conditional preferences are
given in Table 1. Preference statements (s1) and (s1) are unconditioned. Note
that the user is indifferent between the values of variable S in context uj = jbpw.

2.3 Graphical Possibilistic Encoding of Preferences

As already said, conditional preference statements can be associated to a graph-
ical structure. In this paper, this graphical structure is understood as a pos-
sibilistic network where each node is associated with a conditional possibility
table used for representing the preferences. For each particular instantiation ui

of Pa(Ai), the preference order between the values of Ai stated by the user will
be encoded by a local conditional possibility distribution. So, each node Ai is
associated with a conditional preference table. We call this model possibilistic
conditional preference network (π-Pref net for short).

Definition 2. A possibilistic preference network (π-Pref net) ΠG over a set
V = {A1, . . . , AN} of variables is a preference network where we associate to
each node Ai ∈ V a possibilistic preference table (πi-table for short), such that
to each instantiation ui of Pa(Ai) is associated a symbolic conditional possibility
distribution defining an ordering between the values of Ai:

– If aik ≺ aim then π(aik|ui) = α, π(aim|ui) = β where α and β are non-
instantiated variables on (0, 1] we call symbolic weights, and α < β ≤ 1;

– If aik ∼ aim then π(aik|ui) = π(aim|ui) = α where α is a symbolic weight
such that α ≤ 1;

– For each instantiation ui of Pa(Ai), ∃ ai ∈ DAi
such that π(ai|ui) = 1.

Let C be the set storing the constraints existing between the symbolic weights
introduced as above. This set can be completed by additional constraints, directly
provided by the user.
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By a symbolic weight, we mean a symbol representing a real number whose
value is unspecified. However, inequalities or equalities between such unspecified
values may be enforced, as in Definition 2, between conditional possibilities, or
independently stated in C. Since the symbolic weights stand for real numbers,
relations ≤ and < are transitive.

As usual in possibilistic networks, the normalization condition (expressed by
the third item in Definition 2) is crucial for conditional possibility distributions.
For example, consider a variable A such that DA = {a1, a2, a3} and its context
instantiation u, and assume that the user is indifferent between the values of
A in that context. Then, π(a1|u) = π(a2|u) = π(a3|u) = α. Then, in order to
satisfy normalization, α should be equal to 1 (see Example 1). In addition to the
preferences encoded by a π-Pref net, additional constraints in C can be taken
into account. Such constraints may, in particular, reflect the relative importance
of variables by making all preferences associated to a variable more imperative
than the ones associated to another variable, or express the relative importance of
preferences associated to different instantiations of parent variables of the same
variable. In the case one can not infer any relation between two weights by
transitivity (distinct from 1), we consider them as incomparable.

Example 2. Given the preference statements of Example 1, we can associate the
possibilistic preference network ΠG in Fig. 1 encoding the user preference over
V . The preference statements corresponds to the set of constraints C = {δ2 <
δ1, δ4 < δ3, δ6 < δ5}. Consider, for instance, the preference statement s6. Due
to the normalization condition, π(sb|jrpw) = π(sr|jrpw) = π(sw|jrpw) = 1.

In this work, we explore the properties of possibilistic networks where condition-
ing is based on product. It has sometimes a greater discriminating power than the
minimum operator, in the sense that α·β < α, while we only have min(α, β) ≤ α.
For instance, if α = γ < δ < β then min considers (α, β) and (γ, δ) as equal,
while we have (α, β) > (γ, δ) with the product. However, if α < γ < δ < β then
(α, β) < (γ, δ) with the min while the product operator fails to order them.

Example 3. Let us consider the possibilistic preference network of Example 2.
Using the chain rule, we obtain the following symbolic joint possibility distri-
bution: π(jbpbsb) = 1, π(jbpbsr) = δ1, π(jbpbsw) = δ2, π(jbpwsb) = β · δ3,
π(jbpwsr) = β · δ4, π(jbpwsw) = β, π(jrpbsb) = α · δ5, π(jrpbsr) = α,
π(jrpbsw) = α · δ6, π(jrpwsb) = π(jrpwsr) = π(jrpwsw) = α · β.

Indeed, for instance, π(jrpbsb) = π(jr)·π(pb)·π(sb|jrpb) = α·δ5. Now, assume
that the user considers the choice of the color of his pants as more important
than the color of his shirt, then C is augmented with the additional constraint
β < {δ1, δ2, δ3, δ4, δ5, δ6}. In this case, we can compare for instance jrpbsb �
jrpwsb.

The preference specification is partial when the preference statements do not
cover all the domains values of all the parent instantiations. A default principle,
in case of missing information, may be to assume indifference, which amounts
to assigning equal possibility degree to all corresponding options. From now on,
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we assume the complete specification of conditional preferences, i.e., in each
possible context, the user provides a complete preordering of the values of the
considered variable in terms of strict preference or indifference. As can be seen
in the running example, our representation setting shares the same graphical
structure as CP-nets [4]. But we are not adopting the worsening flips semantics
of the latter, rather we use the chain rule and compare products of symbolic
weights attached to solutions for defining the partial order between them.

2.4 Partial Ordering Induced by π-Pref Nets

The purpose of preference modeling is to compare all possible solutions in Ω.
Each possibility degree of a solution, computed from the product-based chain
rule, expresses the satisfaction level of the solution. This leads to the following
definition of the induced ordering.

Definition 3. Preference ordering: Given a set of solutions Ω, a joint possibility
distribution πΠG computed from a possibilistic preference network ΠG and a set
C of constraints between the symbolic weights. Let ωi and ωj be two solutions of
Ω. We have: (i) ωi � ωj iff πΠG(ωi) > πΠG(ωj); (ii) ωi ∼ ωj iff πΠG(ωi) =
πΠG(ωj); (iii) ωi ± ωj iff πΠG(ωi) ± πΠG(ωj), (± denotes non comparability).

Each solution ω = a1 . . . aN is associated with a vector
→
ω= (α1, . . . , αN ), where

αi = π(ai|ui) and ui = ω[Pa(Ai)]. A natural ordering of such vectors is the Sym-

metric Pareto ordering �SP , such that
→
ω �SP

→
ω′ iff there exists a permutation

σ of the components of
→
ω′= (β1, . . . , βN ), yielding a vector

→
ω′

σ= (β′
1, . . . , β

′
N ),

s.t.
→
ω �Pareto

→
ω′

σ (where
→
ω �Pareto

→
ω′

σ iff ∀ k, αk ≥ β′
k and ∃ s s.t.

αs > β′
s). The next proposition checks that the Symmetric Pareto ordering �SP

on solutions is the same as the one induced by a product-based π-Pref net.

Proposition 1. ω �SP ω′ iff πΠG(ω) > πΠG(ω′).

Proof (Informal). (⇒) This direction is obvious. (⇐) Assume that ω �SP ω′

does not hold. If ω′ �SP ω, then, clearly πΠG(ω′) ≥ πΠG(ω). If ω ±SP ω′, then
one possibility is that for each permutation, two pairs of components from each
vector are ordered in opposite ways, another is that for each permutation, some
components are incomparable. In each case, it is possible to find instantiations
of the weights in such a way that their products leads to the domination of
one vector over the other, and of the latter over the former. Hence the product
ordering also yields incomparability.

3 Boolean π-Pref Nets and Their Logical Encodings

Boolean π-Pref nets are a particular case of interest. In this case, π-Pref nets
can be equivalently expressed in terms of possibilistic logic, or penalty logic.
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3.1 Agreement with the Inclusion Ordering in the Boolean Case

If variables are binary, it is easy to define the violation of the preference state-
ment associated to variable Ai by a solution. A solution ω violates the preference
statement ui : ai1 > ai2 associated to variable Ai if and only if ω[Pa(Ai)] = ui

and ω[Ai] = ai2. A solution can violate only one preference statement per vari-
able. Then an intuitive ranking of solutions is the inclusion ordering in the sense
that if a solution ω violates all the preference statements violated by another
solution ω′ plus some other(s), then ω′ is strictly preferred to ω. When no addi-
tional preference constraint is available, the ordering induced from the product-
based π-Pref net boils down to this order.

Proposition 2. Let ΠG be a possibilistic preference network with binary deci-
sion variables. Let ω, ω′ be two solutions and πΠG be the joint possibility distri-
bution induced from ΠG. Then ω falsifies all the preference statements falsified
by ω′ plus some other(s) if and only if πΠG(ω) < πΠG(ω′).

Proof. It is enough to notice that the Symmetric Pareto ordering then reduces
to the inclusion ordering between subsets of violated preference statements.

Example 4. Let V and W be two Boolean variables standing respectively for
“vacations” and “weather” and these preference statements w � ¬w, ¬w : v ∼
¬v and w : v � ¬v (with w = ‘good weather’, v = ‘having vacations’), giving birth
to a π-Pref net ΠG: πΠG(w) = 1, πΠG(¬w) = α, πΠG(v|¬w) = πΠG(¬v|¬w) =
1, πΠG(¬v|w) = β, πΠG(v|w) = 1. We have πΠG(wv) = 1 > πΠG(¬wv) =
πΠG(¬w¬v) = α and πΠG(wv) = 1 > πΠG(w¬v) = β. Note that wv satisfies
the two preference statements, while the other solutions only satisfy one. More-
over, ¬w¬v and ¬wv satisfy the same preference statement. Thus, the ordering
deduced from π-Pref net is indeed the same as the inclusion ordering.

We should mention that although it is conjectured [9] that CP-nets are consistent
with the inclusion order in the above sense, it was never formally proved.

3.2 Logical Possibilistic Encoding

Since the possibilistic setting offers different representation formats, π-Pref nets
also have a logical counterpart offering another reading of the preferences, which
may be of interest for reasoning purposes. Such a logical counterpart is a symbolic
possibilistic base of the form Σ = {(f1, c1),. . . , (fm, cm)} which is a finite set
of weighted formulas fi where ci > 0 is understood as a lower bound of a
necessity degree N(fi) [8]. Its semantics is a possibility distribution πΣ(ω) =
mini=1,nπ{(fi,ci)}(ω) = 1 if ω � fi and 1− ci if ω � ¬fi. Each complete preorder
on Ω can be represented by a possibility distribution. Moreover, any distribution
can be associated with a possibilistic logic base, and also equivalently represented
by a possibilistic network [3]. We now consider the possibilistic base associated
to complete preference preorder at each node of the π-Pref net:

Definition 4. The symbolic possibilistic base Σi associated to a Boolean variable
Ai in a possibilistic network ΠG is defined as follows:
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– For each preference statement ui :ai1 �ai2 between the two possible values of
a variable Ai, (¬ui ∨ ai1, β) ∈ Σi where π(ai2|ui) = 1 − β < 1 in ΠG.

– There is no formula induced by preference statements ui : ai1 ∼ ai2.

For Example 4, we get ΣW = {(w, 1 − α)} and ΣV = {(¬w ∨ v, 1 − β)}.

Proposition 3. If πi is the possibility distribution induced by Σi associated with
node Ai, then πi(ω[{Ai}∪Pa(Ai)])=π(ai|ui) where ai =ω[Ai], ui =ω[Pa(Ai)].

Thus, πΠG(A1, . . . , AN ) = ×i=1,...,Nπi(ω[{Ai} ∪ Pa(Ai)]).
The possibilistic base associated with a π-Pref net ΠG can be obtained by

fusing the elementary bases Σi (i = 1, ..., N) associated to its nodes. Since we
are in the product-based setting, the combination of these possibilistic bases is
defined iteratively as Comb(Σ1, Σ2) = Σ1 ∪Σ2 ∪{(pi ∨qj , αi +βj −αi ×βj) : i ∈
I, j ∈ J, pi∨ qj �= �}, where Σ1 = {(pi, αi) : i ∈ I} and Σ2 = {(qj , βj) : j ∈ J}.
The base resulting from this product-based combination is a (possibly large)
possibilistic base that encodes the same possibility distribution as πΠG, see [8].
For Example 4 it reduces to ΣW ∪ ΣV , as the third formula is a tautology.

3.3 Links with Penalty Logic

This subsection points out another logical counterpart of a π-Pref net ΠG (with
distribution πΠG), in terms of a penalty logic base PK [7], where weights
are additive. More precisely, this logic associates to each formula the cost (in
[0,+∞)) to pay if this formula is violated. The penalty kPK(ω) relative to a
solution ω is the sum of the elementary penalties of the violated formulas. This
contrasts with possibilistic logic, where weights are combined by an idempotent
operation. The best solution has a cost equal to 0. This logic with a cost interpre-
tation has a close relationship with product-based π-Pref nets. Indeed, the cost of
a solution induced by a penalty logic base corresponds actually to the possibility
degree computed from a π-Pref net. Namely, in each possibilistic base Σi associ-
ated to a node Ai we can at most violate one formula. Thus, for each possibilis-
tic base Σi = {(fi1, αi1), . . . , (fik, αik)} there exists a penalty logic base PKi =
{(fi1,− ln(αi1)), . . . , (fik,− ln(αik))} such that the ordering induced by πi is the
same as the order induced by the cost function of the penalty logic. This mirrors
the fact that πΠG(ω) = α1 · · · · · αN ⇔ kPK(ω) = −(ln(α1) + · · · + ln(αN )).
Contrarily to possibilistic bases, the combination between penalty bases is the
union of all PKi (i = 1, ..., N). This yields the same ordering as π-Pref nets.
But there is no proof system for penalty logic yet.

4 Optimization and Dominance Queries

In π-Pref nets, conditional preferences correspond to nodes associated with con-
ditional possibility tables. We restrict ourselves to π-Pref nets that are Directed
Acyclic Graphs (DAG). On this basis and using the chain rule, one can com-
pute the symbolic possibilities of completely instantiated alternatives, which can
then be compared. Two types of queries are usually considered: Optimization
queries (for finding the optimal solution), and dominance queries (for comparing
solutions). We now study the two types of queries are presented.
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4.1 Optimization

For acyclic CP-nets, the optimization query is linear in the size of the network
(using a forward sweep algorithm), and there is always a unique optimal solution
[4]. In our case, this query may return several solutions since, contrarily to CP-
nets, we allow the user to express indifference. Clearly, the best solutions are
those having a joint possibility degree equal to 1. Indeed, such a solution exists
since the joint possibility distribution associated to the possibilistic network is
normalized, thanks to the normalization of each conditional possibility table
(i.e. for each variable Ai, each instantiation ui of Pa(Ai): max(π(ai | ui), π(¬ai |
ui)) = 1 where {¬ai} = DAi

/{ai} with ai ∈ DAi
). Thus, we can always find an

optimal solution, starting from the root nodes where we choose each time the
most or one of the most preferred value(s) (i.e. with possibility equal to 1). Then,
depending on the parents instantiation, each time we again choose an alternative
with a conditional possibility equal to 1. At the end of the procedure, we get
one or several completely instantiated solutions having a possibility equal to 1.
Consequently, partial preference orders with incomparable maximal elements
can not be represented by a π-Pref net.

Example 5. Let us reconsider Example 2 and its joint possibility degree in
Example 3. Then, jbpbsb is the preferred solution since its joint possibility is
equal to 1, and this is the only one.

The complexity of optimization queries in possibilistic networks is the same as
the CP-nets forward sweep procedure if the network omits indifference. In a
more general case where indifference is allowed, we can use the same principle
as when searching for the best explanations in Bayesian networks [6]. In fact the
Most Probable Explanations (MPE) can be obtained by adapting the propaga-
tion algorithm in junction trees [12] by replacing summation by maximum. This
algorithm has the same complexity as probability propagation (i.e. NP-hard)
except in the particular case when the DAG is a polytree since the MPE task
can be accomplished efficiently using Pearl’s polytree algorithm [14]. The adap-
tation of this algorithm for the possibilistic framework can be easily performed
on the product-based Junction tree algorithm [2] with the same complexity as
the standard MPE. A possible variant of the optimization problem is to compute
the M most possible configurations using a variant of the MPE [13]. This query
is not proposed in CP-nets and can be interesting in π-Pref nets even if the
answer is not always obvious to obtain in presence of incomparable solutions.

4.2 Dominance

The comparison between the symbolic possibility degrees can be found using
Algorithm 1.1 that takes as input the set of constraints C between the symbolic
weights and two vectors. Let us consider two solutions ωi and ωj with simplified

respective vectors
→
ω∗

i = (α1, . . . , αk) and
→
ω∗

j = (β1, . . . , βm) where the components
equal to 1 have been deleted, with k ≤ m ≤ N . Then, the algorithm proceeds
by first deleting all pairs of equal components between the vectors so to get
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1.1. Comparison between two joint possibility degrees

Data:
→
ωi,

→
ωj , C

Result: R
begin

equality(
→
ωi,

→
ωj , C);

if (empty(
→
ωi) and empty(

→
ωi)) then R ← ωi = ωj ; else s ← true;

s ← sort(
→
ωi,

→
ωj , C);

if s = true then R ← ωi � ωj ;
else R ← ωi ± ωj ;
return R

end

totally different components. Second, if there exists a permutation where each
component αi is higher than βs such that s ∈ [1, ..., k] then ωi � ωj , otherwise
they remain non comparable. Thus the algorithm is based on the sequential
application of:

(1) The function equality that deletes the common values between
→
ωi and

→
ωj .

(2) The function sort that returns true if given αc ∈ →
ωi, there exists a constraint

αc > δ in C such that δ ∈ →
ωj . Each component of

→
ωj can be used only one

time in the comparison process.

Example 6. Let us consider the π-Pref net ΠG of Example 2. Using
Algorithm 1.1, the ordering between the solutions is defined in Fig. 2 such that
a link from ωi to ωj means that ωi is preferred to ωj. For instance, consider

→
jbpwsr= (β, δ4) and

→
jrpwsr= (α, β). First, we should delete common values,

namely the symbolic weight β. Then, we should check if C entails α < δ4 or the
inverse. Here, α and δ4 are not comparable. Thus, we have jbpwsr ± jrpwsr.

The complexity of dominance in CP-nets depends on the network structure. For
singly connected binary-valued CP-nets it has been proved that the problem is
NP-complete (using a reduction to 3SAT). In the general case [10] shows that
it is a PSPACE-complete. Clearly, for π-Pref nets, the complexity is due to
the comparison step in Algorithm 1.1 (since the computation of the possibility

Fig. 2. Possibilistic order relative to Example 2
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degrees is a simple matter using the chain rule) and in particular to the sort
function where the matching between the two vectors needs the definition of
different possible arrangements i.e. the algorithm is of time complexity O(n!).

5 Conclusion

This paper has established the main properties of possibilistic conditional prefer-
ence networks. This modeling is appropriate to represent conditional preferences
without having the CP-nets limitations, namely the enforced priority in favor of
parent nodes. Moreover, we have shown that π-Pref nets produce a symmetric
Pareto ordering of solutions, and in the Boolean case are endowed with logical
counterparts allowing an equivalent modeling suitable for inference.

This work calls for several developments. In fact, we might think of partially
specified preferences as well as the handling of impossible situations. Also, it
would be interesting to conduct a deep comparison with other preference models
such as GAI networks [11] and UCP-net [5] since they both use additive utilities.
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Sébastien Konieczny, Pierre Marquis(B), and Srdjan Vesic

CRIL, CNRS and Université d’Artois, Lens, France
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Abstract. We present two approaches for deriving more arguments
from an abstract argumentation framework than the ones obtained using
sceptical inference, that is often too cautious. The first approach consists
in selecting only some of the extensions. We point out several choice cri-
teria to achieve such a selection process. Choices are based either on
the attack relation between extensions or on the support of the argu-
ments in each extension. The second approach consists of the definition
of a new inference policy, between sceptical and credulous inference, and
based as well on the support of the arguments. We illustrate the two
approaches on examples, study their properties, and formally compare
their inferential powers.

1 Introduction

An abstract argumentation system is often represented as an oriented graph,
where nodes correspond to arguments and arcs correspond to attacks between
them [15]. Different semantics are used to calculate extensions (sets of argu-
ments that can be accepted together). From the extensions, a status, accepted
or rejected, is assigned to each argument, using some acceptance policy. They
are two main acceptance policies. In the first one, the sceptical policy, an argu-
ment is accepted if (there are extensions and) it appears in each extension. For
the second one, the credulous policy, an argument is accepted if it belongs to
(at least) one extension.

When the number of extensions is large, using a sceptical / credulous app-
roach can be sub-optimal. Namely, if there is a lot of extensions, only few
(if any) arguments are in all of them. Thus, using sceptical inference gives almost
no information. Conversely, the credulous approach may result in too many
arguments.

There exist settings for abstract argumentation where preferences, weighted
attacks or similar extra information are considered [2,8,11,16,20,21]. Those
additional data can be exploited to reduce the number of extensions. Contrast-
ingly, the problem addressed in this paper is to increase the number of accepted
arguments when there is no further data, i.e., other data except the arguments
and the attacks between them.

We investigate this problem and present two approaches for dealing with
it. The first one consists in selecting only some of the extensions (the “best”
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 49–59, 2015.
DOI: 10.1007/978-3-319-20807-7 5
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ones, for a given semantics). The idea is to discriminate the extensions by taking
advantage of the attack relation. The selection achieved in this way leads to
increase the number of sceptically accepted arguments. Two methods for select-
ing extensions are pointed out. The first one is based on a pairwise comparison of
extensions. The second method is based on a global evaluation of each extension,
followed by a selection of the best evaluated ones. The second approach we devel-
oped goes through the definition of a new policy for accepting arguments. We
introduce a third acceptance policy, which can be viewed as a trade-off between
the credulous and the sceptical policy. The very idea is to consider the number of
times an argument appears in the extensions. For the sceptical policy a “good”
argument is one that appears in all extensions. If no such argument exists, then
it makes sense to consider that arguments that appears in every extension but
one are “quite good”, and better than the ones that appear in less extensions.

A technical report [19] containing all the proofs, more explanations, more
examples and more figures is available online at http://www.cril.fr/∼vesic.

2 Formal Setting

This section introduces basic definitions and notations we use throughout the
paper. An argumentation system (AS) is a pair F = (A ,R) where R ⊆ A ×A .
A is called the set of arguments and R is called the attack relation. We restrict
ourselves to the case when A is finite.

Let F = (A ,R) be an AS, and let E ,E ′,E ′′ ⊆ A and a ∈ A . E is conflict-
free if and only if there exist no arguments a, b ∈ E such that a R b. E defends a if
and only if for every b ∈ A we have that if b R a then there exists c ∈ E such that
c R b. Argument a is strongly defended from E ′ by E ′′ (written sd(a,E ′,E ′′))
if and only if (∀b ∈ E ′) if (bRa) then (∃c ∈ E ′′ \ {a})((cRb)∧ sd(c,E ′,
E ′′ \ {a})).

Usual semantics for Dung’s AS are considered, especially the complete, pre-
ferred, grounded [15], semi-stable [7] and ideal semantics [14]. A semantics σ
is said to return conflict-free sets iff for every AS F , every extension of F is
conflict-free. For an argumentation system F = (A ,R) we denote Extσ(F ); or,
by a slight abuse of notation, Extσ(A ,R) the set of its extensions with respect
to semantics σ. We use abbreviations c, p, s, ss, g and i for respectively com-
plete, preferred, stable, semi-stable, grounded and ideal semantics. For example,
Extp(F ) denotes the set of preferred extensions of F .

An acceptance policy is a function Infσ : Extσ(F ) → 2A . The two main
acceptance policies are sceptical and credulous policies. We say that x is
sceptically accepted under semantics σ (or in short s-sceptically accepted) iff
Extσ(F ) �= ∅ and x ∈ ⋂

E∈Extσ(F) E . x is credulously accepted under semantics
σ iff x ∈ ⋃

E∈Extσ(F) E . We denote the set of sceptically accepted arguments by
Scσ(F ) and the set of credulously accepted arguments by Crσ(F ). We denote
by R↓E the restriction of attack relation R on set E.

http://www.cril.fr/~vesic
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3 Comparing Extensions by Pairwise Comparison

This section studies the way to select the “best” extensions based on the following
process:

1. Compare all pairs of extensions based on a given criterion (e.g. the number
of arguments in one extension not attacked by the other extension)

2. Choose the “best” extension(s) given the winners of pairwise comparisons

Definition 1 (Pairwise Comparison Criteria). Let F = (A ,R) be an AS,
σ a semantics and Extσ(F ) the set of extensions of F . Let E ,E ′ ∈ Extσ(F ).
Then:

1. E 
nonatt E ′ if the number of arguments in E non attacked by E ′ is greater than
or equal to the number of arguments in E ′ non attacked by arguments of E

2. E 
strdef E ′ if the number of arguments in E strongly defended from E ′ by E
is greater than or equal to the number of arguments in E ′ strongly defended
from E by E ′

3. E 
delarg E ′ if the cardinality of any largest subset S of E such that if all the
attacks from S to E ′ are deleted then E is an extension of (E ∪ E ′,R↓E∪E ′)
is greater than or equal to the cardinality of any largest subset S′ of E ′ such
that if all the attacks from S′ to E are deleted then E is an extension of
(E ∪ E ′,R↓E∪E ′)

4. E ′ 
delatt E ′ if the maximal number of attacks from E to E ′ that can be
deleted such that E is still an extension of (E ∪ E ′,R↓E∪E ′) is greater than
or equal to the maximal number of attacks from E ′ to E that can be deleted
such that E ′ is still an extension of (E ∪ E ′,R↓E∪E ′)

The two first criteria are based on the number of non attacked or (strongly)
defended arguments. The last two ones are based on a notion of robustness
from attacks stemming from the other extension. One could also consider other
criteria, for example by comparing the total number of attacks from E to E ′ and
the total number of attacks from E ′ to E . For a criterion γ, we write E �γ E ′ iff
E 
γ E ′ and it is not the case that E ′ 
γ E . We also write E ∼γ E ′ iff E 
γ E ′

and E ′ 
γ E.

Example 1. Consider the AS F1 = (A1,R1) with A1 = {a, b, c, d} and R1 =
{(a, c), (a, d), (b, c), (c, a), (d, b)}. Extp(F1) = {E ,E ′} with E = {a, b}, E ′ =
{c, d}. All the arguments are attacked, so E ∼nonatt E ′. No argument is strongly
defended, so E ∼strdef E ′. We also have E �delarg E ′ since for S = {b} E is
still an extension even if all the attacks from S are deleted; whereas there are no
S′ ⊆ E ′ with S′ �= ∅ such that E ′ is still a preferred extension even after deleting
all the attacks from S′. Finally, E �delatt E ′ since even if the attack from a to
c is deleted, E is still a preferred extension, whereas as soon as one attack from
E ′ is deleted, E ′ is no longer a preferred extension.

Definition 2 (Copeland-Based Extensions). Let γ ∈ {nonatt, strdef,
delarg, delatt} be one of the criteria from Definition 1. Let F = (A ,R) be
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an argumentation system, σ a semantics and Extσ(F ) the set of extensions of
F with respect to σ. We define the set of Copeland-based extensions (CBE) as
follows

CBEσ,γ(F ) = argmax
E∈Extσ(F)

|{E ′ ∈ Extσ(F ) | E �γ E ′}| − |{E ′′ ∈ Extσ(F ) | E ′′ �γ E }|

We call this selection “Copeland-based” since it is inspired by the Copeland’s
rule from voting theory [22]. Of course, one can envisage other ways to select the
extensions given criterion γ, for instance all voting methods based on the major-
ity graph (such as Miller, Fishburn, Schwartz, Banks or Slater’s methods [6]).
Clearly, selecting some extensions is a way to increase the number of scepti-
cally accepted arguments (and to decrease the number of credulously accepted
arguments):

Fact 1. For every γ ∈ {nonatt, strdef, delarg, delatt}, for every semantics σ,
for every AS F = (A ,R), for every x ∈ A :

– CBEσ,γ(F ) ⊆ Extσ(F )
– if x is σ-sceptically accepted then x is CBEσ,γ-sceptically accepted
– if x is CBEσ,γ-credulously accepted then it is σ-credulously accepted.

Example 2. Consider the argumentation system from Example 1. For example,
we have that CBEσ,delarg(F1) = CBEσ,delatt(F1) = {E }.

Baroni and Giacomin [4] pointed out a set of extension evaluation criteria that
can be seen as properties for characterizing good semantics. We now show that
the semantics defined in this section satisfy the same properties as the underlying
semantics they are built from, with the exception of directionality.

Proposition 1. Let x be any property among I-maximality, Admissibility, Strong
Admissibility, Reinstatement, Weak Reinstatement, CF-Reinstatement [4].

If the semantics σ satisfies property x, then the semantics CBEσ,γ satisfies
property x.

Note that the relations among different semantics do not carry over in case of
CBE approach. For instance, it is not guaranteed that each CBE-stable extension
is also a CBE-preferred extension.

4 Comparing Extensions by Global Evaluation

In Sect. 3 we considered different criteria for pairwise comparison of extensions.
In this section we define the score of an argument as the number of extensions
it appears in. One may justify this choice of score as some kind of generalization
of the principles behind sceptical acceptance. For sceptical acceptance a “good”
argument is an argument that appears in all extensions. But, if no such argument
exists, it could make sense to consider that arguments that appears in every
extension but one are “good”, and typically better than the ones that appears
in less extensions. Note that one can use other scores in the construction and
obtain similar results.
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Definition 3 (Scores and Support Vectors). Let F = (A ,R) be an argu-
mentation system, σ a semantics, x be an argument, and Extσ(F ) the set
of extensions of F with respect to σ. We define ne as the number of exten-
sions x appears in. Formally, neσ(x,F ) = |{E ∈ Extσ(F ) | x ∈ E }|. For
an extension E ∈ Extσ(F ), with E = {a1, . . . , an} we define its support as
vsuppσ(E ,F ) = (neσ(a1,F ), . . . , neσ(an,F )).

When F and σ are clear from the context, we write ne(x) and vsupp(E )
instead of neσ(x,F ) and vsuppσ(E ,F ).

Definition 4 (Aggregation Functions). Let v = (v1, . . . , vn) be a vector of
natural numbers. We denote by sum(v) the sum of all elements of v, by max(v)
the maximal element of v, by min(v) the minimal element of v, by leximax(v)
the re-arranged version of v where v1, . . . , vn are put in decreasing order, by
leximin(v) the re-arranged version of v where v1, . . . , vn are put in increasing
order.

For example, if v = (2, 1, 4, 2, 5), then we have sum(v) = 14 and leximin(v) =
(1, 2, 2, 4, 5). Note that there exist other ways to aggregate vectors [13].

For the next definition we need the notion of lexicographic order <lex (for
leximin and leximax). Let v = (v1, . . . , vn) and v′ = (v′

1, . . . , v′
n) be two vectors

of natural numbers. We have v <lex v′ iff ∃j ∈ 1, . . . , n(∀i ∈ 1, . . . , j − 1, vi =
v′

i) and vj < v′
j . We also have v <leximin v′ iff leximin(v) <lex leximin(v′) and

v <leximax v′ iff leximax(v) <lex leximax(v′).

Definition 5 (Order-Based Extensions). Let F = (A , R) be an argu-
mentation system, σ a semantics, Extσ(F ) be the set of extensions of F
with respect to σ, and γ be an aggregation function. We have OBEσ,γ(F ) =
arg maxE∈Extσ(F)γ(vsuppσ(E ,F )).

The idea of the previous definition is to calculate the popularity of an extension
by taking into account the popularity of the arguments it contains.

Example 3. Let F3 = (A3,R3) be AS F3 = (A3,R3) with A3 =
{a, b, c, d, e, f, g, h} and R3 = {(a, b), (b, a), (e, f), (f, e), (b, g), (f, g), (g, h),
(h, d), (d, c), (c, d)}. There are five preferred extensions: {a, e, g, c}, {a, e, g, d},
{a, f, h, c}, {b, h, c, e}, {b, h, c, f}. So nep(a,F3) = 3, nep(b,F3) = 2,
nep(c,F3) = 4, nep(d, F3) = 1, nep(e, F3) = 3, nep(f,F3) = 2, nep(g,F3) = 2,
nep(h, F3) = 3.

We obtain OBEσ,max(F3) = OBEσ,min(F3) = {{a, e, g, c}, {a, f, h, c},
{b, h, c, e}, {b, h, c, f}}. So, whereas Scp(F3) = ∅, we have ScOBEp,min

(F3) = {c}.
Similarly, we have OBEσ,sum(F3) = OBEσ,leximin(F3) = OBEσ,leximax(F3) =
{{a, e, g, c}, {a, f, h, c}, {b, h, c, e}}.

Fact 2. For every γ ∈ {sum,max,min, leximin, leximax}, for every semantics
σ, for every AS F = (A ,R), for every x ∈ A :

– OBEσ,γ(F ) ⊆ Extσ(F )
– if x is σ-sceptically accepted then x is OBEσ,γ-sceptically accepted
– if x is OBEσ,γ-credulously accepted then it is σ-credulously accepted.
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Proposition 2. Let x be any property among I-maximality, Admissibility, Strong
Admissibility, Reinstatement, Weak Reinstatement, CF-Reinstatement [4].

If the semantics σ satisfies property x, then the semantics OBEσ,γ satisfies
property x.

Like in Sect. 3, directionality is not always satisfied by the OBE approach.
A natural issue is to determine how the proposed criteria are connected. Do

some of the rules coincide? Are some of them refinements of others? In the rest
of this section we provide the answer to this question. Essentially, all the criteria
give different results; the exceptions come from the obvious fact that leximin
(resp. leximax) refines min (resp. max). We used the preferred semantics to
construct the counter-examples; a similar study can be conducted for the other
semantics.

Definition 6. Let Γ and Γ ′ be two functions. We write Γ � Γ ′ iff for every F ,
Γ (F ) ⊆ Γ ′(F ). The relation � is a pre-order. Let us denote its strict part by
�, its symmetric part by .= and its negation by ��. We write Γ ind Γ ′ iff Γ ��
Γ ′ and Γ �� Γ ′.

Proposition 3. For every acceptability semantics σ,

OBEσ,leximin � OBEσ,min and OBEσ,leximax � OBEσ,max

We now provide a complete comparison between pairs of criteria under preferred
semantics.

Proposition 4. It holds that OBEp,leximin � OBEp,min and OBEp,leximax �

OBEp,max. The other pairs of rules (x, y) with x, y ∈ {OBEsum, OBEmin, OBEmax,
OBEleximin, OBEleximax}, x �= y are incomparable, i.e., x ind y.

5 Support-Based Acceptance Policy

This section presents a completely different approach for selecting arguments.
We focus on arguments that have the greatest supports among extensions to
construct what we call “candidate sets”. Then, an argument is called supportedly
accepted if it is in all the candidate sets.

Definition 7 (Candidate Sets). Let F = (A ,R) be an AS and let σ be a
semantics. Let 
 be any pre-order defined on A . Let |A | = m. For a permutation
θ of {1, . . . , m}, let >θ be the linear order on A defined by aθ(1) >θ . . . >θ aθ(m).
>θ is said to be compatible with 
 iff aθ(1) 
 . . . 
 aθ(m). A set E ⊆ A is a
candidate set of F under semantics σ w.r.t. 
 iff there exists a permutation θ of
{1, . . . , m} such that >θ is compatible with 
 and E is obtained by the following
greedy procedure:

S := ∅;
for j = 1, . . . , m do

if (neσ(aθ(j),F ) ≥ 1) and (S ∪ {aθ(j)} is conflict-free)
thenS := S ∪ {aθ(j)}

end for;
E := S.
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In the following, we consider the pre-order 
 on A defined by for all x, y ∈ A ,
x 
 y iff neσ(x,F ) ≥ neσ(y,F ). We denote the set of candidate sets of F under
σ w.r.t. this pre-order by CSσ(F ).

Note that, in general, neither each candidate set is an extension nor each
extension is a candidate set. Observe also that the construction of candidate
sets is reminiscent to the one of preferred subbases from a stratified belief base
with respect to the inclusion-based ordering [5]; here the belief base consists of
all the arguments and the stratification is based on the neσ(.,F ) score.

Definition 8 (Supported Acceptance). Let F = (A ,R) be an AS, σ be a
semantics and let x ∈ A . We say that x is supportedly accepted under seman-
tics σ iff x ∈ ⋂

E∈CSσ(F). We denote the set of supportedly accepted arguments
Spσ(F ).

We can show that supported inference is “between” sceptical and credulous
inference.

Proposition 5. For every AS F = (A ,R), for every semantics σ returning
conflict-free extensions:

Scσ(F ) ⊆ Spσ(F ) ⊆ Crσ(F ).

Note that the condition telling that σ returns conflict-free extensions is necessary
to ensure the link between sceptical and supported acceptance. However, this is
not an issue, since all the well-known semantics return conflict-free sets.

Example 4. Let F4 = (A4,R4) be an AS with A4 = {a, b, c, d, e, f, g, h} and
R4 = {(a, b), (b, a), (b, g), (c, d), (d, c), (d, g), (e, f), (f, e), (f, g), (g, h)}. There are
eight preferred extensions: {a, c, e, g}, {a, d, e, h}, {a, c, f, h}, {a, d, f, h},
{b, c, e, h}, {b, d, e, h}, {b, c, f, h}, {b, d, f, h}. There are no sceptically accepted
arguments, i.e. Scp(F4) = ∅. But h is accepted by seven out of the eight exten-
sions, and it is supportedly accepted, i.e., Spp(F4) = {h}.

In the above example the set of candidates is a subset of the set of extensions,
but this is not always the case. Consider for instance the AS from Example 3,
where there is only one candidate set {c, a, e, h}, that is not an extension. So it
is interesting to note that on this example there are four supportedly inferred
arguments, whereas with the OBE methods only c is inferred.

A major drawback of credulous inference is that the set of inferred arguments
is not always conflict-free. This is problematic since all these arguments cannot
be accepted together in such a case. Sceptical inference does not suffer from
this problem since the set of inferred arguments is ensured to be conflict-free.
Interestingly, supported inference offers the same important property:

Fact 3. For any F , the set of supportedly accepted arguments is conflict-free.

Note that this set is not necessarily admissible. This should not be shocking since
the same observation can be made for the set of sceptically accepted arguments.
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Finally, an interesting issue is to determine whether some connections exist
between supported inference and the approaches presented in the previous sec-
tions. We provide a systematic study of the links between the two approaches
under preferred semantics.

Proposition 6. For every γ ∈ {sum,min,max, leximin, leximax}, OBEγ and
CS are incomparable under preferred semantics, i.e., OBEγ ind CS.

Let us first show that every OBEσ,max-sceptically accepted argument is also sup-
portedly accepted, for every semantics that returns conflict-free extensions.

Proposition 7. Let σ be a semantics returning conflict-free extensions. We have

ScOBEσ,max � Spσ.

Let us now illustrate the indifference between γ-sceptical acceptance and
supported acceptance for γ �= max, again on the case of preferred semantics.

Proposition 8. The links between Scγ and Sp under preferred semantics are as
follows:

1. ScOBEp,max � Spp.
2. for every γ ∈ {sum, min, leximin, leximax}, ScOBEp,γ

ind Spp.

The two previous propositions show that OBE and supported inference, although
both using the scores of arguments defined as the number of extensions they
belong to, induce intrinsically different reasoning mechanisms.

6 Conclusion and Related Work

This paper aimed at defining approaches for a better inference from abstract
argumentation framework. Indeed, a large number of extensions results in a
low number of sceptically accepted arguments. Several approaches have been
described for dealing with this problem. First, different criteria for pairwise
comparison of extensions and a method for selecting only the best extensions
given the winners of pairwise duels have been pointed out. Second, several cri-
teria for ordering the extensions have been presented. Both approaches result in
a decrease of the number of extensions; consequently, the number of sceptical
arguments increases (and the number of credulous arguments diminishes). The
third approach we have put forward does not choose between existing extensions.
Instead, it uses extensions to assign a score to every argument (the score of an
argument is the number of extensions it belongs to). Then, starting from the
arguments having the maximal score, candidate sets can be generated and on
this ground supportedly accepted arguments have been defined.

Several papers in the literature are relevant to our work in the sense that
their objectives are somehow similar. Thus, some previous work aimed at defin-
ing different levels of acceptability for arguments [3,9,18,23]. Such levels can
be obtained by attaching numerical scores between 0 and 1 to each argument,
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or by ranking arguments over an ordinal scale. Contrastingly, the goal of the
present paper is not to tackle the problem of gradual acceptance. In this work
our objective is not to question the classical binary framework for inference,
where an argument is inferred or not, but to define inference relations allowing
to infer more arguments than sceptical inference; to make a parallel with logical
inference, a similar distinction exists between paraconsistent logics and some
weighted logics (such as possibilistic or fuzzy logics).

Settings where argumentation systems are based on preferences or attack
weights can also be exploited for reducing the number of extensions. However,
those approaches suppose the availability of some extra information such as
weights or preferences, whereas our approach is based solely on the argumenta-
tion system F = (A ,R).

Other approaches calculate arguments’ scores / statuses without relying on
the notion of extension [1,12]. Unlike our approach, semantics (e.g., stable, pre-
ferred) are not used at all. Here, we suppose the use of an (arbitrary) semantics
to calculate extensions and then point out a way to augment the number of argu-
ments which are accepted. Our criteria are orthogonal to the notion of semantics,
so that each criterion can be combined with each semantics.

Another related work is [10] which addresses the problem of defining more
prudent inference relations for Dung’s argumentation frameworks (i.e., the objec-
tive is to derive less arguments). Contrariwise to the present paper, instead of
selecting some extensions or defining a new inference policy, the approach con-
sists in strengthening the usual (direct) conflict-freeness property to indirect
conflict-freenesss. Thus a prudent extension cannot contain two arguments when
there exists an indirect attack among the first one and the second one. When
the credulous policy and the preferred semantics (or the stable semantics) are
considered, the set of derivable arguments from prudent extensions is included
in the set of arguments derivable from the standard extensions.

Baroni et al. [3] show how to define some fine-grained argument justification
statuses for abstract argumentation frameworks. For extension-based seman-
tics, the justification status of an argument basically depends on the existence
of extensions containing it and the existence of extensions attacking it. Clearly
enough, the problem of selecting extensions is orthogonal to the problem of defin-
ing argument justification statuses; thus, Baroni’s et al. results can be exploited
as soon as some extensions exist, even if they come from a selection process. Our
notion of supported inference is closer to their proposal since it induces an inter-
mediate argument status, supported acceptance, between sceptical acceptance
and credulous acceptance. However, the mechanisms at work for defining this
intermediate status and its rationale are quite different from those considered in
Baroni’s et al. paper: in our work, the support of an argument is based on the
number of extensions containing it.

Our approach also departs from the work by Dunne et el. [17] which focusses
on ideal semantics. Indeed, ideal acceptance is more demanding than sceptical
acceptance. As such, it proves useful when sceptical acceptance is not prudent
enough, i.e. when unexpected arguments are sceptically accepted. Contrastingly,
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our work is motivated by the remaining cases, when sceptical inference is too
cautious and discards some expected arguments.

Caminada and Wu [23] defined different labelling-based justification statuses
of arguments. Indeed, they propose to attach to each argument the set of its pos-
sible labels (i.e. the collection of all labels it obtains in all complete labellings).
Whereas Dung-based approach allows to split the arguments into three classes
(sceptically accepted, credulously accepted, rejected), their contribution pro-
vides a way for fine-graded classification, by defining six different justification
statuses: {in}, {in, undec}, {undec}, {in, out, undec}, {out, undec} and {out}.
The work of Caminada and Wu is related to our work since it could also be used
to reason in cases when there are no (or when there are not enough) accepted
arguments. However, the actual way to do it is drastically different from our
approach.
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Abstract. This paper presents a target language for representing argu-
ments mined from natural language. The key features are the connection
between possible reasons and possible claims and recursive embedding of
such connections. Given a base of these arguments and counterarguments
mined from texts or dialogues, we want be able combine them, decon-
struct them, and to analyse them (for instance to check whether the set
is inconsistent). To address these needs, we propose a formal language for
representing reasons and claims, and a framework for inferencing with
the arguments and counterarguments in this formal language.

1 Introduction

There is growing interest in the computational linguistics community in iden-
tifying arguments and relations between them in natural language (see for
example [1–3]). Consider also the First ACL Workshop on Argument Mining
held in 2014 [4], and the IBM Debating Technologies being developed by IBM
Research for extracting arguments from sources such as Wikipedia [5,6].

An interesting challenge that is arising from attempts to mine arguments
(seen as reasons about claims) is the choice of target formalism for representing
the extracted arguments. In computational models of argument, abstract argu-
mentation (as proposed by Dung [7]) and logical or structured argumentation
(as proposed in [8–11]) are the two key options. Neither is ideal as a target
formalism as we outline below.

Abstract Argumentation: Each argument is atomic. Thus, as a target lan-
guage, it is quite weak since there is no formal differentiation of reason and claim.
A ramification of this is that there can be no recursive embedding (e.g. reasons
for the claim “x is a reason for claim y” cannot be represented in abstract argu-
mentation). Also, it does not allow for Boolean combinations of reasons like “x or
y is a reason for z”. In addition, it does not differentiate between i) “x being
a reason for not claiming y” and ii) “x not being a reason for claiming y”.
Introducing a support relation partly addresses some shortcomings of abstract
argumentation, but not the ones mentioned above. Note that the notion of a
supporting argument is not necessarily the same as the notion of a reason.
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Logical Argumentation: Each argument is a set of formulae entailing a claim.
As a target language, its expressiveness does not fit with the above needs. Firstly,
all the logical formulae for the premises and claims need to be identified. It is
currently not feasible to aim for translating argumentation in text and dialogues
into logical formulae such that all the premises are represented explicitly and
the claim follows logically from the premises. One great challenge for this is
that most arguments in text and dialogues are enthymemes. That is, some or
all of the premises are implicit, and even the claim may be implicit. For more
on computational modelling of enthymemes, see [12]. Logical argumentation is
also insufficient because it does not capture embedded relationships (like “(x
is not a reason for y) is a reason for z”) nor does it explicitly capture “x is
not a reason for claim y” or “x is a reason for not claiming y”. So, as a target
language, logical argumentation captures details that cannot be extracted in the
short term by argument mining and it lacks some features potentially valuable
for argument mining.

Our proposal here is partly motivated by the need for a better formalism
for representing argumentation coming from natural language. There is a second
motivation. Given a set of arguments and counterarguments represented in our
target language, we can infer further arguments and counterarguments. This is
not possible with abstract argument since it has no inference machinery over
argument graphs. This is also not possible directly with logical argumentation.
Given logical arguments A1 and A2, we cannot infer a new logical argument
A3 (other than by extracting the support in each argument and using that as a
knowledge base for generating further logical arguments).

To address these, we propose a formal language for representing reasons and
claims, as well as a framework for inferring with arguments and counterargu-
ments in this language. The implied arguments will be deconstructions, e.g.
obtained by flattening the recursive structure in an argument, and constructions
obtained by combining arguments. This framework is flexible in that different
choices for inference rules can be made.

2 Formal Syntax

We now present our formalism for representing arguments, inspired by Apothéloz
[13]. The formalism is built upon a propositional language L with the connectives
¬, ∨, ∧, →, ↔. There are also two operators R(.) and C(.) and an additional
negation −. Thus, two negation operators are needed: ¬ for denying propositional
formulas (¬x denotes that x is false), and − for denying R(.) and C(.). Please
note that ¬¬x is identified with x and −−R(.) is identified with R(.) (similarly,
− − C(.) is identified with C(.)).

Definition 1 (Formula). The set of formulas LA is the smallest set such that
a formula is of the form (−)R(y) : (−)C(x) where each of x and y is either a
formula of L or is itself a formula.

Each formula is either an argument or a rejection of an argument, to be defined
next.
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Definition 2 (Argument). An argument is a formula of LA of the form R(y) :
(−)C(x).

An argument is a reason for concluding a claim. It has two main parts: premises
(the reason) and a conclusion. The functions R and C respectively play the
roles of giving reason and concluding. Indeed, an argument is interpreted as
follows: its conclusion holds because it follows, according to a given notion, from
the premises. The notion refers to the nature of the link between them (e.g., the
premises imply the conclusion), formally identified by the colon in the definition.
However, the contents may be true while the functions do not hold and vice versa.
The intuitive reading is as follows:

R(y) : C(x) means that “y is a reason for concluding x”
R(y) : −C(x) means that “y is a reason for not concluding x”

The first kind of expression captures two forms of argument about a proposition
x: One in which x is supported (R(y) : C(x)) and one in which its negation is
supported (R(y) : C(¬x)). As to the expression R(y) : −C(x), it encompasses
two cases:

the case where y is a reason for concluding ¬x;
the case that y does not support ¬x but still does not support x either.

Example 1. In the dialogue next, Mary’s argument supports ¬fe, a claim
opposing Paul’s but John’s argument is only meant to stop concluding fe without
committing to ¬fe.

Paul: Carl will fail his exams (fe). He did not work hard (¬wh).R(¬wh) : C(fe)
Mary: No, he will not fail. The exams will be easy (ee). R(ee) : C(¬fe)
John: Carl is very smart! (sm). R(sm) : −C(fe)

Unlike existing definitions of argument where a conclusion x follows from
premises y using a notion of derivation [8], Definition 2 does not make the link
explicit. We aim at a general definition that allows us to represent any argu-
ment in text or dialogue, e.g. enthymemes [12], without judging whether it is a
good argument. Also, reasons can be hypothetical (assumed for the purpose of
the argument). And our approach is meant to capture links of whatever nature
including non-deductive links as in the causal argument

Ice on its wings ( iw) could cause a plane to crash ( pc). R(iw) : C(pc)

or abductive links as in the following argument:

Tim and Jack have recently had a row that ended their friendship (x). Clara just
saw them jogging together ( y). Thus, they are friends again ( z). R(x∧y) : C(z)

So far, the negation operator “−” has been used to deny the concluding function.
Now, the function of giving reason can be denied as well by placing “−” in front
of R. What is denied in this case is not the premises but rather the idea that the
premises justify the conclusion of the argument. Such a form is called rejection
of argument.
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Definition 3 (Rejection). A rejection of an argument is a formula of LA of
the form −R(y) : (−)C(x).

The intuitive meaning for these formal expressions is as follows:

−R(y) : C(x) means that “y is not a reason for concluding x”
−R(y) : −C(x) means that “y is not a reason for not concluding x”

Example 2. Consider the following dialogue.

Eric: The fact that Carl is smart is not a reason to stop concluding that he will
fail his exams. −R(sm) : −C(fe)

John: Anyway, the fact that Carl did not work hard is not a reason to conclude
that he will fail his exams. −R(¬wh) : C(fe)

Ann: Being stressed is the reason that Carl will fail his exams, hence it is not
the fact that he did not work hard (st). R(R(st) : C(fe)) : C(−R(¬wh) :
C(fe))

Sara: He is not stressed at all. R(¬st) : C(−R(st) : C(fe))

There can be many reasons for rejecting an argument R(y) : C(x) as illustrated
next:

1. y is true but is irrelevant to x.
The fact that the weather is cloudy (wcl) is no reason to conclude
that Carl will fail his exams. −R(wcl) : C(fe)

2. y is true, relevant to x but not sufficient to explain x.
Paul: You should buy the same car as mine (bc). It’s fast (f). R(f) : C(bc)
John: If it’s affordable! (a). R(R(f ∧ a) : C(bc)) : C(−R(f) : C(bc))

3. y is false, thus y cannot be a reason for x.
Sara’s argument is an example.

4. y and x are both true but y is not the reason for x (there is a better reason
for x).
Ann’s argument is an example.

Forms 1-3 of rejection amount to blocking the conclusion of the targeted argu-
ment. They give rise to arguments whose reason justifies rejecting the targeted
argument and whose conclusion inhibits the conclusion of the targeted argu-
ment: Eric’s rejection leads to R(−R(sm) : −C(fe)) : C(fe) and John’s to
R(−R(¬wh) : C(fe)) : −C(fe). As to form 4, the reason and conclusion of the
targeted argument are acknowledged. Such a rejection is less of a counterargu-
ment than a better argument for the conclusion.

No other logic-based approach to modelling argumentation provides a lan-
guage for expressing rejection of arguments in the object language. This gives a
more appropriate encoding of situations and allows us to differentiate between
say −R(cr) : C(bc) and R(cr) : −C(bc) (let cr denote “The car is red” and bc
denote “We should buy the car”).

−R(cr) : C(bc) could represent a rejection of the argument R(cr) : C(bc) as
we need to consider more than the colour of the car when choosing whether to
buy it.
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R(cr) : −C(bc) could represent a rejection of R(cr) : C(bc) because we do not
like the colour red for a car.

Even if we identify the rejection −R(cr) : C(bc), it is possible that we could
identify another argument for buying the car using other criteria such as R(ec∧
sp) : C(bc) where ec denotes “The car is economical” and sp denotes “The car
is spacious”.

3 Representing Mined Arguments

Our approach first aims at representing mined arguments. We want to use our
language to represent arguments as they arise in natural language texts and
dialogues. We believe that central to handling texts and dialogues is the need to
provide support for nested arguments and rejections. To illustrate some of the
richness of our approach, we give in Table 1 various forms (F1-F12) of arguments
and rejections allowed by our definitions (x, y, z, t are propositional formulas to
simplify matters). The table is not exhaustive.

In our approach, we are not identifying what constitutes a good argument (or
a good rejection of an argument). Rather, we are providing a representation of
arguments (and rejections thereof). If an argument or rejection occurs in a text
or dialogue, then we want it to be mined, and we want to be able to represent
it in our language.

A list of arguments below shows that all the forms Fi can be used as a
target for natural language. It indicates how to use our language, rather than
suggesting that there is a canonical translation of text in to the formal target
language. As with translating a natural language sentence in to any logic, there
is some subjectivity in how a sentence is exactly translated, depending on various
factors.

F1: Tweety can fly (f). It is a bird (b). R(b) : C(f)

Table 1. Forms of argument
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F2: Tweety cannot fly. It is a penguin (p). R(p) : C(¬f)
F3: Carl is smart. Thus, it is not possible to conclude that he will fail his exams.

R(sm) : −C(fe)
F4: That Tweety can fly because it is a bird, is a reason to conclude that Tweety

has wings (w). R(R(b) : C(f)) : C(w)
F5: That Carl will fail his exams because he did not work hard is a reason to

conclude that he is not so smart. R(R(¬wh) : C(fe)) : C(¬sm)
F6: Paul’s car is in his job parking lot (pr) because it is broken (br), hence we

cannot conclude that Paul is in his office (of). R(R(br) : C(pr)) : −C(of)
F7: The weather is sunny (su). Thus, rain (ra) will lead to rainbow (rb).

R(su) : C(R(ra) : C(rb))
F8: The fact that Tweety is a penguin is a reason to conclude that being a bird

is not a sufficient reason for Tweety being able to fly. R(p) : C(−R(b) : C(f))
F9: The fact that all European countries have a strong economy (se) is a reason

for not concluding that an economic crisis (ec) in Germany is a reason for
a declining value of the euro (de). R(se) : −C(R(ec) : C(de))

F10: CFCs (cfc) cause damage to the ozone layer of the atmosphere (do). Man-
made pollution (mp) causes global warming (gw).

R(R(cfc) : C(do)) : C(R(mp) : C(gw))
F11: Stress is the reason that Carl will fail his exams, hence it is not the fact

that he did not work hard (st). R(R(st) : C(fe)) : C(−R(¬wh) : C(fe))
F12: The object looks red (lr). It is illuminated by red light (il). Thus, we cannot

conclude that looking red implies the object being indeed red (re).
R(R(il) : C(lr)) : −C(R(lr) : C(re))

Examples in F1-F12 illustrate that the outer reason and claim can be potentially
identified using argument mining techniques, such as based on sentiment analy-
sis techniques (e.g. [14]), text entailment techniques (e.g. [1]), or directly via
machine learning techniques (e.g. [6]), and then by recursion, the inner reasons
and claims can be identified by argument mining techniques. Thus, the nested
structure appears better suited as a target language for arguments as they arise
in natural language dialogues and texts.

4 Reasoning Systems

Our approach also aims at reasoning with mined arguments and rejections. We
want to find what arguments and rejections follow from them. Note that deriving
an argument α does not mean that α is accepted. Instead, inferring α means
that the argument(s) used while deriving α cannot be held without α also being
held. Inference captures commitment between arguments. Hence, if a foolish
argument is used as a premise then a foolish α may result: If an agent holds a
foolish argument, he henceforth commits to some other foolish arguments.

Our approach is to treat a set of arguments and rejections as a set of for-
mulae from which we apply a reasoning system. A consequence operator � is
the least closure of a set of inference rules extended with one meta-rule. Differ-
ent reasoning systems can be defined by adopting different choices for the set
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of inference rules. In this paper, we only have space to introduce one reasoning
system (in Sect. 5), but we will also indicate how alternative reasoning systems
can be identified.

For the sake of simplicity, the rules are introduced using propositional for-
mulas. However, they all hold in the general case. So, the variables x, y, z can
be instantiated with propositional formulae, arguments, and rejections of argu-
ments.

Let us introduce the meta-rule. In keeping with the meaning of −R(y) : C(x),
i.e., y is not a reason for x, which is the negation of the meaning of R(y) : C(x),
i.e., y is a reason for x, the meta-rule expresses that we can reverse any inference
rule of the form

R(y) : Φ
−R(y) : Ψ

into
R(y) : Ψ

−R(y) : Φ

Of course, the same reversing process takes place whenever “−” occurs in front of
a leftmost “R” so that, in the general case, an inference rule1 where i, j ∈ {0, 1}

−(i)R(y) : Φ
−(j)R(y) : Ψ

can be reversed into
−(1−j)R(y) : Ψ
−(1−i)R(y) : Φ

Now we turn to introducing the inference rules. As a start, consistency of argu-
ments’ reasons is a source of inferences (where x is a formula in L).

R(y) : C(x)
−R(y) : −C(x)

R(y) : C(x)
R(y) : −C(¬x)

(Consistency)

The leftmost rule means that if y is a reason for x then y is not a reason to
doubt x. The rightmost rule means that if y is a reason for x then it is also a
reason to doubt ¬x.

Proposition 1. The inference rules below are derived from (Consistency) and
the meta-rule (where x is a formula in L in the first, third and fourth inference
rules).

R(y) : C(x)
−R(y) : C(¬x)

R(y) : −C(x)
−R(y) : C(x)

R(y) : C(¬x)
R(y) : −C(x)

R(y) : C(¬x)
−R(y) : C(x)

Any reasoning system for our language is to include the meta-rule and the derived
rules. In Sect. 5, we consider specific inference rules for an example of a reasoning
system.

5 Indicative Reasoning

Indicative reasoning is an example of a reasoning system for our language. We
give for this system some simple inference rules that can be used with the meta-
rule presented in Sect. 4. We discuss some inference rules that are not part of
the set of rules for this example of a reasoning system and give some properties
of the consequence relation.
1 −(1) denotes a single occurrence of the hyphen and −(0) the absence of it.
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5.1 Inference Rules

The first inference rule for indicative reasoning captures when reasons are inter-
changeable. This is when x is the reason for y and vice-versa. Hence the next
inference rule.

R(y) : C(x) R(x) : C(y) R(y) : C(z)
R(x) : C(z)

(Mutual Support)

As an illustration, let x stand for “Paul and Mary are married to each other”
and y for “Paul and Mary are in love with each other”.

The next rule gathers different reasons for the same conclusion within a single
argument where y and z are formulas in L.

R(y) : C(x) R(z) : C(x)
R(y ∨ z) : C(x)

(Or)

Cautious monotonicity means that the reason of an argument can be expanded
with any premise it justifies. Cut expresses a form of minimality of the reason
of an argument.

(Cautious Monotonicity) (Cut)

R(y) : C(z) R(y) : C(x)
R(y ∧ z) : C(x)

R(y ∧ z) : C(x) R(y) : C(z)
R(y) : C(x)

The two next rules concern nesting of R(.) and C(.). Exportation shows how
to simplify meta-arguments (where y and z are formulas in L) and Permuta-
tion shows that for some forms of meta-arguments, permutations of reasons are
possible.

(Exportation) (Permutation)

R(y) : C(R(z) : C(x))
R(y ∧ z) : C(x)

R(y) : C(R(z) : C(x))
R(z) : C(R(y) : C(x))

We show that the consequence operator � defined upon the introduced inference
rules is consistent. Indeed, −R(y) : C(x) cannot be schematically derived from
R(y) : C(x) and that −R(y) : −C(x) cannot be schematically derived from
R(y) : −C(x). By the inference rules in Property 1, Property 2 actually expresses
that neither R(y) : C(¬x) nor R(y) : −C(x) can be schematically derived from
R(y) : C(x).

Proposition 2. There is no i, j ∈ {0, 1} s.t. the following is a derived inference
rule.

−(i)R(y) : −(j)C(x)
−(1−i)R(y) : −(j)C(x)
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5.2 Non-Inference

We turn to inference rules that are excluded from our example of a reasoning
system. We explain why they are excluded but some of these could be in an
alternative system.

Proposition 3. Neither the (Reflexivity) axiom, i.e., R(x) : C(x) for all x ∈ L,
nor the following rules hold in indicative reasoning.

(Logical Consequence) (Left Logical Equivalence)
y |= x

R(y) : C(x)
R(y) : C(x) |= y ↔ z

R(z) : C(x)

(Left Logical Consequence) (Right Logical Consequence)

R(y) : C(x) z |= y

R(z) : C(x)
R(y) : C(x) x |= z

R(y) : C(z)

(Transitivity) (And)

R(z) : C(y) R(y) : C(x)
R(z) : C(x)

R(y) : C(x) R(y) : C(z)
R(y) : C(x ∧ z)

Reflexivity is omitted because it seems unlikely that in full generality x be a
reason for x, e.g., not when the link is causality. Hence Logical Consequence is
inhibited as well. Indeed, being a reason for x is far more restrictive than having
x as logical consequence. Here is an illustration. By classical logic, taking x to
stand for “if I am in London then I am in England” while taking y to be ¬z
where z stands for “if I am in England then I am in Paris” yields ¬z |= x.
However, ¬z falls short of being a reason for x.

We refrain from adopting Right Logical Consequence in indicative reasoning
again on the grounds that being a reason for x is in general far more restrictive
than having x as a logical consequence. Indeed, the nature of the link plays an
important role. E.g., consider the causal argument: flu is a reason for your body
temperature to be in the range 39◦ C−41◦ C. The fact that being in the range
36◦ C−41◦ C is a logical consequence of being in the range 39◦ C−41◦ C does not
make flu a reason for your body temperature to be in the range 36◦ C−41◦ C
(it is the only possible range unless you are dead!).

And cannot be adopted either for indicative reasoning. Consider the case
where y, x and z stand respectively for “Paul is standing in the middle of the
road while a car is approaching”, “Paul should move forward”, and “Paul should
move back”.

Transitivity does not hold either for indicative reasoning. Back to the F6

example, the fact that Paul’s car is broken does not support the conclusion
“Paul is in his office”.

In indicative reasoning, blocking a reason is different from blocking a concl-
usion:

(a) R(y) : −C(R(z) : C(x)) does not imply R(y) : −C(x)
(b) R(y) : −C(x) does not imply R(y) : −C(R(z) : C(x))
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Argument 1: The fact that several European countries have a good
economy (ge) is a reason for not concluding that an economic crisis
( ec) in Spain is a reason for a declining value of the euro (de).

Argument 1 has the form R(ge) : −C(R(ec) : C(de)) and illustrates case (a)
because R(ge) : −C(de) needs not hold since an economic crisis in Germany
may lead to a declining value of the euro.

Argument 2: The fact that Carl did not attend at all the course ( ac)
is a reason for him failing his exams.

That Argument 2, formally captured as R(¬ac) : C(fe), is doubted on the
grounds that Carl is smart can be written R(sm) : −C(R(¬ac) : C(fe)). How-
ever, the latter argument needs not hold even in the presence of R(sm) : −C(fe)
(Carl being smart is a reason not to conclude him failing his exams) because
¬ac is more specific than sm.

We insist that the indicative reasoning system we present here is only one
option for a reasoning system with our approach. By giving this system, we also
want to question the appropriateness of some simple inference rules that most
notions of logic would adhere to. In particular, we suggest that reasoning with
arguments needs not use the same inference rules as non-monotonic reasoning
(cf e.g. Kraus et al. [15]). For instance, we may choose to set up a system such
as the indicative reasoning system, that fails reflexivity (i.e. we do not accept
that statement x is automatically a reason for claim x).

5.3 Consequence Relation

When � is the smallest inference relation obeying the rules from Sect. 5.1, reflex-
ivity, monotonicity and cut hold, meaning that with the � consequence relation,
manipulation of arguments by the inference rules is well-founded, in the logic
tradition [16]. Indeed:

Proposition 4. Let Δ be a set of (rejections of) arguments. Let α, and β be
arguments.

Δ � α if α ∈ Δ (Reflexivity)
Δ ∪ {α} � β if Δ � β (Monotonicity)
Δ � β if Δ ∪ {α} � β and Δ � α (Cut)

Also, the � consequence relation is paraconsistent in the sense that it is not
trivialized by contradiction (i.e., not all formulae of the language LA follow from
contradiction).

Proposition 5. {−(i)R(y) : −(j)C(x),−(1−i)R(y) : −(j)C(x)} �� LA.

� is monotonic but involves a non-monotonic operator in its object language:
R. “being a reason” is a non-monotonic relation |∼ as witnessed by transitivity
failing (it can be that y is generally a reason for x although there are special
cases where this fails). As an aside, please note that Mutual Support is a special
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instance of Transitivity. Anyway, the fact that |∼ is formalized as an operator
in our formalism makes the non-monotonicity confined to failure of inferring
R(y ∧ z) : C(x) from R(y) : C(x). There is no effect on the logic. The case is
similar to conditional logics (they are monotonic) because an operator capturing
a counterfactual conditional must be non-monotonic: e.g., “were I to scratch this
match, it would ignite” denoted y�x may hold while “were I to scratch this
match, that is wet, it would ignite” denoted y∧z�x fails to hold.

6 Conclusion

We propose a logic for representing and reasoning about arguments in a way that
is just not possible with existing formalisms. We think that the formalism is a
promising target language for argument mining and that if we obtain arguments
(and rejections of arguments) by argument mining, we can use our inference
machinery to analyse them.

Our formalism captures arguments and rejections thereof, with definitions
encompassing different roles of reasons (concluding and blocking statements),
various forms of reasons (factual and hypothetical) and different kinds of links
(deductive, abductive, inductive, . . .). Unlike existing computational models of
argumentation where attack (support) between arguments is expressed by exter-
nal relations on the set of arguments, any attack (support) can be expressed as
an argument in our formalism.

Many well-known logics were first proposed as proof systems. For these logics,
semantics were only obtained later. We have identified an alternative reasoning
system (that preserves more of the classical inference rules such as reflexivity)
with a three valued semantics. An exciting challenge is to identify a semantics
for indicative reasoning. Future research includes exploring the space of rea-
soning systems, semantics for them, and investigating Boolean combinations of
arguments (and rejections thereof).
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Abstract. In this paper, we present a generalization of dialectical proof
procedures to argumentation frameworks with necessities, a bipolar gen-
eralization of Dung argumentation framework where the support relation
has the meaning of necessity (an argument is necessary for another one).
We show how to extend the existing approach by accommodating the new
support relation. We consider in this paper dialectical proof procedures
for acceptability under grounded semantics and credulous acceptability
under preferred semantics.

Keywords: Dialogue games · Abstract argumentation · Argumentation
frameworks with necessities · Preferred semantics · Grounded semantics

1 Introduction

Argumentation has become a central issue in artificial intelligence (AI) (see e.g.
[1,19]). One of the very influential models of argumentation in AI is that of
Dung abstract argumentation frameworks (AFs) [12]. This approach has been
extensively studied and extended in different directions. One of the reasons of
this popularity is undoubtedly its simplicity: an argumentation system consists
on a set of abstract arguments and a binary attack relation between arguments.
Indeed, this model does not assume any particular structure of arguments and
focuses rather on their interaction. Hence, its use as a reasoning tool on con-
crete knowledge bases (KBs), requires first an instanciation step that constructs
arguments from the KB. A number of works have been done in this direction
and have pointed out the advantages and the limits of this model in dealing with
logical KBs (see e.g. [2,13]) and with KBs expressed as logic programs [7].

In this paper, we stay at the abstract level, i.e., at the granularity level where
the available model gives an abstraction of knowledge by means of arguments and
their interactions. In this context, a main question is to find methods to compute
extensions (sets of arguments that are collectively accepted) under a given seman-
tics. Labeling algorithms (see e.g. [14]) brings answers to this question for Dung
AFs. Another question is to decide whether a particular argument is accepted
(skeptically or credulously) under a given semantics. Dialogue games give answers
c© Springer International Publishing Switzerland 2015
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to this question. A dialogue game takes place between two protagonists: PRO who
is in favor of the considered argument and OPP who is against it. The rules of the
game imposed to each protagonist depends on the used acceptability semantics.
Dialogue games have been proposed for Dung AFs (see e.g. [6,14]) but also for
other approaches extending Dung AFs (see e.g. [8,11]).

One of the numerous directions in extending Dung AFs is to represent posi-
tive interactions (supports) between arguments in addition to negative interac-
tions (attacks) (see [3,5,9,10,18]). In a previous work [15], we have presented
a proposal in this context that extends Dung AFs by incorporating a support
relation having the specific meaning of necessity (an argument is necessary for
another one). Thanks to the specific meaning given to the support relation, it
was possible to generalize various results developed for Dung AFs to the case
of AFs with necessities (AFNs), including: preferences handling [4,16], labeling
algorithms [17] and relationships with logic programs [15].

In the continuation of this research line, we propose in this paper dialogue
games for AFNs. Our objective is to extend the existing approach so that to
accommodate the necessity relation. The key idea in this accommodation is to
let a protagonist of a dialogue game able to take into account the necessity rela-
tion in challenging his adversary: in addition to answering to an argument by
putting one of its attackers (this is the only possible way in the case of Dung
AFs), a protagonist can also challenge his adversary by asking him to prove the
acceptability of its necessary arguments. Besides, extensions of AFNs under any
acceptability semantics are constrained to not contain any cycle of necessities
(for more details, see [17]). The proposed dialogue games incorporate this con-
straint by restricting the dispute lines to those that do not involve necessity
cycles.

The structure of the paper is as follows. In Sect. 2, we recall AFNs and their
acceptability semantics. Section 3 presents general notions of dialogue games
adapted to AFNs. In Sects. 4 and 5 we present dialogue games in AFNs for
acceptability under grounded semantics and credulous acceptability under pre-
ferred semantics. In Sect. 6 we conclude the paper and give some perspectives
for future work.

2 Preliminaries

2.1 Dung AFs

An AF [12] is a pair H = 〈A,R〉 where A is a set of arguments and R is a binary
attack relation on A. A subset E ⊆ A is conflict-free if there are no a, b ∈ E such
that aRb, E defends a if for each b ∈ A, if bRa then ∃c ∈ E s.t. cRb and E is an
admissible set if it is conflict-free and defends all its elements. We denote by E+

the set of arguments attacked by E : E+ = {a | ∃b ∈ E s.t. bRa}.
Several acceptability semantics have been defined for an AF. Let H = 〈A,R〉

be an AF and E ⊆ A. E is a complete extension of H iff it is admissible and
contains any argument it defends. E is a grounded extension of H iff it is the ⊆-
minimal complete extension. E is a preferred extension of H iff it is a ⊆-maximal
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complete extension. E is a stable extension of E iff E is a compete extension that
attacks any argument outside it (i.e., E+ = A \ E). Finally, E is a semi-stable
extension iff E is a complete extension that maximizes E∪E+ (wrt. set inclusion).

2.2 AFs with Necessities

AFNs [15] are a kind of bipolar AFs that extend Dung AFs by considering, in
addition to the attack relation, a support relation to represent positive inter-
actions between arguments. In AFNs the support relation has the particular
meaning of necessity.

Definition 1. An AFN is defined by G = 〈A,R,N〉 where A is a set of argu-
ments, R ⊆ A×A is an attack relation and N ⊆ 2A ×A is a necessity relation.
R is interpreted exactly as in Dung AFs: aRb means that if a is accepted then b
is not accepted. The new relation N is interpreted in a dual way as follows: For
E ⊆ A and b ∈ A, EN b means that if no argument of E is accepted then b is
not accepted (the acceptance of at least one argument of E is necessary for the
acceptance of b).

Now, let us recall the concept of coherence of a subset of arguments. Intuitively,
in a coherent subset E , every argument is provided by enough arguments that
satisfy its necessities and no deadlock due to necessity cycles is present. This is
satisfied if for every argument a ∈ E , we can construct a sequence of arguments
of E such that: the first one does not require any subset of arguments, the last
one is a and if an argument b of a sequence requires a subset of arguments, then
at least one of the arguments of this subset precedes b in the sequence.

Definition 2. Let G = 〈A,R,N〉 be an AFN and E ⊆ A. An argument a is
powerful in E iff a ∈ E and there is a sequence a0, . . . , ak of arguments in E such
that ak = a, there is no E ⊆ A s.t. ENa0 and for 1 ≤ i ≤ k: for each E ⊆ A
s.t. ENai, E ∩{a0, . . . , ai−1} 
= ∅. E is coherent iff every a ∈ E is powerful in E.
Finally, E is strongly coherent iff E is coherent and conflict-free.

Strong coherence plays in AFNs the same role of conflict-freeness in Dung AFs
as a minimal requirement for any extension under any acceptability semantics.

The acceptability semantics defined on Dung AFs have been generalized to
AFNs (see [15]). Besides, The labeling characterization of these semantics pro-
posed for Dung AFs (see e.g. [14]) has been generalized in [17] to AFNs. In this
paper, we are interested in two acceptability semantics: the grounded and the
preferred semantics. We use the labeling approach to define them.

Let G = 〈A,R,N〉 be an AFN. A labelling is a function L : A −→ {in, out,
undec}. We put in(L) = {a ∈ A|L(a) = in}, out(L) = {a ∈ A|L(a) = out}
and undec(L) = {a ∈ A|L(a) = undec}. We write a labelling L as a triplet
(in(L), out(L), undec(L)). The notion of legal label is generalized in AFNs as
follows [17].

Definition 3. Let a be an argument and L be a labelling.
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– a is legally in iff a is labelled in and the two following conditions hold: (1)
∀b ∈ A, if bRa then b ∈ out(L) (all attackers of a are labelled out) and
(2) ∀E ⊆ A, if ENa then E ∩ in(L) 
= ∅ (at least one argument from each
necessary set for a is labelled in).

– a is legally out iff a is labelled out and at least one of the two following
conditions holds: either (1) ∃b ∈ A s.t. bRa and b ∈ in(L) (at least one
attacker of a is labelled in) or (2) ∃E ⊆ A, s.t. ENa and E ⊆ out(L) (all the
arguments of at least one necessary set for a are labelled out).

– a is legally undec iff a is labelled undec and the three following conditions hold:
(1) ∀b ∈ A, if bRa then b /∈ in(L) (no attacker of a is labelled in), (2) ∀E ⊆ A,
if ENa then E 
⊆ out(L) (not all the arguments of any necessary set for a
are labelled out) and (3) either ∃b ∈ A s.t. bRa and b /∈ out(L) or ∃E ⊆ A
s.t. ENa and E ∩ in(L) = ∅ (either at least one attacker of a is not labelled
out or at least one necessary set for a does not contain any argument that is
labelled in).

Notice that for N = ∅, we find exactly the original definitions of legal labels
given in [14]. In addition to legality of labels, the presence of N imposes two
further constraints. Any argument which is not powerful in A does not belong
to any extension and must be labelled out and since each extension E under any
semantics must be coherent, the set of in arguments of any labelling character-
izing any extension of an AFN must be coherent. Labellings that satisfy these
constraints are called safe labellings.

Definition 4. We say that a labelling L is safe iff the set in(L) is coherent and
for each a ∈ A, if a is not powerful in A then a ∈ out(L).

Definition 5. A labelling L is: complete iff L is safe and without any illegally
in, illegally out or illegally undec arguments; grounded iff L is complete and
in(L) is ⊆-minimal and preferred iff L is complete and in(L) is ⊆-maximal.

In Dung AFs (i.e. AFNs where N = ∅), any set of arguments is coherent and thus
any labeling is safe. In this case, we obtain exactly the classical definitions for
legally in, out and undec arguments and for the different kinds of labellings. The
relationship between labellings and acceptability semantics for AFNs is given as
follows.

Proposition 1. E is a complete (resp. grounded, preferred) extension iff there
is a complete (resp. grounded, preferred) labelling L such that E = in(L).

Example 1. Let us consider the three AFNs Gi = 〈Ai,Ri,Ni〉 (1 ≤ i ≤ 3)
such that: A1 = A2 = A3 = {a, b, c, d}, R1 = R2 = {(c, d)}, R3 =
{(c, a), (b, d)}, N1 = {({a, b}, c), (c, a), (c, b)}, N2 = {({a, b}, c), (c, a)} and
N3 = {({a}, b), ({d}, c)}. Figure 1 depicts the three AFNs where attacks (resp.
necessities) are represented by continuous (resp. dashed) arcs.

The only complete labelling of G1 is L = ({d}, {a, b, c}, ∅). It is also its
grounded and preferred labelling. The only complete labelling of G2 is L′ =
({a, b, c}, {d}, ∅). It is also its grounded and preferred labelling. G3 has three
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Fig. 1. Three examples of AFNs

complete labellings : L1 = (∅, ∅, {a, b, c, d}), L2 = ({a, b}, {c, d}, ∅) and L3 =
({c, d}, {a, b}, ∅). L1 is the grounded labelling of G3 and both L2 and L3 are its
preferred labellings.

3 Dialogue Games for AFNs

A dialogue game for an argument takes place between a protagonist PRO who
defends the argument and a protagonist OPP who is against it. The legal moves
that each protagonist is allowed to play depends on the considered acceptability
semantics and acceptability criteria (skeptical, i.e., membership in all exten-
sions; or credulous, i.e. membership in at least one extension). In AFNs, when
a protagonist puts an argument a, the other protagonist may have two ways to
challenge him. The first way (which is the only way used for Dung AFs) is to put
an attacker of a. The second way is to put a subset E which is necessary for a.
The idea of this move is to ask the other protagonist to prove the acceptability
of at least one element of E. To answer this last challenge, any element of E
may be put. This leads to the following definition of a dispute tree:

Definition 6. Let G = 〈A,R,N〉 be an AFN, and let a ∈ A. The dispute tree
induced by a in G is a tree T having a as a root node, a node of T is either an
argument or a subset of arguments E ⊆ A. Let x be a node of T then:

– If x ∈ A, y is a child of x iff: (y ∈ A and yRx) or (y = E, E ⊆ A and ENx).
– If x is a subset E, y is a child of x iff y ∈ E.

Every branch in the tree is called a dispute. As extensions must not contain
cycles of necessities, we are interested only in disputes that do not include such
cycles.

Definition 7. Let G = 〈A,R,N〉 be an AFN, let a ∈ A, T the dispute tree
induced by a in G and d a dispute of T . The dispute d is said to be acyclic iff
it does not involve a cycle constituted only from necessity links, i.e., d does not
contain any sub-sequence of the form: a1, E1, . . . , an, En, an+1 where ai ∈ A for
1 ≤ i ≤ n + 1, Ej ⊆ A for 1 ≤ j ≤ n and a1 = an+1. The acyclic dispute tree
induced by a is the dispute tree induced by a and restricted to acyclic disputes.

Now, we are ready to introduce the key notion of winning strategy in the case of
AFNs. Intuitively, a winning strategy tells to PRO the move that he has to play
against any move of OPP in order to guarantee that it will eventually win.
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Definition 8. Let G = 〈A,R,N〉, T the dispute tree induced by a in G, and T ′

a sub-tree of T . T ′ is a winning strategy for a iff:

1. The set DT ′ of disputes in T ′ is a non-empty finite set such that each dispute
d ∈ DT ′ is finite and is won by PRO (terminates in a move played by PRO).

2. ∀d ∈ DT ′ ,∀d′ such that d′ is some sub-dispute1 of d whose last move is played
by PRO, if this last move is:
– an argument x then, for any y such that yRx (resp. E such that ENx),

there is d′′ ∈ DT ′ s.t. d′ − y (resp. d′ − E)2 is a sub-dispute of d′′;
– a subset of arguments E then, for any y such that y ∈ E, there is a d′′ ∈ DT ′

such that d′ − y is a sub-dispute of d′′.

The last notion we need is that of legal move function. It expresses the rules
that a protagonist have to respect in playing any move.

Definition 9. Let G = 〈A,R,N〉, T the dispute tree induced by a in G. Let DT
be the set of all disputes in T . Then a legal move function is a function φ such
that φ : DT → 2A ∪ 2Γ where Γ = {E | E ⊆ A}.
For a legal move function φ, we call φ-winning strategy, any winning strategy in
the tree restricted to disputes where all moves are those given by the function φ.

Example 1 (Cont). Figure 2 depicts the dispute trees induced by the three
AFNs of Example 1. The barred arcs in Fig. 2-(1) and (2) are those that introduce
cycles of necessities. Such arcs are absent in Fig. 2-(3) since the system G3 has
no cycle of necessities.

4 Dialogue Game for Grounded Semantics

We consider in this section a dialogue game for acceptability under grounded
semantics. Since any AFN has a unique grounded extension, it does not makes
sense to distinguish between skeptical and credulous criteria. In words, the only
restriction made by the legal move function on OPP is to prevent him to put
an argument that creates a cyclic dispute. Whereas, In addition to this same
limitation, PRO is also constrained to not repeat any argument that is previously
put in the current dispute.

Definition 10. Given, G = 〈A,R,N〉, let d be a dispute s.t. x is the last move
in d and PRO(d) be the arguments moved by PRO in d. Then, φG1 is a legal
move function s.t.:

– If d is of odd length (next move is by OPP) then,

1 A sub-dispute of d is any subsequence of d starting with the same initial argument
as d.

2 If d is a dispute and x is an argument or a subset of arguments, then d − x denotes
the dispute which results from the continuation of d by x.
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Fig. 2. Dispute trees of our examples

• if x ∈ A, φG1(d) = {E | E ⊆ A and ENx}∪{y | yRx and d−y is acyclic};
• if x = E, φG1(d) = {y | y ∈ E and d − y is acyclic}.

– If d is of even length (next move is by PRO) then,
• if x ∈ A, φG1(d) = {E | E ⊆ A and ENx}∪{y | yRx, d− y is acyclic and

y /∈ PRO(d)};
• if x = E, φG1(d) = {y | y ∈ E, d − y is acyclic and y /∈ PRO(d)}.

φG1 captures the arguments accepted under grounded semantics in an AFN.

Theorem 1. Let G = 〈A,R,N〉 be a finite AFN. Then, there exists a φG1-
winning strategy T ′ for x such that the set PRO(T ′) of arguments moved by
PRO in T ′ is conflict-free, iff x is in the grounded extension of G.

As in the case of Dung AFs, the proof procedure may be shortened by introducing
two additional constraints in PRO’s moves.

– If the last move of OPP is an argument x, then it is useless that PRO moves
against it an argument y such that xRy. Indeed, in this case, it suffices to
OPP to move x again and PRO can no more repeat the move of y.

– Since the PRO’s arguments must be conflict-free in the winning strategy, one
can forbid PRO to move any argument which is in conflict with its precedent
arguments. For a sub-dispute d, the set of forbidden arguments for PRO is
defined by Forb(d) = {y | (yRy) or ∃z ∈ PRO(d) s.t. (zRy) or (yRz)}

Let φG2 be the winning strategy obtained by adding these two restrictions to
φG1 . Then we have the following result:

Theorem 2. Let G = 〈A,R,N〉 be a finite AFN. Then, there exists a φG2-
winning strategy T ′ for x iff x is in the grounded extension of G.
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Example 1 (Cont). Figure 3-(1) (resp. 3-(2), 3-(3)) depicts the dispute tree of
G1 (resp. G2, G3) induced by d (resp. d, b) and using φG2 (or φG1) as legal move
function.

In the dispute tree for G1 (Fig. 3-(1)), the two disputes are won by PRO.
Indeed, in both disputes, the only possible next move of OPP which is c is
forbidden since it leads to a cyclic dispute. The dispute tree itself is a φG2-
winning strategy for d. Thus, d belongs to the grounded extension of G1.

This same situation holds for G2 (Fig. 3-(2)) for the dispute d−c−{a, b}−a−
{c} won by PRO . However, the second dispute d− c−{a, b}− b is won by OPP.
Indeed, PRO cannot challenge b because b has neither attackers nor necessary
subsets of arguments. There is no φG2-winning strategy for d. Thus, d does not
belong to the grounded extension of G2.

The dispute tree for G3 (Fig. 3-(3)) has one dispute which is won by OPP. In
this dispute, the only possible next move of PRO which is b is forbidden since
PRO has already moved it. There is no φG2-winning strategy for b. Thus b does
not belong to the grounded extension of G3.

Fig. 3. φG2 dispute trees of our examples

5 Dialogue Games for Preferred Semantics

Now, let us turn to credulous acceptability under preferred semantics. Recall
that an argument is credulously accepted under preferred semantics if it belongs
to at least one preferred extension. It turns out that the credulous acceptability
under preferred semantics corresponds roughly to inverting the roles of PRO
and OPP in the dialogue game of grounded semantics. More precisely, PRO can
repeat his arguments but he is restricted to arguments that do not create conflicts
or cyclic disputes. Whereas, OPP is prohibited from repeating any argument he
previously put in the current dispute or playing moves that create cyclic disputes.
This is the corresponding legal move function.

Definition 11. Given G = 〈A,R,N〉, let d be a dispute s.t. x is the last move
in d and OPP(d) be the arguments moved by OPP in d. Then, φPC is a legal
move function s.t.:
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– If d is of odd length (next move is by OPP) then,
• if x ∈ A then φPC(d) = {E | E ⊆ A and ENx}∪{y | yRx, d−y is acyclic

and y /∈ OPP (d)};
• if x = E then φPC(d) = {y | y ∈ E, d − y is acyclic and y /∈ OPP (d)}.

– If d is of even length (next move is by PRO) then,
• if x ∈ A then φPC(d) = {E | E ⊆ A and ENx}∪{y | yRx, d−y is acyclic

and y /∈ Forb(d)};
• if x = E then φPC(d) = {y | y ∈ E, d − y is acyclic and y /∈ Forb(d)}.

This legal move function captures exactly the arguments credulously accepted
under preferred semantics in an AFN.

Theorem 3. Let G = 〈A,R,N〉 be a finite AFN. Then, there exists a φPC-
winning strategy T ′ for x iff x is in an admissible (and hence preferred) extension
of G.

Example 1 (Cont). Figure 4-(1) (resp. 4-(2), 4-(3)) depicts the dispute tree of
G1 (resp. G2, G3) induced by d (resp. d, b) and using φPC as legal move function.

In the dispute tree for G1 (Fig. 4-(1)), the two disputes are won by PRO.
Indeed, in both disputes, the only possible next move of OPP which is c is
forbidden since it leads to a cyclic dispute. The dispute tree itself is a φPC-
winning strategy for d. Thus d belongs to a preferred extension of G1. This same
situation holds for G2 (Fig. 4-(2)) for the dispute d − c − {a, b} − a − {c} won
by PRO . However, the second dispute d − c − {a, b} − b is won by OPP. Indeed,
PRO cannot challenge b because b has neither attackers nor necessary subsets of
arguments. There is no φPC-winning strategy for d. Thus d does not belong to
any preferred extension of G2. The dispute tree for G3 (Fig. 4-(3)) has one dispute
won by PRO. In this dispute, the only possible next move of OPP which is c is
forbidden since OPP has already moved it. There is a φPC-winning strategy for
b (the dispute tree itself). Thus, b is in a preferred extension of G3.

Fig. 4. φPC dispute trees of our examples
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6 Conclusion

In this paper we presented dialogue games for argumentation frameworks with
necessities. We have shown how to take into account the support relation in this
dialogues by letting a protagonist (PRO or OPP) able to use both the attack
and the support relations in challenging his adversary. The proposed dialogues
for AFNs take into account also the constraint that cycles of necessities are
prohibited in any extension.

We have considered in this paper dialogue games for acceptability under
grounded semantics and credulous acceptability under preferred semantics.
A natural future work is to extend our approach to other acceptability seman-
tics (stable, semi-stable and ideal) for the skeptical and credulous criteria for
multi-extensions semantics. Another important perspective is to exploit the link
between AFNs and logic programs in order to obtain a complete querying system
for abstract argumentation systems and logic programs which is parametrized
by the acceptability semantics and the acceptability criteria.
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Abstract. Qualitative and quantitative systems to deal with uncer-
tainty coexist. Bayesian networks are a well known tool in probabilistic
reasoning. For non-statistical experts, however, Bayesian networks may
be hard to interpret. Especially since the inner workings of Bayesian
networks are complicated they may appear as black box models. Argu-
mentation models, on the contrary, emphasise the derivation of results.
However, they have notorious difficulty dealing with probabilities. In
this paper we formalise a two-phase method to extract probabilistically
supported arguments from a Bayesian network. First, from a BN we con-
struct a support graph, and, second, given a set of observations we build
arguments from that support graph. Such arguments can facilitate the
correct interpretation and explanation of the evidence modelled in the
Bayesian network.

Keywords: Bayesian networks · Argumentation · Reasoning · Expla-
nation · Inference · Uncertainty

1 Introduction

Reasoning about probabilities and statistics, and independence in particular, is
a difficult task that easily leads to reasoning errors and miscommunication. For
instance in the legal or medical domain the consequences of reasoning errors can
be severe. Bayesian networks, which model probability distributions, have found
a number of applications in these domains (see [9] for an overview). However,
the interpretation of BNs is a difficult task, especially for domain experts who
are not trained in probabilistic reasoning. Argumentation is a well studied topic
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in the field of artificial intelligence (see Chap. 11 of [12] for an overview). Argu-
mentation theory provides models that describe how conclusions can be justified.
These models closely follow the same reasoning patters present in human rea-
soning. This makes argumentation an intuitive and versatile model for common
sense reasoning tasks. This justifies a scientific interest in models of argumenta-
tion that incorporate probabilities. In this paper we formalise a new method to
extract arguments from a BN, in which we first extract an intermediate support
structure that guides the argument construction process. This results in numer-
ically backed arguments based on probabilistic information modelled in a BN.
We apply our method to a legal example but the approach does not depend on
this domain and can also be applied to other fields where BNs are used.

In previous work [10] we introduced the notions of probabilistic rules and
arguments and an algorithm to extract those from a BN. However, exhaustively
enumerating every possible probabilistic rule and argument is computationally
infeasible and also not necessary because many of the enumerated antecedents
will never be met, and many arguments constructed in this way are superflu-
ous because they argue for irrelevant conclusions. Improving on this work we
proposed [11] a new method that solves these issues. We split the process of
argument generation into two phases: from the BN we construct a support graph
at first, from which argument can be generated in a second phase. We introduced
an algorithm for the first phase but the second phase has only been described
informally. In the current paper we show a number of properties of the support
graph formalisms and we fully formalise the argument generation phase.

In Sect. 2 we will present backgrounds on argumentation and BNs. In Sect. 3
we formally define and discuss support graphs. Using the notion of a support
graph we present a translation to arguments in Sect. 4. One of the advantages
of this method is that the support graph presents a dynamic model of evidence
because when observations are added to the BN it does not need to be recom-
puted. Only the resulting argumentation changes.

2 Preliminaries

2.1 Argumentation

In argumentation theory, one possibility to deal with uncertainty is the use of
defeasible inferences. A defeasible (as opposed to strict) rule can have exceptions.
In a defeasible rule the antecedents do not conclusively imply the consequence
but rather create a presumptive belief in it. Using (possibly defeasible) rules,
arguments can be constructed. Figure 1, for instance, shows (on the left) an
argument graph with a number of arguments connected by two rules. From a
psychological report it is derived that the suspect had a motive and together with
a DNA match this is reason to believe that the suspect committed the crime.
Different formalisation of such systems exist [5,7,8,14]. In this paper we will
construct an argumentation system where the rules follow from the BN. Since a
BN captures probabilistic dependencies the inferences will be defeasible. Figure 1
also shows a possible counter-argument. Undercutting and rebutting attacks
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between arguments with defeasible rules have been distinguished [7]. A rebuttal
attacks the conclusion of an argument, whereas an undercutter directly attacks
the inference (as in this example). An undercutter exploits the fact that a rule is
not strict by posing one of the exceptional circumstances under which it does not
apply. Using rebuttals and undercutters, counter-arguments can be formulated.
Arguments can be compared on their strengths to see which attacks succeed
as defeats. Then Dung’s theory of abstract argumentation [1] can be used to
evaluate the acceptability status of arguments.

Crime took place

Suspect had motive DNA matches

Psychologists confirms

Suspect has identical twin

Fig. 1. An example of complex arguments and an undercutting counter-argument.

2.2 Bayesian Networks

A Bayesian network (BN) contains a directed acyclic graph (DAG) in which
nodes correspond to stochastic variables. Variables have a number of mutu-
ally exclusive and collectively exhaustive outcomes: upon observing the variable,
exactly one of the outcomes will become true. Throughout this paper we will
consider variables to be binary for simplicity.

Definition 1 (Bayesian Network). A Bayesian network is a pair 〈G,P 〉
where G is a directed acyclic graph (V,E), with variables V as the set of nodes
and edges E, and P is a probability function which specifies for every variable Vi

the probability of its outcomes conditioned on its parents Par(Vi) in the graph.

We will use Cld(Vi) and Par(Vi) to denote the sets of children and parents
respectively of a variable Vi in a graph. Cld(V′) (and Par(V′)) will likewise
denote the union of the children (and parents respectively) of variables in a set
V′ ⊆ V.

Given a BN, observations can be entered by instantiating variables; this
update is then propagated through the network, which yields a posterior proba-
bility distribution on all other variables, conditioned on those observations. A BN
models a joint probability distribution with independences among its variables
implied by d-separation in the DAG [6].

Definition 2 (d-Separation). A trail in a DAG is a simple path in the under-
lying undirected graph. A variable is a head-to-head node with respect to a partic-
ular trail iff it has two incoming edges on that trail. A variable on a trail blocks
that trail iff either (1) it is an unobserved head-to-head node without observed
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descendants, or (2) it is not a head-to-head on that trail and it is observed. A trail
is active iff none of its variables are blocking it. Subsets of variables VA and VB

are d-separated by a subset of variables VC iff there are no active trails from
any variable in VA to any variable in VB given observations for VC .

If, in a given BN model, VA and VB are d-separated by VC , then VA and
VB are probabilistically independent given VC . An example of a BN is shown
in Fig. 2. This example concerns a criminal case with five variables describing
how the occurrence of the crime correlates with a psychological report and a
DNA matching report. The variables Motive and Twin model the presence of
a criminal motive and the existence of an identical twin. The latter can result
in a false positive in a DNA matching test. In the following we will also require
the notions of a Markov blanket and Markov equivalence [13].

Definition 3 (Markov Blanket). Given a BN graph, the Markov blanket
MB(Vi) of a variable Vi is the set Cld(Vi) ∪ Par(Vi) ∪ Par(Cld(Vi)). I.e., the
parents, children and parents of children of Vi.

Definition 4 (Markov Equivalence). Given a BN graph, an immorality is
a tuple 〈Va, Vc, Vb〉 of variables such that there are directed edges Va Vc

and Vb Vc in the BN graph but no edges Va Vb or Vb Va.
Given two BN graphs, they are Markov equivalent if and only if they have the
same underlying undirected graph, and they have the same set of immoralities.

Psych report
Motive true false

true 0.6 0.1
false 0.4 0.9

Crime
Motive true false

true 0.5 0.01
false 0.5 0.99

Twin
true 0.01

false 0.99

Motive
true 0.05

false 0.95

DNA match
Crime true false
Twin true false true false

true 1.0 1.0 1.0 10−6

false 0.0 0.0 0.0 1 − 10−6

Fig. 2. A small BN concerning a criminal case. The conditional probability distribu-
tions are shown as tables inside the nodes of the graph.

3 Support Graphs

We will split the construction of arguments for explaining a BN in two steps. We
first construct a support graph from a BN, and subsequently establish arguments
from the support graph. In this section we define the support graph and its
construction.

Given a BN and a variable of interest V �, the support graph is a template for
generating explanatory arguments. As such, it does not depend on observations
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of variables but rather models the possible structure of arguments for a particular
variable of interest. This means that it can be used to construct an argument
for any variable of our choice given any set of evidence, as we will show in the
next section. When new evidence becomes available the same support graph can
be reused. This means that the support graph should be able to capture the
dynamics in d-separation caused by different observations. To enable this, each
node in the support graph (which we will refer to as support nodes from here
on) will be labelled with a forbidden set of variables F . Moreover, since one BN
variable can be represented more than once in a support graph, a function V is
used to assign a variable to every support node. The support graph can now be
constructed recursively. Initially a single support node N� is created for which
V(N�) = V � and F(N�) = {V �}.

Definition 5 (Support Graph). Given a BN with graph G = (V,E) and a
variable of interest V �, a support graph is a tuple 〈G,V,F〉 where G is a directed
graph (N,L), consisting of nodes N and edges L, V : N �→ V assigns variables
to nodes, and F : N �→ P(V) assigns sets of variables to each node, such that
G is the smallest graph containing the node N� (for which V(N�) = V � and
F(N�) = {V �}) closed under the following expansion operation:

Whenever possible, a supporter Nj with variable V(Nj) = Vj is added as a
parent to a node Ni (with Vi = V(Ni)) iff Vj ∈ MB(Vi) \ F(Ni). The forbidden
set F(Nj) of the new support node is

– F(Ni) ∪ {Vj} if Vj is a parent of Vi

– F(Ni) ∪ {Vj} ∪ {Vk ∈ Par(Vj)|〈Vi, Vj , Vk〉is an immorality}
if Vj is a child of Vi

– F(Nj) ∪ {Vj} ∪ (Cld(Vi) ∩ Cld(Vj)) otherwise

If a support node with this forbidden set and the same V(Nj) already exists, that
node is added as the parent of Ni, otherwise a supporting node Nj is created.

To be able to represent d-separation correctly the forbidden set of variables
assigns to every support node a set of variables that cannot be used in further
support for that node. This forbidden set is inherited by supporters such that
ancestors in the support graph cannot use variables from F either. Figure 3
shows the three cases of the forbidden set definition. The forbidden set of a
new supporter Ni for variable Vi always includes the variable Vi itself which
prevents circular reasoning. In a BN, parents of a common child often exhibit
intercausal-interactions (such as explaining away) which means that the effect of
one parent on the other is not the same as the combined effect from the parent
to the child and then to the other parent. To support a variable Vi with one of
its children and then support this child by a parent would incorrectly chain the
inferences through a head-to-head node even though an intercausal-interaction
is possible. Therefore we forbid the latter step by including any other parents
that constitute immoralities in the second case. A reasoning step that uses the
inference according to the intercausal-interaction is allowed by the third case.

Now let us consider the example BN from Fig. 2 and take Crime as the
variable of interest. The initial support graph contains just one node with this
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Vj

Vi

first case

Vj F = F ′ ∪ {Vj}

Vi F ′

Vj

ViP1 P2

second case

Vj F = F ′ ∪ {Vj , P1, P2, . . .}

Vi F ′

Vj Vi

C1 C2

third case

Vj F = F ′ ∪ {Vj , C1, . . .}

Vi F ′

Fig. 3. Visual representation of the three cases in Definition 5. A support node for
variable Vi can obtain support in three different ways from a variable Vj , depending
on its graphical relation to Vi.

variable and the forbidden set {Crime}. As can be seen in Fig. 4, all of the three
cases for F apply exactly once in this example. The Crime node can be supported
by one parent (Motive), one child (DNA match) and one parent of a child (Twin).
In the first case the forbidden set leaves room to support the Motive node even
further by adding a node for the Psych report variable. This graph represents
all possible dependencies in the BN model, where the actual dependencies will
depend on the instantiation of evidence.

Property 1. Given a BN with G = (V,E), the constructed support graph con-
tains O(|V| ∗ 2|V|) nodes.

Proof (Sketch). Variables can occur multiple times in the support graph but
never with the same F sets (see the definition). This set contains subsets of
other variables and therefore 2|V| is a strict upper bound on the number of
times any variable can occur in the support graph. The total number of support
nodes is therefore limited to |V| ∗ 2|V|. ��

Property 2. In a given BN with a singly connected graph G = (V,E), every
variable occurs exactly once in the support graph and the size of the support
graph is |V|.
Proof (Sketch). A variable can in theory occur multiple times in the support
graph, but this only happens when the graph is loopy (multiply connected). ��
Theorem 1. Given two Markov equivalent BN graphs G and G′, and a variable
of interest V �, the two resulting support graphs are identical.
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Crime
{Crime}

Motive{
Crime
Motive

} Twin{
Crime
Twin

DNA match

} DNA match{
Crime

DNA match
Twin

}

Psych report{
Crime
Motive

Psych report

}

Fig. 4. The support graph corresponding to the example in Fig. 2 with V � = Crime.
For every node Ni we have shown the variable name V(Ni) togehter with the forbidden
set F(Ni).

Proof (Sketch). Consider the BN graph G and the corresponding support graph.
In a Markov equivalent graph G′ an arbitrary number of edges may be reversed
but not if this would create or remove immoralities. Following the three possible
support steps we see that every supporter follows an edge from the skeleton
(which stays the same) or an immorality (which also stays the same). What
remains to be shown is that the forbidden sets will also be equal. Let us consider
the three cases of the F update from Definition 5 (see also Fig. 3). Suppose that
in the support graph of G, Ni for variable Vi is supporting Nj for variable Vj :

– In the first case, reversal of the edge between Vi and Vj would change this to
the second case in which variables Vk with an immorality 〈Vi, Vj , Vk〉 would be
added to F . However, since no immoralities are created those variables either
do not exist, or the reversal is not allowed by the Markov equivalence.

– In the second case, reversal of any of the incoming edges of Vj is not allowed if
Vj is involved in an immorality 〈Vi, Vj , 〉. If that is the case, reversal is allowed
and we end up in the first case but the forbidden set will be exactly the same.

– In the third case, there is no immorality between Vi and Vj through any of
the shared children because if there were, a direct edge exists and either of the
former cases would have taken precedence. None of these edges may therefore
be reversed in G′. ��

What this theorem shows is that Markov equivalent models are mapped to the
same support graph, which means that they will receive the same argumentative
explanation. This takes one of the confusing aspects of BNs away, which is that
the directions of edges do not have a clear intuitive interpretation.

4 Argument Construction

In previous work we have already shown a method to identify arguments in a
BN setting and how they can be enumerated exhaustively [10]. A disadvantage
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of the exhaustive enumeration of probabilistic rules and rule combinations is
the combinatorial explosion of possibilities, even for realistically sized models.
Using a support graph can reduce the number of arguments that need to be
enumerated because only rules relevant to the conclusion of the argument are
considered.

Definition 6 (Bayesian Argument). An argument A on the basis of a BN, a
set of observations O, and the corresponding support graph 〈G = (N,L),V,F〉,
is one of the following:

– 〈N, o〉 such that (V(N) = o) ∈ O, for which Obs(A) = {N = o} or
– 〈N1, o1〉, . . . , 〈Nn, on〉 ⇒ 〈N, o〉 such that N1, . . . , Nn are parents of N in the

support graph, 〈N1, o1〉 through 〈Nn, on〉 are arguments, and o is the most
probable outcome of V(N) given the observations Obs(A), in which Obs(A) is
the union of Obs(B) over subarguments B.

In this definition 〈N1, o1〉 through 〈Nn, on〉 are the immediate subarguments of
〈N1, o1〉, . . . , 〈Nn, on〉 ⇒ 〈N, o〉.
Argument attack arises when two arguments assign outcomes to the same vari-
able. We might be tempted to prefer the argument with the highest probability
but that could lead to mistakes. For instance, when A, B and C collectively
support a conclusion, situations can exist where the highest probability of that
conclusion occurs when B is left out. It is, however, usually not acceptable to
ignore evidence. The following definition meets this criterion:

Definition 7 (Superseding). An argument A supersedes another argument B
iff Obs(A) ⊇ Obs(B).

Indeed, we prefer one argument over another iff it includes a superset of evi-
dence. This resembles Pollock’s concept of subproperty defeat of the statistical
syllogism [7]. Superseding can be seen as a special case of undercutting, so attack
and defeat follow naturally:

Definition 8 (Undercutting Attack and Defeat). An argument A under-
cuts another argument B iff it supersedes B or one of the sub-arguments of B.
An undercutting attack always succeeds and therefore A also defeats B.

It can be shown that this instantiates a special case of the ASPIC+ [5] model
of argumentation but a proof of that is omitted for brevity. In this special case
rebuttal and undermining are redundant due to the fact that for every rebuttal
there is also an undercutter resolving the issue.

An interesting property of this approach is that conflicts between observa-
tions are resolved in the probabilistic setting within the argument and that the
resolution is mirrored by the defeat relation of the extracted arguments, rather
than decided by it. This means that the resulting argumentation system is rather
simple which is ideal for a BN explanation method.

If we apply this system to the support graph from our example BN with
the observations that Psych report=true and DNA match=true, we obtain
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(among others) the arguments shown in Fig. 5. The argument on the right is
in fact the formal version of the argument that we already showed in Fig. 1. The
undercutter from that figure was not extracted because no evidence for a twin
was present in the set of observations.

Fig. 5. Arguments resulting from our running example. The argument on the left is
superseded by the one on the right. For readability we have only shown conclusions
inside the nodes.

Property 3. Given a BN, a variable of interest, the resulting support graph and
a set of observations, for every node in the support graph either no argument
for this node exists at all, or exactly one of the arguments that exists supersedes
all other arguments for the same node without itself being superseded.

Proof (Sketch). Suppose no such un-superseded argument exists, then there must
be two arguments A and B that supersede each other, i.e. Obs(A) \ Obs(B) �= ∅
and Obs(B) \ Obs(A) �= ∅. However, in that case an argument C combining the
immediate subarguments of A and B also exists that strictly supersedes both A
and B. ��
Informally, the argument that includes all possible supporters that have ances-
tors in O will supersede any argument that includes fewer supporters. Since this
holds for every node, there is in this argumentation system one unique tree in
which every argument is supported by the maximal number of immediate sub-
arguments given what is derivable from the evidence. Together with the fact that
the outcome of the argument is based on the probability given the used obser-
vations, and that no d-separated paths are used in the argument this exactly
mirrors the probabilistic reasoning.

5 Discussion

In this paper we formalised a two-phase argument extraction method. We have
shown how support graphs help in the construction of arguments because they
capture the argumentative structure that is present in a BN.

Many explanation methods for BNs (see e.g. [3,4]) focus on textual or visual
systems. Other work on argument extraction includes that of Keppens [2], who
focuses on Argument Diagrams. One advantage of structured argumentation is
that counter-arguments can easily be modelled as well. Future research includes
how arguments constructed from a BN can be combined with arguments from
other sources, since often the available evidence is only partially probabilistic.
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1 Motivation and Outline

While Transitivity is basic for reasoning, it does not hold in nonmonotonic rea-
soning systems. Therefore, various patterns of Weak Transitivity were studied
in the literature (e.g., [17]). In probabilistic approaches, Transitivity is proba-
bilistically non-informative, i.e., the premise probabilities, p(C|B), p(B|A), do
not constrain the probability of the conclusion p(C|A) (for instance, the exten-
sion p(C|A) = z of the assessment p(C|B) = 1, p(B|A) = 1 is coherent for any
z ∈ [0, 1]; see [30,31]). In this paper, we study probabilistically informative ver-
sions of Transitivity in the setting of coherence ([4,13,22]). Transitivity has also
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been studied in [7,16]; among other differences, in our approach we use impre-
cise probabilities in the setting of coherence, where conditioning events may have
zero probability.

After introducing some notions of coherence for set-valued probability assess-
ments (Sect. 2), we present probabilistic interpretations of defaults and negated
defaults (Sect. 3). We represent a knowledge base by sequence of defaults and/or
negated defaults, which we interpret by an imprecise probability assessment on
the associated sequence of conditional events. Moreover, we generalize definitions
of p-consistency and p-entailment. In Sect. 4 we present the coherent probability
propagation rules for Weak Transitivity (Theorems 3 and 4). We then exploit
Theorem 3 to demonstrate the validity of selected patterns of (weak) transitive
inferences involving defaults and negated defaults by proving p-entailment of the
corresponding knowledge bases (Sect. 5).

2 Imprecise Probability Assessments

Given two events E and H, with H �= ⊥, the conditional event E|H is defined as
a three-valued logical entity which is true if EH (i.e., E∧H) is true, false if ¬EH
is true, and void if H is false. Given a finite sequence of n ≥ 1 conditional events
F = (E1|H1, . . . , En|Hn), we denote by P any precise probability assessment
P = (p1, . . . , pn) on F , where pj = p(Ej |Hj) ∈ [0, 1], j = 1, . . . , n. Moreover, we
denote by Π the set of all coherent precise assessments on F . The coherence-
based approach to probability has been adopted by many authors (see e.g.,
[4,13,18,23,24,28,30]); we therefore recall only selected key features of coherence
in this paper. We recall that when there are no logical relations among the
events E1,H1, . . . , En,Hn involved in F , that is E1,H1, . . . , En,Hn are logically
independent, then the set Π associated with F is the whole unit hypercube
[0, 1]n. If there are logical relations, then the set Π could be a strict subset of
[0, 1]n. As it is well known, Π �= ∅; therefore, ∅ �= Π ⊆ [0, 1]n.

Definition 1. An imprecise, or set-valued, assessment I on a family of condi-
tional events F is a (possibly empty) set of precise assessments P on F .

Definition 1, introduced in [19], states that an imprecise (probability) assessment
I on a given family F of n conditional events is just a (possibly empty) subset
of [0, 1]n. Given an imprecise assessment I we denote by Ic the complementary
imprecise assessement of I, i.e. Ic = [0, 1]n \ I. In what follows, we generalize
the notions of g-coherence, coherence, and total-coherence for interval-valued
probability assessments (see e.g., [21, Definitions 7a, 7b, 7c, respectively]) to the
case of imprecise (in the sense of set-valued) probability assessments.

Definition 2. Let a sequence of n conditional events F be given. An imprecise
assessment I ⊆ [0, 1]n on F is g-coherent if and only if there exists a coherent
precise assessment P on F such that P ∈ I.

Definition 3. Let I be a subset of [0, 1]n. For each j ∈ {1, 2, . . . , n}, the pro-
jection ρj(I) of I onto the j-th coordinate, is defined as

ρj(I) = {xj ∈ [0, 1] : pj = xj , for some (p1, . . . , pn) ∈ I}.
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Definition 4. An imprecise assessment I on a sequence of n conditionals events
F is coherent if and only if, for every j ∈ {1, . . . , n} and for every xj ∈ ρj(I),
there exists a coherent precise assessment P = (p1, . . . , pn) on F , such that
P ∈ I and pj = xj.

Definition 5. An imprecise assessment I on F is totally coherent if and only
if the following two conditions are satisfied: (i) I is non-empty; (ii) if P ∈ I,
then P is a coherent precise assessment on F (see [19, Definition 2]).

Remark 1. We observe that:

I is g-coherent ⇐⇒ Π ∩ I �= ∅ ⇐⇒ ∀j ∈ {1, . . . , n}, ρj(Π ∩ I) �= ∅ ;
I is coherent ⇐⇒ ∀j ∈ {1, . . . , n}, ∅ �= ρj(Π ∩ I) = ρj(I) ;
I is totally coherent ⇐⇒ ∅ �= Π ∩ I = I .

Then, the following relations among the different notions of coherence hold:
I totally coherent ⇒ I coherent ⇒ I g-coherent .

Definition 6. Let I be a non-empty subset of [0, 1]n. For each sub-vector
(j1, . . . , jm) of (1, . . . , n), the projection ρ(j1,...,jm)(I) of I onto the coordinates
(j1, . . . , jm), with 1 ≤ m ≤ n, is defined as the set ρ(j1,...,jm)(I) ⊆ [0, 1]m such
that each vector (xj1 , . . . , xjm) ∈ ρ(j1,...,jm)(I) is the sub-vector (pj1 , . . . , pjm) of
some P = (p1, . . . , pn) ∈ I.

Let I be an imprecise assessment on the sequence F = (E1|H1, . . . , En|Hn);
moreover, let En+1|Hn+1 be a further conditional event and let J ⊆ [0, 1]n+1

be an imprecise assessment on (F , En+1|Hn+1). We say that J is an exten-
sion of I to (F , En+1|Hn+1) if and only if ρ(1,...,n)(J ) = I, that is: (i)
for every (p1, . . . , pn, pn+1) ∈ J , it holds that (p1, . . . , pn) ∈ I; (ii) for every
(p1, . . . , pn) ∈ I, there exists pn+1 ∈ [0, 1] such that (p1, . . . , pn, pn+1) ∈ J .

Definition 7. Let I be a g-coherent assessment on F = (E1|H1, . . . , En|Hn);
moreover, let En+1|Hn+1 be a further conditional event and let J be an extension
of I to (F , En+1|Hn+1). We say that J is a g-coherent extension of I if and
only if J is g-coherent.

Theorem 1. Given a g-coherent assessment I ⊆ [0, 1]n on F , let En+1|Hn+1

be a further conditional event. Then, there exists a g-coherent extension
J ⊆ [0, 1]n+1 of I to the family (F , En+1|Hn+1).

Proof. As I is g-coherent, there exists a coherent precise assessment P on F , with
P ∈ I. Then, as it is well known, there exists (a non-empty interval) [p′, p′′] ⊆ [0, 1]
such that (P, pn+1) is a coherent precise assessment on (F , En+1|Hn+1), for every
pn+1 ∈ [p′, p′′] (Fundamental Theorem of Probability; see e.g., [4,10,12,15,25]).
Now, let any Γ ⊆ [0, 1] be given such that Γ ∩ [p′, p′′] �= ∅; moreover, consider
the extension J = I × Γ on (F , En+1|Hn+1). Clearly, (P, pn+1) ∈ J for every
pn+1 ∈ Γ ∩ [p′, p′′]; moreover the assessment (P, pn+1) on (F , En+1|Hn+1) is
coherent for every pn+1 ∈ Γ ∩ [p′, p′′]. So by Definition 2, J is a g-coherent
extension of I to (F , En+1|Hn+1). ��
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Given a g-coherent assessment I on a sequence of n conditional events F , for
each coherent precise assessment P on F , with P ∈ I, we denote by [αP , βP ]
the interval of coherent extensions of P to En+1|Hn+1; that is, the assessment
(P, pn+1) on (F , En+1|Hn+1) is coherent if and only if pn+1 ∈ [αP , βP ]. Then,
defining the set

Σ =
⋃

P∈Π∩I [αP , βP ] , (1)

for every pn+1 ∈ Σ, the assessment I × {pn+1} is a g-coherent extension of I to
(F , En+1|Hn+1); moreover, for every pn+1 ∈ [0, 1]\Σ, the extension I×{pn+1} of
I to (F , En+1|Hn+1) is not g-coherent. Thus, denoting by Π ′ the set of coherent
precise assessments on (F , En+1|Hn+1), it holds that Σ is the projection onto the
(n+1)-th coordinate of the set (I×[0, 1])∩Π ′, that is ρn+1((I×[0, 1])∩Π ′) = Σ.
We say that Σ is the set of coherent extensions of the imprecise assessment I
on F to the conditional event En+1|Hn+1.

3 Probabilistic Knowledge Bases and Entailment

Let E and H denote events, where H is a not self-contradictory event. The
sentence “E is a plausible consequence of H” is a default, which we denote
by H |∼ E. Moreover, we denote a negated default, ¬(H |∼ E), by H |∼/ E
(it is not the case, that: E is a plausible consequence of H). We interpret
the negation of a default by classical negation (¬). Thus, we require that
¬(H |∼/ E) = ¬(¬(H |∼ E)) = (H |∼ E). We define defaults and negated defaults
in terms of probabilistic assessments as follows:

Definition 8. Given two events E,H we say that H |∼ E (resp., H |∼/ E) holds
iff our imprecise probability assessment I on E|H is I = {1} (resp., I = [0, 1[).

We observe that a default is negated by classical negation: the default H |∼ E
is represented by the assessment {1} on E|H and the negated default H |∼/ E
is represented by the assessment [0, 1[, which is the complementary set of {1}.
Given two events E and H, with H �= ⊥, by coherence p(E|H) + p(¬E|H) = 1
(which holds in general). Thus, the probabilistic interpretation of the following
types of sentences H |∼ E (I), H |∼ ¬E (II), H |∼/ E (III), and H |∼/ ¬E (IV), can
be represented in terms of imprecise assessments on E|H (Table 1). We recall that
the notion of p-consistency for a knowledge base, given by Adams in [1], has been
also studied in the framework of coherence (see, e.g., [18]). In [18, Definition 4]
Adams’ p-consistency of a knowledge base is interpreted by the g-coherence of
an imprecise assessment, where p(H|E) ≥ 1 − ε for every ε > 0, i.e. p(H|E)
is close to 1, for each default H |∼ E in the given knowledge base. Therefore,
the notion of p-consistency is related to the notion of g-coherence. Moreover, as
shown in [22, Definition 2, Remark 1, Theorem 4], p-consistency can be defined
equivalently by requiring p(H|E) = 1 for each default H |∼ E. Of course, for
what concerns practical aspects, instead of the latter approach it is more useful
to use imprecise assessments (see e.g., [5,6,18,22,23,29–31]). In this paper a
knowledge base K is defined as a (non-empty) finite sequence of defaults and
negated defaults. Let K = (H1 |∼ E1, . . . , Hn |∼ En,D1 |∼/ C1, . . . , Dm |∼/ Cm) be
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a knowledge base, with n+m ≥ 1. We now define our probabilistic representation
of the knowledge base K by a corresponding pair (FK, IK), where FK is the
ordered family of conditional events (E1|H1, . . . , En|Hn, C1|D1, . . . , Cm|Dm) and
IK is the imprecise assessment ×n

i=1
{1} × ×m

j=1
[0, 1[ on FK. We now define

the notion of p-consistency of a given knowledge base in terms of g-coherence.

Table 1. Probabilistic interpretations of defaults (Types I and II) and negated defaults
(Types III and IV), and their respective (imprecise) assessments I on a conditional
event E|H.

Type Sentence Probabilistic constraint Assessment I on E|H
I H |∼ E p(E|H) = 1 {1}
II H |∼ ¬E p(¬E|H) = 1 {0}
III H |∼/ E p(E|H) < 1 [0, 1[

IV H |∼/ ¬E p(¬E|H) < 1 ]0, 1]

Definition 9. A knowledge base K is p-consistent if and only if the imprecise
assessment IK on FK is g-coherent.

In other words, K = (H1 |∼ E1, . . . , Hn |∼ En,D1 |∼/ C1, . . . , Dm |∼/ Cm) is
p-consistent if and only if there exists a coherent precise probability assessment
P = (p1, . . . ,pn, q1, . . . , qm) on FK = (E1|H1, . . . , En|Hn, C1|D1, . . . , Cm|Dm)
such that pi = 1, i = 1, . . . , n, and qi < 1, i = 1, . . . , m.

Example 1. Let H �= ⊥ and Π be the set of all the coherent assessments
x = p(E|H). We distinguish three cases. (i) H ∧ E = ⊥: Π = {0}, (H |∼ E) is
not p-consistent because the assessment p(E|H) = 1 is not coherent; (H |∼/ E) is
p-consistent because the assessment p(E|H) = 0 is coherent, hence there exists a
coherent assessment p(E|H) such that p(E|H) < 1; (ii) H ∧ ¬E = ⊥: Π = {1},
therefore by the same reasoning, (H |∼ E) is p-consistent, while (H |∼/ E) is
not p-consistent; (iii) H ∧ E �= ⊥ and H ∧ ¬E �= ⊥: Π = [0, 1], (H |∼ E) and
(H |∼/ E) are separately p-consistent.

We define the notion of p-entailment of a (negated) default from a p-consistent
knowledge base in terms of coherent extension of a g-coherent assessment.

Definition 10. Let K be p-consistent. K p-entails A |∼ B (resp., A |∼/ B),
denoted by K |=p A |∼ B (resp., K |=p A |∼/ B), iff the (non-empty) set of
coherent extensions to B|A of IK on FK is {1} (resp., a subset of [0, 1[ ).

Theorem 2. Let K be p-consistent. K |=p A |∼ B (resp., K |=p A |∼/ B), iff there
exists a (non-empty) sub-sequence S of K: S |=p A |∼ B (resp., S |=p A |∼/ B).
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Proof. (⇒) Trivially, by setting S = K.
(⇐) Assume that S |=p A |∼ B (resp., A |∼/ B). Then, for every precise coherent
assessment P ∈ IS on FS , if the extension (P, z) on (FS , B|A) is coherent,
then z = 1 (resp., z �= 1). Let P ′ ∈ IK be a coherent precise assessment on FK.
For reductio ad absurdum we assume that the extension (P ′, z) on (FK, B|A) is
coherent with z ∈ [0, 1[ (resp., z = 1). Then, the sub-assessment (P, z) of (P ′, z)
on (FS , B|A) is coherent with z ∈ [0, 1[ (resp., z = 1): this contradicts S |=p

A |∼ B (resp., S |=p A |∼/ B). Therefore, K |=p A |∼ B (resp., K |=p A |∼/ B). ��
A similar approach has been developed in [13, Definition 26]. We observe that if
the knowledge base K consists of defaults only, then Definitions 9 and 10 coincide
with the notion of p-consistency and p-entailment, respectively, investigated from
a coherence perspective in [22] (see also [5,23]). Moreover, p-entailment of the
inference rules of the well known nonmonotonic System P has been studied in
this context (e.g., [13,18], see also [3,14]).

Remark 2. By Table 1 the probabilistic interpretation of K = (H1 |∼ E1, . . .,
Hn |∼ En, D1 |∼/ C1, . . . , Dm |∼/ Cm) can equivalently be represented by the
assessment IK = ×n

i=1
{1} ××m

j=1
]0, 1] on FK = (E1|H1, . . . , En|Hn,

¬C1|D1, . . . ,¬Cm|Dm). Definitions 9 and 10 can be rewritten accordingly.

Example 2. Given three logically independent events A,B,C, with A �= ⊥ and
B �= ⊥, in [18] (see also [23]) it has been proved that any assessment (x, y) ∈
[0, 1]2 on (C|A,C|B) is coherent. Furthermore, the extension z = P (C|(A ∨ B))
of (x, y) on (C|A,C|B) is coherent if and only if z ∈ [z′, z′′], where

z′ =
{ xy

x+y−xy > 0, if x > 0 ∧ y > 0,

0, if x = 0 ∨ y = 0,
z′′ =

{ x+y−2xy
1−xy < 1, if x < 1 ∧ y < 1,

1, if x = 1 ∨ y = 1 .

Then, in our framework we have (see also [13]): (A |∼ C, B |∼ C) |=p A ∨ B |∼ C
(Or); (A |∼/ C,B |∼/ C) |=p A ∨ B |∼/ C (Disjunctive Rationality).

Example 3. Given three logically independent events A,B,C, with A �= ⊥, any
assessment (x, y) ∈ [0, 1]2 on (C|A,B|A) is of course coherent. Furthermore,
the extension z = P (C|AB) of (x, y) on (C|A,B|A) is coherent if and only if
z ∈ [z′, z′′], where ([18])

z′ =
{ x+y−1

y > 0, if x + y > 1,

0, if x + y ≤ 1,
z′′ =

{ x
y < 1, if x < y,

1, if x ≥ y .

Then, we have (see also [13,17]): (A |∼ C, A |∼ B) |=p AB |∼ C (Cautious
Monotonicity); (A |∼/ C,A |∼/ ¬B) |=p AB |∼/ C (Rational Monotonicity).

4 Weak Transitivity: Propagation of Probability Bounds

In this section, we presents two results on the propagation of a precise, or
interval-valued, probability assessment on (C|B,B|A,A|A ∨ B) to C|A.



Transitive Reasoning with Imprecise Probabilities 101

Remark 3. Let A,B,C be logically independent events. It can be proved that the
assessment (x, y, t) on F = (C|B,B|A,A|A ∨ B) is coherent for every (x, y, t) ∈
[0, 1]3, that is the imprecise assessment I = [0, 1]3 on F is totally coherent. Also
I = [0, 1]3 on F ′ = (C|B,B|A,C|A) is totally coherent.1

Theorem 3. Let A,B,C be three logically independent events and (x, y, t) ∈
[0, 1]3 be a (coherent) assessment on the family

(
C|B,B|A,A|(A ∨ B)

)
. Then,

the extension z = P (C|A) is coherent if and only if z ∈ [z′, z′′], where

[z′, z′′] =
{

[0, 1], t = 0;
[max{0, xy − (1 − t)(1 − x)/t},min{1, (1 − x)(1 − y) + x/t}], t > 0.

Due to the lack of space we omit the proof of Theorem 3. A detailed proof of the
theorem is available in [20] and is obtained by applying the Algorithm 2 given
in [4] in a symbolic way. Alternative proofs of Theorem 3 can be obtained by
applying other equivalent methods ([8,9,13,32]).

Theorem 4. Let A,B,C be three logically independent events and I =
([x1, x2] × [y1, y2] × [t1, t2]) ⊆ [0, 1]3 be an imprecise (totally-coherent) assess-
ment on

(
C|B,B|A,A|(A ∨ B)

)
. Then, the set Σ of the coherent extension of I

is the interval [z∗, z∗∗], where [z∗, z∗∗] =
{

[0, 1], t = 0;[
max

{
0, x1y1 − (1−t1)(1−x1)

t1

}
,min

{
1, (1 − x2)(1 − y1) + x2

t1

}]
, t > 0 .

Proof. We observe that Σ =
⋃

P∈I [z′
P , z′′

P ] = [z∗, z∗∗]. If t1 = 0, we obtain
[z∗, z∗∗] = [0, 1] by Theorem 3. If t1 > 0, the proof is straightforward by observing
that the lower bound z′ in Theorem 3 is non-decreasing in the arguments x, y, t;
moreover, the upper bound z′′ is non-decreasing in the argument x, while it is
non-increasing in the argument y and t. ��
Remark 4. By applying Theorem 4 with x1 = y1 = 1 − ε, t1 > 0, and x2 = y2 =
t2 = 1 we obtain z∗ = max

{
0, (1 − ε)2 − (1−ε)ε

t1

}
and z∗∗ = 1, with z∗ = 0 if

and only if ε = 1 or (ε < 1) ∧ (t1 ≤ ε/(1 − ε)).

5 Weak Transitivity Involving (Negated) Defaults

Let A,B,C be logically independent. By Remark 3, the p-consistent knowledge
base (B |∼ C, A |∼ B) neither p-entails A |∼ C nor p-entails A |∼/ C. This will
be denoted by (B |∼ C, A |∼ B) �p A |∼ C and (B |∼ C, A |∼ B) �p A |∼/ C,
respectively.
1 For proving total coherence of I on F (resp., F ′) it is sufficient to check that the

assessment {0, 1}3 on F (resp., F ′) is totally coherent ([19, Theorem 7]), i.e., each
of the eight vertices of the unit cube is coherent. Coherence can be checked, for
example, by applying Algorithm 1 of [19] or by the CkC-package [2].
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Theorem 5. (B |∼ C, A |∼ B,A ∨ B |∼/ ¬A) |=p A |∼ C.

Proof. By Remark 3, the knowledge base K = (B |∼ C, A |∼ B,A ∨ B |∼/ ¬A)
is p-consistent. Based on Remark 2, we set IK = {1} × {1} × ]0, 1] and
FK =

(
C|B,B|A,A|(A ∨ B)

)
. Let P be any precise coherent assessment on

FK such that P ∈ IK, i.e., P = (1, 1, t), with t ∈]0, 1]. From Theorem 3, the
interval of coherent extensions from P on FK to C|A is [z′

P , z′′
P ] = [1, 1]. Then, by

Eq. (1), the set of coherent extensions to C|A from IK on FK is
⋃

P∈IK [z′
P , z′′

P ] =
[1, 1]. ��
Theorem 6. (B |∼ C, A |∼/ ¬B,A ∨ B |∼/ ¬A) |=p A |∼/ ¬C.

Proof. By Remark 3, the knowledge base K = (B |∼ C, A |∼/ ¬B,A ∨ B |∼/ ¬A)
is p-consistent. Based on Remark 2, we set IK = {1} × ]0, 1] × ]0, 1] and FK =(
C|B,B|A,A|(A ∨ B)

)
. Let P be any precise coherent assessment on FK such

that P ∈ IK, i.e., P = (1, y, t), with y ∈]0, 1] and t ∈]0, 1]. From Theorem 3, the
interval of coherent extensions from P on FK to C|A is [z′

P , z′′
P ] = [y, 1]. Then, by

Eq. (1), the set of coherent extensions to C|A from IK on FK is
⋃

P∈IK [z′
P , z′′

P ] =⋃
(y,t)∈]0,1]×]0,1][y, 1] =]0, 1]. Therefore, the set of coherent extensions on ¬C|A

is [0, 1[. ��
Theorem 7. (B |∼ C, A |∼ B,B |∼/ ¬A) |=p A |∼ C.

Proof. It can be shown that the assessment [0, 1]3 on (C|B,B|A,A|B) is totally
coherent. Then, K = (B |∼ C, A |∼ B,B |∼/ ¬A) is p-consistent. We set IK =
{1}×{1}×]0, 1] and FK =

(
C|B,B|A,A|B)

. We observe that A|B ⊆ A|(A ∨ B),
where the binary relation ⊆ denotes the well-known Goodman and Nguyen inclu-
sion relation between conditional events (e.g., [22]). Coherence requires that
p(A|B) ≤ p(A|(A ∨ B)). Let P be any precise coherent assessment on FK
such that P ∈ IK, i.e., P = (1, 1, w), with w ∈ ]0, 1]. Thus, for any coher-
ent extension P ′ = (1, 1, w, t) of P on (FK, A|(A ∨ B)), it holds that 0 < w ≤ t.
Then, K′ = (B |∼ C, A |∼ B,B |∼/ ¬A,A ∨ B |∼/ ¬A) is p-consistent. Thus, by
Theorem 5, K′ |=p A |∼ C. Then, for every coherent extension P ′′ = (1, 1, w, t, z)
of P ′ on (FK′ , C|A) it holds that z = 1. By reductio ad absurdum, if for some
z < 1 the extension (1, 1, w, z) on (FK, C|A) of P ∈ IK on FK were coherent,
then—with 0 < w ≤ t and z < 1—the assessment (1, 1, w, t, z) on (FK′ , C|A)
would be coherent, which contradicts the conclusion z = 1 above. Thus, for every
coherent extension (1, 1, w, z) of P ∈ IK on (FK, C|A) it holds that z = 1. ��
Theorem 8. (B |∼ C, A |∼/ ¬B,B |∼/ ¬A) |=p A |∼/ ¬C.

Proof. The proof exploits Theorem 6 and is similar to the proof of Theorem 7.

Remark 5. Of course by Definition 8, Theorem 5 to Theorem 8 can be rewrit-
ten in terms of probability constraints. Theorem 5, for example, would then
read as follows: p(C|B) = 1, p(B|A) = 1, and p(A|A ∨ B) > 0 implies
p(C|A) = 1. We note that the corresponding results would also hold within stan-
dard approaches to probability where conditional probability p(E|H) is defined
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by the ratio p(E ∧ H)/p(H) (requiring positive probability of the conditioning
event, p(H) > 0). However, in our coherence-based approach, our results even
hold when conditioning events have zero probability. Furthermore, we observe
that, by Theorem 3, p(C|B) = 1, p(B|A) = 1, and p(A|A ∨ B) = 0 implies
0 ≤ p(C|A) ≤ 1. This observation cannot be made in standard approaches to
probability, as p(A|A ∨ B) = 0 implies that the probability of the conditioning
event A equals to zero, i.e., P (A) = 0.

6 Concluding Remarks

Our definition of negated defaults, based on imprecise probabilities (Sect. 3),
can be seen as an instance of the wide-scope reading of the negation of a con-
ditional. It offers an interesting alternative to the narrow-scope reading, where
a conditional is negated by negating its consequent [27]. Moreover, we note
that Theorem 5 can also be seen as a modern probabilistic formalization of
classical (Aristotelian) syllogisms, specifically those of syllogistic Fig. 1. Figure 1
syllogisms are valid transitive argument forms which are composed of univer-
sally/existentially quantified statements and their respective negated versions
(see, e.g., [26]). Examples of valid syllogisms are Modus Barbara (All M are
P , All S are M , therefore All S are P ) and Modus Darii (All M are P , At
least one S is M , therefore At least one S is P ). As suggested in [11], All S
are P (resp., At least one S is P ) can be interpreted probabilistically by the
assessment I = {1} on P |S (resp., I = [0, 1[). The probabilistic constraint
p(S|(S ∨ M)) > 0 can serve as an existential import assumption for Fig. 1 syllo-
gisms, as the assessment (p(P |M), p(M |S)) on the (major and minor) premises
alone do not constrain the probability of the conclusion (p(P |S); see Remark 3).
We observe that the probabilistic versions of these syllogisms can equivalently be
expressed in terms of (negated) defaults with S ∨ M |∼/ ¬S, i.e. the probabilistic
constraint p(S|(S ∨ M)) > 0, as our existential import assumption: Theorem 5
is our default version of Modus Barbara and Theorem 6 is our default version of
Modus Darii. Both syllogisms can also be expressed with the stronger notion of
existential import M |∼/ ¬S (its probabilistic counterpart p(S|M) > 0 has been
proposed in [16]): they are presented in Theorems 7 and 8. In all versions of
the syllogisms we do not presuppose any positive antecedent probabilities in our
framework. Assuming the positive antecedent probabilities p(S) > 0 would be
yet another (stronger!) existential import assumption. Our preferred existential
import assumption, i.e. the probabilistic constraint p(S|(S ∨ M)) > 0, is weaker
as it neither implies p(S) > 0 nor p(S|M) > 0. We are currently working on a
coherence-based probability semantics for classical categorical syllogisms, where
we exploit the ideas presented above.

Acknowledgments. We thank two anonymous referees for their very useful com-
ments and suggestions.
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Abstract. This paper initiates an investigation of conditional measures
as simple measures on conditional events. As a first step towards this
end we investigate the construction of conditional algebras which allow
us to distinguish between the logical properties of conditional events and
those of the conditional measures which we can be attached to them.
This distinction, we argue, helps us clarifying both concepts.

Keywords: Conditionals events · Uncertain reasoning · Conditional
algebra

1 Introduction and Motivation

This paper offers a logico-algebraic perspective on conditionals which is moti-
vated by a number of pressing problems in field of logic-based uncertain rea-
soning. Indeed, conditionals play a fundamental role both in qualitative and
in quantitative uncertain reasoning. The former is a consequence of the very
fruitful interaction between philosophical logic and artificial intelligence, which
linked the semantic approaches to conditionals of the 1970s, mainly Stalnaker’s
and D. Lewis’s to the proof-theoretic and model-theoretic development of non
monotonic consequence relations in the 1990s (see [14]). But it is in quantitative
uncertain reasoning that conditionals play their most delicate role leading to
the key concept of conditional probability. Despite the apparent simplicity of
the “ratio definition”, on which more below, the notion of conditional probabil-
ity is far from being uncontroversial. Makinson, for instance, points out in [15]
how some rather undesirable behaviour can arise when conditioning on what he
refers to the “critical zone”. Things get inevitably more complicated if we move
to non-classical probability logic, i.e. probability defined on non-classical logics,
a rapidly expanding research field. Yet the problem with conditional probability
arises in much simpler contexts that those just mentioned.
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Logician Ernest Adams is well-known for putting forward

Adam’s Thesis: Conditional probability is the probability that the
conditional is true.

The thesis is quite plausible if one reasons as follows. Let θ be a sentence in
some propositional language, and let its probability be denoted by μ(θ). Then it
is very natural to interpret μ(θ) as the probability that θ is true. This is certainly
compatible with the Bayesian operational definition of subjective probability as
the price a rational agent would be willing to bet on event θ [7]. Now, if θ is of
the form p → q, then μ(θ) appears to be naturally intepreted as the probability
that q is true given that p is also true, i.e. μ(p | q). But this gives rise to the

Lewis’s Triviality: Adams’ thesis implies that μ(θ | φ) = μ(θ).

So, either → is not truth-functional or Adams’ thesis is wrong, and the two
alternatives are exclusive.1

This paper initiates a research project which aims at tackling the founda-
tional difficulties related to conditional probability by radically changing the
perspective. In a nutshell our overall goal is to investigate conditional algebras
in such a way as to see conditional measures as simple measures (possibly with
further properties) on conditional events, i.e. the elements inhabiting conditional
algebras. Hence we adopt a two-fold perspective on conditionals. First, we char-
acterize conditional events as elements of an algebra which we term conditional
algebra. Within such structures conditionals are simple objects, a terminology
whose meaning will be apparent in a short while. Second, since we are interested
in modelling various epistemic attitudes that agents may exhibit in connection
to conditional events – and in particular rational belief under uncertainty – we
are ultimately interested investigating appropriate measures to be attached to
conditionals. This paper prepares the stage by focusing on the first objective.

Whilst we are unaware of other proposals which separate the logico-algebraic
properties of conditionals from those of conditional measures, the notion of con-
ditional algebra has been investigated in the context of the so-called Goodman-
Nguyen-van Fraassen algebras. Since we will be in an ideal position to compare
this approach with ours after having introduced some formal details, suffice it to
mention now that the notion of Conditional Event Algebra (CEA) introduced
in [10] differs quite substantially from our notion of conditional algebra.

Let θ, φ be sentences in a classical logic propositional language. We denote
the conditional assertion “φ given θ” by φ | θ. It will sometimes be convenient to
refer to φ as the consequent of the conditional and to θ as its antecedent. When
presented with a conditional of this form, there are three distinct questions that
we may ask:
1 Among many other references, the reader may get an idea of the arguments in

support of Adam’s thesis which sees the probability of a conditional as conditional
probability from [2,10,11,19], and from the arguments which reject it as ill-founded
from [13,16].
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(1) what are the syntactic properties of φ | θ ?
(2) what are the semantic properties of φ | θ?
(3) what properties should be satisfied by a (rational) measure of belief on φ | θ?

This paper focusses on (1) and provides an algebraic interpretation for (2), leav-
ing the investigation of question (3) as future research. The answers put forward
in this paper can be informally illustrated as follows:

1. Though it makes perfectly good sense to distinguish, in the conditional φ | θ,
the antecedent from the consequent, we will assume that conditional events are
simple objects which live in a conditional structure. The fundamental conse-
quence of this approach is that the “global” properties, so to speak, of condi-
tionals are defined for the underlying algebraic structure and not at the object
level of the conditional formula.

2. The semantic properties of conditionals are also given at the level of the con-
ditional algebra. For instance, by suitably constraining the ideals of a particular
freely generated Boolean algebra we will be in a position to characterize the
semantic properties we want conditional events to satisfy. As will become appar-
ent, all the results of this paper fail for counterfactuals. The reason for this lies in
the adoption of a principle which we refer to as the rejection constraint accord-
ing to which a conditional φ | θ is (semanticaly) meaningless if the antecedent
fails to be true (under a suitably defined valuation). This property, as we shall
shortly see, is motivated by reflections on conditional events.

2 The Logic of Conditionals

The most general feature on conditionals is that they express some form of
hypothetical assertion: the assertion of the consequent based on the supposition
that the antecedent is satisfied (with respect, of course, to a suitably defined
semantics). As Quine put it some four decades ago:

[An] affirmation of the form ‘if p then q’ is commonly felt less as an
affirmation of a conditional than as a conditional affirmation of the con-
sequent. If, after we have made such an affirmation, the antecedent turns
out true, then we consider ourselves committed to the consequent, and
are ready to acknowledge error if it proves false. If, on the other hand,
the antecedent turns out to have been false, our conditional affirmation
is as if it had never been made ([20] Added emphasis)

The idea here is that the semantic evaluation of a conditional (in this inter-
pretation) amounts to a two-step procedure. We first check the antecedent. If
this is rejected, the conditional ceases to mean anything at all. Otherwise we
move on to evaluating the consequent. Note that is in full consonance with de
Finetti’s semantics for conditional events, an interpretation which lies at the
foundation of his betting interpretation of subjective probability [7] and which
can be extended to more general measures of belief [8]. In particular, with respect
to a fixed possible world v,
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a bet on θ | φ is

⎧
⎪⎨

⎪⎩

won if v(φ) = v(θ) = 1;
lost if v(φ) = 1 and v(θ) = 0;
called off if v(φ) = 0.

The final clause is of course the most interesing one, for it states that under the
valuation which assigns 0 to the conditioning event, a conditional bet must be
called off (all paid monies are returned). This property is what we will hence-
forth name Rejection Constraint stating that in the process of realization of a
conditional bet into a fixed world v, we must agree to invalidate bets made on
conditionals whose antecedents are evaluated to 0.2 An immediate consequence
of this is that any expression of the form θ | ⊥ cannot be considered a condi-
tional event. Indeed, in this interpretation, it does not make sense to bet on a
conditional whose antecedent is false independently on the possible world v in
which the conditional is realized, because it would be always rejected.

The latter observation, leads us to impose a second constraint to our analy-
sis, namely we will require the algebra of conditional events to be Boolean. This
property of conditionals is what we will call Boolean Constraint and it is essen-
tially motivated to provide conditional events with an algebraic structure which
is a suitable domain of uncertainty measures. Indeed, as recalled in Sect. 1, in our
future work we will investigate simple (i.e. unconditional) uncertainty measures
on conditional algebras. Moreover, Sect. 4 presents an algebraic construction that
defines conditional Boolean algebras in a modular way.

3 Algebraic Preliminaries

For every Boolean algebra A we denote by δ : A×A → A the well known symmet-
ric difference operator. In other words δ stands for the following abbreviation:
for every x, y ∈ A,

δ(x, y) = (x ∨ y) ∧ ¬(x ∧ y) = ¬(x ↔ y). (1)

In any Boolean algebra A, the following equations hold:

(i) δ(x, y) = δ(y, x) (iv) δ(x,⊥) = x
(ii) δ(x, δ(y, z)) = δ(δ(x, y), z) (v) δ(x, x) = ⊥
(iii) δ(δ(x, y), δ(y, z)) = δ(x, z)

Therefore, in particular δ is (i) commutative; (ii) associative; and (iv) has ⊥ as
neutral element.

The following proposition collects further properties of δ. Owing to space
limitations we are forced omit proofs.

Proposition 1. The following hold in any Boolean algebra A:

(a) δ(x, y) = ⊥ iff x = y (c) δ(x, y) = δ(¬x,¬y)
(b) δ(x, z) ≤ δ(x, y) ∨ δ(y, z) (d) δ(x ∨ y, z ∨ k) = δ(x, z) ∨ δ(y, k).

2 Note that the Rejection Constraint forces us to exclude counterfactual conditionals
from our analysis.
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A non-empty subset i of a Boolean algebra A is said to be an ideal of A if: (1)
⊥ ∈ i; (2) for any x, y ∈ i, x ∨ y ∈ i; (3) if x ∈ i, and y ≤ x, then y ∈ i. If
X ⊆ A, denote by I(X), the ideal generated by X, i.e. the least ideal (w.r.t.
inclusion) containing X. For every x ∈ A, we denote by ↓x the principal ideal of
A generated by x, i.e. ↓x = {y ∈ A : y ≤ x} = I({x}).

Proposition 2. Let A be a Boolean algebra, and let i be an ideal of A. Then
for every x, y ∈ A, the equation x = y is valid in the quotient algebra A/i iff
δ(x, y) ∈ i.

Remark 1. The above Proposition 2 immediately implies that, whenever i is a
proper ideal, and ¬δ(x, y) ∈ i, then the quotient algebra A/imakes valid ¬(x = y).
In fact if ¬δ(x, y) ∈ i, then δ(x, y) �∈ i (otherwise δ(x, y) ∨ ¬δ(x, y) = � ∈ i, and
hence i would not be proper) iff in A/i, ¬(x = y) holds true i.e. x �= y.

3.1 On the Conjunction of Conditionals

Let A be a Boolean algebra, and denote by A | A the set {a | b : a, b ∈ A}. The
problem of defining operations between the objects in A | A has been discussed
extensively in the context of measure-free conditionals [6].

Whilst widespread consensus exists about defining the negation of a condi-
tional as ¬(a | b) = ¬a | b, there are at least three major proposals competing
for the definition of conjunction:

(Schay, Calabrese) (a | b) &1 (c | d) = [(b → a) ∧ (d → c) | (b ∨ d)] (cf.
[5,21] and see also [1] where this conjunction between conditionals is called
quasi-conjunction).

(Goodman and Nguyen) (a | b) &2 (c | d) = (a∧c) | [(¬a∧b)∨(¬c∧d)∨(b∨d)]
(cf. [11])

(Schay) (a | b) &3 (c | d) = (a ∧ c) | (b ∧ d) (cf. [21])

Disjunctions ⊕1,⊕2 and ⊕3 among conditionals, are defined by De Morgan’s
laws from &1, &2 and &3 above. Schay [21], and Calabrese [5] show that &1,
and ⊕1 are not distributive with respect to each other, and hence the class A | A
of conditionals, endowed with &1 and ⊕1 is no longer a Boolean algebra. There-
fore &1 does not satisfy the Boolean constraint mentioned in the introductory
Section. For this reason we reject &1 as a suitable definition of conjunction.

Similarly, the Boolean constraint leads us to reject also &3, and ⊕3 as can-
didates for defining conjunction and disjunction betwen conditionals. Indeed, if
we defined the usual order relations by

1. (a1 | b1) ≤1 (a2 | b2) iff (a1 | b1) &3 (a2 | b2) = (a1 ∧ a2 | b1 ∧ b2) = (a1 | b1),
2. (a1 | b1) ≤2 (a2 | b2) iff (a1 | b1) ⊕3 (a2 | b2) = (a1 ∨ a2 | b1 ∧ b2) = (a2 | b2),

then ≤1 �=≤2. To see this, let a be a fixed element in A. Then (a | �)&3(a | a) =
(a | a) and hence (a | a) ≤1 (a | �). On the other hand (a | �)⊕3 (a | a) = (a | a)
as well, and therefore (a | �) ≤2 (a | a) for every a ∈ A, and in particular for a
such that a | a �= a | �. Conversely, it is easy to see that, if we restrict to the class
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of those conditionals ai | b with a fixed antecedent b, then ≤1=≤2. Therefore
&3 is suitable as a definition of conjunction only for those conditionals a1 | b1
and a2 | b2, such that b1 = b2. Interestingly enough, when restricted to this class
of conditionals, &2 and &3 do coincide.

It is worth noticing that the above conjunctions are defined in order to make
the class A | A of conditional objects closed under &i, and hence an algebra.
Therefore for every a1, b1, a2, b2 ∈ A, and for every i = 1, 2, 3, there exists
c, d ∈ A such that, (a1 | b1) &i (a2 | b2) = (c | d). This leads us to introduce a
further constraint:

Context Constraint (CC): Let a1 | b1, a2 | b2 be conditionals in A | A. If
b1 = b2, then the conjunction (a1 | b1) AND (a2 | b2) is a conditional in the
form c | d, and in that case d = b1 = b2.

The Context constraint is better understood by pointing out that, whenever the
object (a1 | b1) AND (a2 | b2) cannot be reduced to a conditional c | d, then
necessarily b1 �= b2.

Note that each of the &i’s above satisfy the stronger requirement, denoted
by (CC)’, that for every a1 | b1, and a2 | b2, (a1 | b1) AND (a2 | b2) is a
conditional in the form c | d (but in general d �= b1, and d �= b2). This stronger
condition ensures in fact that A | A is closed under &i, and hence makes &i

a total operator on A | A. On the other hand, as we are going to show in the
next section, our construction of conditional algebra, defines a structure whose
domain strictly contains all the elements a | b for a in A, and b belonging to a
particular subset of A guaranteeing the satisfaction of our Rejection constraint.
This allows us to relax this condition of closure as stated above. Indeed, for every
pair of conditionals of the form a1 | b1 and a2 | b2 belonging to the conditional
algebra, their conjunction will always be an element of the algebra (i.e. the
conjunction is a total, and not a partial, operation), but in general it will be
not in the form c | d. Therefore we will provide a definition for conjunction
between conditionals that satisfies (CC), but not, in general, (CC)’. Moreover
our definition of conjunction behaves as &2, and &3 whenever restricted to those
conditionals (a1 | b1), (a2 | b2) with b1 = b2.

4 Conditional Boolean Algebras

We now show how a conditional Boolean algebra can be built up from any
Boolean algebra A and a non-empty {⊥}-free subset of A, which we will call a
bunch of A, and denote by A′.

Let A be any Boolean algebra and let A × A′ be the cartesian product of A
and A′ (as sets). We denote by

F(A × A′) = (F(A × A′),∧F ,∨F ,¬F ,⊥F ,�F )

the Boolean algebra freely generated by the pairs (a, b) ∈ A×A′ (cf. [4][II §10]).
Consider the following elements in F(A × A′): for every x, z ∈ A, y, k ∈ A′,
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x1 ∈ A and z1 ∈ A′ with x1 �≥ z1, and x2 ∈ A and y2, z2 ∈ A′ such that
x2 → y2 = y2 → z2 = �

(t1) δ((y, y),�F ) (t4) δ((x ∧ y, y), (x, y))
(t2) δ((x, y) ∧F (z, y), (x ∧ z, y)) (t5) ¬δ((x1, z1), (z1, z1))
(t3) δ(¬F (x, y), (¬x, y)) (t6) δ((x2, z2), (x2, y2) ∧F (y2, z2)).

Consider the proper ideal C of F(A × A′) that is generated by the set of all the
instances of the above introduced terms (t1)-(t6).

Definition 1. For every Boolean algebra A and every bunch A′ of A, we say
that the quotient algebra C(A,A′) = F(A × A′)/C is the conditional algebra of
A and A′.

Thus, every conditional algebra C(A,A′) is a quotient of a free Boolean algebra,
whence is Boolean. So our Boolean constraint is satisfied.

We will denote atomic elements of A × A′ by a | b instead of (a, b). In a
conditional algebra C(A,A′) we therefore have atomic conditionals in the form
a | b for a ∈ A, and b ∈ A′, and also compound conditionals being those elements
in C(A,A′) that are the algebraic terms definable in the language of Boolean
algebras, modulo the identification induced by C. The operations on C(A,A′) are
denoted using the following notation, which is to be interpreted in the obvious
way:

C(A,A′) = (C(A,A′),∩C,∪C,¬C,⊥C,�C).

The construction of C(A,A′), and in particular the role of the ideal C, is best
illustrated by means of an example.

Example 1. Let A be the four elements Boolean algebra {�, a,¬a,⊥}, and con-
sider the bunch A′ = A \ {⊥}. Then A × A′ = {(�,�), (�, a), (�,¬a), (a,�),
(a, a), (a,¬a), (¬a,�), (¬a, a), (¬a,¬a), (⊥,�), (⊥, a), (⊥,¬a)}. The cartesian
product A×A′ has cardinality 12, whence F(A×A′) is the free Boolean algebra
of cardinality 22

12
, i.e. the finite Boolean algebra of 212 atoms. The conditional

algebra C(A,A′) is then obtained as the quotient of F(A × A′) by the ideal C
generated by (t1)-(t6). Having in mind Proposition 2, we can easily see that the
ideal C of F(A × A′) specifically forces the free algebra F(A × A′) about which
elements are equal as conditionals. For instance, following Proposition 3 (see
below), in C(A,A′) the following equations hold: � | � = a | a = (¬a) | (¬a);
(� | �) ∩C (a | �) = (� ∧ a) | � = (a | �); ¬C(� | �) = ⊥ | �, ¬C(a | ¬a) =
(¬a) | (¬a) = � | �.

Notice that the conditional algebra C(A,A′) can be defined as a quotient
of the free Boolean algebra F(X) by C, where X is the subset of A × A′

whose pairs are not redundant under C, i.e. X = {(xi, yi) ∈ A × A′ : ∀i �=
j, δ((xi, yi), (xj , yj)) �∈ C} = {(�,�), (a,�), (¬a,�), (⊥,�)}. Therefore F(X) is
the free Boolean algebra with 24 atoms.
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Proposition 3. Every conditional algebra C(A,A′) satisfies the following
equations:

(e1) For all y ∈ A′, y | y = �C

(e2) For all x, z ∈ A and y ∈ A′, (x | y) ∩C (z | y) = (x ∧ z) | y
(e3) For all x ∈ A and y ∈ A′, ¬C(x | y) = (¬x | y)
(e4) For all x ∈ A, for all y ∈ A′, (x ∧ y | y) = (x | y)
(e5) For all x, y ∈ A, if (x | �) = (y | �), then x = y
(e6) For all y ∈ A′, ¬y | y = ⊥C

(e7) For all x, z ∈ A, and y ∈ A′, (x | y) ∪C (z | y) = (x ∨ z | y)
(e8) For all x ∈ A and y, z ∈ A′ such that x → y = y → z = �, (x | z) =

(x | y) ∩C (y | z)

Remark 2. (1) As we have already stated, for all a1 | b1, a2 | b2 ∈ A × A′, their
conjunction is the element (a1 | b1) ∩C (a2 | b2) that belongs to the conditional
algebra by definition. Notice that (a1 | b1) ∩C (a2 | b2) = (c | d) iff, from
Proposition 2, δ((a1 | b1) ∩C (a2 | b2), (c | d)) ∈ C. Therefore (t2) ensures that, if
b1 = b2 = d, then (a1 | d)∩C (a2 | d) = (c | d) (see Proposition 3 (e2)). Therefore
our Context constraint (CC) is satisfied. Also notice that (CC)’ is not satisfied
in general by the conjunction we have defined in C(A,A′). In fact, when b1 �= b2,
we cannot ensure in general (a1 | b1) ∩C (a2 | b2) to be atomic, and hence in the
form (c | d). In any case C(A,A′) is closed under ∩C.

(2) The Rejection constraint introduced in Sect. 2, forces our construction
to drop ⊥ from the algebra intended to contain the antecedents of conditionals.
For this reason we defined the bunch as a bottom-free subset of A. Notice that if
we allowed the conditional algebra to represent counterfactual conditionals (i.e.
had we not imposed the Rejection constraint), the resulting algebraic structure
would have not be Boolean as shown in [19,22]. In this sense, the Rejection
constraint can be seen as being closely connected to the Boolean one.

In a conditional algebra C(A,A′), as in any Boolean algebra, one can define the
order relation ≤ by the letting

(x | y) ≤ (z | k) iff (x | y) ∩C (z | k) = (x | y). (2)

Proposition 4. In every conditional algebra C(A,A′) the following hold:

(o1) For every x, y ∈ A, and for every z ∈ A′, (x | y) ≤ (z | z); moreover
(x | z) ≥ (z | z), implies x ≥ z

(o2) For every x, y ∈ A and z ∈ A′, if x ≤ y, then (x | z) ≤ (y | z) (where clearly
x ≤ y means with respect to A). In particular x ≤ y iff (x | �) ≤ (y | �)

(o3) For every x ∈ A and y ∈ A′, if x �≥ y, then (x | y) �= (y | y), and in
particular (x | y) < (y | y)

(o4) For every x, y ∈ A and z ∈ A′, if (x | z) �= (y | z), then x �= y. In particular
x �= y iff (x | �) �= (y | �)

(o5) For every x ∈ A′, (� | x) = (x | x) = �C, and (⊥ | x) = (¬x | x) = ⊥C

(o6) For every x, y ∈ A and z, k ∈ A′, (x | k) ∩C (y | z) = (x | k) iff (x | k) ∪C

(y | z) = (y | z)
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Remark 3. As we have already observed, every conditional algebra C(A,A′) is
finite whenever A is finite. So, if A is finite, C(A,A′) is atomic. Moreover, since
the canonical homomorphism hC : F(A × A′) → C(A,A′) is onto, we have:

22
|A×A′|

= |F(A × A′)| ≥ |C(A,A′)|.

Finally, recall that a conditional probability on a Boolean algebra A is a map
μ : A × A′ → [0,1], where A′ is a bunch of A, such that:

(μ1) For all x ∈ A′, μ(x | x) = 1,
(μ2) If x1, x2 ∈ A, x1 ∧ x2 = 0 and y ∈ A′, μ(x1 ∨ x2 | y) = μ(x1 | y) + μ(x2 | y),
(μ3) If x ∈ A and y ∈ A′, μ(x | y) = μ(x ∧ y | y),
(μ4) If x ∈ A and y, z ∈ A′ such that x → y = y → z = �, then μ(x | z) =

μ(x | y) · μ(y | z).

Theorem 1. Let A be a Boolean algebra, A′ a bunch of A and let μ : C(A,A′) →
[0,1] be a simple (i.e. unconditional) probability further satisfying: for all x ∈ A
and y, z ∈ A′ such that x → y = y → z = �

μ((x | y) ∩C (y | z)) = μ(x | y) · μ(y | z). (3)

Then, μ satisfies all the axioms of a conditional probability on A.

Proof. The properties (μ1) and (μ3) respectively follow from Proposition 3
(e1), (e4) together, with the normalization property for probability measures:
μ(�) = 1. In order to show (μ2), notice that whenever x1 ∧ x2 = ⊥, then
from Proposition 3 (e2), for every y ∈ A′, (x1 | y) ∩C (x2 | y) = (x1 ∧ x2 |
y) = (⊥ | y) = ⊥C. Therefore, since μ is additive, μ((x1 | y) ∪C (x2 | y)) =
μ(x1 | y) + μ(x2 | y). Therefore (μ2) also holds because by Proposition 3 (e7),
(x1 | y) ∪C (x2 | y) = (x1 ∨ x2) | y. Finally, by Proposition 3 (e8) together
with (3), if x ∈ A and y, z ∈ A′ are such that x → y = y → z = �,
μ(x | z) = μ((x | y) ∧C (y | z)) = μ(x | y) · μ(y | z).

5 Conclusions and Further Work

The results reported in this paper constitute a first step towards providing
a rather flexible framework for conditionals which builds on the distinction
between the properties of a conditional event and those of a conditional measure.
Our next step will involve relaxing the Boolean constraint, a relaxation which
implies a substantial generalization of the Rejection constraint as well and that
may have a significant impact on our understanding of conditional many-valued
probability, a topic to which considerable research effort has been devoted in the
past decade, see e.g. [9,12,17,18]). Another interesting prospective (pointed out
by one of the referees) is to look at the conditional as a partial operation on a
Boolean algebra and apply techniques of theory of partial algebras [3].
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Abstract. Defeasible conditionals of the form ‘if A then normally B’
are usually interpreted with the aid of a ‘normality ’ ordering between
possible states of affairs: A ⇒ B is true if it happens that in the most
‘normal ’ (least exceptional) A-worlds, B is also true. Another plausi-
ble interpretation of ‘normality ’ introduced in nonmonotonic reasoning
dictates that A ⇒ B is true iff B is true in ‘most ’ A-worlds. A formal
account of ‘most ’ in this majority-based approach to default reasoning
has been given through the usage of (weak) filters and (weak) ultra-
filters, capturing at least, a basic core of a size-oriented approach to
defeasible reasoning. In this paper, we investigate defeasible conditionals
constructed upon a notion of ‘overwhelming majority ’, defined as ‘truth
in a cofinite subset of ω’, the first infinite ordinal. One approach employs
the modal logic of the frame (ω, <), used in the temporal logic of discrete
linear time. We introduce and investigate conditionals, defined modally
over (ω, <); several modal definitions of the conditional connective are
examined, with an emphasis on the nonmonotonic ones. An alternative
interpretation of ‘majority ’ as sets cofinal (in ω) rather than cofinite
(subsets of ω) is examined. For all these modal approaches over (ω, <),
a decision procedure readily emerges, as the modal logic KD4LZ of
this frame is well-known and a translation of the conditional sentences
can be mechanically checked for validity. A second approach employs
the conditional version of Scott-Montague semantics, in the form of ω,
endowed with neighborhoods populated by its cofinite subsets. Again,
different conditionals are introduced and examined. Although it is not
feasible to obtain a completeness theorem, since it is not easy to capture
‘cofiniteness-in-ω’ syntactically, this research reveals the possible struc-
ture of ‘overwhelming majority ’ conditionals, whose relative strength is
compared to (the conditional logic ‘equivalent’ of) KLM logics and other
conditional logics in the literature.
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1 Introduction

Artificial Intelligence has been interested in conditional logics for default rea-
soning already from the ’80s (see the work of J. Delgrande [6,7]) counterfactual
reasoning (M. Ginsberg, [10]) and ‘normality conditionals’ in nonmonotonic rea-
soning [2,5]. The reader is referred to the handbook article of J. Delgrande [8]
for a broad overview of conditional logics for defeasible reasoning. The investi-
gations on the intimate relation of conditional logics to nonmonotonic reason-
ing have been further triggered by the seminal work of S. Kraus, D. Lehmann
and M. Magidor [14,16], whose framework (KLM) has become the ‘industry
standard’ for nonmonotonic consequence relations. There exist various possible-
worlds semantics for conditional logics (see [8,18,19]) and a connection to modal
logic (known from D. Lewis’ work [17]) which has been further explored by the
modal construction of ‘normality conditionals’ [5,15].

A logic of ‘normality conditionals’ for default reasoning, attempts to pin
down the principles governing the statements of the form ‘if A, then normally B
is the case’. ‘Normally ’ is susceptible to a variety of interpretations. One is based
on a ‘normality ’ ordering between possible worlds: A ⇒ B is true if it happens
that in the most ‘normal ’ (least exceptional) A-worlds, B is also true [5,15].
Another, more recent one [12] interprets ‘normally ’ as a ‘majority ’ quantifier:
A ⇒ B is true iff B is true in ‘most ’ A-worlds. Questions of ‘size’ in preferential
nonmonotonic reasoning have been firstly introduced by K. Schlechta [20].

A majority-based account of default conditionals, depends heavily on what
counts as a ‘majority’ of alternative situations, what is a ‘large’ set of possible
worlds. It is difficult to state a good definition that would work for both the finite
and the infinite case; the notions of (weak) filters and (weak) ultrafilters that
have been used capture the minimum requirements of such a notion [21]. In this
paper, we experiment with a notion of ‘overwhelming majority ’, combined with
the widely accepted intuition that A ⇒ B means that A ∧ B is more plausible
than A ∧ ¬B. We define conditionals of this form to (essentially) mean that
A ∧ B is true is ‘almost all ’ (‘all, but finitely many ’) points in the countable
modal frame (ω, <) (the first infinite ordinal, strictly ordered under <), whose
modal axiomatization (the normal modal logic KD4LZ) is known as the ‘future’
fragment of the temporal logic of discrete linear time [11,22]. This majority
conditional is modally defined and this readily provides a decision procedure, as
a modal translation of conditional formulas can be checked for validity in (ω, <)
using any of the proof procedures known for KD4LZ. We examine the properties
of this conditional, in particular with respect to the (conditional incarnation of
the) ‘conservative core’ of defeasible reasoning set by the KLM framework. The
paradigm of ‘overwhelming majority ’ in our work is consistently represented with
cofinite subsets of ω, with the sole exception of a conditional which is defined
over cofinal subsets of ω. Then, we discuss the possibility of defining conditional
over cofinite subsets of ω in the neighborhood semantics for conditional logics;
we prove that the conditionals defined can be very weak, even compared to the
conditionals introduced in [9]. Due to space limitations, proofs of the results are
omitted; for more details and full proofs, the reader is referred to [13].
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2 Background

We assume a language L of classical propositional logic, built upon the known con-
nectives {¬,∧,∨,→,≡}. The language L� of propositional modal logic extends
L with a modal necessity operator �A. The language L⇒ of propositional con-
ditional logic extends L with a binary conditional connective (A ⇒ B), inter-
preted for our purposes as ‘A normally implies B ’. We assume that the reader
is acquainted with the basics of Modal Logic and Conditional Logic (see [4,18]).
We are going to make use of the following fact (see [11,22]): it is well known
that the frame (ω, <) of the natural numbers with their natural strict ordering
is axiomatized by the logic Ω, where Ω is an abbreviation for the normal modal
logic K4DLZ [11, Ch. 8]. The logic Ω has been investigated in the context of
axiomatizing the ‘future’ fragment of discrete linear time. We will extensively
exploit below that �Ω A iff (ω, <) |= A. Due to space limitations, we are not
able to provide details on Conditional Logics and the KLM systems. Yet, all
the axioms and rules mentioned, appear in the table to be found at the end
of Sect. 3. The reader should keep in mind that we use the symbol → for the
classical (‘material ’) implication and ⇒ for the ‘majority-default ’ conditional(s)
defined.

3 ‘Overwhelming Majority ’ Conditionals

We wish to define (variants of) a default conditional of the form ‘A normally
implies B ’. The fundamental question is to provide a concrete interpretation
of the statement ‘normally ’. Earlier approaches resort to ‘normality ’ orderings
([5,7,15]: A ⇒ B is true iff B is true in the most normal A-worlds), and consid-
erations of ‘size’ ([12]: A ⇒ B is true iff B is true in ‘many ’ (‘most ’) A-worlds).
In this paper, we design ‘majority default ’ conditionals based on this intuition -
note that we consistently work with the infinite set ω of possible worlds:

– A ⇒ B is an ‘overwhelming majority ’ conditional, in the sense that we consider
as ‘large’ the cofinite subsets of ω (and ‘small ’ the finite ones). Obviously, this
is an (extreme, but) intuitively acceptable form of ‘overwhelming majority ’.

– A ⇒ B is true , either vacuously (if there are no ‘many ’ A-worlds) or essen-
tially: iff ‖A ∧ B‖ is much larger (it is a cofinite set) than ‖A ∧ ¬B‖.

Throughout this section, we will be working with the set ω of countably many
possible worlds, with the aim of providing different accounts of ‘A normally
implies B ’ (A ⇒ B) as ‘B is true in all, but finitely many, A-worlds’.

3.1 Conditionals Modally Defined over (ω, <)

Our first approach is to define a ‘majority ’ conditional over the frame (ω, <)
of natural numbers, strictly ordered under <. Conforming to the intuition(s)
expressed above, we will define (A ⇒ B) as shorthand for:

(A ⇒ B) ≡def ♦�¬A ∨ ♦�(A ∧ B)
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The import of such a modal definition over (ω, <) is that either there do not exist
‘many ’ A-worlds (A settles down to be false, at some ‘point ’) or there exist ‘many ’
‘points ’ in which A ∧ B is true (A ∧ B is true in a cofinite subset of ω). To state
properly the conditional logic induced by this definition , we proceed to define the
following translation of conditionals to the (mono)modal language L�:

Definition 1. We recursively define the following translation ()∗ : L⇒ → L�

(i) (p)∗ = p , if p ∈ Φ (p is a propositional variable)
(ii) (A ◦ B)∗ = (A)∗ ◦ (B)∗ for ◦ ∈ {∧,∨,→,≡}
(iii) (¬A)∗ = ¬(A)∗

(iv) (A ⇒ B)∗ = ♦�¬(A)∗ ∨ ♦�(A∗ ∧ B∗)

We proceed to define the logic
⇒
Ω of ‘majority consequence’ over (ω, <):

Definition 2 [Conditional Logic
⇒
Ω ]. The logic

⇒
Ω consists of all formulae

A ∈ L⇒, such that:

A ∈ ⇒
Ω iff (ω, <) |= A∗

It is known that the logic Ω = K4DLZ is the logic of (is determined by) the
frame (ω, <) and thus it holds that (ω, <) |= A∗ iff �Ω A∗.

Fact 1. Let M be a model of F = (ω, <) and n ∈ ω an arbitrary world. It
follows that M, n |= (A ⇒ B) iff one of the following holds:

(i) (∃n1 > n)(∀n2 > n1) M, n2 |= ¬A
(ii) (∃n3 > n)(∀n4 > n3) M, n4 |= A ∧ B

Some comments on the definition of
⇒
Ω are in order. This model-theoretic modal

definition of the conditional has the advantage that it is a clear ‘majority ’ defi-
nition, easy to understand, with an intuitively acceptable ‘largeness’ condition.
It captures ‘cofinite’ subsets of ω in an easy manner, in contrast to the diffi-
culty of capturing this axiomatically. Further on, and perhaps more important,
a decision procedure readily emerges from the definition: to check whether a

conditional A ⇒ B is in
⇒
Ω , simply check whether (A ⇒ B)∗ has a tableaux

proof in K4DLZ; such a proof procedure exists. On the other hand, the ordering
in (ω, <) has not any clear ‘preference’ meaning here.

Theorem 2. The logic
⇒
Ω :

1. is closed under the rules RCEA, RCK and RCEC
2. contains the axioms CUT, AC, CC, Loop, OR, CSO, CM, CA, Tran-

sitivity, Weak Transitivity and Weak Modus Ponens

Proof. We provide a sketch for Weak Transitivity: We have to show that

F |= (A ⇒ B) ∧ (B ⇒ C) ⇒ (A ⇒ C)

Assume an arbitrary state n ∈ ω and M a model of F. We have that M, n |=
(A ⇒ B) ∧ (B ⇒ C) ⇒ (A ⇒ C) iff one of the following holds:
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(i) (∃n1 > n)(∀n2 > n1) M, n2 |= ¬(A ⇒ B) ∨ ¬(B ⇒ C), or
(ii) (∃n3 > n)(∀n4 > n3) M, n4 |= (A ⇒ B) ∧ (B ⇒ C) ∧ (A ⇒ C)

Let (i) be false, that is let (∀n1 > n)(∃n2 > n1) M, n2 |= (A ⇒ B)∧(B ⇒ C) (∗).
We will show that (ii) has to be true. By (∗) we have that (∀n1 > n)(∃n2 > n1)
such that both the following disjunctions hold:

– (∃n5 > n2)(∀n6 > n5) M, n6 |= ¬A or (∃n5 > n2)(∀n6 > n5) M, n6 |= A∧B
– (∃n5 > n2)(∀n6 > n5) M, n6 |= ¬B or (∃n5 > n2)(∀n6 > n5) M, n6 |= B∧C

This means that one of the following must hold:

(a) (∀n1 > n)(∃n5 > n1)(∀n6 > n5) M, n6 |= (¬A ∧ ¬B)
(b) (∀n1 > n)(∃n5 > n1)(∀n6 > n5) M, n6 |= (¬A ∧ B ∧ C)
(c) (∀n1 > n)(∃n5 > n1)(∀n6 > n5) M, n6 |= (A ∧ B ∧ C)

All of these cases give us that

(∀n1 > n) M, n1 |= (A ⇒ B) ∧ (B ⇒ C) ∧ (A ⇒ C)

Consequently, we also have that

(∃n3 > n)(∀n4 > n3) M, n4 |= (A ⇒ B) ∧ (B ⇒ C) ∧ (A ⇒ C)

which is exactly (ii). So one of (i) or (ii) must hold, which means that

M, n |= (A ⇒ B) ∧ (B ⇒ C) ⇒ (A ⇒ C)

Since the world n and model M were arbitrarily chosen, the proof is complete.�

Theorem 3. The logic
⇒
Ω :

1. is not closed under the rule RCE
2. does not contain the axioms ID, CV, MP, MOD, CS, CEM, SDA, Mono-

tonicity and Weak Monotonicity

Observe that
⇒
Ω does not contain the ID axiom. This might appear strange;

after all ‘reflexivity seems to be satisfied universally by any kind of reasoning
based on some notion of consequence’ [14, p. 177]. Yet, in the same sense as
observed in [14], conditionals that do not satisfy it ‘probably express some notion
of theory change’. It seems that failure of ID is due to the unavoidable ‘temporal ’
flavour of (ω, <), whose ordering directly reminds the setting of discrete linear
time. However, this seems appropriate for conditionals incorporating a notion
of ‘temporal’ causation, in the form ‘if X, then normally it should be the case
that Y holds in the future’ - “normally, a strong earthquake implies a permanent
change in future building codes”. It is natural, however, to consider alternative
modal definitions of the conditional connective that would enforce the validity of
ID. In the full paper, we demonstrate that some plausible attempts to validate
ID result into a monotonic conditional logic (see [13]).
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An Alternative: Cofinal vs Cofinite in (ω, <). In this subsection, we discuss
a possible alternative. Instead of working with the (obviously large) cofinite
subsets of ω, we will attempt to work with cofinal subsets: S ⊆ ω is cofinal in ω
iff for every n ∈ ω there exists an s ∈ S, such that n < s.
We proceed to define the conditional (A ⇒ B) as follows:

(A ⇒ B) ≡def ♦�¬A ∨ �♦(A ∧ B)

Definition 3 [Conditional Logic
⇒
ω ]. The logic

⇒
ω consists of all formulae

A ∈ L⇒, such that:

A ∈ ⇒
ω iff (ω, <) |= A∗ iff �K4DLZ A∗

where A∗ is the obvious translation defined similarly to Definition 1.

The logic
⇒
ω turns out to be quite interesting.

Theorem 4. The logic
⇒
ω :

1. is closed under the rules RCEA, RCEC and RCE
2. contains the axioms ID, CUT, Loop, OR, CV, CM, MOD, CEM and

Weak Modus Ponens

Theorem 5. The logic
⇒
ω :

1. is not closed under the rule RCK
2. does not contain the axioms AC, CC, CSO, MP, CA, CS, SDA, Transi-

tivity, Weak Transitivity, Monotonicity and Weak Monotonicity

3.2 Majority Conditionals over ω Equipped with Neighborhoods
of Cofinite Subsets

In this section, we return to the original ‘cofinite-as-large’ intuition and we
take a more ‘traditional ’ approach. We resort to the minimal (Scott-Montague)
semantics for conditionals introduced by Chellas, and we discuss variants of truth
assignment to conditional statements in worlds whose neighborhoods contain
cofinite (large) subsets of ω. Models in this section are based on a frame F =
(ω, f), where

f : ω × 2ω → 22ω

maps worlds (n ∈ ω) and propositions, to neighborhoods of cofinite subsets of ω.

Definition 4 [Conditional Logic
⇒
m1]. Let

⇒
m1 be the logic consisting of all

A ∈ L⇒ valid in F = (ω, f), where a conditional is evaluated as follows:
For a model M over F, M, n |= (A ⇒ B) iff either

(i) there exists S ⊆ ‖¬A‖ such that S ∈ f(n, ‖A‖), or
(ii) there exists T ⊆ ‖A ∧ B‖ such that T ∈ f(n, ‖A‖)
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Theorem 6. The logic
⇒
m1:

1. is closed under the rules RCEA and RCEC
2. contains the axiom CM

Theorem 7. The logic
⇒
m1:

1. is not closed under the rules RCK and RCE
2. does not contain the axioms ID, CUT, AC, CC, Loop, OR, CV, CSO,

MP, MOD, CA, CS, CEM, SDA, Transitivity, Weak Transitivity,
Monotonicity, Weak Monotonicity and Weak Modus Ponens

Definition 5 [Conditional Logic
⇒
m2]. Let

⇒
m2 be the logic consisting of all

A ∈ L⇒ valid in F = (ω, f), where a conditional is evaluated as follows:
For a model M over F, M, n |= (A ⇒ B) iff either

(i) ‖¬A‖ ∈ f(n, ‖A‖), or
(ii) ‖A ∧ B‖ ∈ f(n, ‖A‖)

Theorem 8. The logic
⇒
m2 is closed under the rules RCEA and RCEC

Theorem 9. The logic
⇒
m2:

1. is not closed under the rules RCK and RCE
2. does not contain any of the axioms ID, CUT, AC, CC, Loop, OR, CV,

CSO, CM, MP, MOD, CA, CS, CEM, SDA, Transitivity, Weak
Transitivity, Monotonicity, Weak Monotonicity and Weak Modus
Ponens

For the last definition, let F = (ω, f), where

f : ω × 2ω → 22ω

maps worlds (n ∈ ω) and propositions, to neighborhoods of cofinite subsets of ω
and both the following hold:

(i) If S ∈ f(n,X) and S ⊆ T then T ∈ f(n,X)
(ii) If S, T ∈ f(n,X) then S ∩ T ∈ f(n,X)

The function f is well defined, because the class of cofinite subsets of ω
(and of any set, actually) is ‘upwards’ closed (under supersets) and closed under
intersection.

Definition 6 [Conditional Logic
⇒
m3]. Let

⇒
m3 be the logic consisting of all

A ∈ L⇒ valid in F = (ω, f), where a conditional is evaluated as follows:
For a model M over F, M, n |= (A ⇒ B) iff either

(i) ‖¬A‖ ∈ f(n, ‖A‖), or
(ii) ‖A ∧ B‖ ∈ f(n, ‖A‖)
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Theorem 10. The logic
⇒
m3: (i) is closed under the rules RCEA, RCK and

RCEC, (ii) contains the axioms CC and CM

Theorem 11. The logic
⇒
m3: (i) is not closed under the rule RCE, (ii) does not

contain the axioms ID, CUT, AC, Loop, OR, CV, CSO, MP, MOD, CA,
CS, CEM, SDA, Transitivity, Weak Transitivity, Monotonicity, Weak
Monotonicity and Weak Modus Ponens

In the big table below, all the results of this paper are summarized and the
position of the conditional logics defined can be easily identified. The logics
defined are compared to some known logics from the literature to be related to
the KLM systems, or have been proposed in Commonsense Reasoning. A ‘tick’
means that a logic possesses the axiom (or rule) and a shaded box, that it does
not Table 1.

4 Conclusions

In this paper, we have worked on a majority-based account of normality condi-
tionals, based on the intuition that a cofinite subset of ω is obviously much larger
than its complement. The attempt of defining conditionals modally over the
frame (ω, <) has the obvious advantage that its modal axiomatization directly
leads to a (for instance, tableaux-based) decision procedure, through an obvious
translation. The other direction of employing Scott-Montague type semantics
with neighborhoods of cofinite subsets, demonstrates the flexibility of the app-
roach, as even weak logics can be defined by tuning the truth definitions.

The expected difficulty of obtaining a complete axiomatization, is partly
due to the fact that conditional logic lacks the sophisticated model-theoretic
machinery of modal logics that allows to prove the completeness result for the
logic of (ω, <) (p-morphisms, bulldozing, cluster analysis of transitive frames,
etc.). The experimentation with cofinite sets as the guiding principle behind
‘overwhelming majority ’ is however very instructive, as it allows to delineate the
core rules of such an approach.

It is interesting to check, as a question that readily emerges form this work,
the nonmonotonic consequence relations that emerge from these conditionals and
also try to place them exactly in the universe of conditional logics (e.g. [18]).
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Abstract. A framework for assessing the robustness of long-duration
repetitive orchestrations in uncertain evolving environments is proposed.
The model assumes that service-based evaluation environments are
stable over short time-frames only; over longer periods service-based
environments evolve as demand fluctuates and contention for shared
resources varies. The behaviour of a short-duration orchestration E in a
stable environment is assessed by an uncertainty profile U and a corre-
sponding zero-sum angel-daemon game Γ (U) [2]. Here the angel-daemon
approach is extended to assess evolving environments by means of a
subfamily of stochastic games. These games are called strategy oblivi-
ous because their transition probabilities are strategy independent. It
is shown that the value of a strategy oblivious stochastic game is well
defined and that it can be computed by solving a linear system. Finally,
the proposed stochastic framework is used to assess the evolution of the
Gabrmn IT system.
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1 Introduction

Web services pervade modern life; commonplace examples include media and
healthcare services. Complex applications can be (rapidly) built by interconnect-
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and failure modes are fundamental issues for the cloud computing community;
during an execution of an application the performance of some component ser-
vices may degrade because of over-demand. However, cloud providers try to
balance work-loads across computing resources. The overall performance of an
application is affected by the interplay between positive and negative (compet-
ing) environmental influences. One approach to making service-based systems
resilient is to use ad hoc techniques, based on the wisdom and folklore of expe-
rienced engineers. The goal of this paper is use formal methods to reason about
the resilience of long duration service-based systems.

In [2] orchestration games are constructed, with one player (the daemon)
maliciously degrading a bounded number of services (to cause the maximum
delay) and the other player (the angel) applying bounded elasticity to improve
performance. Uncertainty profiles and strategic situations are used in [2] to char-
acterise stable evaluation environments. Nash equilibria are used to characterise
the performance and resilience of applications when subject to complex envi-
ronmental influences. In this paper game theory is applied to more complex
scenarios where patterns of environmental stress evolve throughout an applica-
tion’s execution.

In order to analyse a long duration application which repeatedly evaluates
an orchestration E we propose an extended stochastic uncertainty model. In
the model execution environments are assumed to remain stable during evalua-
tions of E. However, the environment may evolve between any of the periodic
evaluations because of fluctuations in demand. It is assumed that the number of
evaluation environments is finite and that evolution follows a Markovian process.
Under this hypothesis the evolution of the environment can be assessed by means
of stochastic games in which the future is described by means of a lottery. Sto-
chastic games [8] have been widely used to study the inter-temporal behaviour
of “real” systems [3]. In a zero-sum stochastic game Γ = 〈Γ 1, . . . , Γ �〉 each state
l is formed by two components a zero sum game and a lottery. In state l, a player
engages in the zero-sum game and after moves probabilistically to the next state.

For analyzing periodic orchestrations, it seems sufficient to consider oblivious
lotteries, where the probability of changing state depends only on the current
state. We prove that (i) games in the family of (zero-sum) strategy oblivi-
ous stochastic games have a well defined value, in the discounted model, and
(ii) a game value can be computed by solving a linear system. This result allows
the proposed framework to be applied to analyse the behaviour of the Gabrmn
system.

The paper is organised as follows. Section 2 introduces periodic orchestra-
tions while Sect. 3 introduces zero-sum, stochastic and strategy oblivious games.
Section 3 also provides techniques for assessing complex evolving scenarios
(Theorem 2). In Sect. 4 we discuss the assessment of both short- and long-
duration orchestrations. The behaviour of the Gabrmn system in an evolving
environment is analysed in Sect. 5 . Finally, we draw some conclusions in Sect. 6.
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2 Periodic Orchestrations

The language Orc [4,5] can be used to model the co-ordination of a set of loosely-
coupled services. Orc has a well defined semantics [10,12] and so lends itself to
the study of orchestration behaviour.

The simplest Orc expression is a service call. When called a service responds
by publishing a result (for example a link to a web page). Three predefined
services (or internal sites) are used in this paper: 0, 1 and Rtimer(t). Service
0 never publishes; a call to 1(x) echoes back its input argument x; a call to
Rtimer(t) publishes a result after t time steps. Any two orchestrations P and Q
can be composed using the operators:

– Sequential composition P > x > Q(x): Initially P is evaluated: for each output
v, published by P , an instance Q(v) is invoked. If P publishes the stream
of values, v1, v2, . . . vn, then orchestration P > x > Q(x) publishes some
interleaving of the set {Q(v1), Q(v2), . . . , Q(vn)}. The abbreviation P � Q is
used in situations where Q does not depend on x.

– Parallel compositionP | Q: The independent orchestrations P and Q are exe-
cuted in parallel; P | Q publishes some interleaving of the values published
by P and Q.

– Pruning P (x) < x < Q: Orchestrations P and Q are evaluated in parallel; P
may become blocked by a dependency on x. The first result published by Q
is bound to x, the remainder of Q’s evaluation is terminated and evaluation
of the blocked residual of P is resumed.

Consider the periodic computation D =
(
E | (Rtimer(τ) � D)

)
which repeat-

edly calls a short-duration orchestration E, say E = (A | B) < x < (F | G), at
time intervals τ . It is assumed that the environment of E remains stable during
any evaluation. During a particular evaluation of E some underlying services
may be degraded, because of excessive demand, while other services may benefit
from environmental resilience. The precise nature of the environmental factors
in play at any one moment in time is difficult to characterise in a quantitative
way. A qualitative environmental characterisation can be given using an uncer-
tainty profile [2]. This specifies potential positive and negative environmental
influences (e.g. overdemand, elasticity). The combined effect of these influences
on an evaluation of E can be assessed using game theory [2]. For a periodic
evaluation the environmental influences may evolve from one time period to the
next. The goal of this paper is to demonstrate how stochastic games can be used
to analyse such evolving situations.

3 Preliminaries on Games

Zero-sum and stochastic zero-sum games are introduced below; Standard nota-
tion is used throughout: Δ(S) denotes the set of probability distributions over a
finite set S. Zero-sum games can be used to model stable stressed environments.
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Definition 1. A two player zero-sum game is a strategic game described by the
tuple Γ = 〈A1, A2, u〉. A1 and A2 are the set of eligible actions for player 1
and 2, respectively. The third component is a mapping u from A1 × A2 to the
rational numbers. An element (i, j) ∈ A1 × A2 is called a strategy profile. The
utility of strategy profile (i, j) is u(i, j), for player 1, and −u(i, j), for player 2.
Utilities are rational numbers.

A mixed strategy is a lottery on the set of eligible actions. Utility u can
be extended over mixed strategy profiles. Given a mixed strategy profile
(α, β) ∈ Δ(A1) × Δ(A2) where α = (α1, . . . , αn) and β = (β1, . . . , βm)
then u(α, β) =

∑
i,j αiu(i, j)βj . The value of a zero-sum game Γ is defined

as ν(Γ ) = maxα∈Δ(A1) minβ∈Δ(A2) u(α, β). For any (mixed) Nash equilibrium
(α, β) it is known that u(α, β) = ν(Γ ).

Example 1. The class of 2×2-zero sum games is well-known [6]. Consider games
Γ = ({T,B}, {L,R}, u) and Γ ′ = ({T,B}, {L,R}, u′) below with utilities u
and u′.

In a Nash equilibrium with full support u(T, β) = u(B, β) = ν(Γ ) and u(α,L) =
u(α,R) = ν(Γ ). Thus α = β = 1/2, ν(Γ ) = 3/4 and ν(Γ ′) = 9/4 �

The following linear transformation result for zero-sum games is well-known:

Lemma 1. Let Γ = (A1, A2, u) and Γ ′ = (A1, A2, u
′) be two zero-sum games

with u′(i, j) = au(i, j)+ b, for some a > 0. Then games Γ and Γ ′ have the same
set of Nash equilibria and ν(Γ ′) = a ν(Γ ) + b.

Following [6,9] stochastic games are formally defined as:

Definition 2. A two person stochastic game Γ = 〈Γ 1, . . . , Γ �〉 is a tuple of �
sub-games. Each sub-game (or state) Γ l has form Γ l = 〈gamel(Γ ), lotteriesl(Γ )〉.
Here gamel(Γ ) is a zero-sum game and lotteriesl(Γ ) determines the next game:

– gamel(Γ ) = 〈Al
1, A

l
2, u

l〉 where Al
1 = {1, · · · , nl}, Al

2 = {1, . . . , ml}, and
– lotteriesl(Γ ) : Al

1 × Al
2 → Δ

({1, . . . , �})
.

When appropriate gamel(Γ ) and lotteriesl(Γ ) can be abbreviated to gamel and
lotteriesl.

Example 2. A stochastic game Γ can be represented by a bi-matrix for each
state combining utility and lottery. For instance,
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represents Γ = 〈Γ 1, Γ 2〉 where game1 = Γ and game2 = Γ ′ are the games in
Example 1 and, for instance, lotteries1({T,L}) = (1/3, 2/3). �

A stochastic game is played through so called stationary strategies [8]. A sta-
tionary strategy is a pair (α, β) formed by α = (α1, . . . , α�) and β = (β1, . . . , β�)
where, for any 1 ≤ l ≤ �, αl ∈ Δ(Al

1) and βl ∈ Δ(Al
2). Thus a stationary strategy

comprises a mixed strategy profile for each game state. Lotteries are extended
on mixed strategies as lotterieslk(αl, βl) =

∑
i,j αl

ilotteries
l
k(i, j)βl

j where lotterieslk
denotes the k component of lotteriesl.

Example 3. A stationary strategy, for the game Γ given in Example 2, where
player 1 selects T in game1 and B in game2 while player 2 chooses L in game1

and R in game2, is ((α1, α2), (β1, β2)) = (((1, 0), (0, 1)), ((1, 0), (0, 1))) �

A stochastic game defines a collection of never ending games, one for each
initial (sub-game) state. In a game players are rewarded and use a joint lot-
tery to determine the next state. The λ-discounted reward model, 0 < λ < 1,
is used to define a utility for a stationary strategy. Consider the game with
initial state Γ l and with a stationary strategy (α, β). In the λ-discounted
reward model the total payoff for player 1 is computed solving Pl

λ(α, β) =
λul(αl, βl) + (1 − λ)

∑
k lotteries

l
k(αl, βl)Pk

λ(α, β). In the following Γ [λ] denotes
the stochastic game Γ with a discount factor λ.

Example 4. Consider the stochastic game Γ [λ] with stationary strategy (α, β)
from Example 3 where the game starts in state 1. Initially player 1 wins λ/2
(and player 2 loses −λ/2). The next game has discount factor (1 − λ); Γ 1 is
played with probability 1/3 and Γ 2 with probability 2/3. Let P1 = P1(α, β)
and P2 = P2(α, β) be the discounted pay-offs of player 1, playing strategy
(α, β), starting from Γ 1 and Γ 2, respectively. The recursive structure of Γ [λ]
gives rise to the following equations:

P1 = λ
1
2

+ (1 − λ)(
1
3
P1 +

2
3
P2), P2 = λ3 + (1 − λ)(

1
4
P1 +

3
4
P2)

and so P1(α, β) = (51 − 39λ)/2(11 + λ) and P2(α, β) = (51 + 21λ)/2(11 + λ) �

Shapley showed that any stochastic game Γ = 〈Γ 1, . . . , Γ �〉 has optimal strate-
gies and a unique value vector v = (v1, . . . , v�). Given the stochastic game Γ , a
numerical vector w = (w1, . . . , w�) and a discount factor λ, he defined the zero
sum games Γ l[λ,w] = 〈Al

1, A
l
2, u

l[λ,w]〉 where ul[λ,w](i, j) = λul(i, j) + (1 −
λ)

∑�
k=1 lotteries

l
k(i, j)wk, and he proved the following theorem that character-

izes v as a fix point.
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Theorem 1 ([8]). Let Γ = 〈Γ 1, . . . , Γ �〉 be a stochastic game and let 0 < λ < 1.
Then v(Γ [λ]) = v = (v1, . . . v�) where v is the unique solution of the system
vl = ν(Γ l[λ, v]), l = 1, . . . , �. One optimal stationary strategy for Γ [λ] consists
of playing an optimal strategy at node l for the one shot game Γ l[λ, v].

Example 5. Let w = (w1, w2). Then the zero-sum auxiliary games Γ 1[λ,w] and
Γ 2[λ,w] below are derived for the stochastic games in Examples 2 and 4:

From Theorem 1 we have, v(Γ [λ]) = v = (v1, v2) where v1 = ν(Γ 1[λ, v]) and
v2 = ν(Γ 2[λ, v]). Using the mixed equilibria in Example 1 we have v1 = 3

4λ +
1
2 (v1 + v2)(1 − λ) and v2 = 9

4λ + 1
2 (v1 + v2)(1 − λ). Thus, v = (v1, v2) =

(12 (3 − 3
2λ), 1

2 (3 + 3
2λ)) �

Oblivious-uncertainty provides a model of the future that is strategy-
independent:

Definition 3. A stochastic game Γ = 〈Γ 1, . . . , Γ �〉 is strategy oblivious if each
state 1 ≤ l ≤ �, lotteriesl is a constant function (the same value for all (i, j) ∈
Al

1 × Al
2).

Given an oblivious game, let vgame be the vector containing the values of the
zero-sum state games. Writing lotteriesl = ll, the lotteries corresponding to the
different states are given in the following LOTTERIES matrix:

vgame =

⎛

⎜
⎝

ν(game1)
...

ν(game�)

⎞

⎟
⎠ , LOTTERIES =

⎛

⎜
⎝

l1

...
l�

⎞

⎟
⎠ =

⎛

⎜
⎝

l11 · · · l1�
...

...
l�1 · · · l��

⎞

⎟
⎠

Here LOTTERIES is a stochastic matrix (each row sums to 1) and llk denotes the
probability of moving from state l to state k. Recall that a stationary distribution
p = (p1, · · · , p�) is a distribution satisfying p · LOTTERIES = p.

Theorem 2. Let Γ = 〈Γ 1, . . . , Γ �〉 be a discounted strategy oblivious stochastic
game, 0 < λ < 1. Then:

1. The value vector v = v(Γ [λ]) satisfies v = λ vgame + (1 − λ)LOTTERIES · v
2. The value vector v is v = λ

(
I − (1 − λ)LOTTERIES

)−1
vgame.

3. If p is a stationary then p · v = p · vgame.
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In the general case, the non-linearity of the equations in Theorem 1 defining
v(Γ [λ]) makes it difficult to compute the exact value of a discounted stochastic
game. In fact, a stochastic game defined on rational data can have an irrational
value vector [11]. In the oblivious case the value vector v can be expressed as
a linear system over values of local state games (Theorem 2). Thus, as the
computation of vgame can be reduced to linear programming, assuming strategy
obliviousness and rational data the result vector v is kept within the rationals.

1 2

x

y

1 − x 1 − y

Fig. 1. A two state regular Markov chain.

Example 6. Let Γ = 〈Γ 1, Γ 2〉 be a strategy oblivious stochastic game. The
matrix LOTTERIES corresponds to a 2 states Markov chain (see Fig. 1). Let

LOTTERIES =
(
l11 l12
l21 l22

)
=

(
(1 − x) x

y (1 − y)

)
, p = (p1, p2) =

( y

x + y
,

x

x + y

)

where 0 < x, y < 1 and p is a stationary distribution. Suppose that ν(game1) = a
and ν(game2) = b. The linear system derived from Theorem 2 is:

(
v1

v2

)
= λ

(
a
b

)
+ (1 − λ)

(
(1 − x) x

y (1 − y)

)(
v1

v2

)

4 An Assessment Model for Periodic Orchestrations

In this section an assessment model for orchestrations in stable environments [2]
is reviewed and extended to encompass periodic orchestrations in evolving envi-
ronments.

Uncertainty Profiles and a/d-games. Let E be a non-recursive orchestration
which, when called, publishes a finite set of results and terminates. The environ-
ment for E is assumed to be uncertain but stable. Let α+(E) be the set of sites
called by E (excluding 0). Let #s denote the cardinality of a set of sites s.

The assessment of E under stress is undertaken by specifying those services
which have the potential to be affected by stress. An uncertainty profile U models
the a priori perception of orchestration behaviour under stress [2], providing a
model that lies between over-optimism and over-pessimism. A profile U , fixes
two subsets of α+(E), A and D, together with the number of service failures
that can be expected to occur within both A and D. The last component of U
is a utility u function which measures resilience under a given type of stress.
Behaviour is analyzed by assuming that service failures in A (angelic services)
are selected to cause the least amount of damage whereas service failures in D
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(daemonic services) are selected to maximise damage to the application. The
assessment of E goes though a zero-sum game Γ (U) , the a/d-game, providing
an analysis of the competitive scenario [2]. Formally:

Definition 4 (Uncertainty Profile U and its Associated a/d-Game [2]).

– An uncertainty profile for an orchestration E is a tuple U =
〈E,A,D, bA, bD, u〉 where A ∪ D ⊆ α+(E), bA ≤ #A, bD ≤ #D and
u(a, d) ≥ 0 is a utility function defined for all a ⊆ α+(E), d ⊆ α+(E).

– U = 〈E,A,D, bA, bD, u〉 has an associated zero-sum angel-daemon game
Γ (U) = 〈Aa, Ad, u〉 with two players, a (angel) and d (daemon). Player a
selects a set with size bA from A: Aa = {a ⊆ A | #a = bA}. Player d selects a
set with size bD from D: Ad = {d ⊆ D | #d = bD}. Services in α+(E)\ (a∪d)
remain reliable.

– The assessment ν(U) of an uncertainty profile U is defined to be the value of
its associated angel-daemon ν(Γ (U)).

Utility u(a, d) measures the degree of resilience of E when a “selects” services
a and d “selects” services d. Different utilities can be used to define different
resilience measures. Three utilities with different weightings are shown:

uo(a, d) =
1

2
out(faila∩d(E)), ur(a, d) =

3

2
out(faild\a(E)), uw(a, d) = out(faila∪d(E))

Here the function out(failf (E)) returns the number of outputs published by
E when services in the set f fail. In the overloaded environment, uo, services
selected by both a and d fail. In the robust environment, ur, the angel has the
capability to prevent its selected service from failing. In a failures-prone weak
environment , uw, neither a or d can avoid failures.

Example 7. BigTwo = (G | A) can operate in Uo = 〈BigTwo, {G,A}, {G,A}, 1,
1, uo〉 describing an overloaded environment or in Ur = 〈BigTwo, {G,A},
{G,A}, 1, 1, ur〉 giving a robust environment or in Uw = 〈BigTwo,
{G,A}, {G,A}, 1, 1, uw〉 givng a weak one. The games Γ (Uo), Γ (Ur) and
Γ (Uw) are

Assessments are ν(Uo) = 3/4 and ν(Ur) = 9/4 (Example 1) and ν(Uw) =
1/2. �

Uncertainty Profiles for Periodic Orchestrations. The assessment of the
periodic orchestration is modelled using stochastic games. Possible execution
environments of E are defined by uncertainty profiles.
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Definition 5. Let D =
(
E | (Rtimer(t) � D)

)
. An uncertainty profile for E

is a tuple U = 〈U1, . . . ,U�, lotteries1, . . . , lotteries�〉, where, for each 1 ≤ i ≤ �,
U i is an uncertainty profile over E and lotteriesi ∈ Δ({1, . . . , �}) is collection
of associated lotteries, one lottery for each strategy profile in the game Γ (U i).
Profile U induces an associated stochastic a/d game Γ (U) = 〈Γ 1, . . . , Γ �〉 where,
for 1 ≤ i ≤ �, Γ l = 〈Γ (U l), lotteriesl〉. Let 0 < λ < 1 be a discount value,
if v(Γ (U)[λ]) = (v1, . . . , v�) then the assessment of D under U is defined as
ν(U) = v1.

Example 8. The orchestration BigTwo∗ =
(
BigTwo | (Rtimer(day) �

BigTwo∗)
)

is assessed by the uncertainty profile U = 〈Uo,Ur, lotterieso,
lotteriesr〉. Here tuples 〈Γ (Uo), lotterieso〉 and 〈Γ (Ur), lotteriesr〉 correspond
respectively to Γ 1 and Γ 2 components in Example 2. The associated stochas-
tic game has been analyzed in Example 5 where it is shown that v(Γ (U)) =
(12 (3 − 3

2λ), 1
2 (3 + 3

2λ)). Therefore the assessment of BigTwo∗ is 1
2 (3 − 3

2λ). �

5 Example: The Gabrmn System

Gabrmn is an IT system for managing clinical data generated from magnetic
resonance spectra [2] . It comprises a number of sub-systems. Clinical data is
stored in a sub-system Databases. Clinical applications, including IDL, are stored
on server, Apps. A master server, Proxy , controls system behaviour. Email is a
key service provided by servers Mail and Mirror ; the sub-system 1(x) < x <
(Mail | Mirror) has built-in redundancy. Service Backup allows system recovery
to take place. Gabrmn is modelled in Orc as;

IT System = Proxy � ((1(x) < x < (Mail | Mirror)) | Apps | Backup | Databases
)

This expression is a stylized formalization developed after extensive discus-
sion with the Gabrmn system manager (A. Garćıa) - see http://gabrmn.uab.
es/. The number of outputs (uw = out(faila∪d)) published by IT System pro-
vides a measure of its “well-being” (maximum value 4). The long term behaviour
of IT System in stressed environments is modelled by the following stochastic
game:

States. Taking uw = out(faila∪d), three different environments for Gabrmn are:

U1 = 〈IT System, {Backup,Proxy ,Mirror}, {Apps ,Databases,Mail}, 1, 1, uw〉
U2 = 〈IT System, {Apps,Mail ,Mirror}, {Databases ,Mail ,Mirror}, 1, 1, uw〉
U3 = 〈IT System, {Apps,Mail ,Mirror}, {Databases ,Mail ,Mirror}, 2, 1, uw〉

Here a service fails if it is selected by either a or d. Profiles U1, U2, U3 induce
games with valuations ν(U1) = ν(U2) = 3 and ν(U3) = 2.

Evolution of the Environment. The parameterised uncertainty profile
U(x, y, z) models system evolution through environments 〈U1,U2,U3〉 using an
oblivious approach where

http://gabrmn.uab.es/
http://gabrmn.uab.es/
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Fig. 2. Assessments v1 (left) and v3 (right) of U with x = y = z ∈
{1, 0.75, 0.5, 0.25, 0.15}. In both figures the value 1 corresponds to the rightmost curve
and 0.15 the the leftmost.

vgame =

⎛

⎝
ν(U1)
ν(U2)
ν(U3)

⎞

⎠ =

⎛

⎝
3
3
2

⎞

⎠, LOTTERIES =

⎛

⎝
1 − x x 0

0 1 − y y
z 0 1 − z

⎞

⎠

LOTTERIES models a perturbed round trip 1 → 2 → 3 → 1 with a prob-
ability to keep into the current state. The stochastic game Γ (U) where U =
〈U1,U2,U3, LOTTERIES〉 satisfies:

v = λ

⎛

⎝
1 − (1 − λ)(1 − x) −(1 − λ)x 0

0 1 − (1 − λ)(1 − y) −(1 − λ)y
−(1 − λ)z 0 1 − (1 − λ)(1 − z)

⎞

⎠

−1

vgame

This equation has been solved, using the Python SymPy library, to find the
value vector v = (v1, v2, v3) for certain values of x, y and z and discount fac-
tors – see Fig. 2. Setting x = 1, y = 1 and z = 1 gives an environment with a
deterministic full round trip (next is to 1 → 2 → 3 → 1). When x = y = z the
assessment v1 increases monotonically as the probability of remaining in the first
state increases (i.e. x decreases). As λ → 1 the assessment v1 in the discounted
model is weighted towards today’s performance (ν(U1) = 3 – see Fig. 2 left).
Fig. 2 right shows the assessment v3, which corresponds to the game starting
in the least reliable environment, U3: decreasing the probability of remaining
in this state monotonically improves system performance. Similar results have
been obtained for asymmetric case: y = z and x = y/2.

6 Conclusions

The angel-daemon approach has been extended to assess periodic orchestrations
in evolving environments. We have considered the subfamily of strategy oblivious
stochastic games in which transition probabilities are independent of selected
strategies. It has been shown that such games have well-defined valuations. The
proposed framework has been used to assess the evolution of the Gabrmn IT
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system. We are in the process of identifying larger systems that can be cast
naturally in our approach.

Our approach may go some way to answering a fundamental question of appli-
cation developers: how can the resilience of service-based systems be assessed
when some sub-components are subject to unpredictable forms of stress (e.g.
contention for resources on a hypervisor)? Typically practitioners use ad hoc
techniques, guided by their technical experience, to develop robust systems of
micro-services. It is unclear how the uncertainty associated with a cloud (and ser-
vices deployed therein) can be modelled realistically by using probabilistic tech-
niques (because sudden surges in demand can occur, or the types of resource
available may change in an unpredictable way). Here we provide a different
approach which (partially) removes probabilities from the analysis of a natural
strategic situation. Our approach provides a formal method for the analysis of an
increasingly important class of architectures (until now analysed by trial-and-
error techniques). We are working towards extending the approach by adding
latency to the set of components that can be influenced by mixed-effect environ-
mental influences.

The work reported here is complementary to that of [1,7] where the
monotonicity of the QoS of web services is considered. One other possible line
of future research is to extend the monotonicity properties of the assesments of
non-recursive orchestrations [2] to periodic orchestrations.
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Abstract. Uncertainty profiles are used to study the effects of con-
tention within cloud and service-based environments. An uncertainty
profile provides a qualitative description of an environment whose qual-
ity of service (QoS) may fluctuate unpredictably. Uncertain environments
are modelled by strategic games with two agents; a daemon is used to
represent overload and high resource contention; an angel is used to
represent an idealised resource allocation situation with no underlying
contention. Assessments of uncertainty profiles are useful in two ways:
firstly, they provide a broad understanding of how environmental stress
can effect an application’s performance (and reliability); secondly, they
allow the effects of introducing redundancy into a computation to be
assessed.
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1 Introduction

In 1961 John McCarthy proposed a vision of service-based computing:

“If computers of the kind I have advocated become the computers of the
future, then computing may someday be organized as a public utility
just as the telephone system is a public utility...”

The notion of service extends previous notions of programming through the
addition of an interface through which users can access computing resources.
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There are many similarities between the service-based computation model and
the established disciplines of sequential and parallel programming. Convention-
ally a state change is effected by an assignment statement x := e. The time take
to execute this assignment is predictable and depends on the number of oper-
ations within e. In service-based computing state changes are effected through
service calls. A service (hosted in the cloud, or elsewhere) may have less pre-
dictable performance behaviour than a conventional imperative program – the
QoS of service-based systems are considered in detail in [1]. Some of the factors
influencing the performance of applications in the cloud are:

1. the type of hardware supplied by a provider to host a (virtual) machine;
2. the number of other (applications running as) VMs on a shared resource;
3. the behaviour of a hypervisor [9] supervising the execution of a set of VMs;
4. the nature of competing applications (e.g. web services, computationally inten-

sive applications);

In this paper uncertain execution environments are specified in a qualitative
way, using a two-player strategic game. One player (the daemon d) represents
destructive stress; d tries to maximise damage to an orchestration E by distrib-
uting a fixed degree of environmental stress (e.g. resource contention) over E’s
services. In contrast the angel player a represents the self-healing capability of
a system; the angel makes a move by allocating “benevolent conditions” to a
fixed number of E’s services (e.g. advantageous hardware allocation, no resource
contention). The Nash equilibria of the resulting game provides a broad picture
of how orchestrations react to mixed environmental stress.

The paper is organised as follows. In Sect. 2 an overview of the Orc lan-
guage [7] and examples of performance variability in the cloud are given; an
abstract game-theoretic (angel daemon) stress model is constructed. In Sect. 3 a
cloud-based matrix multiplication orchestration is developed. The performance
of matrix multiplication on a range of machine deployments is assessed using
Nash equilibria in Sect. 41. In Sect. 5 it is shown how game theory can be used
to assess the effectiveness of adding redundancy to orchestrations. In Sect. 6 the
applicability of the approach to other application areas is examined – for exam-
ple variant forms of Angel-Daemon game could be used to analyse the effects of
stress on orchestration communications.

2 Orc and a Model of Uncertain Cloud Environments

The language Orc [7] can be used to specify service-based computations and
workflows [2]. A service s may fail to respond (i.e. it is silent) when it is called
in an unreliable environment. A reliable service publishes a single result. In
complex scenarios a service may call on further services and so may cause side
effects elsewhere. Orc contains a number of inbuilt services: 0 is always silent
whereas 1(x) always publishes its argument x. Two Orc expressions E and F
can be combined using the following operators:
1 All equiliria of a two person zero-sum game are identical – such assessments could

also be computed by using linear programming.
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– Sequence E > x > F (x): The orchestration E is evaluated: for each output
v, published by E, an instance F (v) is invoked. If E publishes the stream of
values, v1, v2, . . . vn, then E > x > F (x) publishes some interleaving of the
set {F (v1), F (v2), . . . , F (vn)}. The abbreviation E >> F is used in situations
where F is independent of the publication value generated by E.

– Symmetric Parallelism E | F : The independent orchestrations E and F are
executed in parallel; E | F publishes some interleaving of the values published
by E and F .

– Asymmetric parallelism E(x) < x < F : Orchestrations E and F are evaluated
in parallel; E may become blocked by a dependency on x. The first result
published by F is bound to x, the remainder of F ’s evaluation is terminated
and evaluation of the blocked residue of E is resumed.

Example 1. Orchestration Two(d) = (BBC(d)|CNN(d)) > x > Email(Bob, x)
calls two news services in parallel on day d and sends the resulting publica-
tions, via an email service, to Bob. In contrast One(d) = Email(Bob, x) <
x < (BBC(d)|CNN(d)) results in only one news summary for day d (the first
available) being emailed to Bob. ��
Uncertain cloud environments can be modelled in Orc. The infrastructure as a
service (IaaS) cloud model allows users to control underlying hardware resources.
Consider the following IaaS orchestration for multiplying two matrices, a and b:

P.provision(IMG) > MI > MI.deploy(MM) > MM1 > MM1(a, b)

Here a request is made to a provider P to supply a machine instance MI and con-
figure it with an operating system image IMG; the machine instance is installed
with a matrix multiply service MM ; this service is then used to multiply the
matrices a and b. The quality of service (QoS) realised by MM1 depends on a
number of environmental factors [1]. Typically IaaS clouds contain a variety of
machine types. Table 1 shows some of the CPUs on 2012 AWS EC2.

Table 1. A subset of CPUs available from AWS EC2 in 2012

Instance
type

Model Speed
(GHz)

L1 Cache L2 Cache L3 Cache

m1.small AMD Opteron 2218 HE 2.6 2 × 64 KB 2 × 1MB N/A

m1.small Intel Xeon E5420 2.66 4 × 64 KB 2 × 6MB N/A

m1.small Intel Xeon E5507 2.26 4 × 64 KB 4 × 256KB 4 MB

c1.xlarge Intel Xeon E5410 (×2) 2.333 4 × 64 KB 2 × 6MB N/A

c1.xlarge Intel Xeon E5506 (×2) 2.133 4 × 64 KB 4 × 256KB 4 MB

cc1.4xlarge Intel Xeon X5570 (×2) 2.933 4 × 64 KB 4× 256KB 8 MB

cg1.xlarge

cc2.8xlarge Intel Xeon E5-2670 (×2) 2.6 8 × 64 KB 8 × 256KB 20 MB
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In practice the performance of an application may depend critically on the
amount of cache available on its execution platform. The performance of the
MM1 service may be influenced by the type of hardware supplied by the provider
P in response to the service call P.provision(IMG). Secondly it is important
from a performance point of view that the installed service MM be tuned for the
hardware supplied at run-time. In [8] a repository of tuned BLAS2 implementa-
tions is made available in order to achieve tuning. The performance of MM1(a, b)
on a shared multicore architecture may be critically influenced by the volume
of traffic on the multicore bus which connects cores to on-chip memory. The
performance of an orchestration E in a stressful environment (such as a cloud)
can be modelled by associating a delay function, δ(s), with each underlying ser-
vice s, s ∈ α(E)3. Consider a model incorporating both overdemand (o) and
elasticity (e): Overdemand (demonic behaviour) may cause service degradation
(e.g. multi-tenancy leads to memory contention); Elasticity (angelic behaviour)
includes the allocation of the best type of resource and the deployment of extra
resources to support a service, when needed. A tuple (δ(s), δo(s), δe(s), δo+e(s))
is a stress model [4] which specifies the performance delays associated with a
service s:

– δ(s) is the delay of s in unstressed situations;
– δo(s) is the delay associated with s when it is subject to overdemand ;
– δe(s) is the delay associated with s under angelic conditions;
– δo+e(s) is the delay when overdemand and angelic conditions interact.

The constraints: δe(s) < δ(s) < δo(s), δe(s) < δo+e(s) < δo(s) are assumed.
A stress model for an orchestration E is a set S of underlying service stress
models S = {(δ(s), δo(s), δe(s), δo+e(s)) | s ∈ α(E)}. Here orchestration per-
formance in uncertain environments is assessed using a two-player game: one
player, the daemon (d), has the potential to overload selected services and so
increase delay (using the function δo). The other, the angel (a) has the poten-
tial to associate selected services with an idealised operating environment (δe).
Stress-related performance delays for orchestrations are defined using two cost
functions: Δmax(E) is the time taken for the generation of all publications of
E and Δmin(E) is the time taken for the generation of the first publication. In
the remainder of the paper we consider only pruning expressions of the form
E3(x, y) < y < E2 < x < E1 where the consumer E3 is blocked until both pro-
ducers E1 and E2 publish. Suppose that [a, d] denotes the sets of services under
the influence of a and d, respectively. The delay associated with a service s is:

Δmin(s)[a, d] = Δmax(s)[a, d] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(s) if s /∈ a ∧ s /∈ d.

δo(s) if s ∈ d ∧ s /∈ a.

δe(s) if s ∈ a ∧ s /∈ d.

δo+e(s) if s ∈ (a ∩ d).

2 Basic Linear Algebra Subprograms (BLAS) are a library of low-level subroutines
that perform common linear algebra operations.

3 α(E) denotes the set of services used in orchestration E – for example
α(s1(5)|s2(8)) = {s1, s2}, the two services used in the orchestration.
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Orchestration delays are defined by:

Δk(E1 | E2) = k{Δk(E1),Δk(E2)}, Δk(E1 � E2) = Δk(E1) + Δk(E2)
Δk(s(x) < x < E) = Δk(s) + Δmin(E)
Δk(s(x, y) < y < E1 < x < E2) = max{Δmin(E1) , Δmin(E2)} + Δk(s)

where k ∈ {min,max}. Thus Δmin(E1 | E2) = min{Δmin(E1),Δmin(E2)},
the time taken for the system E1 | E2 to generate its first publication. Uncer-
tainty profiles (with cost functions) are used to capture formally the behav-
iour of orchestrations in stressed environments [3,4]. The uncertainty profile
U = 〈E,A,D, bA, bD,Δmax〉 specifies qualitatively a particular set of stress con-
ditions for the orchestration E. Here A ∪ D ⊆ α(E), bA ≤ #A, bD ≤ #D and
the cost function satisfies Δmax(E)[a, d] ≥ 0. Let α(E) denote the set of services
used in E. In the profile:

– A and D denote the sets of services which can be influenced by a and d,
respectively. When stress can effect all services in E then A = D = α(E).

– Parameters bA and bD specify the number of services to suffer angelic and
daemonic stress. For example, (bA, bD) = (1, 1) exemplifies the weakest form
of mixed stress while (bA, bD) = (1, 2) is an unbalanced situation.

– The effect of stress on performance is measured by the cost function Δmax.

Profile U = 〈E,A,D, bA, bD,Δmax〉 has an associated zero-sum angel-daemon
game Γ (U) = 〈Aa, Ad,Δmax〉 with players a (angel) and d (daemon). Player a
selects bA distinct stressed services from A giving the action set Aa = {a ⊆
A | #a = bA}. Player d selects bD distinct stressed services from D giving
Ad = {d ⊆ D | #d = bD}. The set of combined actions A = Aa × Ad is
called the set of strategy profiles. Given Γ (U), player a can “make a move”
by selecting an action a ∈ Aa (a is called a strategy). Likewise player d can
select an action d ∈ Ad. If both players select a strategy independently then
the joint strategy profile is s = (a, d). Players a and d have costs Δmax(E)[a, d]
and −Δmax(E)[a, d], respectively. The angel player a wishes to minimise an
orchestration’s cost delay whereas the daemon d wishes to maximise it. Mixed
strategies for players a and d are probability distributions α : Aa → [0, 1]
and β : Ad → [0, 1], respectively. A mixed strategy profile is a tuple (α, β)
such that Δmax(E)[α, β] =

∑
(a,d)∈Aa×Ad

α(a)Δmax(E)[a, d]β(d). Let Δa and
Δd denote the set of mixed strategies for players a and d, respectively. A pure
strategy profile (a, d) is a special case of a mixed strategy profile (α, β) in which
α(a) = 1 and β(d) = 1. A mixed strategy profile (α, β) is a Nash equilibrium
if for any α′ ∈ Δa, Δmax(E)[α, β] ≤ Δmax(E)[α′, β] and for any β′ ∈ Δd,
Δmax(E)[α, β] ≥ Δmax(E)[α, β′]. A pure Nash equilibrium, pne, is a Nash equi-
librium (a, d) where a and d are pure strategies. The value of the zero-sum
game Γ (U) associated with the uncertainty profile U is denoted by ν(U) is
ν(U) = minα∈Δa maxβ∈Δd Δmax(E)[α, β] = maxβ∈Δd minα∈Δa Δmax(E)[α, β].
Strategy (α, β) is a Nash equilibrium iff Δmax(E)[α, β] = ν(U).
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3 Matrix Multiplication in the Cloud

A conventional block matrix multiplication (BMM) of an p × r block matrix A
and a r × q block matrix B can be defined using the r-way partition: Cij =∑r

k=1 AikBkj , 1 ≤ i ≤ p, 1 ≤ j ≤ q, where Aik and Bkj denote the blocks of A
and B. The case p = q = r = 2 is shown.

A =
[

A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
AB =

[
(A11B11 + A12B21) (A11B12 + A12B22)
(A21B11 + A22B21) (A21B12 + A22B22)

]

Suppose that the services MM and MA, for multiplying and adding small and
medium sized matrices, are deployed in the cloud. For example, the Amazon EC2
m1.small instance has a 1.7 GB RAM capacity (enough to accommodate three
64-bit precision 8000×8000 matrices) while the EC2 c1.xlarge instance type has
a 7 GB RAM capacity (enough to accommodate three 16000 × 16000 matrices).
Matrices of larger size can be multiplied together by constructing a parallel BMM
orchestration which generates block matrix-vector and dot-product subtasks.

BMM2×2([a, b, c, d], [e, f, g, h]) =
1([w, x, y, z]) < w < DP ([a, b], [e, g]) < x < DP ([a, b], [f, h])

< y < DP ([c, d], [e, g]) < z < DP ([c, d], [f, h])

Block dot products may be implemented either sequentially or in parallel:

SeqDP 2×2([a, b], [c, d]) = MM(a, c) > m1 > MM(b, d) > m2 > MA(m1,m2)
DP 2×2([a, b], [c, d]) = MA(m1,m2) < m1 < MM(a, c) < m2 < MM(b, d)

Refinement to an IaaS Orchestration. BMM2×2 can be refined to an
orchestration which operates in the infrastructure as a cloud model (IaaS); here
cloud hardware resources can be provisioned and managed explicitly. The IaaS-
level orchestration below has in its argument list the name of a cloud provider,
P , an operating system image, IMG, as well as the services MM and MA. The
subsidiary orchestration DPI uses P and IMG to provision two machines for
each dot-product.

BMMI([[A11, A12], [A21, A22], [B11, B21], [B12, B22]], P, IMG,MM,MA) =
1([[C11, C21], [C12, C22]])

< C11 < DPI([A11, A12], [B11, B21], P, IMG,MM,MA)
< C12 < DPI([A11, A12], [B12, B22], P, IMG,MM,MA)
< C21 < DPI([A21, A22], [B11, B21], P, IMG,MM,MA)
< C22 < DPI([A21, A22], [B12, B22], P, IMG,MM,MA)

DPI([A1, A2], [B1, B2], P, IMG,MM,MA) =
M1.deploy(MA) > MA1 > MA1(x, y)

< x < M1.deploy(MM) > MM1 > MM1(A1, B1)
< y < M2.deploy(MM) > MM2 > MM2(A2, B2)

< M1 < P.provision(IMG)< M2 < P.provision(IMG)
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A Stress Model for BMM. Performance results for executing BMM on clus-
ters of Amazon EC2 c1.xlarge instances (8 CPU cores per instance) are shown
in Table 2:

Table 2. Average, minimum and maximum times (in seconds) for BMM

Matrix Size Block Size Instances Used Avg Min Max

8000 8000 1 41 (m) 24 76

16000 16000 1 297.22 171 408

8000 4 151.95 94 206

8000 8 103.55 77 155

Times are calculated using 20 separate tests. Execution time is measured remotely
from a client and includes internet latency. A stress model for BMM is constructed
by mapping δe(MM) and δo(MM) onto the minimum and maximum execution
times for MM , respectively. The data for the one instance 8000×8000 experiment
is used to build a qualitative model4. Speed-up predictions made by the uncertainty
model are upper-bounds on actual speed-ups [8] since latency is not taken into
account. The following stress model S results:

δ(MA) = δo+e(MA) = a, δ(MM) = δo+e(MM) = m,

δo(MA) = 2 ∗ a, δo(MM) = 2 ∗ m, δe(MA) = 0.5 ∗ a, δe(MM) = 0.5 ∗ m

4 Assessing BMM Orchestrations Under Stress

The IaaS model allows application developers to control directly the degree of
parallelism employed by a cloud implementation. Three possible IaaS deploy-
ment configurations for BMM are considered below:

– single machine BMM : The performance is estimated by the performance of a
intra-machine deployment (sequential implementation) of BMM2×2.

– dot product inter-machine virtualisation (BMMSeqDP ): here a separate mac-
hine instance is allocated to each of the 4 dot products in BMM .

– fully parallel inter-machine virtualisation (BMMI): here a separate machine
instance is allocated to each of the 8 matrix multiplication services.

BLAS Routines and Intra-machine Virtualization. Matrix multiplication
is implemented on a single machine instance using BLAS library calls. Perfor-
mance is modelled using a uniform stress model where all services (on a single
core) are subject to the same level of stress. The performance of sequential dot
product in an environment with a stress level l, l ∈ {o, e, o + e} is estimated by

4 The cost of matrix multiplication etc. depend on the problem size. However, in order
to simplify the analysis a fixed problem size is used.
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Δl(SeqDP 2×2) = 2δl(MM)+δl(MA). The performance of sequential BMM2×2

under mixed stress is estimated by Δo+e(BMM2×2) = 4Δo+e(SeqDP 2×2) =
4(2m + a) Since m >> a then Δo+e(BMM2×2) ≈ 8m (roughly in line with
the experimental data for sequential matrix multiplication on 8000 × 8000 and
16000 × 16000 data – see Table 2).

Inter-machine Virtualization. A uniform stress model does not capture the
uncertain nature of service-based environments where deployment may take
place on independent machine instances. Orchestration BMMSeqDP has inde-
pendent machine instances allocated to each dot product:

BMMSeqDP ([a, b, c, d], [e, f, g, h]) =
1([w, x, y, z]) < w < SeqDP 1([a, b], [e, g]) < x < SeqDP 2([a, b], [f, h])

< y < SeqDP 3([c, d], [e, g]) < z < SeqDP 4([c, d], [f, h])

The profile U = 〈BMMSeqDP , S, S, 1, 1,Δmax〉 where S = {SeqDP 1, . . . ,
SeqDP 4} models BMMSeqDP under moderate balanced stress and gives rise
to the game:

The strategy α = β = (1/4, 1/4, 1/4, 1/4) is an equilibrium with delay Δ(α, β) =∑
i,j α(DP i)β(DP j)Δ(DP i,DP j) = 7(2m + a)/4 ≈ 7m/2. Table 2 shows that

multiplication of matrices of size 16000 × 16000, takes 151.95 ≈ 3.7m seconds.

Fully Parallel IaaS Deployment. In order to achieve high performance all
MM instances in BMM2×2 are called in parallel (using DP 2×2). The orches-
tration BMMI has eight (parallel) instances of MM and four instances of MA.
Thus S = {MM1, . . . , MM8,MA1, . . . , MA4} is the set of services under the
influence of stress. Profile U = 〈BMM I ,S,S, 1, 1,Δmax〉 provides a model of
the behaviour of BMM I in a mixed stress environment (where both angel and
daemon have the capacity to influence a single service) and gives rise to the
associated game

Here the notation P�b	Q (denoting ‘P if b else Q”) is used to provide a compact
description. If both players choose MM1 then BMM I will have performance
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m+a; however if they choose different MM instances then performance degrades
to 2m + a (a parallel computation is only as fast as its slowest component).
When m ≥ 4a, α = β = (1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 0, 0, 0, 0) is a mixed
equilibrium such that Δ(α, β) = 15

8 m + a. Thus mixed stress is predicted to
degrade the performance of BMM I from an optimium m + a to 15m/8 + a. In
this case there is a discrepancy between experimental data (≈ 2.5m) and the
game theory predication (≈ 15

8 m). However, the latter approach provides a much
better performance estimate than a uniform stress model (≈ m).

5 Redundancy and Increased Stress Levels

In practice BMM orchestration deployments with 64 or more machine instances
may have reliability issues due either to slow or non-responsive services [6].
The a/d approach can be applied to reason about the use of redundancy to
improve orchestration resilience. Service DP2×2 can be enhanced by the addition
of duplicate multiplication services:

rdntMM DP 2×2([a, b], [c, d]) =

MA(m1,m2) < m1 <
(
1(m) < m < (MM1(a, c) | MM2(a, c))

)

< m2 <
(
1(m) < m < (MM3(b, d)) | MM4(b, d))

)

Here MM1,MM2,MM3,MM4 are independent services. A mixed-stress profile
for rdntMM DP is UrdntMM DP = 〈rdnt DP 2×2S,S, 1, 1,Δmax〉 where S =
{MA,MM1,MM2,MM3,MM4}. The associated a/d-game has (MA,MA) as
pne with valuation m+a. Thus, it is predicted that adding redundancy improves
performance of dot product from 3m/2 + a to m + a. Four rdntMM DP can
be incorporated within BMM2×2 in order to improve the overall QoS. This
situation is assessed using the profile U = 〈rdntMM BMM2×2,S,S, 1, 1,Δmax〉
where S = {MA1, . . . , MA4,MM1, . . . , MM16}. The resulting a/d-game has
(MA,MA) as a pne with valuation m+a (compared to the estimated 15m/8+a
for the normal implementation).

Dot product with in-built redundancy (above) can be analysed in a sce-
nario with increased stress where the daemon influences two services whereas
the angel can only moderate one. The situation is captured by the profile U =
〈rdntMM DP 2×2,S,S, 1, 2,Δmax〉, S = {MM1, . . . , MM4,MA}. The associ-
ated game has no pne. However mixed equilibria have valuations 3/2m + a.
Thus, additional stress causes dot product (with redundancy) to deteriorate
from m + a to 3/2m + a. The behaviour of the full multiplication orchestration
rdntMM BMM2×2 under increased stress can be analysed in a similar way
using the profile U = 〈rdntMM BMM2×2,S,S, 1, 2,Δmax〉. Provided that m ≥
4a the value of the a/d-game is 15m/8 + a. Thus, additional stress is predicted
to cause an approximate doubling in the execution time of rdntMM BMM .

6 Discussion

There are well established theories for estimating the performance of sequential
and parallel computations with respect to the number of operations that are
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executed for a given size of input. Analysing performance in service-based envi-
ronments is much more complex. A conventional orchestration cost model
captures behaviour in favourable operating conditions. More generally, the beha-
viour of an orchestration is dependent on the current level of environmental stress
and the resilience of underlying services. In this paper uncertainty profiles are
used to model the competitive circumstances that arise when services are subject
to the effects of both overdemand and elasticity. The model a/d-model provides
an extra layer of understanding about the evaluation of complex orchestrations.

There is a reasonable correlation between the predictions made by the a/d-
model and experimental data. It is important to remember that uncertainty pro-
files are qualitative descriptions of evaluation environments; a/d-games provide a
broad picture of how stress affects orchestration behaviour. Our aim is to provide
a framework in which designers can analyse the effects of resource contention on
services and orchestrations (rather than having to rely on a trial-and-error app-
roach). In the paper we demonstrate how a/d performance parameters can be
constructed from experimental data. Perhaps the usefulness of the model can be
seen most clearly when analysing the stress resilience capabilities of a number
of different forms of a workflow.

It is not clear how the a/d approach scales with orchestration size. In general
it may be difficult to calculate Nash equilibria for large irregular orchestrations.
However, it should be noted that there are practical techniques for finding mixed
equilibria of large games [5]. In this paper attention has been focused on the effect
that resource contention can have on machine and orchestration performance.
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Abstract. Game-theoretic security resource allocation problems have
generated significant interest in the area of designing and developing
security systems. These approaches traditionally utilize the Stackelberg
game model for security resource scheduling in order to improve the pro-
tection of critical assets. The basic assumption in Stackelberg games is
that a defender will act first, then an attacker will choose their best
response after observing the defender’s strategy commitment (e.g., pro-
tecting a specific asset). Thus, it requires an attacker’s full or partial
observation of a defender’s strategy. This assumption is unrealistic in
real-time threat recognition and prevention. In this paper, we propose
a new solution concept (i.e., a method to predict how a game will be
played) for deriving the defender’s optimal strategy based on the princi-
ple of acceptable costs of minimax regret. Moreover, we demonstrate the
advantages of this solution concept by analyzing its properties.

1 Introduction

Recently, the problem of allocating limited security resources for protecting crit-
ical infrastructure and the general public has attracted significant research inter-
est. In the literature, most existing work deals with this problem in the Stackelberg
game framework [10,14]. That is, a defender selects their strategy based on the
assumption that an attacker can observe and understand the defender’s strat-
egy. As a result, the Stackelberg game framework mainly focuses on the effective
scheduling of limited security resources through past experience or knowledge.

Example 1. A surveillance system in an airport has detected that a person has
been loitering in the shopping area excessively. A combination of metal detection
and body-shape image capture at the entrance to the shopping area suggest that
the person may be carrying a gun and a bag. Moreover, there are three critical
assets in the shopping area: a Foreign Currency Exchange office, a Supermarket
and a Jewelry Shop. Suppose there is currently only one security team available,
where should the security team protect?

In this example, using information obtained by the surveillance system and
the event inference method in [7,15], we can infer the suspect’s motivation,
c© Springer International Publishing Switzerland 2015
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e.g., detonating a bomb in a public place, carrying out a robbery, etc. Malevolent
motivations such as these can be used to model subsequent attack preferences
(e.g., a robber may be more likely to target a bank than a shopping mall, while
a bomber may be more likely to target a shopping mall than a bank). Thus,
we can make use of such motivations as indicators of different types of attacker.
Given that there may be multiple potential targets for an attacker and that a
defender has limited resources for protecting these targets, it is essential for the
defender to determine which target an attacker is most likely to attack. This
type of problem is called a Surveillance Driven Security Resource Allocation
(SDSRA) problem.

Since, in SDSRA problems, security teams act after detecting a potential
threat, it suggests that an attacker and a defender actually execute their actions
simultaneously. This contrasts with the type of security games addressed in [14],
where a security manager assigns a patrol schedule for the security team first
and the attacker then makes their decision based on the observation of the
defender’s strategy. As a result, current solution concepts based on the Stack-
elberg game framework, such as the Strong Stackelberg equilibrium [14], robust
non-equilibrium solutions [11] and worst-case approaches for interval uncer-
tainty [4], are not well-suited for modelling SDSRA problems. Moreover, in such
games, since an attacker cannot know a defender’s payoff value as well as a
defender’s probability distribution over different attacker types (motivations),
traditional solution concepts, such as the Bayes-Nash equilibrium [5], cannot
handle these problems either. Therefore, a natural direction is to consider a new
game framework and solution concept for handling these SDSRA problems.

In this paper, we propose a principle of acceptable costs of minimax regret
for the SDSRA game model based on three assumptions: (i) influence of loss-
aversion for each player; (ii) minimax regret and loss-aversion based strategy
selection for each player; (iii) knowledge of payoff matrices.1 With this principle,
we propose a method to predict the strategy which will be selected by each type
of attacker and to determine the defender’s optimal strategy. Finally, we analyze
the properties of this new solution concept to justify our framework and suggest
a linear programming implementation. Our main contributions are as follows:
(i) we extend the application of security games to the SDSRA problem; (ii) with
our solution concept, we dynamically predict an attacker’s target/goal based
on information gathered and inferred from an intelligent surveillance system;
(iii) according to an attacker’s strategy, we flexibly determine a defender’s opti-
mal strategy by balancing the expected payoff for successful threat prevention
and for unaffordable losses caused by failure; and (iv) we validate our method
by analyzing its properties.

The rest of this paper is organized as follows: Sect. 2 introduces three assump-
tions underpinning the new solution concept for the SDSRA problem; Sect. 3 pre-
dicts the optimal mixed strategy for each possible type of attacker and analyzes
the properties of our attacker strategy prediction method; Sect. 4 discusses the

1 A defender’s knowledge of both players’ payoff matrices and an attacker’s knowledge
of their own payoff matrix.
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selection of the optimal strategy for the defender; and Sect. 5 discusses related
work and concludes the paper with future work proposals.

2 Rationalizability in SDSRA

When a security manager obtains real-time probabilistic surveillance informa-
tion [15]2, we can describe the security game for SDSRA as follows:

Definition 1. A security game of SDSRA is a 6-tuple of (N,Θ,A, Ψ,M, U):

– N = {1, 2}, where 1 stands for a defender and 2 stands for an attacker.
– Θ = {t1, . . . , tn}: set of potential types of an attacker.
– A = {Ai | i = 1, 2}: Ai is a pure strategies set of player i. Here, a pure strategy

is an action executed by a player.
– Ψ = {(ak, bl) | ak ∈ A1 and bl ∈ A2}: set of all pure strategy profiles.
– P = {p(t) | p(t) is a probability value for each element t of Θ}.
– U = {ui,t(X) | i ∈ N , t ∈ Θ, X ∈ Ψ}, ui,t(X) is a payoffs function ui,t :

Ψ → R}.
The probability distribution P and the defenders utilities (i.e., u1,t(X) for each
t ∈ Θ and X ∈ Ψ) are known only to the defender.

For each player a mixed strategy si is a probability distribution over his set
of pure strategies. The differences between the security game of SDSRA and
the traditional security game are: (i) an attacker and a defender actually take
their actions simultaneously; (ii) a defender’s payoff value for each pure strat-
egy profile is unknown by an attacker; (iii) an attacker is unlikely to know the
defender’s probability distribution over potential attacker types (motivations).
The first difference is the reason that solution concepts for Stackelberg games
are not applicable, while the second and the third differences are the reasons
that the Bayes-Nash equilibrium is not applicable. As a result, we introduce a
new solution concept, called the principle of acceptable costs of minimax regret,
which exploits two factors in decision making under uncertainty: loss-aversion
and regret3. These factors have been identified in the literature and have been
observed in psychological experiments [6,12]. Similar to the idea of the rational-
izability in the Nash equilibrium [9], we provide three constraints on players for
our solution concept: A1: Each player considers the influence of loss-aversion
(i.e., people’s tendency to strongly prefer ensuring a sufficient minimum payoff
rather than seeking potential maximum utility in decision making). A2: Each
player minimizes their maximum regret based on their attitude towards loss-
aversion and the strategic choices of others. A3: The attacker’s payoffs matrix
is known by the defender and each player knows his own payoff matrix.

2 While surveillance information can be represented by some imprecise probability
theories [7], due to space restrictions, in this paper we focus on probability theory.

3 Regret is an emotion associated with decisions which yield undesirable outcomes.
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Table 1. Aumann and maschler game

A B

A 1,0 0,1

B 0,3 1,0

Consider assumption A1 first. This idea of loss-aversion has been discussed
extensively in the literature. An example in [12] is, perhaps, the most well-
known. Consider the game in Table 1, where player 1 is the row player and
player 2 is the column player. Clearly, in this game, the payoffs for the unique
Nash equilibrium ((34A, 1

4B), (12A, 1
2B)) for each player can be guaranteed by

their maximin strategy, i.e., (12A, 1
2B) for player 1 and (14A, 3

4B) for player 2. In
the literature [3,12], many have argued over what strategy should be selected
by each player: Nash equilibrium or maximin strategies? Some researchers, such
as Harsanyi [3], have further argued that the players should indeed choose their
maximin strategies, since the Nash equilibrium means a player would risk losing
their maximin value without gaining a higher expected utility.

For Assumption A2, it means in our games players will minimize their max-
imum regret based on a threshold, rather that maximize their expect utility
based on the correct subjective beliefs about another player’s strategy. In fact,
many behavioral studies (e.g., [1]) show that human decisions under uncertainty
are strongly influenced by the emotion of regret. The minimax regret principle
suggested in [13] says that a choice is admissible if this choice minimizes the
maximum difference between the outcome of a choice and the best outcome that
could have been obtained in a given state.

Finally, assumption A3 is accepted by solution concepts in the Stackelberg
game framework [14]. Such an assumption is more realistic than the Nash equilib-
rium concept when applied to real-world applications, since this concept assumes
that all player strategies and all player payoffs are common knowledge. Hence,
according to these assumptions, our solution concept should satisfy:

A player is willing to select a strategy with a lower maximum regret, after con-
sidering whether the minimum expected payoff of such a strategy is an acceptable
reduction of their maximin expected payoff.

Actually, this principle has two advantages. Firstly, it avoids the overly pes-
simistic (worst case) approach of the maximin strategy. For example, suppose a
lottery sells tickets for $1 with a 99% chance of winning $5000, then the maximin
strategy would reject the offer. Clearly this violates our intuition. In our princi-
ple, however, if losing $1 is acceptable to a player then this risk will be tolerated.
Secondly, it avoids the potential for unaffordable losses resulting from the mini-
max regret strategy. For example, suppose a lottery sells tickets for $1000 with
a 1% chance of winning $5000, then the minimax regret strategy would always
accept the offer. Clearly this violates our intuition also. In our principle, a player
will consider whether $1000 is an acceptable loss and may or may not accept the
offer. These advantages are useful in real-world security applications, since some
losses are unaffordable (e.g., people’s lives) while an overly pessimistic approach
may mean that a player loses the chance to act.
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3 Solution Concept for SDSRA Problem

First, we consider the prediction of the attacker’s strategy. Formally, we have:

Definition 2. Let S2 = {s12, . . . , s
m
2 , . . . } be a set of mixed strategies for the

attacker, which each mixed strategy is a probability distribution over A2. σ2,t ∈
[0, 1] is the threshold of acceptable cost which an attacker of type t can tolerate
and at ∈ A1 is a pure strategy of a defender. Then the optimal strategy for the
attacker of type t, denoted as s∗

2,t ∈ S2, is given by:

s∗
2,t = argmin{r(si

2) |r(si
2) = max

ah

{max
j �=i

u2,t(ah, sj
2)−u2,t(ah, si

2)}}, (1)

where
min
as

u2,t(as, s
i
2) ≥ max

sk
2

min
ar

u2,t(ar, s
k
2) − ςa,t, (2)

ςa,t = σ2,t(max
sk
2

min
ar

u2,t(ar, s
k
2) − min

sl
2

min
aw

u2,t(aw, sl
2)). (3)

Equation 1 in Definition 2 means that an attacker will select, as their optimal
strategy, a mixed strategy which can minimize their maximum regret. Hence,
Eq. 2 limits the acceptable cost for a given attacker when adopting the minimax
regret strategy. That is, the minimum expected utility of the strategy should be
higher than an acceptable reduction of the maximin value. Equation 2 shows how
to calculate the acceptable reduction, where ςa,t denotes the maximum loss that
a type t attacker might pay in a SDSRA security game. Moreover, σ2,t in Eq. 3
is determined by an attacker’s type. That is, some attackers will accept a choice
with a lower minimum utility in order to reduce the maximum regret, while some
attacker will refuse a high loss of their minimum utility. In short, the higher the
value of σ2,t, the higher the tolerance for loss of the minimum utility. In real-world
applications, σ2,t can be obtained for each type of attacker from historical data or
from criminology experts. Clearly, different types of attackers will have different
attitudes for loss of the minimum utility. For example, a politically motivated
terrorist usually shows higher tolerance for loss of the minimum utility than a
robber, who is normally more concerned about their own safety.

Now, we consider how to find an optimal strategy for the defender based on
the optimal mixed strategy s∗

2,t for each type of attacker and the probability
distribution over the attacker’s possible types. In contrast to traditional security
games, in real-time surveillance systems a defender needs to decide how to act
in order to prevent further actions from the attacker. As a result, since only one
pure strategy will be adopted by one security resource of the defender, we only
need to consider the minimax regret with respect to pure strategies. Thus, using
the same idea as our principle of acceptable costs of minimax regret, we can
select the optimal strategy for the defender by:

Definition 3. Let ai ∈ A1 be a defender’s pure strategy, Θ be the set of possible
types of an attacker, p(t) be the probability value of attacker type t, σ1 ∈ [0, 1]
be the threshold of acceptable cost that a defender can tolerate, and s∗

2,t be the
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optimal mixed strategy for each type of attacker. Then the defender’s optimal
strategy, denoted as a∗, is given by:

a∗
1 = arg max{EU(ai) | EU(ai) =

∑

t∈Θ

p(t)u1,t(ai, s
∗
2,t)}, (4)

where
min
a2,t

∑

t∈Θ

p(t)u1,t(ai, a2,t) ≥ max
ah

min
a2,t

∑

t∈Θ

p(t)u1,t(ah, a2,t) − ςd, (5)

ςd = σ1(max
ah

min
a2,t

∑

t∈Θ

p(t)u1,t(ah, a2,t) − min
al

min
a2,t

∑

t∈Θ

p(t)u1,t(al, a2,t)). (6)

The reason we adopt the same formula as the maximum expected utility in
Eq. (4) is that the defender already knows the attacker’s optimal mixed strategy
s∗
2,t and the probability distribution over the attacker’s possible types. As a

result, according to Assumption 2 and Definition 2, the minimax regret strategy
is the same as the maximum expected utility strategy for the defender. Moreover,
since the attacker’s strategy is based on a judgement of the attacker’s payoff
matrix, the threshold of acceptable cost assumption for each type of attacker,
and imperfect information obtained by surveillance system, there is a chance
that the attacker may play a different strategy than the strategy predicted by
the defender. Thus, Eqs. (5) and (6) together guarantee the minimum expected
utility for a given pure strategy is acceptable for the defender.

In fact, a security manager can fine-tune the value of σ1 to reflect different
(real-time) situations for different applications. In this way, our method is more
flexible in balancing the possibility of unaffordable losses caused by the failure
of prevention and the expected payoff for successfully preventing an attack.

4 Properties and Linear Programming

Since the correctness of the defender’s optimal strategy in our method is based
on a prediction of the attacker’s strategy, we consider properties of Definition 2
to justify the attacker’s strategy prediction method. Moreover, given these prop-
erties, the whole process in our solution concept can be interpreted as an opti-
mization problem for which there exists efficient methods of computation.

Theorem 1. The maximin strategy of an attacker for our SDSRA security game
is an unique equalizer4.

Proof. Suppose A1 = {a1, . . . .an} is the set of defender’s pure strategies; {q1, . . . ,
qn} is a set of probability values over the set of attacker’s pure strategy A2 =

4 Formally, in a two-player game, a probability distribution p for the pure strategies of
a given player i (Ai = {a1, . . . , an}) is an equalizer if and only if there exists c ∈ �
(� is the set of real numbers) and any pure strategy bj for their opponent, s.t. the
following equation holds Σn

t=1p(at)ui(at, bj) = c.
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{b1, . . . , bn}. By the definition of an equalizer, our game has a unique equalizer
if and only if for linear equations Aq = u, where

A=

⎡

⎢
⎢
⎢
⎣

u2(a1, b1) · · · u2(a1, bn)
...

. . .
...

u2(an, b1) · · · u2(an, bn)
1 · · · 1

⎤

⎥
⎥
⎥
⎦
, q=

⎡

⎢
⎣

q1
...

qn

⎤

⎥
⎦, u=

⎡

⎢
⎢
⎢
⎣

c
...
c
1

⎤

⎥
⎥
⎥
⎦
,

there exists a unique solution q. Thus, rank(A) = n. In other word, it requires:
(i) no convex combination of some rows in A dominating convex combinations
of other rows; (ii) the payoff matrix satisfies |A1| = |A2| = n. Since there
does not exist any dominated strategy for the attacker, item (i) holds in our
game. Hence, since the defender and attacker share the same set of targets, item
(ii) also holds in our game. ��
This theorem reveals that an attacker can always find a unique strategy that
guarantees their expected payoff regardless of any mixed strategy of the defender.

Theorem 2. In a SDSRA security game, the expected payoff of the maximin
strategy will not be less than a completely mixed Bayes-Nash equilibrium.

Proof. Since in a completely mixed bimatrix game, each player can guarantee
the expected payoff from a completely mixed equilibrium by playing a maximin
strategy if and only if such a strategy is an equalizer [12]. By Theorem 1, and
the fact that a Bayesian game in which the type space is finite can be redefined
as a normal form game in which the strategy space is finite dimensional [9], this
result can be obtained directly. ��
Since our games satisfy that no pure or mixed strategy of an attacker or defender
is strictly or weakly dominated by a convex combination of their other strate-
gies, Theorem 2 shows that in many cases, an attacker can guarantee that their
expected payoff is not less than the completely mixed Bayes-Nash equilibrium
by selecting a maximin strategy.

Theorem 3. Suppose ah is a pure strategy for the defender, bk is a pure strategy
for the attacker, then the maximin regret rt(si

2) for the attacker’s (of type t)
strategy si

2 in a SDSRA security game can also be obtained as follows:

rt(si
2) = max

ah

{max
bk

u2,t(ah, bk)−u2,t(ah, si
2)}

Proof. Given the linearity of payoff functions and the fact that there does not
exist any dominated strategy for the attacker, we obtain this result directly. ��
This theorem means that we only need to consider the pure strategy of the
attacker when considering the maximin regret strategy of the attacker.

Theorem 4. Suppose ah is a defender’s pure strategy, bk is an attacker’s pure
strategy, and the payoff value of successfully attacking each target is the same
for an attacker with a given type t (u2,t(ai, bj) = u2,t(as, br), i �= j, s �= r), then
the minimax regret strategy is the same as the maximin strategy for the attacker.
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Proof. Suppose the maximin strategy for an attacker of a given type t is s2. By
Theorem 1, for any defender’s pure strategies ai and as, we have u2,t(ai, s2) =
u2,t(as, s2). Then, by Theorem3 and u2,t(ai, bj) = u2,t(as, br) > u2,t(ak, bl), for
any i �= j, s �= r, k = l,5 we have

rt(s2) = u2,t(ah, bk)−u2,t(ah, s2), for any h �= k.

Suppose there exists a minimax regret strategy s∗
2 �= s2, then we have rt(s∗

2) ≤
rt(s2). Given the uniqueness of the equalizer (Theorem1) and u2(ai, bj) =
u2(as, br), i �= j, s �= r, we have rt(s∗

2) �= rt(s2). Moreover, by rt(s∗
2) < rt(s2), for

a given defender’s pure strategy ai, we have u2,t(ai, bk)−u2,t(ah, s∗
2) < u2,t(ai, bk)−

u2,t(ai, s2), i �= k. Then, we have u2,t(ah, s∗
2) > u2,t(ai, s2). Since s2 is a maximin

strategy, there exists a pure strategy as, such that u2,t(as, s
∗
2) < u2,t(as, s2). So,

we have u2,t(as, bk)−u2,t(as, s
∗
2) > u2,t(as, bk)−u2,t(as, s2), s �= k. It violates our

assumption that rt(s∗
2) ≤ rt(s2). So, s∗

2 = s2. ��
Theorem 3 demonstrates that if the payoff value of successfully attacking each
target is the same for an attacker with a given type, then he can choose their
maximin strategy to guarantee their minimum payoff value as well as to reduce
their maximum regret in our games. Also, the relationship between Definition 2
and the decision rule of minimax regret [13], as well as that of Γ -maximin [9] is
as follows:

Theorem 5. Let σ2,t ∈ [0, 1] be the threshold of acceptable cost that an attacker
of type t can tolerate, and s∗

2,t be the optimal strategy for attacker type t, accord-
ing to the principle of acceptable costs of maximum regret:

(i) if σ2,t = 1, then s∗
2,t is also an optimal choice according to the rule of mini-

max regret; and
(ii) if σ2,t = 0, then s∗

2,t is also an optimal choice according to the rule of Γ -
maximin.

Proof. (i) From Eqs. (2) and (3) and the fact σ2,t = 1, a mixed strategy si
2 can

be any element in the set of mixed strategies S2. Then, from Eq. (1), s∗
2,t is also

an optimal choice according to the rule of minimax regret. (ii) From Eqs. (1),
(2), and (3), with σ2,t =0, s∗

2,t can only be an element with the maximin utility
in the set of mixed strategies S2,t. Thus, s∗

2,t is also an optimal choice according
to the Γ -maximin rule. ��
Actually, given Definitions 2 and 3 as well as Theorems 1 and 3, the whole process
of finding a defender’s optimal strategy based on the strategy selected by each
possible type of attacker can be solved by two Linear Programs as follows6:

5 k = l means that both players select the same target (i.e., the attacker loses), while
i �= j and s �= r mean that players select different targets (i.e., the attacker wins).

6 Since a defender may have multiple available security resources, our Linear Programs
will also consider this situation based on Definition 3.
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min
{qt

j}
r2,t({qt

j})

s.t. r2,t({qt
j}) ≥ (u2,t(ah, bk) −

n∑

i=1

qt
ju2,t(ah, bj))(∀ah,∀bk)

n∑

j=1

qt
ju2,t(ah, bj) ≥ (1 − σ2,t)C2,t + σ2,tV2,t (∀ah)

C2,t =
n∑

l=1

qt
lu2,t(as, bk) (as ∈ A1)

V2,t = min{u2,t(ah, bk)} (∀ah,∀bk)
n∑

j=1

qt
j = 1, qt

j ∈ [0, 1]

max
{xi}

n∑

i=1

n∑

j=1

∑

t∈Θ

p(t)xiu1,t(ai, bj)qt
j

s.t.
n∑

i=1

∑

t∈Θ

p(t)xiu1,t(ai, bj) ≥ (1 − σ1)C1 + σ1V1

C1 = max{
∑

t∈Θ

p(t)u1,t(ai, bj)}

V1 = min{
∑

t∈Θ

p(t)u1,t(ai, bj)}
n∑

i=1

x∗
i = k, x∗

i ∈ {0, 1}

The first LP aims to find the mixed strategy selected by each possible type
of attacker {qj

t } based on our principle while the second LP aims to find the
defender’s optimal strategy {xi}. For the first LP, the objective function and
the first constraint represent Eq. 1, the second, third and fourth constraints rep-
resent Eqs. 2 and 3 (where {qt

1, . . . , q
t
n} is the probability distribution for a type t

attacker’s unique equalizer strategy), the fifth constraint limits the set {qt
j} as

a probability distribution over the set of actions A2. For the second LP, the
objective function represents Eq. 4, the first, second and third constraints rep-
resent Eqs. 5 and 6, and the fourth constraint limits the strategies selected by a
defender being a pure distribution over A1 (that is, pi = 1 or pi = 0) and the
amount of available security resources.

5 Conclusion

Related Work: Recently, security games have received increasing attention
when aiming to solve security resource allocation problems [14]. Much of the
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work deals with this problem within the Stackelberg game framework [5,8,10].
That is, a defender commits to a strategy first and an attacker chooses their
strategy based on the defender’s commitment. The typical solution concept is
the Strong Stackelberg Equilibrium, which assumes that an attacker will always
break ties in favor of a defender in the case of indifference [5]. However, it is
not always intuitive in real-world applications: how can an attacker observe
the defender’s strategy in a real-time, interactive environment? Thus, our work
provides a more reasonable solution concept based on the principle of acceptable
costs of minimax regret. On the other hand, in recent years there has been an
increase in the deployment of intelligent surveillance systems, largely in response
to the high demand for identifying and preventing threats for public safety, e.g.,
suspect object tracking [2] and anti-social behavior analysis [7]. However, to
the best of our knowledge, little work of this kind focuses on how to allocate
security resources to prevent possible attacks based on incomplete information
in a surveillance system.

Conclusion: This paper proposed a new solution concept to handle SDSRA
security games based on the principle of acceptable costs of minimax regret.
Firstly, we discussed the rationalizability assumptions of our principle: loss-
aversion, minimax regret, and knowledge of the payoff matrix. Then, based on
this principle, we proposed a method to predict the attacker’s strategy and
to determine the optimal strategy for the defender. Finally, we validated our
method with some properties and provided a Linear Program for our solution
concept.
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Abstract. Recently, belief change within the framework of fragments
of propositional logic has gained attention. Previous works focused on
belief revision, belief merging, and on belief contraction in the Horn frag-
ment. The problem of belief update within the framework of fragments of
propositional logic has been neglected so far. In the same spirit as a pre-
vious extension of belief revision to propositional fragments, we propose
a general approach to define new update operators derived from exist-
ing ones such that the result of update remains in the fragment under
consideration. Our approach is not limited to the Horn fragment but
applicable to many fragments of propositional logic, like Horn, Krom
and affine fragments. We study the logical properties of the proposed
operators in terms of the KM’s postulates satisfaction and highlight dif-
ferences between revision and update in this context.

Keywords: Belief change · Belief update · Fragments of propositional
logic · Knowledge representation and reasoning

1 Introduction

Belief update consists in incorporating into an agent’s beliefs new information
reflecting a change in her environment. The problematic of belief update first
appeared in the domain of databases for updating deductive databases [14].
Significant links quickly emerged with works developed in artificial intelligence
on belief change, especially on belief revision. Keller and Winslett [22], and
later Katsuno and Mendelzon [21] allowed us to get a better understanding
regarding the distinction between belief revision and belief update when they
proposed a common framework to represent these operations. Belief revision
happens when new information is introduced in a static environment, while
belief update occurs in a changing environment. From a logical point of view,
when the agent’s beliefs are represented by a logical formula, revision makes
the models of this formula evolve as a whole towards the closest models of new
information. In contrast, update makes each model of this formula locally evolve
towards the closest models of new information.
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Postulates characterizing the rational behavior of update operators have been
proposed by Katsuno and Mendelzon (KM) [21] in the same spirit as the seminal
AGM’s postulates [1] for revision. Belief update gave rise to several studies,
in most cases within the framework of propositional logic, and concrete belief
update operators have been proposed mainly according to a semantic (model-
based) point of view [3,7,8,11,12,15,16,18,23,29].

Many studies focused on belief change within the framework of propositional
logic fragments, particularly on belief contraction [2,10,30] and belief revision
[4,5,9,25,31]. However, as far as we know, the problem of belief update within
fragments of propositional logic has not been addressed so far, except for com-
plexity results in the Horn case [13,24].

The motivation of such a study is twofold. First, in many applications, the
language is restricted a priori. For instance, a rule-based formalization of expert
knowledge is much easier to handle for standard users. In case of update they
expect an outcome in the same language. Second, some fragments of proposi-
tional logic allow for efficient reasoning methods, and then an outcome of update
within such a fragment can be evaluated efficiently. It seems thus natural to
investigate how known update operators can be refined such that the result of
update remains in the fragment under consideration.

Let L′ be a propositional fragment and given two formulas ψ, μ ∈ L′, the
main obstacle hereby is that there is no guarantee that the outcome of an update,
denoted by ψ�μ, remains in L′ as well. Let, for example, ψ = a and μ = ¬a∨¬b,
be two Horn formulas. Updating ψ by μ in using Forbus’ [15] or Winslett’s
operator [28] results in a formula equivalent to φ = (a ∨ b) ∧ (¬a ∨ ¬b), which
is not a Horn formula and is not equivalent to any Horn formula (because its
set of models is not closed under intersection, while this property characterizes
Horn formulas, see [19])1.

In order to overcome this problem we use the notion of refinement. A refine-
ment adapts an operator defined in a propositional setting such that it can
be applicable in a propositional fragment. The basic properties of a refinement
are first to guarantee the outcome of the change operation to remain within the
fragment and second to approximate the behavior of the original operator, in
particular to keep the behavior of the original operator unchanged if the result
already fits in the fragment. We characterize these refined operators in a con-
structive way.

This characterization allows us to study their logical properties in terms of
satisfaction of the KM’s postulates. We show that the basic KM’s postulates
(U1) − (U4) are preserved for any refinement for any fragment. We then study
the limits of the preservation of the other postulates. For this we focus on the
refinements of Forbus’ and Winslett’s operators within the Horn, Krom and
affine fragments. All along this study we shed some light on subtle differences
between update and revision.

1 Note that in this example, revision and update do not coincide.
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2 Preliminaries

2.1 Propositional Logic

Let L be the language of propositional logic build on an infinite countable set of
variables (atoms) and equipped with standard connectives →, ⊕, ∨, ∧, ¬, and
constants �, ⊥. A literal is an atom or its negation. A clause is a disjunction of
literals. A clause is called Horn if at most one of its literals is positive; Krom if
it consists of at most two literals. A ⊕-clause is defined like a clause but using
exclusive - instead of standard - disjunction. We identify LHorn (resp., LKrom ,
Laffine) as the set of all formulas in L being conjunctions of Horn clauses (resp.,
Krom clauses, ⊕-clauses).

Let U be a finite set of atoms. An interpretation over U is represented either
by a set m ⊆ U of atoms (corresponding to the variables set to true) or by
its corresponding characteristic bit-vector of length |U|. For any formula φ, let
Var(φ) denote the set of variables occurring in φ. As usual, if an interpretation
m defined over U satisfies a formula φ such that Var(φ) ⊆ U , we call m a model
of φ. By Mod(φ) we denote the set of all models (over U) of φ. A formula ψ
is complete over U if it has exactly one model over U . Moreover, ψ |= φ if
Mod(ψ) ⊆ Mod(φ) and ψ ≡ φ if Mod(ψ) = Mod(φ). For fragments L′ ⊆ L, we
use TL′(ψ) = {φ ∈ L′ | ψ |= φ}.

2.2 Characterizable Fragments of Propositional Logic

Let B be the set of Boolean functions β : {0, 1}k → {0, 1} with k � 1, that
are symmetric (i.e. for all permutations σ, β(x1, . . . , xk) = β(xσ(1), . . . , xσ(k))),
and 0- and 1-reproductive (i.e. for every x ∈ {0, 1}, β(x, . . . , x) = x). Examples
of such functions are: The binary AND function denoted by ∧, the ternary
MAJORITY function, maj3(x, y, z) = 1 if at least two of the variables x, y, and
z are set to 1, and the ternary XOR function ⊕3(x, y, z) = x ⊕ y ⊕ z.

Recall that we consider interpretations also as bit-vectors. We thus extend
Boolean functions to interpretations by applying coordinate-wise the origi-
nal function. So, if m1, . . . mk ∈ {0, 1}n, then β(m1, . . . mk) is defined by
(β(m1[1], . . . mk[1]), . . . , β(m1[n], . . . mk[n])), where m[i] is the i-th coordinate
of the interpretation m.

The next definition gives a general formal definition of closure.

Definition 1. Given a set M ⊆ 2U of interpretations and β ∈ B, we define
Clβ(M), the closure of M under β, as the smallest set of interpretations that
contains M and that is closed under β, i.e. if m1, . . . , mk ∈ Clβ(M), then
β(m1, . . . , mk) ∈ Clβ(M).

For instance it is well-known that the set of models of any Horn formula is closed
under ∧, and actually this property characterizes Horn formulas.

Definition 2. Let β ∈ B. A set L′ ⊆ L of propositional formulas is a β-fragment
(or a characterizable fragment) if: (i) For all ψ ∈ L′, Mod(ψ) = Clβ(Mod(ψ)).
(ii) For all M ⊆ 2U with M = Clβ(M) there exists ψ ∈ L′ with Mod(ψ) = M.
(iii) If φ, ψ ∈ L′ then φ ∧ ψ ∈ L′.



168 N. Creignou et al.

Well-known fragments of propositional logic are LHorn which is an ∧-fragment,
LKrom which is a maj3-fragment and Laffine which is ⊕3-fragment [19,27].

2.3 Update

Belief update consists in incorporating into an agent’s beliefs new information
reflecting a change in her environment. More formally, an update operator,
denoted by �, is a function from L × L to L that maps two formulas ψ (the
initial agent’s beliefs) and μ (new information) to a new formula ψ � μ (the
updated agent’s beliefs). We recall the KM’s postulates for belief update [20].

Let ψ,ψ1, ψ2, μ, μ1, μ2 ∈ L.

(U1) ψ � μ |= μ.
(U2) If ψ |= μ, then ψ � μ ≡ ψ.
(U3) If ψ and μ are satisfiable then so is ψ � μ.
(U4) If ψ1 ≡ ψ2 et μ1 ≡ μ2, then ψ1 � μ1 ≡ ψ2 � μ2.
(U5) (ψ � μ) ∧ φ |= ψ � (μ ∧ φ).
(U6) If (ψ � μ1) |= μ2 and (ψ � μ2) |= μ1, then ψ � μ1 ≡ ψ � μ2.
(U7) If ψ is complete, then (ψ � μ1) ∧ (ψ � μ2) |= ψ � (μ1 ∨ μ2).
(U8) (ψ1 ∨ ψ2) � μ ≡ (ψ1 � μ) ∨ (ψ2 � μ).
(U9) If ψ is complete and (ψ �μ)∧φ is satisfiable, then ψ � (μ∧φ) |= (ψ �μ)∧φ.

These postulates have been discussed in several papers (see for example [18]).
The postulates (U1), (U4) and (U5) directly correspond to the belief revision
postulates (R1), (R4) and (R5) respectively. The postulate (U2) differs from
(R2), the latter stating that if ψ∧μ is satisfiable then ψ◦μ ≡ ψ∧μ. A consequence
of (U2) for update is that once an inconsistency is introduced in the initial beliefs
there is no way to eliminate it [20]. Note that this is not the case for belief
revision. Furthermore, (U3) is a weaker version of (R3). The latter states that
if μ is satisfiable then so is ψ ◦ μ, while in order to ensure the consistency of the
result of update (U3) requires an additional condition, namely that the initial
beliefs be consistent as well. The postulates (U6), (U7) and (U8) are specific
to update operators. Finally, (U9) is a weaker version of (R6), it is similar but
restricted to complete formulas ψ.

Katsuno and Mendelzon provided a representation theorem [20] stating that
a revision operator corresponds to a set of preorders on interpretations. More
formally, for all ψ, μ ∈ L and for �ψ a preorder on interpretations satis-
fying certain conditions [20], a revision operator satisfying the AGM postu-
lates is defined by Mod(ψ ◦ μ) = min(Mod(μ),≤ψ). Similarly, they provided a
representation theorem for update [21]. More formally, for all m ∈ Mod(ψ),
μ ∈ L and for �m a preorder on interpretations satisfying certain condi-
tions [21], an update operator satisfying the KM’s postulates is defined by
Mod(ψ � μ) =

⋃
m∈Mod(ψ) min(Mod(μ),�m).

These representation theorems pinpoint the differences between revision and
update. Update stems from a point-wise minimization, model by model of ψ,
while revision stems from a global minimization on all the models of ψ. Update
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operators, for each model m of ψ, select the closest set of models of μ, while
revision operators select the set of models of μ which are the closest to the set
of models of ψ. Note that when there exists only one model of ψ revision and
update coincide.

Forbus’ operator was introduced in [15] in the context of qualitative physics.
This operator is analogous to Dalal’s revision operator [6] and measures min-
imality change by cardinality of model change. More formally, let ψ and μ
be two propositional formulas, and m and m′ be two interpretations, mΔm′

denotes the symmetric difference between m and m′ and |Δ|min
m (μ) denotes

the minimum number of variables in which m and a model of μ differ and is
defined as min{|mΔm′| : m′ ∈ Mod(μ)}. Forbus’ operator is now defined as:
Mod(ψ �F μ) =

⋃
m∈Mod(ψ){m′ ∈ Mod(μ) : |mΔm′| = |Δ|min

m (μ)}. This opera-
tor satisfies (U1) − (U8) [20] and (U9) [18].

Winslett’s operator, also called PMA (Possible Models Approach) [28] was
introduced for reasoning about actions and change. This operator is analogous
to Satoh’s revision operator [26] and interprets minimal change in terms of set
inclusion instead of cardinality on model difference. More formally, Δmin

m (μ)
denotes the minimal difference between m and a model of μ ans is defined
as min⊆({mΔm′ : m′ ∈ Mod(μ)}). Winslett’s operator is now defined as:
Mod(ψ �W μ) =

⋃
m∈Mod(ψ){m′ ∈ Mod(μ) : mΔm′ ∈ Δmin

m (μ)}. This opera-
tor satisfies (U1) − (U8) [20] but does not satisfy (U9).

In this paper we are interested in update operators which are tailored for
certain fragments. We say that � satisfies the postulates (Ui) (i ∈ {1, . . . , 9}) in
a fragment L′ ⊆ L if these postulates hold when restricted to formulas from L′.

3 Refinements of Operators

A study on how existing belief change operators can be adapted to fit into
fragments of propositional logic was initiated in [5]. In the same spirit: Given an
update operator � and a fragment L′ of propositional logic, how can � be adapted
(or refined) to a new operator � such that for all ψ, μ ∈ L′, also ψ�μ ∈ L′?2

As in [5] few natural desiderata for such refined operators can be stated.

Definition 3. Let L′ be a fragment of propositional logic and � : L × L → L an
update operator. We call an operator � : L′ × L′ → L′ a �-refinement for L′ if it
satisfies the following properties, for each ψ,ψ′, μ, μ′ ∈ L′: (i) Consistency: ψ�μ
is satisfiable if and only if ψ �μ is satisfiable. (ii) Equivalence: If ψ �μ ≡ ψ′ �μ′,
then ψ�μ ≡ ψ′�μ′. (iii) Containment: TL′(ψ � μ) ⊆ TL′(ψ�μ). (iv) Invariance:
If ψ � μ ∈ L′, then TL′(ψ�μ) = TL′(ψ � μ).

In [5] the authors defined such refined operators in the context of revision through
the notion of β-mapping as defined below. We can do the same for update.

2 There exist update operators that are well-adapted for any characterisable fragment,
i.e. that provide a result in the fragment, for instance Hegner’s operator and more
generally dependence based update operators [18].
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Definition 4. Given β ∈ B, we define a β-mapping, fβ, as an application from
sets of models into sets of models, fβ : 22

U −→ 22
U
, such that for every M ⊆ 2U :

(1) Clβ(fβ(M)) = fβ(M), i.e., fβ(M) is closed under β. (2) fβ(M) ⊆ Clβ(M).
(3) If M = Clβ(M), then fβ(M) = M. (4) If M �= ∅, then fβ(M) �= ∅.

Definition 5. Let � : L × L −→ L be an update operator and L′ ⊆ L a
β-fragment of classical logic with β ∈ B. For a β-application fβ, we denote with
�fβ : L′×L′ −→ L′ the operator for L′ defined as Mod(ψ�fβ μ) := fβ(Mod(ψ�μ)).

The class [�,L′] contains all operators �fβ where fβ is a β-mapping.

Interestingly (and as in [5], since update operators as revision operators apply
to a pair of formulas and return a formula) this class actually captures all refine-
ments we had in mind.

Proposition 6. Let � : L × L −→ L be an update operator and L′ ⊆ L a char-
acterizable fragment of classical logic. Then, [�,L′] is the set of all �-refinements
for L′.

Hence, β-mappings will allow us to define a variety of refined update operators.
A natural objective is now to study how these refined update operators behave
with respect to satisfaction of KM’s postulates, and how update differs from
revision in this context. We will consider in particular two β-mappings, namely
the closure Clβ and Minβ defined as follows.

Definition 7. Let β ∈ B and suppose that � is a fixed linear order on the
set 2U of interpretations. We define the function Minβ as Minβ(M) = M if
Clβ(M) = M, and Minβ(M) = min�(M) otherwise.

For L′ a β-fragment and � an update operator, the corresponding operators �Clβ

and �Minβ are thus respectively given as Mod(ψ �Clβ μ) = Clβ(Mod(ψ � μ)) and
Mod(ψ �Minβ μ) = Minβ(Mod(ψ � μ)).

Example 8. Let ψ, μ ∈ LHorn , such that Mod(ψ) = {{a, b, c}, {a, b, c, d, e}},
and Mod(μ) = {{b, c}, {c, d}, {a, b, d}, {c}, {d}, {b}, ∅}. We have Mod(ψ �F

μ) = {{b, c}, {a, b, d}} and Mod(ψ �W μ) = {{b, c}, {c, d}, {a, b, d}}. We obtain
Mod(ψ�Cl∧

F μ) = Cl∧(Mod(ψ�F μ)) = {{b, c}, {a, b, d}, {b}} and Mod(ψ�Cl∧
W μ) =

Cl∧(Mod(ψ �W μ)) = {{b, c}, {c, d}, {a, b, d}, {b}, {c}, {d}, ∅}.
Consider the following order over interpretations: {c, d} < {b, c} < {a, b, d}.

We thus get Mod(ψ �Min∧
F μ) = Min∧(Mod(ψ �F μ)) = {{b, c}} and Mod(ψ �Min∧

W

μ) = Min∧(Mod(ψ �W μ)) = {{c, d}}.

4 Postulates

Proposition 9. Let � be an update operator and L′ ⊆ L a characterizable frag-
ment. For i = 1, . . . , 4, if � satisfies postulate (Ui), then so does any refinement
of this operator in L′, � ∈ [�,L′].

Proof. Suppose L′ is a β-fragment. Thus we can assume that � ∈ [�,L′] is an
operator of the form �fβ where fβ is a suitable β-mapping. Since postulates (U1)
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and (U4) are exactly the same postulates as (R1) and (R4), and since satisfaction
of (U3) follows from satisfaction of (R3), according to [5, Proposition 6] we only
have to deal with (U2). By definition Mod(ψ�μ) = fβ(Mod(ψ � μ)). Since �
satisfies postulate (U2), if ψ |= μ, then ψ � μ ≡ ψ, i.e. Mod(ψ � μ) = Mod(ψ).
Therefore, fβ(Mod(ψ�μ)) = fβ(Mod(ψ)). Since ψ ∈ L′, fβ(Mod(ψ)) = Mod(ψ).
Thus, ψ�μ ≡ ψ.

A natural question is whether there exist refined update operators that satisfy
more postulates.

In the following, it is implicit that within LHorn (resp. LKrom , Laffine) a
β-mapping is a ∧-mapping (resp., maj3-mapping, ⊕3-mapping).

Proposition 10. The refined update operators �Clβ
F , �Minβ

F , �Clβ
W and �Minβ

W vio-
late postulate (U5) in any L′ ∈ {LHorn ,LKrom ,Laffine}.
Proof. We give the proof in detail for the refinement by Minβ , for � ∈
{�F , �W } and L′ ∈ {LHorn ,LKrom}. Let ψ, μ and φ in LHorn (resp.
LKrom) such that Mod(ψ) = {{a, b, c, d, e, f}, {b, c, d, e, f}}, Mod(μ) =
{∅, {c}, {a, b}, {c, d}, {e, f}, {a, b, c}}, Mod(φ) = {{a, b}, {c, d}, {e, f}, ∅}.
Observe that since these sets of models are closed under ∧ (resp. under maj3)
such formulas exist. Consider the following order {a, b} < {c, d} < {e, f} <
{a, b, c}. On the one hand we obtain Mod(ψ � μ) = {{c, d}, {e, f}, {a, b, c}}, and
thus Mod(ψ �Minβ μ) = {{c, d}}. Therefore, Mod((ψ �Minβ μ) ∧ φ) = {{c, d}}.
On the other hand, Mod(ψ � (μ∧φ)) = {{a, b}, {c, d}, {e, f}}, thus Mod(ψ �Minβ

(μ ∧ φ)) = {{a, b}}. It is then clear that (ψ �Minβ μ) ∧ φ �|= ψ �Minβ (μ ∧ φ), thus
proving that �Minβ

F and �Minβ

W violate postulate (U5) in LHorn and LKrom .

Remark 11. Let us emphasize that this result shows a difference between revision
and update. Indeed, let us recall that Forbus’ operator can be considered as the
update counterpart of Dalal’s revision operator. The refinements of these two oper-
ators by the function Minβ show a different behavior: While in [5] it was proven
that ◦Minβ

D satisfies (R5), the above proposition shows that �Minβ

F violates (U5).

For the postulate (U9) we obtain a rather general negative result, which is similar
to the result obtained for (R6) in the context of revision (but which nevertheless
requires new examples to be proven, since we need complete formulas).

Proposition 12. Let � ∈ {�F , �W } and L′ ∈ {LHorn ,LKrom ,Laffine}. Then any
refined operator � ∈ [�,L′] violates postulate (U9) in L′.

The status of the postulate (U6) is less clear than the ones we have investigated
so far. Indeed the two following propositions show that the satisfaction of (U6)
depends on the β-mapping that is used to define the refinement.

Proposition 13. Let � be an update operator and L′ a β-fragment. If � satisfies
(U6), then so does the refined operator �Clβ in L′.

Proof. Suppose that (ψ �Clβ μ1) |= μ2 and (ψ �Clβ μ2) |= μ1. Thus, Clβ(Mod(ψ �
μ1)) ⊆ Mod(μ2) and Clβ(Mod(ψ � μ2)) ⊆ Mod(μ1). Moreover, Mod(ψ � μ1) ⊆
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Clβ(Mod(ψ�μ1)) and also Mod(ψ�μ2) ⊆ Clβ(Mod(ψ�μ2)). Therefore, Mod(ψ�
μ1) ⊆ Mod(μ2) and Mod(ψ � μ2) ⊆ Mod(μ1). Since � satisfies (U6), we get
ψ � μ1 ≡ ψ � μ2. According to the equivalence property cited in Definition 3, we
have finally ψ �Clβ μ1 ≡ ψ �Clβ μ2.

Proposition 14. The refined operators �Minβ

F and �Minβ

W violate postulate (U6)
in any L′ ∈ {LHorn ,LKrom ,Laffine}.
Proof. Let � ∈ {�F , �W }. We give a full proof for the fragment LHorn . Let
ψ, μ1, μ2 ∈ LHorn with Mod(ψ) = {{b}, {a, b, c, d}}, Mod(μ1) = {{a}, {a, b},
{a, c}, {a, b, c, e}} and Mod(μ2) = {{a, b}, {a, b, c, e}}. Suppose that {a, b} <
{a, c} < {a, b, c, e}. On the one hand, we have Mod(ψ � μ1) = {{a, b}, {a, c},
{a, b, c, e}} which is not closed under ∧. Thus, Mod(ψ �Min∧ μ1) =
Min∧({{a, b}, {a, c}, {a, b, c, e}}) = {{a, b}} ⊆ Mod(μ2). On the other hand,
we have Mod(ψ � μ2) = {{a, b}, {a, b, c, e}}, a set of models closed under
∧. Consequently, Mod(ψ �Min∧ μ2) = {{a, b}, {a, b, c, e}} ⊆ Mod(μ1). But,
ψ �Min∧ μ1 �≡ ψ �Min∧ μ2, thus proving that �Minβ

F and �Minβ

W violate the pos-
tulate (U6) in LHorn .

Now observe that (U7) and (U8) are not applicable in our study since they use
disjunction of formulas while our fragments are not closed under disjunction
(given μ1 and μ2 in L′, μ1 ∨ μ2 does not necessarily belong to L′). However, it
would be interesting to study whether these postulates hold in the special case
where μ1 ∨ μ2 (respectively ψ1 ∨ ψ2) is equivalent to a formula in the fragment.

Actually, the most uncontroversial postulate (U8) in the context of full propo-
sitional logic is not appropriate to the study of update operators that provide
results within a characterizable fragment. Indeed, the union of closed sets of mod-
els obtained after having considered independently each model of the formula
representing the belief set, has no reason to be a closed set of models. How-
ever, note that by construction our refined operators first compute the result
obtained through an original operator. Therefore, starting from an update oper-
ator that satisfies (U8) the models of the formula will equally contribute to the
update. So at least the spirit is preserved, even if of course one has to perform
a post-processing in order to remain in the fragment. Moreover for the refine-
ment by the closure Clβ it is easy to prove that for all formulas ψ and μ in
L′, TL′(ψ �Clβ μ) = TL′(ψ � μ). Therefore if � can be considered as an update
operator, then so can �Clβ in L′.

5 Conclusion

In this paper we investigated belief update within the framework of propositional
fragments, a belief change operation which has been neglected so far. We pro-
posed a general constructive approach to define new update operators derived
from existing ones such that the result of the update remains in the fragment
under consideration. Then, we studied the logical properties of theses refined
update operators. We showed that any refined update operator preserves the
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basic KM’s update postulates (U1) − (U4) for any fragment. We then focused
on Forbus’ and Winslett’s update operators, within Horn, Krom and affine frag-
ments. While in this paper we presented only two β-mappings, Clβ and Minβ , we
also investigated less drastic ones. We showed that all the proposed refinements
violate the postulate (U5). This result is very interesting since it highlights a
difference between revision and update. An interesting issue is whether this pos-
tulate is indeed violated by any refined update operator. Regarding the postulate
(U6) the situation is less clear since the refinement by the closure preserves this
postulate, while the other studied refinements do not. It would be interesting to
characterize the refined operators that preserve it. We also showed that none of
the refinements of Forbus’ and Winslett’s operators satisfies the postulate (U9).

A natural extension of this work is to study update when only the formula
representing the belief set is in the fragment, but not new information, that is
operators from L′ × L to L′. Our approach can handle this extension. It allows
us to define refined update operators, which - contrary to revision where the
second postulate (R2) is problematic - satisfy the first four basic postulates
(it is sufficient to use β-mappings fβ that are contracting, i.e. such that for
all M, fβ(M) ⊆ M, e.g. Minβ). Moreover, in this context the postulate (U7)
makes sense and it would be worth investigating it. Another interesting issue
is how to reformulate the postulate (U8) so that it is adapted to fragments
(as it was done for postulates for belief revision [9] and belief merging [17] in
the Horn fragment). Besides, future work will be dedicated to the study of the
computational complexity of the refined update operators. Finally, we plan to
continue our study in exploring systematically other belief change operations,
including belief contraction.
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Abstract. AGM belief change aims at modeling the evolution of an
agent’s beliefs about its environment. In many applications though, a
set of agents sharing the same environment must be considered. For such
scenarios, beliefs about other agents’ beliefs must be taken into account.
In this work, we study private expansion and revision operators in such
a multi-agent setting. More precisely, we investigate the changes induced
by a new piece of information made available to one agent in the set. We
point out an adaptation of AGM expansion and revision postulates to
this setting, and present expansion and revision operators.

1 Introduction

Belief change aims at finding adequate ways to make the beliefs of an agent
evolve when she faces new evidence. The main theoretical framework for belief
change is AGM (Alchourrón-Gärdenfors-Makinson) theory and its developments
[1,13,14]. In most works on belief revision, the belief set of the agent consists
of beliefs about the environment (the world), and is represented by a set of for-
mulas in classical logic. However, in many applications, an agent is not alone in
her environment, but shares it with other agents, who also have beliefs. Beliefs
about the beliefs of other agents is an important piece of information, in order
to make the best decisions and to perform the best actions. Using beliefs on
beliefs of other agents is for instance crucial in game theory [5,6,18,22]. The
most common logical tools for representing beliefs on beliefs of other agents
are epistemic logics. So belief change in epistemic logics is an important issue.
There exist some works on the connections between epistemic logics and belief
change theory. However most of them study how to encode belief change oper-
ators within models with accessibility relations representing plausibility levels,
which guide the revision process [8,10,21,23]. Here, we are interested in another
connection between epistemic logics and belief change theory that is closer to
the AGM approach. Our objective is to design operators that change the beliefs
of the agents in standard KD45n models. This task is more complicated than
in the standard AGM framework, because, in a multi-agent context, the new
pieces of evidence can take different forms. For instance, a new piece of evi-
dence can be either observed/transmitted/available to every agent or only to
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some of them. This kind of issue has already been studied in epistemic logics
with announcements, where public and private announcements lead to distinct
belief changes [4,24]. We use the terms “public change” and “private change”
in the following. A public change is a change that is produced by a piece of evi-
dence available to every agent. In this case, we are in the standard AGM case,
and we can use the standard AGM machinery in order to define adequate belief
change operators. A private change is a change that is produced by a piece of
evidence available to one agent only. This means that the beliefs of this agent
must change, whereas the beliefs of the other ones remain unchanged. In this
case, we cannot directly apply AGM operators. Specific operators are required
and this is what we present in this work. More precisely the aim of this paper is
to define and study a multi-agent belief change setting, where the beliefs of the
agents are encoded by a KD45n model. We consider private change, so a given
agent receives some new piece of evidence, and one wants to define the new
KD45n model that represents the new epistemic situation. We consider only
objective pieces of evidence, i.e., evidences about the environment (world). The
problem of considering change by subjective pieces of evidence, i.e., evidences
about the beliefs of other agents, is more difficult and is left for future work. We
study both expansion and revision. For each case, we provide a translation of
AGM postulates for the multi-agent setting, and some specific operators. The
rest of the paper is as follows. First, we give some formal preliminaries about
KD45n models and AGM belief change theory. Then, we translate the AGM pos-
tulates for expansion to the multi-agent setting. In the next sections, we present
a particular expansion operator, we translate the AGM postulates for revision,
and we point out a family of revision operators. Finally we discuss some related
works before concluding. For space reasons we cannot give the proofs, they can
be found in the corresponding technical report [11].

2 Preliminaries

We consider a propositional language L0 built up from a finite set of propo-
sitional variables P and the usual connectives. ⊥ and � represent respectively
contradiction and tautology. Let K be a belief set (i.e., a deductively closed set of
formulas) and let ϕ be a formula. K+ϕ denotes the expansion of K by ϕ, which is
the new belief set obtained by adding ϕ to K. And K∗ϕ denotes the revision of K
by ϕ. Alchourrón, Gärdenfors and Makinson [1,14] pointed out some postulates
for the expansion and revision of belief sets. These postulates logically encode
the constraints expected on the behaviour of expansion/revision operators. Sev-
eral representation theorems in terms of maximal consistent sets [1], plausibility
relations on formulas [14], or plausibility relations on worlds exist [17], allowing
to define operators with the expected properties. We are interested here in a
framework with several agents, each of them having her own beliefs about the
state of the world and about the beliefs of the other agents.. This requires the
use of epistemic logic. Formally, let A = {1, . . . , n} be a finite set of agents.
We consider the language L containing the propositional language L0 plus one
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belief operator Bi for each agent i ∈ A. In addition, we sometimes use Bk
i to

abbreviate a sequence of k operators Bi (i.e., B0
i ϕ abbreviates ϕ and Bk+1

i ϕ
abbreviates BiBk

i ϕ, for k ≥ 0.) A formula of the form Biϕ is read ‘agent i
believes that ϕ is true’. Formulas in L0 are also called objective formulas, while
subjective formulas are formulas which are not objective. In order to give the
right interpretation to our formulas, especially, to the operators Bi, we use the
standard system KD45n for n-agent doxastic logic [12]. Such a system consists
of the set of formulas in L that can be derived using some axioms and inference
rules. The same set of validities can be captured using a semantic approach. The
most common one is based on Kripke models.

Definition 1 (Kripke Model). A Kripke model is a tuple 〈W,R, V 〉 where
W 	= ∅ is a set of possible worlds, R = {Ri | i ∈ A}, with Ri a binary accessibility
relation for agent i that is serial, transitive and Euclidean, and V : W → 2P is
a valuation function. For each world w ∈ W , V (w) is the set of propositional
variables which are true at w. A pointed Kripke model is a pair (M,w), where
M = 〈W,R, V 〉 is a Kripke model and w ∈ W is the real world.

Ri(w) denotes the set of possible worlds that are accessible from w for agent i,
that is, Ri(w) = {w′ | (w,w′) ∈ Ri}. We note (M,w) |= ϕ the fact that the
formula ϕ is satisfied at the world w in the model M . This notion is defined using
the usual satisfaction relation such that (M,w) |= Biϕ iff ∀w′ ∈ W if (w,w′) ∈
Ri then (M,w′) |= ϕ. We use ‖ϕ‖M to denote the set of possible worlds of M
that satisfy ϕ, that is, ‖ϕ‖M = {w : w ∈ W and (M,w) |= ϕ}. Two pointed
Kripke models may satisfy the same set of formulas, and are then considered
equivalent. It is known that if two pointed Kripke models are bisimilar1 (noted
(M,w) ↔–(M ′, w′)), then they are equivalent. A pointed KD45n model (M,w)
represents a set of n belief sets K

(M,w)
i , one for each agent i ∈ A, where K

(M,w)
i =

{ϕ | (M,w) |= Biϕ}. We also define the objective belief set of agent i (i.e., what
i believes about the state of the world). This is the set O

(M,w)
i = K

(M,w)
i ∩ L0.

In the following, for simplicity reasons, we make the assumption that the new
piece of evidence is a consistent formula. Making a change by an inconsistent
formula is allowed by AGM postulates, but is not of much interest in practical
applications. Furthermore, the axiom D forbids inconsistent beliefs.

3 Private Expansion

Our goal in this section is to provide an extension of the AGM postulates to
a multi-agent setting. We focus on private expansion operators: only one agent
increases her beliefs, on a private announcement, the beliefs of other agents as
well as the higher order beliefs remain unchanged. Let us denote the result of the
private expansion of the model (M,w) by the objective formula ϕ for agent a
as the model (M,w) +aϕ = (M ′, w′) = (〈W ′, R′, V ′〉, w′). The AGM postulates
for expansion can be rewritten as follows:
1 For the definition, see [9].
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(En0) V ′(w′) = V (w)
(En1) If (M,w) 	|= Ba¬ϕ then (M,w) +a ϕ ∈ KD45n

(En2) (M,w) +a ϕ |= Baϕ
(En3) (M,w) |= Biψ iff (M,w) +a ϕ |= Biψ, for i 	= a
(En4) If (M,w) 	|= Ba¬ϕ then (M,w) |= Bk

aBiψ iff (M,w) +a ϕ |= Bk
aBiψ, for

i 	= a and k ≥ 1
(En5) If (M,w) |= Baψ then (M,w) +a ϕ |= Baψ
(En6) If (M,w) |= Baϕ then (M,w) +a ϕ ↔–(M,w)
(En7) If (M1, w1) |= Biψ implies (M2, w2) |= Biψ then

(M1, w1) +a ϕ |= Biχ implies (M2, w2) +a ϕ |= Biχ
(En8) For all (M ′, w′), if (M ′, w′) satisfies (En1)–(En7) then (M,w)+aϕ |= Baψ

implies (M ′, w′) |= Baψ

Most of these postulates are a translation of AGM ones for KD45n models. The
other ones mostly translate the fact that the only things that change are the
beliefs of agent a about the state of the world. (En0) says that the true world
does not change: as usual in belief revision the world does not change,2 it is
only the beliefs of the agents that evolve. (En1) says that, in the event that
new piece of information does not contradict the beliefs of the agent, after the
private expansion, the model remains KD45n. Indeed, when the expansion is
done by a formula that contradicts the beliefs of the agent, the result infringes
the axiom D for the agent. The model is therefore no longer KD45n. In fact, it
may happen that the model is not KD45n if the agent a makes an expansion by
a formula that contradicts her current beliefs. (En2) is the success postulate. It
states that after the private expansion by ϕ, the agent a believes ϕ. Postulate
(En3) states that the beliefs of all agents except a do not change. Postulate
(En4) states that the beliefs of the agent a about other agents do not change.
These two postulates can be seen as an adaptation of Parikh relevant revision
postulates in this multi-agent setting [19]. Postulates (En5) and (En6) ensure
that if ϕ is already believed by agent a then the private expansion does not
change anything, so the resulting model is bisimilar to the initial one. Postulate
(En7) is the translation of the monotonicity property. It states that, if a model
allows more inferences than another one, then the expansion of the first one
allows more inferences than the expansion of the second one. Postulate (En8) is
the minimality postulate. It states that the result of the expansion of the model
by ϕ is a minimal belief change. These postulates imply that:

Proposition 1. There is a unique (up to modal equivalence) private expansion
operator satisfying (En0)–(En8).

The following proposition shows that our private expansion operator is closely
related to the AGM expansion operator.

Proposition 2. Let +a be the pivate expansion operator for a satisfying postu-
lates (En0)–(En8). The + operator defined by O

(M,w)
a + ϕ = O

(M,w)+aϕ
a is the

AGM expansion operator (i.e., it satisfies (K+1)–(K+6) [1]).
2 When the world evolves, one has to use update [15,16].
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4 A Private Expansion Operator

Let us now give a constructive definition of the private expansion operator char-
acterized in the previous section. In the remainder of this paper, we use as a
notation for the newly created worlds (due to expansion or revision) ve

w. This
notation means that the world ve

w is a “copy” of the world w (this copy is essential
to avoid losing the higher-order beliefs of the agent who performs the expansion
or the revision of her beliefs) and having the valuation e.

Definition 2. Expansion of (M,w0) by ϕ for agent a. Let (M,w0) =
(〈W,R, V 〉, w0) be a KD45n pointed model, and ϕ be a consistent objective for-
mula (i.e., ϕ ∈ L0). We define the private expansion of (M,w0) by ϕ for agent
a as (M,w0) +a ϕ = (〈W ′, R′, V ′〉, w′

0), such that:

– E = {V (w) | w ∈ Ra(w0) ∩ ‖ϕ‖M}
– W ′ = W ∪ Wϕ ∪ {w′

0} where
• Wϕ =

⋃

w∈Ra(w0)

Wϕ
w and Wϕ

w =
⋃

e∈E

{ve
w}

– R′
a = Ra ∪ Rϕ

a ∪ R0
a where

• Rϕ
a = {(wϕ

1 , wϕ
2 ) | wϕ

1 , wϕ
2 ∈ Wϕ}

• R0
a = {(w′

0, w
ϕ) | wϕ ∈ Wϕ}

– R′
i = Ri ∪ R

−→ϕ
i ∪ R0

i , for i 	= a, where
• R

−→ϕ
i = {(ve

w, w′) | wRiw
′ and ve

w ∈ Wϕ}, for i 	= a
• R0

i = {(w′
0, w) | (w0, w) ∈ Ri}, for i 	= a

– V ′(w) = V (w), for w ∈ W
– V ′(ve

w) = e, for ve
w ∈ Wϕ

– V ′(w′
0) = V (w0)

When the agent a expands her beliefs, the model must change in order to repre-
sent these new beliefs, but the beliefs of other agents should remain unchanged.
The new set of possible worlds W ′ contains all possible worlds of the initial
model plus a new real world w′

0 and a set of worlds Wϕ representing the new
beliefs of a. The set Wϕ contains a copy of each world in Ra(w0) which does
not contradict ϕ. The new accessibility relation R′

a contains the initial relation
Ra and the set R0

a. The set R0
a consists of pairs (w′

0, w
ϕ) where wϕ ∈ Wϕ,

thus modifying the beliefs of the agent performing the expansion. The set Rϕ
a

consists of the pairs (wϕ
1 , wϕ

2 ) ∈ Wϕ. The worlds in Wϕ thus form a clique,
because they are equally plausible for the agent performing the expansion. Each
accessibility relation R′

i, for i 	= a, contains the initial relation Ri and the sets
R0

i and R
−→ϕ
i . The set R0

i consists of all pairs (w′
0, w) such that (w0, w) ∈ Ri,

thus preserving the beliefs of agents not performing expansion and higher-order
beliefs of all agents. The set R

−→ϕ
i consists of pairs (ve

w, w′), where ve
w ∈ Wϕ such

that (w,w′) ∈ Ri, thus keeping higher-order beliefs of the agent performing the
expansion. We can now show that:

Proposition 3. The operator + satisfies (En0)–(En8).
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Fig. 1. (M, w0) +1 q

As a direct consequence of Proposition 1, we know that this operator is the
unique private expansion operator. Let us now illustrate the behaviour of this
private expansion operator on a simple example.

Example 1. Consider the KD45n model (M,w0) of Fig. 1. In this situation, agent
1 believes ¬p and she believes that agent 2 also believes ¬p. Agent 2 believes
¬p ∧ ¬q, and she believes that agent 1 believes ¬p. After the expansion by q,
agent 1 must believe ¬p ∧ q. The obtained model (M ′, w′

0) is reported as well
on Fig. 1. The world having the valuation ¬p ∧ q has to be duplicated in order
to keep the higher-order beliefs of agent 1. Contrastingly, the beliefs of agent 2
remain unchanged, so in particular she still believes that agent 1 believes ¬p.

5 Private Revision

Let us turn now to the definition of private revision operators. These operators
behave like expansion when there is no inconsistency between the beliefs of the
agent and the new piece of evidence, but, unlike expansion, do not trivialize
when this is not the case.

Let us denote the result of the private revision of the model (M,w) by the
objective formula ϕ for agent a to be the model (M,w) �aϕ = (M ′, w′) =
(〈W ′, R′, V ′〉, w′). The AGM postulates for revision can be rewritten as follows:

(Rn0) V ′(w′) = V (w)
(Rn1) (M,w) �a ϕ ∈ KD45n

(Rn2) (M,w) �a ϕ |= Baϕ
(Rn3) (M,w) |= Biψ iff (M,w) �a ϕ |= Biψ, for i 	= a
(Rn4) (M,w) |= Bk

aBiψ iff (M,w) �a ϕ |= Bk
aBiψ, for i 	= a

(Rn5) If (M,w) �a ϕ |= Biψ then (M,w) +a ϕ |= Biψ
(Rn6) If (M,w) 	|= Ba¬ϕ, then (M,w) +a ϕ ↔–(M,w) �a ϕ
(Rn7) If (M1, w1) ↔–(M2, w2) and |= ϕ ≡ ψ, then (M1, w1) �a ϕ ↔–(M2, w2) �a ψ
(Rn8) If (M,w) �a (ϕ ∧ ψ) |= Biχ then ((M,w) �a ϕ) +a ψ |= Biχ
(Rn9) If (M,w)�a ϕ 	|= Ba¬ψ, then ((M,w)�a ϕ)+a ψ |= Biχ implies (M,w)�a

(ϕ ∧ ψ) |= Biχ.

(Rn1) ensures that the model obtained after a revision is still a KD45n model.
(Rn2) is the success postulate, it states that ϕ is believed by a after the revision.
(Rn3) states that the beliefs of all agents except a do not change. (Rn4) states that
the beliefs of the agent a about other agents do not change. These two postulates
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can be seen as an adaptation of Parikh relevant revision postulates in this multi-
agent setting [19]. (Rn5) and (Rn6) state that when the new piece of evidence
is consistent with the beliefs of the agent, revision is just expansion. (Rn7) is an
irrelevance of syntax postulate, stating that if two formulas are logically equiv-
alent, then they lead to the same revision results. (Rn8) and (Rn9) state when
the revision by a conjunction can be obtained by a revision followed by an expan-
sion. Let us now show that the revision operators satisfying those postulates are
conservative extensions of the usual AGM belief revision operators:

Proposition 4. Let �i be an revision operator satisfying postulates (Rn0)–
(Rn9). The � operator defined as O

(M,w)
i � ϕ = O

(M,w)�iϕ
i is an AGM revision

operator (i.e., it satisfies (K*1)–(K*8) [1]).

6 A Family of Private Revision Operators

Let us now define a family of private revision operators. These operators are
defined similarly to the expansion operator of the previous section, but in the
cases when the new piece of evidence is inconsistent with the current beliefs of
the agent they use a classical AGM belief revision operator ◦ in order to compute
the new beliefs of the agent.

Definition 3. Revision of(M,w0) by ϕ for agent a. Let (M,w0) =
(〈W,R, V 〉, w0) be a KD45n model, let ϕ be a consistent objective formula (i.e.,
ϕ ∈ L0), and let ◦ be an AGM revision operator. We define the private revi-
sion of (M,w0) by ϕ for agent a (with revision operator ◦) as (M,w0) �◦

a ϕ =
(〈W ′, R′, V ′〉, w′

0), such that:

– if Ra(w0) ∩ ‖ϕ‖M 	= ∅
• then E = {V (w) | w ∈ Ra(w0) ∩ ‖ϕ‖M}
• else E = {e | e ⊆ P and e |= O

(M,w0)
a ◦ ϕ}

– W ′ = W ∪ Wϕ ∪ {w′
0} where

• Wϕ =
⋃

w∈Ra(w0)

Wϕ
w and Wϕ

w =
⋃

e∈E

{ve
w}

– R′
a = Ra ∪ Rϕ

a ∪ R0
a where

• Rϕ
a = {(wϕ

1 , wϕ
2 )|wϕ

1 , wϕ
2 ∈ Wϕ}

• R0
a = {(w′

0, w
ϕ)|wϕ ∈ Wϕ}

– R′
i = Ri ∪ R

−→ϕ
i ∪ R0

i for i 	= a, where
• R

−→ϕ
i = {(ve

w, w′)|wRiw
′, ve

w ∈ Wϕ} for i 	= a
• R0

i = {(w′
0, w)|(w0, w) ∈ Ri} for i 	= a

– V ′(w) = V (w) for w ∈ W
– V ′(ve

w) = e for ve
w ∈ Wϕ

– V ′(w′
0) = V (w0)

The construction of the revised model is similar to the construction of the
expanded model discussed earlier. Only the new set of worlds Wϕ is different:
if the new information ϕ is considered possible by agent a, she performs an
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expansion, otherwise, each of the worlds of the new set Wϕ has as valuation a
(propositional) model of the new information ϕ.

Let us now show that these operators exhibit the expected logical properties:

Proposition 5. The operators �◦
a satisfy (Rn0)–(Rn9).

Let us now illustrate the behaviour of these private revision operators on a simple
example.

Example 2. We consider the model (M,w0) of Fig. 2, where agent 1 believes
¬x ∧ ¬y and believes that agent 2 believes x ∧ y. Agent 2 believes x ∧ y and
believes that agent 1 believes x ↔ y. After the revision by x ∧ y, agent 1 must
believe x ∧ y. Whereas the beliefs of agent 2 remain unchanged. The obtained
model (M ′, w′

0) is reported as well in Fig. 2. In this example, agent 1 uses Dalal’s
AGM revision operator ◦D [17]. We can observe that the revised model obtained
using Definition 3 may not be minimal. Nevertheless, a minimal model can be
obtained via a bisimulation contraction. Here, this leads to the model (M ′′, w′

0).

Fig. 2. (M ′′, w′
0) ↔–(M, w0) �◦D

1 (x ∧ y)

Our approach to private revision can be encoded in a formalism called dynamic
epistemic logic [7]. To provide such an encoding, we need event models with
assignments, as proposed in [25]. The idea is, for a given formula ϕ, to create
a specific event model such that its execution simulates the revision by ϕ. An
event model is a structure N = 〈S, T,pre,pos〉, where S is a non-empty set of
possible events; T = {Ti : i ∈ A}, where Ti is a binary accessibility relation for
agent i; pre : S → L is a function that returns, for each possible event s ∈ S,
a formula in L representing its pre-condition; and pos : S → (P → {�,⊥}) is
a function that returns, for each possible event s ∈ S, its post-condition. The
post-condition is an assignment of propositional variables to � or ⊥. Thus, pos
is used to reset the valuations after the execution of the events. A pointed event
model is a pair (N, s), where s ∈ S is the actual event. The product of (M,w) by
(N, s) is a new pointed model (MN , w.s) where MN = 〈WN , RN , V N 〉, WN =
{w.s | M,w |= pre(s)}, RN = {(w.s, w′.s′) : (w,w′) ∈ Ra and (s, s′) ∈ Ta} and
V N (w) = {p | pos(w)(p) = �}.

In the sequel, we show that the revision of Definition 3 is equivalent to a spe-
cific model product. More precisely, (M,w0)�◦

aϕ and (MN�◦
a , w.s0) are bisimilar,

where:
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– S = {s0, s�} ∪ {se
w | ve

w ∈ Wϕ}
– Ta = {(s0, se

w) | ve
w ∈ Wϕ} ∪ {(se1

w1
, se2

w2
) | ve1

w1
, ve2

w2
∈ Wϕ} ∪ {(s�, s�)}

– Ti = {(s0, s�), (s�, s�)} ∪ {(se
w, s�) | ve

w ∈ Wϕ}, for i 	= a
– pre(s0) =

∧

p∈V (w0)

p ∧ ∧

p∈P\V (w0)

¬p

– pre(se
w) =

∧

p∈V (w)

p ∧ ∧

p∈P\V (w)

¬p

– pre(s�) = �
– pos(se

w)(p) =

{
�, if e |= p

⊥, if e 	|= p

– pos(s0) = pos(s�) = ∅
The event model here is somewhat similar to the one we could make for expan-
sion. A main difference is that the clique of possible events se

w is replaced by a
single possible event sϕ with pre(sϕ) = ϕ and pos(sϕ) = ∅.

Proposition 6. ((M,w0) �◦
a ϕ) ↔–(MN�◦

a , w0.s0).

7 Related Work

As explained in the introduction, there are some works on the connections
between epistemic logics and belief change theory, but most of them study how
to encode belief change operators within an epistemic model [8,10,21,23]. Basi-
cally the problem is to try to perform belief revision within the epistemic model.
Contrastingly, we study in this work how to perform belief revision (and expan-
sion) on a KD45n model, representing the beliefs of a group of agents. In the
same vein, in [20] the authors study what they call revision of KD45n models
due to communication between agents: some agents (publicly) announce (part
of) their beliefs. Their model is closer to expansion than to true revision, and
concerns only subjective beliefs. In [15] the authors study action progression in
multi-agent belief structures. Their work is mainly about the effects of actions
using update, but they also briefly mention the problem of revision by objective
formulas. Their construction is related to the one we point out, but they do
not study the properties of the operators they considered. Finally the closest
work to our own one is the study of private expansion and revision made by
Aucher [2–4]. The difference is that Aucher considers an internal model of the
problem, i.e., a model of the situation viewed from each agent, so he does not
use a KD45n model for modeling the system, but one internal model by agent. He
uses a notion of multi-agent possible worlds in order to compute the result of the
revision, so the result of the revision is a set of such multi-agent worlds, whereas
in this work we work with KD45n models, and we obtain a unique KD45n model
as result of a revision. It is easy to find a translation between internal models
and KD45n models, so one can look at the technical details between the expan-
sion and revision operators we present in this work and the one proposed (on
internal models) by Aucher [2–4]. Concerning expansion, it turns out that the
two operations are equivalent (that is not surprising since we proved that there
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is only one rational expansion operator). First, note that it is possible to obtain
an internal model IM for agent a ∈ N from any KD45n model (M,w0). Indeed,
it suffices to consider the set formed of models (Mk, wk) generated from each wk

such that wk ∈ Ra(w0). Similarly, it is possible to obtain an internal event model
IN for agent a ∈ A from the event model (N, s0). Now, it is easy to see that
the internal model for a obtained from the product of (M,w0) by (N, s0) is the
same as the product of IM by IN . Concerning revision the situation is different.
Aucher allows revision by subjective formulas and compute distances between
the corresponding (epistemic) models. We are interested here only by revision
with objective formulas. In this particular case Aucher’s revision does not allow
the agent concerned by the private revision to choose, among the models of the
objective formulas, the ones that are the most plausible. This is problematic
since it is one of the main goals of belief revision to make such a selection. We
can do that thanks to the underlying AGM revision operators in the definition
of the private revision operator. So our private revision result implies (usually
strictly) the result given by Aucher’s revision.

8 Conclusion

In this paper we investigate the problem of belief change in a multi-agent con-
text. More precisely we study private expansion and revision of KD45n models
by objective formulas. We present a set of postulates for expansion and revi-
sion close to the classical AGM ones for the single agent case. We also define
specific expansion and revision operators and show that they satisfy the prop-
erties pointed out. As future work we plan to consider different extensions of
this work. The first issue to be considered is the problem of private change by
subjective formulas. For expansion the method will be quite similar to the one
we described here for objective formulas. But for revision the subjective case is
both more complicated and richer than the revision by objective formulas, due
to the minimality of change requirement. In fact some interesting metrics can be
defined and used to define minimal change for revision. Another issue we want to
address is group change. The idea is that the new evidence is not given privately
to only one agent, but to a group of agents. This case straightforwardly includes
private change and public change as special cases. So it is clearly the most general
framework. Interaction between the agents adds interesting additional problems,
since each agent of the group will have to revise her beliefs about the beliefs of
the other agents of the group receiving the same observation.
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Abstract. The AGM model for the revision and contraction of belief
sets provides rationality postulates for each of the two cases. In the con-
text of finite propositional logic, Katsuno and Mendelzon pointed out
postulates for the revision of belief bases which correspond to the AGM
postulates for the revision of beliefs sets. In this paper, we present pos-
tulates for the contraction of propositional belief bases which correspond
to the AGM postulates for the contraction of belief sets. We highlight
the existing connections with the revision of belief bases in the sense of
Katsuno and Mendelzon thanks to Levi and Harper identities and present
a representation theorem for operators of contraction of belief bases.

1 Introduction

Belief change has been studied for many years in philosophy, databases, and
artificial intelligence. The AGM model, named after its three initiators Carlos
Alchourrón, Peter Gärdenfors and David Makinson, is the main formal frame-
work for modeling belief change [1]. Its key concepts and constructs have been
the subject of significant developments [5,6,13]. Alchourrón, Gärdenfors and
Makinson pointed out some postulates and representation theorems thereby
establishing the basis for a framework suited to the belief change issue when
beliefs are expressed using the language of any Tarskian logic. Tarskian logics
consider abstract consequence relations, that satisfy inclusion, monotony and
idempotence (and the AGM framework adds also to them the supraclassicality,
compacity and deduction conditions).

Katsuno and Mendelzon [11] presented a set of postulates for revision opera-
tors in the framework of finite propositional logic and a representation theorem in
terms of faithful assignments.1 This representation theorem is important because
it is at the origin of the main approaches to iterated belief revision [4].

Revision and contraction operators are closely related, as reflected by Levi
and Harper identities. These identities can be used to define contraction opera-
tors from revision operators and vice versa. So the existence of work on contrac-
tion in the context of finite propositional logic might be expected. However, as
far as we know, this issue has not been investigated.

The objective of this paper is to define operators of propositional contraction
matching Katsuno and Mendelzon’s revision operators and to check that these

1 Such assignments correspond to a specific case of Grove’s systems of spheres [7].
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operators offer the expected properties. In the following, we present a set of
postulates for contraction operators in the framework of finite propositional logic,
and establish a corresponding representation theorem. The obtained results are
not very surprising, but they are new nevertheless, and they appear as a first
important step in the study of iterated contraction.

The rest of the paper is organized as follows. In Sect. 2, some formal preliminar-
ies are presented. In Sect. 3, the AGM and KM frameworks for belief contraction
and revision are recalled. In Sect. 4, a connection between belief sets and belief
bases is pointed out. In Sect. 5, we define postulates that a contraction operator
on belief bases should satisfy. In Sect. 6 the correspondence between contraction
of belief sets and contraction of belief bases is investigated; we check, using Levi
and Harper identities, that there is a connection between propositional revision
operators satisfying Katsuno and Mendelzon postulates and propositional con-
traction operators satisfying our postulates. Section 7 gives a representation theo-
rem for the contraction of belief bases. We conclude and discuss some perspectives
for future work in Sect. 8. For space reasons, several proofs are not included, they
can be found in the corresponding technical report [3].

2 Preliminaries

We consider a finite propositional language L built up from a (finite) set of
symbols P and the usual connectives. ⊥ (resp. �) is the Boolean constant false
(resp. true). Formulas are interpreted in the standard way, and Cn(ϕ) = {ψ ∈
L | ϕ � ψ} denotes the deductive closure of ϕ ∈ L.

A belief base is a set of propositional formulas {ϕ1, . . . , ϕn}. We suppose in this
paper that a belief base is represented by ϕ = ϕ1∧. . .∧ϕn (This is a usual harmless
assumption xhen one supposes irrelevance of syntax2 (cf. postulate (C5)).

A belief set K is a deductively closed set of formulas. Obviously one can
associate with any belief base ϕ a belief set that is the set of all its consequences
K = Cn(ϕ).

If ϕ is a formula, then Mod(ϕ) denotes the set of its models. Conversely if M
is a set of interpretations, then αM denotes the formula (unique, up to logical
equivalence) the models of which are those of M .

Given a preorder (i.e., a reflexive and transitive relation) ≤ϕ over the set of
interpretations, <ϕ is its strict part defined by I <ϕ J if and only if I ≤ϕ J and
J �≤ϕ I and 	ϕ is the associated equivalence relation defined by I 	ϕ J if and
only if I ≤ϕ J and J ≤ϕ I. min(X, ≤ϕ) denotes the set of minimal elements of
X for ≤ϕ, i.e., min(X, ≤ϕ) = {x ∈ X | �y ∈ X such that y <ϕ x}.

3 AGM and KM Belief Revision and Contraction

Alchourrón, Gärdenfors and Makinson [1,5] pointed out the following postu-
lates for the contraction of belief sets. These postulates are formulated in a very
2 Note that in some works the term “belief base” is just used for syntax-dependent
belief change [8]. Here this term denotes a non-deductively closed set of formulas (as
in [11]).
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general framework, but here we limit the discussion to the case of finite proposi-
tional logic. Given a belief set K and a formula μ, K ÷μ denotes the contraction
of K by μ. + is the expansion operator, the result it gives is just the set of
consequences of the union of the two theories (i.e. K + μ = Cn(K ∪ {μ})).

(K ÷ 1) K ÷ μ is a belief set
(K ÷ 2) K ÷ μ ⊆ K
(K ÷ 3) If μ �∈ K, then K ÷ μ = K
(K ÷ 4) If � μ, then μ �∈ K ÷ μ
(K ÷ 5) If μ ∈ K, then K ⊆ (K ÷ μ) + μ
(K ÷ 6) If μ ≡ β, then K ÷ μ = K ÷ β
(K ÷ 7) (K ÷ μ) ∩ (K ÷ β) ⊆ K ÷ (μ ∧ β)
(K ÷ 8) If μ �∈ K ÷ (μ ∧ β), then K ÷ (μ ∧ β) ⊆ K ÷ μ

See [5] for detailed explanations on these postulates (we will comment their propo-
sitional counterpart later). Alchourrón, Gärdenfors and Makinson also provided
postulates ((K � 1) − (K � 8)) for belief revision. We will focus on their proposi-
tional counterpart proposed by Katsuno and Mendelzon [11]. But let us first recall
that AGM belief revision and belief contraction are closely related. Actually every
belief revision operator induces a belief contraction one, and vice versa:

(Levi Identity) K � μ = (K ÷ ¬μ) + μ
(Harper Identity) K ÷ μ = K ∩ (K � ¬μ)

Let us now recall the Katsuno and Mendelzon propositional counterpart to belief
revision postulates and their representation theorem in terms of faithful assign-
ment [11]. Let ϕ and μ be two propositional formulas where ϕ represents the
current belief base of the agent and μ is the new piece of information (i.e., the
change formula). The revision of ϕ by μ, denoted by ϕ ◦ μ, must satisfy the
following postulates [11]:

(R1) ϕ ◦ μ � μ
(R2) If ϕ ∧ μ is consistent, then ϕ ◦ μ ≡ ϕ ∧ μ
(R3) If μ is consistent, then ϕ ◦ μ is consistent
(R4) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2, then ϕ1 ◦ μ1 ≡ ϕ2 ◦ μ2

(R5) (ϕ ◦ μ) ∧ ψ � ϕ ◦ (μ ∧ ψ)
(R6) If (ϕ ◦ μ) ∧ ψ is consistent, then ϕ ◦ (μ ∧ ψ) � (ϕ ◦ μ) ∧ ψ

A representation theorem is a way to associate with a set of postulates a con-
structive approach to build the corresponding family of operators. Katsuno and
Mendelzon presented such a theorem in terms of faithful assignment, which asso-
ciates with each belief base a pre-order that ranks the interpretations from the
most plausible ones to the least plausible ones.

Definition 1. A faithful assignment is a mapping that associates with any belief
base ϕ a pre-order ≤ϕ on the set of all interpretations such that:

1. If I |= ϕ and J |= ϕ, then I 	ϕ J
2. If I |= ϕ and J �|= ϕ, then I <ϕ J
3. If ϕ ≡ ϕ′, then ≤ϕ=≤ϕ′
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Theorem 1 [11]. A revision operator ◦ satisfies the postulates (R1)-(R6) if
and only if there exists a faithful assignment that associates with each belief base
ϕ a total pre-order ≤ϕ such that

Mod(ϕ ◦ μ) = min(Mod(μ),≤ϕ)

4 From Belief Sets to Belief Bases

Our purpose is now to define contraction operators on belief bases in the frame-
work of finite propositional logic. Let ϕ and μ be two formulas. ϕ − μ denotes
the contraction of ϕ by μ, which is the new formula obtained by removing the
piece of beliefs μ from the (consequences of the) belief base ϕ of the agent.

In order to relate AGM belief set contraction and our notion of propositional
belief base contraction, we first have to formalize the link between belief sets
and belief bases.

Proposition 1 shows that a belief set is always the deductive closure (Cn) of
a belief base:

Proposition 1. For any belief set K, there is a belief base ϕK such that K =
Cn(ϕK) and conversely, for any belief base ϕ, there is a belief set Kϕ = Cn(ϕ).

Indeed, Cn is a bijection from E to F where F is the set of belief sets and E is
the set of belief bases considered up to logical equivalence. Thus, for a belief base
ϕ, the notation Kϕ = Cn(ϕ) and for a belief set K, the notation ϕK = Cn−1(K)
are safe.

On this ground a correspondence between AGM contraction operators on
belief sets and the contraction operators on belief bases can be established:

Definition 2. Given a contraction operator on belief sets ÷, the operator −(÷)

on belief bases is defined by: ϕ −(÷) μ = ϕKϕ÷μ. Conversely, given a contrac-
tion operator on belief bases −, the operator ÷(−) on belief sets is defined by:
K÷(−)μ=KϕK−μ.

Finally, the following proposition shows that if we use a contraction operator on
belief sets ÷ to define, via Definition 2, a contraction operator on belief bases
−(÷), then the contraction operator on belief sets defined via Definition 2 is the
initial contraction operator ÷ (and vice versa):

Proposition 2. We have −(÷(−)) = −. Similarly we have ÷(−(÷)) = ÷
Let a contraction operator ÷ on belief sets and − a contraction operator on belief
bases. The operators ÷ and − are said to correspond to each other if ÷ = ÷(−)

and − = −(÷).

5 Postulates for Propositional Contraction

We now define the following set of postulates for contraction of propositional
belief bases:
(C1) ϕ � ϕ − μ
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(C2) If ϕ � μ, then ϕ − μ � ϕ
(C3) If ϕ − μ � μ, then � μ
(C4) If ϕ � μ, then (ϕ − μ) ∧ μ � ϕ
(C5) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2, then ϕ1 − μ1 ≡ ϕ2 − μ2

(C6) ϕ − (μ ∧ β) � (ϕ − μ) ∨ (ϕ − β)
(C7) If ϕ − (μ ∧ β) � μ, then ϕ − μ � ϕ − (μ ∧ β)

The intuitive meaning of these postulates is as follows: (C1) ensures that after
contraction, no new information is added to the belief base. (C2) indicates that
if μ is not deducible from ϕ, then no change is made during the contraction.
(C3) ensures that the only possibility for the contraction of ϕ by μ to fail is
that μ is a tautology. (C4) says us that the conjunction of the contraction of ϕ
by μ and μ gives a propositional formula which is equivalent to ϕ (the converse
implication is a consequence of (C1)). (C5) reflects the principle of independence
of syntax. (C6) and (C7) express the minimality of change for the conjunction.
(C6) says that the contraction by a conjunction always implies the disjunction
of the contractions by the conjuncts. (C7) says that if μ has not been removed
during the contraction by μ ∧ β, then the contraction by μ must imply the
contraction by the conjunction.

The following proposition shows that the contraction operators satisfying
postulates (C1)-(C7) correspond to the contraction operators satisfying the
AGM postulates (K÷1)-(K÷8).

Proposition 3. Let ÷ be a contraction operator on belief sets and − (= −(÷))
its corresponding operator on belief bases. Then ÷ satisfies (K÷1)-(K÷8) if and
only if − satisfies (C1)-(C7).

Furthermore, it turns out that the contraction of ϕ by a conjunction (μ∧β) can
have only three different outcomes (up to logical equivalence). Such a trichotomy
result is similar to the one in the classical AGM framework [5].

Proposition 4. In the presence of (C1)-(C5), (C6) and (C7) are equivalent
to (Tri):

(Tri) ϕ − (μ ∧ β) ≡

⎧
⎪⎨

⎪⎩

ϕ − μ or
ϕ − β or
(ϕ − μ) ∨ (ϕ − β)

In fact, looking at the proof of this proposition, we also know that if ϕ−(μ∧β) �
β, then ϕ − (μ ∧ β) ≡ ϕ − μ. This means that when β is more entenched (i.e.,
more important/plausible) than μ, then when we are asked to remove μ ∧ β if
we prefer to keep β (and to remove μ), then the contraction by the conjunction
is exactly the contraction by μ alone.

6 A Correspondence Between Contraction and Revision

Now that we have defined postulates for contraction operators on belief bases, we
can check that the contraction operators satisfying these postulates correspond
to revision operators in the sense of Katsuno and Mendelzon [11].
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We first show that Levi and Harper identities hold also in this propositional
setting. We note ◦(−) the revision operator on belief bases defined from − via
Levi identity and −(◦) the contraction operator on belief bases defined from ◦
via Harper identity.

Definition 3. Levi and Harper identities for belief bases can be expressed as
follows:
ϕ ◦(−) μ ≡ (ϕ − ¬μ) ∧ μ (Levi identity)
ϕ −(◦) μ ≡ ϕ ∨ (ϕ ◦ ¬μ) (Harper identity)

Operators obtained by means of these identities satisfy the expected properties:

Proposition 5. If the contraction operator − satisfies (C1)-(C5) then the revi-
sion operator ◦ (= ◦(−)) defined using Levi identity satisfies (R1)-(R4). Further-
more if (C6) is satisfied by −, then (R5) is satisfied by ◦, and if (C7) is satisfied
by −, then (R6) is satisfied ◦.
Therefore, the KM revision operators for propositional belief bases can be defined
using Levi identity from the contraction operators for propositional belief bases
we have introduced. Reciprocally, contraction operators for propositional belief
bases can be defined using Harper identity, from KM revision operators for belief
bases.

Proposition 6. If the revision operator ◦ satisfies (R1)-(R4) then the contrac-
tion operator − (= −(◦)) defined using Harper identity satisfies (C1)-(C5). Fur-
thermore, if (R5) is satisfied by ◦, then (C6) is satisfied by − and if (R6) is
satisfied by ◦, then (C7) is satisfied by −.

The following proposition shows that if we use a revision operator ◦ to define, via
Harper identity, a contraction operator −(◦), then the revision operator defined
via Levi identity, from −(◦) is the initial revision operator ◦. The other way
around, if we use a contraction operator − to define, via Levi identity a revision
operator ◦(−), then the contraction operator defined via Harper identity from
◦(−) is the initial contraction operator −.

Proposition 7

– if ◦ is a revision operator, then ◦(−(◦)) = ◦
– if − is a contraction operator, then −(◦(−)) = −
Our postulates for contraction of belief bases are thus in close correspondence
with the revision postulates for belief bases defined by Katsuno and Mendelzon.

7 Representation Theorem

Let us now check that we can state a representation theorem for contraction
within the framework of finite propositional logic, which is a counterpart of the
representation theorem of Katsuno and Mendelzon for revision.
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Lemma 1. Let − be a contraction operator satisfying (C1)-(C7).

If α{I} � ϕ then ϕ − ¬α{I} ≡ ϕ ∨ α{I}

This lemma indicates that if a formula α, with only one model, does not imply
a formula ϕ, then the contraction of ϕ by the negation of α is equivalent to the
disjunction of ϕ and α.

The idea of the representation theorem is to express the set of models of the
contraction of a base ϕ by a change formula μ as the union of the models of ϕ
and of the minimal counter-models of μ with respect to ≤ϕ.

Theorem 2. A contraction operator − satisfies the postulates (C1)-(C7) if
and only if there exists a faithful assignment that associates with each belief base
ϕ a total pre-order ≤ϕ on the set of all interpretations such that

Mod(ϕ − μ) = Mod(ϕ) ∪ min(Mod(¬μ),≤ϕ)

Proof. The only-if part of the proof consists mainly in checking the (C1)-(C7)
properties. For space reasons we focus only on the if part which is more tricky.
Let − be a contraction operator which satisfies the postulates (C1) to (C7).

For each formula ϕ, we define a total pre-order ≤ϕ using the operator − :
∀I, I ′ two interpretations, we define the relation ≤ϕ by I ≤ϕ I ′ if and only if
I ∈ Mod(ϕ − ¬α{I,I′}).

We first show that ≤ϕ is a total pre-order.

– Total: let I and I ′ be two interpretations. As α{I,I′} has at least one model,
¬α{I,I′} has at least one counter-model. We deduce that � ¬α{I,I′}, which
allows us to conclude from (C3) that ϕ − ¬α{I,I′} � ¬α{I,I′}. So we know
that there is J ∈ Mod(ϕ − ¬α{I,I′}) such that J ∈ Mod(α{I,I′}) = {I, I ′}.
Therefore, either I ∈ Mod(ϕ − ¬α{I,I′}) and thus I ≤ϕ I ′, or I ′ ∈ Mod(ϕ −
¬α{I,I′}) and thus I ′ ≤ϕ I. Hence ≤ϕ is total.

– Reflexive: Every binary relation which is total necessarily is reflexive.
– Transitive: Suppose that I ≤ϕ J and J ≤ϕ L. Let us consider the case when

I, J and L are pairwise distinct, and none of them is a model of ϕ. Indeed, in
the remaining case when at least two of them are equal, transitivity is trivially
satisfied. If one of them is a model of ϕ, then the result also trivially holds by
(C1). Indeed, if L |= ϕ, then by the assumptions and (C1) we deduce that I
and J are also models of ϕ. Similarly, if J |= ϕ, then by (C1) I |= ϕ. And if
I |= ϕ then by construction I ≤ϕ I ′ forall I ′, so especially for I ′ = L.

So now let us consider the general case. Towards a contradiction, suppose
I �≤ϕ L. As ≤ϕ is total, we have L <ϕ I, therefore L |= ϕ − ¬α{I,L} and
I �|= ϕ − ¬α{I,L}. By (Tri) we have that ϕ − ¬α{I,J,L} ≡ ϕ − ¬α{I,L} or
ϕ − ¬α{I,J,L} ≡ ϕ − ¬α{J} or ϕ − ¬α{I,J,L} ≡ (ϕ − ¬α{I,L}) ∨ (ϕ − ¬α{J}).
• Case (1) ϕ−¬α{I,J,L} ≡ ϕ−¬α{I,L}. From (C6) we have that ϕ−¬α{I,L} �

ϕ − ¬α{I} ∨ ϕ − ¬α{L} ≡ ϕ ∨ α{I} ∨ α{L}. Since J �|= ϕ ∨ α{I} ∨ α{L}, we
have J �|= ϕ − ¬α{I,L}, so J �|= ϕ − ¬α{I,J,L}. Since L |= ϕ − ¬α{I,J,L}
and L �|= ¬α{J,L}, we deduce that ϕ − ¬α{I,J,L} � ¬α{J,L}. So by (C7) we
have that ϕ − ¬α{J,L} � ϕ − ¬α{I,J,L}. As J �|= ϕ − ¬α{I,J,L}, we have
J �|= ϕ − ¬α{J,L}, which means by definition that J �≤ϕ L. Contradiction.
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• Case (2) ϕ − ¬α{I,J,L} ≡ ϕ − ¬α{J} ≡ ϕ ∨ α{J}. This means in particular
that I �|= ϕ − ¬α{I,J,L} and J |= ϕ − ¬α{I,J,L}. So we know that ϕ −
¬α{I,J,L} � ¬α{I,J}. So by (C7) we have that ϕ − ¬α{I,J} � ϕ − ¬α{I,J,L}.
As I �|= ϕ − ¬α{I,J,L}, we have I �|= ϕ − ¬α{I,J}, which means by definition
that I �≤ϕ J . Contradiction.

• Case (3) ϕ−¬α{I,J,L} ≡ (ϕ−¬α{I,L})∨ (ϕ−¬α{J}) ≡ (ϕ−¬α{I,L})∨ (ϕ∨
α{J}). This equivalence implies that J |= ϕ − ¬α{I,J,L}, L |= ϕ − ¬α{I,J,L},
and I �|= ϕ − ¬α{I,J,L}. Since J |= ϕ − ¬α{I,J,L} and J �|= ¬α{I,J}, we
deduce that ϕ−¬α{I,J,L} � ¬α{I,J}. So by (C7) we have that ϕ−¬α{I,J} �
ϕ−¬α{I,J,L}. As I �|= ϕ−¬α{I,J,L}, we have I �|= ϕ−¬α{I,J}, which means
by definition that I �≤ϕ J . Contradiction.

We have shown that ≤ϕ is a total, reflexive and transitive relation. It is there-
fore a total pre-order. Then we show that the mapping ϕ �→≤ϕ is a faithful
assignment.

– The third condition (if ϕ1 ≡ ϕ2, then ≤ϕ1=≤ϕ2) comes from (C5). Indeed, if
ϕ1 ≡ ϕ2 then ϕ1 − ¬α{I1,I2} ≡ ϕ2 − ¬α{I1,I2}, hence I1 ≤ϕ1 I2 iff I1 ≤ϕ2 I2,
so ≤ϕ1=≤ϕ2 .

– The first condition comes from (C1): ϕ � ϕ − ¬μ, so if I1 ∈ Mod(ϕ) then
I1 ∈ Mod(ϕ − ¬α{I1,I2}) and if I2 ∈ Mod(ϕ) then I2 ∈ Mod(ϕ − ¬α{I1,I2}).
So by definition, we have I1 ≤ϕ I2 and I2 ≤ϕ I1, hence I1 	ϕ I2.

– Let us now show that the second condition (if I1 |= ϕ and I2 � ϕ then
I1 <ϕ I2) is satisfied. From the definition of ≤ϕ and (C1), we can deduce
from I1 |= ϕ that I1 ≤ϕ I2. It remains to show that I2 �≤ϕ I1. We consider
two cases:
• If ϕ � ¬α{I1,I2}, then we have ϕ � ¬α{I1} ∧ ¬α{I2}. So, in particular,

ϕ � ¬α{I1}, which contradicts the fact that I1 |= ϕ, showing that this case
is impossible.

• If ϕ � ¬α{I1,I2}, then, from (C2), ϕ − ¬α{I1,I2} � ϕ. We therefore deduce
that I2 � ϕ − ¬α{I1,I2}, hence I2 �≤ϕ I1.

The second condition for the assignment to be faithful is checked.

Finally, it remains to show that

Mod(ϕ − μ) = Mod(ϕ) ∪ min(Mod(¬μ),≤ϕ).

We consider two cases:

• If ϕ � μ, then from (C1) and (C2), Mod(ϕ − μ) = Mod(ϕ). Furthermore,
∃I ∈ Mod(ϕ) such that I ∈ Mod(¬μ). The second condition on faithful
assignment allows us to deduce that min(Mod(¬μ),≤ϕ) ⊆ Mod(ϕ). The con-
clusion follows.

• If ϕ � μ, then we assume � μ without loss of generality. Indeed, if � μ
then Mod(ϕ − μ) = Mod(ϕ) ∪ min(Mod(¬μ),≤ϕ) is trivially deduced from
(C1) and (C4), which shows that ϕ − μ � ϕ ∨ ¬μ since Mod(¬μ) = ∅ =
min(Mod(¬μ),≤ϕ) when μ is valid. (C4) allows us to deduce that Mod(ϕ −
μ) ⊆ Mod(ϕ) ∪ min(Mod(¬μ),≤ϕ). Given an interpretation I such that I |=
ϕ − μ, we can deduce from (C4) that I |= ϕ or I |= ¬μ.
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• If I |= ϕ, then directly I ∈ Mod(ϕ) ∪ min(Mod(¬μ),≤ϕ).
• If I |= ¬ϕ and I |= ¬μ, then we want to show that I ∈ min(Mod(¬μ),≤ϕ).

Towards a contradiction, suppose that there exists an interpretation J |=
¬μ such that J <ϕ I. By definition of faithful assignment, we have I � ϕ−
(¬α{I,J}). In addition, we know that I |= ¬μ and J |= ¬μ, so μ � ¬α{I,J}.
Therefore there exists β such that I |= β, J |= β and μ ≡ (¬α{I,J})∧β. By
(C6), ϕ−μ � (ϕ−(¬α{I,J}))∨(ϕ−β), we also know that ϕ−(¬α{I,J}∨¬β) �

¬α{I,J} by (C3). By (C6) and (C7), we have ϕ − μ ≡ ϕ − ¬α{I,J}. This
contradicts our assumption, I � ϕ − ¬α{I,J}.

Subsequently we have Mod(ϕ − μ) ⊆ Mod(ϕ) ∪ min(Mod(¬μ),≤ϕ). Let us
show now that Mod(ϕ) ∪ min(Mod(¬μ),≤ϕ) ⊆ Mod(ϕ − μ).
• If I ∈ Mod(ϕ), then since from (C1), we have ϕ � ϕ − μ, we conclude that

I ∈ Mod(ϕ − μ).
• Suppose now that I �∈ Mod(ϕ) and I ∈ min(Mod(¬μ),≤ϕ) and suppose

that I �∈ Mod(ϕ − μ). In this case, min(Mod(¬μ),≤ϕ) is not empty, which
means that � μ. So, from (C3), ϕ − μ � μ. We can deduce that ∃J ∈
Mod(ϕ − μ) such that J ∈ Mod(¬μ).

Let us consider the two possible cases: J ∈ Mod(ϕ) and J �∈ Mod(ϕ). If
J ∈ Mod(ϕ), then by the second condition of the faithful assignment we have
that J <ϕ I. But as J ∈ Mod(¬μ), this means that I �∈ min(Mod(¬μ),≤ϕ).
Contradiction. If J �∈ Mod(ϕ), then we have that J ∈ Mod(ϕ − μ) and
I �∈ Mod(ϕ−μ). So ϕ−μ � ¬α{I,J}, hence by (C7) we have that ϕ−¬α{I,J} �
ϕ−μ. As I �∈ Mod(ϕ−μ), we have I �∈ Mod(ϕ−¬α{I,J}). Then by definition
(and (C3)) this means that J <ϕ I. But we also know that J ∈ Mod(¬μ), so
this implies that I �∈ min(Mod(¬μ),≤ϕ). Contradiction. �

Note that a similar construction has been used in [14] for the contraction of Horn
belief sets.3

L3

L2

L1

L0

≤ϕ

¬µ

• • •

• • •

• • •

• •

Fig. 1. Contraction of ϕ by μ

We illustrate the representation theorem on Fig. 1. The interpretations
(depicted as dots) are located at different levels Li, two interpretations at the
3 We thank a reviewer for pointing this paper to us.
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same level are equally plausible (i.e., I 	ϕ J) and an interpretation I appearing
at a lower level than another J is strictly more plausible (i.e., I <ϕ J). The
interpretations appearing at the lowest level (L0) are the models of the belief
base ϕ.

When ϕ is contracted by μ, the result consists of all models of ϕ to which are
added to the most plausible models of ¬μ according to the pre-order of plausibil-
ity ≤ϕ associated with ϕ by the faithful assignment. This represents the minimal
change required for not implying μ any longer. These interpretations are located
at L1 on Fig. 1. The minimal interpretations of ¬μ (at L1) are added next to the
interpretations of ϕ (at L0).

8 Conclusion and Perspectives

In this paper we investigated belief contraction in the framework of finite propo-
sitional logic. The aim was, like in Katsuno and Mendelzon work for revision, to
define postulates for contraction operators. We have checked that the operators
of contraction characterized by our postulates correspond to the revision opera-
tors characterized by Katsuno and Mendelzon postulates. We have also given a
representation theorem in terms of faithful assignment.

The aim of this work was to ensure that the translation of the AGM contrac-
tion in the finite propositional framework offers the expected properties. This
is more than a technical exercice, since this step is necessary to define iterated
contraction operators, which is the main perspective of this work. Indeed, the
translation by Katsuno and Mendelzon of the AGM postulates is the basis of
the study of iterated revision operators following Darwiche and Pearl [2,4,10,12].
There has been very few work on iterated contraction: to the best of our knowl-
edge, only one paper [9] addresses this problem, but in a different framework from
the one of Darwiche and Pearl. Defining “Darwiche and Pearl”-like iterated con-
traction operators will be a first step in the investigation of the relationships
between [9] and [4].
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Abstract. Multi-dimensional Bayesian network classifiers are becom-
ing quite popular for multi-label classification. These models have the
advantage of a high expressive power, but may induce a prohibitively
high runtime of classification. We argue that the high runtime burden
originates from their large treewidth. Thus motivated, we present an
algorithm for learning multi-classifiers of small treewidth. Experimental
results show that these models have a small runtime of classification,
without loosing accuracy compared to unconstrained multi-classifiers.

1 Introduction

Multi-dimensional Bayesian network classifiers [9], or multi-classifiers for short,
constitute an increasingly popular approach to multi-label classification. While
these models have the advantage of a high expressive power, they may come asso-
ciated with a high runtime of classification. Especially for large sets of instances
to be classified and in applications in which instances are to be classified instan-
taneously, can this high runtime burden prove prohibitive. Although various
researchers addressed the classification time of multi-classifiers and designed
learning algorithms giving reasonable runtime properties in general [4,7], avail-
able algorithms do not come with any actual guarantees on classification time.

In this paper, we argue that the high runtime complexity of multi-classifiers
can be attributed to their tendency to have a large treewidth. Motivated by
this observation, we present an algorithm for learning multi-classifiers of small
treewidth. The algorithm bounds treewidth not by imposing general topologi-
cal constraints, but by iteratively monitoring treewidth of partially constructed
classifiers in a branch-and-bound approach. As a result, our algorithm retains
much of the expressive power of the multi-classifier framework and is expected to
result in good-quality models for efficient classification. Experiments on various
data sets in fact show that the classifiers learned with our algorithm perform
comparably, in terms of classification accuracy, to multi-classifiers of unbounded
treewidth. Our results further show that by bounding treewidth a huge reduc-
tion, up to a factor 400, of the runtime complexity of classification is achieved.

The paper is organised as follows. In Sect. 2 we introduce our notational
conventions and review multi-classifiers. In Sect. 3 we address the relationship
between multi-classifiers and treewidth. Earlier research addressing the runtime
of multi-classifiers is reviewed in Sect. 4. In Sect. 5 we present our algorithm for
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 199–209, 2015.
DOI: 10.1007/978-3-319-20807-7 18
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learning multi-classifiers of small treewidth. In Sect. 6 we report results achieved
with our algorithm on various multi-label data sets. The paper is rounded off
with our conclusions and directions for future work in Sect. 7.

2 Preliminaries

We consider a finite non-empty set V of discrete random variables, in which
each variable Vi ∈ V takes its value from a finite set of states. The joint state
space for a subset S ⊆ V is the Cartesian product of the sets of states of the
separate variables in S; we use κS to denote the size of this joint state space.
Given our focus on classification, we assume that the set V is partitioned into
a set C = {C1, . . . , Cn}, n ≥ 1, of class variables and a set X = {X1, . . . , Xm},
m ≥ 1, of feature variables, with C ∪ X = V and C ∩ X = ∅. A joint state of
the feature variables X is referred to as a feature vector and is denoted by x;
a joint state c of the class variables C is called a class vector. A pair (c,x) is
termed an instance over V. We further assume a (multi-)set D of instances over
V, which is partitioned into a training set Dtr = {(c1,x1), . . . , (ck,xk)}, k ≥ 1,
and a set of test instances Dte = {(c1,x1), . . . , (cl,xl)}, l ≥ 1.

A multi-classifier over the random variables V is a Bayesian network of
restricted topology over V [9]. Its set of arcs A is partitioned into three sub-
sets:

– AC ⊆ C × C includes the arcs among the class variables, and the subgraph
induced by AC is called the class subgraph;

– AX ⊆ X×X contains the arcs among the feature variables, and the subgraph
induced by AX is called the feature subgraph;

– ACX ⊆ C × X includes the arcs from a class variable to a feature variable,
and the subgraph induced by ACX is called the bridge subgraph.

In this paper, we focus on multi-classifiers in which each class variable has at
most one class variable parent, a feature variable has at most p class parents,
and the feature subgraph is either empty or a forest-structured graph.

Classification of a feature vector x amounts to finding a class vector c that
maximizes the posterior probability given x, that is, it amounts to finding

argmax
c∈C

{Pr(c | x)}

The performance of a multi-classifier is estimated from the accuracy of its classi-
fications for a set Dte of test instances (ci,xi). For each feature vector xi, a most
likely class vector ĉi is computed from the classifier and compared with the true
class vector ci of the instance. Performance is now expressed by two metrics.
The global accuracy accG of the classifier given the testset Dte is defined as:

accG(Dte) =
1

|Dte | ·
∑

(ci,xi)∈Dte

δ(ci, ĉi)
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where δ(ci, ĉi) equals 1 if ci = ĉi and 0 otherwise. This metric serves to mea-
sure the proportion of (complete) class vectors that are predicted correctly. The
Hamming metric measures the proportion of class variables for which a correct
prediction is made. The Hamming accuracy accH of the classifier is defined as:

accH(Dte) =
1

|Dte | ·
∑

(ci,xi)∈Dte

(
1
n

·
n∑

i=1

δ(ĉij , cij)

)

where cij is the state of the j-th class variable in the i-th test instance, and
δ(ĉij , cij) equals 1 if ĉij = cij and 0 otherwise.

Multi-classifiers are usually learned from a (multi-)set of instances. The
objective then is to construct a classifier from the training instances that per-
forms well on the test data and allows good classification of yet unseen instances.
In this paper, we take a score-based approach to learning. Each possible graphical
structure is assigned a numerical score which describes how well the structure fits
the training data. To this end, we employ the BDeu score [5], which conveniently
decomposes as a sum of BDeu scores per variable:

BDeu(G) =
∑

Vi∈C∪X

BDeu(Vi,pa(Vi))

where G is the graphical structure under consideration, Vi is a variable in G and
pa(Vi) are its parents. For a variable Vi, the BDeu score given its parents equals:

BDeu(Vi,pa(Vi)) =
qi∑

j=1

⎡

⎣log
Γ(αij)

Γ(αij + nij)
+

|Vi|∑

k=1

log
Γ(αijk + nijk)

Γ(αijk)

⎤

⎦

where nijk is the number of training instances in which the variable Vi is in
state k and its parents are in their j-th joint state, and nij =

∑
k nijk; qi is the

number of joint states of the parents of Vi. With an equivalent sample size of α,
we get that αij = α

qi
and αijk = αij

|Vi| , where |Vi| is the number of states of Vi.
Upon learning, the goal now is to maximise the BDeu score with respect to the
training data, subject to the structural constraints imposed.

The class subgraph of a multi-classifier can be learned independently from its
feature and bridge subgraphs [9]. If the feature subgraph is known to be empty,
then the bridge subgraph can be learned optimally by selecting the best scoring
parent set per feature variable [7]. If the feature subgraph is non-empty however,
the bridge subgraph cannot be learned independently from the feature subgraph.
To arrive at optimality with respect to the BDeu score, the bridge and feature
subgraphs should then be learned simultaneously. We note that simply selecting
the best scoring parent set per feature variable would now not necessarily result
in a valid multi-classifier as acyclicity would not be guaranteed.

In this paper, we adapt an existing approach to learning extended tree aug-
mented naive Bayesian classifiers (ETANs) in general [6], to learning the com-
bined bridge and feature subgraph of a multi-classifier. First a feature subgraph
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is learned on a copy X′ of the set of feature variables X. The BDeu scores for
the variables in X′ are established from those for X by collapsing the scores of
the parent sets that include class variables. More specifically, for each variable
X ′

i ∈ X′ the following BDeu scores are established:

BDeu(X ′
i, ∅) = max

S⊆C
BDeu(Xi,S)

BDeu(X ′
i,X

′
j) = max

S⊆C
BDeu(Xi,S ∪ {Xj})

Using a standard Bayesian network learner [1] or a modified version of the ETAN-
algorithm [6], we now learn feature subgraph on X′, where each feature variable
X ′

i is allowed at most one parent. For each variable X ′
i, the chosen parent X ′

j (or
the empty parent set) is then expanded to the parent set of the original score.
The result is a combined bridge and feature subgraph with maximal BDeu score
given the structural constraints of the multi-classifier.

3 Multi-classifiers and Treewidth

Computing a class vector of highest posterior probability from a multi-classifier
given a specific feature vector, is equal to solving the most probable explanation
(MPE) problem. This MPE problem is known to be NP-hard in general [12], and
remains NP-hard even for binary networks in which both the indegree and the
outdegree of all variables is at most two [12]. The MPE problem can be solved
in polynomial time however, for networks of bounded treewidth.

We briefly revisit the importance of the concept of treewidth in Bayesian
networks in general. Current algorithms for probabilistic inference build upon
a junction-tree representation of a network. To construct such a representation,
the network’s graphical structure G is first moralised by adding edges between
all pairs of parents of a variable and subsequently dropping directions. The
moralised graph is then triangulated by adding edges to make it chordal, that
is, to render a graph in which any cycle of four or more variables has a shortcut.
A tree-decomposition of the triangulated graph GT now is a tree TG such that:

– each node Cli ∈TG corresponds with a maximal clique in GT , and vice versa;
– for every i, j, k, if node Clj lies on the path from Cli to Clk in TG, then

Cli ∩ Clk ⊆ Clj .

The width of the tree-decomposition TG of G is equal to maxi{ |Cli| − 1 | Cli ∈
TG}, where |Cli| is the number of variables in the i-th clique. The treewidth of
the graphical structure G of a network now is equal to the minimum width over
all tree-decompositions of its moralised graph, and is denoted by τ(G).

Current inference algorithms for Bayesian networks in general pass messages
through a junction-tree representation of a network [10], which embeds for its
graphical structure a tree-decomposition of the network’s original graph. The
processing time of a single clique in the junction tree is proportional to the size
of the clique’s state space. Only if this size is bounded by a constant for all
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C1 X1 C2 X2

X3 C3 X4 C4

C5 X5 C6 X6

X7 C7 X8 C8

Fig. 1. A 4 × 4 grid multi-classifier

cliques, can inference be performed efficiently. We note that if the treewidth is
bounded, a bounded state space per variable suffices for feasible inference.

The treewidth of a multi-classifier in general is not bounded by a constant,
not even if the indegree and outdegree of all variables are small. As an example,
we consider a multi-classifier constructed from a generalised n × n chessboard;
the classifier for n = 4 is depicted in Fig. 1. Each black tile of the chessboard
is represented by a class variable, and each white tile is captured by a feature
variable; for each adjacent pair of tiles, an arc is added from the associated class
variable to the feature variable. The resulting multi-classifier has empty class and
feature subgraphs; the number of parents per feature variable is at most four. The
treewidth of this classifier is n [2], which shows that even simple multi-classifiers
can have a prohibitively large treewidth and, hence, a high classification runtime.

4 Related Work

The runtime of classification with a multi-classifier having been addressed before,
we briefly review earlier work on reducing the computational burden involved.

The property of class-bridge decomposability for multi-classifiers was intro-
duced to allow a divide-and-conquer strategy for classification. If a classifier
is class-bridge decomposable, its graphical structure decomposes, given a fea-
ture vector, into multiple components defined by the bridge subgraph; classifi-
cation then is performed in each component separately. The treewidth of such
a classifier is equal to the maximum treewidth of its individual components.
Heuristic algorithms have been designed for learning class-bridge decomposable
multi-classifiers [4]. Since these algorithms do not address treewidth explicitly,
the treewidth of a class-bridge decomposable multi-classifier may still be pro-
hibitively large. The algorithm in fact does not give any guarantee on the runtime
complexity of classification with the learned classifier.

Corani et al. [7] learn sparse multi-classifiers. The class subgraphs of their
classifiers are forests, and the bridge subgraphs are learned optimally by taking
the best scoring parent set per feature variable, given an empty feature subgraph.
Despite their sparsity, the treewidth of the resulting classifiers may be quite large
and bounded only by the total number of class variables.
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Learn a multi-classifier of treewidth at most k:

1. Learn an optimal forest-structured class subgraph;
2. Search the space of all possible bridge subgraphs, maintaining a branch-and-bound

tree of partial multi-classifiers. While the branch-and-bound tree has unvisited
nodes, perform the following steps:
2.1 Take the next partial multi-classifier P from the branch-and-bound tree;
2.2 Add a new feature variable with its best-scoring parent set to P ;
2.3 if BDeu(P ) < lowerbound then

– Stop expanding P , and go to Step 2.1;
2.4 if τ(P ) > k then

– Replace the current parent set by the next one, and go to Step 2.3
2.5 else

– Add each remaining feature variable to P , and insert into the search tree;
– Update the lower bound if applicable;

3. Optionally, learn a forest-structured feature subgraph.

Fig. 2. An algorithm for learning multi-classifiers of treewidth at most k

5 Learning Multi-classifiers of Small Treewidth

Our algorithm for learning multi-classifiers of small treewidth takes a branch -
and-bound approach to systematically searching the space of all graphical struc-
tures for one with highest BDeu score given a treewidth of at most k. Since a
large treewidth can be induced by just the bridge subgraph of such a classifier,
the algorithm focuses on this subgraph. The algorithm is summarised in Fig. 2.

Step 1: The algorithm starts by learning an optimal forest-structured graph
over the class variables; to this end any standard algorithm can be used [8]. The
learned subgraph is then fixed for the remainder of the learning process.

Step 2: Given the learned class subgraph, the algorithm builds a bridge sub-
graph by iteratively adding feature variables to the partially constructed multi-
classifier. The algorithm computes to this end, for each such variable, the BDeu
scores of all its possible parent sets. After adding a new feature variable and its
current best-scoring parent set, the algorithm compares the BDeu score of the
partial multi-classifier so far against a lower bound.

An initial lower bound on the BDeu score of the classifier to be learned is
established by finding the best single class parent for each feature variable, and
taking the score of the resulting forest of naive Bayesian classifiers. When joined
with the class subgraph from Step 1, the resulting classifier has treewidth one,
and hence constitutes a feasible solution. To compare the BDeu score of a par-
tially constructed multi-classifier against the lower bound, this partial classifier
needs to be extended to a multi-classifier with all feature variables involved. To
this end, the algorithm adds the best parent set for each yet remaining feature
variable; we note that this completed classifier may be infeasible as its treewidth
may be larger than k. The BDeu score of the completed classifier thus is an upper
bound on the score which can be attained by the current partial multi-classifier.



Multi-classifiers of Small Treewidth 205

If the score of the partial multi-classifier so far is smaller than the lower
bound, the current branch of the branch-and-bound tree is abandoned. If the
BDeu score is larger than the lower bound, the algorithm verifies that the
treewidth of the classifier does not yet exceed k. Computing the treewidth of
a partial multi-classifier being its most intensive task, the algorithm minimises
the number of computations involved. Since the feature subgraph of a partial
multi-classifier is empty, each feature variable Xi is connected with class parents
only. After moralisation therefore, Xi and its parents constitute a (maximal)
clique. From this property, we have that [3]:

τ(P ) = max{d, τ(P \ {Xi})}
where τ(P ) is the treewidth of the multi-classifier so far, and d is the indegree of
Xi; P\{Xi} is the graphical structure obtained by moralising P and subsequently
removing Xi. From this property we find that the treewidth of the partial clas-
sifier P can be computed from the moralised subgraph of class variables only. If
the treewidth of the partial multi-classifier exceeds k, the current branch of the
branch-and-bound tree is abandoned. Otherwise, the associated node in the tree
is expanded by adding the next feature variable; if its BDeu-score exceeds the
current lower bound moreover, this bound is updated.

Step 3: In an optional post-processing step, the algorithmadds a forest-structured
feature subgraph to the classifier. Given the learned class and bridge subgraphs,
the algorithm greedily inserts arcs that serve to increase the overall BDeu score of
the multi-classifier yet keep its treewidth smaller than k.

Although Step 1 of the learning algorithm yields an optimal class subgraph and
Step 2 results in an optimal bridge subgraph given this class subgraph, the algo-
rithm is not guaranteed to yield a multi-classifier of highest BDeu score. Since
the class subgraph resulting from Step 1 may affect the treewidth of the model
under construction, a multi-classifier with another, non-optimal class subgraph
could have a higher BDeu score.

6 Experiments

We conducted a number of experiments with our algorithm for learning multi-
classifiers of small treewidth. Before reporting the results obtained, we first dis-
cuss the general set-up of our experiments.

6.1 Data Sets and Baseline Characteristics

For our experiments, we used the data sets listed in Table 1; these sets are
commonly used for multi-label classification. In a pre-processing step, numerical
variables were discretised into four bins of equal size. We further performed
feature selection to remove any irrelevant features. Since feature selection for
multi-classifiers is an open problem, we used to this end the approach by Corani
et al. [7], performing correlation-based feature selection per class variables and
retaining the union of all selected feature variables.
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Table 1. Data set properties, the treewidth (τ) of the unconstrained multi-classifier,
and the baseline performance of the associated constant classifiers.

Data set Training Test Classes Features Selected τ accH accG

Emotions 391 202 6 72 19 3 0.67 0.11

Scene 1211 1196 6 294 119 4 0.82 0.16

Yeast 1500 917 14 103 39 4 0.77 0.10

Genbase 465 199 27 1186 72 7 0.95 0.27

Medical 645 333 45 1449 342 18 0.97 0.17

Enron 1123 579 53 1001 243 13 0.94 0.067

Prior to the experiments with our learning algorithm, we established baseline
accuracies for the various data sets. For computing a baseline Hamming accu-
racy, a constant classifier was constructed which returns for each class variable
separately the value that appears most often in the training set; for a baseline
global accuracy, the constant classifier returns the class vector that appears most
often. The baseline accuracies thus obtained are reported in Table 1. We further
learned multi-classifiers without any restrictions on treewidth, allowing at most
three parents per feature variable for reasons of feasibility. The treewidths of
the resulting classifiers are also reported in Table 1. Since the treewidths of the
multi-classifiers learned from the data sets Emotions, Scene and Yeast proved
small, we decided to exclude these data sets from our further experiments.

We then studied the performance of our learning algorithm, both with and
without using the option to add a feature subgraph to the multi-classifier under
construction. The global and Hamming accuracies established from the test sets
for the learned multi-classifiers were compared against those obtained from the
classifiers without any restrictions on treewidth. All multi-classifiers were learned
under the topological constraints introduced in Sect. 2. The BDeu scores were
computed with GOBNILP [1], with an equivalent sample size of α = 5. The
software for our algorithm was written in Java.

6.2 Results

Although experiments were run with various small τ values, we report the results
obtained with τ = 3 only; the results with other small treewidths were similar.

The accuracies established from the respective test sets for the learned multi-
classifiers are summarised in Table 2; the table also reports the accuracies of the
classifiers that were learned without any bounds on treewidth. For each data set
we used a Wilcoxon signed-rank test with p < 0.05 on both Hamming and global
accuracy to detect significantly better performance of either type of classifier.
With the Medical data set, the global accuracy of the unconstrained multi-
classifier proved to be significantly better than that of the classifier of small
treewidth. No further significant differences in performance were found. The total
state space sizes κ of the junction-tree representations of the learned classifiers
are also reported in Table 2. For the Enron and Medical data sets specifically,
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Table 2. Accuracies of multi-classifiers with unbounded and small treewidth (τ) respec-
tively, and the total state space size (κ) of the associated junction trees.

Empty feature subgraph Forest-structured feature subgraph

Data set τ κ accH accG τ κ accH accG

Genbase 7 3396 0.999 0.965 13 142828 0.998 0.960

3 1492 0.999 0.970 3 1520 0.999 0.970

Medical 18 2204040 0.987 0.622 36 6.6 · 1011 0.988 0.622

3 5700 0.987 0.586 3 6048 0.987 0.595

Enron 13 82292 0.945 0.138 34 1.8 · 109 0.946 0.130

3 3996 0.945 0.143 3 4456 0.946 0.147

the differences in state space size between the small-treewidth classifier and the
classifier of unbounded treewidth are quite large. By constraining treewidth, a
reduction of the state space size by a factor 20 for Enron and by almost a factor
400 for Medical is achieved, indicating a major reduction of classification time.
We further used the option to learn an additional forest-structured feature sub-
graph for our multi-classifiers, keeping treewidth within the same τ = 3 bound.
We compared the accuracies found with the learned classifiers against those
obtained from similar multi-classifiers of unbounded treewidth. Table 2 reports
the results obtained. Again applying, per data set, a Wilcoxon signed-rank test
with p<0.05 on both types of accuracy, revealed no significant differences. With
respect to the differences in total state space size, the table shows again that by
constraining treewidth major reductions of classification time are achieved.

The experimental results summarised in Table 2 suggest that adding a forest-
structured feature subgraph to a learned multi-classifier does not significantly
improve its performance. This finding may be explained by the fundamental
property of Bayesian networks that direct probabilistic influences dominate over
induced ones [11]. We consider as an example the simple network structure in
Fig. 3 on the left, and study the influence of the feature variable Xq on the class
variable Cj . Now, if an arc is added from Xp to Xq as shown in the figure on
the right, entering a feature vector will induce an intercausal influence between
Xp and Cj . This influence is known to be dominated by the direct influence from
Xq on Cj . As it further tends to be weak, the induced influence in fact is not
likely to cause large shifts in the probability distribution over the class variables.

Ci Cj

Xp Xq Xr

Ci Cj

Xp Xq Xr

Fig. 3. The effect of an induced intercausal influence
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7 Conclusions

Attributing their often high classification time to their large treewidth, we
designed a branch-and-bound algorithm for learning multi-classifiers of small
treewidth. For various well-known multi-label data sets, we showed that the
performance of the resulting treewidth-constrained classifiers does not differ sig-
nificantly from that of multi-classifiers without any bounds on treewidth. Our
experimental results further showed that by constraining treewidth, major reduc-
tions of the runtime of classification are achieved. In future research, we will con-
duct a deeper study of the performance of our treewidth-constrained classifiers
compared to unbounded multi-classifiers, especially in view of more informative
feature subgraphs. We will further investigate whether our learning algorithm
can be improved from a computational point of view to bring real-world appli-
cation of multi-classifiers within closer reach.
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Abstract. Multi-dimensional classifiers are Bayesian networks of
restricted topological structure, for classifying data instances into mul-
tiple classes. We show that upon varying their parameter probabilities,
the graphical properties of these classifiers induce higher-order sensitiv-
ity functions of restricted functional form. To allow ready interpretation
of these functions, we introduce the concept of balanced sensitivity func-
tion in which parameter probabilities are related by the odds ratios of
their original and new values. We demonstrate that these balanced func-
tions provide a suitable heuristic for tuning multi-dimensional Bayesian
network classifiers, with guaranteed bounds on the changes of all output
probabilities.

1 Introduction

The family of multi-dimensional Bayesian network classifiers (MDCs) was intro-
duced to generalise one-dimensional classifiers to application domains that
require instances to be classified into multiple dimensions [6,9]. An MDC includes
multiple class variables and multiple feature variables, which are connected by a
bipartite graph directed from the class variables to the feature variables. Clas-
sifying a data instance amounts to computing the joint probability distribution
over the class variables given the instance’s features, and returning the most
likely joint class combination. MDCs enjoy a growing interest as a suitable tool
for multi-dimensional classification [1,4].

Like more traditional classifiers, multi-dimensional Bayesian network classi-
fiers are typically learned from data. Tailored algorithms are available for fitting
MDCs to the joint probability distributions reflected in the data at hand.
While often available data prove suboptimal already for constructing a one-
dimensional classifier, any skewness properties of the joint or conditional dis-
tributions over the class variables will prove especially problematic for learning
multi-dimensional classifiers. Expert knowledge, for example of expected clas-
sifications, can then be instrumental in correcting unwanted biases by careful
tuning of the parameter probabilities of the learned classifier.

Tuning the parameters of a multi-dimensional classifier requires detailed
insight in the effects of changing their values on the classifier’s output prob-
abilities. For Bayesian networks in general, the technique of sensitivity analysis
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 210–220, 2015.
DOI: 10.1007/978-3-319-20807-7 19
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has evolved as a practical tool for studying the effects of changes in a network’s
parameter probabilities. Research so far has focused on one-way sensitivity analy-
ses in which a single parameter is varied. The effects of systematic variation of
multiple parameters have received far less attention, mostly due to the compu-
tational burden of establishing the functions describing these effects. A recent
exception is [2] in which an efficient algorithm for studying the effects of multiple
changes, within a fixed interval, on an established MPE is given. For tuning the
parameters of a multi-dimensional classifier however, more detailed insights in
the effects of simultaneously varying multiple parameters is preferred or even
necessary.

In this paper, we present an elegant method for tuning the output probabili-
ties of a multi-dimensional Bayesian network classifier by simultaneous parame-
ter adjustment. We begin by showing that the topological properties of an MDC
induce higher-order sensitivity functions of restricted functional form which can
be established efficiently. By employing a carefully balanced scheme of parame-
ter adjustment, such a function is reduced to an insightful single-parameter bal-
anced sensitivity function which can be readily exploited as a suitable heuristic
for tuning. The heuristic is shown to incur changes within guaranteed bounds in
all output probabilities over the class variables, thereby providing global insight
in the change in the network’s output distributions.

The paper is organised as follows. In Sect. 2 we review multi-dimensional
classifiers, and sensitivity functions of Bayesian networks in general. In Sect. 3
we derive the general form of a higher-order sensitivity function for MDCs. In
Sect. 4, the concept of balanced sensitivity function is introduced; we describe
how such a function is used for effective parameter tuning in a multi-dimensional
classifier and prove bounds on the changes induced in all output probabilities.
Section 5 illustrates the basic idea of balanced parameter tuning by means of an
example, and Sect. 6 concludes the paper.

2 Preliminaries

We briefly review multi-dimensional classifiers and thereby introduce our nota-
tions. We further describe higher-order sensitivity functions for Bayesian net-
works in general.

2.1 Bayesian Networks and Multi-dimensional Classifiers

We consider a set of random variables V = {V1, . . . , Vm}, m ≥ 1. We will use vi
to denote an arbitrary value of Vi; we will write v and v̄ for the two values of a
binary variable V . A joint value assignment to V is indicated by v. In the sequel,
we will use Vi and V also to indicate the set of possible value assignments to Vi

and V, respectively.
A Bayesian network is a graphical model of a joint probability distribution

Pr over a set of random variables V. Each variable from V is represented by
a node in a directed acyclic graph, and vice versa; (in-)dependencies between
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the variables are, as far as possible, captured by the graph’s set of arcs accord-
ing to the well-known d-separation criterion [7]. Each variable Vi ∈ V further
has associated a set of conditional probability distributions Pr(Vi | πVi

), where
πVi

denotes the set of parents of Vi in the graph; the separate probabilities in
these distributions are termed the network’s parameters. The joint probability
distribution Pr now factorises over the network’s graph as

Pr(V) =
∏

Vi∈V

Pr(Vi | πVi
)

where Vi and πVi
take their value assignments compatible with V. We will use

∼ and � to indicate compatibility and incompatibility of value assignments,
respectively.

A multi-dimensional classifier now is a Bayesian network of restricted topol-
ogy. Its set of variables is partitioned into a set C of class variables and a set
F of feature variables, and its digraph does not allow the feature variables to
have class children [6,9]. An MDC is used to assign a joint value assigment, or
instance, f to a most likely combination of class values c, that is, it is used to
establish argmaxc Pr(c | f). In this paper we focus specifically on classifiers with-
out any direct relationships between their class variables, yet in which no further
topological assumptions are made; we will denote such classifiers by MDC (C,F).
For a feature variable Fi ∈ F, we will use FFi

= F ∩ πFi
to denote its set of fea-

ture parents, and CFi
to denote its parents from C. Specific value assignments

to these sets are indicated by fFi
and cFi

respectively.

2.2 Sensitivity Functions of Bayesian Networks

Upon systematically varying multiple parameter probabilities x = {x1, . . . , xn},
n ≥ 1, of a Bayesian network in general, a higher-order sensitivity function
results which expresses an output probability Pr(y | e) of interest in terms of
these parameters x. More specifically, the result is a function of the following
form:

Pr(y | e)(x) =

∑
xk∈P(x)

(
ck · ∏

xi∈xk
xi

)

∑
xk∈P(x)

(
dk · ∏

xi∈xk
xi

)

where P(x) is the powerset of the set of network parameters x and where the
constants ck, dk are determined by the non-varied network parameters. We will
use xo = {xo

1, . . . , x
o
n} to indicate the original values of the parameters x in the

network under study, Pro to indicate original probabilities, that is, probabilities
computed with the original values of all parameters involved, and Oo to indicate
original odds.

Upon varying a parameter xj for a variable Vi, the other parameters of the
same conditional distribution over Vi are co-varied to let the distribution sum to
1. In the most commonly used co-variation scheme, these parameters are varied
proportionally with xj . Since other schemes may also be appropriate [8], we
will formulate our results in the sequel without assuming any specific scheme of
co-variation.
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3 The n-way Sensitivity Function of an MDC

Establishing a higher-order sensitivity function for a Bayesian network in gen-
eral is computationally expensive, as the number of additive terms involved,
and hence the number of constants to be computed, can be exponential in the
number of parameters being varied. In this section, we show that, due to its
restricted topological structure and dedicated use, a multi-dimensional classifier
allows more ready calculation of the n-way sensitivity functions for its output
probabilities. We show more specifically, that an output probability Pr(c | f) for
a given c can be expressed in terms of the original output probability and the
original and new values of all parameters compatible with the instance f . The
form of the sensitivity function is given in the proposition below; the proofs of
all propositions in this paper are provided in the appendix.

Proposition 1. Let MDC (C,F) be a multi-dimensional classifier as defined
above. Let f be an instance of F, and let x = {x1, . . . , xn}, n ≥ 1, be the set of
network parameters compatible with f . Then, for all c ∈ C,

Pr(c | f)(x) =

Pro(c | f) · ∏

xi∼c,xj�c
xi · xo

j

∑

c∗∈C

(

Pro(c∗ | f) · ∏

xi∼c∗,xj�c∗
xi · xo

j

)

The sensitivity function Pr(c | f)(x) stated above includes all parameters of the
feature variables which are compatible with the instance f to be classified. The
parameters Pr(f ′

i | πFi
) of a feature variable Fi with f ′

i incompatible with f
do not occur in the function since these parameters are not involved directly
in the computation of the output probability: upon variation of such a para-
meter, the output probability is affected only indirectly by the co-variation of
Pr(fi | πFi

) with fi ∼ f . Without loss of generality, we thus include just the
parameters compatible with f , which implies that the proposition holds for any
co-variation scheme used for the parameters of the feature variables. Also all
parameters Pr(ci) of a class variable Ci are included in the sensitivity function.
These parameters cannot be varied freely however, as their sum should remain 1.
By assuming a specific co-variation scheme, we could have included the depen-
dent parameters implicitly, as with the feature parameters. By their explicit
inclusion, however, the function is independent of the co-variation scheme used
for the class parameters and can be further tailored to a specific scheme upon
practical application.

Although the function stated above includes all parameters compatible with
the instance to be classified, it is easily adapted to a sensitivity function involving
only a subset of these parameters: since each parameter is included exactly once
in each term of the fraction, either by its original value xo or as a variable x,
any non-varied parameter cancels out. The sensitivity function is also readily
adapted to output probabilities Pr(c | g) with G ⊂ F, provided there are no
observed feature variables with unobserved feature parents. The parameters of
the unobserved feature variables then should simply be excluded.
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The sensitivity function stated in Proposition 1 reveals that an output proba-
bility of a multi-dimensional classifier changes monotonically with specific para-
meter adjustments. Proposition 2 details this property of monotonicity.

Proposition 2. Let MDC (C,F) be a classifier as before, and let Pr(c | f) be
its output probability of interest. Let x = {x1 . . . , xn}, n ≥ 1, be the parameters
of MDC (C,F) compatible with f , and let x′, x∗ be two sets of values for these
parameters. Then,

x′
i ≤ x∗

i for all xi∼c and x′
j ≥ x∗

j for all xj �c ⇔ Pr(c | f)(x′) ≤ Pr(c | f)(x∗)

The proposition states that by increasing the parameters in x compatible with
c and decreasing the incompatible ones, the output probability of the class com-
bination c increases. Such a parameter change will be called monotone with
respect to the output probability Pr(c | f). We note that the monotonicity prop-
erty of a parameter change provides information about the direction in which
the separate parameters need to be adjusted to arrive at the intended effect on
the output probability. The following corollary states that this probability takes
its maximum at the parameters’ extreme values.

Corollary 1. Let MDC (C,F), Pr(c | f) and x be as before. The sensitivity
function Pr(c | f)(x) attains its maximum at xi = 1 for all xi ∼ c and xj = 0
for all xj � c. A similar property holds for the minimum of the function.

4 Balanced Tuning of MDCs

In the previous section we showed that the output probability Pr(c | f) of a
multi-dimensional classifier changes monotonically given a monotone parame-
ter adjustment. While this property indicates the direction in which parameters
have to be adjusted, it does not yet suggest the amount of adjustment for arriv-
ing at the intended output. We now introduce for this purpose the concept of
a balancing scheme for parameter adjustment. A balancing scheme governs a
simultaneous change in all parameters x involved, by amounts defined by their
odds ratios xo·(1−x)

(1−xo)·x . Balancing the parameters of a classifier constitutes a simple
and generally applicable approach to parameter tuning; we will show moreover
that the approach comes with guaranteed bounds on the changes of all possible
output probabilities. We now first define the concept of balancing scheme.

Definition 1. Let x, y ∈ 〈0, 1〉 be parameters of an MDC, and let xo and yo

be their original values. We say that a scheme for parameter adjustment bal-
ances y positively with x if xo·(1−x)

(1−xo)·x = yo·(1−y)
(1−yo)·y ; it balances y negatively with x if

xo·(1−x)
(1−xo)·x = (1−yo)·y

yo·(1−y) .

An important property of a balancing scheme for parameter adjustment is that,
if a parameter x is varied over the full value range 〈0, 1〉, then the parameter y
covers the full range 〈0, 1〉 as well, that is, the range of possible values of y is
not constrained by balancing y with x; this property is illustrated for xo = 0.7
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and yo = 0.8 in Fig. 1. We note that we assume that a balancing scheme does
not adjust deterministic parameters and that non-deterministic parameters will
not adopt deterministic values.

Building upon balancing schemes, we now define a balanced sensitivity
function1.

Definition 2. Let Pr(c | f) be the output probability of an MDC as before, and
let x = {x1, . . . , xn}, n ≥ 1, be its parameters compatible with f . A balanced
sensitivity function for Pr(c | f) is a function Pr(c | f)(xi) in a single parameter
xi ∈ x, with all parameters xj ∈ x balanced with xi.

A balanced function Pr(c | f)(xi) is the intersection of the n-way function
Pr(c | f)(x) with the (curved) surface defined by the balancing scheme. It takes
the following form:

Pr(c | f)(xi) =
c0 + c1 · x1

i + . . . + cm · xm
i

d0 + d1 · x1
i + . . . + dm · xm

i

where the constants cj , dj again are determined by the non-varied parameters,
each xk

i is a multiplicative term of degree k, and m is the number of probability
tables from which the parameters are chosen. As an example, Fig. 2 depicts the
two-way sensitivity function Pr(cd | fgh)(x, y) of the MDC from Fig. 3, in the two
parameters x = Pr(f |c) and y = Pr(g |cd̄). The figure further depicts the two sur-
faces determining the balanced sensitivity functions in x and in y separately, that
are derived from the two-way function given a positive and a negative balancing
scheme for the two parameters.

A balanced sensitivity function provides insight in the effects of varying mul-
tiple parameter probabilities according to a balanced scheme of adjustment. For
a required change in the output probability of interest Pr(c | f), the amount
by which the parameter xi is to be adjusted is readily established; the bal-
anced scheme of adjustment then enforces the other parameter probabilities to
be adjusted accordingly. To guarantee that the balanced sensitivity function
covers the same value range for the output probability as the underlying n-way
function, all parameters have to be balanced monotonically with the output
probability of interest.

Given a (not necessarily monotone) balanced change, the changes incurred in
all output probabilities over the class variables are bounded, in terms of the odds
ratio of the original and new probabilities, as stated in the following proposition.

Proposition 3. Let MDC(C,F) be a multi-dimensional classifier and let
G ⊆ F. Let parameters x be balanced with the parameter x and let α ≥ 1 be
such that either x·(1−xo)

(1−x)·xo = α or (1−x)·xo

x·(1−xo) = α. Then,

1
αk

≤ O(C | G)(x)
Oo(C | G)

≤ αk

1 In earlier research, we introduced the related concept of sliced sensitivity function
[3] which specifies an output probability of a Bayesian network in n linearly related
parameters.
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Fig. 1. Positively (solid line) and neg-
atively (dashed line) balanced parame-
ters x and y, with xo = 0.7 and yo = 0.8.

Fig. 2. A two-way sensitivity function
in x=Pr(f|c), y=Pr(g |cd̄), and the sur-
faces defining the balanced sensitivity
functions with xo = 0.7 and yo = 0.8.

where k = s + 2 · t, with s the number of probability tables from which just a
single parameter is in x and t the number of tables with two or more parameters
in x.

Although the bounds stated above are not strict, they do give insight in the
overall perturbation of the classifier’s output distributions.

The idea of measuring the distance between two probability distributions
by their odds ratio was introduced before by Chan and Darwiche [5]. More
specifically, they proposed a measure which strictly bounds the odds ratio of an
arbitrary probability of interest. Given changes in just a single probability table,
their bounds are readily computed from just those changes; computing these
bounds given multiple parameter changes however, is computationally expensive
in general.

5 Tuning an Example Multi-dimensional Classifier

We consider the example classifier from Fig. 3 and its output probability of
interest Pr(cd | fgh). With the original parameter values, we find that Pr(cd |
fgh) = 0.29. Now suppose that domain experts indicate that this probability
should be 0.40, and that we would like to arrive at this value by adjusting the
parameters x = Pr(f |c), y = Pr(g |cd̄) and z = Pr(h |gd̄). By Proposition 1, we
find the sensitivity function:

Pr(cd | fgh)(x, y, z) =
po1 · x · yo · zo

po1 · x · yo · zo + po2 · x · y · z + po3 · xo · yo · zo + po4 · xo · yo · z
=

0.94 · x
0.94 · x+ 3.47 · x · y · z + 0.25 + 1.39 · z

where po1 = Pro(cd | fgh), po2 = Pro(cd̄ | fgh), po3 = Pro(c̄d | fgh) and
po4 = Pro(c̄d̄ | fgh). From this higher-order function, we now derive a balanced
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Fig. 3. An example multi-dimensional
classifier, with Pr(cd | fgh) for its proba-
bility of interest to be tuned.

Fig. 4. Balanced functions for Pr(cd |
fgh) and Pr(cd̄ | fgh), given a monotone
balancing scheme for x, y, z with respect
to Pr(cd | fgh).

sensitivity function Pr(cd | fgh)(x) by appropriately balancing the parameters y
and z with x. Since x ∼ Pr(cd | fgh), y � Pr(cd | fgh) and z � Pr(cd | fgh), we
balance both y and z negatively with x, to guarantee that the output probability
retains the same value range as with the corresponding higher-order sensitivity
function. We find the balanced function

Pr(cd | fgh)(x) = 0.15 · x − 0.184 · x2 + 0.05 · x3

0.26 + 0.23 · x − 1.07 · x2 + 0.59 · x3

which is depicted in Fig. 4. The expert-provided value 0.4 for Pr(cd | fgh) is
attained at x = 0.81; the other parameters then take the values y = 0.69 and
z = 0.27. The value α of the adjustment is 1.83. As we changed a single para-
meter from three CPTs, we find that [1/αk, αk] = [0.16, 6.10]. In addition to
the monotonically balanced sensitivity function Pr(cd | fgh)(x), the figure also
depicts the function Pr(cd̄ | fgh)(x) found with the same balancing scheme for
the parameters x, y, z. Since this scheme is non-monotone for Pr(cd̄ | fgh), the
resulting balanced function is no longer monotone.

To attain the desired output probability Pr(cd | fgh) = 0.40, also another
combination of parameters can be varied. Varying other parameter combinations
will generally result in another α and hence in other bounds on the changes in
all output probabilities. For example, the desired probability is also found with
Pr(f | c̄) = 0.11, Pr(g | c̄d̄) = 0.34 and Pr(h | cd) = 0.82. For this parameter
combination α = 1.97 is found, from which the interval [1/αk, αk] = [0.13, 7.60]
is established. In uncertainty of the actual changes therefore, the first tuning
option is preferred.

6 Conclusions

Motivated by the observation that available data sets often prove problematic for
learning multi-dimensional classifiers, we presented an elegant method for tuning



218 J.H. Bolt and L.C. van der Gaag

their parameter probabilities based on expert-provided information. We showed
that the topological properties and dedicated use of an MDC induce higher-
order sensitivity functions of restricted functional form which can be established
efficiently. We further designed a scheme of balanced parameter adjustment,
by which a higher-order sensitivity function is reduced to an insightful single-
parameter function which is readily exploited as a suitable heuristic for tuning.
The heuristic was shown to incur changes within guaranteed bounds in all output
probabilities over the class variables. Although not strict, these bounds do give
insight in the changes in the classifier’s output distributions which are incurred
by balanced adjustment of different sets of parameters. In our future research,
we would like to study these bounds with the aim of further tightening them.
We also plan to study optimality properties of balancing parameter probabilities
by their odds ratios in view of the odds-ratio based measure on the output.

The tuning method developed in this paper does not as yet provide for select-
ing parameters for tuning. Parameter selection may be based upon various con-
siderations. An example criterion may be to select parameters which give the
smallest changes in the output distribution as a whole, as was already suggested
in our example. Yet, parameters may also be selected based on the sizes of the
samples from which they were estimated originally. We plan to investigate the
effects of these and other criteria in various real-world applications of multi-
dimensional network classifiers.

Acknowledgements. This work was supported by the Netherlands Organisation for
Scientific Research.

Appendix

Proof of Proposition 1. Let MDC (C,F) be a multi-dimensional classifier as
before. Writing the output probability Pr(c | f) for a given c and f as Pr(c |
f) = (Pr(f |c) · Pr(c)) / (

∑
C Pr(f |C) · Pr(C)), and including terms involving

the original probability values Pro(c | f) and Pro(c), results in

Pr(c | f) =

(
Pr(f |c)·Pr(c)·Pro(f |c)·Pro(c)

Pro(f)·Pro(f |c)·Pro(c)

)

( ∑
C

Pr(f |C)·Pr(C)·Pro(f |C)·Pro(C)
Pro(f)·Pro(f |C)·Pro(C)

) =

(
Pro(c|f)·Pr(f |c)·Pr(c)

Pro(f |c)·Pro(c)

)

(∑
C

Pro(C|f)·Pr(f |C)·Pr(C)
Pro(f |C)·Pro(C)

)

Rearranging its summands into a single fraction gives for the denominator

∑

c∗∈C

(

Pro(c∗ | f) · Pr(f | c∗) · Pr(c∗) · ∏

C\c∗
Pro(f | C) · Pro(C)

)

∏

C

Pro(f | C) · Pro(C)
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where C\c∗ is used to denote the set of all joint assignments to C except c∗.
Substitution and simplification now gives

Pr(c | f) =
Pro(c | f) · Pr(f | c) · Pr(c) ·∏C\c Pr

o(f | C) · Pro(C)∑
c∗∈C Pro(c∗ | f) · Pr(f | c∗) · Pr(c∗) ·∏C\c∗ Pro(f | C) · Pro(C)

=
Pro(c | f) ·∏i Pr(fi | c, fFi

) · Pr(c) ·∏C\c
∏

i Pr
o(fi | C) · Pro(C)

∑
c∗∈C

(
Pro(c∗ | f) ·∏i Pr(fi | c∗, fFi

) · Pr(c∗) ·∏C\c∗
∏

i Pr
o(fi | C, fFi

) · Pro(C)
)

in which we used that Pr(f | c) =
∏

i Pr(fi | c, fFi
) with fi, fFi

∼ f , and that
Pr(c) =

∏
j Pr(cj) with cj ∼ c. We then find that

Pr(c | f)(x) =
Pro(c | f) · ∏

xi∼c,xj�c xi · xo
j

∑
c∗∈C

(
Pro(c∗ | f) · ∏

xi∼c∗,xj�c∗ xi · xo
j

)
�

Proof of Proposition 2. For the one-way sensitivity function describing the
output probability Pr(c | f) of an MDC in a parameter x ∼ c, we have that
Pr(c | f)(x) = (x · r)/(x · s + t), where r, s, t ≥ 0 since these constants arise
from multiplication and addition of probabilities. The function’s first derivative
equals Pr(c | f)′(x) = (r · t)/(s · x + t)2, which is always positive. Irrespective of
the values of the other parameters in the classifier therefore, an increase in value
of x ∼ c will result in an increase of Pr(c | f). Similarly, the output probability
increases with a decrease in value of x � c. �

Proof of Proposition 3. Let MDC (C,F), G and x be as stated in the proposi-
tion, and let H be such that H = F\G. We first show that the proposition holds
for any value combination c ∈ C given a fixed instance f . Using Proposition 1
we find that

O(c | f)(x) =
Pr(c | f)(x)

1 − Pr(c | f)(x)
=

Pro(c | f) · ∏
xi∼c,xj�c xi · xo

j

∑
c∗∈C\c

(
Pro(c∗ | f) · ∏

xi∼c∗,xj�c∗ xi · xo
j

)

from which we find

O(c | f)(x)
Oo(c | f) =

∑
c∗∈C\c

(
Pro(c∗ | f) · ∏

xi∼c,xj�c xi · xo
j

)

∑
c∗∈C\c

(
Pro(c∗ | f) · ∏

xi∼c∗,xj�c∗ xi · xo
j

)

and hence

minc∗∈C\c

∏
xi∼c,xj�c

xi · xo
j

∏
xi∼c∗,xj�c∗

xi · xo
j

≤ O(c | f)(x)
Oo(c | f) ≤ maxc∗∈C\c

∏
xi∼c,xj�c

xi · xo
j

∏
xi∼c∗,xj�c∗

xi · xo
j
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If x includes all parameters of the classifier, from each probability table
exactely two parameters will not cancel out from the fraction (

∏
xi∼c,xj�c xi ·

xo
j) / (

∏
xi∼c∗,xj�c∗ xi · xo

j). For each such parameter x, the fraction includes
either x

xo or xo

x . Now, for α ≥ 1, we have that x
xo , xo

x ∈ [1/α, α]. With a balanced
sensitivity function therefore, the minimum of the fraction equals 1/αk and the
maximum is αk, where k is two times the number of probability tables. If x
includes just a subset of the classifier’s parameters, we find that k = s + 2 · t,
where s is the number of probability tables from which just a single parameter
is in x and t is the number of tables with two or more parameters in x.

For an instance f ′
� f , we find Pr(c | f ′) by replacing (some of) the parameters

in the fraction above by their proportional co-variant, which gives 1−x
1−xo or its

reciprocal. Since for α ≥ 1, these fractions are in [1/α, α] as well, the proof above
generalises to all instances in F. For a partial instance g we have that Pr(C | g) =∑

H Pr(C | g,H) · Pr(H | g). Since (O(C | gH))/(Oo(C | gH)) ∈ [1/αk, αk] and∑
H Pr(H | g) = 1, we further find that (O(C | g))/(Oo(C | g)) ∈ [1/αk, αk] for

all g ∈ G. �
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ciency virus inhibitors using multi-dimensional Bayesian network classifiers. Artif.
Intell. Med. 57, 219–229 (2013)

5. Chan, H., Darwiche, A.: A distance measure for bounding probabilistic belief
change. Int. J. Approximate Reasoning 38, 149–174 (2005)

6. van der Gaag, L.C., de Waal, P.R.: Multi-dimensional Bayesian network classifiers.
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Abstract. The paper discusses a new way of estimating the conformity
of an item, described in terms of Boolean-valued features, with respect
to a class of items. A usual view of conformity is to compare, feature
by feature, the item value with the corresponding distribution of values
observed over the class. Then combining the comparison results for the
different features yields a global conformity measure. In this paper, the
item is rather compared to triples of elements taken in the class: it is
checked if the item conforms, over a maximal number of features, to
the majority of the elements in each triple. Based on the idea that a
new item should be allocated the class to which it conforms the most,
a simple classification algorithm is proposed. Experiments on a set of
benchmarks show that it is competitive with classical methods.

1 Introduction

The conformity of a new item x wrt an existing set of items C is generally viewed
in terms of the agreement of each feature value of x with the distribution of the
values for this feature among the items constituting the set C. All items are
described in terms of a common set of relevant features. The distribution of each
feature (or more generally each group of features) is usually probabilistic and
then based on the histogram of the observed values. However, if the set C is
rather defined in intention (e.g. the set of recent and cheap items) by means of
more or less desirable values for the features (considered individually or jointly),
then possibility distributions may be used, and the conformity of an item x wrt
a set C may be viewed as a fuzzy pattern matching problem [4,5].

In the above views, the conformity is estimated by confronting a feature-
based description of the new item x with a representation of the set C in terms
of feature distributions. The conformity measure is then expressed in terms of
conditional probabilities or possibilities. Then, in a classification problem, given
the conformity measure of x wrt classes, x is allocated to the one maximizing
this number. Conformal predictors [10] offer a renewed, formal, expression of
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 221–232, 2015.
DOI: 10.1007/978-3-319-20807-7 20
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this principle. Roughly speaking, with a conformal predictor, a new item x is
associated to the class that maximizes the proportion (or p-value) of elements
in the class “stranger”(i.e. with a lower conformity) than x.

In this paper, in the case of Boolean features, we adopt a slightly different
view, where the evaluation of the conformity relies on a local view: an item is
all the more conforming to a set C that it conforms to a maximum number of
small subsets of C. The paper is organized as follows. In Sect. 2, a new way of
estimating the conformity of an item wrt a set of items is advocated. It is based
on judging if for each feature the value of the item is identical to the one of
the majority over a maximum number of triples taken from the considered set.
On this basis a classification algorithm is implemented, where the new item is
allocated to the class to which it conforms the most in the above sense. Using the
same conformity measure, another algorithm is proposed with a cross-conformal
flavor [12], where we use p-values (i.e. the proportions of items with lower con-
formity measure than the current one). The 2 algorithms are experimented on
several classification benchmarks. Results competitive with standard approaches
are reported in Sect. 4. Moreover the simple conformity-based algorithm seems
to obtain results that are comparable to the one based on p-values, with a lower
computational complexity.

2 Evaluating Conformity

In this section, after briefly examining a common view of conformity in terms of
majority among a whole class, we advocate another way of judging conformity
on the basis of majority inside triples.

Let us introduce some notations. C denotes a set of items known to belong to
the same class C. Each element in C is supposed to be described by a Boolean
vector of n feature values. Namely, x ∈ C and x = (x1, · · · , xn) and ∀i, xi ∈
{0, 1}. Let d = (d1, · · · , dn) be a new item, for which we want to evaluate the
conformity with C.

2.1 Usual View of Conformity

In the classical Bayesian view, we have Prob(C|d) = 1
Z × Prob(C) ×∏n

i=1 Prob(di|C) assuming that the n features are independent. The evidence
Z depends only on d , Prob(C) reflects some characteristics of C such as its
size, and

∏n
i=1 Prob(di|C) evaluates the conformity of d = (d1, · · · , dn) with C.

But under some conditional independence assumptions, this probability can be
rewritten as a weighted product of Prob(di|C), i.e. the conditional probability to
get value di for feature i in the class C. Usually, Prob(di|C) is estimated as the
frequency of elements having value di for feature i in the whole class C. Thus,
the expression of Prob(C|d) involves the product of Prob(C) with a kind of
conjunctive combination expressed by the product of the proportion of elements
of C identical to d for each feature i. A counterpart of this evaluation exists in
the setting of possibility theory [2]. In the case of Boolean features, let p(C, i)
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be the proportion of the majority value for feature i in C. Then, an elementary
estimation of Prob(C|d) is

1
Z

× Prob(C) ×
∏

i∈M

p(C, i) ×
∏

j∈M

(1 − p(C, j))

where M ⊆ {1, · · · , n} is the subset of features where d is conform to the
majority in C, and M is the complementary subset where d is not conform to
the majority. The idea of conformity in this approach is thus related to the notion
of majority wrt the whole set C itself. In the following, we investigate the idea
of judging conformity wrt a collection of smaller subsets of C and provide some
empirical evidence in favor of this idea.

2.2 A View of Conformity Based on Triples

We suggest here to consider this majority with regard to the smallest sets where
a strict majority always appears. In the case of Boolean values (1 and 0), the
smallest subsets are clearly triples. Let a , b, c be three elements in C, and let
a, b, c be the values of their component corresponding to a particular feature i.
Then, in a Boolean world, there are two possibilities, either a = b = c, or two of
the three are equal. In both cases, a strict majority takes place. Let m denote
the majority value. Now consider the newcomer d with value d for feature i.
Either d = m, and m remains the majority value in {a, b, c, d}, or d �= m, and
there is no longer any majority in {a, b, c, d} (two values are equal to 1 and two
values to 0). Only with the first case, d conforms to the majority.

Note that if we consider larger subsets in C, even with only 4 elements rather
than 3, it becomes possible that the newcomer increases the minority, without
changing the majority. Indeed, the majority value that may be shared by 3
elements in the 4-elements subset will then remain unchanged in the 5-elements
subset resulting from the arrival of a fifth element whatever its value. A similar
phenomenon takes place if we start with larger subsets in C having 5 elements or
more. So we are losing a distinctive property of 3-elements subsets which have a
different majority behavior depending if d conforms or not to the majority in the
3-elements subset. This means that triples are the only subsets such that adding
an item that does not conform to the triple majority destroys the majority. Thus,
3-elements subsets are able to clearly discriminate, among different d those that
conform to the majority of the triple.

The idea of conformity just described may receive a logical reading, by defin-
ing it as Even(a, b, c, d):

Even(a, b, c, d) =def H4(a, b, c, d) ∨ Eq(a, b, c, d)

where Eq(a, b, c, d) =def (d = a)∧(d = b)∧(d = c) and H4(a, b, c, d) is such that:

H4(a, b, c, d) = 1
if (a, b, c, d) ∈ {(1, 1, 0, 1),(1, 0, 1, 1),(0, 1, 1, 1),(0, 0, 1, 0),(0, 1, 0, 0),(1, 0, 0, 0)}

H4(a, b, c, d) = 0 otherwise.



224 M. Bounhas et al.

As can be seen, H4(a, b, c, d) = 1 if and only if there is an intruder value
in {a, b, c, d} which is not d. It is worth noticing that H4(a, b, c, d) has been
recently identified as one of the four existing heterogeneous logical proportions
that are quaternary connectives built on the basis of the comparison of similarity
and dissimilarity indicators pertaining to pairs (a, b), and (c, d). A completely
different type of logical proportions, called homogeneous, includes analogical
proportions that have also been proved suitable for classification task [1,3,7].
See [8] for an introduction to homogeneous and heterogeneous logical propor-
tions. The situations where Even(a, b, c, d) = 1 exactly cover the two cases
already mentioned where d is identical to the majority value in the triple {a, b, c},
namely either a = b = c, or two of the three are equal to d. So the fact that
d joins {a, b, c}, when Even(a, b, c, d) = 1, leaves the resulting subset as even
as it was, hence the name, and in fact the majority is reinforced by the arrival
of d. Note also that Even(a, b, c, d) is left unchanged by any permutation of
{a, b, c}. This means that the ordering inside triples does not matter. Besides,
Even(a, b, c, d) = Even(a, b, c, d) where x = 1 if x = 0 and x = 0 if x = 1,
expressing that Even(a, b, c, d) does not depend on the way the information is
encoded.

If we want to evaluate to what extent a vector d conforms with a set C for a
feature i, we have clearly to consider all the triples {a, b, c} in C (or in practice a
large representative subset of all the triples). This leads to use the definition of
Even(a, b, c, d) as a basic brick to define a global evenness-measure Even(C, di)
of d wrt C for feature i:

Even(C, di) = Σ(a,b,c)∈C3Even(ai, bi, ci, di).

It should be clear that the stronger the majority in C in favor of a partic-
ular value for a feature i, the larger the number of triples {ai, bi, ci} such that
Even(ai, bi, ci, di) = 1 when di is in conformity with this majority. Observe also
that if there is only one exceptional value, distinct of all the other values all
equal to m for feature i in C, then for all the triples in C Even(ai, bi, ci, di) = 1
if di = m. If there are two values different from m, then this still holds, except for
|C| − 2 triples. Thus high values of Even(C, di) reflect that there are few excep-
tions in C, distinct from di, regarding the value of feature i. Moreover, it can be
checked that if we add to C an element d such as Even(ai, bi, ci, di) = 1 for all
triples, thus building a new subset C′ = C ∪{d}, then Even(a′

i, b
′
i, c

′
i, d

′
i) = 1 will

be preserved for all triples in C′ wrt a new comer d’ .
In order to measure to what extent a vector d conforms to C, we have to

consider all features. This leads to define

Even(C,d) =def Σn
i=1Even(C, di)

Clearly, Even(C,d) is all the greater as there does not exist many fea-
tures where d behaves as an intruder for a larger number of triples. Then, the
larger Even(C,d), the better d conforms to C. However, note the independence
assumption underlying the latter summation, where all features are considered
individually.
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2.3 Normalization

Clearly, Even(C, di) belongs to [0,
(|C|

3

)
], and Even(C,d) to [0, n · (|C|

3

)
]. Thus, it

may seem natural to normalize by dividing Even(C, di) by
(|C|

3

)
. This leads to

Even∗(C,d) =
1

(|C|
3

)Even(C,d).

where Even∗(C,d) ∈ [0, n].
But, we have to remember the Bayesian lesson where the conformity is mul-

tiplied by the prior Prob(C), for acknowledging the fact that for the same level
of conformity, we should favor the largest class. This is not taken into account by
Even∗(C,d). Prob(C) is usually taken as |C|/N where N is the total number of
elements in the training set. Besides, since

(|C|
3

)
has the same order of magnitude

as |C|3 for large classes, Even∗(C,d) may be estimated as

Even∗∗(C,d) =
1

|C|2 Even(C,d).

As we understand from this discussion, the formula Even(a, b, c, d) can be
used as a building block for defining a conformity measure of a new item d with
respect to a set C. In the following section, we briefly recall how a conformity
(or non-conformity) measure can be used as the underlying concept to build
up valid machine learning algorithms. Since it would be too time-consuming to
consider all the triples in a set C, we restrict one of the elements of the triples to
be among the k nearest neighbors of d (some experiments have shown that this
does not lead to significant difference on the results). So the order of magnitude
of the number of triples is now k·|C|2 rather than |C|3. So the conformity measure
that will be used in practice is (we omit the division by k since it is a constant):

Even∗∗∗(C,d) =def
1

|C|Σ
n
i=1Σ(a,b)∈C2, c is a k nearest neighbor of d Even(ai, bi, ci, di).

Since the conformity measure has to be maximized, we may focus on triples for
which d is an intruder for at most n − l features, where l = 0, 1, · · · . Then,
instead of keeping all the triples, we can just choose a threshold l ∈ [0, n], and
consider only the triples (a , b, c) in C where Σi∈[1,n]Even(ai, bi, ci, di) ≥ l.

Thus, we see that Even∗∗∗(C,d) may be considered as a conformity measure
in the sense given in [9,11]. In the next section, we briefly recall how a conformity
(or non-conformity) measure can be used as the underlying concept to build up
classifiers.

3 Conformal Predictors

Conformal predictions provide solid foundations to design machine learning algo-
rithm, with sound theoretical properties. We may refer to [11] for a deep analy-
sis of this framework and to [10] for a comprehensive tutorial. We just recall
here the philosophy of conformal prediction. The main tool to build up such
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a predictor is the concept of non conformity or conformity measure. Roughly
speaking, the non-conformity nonConf(S, z) of a given element z to an exist-
ing set S of observed data is a real number measuring to what extend z can
be considered as an outsider w.r.t. the elements of S. The dual concept is
the conformity measure, which can be build from a non-conformity measure
by combining with a decreasing function such as: conf(S, z) = 1

nonConf(S,z) ,
or conf(S, z) = −nonConf(S, z). A lot of options are available. As soon as
we have such a measure (let us say a conformity measure) at our disposal, a
natural idea, when it comes to predict a new value among a set Z of candi-
date values, having already observed S, is to consider that the most suitable
candidate z is the one maximising its conformity with S, i.e., something like
z0 = argmaxz∈Zconf(S, z). Unfortunately, as these measures, both conformity
and non conformity, are a matter of taste and provide a kind of absolute value
which can be changed with the scale of the initial measure, it is much more
clever to consider, for each element z the proportion of elements in S that are
less conform than z: the larger this proportion, the better z conforms to S and
the better z as a candidate to be the next element in S. This proportion is called
the p-value of z wrt S.

Starting from a training set TS of already observed elements, the final option
to build up a conformal predictor is

– to compute, for each element s ∈ TS, conf(TS \ {s} ∪ {z}, s),
– then p-value(TS, z) = |{s∈TS|conf(TS\{s}∪{z},s)≤conf(TS,z)}|

|TS|+1

The most suitable candidate is now: z0 = argmaxzp-value(TS, z). One of the
most outstanding properties of conformal predictors is the fact that, instead of
simply giving flat predictions, they provide a confidence measure of the given
prediction. In this paper, we do not deal with this aspect of conformal predictors.

In classification, a new item z has to be associated with a class and the
previous definitions still apply but considering now an element as a pair (z, lz)
where lz is the label of z. This leads to the basic procedure defining a conformal
classifier as follows:

for each label l ∈ C (C is a set of labels or classes)

– compute p-value(TS, (z, l)) = |{s∈TS|conf(TS\{s}∪{(z,l)},s)≤conf(TS,(z,l))}|
|S|

– allocate to z the label l0 = argmaxl p-value(TS, (z, l))

Roughly speaking, we allocate to z the label which makes it to conform the best
to the corresponding class. It is quite clear that, despite its elegant theoretical
results, this framework leads to very processing intensive algorithms and are only
practical for small data sets. As such, they have to be optimized and we recall
below a way to perform such an optimization as it has been described by [12].

3.1 Other Types of Conformity-Based Predictors

Looking for more computationally efficient algorithms, inductive conformal pre-
dictors and cross conformal predictors have been designed in [9,12]. The main
idea is to split the initial training set and to introduce a new way to compute
the p-values.



A New View of Conformity and Its Application 227

– Regarding inductive conformal predictors, TS is split into a pure training
set S and a disjoint calibration set C such that S ∪ C = TS. Then a new
calculation of the p-values is given still leading to valid predictors.

– Cross conformal predictors are inspired by the cross-validation method where
the training set TS is split into a finite set of folds. A more sophisticated
p-value definition is given. Unfortunately, the theoretical properties of these
cross-conformal predictors have still to be investigated as they do not exactly
follow the initial conformal framework: their validity is more an empirical
observation rather than a mathematical fact.

Our approach is inspired by the cross-conformal approach but does not follow
the exact scheme. Still, the training set TS is split into non overlapping subsets
Yi: in the case of classification, the simplest option is to consider a partition of
TS via the classes and Cj = {s ∈ TS|label(s) = j}.

Given a new item z to be classified, when allocating to z a candidate label l,
we just compute p-value(Cl, (z, l) instead of computing a p-value wrt the whole
training set TS. This is a way to drastically reduce the time complexity of the
initial procedure. We give below the main lines of our classification procedure
in Algorithm 1 with conf(C,d) = Even∗∗∗(C,d), for fixed values of k and l
(see the end of Sect. 2).

Algorithm 1.
Input: a training set TS of examples z = (x, cl(x))
a new item d, a conformity measure conf
Algo:
Partition TS into sets C of examples having the same label cl. // cl is the label of
the class C
for each C do

Compute conf(C,d) i.e. the conformity measure of d w.r.t. C.
For each z ∈ C, compute αz = conf(C ∪ {d} \ {z}, z)

Compute p-value(C,d) = |{z∈C∪{d}|αz≤conf(C,d}|
|C|+1

end for
cl(d) = argmaxlabel(C){p-value(C,d)}
Output: cl(d)

Algorithm 2.
Input: a training set TS of examples z = (x, cl(x))
a new item d, the conformity measure Even∗∗∗(C,d), for fixed values of k and l
Algo:
Partition TS into sets C of examples having the same label cl.
for each C do

Compute Even(C,d)
end for
cl(d) = argmaxlabel(C){Even(C,d)}
Output: cl(d)



228 M. Bounhas et al.

3.2 Another Simplified Option

Despite we have reduced the set of explored elements, our predictors are still
very resource-consuming, just because a lot of numbers have to be computed
in order to get a single p-value. A more simple option is just to compute the
evenness measure such as defined in the previous section, (instead of computing
the real p-values). This leads to a procedure described in Algorithm 2.

Both Algorithms 1 and 2 have been implemented, using our evenness measure
as a conformity measure. Results of experiments are described in the next section.

4 Experimentations and Discussion

This section provides experimental results for the two “conformity”-based clas-
sifiers. The experimental study is based on several data sets selected from the
U.C.I. machine learning repository [6] where we focus on classification problems
involving categorical attributes only:

– Balance and Car are multiple classes databases.
– Voting, Spect, Monk1, Monk2, Monk3 data sets are binary class problems.
Monk3 has noise added (in the training set only).

– Voting and Spect data sets contain only binary attributes. Voting dataset
has missing attribute values.

All non binary attributes are encoded in the Boolean setting so that to be
handled in this context. A brief description of these data sets is given in Table 1.
In terms of protocol, we apply a standard 10 folds cross-validation technique
and we run our tests for the two conformity-based classifiers described with
Algorithms 1 and 2.

In Table 2, we provide mean accuracies and standard deviations for the two
proposed classifiers for different values of k and l (k being the number of nearest
neighbors of d, l refers to the number of attributes i of d such that di belongs
to a majority). The first two columns correspond to the results of Algorithm 1

Table 1. Description of datasets

Datasets Instances Nominal Att. Binary Att. Classes

Balance 625 4 20 3

Car 743 6 21 4

TicTacToe 405 9 27 2

Voting 435 - 16 2

Spect Heart 267 - 22 2

Monk1 432 6 15 2

Monk2 432 6 15 2

Monk3 432 6 15 2
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Table 2. Results for the two classifiers

Datasets Algo1 Algo2

k � = n � = n − 1 � = n � = n − 1

Balance 1 79.99±3.19 81.78±4.71 79.0±4.3 86.1±2.5

3 82.53± 3.32 81.64±3.39 82.2±3.6 87.4±1.7

5 83.36±2.7 82.25±3.16 83.1±3.4 88.0±1.1

Car 1 87.6±2.61 87.05 ±3.61 91.2±3.4 88.9±4.3

3 90.7±3.35 89.65±3.21 91.7±2.8 89.0±4.1

5 91.51±3.27 90.32±2.43 92.0±2.7 90.6±4.4

Tic Tac Toe 1 80.31±5.45 82.07±5.57 82.55±5.76 86.78±5.75

3 81.07±6.45 85.01±5.6 83.54±6.13 87.47±4.61

5 82.78±4.84 88.45±3.75 84.51±5.37 88.21±4.247

Voting 1 93.1±3.8 93.1±3.8 94.5±2.8 94.7±3.0

3 94.5±3.9 94.5±3.9 94.9±2.7 94.9±3.1

5 94.5±3.9 94.5±3.9 95.2±2.7 95.2±3.0

Spect 1 83.9±2.2 79.5±2.0 83.2±4.79 76.9±5.8

3 79.4±3.9 79.1±2.0 84.0±3.3 76.6±6.0

5 79.4±3.9 79.5±2.0 84.3±4.0 76.6±6.0

Monk1 1 99.5±0.9 99.5±0.9 100 100

3 99.5±0.9 98.8±1.9 100 100

5 99.5±0.9 99.3±1.1 100 100

Monk2 1 44.0±5.6 34.8±6.7 50.7±5.6 47.2±4.6

3 48.4±5.2 33.1±6.4 54.8±5.26 54.9±4.3

5 52.8±5.8 35.7±6.6 57.8±4.9 61.8±4.7

Monk3 1 100 99.8±0.7 100 100

3 99.5±1.4 99.3±1.4 100 99.3±1.5

5 99.8±0.7 99.1±1.5 100 99.3±1.5

and the two second columns correspond to Algorithm 2. The best results are
highlighted in bold.

In order to evaluate the efficiency of these classifiers, we compare their accura-
cies to off-the-shelves classifiers. Table 3 includes classification results with SVM,
k-Nearest Neighbors IBk for k=1, k=10, JRip (an optimized propositional rule
learner) and the standard Naive Bayes (NB). Accuracy results are obtained using
the free implementation of Weka software.

From Table 2, we can make the following comments:

• The “conformity”-based classifier described by Algorithm 2 exhibits results as
good as the ones of Algorithm 1 for all datasets for l = n.

• For l = n − 1, the “conformity”-based classifier is less efficient than the p-
value classifier for dataset“Spect.”, more efficient for datasets “Balance” and
“Monk2” and has equivalent results for other datasets. For a given d to be
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Table 3. Results for well-known classifiers

Datasets SVM IBk JRIP NB Algo2

(k=1, k=10) (k=5,l=n)

Balance 90 83, 83 76 91 83

Car 91 92, 92 91 86 92

Tic Tac Toe 100 98, 93 95 79 84

Voting 96 93, 92 95 90 95

Spect 81 75, 81 81 79 84

Monk1 75 100, 100 98 75 100

Monk2 67 44 , 64 73 60 58

Monk3 100 100, 99 100 97 100

classified, if there are many irrelevant items z (such that αz = 0 for many
classes) used to compute the p-value in Algorithm 1, this may perturb the clas-
sification. Since Algorithm 2 uses Even(C,d) to measure the class conformity,
it seems to be less sensitive to irrelevant data.

• The two algorithms achieve the best classification rates if l = n. This means
that the classifiers are likely to be more accurate when the classification is
made on the basis of triples for which all attributes of d belongs to a major-
ity. However, for some datasets such as Balance and Monk2, the classifier
needs to consider more levels l when it is difficult to satisfy the constraint
Σi∈[1,n]Even(ai, bi, ci, di) ≥ l for l = n or even l = n − 1. Thus, we also tested
smaller levels of l and for “Balance” and “Monk2” data sets, we get an accu-
racy respectively equal to 90.1 ± 1.74 and 67.13 ± 0.61 with Algorithm 2 for
l = n − 3.

• Algorithm 2 exhibits good results in spite of implementing a simplified proce-
dure (whose complexity is much less than the one of Algorithm 1).

• The classification success of the classifier for Balance and Car (which have
multiple classes) suggests its ability to deal with multiple class data sets.

• If we analyze results in Table 3, we note that the two proposed classifiers
perform as well as the best known algorithms like SVM on many datasets. In
particular, Algorithm 2, with a large k works as well as any other classifiers
for data sets Balance (for l = n − 3), Spect., Monk1 and Monk3 (for l = n),
and reaches results similar to SVM for Monk2 dataset (for l = n − 3).

• If we compare our results to the Naive Bayes classifier (NB), it is clear that
the “conformity”-based classifier outperforms the NB for all datasets, except
Monk2, and Balance where our classifiers perform worse.

• However, “conformity”-based classifiers seem to be less efficient when dealing
with the Monk2 and Tic Tac Toe data sets. Regarding Monk2, it is known
that the underlying function (“having exactly two attributes with value 1”)
is more complicated than the functions underlying Monk1 and Monk3, and
involves all the attributes (while in the two other functions only 3 attributes
among 6 are involved in the hidden function). We suspect that the existence
of a large discontinuity in the classification of data (a nearest neighbor d of
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c will not generally be labeled with the same class cl(c)) may be too difficult
to apprehend using the conformity measure. For Tic Tac Toe, we also notice
that all attributes are involved in the classification function. Moreover, this
data set contains the largest number of attributes among all datasets which
may require a larger sample for an accurate prediction.

These experiments empirically confirm our initial intuition that working with
subsets of triples instead of the whole set C may be of interest.

Lastly, although one may find a flavor of conformal prediction [11] in the two
proposed approaches, the way we use the evenness measure, which may be viewed
as a conformity measure, is quite different from conformal predictors. More-
over, the way we compute the p-values for a class in Algorithm 1 only considers
examples belonging to this specific class. Although this is computationally less
costly than in conformal predictors, Algorithm 1 remains a resource-consuming
algorithm.

5 Conclusion

This paper has proposed a new way to evaluate the conformity of an item with
respect to a set, which is based on the consideration of 3-elements subsets that
enable us to discriminate the situations where the item is in conformity with the
majority of the values in the subsets. By cumulating these elementary evaluations
on triples, we have shown that it is possible to build a meaningful conformity
measure. This measure has proved its effectiveness for designing simple classifiers
that get competitive results on classical benchmark datasets.
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Abstract. We study the problem of analyzing inconsistency in a dis-
tributed information system where the reliability of the sources is taken
into account. We model uncertainty by assigning a probability to each
source. This yields a definition of the expected inconsistency of the sys-
tem. We also extend this with the use of Shapley values for determin-
ing the responsibility of each formula to inconsistency. Then we use the
Shapley inconsistency values to assign an expected blame to each for-
mula. From this we define the concept of weakness of a formula which
represents the degree to which it should be deleted to resolve the incon-
sistency of the system.

1 Introduction

The general problem that we consider in this paper is the aggregation of infor-
mation from multiple distributed sources (e.g. databases, information from the
web, etc.). As a user, we ask queries of the sources and as a result we get answers.
We do not control the sources, and we cannot change them. Our primary con-
cern is to evaluate the answers we get back from the sources by considering
the inconsistency between them with respect to integrity constraints that we
may have.

We let (K1, ...,Kn) denote a tuple of sources of information, where each Ki is
a set of formulae. We do not necessarily know the contents of each Ki; however,
we can query each source. We assume that we have a priori a set of integrity
constraints based on the context. Suppose we ask a question Q, and we get the
answer Ai from source i (i.e. Ki � Ai). We assume each Ai is a nonempty set
of facts (i.e. a set of atoms or propositional letters). Then, for any question Q,
there is an answer tuple (A1, ..., An). We do not formalize the query process in
this paper, and so our starting point is the set of integrity constraints and the
answer tuple.
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 235–245, 2015.
DOI: 10.1007/978-3-319-20807-7 21
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Example 1. Suppose we are searching the web on information about Paris. From
source 1, we get the facts listed in A1 below, and from source 2, we get the facts
listed in A2. So for that query, we have the answer tuple (A1, A2) where

A1 = {population(7million), medianage(45)}
A2 = {population(4million), averagesalary(23KEuro)}

We assume first-order predicate logic for our language for integrity constraints;
however, we will rewrite the integrity constraints to suit what might appear in the
answer tuples. Thus, ∀x∀y(population(x) ∧ population(y) → x = y) might be
an integrity contraint for the first example. In this example we will use the
instantiated version as ¬population(7million) ∨ ¬population(4million). So
we will assume that each integrity constraint is a disjunction of negated atoms
and write it as A0.

Given an answer tuple (A1, ..., An) and the corresponding set of integrity con-
straints A0, we will be interested in the consistency of ∪n

i=0Ai, that is, whether
∪n

i=0Ai � ⊥ where � denotes the classical consequence relation and ⊥ stands for
falsity. Thus, Example 1 with the given integrity constraint is inconsistent.

Given an answer tuple, and a set of integrity constraints, we want to be able
to resolve inconsistencies by removing facts from answers. Our goal is to find
the formulae that are for some good reasons the best to eliminate in order to
restore consistency. To support this process, we will use measures of inconsis-
tency. We will review these in the next section, but essentially, they assess the
number of conflicts, the inter-connectedness of conflicts, the proportion of the
information that is in conflict, etc.

In order to help analyse the conflict, we will also take the reliability of the
sources of information into account. Let P be a function that assigns a value in
[0, 1] to each source i ∈ {1, .., n}. We assume that P (i) denotes the probability
that a randomly selected formula in Ai is correct based on previous performance
by the source where the previous performance is determined from the correct-
ness of previous answers when checked by an oracle/expert/etc. We also assign
P (A0) = 1, that is, all integrity constraints are known to be correct.

We formalize a novel approach to analyzing inconsistency by using proba-
bilistic information about sources of information in conjunction with measures
of inconsistency.

2 Background to Measuring Inconsistency

We assume a propositional language L of formulae composed from a set of atoms
A and the logical connectives ∧, ∨, ¬. A knowledgebase K is a finite set of
formulae. We let � denote the classical consequence relation, and write K � ⊥
to denote that K is inconsistent. R≥0 is the set of nonnegative real numbers.

For a knowledgebase K, MI(K) is the set of minimal inconsistent subsets
of K. Free(K) is the set of formulae not involved in any inconsistency and
Problematic(K) is K \ Free(K). For one of the inconsistency measures we will
use we define a semantics that uses Priest’s three valued logic (3VL) [7] with the
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classical two valued semantics augmented by a third truth value, B (for both),
denoting inconsistency. The truth values for the connectives are defined in the
following table.

α T T T B B B F F F

β T B F T B F T B F

α ∨ β T T T T B B T B F

α ∧ β T B F B B F F F F

¬α F F F B B B T T T

An interpretation i is a function that assigns to each atom in K one of the
three truth values: i : Atoms(K) → {F,B, T}. For an interpretation i the atoms
that are assigned the truth value B represent the inconsistency for which we
obtain Conflictbase(i) = {α | i(α) = B}. A model of K is an interpretation
where no formula is assigned the truth value F : Models(K) = {i | for all φ ∈
K, i(φ) = T or i(φ) = B} Then, as a measure of inconsistency for K we define
Contension(K) = Min{|Conflictbase(i)| | i ∈ Models(K)}. So the contension gives
the minimal number of atoms that must be assigned B in order to get a 3VL
model of K.

Example 2. For K = {a,¬a, a ∨ b,¬b}, there are two models of K, i1 and
i2, where i1(a) = B, i1(b) = B, i2(a) = B, and i2(b) = F . Therefore,
Conflictbase(i1) = 2 and Conflictbase(i2) = 1. Hence, Contension(K) = 1.

An inconsistency measure assigns a nonnegative real value to every knowledge-
base. We assume several requirements for inconsistency measures [4]. The con-
ditions ensure that all and only consistent knowledgebases get measure 0, the
measure is monotonic for subsets, the removal of a formula that does not partic-
ipate in an inconsistency leaves the measure unchanged, and the addition of a
logically weaker formula cannot lead to a larger inconsistency than the addition
of a logically stronger formula.

Definition 1. An inconsistency measure I : K → R≥0 is a function such that
the following four conditions hold ∀K,K ′ ∈ KL, ∀α, β ∈ L.

– Consistency: I(K) = 0 iff K is consistent.
– Monotony: I(K ∪ K ′) ≥ I(K).
– Free Formula Independence: If α is a free formula of K, then I(K) = I(K \

{α}).
– Dominance: If α � β and α � ⊥, then I(K ∪ {α}) ≥ I(K ∪ {β}).

There are many inconsistency measures in the literature but we will just focus on
two in this paper (where K is a knowledgebase): IC(K) = |MI(K)| is the incon-
sistency measure that counts the number of inconsistent subsets of K [3,4]; and
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IB(K) = Contension(K) is the inconsistency measure that counts the mini-
mum number of atoms that need to be assigned B amongst the 3VL models of
K [1,2,5].

We wish to compute the blame of each formula towards inconsistency. For
this purpose we use a given inconsistency measure as the payoff function defining
a game in coalitional form, and then use the Shapley value to compute the
part of the inconsistency that can be imputed to each formula of the belief
base [4]. Consider a game with players 1, . . . , n whose utility function u assigns
a nonnegative value to each coalition C ⊆ {1, . . . , n} such that if C1 ⊆ C2 then
u(C1) ≤ u(C2). The Shapley value calculates each player’s contribution to the
utility of the coalitions the player joins in an optimal way. In our framework,
following [4], we have a knowledgebase K = {α1, . . . , αN}. The “utility” is the
inconsistency measure; so for this purpose, the larger the inconsistency, the larger
the utility of a set of formulae. The Shapley inconsistency value is defined as
follows.

Definition 2. The Shapley Inconsistency Value (SIV), denoted SI , is the
Shapley value of the coalitional game defined by the basic inconsistency measure
I, where |K| = n, |C| = c, and α ∈ K, as follows.

Sα
I (K) =

∑

C⊆K

(c − 1)!(n − c)!
n!

(I(C) − I(C \ {α}))

Clearly, the only subsets of K that need to be considered are the ones where
removing a formula changes the inconsistency measure, that is, the inconsistent
sets. It will be convenient in the examples to first calculate the part of the formula
that does not refer to the inconsistency measure for each inconsistent set C. We
write f(C) = (c−1)!(n−c)!

n! . Hence, Sα
I (K) =

∑
C⊆K f(C)(I(C) − I(C \ {α})).

Example 3. Let K ′ = {a, b,¬a,¬a ∨ ¬b}. The subsets of K ′ for which removing
a formula may change the inconsistency are: C1 = {a, b,¬a,¬a ∨ ¬b} C2 =
{a, b,¬a} C3 = {a, b,¬a∨¬b} C4 = {a,¬a,¬a∨¬b} C5 = {a,¬a} Then f(C1) =
3!
4! = 1

4 , f(C2) = f(C3) = f(C4) = f(C5) = 2!
4! = 1

12 . IC(C1) = 2, IC(Ci) = 1
for 2 ≤ i ≤ 5 and IB(Ci) = 1 for 1 ≤ i ≤ 5. We obtain Sa

IC
(K) = 2

4 + 4
12 = 5

6 ;
S¬a

IC
(K) = 1

4 + 1
4 = 1

2 ; Sb
IC

(K) = S¬a∨¬b
IC

= 1
4 + 1

12 = 1
3 . Sa

IB
(K) = 1

4 + 4
12 = 7

12 ;
S¬a

IB
(K) = 3

12 = 1
4 ; Sb

IB
(K) = S¬a∨¬b

IB
= 1

12 .

There are some interesting developments of Shapley values for inconsistency
(see for example [6]), but there has been no consideration of the probabilistic
uncertainty associated with an inconsistency measure.

3 Uncertainty of Sources for Answer Tuples

There are many issues in managing distributed information. In this paper, we
consider a specific problem of handling answer tuples as defined next. We assume
that A denotes the set of atoms (propositional letters or ground predicates) in
the language.
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Definition 3. Let {1, . . . , n} be the names for sources of information. An
answer tuple, denoted T = (A1, . . . , An), is a tuple where for each Ai, 1 ≤
i ≤ n, Ai ⊆ A.

An answer tuple, by itself, is never inconsistent. The inconsistency that occurs
is the result of a set of integrity constraints that we assume is given a priori. We
write A0 for this set that contains formulae, each of which is a disjunction of
negated atoms in A. We say that T is inconsistent if

⋃n
i=0(Ai) � ⊥. Otherwise

T is consistent. We will use the following subsidiary definitions: For the elements
of T , Elem(T ) =

⋃n
i=1 Ai; for the candidates of T , Cand(T ) = {S|S ⊆ Elem(T )}.

To handle the issue of the reliability of the sources, we assume that a prob-
ability assignment is available for each source. Such an assignment may have
been learnt from previous performance of sources, or obtained by some sub-
jective judgment. We deal separately with the set of integrity constraints, A0;
basically we treat them as having probability 1.

Definition 4. Let {1, ..., n} be the names for sources of information. A proba-
bility assignment to sources, denoted P , is a function P : {1, ..., n} → [0, 1].

Given the probability assignment to sources, together with an answer tuple T =
(A1, ..., An), we have further information to prefer some subsets of Elem(T ) over
others. To illustrate our concerns, we consider some scenarios next.

– At one extreme, suppose the probability is P (i) = 0 for each i ∈ {1, .., n},
then we need to consider only one candidate for the combination, which is ∅,
since we believe that none of the formulae should be in the combination.

– At the other extreme, suppose the probability is P (i) = 1 for each i ∈ {1, .., n},
then we need to consider only one candidate for the combination, which is
Elem(T ), since we believe all should be in the combination.

– Between these two extremes, there may be multiple options for the combina-
tion. For example, suppose we have two sources, with the answers A1 = {a}
and A2 = {b}, while A0 = {¬a ∨ ¬b}. Let P (1) = 0.5 and P (2) = 0.5. Then,
there are four candidates for the combination to consider (i.e. Cand(T ) =
{{a, b}, {a}, {b}, {}}), each with probability of 0.25, with the first candidate
({a, b}) being inconsistent.

The next step is to find the probability of each candidate. Consider that the
sources may have different probability assignments and an atom may appear
in several sets Ai. Suppose, for example, that the atom a appears in A1 and
A2. Then, when we consider a candidate, such as {a, b}, we must consider all
different cases where a was in A1 but not in A2, or a was in A2 but not in A1,
or it was in both. As we need to take care of all of these cases, we start with a
renaming where each atom is renamed using a superscript to indicate its source.
So a in A1 becomes a1 and a in A2 becomes a2. We write r for this renaming and
for answer tuple T = (A1, . . . , An) we obtain r(T ) = (r(A1), . . . , r(An)), where
each r(Ai) is obtained from Ai by adding the superscript i to each atom, that
is, for Ai = {a, b, c}, r({a, b, c}) = {ai, bi, ci}. The inverse operator r−1 removes
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the subscripts. Thus if C ′ is a candidate of r(T ), then r−1(C ′) (which is a set,
hence duplicates are removed) is a candidate of T .

We compute the probability of a candidate C ′ of r(T ) as follows. Let yi =
|Ai| = |A′

i| and suppose that C ′ contains xi elements from A′
i. We say that

(x1, . . . , xn) is the generator of C ′ and write Gen(C ′) = {(x1, . . . , xn)}. Using
the renaming r, each candidate of r(T ) has a unique generator. Then computing
the probability of a candidate C ′ of T ′ we get P (C ′) =

∏n
i=1 P (i)xi × (1 −

P (i))yi−xi . Now suppose that C is a candidate of T . There may be several
candidates C ′ of r(T ) such that r−1(C ′) = C. Let Cr = {C ′|r−1(C ′) = C}. Then
P (C) =

∑
C′∈Cr

P (C ′). We also write Gen(C) = {(x1, . . . , xn)|(x1, . . . , xn) ∈
Gen(C ′) and C ′ ∈ Cr}. From this we obtain

P (C) =
∑

(x1,...,xn)∈Gen(C)

P (1)x1 × (1− P (1))(y1−x1) × . . . × P (n)xn × (1− P (n))(yn−xn)

Example 4. To illustrate the calculation of the probability distribution over can-
didates, we consider an example with A0 = {¬a ∨ ¬c} where T = (A1, A2)
with A1 = {a, b} and A2 = {c}. Let the probability assignment for sources be
P (1) = 4/5 and P (2) = 2/3. Here, Cand(T ) = ℘({a, b, c}). In this example, for
each candidate there is a unique generator because each atom appears in just one
source’s answer. For each candidate, we give the generator, and the probability
for the candidate, in Table 1.

For a fact α ∈ Elem(T ), we have an a priori probability that it is true. This is
the sum of the probability of each candidate that contains it. We denote
this probability by the function P : Atoms → [0, 1], where P (α)
=

∑
C∈Cand(T ) s.t. α∈C P (C).

Proposition 1. For T = (A1, ..., An),
∑

C∈Cand(T ) P (C) = 1.

The next proposition shows that if an atom that is an element of an answer
tuple is removed, the probability of each candidate of the new answer tuple is the
sum of the probabilities of the candidate and the candidate obtained by adding
the atom.

Table 1. Calculations for Example 4

Candidate Generator Probability of candidate

{a, b, c} (2, 1) 4/5 × 4/5 × 2/3 = 32/75

{a, b} (2, 0) 4/5 × 4/5 × 1/3 = 16/75

{a, c} (1, 1) 4/5 × 1/5 × 2/3 = 8/75

{a} (1, 0) 4/5 × 1/5 × 1/3 = 4/75

{b, c} (1, 1) 1/5 × 4/5 × 2/3 = 8/75

{b} (1, 0) 1/5 × 4/5 × 1/3 = 4/75

{c} (0, 1) 1/5 × 1/5 × 2/3 = 2/75

{} (0, 0) 1/5 × 1/5 × 1/3 = 1/75
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Proposition 2. Let T = (A1, . . . , An), P be a probability assignment over
sources, and α ∈ Elem(T ). Let T ′ = (A1 \{α}, . . . , An \{α}) (where if Ai \{α} =
∅, it is omitted from T ′) and write P ′ for the (same) probability assignment over
sources for T ′. Let C ′ ∈ Cand(T ′). Then P ′(C ′) = P (C ′) + P (C ′ ∪ {α}).

In the next section, we use the set of candidates to define a notion of expected
inconsistency of a set of answers that is based on the probability distribution
over the candidates.

4 Expected Inconsistency of a Set of Formulae

We can measure the inconsistency of each candidate (using any inconsistency
measure that is appropriate), and then aggregate the inconsistency measure for
the combination as follows.

Definition 5. Let I be an inconsistency measure, T = (A1, ..., An) an answer
tuple, and P a probability distribution over the sources. The expected inconsis-
tency of T with respect to I, denoted EI,P (T ), is EI,P (T ) =

∑
C∈Cand(T ) P (C)×

I(C).

Example 5. To illustrate the definitions so far, consider the case where A0 =
{¬a ∨ ¬c,¬b ∨ ¬d}, A1 = {a, b} A2 = {c, d}, P (1) = 0.5, and P (2) = 0.5. So
T = (A1, A2), and the set of candidates Cand(T ) is the following

{a, b, c, d} {a, c, d} {b, c, d} {c, d} {a, b, c} {a, c} {b, c} {c}
{a, b, d} {a, d} {b, d} {d} {a, b} {a} {b} {}

Let I = IC or I = IB . The numbers are the same for both measures. Hence, we
obtain I({a, b, c, d}) = 2, and for the remaining 6 inconsistent sets C ′, I(C ′) = 1.
For each C ∈ Cand(T ), P (C) = 1/16. Therefore, EI,P (T ) = 1

16 (2 + (6 × 1)) =
8
16 = 1

2 .

So expected inconsistency takes into account the inconsistency measure as well
as the probabilities of the sources and hence the candidates.

Proposition 3. For T = (A1, ..., An), and an inconsistency measure I, if each
source i is such that P (i) = 1, then EI,P (T ) = I(

⋃n
i=0 Ai).

Proposition 4. For T = (A1, ..., An), and an inconsistency measure I, if each
source i is such that P (i) = 0, then EI,P (C) = 0 for all C ∈ Cand(T ).

Proposition 5. For an answer tuple T = (A1, ..., An), an inconsistency mea-
sure I, and a probability distribution P , EI,P (T ) ≤ I(Elem(T )).

Proposition 6. Let T = (A1, . . . , An), I be an inconsistency measure, and P
be a probability assignment and T ′ = (A1 \ {α}, . . . , An \ {α}) (if Ai \ {α} = ∅,
it is omitted from T ′). Then EI,P (T ) ≥ EI,P (T ′).
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Whilst the proposal for expected inconsistency is in terms of answer tuples, it is
a trivial revision of the definition for expected inconsistency (i.e. Definition 5) to
enable it to handle arbitrary knowledgebases of classical logic. Expected inconsis-
tency is a simple extension of the approach of inconsistency measures. Intuitively,
it involves discounting inconsistency that is unlikely to occur. So for instance,
a small inconsistency that it very likely to occur can be worse than a large
inconsistency that is unlikely to occur.

5 Expected Blame of a Formula

We use the Shapley Inconsistency Values of Definition 2 to ascribe the proportion
of blame to each formula. Our definition of expected blame for an atom is the
weighted sum of the blame for the atom in each candidate containing the atom.

Definition 6. Let I be an inconsistency measure, T = (A1, ..., An) an answer
tuple, and P a probability assignment. The expected blame of α in T with
respect to I and P , denoted Bα

I,P (T ), is Bα
I,P (T ) =

∑
C∈Candidates(T ) P (C) ×

Sα
I (C).

Example 6. Consider A0 = {¬a ∨ ¬b,¬b ∨ ¬c}, A1 = {a}, A2 = {b}, and A3 =
{c}, where P (1) = 1, P (2) = 0.8, and P (3) = 0.5. There are 4 candidates with
non-zero probability: C1 = {a, b, c}, C2 = {a, b}, C3 = {a, c}, and C4 = {a},
where P (C1) = P (C2) = 0.4 and P (C3) = P (C4) = 0.1. We do the calculation
separately for IC and IB .

– For I = IC , The Shapley values are as follows: Sa
I (C1) = Sc

I(C1) = Sa
I (C2) =

Sb
I(C2) = 0.5 and Sb

I(C1) = 1. All other Shapley values are 0. Next we compute
the expected blames: Ba

I,P (T ) = (0.4 × 0.5) + (0.4 × 0.5) = 0.4, Bb
I,P (T ) =

(0.4 × 1) + (0.4 × 0.5) = 0.6, and Bc
I,P (T ) = (0.4 × 0.5) = 0.2.

– For I = IB, The Shapley values are as follows: Sa
I (C1) = Sc

I(C1) = 1
6

Sa
I (C2) = Sb

I(C2) = 0.5 and Sb
I(C1) = 2

3 . All other Shapley values are 0. Next
we compute the expected blames: Ba

I,P (T ) = (0.4 × 1
6 ) + (0.4 × 0.5) = 4

15 ,
Bb

I,P (T ) = (0.4 × 2
3 ) + (0.4 × 0.5) = 7

15 , and Bc
I,P (T ) = (0.4 × 1

6 ) = 1
15 .

In both cases the blame for b is highest because it is involved in all the miminal
inconsistent subsets, and the blame for a is higher than the blame for c because
the probability of a is higher than c.

The probability assigned to a source directly affects the blame attributed to
any atom given by that source. As formalized next, if α is given by a single
source, the blame for α increases as the probability assigned to the source of α
increases.

Proposition 7. Let T = (A1, ..., An), and I be an inconsistency measure. Sup-
pose that atom α appears in only one source as an answer, say A1. Let P1 and
P2 be probability assignments such that P1(1) ≤ P2(1) and P1(i) = P2(i) for
i > 1. Then Bα

I,P1
(T ) ≤ Bα

I,P2
(T ).
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In the following theorem, the first three properties are a restatement in this log-
ical framework of the properties of the Shapley value: the distribution property
states that the inconsistency values of the formulae sum to the total amount of
expected inconsistency in the answer tuple; the symmetry property ensures that
with equal probabilities only the amount of inconsistency brought by a formula
matters for computing the expected blame; the minimality property expresses
that a formula that is not embedded in any contradiction (i.e. does not belong
to any minimal inconsistent subset) will not be blamed by the Shapley inconsis-
tency values; and the dominance property states that logically stronger formulae
bring (potentially) more conflicts.

Theorem 1. Let I be basic inconsistency measure, and let P be a probability
assignment to sources. Every expected blame value BI,P satisfies:

– Distribution: EI,P (T ) =
∑

α∈Elements(T ) Bα
I,P (T )

– Symmetry: If α, β ∈ Elem(T )
and for all S ∈ Cand(T ) such that α �∈ S and β �∈ S,

P (S ∪ {α}) = P (S ∪ {β}) and I(S ∪ {α}) = I(S ∪ {β})
then Bα

I,P (T ) = Bβ
I,P (T ).

– Minimality: If α is a free formula of T , then Bα
I,P (T ) = 0

– Dominance: If α � β and α �� ⊥, then Bα
I,P (T ) ≥ Bβ

I (T )

Expected blame is an extension of the approach of Shapley inconsistency values
to the case of probabilities assigned to sources. Intuitively, it involves discounting
blame that is unlikely to occur. So, for instance, blame for a small inconsistency
that is very likely to occur can be greater than blame for a larger inconsistency
unlikely to occur.

6 Weakness of a Formula

Given an inconsistent answer tuple (A1, ..., An), we want to resolve some of the
inconsistency by deleting an individual formula. We will use the blame of each
formula, but using only blame is not enough. We need to use separately the
probability of the formula to obtain a reasonable answer for determining the
best formula to delete. There is an interplay between the inconsistency caused
by a formula, and the uncertainty of the formula. To illustrate, consider the
following example.

Example 7. Let A0 = {¬a∨¬b}, A1 = {a}, and A2 = {b}. In this case, for any I
and P , Ba

I,P (T ) = Bb
I,P (T ), but if P (1) > P (2), then we would be more inclined

to delete b as it has the same blame for the inconsistency, but the belief in it is
lower.

Recall that in Sect. 3 we defined the probability of each fact. So now, we start
with the Shapley value for each formula, and weight it by a function of the proba-
bility of the formula. We will consider the weighting function as a parameter that
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can be chosen by the user of the system. As an example of a weighting function,
let F (α) = 1 − P (α), because we prefer to delete formulae whose probability is
small. It is certainly possible to consider other weighting functions. For example,
let F1(α) = k × (1 − P (α)) for some number k. However, this merely expands
or shrinks the difference between the weights but does not change the weight
order. Another possibility is to use a step function, such as the following: F2(α)
= 4 if P (α) = 0, F2(α) = 3 if 0 < P (α) ≤ 0.5, F2(α) = 2 if 0.5 < P (α) < 1, and
F2(α) = 1 if P (α) = 1. Such a function blurs the distinction between probabil-
ities within a certain range. Hence, we will continue working with F as defined
above.

Definition 7. Let I be an inconsistency measure, T = (A1, ..., An) an answer
tuple, α ∈ Elem(T ), P a probability function over sources, and F the weighting
function. The weakness of α in T with respect to I and P , is Wα

I,P (T ) =
F (α) × Bα

I,P (T ).

Our goal is to use this definition of weakness, to reduce Bα
I,P (T ) and P (α) to a

single value for α which represents the degree to which we should delete it. The
higher the degree of weakness (i.e. the greater the product of the weight and
the blame for inconsistency for the formula), the greater the degree to which we
should delete it.

Example 8. Let A0 = {¬a ∨ ¬b}, A1 = {a}, and A2 = {b}. There is only one
inconsistent candidate: {a, b}. For I = IC or I = IB , the Shapley values are
Sa

I (T ) = 0.5 and Sb
I(T ) = 0.5. We will use F (α) = 1 − P (α) as the weighting

function and consider the following scenarios for the probabilities for P (1) and
P (2).

– P (1) = 0.8, P (2) = 0.2. Hence, P (a) = 0.8 and P (b) = 0.2. So, W a
I (T ) = 0.1

and W b
I (T ) = 0.4. Delete b.

– P (1) = 0.6 and P (b) = 0.8, Hence, P (a) = 0.6 and P (b) = 0.8. So, W a
I (T ) =

0.2 and W b
I (T ) = 0.1. Delete a.

– P (1) = 0.5 and P (b) = 0.5, Hence, P (a) = 0.5 and P (b) = 0.5. So, W a
I (T ) =

W b
I (T ) = 0.25. As the probability of a and b is the same, there is no preference

between deleting a or b.

Example 9. Continuing with Example 6 where we already computed the blames,
we obtain the following weaknesses: When I = IC , W a

I,P (T ) = 0, W b
I,P (T ) =

0.12, and W c
I,P (T ) = 0.1; And when I = IB , W a

I,P (T ) = 0, W b
I,P (T ) = 7

15 , and
W c

I,P (T ) = 1
30 . Note how close the weaknesses of b and c are for IC . The reason

is that while b has higher blame, it also has higher probability and hence smaller
weight. However, for IB the blame is so much higher for b than for c that the
higher probability does not compensate enough to make the weights close.

Proposition 8. For T = (A1, ..., An), an inconsistency measure I, and a prob-
ability assignment over sources P , if P (i) = 1 for each source, then Wα

I,P (T ) = 0
for all α ∈ Elem(T ).
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The concept of weakness combines blame and the probability of the source
that provides a fact. So if we try to resolve inconsistency by deleting some
formulae, it is reasonable to start with the weakest one. Our examples illustrate
the appropriateness of using this concept.

7 Summary and Future Work

We believe that this is the first paper that studies measuring inconsistency in the
context where the uncertainty of the source of a formula is taken into account.
We do not define a new inconsistency measure; our work applies to and combines
with any given inconsistency measure. For such a measure we define the expected
inconsistency of the answers based on the probabilities of the sources. We also
define the expected blame of a formula and show that this definition has sev-
eral useful properties. Finally, we combine blame with uncertainty to define the
weakness of each formula, thereby providing a method to resolve inconsistencies
by removing the weakest formulae.

In the future we plan to study additional properties of both expected blame
and weakness. We will also consider the mechanism of inconsistency resolution
in this framework, distinguishing between internal resolution (using weakness)
and external resolution, where, in the latter case, we may request additional
information from an outside source before deletion. Finally, we will consider
how to measure the quality of the inconsistency resolution process.

References

1. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intell. Inf.
Syst. 27, 159–184 (2006)

2. Hunter, A.: Measuring inconsistency in knowledge via quasi-classical models. In:
Proceedings of the National Conference on Artificial Intelligence (AAAI 2002), pp.
68–73. MIT Press (2002)

3. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In:
Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300,
pp. 191–236. Springer, Heidelberg (2005)

4. Hunter, A., Konieczny, S.: On the measure of conflicts: shapley inconsistency values.
Artif. Intell. 174, 1007–1026 (2010)

5. Konieczny, S., Lang, J., Marquis, P.: Quantifying information and contradiction in
propositional logic through epistemic actions. In: Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intellignce (IJCAI 2003), pp. 106–111 (2003)

6. Mu, K., Liu, W., Jin, Z.: Measuring the blame of each formula for inconsistent
prioritized knowledge bases. J. Logic Comput. 22(3), 481–516 (2012)

7. Priest, G.: Logic of paradox. J. Philos. Logic 8, 219–241 (1979)



Consistency-Based Reliability Assessment

Laurence Cholvy1(B), Laurent Perrussel2, William Raynaut1,2,
and Jean-Marc Thévenin2

1 ONERA Toulouse, Toulouse, France
laurence.cholvy@onera.fr
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Abstract. This paper addresses the question of assessing the relative reli-
ability of unknown information sources. We propose to consider a phase
during which the consistency of information they report is analysed,
whether it is the consistency of each single report, or the consistency
of a report w.r.t. some trusted knowledge or the consistency of different
reports together. We adopt an axiomatic approach by first giving pos-
tulates which characterize how the resulting reliability preorder should
be; then we define a family of operators for building this preorder and
demonstrate that it satisfies the proposed postulates.

1 Motivation

Techniques for merging raw information have been studied in an extensive way.
These techniques usually assume that all information provided by the sources
(i.e. agents) should be considered as a whole. Two different approaches have been
studied: the first one considers sources in an equal way and has led to merging
techniques such as majority, arbitration merging or distance-based merging for
solving conflict between contradicting information [5,6,9]. The second one dis-
tinguishes sources through a reliability criterion. Taking sources reliability into
account provides rationales for discounting or ignoring pieces of information
whose source is not considered as sufficiently reliable. Some promote a quanti-
tative model of reliability: information sources are associated with a reliability
level represented by a number used by the merging operator. According to the
belief function theory, the reliability level of a source is a number between 0
and 1. This number is then used by the discounting rule in order to weaken
the importance of information provided by this source [13]. Some others pro-
mote a qualitative approach to reliability and consider that information sources
are ranked according to their reliability. This order or pre-order is then used by
the merging operator. In [3], the author defines a merging operator which assumes
that the sources are totally ordered : if s is said to be more reliable than s′ and
together provide contradicting information, then information provided by s is
privileged; while information provided by s′ which does not contradict informa-
tion of s is also considered as acceptable. The same idea is followed by [10] for
reasoning about more complex beliefs and in [12] for revising a belief base.
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 246–256, 2015.
DOI: 10.1007/978-3-319-20807-7 22
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All previous works assume that the reliability of the sources is given as a
parameter (quantitative or qualitative): they do not address the question of how
to build up this reliability.

This paper addresses this key question. We adopt a qualitative point of view
to reliability representation: the relative reliability of information sources is rep-
resented by a total preorder. We focus on the question of estimating this reliabil-
ity preorder in the following context: sources are unknown (no extra information
about them is available) and information provided by the sources is only quali-
tative (i.e., statements). We propose to consider a phase, before the information
merging phase, during which information sources are observed in order to obtain
a reliability preorder. We consider that during this phase, the most important is
to analyse the consistency of information reported by the different sources, be it
the consistency of each single report, or the consistency of a report w.r.t. some
trusted knowledge, or the consistency of different reports together.

This paper is organized as follows. Section 2 presents preliminary definitions.
Postulates which axiomatically characterize the reliability preorders are given
in Sect. 3. Section 4 describes a generic operator building such preorders and
demonstrate that it satisfies the postulates. Examples of operators are given in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminaries

Let A be a finite set of agents; let L be a propositional logic defined over a finite
set of propositional letters and propositional constants � and ⊥. An interpreta-
tion m is a mapping from the set of formulas of L to the set of truth values {0, 1}
so that m(�) = 1 and m(⊥) = 0. The set of all interpretations is denoted M .
Interpretation m is a model of formula F iff m(F ) = 1. Tautologies are formulas
which are interpreted by 1 in any interpretation. We write |= F when F is a
tautology. A formula is consistent iff it has at least one model.

Let ≤ be a total preorder on A representing the relative reliability of agents:
a ≤ b stands for b is at least as reliable as a. GT (a,≤) = {x ∈ A \ {a} : a ≤ x}
is the set of agents which are as least as reliable as a. Let a ∈ A, ≤1 be a total
preorder on A and ≤2 a total preorder on A \ {a}; ≤1 is compatible with ≤2 iff
∀x∀y x ≤2 y =⇒ x ≤1 y.

In the following, raw information is a communication consisting of a pair
associating an agent and a statement:

– A communication set on A is a set of pairs < a,ϕ > where a ∈ A and ϕ is a
formula of L. < a,ϕ > means that agent a has reported ϕ.

– Let Ψ be a communication set on A. Ag(Ψ) = {a ∈ A,∃ϕ < a, ϕ >∈ Ψ}.
– Given a communication set Ψ , we define the communication set of a as Ψa =

{< a,ϕ >|< a,ϕ >∈ Ψ} and the communication of a set of agents C as

Ψ(C) =
⋃

a∈C

Ψa
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The report associated to some Ψ represents the content of the communication:

Report(Ψ) =

{∧
<a,ϕ>∈Ψ ϕ if Ψ 	= ∅

� otherwise

– Let Ψ and Ψ ′ be two communication sets on A. Ψ and Ψ ′ are equivalent iff
for any agent a in A: |= Report(Ψa) ↔ Report(Ψ ′

a). That is, a’s report in Ψ
is equivalent to a’s report in Ψ ′. We write Ψ ≡ Ψ ′. Obviously Ψ ≡ Ψ ′ iff
∀C ⊆ A Ψ(C) ≡ Ψ ′(C)

– Let Ψ and Ψ ′ be two communication sets on A. Ψ and Ψ ′ are weakly equivalent
iff for any agent a in A, ∃b,∃c ∈ A such that |= Report(Ψa) ↔ Report(Ψ ′

b) and
|= Report(Ψ ′

a) ↔ Report(Ψc). That is, we relax here the constraint that report
of agent a should be equivalent both in Ψ and Ψ ′; instead we only require
some other agent, possibly different from a, report equivalent information.
We write Ψ � Ψ ′. Obviously Ψ ≡ Ψ ′ iff ∀C ⊆ A Ψ(C) � Ψ ′(C)

2.1 IC-Contradictory Communication Sets

Consistency of reports will be evaluated with respect to some integrity constraint
IC, a consistent formula of L. IC has to be viewed as information taken for
granted or certain. Let us now revisit the classical notion of minimal inconsistent
set w.r.t. communication sets. Formally, let Ψ be a set of communications on A:

– Ψ is IC-contradictory iff Report(Ψ) ∧ IC is inconsistent; otherwise Ψ is IC-
consistent.

– Ψ is minimal IC-contradictory iff Ψ is IC-contradictory and no strict subset
of Ψ is IC-contradictory.

– Ψ ⊥ IC denotes the set of minimal IC-contradictory subsets of Ψ .
– A⊥ = ∪F∈Ψ⊥ICAg(F ) is the set of agents which have reported a piece of

information which belongs to some minimal IC-contradictory communication
set. Notice that A⊥ 	= ∅ iff Ψ is IC-contradictory.

Example 1. Consider agents a, b, c, d and propositional letters p, q, r, s. Assume
IC = ¬(p ∧ q) and Ψ = {< a, p >,< a, r >,< b, q >,< c,¬r >,< d, s >}.
The minimal IC-contradictory subsets of Ψ are E1 = {< a, p >,< b, q >} and
E2 = {< c,¬r >,< a, r >}. Thus A⊥ = {a, b, c}.

Example 2. Consider now agents a, b and propositional letters p, q. Assume IC =
p and Ψ = {< a,¬p ∧ q >,< b,¬q >}. The IC-contradictory subsets of Ψ are
E1 = {< a,¬p ∧ q >} and E2 = {< a,¬p ∧ q >,< b,¬q >} but only E1 is
minimal. Thus A⊥ = {a}.

This last example shows that A⊥ is not the set of all agents which bring some
contradiction. A⊥ is to be seen as the set of agents which prevent the consistency
of Ψ i.e. if communications of agents of A⊥ are ignored, Ψ becomes IC-consistent.
I.e., Ψ \ A⊥ is IC-consistent (but not necessarly maximal consistent).
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2.2 IC-Conflicting Agents

We go further for revisiting the notion of minimal inconsistent set by considering
set of agents rather than set of statements. This set helps us to identify the
sources which are related to inconsistent report.

– Let C ⊆ A. C is IC-conflicting iff Report(Ψ(C)) ∧ IC is inconsistent.
– C is minimal IC-conflicting iff it is IC-conflicting and no strict subset of C

is IC-conflicting.

Example 3. Let’s consider the previous example. {a, b, c, d} is IC-conflicting.
{a, b} and {a, c} are minimal IC-conflicting.

We can show that the union of minimal IC-conflicting subsets of A is included
in A⊥. But the reverse is not true: consider IC = ¬q and Ψ = {< a, p >,<
b,¬p >,< b, q >}. A⊥ = {a, b} while the only minimal IC-conflicting subset of
agents is {b}.

3 Assessing Reliability

The following postulates define in an axiomatic way that reliability assessment
should be rooted in the notion of contradiction occurring in a set of communi-
cations.

Given a set of agents A, an integrity constraint IC and a communication
set Ψ , the total preorder representing the relative reliability of agents in A is
denoted Γ IC,A(Ψ). The operator Γ , which defines this relative reliability preorder
is characterized as follows:

P1 Γ IC,A(Ψ) is a total preorder on A.
P2 If Ψ ≡ Ψ ′ then Γ IC,A(Ψ) = Γ IC,A(Ψ ′).
P3 If |= IC ↔ IC ′ then Γ IC,A(Ψ) = Γ IC′,A(Ψ).
P4 If |= Report(Ψa) then Γ IC,A(Ψ) is compatible with Γ IC,A\{a}(Ψ \ Ψa).
P5 If A is not IC-conflicting then Γ IC,A(Ψ) is the equality preorder.
P6 If A is IC-conflicting then A \ A⊥ ⊆ GT (a, Γ IC,A(Ψ)) for any a ∈ A⊥.
P7 If {a1, ..., ak} (k ≥ 2) is a minimal IC-conflicting subset of agents, then

∃i ∀j j 	= i, GT (aj , Γ
IC,A(Ψ)) ⊂ GT (ai, Γ

IC,A(Ψ)).

Postulate P1 specifies that the expected result is a total preorder. P2 and P3
deal with syntax independence. More precisely, if we consider two equivalent
communication sets or if we consider two equivalent IC formulas, then we get
the same total preorder on agents. P4 states that an agent which reports a tau-
tology or which reports no information has no influence on the relative reliability
of other agents. P5, P6 and P7 focus on consistency of information provided
by agents in A. Postulate P5 considers the case when A is not IC-conflicting
(i.e. Ψ set is not IC-contradictory). In such a case, the sources are considered
as equally reliable. P6 and P7 consider the cases when A is IC-conflicting.
According to P6, any agent reporting a piece of information belonging to some
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minimal IC-contradictory communication set is considered as less reliable than
any other agent which have not. According to P7, if some agents are minimally
IC-conflicting, then at least one of these agents is strictly less reliable than
the others. This is inline with our understanding of reliability: if some agents are
equally reliable, then after merging we will believe, with the same strength, infor-
mation they will provide. However, it is generally assumed [4,11] that graded
belief satisfies a modal logic axiom which states that beliefs should be consistent:
that is, two contradictory pieces of information cannot be believed with the same
strength. Consequently, agents who are involved in a minimal IC-conflicting set
cannot be equally reliable.

4 Operator Assessing Reliability

In this section, we propose a generic operator which builds the reliability preorder
of agents by taking into account their contribution to inconsistencies.

4.1 Contribution of Agents to Inconsistencies

We start by introducing a measure to quantify the inconsistency degree of com-
munication sets w.r.t. some IC. This measure is adapted from the one proposed
in [8] for measuring inconsistency of sets of formulas.

Definition 1. A syntax weak-independent IC-inconsistency measure is a func-
tion IIC which associates any communication set Ψ with a positive real number
IIC(Ψ) so that:

– Consistency : IIC(Ψ) = 0 iff Ψ is IC-consistent.
– Monotony : IIC(Ψ ∪ Ψ ′) � IIC(Ψ)
– Dominance : for all φ and ψ, if IC ∧ φ |= ψ and IC ∧ φ is consistent, then

IIC(Ψ ∪ {< a, φ >}) � IIC(Ψ ∪ {< b, ψ >}) for any a, b ∈ A.
– Free formula independence : If < a, φ > is free (it does not belong to

any minimal IC-contradictory subset of Ψ ⊥ IC), then IIC(Ψ) = IIC(Ψ \ {<
a, φ >}).

– Syntax weak-independence :
1. for all IC ′ if |= IC ↔ IC ′ then IIC(Ψ) = IIC′(Ψ)
2. for all Ψ ′ if Ψ � Ψ ′ then IIC(Ψ) = IIC(Ψ ′)

The consistency property states that the measure of inconsistency of a com-
munication set is null iff this communication set is not IC-contradictory. The
monotony property says that the measure of inconsistency of a communication
set does not decrease if we add more communications in this set. The dominance
property states that logically stronger reports bring potentially more contradic-
tions. The free formula independence property states that adding a report that
does not cause any contradiction cannot change the consistency measure of the
communication set. Finally, the syntax weak-independence says that the mea-
sure of inconsistency of a communication set does not depend on the syntax on
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the integrity constraints. It also says that two weakly equivalent communication
sets get the same measure of inconsistency.

Notice that IIC(∅) = 0 since Report(∅) = �.

Proposition 1. Let Ψ be a communications set on A, IC an integrity constraint
and a ∈ A. If a /∈ A⊥ then IIC(Ψa) = 0. The reverse is not true.

Next we consider a function for measuring how much an agent contributes to
the IC-inconsistency of a communication set. The contribution of an agent to
the fact that Ψ is IC-contradictory is defined as the Shapley value and measures
the importance of this agent in a coalitional game defined by function IIC [8].

Definition 2. Consider a set of agents A, a communication set Ψ on A, an
integrity constraint IC and a syntax weak-independent IC-inconsistency mea-
sure IIC . Function ContIIC

Ψ associates any agent a with a positive real number
ContIIC

Ψ (a) so that:

ContIIC

Ψ (a) =
∑

C⊆A
C �=∅

(|C| − 1)!(|A| − |C|)!
|A|! (IIC(Ψ(C)) − IIC(Ψ(C \ {a})))

Proposition 2. Let Ψ be a communications set on A, IC an integrity constraint
and a ∈ A. Then, a /∈ A⊥ =⇒ ContIIC

Ψ (a) = 0. The reverse is not true.

Given the function ContIIC

Ψ , one can obviously define a total preorder on A as
follows:

Definition 3. Let a and b be two agents of A.

a ≤
Cont

IIC
Ψ

b iff ContIIC

Ψ (a) ≥ ContIIC

Ψ (b)

This defines the reliability as follows: a source is considered strictly more (resp,
equally) reliable than another iff its contribution to the global inconsistency is
stricty smaller than (resp equal to) the contribution of the other. But, unfor-
tunately, this preorder does not satisfy the seven postulates, as shown in the
following.

Proposition 3. ≤
Cont

IIC
Ψ

satisfies P1–P6 but does not satisfy P7.

To prove that ≤
Cont

IIC
Ψ

does not satisfy P7, just consider Ψ = {< a, p >,

< b,¬p > } and IC = true. {a, b} is a minimal IC-conflicting set of agents but
however, a =

Cont
IIC
Ψ

b.
As a consequence, we have to find another way to buid operators for reliability

assessment. This is the purpose of the following paragraph.
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4.2 Γ IIC Operator

Definition 4. Consider a set of agents A, a communication set on A, Ψ , an
integrity constraint IC and a given syntax weak-independent IC-inconsistency
measure IIC . The operator Γ IIC for assessing reliability is defined by:

1. X ← A
2. E ← Ψ ⊥ IC
3. ≤← {a ≤ b | a, b ∈ A}
4. while E 	= ∅ do

(a) Deterministically choose a ∈ Ag(∪F∈EF ) which maximizes ContIIC

Ψ (a)
(b) X ← X \ {a}
(c) E ← E \ {F ∈ E | a ∈ Ag(F )}
(d) ≤←≤ \{b ≤ a | b ∈ X}

5. return ≤
In the previous algorithm, X is the set of agents which has to be ordered, E is
the set of minimal IC-contradictory subsets of Ψ which contain communications
of agents in X. ≤ is the reliability pre-order and a ≤ b stands for b is at least
as reliable as a. First Lines 1–3 initialize the variables: X is initialized as A, E
contains all the minimal IC-contradictory subsets of Ψ and ≤ is equality. Then
according to lines (4) and (a)–(d), the operator chooses one agent a among those
which maximally contribute to the IC-contradiction of Ψ , removes a from X,
deletes from E all the subsets which contains some communication of a, and
updates ≤ so that a is no more reliable than agents in X. This is done until E is
empty. Notice that line (a) expresses a deterministic choice, such as lexicographic
order.

Example 4. Consider agents a, b, c, d and propositional letters p, q, r. Consider
Ψ = {< a, p >,< b, q >,< c,¬q >,< d, r >} and IC = ¬r. Consequently,
Ψ ⊥ IC = {{< b, q >,< c,¬q >}, {< d, r >}}. Assume that:

ContIIC

Ψ (a) < ContIIC

Ψ (b) = ContIIC

Ψ (c) < ContIIC

Ψ (d)

Assume a lexicographic order for choice. First, Lines 1–3 sets X, E and ≤ as
follows:

X = {a, b, c, d} E = {{< b, q >,< c,¬q >}, {< d, r >}}
≤ = {a = b = c = d}

Next, first iteration chooses “d” at step (a) and we get:

X = {a, b, c} E = {{< b, q >,< c,¬q >}}
≤ = {d < a = b = c}

Lexicographic order entails that the 2nd iteration chooses “b”:

X = {a, c} E = ∅
≤ = {d < b < a = c}

As E = ∅, the algorithm stops and returns the pre-order: d < b < a = c.
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The following propositions show that ranks are coherent with the inconsistency
measure. That is, the more an agent is inconsistent, the less it is reliable:

Proposition 4. Let Ψ be a communications set on A and IC an integrity con-
straint. Let ≤ be the preorder given by operator Γ IIC

1 . For any two agents a and
b ∈ A:

If ContIIC

Ψ (a) � ContIIC

Ψ (b) then a ≤ b

We have the immediate following corollary:

Corollary 1. If a /∈ A⊥ then for all b ∈ A, b ≤ a.

The opposite direction of previous proposition can only be considered for strict
order. This is due to the choice step (a): an agent may maximize the consistency
measure but may not be chosen; agents may then be considered with same rank
of reliability as agents getting a lower measure related to their contribution to
inconsistency. In the previous example, a = c while ContIIC

Ψ (a) < ContIIC

Ψ (c).

Proposition 5. Let Ψ be a communications set on A and IC an integrity con-
straint. Let ≤ be the preorder given by operator Γ IIC

1 . For any two agents a and
b ∈ A:

If a < b then ContIIC

Ψ (a) ≥ ContIIC

Ψ (b)

The two previous propositions show that the choice step plays a crucial role
in the behavior in the operator. Indeed this choice enforces the satisfaction of
postulate P7.

Theorem 1. Consider a set of agents A, a communication set on A, Ψ , an
integrity constraint IC and a syntax weak-independent IC-inconsistency measure
IIC . Γ IIC operators satisfy postulates P1-P7.

5 Examples of Inconsistency Measures

Let us now detail two possible inconsistency measures which allow us to build
two reliability assessment operators. These two measures are based on the ones
proposed by [8]. The first measure is inspired by the drastic distance:

Definition 5 (Drastic Measure). Let Ψ be a set of communications on A and
IC a consistent formula. The drastic inconsistency measure IIC

d is defined by:

IIC
d (Ψ) =

{
0 if Ψ is IC-consistent
1 otherwise

Theorem 2. IIC
d is a syntax weak-independent inconsistency measure.

Then Γ IIC

d is a good candidate to assess reliability.
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Example 5. Consider agents a, b, c, d and propositional letters p, q, r. Consider
Ψ = {< a, p ∧ q >,< b, q >,< c,¬q >,< d, r >} and IC = ¬r. Then we get:

Cont
IIC

d

Ψ (a) = 1
12 Cont

IIC
d

Ψ (b) = 1
12 Cont

IIC
d

Ψ (c) = 3
12 Cont

IIC
d

Ψ (d) = 7
12 .

Operator Γ IIC

returns d < c < a = b

Let us now consider a second measure which is more refined than Drastic mea-
sure. The measure is based on minimal inconsistency communication sets and
the intuition is that the degree of inconsistency is proportional to the num-
ber of inconsistent subsets. The measure has to take care of our syntax-based
perspective: to avoid syntactic biases, the measure considers the whole set of
communications given by an agent.

Definition 6 (Minimal Inconsistent Subsets Measure). Let Ψ be a set of
communications on A and IC a consistent formula. The inconsistency measure
IIC
MI based on the number of minimal IC-contradictory subset is defined as:

IIC
MI(Ψ) =

∣
∣
∣
∣
∣
∣

⎛

⎝
⋃

a∈Ag(Ψ)

< a,Report(Ψa) >

⎞

⎠ ⊥ IC

∣
∣
∣
∣
∣
∣

Theorem 3. IIC
MI is a syntax weak-independent inconsistency measure.

Then Γ IIC

MI is a good candidate to assess reliability. Let’s illustrate this second
measure on the same example.

Example 6. Consider agents a, b, c, d and propositional letters p, q, r. Consider
Ψ = {< a, p ∧ q >,< b, q >,< c,¬q >,< d, r >} and IC = ¬r. Then we get:

Cont
IIC

MI

Ψ (a) = 1
2 Cont

IIC
MI

Ψ (b) = 1
2 Cont

IIC
MI

Ψ (c) = 1 Cont
IIC

MI

Ψ (d) = 1. Notice
that the contributions of c and d are equal. According to these contributions Γ IIC

MI

return either d < c < a = b or c < d < a = b depending on the deterministic
choice.

6 Conclusion

This work proposes to assess the relative reliability of some information sources
by analysing the consistency of information they report, whether it be the con-
sistency of each single report, or the consistency of a report as regard to some
trusted knowledge or the consistency of different reports together. We have given
some postulates stating what the relative reliability preorder should be. Then we
have introduced a generic operator for building such preorder which is parame-
trized by a function for measuring the inconsistency of the information reported.
We prove that this generic operator agrees with the postulates.

This framework may be extended in several ways. First, inconsistency mea-
sures should deserve more attention. Recent work on this topic [1,7] shows
promising results such as giving a weight to the inconsistency itself. A second
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issue concerns our key principle relying assessment considering only inconsis-
tency: the more agent is connected to inconsistency, the less it is reliable. The
reverse notion, might then also be considered for assessing the reliability. In
other words, how can we “reward” an agent which is never inconsistent. The
third issue concerns the one shot dimension of the assessment process: itera-
tion should be possible and reliability assessment should then be viewed as a
refinement process. In that case, the key issue is to set rationales for changing
reliability from a < b to b < a. Finally, it must be noticed that if one has already
some partial information about the reliability of the agents (for instance, one
knows that agent a is more reliable than b but has no idea about c reliability)
then the process described in this paper is not applicable as is: in this case, we
could achieve reliability assessment by combining that preorder with the one pro-
duced by the operator Γ IIC . For future work, we plan to study these agregation
operators.

As we can see the proposed framework offers numerous perspectives and our
aim is to take advantage of its flexibility for going further.

Acknowledgements. We sincerely thank the anonymous reviewers whose questions
helped us to improve the paper.
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12. Lorini, E., Perrussel, L., Thévenin, J.-M.: A modal framework for relating belief
and signed information. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der
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Abstract. When dealing with complex knowledge, inconsistencies
become a big problem. Due to the complexity of modern knowledge
systems, usually a manual elimination of inconsistencies by a domain
expert is preferable, since automated systems are most of the time not
able to properly model and use the domain knowledge of an expert. In
order to eliminate an inconsistency correctly, with respect to the specific
domain, an expert needs a proper understanding of that inconsistency
respectively the components that constitute it. Especially in our focus
area of inconsistencies that occur during the revision of probability dis-
tributions, creating useful explanations is in most cases still a manual
and hence expensive effort. In this work we discuss how to automatically
create groupings of partitions created by revision assignments and how
explanations can benefit from those grouped partitions.

1 Introduction

One important aspect of managing knowledge is the need to react to changes in
beliefs quickly and frequently. Methods have been developed to adapt knowledge
to new beliefs. In order to adapt knowledge properly, the principle of minimal
change [10] should be respected. This principle states that no changes are to
be made to the knowledge base that are not necessary to incorporate given
new beliefs. This means the knowledge base after the incorporation of the new
beliefs should be the closest knowledge base to the original one, in an information
theoretic sense. The revision operation has been introduced as belief change
operation that applies new beliefs respecting the principle of minimal change [7].
Further properties a revision operation should satisfy have been formulated as
postulates in [1,3]. How to approach revision algorithmically has been outlined in
[5] and computational considerations have been made in [12]. This work focusses
on the revision of probability distributions. In this field the revision operation
has been successfully implemented for Markov networks [6,8]. Markov networks
are a member of a class of so called graphical models [2,11,13,17], which are
techniques to decompose high-dimensional probability spaces into a number of
smaller low-dimensional probability spaces.

The growing complexity and interconnectedness of knowledge bases and
increasing number of new beliefs lead almost inevitably to inconsistencies. Incon-
sistencies in knowledge bases however, pose a threat to the usability of any
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 257–266, 2015.
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knowledge system and should consequently be addressed. Handling inconsisten-
cies is a multi-facet problem. In this work we focus on the handling of incon-
sistencies during the revision of probability distributions. Different important
aspects of that problem have been introduced in [15]. Furthermore, two types of
inconsistencies and a revision control algorithm have been described in [9].

One important aspect of handling inconsistencies properly is to try to elim-
inate them. Two types of elimination can be differentiated: the first type is the
automated elimination during the revision; the second type is the manual elim-
ination by domain experts that normally happens after the revision operation.
In order to manually eliminate inconsistencies, domain experts need to gain a
proper understanding of the underlying contradictions at the core of inconsis-
tencies. Therefore, the creation of meaningful explanations for inconsistencies
is important. Different components of explanations have been described in [14].
Furthermore, one automated method for creating explanations has been pro-
posed in [15]. In that approach, a minimal explaining set of revision assignments
is determined and used as explanation. In this work, we will discuss the grouping
of partitions created by revision assignments and how they can be used to create
easier to understand explanations that also work with more complex problems.

In Sect. 2 of this paper, we will formally introduce the revision operation, the
revision factor and revision inconsistencies. Section 3 then discusses the grouping
of partitions. Additionally, we will introduce our example application and present
some test results. In Sect. 4, we conclude our work and give some ideas for further
research.

2 Fundamentals

In this section we will describe revision assignments, the revision operation, the
revision factor and what inconsistencies are in that context.

2.1 The Revision Operation

This paper focusses on the revision of probability distributions and we therefore
define it in this context.

As mentioned before, the goal of (probabilistic) revision is to compute a pos-
terior probability distribution which satisfies given new distribution conditions,
only accepting a minimal change of the quantitative interaction structures of the
underlying prior distribution.

More formally, in our setting, a revision operation (see [6,9]) operates on a
joint probability distribution P (V ) on a set V = {X1, ...,Xn} of variables with
finite domains Ω(Xi), i = 1, ..., n. The purpose of the operation is to adapt
P (V ) to new sets of beliefs. The beliefs are formulated in a so-called revision
structure Σ = (σs)S

s=1. This structure consists of revision assignments σs,
each of which is referred to a (conditional) assignment scheme (Rs|Ks) with a
context scheme Ks, Ks ⊆ V , and a revision scheme Rs, where ∅ �= Rs ⊆ V
and Ks ∩ Rs = ∅. The pair (P (V ), Σ) is called revision problem.
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For example, in the revision assignment (NAV=nav1 | Country=France) :=
0.2, which sets the probability for the navigation system nav1 in the country
France to 0.2, the context scheme Ks is {Country} and the revision scheme Rs

is {NAV }.
Revision assignments partition the probability space with respect to their

context and revision schemes. Expanding on the previous example, suppose there
are five different values for the variable NAV and three revision assignments,
namely:

σ1
Def
= [(NAV = nav1|Country = France) := 0.2]

σ2
Def
= [(NAV = nav2|Country = France) := 0.25]

σ3
Def
= [(NAV = nav3|Country = France) := 0.3]

The revision assignments create the partitions {nav1}, {nav2}, and {nav3} for
the domain Ω(NAV) in the context of Country=France. Since the probabilities
of those three assignments do not sum up to 1, they also together create a fourth
partition containing {nav4,nav5}. We will use this type of partitions later for
our grouping approach.

The result of the revision, and solution to the revision problem, is a proba-
bility distribution PΣ(V ) which

– satisfies the revision assignments (the postulated new probabilities)
– preserves the probabilistic interaction structure as far as possible.

By preserving the interaction structure we mean that, except from the modifi-
cations induced by the revision assignments in Σ, all probabilistic dependencies
of P (V ) are preserved. This requirement ensures that modifications are made
according to the principle of minimal change.

It can be proven (see, i.e. [6]) that in case of existence, the solution of the
revision problem (P (V ), Σ) is uniquely defined. This solution can be determined
using iterative proportional fitting [17]. Starting with the initial probability dis-
tribution, this process adapts the initial probability distribution iteratively, one
revision assignment at the time, and converges to a limit distribution that solves
the revision problem, given there are no inconsistencies.

2.2 Revision Factors

In each iteration of the iterative proportional fitting process, partitions as
explained earlier are multiplied with a so called revision factor in order to
incorporate the current revision assignment. Consider a single revision assign-
ment σ∗ Def

= P ∗(ρs|κs) of a new probability for ρs|κs, with ρs and κs being
single partitions.

With respect to the concept of minimal change, revising P (V ) by σ∗ leads to
the probability distribution Prev(V ) which satisfies the condition Prev(ρs|κs) =
P ∗(ρs|κs) and Prev(V − Ks − Rs, κs, ρs) = P (V − Ks − Rs, κs, ρs).
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Fig. 1. Inner inconsistency

Using the general rule for factorisation, we obtain

Prev(V − Ks − Rs, κs, ρs) = Prev(V − Ks − Rs|κs, ρs)Prev(ρs|κs)Prev(κs)
= P (V − Ks − Rs|κs, ρs)P ∗(ρs|κs)P (κs)

=
P ∗(ρs|κs)
P (ρs|κs)

P (V − Ks − Rs, κs, ρs),

where P ∗(ρs|κs)
P (ρs|κs)

describes the revision factor.
In case of a solvable revision problem (P (V ), Σ) those factors converge

towards one as the revision operation converges.

2.3 Inconsistencies in the Context of the Revision Operation

In case of inconsistencies, the revision will oscillate between multiple limit dis-
tributions. In the worst case there are as many limit distributions as there are
revision assignments where each limit distribution satisfies the incorporation of
one revision assignment. Furthermore, the revision factors will also be oscillat-
ing between different values in order to transfer the probabilities from one limit
distribution to another one.

Inconsistencies have been analysed in [9] and two types of inconsistencies of
revision problems have been distinguished:

Inner consistency of a revision structure Σ is given, if and only if a probability
distribution exists that satisfies the revision assignments of Σ; otherwise we refer
to inner inconsistencies of Σ.

In Fig. 1, a simple example is shown where the given revision assignments
already lead to an inconsistency without the consideration of the underlying
interaction structure. The filled entries in the left table represent the revision
assignments. In the right table consequences for the rest of the table are shown
and one conflict is highlighted.

Given that Σ has the property of inner consistency, it is still possible that due
to the zero probabilities of P (V ) the revision problem (P (V ), Σ) is not solvable,
since a modification of the interaction structure of P (V ) would be necessary
in order to satisfy the given revision assignments. Therefore, a second type of
inconsistency is defined as follows:

Given that Σ has the property of inner consistency, the revision problem
(P (V ), Σ) shows the property of outer inconsistency, if and only if there is
no solution to this revision problem.
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Fig. 2. Outer inconsistency

Figure 2 illustrates an outer inconsistency. In the left table again the numbers
represent revision assignments. This time there are additional circles representing
zero values that cannot be changed during the revision operation. As before, the
right table shows consequences for the remaining table entries as well as an
inconsistency.

For the purpose of creating explanations, we now know that there are two
potential sources of contradictions. Namely, the revision structure Σ and the
interaction structure of P (V ), or more precisely its zero-values.

3 Explaining Revision Inconsistencies

In the case of inconsistency the revised distribution Prev does not exist. After
cancelling the revision we obtain Pappr, a distribution that approximates Prev.
Due to the inconsistency there exists at least σ ∈ Σ where Pappr(σ) �= P ∗(σ).
In order to support the manual elimination of inconsistencies, our explanations
aim to highlight the core contradiction that caused Pappr(σ∗) �= P ∗(σ∗) for
one chosen revision assignment σ∗. In previous works we proposed a minimal
explaining set of revision assignments that together constitute the contradiction
as described in [15] as explanation. Such set is effective as long as the number of
elements in it is moderately small, or the explained inconsistency doesn’t spread
over too many dimensions. With an increasing number of participating variables
and items in the set, explanations get more and more incomprehensible. There-
fore, even after the introduction of an automated method for finding minimal
explaining sets, there are still requests for manual analysis of inconsistencies,
because the automatically created explanation is not sufficient.

We identified two aspects that most manually created explanations cover, and
are currently not incorporated into our automated system: A relevant extract of
the interaction structure as well as a meaningful grouping of partitions, created
by the revision assignments. In this work, we focus on the automated acquisition
of meaningful groupings of partitions.

3.1 Grouping

Grouping together partitions, created by the revision structure Σ, has two pos-
itive effects on explanations. First, it reduces the number of elements presented
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to a domain expert. And second, it magnifies the core feature of the interac-
tion structure that contributes to an inconsistency. To visualise this effect, Fig. 3
shows the interaction structure between two variables. On the left side the origi-
nal interaction structure is shown. The right side presents the condensed version
after the manual grouping of partitions. Relations between the groups of ele-
ments are more clearly visible on the right side.

Fig. 3. Left: original interaction structure, right: interaction structure after manual
grouping

The biggest challenge when grouping elements automatically is to find a
suitable similarity measure in order to decide which elements should be grouped.
For the grouping of partitions created by revision assignments, we found that the
revision factor can be used. The revision factor is applied to partitions created
by the revision structure in every iteration of the revision operation in order
to adapt probabilities according to the specified revision structure. During the
revision operation very often partitions that would be grouped together by a
data analysis expert, are adapted with the same or very similar revision factors.
The revision factor converges for every partition once the revision operation
converges. In the case that the revision converges towards exactly one limit
distribution (and hence does not show inconsistencies), the revision factors will
converge towards one. Otherwise, the revision factors will differ and provide a
suitable similarity measure. The fact that they are converging means that we
can use them as a base for further analysis, and in our case as a measure of
similarity.

One of the most common class of methods to group objects by similarity
are clustering algorithms. In order to choose a suitable algorithm from that
class we have to analyse our grouping problem. In general, we are interested
in a result that has the least possible number of clusters, but still explains the
chosen inconsistency. The exact number of clusters is unknown and most likely
changes between problems. Another aspect is the number of elements we need to
cluster. In our case we are dealing with somewhere between a couple of hundred
to a couple of thousand revision assignments. However, that number can usually
already drastically be reduced before starting the clustering. We decided to use
hierarchical clustering [4,16], since the hierarchy provides us with an easy method
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Fig. 4. Above: original interaction structure, below: interaction structure after auto-
mated grouping by revision factors

to progressively test groupings with an increasing number of clusters until we
found the best solution.

The resulting algorithm groups partitions that are derived from the revision
structure Σ and clusters them using the revision factors that are observed when
the revision operation converges. The result is a set of groupings of partitions
that can then be used to create a more concise view on the relevant part of the
interactions structure of the resulting probability distribution Prev.

The grouping created in Fig. 3 could technically be achieved by deriving
it from the interaction structure. However, this is a very simple example we
choose to illustrate the effect of grouping. In real applications, the interaction
structure is only one component that influences the similarity between different
partitions. The clustering of partitions using the revision factors is able to also
find similarity between structurally different partitions. Furthermore, partitions
that look structurally similar in certain projections might indeed have differences
caused by higher level dependencies that remain hidden during a structural
analysis of a given projection.

Figure 4 shows an example where using revision factors finds groupings that
would not have been visible through structural analysis alone. When analysing
the structure of the table above, one would find three partitions for the vari-
able NAV. Namely {nav1,nav3,nav4}, {nav2}, and {nav5,nav6}. Similarly for
the variable MODEL: {mod1,mod2}, {mod3,mod4}, and {mod5}. However, the
analysis of the revision factors revealed that there is an even more concise group-
ing shown in the table below.

For those reasons structural analysis in general only gives a partial view on
the picture. Another aspect is that the interaction structure is relatively static
as it does not change during the revision, except from the changes induced by
the revision structure. On the other hand, revision factors change dynamically
in every iteration of the revision and hence reflect the dynamics of the revision
operation to a certain degree. In this way, even dependencies that are not visible



264 F. Schmidt et al.

in a given projection are considered. This is especially important since manual
analysis, most of the time, is restricted to schemes that the data analysis expert
considers important. Furthermore, in case of inconsistencies the way the revision
factors change already gives certain insight into the nature of inconsistencies.

All the mentioned properties of the grouping of partitions using the revision
factor as a similarity measure lead to groupings that can be used to provide a
concise explanation for a given inconsistency.

3.2 Application

The presented approach is tested at the Volkswagen Group in their system for
estimating part demands and managing capacities for short- and medium-term
forecasts, called EPL (EigenschaftsPLanung: item planning). The system com-
bines several heterogeneous input sources such as rules describing buildable vehi-
cle specifications, production history reflecting customer preferences, and market
forecasts leading to stipulations of modified item rates, and capacity restrictions
that are modelled as revision assignments. Those sources are fused into Markov
Networks and the revision operation is then used to estimate the part demands.
More details of the modelling of EPL can be found in [6,7]. EPL is currently the
biggest industrial application for Markov networks. Using EPL the demands for
more than a hundred different model groups from multiple car manufacturers of
the Volkswagen Group are estimated every week. In case of the VW Golf– being
Volkswagens most popular car class–there are about 200 item families with typ-
ically 4 to 8 (but up to 150) values each, that together fully describe a car to be
produced, and many of these families can directly be chosen by the customer.

3.3 Experimental Results

In our productive system we are currently using an explanation based on a min-
imal explaining set of revision assignments as described in [15]. Compared with
that approach we achieved two improvements by using the presented clustering
method. First, we reduced the number of elements needed to explain an inconsis-
tency (see 1). Second, we achieved some significant performance improvements
since we are not searching for a minimal explaining set of revision assignments.

Each example comes from a different model group and planning inconsistency.
In all the provided examples the clustering algorithm finds an explanation with
less elements faster than the algorithm we were using previously. The last exam-
ple in Table 1 is an extreme case. Even with an optimised version of the original
algorithm, the problem is practically not explainable as 680 revision assignments
in the explaining set are hard to understand. Furthermore, with 3 h and 50 min
of processing time, the problem is probably faster analysed manually. The clus-
tering algorithm still finds 169 clusters which are similarly hard to understand.
However, reaching this result in just 7.5 min instead of 3 h and 50 min, means
we can resort to a manual analysis significantly earlier. The three examples were
chosen to show results for problems with different complexity.
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Table 1. Example reduction of the computation time and number of elements in the
explanation when using clustering to group partitions

Example 1 2 3

time using the minimal explaining set algorithm 0.807 s 4.027 s 3h49min

# revision assignments in the minimal set 10 8 680

time using clustering method 0.229 s 1.996 s 7.5 min

# clusters 3 5 169

Although the clustering algorithm finds smaller explanations faster, the type
of explanation is slightly different compared to a minimal explaining set of revi-
sion assignments and in most cases relies on the dependency structure to under-
stand what the clusters actually mean. The minimal explaining alone is enough
to understand simple problems. However, for more complex inconsistencies the
clustering algorithm becomes the better choice.

4 Conclusion

The maintenance of knowledge is one of the most important topics in our cur-
rent times. Aside from the storage and retrieval of knowledge, adapting it to
ever changing business environments is one of the biggest challenges. Methods
like the revision operation have been introduced in order to suit the need for
proper adaptation of knowledge according to new beliefs. However, with more
complex knowledge and longer lists of changed beliefs, inconsistencies are practi-
cally unavoidable and need to be handled appropriately. One aspect of handling
inconsistencies is their elimination which requires their understanding. In order
to help domain experts to understand inconsistencies, explaining them is an
essential part of the elimination process. In this work we introduced the idea of
grouping partitions created by revision assignments as a method to create more
concise explanations while at the same time we save valuable processing time.
Our experiments showed a significant improvement in both categories but also
revealed some areas for future research.

In this paper, as well as in our previous works, it became quite apparent that
providing explanations without the corresponding excerpt of the dependency
structure reduces the understandability of an explanation considerably. However,
identifying and presenting the relevant parts of the structure, is a non-trivial
task even for data analysis experts. In order to improve the expressiveness of
automatically created explanations, we are interested in finding and presenting
those excerpts of the structure in an automated manner as well.
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Abstract. An important problem in knowledge-based systems is incon-
sistency handling. This problem has recently been attracting a lot of
attention in AI community. In this paper, we tackle the problem of eval-
uating the amount of conflicts in knowledge bases, and provide a new
fine grained inconsistency measure, denoted MCSC, based on maximal
consistent sets. In particular, it is suitable in systems where inconsistency
results from multiple consistent sources. We show that our measure sat-
isfies several rational postulates proposed in the literature. Moreover, we
provide an encoding in integer linear programming for computing MCSC.

1 Introduction

In classical logics, the principle of explosion is a law which states that any formula
can be deduced from a contradiction using the inference process. This principle
means that the inference process alone in classical logic does not allow to rea-
son under inconsistency. To remedy this problem, several approaches have been
proposed in the literature, such as argumentation theory, paraconsistent logics,
belief revision, etc. The main goal of these approaches is to deal with inconsis-
tency as an informative concept. In the same vein, inconsistency measures have
been introduced in order to be used in analyzing inconsistency. In the literature,
an inconsistency measure is defined as a function that associates a value to each
knowledge base [1]. Several inconsistency measures have been proposed in the
literature (e.g. [1–8]), and it has been shown that they are suitable for various
applications such as e-commerce protocols [9], software specifications [10], belief
merging [5], news reports [11], requirements engineering [1], integrity constraints
[12], databases [13], ontologies [14], semantic web [14], network intrusion detec-
tion [15], and multi-agent systems [8].

In [1], Hunter and Konieczny have proposed four axiomatic properties that
any inconsistency measure should satisfy. Namely, the properties of consistency,
monotony, free-formula independence, and dominance. However, in a recent arti-
cle [16], Besnard has provided objections to the axiomatic properties of free-
formula independence and dominance. Indeed, the author has pointed out in
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his article undesirable consequences of these properties, such as ignoring cer-
tain conflicts, and has provided alternative properties in order to avoid these
consequences.

Inconsistency is often measured by quantifying its origin in a monodimen-
sional way, such as the number of minimal inconsistent subsets. However, no
value alone can capture the multiple aspects of inconsistency. Indeed, incon-
sistency in a knowledge base may result from several reasons and has to be
measured in a multi-dimensional way. For instance, let us consider the knowl-
edge base K = {p,¬p ∧ q,¬p ∧ r,¬p ∧ s}. Clearly, the inconsistency of K results
from the conflict between the formula p and the subformula ¬p in the other
formulæ. If we use the inconsistency measure ILPm

defined in [4] and based
on Priest’s three-valued logic [17], then we can capture the conflict between a
and ¬a (ILPm

(K) = 1). However, since ILPm
consider K as a single formula,

it does not reveal the fact that there are three conflicts between the formulæ
of K. To this end, one can use the measure IMI [1] defined as the number of
minimal inconsistent subsets of K (IMI(K) = 3). The measure IMI is not more
informative than ILPm

and conversely, but the two measures provide informa-
tion about incomparable facets of inconsistency. In other words, two measures
are not necessarily comparable in the sense that one is better than the other,
they can capture incomparable aspects that constitute inconsistency. We think
that Besnard’s objections to the properties of free-formula independence and
dominance may be used to argue in this sense. For instance, the property of
free-formula independence has a sense when we do not consider the internal
structure of the formulæ in a knowledge base. Indeed, it simply means that
adding a new formula which is not involved in a conflict does not change the
amount of inconsistency.

In this work, we introduce an inconsistency measure, denoted MCSC, by
following an approach based on the use of maximal consistent subsets. This app-
roach consists in considering that the inconsistency of a knowledge base is a
consequence of the fact that its pieces of information are received from ignored
multiple consistent sources, where each possible source is identified by a con-
sistent subset of formulæ. In this context, the degree of conflict of a knowledge
base can be seen as the smallest number of pieces of information that cannot
be shared by possible sources covering all the elements of this base. Clearly,
computing this value can be performed by considering only the possible sources
identified by the maximal consistent subsets since the objective consists in min-
imizing the number of non shared pieces of information.

We show that our inconsistency measure satisfies several desirable proper-
ties proposed in the literature, such as Free Formula Independence and Super-
additivity. We also provide properties of bounds on MCSC. Then, we study the
relationship between our measure and the inconsistency metric proposed in [18].
This study comes from the fact that these two measures satisfy a fundamental
property, called Independent MIS-additivity. Finally, we show that our measure
can be formulated as an integer linear program by providing an encoding allow-
ing its computation.
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2 Formal Setting

In this section, we define the syntax and the semantics of propositional logic. Let
Prop be a countably set of propositional variables. We use the letters p, q, r, etc.
to range over Prop. The set of propositional formulæ, denoted Form, is defined
inductively started from Prop, the constant ⊥ denoting absurdity, the constant
� denoting true, and using the logical connectives ¬, ∧, ∨, →. Notationally, we
use the greek letters φ, ψ to represent formulæ. Given a syntactic object S, we
use P(S) to denote the set of propositional variables appearing in S. For a set
S, we denote by |S| its cardinality.

A Boolean interpretation I of a formula φ is defined as a function from P(φ)
to {0, 1} (0 corresponds to false and 1 to true). It is inductively extended to
propositional formulæ as usual. A formula φ is consistent if there exists a Boolean
interpretation I of φ such that I(φ) = 1. φ is valid or a theorem, if every Boolean
interpretation is a model of φ.

It is worth noticing that we can restrict the language to the connectives
¬ and ∧, since we have the following equivalences: φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ) and
φ → ψ ≡ ¬φ ∨ ψ. A knowledge base K is a finite set of propositional formulæ.

Definition 1. Let K be a knowledge base. M is a minimal inconsistent subset
(MIS) of K iff (i) M ⊆ K, (ii) M 	 ⊥ and (iii) ∀φ ∈ M , M \ {φ} � ⊥.

We denote by MISes(K) the set of all minimal inconsistent subsets of K.

Definition 2. Let K be a knowledge base and M a subset of K. M is a maximal
consistent subset (MCS) of K iff (i) M ⊆ K, (ii) M � ⊥, (iii) ∀φ ∈ K \ M ,
M ∪ {φ} 	 ⊥.

We denote by MCSes(K) the set of all maximal consistent sets of K.

Definition 3. Let K be a knowledge base and φ a knowledge in K. φ is a free
knowledge in K iff φ /∈ M for every M ∈ MISes(K).

We use Free(K) to denote the set of free knowledge in K.
In recent years, inconsistent data reasoning has seen a revival in interest

because of number of challenges in terms of collecting, modelling, representing,
and querying the information. In this context, various logic-based approaches
have been proposed in the literature for quantifying the amount of inconsis-
tency. Therefore, several properties have been defined to characterize such mea-
sures. More specifically, in [1] the authors propose axiomatic properties that any
inconsistency measure should satisfy. An inconsistency measure I is called a basic
inconsistency measure if it satisfies the following properties, for all knowledge
bases K and K ′, and for all formulæ φ and ψ:

– Consistency : I(K) = 0 iff K is consistent;
– Monotony : I(K) ≤ I(K ∪ K ′);
– Free Formula Independence: if φ ∈ free(K), then I(K) = I(K \ {φ});
– Dominance: if φ 	 ψ and φ � ⊥, then I(K ∪ {ψ}) ≤ I(K ∪ {φ}).
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It is worth noticing that Besnard has provided in [16] objections on the properties
of free formula independence and dominance. In particular, the objection to the
property of free formula independence comes from the fact that a free formula
may be involved in a conflict and in this case it has to increase the amount
of inconsistency. Let us consider, for instance, the following knowledge base
proposed in [16]: K = {p∧r, q∧¬r,¬p∨¬q}. The knowledge base K has a single
minimal inconsistent subset M = {p ∧ r, q ∧ ¬r} and, consequently, ¬p ∨ ¬q is a
free-formula in K. Using the property of free-formula independence, we should
have I(M) = I(K). However, p and q are compatible and p ∧ q is contradicted
by the free-formula ¬p ∨ ¬q. Consequently, one can consider that K contains
more conflicts than M and in this case the free-formula independence property
fails. Let us note that to detect whether free-formulæ are involved in a conflict,
we have to consider the internal structure of formulæ.

We agree with Besnard’s objections in the sense that it is not suitable to
require Hunter and Konieczny’s basic properties for any inconsistency measure.
However, we think that inconsistency is a multi-dimensional concept and a sin-
gle inconsistency measure is insufficient to capture all the information about
the amount of inconsistency. In this context, to capture certain aspects that
constitute inconsistency, we need inconsistency measures satisfying Hunter and
Konieczny’s properties. In particular, aspects which are not related to internal
structure of formulæ in knowledge bases.

3 MCS-Cover Based Inconsistency Measure

In this section, we introduce a new inconsistency measure, denoted MCSC,
which is based on the use of the MCSes. Intuitively, the main idea behind MCSC
is in considering that the inconsistency is due to the fact that the information
are often received from ignored multiple consistent information sources. In this
context, the degree of conflict corresponds to the smallest number of knowledges
that cannot be shared by possible information sources. The possible information
sources are characterized by the consistent subsets. Since our aim is to mini-
mize non shared knowledges, we only consider the possible information sources
characterized by the MCSes.

Let us first define the following fundamental concepts that will be useful in
the sequel.

Definition 4 (MCS-Cover). Let K be a knowledge base. A MCS-cover C of
K is a subset of MCSes(K) such that

⋃
S∈C S = K.

Let us consider, for instance, the knowledge base K = {¬p ∨ ¬q, ¬p ∨ ¬r,¬q ∨
¬r, p, q, r}. The following two sets are MCS-covers of K: C1 = {{¬p ∨ ¬q, ¬p ∨
¬r,¬q ∨ ¬r, p}, {p, q, r}}, C2 = {{¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨ ¬r, p}, {¬p ∨ ¬q, ¬p ∨
¬r, q, r}}.

We now define a preorder relation on the MCS-covers of a given knowledge
base, denoted �. Let K be a knowledge base. For all C and C′ two MCS-covers
of K, C � C′ if and only if |⋂S∈C S| � |⋂S′∈C′ S′|. Let us consider again the
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previous example. We have C2 � C1 since |{¬p ∨ ¬q, ¬p ∨ ¬r,¬q ∨ ¬r, p} ∩
{p, q, r}| = 1 and |{¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨ ¬r, p} ∩ {¬p ∨ ¬q, ¬p ∨ ¬r, q, r}| = 2.

Definition 5 (Normal MCS-Cover). Let K be a knowledge base and C an
MCS-cover of K. Then, C is a normal MCS-cover if C′ is not an MCS-cover for
every C′ ⊂ C.

Definition 6 (Maximum MCS-Cover). Let K be a knowledge base and C
a MCS-cover of K. Then, C is said to be a maximum MCS-cover of K if it
is normal and ∀ C′ MCS-cover of K, C � C′. We denote by λ(K) the value
|⋂S∈C S|.
Definition 7 (MCSC). Let K be a knowledge base. The inconsistency measure
of K, denoted MCSC(K), is defined as follows: MCSC(K) = |K| − λ(K).

Regarding the previous example of knowledge base, we have MCSC(K) = 4
since C2 is a maximum MCS-cover.

We now provide a generalization of the inconsistency measure MCSC. The
base idea consists in associating a weight to each formula in a knowledge base
representing the degree of its relevance. In this context, the inconsistency value
corresponds to the smallest weight of non shared knowledge.

Given a knowledge base K, we define a weight function W of K as a function
from K to N

∗.

Definition 8 (Weighted Maximum MCS-Cover). Let K be a knowledge
base, W a weight function of K and C a MCS-cover of K. Then, C is said
to be a weighted maximum MCS-cover of K w.r.t. W if it is normal and∑

φ∈⋂M∈C M W (φ) �
∑

φ∈⋂M∈C′ M W (φ) for every MCS-cover C′. We denote
by λ(K,W ) the value

∑
φ∈⋂M∈C M W (φ).

Definition 9 (WMCSC). Let K be a knowledge base and W a weight function
of K. The inconsistency measure of K, denoted WMCSC(K,W ), is defined as
follows: MCSC(K) = |K| − λ(K,W ).

Clearly, WMCSC can be seen as a generalization of MCSC. Indeed, by using a
weight function W giving the weight 1 to every formula in the knowledge base
K, we get WMCSC(K,W ) = MCSC(K). Let us note that there are several
ways to define a weight function of a knowledge base from the structure of its
formulæ. For instance, the weight of a formula may be defined as the number
of propositional variables occurring in it. Intuitively, this means that the impor-
tance of a knowledge depends on the number of pieces of information which are
binded by it.

4 Properties of MCSC Measure

In the section, we describe some important properties of the inconsistency
measure MCSC. We first show that it satisfies the properties of consistency,
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monotony, free formula independence, and a weak form of the property of dom-
inance. Then, we show that our measure satisfies also the property of super-
additivity.

Proposition 1. MCSC measure satisfies Consistency, Monotony and Free
Formula Independence.

Proof. Consistency. Let K be a consistent knowledge base. Then, {K} is the
unique maximum MCS-cover of K (λ(K) = |K|). Hence, MCSC(K) = 0.

Monotony. Proposition 3 can be seen as a generalization of Monotony.

Free Formula Independence. Let K be a knowledge base and φ a free formula
in K. Let C = {S1, . . . , Sn} be a maximum MCS-cover of K \ {φ}. Since φ ∈
Free(K), Si ∪{φ} � ⊥ holds for every 1 � i � n. Thus, {S1 ∪{φ}, . . . , Sn ∪{φ}}
is a maximum MCS-cover of K and we obtain λ(K) = λ(K \ {φ}) + 1. As a
consequence, MCSC(K) = |K| − λ(K) = |K \ {φ}| + 1 − λ(K \ {φ}) − 1 =
MCSC(K \ {φ}).

Proposition 2. Let K be a knowledge base and φ and ψ two formulæ such that
φ � ⊥ and φ	ψ. If φ /∈ K or ψ ∈ K, then MCSC(K∪{ψ}) ≤ MCSC(K∪{φ}).

Proof. Let C be a maximum MCS-cover of K ∪ {φ}. We consider w.l.o.g. that
ψ /∈ K since MCSC satisfies the property of monotony. Clearly, by replacing in
C the formula φ with ψ we obtain a set of satisfiable subsets of K ∪ {ψ}. As a
consequence, we have λ(K ∪ {ψ}) � λ(K ∪ {φ}). Thus, we obtain MCSC(K ∪
{ψ}) = |K ∪ {ψ}| − λ(K ∪ {ψ}) � |K ∪ {φ}| − λ(K ∪ {φ}) = MCSC(K ∪ {φ}).

Let us note that MCSC does not satisfy Dominance. Consider for instance
the knowledge base K = {p ∧ (p → q),¬q}. We have p ∧ (p → q) � ⊥,
p ∧ (p → q) 	 q and λ(K) = 0. Moreover, λ(K ∪ {q}) = 0 holds. Then, we
have MCSC(K ∪ {q}) = 3 > MCSC(K ∪ {p ∧ (p → q)}) = 2.

Other rational postulates than those of the basic system have been proposed
in the literature. In particular, we consider the following additivity properties
introduced in [1,19]:

– Super-additivity : if K ∩ K ′ = ∅, then I(K ∪ K ′) � I(K) + I(K ′).
– MIS-additivity : if MISes(K) = MISes(K ′) � MISes(K ′′), then I(K) =

I(K ′) + I(K ′′).

One can easily see that Super-additivity is a generalization of Monotony.

Proposition 3. MCSC measure satisfies Super-additivity.

Proof. Let K and K ′ be two knowledge bases such that K ∩ K ′ = ∅ and C a
maximum MCS-cover of K ∪ K ′. Clearly, for all S ∈ MCSes(K ∪ K ′), there
exist S′ ∈ MCSes(K) and S′′ ∈ MCSes(K ′) such that S ⊆ S′ ∪ S′′. Then,
there exist MCS-covers C′ and C′′ of K and K ′ respectively such that

⋂
S∈C S ⊆

(
⋂

S′∈C′ S′)∪(
⋂

S∈C′′ S′′). As a consequence, we have λ(K∪K ′) � λ(K)+λ(K ′).
Therefore, MCSC(K ∪ K ′) � MCSC(K) + MCSC(K ′) holds.
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In the following proposition, we show that MCSC measure satisfies a property
generalizing Super-additivity.

Proposition 4. Given two knowledge bases K and K ′, we have:

MCSC(K ∪ K ′) � MCSC(K) + MCSC(K ′) − |K ∩ K ′|.
Proof. We have, for all S ∈ MCSes(K ∪ K ′), S′ = S ∩ K and S′′ = S ∩ K ′

are both consistent. Let C = {S1, . . . , Sn} be a maximum MCS-cover of K ∪ K ′.
Then, C′ = {S1 ∩ K, . . . , Sn ∩ K} and C′′ = {S1 ∩ K ′, . . . , Sn ∩ K ′} are sets
of consistent subsets. Moreover,

⋂
S∈C S = (

⋂
S′∈C′ S′) ∪ (

⋂
S′′∈C′′ S′′). Thus,

λ(K ∪ K ′) � λ(K) + λ(K ′) holds and, consequently, MCSC(K ∪ K ′) � |K ∪
K ′| − λ(K) − λ(K ′) holds. Since |K ∪ K ′| = |K| + |K ′| − |K ∩ K ′|, we deduce
that MCSC(K ∪ K ′) � MCSC(K) + MCSC(K ′) − |K ∩ K ′|.
It is worth noticing that MCSC does not satisfy MIS-additivity. Consider, for
instance, K = {a, b,¬a ∧ ¬b}, K1 = {a,¬a ∧ ¬b} and K2 = {b,¬a ∧ ¬b}. It is
easy to see that MCSC(K) = 3, MCSC(K1) = 2 and MCSC(K2) = 2. We
have MISes(K) = MISes(K1) � MISes(K2), but MCSC(K) �= MCS(K1) +
MCS(K2).

Proposition 5. Given a knowledge base K, MCSC(K) � |K| − |Free(K)|.
Proof. This property is a direct consequence of the fact that, for all
S ∈ MCSes(K), Free(K) ⊆ S.

Proposition 6. Given a minimal inconsistent set of formulæK such that |K| >
1, we have MCSC(K) = 2.

Proof. Let K = {φ1, . . . , φn} be a minimal inconsistent set such that n > 1.
Then, S = {φ1, . . . , φn−1} and S′ = {φ2, . . . , φn} are MCSes of K, and {S, S′}
are an MCS-cover of K. Then, MCSC(K) � n − (n − 2) = 2 holds. Let us
assume that MCSC(K) = 1. Then, there exist S and S′ in MCSes(K) such
that S �= S′ and |S ∩ S′| � n − 1. Thus, |S| = |S′| = n holds and we get a
contradiction. Therefore, we obtain MCSC(K) = 2.

5 Relationship Between MCSC and ICC Measures

In this section, we study the relationship between our inconsistency measure and
an existing one, denoted ICC , introduced recently by Jabbour et al. in [18]. This
study comes from the fact that the two metrics MCSC and ICC satisfy both a
fundamental property, called Independent MIS-additivity. Firstly, we introduce
the measure ICC as follows. Given a knowledge base K, a MIS-decomposition of
K is a pair 〈{K1, . . . , Kn},K ′〉 satisfying the following properties: (i)(

⋃n
i=1 Ki)∩

K ′ = ∅; (ii) Ki 	 ⊥ for every 1 � i � n; (iii) Ki∩Kj = ∅ for every 1 � i �= j � n;
(iv) MISes(

⋃n
i=1 Ki) =

⊎n
i=1 MISes(Ki).

Given a knowledge base K, ICC(K) = n if there is a MIS-decomposition
〈D,K ′〉 where |D| = n, and there is no MIS-decomposition 〈D′,K ′′〉 such that
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|D′| > n. In this case, 〈D,K ′〉 is called maximum MIS-decomposition. Intuitively,
this measure can be seen as the maximum number of MISes that can be isolated
by removing formulæ from the knowledge base.

Definition 10 (Independent MIS-Additivity). Let I be an inconsistency
measure. Then, I satisfies the property of independent MIS-additivity1 iff, for all
knowledge bases K and K ′, if MISes(K ∪ K ′) = MISes(K) � MISes(K ′) and
(
⋃

M∈MISes(K) M) ∩ (
⋃

M∈MISes(K′) M) = ∅, then I(K ∪ K ′) = I(K) + I(K ′).

Proposition 7. MCSC measure satisfies the property of independent MIS-
additivity.

Proof. Let K, K1 and K2 be knowledge bases such that MISes(K) =
MISes(K1)�MISes(K2) and, for all M ∈ MISes(K1) and M ′ ∈ MISes(K2),
M ∩ M ′ = ∅. We denote K ′, K ′

1 and K ′
2 the sets

⋃
M∈MISes(K) M ,⋃

M∈MISes(K1)
M and

⋃
M∈MISes(K2)

M respectively. Let us note that K ′ =
K ′

1 � K ′
2. Using the property of free formula independence, we have

MCS(K) = MCS(K ′), MCS(K1) = MCS(K ′
1) and MCS(K2) = MCS(K ′

2).
Then, using the properties of super-additivity, we have MCSC(K) �
MCS(K1) + MCS(K2). Let S ∈ MCSes(K ′

1) and S′ ∈ MCSes(K ′
2). Since

(
⋃

M∈MISes(K1)
M) ∩ (

⋃
M∈MISes(K2)

M) = ∅, S ∪ S′ is a consistent set in
K ′. Then, using the fact that K ′ = K ′

1 � K ′
2, we have λ(K ′) � λ(K ′

1) +
λ(K ′

2) and, consequently, MCSC(K ′) � MCSC(K ′
1) + MCSC(K ′

2). Thus,
MCSC(K) � MCSC(K1)+MCSC(K2) holds. Therefore, we get MCSC(K) =
MCSC(K1) + MCSC(K2).

Proposition 8. Given a knowledge base K, we have MCSC(K) � 2×ICC(K).

Proof. The property is a consequence of Super-additivity and Proposition 6.

We now show that MCSC allows to distinguish knowledge bases which are not
distinguishable by ICC . Consider, for instance, the two knowledge bases K1 = {p∧
q, p∧ r,¬p} and K2 = {p∧ q,¬p}. Then, MISes(K1) = {{p∧ q, ¬p}, {p∧ r,¬p}}
andMISes(K2) = {{p∧q,¬p}}. Hence,we have clearly ICC(K1) = ICC(K2) = 1.
Furthermore, C1 = {{p ∧ q, p ∧ r}, {¬p}} and C2 = {{p ∧ q}, {¬p}} are maximum
MCS-covers of K1 and K2 respectively. As a consequence, λ(K1) = λ(K2) = 0.
Thus, MCSC(K1) = 3 and MCSC(K2) = 2 hold.

Conversely, consider the knowledge bases K3 = {p ∧ q1, p ∧ q2,¬p, r,¬r} and
K4 = {p ∧ q1, p ∧ q2, p ∧ q3, p ∧ q4,¬p}. Then, 〈{{p ∧ q1, p ∧ q2,¬p}, {r,¬r}}, ∅〉
and . 〈{{p ∧ q1, p ∧ q2, p ∧ q3, p ∧ q4,¬p}}, ∅〉 are maximum MIS-decompositions
of K3 and K4 respectively and, consequently, ICC(K3) = 2 and. ICC(K3) = 1
hold. Moreover, {{p ∧ q1, p ∧ q2, r}, {¬p,¬r}} and {{p ∧ q1, p ∧ q2, p ∧ q3, p ∧
q4}, {¬p}} are maximum MCS-covers of K3 and K4 respectively. Thus, we obtain
MCSC(K3) = MCSC(K4) = 5.

The previous examples show that MCSC allows to distinguish knowledge
bases which are not distinguishable by ICC and vice versa. As a consequence,
these measures do not capture the same facets in measuring inconsistency.
1 In the original paper, this property is called enhanced additivity.
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6 Integer Linear Programming Formulation

In this section, we show that our measure can be formulated as an integer linear
program (ILP) by providing an encoding defined mainly from the set of the
MCSes of a knowledge base. To do this, each variable used in our encoding is
binary (a 0-1 variable) and corresponds to either a formula or an MCS. The
constraints are defined so that the objective consists in maximizing the function
corresponding to the sum of the variables associated to formulæ.

Variables. We associate a binary variable Xφ having as domain {0, 1} to each
formula φ in K. We also associate a binary variable YM having as domain {0, 1}
to each MCS M of K.

The integer linear program ILP-MCSC(K) is as follows:

minimize |K|
subject to:

−
∑

φ∈K
Xφ

∑

M :φ∈M

YM � 1 for all φ ∈ K (1)

Xφ + YM � 1 for all φ ∈ K and M ∈ MCSes(K) with φ /∈ M (2)

Proposition 9 (Soundness). Given a knowledge base K and a solution S of
ILP-MCSC(K), then MCSC(K) = |K| − |{φ ∈ K | S(Xφ) = 1}|.
Proof. Each solution S1 of the linear inequality (1) means that the set C = {M ∈
MCSes(K) | S1(YM ) = 1} is an MCS-cover of K. Moreover, each solution S2

of the linear inequality (2) means that {φ ∈ K | S2(Xφ) = 1} ⊆ ⋂
L M where

L = {M ∈ MCSes(K) | S2(YM ) = 1}. Thus, since minimizing |K| − ∑
φ∈K Xφ

corresponds to maximizing
∑

φ∈K Xφ, we have λ(K) = |{φ ∈ K | S(Xφ) = 1}|.
As a consequence, MCSC(K) = |K| − |{φ ∈ K | S(Xφ) = 1}| holds.

7 Conclusion and Perspectives

Several approaches for measuring inconsistency have been proposed in the lit-
erature. In this paper, we proposed an original approach based on the use of
maximal consistent sets. The basic idea consists in considering the conflict of
a knowledge base as a consequence of the use of multiple consistent informa-
tion sources. We showed that our inconsistency measure satisfies several desired
rational properties. We also proposed an encoding in integer linear programming
for its computation.

As a future work, we intend to investigate complexity issues related to our
framework. We also plan to define algorithms for the problem of MCSC compu-
tation and conduct experimental evaluations.
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Abstract. Representing and reasoning with uncertain information is
a common topic in Artificial Intelligence. In this paper, we focus on
probability-possibility transformations in the context of changing opera-
tions and graphical models. Existing works mainly propose probability-
possibility transformations satisfying some desirable properties.
Regarding the analysis of the behavior of these transformations with
respect to changing operations (such as conditioning and marginaliza-
tion), only few works addressed such issues. This paper concerns the com-
mutativity of transformations with respect to some reasoning tasks such
as marginalization and conditioning. Another crucial issue addressed in
this paper is the one of probability-possibility transformations in the
context of graphical models, especially the independence of events and
variables.

Keywords: Probability-possibility transformations · Marginalization ·
Conditioning · Graphical models

1 Introduction

Several frameworks exist for representing and reasoning with uncertain infor-
mation. Probability and possibility theories are among the most commonly
used. Probability theory is the oldest theory dealing with uncertainty and fre-
quentist setting. The early works involving probability and possibility theo-
ries were devoted to estalishing connections between these two frameworks (as
in [12,15,19]). These works are mostly interested in finding desirable properties
to satisfy and then proposing transformations that guarantee these properties.
An example of such desirable properties is the consistency principle used to
preserve as much information as possible.

Probability-possibility transformations are useful in many ways. For instance,
an example of propagating probabilistic (stochastic) and possibilistic information
in risk analysis is provided in [1]. Another motivation is the fact that probabilities
are more suitable in a frequentist setting, but this requires a large number of
data, and when data is not available in sufficient quantities then the possibilistic

c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 279–289, 2015.
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setting can fill this lack as in [13]. Another motivation for probability-possibility
transformations is to use existing tools (e.g. algorithms and software) developed
in one setting rather than developing everything from scratch.

In this paper, we deal with probability-possibility transformations with respect
to reasoning tasks and graphical models. On that matter, a few works have
been published. In [18], the author address the commutativity of probability-
possibility transformations with respect to some reasoning tasks. The authors
in [16] study some issues related to transforming Bayesian networks into possi-
bilistic networks. In [5], the authors deal with transforming probability intervals
into other uncertainty settings. Note that in this paper, we are only interested
in transformations from probability distributions into possibility distributions.
Given a distribution encoding some uncertain information, be it possibilistic or
probabilistic, we are supposed to be able to reason about events of interest. In
this work, we are interested in studying complementary issues such as preserv-
ing marginalization, conditioning and independence relations. We analyze these
issues when the available information is encoded by means of distributions or in a
compact way in the form of graphical models. We show that there is no transfor-
mation from the probabilistic into the possibilistic setting that guarantee most
of the reasoning tasks dealt with in this work. For instance, regarding preserv-
ing marginalization, we show that no transformation can preserve the relative
order of arbitrary events even if it preserves the relative order of interpretations.
When transforming probabilistic graphical models, the order of interpretations
cannot be preserved neither. Before presenting our results, let us first recall some
concepts and present some existing probability-possibility transformations.

2 A Refresher on Probability and Possibility Theories
and Graphical Models

Probability theory is a well-known and widely used uncertainty framework. One
of the building blocks of this setting is the one of probability distribution p assign-
ing a probability degree to each elementary state of the world. Probability theory
is ruled by Kolmogorov’s axioms (non negativity, normalization and additivity)
and usually have two main interpretations (namely, the frequentist and subjec-
tive interpretations). Among the alternative uncertainty theories, possibility the-
ory [8,19] is a well-known one. It is based on the notion of possibility distribution
π which maps every state ωi of the world Ω (the universe of discourse) to a degree
in the interval [0, 1] expressing a partial knowledge over the world. By convention,
π(ωi)=1 expresses that ωi is totally possible, while π(ωi)=0 means that this world
is impossible. Note that possibility degrees are interpreted either (i) qualitatively
(in min-based possibility theory) where only the “ordering”of the values is impor-
tant, or quantitatively (in product-based possibility theory) where the possibilis-
tic scale [0, 1] is quantitative as in probability theory. One of the main difference
between probability theory and possibility theory is that the former is additive
while the latter is maxitive (Π(φ∪ψ)=max(Π(φ),Π(ψ)) ∀φ, ψ⊆Ω).

Conditioning is an important belief change operation concerned with updat-
ing the current beliefs encoded by a probability or a possibility distribution
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when a completely sure event (evidence) is observed. While there are several
similarities between the quantitative possibilistic and the probabilistic frame-
works (conditioning is defined in the same way following the so-called Dempster
rule of conditioning), the qualitative one is significantly different. Note that
the two definitions of possibilistic conditioning satisfy the condition: ∀ω∈φ,
π(ω)=π(ω|φ)⊗Π(φ) where ⊗ is either the product or min-based operator. In
the quantitative setting, the product-based conditioning is defined as follows:

π(wi|pφ) =

{
π(wi)
Π(φ) if wi ∈ φ;
0 otherwise.

(1)

Conditioning in the qualitative setting is defined as follows [11]:

π(wi|mφ) =

⎧
⎨

⎩

1 if π(wi) = Π(φ) and wi ∈ φ;
π(wi) if π(wi) < Π(φ) and wi ∈ φ;
0 otherwise.

(2)

Working directly with uncertainty (probability or possibility) distributions is
not convenient in terms of spatial and temporal complexity. Indeed, the distrib-
ution size can become too large to be stored and manipulated. This is why belief
graphical models [4] have been developed. They represent uncertain information
in a more compact way, and multiple tools have been developed for inference.

Bayesian Networks. A Bayesian network [4] is specified by:

– A graphical component with vertices and edges forming a directed acyclic
graph (DAG). Each vertice represents a variable Ai of the modeled problem
and the edges encode independence relationships among variables.

– A quantitative component, where every variable Ai is associated with a local
probability distribution p(Ai|par(Ai)) for Ai in the context of its parents,
denoted par(Ai).

A Bayesian network encodes a joint probability distribution using the following
chain rule:

P (A1, ..., An) =
n∏

i=1

P (Ai|par(Ai)) (3)

Bayesian networks are not only used to represent information but also to reason
with it. Many algorithms for exact and approximate inferences exist for proba-
bilistic graphical models [4].

Possibilistic Networks. A possibilistic network [3] is also specified by a graph-
ical and a numeric component where the local tables are possibility distributions.
The chain rule is defined as follows:

π(A1, ..., An) = ⊗i=1..nπ(Ai|par(Ai)) (4)

where ⊗ is either the product or min-based operator (namely, ⊗=min or ⊗=∗).
Unless otherwise stated, all that follows is valid in both the quantitative or
qualitative possibilistic settings.
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3 Probability-Possibility Transformations

In this section, we first review the main principles of probability-possibility trans-
formations. In particular, since probability and possibility theories represent dif-
ferent kinds of uncertainty, there is a need to focus on the concept of consistency
coined by Zadeh [19] and redefined by many authors like Dubois and Prade [7].

3.1 Basic Principles for Probability-Possibility Transformations

The first principle that transformations tried to satisfy is due to Zadeh [19]:

Zadeh Consistency Principle. Zadeh [19] measures the consistency between
a probability and possibility distribution as follows:

Cz(π, p) =
∑

i=1..n

π(ωi) ∗ p(ωi). (5)

where p and π are a probability and a possibility distributions respectively over a
set of n worlds. It intuitiveley captures the fact that “A high degree of possibility
does not imply a high degree of probability, and a low degree of probability does
not imply a low degree of possibility”. The computed consistency degree is ques-
tionable [7,12] in the sense that two resulted possibility distributions can have
the same consistency degree but do not contain the same amount of information.

Dubois and Prade Consistency Principle. Dubois and Prade [7] defined
three postulates allowing to define the optimal transformation [7] which always
exist and it is unique.

– Consistency condition states that for each event (i.e. a set of worlds) φ⊆Ω,
P (φ)≤Π(φ). Here, the obtained possibility distribution should dominate the
probability distribution.

– Preference preservation: ∀(ω1, ω2)∈Ω2, p(ω1)≥p(ω2) iff π(ω1)≥π(ω2). Intu-
itively, if two worlds are ordered in a given way in p, then π should preserve
the same order.

– Maximum specificity principle: This principle requires to search for the most
specific possibility distribution that satisfies the two above conditions. Let π1

and π2 be two possibility distributions, π1 is said to be more specific than π2

if ∀ωi∈Ω, π1(ωi)≤π2(ωi).

3.2 Transformation Rules

Many probability-possibility transformations have been proposed in the litera-
ture. We cite the Optimal transformation (OT) [7], Klir transformation (KT) [12],
Symmetric transformation (ST) [10], and Variable transformation (VT) [14]. The
optimal transformation (OT ) guarantees the most specific possibility distribution
that satisfies Dubois and Prade’s consistency principle. It is defined as follows:

π(ωi) =
∑

j/p(ωj)≤p(ωi)

p(ωj). (6)

Note that there exist transformations from the possibilistic setting into the
probabilistic one [10] and into other uncertainty frameworks [5].
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4 Transformations and Changing Operations

Our purpose in this paper is to study the commutativity of transformations on
reasoning tasks. In [18], the author was the first to study this question but his
focus was only if the resulted distributions are identical. He showed that there
is no transformation satisfying commutativity of transformations with respect
to operations like conditioning and marginalization. We use �(p)=π to denote
the transformation from a probability distribution into possibility distribution
satisfying Dubois and Prade preference preservation principle. In the following,
we study the commutativity of transformations with respect to (i) the order of
arbitrary events and (ii) two changing operators that are marginalization and
conditioning. We focus on these two issues especially for useful practical uses of
transformations. In fact, among the most used queries in probabilistic models,
we find MPE queries (searching for the most plausible explanations) and MAP
(where given some observations, the objective is to find the most plausible values
of some variables of interest) [4]. For instance, let p(ABC) be a probability distri-
bution over three binary variables A,B and C. Let C=0 be an observation. MPE
querry would be “which is the most probable interpretation for p(A,B,C=0)”.
MAP querry would be “which is the most probable set of interpretations for
p(A,B|C=0)”. To answer such queries using probability-possibility transforma-
tions, it is necessary to study the commutativity of transformations with respect
to the marginalization and conditioning operations.

Fig. 1. Commutativity of operations

We consider operations on distributions as depicted on Fig. 1. On one hand
we obtain a possibility distribution by first applying an operation then the trans-
formation, and on the other hand we obtain the possibility distribution by first
transforming the probability distribution then applying the corresponding oper-
ation in the possibilistic setting. Our objective is to compare these distributions
and see if they encode the same order.

We first consider the operation of marginalization which consists in building
the marginal distributions from a joint distribution.

4.1 Marginalization and Transformations: Preservation
of the Order of Arbitrary Events

As said in the previous section, one of the principles of Dubois and Prade requires
that the order of interpretations must be preserved, but nothing is said regarding
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arbitrary events (sets of interpretations). For instance, is it enough for a transfor-
mation to preserve the order of interpretations to preserve the order of arbitrary
events? Proposition 1 states that there is no probability-possibility transforma-
tion preserving the order of events.

Proposition 1. Let � be a probability-possibility transformation operation (or
function)1. Then there exists a probability distribution p, φ⊆Ω, ψ⊆Ω, with φ 
=ψ,
and π= �(p) such that

P (φ) < P (ψ) holds but Π(φ) < Π(ψ) does not hold.

The reason of loosing the strict order is due to the difference in behavior of the
additivity axiom in the probabilistic setting and the maxitivity axiom of the pos-
sibilistic setting. As a consequence of Proposition 1, if the universe of discourse Ω
is a cartesian product of a set of variable domains, then the marginalization over
variables will not preserve the relative order of events after the transformation
operation.

4.2 Conditioning and Transformations: Preservation of the Order
of Arbitrary Events

The question here is “is the order of interpretations and arbitrary events pre-
served if we apply conditionning before or after transformation?”.

Proposition 2 states that the order of elementary interpretations after con-
ditioning is preserved if the used transformation preserves the order of interpre-
tations.

Proposition 2. Let φ⊆Ω be an evidence. Let � be a probability-possibility trans-
formation, p′ be a probability distribution obtained by conditioning p by φ,
π′′ = �(p′) and π′ is the possibility distribution obtained by conditioning π = �(p)
by φ. Then, ∀ωi, ωj ∈ Ω, π′(ωi)<π′(ωj) iff π′′(ωi)<π′′(ωj).
Proposition 2 is valid using both the product or min-based conditioning.

As a consequence of Proposition 2, if one is interested in MPE queries, then
the answers of such queries are exactly the same if we condition then transform
or first transform then condition. However, because of the loss of the order of
events when marginalizing (see Proposition 1), then the answers to MAP queries
will not be the same.

4.3 Independence Relations and Transformations

When dealing with uncertain and incomplete information, the notion of inde-
pendence2 is very important. This subsection checks if the independence relation
1 � is always assumed to satisfy Dubois and Prade consistency and preference preser-

vation principle.
2 Let α, φ and ψ be three arbitrary events, in probability theory (resp. possibility

theory ), φ is said to be independent of ψ in the context of α iff P (φ|ψ, α)=P (φ|α)
(resp. Π(φ|ψ, α)=Π(φ|α)).
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between events is preserved. Of course, the concept of independence is linked to
the one of conditioning and marginalization. Proposition 3 states that there is
no transformation operation � that preserves the independence relations.

Proposition 3. Let φ, ψ and α⊆Ω be three events. Let � be a probability-
possibility transformation operation. Then there exist a probability distribution p
and π= �(p) such that

P (φ|ψα) = P (φ|α) but Π(φ|⊗ψα) 
= Π(φ|⊗α)

In Proposition 3, |⊗ denotes either the product or min-based conditioning oper-
ator. As a consequence, we can state that the independence of variables is not
preserved either. This represents a major issue especially if one applies trans-
formations to graphical models which are based on the concept of conditional
independence relations.

5 Graphical Models and Transformations

Let us first define a transformation of a probabilistic graphical model into a
possibilistic one. We transform a Bayesian network into a possibilistic network
as follows (as in [16]):

Definition 1. Let BN be a Bayesian network over a set of variables A={A1, ..,
An}, PN be a possibilistic network over the same set of variables A. PN is
obtained by a transformation operation � defined as follows:

– The graphical component of PN is the same graph as the one of the Bayesian
network BN .

– The numerical component of PN is such that every local probability table
p(Ai|par(Ai)) is transformed with � into π(Ai|par(Ai)) = �(p(Ai|par(Ai))).

Fig. 2. Belief graphical model transformation
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The advantage of transforming a graphical model using Definition 1 is preserving
independence relations, while computationally it is less consuming to transform
a set of local tables than a whole joint distribution. The problem now is that
there is no guarantee that the order of interpretations and events is preserved in
the obtained possibilistic network and its underlying joint distribution. Figure 2
illustrates the issue of transforming a Bayesian network into a possibilistic one.

Let us now check if the order of interpretations induced by pBN (the joint
distribution encoded by the Bayesian network BN ) is preserved in the obtained
joint possibility distribution πPN (the joint distribution encoded by the possi-
bilistic network PN ). Proposition 4 answers this question.

Proposition 4. Let � be a probability-possibility transformation. Then there
exist a Bayesian network BN , ω1∈Ω and ω2∈Ω where:

π′(ω1) < π′(ω2) does not imply π′′(ω1) < π′′(ω2)

where: i) π′(ω) = �(p(ω)) and p is the joint distribution induced by BN and ii)
π′′ is the joint distribution induced by PN using Definition 1.

Example 1. Let BN be the Bayesian network of Fig. 3 over two disconnected
variables A and B. Note that the probability distribution p(A) in BN is a per-
mutation3 of the probability distribution p(B). Hence, the transformation of
p(A) and p(B) by � gives π(A) and π(B) where π(B) is also a permutation of
π(A). In this example, since � is assumed to preserve the order of interpretations,
we have 1>α1>α2>α3. The probability and possibility degrees of interpretations
a1b1 and a2b2 are

– p(a1b1) = 0.4 ∗ 0.15 = 0.06
– p(a2b2) = 0.2 ∗ 0.2 = 0.04 then, p(a1b1) > p(a2b2) (a)

– π(a1b1) = α3

– π(a2b2) = α2 then, π(a1b1) < π(a2b2) (b)

From (a) and (b) one can see that the relative order of interpretations is reversed
whatever is the used transformation in the ordinal setting. In the same way, in
the quantitative setting, the relative order of interpretations can not be preserved
by any transformation.

Fig. 3. Example of Bayesian-possibilistic network transformation.

3 The permutation property of probability-possibility transformations is discussed
in [18].
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6 Related Works and Discussions

This paper dealt with some issues about probability-possibility transformations
especially those regarding reasoning tasks and graphical models. We showed
that there is no transformation that can preserve the order of arbitrary events
through some reasoning operations like marginalization. As for the independence
of events and variables, we showed that there is no transformation that preserves
the independence relations. When the uncertain information is encoded by means
of graphical models, we showed that no transformation can preserve the order
of interpretations and events.

In the literature, there are two works in particular that dealt with the issues
of our work. First, in [16] the authors studied transformation of Bayesian net-
works into possibilistic networks. They extend the definition of the consistency
principle to preserve the order of interpretations and the distributions obtained
after a transformation. Note that in this work, the authors focused mostly on
certain existing transformations such as OT and ST while our work deal with
all the transformations preserving the order of interpretations. The second work
close to ours [18] addressed the commutativity of transformation with respect
to some operations but its aim was to show that the obtained distributions are
not identical. In our work, we are actually interested in the commutativity but
only regarding the order of interpretations and events. Some of these issues were
dealt with in the context of fuzzy interval analysis [9].

An interesting question is whether there exist particular probability dis-
tributions p such that the transformation operation � preserves the relative
ordering between interpretations after marginalisation. A first natural idea is
uniform probability distributions. Any transformation � should preserve nor-
malisation which results in an uniform possibility distribution (where each state
is associated to the possibility’s degree of (1). Consequently, any event will
have a possibility’s degree of 1, meaning that there will not be a reversal in
the order of interpretation on marginals distributions for example. Another
kind of probability distributions is called “atomic bond system” [17] or big-
stepped or lexicographic [2,6] probability distributions p defined by: ∀ωi ∈ Ω,
p(ωi) >

∑{p(ωj) : ωj ∈ Ω and p(ωj) < p(ωi)}. Clearly, if p is a big-stepped
distribution then the transformation operation � preserves the ordering between
interpretations after marginalisation. Note however that for both particular cases
(uniform and big-stepped distribution) the ordering between non-elementary
events is not preserved.

It is known that probability-possibility transformations suffer from loss of
information as we move from an additive framework to a qualitative or semi-
qualitative framework. But the impact on the reasoning was not yet completely
studied. The results we obtained confirm that there is a loss of information at
several levels regarding reasoning. But this does not mean we can do nothing
with transformations. In particular, responses to MPE queries are not affected
by the transformations. Which is not the case for the MAP queries unfortu-
nately. As future works, we will study MAP inference in credal networks (based
on sets of probabilities and known for their high computational complexity in
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comparison to Bayesian or possibilistic networks) by transforming them into
possibilistic networks. This can provide good and efficient approximations for
MAP inference with a better computational cost. Other open questions concern
the commutativity of transformations with other definitions of conditioning and
independence in the possibilistic setting.

Acknowledgements. This work is done with the support of a CNRS funded project
PEPS FaSciDo 2015 called MAPPOS.
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Abstract. The conditional independencies from a joint probability dis-
tribution constitute a model which is closed under the semi-graphoid
properties of independency. These models typically are exponentially
large in size and cannot be feasibly enumerated. For describing a semi-
graphoid model therefore, a more concise representation is used, which
is composed of a representative subset of the independencies involved,
called a basis, and letting all other independencies be implicitly defined
by the semi-graphoid properties; for computing such a basis, an appropri-
ate algorithm is available. Based upon new properties of semi-graphoid
models in general, we introduce an improved algorithm that constructs
a smaller basis for a given independency model than currently existing
algorithms.

1 Introduction

Many are the mathematical models consisting of random variables over which
joint probability distributions are defined. Among these are the well-known prob-
abilistic graphical models [2–5]. The practicability of computing probabilities
of interest from these models derives from the explicit representation of the
independency relation among their variables. Independency relations embedded
in joint probability distributions and their representation have therefore been
subjects of extensive studies.

Pearl and his co-researchers were among the first to formalise properties
of probabilistic independency in an axiomatic system [5]. The axioms from this
system are known as the semi-graphoid axioms, and the independency relation of
any joint probability distribution has been shown to adhere to these axioms. The
semi-graphoid axioms are often looked upon as derivation rules for generating
new independencies from a basic set of independencies. Any set of independencies
that is closed under finite application of these rules is then called a semi-graphoid
independency model.

Semi-graphoid independency models in general are exponentially large in size.
Representing them by enumeration of their element independencies therefore is
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-20807-7 26
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not feasible in practice. Studený was the first to propose a more concise represen-
tation of an independency model, based on the semi-graphoid axioms [6,7]. The
idea is to explicitly enumerate a representative subset of independencies, called
a basis, from a semi-graphoid model and let all other independencies be defined
implicitly through the derivation rules. Studený designed an efficient algorithm
for computing such a basis for a semi-graphoid independency model from a given
starting set of independencies, which was later improved by Baioletti and his co-
researchers [1].

In this paper, we revisit the representation of semi-graphoid independency
models, and show that the subset of independencies that have to be represented
explicitly, can be further reduced in size. We introduce the new notion of max-
imal non-symmetric basis for this purpose, with an associated algorithm for
its computation. The practicability of our algorithm for computing more con-
cise representations of semi-graphoid independency models is demonstrated by
means of an example independency model.

The paper is organised as follows. We provide some preliminaries on semi-
graphoid models in Sect. 2, and review concise representations of such models
in Sect. 3. Our notion of maximal non-symmetric basis and our associated algo-
rithm are detailed in Sect. 4. The paper ends with our concluding observations
in Sect. 5.

2 Semi-graphoid Independency Models

We briefly review semi-graphoid independency models [5,7], and thereby intro-
duce our notations. We consider a finite, non-empty set S of random variables.
A triplet over S is a statement of the form 〈A,B |C〉, where A,B,C ⊆ S are
mutually disjoint subsets of S with A,B �= ∅; we will use X = A ∪ B ∪ C to
refer to the triplet’s set of variables. A triplet 〈A,B |C〉 states that the sets of
variables A and B are mutually independent given the set C; in view of a joint
probability distribution Pr over S, the triplet thus states that Pr(A,B | C) =
Pr(A | C) · Pr(B | C). The set of all triplets over S is denoted as S(3). A set of
triplets now constitutes a semi-graphoid independency model if it satisfies the
four so-called semi-graphoid properties stated in the following definition.

Definition 1. A semi-graphoid independency model is a subset of triplets J ⊆
S(3) which satisfies the following properties:

G1: if 〈A,B |C〉 ∈ J , then 〈B,A |C〉 ∈ J (Symmetry)
G2: if 〈A,B |C〉 ∈ J , then 〈A,B′ |C〉 ∈ J for any non-empty subset B′ ⊆ B

(De-composition)
G3: if 〈A,B1 ∪ B2 |C〉 ∈ J with B1 ∩ B2 = ∅, then 〈A,B1 |C ∪ B2〉 ∈ J (Weak

Union)
G4: if 〈A,B |C∪D〉 ∈ J and 〈A,C |D〉 ∈ J , then 〈A,B∪C |D〉 ∈ J (Contraction)

The semi-graphoid properties of independency are often viewed, and referred
to, as derivation rules for generating new triplets from a given set of triplets.
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Given a starting set of triplets J ⊆ S(3) and a designated triplet θ ∈ S(3), we
write J 	∗ θ if the triplet θ can be derived from J by finite application of the
semi-graphoid rules G1–G4. The closure of J , denoted by J , then is the set of
all triplets θ ∈ S(3) such that J 	∗ θ.

3 Representing Semi-graphoid Independency Models

Semi-graphoid independency models typically are exponentially large in size,
and representing them by enumeration of their element triplets is not feasible
in practice. Studený was the first to propose a more concise representation of a
semi-graphoid model, based on the semi-graphoid derivation rules [7]. The idea
is to explicitly capture only a subset of triplets from a model, called its basis,
and let all other triplets be defined implicitly through the derivation rules. In
Sect. 3.1 we review the basic notions in Studený’s representation; in Sect. 3.2 we
describe the associated algorithm.

3.1 Derivational Relations Among Triplets

We begin by defining the notion of dominance which underlies the representation
of semi-graphoid models proposed by Studený [7].

Definition 2. Let J ⊆ S(3) be a semi-graphoid independency model, and let
G2s and G3s be the following derivation rules over J :

G2s: if 〈A,B |C〉 ∈ J , then 〈A′,B |C〉 ∈ J for any non-empty subset A′ ⊆ A
G3s: if 〈A1 ∪ A2,B |C〉 ∈ J with A1 ∩ A2 = ∅, then 〈A1,B |C ∪ A2〉 ∈ J

Now, let θi ∈ J , i = 1, 2. If θ1 can be derived from θ2 by finite application of the
rules G2–G3 and G2s–G3s, we say that θ1 is dominated by θ2, denoted θ1 ≺ θ2.
A triplet which is not dominated by any other triplet in J , is called dominant in J .

The notion of dominance pertains to a single triplet and the triplets that can
be derived from it by means of the rules G2–G3 and G2s–G3s; we note that
the latter pair of rules serve to incorporate the property of symmetry into the
derivational relation. Necessary and sufficient conditions have been formulated
for dominance of a triplet [7].

Similar to Studený’s notion of dominance, Baioletti et al. [1] introduced the
notion of g-inclusion for describing the derivational relation between triplets, as
defined below.

Definition 3. Let J ⊆ S(3) be a semi-graphoid independency model and let
θi ∈ J , i = 1, 2. Then, θ1 is g-included in θ2, denoted θ1 � θ2, if θ1 can be
derived from θ2 by finite application of the rules G1–G3. A triplet θ is called
maximal in J if it is not g-included in any other triplet τ from J with τ �= θ, θT

where the transpose θT is obtained from θ by means of the symmetry rule G1.

Also for g-inclusion of a triplet necessary and sufficient conditions have been
stated [1].
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The definitions of dominance and g-inclusion show that the two notions are
closely related. More specifically, for any two triplets θ1, θ2 with θ1 �= θ2, θ

T
2 , the

following property holds: θ1 � θ2 if and only if θ1≺ θ2 or θ1≺ θT2 . The difference
between the two notions is that, while the notion of dominance incorporates
symmetry through the symmetrical counterparts of the decomposition and weak
union rules, the notion of g-inclusion involves symmetry through the symmetry
rule itself. We note that by explicitly including the rule of symmetry, any triplet
is g-included in its symmetric transpose; in contrast, a triplet is not dominated
by its transpose.

The notions of dominance and g-inclusion are readily extended to triplet sets.

Definition 4. Let Ji ⊆ S(3), i = 1, 2, be semi-graphoid independency models.
Then,

– J1 is g-included in J2, denoted by J1 � J2, if for each triplet θ ∈ J1 there
exists a triplet θ′ ∈ J2 such that θ � θ′;

– J1 is dominated by the set J2, denoted by J1 ≺ J2, if for each triplet θ ∈ J1,
there exists a triplet θ′ ∈ J2 such that θ ≺ θ′.

3.2 Computing a Basis for a Semi-graphoid Model

Since dominated triplets are derived from other triplets, they do not convey any
additional information about the original model and thus are not required explic-
itly for its representation. As a consequence, it is possible to select a subset of
triplets from an independency model which captures the same information as the
entire model itself; such a subset is called a basis of the original model. Studený
now showed that the subset of all dominant triplets constitutes such a basis for
a semi-graphoid independency model, and thereby arrived at a concise model
representation. For computing the subset of dominant triplets, he constructed a
dedicated operator, which is defined as follows [7].

Definition 5. Let J ⊆ S(3). For all triplets θi = 〈Ai,Bi |Ci〉 ∈ J with Xi =
Ai ∪ Bi ∪ Ci, i = 1, 2, the gc-operator is defined as:

gc(θ1, θ2) = 〈A1 ∩ A2, (B2\C1) ∪ (B1 ∩ X2) | C1 ∪ (A1 ∩ C2)〉

if a valid triplet, and gc(θ1, θ2) = undefined otherwise.

Studený showed that if the gc-operator is applied to two triplets θ1, θ2 to result
in a valid triplet θ, then this triplet θ dominates all elements from the triplet set
obtained from applying the rules G1–G4 to θ1, θ2. A slightly stronger result than
Studený’s original one is stated in the following lemma by Baioletti et al. [1].

Lemma 1. Let J ⊆ S(3). Let θi = 〈Ai,Bi |Ci〉 ∈ J with Xi = Ai ∪ Bi ∪ Ci,
i = 1, 2, and let gc(θ1, θ2) be as in Definition 5. Furthermore, let the triplet
set HG4(θ1, θ2) = {τ | there exist triplets θ′

1 ≺ θ1 ∈ J , θ′
2 ≺ θ2 ∈

J such that θ′
1, θ

′
2 	G4 τ}. Then,
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– HG4(θ1, θ2) = ∅ if and only if at least one of the following conditions is not
met:
(a) A1 ∩ A2 �= ∅;
(b) C1 ⊆ X2 and C2 ⊆ X1;
(c) B2\C1 �= ∅;
(d) B1 ∩ X2 �= ∅;
(e) |(B2\C1) ∪ (B1 ∩ X2)| ≥ 2;

– if HG4(θ1, θ2) �= ∅, then gc(θ1, θ2) ∈ HG4(θ1, θ2) and τ ≺ gc(θ1, θ2) for any
other triplet τ from HG4(θ1, θ2).

The lemma states that the gc-operator indeed constructs dominant triplets [6].
The conditions (a)–(e) mentioned in the lemma constitute all conditions under
which the contraction rule G4 can be applied to triplets which are dominated
by θ1, θ2.

Building upon the gc-operator, Studený designed an algorithm for generating,
from a starting set of triplets, all dominant triplets of a semi-graphoid model [7];
the algorithm thereby establishes a basis for the model. The algorithm takes the
starting triplet set for its input and adds any symmetric triplet which is not yet
included. It then applies the gc-operator to any pair of triplets for which the
conditions (a)–(e) from Lemma 1 hold, and adds the result to the basis under
construction. Subsequently, all dominated triplets are removed. These steps are
re-iterated until the basis no longer changes.

In the first step, Studený’s algorithm adds all symmetric triplets to the origi-
nal starting set, to enhance it for all possible applications of the contraction rule
G4. Based upon this observation, Baioletti et al. [1] generalised the contraction
rule to a new rule G4∗ which does not require the symmetric triplets to be added
explicitly to the basis under construction. The new derivation rule states for any
semi-graphoid model J ⊆ S(3):

G4∗: if θ1, θ2 ∈ J, then GC(θ1, θ2) ⊆ J

where GC(θ1, θ2) = {gc(θ1, θ2), gc(θ1, θT2 ), gc(θT1 , θ2), gc(θT1 , θT2 )}. The gener-
alised rule thus constructs not just the single triplet from applying the contrac-
tion rule to θ1, θ2, but those from applying the rule to all combinations involving
transposes as well.

By finite application of the G4∗ rule to a starting set J , a triplet set results.
This set is related to the closure of J as stated in the following lemma [1].

Lemma 2. Let J ⊆ S(3) and let J be its closure. Let JG4∗
be the set of all

triplets that are derived from J by the derivation rule G4∗. Then, JG4∗ ⊆ J and
J � JG4∗

.

The property JG4∗ ⊆ J stated in the lemma expresses that application of the
derivation rule G4∗ does not yield any triplets which are not in the closure
of the starting set J ; the property J � JG4∗

implies that all triplets from J
are represented in JG4∗

through g-inclusion. The lemma thus states that finite
application of G4∗ serves to generate essentially the same information from the
set J as finite application of G1–G4.
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Although any triplet from the closure J is g-included in the triplet set JG4∗

which results from application of the G4∗ derivation rule, this latter set does
not constitute a concise basis for the model at hand as it may include several
redundant triplets. To reduce the set JG4∗

in size without losing information, it
is restricted to its subset of maximal triplets. We define the notion of maximal
triplet set for triplet sets in general.

Definition 6. Let J ⊆ S(3). A maximal triplet set of J is a subset J/� of
triplets such that J/� = {θ ∈ J | there is no θ′ ∈ J with θ′ �= θ, θT such that
θ � θ′}.
For a starting set J , a maximal triplet set of its closure J contains the same
independency information as the closure itself and hence constitutes a basis for
the semi-graphoid model at hand. The following lemma now holds for maximal
triplet sets of the closure J and of the triplet set JG4∗

constructed from the
starting set J by application of the G4∗ derivation rule, respectively.

Lemma 3. Let J ⊆ S(3), and let J/� and JG4∗
/� be maximal triplet sets as defined

above. Then, J/� � JG4∗
/� and JG4∗

/� � J/�.

The lemma implies that any maximal triplet sets of the closure J and of the
set JG4∗

share exactly the same information, even though the two maximal sets
may differ. Computing the basis of a semi-graphoid independency model thereby
amounts to computing the maximal triplet set JG4∗

/� of the set of triplets which
results from finite application of the G4∗ rule. The algorithm to this end starts
with the initial triplet set J0, and computes in each iteration the triplet set
Jk = Jk−1∪ ⋃{GC(θ1, θ2) | θ1, θ2∈Jk−1}, removing dominated triplets between
iterations, until Jk = Jk−1; for ease of reference, we will refer to this algorithm
for computing a basis as the Studený –Baioletti algorithm.

4 Improved Basis Computation

In this section, we present our improved algorithm for basis computation. Like
the Studený –Baioletti algorithm, our algorithm is based on application of the
gc-operator, yet incorporates several new notions. These notions serve to improve
the algorithm’s efficiency on the one hand and the size of the established basis on
the other hand. In Sect. 4.1 we state necessary conditions for identifying triplets
to which the gc-operator can never be applied. In Sect. 4.2, we further argue that
symmetric triplets need not be added or kept throughout the computations. In
Sect. 4.3, we present our adapted derivation rule and summarise our algorithm for
basis computation; Sect. 4.4 illustrates the potential of our algorithm by means
of an example.

4.1 Excluding Triplets from Computation

The Studený –Baioletti algorithm for basis computation builds on the gc-
operator, and on application of the G4∗ derivation rule more specifically. A start-
ing set however, may include triplets for which can be established apriori that
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they will not give any results by the derivation rule. The following lemma iden-
tifies such triplets.

Lemma 4. Let J ⊆ S(3) and let θ = 〈A,B |C〉 ∈ J . If for each θ′ = 〈A′, B′ |
C ′〉 ∈ J with θ′ �= θ, θT at least one of the following conditions holds:

(a) C �⊆ X ′

(b) A ∩ (A′ ∪ B′) = ∅ and B ∩ (A′ ∪ B′) = ∅

(c) (A ∪ B)\C ′ = ∅ and (A′ ∪ B′)\C = ∅

(d) (A ∪ B) ∩ X ′ = ∅ and (A′ ∪ B′) ∩ X = ∅

then JG4∗\{θ, θT } = (J\{θ, θT })G4∗
, that is, finite application of G4∗ to J yields

no valid triplets from applying the gc-operator to θ or θT .

Proof (Sketch). We recall that application of G4∗ to a pair of triplets θ, θ′

produces the sets GC (θ, θ′) and GC (θ′, θ). These sets are non-empty only if the
gc-operator yields at least one valid triplet, that is, if at least one of the conditions
stated in Lemma 1 holds. For gc(θ, θ′) = 〈A∩A′,(B′\C)∪(B∩X ′) |C∪(A∩C ′)〉,
for example, it is now easily shown that, if one of the conditions (a)–(d) above
is satisfied, then at least one of the conditions from Lemma 1 does not hold and
gc(θ, θ′) is undefined. Similar results hold for all other triplets θ′′ from J or
generated from J by applying the gc-operator. �
We conclude that any triplet θ to which Lemma 4 applies, can be safely set aside
from the computations and be added to the resulting basis.

4.2 Maintaining a Non-Symmetric Basis

We recall that the first step of Studený’s original algorithm was to add all sym-
metric triplets to the starting set to cover all possible applications of the con-
traction rule G4. In the reformulation of the algorithm by Baioletti et al., these
applications are covered through the G4∗ derivation rule, thereby forestalling the
need to explicitly add all symmetric transposes to the starting set. Application
of the gc-operator upon constructing the sets GC(θ1, θ2) and GC(θ2, θ1) for two
triplets θ1, θ2, however, may introduce transposes in a basis under construction.
From the definition of maximal triplet set, we note that such a set may contain
both a triplet θ and its transpose θT . Once introduced, both triplets may thus
be carried throughout further computations and both end up in the computed
basis. We will now show that by removing symmetric transposes from a maximal
triplet set, a set of triplets results which shares the same information as a max-
imal triplet set of the full closure of the starting set and hence still constitutes
a basis. We begin by defining the notion of maximal non-symmetric triplet set.

Definition 7. Let J ⊆ S(3). A maximal non-symmetric triplet set of J is a
maximal triplet set J/�n of J such that for every triplet θ ∈ J/�n we have that
θT �∈ J/�n.

From the definition of maximal non-symmetric triplet set it is readily seen that
the properties J/�n � J/� and J/� � J/�n hold, since for every triplet θ we have
that θ � θT and θT � θ. By taking the maximal non-symmetric triplet set of the
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set JG4∗
and building upon Lemma3 moreover, we derive the following lemma

which states that the set JG4∗
/�n shares the exact same information as the maximal

non-symmetric triplet set of the closure of the independency model at hand.

Lemma 5. Let J ⊆ S(3), and let J/�n and JG4∗
/�n be as defined above. Then, it

holds that J/�n � JG4∗
/�n and JG4∗

/�n � J/�n.

From the lemma we conclude that a maximal non-symmetric triplet set of the set
JG4∗

constitutes an appropriate basis for the model defined by the starting set J .
We can now exploit the property that this basis will not include any symmetric
triplet pairs, already during its construction. Let J− ⊆J be an intermediate basis
computed in some iteration of the algorithm, from which we are to remove all
dominated triplets. If the set J− includes triplets θ′, θ and θT with θ ≺ θ′, then
the triplet θ will be removed, yet θT will be kept since θT �≺θ′. We are guaranteed
that in some later iteration of the algorithm, the triplet θT will be removed, since
in terms of g-inclusion it holds that θ, θT � θ′. By using g-inclusion instead of
dominance as a criterion for removing triplets from intermediate bases therefore,
the triplet θT is removed immediately and not unnecessarily carried throughout
the computations. We note however that, if an intermediate basis includes the
two dominant triplets θ, θT, one of these triplets needs to be retained in the basis
under construction, even though the two triplets are mutually g-included.

4.3 An Improved Algorithm for Basis Computation

Building upon the properties introduced above, we detail in this section our
improved algorithm for basis computation. Like the Studený –Baioletti algo-
rithm, our algorithm builds in essence on application of the G4∗ derivation rule.
To reduce the computational burden involved in applying the rule however, we
use a dedicated representation for pairs of triplets and an accordingly adapted
derivation rule. We recall that the Studený –Baioletti algorithm computes the
two triplet sets GC (θ1, θ2) and GC (θ2, θ1) for each pair of triplets θ1, θ2 from an
intermediate basis. During these computations, the gc-operator is applied eight
times. Eight times therefore, the conditions for the operator to yield a valid
triplet are evaluated. We now propose a representation of the triplet pair by
means of which this number of evaluations is reduced.

Definition 8. Let θi = 〈Ai,Bi |Ci〉 ∈ S(3), i = 1, 2. We say that the triplet pair
{θ1,θ2} is in normal form if

θ1 = 〈AA ∪ AB ∪ AC ∪ AX , BA ∪ BB ∪ BC ∪ BX | CA ∪ CB ∪ CC ∪ CX〉
θ2 = 〈AA ∪ BA ∪ CA ∪ AY , AB ∪ BB ∪ CB ∪ BY | AC ∪ BC ∪ CC ∪ CY 〉

where AA = (Ai ∩ Aj), AB = (Ai ∩ Bj), AC = (Ai ∩ Cj), AX = (Ai \ Xj),
AY =(Aj \ Xi) and the other subsets are defined analogously. The pair {θ1, θ2}
is in almost normal form if it is in normal form and CX = CY = ∅.
From the definition above, we note that if a pair of triplets {θ1,θ2} is in normal
form, then each of the eight potential triplets from the set CG(θ1, θ2)∪CG(θ2, θ1)



298 S. Lopatatzidis and L.C. van der Gaag

is generated simply by manipulating the subsets identified in the representation.
For example, the potential triplet gc(θ1, θ2) is equal to 〈AA, AB ∪ BB ∪ BY ∪
BA ∪ BC | CA ∪ CB ∪ CC ∪ CX ∪ AC〉. The other potential triplets are gener-
ated analogously from the same representation, thereby avoiding the necessity
of finding properly dominated triplets and their transposes for the application of
the gc-operator. From the definition of normal form, we further note that a pair
of triplets θi = 〈Ai,Bi |Ci〉 ∈ S(3), i = 1, 2, can be brought in almost normal
form only if the conditions Ci ⊆ Xj and Cj ⊆ Xi are met. As these conditions
constitute also a necessary condition for generating a valid triplet upon applying
the gc-operator to the two triplets or its transposes, we are guaranteed that if
two triplets cannot be represented in almost normal form, they cannot yield any
dominant triplets upon applying the operator. Formulating a pair of triplets in
(almost) normal form amounts to establishing the various subsets involved and
then verifying whether the equalities stated in the definition hold.

Based upon the above representation, we now re-formulate the G4∗ derivation
rule into the similar yet more efficient G4+ rule:

G4+: if θ1, θ2 ∈ J, then J+(θ1, θ2) ⊆ J

where J+(θ1, θ2) = GC(θ1, θ2) ∪ GC(θ2, θ1) with GC(θi, θj), i, j = 1, 2, i �= j,
computed as described above.

Our improved algorithm for basis computation now builds upon application
of this G4+ derivation rule. The algorithm is summarised in Fig. 1. The algo-
rithm takes a starting triplet set J and identifies, through a call to the function
NonApplicable, all triplets which can be safely set aside during the basis compu-
tation; the function verifies to this end the conditions stated in Lemma4. It then
starts the basis computation with the resulting initial basis J0. In each iteration
k, it establishes the set Nk of triplets which are newly generated by the G4+

rule from a triplet θ1 from the current basis Jk−1 and a triplet θ2 from the set

Algorithm for Computing a Non-Symmetric Basis for J

1: function Non-SymmetricBasis(J)
2: A ←NonApplicable(J)
3: J0 ← J\A
4: N0 ← J\A
5: k ← 0
6: repeat
7: k ← k + 1
8: Nk :=

⋃
θ1∈Jk−1,θ2∈Nk−1

J+(θ1, θ2)

9: Jk ← FindNonSymmetricMaximal(Jk−1 ∪ Nk)
10: until Jk = Jk−1

11: return Jk ∪ A
12: end function

Fig. 1. Our improved algorithm for computing a non-symmetric basis.
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of triplets Nk−1 which were generated in the previous iteration. The algorithm
establishes the new basis Jk for the next iteration by taking the maximal non-
symmetric triplet set of Jk−1 ∪ Nk. The function FindNonSymmetricMaximal
removes to this end all triplets which are g-included in another triplet unequal
to its transpose and in addition removes one of the elements from any remain-
ing triplet set {θ, θT }. We would like to note that the most important differ-
ence of our algorithm with the Studený -Baioletti algorithm lies in this function
FindNonSymmetricMaximal .

4.4 An Example

By means of an example, we demonstrate that our algorithm indeed improves on
the Studený –Baioletti algorithm for basis computation, in terms of the size of
the resulting basis. We take a starting set J composed of the following triplets:

〈{5},{6} | ∅〉 〈{1, 2},{3, 4} | {6}〉 〈{2, 3},{1, 4} | {5}〉
〈{1, 2},{3, 4} | {5}〉 〈{3},{1, 4} | {2, 5}〉

and compute a basis for the semi-graphoid model J , by means of both algorithms;
in Fig. 2, we report, for each algorithm, the number of triplets included in the
sets Nk, Jk−1 and Jk for each iteration k. Our algorithm computed the following
basis:

〈{5},{6} | ∅〉 〈{1, 2},{3, 4} | {6}〉 〈{1, 3},{2, 4} | {5}〉
〈{2, 3},{1, 4} | {5}〉 〈{2},{1, 3, 4} | {5}〉 〈{1},{2, 3, 4} | {5}〉
〈{4},{1, 2, 3} | {5}〉 〈{1, 2},{3, 4} | {5}〉 〈{3},{1, 2, 4} | {5}〉

The algorithm set aside, from the actual basis computations, the two triplets
〈{5},{6} | ∅〉 and 〈{1, 2},{3, 4} | {6}〉, since to these triplets Lemma 4 applies. As
a consequence, the algorithm enters the basis computations with a starting set
of three triplets. From the actual basis computations, a set of seven maximal
non-symmetric triplets resulted; to this set, the two triplets mentioned above
were added, and the algorithm returned a basis of nine triplets. The basis con-
structed by the Studený –Baioletti algorithm included a total of 12 triplets. In
addition to the triplets found by our algorithm, the constructed basis included
the triplets 〈{2, 4},{1, 3} | {5}〉, 〈{1, 4},{2, 3} | {5}〉 and 〈{3, 4},{1, 2} | {5}〉. We
note that these three triplets are the symmetric transposes of triplets already
included in the basis. Our algorithm thus resulted in a smaller basis and in fact
had smaller intermediate bases to consider in each step of the iteration.

The Studený -Baioletti algorithm

k Nk Jk−1 Jk

1 13 5 9
2 18 9 12
3 18 12 12

Our improved algorithm

k Nk Jk−1 Jk

1 11 3 6
2 16 6 7
3 16 7 7

Fig. 2. Some statistics of running the Studený –Baioletti algorithm and our algorithm
for basis computation, on the example independency model.



300 S. Lopatatzidis and L.C. van der Gaag

5 Conclusions

We revisited the representation of semi-graphoid independency models and
showed that their basis can be further reduced in size. We introduced the new
notion of maximal non-symmetric triplet set, which allows removal of symmetric
triplets from a basis under construction. We further improved upon the state-
of-the-art algorithm for basis construction by showing that particular triplets
can be excluded from the computations involved. In our future research, we
will investigate the use of our new notion of basis for constructing graphical
representations of independency. We will further focus on graphoid models and
investigate whether these models equally allow a new notion of triplet set to
reduce representation size.

Acknowledgments. The authors would like to thank Peter de Waal for verifying the
main results of the reported research and the referees for their helpful comments.
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Abstract. Evidential networks have gained a growing interest as a good
tool fusing belief function theory and graph theory to analyze complex
systems with uncertain data. The graphical structure of these models is
not always clear, it can be fixed by experts or constructed from existing
data. The main issue of this paper is how to extract the graphical struc-
ture of an evidential network from imperfect data stored in evidential
databases.

1 Introduction

Data in real-world problems are generally characterized by different forms of
imperfection: imprecision, uncertainty and/or inconsistency. Many theories have
been proposed to deal with this problem of imperfection, one of the most popular
is the belief function theory. It is a general framework that handles both partial
and total ignorance and offers interesting rules for combining evidence.

Based on this theory, evidential networks are considered as a powerful and
flexible tool for modeling complex systems by combining belief function theory
and graph theory. Among the most popular evidential graphical models are the
evidential networks with conditional belief functions proposed by Xu et al. [23]
and the directed evidential networks with conditional belief functions proposed
by Ben Yaghlane et al. [4].

As in Bayesian networks, evidential networks are based on two parts: the
qualitative part represented by a directed acyclic graph and the quantitative part
including a set of parameters modeled by conditional belief functions. The graph-
ical structure of these networks is not always clear, specially in real complex
systems. Therefore, a good way for constructing this structure is to estimate it
from data.

We address in this paper the issue of learning structure in evidential net-
works from evidential databases, by extending the classical methods widely used
for learning structure in Bayesian networks to the belief functions framework.
More precisely, we are interested in generalizing learning methods based on tests
of independency, including for example the algorithms proposed by Pearl and
Verma [22] and the algorithms proposed by Spirtes et al. [20]. Our learning
process is based on evidential chi-square test Eχ2, a generalization of the statis-
tical chi-square test in the belief functions framework.
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 301–311, 2015.
DOI: 10.1007/978-3-319-20807-7 27
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The rest of the paper is organized as follows: we first recall some basic con-
cepts of belief function theory and evidential databases, then we present briefly
evidential networks and a short review of the most important algorithms used
for learning structure in Bayesian networks. In the main part of the paper, we
present our learning process and the evidential chi-square independency test.
In the last part of the paper we more explain our approach by an illustrative
example.

2 Belief Function Theory and Evidential DataBases

The belief function theory, evidence theory or also Dempster-Shafer theory
[17,19], is a mathematical framework commonly used for handling imperfection
in data. In the following, we present briefly some theoretical aspects of evidence
theory and we introduce databases based on this theory.

2.1 Basic Concepts of Belief Function Theory

Let N = {N1, ..., Nn} be a set of random variables.

Definition 1. Each variable Ni takes its values from a set of exclusive and
exhaustive elements called the frame of discernment and denoted by ΩNi

.

Definition 2. We denote by 2ΩNi the set of all subsets (propositions or events)
from ΩNi

.

Definition 3. The degree of belief accorded exactly to a proposition A, is called
the basic belief assignment or a mass function (bba). It is a mapping from 2ΩNi

to [0, 1] such that: ∑

A⊆Ω

mΩ(A) = 1 (1)

Definition 4. Any event A ∈ ΩNi
with mΩNi (A) > 0 is called a focal element,

and the set of all these elements is denoted by �(mΩNi ).

Definition 5. Let mΩNi [B](A) denote the conditional basic belief assignment of
A given B, it is defined by Dempster’s rule of conditioning:

mΩNi [B](A) =
∑

C⊆B

mΩNi (A ∪ C), (2)

where B̄ is the complement of the proposition B.

More details about the rules of conditioning in the belief function theory can be
found in [18,21].
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2.2 Evidential DataBases

An Evidential DataBase (EDB) is a database storing data with different forms of
imperfection: certain, probabilistic, possibilistic, missing and/or evidential data,
modeled in the belief functions framework. More details and examples about this
notion can be found in [1,8].

Definition 6. Let EDB(L,C) denote an evidential database with L lines
(records) and C columns (variables), each variable Ni define its possible values
in a frame of discernment denoted by ΩNi

.

Definition 7. Let Vlc be the evidential value of cell in the lth line and cth col-
umn, Vlc is defined by a mass function mlc from 2ΩNi to [0, 1] such as:

m
ΩNi

lc (∅) = 0 and
∑

A⊆ΩNi

m
ΩNi

lc (A) = 1 (3)

3 Evidential Networks

Evidential networks or belief function networks are graphical models based on
the belief functions framework for modeling uncertainty. These models are con-
sidered as a generalization of Bayesian networks for handling different types of
uncertainty and taking into account both total and partial ignorance.

Among the most popular evidential graphical models Directed EVidential
Networks with conditional belief functions (DEVNs) proposed by Ben Yaghlane
et al. [4] and Evidential Networks with Conditional belief functions (ENCs)
proposed by Xu et al. [23]. DEVNs are developed to extend ENCs for handling
n-ary relations between variables.

As in probabilistic networks, evidential graphical models are based essen-
tially on two parts: the qualitative part describing the graphical structure of
the network and the quantitative part describing the conditional dependencies
between variables.

3.1 Qualitative Part

ENCs and DEVNs have the same graphical structure which is similar to the
graphical structure of Bayesian networks (BNs). This structure is modeled by
a Directed Acyclic Graph (DAG) G = (N,E) characterized essentially by a set
of nodes N = {N1, ..., Nx} representing the different variables of the problem
and a set of edges E = {E1, ..., Ey} coding conditional dependencies between
variables.

It is important to note that the graphical properties and concepts of a DAG
are maintained in evidential networks including conditional independency criteri-
ons such as the d-separation, the converging connection (also called v-structure)
and the CPDAG (Completed Partially Directed Acyclic Graph). More details
about these notions can be found in [3,14].
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3.2 Quantitative Part

The quantitative level is represented by a set of parameters θ modeled by condi-
tional belief functions. Each node Ni in an evidential network is a representation
of a random variable taking its values on a frame of discernment ΩNi

. Each root
node is associated with an a priori mass function, other nodes are associated with
a conditional mass function. DEVNs are more flexible then ENCs in modeling
conditional beliefs. In DEVNs the conditional mass function can be defined in
two manners: per edge or per child node.

In this paper we are interested in the qualitative part of evidential networks.
As both ENCs and DEVNs have the same qualitative part we adopt for the rest
of the paper a general notation for evidential networks (ENs).

4 Learning Structure in Bayesian Networks

Learning the graphical structure of Bayesian networks from data remains an
interesting topic of research. In this section we present a short overview of the
literature on learning Bayesian network structure, more details can be found in
[10,12,13].

The structure learning methods in BNs are grouped on three essential
families:

Constrained based methods. These methods are based on the test of the
conditional dependencies between variables in order to build the requested
graph.

Score based methods. The main idea of these methods is to find the best
structure from the search space of possible DAGs by maximizing a scoring
function.

Hybrid methods. Combine constrained based methods and score based meth-
ods in order to deal with more complex problems.

In this work we will mainly interest on the methods based on testing the con-
ditional dependencies between variables. The majority of these methods follow
the same approach which is based on three steps:

1© Build an undirected graph according to a statistical test.
2© Detect the V-structures.
3© Get a CPDAG by propagating some edges orientation.

This family of methods includes two principal groups of algorithms:

– The algorithms proposed by Pearl and Verma [15,22] such as IC and IC*. The
main idea of these algorithms is to start from an empty graph and try to add
edges between dependent variables according to the result of the statistical test.

– The algorithms proposed by Spirtes, Glymour and Scheines [20] such as SGS
and PC. These algorithms are based also on a statistical test to delete edges
between independent variables from a complete graph.
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One of the most statistical tests commonly used for measuring the conditional
independency between variables in learning structure algorithms is the chi-square
(χ2) test. This metric will be generalized in the next section for dealing with
uncertain data.

5 Learning Structure in Evidential Networks

In this part, we focus on the main purpose of this paper which is how to build the
graphical part of an evidential network from data stored in evidential databases.

As we mentioned previously, we are interested in this work in generalizing
the constrained based methods, the extension of the other methods of structure
learning will be the object of further works.

5.1 Evidential Independency Test

The idea of extending the statistical tests of independency (essentially the χ2

test) to the belief function theory comes from the principle of the generaliza-
tion of the maximum likelihood estimation to the evidence framework originally
introduced in [7] and applied to learn parameters in evidential networks in [2].

As in probability theory these tests are based on a relation between the
observed data and the expected one.

Let us consider X and Y two variables, and Z a set of variables from our
EDB(L,C).

Definition 8. The evidential observed values corresponding respectively to X
and Y and to X and Y given Z, denoted by EOxy and EOxy|z, are defined by
the following equations:

EOxy =
L∑

l=1

mΩX

lc (X = x) ∗ mΩY

lc (Y = y) (4)

EOxy|z =
L∑

l=1

mΩX

lc (X = x) ∗ mΩY

lc (Y = y) ∗
∏

j

m
ΩZj

lcj (Zj = zj) (5)

Definition 9. Let EExy and EExy|z denote the evidential expected values such
that:

EExy =
∑L

l=1 mlc(X = x) ∗ ∑L
l=1 mlc(Y = y)

L
(6)

EExy|z =

∑L
l=1 mlc(X = x) ∗∏j m

ΩZj
lcj (Zj = zj) ∗∑L

l=1 mlc(Y = y) ∗∏j m
ΩZj
lcj (Zj = zj)

∑L
l=1
∏

j m
ΩZj
lcj (Zj = zj)

(7)

Definition 10. The evidential test of independency between the two variables
X and Y is defined as follows:



306 N.B. Hariz and B.B. Yaghlane

Eχ2
XY =

2ΩX −1∑

x=1

2ΩY −1∑

y=1

(EOxy − EExy)2

EExy
(8)

with a degree of freedom df = ((2ΩX − 1) − 1)((2ΩY − 1) − 1).

The two variables X and Y are considered independent if the value of Eχ2
XY is

less than the critical value in the chi-squared distribution.

Definition 11. The conditional evidential test of independency between the two
variables X and Y in the context of Z is defined as follows:

Eχ2
XY |Z =

2ΩX −1∑

x=1

2ΩY −1∑

y=1

2ΩZ −1∑

z=1

(EOxy|z − EExy|z)2

EExy|z
(9)

with a degree of freedom df = ((2ΩX − 1) − 1)((2ΩY − 1) − 1)
∏

j(2
ΩZj − 1).

The two variables X and Y are said independent in the context of Z if the value
of Eχ2

XY |Z is less than the critical value in the chi-squared distribution.
The principle of the extension of the χ2 test can be also used for generalizing

other statistical tests such as the likelihood ratio (G2) test or even the score
functions based on the likelihood principle, in order to generalize score based
and hybrid algorithms.

It must be emphasized that, the Eχ2 test has the same major limitation
of the classical χ2 test. This test become inappropriate when the number of
variables is high and the amount of data is not sufficient. In probability theory
Spirates et al. propose an heuristic to overcome this drawback: if the degree of
freedom is higher than L

10 the two variables are considered dependent.
In the evidence theory this problem is even more serious, as we consider in

the calculation process the power set of each variable. Thus we propose, in this
case, to calculate the degree of freedom according to the focal elements of each
variable as follows: df ′ = (|�(mΩX )| − 1)(|�(mΩY )| − 1).

If the problem persists, then the hypothesis of Spirtes et al. can be applied.

5.2 Learning Approach

The generalization of the χ2 test in the belief function framework will be the core
of our learning process. In fact, our goal is to estimate the different dependency
relations between variables from an EDB(L,C) using the Eχ2 test, in order to
get the DAG(N,E) that most closely matches the data. This approach is based
on two main steps:

1© Test the different independency relations between variables:
• Calculate the evidential observed values using Eqs. (4) and (5).
• Calculate the evidential expected values using Eqs. (6) and (7).
• Test the dependency between variables according to the Eχ2 test measured

using Eqs. (8) and (9).
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2© Apply a learning structure algorithm based on independency tests:
• Build an undirected graph according to Eχ2: delete edges between inde-

pendent variables if we started with a complete graph or add edges between
dependent variables if we started with an empty graph.

• Detect the V-structures according to the calculated Eχ2 test.
• Propagate edges to get a CPDAG representing the sought DAG.

Note that, a possible simplification in the first step of our approach is to consider
only focal elements for each variable, in order to reduce the number of values
that must be calculated in the Eχ2 test. In this case we consider df ′ as a degree
of freedom.

This approach generalizes any constrained based method classically used for
estimating the graphical structure of a Bayesian network.

It will be also interesting to compare our learning approach using the Eχ2

test and other independency tests dedicated to uncertain data such as the inde-
pendency tests proposed in [16].

6 Illustrative Example

To further explain the details of our learning method, we introduce in this section
an illustrative example based on the classical problem Asia Chest Clinic first
described in [11]. Table 1 presents a part from an EDB corresponding to the
latter problem.

Our problem includes eight variables {A,S, T, L,B,O,X,D} having the
power sets, respectively: {a, ā, a∪ā}; {s, s̄, s∪s̄}; {t, t̄, t∪t̄}; {l, l̄, l∪ l̄}; {b, b̄, b∪b̄};
{o, ō, o ∪ ō}; {x, x̄, x ∪ x̄} and {d, d̄, d ∪ d̄}.

Note that in the EDB a is denoted by 0, ā is denoted by 1 and a∪ā is denoted
by {0, 1}. All other propositions are denoted by the same way.

The first step of our approach is to test dependency between variables. In
the following we give some calculation details of the evidential chi-square test
applied to the variables T and O using 20 instances from our EDB (represented
in Table 1).

• EOto =
∑20

l=1 mΩT

lc (T = t) ∗ mΩO

lc (O = o) = 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 0.3 + 1 ∗ 1 + 1 ∗
0.4 + 1 ∗ 1 = 4.7

• By the same manner we get:
EOtō = 5.3 EOtoō = 1 EOt̄o = 4.99 EOt̄ō = 2.41 EOt̄oō = 1.6 EOtt̄o = 0
EOtt̄ō = 0 EOtt̄oō = 0

• EEto =
∑20

l=1 mlc(T=t)∗∑20
l=1 ∗mlc(O=o)

20 = 11∗(0.21+1+1+1+0.3+1+1+0.4+0.2+1)
20 =

3.91
• Applying the same formula:

EEtō = 5.65 EEtoō = 1.43 EEt̄o = 3.19 EEt̄ō = 2.63 EEt̄oō = 1.17 EEtt̄o = 0
EEtt̄ō = 0 EEtt̄oō = 0

• Eχ2
TO = [ (EOto−EEto)

2

EEto
] + ... + [ (EOtt̄oō−EEtt̄oō)

2

EEtt̄oō
] = 2.52

• df = ((22 − 1) − 1) ∗ ((22 − 1) − 1) = 4



308 N.B. Hariz and B.B. Yaghlane

Table 1. EDB corresponding to the Asia Chest Clinic problem

A S T L B O X D

0 0 1 0 0 0(0.21)1(0.79) 0 1

0 0 0 1 0 1 1 1

0(0.5)1(0.5) 0 0 {0,1} 0 0 1 0

1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 1

0 0 1 0 0 0 0 0

{0,1} 0 0 1 0 0 1 1

0 0 0 0 0 0(0.3)1(0.7) 0 0

0(0.22){0,1}(0.78) 0 1 0 0 {0,1} 1 1

0 0 1 0 0 1(0.9){0,1}(0.1) 1 1

0(0.2){0,1}(0.8) 0 1 {0,1} 1 0 1 1

0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 1

0(0.1)1(0.2){0,1}(0.7) 0 0 0 0 {0,1} 1 1

0 0 0 1 0 0(0.4)1(0.6) 0 0

1 0 1 0 0 0(0.2)1(0.3){0,1}(0.5) 0 0

1(0.45){0,1}(0.55) 0 0 0 0 0 1 1

1 0 1 1 0 1 1 1

0 0 0 0 0 1 0 1

0(0.36){0,1}(0.64) 0 0 0 0 1 1 1

Note that, when dealing with perfect data such as the case of variables S, T , B,
X and D, the Eχ2 give the same result as the classical χ2 test.

Assuming that α = 5%, the critical value according to the chi-squared dis-
tribution is equal to 9.488 which is higher then the value of the calculated test
Eχ2

TO. According to this result, the two variables T and O are independent.
However, we should note that the obtained value of Eχ2

TO is not significant,
because the amount of data considered in this example is very small.

After finishing the different calculation steps and applying the PC algorithm,
the result of the evidential learning process from the whole data set is presented
in Fig. 1.

Phase 1, phase 2 and phase 3 represent the different iterations of the first
step of the PC algorithm which is building an undirected graph by eliminating
edges between independent variables from the complete graph, corresponding to
the Asia network.

The next step in the learning process is to detect the different v-structures
in the obtained undirected graph using the calculated Eχ2 test in order to build
a CPDAG modeling the required DAG.
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Fig. 1. Result of the evidential learning process

The last step will be then to pass from the CPDAG to the final network as
shown in Fig. 1, the algorithm of the construction of a DAG from a CPDAG is
detailed in [5].

7 Conclusion

A constrained based approach for learning evidential networks structure from
evidential data has been proposed. This approach generalizes the classical con-
strained based methods usually used for learning structure in BNs by extending
the statistical χ2 test to the belief function framework in order to deal with
different types of imperfection in data.

In the future works, we will tend to investigate different horizons:

– Extend score based methods to deal with evidence data.
– Develop detailed experimental results and compare the efficiency of structure

learning approaches in the evidence framework.
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Abstract. This paper proposes a new evaluation strategy for product-
based possibilistic networks learning algorithms. The proposed strategy is
mainly based on sampling a possibilistic networks in order to construct
an imprecise data set representative of their underlying joint distribu-
tion. Experimental results showing the efficiency of the proposed method
in comparing existing possibilistic networks learning algorithms is also
presented.

1 Introduction

Researches devoted to graphical models handle a classical form of data which
consists in precise information and at most handle missing data. This is due
to the fact that most of these works are defined in the probabilistic framework
which represents a well-founded normative framework for knowledge represen-
tation and reasoning with uncertain but precise data. However, in real world
applications, we are often faced to more sophisticated imperfect data. In such
situation, probability theory does not remain the adequate framework, hence,
the birth of several other uncertainty theories such as the case of possibility
theory [1]. Consequently, alternative graphical models have been proposed to
reason with this form of imperfect data such as possibilistic networks. Despite
the multitude of research endeavors concerning propagation in possibilistic net-
works, e.g. [2,3], the problem of learning such networks from data remains very
limited. Moreover, existing methods [4–6] do not propose a convincing evalua-
tion process since most of them has been limited by the lack of an accurate and
standard validation procedure. This paper proposes a new evaluation strategy
for product-based possibilistic networks learning algorithms based on sampling.
Such an approach is commonly used for probabilistic graphical models and espe-
cially in the evaluation of Bayesian networks learning algorithms, but, it raises
several difficulties when applied to possibilistic networks as it will be detailed in
this paper. This paper is organized as follows: Sect. 2 gives a brief introduction
to possibility theory. Section 3 defines possibilistic networks and discusses their
learning from data. Section 4 details our proposed evaluation strategy to possi-
bilistic networks learning algorithms. Section 5 is dedicated to the experimental
results.
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 312–321, 2015.
DOI: 10.1007/978-3-319-20807-7 28
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2 Brief Recall on Possibility Theory

This section recalls elementary notions of possibility theory [7] and points out
the notion of possibility distribution estimation. Let V = {X1, ...,Xn} be a set
of variables such that D1, ...,Dn are their respective domains and let xik be
an instance of Xi, i.e. each xik ∈ Di corresponds to a state (a possible value)
of Xi. The agents knowledge (state set) of Xi can be encoded by a possibility
distribution π(Xi) corresponding to a mapping from the universe of discourse
Di to the unit interval [0,1]. For any state xik ∈ Di, π(xik) = 1 means that
xik realization is totally possible π(xik) = 0 means that xik is an impossible
state. It is generally assumed that at least one state xik is totally possible and
π is then said to be normalized. Extreme cases of knowledge are presented by
complete knowledge, i.e. ∃xik ∈ Di s.t. π(xik) = 1 and ∀xij ∈ Di s.t. xij �=
xik, π(xij) = 0 and total ignorance, i.e. ∀xik ∈ Di, π(xik) = 1 (all values in Di

are possible). The definition of a possibility distribution could be generalized
to a set of variables V defined on the universe of discourse Ω = D1 × ... × Dn

encoded by π. π corresponds to a mapping from Ω to the unit interval [0,1]. ω
is called interpretation or event and is denoted by a tuple (x1k, ..., xnl). ω[Xi] is
the value of Xi in ω.

Possibility theory is based on minimum specificity principle. More precisely,
let π and π′ be two possibility distributions, π is said to be more specific (more
informative) than π′ iff ∀xik ∈ Di, π(xik) ≤ π′(xik). Given a possibility distri-
bution π, we can define for any subset A ⊆ Di two dual measures: possibility
measure Π(A) = max

xik∈A
π(xik) and necessity measure N(A) = 1 − Π(Ā) where

Π assesses at what level A is consistent with our knowledge represented by π
whereas N evaluates at what level Ā is impossible.

The particularity of the possibilistic scale is that it can be interpreted in two
ways. First, it can be interpreted in an ordinal manner which means that pos-
sibility degrees reflect only a specific order between possible values. Second, the
possibilistic scale can be interpreted in a numerical way meaning that possibility
degrees make sense in the ranking scale. These two interpretations induce two
definitions of possibilistic conditioning which consists in reviewing a possibility
distribution by a new certain information φ, an interpretation of Φ ⊆ V . The
product-based conditioning is defined by:

π(ω|∗φ) =

{
π(ω)
Π(φ) if ω[Φ] = φ

0 otherwise.
(1)

While the min-based conditioning is defined by:

π(ω |min φ) =

⎧
⎨

⎩

1 if π(ω) = Π(φ) and ω[Φ] = φ
π(ω) if π(ω) < Π(φ) and ω[Φ] = φ
0 otherwise.

(2)

One crucial notion when sampling networks, is the estimation of possi-
bility distribution from generated data sets. In the numerical interpretation,
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Joslyn [8] has proposed a possibility distribution estimation method from impre-
cise data using possibilistic histograms. Moreover, he discusses the non-specificity
of obtained possibility distributions in some particular cases such as certain and
consistent data sets (for more details see [8]). Let Di = {d

(l)
i } be a dataset relative

to a variable Xi, d
(l)
i ∈ Di (resp. d

(l)
i ⊆ Di) if data are precise (resp. imprecise).

The number of occurrences of each xik ∈ Di, denoted by Nik, is the number
of times xik appears in Di: Nik = |{l s.t. xik ∈ d

(l)
i }|. The non-normalized

estimation π̂nn(xik) is expressed as follows:

π̂nn(xik) =
Nik

N
(3)

where N is the number of observations in Di. N is equal (resp. lower or equal)
to the sum of Nik if data are precise (resp. imprecise). Equation 3 could be
defined as a set of variables Xi,Xj , ...Xw. In this case, Nik becomes Nik,jl,...,wp =
N({xikxjl...xwp} ⊆ Dijw).

3 Learning Possibilistic Networks

3.1 Definition of Possibilistic Networks

Possibilistic networks [9] represent the possibilistic counterpart of Bayesian net-
works [10] having similarly two components: a graphical component composed of
a DAG which encodes a set of independence relations (i.e. each variable Xi ∈ V is
conditionally independent of its non-descendent given its parents) and a numer-
ical component corresponding to the set of conditional possibility distributions
relative to each node Xi ∈ V in the context of its parents, denoted by Pa(Xi), i.e.
π(Xi|Pa(Xi)). The two definitions of the possibilistic conditioning lead naturally
to two different ways to define possibilistic networks: product-based possibilis-
tic networks based on the product-based conditioning expressed by Eq. 1. These
models are theoretically and algorithmically close to Bayesian networks. In fact,
these two models share the graphical component, i.e. the DAG and the product
operator in the computational process. This is not the case of qualitative based
on min-based conditioning defined by Eq. 2 that represents a different semantic.
In both cases, possibilistic networks are a compact representation of possibility
distributions. More precisely, the joint possibility distribution could be computed
by the possibilistic chain rule expressed as follows:

π⊗(X1, ...,Xn) = ⊗i=1..nπ(Xi |⊗ Pa(Xi)) (4)

where ⊗ corresponds to the product operator (*) for quantitative possibilis-
tic networks and to the minimum operator (min) for qualitative possibilistic
networks. In the remaining, we focus on product-based possibilistic networks.
Figure 1 represents an example of a product-based possibilistic network with four
ternary variables.
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Fig. 1. Example of a product-based possibilistic network

3.2 Possibilistic Networks Structure Learning

By analogy to Bayesian networks, structure learning methods could be catego-
rized into three families: constraint-based, score-based and hybrid methods. In
the possibilistic case, Gebhardt and Kruse have proposed a score-based method
handling imprecise data [5]. Borgelt et al. [4] have proposed possibilistic ver-
sions of two learning methods initially proposed to Bayesian networks: K2 and
maximum weight spanning tree handling, also, imprecise data. Sangüesa et al. [6]
have proposed two hybrid learning methods from precise data: the first one learns
trees and the second one learns the more general structure of DAGs. Most of
attempts to learn possibilistic networks are direct adaptations of learning meth-
ods initially proposed for Bayesian networks ignoring also parameters learning
problem. Moreover, all these works have been proposed before advances made
concerning possibilistic networks as independence models leading to use contrary
hypothesis: a numerical operator (*) in the conditioning and an ordinal operator
(min) in the conditional independence relation.

3.3 Possibilistic Networks Parameters Learning

Parameters learning of Bayesian networks is performed satisfying maximum
entropy principle [11]. The possibilistic analog of the latter corresponds to mini-
mum specificity. By analogy to Bayesian networks, learning possibilistic networks
parameters consists in estimating possibility distributions according to minimum
specificity principle [12], i.e. estimating the least specific possibility distributions.
As far as we know, parameters learning has not been studied yet and existing
learning methods compute possibility distributions using either Eq. 3 as done in
[4,5] or probability possibility transformations [13] as done in [6].

4 Evaluating Learning Algorithms

Probabilistic graphical models learning methods, in particular Bayesian net-
works, are tested using randomly generated networks (synthetic) or networks
that have been used in real systems, so that the structure of the network is
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Fig. 2. Evaluation process of possibilistic networks learning algorithms

known and can serve as a rigorous gold standard e.g. Asia and Insurance net-
works. In the probabilistic case, evaluating learning algorithm is ensured using
the following process: we select an arbitrary Bayesian network either a synthetic
one or a gold standard from which we generate a data set using Forward Sam-
pling algorithm [14]. Then, we try to recover the initial network using a learning
algorithm and we compare the initial network with the learned one.

None of the existing possibilistic networks learning methods has proposed a
formal evaluation strategy and each existing work has proposed its evaluation
measure whose values are difficult to interpret. In the following, we propose
to transpose the evaluation strategy proposed in the probabilistic case to the
possibilistic one in order to evaluate a possibilistic networks learning algorithm
as shown by Fig. 2.

4.1 Generating Possibilistic Networks

In the possibilisic case, there are currently no publicly available possibilistic net-
works used in real systems and could be used as gold standard. We propose either
to generate randomly a possibilistic network or to transform a gold Bayesian net-
work to a possibilistic one. Generating a random possibilistic network consists in
generating its two components. Concerning the graphical component, we could
use any method proposed in the context of Bayesian networks such as [15]. For
the numerical component, we propose to generate random values from [0,1] for
each distribution satisfying normalization property, i.e. at least one of states
degrees is equal to 1. We can, also, transform a Bayesian network to a possi-
bilistic one retaining the same structure and performing a probability possibility
transformation on its distributions, e.g. [13], on its probability distributions.

4.2 Sampling Possibilistic Networks

Once the possibilistic network is generated, we want to generate an impre-
cise dataset representative of its possibility distributions. To the best of our
knowledge, there is no possibilistic networks sampling method. However, two
approaches have been proposed [16,17] to sample one variable and are based on
α-cut notion expressed as follows:

α − cutXi
= {xik ∈ Di s.t. π(xik) ≥ α} (5)

where α is randomly generated from [0,1].



Evaluating Product-Based Possibilistic Networks Learning Algorithms 317

The epistemic sampling method proposed by Guyonnet et al. in [17] focuses
on the generation of imprecise data by returning all values of α-cutXi

for any
variable Xi. In fact, it returns a nested random set which represents the state
of knowledge about the sampled variable Xi. Chanas and Nowakowski proposed
another method in [16] which is dedicated to the generation of precise data
from the pignistic probability distribution by returning a single value uniformly
chosen from α-cutXi

.
In this paper, we propose to generalize the variable sampling method pro-

posed in [17] to possibilistic networks. This choice is justified by the fact that this
method generates a more generic form of imperfect data i.e. imprecise data. The
sampling process constructs a database of N (predefined) observations by instan-
tiating all variables in V w.r.t. their possibility distributions. Obviously, variables
are most easily processed w.r.t. a topological order, since this ensures that all
parents are instantiated. Instantiating a parentless variable corresponds to com-
puting its α-cut. Instantiating a conditioned variable corresponds to computing
also its α-cut but given its sampled parents values. This could not be directly
applied to conditional possibility distribution which is composed of more than
one distribution depending on the number of the values of its sampled parents.
To instantiate a conditioned variable Xi s.t. Pa(Xi = A), we compute α-cut
from π(Xi|Pa(Xi) = A), computed as follows:

π(Xi|Pa(Xi) = A) = max
ai∈A

π(Xi|ai)π(ai) (6)

Example 1. Let us consider the possibilistic network in Fig. 1. The topological
order is X1, X2, X3, X4. Applying the described sampling process we obtain:

1. X1: α = 0.3, α-cutX1 = {x11, x12}.
2. X2: α = 0.9

(a) π′(x21) = max(0.4 ∗ 0.5, 1 ∗ 1) = 1, π′(x22) = max(0.4 ∗ 0.2, 1 ∗ 0.8) = 0.8,
π′(x23) = max(0.4 ∗ 1, 1 ∗ 1) = 1.

(b) α-cutX2 = {x21, x23}.
3. X3: α = 0.7

(a) π′(x31) = max(0.4 ∗ 0.4, 1 ∗ 1) = 1, π′(x32) = max(0.4 ∗ 1, 1 ∗ 0.3) = 0.4,
π′(x33) = max(0.4 ∗ 0.1, 1 ∗ 0.5) = 0.5.

(b) α-cutX3 = {x31}.
4. X4: α = 0.2

(a) π′(x41) = max(1∗1∗1, 1∗1∗0.6) = 1, π′(x32) = max(1∗1∗0.3, 1∗1∗1) = 1,
π′(x33) = max(1 ∗ 1 ∗ 0.4, 1 ∗ 1 ∗ 0.5) = 0.5.

(b) α-cutX4 = {x41, x42, x43}.

The obtained observation is then ({x11, x12}, {x21, x23}, {x31}, {x41, x42, x43}).
We repeat the process to obtain N samples.

4.3 Evaluation Measures

An evaluation measure assesses learned possibilistic networks quality and quan-
tify the efficiency of the learning method graphically or numerically. We could
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evaluate learning algorithms graphically by comparing the initial and the learned
possibilistic networks structures using graphical evaluation measures proposed
in the context of Bayesian networks, e.g. sensitivity (ratio of edges correctly
identified in the learned network), specificity (ratio of edges correctly identified
as not belonging in the learned network) and editing distance (number of oper-
ations required to transform a learned possibilistic network structure into the
initial one. For more details, see [18,19]. Note that, it is necessary to take into
account Markov equivalence properties when computing these measures. In fact,
we should compute editing distance between equivalence class representatives
and sensitivity and specificity of DAGs skeletons i.e. without edges orientation
or DAGs v-structure (in the form Xi −→ Xj ←− Xk).

Learning algorithms could be evaluated numerically by comparing the initial
network and the learned one using a possibilistic dissimilarity measure between
their joint possibility distribution as done by KL divergence in the probabilistic
case. Such a measure has been proposed to compare two possibility distributions
π and π′ defined in Di s.t. π(xik) ≥ π′(xik)∀xik ∈ Di [4]. This hypothesis is
restrictive for comparing two possibilistic networks. However, we can use the
possibilistic similarity measure proposed in [20] which is expressed by:

Aff(π0, πl) = 1 − κ ∗ d(π0, πl) + λ ∗ Inc(π0, πl)
κ + λ

(7)

Information affinity is based on two quantities: inconsistency degree
Inc(π0, πl) = 1 − max

ωi∈Ω
{π0(ωi) ∧ πl(ωi)} (∧ can be taken as min or product

operator1) and Manhattan distance i.e. d(π0, πl) =

m∑

l=1
|π0(ωi)−πl(ωi)|

m , where κ > 0
and λ > 0.

KL divergence and information affinity involve heavy computing if the num-
ber of variables increases. This can be explained by the fact that they involve
all ω ∈ Ω. For KL divergence, we can compute an approximation to it, but, for
information affinity, such approximation has not been studied yet.

5 Experimental Study

This section proposes an experimental study having two main purposes. The first
set of experiments evaluates the efficiency of the proposed sampling method to
generate an imprecise data set representative of a given possibilistic network. The
second set of experiments illustrates the whole proposed evaluation strategy on
main existing possibilistic learning algorithms in literature. These experiments
were ran on the following platform: 2.30 GHz Intel(R) Core (TM) i5-2410M with
8 Go of memory.

1 Using the min operator instead of the product means that we give less importance
to the inconsistency degree.
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Fig. 3. Information affinity between π0 and πl w.r.t the number of data (average over
100 experiments)

5.1 Evaluation of the Proposed Sampling Method

The first set of experiments evaluates the efficiency of our sampling method. We
study the convergence of the joint possibility distribution computed from gener-
ated data using Eq. 3, denoted by π0, to the theoretical one, i.e. computed using
Eq. 4, denoted by π0. Specifically, we generate synthetic data sets containing
100, 1000, 5000 and 10000 observations from 100 randomly generated possibilis-
tic networks composed of nb nodes where nb is randomly generated in [5,10]. In
order to compare π0 and πl, we measure the similarity between the two possi-
bility distributions using Information Affinity (Eq. 7) and we take λ = κ = 1
and ∧ is the min operator. Figure 3 presents information affinity values between
π0 and πl. Each value is the average of results of the 100 experiments carried
out with a standard deviation around 0.04. Figure 3 shows that the information
affinity grows relatively smoothly with the number of observations, as expected.
This is an obvious result because when we increase the number of observations,
the data set becomes more informative and representative of the joint possibility
distribution, i.e. most possible ωi appears more frequently, less possible appears
less frequently and so on until reaching the least possible ωi or impossible ωi.
Consequently, we deflate considerably the gap between the initial possibility
distribution and the learned one. Note that in all experiments if π0(ωi) = 1,
then, πl(ωi) = 1, i.e. the proposed sampling method conserves the most possible
interpretation.

5.2 Illustration of the Evaluation Strategy

In the second set of experiments, we generate 100 data sets of 100, 1000, 5000
and 10000 observations from the famous Asia network [21] (8 nodes and 8 edges).
This network is a probabilistuc one, so in order to adapt it to our possibilistic
context, we apply optimal probability possibility transformation [13] on its con-
ditional probability distributions. Then, we apply existing possibilistic learning
structure algorithms which handle imprecise data, i.e. the possibilistic adap-
tation of k2 (πK2), maximum weight spanning tree (πMWST) [4] and greedy
search (πGS) [5]. In the current work, πK2 [4] and πMWST are tested using two
scores, namely, possibilistic mutual information (dmi) and possibilistic χ2 mea-
sure (dχ2) and πK2 treats variables in a predefined order (we generate 5 orders
in each experiment and we retain the best structure). πGS uses expected non
specificity as score and begins with the class of all directed graphs w.r.t V that
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Table 1. Editing distance, specificity and sensitivity of learned structures

satisfy the condition |Pa(Xi)|≤ 1 for all Xi ∈ V and we, also, ran it five times
retaining the best learned structure. Then, we compute editing distance between
equivalence class representatives, skeleton sensitivity and specificity between the
learned and the initial structures. Table 1 shows the average of obtained results.
We can see that πGS scoring function seems to be less interesting than the ones
used by πK2 and πMWST which has not been previously established. Such a
result clearly deserves more investigations but it is not the purpose of the present
paper.

6 Conclusion

Despite the similarities between Bayesian networks and possibilistic ones and
especially those based on the product operator (since they share the same graphi-
cal component and even same computations in the propagation process), working
with possibility distributions highlights several difficulties when dealing with the
learning task. This paper proposes a new evaluation strategy for product-based
possibilistic networks learning algorithms. The proposed method provides several
means to assess learned networks quality, i.e. we could use two families of evalu-
ation measures: graphical ones to compare networks structures and information
affinity to compute similarity between learned and initial distributions.

The proposed evaluation strategy presents a clear experimental framework.
Thereby, it will be interesting to realize now a comparative and intensive study
of existing possibilistic networks algorithms to evaluate score functions quality,
learned networks quality and execution time. Future work concerns an approxi-
mation of the numerical evaluation measure information affinity in order to make
its use possible in complex domains involving a huge number of variables.
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Abstract. This paper aims at justifying LWF and AMP chain graphs
by showing that they do not represent arbitrary independence models.
Specifically, we show that every chain graph is inclusion optimal wrt the
intersection of the independence models represented by a set of directed
and acyclic graphs under conditioning. This implies that the indepen-
dence model represented by the chain graph can be accounted for by a
set of causal models that are subject to selection bias, which in turn can
be accounted for by a system that switches between different regimes or
configurations.

1 Introduction

Chain graphs (CGs) are graphs with possibly directed and undirected edges,
and no semidirected cycle. They have been extensively studied as a formal-
ism to represent independence models. CGs extend Bayesian networks (BNs),
i.e. directed and acyclic graphs (DAGs), and Markov networks, i.e. undirected
graphs. Therefore, they can model symmetric and asymmetric relationships
between the random variables of interest. This was actually one of the main
reasons for developing them. However, unlike Bayesian and Markov networks
whose interpretation is unique, there are three main interpretations of CGs as
independence models: The Lauritzen-Wermuth-Frydenberg (LWF) interpreta-
tion [12,16], the multivariate regression (MVR) interpretation [6,7], and the
Andersson-Madigan-Perlman (AMP) interpretation [1,17]. A fourth interpreta-
tion has been proposed in [9] but it has not been studied sufficiently and, thus,
it will not be discussed in this paper. It should be mentioned that any of the
three main interpretations can represent independence models that cannot be
represented by the other two interpretations [37].

Along with other reasons, DAGs can convincingly be justified by the fact that
each of them represents a causal model. Whether this is an ontological model
is still debated. However, it is widely accepted that the causal model is at least
epistemological and thus worth studying [24]. Of the three main interpretations
of CGs, however, only MVR CGs have a convincing justification: Since MVR
CGs are a subset of maximal ancestral graphs without undirected edges, every
MVR CG represents the independence model represented by a DAG under mar-
ginalization [35, Theorem 6.4]. That is, every MVR CG can be accounted for by

c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 325–334, 2015.
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a causal model that is partially observed. Unfortunately, LWF and AMP CGs
cannot be justified in the same manner because (i) LWF and AMP CGs can rep-
resent independence models that cannot be represented by maximal ancestral
graphs [35, Sect 9.4], and (ii) maximal ancestral graphs can represent all the inde-
pendence models represented by DAGs under marginalization and conditioning
[35, Theorem 4.18]. In other words, LWF and AMP CGs can represent indepen-
dence models that cannot be represented by any DAG under marginalization and
conditioning. Of course, LWF and AMP CGs can be justified by the fact that
they improve the expressivity of DAGs, i.e. they can represent more indepen-
dence models than DAGs [26]. However, this is a weak justification unless those
independence models are not arbitrary but induced by some class of knowledge
representatives within some uncertainty calculus of artificial intelligence, e.g. the
class of probability distributions [39, Sect 1.1]. This is exactly what the authors
of [17,27,28,40] do by showing that every LWF and AMP CG is faithful to some
probability distribution. However, this does not strengthen much the justifica-
tion unless these probability distributions are not arbitrary but they represent
meaningful systems or phenomena. This is exactly what the authors of [15] do.
In particular, the authors show that every LWF CG includes the independence
model induced by the equilibrium probability distribution of a dynamic model
with feed-back. The downside of this justification is that the equilibrium distri-
bution may not be reached in finite time and, thus, it may not coincide with the
distribution that represents the behaviour of the dynamic model at any finite
time point. Therefore, there is no guarantee that the CG includes the indepen-
dence model induced by the latter, which is the goal. The authors are aware of
this and state that their justification should better be understood as an approxi-
mated one. Another work in the same vein is [11], whose authors show that some
LWF CGs are inclusion minimal wrt the result of temporal aggregation in a DAG
representing a spatio-temporal process. Unfortunately, the authors do not show
whether their result holds for every LWF CG. Yet another work along the same
lines is [31], whose author shows that every AMP CG is faithful to the indepen-
dence model represented by a DAG under marginalization and conditioning. It
is worth noting that the DAG contains deterministic nodes, because the result
does not hold otherwise [34]. Finally, the author of [38] presents the following
justification of LWF CGs. Each connectivity component of a LWF CG models an
area of expertise. The undirected edges in the connectivity component indicate
lack of independencies in the area of expertise. The directed edges in the CG
indicate which areas of expertise are prerequisite of which other areas. However,
the author does not describe how the independencies in the local models of the
areas of expertise get combined to produce a global model of the domain, and
how this model relates to the one represented by the CG.

In this work, we show that every LWF and AMP CG G is inclusion optimal
wrt the intersection of the independence models represented by a set of DAGs
under conditioning. In other words, we show that (i) the independencies rep-
resented by G are a subset of theintersection, and (ii) the property (i) is not
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satisfied by any CG that represents a proper superset of the independencies rep-
resented by G. Note that if there exists a CG that is faithful to the intersection,
then that CG is inclusion optimal. In general, several inclusion optimal CGs exist
and they do not necessarily represent the same independence model. Therefore,
in principle, one prefers the inclusion optimal CGs that represent the largest
number of independencies. However, finding any such CG seems extremely dif-
ficult, probably NP-complete in the light of the results in [29]. Thus, one is
typically content with finding any inclusion optimal CG. An example of this are
the algorithms for learning inclusion optimal BNs [5,22] and LWF CGs [32]. This
is also why we are content with showing in this paper that every LWF and AMP
CG is inclusion optimal wrt the intersection of the independence models repre-
sented by a set of DAGs under conditioning. The intersection can be thought of
as a consensus independence model, in the sense that it contains all and only the
independencies upon which all the DAGs under conditioning agree. We elabo-
rate further on the term consensus in the paragraph below. The fact that every
LWF and AMP CG originates from a set of DAGs under conditioning implies
that the independence model represented by the former can be accounted for by
a set of causal models that are subject to selection bias, which in turn can be
accounted for by a system that switches between different regimes or configura-
tions. Two examples of such a system are the progression of a disease through
different stages, and the behaviour of a broker alternating between looking for
buying and selling opportunities. We have recently introduced a new family of
graphical models aiming at modeling such systems [2,3]. In summary, we provide
an alternative justification of LWF and AMP CGs that builds solely on causal
models and does not involve equilibrium distributions or deterministic nodes,
which may seem odd to some readers. Our hope is that this strengthens the case
of LWF and AMP CGs as a useful representation of the independence models
entailed by causal models.

Before we proceed further, it is worth discussing the relationship between
our justification of LWF and AMP CGs and belief aggregation. First, recall that
a BN is an efficient representation of a probability distribution. Specifically, a
BN consists of structure and parameter values. The structure is a DAG repre-
senting an independence model. The parameter values specify the conditional
probability distribution of each node given its parents in the BN structure.
The BN represents the probability distribution that results from the product
of these conditional probability distributions. Moreover, the probability distrib-
ution satisfies the independence model represented by the BN structure. Belief
aggregation consists in obtaining a group consensus probability distribution from
the probability distributions specified by the individual members of the group.
Probably, the two most commonly used consensus functions are the weighted
arithmetic and geometric averages. The authors of [25] show that belief aggre-
gation is problematic when the consensus and the individual probability distri-
butions are represented as BNs. Specifically, they show that even if the group
members agree on the BN structure, there is no sensible consensus function that
always returns a probability distribution that can be represented as a BN whose
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structure is equivalent to the agreed one [25, Proposition 2]. The only excep-
tion to this negative result is when the individual BN structures are decompos-
able and the consensus function is the weighted geometric average [25, Sects
3.3-3.4]. However, the authors also point out that this negative result does not
invalidate the arguments of those who advocate preserving the agreed indepen-
dencies, e.g. [13] and [33, Sect 8.12]. It simply indicates that a different approach
to belief aggregation is needed in this case. They actually mention one such app-
roach that consists in performing the aggregation in two steps: First, find a
consensus BN structure that preserves as many of the agreed independencies
as possible and, second, find consensus parameter values for the consensus BN
structure. The first step has received significant attention in the literature [8,18–
20,23]. A work that studies both steps is [4].1 We have also studied both steps
[10,29]. The two step approach described above is also suitable when some of
the group members are able to contribute with a BN structure but not with
parameter values. This scenario is not unlikely given that people typically find
easier to gather qualitative than quantitative knowledge.

Our justification of LWF and AMP CGs implicitly advocates preserving
the agreed independencies, because the DAGs in the justification are combined
through the intersection of the independence models that they represent and,
thus, the agreed independencies are kept. As shown above, this is a sensible
advocation. Therefore, in this paper we make use of it to propose a sensible jus-
tification of LWF and AMP CGs. The DAGs in our justification are hand-picked
to ensure that the combination thereof produces the desired result. This raises
the question of how to combine a set of arbitrary DAGs under marginalization
and conditioning into a LWF or AMP CG. In this paper, we also investigate
this question. Ideally, we would like to find a LWF or AMP CG that is inclu-
sion optimal wrt the intersection of the independence models represented by
the DAGs under marginalization and conditioning. Unfortunately, this problem
seems extremely hard. So, we actually study a simpler version of it. Note that
this problem corresponds to the first step of the approach to belief aggregation
described above. The second step, i.e. combining the parameter values associated
to the DAGs, is beyond the scope of this paper.

The rest of the paper is organized as follows. In Sect. 2, we introduce some
preliminaries and notation. In Sect. 3, we present our justification of LWF and
AMP CGs. In Sect. 4, we discuss how to combine arbitrary DAGs into a LWF
or AMP CG. We close with some discussion in Sect. 5.

2 Preliminaries

In this section, we review some concepts from graphical models that are used
later in this paper. Unless otherwise stated, all the graphs in this paper are
defined over a finite set V . Moreover, they are all simple, i.e. they contain at most
one edge between any pair of nodes. The elements of V are not distinguished from
1 Unfortunately, we could not get access to this work. So, we trust the description of

it made in [25, Sect 3.5].
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singletons. The set operators union, intersection and difference are given equal
precedence in the expressions. The term maximal is always wrt set inclusion.

If a graph G contains an undirected or directed edge between two nodes V1

and V2, then we write that V1 − V2 or V1 → V2 is in G. The parents of a set of
nodes X of G is the set paG(X) = {V1|V1 → V2 is in G, V1 /∈ X and V2 ∈ X}.
The children of X is the set chG(X) = {V1|V1 ← V2 is in G, V1 /∈ X and
V2 ∈ X}. The neighbors of X is the set neG(X) = {V1|V1 − V2 is in G, V1 /∈ X
and V2 ∈ X}. The boundary of X is the set bdG(X) = neG(X) ∪ paG(X).
The adjacents of X is the set adG(X) = neG(X) ∪ paG(X) ∪ chG(X). A route
between a node V1 and a node Vn in G is a sequence of (not necessarily distinct)
nodes V1, . . . , Vn st Vi ∈ adG(Vi+1) for all 1 ≤ i < n. If the nodes in the route
are all distinct, then the route is called a path. A route is called undirected if
Vi − Vi+1 is in G for all 1 ≤ i < n. A route is called descending if Vi → Vi+1

or Vi − Vi+1 is in G for all 1 ≤ i < n. A route is called strictly descending if
Vi → Vi+1 is in G for all 1 ≤ i < n. The descendants of a set of nodes X of G is
the set deG(X) = {Vn| there is a descending path from V1 to Vn in G, V1 ∈ X
and Vn /∈ X}. The strict ascendants of X is the set sanG(X) = {V1| there is
a strictly descending path from V1 to Vn in G, V1 /∈ X and Vn ∈ X}. A route
V1, . . . , Vn in G is called a semidirected cycle if Vn = V1, V1 → V2 is in G and
Vi → Vi+1 or Vi − Vi+1 is in G for all 1 < i < n. A chain graph (CG) is a graph
whose every edge is directed or undirected st it has no semidirected cycles. Note
that a CG with only directed edges is a directed and acyclic graph (DAG), and a
CG with only undirected edges is an undirected graph (UG). A set of nodes of a
CG is connected if there exists an undirected path in the CG between every pair
of nodes in the set. A connectivity component of a CG is a maximal connected
set. We denote by coG(X) the connectivity component of the CG G to which a
node X belongs. A chain α is a partition of V into ordered subsets, which we
call blocks. We say that a CG G and a chain α are consistent when (i) for every
edge X → Y in G, the block containing X precedes the block containing Y in
α, and (ii) for every edge X −Y in G, X and Y are in the same block of α. Note
that the blocks of α and the connectivity components of G may not coincide,
but each of the latter must be included in one of the former.

Let X, Y , Z and W denote four disjoint subsets of V . An independence
model M is a set of statements of the form X ⊥ MY |Z, meaning that X is
independent of Y given Z. Moreover, M is called graphoid if it satisfies the
following properties: Symmetry X ⊥ MY |Z ⇒ Y ⊥ MX|Z, decomposition X ⊥
MY ∪ W |Z ⇒ X ⊥ MY |Z, weak union X ⊥ MY ∪ W |Z ⇒ X ⊥ MY |Z ∪ W ,
contraction X ⊥MY |Z ∪ W ∧ X ⊥M W |Z ⇒ X ⊥MY ∪ W |Z, and intersection
X ⊥ MY |Z ∪ W ∧ X ⊥ MW |Z ∪ Y ⇒ X ⊥ M Y ∪ W |Z. Moreover, M is called
compositional graphoid if it is a graphoid that also satisfies the composition
property X ⊥MY |Z ∧ X ⊥MW |Z ⇒ X ⊥MY ∪ W |Z. By convention, X ⊥M∅|Z
and ∅⊥MY |Z.

We now recall the semantics of LWF and AMP CGs. A section of a route ρ
in a LWF CG is a maximal undirected subroute of ρ. A section V2 − . . . − Vn−1

of ρ is a collider section of ρ if V1 → V2 − . . . − Vn−1 ← Vn is a subroute of ρ.
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Moreover, ρ is said to be Z-open with Z ⊆ V when (i) every collider section of
ρ has a node in Z, and (ii) no non-collider section of ρ has a node in Z.

A node B in a route ρ in an AMP CG G is called a triplex node in ρ if
A → B ← C, A → B − C, or A − B ← C is a subroute of ρ. Note that maybe
A = C in the first case. Note also that B may be both a triplex and a non-triplex
node in ρ. Moreover, ρ is said to be Z-open with Z ⊆ V when (i) every triplex
node in ρ is in Z, and (ii) every non-triplex node in ρ is outside Z.2

Let X, Y and Z denote three disjoint subsets of V . When there is no Z-open
route in a LWF or AMP CG G between a node in X and a node in Y , we say
that X is separated from Y given Z in G and denote it as X ⊥ GY |Z. The
independence model represented by G, denoted as I(G), is the set of separations
X ⊥ GY |Z. In general, I(G) is different depending on whether G is interpreted
as a LWF or AMP CG. However, if G is a DAG or UG, then I(G) is the same
under the two interpretations. Given a CG G and two disjoint subsets L and
S of V , we denote by [I(G)]SL the independence model represented by G under
marginalization of the nodes in L and conditioning on the nodes in S. Specifically,
X ⊥GY |Z is in [I(G)]SL iff X ⊥GY |Z ∪ S is in I(G) and X,Y,Z ⊆ V \ L \ S.

We say that a CG G includes an independence model M if I(G) ⊆ M .
Moreover, we say that G is inclusion minimal wrt M if removing any edge from
G makes it cease to include M . We say that a CG Gα is inclusion minimal
wrt an independence model M and a chain α if Gα is inclusion minimal wrt
M and Gα is consistent with α. We also say that a CG G is inclusion optimal
wrt an independence model M if I(G) ⊆ M and there exists no other CG H st
I(G) ⊂ I(H) ⊆ M .

Finally, a subgraph of a CG G is a CG whose nodes and edges are all in G.
The subgraph of a CG G induced by a set of its nodes X is the CG over X that
has all and only the edges in G whose both ends are in X. A complex in a LWF
CG is an induced subgraph of it of the form V1 → V2 − . . . − Vn−1 ← Vn. A
triplex in an AMP CG is an induced subgraph of it of the form A → B ← C,
A → B − C, or A − B ← C.

3 Justification of LWF and AMP CGs

The theorem below shows that every LWF or AMP CG G is inclusion optimal wrt
the intersection of the independence models represented by some DAGs under
conditioning. The DAGs are obtained as follows. First, we decompose G into a
DAG GD and an UG GU , i.e. GD contains all and only the directed edges in G,
and GU contains all and only the undirected edges in G. Then, we construct a
DAG GS from GU by replacing every edge X − Y in GU with X → SXY ← Y .
The nodes SXY are called selection nodes. Let S denote all the selection nodes
in GS . Note that GD and GU are defined over the nodes V , but GS is defined
over the nodes V ∪ S. The proofs of all the theorems in this paper can be found
in the extended version of this paper that is available at the authors’ website.
2 See [17, Remark 3.1] for the equivalence of this and the standard definition of Z-open

route for AMP CGs.
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Theorem 1. The LWF or AMPCGG is inclusion optimal wrt I(GD)∩[I(GS)]S∅ .

Unfortunately, the LWF or AMP CG G may not be faithful to I(GD)∩ [I(GS)]S∅ .
To see it, let G be A → B−C ← D. Then, A⊥D|B∪C is in I(GD)∩[I(GS)]S∅ but
not in I(G). We doubt that one can prove (and so strengthen our justification)
that every LWF or AMP CG is faithful to the intersection of the independence
models represented by some DAGs under conditioning. However, it is true that
the decomposition of G into GD and GU is not the only one that allows us to
prove that G is inclusion optimal wrt to the intersection of the independence
models represented by some DAGs under conditioning. For instance, we can
also prove this result if G is decomposed into a set of DAGs and UGs st none
of them has more than one edge, or if G is decomposed into a set of CGs st
none of them has a subgraph of the form A → B − C. We omit the proofs. In
any case, this does not change the main message of this work, namely that LWF
and AMP CGs can be justified on the sole basis of causal models. Having said
this, we prefer the original decomposition because it is not completely arbitrary:
GD represents the relationships in G that are causal, and GU those that are
non-causal and need to be explained through conditioning.

Finally, note that the LWF or AMP CG G may not be the only inclusion
optimal CG wrt I(GD) ∩ [I(GS)]S∅ . To see it, let G be A → B − C ← D. Then,
any LWF or AMP CG that has the same adjacencies as G is inclusion optimal
wrt I(GD) ∩ [I(GS)]S∅ . Some of these other inclusion optimal CGs may even
be preferred instead of G according to some criteria (e.g. number of indepen-
dencies represented, or number of directed and/or undirected edges). However,
G is preferred according to an important criterion: It is the only one that has
all and only the strictly ascendant relationships (i.e. direct and indirect causal
relationships) between two nodes in V that exist in GD and GS .

4 Combining Arbitrary DAGs into a LWF or AMP CG

In this section, we study the opposite of the problem above. Specifically, let
G1, . . . , Gr denote r arbitrary DAGs, where any Gi is defined over the nodes
V ∪ Li ∪ Si and it is subject to marginalization of the nodes in Li and condi-
tioning on the nodes in Si. We would like to find a LWF or AMP CG that is
inclusion optimal wrt

⋂r
i=1[I(Gi)]Si

Li
. However, this seems to be an extremely

hard problem. So, we study a simpler version of it in which we are only inter-
ested in those CGs that are consistent with a chain α. Then, our goal becomes
to find an inclusion minimal LWF or AMP CG wrt

⋂r
i=1[I(Gi)]Si

Li
and α. The

prior knowledge of α represents our a priori knowledge on which nodes may
be causally related and which nodes may be non-causally related. The latter
determine the blocks of α, and the former the ordering of the blocks in α. The
theorems below solve our problem. Specifically, they give a constructive charac-
terization of the unique LWF (respectively AMP) CG that is inclusion minimal
wrt a graphoid (respectively compositional graphoid) and a chain. Note that any
I(Gi) is a compositional graphoid [36, Theorem 1]. Moreover, it is easy to verify
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that any [I(Gi)]Si

Li
is also a compositional graphoid and, thus,

⋂r
i=1[I(Gi)]Si

Li
is

also a compositional graphoid. Thus, the theorems below apply to our problem.

Theorem 2. Let M denote an independence model, and α a chain with blocks
b1, . . . , bn. If M is a graphoid, then there exits a unique LWF CG Gα that is
inclusion minimal wrt M and α. Specifically, for each node X of each block bi

of α, bdGα
(X) is the smallest subset of

⋃i
j=1 bj \ X st X ⊥ M

⋃i
j=1 bj \ X \

bdGα
(X)|bdGα

(X).

Theorem 3. Let M denote an independence model, and α a chain with blocks
b1, . . . , bn. If M is a compositional graphoid, then there exits a unique AMP CG
Gα that is inclusion minimal wrt M and α. Specifically, consider the blocks in
α in reverse order and perform the following two steps for each of them. First,
for each node X of the block bi, neGα

(X) is the smallest subset of bi \ X st
X ⊥ Mbi \ X \ neGα

(X)|⋃i−1
j=1 bj ∪ neGα

(X). Second, for each node X of the
block bi, paGα

(X) is the smallest subset of
⋃i−1

j=1 bj st X ⊥MV \ X \ deGα
(X) \

paGα
(X)|paGα

(X).3

5 Discussion

The purpose of this paper has been to justify LWF and AMP CGs by show-
ing that they do not represent arbitrary independence models. Unlike previous
justifications, ours builds solely on causal models and does not involve equilib-
rium distributions or deterministic nodes, which may seem odd to some readers.
Specifically, for any given LWF or AMP CG, we have imagined a system that
switches between different regimes or configurations, and we have shown that
the given CG represents the different regimes jointly. To do so, we have assumed
that each of the regimes can be represented by a causal model. We have also
assumed that the causal models may be subject to selection bias. In other words,
we have assumed that each of the regimes can be represented by a DAG under
conditioning.

In this paper, we have also studied the opposite of the problem above, namely
how to combine a set of arbitrary DAGs under marginalization and conditioning
into a consensus LWF or AMP CG. We have shown how to do it optimally
when the consensus CG must be consistent with a given chain. The chain may
represent our prior knowledge about the causal and non-causal relationships in
the domain at hand. In the future, we would like to drop this requirement. We
would also like to find parameter values for the consensus CG by combining the
parameter values associated to the given DAGs.

Acknowledgments. This work is funded by the Center for Industrial Information
Technology (CENIIT) and a so-called career contract at Linköping University, and by
the Swedish Research Council (ref. 2010-4808).

3 Note that deGα(X) for any X ∈ bi is known when the second step for bi starts,
because neGα(X) for any X ∈ ⋃n

j=i bj and paGα(X) for any X ∈ ⋃n
j=i+1 bj have

already been identified.
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Abstract. We address some computational issues that may hinder the
use of AMP chain graphs in practice. Specifically, we show how a discrete
probability distribution that satisfies all the independencies represented
by an AMP chain graph factorizes according to it. We show how this fac-
torization makes it possible to perform inference and parameter learning
efficiently, by adapting existing algorithms for Markov and Bayesian net-
works. Finally, we turn our attention to another issue that may hinder
the use of AMP CGs, namely the lack of an intuitive interpretation of
their edges. We provide one such interpretation.

1 Introduction

Chain graphs (CGs) are graphs with possibly directed and undirected edges,
and no semidirected cycle. They have been extensively studied as a formalism to
represent independence models, because they can model symmetric and asym-
metric relationships between random variables. There are three different inter-
pretations of CGs as independence models: The Lauritzen-Wermuth-Frydenberg
(LWF) interpretation [6], the multivariate regression (MVR) interpretation [3],
and the Andersson-Madigan-Perlman (AMP) interpretation [1]. No interpreta-
tion subsumes another [1,11].

In this paper, we focus on AMP CGs. Despite being much more expressive
than Markov and Bayesian networks [10], AMP CGs have not enjoyed much
success in the literature or in practice. We believe this is due to mainly two
reasons. First, it is not known how to perform inference and parameter learning
for AMP CGs efficiently, because it is not known how to factorize a probability
distribution that satisfies all the independencies represented by an AMP CG.
Compare this situation to that of LWF CGs, where such a factorization exists
[4, Theorem 4.1] and thus inference can be performed efficiently [2, Sect. 6.5].
Second, AMP CGs do not appeal to intuition: Whereas the directed edges in a
Bayesian network may be interpreted as causal relationships and the undirected
edges in a Markov network as correlation relationships, it is not clear how to
combine these two interpretations to produce an intuitive interpretation of the
edges in an AMP CG.

In this paper, we address the two problems mentioned above. First, we intro-
duce a factorization for AMP CGs and show how it makes it possible to perform

c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 335–345, 2015.
DOI: 10.1007/978-3-319-20807-7 30
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inference and parameter learning efficiently, by adapting existing algorithms for
Markov and Bayesian networks. Second, we propose an intuitive interpretation
of the edges in an AMP CG. We start with some notation and definitions.

2 Preliminaries

Unless otherwise stated, all the graphs and probability distributions in this paper
are defined over a finite set of discrete random variables V . We use uppercase
letters to denote random variables and lowercase letters to denote their states.
The elements of V are not distinguished from singletons. If a graph G contains
an undirected or directed edge between two nodes V1 and V2, then we write that
V1 − V2 or V1 → V2 is in G. The parents of a set of nodes X of G is the set
PaG(X) = {V1|V1 → V2 is in G, V1 /∈ X and V2 ∈ X}. The adjacents of X
is the set AdG(X) = {V1|V1 ← V2, V1 → V2 or V1 − V2 is in G, V1 /∈ X and
V2 ∈ X}. A route between a node V1 and a node Vn in G is a sequence of (not
necessarily distinct) nodes V1, . . . , Vn st Vi ∈ AdG(Vi+1) for all 1 ≤ i < n. If the
nodes in the route are all distinct, then the route is called a path. A route is
called descending if Vi → Vi+1 or Vi − Vi+1 is in G for all 1 ≤ i < n. A route is
called strictly descending if Vi → Vi+1 is in G for all 1 ≤ i < n. The descendants
of a set of nodes X of G is the set DeG(X) = {Vn| there is a descending route
from V1 to Vn in G, V1 ∈ X and Vn /∈ X}. The non-descendants of X is the set
NdG(X) = V \X\DeG(X). The strict ascendants of X is the set SaG(X) = {V1|
there is a strictly descending route from V1 to Vn in G, V1 /∈ X and Vn ∈ X}.
A route V1, . . . , Vn in G is called a cycle if Vn = V1. Moreover, it is called a
semidirected cycle if Vn = V1, V1 → V2 is in G and Vi → Vi+1 or Vi − Vi+1 is in
G for all 1 < i < n. An AMP chain graph (AMP CG) is a graph whose every
edge is directed or undirected st it has no semidirected cycles. An AMP CG
with only directed edges is called a directed and acyclic graph (DAG), whereas
an AMP CG with only undirected edges is called an undirected graph (UG).
A set of nodes of an AMP CG G is connected if there exists a route in the CG
between every pair of nodes in the set st all the edges in the route are undirected.
A connectivity component of G is a maximal (wrt set inclusion) connected set
of nodes. The connectivity components of G are denoted as Cc(G), whereas
CcG(X) denotes the connectivity component to which the node X belongs.
A set of nodes of G is complete if there exists an undirected edge between
every pair of nodes in the set. The complete sets of nodes of G are denoted as
Cs(G). A clique of G is a maximal (wrt set inclusion) complete set of nodes.
The cliques of G are denoted as Cl(G). The subgraph of G induced by a set of
its nodes X, denoted as GX , is the graph over X that has all and only the edges
in G whose both ends are in X.

We now recall the semantics of AMP CGs. A node B in a path ρ in an AMP
CG G is called a triplex node in ρ if A → B ← C, A → B − C, or A − B ← C
is a subpath of ρ. Moreover, ρ is said to be Z-open with Z ⊆ V when

– every triplex node in ρ is in Z ∪ SaG(Z), and
– every non-triplex node B in ρ is outside Z, unless A − B − C is a subpath of

ρ and PaG(B) \ Z �= ∅.
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Let X, Y and Z denote three disjoint subsets of V . When there is no Z-open
path in an AMP CG G between a node in X and a node in Y , we say that X is
separated from Y given Z in G and denote it as X ⊥GY |Z. The independence
model represented by G is the set of separations X ⊥GY |Z. The independence
model represented by G under marginalization of some nodes L ⊆ V is the set
of separations X ⊥GY |Z with X,Y,Z ⊆ V \ L. Finally, we denote by X ⊥pY |Z
that X is independent of Y given Z in a probability distribution p. We say that
p is Markovian wrt an AMP CG G when, for all X, Y and Z disjoint subsets of
V , if X ⊥GY |Z then X ⊥pY |Z.

3 Factorization

A probability distribution p is Markovian wrt an AMP CG G iff the following
three properties hold for all C ∈ Cc(G) [1, Theorem 2]:

– C1: C ⊥pNdG(C) \ CcG(PaG(C))|CcG(PaG(C)).
– C2: p(C|CcG(PaG(C))) is Markovian wrt GC .
– C3∗: For all D ⊆ C, D⊥pCcG(PaG(C)) \ PaG(D)|PaG(D).

Then, C1 implies that p factorizes as

p =
∏

C∈Cc(G)

p(C|CcG(PaG(C))).

The authors of [1, p. 50] note that if p were strictly positive and G were a
LWF CG, then each conditional distribution above would factorize further into
a product of potentials over certain subsets of the nodes in C∪PaG(C), as shown
in [4, Theorem 4.1]. However, the authors state that no such further factorization
appears to hold in general if G is an AMP CG. We show that this is not true
if p is strictly positive. Specifically, C2 together with [6, Theorems 3.7 and 3.9]
imply that

p(C|CcG(PaG(C))) =
∏

K∈Cs(GC)

ϕ(K,CcG(PaG(C))).

However, one can show that ϕ(K,CcG(PaG(C))) is actually a function of K ∪
PaG(K), i.e. ϕ(K,CcG(PaG(C))) = ϕ(K,PaG(K)). It suffices to recall from
the proof of [6, Theorem 3.9] how ϕ(K,CcG(PaG(C))) can be obtained from
p(C|CcG(PaG(C))), a method also known as canonical parameterization [5, Sect.
4.4.2.1]. Specifically, let φ(K,CcG(PaG(C))) = log ϕ(K,CcG(PaG(C))). Choose
a fixed but arbitrary state k∗ of K. Then,

φ(k,CcG(PaG(C))) =
∑

q⊆k

(−1)|k\q| log p(q, q∗|CcG(PaG(C)))

where q∗ denotes the elements of k∗ corresponding to the elements of K\Q. Now,
note that p(q, q∗|CcG(PaG(C))) = p(q, q∗|PaG(K)) by C3∗, because Q ⊆ K.
Then, ϕ(K,CcG(PaG(C))) is actually a function of K ∪ PaG(K).
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Putting together the results above, we have that p factorizes as

p =
∏

C∈Cc(G)

∏

K∈Cs(GC)

ϕ(K,PaG(K)) =
∏

C∈Cc(G)

∏

K∈Cl(GC)

ψ(K,PaG(K)). (1)

Note that the well-known factorizations induced by DAGs and UGs (see [6,
Sect. 3.2.1 and 3.2.2]) are special cases of Eq. 1.

4 Parameter Learning

The factorization in Eq. 1 enables us to perform parameter learning for AMP
CGs efficiently by deploying the iterative proportional fitting procedure (IPFP)
[8, Sect. 19.5.7], which returns the maximum likelihood estimates of the entries
of the potentials for some given data. Specifically, we first simplify further the
factorization by multiplying its potentials until no potential domain is included
in another potential domain. Let Q1, . . . , Qn denote the potential domains in the
resulting factorization. Note that each domain Qi is of the form K ∪ PaG(K)
with K ∈ Cl(GC) and C ∈ Cc(G). Then, we run the IPFP per se:

1 For each potential ψ(Qi)
2 Set ψ0(Qi) = 1
3 Repeat until convergence
4 For each potential ψt(Qi)
5 Set ψt+1(Qi) = ψt(Qi)

pe(Qi)
pt(Qi)

where pt =
∏n

i=1 ψt(Qi), and pe is the empirical probability distribution over V
obtained from the given data.

5 Inference

The factorization in Eq. 1 also enables us to perform inference in AMP CGs
efficiently by deploying the algorithm for inference in DAGs developed by [7],
and upon which most other inference algorithms build. Specifically, we start by
transforming G into its moral graph Gm by running the procedure below. This
procedure differs from the one in [7], because G is an AMP CG and not a DAG.
In any case, the moralization procedure in [7] is a special case of the procedure
below.

1 Set Gm = G
2 For each connectivity component C ∈ Cc(G)
3 For each clique K ∈ Cl(GC)
4 Add the edge X → Y to Gm for all X ∈ PaG(K) and Y ∈ K
5 Add the edge X − Y to Gm for all X,Y ∈ PaG(K) st X �= Y
6 Replace all the directed edges in Gm with undirected edges
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The reason of why Gm has the edges it has will become clear later. We con-
tinue by transforming Gm into a triangulated graph Gt, and sorting its cliques to
satisfy the so-called running intersection property. The procedure below accom-
plishes these two objectives. An UG is triangulated when every cycle in it con-
tains a chord, i.e. an edge between two non-consecutive nodes in the cycle. The
cliques of a triangulated graph can be ordered as Q1, . . . , Qn so that for all
1 < j ≤ n, Qj ∩ (Q1 ∪ . . . ∪ Qj−1) ⊆ Qi for some 1 ≤ i < j. This is known as
the running intersection property (RIP).

1 Set Gt = Gm

2 Repeat until all the nodes in Gt are marked
3 Select an unmarked node in Gt with the largest number of marked

neighbours
4 Mark the node and make its marked neighbours form a complete set

in Gt by adding undirected edges
5 Save the node plus its marked neighbours as a candidate clique
6 Remove every candidate clique that is included in another
7 Label every clique with the last iteration that marked one of its nodes
8 Sort the cliques in ascending order of their labels

Finally, let Q1, . . . , Qn denote the ordering of the cliques of Gt returned by the
procedure above. Let Sj = Qj ∩ (Q1 ∪ . . . ∪ Qj−1) and Rj = Qj \ Sj . Note that
for every K ∈ Cl(GC) with C ∈ Cc(G), there is some Qi st K ∪ PaG(K) ⊆ Qi,
because the moralization procedure above made K ∪ PaG(K) a complete set in
Gm and thus in Gt. Then,

p(V ) =
∏

C∈Cc(G)

∏

K∈Cl(GC)

ψ(K,PaG(K)) =
n∏

i=1

φ(Qi) (2)

and thus

p(V ) = f([Q1 ∪ . . . ∪ Qn−1] \ Sn, Sn)g(Sn, Rn)

and thus

Rn⊥p[Q1 ∪ . . . ∪ Qn−1] \ Sn|Sn

by [6, p. 29], and thus

p(V ) = p(Q1 ∪ . . . ∪ Qn−1)p(Rn|Q1 ∪ . . . ∪ Qn−1) = p(Q1 ∪ . . . ∪ Qn−1)p(Rn|Sn). (3)

Note also that

p(Q1 ∪ . . .∪Qn−1) =
∑

rn

p(Q1 ∪ . . .∪Qn−1, rn) = [
n−1∏

i=1

φ(Qi)]
∑

rn

φ(Sn, rn). (4)

Then, Eqs. 2-4 imply that

p(Rn|Sn) = φ(Qn)/
∑

rn

φ(Sn, rn).
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Note that Sn ⊆ Qj for some 1 ≤ j < n by the RIP. Then, we replace φ(Qj) with
φ(Qj)

∑
rn

φ(Sn, rn), after which Eq. 4 implies that

p(Q1 ∪ . . . ∪ Qn−1) =
n−1∏

i=1

φ(Qi).

We repeat the steps above for p(Q1 ∪ . . . ∪ Qn−1) and so we obtain p(Ri|Si) for
all 1 ≤ i ≤ n. Now, note that S1 = ∅ and, thus, p(Q1) = p(R1|S1). Moreover,
since S2 ⊆ Q1 by the RIP, then

p(S2) =
∑

q1\s2
p(S2, q1 \ s2)

and thus

p(Q2) = p(R2|S2)p(S2).

We repeat the steps above for Q3, . . . , Qn and so we obtain p(Qi) for all 1 ≤
i ≤ n. To obtain p(Qi|o) where o denotes some observations or evidence, we first
remove all the entries of φ(Qj) that are inconsistent with o for all 1 ≤ j ≤ n,
then we repeat the steps above to get p(Qi, o) and, finally, we normalize by
p(o) =

∑
qi

p(qi, o). To obtain p(X|o) where X � Qi for all 1 ≤ i ≤ n, we
compute p(x, o) for all x as if {x, o} were the observations and, then, we normalize
by p(o) =

∑
x p(x, o).

6 Error AMP CGs

So far in this article, we have shown how an AMP CG factorizes a probability
distribution, and how this helps in performing parameter learning and inference
efficiently. We believe that our findings solve some computational issues that
have hindered the use of AMP CGs in practice. In this section, we turn our
attention to another issue that may have also hindered the use of AMP CGs,
namely the lack of an intuitive interpretation of their edges. Whereas the directed
edges in a DAG may be interpreted as causal relationships and the undirected
edges in an UG as correlation relationships, it is not clear how to combine these
two interpretations to produce an intuitive interpretation of the edges in an
AMP CG. We propose here a way to do it by adapting to discrete AMP CGs
the interpretation for Gaussian AMP CGs presented in [1, Sect.5] and further
studied in [9, Sect. 3]. Specifically, we propose to interpret the directed edges
in an AMP CG as causal relationships. In other words, the parents of a node
represent its causal mechanism. We propose to assume that this mechanism is
deterministic but it may sometimes work erroneously. We propose to interpret
the undirected edges in the AMP CG as the correlation structure of the errors
of the causal mechanisms of the different nodes. To show the validity of this
interpretation, we will first modify the AMP CG by adding a deterministic node
for each original node to represent explicitly the occurrence or not of an error in
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Fig. 1. An AMP CG and its corresponding EAMP CG.

its causal mechanism and, then, we will show that the original and the modified
AMP CGs are equivalent in some sense. We call the modified CG an error AMP
(EAMP) CG. Since an EAMP CG is an AMP CG with deterministic nodes, we
discuss these first.

6.1 AMP CGs with Deterministic Nodes

We say that a node X of an AMP CG is determined by some Z ⊆ V when
X ∈ Z or X is a function of Z in each probability distribution that is Markovian
wrt the CG. In that case, we also say that X is a deterministic node. We use
D(Z) to denote all the nodes that are determined by Z. From the point of view
of the separations in an AMP CG, that a node outside the conditioning set of a
separation is determined by it, has the same effect as if the node were actually
in the conditioning set. We extend accordingly the definition of separation for
AMP CGs to the case where deterministic nodes may exist. Given an AMP CG
G, a path ρ in G is said to be Z-open when

– every triplex node in ρ is in D(Z) ∪ SaG(D(Z)), and
– no non-triplex node B in ρ is in D(Z), unless A − B − C is a subpath of ρ

and PaG(B) \ D(Z) �= ∅.

6.2 EAMP CGs

The EAMP CG H corresponding to an AMP CG G is an AMP CG over V ∪ E,
where E denotes the error nodes. Specifically, there is an error node EX ∈ E for
every node X ∈ V , and it represents whether an error in the causal mechanism
of X occurs or not. We set PaH(X) = PaG(X) ∪ EX to represent that EX

is part of the causal mechanism of X in H. This causal mechanism works as
follows: If EX = 0 (i.e. no error) then paG(X) determines the state of X to be
the distinguished state x

paG(X)
∗ , else X may take any state but the distinguished

one. The undirected edges in H are all between error nodes, and they represent
the correlation structure of the error nodes. Specifically, the undirected edge
EX − EY is in H iff the undirected edge X − Y is in G. Note that the error
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nodes are never observed, i.e. they are latent. The procedure below formalizes
the transformation just described. See Fig. 1 for an example.

1 Set H = G
2 For each node X ∈ V
3 Add the node EX and the edge EX → X to H
4 Replace every edge X − Y in H st X,Y ∈ V with an edge EX − EY

Now, consider a probability distribution p(V,E) that is Markovian wrt the
EAMP CG H. Then,

p(V,E) = p(V |E)p(E) = [
∏

X∈V

p(X|PaG(X), EX)]p(E) (5)

by C1 and C3∗. Moreover, in order for the causal mechanism of X in H to match
the description above, we restrict p(X|PaG(X), EX) to be of the following form:

p(X|paG(X), EX) =

⎧
⎪⎨

⎪⎩

1 if EX = 0 and X = x
paG(X)
∗

0 if EX = 0 and X �= x
paG(X)
∗

q(X|paG(X)) if EX = 1
(6)

where q(X|paG(X)) is an arbitrary conditional probability distribution with the
only constraints that q(X|paG(X)) = 0 if X = x

paG(X)
∗ , and q(X|paG(X)) > 0

otherwise. The first constraint follows from the description above of the causal
mechanism of X in H, whereas the second is necessary for p(V ) being strictly
positive. Note that EX is determined by PaG(X)∪X. Specifically, if X = x

paG(X)
∗

then EX = 0, else EX = 1. Then, E is determined by V . Hereinafter, when we
say that a probability distribution is Markovian wrt an EAMP CG, it should be
understood that it also satisfies the constraint in Eq. 6.

We assume that p(E) is strictly positive, as a way to ensure that p(V ) is
strictly positive. This together with the fact that p(E) is Markovian wrt HE ,
which follows from p(V,E) being Markovian wrt H, implies that p(E) factorizes
as shown in Eq. 1 and, thus, Eq. 5 becomes

p(V,E) = [
∏

X∈V

p(X|PaG(X), EX)][
∏

EC∈Cc(HE)

∏

EK∈Cl(HEC
)

φ(EK)]. (7)

Thus, it is clear that the EAMP CG H can be interpreted as we wanted: Each
node is controlled by the causal mechanism specified in the AMP CG G, the
mechanism is deterministic if no error occurs and it is random otherwise, and the
errors of the different mechanisms obey the correlation structure specified in G.
To see the last point, note that EC ∈ Cc(HE) iff C ∈ Cc(G), and EK ∈ Cl(HEC

)
iff K ∈ Cl(GC). Thus, H somehow keeps the structural information in G. To
make this claim more specific, note that the independence model represented by
G coincides with that represented by H under marginalization of the error nodes
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which, recall from above, are latent [9, Theorem 1].1 Recall that the indepen-
dence model represented by H can be read off as shown in Sect. 6.1. Note that
that the independence model represented by G coincides with that represented
by H under marginalization of the error nodes implies that the probability dis-
tribution resulting from marginalizing E out of a distribution p(V,E) that is
Markovian wrt to H is Markovian wrt G and, thus, it factorizes as shown in
Eq. 1. Specifically, recall that E is determined by V and, thus, p(V,E) is actu-
ally a function of V . Then, it suffices to set each potential ψ(K,PaG(K)) in
Eq. 1 equal to the following product of the terms in Eq. 7:

ψ(K,PaG(K)) = [
∏

X∈K

p(X|PaG(X), EX)]φ(EK)

bearing in mind that if X belongs to several cliques K, then p(X|PaG(X), EX)
is assigned to only one (any) of the potentials ψ(K,PaG(K)). For instance, the
following is a valid assignment for the AMP and EAMP CGs in Fig. 1:

ψ(A) = p(A|EA)φ(EA) ψ(C, F, A) = p(F |EF )φ(EC , EF )
ψ(B, A) = p(B|A, EB)φ(EB) ψ(D, I, A, B) = p(D|A, B, ED)φ(ED, EI)
ψ(C, D, A, B) = p(C|A, EC)φ(EC , ED) ψ(F, I) = p(I|EI)φ(EF , EI)

Unfortunately, the opposite of the last result above does not hold. That is, not
every probability distribution that factorizes according to an AMP CG coincides
with the marginal of a distribution that is Markovian wrt the corresponding
EAMP CG. To see it, let G be the AMP CG A → B − C. Let H be the EAMP
CG corresponding to G, i.e. EA → A → B ← EB − EC → C. Consider a
probability distribution p(A,B,C,EA, EB , EC) that is Markovian wrt H. Since

1 Unlike in this work, V is a Gaussian random variable in [9]. However, that is irrelevant
in the proof of [9, Theorem 1]. The proof builds upon the following two properties
which, as we show, also hold for the framework in this work:

– A node EX ∈ E is determined by some Z ⊆ V iff PaG(X) ∪ X ⊆ Z. The if part
follows from the fact shown above that EX is determined by PaG(X)∪X. To see the
only if part, assume to the contrary that Z determines EX but PaG(X) ∪ X � Z.
Then, X /∈ Z or there is some Y ∈ PaG(X) \ Z. If X /∈ Z, then let H ′ be the
EAMP CG H ′ over V ∪E whose only edge is EX → X, and let p′ be a probability
distribution that is Markovian wrt H ′. Note that EX is a function of just X in
p′. If X ∈ Z, then let H ′ have the edges EX → X ← Y ← EY , and let p′ be
Markovian wrt H ′ st xy0∗ �= xy1∗ . Note that EX is a function of just X ∪ Y in p′.
Note also that in either case p′ is Markovian wrt H, because H ′ is a subgraph of
H. Note also that in neither case EX is a function of Z in p′. This contradicts that
Z determines EX .

– A node X ∈ V is determined by some Z ⊆ V iff X ∈ Z. The if part is trivial.
To see the only if part, note that X is determined by Z only if X ∈ Z or EX is
determined by Z. However, EX is determined by Z only if X ∈ Z by the previous
property.

.



344 J.M. Peña

as shown above {EA, EB , EC} is determined by {A,B,C}, Eq. 7 implies that

p(a0, b
a0∗ , C)

p(a1, b
a1∗ , C)

=
p(a0|EA)p(ba0∗ |a0, EB)p(C|EC)φ(EA)φ(EB , EC)

p(a1|EA)p(ba1∗ |a1, EB)p(C|EC)φ(EA)φ(EB , EC)
=

p(a0|EA)φ(EA)

p(a1|EA)φ(EA)
(8)

because both {a0, b
a0∗ } and {a1, b

a1∗ } determine that EB = 0, which implies
that p(ba0∗ |a0, EB) = p(ba1∗ |a1, EB) = 1. Now, consider a probability distribution
p′(A,B,C) that factorizes according to G. Then, Eq. 1 implies that

p′(a0, b
a0∗ , C)

p′(a1, b
a1∗ , C)

=
ψ(a0)ψ(a0, b

a0∗ , C)
ψ(a1)ψ(a1, b

a1∗ , C)
. (9)

Note that the ratio in Eq. 9 is a function of C whereas the ratio in Eq. 8 is not.
Therefore, p(A,B,C) �= p′(A,B,C) in general.

Finally, note that every node X ∈ V in an EAMP CG H forms a connectivity
component on its own. Therefore, the factorization in Eq. 7 is actually of the same
form as the factorization in Eq. 1. This comes as no surprise because, after all,
H is an AMP CG over V ∪ E.

7 Discussion

We have addressed some issues that may hinder the use of AMP CGs in practice.
We hope that the results reported in this paper help others to deploy AMP CGs
in practical applications. Specifically, we have shown how a discrete probability
distribution that is Markovian wrt an AMP CG factorizes according to it. We
have also shown how this factorization makes it possible to perform inference
and parameter learning efficiently. Finally, we have provided an intuitive inter-
pretation of AMP CGs that sheds some light on what the different edges may
mean. Unfortunately, the interpretation provided is not perfect, i.e. not every
probability distribution that factorizes according to an AMP CG coincides with
the marginal of a distribution that is Markovian wrt the corresponding EAMP
CG. We are working to solve this problem. We are also working on proving the
opposite of the result in Sect. 3, i.e. proving that every probability distribution
that factorizes according to an AMP CG is Markovian wrt it.

Acknowledgments. This work is funded by the Swedish Research Council (ref. 2010-
4808), and by a so-called career contract at Linköping University.
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Abstract. Symbolic inference algorithms in Bayesian networks have
now been applied in a variety of domains. These often require the com-
putation of the derivatives of polynomials representing probabilities in
such graphical models. In this paper we formalise a symbolic approach
for staged trees, a model class making it possible to visualise asymmetric
model constraints. We are able to show that the probability parametrisa-
tion associated to trees has several advantages over the one associated to
Bayesian networks. We then continue to compute certain derivatives of
staged trees’ polynomials and show their probabilistic interpretation. We
are able to determine that these polynomials can be straightforwardly
deduced by compiling a tree into an arithmetic circuit.

1 Introduction

The notion of probabilistic graphical models has been successfully established
[10]. In particular, Bayesian networks (BNs) [13] have proved to provide an
intuitive qualitative framework, based on various conditional independence con-
straints [8], as well as a computationally efficient inferential tool [11].

Probabilistic inference in BNs has been characterised in the literature not
only using numerical approaches but also symbolic methods, where probabilities
are treated as unknown quantities [5,7]. Symbolic approaches like these provide
a natural framework around which to perform various sensitivity analyses. It
has only recently been recognised that a variety of such probabilistic queries can
be answered by computing derivatives of polynomials representing the model’s
probabilities [7]. In [7] it is further shown that the computational burden of
calculating these polynomials can be reduced through an arithmetic circuit (AC)
representation.

Symbolic methods have proved useful in BNs (e.g. [5]), although these tech-
niques do come with a considerable computational cost. In this paper we study
a different class of models called staged trees [18,19] where such difficulties are
eased. We demonstrate that the interpolating polynomial [7,15] associated to a
staged tree can be straightforwardly deduced by simply looking at the structure
of the underlying graph. This is because the parametrisation associated to these
models is more intuitive than the one of BNs.

It has been shown that in fact discrete BNs are a special case of the class
of staged tree models [2,18,19]. The latter have the advantage over BNs of
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 346–355, 2015.
DOI: 10.1007/978-3-319-20807-7 31
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being able to explicitly represent asymmetric (conditional independence) con-
straints and relations between functions of random variables, explicitly modelling
information which is only present in the probability structure of a BN model.
Importantly, polynomials arising from this more general class of models have an
interesting algebraic structure which is not necessarily homogeneous and multi-
linear as in the BN case. We are able to demonstrate that a probabilistic semantic
can be attributed to the partial derivatives of interpolating polynomials. In addi-
tion, these can also be used to represent various causal assumptions under the
Pearlean causal paradigm [14]. Typically, because of the wide variety of possible
hypotheses they embody, staged trees are necessarily models over much smaller
state spaces than BNs. Since this is the main computational issue for symbolic
approaches associated with BNs, it follows that trees can be very practical for
investigating inferential queries.

The polynomials of staged trees can be computed by compiling them into
ACs just as for BNs. As noted in [12], the presence of asymmetries simply entails
setting equal to zero some terms in the polynomial associated with a model with
no such asymmetries. Therefore, the AC of a staged tree has often a substantially
smaller number of leaves. Together with the point above this means that, when
using a symbolic approach for our model class, computations and inferential
challenges are therefore eased.

2 Staged Tree Models

In this paper, as in [17,19], we focus on graphical models represented by trees. We
examine event trees T = (V,E), directed rooted trees where each inner vertex
v ∈ V has at least two children. In this context, the sample space of the model
corresponds to the set of root-to-leaf paths in the graph and each directed path,
which is a sequence of edges r = (e | e ∈ E(r)), for E(r) ⊂ E, has a meaning in
the modelling context. To every edge e ∈ E we associate a primitive probability
θ(e) ∈ (0, 1) such that on each floret F(v) = (v,E(v)), where E(v) ⊆ E is the
set of edges emanating from v ∈ V , the primitive probabilities sum to unity.
The probability of an atom is then simply the product of primitive probabilities
along the edges of its path: πθ(r) =

∏
e∈E(r) θ(e). After [6,19] we define:

Definition 1. Let θv = (θ(e) | e ∈ E(v)) be the vector of primitive probabilities
associated to the floret F(v), v ∈ V , in a tree T = (V,E). A staged tree is an
event tree as above where, for some v, w ∈ V , the floret probabilities are identified
θv = θw. Then, w, v ∈ V are in the same stage.

Setting floret probabilities equal can be thought of as representing conditional
independence information. If vertices are linked to random variables [19,20] their
edges are associated with a projection of the model’s sample space. Two vertices
are thus in the same stage if they have the same (conditional) distribution over
their edges. When drawing a tree, vertices in the same stage are assigned the
same colour in order to have a visual counterpart for that information.
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Staged trees are flexible representations for many discrete models. They are
capable of representing all conditional independence hypotheses within discrete
BNs, whilst at the same time being more flexible in expressing modifications of
these, as we will see below. In particular, the graphical complexity is made up
for by the extra expressiveness of these models [19]. In this paper, although the
associated Chain Event Graph (CEG) is more convenient for displaying informa-
tion in a staged tree model, we will stick to the latter graphs when representing
their algebraic features.

Example 1. For the purposes of this short paper, we consider the following
simplification of a real system described in [19]. A binary model is designed
to explain a possible unfolding of the following events in a cell culture: a cell
finds itself in a benign or hostile environment, the level of activity within this
might be high or low, and if the environment is hostile then a cell might either
survive or die.

We can model this narrative using a BN on three variables: the state of
the environment is represented by Y0 taking values in Y0 = {hostile, benign},
cell activity is measured by Y1 as Y1 = {high, low} and viability via Y2 with
Y2 = {die, survive}. Then Y = (Y0,Y1,Y2) is the model space.

If we argue that a high or low level of activity is independent of the envi-
ronment being hostile or benign and that whether or not a cell dies does not
depend on its activity, then our model corresponds to the collider BN in (1),
stating that Y0 ⊥⊥ Y1 and Y0 �⊥⊥ Y1 | Y2.

Y0
�� Y2 Y1

�� (1)

Observe that this graphical representation, though storing all conditional
independence constraints between the Yi variables, does not inform us about all
of the assumptions above. It forces us to retain information which is meaningless
in our context, as for instance the atom ω = (benign,high, die) ∈ Y which has
probability zero. The representation of (1) in terms of a staged tree TBN in
Fig. 1, where each root-to-leaf path represents one ω ∈ Y, is therefore large. As
the number of variables gets larger, the percentage of information not described
through the graph can increase dramatically.

The apparent symmetries in this representation are typical for event trees
induced by BNs: all paths are of the same length and the stage structure (colour-
ing) depends on the distance of a vertex from the root. Keeping in mind the
assumptions made in our model, for example that there is no cell damage in a
benign environment, we notice that the lower part of the tree in Fig. 1 does not
contain any valuable information. There is even more redundancy if we add an
extra level of complexity to the model, for instance by assessing the constitution
of a surviving cell—which is meaningless if a unit has died. Thus, the model at
hand is a context specific BN rather than a BN (see e.g. [19]), and there is a
strong case for using a staged tree model.

We call the state space of our improved graphical model

XT = {ω1 = (hostile, high, die), . . . , ω8 = (benign, low)},
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which is the set of all meaningful unfoldings of events. It is canonically identified
with the set of root-to-leaf paths of an event tree T = (V,E),

RT = {r1 = (e01, e11, e31), r2 = (e01, e11, e32), . . . , r8 = (e02, e22)},

where we reduce the vertex set of TBN to V = {v0, v1, . . . , v10} and the edges are
E = {e01, e02, . . . , e42}, with eij corresponding to the jth edge emanating from
vi, for fitting i and j.

Fig. 1. A staged tree TBN representa-
tion of the BN in (1) of Example 1.

Fig. 2. An asymmetric staged tree T
representing the context specific infor-
mation of the BN in (1) of Example 1.

Following this approach, we obtain the staged tree T in Fig. 2. This new rep-
resentation is far more expressive than the BN itself and less cluttered than the
BN’s tree TBN, whilst conveying the same information: the colouring expresses
the given conditional independence assumptions that can also be read from the
BN. For instance, by colouring the edges in E(v1) and E(v2) in the same manner,
we visualise equality of the probability labels

θ(e11) = θ(e21) or P (Y1 = high|Y0 = hostile) = P (Y1 = high|Y0 = benign),
θ(e12) = θ(e22) or P (Y1 = low|Y0 = hostile) = P (Y1 = low|Y0 = benign).

(2)

The same procedure is applied on the edges of v7, v9 and v8, v10. ��
Having understood the advantages of a staged tree over a BN, we now present
a symbolic approach to calculate probabilities in this type of models. Following
concepts introduced in [15] in the context of designed experiments, we define:

Definition 2. Let T = (V,E) be a staged tree with primitive probabilities θ(e),
e ∈ E, and set of root-to-leaf paths RT . We call Λ(e) = {r ∈ RT | e ∈ E(r)}
an edge-centred event, and set λe(r), for e ∈ E, to be an indicator of r ∈ Λ(e).
We call

cT (θ, λ) =
∑

r∈RT

πθ(r)
∏

e∈E(r)

λe(r) =
∑

r∈RT

∏

e∈E(r)

λe(r)θ(e)

the interpolating polynomial of T .
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The interpolating polynomial is a sum of atomic probabilities with indicators for
certain conditional events happening or not happening. Even though all these
unknowns sum to one, in our symbolic approach we treat them just like indeter-
minates. We will report in [9] some recent results that use interpolating polyno-
mials to characterise when two staged trees are statistically equivalent.

We now look at this model class from an algebraic point of view. As seen
in Example 1, the sample space of a BN with vertex set {Y1, . . . , Yn}, Yi ∈ Yi,
i = 1, . . . , n, gives rise to an event tree where each root-to-leaf path r ∈ RT is
associated to an atom ω ∈ Y1 × . . .×Yn and is hence of length n. By definition,
P (ω) = πθ(r) =

∏
r∈E(r) θ(e) and therefore the interpolating polynomial of a

BN is a sum of monomials each of which is of degree 2n and so homogeneous.
Moreover, the stage structure of a BN tree as in Fig. 1 is such that no two vertices
along the same directed path are in the same stage, in fact stages exist only along
orthogonal cuts [20]. Thus in particular, the interpolating polynomial of a BN
is also multilinear, that is linear in all components. Note that, although in this
paper we consider Bayesian subjective probabilities only, other representations of
uncertainty in directed graphical models entertain similar multilinear structures
(see e.g. [1]).

Note that the indicators λe(r) on the edges e ∈ E(r) are associated to the
(conditional) event represented by e, having probability θ(e). This notation is
apparently redundant, but will turn out to be useful in Sect. 3. We observe that
this redundancy is one of the great advantages of a staged tree: whilst [7] needs to
compute conditional probabilities of all compatible parent structures of an event,
which is a rather obscure concept in a symbolic framework, and [5] computes the
product space of any indeterminates’ combination regardless of their meaning,
a tree visualisation of our model gives us the necessary structure immediately:
events can be simply read from the paths in the graph. Recently, [12] developed
an algorithm which automatically computes only the required monomials in BN
models. Although this makes computations more efficient the parametrisation
in [12] is still not as transparent as the one associated to trees.

Example 2. Recall the model analysed in Example 1. Ignoring the equalities
implied by the stage structure, the interpolating polynomial of a model rep-
resented by the BN in (1) or the tree in Fig. 1 equals

cBN(θ) = θ01θ11θ31 + θ01θ11θ32 + θ01θ12θ41 + θ01θ12θ42

+ θ02θ21θ51 + θ02θ22θ52 + θ02θ22θ61 + θ02θ22θ62,
(3)

where we simplified our notation to θij = θ(eij) for each i, j. We also omitted for
ease of notation the indicator functions on all terms. This polynomial has been
simply read from the event tree by first multiplying over all primitive probabili-
ties along one root-to-leaf path, and then summing over all of these paths. This
is a lot easier done using Fig. 1 than in (1), where we would have had to sum over
compatible parent configurations, which could have not been read directly from
a DAG. Observe that here, as outlined above, cBN is homogeneous of degree 3.
The number of terms equals the number of paths in the tree representation.
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Fig. 3. The staged tree of a repeated coin toss with interpolating polynomial (7).

Conversely, the more adequate improved model without meaningless terms
or terms with probability zero has the interpolating polynomial

c(θ) = θ01θ11θ31 + θ01θ11θ32 + θ01θ12θ41 + θ01θ12θ42 + θ02θ21 + θ02θ22. (4)

This is a lot easier to handle than cBN but still conveys exactly the same infor-
mation. When plugging in the conditional independence constraints as in (2),
we obtain the interpolating polynomial of the staged tree in Fig. 2 as:

cT (θ) = θ01θ11θ31 + θ01θ11θ32 + θ01θ12θ31 + θ01θ12θ32 + θ02θ11 + θ02θ12, (5)
= θ01(θ11(θ31 + θ32) + θ12(θ31 + θ32)) + θ02(θ11 + θ12), (6)

where we substituted θ1j = θ2j and θ3j = θ4j , for j = 1, 2. This is now inhomo-
geneous but still multilinear, and it has total degree 3 with individual monomial
terms having degree 2 or 3. Notice that cT can be easily factorised in (6) by
simply following the structure of the underlying graph [9]. In [4], polynomials
of this type are called factored. This representation entails great computational
advantages since the compilation into an AC is almost instantaneous. Whilst for
BNs the factored representation might be difficult to obtain, it comes almost for
free in tree models.

We observe that the graphical simplicity of a staged tree model in comparison
to an uncoloured tree or a BN is also reflected algebraically: the polynomial in (5)
has fewer indeterminates than the one in (4) and a lot fewer than the polynomial
associated to a tree which is derived from a BN in (3). This is because in the
BN the redundancy of atoms gives rise to redundant terms. ��
Observe that, although the interpolating polynomial of the staged tree in
Example 2 is multilinear, the concept of stages allows for enough flexibility to
construct models where this is not the case. Suppose we are interested in a
situation where we flip a coin and repeat this experiment only if the first out-
come is heads. This is depicted graphically by the coloured tree in Fig. 3. The
interpolating polynomial of this model is non-homogeneous and not multilinear:

cT (θ, τ, λ, λ′) = λ2θ2 + λλ′θτ + λ′τ, (7)

for θ + τ = 1 and indicators λ of ‘heads’ and λ′ of ‘tails’. Again, this algebraic
structure and model type cannot, without significant obscuration, be expressed
in terms of a BN. If the polynomial is multilinear, we call our model square-free.
The focus of this paper lies on these.

By construction, Theorem 1 of [7] holds for a staged tree interpolating poly-
nomial:
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Lemma 1. For any event A represented by a set of root-to-leaf paths RA in a
staged tree T , we know that

P (A) =
∑

r∈RA

πθ(r) =
∑

r∈RA

∏

e∈E(r)

λe(r)θ(e) = cT (θ, λ|RA
),

where λ|RA
indicates that λe(r) = 1 for all e ∈ E(r) with r ∈ RA, and else zero.

We are therefore able to symbolically compute the probability of any event
associated to a tree.

Example 3. In the notation of Examples 1 and 2, suppose we are interested
in calculating the probability of death of a cell. This is captured by the event
A = {x ∈ XT | x3 = die}. Thus RA = Λ(e31) ∪ Λ(e41) = {r1, r2} corresponds
to all root-to-leaf paths going through an edge labelled ‘die’ which translates in
summing all terms in (5) which include the label θ31. Therefore, again omitting
the λ indicators, P (A) =

∑
r∈RA

πθ(r) = θ01θ11θ31 + θ01θ12θ31. ��

3 The Differential Approach

We are now able to provide a probabilistic semantic, just as [7] for BNs, to the
derivatives of polynomials associated to staged trees. For ease of notation we let
in this section λe = λe(r).

Proposition 1. For equally coloured edges e ∈ E and an event A represented
by the root-to-leaf paths RA, the following results hold:

P (Λ(e)|A) =
1

cT (θ, λ|RA
)
∂cT (θ, λ|RA

)
∂λe

, P (Λ(e), A) = θ(e)
∂cT (θ, λ|RA

)
∂θ(e)

, (8)

where Λ(e) is an edge-centred event.

All the probabilities in (8) are equal to zero whenever e �∈ E(r) for all r ∈ RA.
Notice that the derivatives of tree polynomials have the exact same interpreta-
tion of the ones of BNs as in [7]. Here we restricted our attention to square-free
staged trees but analogous results hold in the generic case: each monomial with
indeterminate λe and θ(e) of degree higher than one would need to be differen-
tiated a number of times equal to the degree of that indeterminate.

Proposition 2. In the notation of Proposition 1, we have that for e, e1, e2 ∈ E:

P (Λ(e1), Λ(e2) | A) =
1

cT (θ, λ|RA
)
∂2cT (θ, λ|RA

)
∂λe1∂λe2

, (9)

P (Λ(e1), Λ(e2), A) = θ(e1)θ(e2)
∂cT (θ, λ|RA

)
∂θ(e1)∂θ(e2)

, (10)

P (A | Λ(e)) =
∂2cT (θ, λ|RA

)
∂θ(e)∂λe

. (11)
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It is an easy exercise to deduce from Proposition 2 the probabilistic meaning of
higher order derivatives.

The above propositions demonstrate that the results of [7] are transferable
to the class of staged trees. In addition we are able to derive that in the staged
tree model class derivatives can be associated to causal propositions in the sense
of the Perlean concept of causal intervention on trees, as formalised in [21]. Note
that such a result does not hold in general for the polynomials describing BN
probabilities.

Proposition 3. Suppose the staged tree is believed to be causal as in [18]. Then
under the notation of Proposition 2,

P (A || Λ(e)) =
∂2cT (θ, λ|RA

)
∂θe∂λe

(12)

is the probability of the event A when the system is forced to go through edge e.

Note that all the quantities in (8)–(12) can be used in sensitivity analysis, for
instance by investigating the changes in probability estimates when the system
is set to be in a certain scenario of interest.

Example 4. We now compute a set of derivatives on the interpolating polynomial
cT in (5) with respect to λ31 and θ31 to perform probabilistic inference over
the event A that a cell dies, as in Example 3. Thus, we consider the edge e =
(v3, v7) and

1
cT (θ, λ|RA

)
∂cT (θ, λ|RA

)
∂λe

=
θ01θ11θ31 + θ01θ12θ31
θ01θ11θ31 + θ01θ12θ31

= 1, (13)

θ(e)
∂cT (θ, λ|RA

)
∂θ(e)

= θ13(θ01θ11 + θ01θ12) = P (A), (14)

∂2cT (θ, λ|RA
)

∂θ(e)∂λe
= θ01θ11 + θ01θ12. (15)

Observe that (13) is equal to unity since every path associated to the event A
must go through e. From the same argument follows that (14) is equal to P (A).
Equation (15) is a simple consequence of Bayes’ theorem, which can be checked
algebraically. ��

4 Trees as Circuits

The previous sections have introduced a comprehensive symbolic inferential tool-
box for trees, based on the computation of the interpolating polynomial and its
derivatives. In [7] it is shown that an efficient method to compute such polyno-
mials is by representing them as an AC. This is a DAG whose leaves are the
indeterminates and the inner nodes are labelled by multiplication and summa-
tion operations. The size of the circuit equals its number of edges.

ACs of staged tree polynomials are smaller in size than the ones associ-
ated to BNs for two reasons: first, a tree might have fewer root-to-leaf paths
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Fig. 4. The arithmetic circuit of the model represented in Example 2, yielding (5).

(as in Example 1); second, there can be less indeterminates because unfoldings
with probability zero are not included in the model and coloured labels further
decrease the number of indeterminates. Therefore, in asymmetric settings we
can expect computations to be much faster for trees than for BNs.

A major problem in the compilation of BN polynomials consists in the iden-
tification of the AC of smallest size. This usually entails the computation of the
BN’s jointree and the application of more complex algorithms [7]. We note here
that in tree models this is straightforward since the interpolating polynomial is
naturally factored.

Example 5. Recall the interpolating polynomial of the staged tree from Exam-
ple 2. We notice that (6) can be rewritten as cT (θ) = θ01(θ11 + θ12)(θ31 + θ31) +
θ02(θ11 + θ12).

This gives us the AC in Fig. 4 where leaves with the same parent are labelled
by primitive probabilities from the same floret, and labels belonging to leaves in
the tree are first summed in the AC. It is easy to deduce that the AC associated
to the BN’s polynomial in (3) would be much larger than the one in Fig. 4. We
note also that, whilst all the ACs deriving from BNs in [7] are trees, ours is more
generally a DAG. This is a consequence of the more flexible stage structure of
generic staged trees than the one of trees depicting BNs. ��

5 Discussion

Staged tree models, whilst representing a much larger model class than discrete
BNs, have proven to have a much more intuitive symbolic representation. We
have been able to show that in this framework polynomial derivatives have a
probabilistic semantic which is of use in sensitivity analysis. Our parametrisa-
tion further led to computational advantages because of the almost automatic
compilation into an AC.

Importantly, this paper relates the symbolic definition of discrete BNs to the
one of generic trees via the notion of an interpolating polynomial introduced in
Definition 2. We can therefore now start investigating classes of models that are
defined only symbolically, since the interpolating polynomial is able to capture
all the probabilistic information of the model. This can then lead to the definition
of new models that in general cannot be depicted by a graph.

In addition, the recognition that the probabilities associated to certain statis-
tical models have a polynomial form started a whole new area of research called
algebraic statistics [16]. We are now developing results which apply new exciting
methodologies from this subject to staged tree models. We are also starting to
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develop computer algebra methods to work with trees that exploit the symbolic
definition of the model we provided here and that will facilitate the use of such
models in practical applications. The examples we work with are of course larger
than those presented here (see [2,3]) and provide the framework for sensitivity
analyses in important areas of application.
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Abstract. Context specific independence (CSI) is an efficient means
to capture independencies that hold only in certain contexts. Inference
algorithms based on CSI are capable to learn the Conditional Probability
Distribution (CPD) tree relative to a target variable. We model motifs as
specific contexts that are recurrently observed in data. These motifs can
thus constitute a domain knowledge which can be incorporated into a
learning procedure. We show that the integration of this prior knowledge
provides better learning performances and facilitates the interpretation
of local structure.

Keywords: Context specific independence · CPD tree · Bayesian
network

1 Introduction

Our work falls within the framework of context-specific independence (CSI) [1].
It has been shown that the identification of context-specific relationships within
probabilistic relational models constitutes a powerful tool to discover local struc-
tures, i.e. interactions that hold on the studied domain. In many applications,
conditional independence relationships are true only in specific contexts. A con-
text is a partial configuration of variables that alone induces an effect on a target
variable. In diagnosis for instance, in spite of the variety of human symptoms, a
small subset of them may suffice to infer a disease. This restrained set of symp-
toms forms an example of context. Contexts are valuable pieces of information
that can be collected as background knowledge. Recurrent contexts observed
over distinct datasets form motifs that can be exploited to discover unexpected
associations between previous studies and a new experiment. This is specially
the case when the same causes induce different effects (i.e. the same motif affects
distinct target variables; for example, a symptom set is shared over previously
unrelated diseases). The problem of learning local structure has already been
addressed, notably in [2]. This paper outlines the use of prior domain knowl-
edge for inferring local structures. From a general point of view, incorporating
prior domain knowledge into learning algorithms can greatly enhance their per-
formances. Another advantage is that this strategy enables the user to identify
recurrent motifs in his own dataset. We discuss in Sect. 2 some related work
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 356–365, 2015.
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for incorporating knowledge into learning procedures. Section 3 introduces some
basic concepts associated to domain knowledge and local structure. In Sect. 4, we
propose a method for learning local structure from previously acquired motifs.
This strategy is evaluated through experimental results that are presented in
Sect. 5. Concluding remarks and future work are given in Sect. 6.

2 Related Work

The identification of CSI in Bayesian networks [1] provides compact data struc-
tures for representing probabilistic information. In [2], the authors have pro-
posed CPD trees to express context independencies. Other alternative models
have been suggested, such as Recursive Probability Trees (RPTs) [3]. RPTs are
a generalization of probability trees that can hold potentials in a factorized way.
Factorization yields a more compact representation, but the flexibility of RPTs
makes the discovery of motifs more complex. CPD trees have then been adopted
for this preliminary work. The incorporation of prior knowledge in BN learning
algorithms has already been investigated. In [4], the authors exploit an ontol-
ogy by translating concepts and relations into a BN structure. Ontology-based
construction of BNs requires the existence of a formal representation of a spe-
cific domain, which is not guaranteed. Rather than a global formal approach, we
suggest to infer local structure from a collection of motifs, from which a small
subset is expected to be consistent with the investigated data. Our strategy,
which rather consists in assembling fragmented pieces of information, has also
been tackled in [5]. This work is more an attempt to represent general types
of reasoning and does not exploit CSIs. Other approaches address the issue of
updating a knowledge base (KB) according to new evidence. In [6], a cyclic
approach has been proposed, which incorporates causal discoveries and ontol-
ogy evolution. Some authors suggest to tune a KB when conflicts have been
detected [7]. Contrary to these works, our paper assumes the existence of a well-
formed KB of motifs and examines the impact of its incorporation into learning
algorithms. A data mining inspired approach [8] proposes to reveal interesting
attribute sets using BN as background knowledge. If one models motifs as item-
sets, this approach shares some similarities with our work, since it combines BN
and itemsets. However, it differs in the fact that we guide BN construction using
motifs rather than the opposite.

3 Concepts Related to the Notion of Local Structure

3.1 Context-Specific Independence

A variable assignment (VA) is a couple (X,x), noted (X = x), where X is a ran-
dom variable and x the value taken by X. A context c generalizes this concept to
a set of variables C = {C1, . . . , Cn}. A context will be represented in extension
as follows: c = (C1 = c1, . . . , Cn = cn). The notion of context is generally used
to define a set of conditions reducing the interaction between a variable and its
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parents. For instance, a meteorological context including heavy rain will strongly
affect the probability that a tennis match will be played.

As pointed out in [2], the notion of context provides an explicit representa-
tion of the local structure. Contexts also yield a simpler encoding of the real
complexity of the underlying interactions. To capture this local structure, we
introduce a formal foundation for the concept of context. Following definition
of context-specific independence (CSI) due to [1], let X,Y,Z,C be four disjoint
sets of variables. X and Y are independent given Z in context C = c if

P (X|Z, c,Y) = P (X|Z, c) whenever P (Y,Z, c) > 0.

3.2 Conditional Probability Distribution Tree

The conventional representation of conditional probability distribution (CPD)
takes the form of a table indexed by all possible values of the set of parents.
Consequently, a CPD table has 2|S| rows, where |S| is the number of parents. As
explained in [2], such tabular representation is locally exponential and largely
overestimates the actual complexity of the involved interactions. An alternative
representation exploiting the concept of context defined above is the CPD tree.
This notion designates a tree whose leaves represent the distribution of the target
variable and whose internal nodes represent the parents branching over their
values. A tree path is an ordered list of VAs corresponding to the path from the
root towards a given node. A path will be denoted as follows: [X1 = x1, . . . , Xn =
xn]. Note that we use brackets for ordered lists and parenthesis for unordered
lists such as contexts and motifs. Inducing a CPD tree from a dataset can be
performed using learning procedures such as greedy hill climbing [2], using an
approach that has been designed for learning decision trees.

4 Learning Local Structures from Motifs

Our objective is to build a CPD tree from a list of motifs collected in a KB={mk}
where mk = (Xk

1 = xk
1 , . . . , X

k
nk

= xk
nk

). A motif is a context that is considered
as relevant. The interestingness of a motif can be explicitly stated by experts
or be related to its recurring nature over different datasets. In this latter case,
the same motif has been observed in many situations, but not necessarily over
the same target variable: in the previous example of meteorological context, the
same cause may affect different outdoor games, such as baseball. Due to their
similarity, the same notation will be used for contexts and motifs.

In this section, we first propose an extended version of the concept of CPD
tree. Then, we present a learning algorithm from data, using an existing KB and
based on two phases: the first one constructs a maximally expanded CPD tree
and the second one trims this candidate tree. These two steps are described, as
well as a Tabu search extracting an optimal subset of motifs from a given KB.
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4.1 Extended Definitions for CPD Tree Learning

We propose to extend the concept of CPD tree by introducing a categorization
of its leaves. A leaf represents a CPD associated to a particular configuration
(assignment of a variable set). Two situations may arise: either this configura-
tion reveals an remarkable context impacting the target variable, or it is only
the consequence of the construction of alternative paths. We call M-leaf a leaf
associated to a specific context. The prefix M indicates that this leaf may be
the evidence for a motif. A M-leaf is graphically represented by symbol �. The
second type is called a D-leaf and is represented by symbol �. This type cor-
responds to a default probability distribution shared by all the D-leaves. We
introduce this category to express the absence of a particular context. It presents
two advantages: simplification of the encoding of the local structure (all default
leaves share the same distribution parameters); better identification of specific
interactions (paths leading to a M-leaf). To illustrate these concepts, let consider
a voluntary simplified example of a network dedicated to medical diagnosis. Our
target variable is associated to heart rate measurement (denoted H), in associ-
ation with a restricted list of symptoms: chest pain (P ), cough (C), indigestion
(I) and fatigue (F ). The parent set of H is S = {P,C, I, F}. All the members
of S are random variables that can take two values: 0(false) and 1(true). In our
example, heart rate depends only on a reduced number of symptoms related to a
specific disease. Figure 1 shows an example of extended CPD tree that could have
be learned from an actual dataset. Note that this tree presents five leaves, but
only reveals two interesting features: �1 (bradycardia due to hypothyroidism);
�2 (tachycardia due to pulmonary embolism). In our oversimplified example,
D-leaves (�1,�2,�3) reflect the fact that patients which are not suffering from
either hypothyroidism or pulmonary embolism tend to have a normal heart rate.
While a CPD table would require 16 rows for variable H, a CPD tree can be
summarized into two paths and three parameters (distribution related to brady-
cardia, tachycardia, and normal heart rate).

Fig. 1. Example of an extended CPD tree

We state that a motif is retrieved in an inferred CPD tree T if there exist
at most one path π of T for which the two following conditions are met : (i) π
leads to a M-leaf; (ii) π contains p, that is every V A in p exists in π. Finally, one
needs to introduce the concept of consistency. A motif p is said to be consistent
with a path π if the following rule applies: for any V A = (X = x) in π such as
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X exists in p, then its assignment in p is x. Similarly, two motifs are said to be
consistent if all their common variables also share the same assignment.

4.2 Inference of CPD Trees

The proposed method for inferring CPD trees follows the standard approach of
heuristic search. Our learning algorithm attempts to search for the local structure
which best fits a dataset according to a scoring function. The term score(T ,D)
denotes the score related to an expended CPD tree T and a dataset D (the
Bayesian information criterion scoring function has been applied in our experi-
ments). Our algorithm exploits a knowledge base KB and starts with an initial
tree T consisting in a unique node, labeled as D-leaf. This initialization assumes
that D does not contain any motif.

procedure learnCPDtree(T ,D,KB)
1. hasChanged=false
2. Leaves=getAllLeaves(T )
3. For each leaf L in Leaves do
4. UKB=update(KB,L)
5. if UKB �= ∅ then
6. T =grow(T ,L,D,UKB)
7. hasChanged=true
8. end
9. end
10. if hasChanged then learnCPDtree(T ,D,KB)

end.

Procedure learnCPDtree first collects all the leaves of T (line 2 ). These nodes
represent potential locations for growing the CPD tree, using the internal method
grow. The update function (line 4 ) returns an updated version of KB that con-
tains the remaining constraints that apply when node L has been reached. To
illustrate this point, let us return to the example of Fig. 1 and suppose that our
initial KB is {(C = 1, P = 1), (I = 1, F = 1)}. The update of KB for a current
node consists into two actions:

– removal of all the motifs from KB that are not consistent with the actual
path. For instance, if this latter is [P = 0] (node marked I in Fig. 1), then
motif (C = 1, P = 1) has to be removed.

– removal of all V As that have already met the conditions expressed by a motif.
For instance path [P = 0, I = 1] (node marked F ) contains a V A (I = 1) that
has already been visited. Then, motif (I = 1, F = 1) must be updated into
(F = 1).

If UKB is not empty, function grow is called (line 6 ). The aim of grow is to
replace a current leaf L by a new node. Finally, the procedure learnCPDtree is
recursively called as long as the tree can been expanded (line 10 ).
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function grow((T ,L,D,KB)
1. pbest=bestPattern(L,D,KB)
2. vabest=bestVariableAssignment(L,D,pbest)
3. T ′=addNode(T ,L,vabest)
4. return T ′

end.

Function grow is the core of the tree building. Firstly, it searches for the motif
pbest that achieves the local maximum score when placed at node L (line 1 ).
We estimated that growing the tree node by node is a better approach than
replacing a leaf by a branch (i.e. a whole motif). This strategy yields a more
accurate node assignment and provides a more compact tree representation.
This is the reason why we select from pbest the variable assignment vabest =
(vbest = ibest) that achieves the highest score (line 2 ). L is replaced by a new
node N denoted by vbest (line 3 ). By nature, any interior node of a CPD tree
possesses a set of outgoing arcs to its children, each one associated with a unique
variable assignment. Therefore, a child is added to N for the arc corresponding
to assignment ibest. This particular child is a M-leaf; the remaining children are
labeled as D-leaves. Since learnCPDtree replaces leaves by interior nodes, these
labels are updated as long as the tree grows. Note that multiple and possibly
interleaved motifs may appear in the same path π, as long as they are consistent.

This algorithm generates a maximally expanded tree, in order to circumvent
the problem of local maxima (see [9] for a justification). In a second phase,
the tree is trimmed in a bottom-up fashion, using procedure trimCPDtree. This
method is based on a selection of the node to be pruned (line 1 ). Function cut
then replaces the node by a leaf L and creates a new tree T ′ (line 3 ). The type
of L, either M-leaf or D-leaf, is determined by testing the score of T ′ for both
options and by selecting the option achieving the highest score. This new tree
is then compared to T . If the trimmed tree obtains a better score, it is retained
(line 4 ). Finally, this procedure is recursively called as long as a pruning node
is available (line 5 ).

procedure trimCPDtree(T ,D,KB)
1. node=selectNode(T )
2. if node �= NIL then
3. T ′=cut(T ,node)
4. if score(T ′,D) > score(T ,D ) then T =T ′

5. trimCPDtree(T ,D,KB)
end.

end.

Procedure selectNode defines the best location for pruning T . This selection
can only be performed if a set of candidate nodes has already been determined.
For this purpose, during the previous growing phase, all the nodes have been
marked by an additional boolean label prune indicating if it can be pruned or
not. The following rules were applied:
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– a branch can be removed at node N if it corresponds to the beginning of a new
motif. This property can be easily detected by comparing an original motif m
to its updated version. If motif m starts at N , then prune(N ) = true,

– a node N that has been created as D-leaf is labeled as prune(N ) = true,
– a node N that does not meet the two previous conditions is labeled as

prune(N ) = false.

Function selectNode returns the node which is the most appropriate cutting
point in T . As previously said, the trimming strategy operates in a bottom-up
manner. Therefore, our method searches for the nodes N verifying prune(N )
and retains the node having the maximal depth in the tree (in case of ex-aequo,
one candidate node is chosen at random). The label prune of this node is set to
false, in order to reduce the candidate list. When no more candidates remain,
selectNode returns NIL.

4.3 Motif Selection Using Tabu Search

The inference method presented above is capable to reconstruct a CPD tree
from the exact list of motifs that are effectively concealed in a dataset D. From
a practical point of view, one can only assume that some motifs in a knowledge
base may be effectively retrieved in D. The existence of false positives degrades
the performances of our learning procedure. In fact, even if our trimming method
reduces the presence of false positives in inferred CPD trees, it cannot eliminate
all of them. For instance, the first motif selected in the growing phase cannot
be trimmed without the removal of all the motifs that follows it. Therefore, we
adopted a Tabu method [10] to eliminate false positives. This technique aims at
defining which motif in KB must be retained as input of our previously described
inference algorithm. In our adaptation of Tabu search, a solution S represents
the subset of motifs extracted from KB that will be retained for our inference
method. This latter then estimates an optimal tree T according only to the
subset S. From this outcome, score(T ,D) can be computed as the measure of
the fitness of the solution S. A solution can be modeled as a boolean vector of
size n, where n is the number of motifs in KB. The ith motif is retained if its
boolean value is set to true. The optimization algorithm starts with an initial
empty solution, assuming that D does no contain any motifs. Neighbors of the
current candidate are then generated to find a more adequate solution based on
the same list of motifs, except some random mutations (in our implementation,
a neighbor contains 1 to 5 boolean changes in relation to the current solution).
Note that the trimming procedure is still needed, since Tabu search only defines
the optimal motif list, but does not prevent a given motif to be present in multiple
occurrences in the inferred tree.

5 Experimental Results

To evaluate the relevance of using a knowledge base for inferring local struc-
ture, we performed multiple experiments with various settings. The parent vari-
ables are all binary and the target variable is continuous. We simulated datasets
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encompassing a certain number of motifs of different sizes. For comparison
purpose, we adopted two methods. The first one (further referred as standard
method) discovered new motifs without any a priori knowledge. This learning
procedure was based on the method described in [2]. The second one (further
referred as motif-based method) was our technique exploiting a knowledge base
of motifs.

5.1 Experimental Setup

Our experiments were carried out using the following methodology:

– Generation of a golden reference which is a random extended CPD tree con-
taining motifs of different sizes. The total number of variables has been set
to 100 for all experiments. We controlled the complexity of the golden ref-
erence by defining two random parameters: the number n of motifs; the size
sm of each motif (number of variables composing the motif m). Both n and
sm followed a uniform law on a predefined interval. Three ranges have been
fixed for n: [1, 3], [4, 6] and [7, 10]. Similarly, we specified three ranges for sm:
[2, 4], [5, 7] and [8, 10]. The combination of these intervals defined nine com-
plexity groups. For each of these groups, 20 random extended CPD tree were
generated.

– Extraction of a list LT of true positive motifs from the generated CPD tree.
– Generation of a random dataset using LT . All the generated datasets contain

the same number of instances set to 20,000. An instance of a dataset is deter-
mined from a particular leaf of the generated CPD tree. Firstly, one randomly
selects the type of the leaf (proportion of two-thirds for M-leaf; one-third for
D-leaf). Secondly, a leaf of the same type is randomly selected. By definition,
all the variables belonging to the path towards this leaf have specific values.
Only the remaining variables are not constrained and are randomly assigned.
Thirdly, the value of the target variable must be defined. For a D-leaf, the
value follows a default normal distribution (μ = 0, σ = 1). For each M-leaf,
an arbitrary index i has been attributed and the value follows a normal law
(μi = 3 + i, σi = 0.1).

– Creation of a KB of motifs belonging to the golden reference as well as false
motifs. The proportion of false motifs issued from LT has been set to 90 %.
False motifs have been randomly generated from the initial list of variables,
so that (i) they observed a comparable complexity (i.e. motif size) in relation
to the true motifs; (ii) they were not a subset of any true motif.

– Inference of CPD trees using standard as well as motif-based methods.
– Performance comparison based on precision and recall of the extracted motifs,

as well as the compactness of the learned CPD trees.

5.2 Results

Both standard and motif-based methods are capable to retrieve relevant motifs.
These method achieve a precision of 1 in respectively 91.5 % and 95.1 % of the
cases. These good results may be chiefly attributed to the high separability of
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the original motif distributions. Conversely, the sensitivity was generally more
contrasted: a recall of 1 was obtained in only 26.3 % of the cases for the standard
method, compared to 62.7 % for our method. Likewise, recall scores were lower
for the first method (mean=0.49), compared to the second one (mean=0.90).
Figure 2 details the influence of data complexity on the sensitivity. The number of
motifs impacts on the recall performance for both methods, but more specifically
on the standard one. As expected, motif-based method is also more robust with
regards to motif size. Another advantage of our method is that it strongly reduces
the complexity of the inferred trees. Our procedure induces a tree complexity
(number of nodes) that is comparable to that of the golden reference (t-test
p-value of 0.32). This is clearly not the case for the standard approach which
tends to build large trees (mean relative increase of 34 %), making the interpre-
tation of the inferred motifs much more difficult.

Fig. 2. Recall performances. Rows correspond to the followings ranges of n: [1, 3] (top),
[4, 6] (middle) and [7, 10](bottom). Columns correspond to the following ranges of sp:
[2, 4](left), [5, 7](middle) and [8, 10](right). For each figure, left (resp. right) box plot
corresponds to the standard (resp. motif-based) method.

6 Conclusion and Future Work

In this paper,we have proposed a new approach to discover local structure using
a priori knowledge defined by a set of “interesting” motifs. We have shown that
the incorporation of such motifs greatly improves learning procedures aiming
at inferring CPD trees, leading to better performances and tree compactness.
The same concept also provides an efficient means to interpret new datasets.
Recurrent trends could thus be revealed, allowing experts to investigate new
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connections and to infer some common causes for previously unassociated phe-
nomenons. There is room for substantial improvement in the current implemen-
tation. If the proposed strategy has proven to be efficient for retrieving known
motifs, it is not capable in its current form to discover new motifs that are not
a mere combination of predefined ones. To address this shortcoming, a hybrid
approach could be investigated, that would associate discovery of new motifs
and discrimination between known and new motifs. Another line of future work
concerns the definition and the consistency of our knowledge base. We have only
considered the information relative to motifs, assuming that the variable domain
is stable during the motif acquisition process. In many situations, datasets may
contain distinct sets of variables, due to incomplete or incremental experimental
designs. Therefore, a context must be associated with its background, that is
the variable set in which the context independency has been observed. Finally,
we intend to apply our prototype to real-world problems. Functional genomics
is a research field that is particularly well adapted for that purpose: public data-
bases gather a vast amount of gene-related data collected from various sources.
This information needs to be analyzed in a systematic way and we believe that
motif-based approaches would help biologists to make unexpected links between
separate studies.
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Abstract. For many inference tasks in Bayesian networks, computa-
tional efforts can be restricted to a relevant part of the network. Research-
ers have studied the relevance of a network’s variables and parameter
probabilities for such tasks as sensitivity analysis and probabilistic infer-
ence in general, and identified relevant sets of variables by graphical
considerations. In this paper we study relevance of the evidence vari-
ables of a network for such tasks as evidence sensitivity analysis and
diagnostic test selection, and identify sets of variables on which compu-
tational efforts can focus. We relate the newly identified sets of relevant
variables to previously established relevance sets and address their com-
putation compared to these sets. We thereby paint an overall picture of
the relevance of various variable sets for answering questions concerning
inference and analysis in Bayesian network applications.

1 Introduction

Bayesian networks have become increasingly popular for decision support in a
range of application domains. Capturing general domain knowledge, Bayesian
networks owe much of their strength to their ability to derive probability distri-
butions for individual problem instances, given the evidence available from that
instance. In view of practical applications however, decision makers should have
insight not just in the established probability distributions themselves but in
their robustness as well. This observation has motivated researchers to develop
techniques for this purpose. The sensitivity of a network’s output probabilities
to inaccuracies in its parameters can be studied using a parameter sensitivity
analysis [2]. A sensitivity-to-evidence analysis allows studying the contribution
of specific observations to the output of interest and investigating the effects
of changing or removing a particular observation [4]. Algorithms developed for
these types of analysis typically rely on (multiple) propagations throughout a
network, and hence incur high computational costs.

To relieve the computational burden of probabilistic inference with a Bayesian
network, the runtime efforts of computing an output probability of interest can
be focused on a relevant part of the network, which depends on the target vari-
ables and the specific set of observed variables at hand [3]. This relevant part
can to a large extent be identified from graphical considerations only. For exam-
ple, d-separated nodes and barren nodes are readily identified from a network’s
graph (we refer to [3] for an overview of available methods) and subsequently
pruned without affecting the computed output distribution [1].
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 366–375, 2015.
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Although the concept of relevance has been studied for probabilistic infer-
ence in general, it has hardly been addressed in the context of the analyses
mentioned above. An exception is the concept of parameter sensitivity set which
was introduced to describe the set of variables to which a parameter sensitivity
analysis can be restricted [2]. In this paper we will study the relevance of various
sets of network variables for answering questions related to evidence, such as
sensitivity-to-evidence analyses and test-selection procedures. Where previous
relevance studies often focused on a single output variable, we consider in this
paper the more general case of a set of target variables; the insights developed
will therefore be relevant to MAP and MPE studies as well [7]. We will define
three new sets of relevant nodes and show how these relate to existing relevance
sets; we further show that these sets can be efficiently determined from a net-
work by graphical considerations only. We thereby provide an overall view of the
relevance of both known and newly defined sets of nodes, for answering various
types of question related to practical applications of Bayesian networks.

The paper is organised as follows. In Sect. 2 we present some preliminaries.
Section 3 introduces our new sets of relevant and irrelevant nodes. In Sect. 4 we
show how to efficiently establish these sets, and illustrate their possible applica-
tion. The paper ends with our concluding remarks in Sect. 5.

2 Preliminaries

A Bayesian network is a concise representation of a joint probability distrib-
ution Pr over a set of random variables [5]. It consists of a directed acyclic
graph G = (VG,AG), which captures the random variables as nodes and their
interdependencies through arcs; in the sequel we will use the term node to refer
to nodes and variables alike. The network further includes a set of conditional
probabilities for its parameters, which jointly define the distribution Pr through:

Pr(VG) =
∏

Vi∈VG

Pr(Vi | π(Vi))

where π(Vi) denotes the parent set of Vi in the graph. The factorisation of
the distribution Pr derives from the well-known concept of d-separation which
provides a semantics for the network’s graph [8]. For any three disjoint sets of
nodes X,Y,Z ⊂ VG, the set Z is said to d-separate the sets X and Y in G,
written 〈X|Z|Y〉dG, if there do not exist any active chains between X and Y given
evidence for Z. A chain between two nodes is active if each of its head-to-head
nodes is either observed or has an observed descendant, and none of its other
nodes are observed. The variables captured by d-separated nodes are considered
probabilistically independent.

For computing probabilities of interest from a Bayesian network, general
inference algorithms have been designed which derive their efficiency from the
d-separation properties of a network’s graphical structure. In view of these
properties, researchers have studied the computation of an output distribution
Pr(T | e) for a set T of target nodes given evidence e, and identified sets of nodes
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whose parameter probabilities are not involved in establishing this distribution.
Two well-known examples of such sets are the set of nodes d-separated from
T given E, denoted DSep(T,E), and the set Barren(T,E) of barren nodes,
where a barren node is a node in VG\(T∪E) without descendants, or with bar-
ren descendants only. These sets of nodes are efficiently established through the
Bayes-ball algorithm [9], which runs on the network’s graph and does not require
probabilistic inference. After pruning these nodes from the graph, a minimal
computationally equivalent subgraph results from which the output distribution
can be established [1].

3 Defining Sets of (Ir)relevant Nodes

Inspired by the well-known concept of parameter sensitivity set and its role in
reducing the computational burden of a parameter sensitivity analysis [2], we
develop the concept of evidence sensitivity set as the set of nodes for which
a change in observed value, or a change in observational status, may affect a
posterior probability distribution of interest.

3.1 Parameter and Evidence Sensitivity Sets

Parameter sensitivity analysis is a well-known technique for studying the possible
effects of inaccuracies in the parameter probabilities of a Bayesian network [2]. To
reduce the computational burden involved, such an analysis is typically restricted
to the parameters of a network which, based upon graphical considerations, can-
not be discarded as uninfluential. The concept of parameter sensitivity set was
introduced to identify the nodes to which these possibly influential parameter
probabilities apply [2]. We briefly review this concept, generalising it to marginal
output distributions Pr(T | e) for sets of target nodes T.

Definition 1. Let G = (VG,AG) be the digraph of a Bayesian network. Let
T ⊂ VG, T �= ∅, be a set of target nodes and let E ⊂ VG \ T be a set of
evidence nodes in G. The parameter sensitivity set for T given E is the set

ParSens(T,E) = {X ∈ VG | ¬〈{PX}|E|T〉dG∗}
where G∗ is the parented graph of G in which each node X has an additional
auxiliary parent PX .

As described by Coupé and Van der Gaag [2], the parent nodes PX used for
defining the parameter sensitivity set can be viewed as capturing the uncertainty
in the parameters for the node X. If this uncertainty is not d-separated from the
target nodes, it may affect their probability distribution. The authors proved
that a sensitivity analysis can be restricted to this parameter sensitivity set.

While a parameter sensitivity analysis addresses the effects of inaccuracies in
a network’s parameters, a sensitivity-to-evidence analysis focuses on the effects
of changes in the observation entered for a node or in a node’s observational sta-
tus [4]. Similar to the parameter sensitivity set, we now develop the concept of
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evidence sensitivity set as the set of nodes to which an evidence sensitivity analy-
sis can be restricted. We begin by distinguishing between two types of evidence
sensitivity set. The given-evidence sensitivity set consists of all observed nodes
for which a change in value or in observational status may affect the probability
distribution of interest. While the given-evidence sensitivity set includes observed
nodes only, the potential-evidence sensitivity set comprises all yet unobserved
evidence nodes for which obtaining evidence may affect the output distribution.
We define the evidence sensitivity sets more formally.

Definition 2. Let G,T,E be as before. Then,

– the given-evidence sensitivity set for T given E is the set

GivEvSens(T,E) = {X ∈ E | ¬〈{X}|E\{X}|T〉dG}

– the potential-evidence sensitivity set for T given E is the set

PotEvSens(T,E) = T ∪ {X ∈ VG \ E | ¬〈{X}|E|T〉dG}

– the evidence sensitivity set for T given E is the set

EvSens(T,E) = GivEvSens(T,E) ∪ PotEvSens(T,E)

We note that the given-evidence sensitivity set contains only nodes from the set
E of observed nodes. If such a node X ∈ E is not d-separated from a target node
given the remaining evidence, then X and T may be conditionally dependent,
and any change in or removal of the observation for X may affect the output
probabilities Pr(T | e). The potential-evidence sensitivity set on the other hand,
contains only nodes which are yet unobserved. The given-evidence sensitivity
set and the potential-evidence sensitivity set thus are disjoint. If an unobserved
node X /∈ E is not d-separated from a target node given the available evidence,
then X and T may be conditionally dependent, and entering an observation for
X may affect the probabilities Pr(T | e). Although we could assume that nodes
in the target set will never be observed, we include T in the potential-evidence
sensitivity set since observations for nodes in T most likely affect the probability
distribution over the set of target nodes. We further note that all sensitivity sets
are defined for a specific T and E and may therefore change upon adding or
removing an observation. The dynamics involved may then be more complex
than just moving nodes between the various sensitivity sets.

Our new concept of evidence sensitivity set is closely related to the concept
of parameter sensitivity set, yet is different. The following proposition shows in
fact that the parameter sensitivity set is a subset of the evidence sensitivity set.

Proposition 1. Let G,T,E be as before. Then,

(i) T ⊆ ParSens(T,E);
(ii) ParSens(T,E) ∩ E ⊆ GivEvSens(T,E);
(iii) ParSens(T,E)\E ⊆ PotEvSens(T,E).
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EvSens(T,E)

ParSens(T,E)

VG

(a)

E T

ParSens(T,E)

(b)

Fig. 1. The relations between the various sets. (a) The light grey area indicates the
potential-evidence sensitivity set, whereas the dark grey constitutes the given-evidence
sensitivity set; (b) the hatched area represents all nodes that can be pruned, i.e. d-
separated nodes, barren nodes and irrelevant evidence nodes

Proof

(i) We consider adding an auxiliary parent PT to a target node T ∈ T. Since
PT and T are directly connected, we have that ¬〈{PT }|E|〉dG∗ . Therefore,
T ∈ ParSens(T,E) by definition.

(ii) We consider a node X ∈ ParSens(T,E) ∩ E. Since X ∈ E, the auxil-
iary parent PX has active chains only to other parents of X. Since X ∈
ParSens(T,E), at least one such parent Y must have an active chain to a
target node. As a result, X cannot be d-separated from T given E\{X}.

(iii) We consider a node X ∈ ParSens(T,E)\E. Since PX is not d-separated
from T given E in G∗, there must be an active chain from X to T in G. 
�

A schematic summary of the above properties is given in Fig. 1(a). The dark grey
area represents the intersection of the sensitivity sets with the set of observed
nodes E; this area thus coincides with the given-evidence sensitivity set. The
light grey area constitutes the potential-evidence sensitivity set; the diagram
shows that the set of target nodes is a subset of this set.

3.2 Ignoring Irrelevant Evidence Nodes

The concept of computationally equivalent subgraph was introduced to describe
a subgraph of a Bayesian network, with its associated parameters, from which the
correct output distribution over the network’s target variables can be established.
Although the minimal computationally equivalent subgraph identified by Baker
and Boult [1], contains no nodes X /∈ T ∪ E that can be pruned, it may contain
evidence nodes that are d-separated from the target nodes given the remaining
evidence, that is, it may contain evidence nodes outside GivEvSens(T,E). The
identified subgraph thus is not minimal in the sense that no proper subgraph
exists from which the output distribution can be correctly established. For the
sake of completeness, we define the set of irrelevant evidence nodes and explicitly
state the property that these nodes cannot affect the output distribution.
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Definition 3. Let G,T,E be as before. Then, the irrelevant evidence set for T
given E equals

IrrEv(T,E) = {E ∈ E | 〈{E}|E\{E}|T〉dG}
The irrelevant evidence nodes together constitute a set of nodes whose parameter
probabilities indeed are not required for computing Pr(T | E).

Proposition 2. Let G,T,E be as before. Then, Pr(T | E) = Pr(T | E\IrrEv
(T,E)).

Proof. Assuming that Pr(E) is strictly positive, the proposition is proven by
repeated application of the intersection property of independence relations. 
�
From the above property we conclude that the minimal computationally equiv-
alent subgraph can be further pruned by removing all nodes from IrrEv(T,E).
Moreover, since IrrEv(T,E) = E\GivEvSens(T,E), the proposition also shows
that Pr(T | E) can indeed be correctly computed by restricting the set of evi-
dence nodes to GivEvSens(T,E).

3.3 Relating the Different Sets

We now establish the relationship between the various sensitivity sets and well-
known types of irrelevant node.

Proposition 3. Let G,T,E be as before. Then,

(i) DSep(T,E) = VG \ (EvSens(T,E) ∪ E);
(ii) Barren(T,E) = PotEvSens(T,E) \ParSens(T,E);

Proof

(i) The setDSep(T,E) contains all nodesX ∈ VG\(T∪E) such that 〈{X}|E|T〉dG.
By definition, this set equals VG \ (PotEvSens(T,E) ∪ E), and corresponds
with the white area outside the circles in Fig. 1(a).

(ii) Barren nodes are unobserved nodes that are not d-separated from the target
nodes given the evidence, yet are not involved in the computation of the
output distribution over these nodes; once observed however (directly or
indirectly), barren nodes can become computationally relevant. 
�

For computing the output distribution Pr(T | E) over the target nodes T of a
Bayesian network, we can safely prune all nodes fromDSep(T,E)∪Barren(T,E)∪
IrrEv(T,E). From the above proposition we find that this set equals:

VG \ (ParSens(T,E) ∪ (E\IrrEv(T,E))),

where E\IrrEv(T,E) equals GivEvSens(T,E). We can therefore prune all nodes
from VG except those in ParSens(T,E) ∪GivEvSens(T,E); this set of nodes is
illustrated in Fig. 1(b).
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4 Identifying (Ir)relevant Nodes

Many Bayesian network properties can be recognised just by inspecting the net-
work’s graph. Core d-separation statements, for example, can be verified in time
linear to the size of the graph. A well-known algorithm for this purpose is the
Bayes-ball algorithm [9]. Although this algorithm was not designed for establish-
ing sensitivity sets as defined in the previous section, we will demonstrate that
the information maintained by the algorithm suffices for identifying these sets.
We will subsequently illustrate all concepts introduced in this paper, as well as
their potential use, by means of an example.

4.1 Bayes-Ball for Sensitivity Sets

The Bayes-ball algorithm was designed to identify various sets of relevant and
irrelevant nodes. The algorithm explores the graph of a Bayesian network in view
of an output distribution Pr(T | E) over its target nodes. It starts from these
target nodes and “bounces a ball” through the graph, respecting d-separation
properties. Visited nodes are marked as such, and in addition get a top or bot-
tom mark when their parents or children, respectively, are scheduled for a visit.
Initially, all target nodes are marked on top and at the bottom; evidence nodes,
if visited, can receive a top mark only. After exploring the graph, the algorithm
establishes the following sets of nodes, based on the marks received:

– Ni(T | E) = {X ∈ VG | X is not marked at the bottom };
– Np(T | E) = {X ∈ VG | X is marked on top };
– Ne(T | E) = {X ∈ E | X is marked as visited }.

The set Ni(T | E), termed the set of irrelevant nodes, includes all d-separated
nodes [9]. We note that the algorithm includes all evidence nodes in the set
of irrelevant nodes as well. Evidence nodes in general are not irrelevant to the
computation at hand, however, with the exception of nodes in IrrEv(T,E). The
set Np(T | E), called the set of requisite probability nodes, includes the nodes
whose parameters are needed for the computation of the output probability; we
note that the adjective ‘requisite’ refers to the node’s parameter probabilities.
The set Ne(T | E), coined the set of requisite observation nodes, includes the
evidence nodes whose value is required for the computations. A computationally
equivalent subgraph for the computations can now be obtained from the original
Bayesian network by pruning all nodes outside the set Np(T | E) ∪ Ne(T | E).

The sensitivity sets defined and reviewed in the previous section can be read-
ily identified from the information recorded by the Bayes-ball algorithm as stated
in the following proposition; for a formal proof of the proposition, we refer to [6].

Proposition 4. Let G,T,E be as before. Consider running Bayes-ball on G
with respect to Pr(T | E). Then,

– ParSens(T,E) = {X ∈ VG | X is marked on top };
– GivEvSens(T,E) = {X ∈ E | X is marked as visited };
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Fig. 2. (a) The digraph of the example Bayesian network, and (b) the sensitivity sets
for Pr(T | E)

– PotEvSens(T,E) = {X ∈ VG | X is marked at the bottom};
– IrrEv(T,E) = {X ∈ E | X is not marked as visited }.
The proposition reveals that the different sensitivity sets identified in the previ-
ous section actually provide alternative semantics for the three Bayes-ball sets:

– Ni(T | E) = VG \ PotEvSens(T,E);
– Np(T | E) = ParSens(T,E);
– Ne(T | E) = GivEvSens(T,E).

4.2 An Example

To illustrate the use of the various relevance sets introduced in Sect. 3, we con-
sider an example Bayesian network defining a joint probability distribution over
eight nodes; the graph of the network is shown in Fig. 2(a). For the network,
we consider output probability distributions Pr(T | E) for the target nodes
T = {T1, T2} given observations for the evidence nodes E = {E1, E2, E3}. Using
Bayes-ball, we find the following sensitivity sets, summarised in Fig. 2(b):

– ParSens(T,E) = {A,E1, T1, T2};
– PotEvSens(T,E) = {A,C, T1, T2};
– GivEvSens(T,E) = {E1, E2}.

We recall that the parameter sensitivity set was designed to describe the nodes in
a Bayesian network whose parameter inaccuracies may affect the output prob-
abilities from the network. For the example network, we conclude that only
changes in the parameter probabilities of the nodes A, E1, T1 and T2 may influ-
ence the probabilities Pr(T | E). A parameter sensitivity analysis may thus be
restricted to the parameters for these nodes and forego variation of the parame-
ters of the nodes B, C, E2 and E3, that is, the parameters of only half of the
nodes need be investigated upon the analysis.

The evidence sensitivity set captures the nodes for which a change of value
or in observational status may affect the output probabilities established from
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Fig. 3. (a) Graph of the example network after pruning all nodes outside
ParSens(T,E) ∪ (E\IrrEv(T,E)), and (b) a summary of the pruning result

the network. In the example network, only the evidence nodes E1 and E2 are
contained in the given-evidence sensitivity set for T given E. Changing their
observed value, or removing their observations, may therefore change the output
probabilities Pr(T | E). Since node E3 is not included in the given-evidence sensi-
tivity set, we can change or remove its observation, without affecting the output
probabilities. The network’s output therefore is robust against an inaccurate
observation for E3. The potential-evidence sensitivity set for T given E provides
information about the effects of additional evidence. The potential-evidence sen-
sitivity set established from the example network shows that obtaining additional
evidence for one of the nodes A, C, T1 and T2 may change the output. Since
node B is not in the set, gathering an observation for this node cannot change
the current distribution over T. We note that such a finding may be exploited by
a test-selection procedure. In fact, test selection can focus on collecting evidence
for the nodes A and C, if appropriate.

The resulting computationally equivalent subgraph is shown in Fig. 3(a),
along with a schematic summary of the roles of the remaining nodes (b). We
would like to emphasize that as a result of the dynamics of the various sets upon
changes in the observational status of nodes, a change in E may require a differ-
ently pruned graph. For example, if an observation would be entered for node C,
the parameters of node E3 would no longer be immaterial for the output distribu-
tion over the target nodes. We further note that the various sets of relevant nodes
identified above can be instrumental in focusing the efforts of a large variety of
inference tasks. We note for example that the above conclusions also pertain to
MAP computations, that is, for establishing MAP(T, e) =argmaxt Pr(t | e) for
a specific assignment e to E: taking the output of the Bayes-ball algorithm in
fact, we know that we can safely prune the nodes {B,C,E3} from the network
without affecting the established MAP.

5 Conclusions and Future Research

Relevance of the nodes of a Bayesian network had so far been studied primarily
in the context of probabilistic inference. In this paper we focused on a network’s
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evidence nodes and addressed their relevance for such tasks as sensitivity-to-
evidence analysis and diagnostic test selection. To this end, we defined two types
of evidence sensitivity set and studied the relationships between these sets and
with previously known sets of (ir)relevant nodes. We thereby presented a more
complete picture of the relevance of various node sets for answering questions
concerning inference and analysis in Bayesian network applications. By demon-
strating that our evidence sensitivity sets can be determined from the well-known
Bayes-ball algorithm, moreover, we provided an efficient way of establishing these
sets from graphical considerations only.

The various relevance sets discussed in this paper are not static in a Bayesian
network application, but will change dynamically as the set of observed nodes
changes. More extensive sensitivity-to-evidence analyses and test-selection pro-
cedures therefore entail re-establishing the relevance sets after each change in
observational status. In the near future we would like to study the dynamics
involved and investigate whether we can predict, at least partly, how these sets
will change without having to re-invoke the Bayes-ball algorithm. We would fur-
ther like to extend our investigations and study the concept of relevance for yet
other computational tasks in Bayesian network applications.
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Abstract. Capturing heterogeneous dynamic systems in a probabilis-
tic model is a challenging problem. A single time granularity, such as
employed by dynamic Bayesian networks, provides insufficient flexibility
to capture the dynamics of many real-world processes. The alternative is
to assume that time is continuous, giving rise to continuous time Bayesian
networks. Here the problem is that the level of temporal detail is too pre-
cise to match available probabilistic knowledge. In this paper, we present
a novel class of models, called hybrid time Bayesian networks, which
combine discrete-time and continuous-time Bayesian networks. The new
formalism allows us to more naturally model dynamic systems with reg-
ular and irregularly changing variables. Its usefulness is illustrated by
means of a real-world medical problem.

Keywords: Continuous time Bayesian networks · Dynamic Bayesian
networks · Dynamic systems

1 Introduction

Many real-world systems exhibit complex and rich dynamic behavior. As a con-
sequence, capturing these dynamics is an integral part of developing models of
physical-world systems. Time granularity is an important parameter in charac-
terizing dynamics as it determines the level of temporal detail in the model. In
cases where one time granularity is coarser than another, dealing with multiple
time granularities becomes significantly important, e.g., in the context of mining
frequent patterns and temporal relationship in data stream and databases [1].

Dynamic Bayesian networks (DBNs) are a general framework for modeling
dynamic probabilistic systems. DBNs are an extension of standard Bayesian
networks (BNs) assuming a discretization of time [2], and where the distribution
of variables at a particular time point is conditional on the state of the system
at the previous time point. A problem occurs if temporal processes of a system
are best described using different rates of change, e.g., one temporal part of
the process changes much faster than another. In that case, the whole system

ML is supported by China Scholarship Council. AH and MVDH are supported by
the ITEA2 MoSHCA project (ITEA2-ip11027).

c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 376–386, 2015.
DOI: 10.1007/978-3-319-20807-7 34



Hybrid Time Bayesian Networks 377

has to be represented using the finest time granularity, which is undesirable
from a modeling and learning perspective. In particular, if a variable is observed
irregularly, much data on discrete-time points will be missing and conditional
probabilities will be hard to estimate.

As an alternative to DBNs, temporal processes can be modeled as continuous
time Bayesian networks (CTBNs), where time acts as a continuous parameter [3].
In these models, the time granularity is infinitely small by modeling transition
rates rather than conditional probabilities, thus multiple time granularities, i.e.,
slow and fast transition rates, can easily be captured. A limitation from a mod-
eling perspective is that all probabilistic knowledge, for example derived from
expert knowledge, has to be mapped to transition rates which are hard to inter-
pret. Moreover, the transition rates assume that the time until a transition is
exponentially distributed, which may not always be appropriate.

In this paper, we propose a new formalism, which we call hybrid time
Bayesian networks (HTBNs), inspired by discrete-time and continuous-time
Bayesian networks. They facilitate modeling the dynamics of both irregularly-
timed random variables and random variables which are naturally described in a
discrete way. As a result, the new formalism increases the modeling and analysis
capabilities for dynamic systems.

2 Motivating Example

To illustrate the usefulness of the proposed theory, we consider the medical
problem of heart failure and, in particular, one possible cause of heart failure:
heart attack (myocardial infarction). This usually occurs as the result of coro-
nary artery disease giving rise to reduced blood supply to the heart muscle
(myocardium). One consequence is that part of the heart muscle will die, which
is revealed later in a blood sample analysis in the lab by an increased level of
particular heart muscle proteins, in particular troponine. Loss of heart muscle
will inevitably have an impact on the contractability of the myocardium, and
thus heart function will be negatively affected. This is known as heart failure.
In particular, the heart fails with respect to its function as a pump. This will
enforce an increase in the amount of extracellular fluid (the patient is flooded
with water), which can be measured quite simply by means of the body weight.
With regard to treatment, digitalis is considered as one of the drugs to improve
contractability. This causal knowledge is formalized as a directed graph in Fig. 1.

Heart attacks usually happen repeatedly in patients, although after some
interval of time, and this may negatively affect heart function. After adminis-
tration of digitalis it will take some time, in terms of days, before the drug has
a diminishing effect on heart failure. Thus, the course of heart failure will likely
depend on various factors, and how they interact. Of particular importance here
is the dynamic over time of the probability distributions.

In modeling processes such as heart failure, it is essential to notice the exis-
tence of different time granularities. There are discrete, regular variables which
are observed regularly such as a routine checkup for body weight and a regular
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Fig. 1. Causal model for heart failure: CM = Contractility Myocardium, DT = Dig-
italis, LHT = Loss Heart Tissues, HA = Heart Attack, TROP = Troponine, HF =
Heart Failure, BW = Body Weight.

intake of a drug. On the other hand, some variables are observed irregularly,
such as the indicator troponine which is elevated after about half an hour after
damage to the heart muscle is obtained; however its measurement is repeated
with time intervals that increase after the patient’s condition has been stabi-
lized. Clearly, it is not possible to obtain a satisfactory representation of the
clinical evolution of heart failure using only discrete time, regular or irregular,
or continuous time. In the remainder of this paper we propose a method to deal
with these heterogeneous time aspects.

3 Preliminaries

We start by introducing Bayesian networks, dynamic Bayesian networks and
continuous time Bayesian networks. In the following, upper-case letters, e.g. X,
Y , or upper-case strings, e.g. HA, denote random variables. We denote the values
of a variable by lower-case letters, e.g. x. We will also make use of a successor
function s, which is defined on a countable, linearly ordered set of numbers Z in
which every element zi ∈ Z with index i is mapped to element s(zi) = zi+1 ∈ Z.

Bayesian Networks. A Bayesian network is a probabilistic graphical model
which represents a joint probability distribution of a set of random variables.
A Bayesian network B is defined as a pair B = (G,P ), where G is an acyclic
directed graph with G = (V (G), E(G)), where V (G) is a set of nodes, and
E(G) ⊆ V (G) × V (G) a set of directed edges or arcs. A joint probability distri-
bution P is defined by a set of conditional probabilities of each random variable
X given its immediate parents π(X) in G, formally: P (V (G)) =

∏
X∈V (G) P (X |

π(X)).

Dynamic Bayesian Networks (DBNs). A DBN is defined as a pair (B0,B→)
over discrete-time variables D, where B0 is taken as the initial Bayesian network
model and B→ is defined as a conditional distribution for a 2-time-slice Bayesian
network (2-TBN). Given a set of discrete time points of interest A ⊆ N0 that
includes 0, the joint distribution for a DBN with |A| slices is defined by a product
of the CPDs in the initial model and in the 2-TBN:

P (DA) =
∏

D∈D

PB0(D0 | π(D0))
∏

D∈D

∏

α∈A\{maxA}
PB→(Ds(α) | π(Ds(α)))
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Fig. 2. A DBN and its corresponding Bayesian network.

where Ds(α) is the random variable D at time s(α). Parent set π(Ds(α)) may be
from the same or the previous time slice. We can obtain a standard Bayesian
network by unrolling the DBN over the time points of interest. In the remainder
it is assumed that the intra-slice arcs of this BN are the same for every α.

Example 1. Consider a dynamic Bayesian network that has two random vari-
ables, HF and BW (see Fig. 1), with an initial model and a transition model
as shown in Figs. 2a and 2b, respectively. Then the joint distribution for the
DBN over time points of interest A with the corresponding Bayesian network as
shown in Fig. 2c is: P (HFA,BWA) = P (HF0)P (BW0 | HF0)

∏|A|−2
α=0 P (BWs(α) |

BWα,HFs(α))P (HFs(α) |HFα).

Continuous Time Bayesian Networks (CTBNs). CTBNs [3] represent
dynamic systems with continuous-time variables as a factorized homogeneous
Markov process parameterized by intensity matrices. An entry (i, j) with i �= j
in an intensity matrix gives the intensity of transitioning from state i to state j.
Furthermore, the main diagonal makes each row sum to zero.

Example 2. Suppose we want to model the random process of body weight as the
variable BW, which describes a patient’s weight. Variable BW has three possible
states, i.e., BW = {low, normal, high}, with a transition matrix as follows:

QBW =

⎛

⎝
−0.13 0.09 0.04
0.13 −0.23 0.1
0.07 0.16 −0.23

⎞

⎠

For example, the entry (3, 2) means that the process will transition from high
at time β to normal at time β + ε with a probability of 0.16/0.23=0.696 if a
transition occurs at β + ε.

The notion of a conditional intensity matrix (CIM) describes the dependence of a
variable C on the current values of its parents π(C). A full amalgamation product
operator is defined over a set of CIMs to compute the joint intensity matrix,
resulting in a single continuous-time Markov process for the entire system.

For a homogeneous Markov process over variables C with an intensity matrix
QC and an initial distribution P (C0), we can compute the distribution over the
values of C at a particular time point or the joint distribution at different time
points. The distribution at a point β is given by:
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P (Cβ) = P (C0) exp(QCβ)

The distribution over a finite set of time points of interest B is given by:

P (CB) = P (C0)
∏

β∈B\{maxB}
exp(QC(s(β) − β))

4 Hybrid Time Bayesian Networks

In this section, we define hybrid-time Bayesian networks, the semantics of these
models in terms of its factorization, and finally, we show how such models can be
interpreted as regular Bayesian networks. The latter is particularly important for
practical purposes, as this implies that we may (dynamically) generate discrete-
time versions of the model given time points for which we have observations, and
in which we would like to compute marginals. After that, we can use existing
methods for probabilistic inference in BNs.

4.1 Model Definition

The formal definition of hybrid time Bayesian networks is as follows.

Definition 1 (Hybrid Time Bayesian Networks (HTBNs)). A hybrid
time Bayesian network is a triple H = (G,Φ,Λ), where G = (V (G), Et(G),
Ea(G)) is a directed graph with each vertex in V (G) either a continuous-
time variable, collectively denoted by C, or a discrete-time variable, collectively
denoted by D, Et(G) and Ea(G) are temporal and atemporal arcs, respectively,
such that (V (G), Ea(G)) is acyclic, Φ is a set of conditional probability distribu-
tions for variables D, and Λ is a set of conditional intensity matrices and initial
distributions for variables C.

Furthermore, graph G has the following properties:

(i) Arcs connecting continuous-time and discrete-time variables are atemporal;
(ii) Arcs connecting continuous-time variables are temporal;
(iii) A continuous-time variable has a temporal arc to itself.

Property (iii) indicates that a discrete-time variable does not necessarily have
temporal dependences on itself. It is worthwhile to notice that the temporal
cyclic property is inherited from discrete-time and continuous-time Bayesian
networks. A temporal cycle is possible in two cases, either between continuous-
time variables or between discrete-time variables. However, an atemporal cycle is
not allowed, that is, there is no cycle in the graph involving both continuous-time
and discrete-time variables.

Example 3. In the example discussed in Sect. 2, regular variables, i.e., BW, DT,
HF and hidden variable CM can be represented in a discrete-time manner. The
irregular variables, i.e., LHT,TROP,HA are modeled as continuous-time vari-
ables. The example is then represented in a hybrid time Bayesian network H as
shown in Fig. 3.
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CMDT LHT

HA

TROP
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KCKD

Fig. 3. An HTBN for the heart failure problem. Continuous-time variables are graph-
ically represented by double-edged blue circles, atemporal arcs are solid, and temporal
arcs are dashed.

4.2 Factorization

The joint probability distribution for hybrid time Bayesian networks is defined by
multiplying the conditional joint probabilities for continuous-time and discrete-
time Bayesian networks. To this end, we first need to introduce some new notions.

The skeleton G∼ of a directed graph G is obtained by changing the arcs in
G by (undirected) edges. Every directed graph can be defined as the union of
connected components by an equivalence relation X −Y , meaning that vertex Y
can be reached by an undirected path from vertex X in its skeleton. Vertex X
and Y are then members of the same equivalence class [X] and the corresponding
graph is a connected component. A graph G′ = (V (G′), E(G′)) is said to be an
induced subgraph of G if E(G′) = (V (G′) × V (G′)) ∩ Et(G) and V (G′) = C,
called a continuous-time induced subgraph, denoted as GC, or E(G′) = (V (G′)×
V (G′)) ∩ (Et(G) ∪ Ea(G)) and V (G′) = D, when it is called a discrete-time
induced subgraph, denoted as GD.

Both GC and GD can be decomposed into connected components; each indi-
vidual connected component is indicated by KC and KD, respectively. Clearly
connected components are disjoint as they represent equivalence classes and
together the connected components form partitions of the continuous-time and
discrete-time subgraphs, respectively. A subset X ⊆ V (GD) is said to consti-
tute the parents of V (KC), denoted as π(V (KC)), if and only if there exists an
arc (D,C) in G, C ∈ V (KC), for every D ∈ X. Parents π(V (KD)) are defined
analogously. In the example shown in Fig. 3, there is only one continuous-time
connected component with V (KC) = {LHT,TROP,HA} and one discrete-time
connected component with V (KD) = {DT,CM,HF,BW}.

We are now in the position to define a conditional distribution of connected
components given their parents.

Definition 2 (Conditional Joint Distribution for Component KD).
Given a discrete-time component KD, the conditional joint distribution for KD
over time points of interest A is defined as:
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P (V (KD)A | π(V (KD))A) =
∏

D∈V (KD)

(P (D0 | πa(D)0)
∏

α∈A\{0}
P (Dα | πa(D)α, πt(D)α−1))

where πt(D) are the temporal and πa(D) are the atemporal parents of D.

Definition 3 (Conditional Joint Distribution for Component KC).
Given a continuous-time component KC over variables V (KC) with an initial
distribution P (V (KC)0) and corresponding parents π(V (KC)) over time points
of interest A. The conditional joint distribution for KC over a finite set of time
points of interest B, {0} ⊂ A ⊆ B ⊂ R

+, is defined as:

P (V (KC)B | π(V (KC))A)

= P (V (KC)0)
∏

β∈B\{maxB}
exp(QV (KC)|π(V (KC))a

(s(β) − β))

a = max{α | α ≤ β, α ∈ A}
where QV (KC)|π(V (KC))a

is the conditional intensity matrix for variables V (KC)
given the values of parents π(V (KC)) at time a.

Now we can define the full joint probability distribution of a hybrid-time BN
given sets of time points of interest.

Definition 4 (Joint Probability Distribution). Given a hybrid time
Bayesian network H and sets of components KD, KC with associated time
points of interest A, B. The joint distribution for H over B is defined as:

P (V (G)B) =
∏

KC∈KC

P (V (KC)B | π(V (KC))A)
∏

KD∈KD

P (V (KD)A | π(V (KD))A)

The following propositions establish that HTBNs are proper generalizations of
both DBNs and CTBNs.

Proposition 1. A DBN (B0,B→) with random variables D, and an HTBN
(G,Φ, ∅) define the same joint probability distribution for any set of time points
of interest A, if V (G) = D; Ea(G), Et(G) correspond to the temporal and atem-
poral arcs of B→, and Φ are the parameters of the DBN.

Proposition 2. A CTBN with graph G and parameters Λ and an HTBN
(G, ∅, Λ) define the same probability distribution for any set of time points of
interest B.

4.3 Discrete-Time Characterization

A natural question is whether the joint distribution defined on a HTBN, given
the fixed time points of interest, can also be graphically represented as a reg-
ular (discrete-time) Bayesian network. The benefit is that the parameters of
the resulting Bayesian network are conditional probabilities, which are easier to
understand for domain experts. Furthermore, this construction is convenient as
it enables the use of standard software for inference in HTBNs.
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(a) A simple HTBN
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(c) Different time points of interest: A �= B

Fig. 4. Discretization of an HTBN.

Below we show that there is a construction to a regular Bayesian network
possibly at the expense of introducing additional hidden variables that model the
dependence structure of continuous-time variables. The reason for these hidden
variables is as follows. Consider a simple structure X → Y → Z. In a regular
Bayesian network, it holds that Z is independent of X given its parent Y. Inter-
preting this graph as a continuous-time component (where arcs are temporal),
a continuous-time variable is conditionally independent of its non-descendants
given the full trajectories of its parents. In the structure given, we thus can only
conclude that Z at time β is independent of X given the full trajectory for Y
from time 0 to time β, otherwise X and Z are dependent. In order to represent
this, we introduce additional dependences between X and Z at each time point
of interest using auxiliary hidden variables. We illustrate the process in Fig. 4.

Proposition 3 (Discretization). Given a hybrid time Bayesian network H
described by a graph G with associated probability distribution P and time
points of interest, there exists a Bayesian network B = (GB, PB), PB(V (G)) =
P (V (G)), which represents all independences of H.

Proof (Sketch). We only show the construction of this Bayesian network B.
Let GB = (V (GB), E(GB)). Set V (GB) are variables mapped from vari-

ables V . Set V (GB) is composed of three parts, i.e., V (GB) = Δ ∪ Ω ∪ Θ,
where: 1) Δ are variables D induced by time points A, 2) Ω are variables
C induced by time points B, 3) Θ are hidden variables induced by temporal
dependence between continuous-time variables and time points of interest B,
Θ = {Hij

β | (Ci, Cj) ∈ Et, β ∈ B}, where Hij
β models the dependence between

variable Ci and Cj.
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Fig. 5. Effects of heart attack and digitalis on heart failure. ‘DT’ indicates that dig-
italis was administered at that moment in time. ‘HA’ indicates that a heart attack
was observed. Note that observations for HA are continuous-time, so observed at an
arbitrary point in time; digitalis is observed once a week at most.

Set E(GB) are arcs mapped from Ea and Et, E(GB) ⊆ V (GB)×V (GB). Basi-
cally, the dependence mapping can be categorized by the type of dependences
and variables, denoted as E(GB) = Ξ ∪ Π ∪ Υ ∪ Γ , where: (1) Ξ models the
dependence for discrete-time child while its parents could be continuous-time or
discrete-time, specified as Ξ = {(Xα,Dα) | X ∈ C∪D, (X,D) ∈ Ea, α ∈ A}, (2)
The atemporal dependence for continuous-time variables conditioned on discrete-
time parents is specified as Π = {(Da, Cβ) | (D,C) ∈ Ea, β ∈ B}, where
a = max{α | α < β, α ∈ A}, (3) Temporal dependences for variables C and
D are denoted as Υ : Υ = {(Cβ , Cs(β)) | β ∈ B \ {max B}} ∪ {(Dα,Ds(α)) |
(D,D) ∈ Et, α ∈ A\{max A}}, 4) Γ are additional dependences for continuous-
time variables, Γ = {(Hij

β , Ci
s(β)), (H

ij
β , Cj

s(β)) | Hij
β ∈ Θ, β ∈ B \ {max B}} ∪

{(Ci
β , Cj

s(β)) | β ∈ B \ {max B}}. Thus we have a graph GB = (V (GB), E(GB)).
It can be shown that G and GB represent the same independences on V (G)

on the points of interest. Also, the parameters for B can be derived from H. 
�

5 Experiments

The power of HTBNs is illustrated in the domain of myocardial contractability in
relationship to heart attack, heart failure and its medical treatment, introduced
in Sect. 2 and summarized in Fig. 3. In particular, of interest is the question of
how the dynamics of the occurrence of heart failure is affected by heart attacks
and the administration of digitalis. As discussed in Sect. 2, a single DBN and
CTBN can not provide a satisfactory representation of the evolution of variables
with different rates: changes in the occurrence of heart failure happen often, in
contrast to the more sparse and irregular occurrence of heart attacks.
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We parameterized the model using medical expert knowledge given that
discrete-time transitions occur weekly. Then, we computed the probability dis-
tribution of heart failure for a period of 19 weeks given the observed (regular
or irregular) evidence. Results of this experiment are plotted in Fig. 5. The plot
shows the negative effects of a heart attack (see the jumps at time t = 2, t = 3
and t = 17) and the positive effect of digitalis on heart failure (see the rapid fall at
time t = 7). The model also implies that the condition of the heart stabilizes
after administering the drug through an increase in the contractility. However,
a damaged heart does not fully recover, not even with the help of digitalis.

6 Discussion

We have described hybrid time Bayesian networks for modeling dynamic sys-
tems with different types of time granularities: the proposed models provide a
generalization of continuous-time and discrete-time Bayesian networks. As an
inherited property from CTBNs, the joint distribution is propagated over time
even when evidence is spaced irregularly. In addition, we established a mapping
of hybrid-time networks into a standard BN given time points of interest.

The formalism is related to non-stationary dynamic Bayesian networks,
where the structures and parameters are determined by time points of inter-
est [4,5]. These are related in the sense that non-stationary Bayesian networks
allow for different time granularities of the (complete) temporal process. The
key difference here is that we consider the case where different random variables
evolve at different kinds of rates.

A limitation of HTBN is that so far the granularities of discrete-time variables
are assumed to be fixed, as the focus of this paper has been on the combination
of continuous and discrete-time models. As future work, we will also combine dif-
ferent discrete-time granularities within the hybrid-time framework as proposed
in irregular-time Bayesian networks (ITBNs) [6] and also discussed by van der
Heijden and Lucas [7]. Furthermore, as a final piece of future work, we would
like to extend the formalism to also allow random variables that are completely
atemporal. For example, in classification, one might want to predict a single
outcome indicator based on time-series. This would complete the full spectrum
of temporal models of random variables.
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Abstract. Learning Bayesian networks with bounded tree-width has
attracted much attention recently, because low tree-width allows exact
inference to be performed efficiently. Some existing methods [12,14]
tackle the problem by using k-trees to learn the optimal Bayesian network
with tree-width up to k. In this paper, we propose a sampling method
to efficiently find representative k-trees by introducing an Informative
score function to characterize the quality of a k-tree. The proposed algo-
rithm can efficiently learn a Bayesian network with tree-width at most k.
Experiment results indicate that our approach is comparable with exact
methods, but is much more computationally efficient.

Keywords: Bayesian network · Structure learning · Bounded tree-width

1 Introduction

Bayesian networks (BNs) are widely used probabilistic graphical models. Learn-
ing Bayesian networks from data has been widely studied in decades. In this
paper we present our approach of score-based Bayesian network structure learn-
ing with some special constraint.

It is well known that the complexity of exact inference in a Bayesian net-
work is related to the tree-width of the network [13]. To simplify the inference
computation, one attempt that has received growing attention recently is to
learn a Bayesian network with bounded tree-width. Moreover, some empirical
results [10] demonstrate that bounding the tree-width of a Bayesian network
achieves better generalization performance.

Several algorithms have been proposed to learn Bayesian networks with
bounded tree-width. Korhonen and Parviainen [12] proposed a dynamic program-
ming based algorithm for learning n-node Bayesian networks of tree-width at most
k. Their algorithm guarantees to find the optimal structure maximizing a given
score function subject to the tree-width constraint. Parviainen et al. [15] devel-
oped an integer programming approach to solve the problem. It iteratively creates
a cutting plane on the current solution to avoid exponentially many constraints.
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 387–396, 2015.
DOI: 10.1007/978-3-319-20807-7 35
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However, both algorithms work only with small tree-widths. Berg et al. [3] trans-
ferred the problem into a weighted maximum satisfiability problem and solved
it by weighted MAX-SAT solvers. Nie et al. [14] introduced an integer program-
ming and a sampling methods to address this problem.

In this work, we present a novel method of score-based Bayesian network
structure learning with bounded tree-width via sampling. We design an approx-
imate approach based on sampling k-trees, which are the maximal graphs of
tree-width k. The sampling method is based on a fast bijection between k-trees
and Dandelion codes [5]. We design a sampling scheme, called Distance Preferable
Sampling (DPS), in order to effectively cover the space of k-trees using limited
samples, in which we give a larger probability for a sample in the unexplored
area of the space, based on the existing samples. Smart rules to explore the
sample space are essential, because we can only compute a few best structures
respecting sampled k-trees in a reasonable amount of time. To evaluate the sam-
pled k-trees, we design an Informative Score (I-score) function as the criterion
for accepting or rejecting k-trees based on independence tests and BDeu scores,
which is used as a prior information for the k-trees. Different from the method
proposed in [14], this work focuses on identifying high quality k-trees, instead of
uniformly sampling. Given each sampled k-tree, we employ the algorithm of [12]
to find the optimal Bayesian network as a subgraph of it, which we denote as
K&P method from now on.

This paper is structured as follows. We first introduce some definitions and
notations for Bayesian networks and tree-width in Sect. 2. Then we discuss the
proposed sampling method for learning Bayesian networks with bounded tree-
width in Sect. 3. Experimental results are given in Sect. 4. Finally we conclude
the paper in Sect. 5.

2 Preliminaries

2.1 Learning Bayesian Networks

A Bayesian network uses a directed acyclic graph (DAG) to represent a set
of random variables X = {Xi : i ∈ N}, N = {1, 2, ..., n} and their conditional
(in)dependencies. Arcs of the DAG encode parent-child relations. Denote Xpai

as
the parent set of variable Xi. Conditional probability tables p(xi|xpai

) are given
accordingly, where xi and xpai

are instantiations of Xi and Xpai
. We consider

categorical variables in this work.
The structure learning task of Bayesian network is to identify the “best”

DAG from data. In this paper we consider the score-based Bayesian network
structure learning problem, in which a score s(G) is assigned to each DAG G.
The commonly used score functions (such as BIC [17], and BDeu [4,6,11]) are
decomposable, i.e., the overall score can be written as the summation of local
score functions, s(G) =

∑
i∈N si(Xpai

). For each variable, its score is only related
to its parent set. We assume that local scores have been computed in advance
and can be retrieved in constant time.
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2.2 Learning BN with Tree-Width Bound

The width of a tree decomposition of an undirected graph is the size of its largest
clique minus one. The tree-width of an undirected graph is the minimum width
among all possible tree decompositions of the graph. We define tree-width tw(G)
of a DAG G as the tree-width of its moral graph, which is obtained by connecting
nodes with a common child, and making all edges undirected.

The objective of this work is to find a graph G∗,

G∗ = arg max
G

∑

i∈N

si(Xpai
), s.t. tw(G) ≤ k . (1)

Directly computing the tree-width of a graph is intractable [1]. One way of
imposing the tree-width constraint is to use the k-tree, the maximal graphs with
tree-width k, and no more edges can be added to them without increasing the
tree-width (see [16] for details). Therefore, every graph with tree-width at most k
is a subgraph of a k-tree. Learning Bayesian network from a k-tree automatically
satisfies the tree-width constraint if we ensure that the moral graph of the learned
Bayesian network is a subgraph of the k-tree. A k-tree is denoted by Tk ∈ Tn,k,
where Tn,k is the set of all k-trees over n nodes.

3 Sampling k-trees Using Dandelion Codes

The basic idea is to efficiently search for k-trees with “high quality” and then use
K&P algorithm to learn the optimal Bayesian network from the selected k-trees.
This is accomplished in two steps. First, we propose a sampling method that can
effectively cover the space of k-trees to obtain representative k-trees. Second, we
establish an informative score (I-score) function to evaluate the quality of each
k-tree.

3.1 Effective k-tree Sampling

Directly sampling a k-tree is not trivial. Caminiti et al. [5] proposed to establish a
one-to-one correspondence between a k-tree and what is called Dandelion codes.
The space of Dandelion codes is denoted by An,k. A code (Q,S) ∈ An,k is a pair
where Q ⊆ N is a set of integers of size k and S is a 2 × (n−k−2) matrix of
integers drawn from N ∪ {ε}, where ε is an arbitrary number not in N (see [5]
for details).

Dandelion codes can be sampled uniformly at random by a trivial linear-
time algorithm that uniformly chooses k elements out of N to build Q, and then
uniformly samples n−k−2 pairs of integers in N∪{ε}. Such property of Dandelion
codes naturally makes a uniform prior for k-trees, which is a quite good prior in
the absence of other prior knowledge [9]. However, uniform sampling generates
each sample independently, and totally ignores previous samples, which makes it
possible to generate the very same sample twice, or at least samples that are too
close to each other. Considering the large size of the space of all Dandelion codes



390 S. Nie et al.

(
(
n
k

)
(k(n−k)+1)n−k−2) and the relatively small amount of samples that we can

process, we would prefer the samples to be as evenly distributed as possible. This
is accomplished by generating the next sample from some currently unexplored
area of the sampling space. Driven by this idea, we define the Distance Preferable
Sampling (DPS). Given the samples of Dandelion codes A(1), A(2), · · · , A(j−1)

obtained so far, we want to decide how to sample the next A(j). A kernel density
function for a new sample can be defined as

q(A(j)) =
1

j − 1

j−1∑

i=1

K(‖A(j) − A(i)‖), (2)

where A(j) ∈ An,k is the jth Dandelion code sample. q(A(j)) depends on all the
previous samples, with its value decreasing as A(j) moves away from existing
samples. K(·) is a kernel function, (e.g., a Gaussian). The distance between two
Dandelion codes is defined as

‖A(j) − A(i)‖ = ‖Q(j) − Q(i)‖2 + ‖S(j) − S(i)‖2,1, (3)

where ‖ · ‖2 is the L2 norm. S(j) is processed as a 2 × (n−k−2) matrix, and
‖ · ‖2,1 is the L2,1 norm.

Since we intend to explore the regions which have not yet been sampled, we
design a proposal distribution as follows:

p(A(j)) = 1 − q(A(j))
K(0)

. (4)

p(A(j)) increases as sample A(j) moves away from all the existing samples.
Following the proposal distribution, we use the rejection sampling algorithm
(Algorithm 1) to generate a sample of Dandelion codes, and then employ the
implementation of [5] to decode it into a k-tree.

3.2 Informative Score for k-trees

Given a k-tree, the computational complexity of the method of [12] for con-
structing a Bayesian network subject to the k-tree is super-exponential in k
(O(k · 3k · (k + 1)! · n)). Hence, one cannot hope to use it with too many k-trees,
given current computational resources. Instead of learning from every k-tree

Algorithm 1. Sampling a Dandelion code using Distance Preferable Sampling
Input Previous samples of Dandelion codes A(1), . . . , A(j−1).
Output a new sample of Dandelion code A(j).
1 Uniformly sample a Dandelion code A(j) in the feasible region;
2 If j = 1, the sample is accepted. If not, the sample is accepted with probability

p(A(j));
3 If A(j) is rejected, return to step 1 for another sample, until a sample is accepted.
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without distinction, we define the I-score function to evaluate how well a k-tree
“fits the data”, hence can produce a Bayesian network with high quality. The
I-score of a k-tree Tk is defined as

IS(Tk) =
Smi(Tk)
|Sl(Tk)| . (5)

The numerator, Smi(Tk), measures how much information is lost by representing
data using the k-tree. Let eij denote the edge connecting node i and j, and let
Iij denote the mutual information of node i and j. Then,

Smi(Tk) =
∑

i,j

Iij −
∑

eij /∈Tk

Iij . (6)

If an edge eij is not included in the k-tree, we subtract the mutual information
corresponding to that edge from the optimal score. Smi is a measurement of the
consistency of the k-tree and the data, and can be interpreted either as the sum
of the mutual information covered by the k-tree or as constant minus the sum
of the mutual information lost by the k-tree. Larger Smi indicates the k-tree fits
the data well, from the independent test perspective.

On the other hand, the denominator Sl(Tk) is defined as the score (e.g., BIC,
BDeu scores) of the best pseudo subgraph of the k-tree by dropping the acyclic
constraint.

Sl(Tk) = max
m(G)⊆Tk

∑

i∈N

si(xpai
), (7)

where m(G) is the moral graph of DAG G, and si(xpai
) is the local score function

for xi given parent set xpai
.

The best pseudo subgraph of a k-tree is constructed by choosing the best
parent set for each node in terms of local scores, compatible with the k-tree, in
a greedy way. Combining all the parent sets will result in a directed, possibly
cyclic, graph. Therefore, given the pre-computed scores for each variable, score
Sl can be computed in linear time. Since the value of Sl is negative, for practical
reasons we use the term 1/|Sl(Tk)| in the I-score formulation.

The I-score for a k-tree combines the independence test approach and score-
based approach for learning Bayesian networks. It can be very efficiently eval-
uated for any given k-tree, as computing Smi requires only mutual information
of pairs of nodes (which can all be pre-computed, so time complexity is at most
O(n2) over all multiple runs of the algorithm).

With the I-score for a proposed k-tree, we then accept a k-tree with
probability

α = min
(

1,
IS(Tk)
IS(T ∗

k )

)
, (8)

where T ∗
k is the current k-tree with the largest I-score. Notice that we do not set

a hard constraint for accepting or rejecting a k-tree, due to the fact that even
for a k-tree with relatively small I-score, it is still possible for it to contain a
good subgraph.
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Algorithm 2. Learning a Bayesian network structure of bounded tree-width by
sampling Dandelion codes.
Input score function si, ∀i ∈ N , mutual information Iij , ∀i, j ∈ N
Output a DAG Gbest.
1 Initialize Pabest

i as an empty set for all i ∈ N ;
2 (Rejection Procedure 1) Sample a Dandelion code (Q, S) ∈ An,k according to Algo-

rithm 1;
3 (Rejection Procedure 2) Decode (Q, S) into Tk ∈ Tn,k, accept it with probability α

(Eq. 8);
4 Repeat Step 2 and 3 until m k-trees are accepted. Sort them in descending order

based on their I-scores. From the top use the implementation of [12] to learn a
Bayesian network. Keep the structure with the highest BDeu score.

5 If time limit is not reached after m k-trees, restart from step 2.

3.3 BN Learning from Sampled k-trees

Combining the ideas in Sects. 3.1 and 3.2, we present Algorithm 2 as an approx-
imate algorithm for learning Bayesian networks of bounded tree-width. Due to
the fact that k-trees with large I-scores are more likely to have better subgraphs,
we give them high priority to learn the corresponding Bayesian network. This
is reflected in Step 4 of Algorithm 2. A certain amount of k-trees are sampled,
and then sorted based on their I-scores. The process starts with the k-trees of
the largest I-score in the sorted list. If time allows, all k-trees are examined, and
the procedure restarts. Given a k-tree as the super structure, the implementa-
tion of K&P is employed to learn the optimal Bayesian network. The goal of
Algorithm 2 is to restrict the calls to K&P (which is a time consuming method
in k, even if linear in n) only to k-trees that are promising.

Table 1. Dimensions of data sets.

Dataset Nursery Breast Housing Adult Zoo Letter Mushroom wdbc

Var. 9 10 14 15 17 17 22 31

Samples 12960 699 506 32561 101 20000 8124 569

4 Experiments

To empirically evaluate our method, we use a collection of data sets from the
UCI repository [2] of varying dimensionality. Table 1 contains the details about
the data sets used in the experiments. Firstly, we show the effectiveness of the
I-score for accepting or rejecting a sampled k-tree. Secondly, we compare the
BDeu scores of the learned Bayesian networks.

4.1 Informative Score

In this section, we evaluate the I-score as a measurement of how good a k-tree
would be to “produce” a Bayesian network (moralized) structure as its subgraph.
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Fig. 1. Effect of the rejection process. The maximum BDeu scores of the Bayesian
networks learned from the accepted k-trees, compared with those from the rejected
k-trees. Best scores are normalized to 1. The rejection rates are presented at bottom.

Eight data sets are used (nursery, breast, housing, adult, zoo, letter, mushroom,
and wdbc), whose dimensions are summarized in Tables 2 and 3. The numbers
of samples vary from 100 to 20,000. Non-binary variables are binarized over the
median value. In all experiments, we maximize the Bayesian Dirichlet equivalent
uniform (BDeu) score with equivalent sample size equal to one [11]. To evaluate
the effect of our rejection of k-trees, we sampled 500 k-trees, and counted the
number of rejections during the k-tree selection (Step 3 in Algorithm 2). If a k-
tree is rejected, we still compute the BDeu score of its optimal Bayesian network
for comparison. Figure 1 shows the ratio of rejection (at bottom) and relation
between best scores of Bayesian networks learned from both the accepted and
the rejected k-trees. The scores are normalized so that best score is 1. In all
data sets, BDeu scores of Bayesian network learned from rejected k-trees never
exceeded the scores from accepted ones. Using the rejection process, we see that
20 % to 40 % of the k-trees were rejected. Such variation in the rejection rates
is due to the randomness of the samples, because if a k-tree with high I-score is
sampled in an early stage, later samples have a high probability to be rejected.

4.2 Bayesian Network Learning

In this section we compare the BDeu scores of structures learned by our method
against scores from two exact methods as baseline methods, namely, the K&P
algorithm1 and the B&B method2 [7,8]. The comparison with exact methods
allows us to evaluate the proposed algorithm in terms of the difference in scores.

Due to the complexity of K&P method, it is only applicable to some relatively
small data sets, hence our comparisons are restricted to those cases. The detailed
1 http://www.cs.helsinki.fi/u/jazkorho/aistats-2013/.
2 http://www.ecse.rpi.edu/∼cvrl/structlearning.html.

http://www.cs.helsinki.fi/u/jazkorho/aistats-2013/
http://www.ecse.rpi.edu/~cvrl/structlearning.html
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Table 2. Computational time of the K&P method to find the optimal Bayesian network
structure, and the proposed method to sample 100 k-trees, as well as the resulting
BDeu scores of the networks found by both methods. Empty cells indicate that the
method failed to solve the problem because of excessive memory consumption. s, m
mean seconds and minutes, respectively.

Time Score

Method k Nursery Breast Housing Adult Nursery Breast Housing Adult

n = 9 n = 10 n = 14 n = 15 n = 9 n = 10 n = 14 n = 15

K&P 2 7 s 26 s 128m 137m −72160 −2688.4 −3295.4 −201532

3 72 s 5m – – −72159 −2685.8 – –

4 12m 103m – – −72159 −2685.3 – –

5 131m – – – −72159 – – –

Proposed 2 5 s 8 s 16 s 18 s −72218 −2690.5 −3409.6 −202852

3 70 s 76 s 3m 4m −72204 −2692.5 −3413.4 −204186

4 9m 10m 36m 50m −72159 −2691.9 −3285.0 −202432

5 80m 232m 631m 896m −72159 −2694.0 −3296.9 −202699

computational time that K&P uses is given in Table 2. The algorithm is run using
a desktop computer with 64 GB of memory. Maximum number of parents is set
to three. Due to the huge amount of memory cost, for housing and adult data
sets with tree-width more than 2, as well as breast with tree-width bound 5, the
algorithm failed to give a solution. Correspondingly, we sampled 100 k-trees and
recorded the running time for the proposed algorithm to give a solution, given
the same data set and the same choice of maximum tree-width. The BDeu scores
of the best Bayesian networks found with both algorithms are also presented. By
examining only a small portion of k-trees, the proposed algorithm finds solutions
with an BDeu score difference less than 1 % for most cases. Only in the housing
data set with tree-width equal to 2, our algorithm have a 3 % score difference
to the exact solution, which is reasonable after only 16 seconds of computation.
Generally speaking, the proposed algorithm achieves comparable results to those
of the exact method in terms of BDeu score difference. Yet when considering the
time and memory costs of the exact solution, the proposed algorithm is more
efficient against the competing method by several orders of magnitude.

Besides efficiency, the proposed algorithm can be used on larger data sets
with up to 31 nodes and larger values for the tree-width bound (zoo, letter,
mushroom, and wdbc) (Table 3). Note that the B&B method does not have the
tree-width constraint, so the learned structures are supposed to have larger BDeu
scores. However, the score difference is not very significant, which indicates the
bounding the tree-width can learn good structures in terms of scores.

To further study the benefit of the DPS and I-score based sampling, we also
implemented the algorithm using the uniformly sampled Dandelion codes with-
out sorting or rejection. The BDeu scores on the letter data set are compared,
with different choices of tree-widths. According to Table 4, DPS outperforms
uniform sampling, even if by a small margin. A great portion of the gain of
performance is from rejecting k-trees based on I-scores.To summarize, we are
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Table 3. BDeu scores for relatively larger data sets and lager tree-widths, compared
with the B&B method without tree-width constraint. Running time is ten minutes.
Averaged over ten repetitions.

Data set Nodes k = 2 k = 3 k = 4 k = 5 B&B

Zoo 17 −644.1 −623.8 −609.1 −649.1 −565.2

Letter 17 −195677 −192289 −192373 −194349 −184530

Mushroom 22 −73697 −74367 −68523 −73902 −68237

wdbc 31 −8435.1 −8320.8 −8352.1 −8316.9 −6933.8

Table 4. BDeu scores of BNs learned using different sampling methods with data set
letter, normalized using the best score of each column. UNI means uniform sampling;
DPS means Distance Preferable Sampling; α means that we employed the acceptance
probability α. Larger numbers indicate worse performance.

Method k = 2 k = 3 k = 4

UNI 1.019 1.046 1.039

DPS 1.018 1.045 1.038

DPS+α 1 1 1

able to focus on better k-trees by employing non-uniform sampling and sorting
them according to some meaningful measure.

5 Conclusion

In this paper we present a sampling method for learning Bayesian networks with
bounded tree-width. The sampling is based on a bijection between Dandelion
codes and k-trees. We design a Distance Preferable Sampling scheme to effec-
tively cover the space of k-trees, as well as an Informative score function to
evaluate each k-tree. These ideas allow to quickly find representative k-trees of
high quality. Experiments indicate that the proposed method reaches compa-
rable accuracy to the exact algorithms in terms of BDeu scores, but is much
more efficient in terms of learning speed, and can scale up to larger networks
and larger tree-widths.

Acknowledgements. This work is supported in part by the grant N00014-12-1-0868
from the US Office of Navy Research.
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Abstract. Mixtures of Truncated Basis Functions (MoTBFs) have
recently been proposed for modelling univariate and joint distributions
in hybrid Bayesian networks. In this paper we analyse the problem of
learning conditional MoTBF distributions from data. Our approach uti-
lizes a new technique for learning joint MoTBF densities, then propose
a method for using these to generate the conditional distributions. The
main contribution of this work is conveyed through an empirical investi-
gation into the properties of the new learning procedure, where we also
compare the merits of our approach to those obtained by other proposals.

Keywords: Mixtures of truncated basis functions · Hybrid bayesian
networks · Joint density · Conditional density

1 Introduction

Mixtures of truncated basis functions (MoTBFs) [2] have recently been proposed
as a general framework for handling hybrid Bayesian networks, i.e., Bayesian net-
works where discrete and continuous variables coexist. Previous hybrid models
as the so-called mixtures of truncated exponentials (MTEs) [7] and mixtures of
polynomials (MoPs) [10] can be regarded as particular cases of MoTBFs.

Part of the success of MoTBFs is due to the fact that they can model
hybrid Bayesian networks with no structural restrictions, unlike the conditional
Gaussian (CG) model [6], where discrete variables are not allowed to have contin-
uous parents. Furthermore, MoTBFs are closed under addition, multiplication,
and integration, which facilitates the use of efficient inference methods like the
Shenoy-Shafer architecture [9] or the variable elimination algorithm [12].

The problem of learning MoTBFs from data has been studied considerably
already (see, e.g., [3,5]). However, even though a Bayesian network model popu-
lated with MoTBF distributions requires the specification of both marginal and
conditional MoTBF distributions, only limited attention has been given to learn-
ing the conditional MoTBF distributions directly from data [1,11]. In this paper
we first extend previous work on learning marginal MoTBF distributions [5] to
also learn joint densities. These are in turn employed to generate the required
conditional MoTBFs.
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 397–406, 2015.
DOI: 10.1007/978-3-319-20807-7 36
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The remainder of the paper is organized as follows: The MoTBF model is
introduced in Sect. 2. Next, techniques for learning marginal and joint MoTBF
densities from data is described in Sect. 3, where we also detail how we define the
conditional distributions. The main part of this work is given in Sect. 4, where
our proposal is validated through a series of experiments. Finally, we give some
conclusions in Sect. 5.

2 The MoTBF Model

The MoTBF framework is based on the abstract notion of real-valued basis func-
tions ψ(·), which include both polynomial and exponential functions as special
cases. Let X be a continuous variable with domain ΩX ⊂ R and let ψi : ΩX �→ R,
for i = 0, . . . , k, define a collection of real basis functions. We say that a function
f : ΩX �→ R

+
0 is an MoTBF potential of level k wrt. Ψ = {ψ0, ψ1, . . . , ψk} if f

can be written as

f(x) =
k∑

i=0

ci ψi (x),

where ci are real numbers [2]. The potential is a density if
∫

ΩX
f(x) dx = 1.

In this paper we will restrict our attention to the MoP framework, meaning
that ψi(x) = xi.

When there are more than one variable, we can use a joint MoP to capture
the probability density function over the variables. Let X be a d-dimensional
continuous variable, X = (X1, . . . , Xd) with domain ΩX ⊂ R

d. A function f :
ΩX �→ R

+ is said to be an MoP potential of level k if it can be written as

f(x) =
k∑

�1=0

. . .

k∑

�d=0

c�1,�2,...,�d

d∏

i=1

x�i
i , (1)

or if there is a partition of ΩX into hypercubes where f can be written as in
Eq. 1 for each part.

3 Learning MoPs from Data

We will now investigate how to learn MoP distributions for a given set of random
variables. We start by looking at how to learn univariate MoP distributions from
data, before we extend that approach to learning joint MoP distributions, and
finally discuss how one can obtain conditional distribution functions.

3.1 Univariate MoPs

The learning of univariate MoTBFs from data was explored in [5], and we will
briefly summarize that approach here in the special case of MoPs. The estimation
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procedure relies on the empirical cumulative distribution function (CDF) as a
representation of the data D = {x1, . . . , xN}. The empirical CDF is defined as

GN (x) =
1
N

N∑

�=1

1{x� ≤ x}, x ∈ ΩX ⊂ R,

where 1{·} is the indicator function.
The algorithm in [5] approximates the empirical CDF by a function whose

derivative is an MoTBF, using least squares. In our case, the role of the basis
functions is taken by the polynomials, and since the integral of a polynomial is
itself a polynomial, the target function is of the form F (x) =

∑k
i=0 ci xi, defined

on an interval ΩX = [a, b] ⊂ R. The optimization problem thus becomes

minimize
N∑

�=1

(GN (x�) − F (x�))
2

subject to
dF (x)

dx
≥ 0 ∀x ∈ ΩX , (2)

F (a) = 0 and F (b) = 1.

The probability density function (PDF) is found by simple differentiation of
the estimated CDF. The constraints of the optimization program ensures that
the result is a legal density; the first requirement ensures that the PDF is non-
negative over the domain, the others ensure it integrates to one. Furthermore,
[5] remarks that the solution obtained by solving program in Eq. 2 is a consistent
estimator of the true CDF in terms of the mean squared error for all x ∈ ΩX .

Note that the optimization program is convex, and can be efficiently solved
in theory. However, the infinite number of constraints introduced by requiring
that dF (x)

dx ≥ 0 for all x ∈ ΩX complicates the implementation on a computer.
In practice, we therefore only check that the constraint is fulfilled for a limited
set of points spread across ΩX .

In learning situations where we have lots of data (N is large), the solution
of the program can be slow. In such cases we rather define a grid on ΩX , where
the grid is selected so that the number of observations is the same between each
pair of consecutive grid-points. Then, the grid-points will play the role of the
evaluation points in the objective function.

The level k of the estimated MoP can be decided using a multitude of differ-
ent model selection techniques. For the results presented in this paper we have
searched greedily for k, and chosen the value that maximized the BIC score [8].
This choice is motivated by [3], who showed that the estimators based on Eq. 2
are consistent in terms of the mean squared error for all x ∈ ΩX .

3.2 Joint MoPs

During the definition of the conditional distributions (described in Sect. 3.3),
we will investigate the use of joint MoP densities to define conditional distrib-
utions. We therefore proceed by extending the program in Eq. 2 to arbitrarily
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dimensional random vectors. The procedure is very similar to the univariate
case. The data now consists of d-dimensional observations, D = {x1, . . . ,xN},
x ∈ ΩX ⊂ R

d. We continue to use 1{·} to denote the indicator function, and
the say that the event x� ≤ x is true if and only if x�,i ≤ xi for each dimension
i = 1, . . . , d. For notational convenience we use Ω−

X ∈ R
d to denote the minimal

point of ΩX (obtained by choosing the minimum of ΩX in each dimension), and
let Ω+

X ∈ R
d be the corresponding maximal point. Then, the empirical CDF is

defined as

GN (x) =
1
N

N∑

�=1

1{x� ≤ x}, x ∈ ΩX ⊂ R
d.

Our goal is to find a representation of the empirical CDF of the form

F (x) =
k∑

�1=0

. . .

k∑

�d=0

c�1,�2,...,�d

d∏

i=1

x�i
i ,

leading us to the optimization problem

minimize
N∑

�=1

(GN (x�) − F (x�))
2

subject to
∂dF (x)

∂x1, . . . , ∂xd
≥ 0 ∀x ∈ ΩX, (3)

F
(
Ω−

X

)
= 0 and F

(
Ω+

X

)
= 1.

The solution to this problem is the parameter-set that defines the joint CDF,
and the density can be obtained simply by differentiation of the joint CDF. As
in the univariate case, the problem is a quadratic optimization problem, that
can be solved efficiently. When the amount of data and/or the dimensionality
get large, we have used the same strategy wrt. grid-points for the joint density
as we did when estimating the univariate PDFs.

The top of Fig. 1 shows the MoP density generated by solving the opti-
mization program in Eq. 3. The model was learned from a database of 1000
observation generated from a bivariate standard normal distribution (i.e., with
correlation-coefficient ρ = 0). In the bottom part of Fig. 1 we can see the model
learned from same distributions but with correlation ρ = 0.99.

3.3 Conditional Distributions

The last piece of the puzzle is to learn the conditional density functions for a
variable X with parents Z, that will be used to populate the Bayesian network
structure. Using the minimization program in Eq. 3, we can learn both f(x, z)
and f(z), hence by the definition of a conditional probability density it seems
natural to define f(x|z) as

f(x|z) ← f(x, z)
f(z)

, (4)



Learning Conditional Distributions Using MoTBFs 401

where both f(z) and f(x, z) are MoPs. Unfortunately, though, MoPs are not
closed under division [2], thus f(x|z) defined by Eq. 4 will not lead to a legal MoP-
representation of a conditional density. An alternative was therefore pursued by
[2], where the influence the parents Z have on X was encoded only through the
partitioning of the domain of Z into hyper-cubes. Then, specific distributions for
X that are valid as long as Z is inside a specific hypercube was learned from data.
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Fig. 1. The contour and the perspective plots of the result of learning a MoP from
N = 1000 samples drawn from bivariate standard normal distributions with ρ = 0
(top) and ρ = 0.99 (bottom).

Here, however, we will follow an alternative strategy similar to the one pur-
sued in [11]. The idea is to learn representations for f(x, z) and f(z), then utilize
Eq. 4 to calculate f(x|z). As already noted, this will not result in an MoP, and
the next step is therefore to approximate this representation into an MoP by
some means. Varando et al. [11] investigated two schemes: i) To use the rep-
resentation in Eq. 4 to generate samples from the conditional distribution of x
given Z and learn the MoP representation from the generated dataset; ii) to
use numerical techniques to approximate the fraction directly (specifically, both
Taylor series and Lagrange interpolation were considered). In our work we first
learn an MoP representation for f(x, z) using the program in Eq. 3, then calcu-
late f(z) =

∫
Ωx

f(x, z)dx directly from the learned joint. Note that since f(x, z)
is a MoP the integral can easily be performed analytically. Next, the condi-
tional distribution defined through Eq. 4 is our target, leading to the following
optimization program:
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minimize
N∑

�=1

(
f(x�, z�)

f(z�)
− f(x�|z�)

)2

(5)

subject to f(x|z) ≥ 0 ∀(x, z) ∈ (ΩX × Ωz) .

The solution to this problem is a parameter-set that defines an un-normalized
conditional PDF (that is, we have no guarantee that

∫
Ωx

f(x|z)dx = 1 for all
z ∈ Ωz). Hence, the procedure is finalized by partially normalizing the distribu-
tion [10]. The program is quadratic, and can therefore be solved efficiently.

We note that while the programmes in Eqs. 2 and 3 are defined to obtain the
CDFs, the programme in Eq. 5 works directly with the PDF. The reason for the
programmes in Eqs. 2 and 3 to work with the cumulative distribution functions
is that the defined GN (·) function is a more robust data-representation than,
say, a histogram [5], and as GN (·) represents the empirical CDF the result of
these programs are also CDFs. On the other hand, the program in Eq. 5 does
not work directly with representations of the data, but rather defines the target
function through Eq. 4. Therefore, the objects under study by this program are
PDFs.

4 Experimental Analysis

In this section, we compare the proposal given in Sect. 3 with the methods
described in [5] (where the conditioning variables are discretized) and in [11]
(where B-splines are used) for learning conditional MoPs from data.

We consider two different scenarios concerning two continuous variables, X
and Y . In the first one, Y ∼ N (μ = 0, σ = 1) and X|{Y = y} ∼ N (μ =
y, σ = 1). In the second scenario, Y ∼ Gamma(rate = 10, shape = 10) and
X|{Y = y} ∼ Exp(rate = y). For each scenario, we generated 10 data-sets of
samples {Xi, Yi}N

i=1, where the size is chosen as N = 25, 500, 2500, 5000. The
effectiveness of the tested methods was measured by computing the mean square
error for each set of samples. The results are showed in Tables 1 and 2.

The results in Table 1 indicate that the most accurate results for scenario 1
are achieved by the B-spline approach [11]. The worst results by far are obtained
by the approach that discretizes the conditioning variables [5]. Both the proposed
approach and the B-spline approach yield errors close to zero in most cases.

The results for scenario 2 are reported in Table 2. In this case, the most
accurate results in terms of mean square error are provided by the MoTBF
approach. Again, the method in [5] obtains the worst results overall.

The results are consistent with the plots in Fig. 2, where the MoTBF app-
roach (bottom row in the figure) presented in this paper is able to resemble
the shape of the exact conditional distribution (top row), specially in the non
Gaussian scenario, while the method in [5] (middle row) is penalized by the fact
that the estimated model is piecewise constant along the Y axis. The plots in
Fig. 2 show the results obtained when learning from N = 5000 samples.
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Table 1. Average MSE between the different methods to obtain MoP approximations
and the true conditional densities for each set of 10 samples, where Y ∼ N (0, 1) and
X|Y ∼ N (y, 1).

N fX|Y (x|y) Split Method [5] MoTBF Algorithm B-Splines Method [11]

25 y=-0.6748 0.1276 0.0848 0.0103

y=0.00 0.1254 0.0936 0.0089

y=0.6748 0.1279 0.1416 0.0105

500 y=-0.6748 0.0256 0.0453 0.0025

y=0.00 0.0317 0.0117 0.0009

y=0.6748 0.0246 0.0411 0.0020

2500 y=-0.6748 0.0031 0.0019 0.0006

y=0.00 0.0064 0.0010 0.0002

y=0.6748 0.0058 0.0024 0.0006

5000 y=-0.6748 0.0019 0.0018 0.0006

y=0.00 0.0074 0.0009 0.0002

y=0.6748 0.0019 0.0020 0.0006

Table 2. Average MSE between the different methods to obtain MoP approximations
and the true conditional densities for each set of 10 samples, where Y ∼ Gamma(rate =
10, shape = 10) and X|Y ∼ Exp(y).

N fX|Y (x|y) Split Method [5] MoTBF Algorithm B-Splines Method [11]

25 y=0.7706 0.4054 0.0083 0.0131

y=0.9684 0.4703 0.0081 0.0225

y=1.1916 0.5473 0.0229 0.0374

500 y=0.7706 0.0158 0.0037 0.0012

y=0.9684 0.0048 0.0034 0.0022

y=1.1916 0.0118 0.0039 0.0057

2500 y=0.7706 0.0064 0.0025 0.0025

y=0.9684 0.0080 0.0024 0.0043

y=1.1916 0.0029 0.0046 0.0074

5000 y=0.7706 0.0013 0.0021 0.0015

y=0.9684 0.0091 0.0015 0.0022

y=1.1916 0.0026 0.0029 0.0032
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(a) Y ∼ N (0, 1) X|Y ∼ N (y, 1).
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(b) Y ∼ Gamma(10, 10) X|Y ∼ Exp(y).

Fig. 2. For the two scenarios (in columns), true conditional density (top row), the MoP
produced by the method introduced in [5] (middle row) and the MoP obtained by the
proposal in this paper (bottom row).

5 Concluding Remarks

In this paper we have extended the learning algorithm for univariate MoTBFs
in [5] to multivariate and conditional densities. The advantage of the proposal
described here with respect to the B-spline approach in [11] is that there is no
need to split the domain of any variable. This is a fundamental issue in order to
keep the complexity of inference in hybrid Bayesian networks under control. We
note that while in theory high order polynomials may be required to model the
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distributions, the use of the BIC-score [8] leads to low-order polynomials being
selected in practice [4,5].

The experimental analysis suggests that our proposal is competitive with the
B-spine approach in a range of commonly used distributions. Even if the condi-
tional distribution functions yielded by the method is this paper are not proper
conditional densities, evidence so far indicates they are accurate approximations,
which in practice allows the method to be used as a means of representing the
parameters of a Bayesian network. This paves the way to envisioning structural
learning algorithms for hybrid Bayesian networks parameterized by MoTBFs.

Finally, we note that even though the paper develops a learning method for
MoPs, the techniques employed here can easily be extended to be applicable for
MoTBFs in general.
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Abstract. Given evidence on a set of variables in a Bayesian network,
the most probable explanation (MPE) is the problem of finding a config-
uration of the remaining variables with maximum posterior probability.
This problem has previously been addressed for discrete Bayesian net-
works and can be solved using inference methods similar to those used
for finding posterior probabilities. However, when dealing with hybrid
Bayesian networks, such as conditional linear Gaussian (CLG) networks,
the MPE problem has only received little attention. In this paper, we pro-
vide insights into the general problem of finding an MPE configuration in
a CLG network. For solving this problem, we devise an algorithm based
on bucket elimination and with the same computational complexity as
that of calculating posterior marginals in a CLG network. We illustrate
the workings of the algorithm using a detailed numerical example, and
discuss possible extensions of the algorithm for handling the more general
problem of finding a maximum a posteriori hypothesis (MAP).

Keywords: MPE inference · Conditional linear gaussian networks ·
Hybrid Bayesian networks

1 Introduction

Probabilistic graphical models provide a well-founded and principled approach
for performing inference in complex domains endowed with uncertainty. A prob-
abilistic graphical model is a framework consisting of two parts: a qualitative
component in the form of a graphical model encoding conditional independence
assertions about the domain being modeled as well as a quantitative compo-
nent consisting of a collection of local probability distributions adhering to the
independence properties specified in the graphical model. Collectively, the two
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-20807-7 37



408 A. Salmerón et al.

components provide a compact representation of the joint probability distribu-
tion over the domain being modeled.

Given a Bayesian network where a subset of the variables is observed, we
may, e.g., query the network for the posterior marginal distributions of the
remaining variables or for a maximum a posteriori probability configuration for
a subset of the variables. If this subset is a proper subset of the non-observed
variables, then the problem is referred to as a maximum a posteriori (MAP)
hypothesis problem [10]. On the other hand, if the variables of interest corre-
spond to the complement of the observation set, then the problem is referred to
as that of finding the most probable explanation (MPE) [2,6]; MPE can therefore
be considered a specialization of MAP.

For Bayesian networks containing only discrete variables, there has been a
substantial amount of work on devising both exact and approximate algorithms
for performing MAP and MPE inference. However, for hybrid Bayesian networks,
with both discrete and continuous variables, these types of inference problems
have received only little attention [12]. In this paper we consider the problem of
performing MPE inference in conditional linear Gaussian networks [7]. We pro-
pose an MPE algorithm based on bucket-elimination, which has the same com-
putational complexity as that of standard inference for posterior marginals [8].
In contrast to the proposal in [12], we study the effect of entering evidence and
also avoid the use of piece-wise defined functions by using an auxiliary tree struc-
ture keeping track of the functions used in previous calculations. The algorithm
is illustrated using a detailed numerical example.

2 Preliminaries

Bayesian networks (BNs) [1,5,11] are a particular type of probabilistic graphical
model that has enjoyed widespread attention in the last two decades. Attached
to each node, there is a conditional probability distribution given its parents in
the network, so that in general, for a BN with N variables X = {X1, . . . , XN},
the joint distribution factorizes as p(X) =

∏N
i=1 p(Xi|Pa(Xi)), where Pa(Xi)

denotes the set of parents of Xi in the network. A BN is called hybrid if some
of its variables are discrete while some others are continuous.

We will use lowercase letters to refer to values or configurations of values, so
that x denotes a value of X and boldface x is a configuration of the variables
in X. Given a set of observed variables XE ⊂ X and a set of variables of
interest XI ⊂ X\XE , probabilistic inference consists of computing the posterior
distribution p(xi|xE) for each i ∈ I. If we denote by XC and XD the set of
continuous and discrete variables not in {Xi} ∪ XE , and by XCi

and XDi
the

set of continuous and discrete variables not in XE , the goal of inference can be
formulated as computing

p(xi|xE) =

⎡

⎣
∑

xD∈ΩXD

∫

xC∈ΩXC

p(x,xE)dxC

⎤

⎦
/

⎡

⎣
∑

xDi
∈ΩXDi

∫

xCi
∈ΩXCi

p(x,xE)dxCi

⎤

⎦,
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where ΩX is the set of possible values of a set of variables X and p(x,xE) is the
joint distribution in the BN instantiated according to the observed values xE .

A particularly complex kind of inference in BNs is the so-called maximum a
posteriori (MAP) problem. For a set of target variables XI ⊆ X \ XE , the goal
of MAP inference is to compute

x∗
I = arg max

xI∈ΩXI

p(xI |XE = xE), (1)

where p(xI |XE = xE) is obtained by first marginalizing out from the joint
distribution p(x) the variables not in XI and not in XE . A related problem is
MPE that stands for finding the most probable explanation to an observation
XE = xE . It is a particular case of MAP, where XI = X \ XE . Both MAP and
MPE belong to the class of problems known as abductive inference [4].

2.1 Conditional Linear Gaussian Networks

A Conditional Linear Gaussian Network is a hybrid Bayesian network where the
joint distribution is a conditional linear Gaussian (CLG) [7]. In the CLG model,
the conditional distribution of each discrete variable XD ∈ X given its parents
is a multinomial, whilst the conditional distribution of each continuous variable
Z ∈ X with discrete parents XD ⊆ X and continuous parents XC ⊆ X, is
given by

p(z|XD = xD,XC = xC) = N (z;α(xD) + β(xD)TxC , σ(xD)), (2)

for all xD ∈ ΩXD
and xC ∈ ΩXC

, where α and β are the coefficients of a linear
regression model of Z given its continuous parents; this model can differ for each
configuration of the discrete variables XD.

After fixing any configuration of the discrete variables, the joint distribution
of any subset XC ⊆ X of continuous variables is a multivariate Gaussian. Hence,
the parameters of the multivariate Gaussian can be obtained from the ones in
the CLG representation. For a set of n continuous variables Z1, . . . , Zn with
a conditionally specified joint density p(z1, . . . , zn) =

∏n
i=1 f(zi|zi+1, . . . , zn),

where the k-th factor, 1 ≤ k ≤ n, is such that

p(zk|zk+1, . . . , zn) = N (zk;μzk|zk+1,...,zn
, σzk

),

it holds that the joint is p(z1, . . . , zn) = N (z1, . . . , zn;μ,Σ) , where μ is the
n-dimensional vector of means and Σ is the covariance matrix of the multivariate
distribution over random variables Z1, . . . , Zn and both μ and Σ are derived
from the parameters in Eq. (2) [9].

3 MPE Inference in CLG Networks

MPE inference can be carried out by adapting generic inference algorithms like
Bucket Elimination [3]. The choice of bucket elimination as the underlying infer-
ence scheme for our proposal is motivated by its simplicity and flexibility, as well
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as the fact that it has been successfully employed in the MPE problem for dis-
crete variables. The bucket elimination algorithm computes the MPE using local
computations. A bucket containing probability functions is kept for each vari-
able. Initially, an ordering of the variables in the network is established, and each
conditional distribution in the network is assigned to the bucket corresponding
to the variable in its domain holding the highest rank. Afterwards, the buck-
ets are processed in a sequence opposite to the initial ordering of the variables.
Each bucket is processed by combining all the functions it contains and by mar-
ginalizing the main variable in that bucket by maximization. The details of the
algorithm are given in Algorithm 1.

Function Elim-MPE(X,P ,σ,xE)
Input: The set of variables in the network, X = {X1, . . . , XN}. The distributions in

the network P = {p1, . . . , pN}. An ordering, σ, of the variables in X. Evidence
XE = xE .

Output: xmpe, the configuration for which the posterior density reaches its maximum,
and mpe, the density value at that point.

begin
Initialization:
Partition P into buckets B1, . . . , BN , where Bi contains the conditional distribu-
tions in P whose highest index variable is Xi.
Backward phase:
for p ← N to 2 do

if Xp ∈ XE then
Replace Xp by xEp in each h ∈ Bp, and insert the resulting h in the bucket
corresponding to its highest ranked variable according to ordering σ.

end
else

hp ← maxxp

∏
h∈Bp

h
Insert hp in the bucket corresponding to its highest ranked variable.

end

end
Forward phase:
for p ← 1 to n do

Let hR(x1,...,xp) denote the restriction of each function h ∈ Bp to the values
(x1, . . . , xp).
xmpe
p ← argmaxxp

∏
h∈Bp

hR(x1,...,xp).

end
return xmpe = {xmpe

1 , . . . , xmpe
N } and mpe = maxx1

∏
h∈B1

h .

end

Algorithm 1. The Bucket elimination algorithm for computing the MPE
as described in [3].

Example 1. Consider the network in Fig. 1 and the ordering 〈Y, S,W, T, U〉.
According to such ordering, the initial setting of the buckets would be BY =
{P (Y )}, BS = {P (S)}, BW = {f(w|Y )}, BT = {f(t|w,S)} and BU = {f(u|w)}.
The backward phase in Algorithm 1 conveys the processing of the buckets as fol-
lows. The first bucket to be processed is BU . It is done by maximizing out u from
f(u|w). As f(u|w) = N (u;w, 1), the maximum is reached at the mean, which
means that U is maximized out by replacing u in f(u|w) by w, which results in
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a function hU (w) = 1√
2π

. Hence, the obtained function is in fact a constant, that
is shifted to bucket BW . The next bucket to handle is BT , where T is removed
from f(t|w,S) by replacing t by the mean of the conditional distribution, result-
ing again in a constant function hT (w,S) = 1√

2π
. After this calculation, hT

is stored in BW , which is itself processed by multiplying f(w|Y ), hT (w,S) and
hU (w) and maximizing out W from the result. Since hT and hU are constant,
we just have to maximize f(x|Y ) and multiply by the constants afterwards. The
result is hW (Y, S) = ( 1√

2π
)3, that is stored in BS . Bucket BS contains P (S) and

hW (Y, S), whose product is equal to 0.1( 1√
2π

)3 when S = 0 and 0.9( 1√
2π

)3 when
S = 1. Hence, maximizing with respect to S yields hS(Y ) = 0.9( 1√

2π
)3, that is

sent to bucket BY . The MPE configuration is actually obtained in the forward
phase of the algorithm, where the bucket processing step is traced back.

Y

W

TU

S

P (Y ) = (0.5, 0.5)

P (S) = (0.1, 0.9)

f(w|Y = 0) = N (w;−1, 1)

f(w|Y = 1) = N (w; 2, 1)

f(t|w, S = 0) = N (t;−w, 1)

f(t|w, S = 1) = N (t;w, 1)

f(u|w) = N (u;w, 1)

Fig. 1. A hybrid Bayesian network with two discrete and three continuous (shaded)
variables.

The example above shows how maximizing out continuous variables is an easy
task if the continuous variables are always removed first, as it just amounts to
replacing the variable being removed by its mode (which in the Gaussian case is
equal to its mean). The price to pay is that, in the worst case, a function contain-
ing all the discrete variables would be created, as is the case of hW (Y, S). It is
an undesirable event, as the size of a probability function of discrete variables is
exponential in the number of variables. This complexity blow-up can be avoided
in many cases by allowing orderings for constructing the buckets where discrete
and continuous variables can be arranged with no restrictions. But then a new
problem arises, as the maximization operation becomes more complex. Assume,
for instance, that we reach a point where Y is maximized out before W in Fig. 1.
This amounts to computing

hY (w) = max
y

{P (Y = y)f(w|Y = y)} = max{0.5N (w;−1, 1), 0.5N (w; 2, 1)}.

Therefore, hY is not a function with a single analytical expression, but it is piece-
wise defined instead. We show in the next section how it is possible to avoid piece-
wise representations of the result of maximizing out discrete variables. Instead,
we will keep lists of the functions that take place in the max operation. In other



412 A. Salmerón et al.

words, the max operation is carried out in a lazy way. The counterpart is that
the forward phase in Algorithm 1 requires us to keep track of the operations
carried out over the potentials in the backward phase. We propose to use a tree
structure to keep track of the functions involved in intermediate calculations as
illustrated in Fig. 2 and which corresponds to Example 1.

BY :

BS :

BW :

BT :

BU :

P (Y )

P (S)

f(w|Y )

f(t|w, S)

f(u|w)

hS(Y )

hW (Y, S)

hT (w, S) hU (w)

Fig. 2. Tree structure keeping track of the functions involved in the intermediate cal-
culations performed during the backward phase of the bucket elimination algorithm.

3.1 Entering Evidence

If a variable is observed, no bucket is created for it. Instead, the variable is
replaced by its observed value in every function where it appears. Assume a
continuous variable X that is observed taking on value X = x0. If the parents
of X are Y1, . . . , Yn, replacing variable X by value x0 in its conditional density
results in a function

φ(y1, . . . , yn) =
1

σx

√
2π

exp
{

− (x0 − (β0 +
∑n

i=1 βiyi))2

2σ2
x

}
. (3)

Eventually, function φ will be passed to the bucket corresponding to one of its
parents, where it will be multiplied by the parent’s density prior to maximization.
Let Yj be such a parent of X. Its conditional density can be written as

f(yj |Pa(Yj)) =
1

σyj

√
2π

exp

{

− (yj − μyj |pa(yj))
2

2σ2
yj

}

. (4)

Maximizing the product of the functions in Eqs. (3) and (4) with respect
to yj is equivalent to maximizing the sum of their respective logarithms. It is
obtained by solving the equation

∂

∂yj

(

− (x0 − (β0 +
∑n

i=1 βiyi))2

2σ2
x

− (yj − μyj |pa(yj))
2

2σ2
yj

)

= 0, (5)

which simply amounts to maximizing a quadratic function.
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4 A Numerical Example

In this section we illustrate our proposal through a detailed example. Consider
the CLG network illustrated in Fig. 1, where the discrete variables Y and S are
assumed to be binary with states 0 and 1. Assume now that the continuous
variable U is instantiated to 1 and we seek an MPE configuration over the
remaining variables.

For performing MPE inference in this network we proceed with bucket elim-
ination using the order 〈W,T, S, Y 〉. Thus, the buckets are initialized as BY =
{P (Y ), f(w|Y )}, BS = {P (S), f(t|w,S)}, BT = {1}, BW = {f(u = 1|w)}, and
BU = {1}. The first bucket to be processed is BY , which involves maximizing Y
from P (Y )f(w|Y ) and passing the result to bucket BW .

hY
1 (w) = max

y
P (y)f(w|y) = max[P (Y = 0)f(w|Y = 0), P (Y = 1)f(w|Y = 1)],

where the super-script Y means that the potential contains two pieces indexed
by Y ; each of them corresponds to a scaled normal distribution (see Fig. 3). From
an operational point of view, we use a list to store the components of hY

1 (w).

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 3. The potential h1(w) obtained by maximizing Y out of P (Y )f(w|Y ).

The next bucket to process is BS from which S should be eliminated. This
operation produces the potential

hS
2 (t, w) = max

s
P (s)f(t|w, s) = max[P (S = 0)f(t|w,S = 0),

P (S = 1)f(t|w,S = 1)],

which is passed to BT ; again, the super-script S indicates that hS
2 (t, w) is a list

with as many elements as states of S. When processing BT , we maximize out T :

h3(w) = max
t

h2(w, t) = max
t

max
s

P (s)f(t|w, s) = max
s

P (s)max
t

f(t|w, s),

which produces a potential containing a contribution for each state of S. By
following the arguments from Example 1, f(t|w,S = i) is maximized at the
conditional means −w (for S = 0) and w (for S = 1), thus
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h3(w) = (
√

2π)−1 max[P (S = 0)σ−1
T,S=0, P (S = 1)σ−1

T,S=1],

which is a scalar value and constant wrt. W ; since h3(w) contains only one ele-
ment we omit the super-script index previously used. Based on the CLG speci-
fication above, we find that h3(w) = (

√
2π)−1 max[0.1 · 1, 0.9 · 1] = 0.9(

√
2π)−1,

which is passed to BW .
Finally, we eliminate W based on the potentials BW = {h1(w), h3(w), f(U =

1|w)}, but since h3(w) is constant wrt. w we can disregard it during maximiza-
tion (algorithmically, we can also detect this from the network structure using
d-separation analysis):

hY
4 = max

w
[f(U = 1|w)h1(w)]

= max
w

[f(U = 1|w)max[P (Y = 0)f(w|Y = 0), P (Y = 1)f(w|Y = 1)]]

= max[max
w

f(U = 1|w)P (Y = 0)f(w|Y = 0),

max
w

f(U = 1|w)P (Y = 1)f(w|Y = 1)].

The two maximizations over w can easily be solved analytically (see the discus-
sion in Sect. 3.1), since log(f(U = 1|w)P (Y = i)f(w|Y = i)) is quadratic wrt. w,
for i = 0, 1. That is, log(f(U = 1|w)P (Y = i)f(w|Y = i)) is maximized when

∂

∂w

(
−1

2
(1 − βUw)2 − 1

2
(w − μW,Y =i)2

)
= 0,

which is achieved for wmpe
Y =i = (βU + μW,Y =i)/(β2

U + 1); here βU is the regression
coefficient for U wrt. w, μW,Y =i is the mean of W given Y = i and the constant 1
in (1 − βUw)2 corresponds to the observed value of U . Using the numerical
specification above, we get wmpe

Y =0 = 0 and wmpe
Y =1 = 1.5.

In order to find a full MPE configuration over all the variable (and thereby
also a single MPE value for W ), we need to retrace the maximizing arguments
for the variables on which the current potential depends (a tree structure like the
one displayed in Fig. 2 can be used). This set of variables can be identified from
the functional arguments for the potential in question together with the variables
that index the list structure of this potential (given above by the super-script
indexes). Specifically, for hY

4 we see that the potential depends on Y only, hence
we look for the value ympe of Y maximizing P (Y )f(wmpe

Y |Y ) (corresponding to
hY
1 (wmpe

Y )) and we get ympe = 1 since 0.5 · N (1.5; 2, 1) > 0.5 · N (0;−1, 1). We
thus also have wmpe = 1.5.

Next we proceed backwards in the elimination ordering and look for an MPE
value for T . This is achieved by considering the maximizing arguments for h3,
which is the potential obtained when maximizing out T . From the discussion above
we see that these maximizing arguments can immediately be identified as the con-
ditional means of f(t|wmpe, S = i)) and we therefore find that tmpe

S=0 = −1.5
and tmpe

S=1 = 1.5. Lastly, we consider S and from the maximizing argument
for hS

2 (t, w) (obtained when maximizing out S) with t and w being fixed to
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Fig. 4. Left part: Two Gaussian distributions (dashed lines) are shown together with
their point-wise maximization (solid line). Right part: The max-potential is approxi-
mated by a mixture of Gaussians drawn using solid red line.

their MPE values (tmpe
S = 1.5 and wmpe = 1.5), we get that smpe = 1, since

0.1 · N (−1.5; 1.5, 1) < 0.5 · N (1.5; 1.5, 1), and thus tmpe = 1.5.
As a final comment, we would like to reemphasize that the MPE inference

scheme as proposed in this paper, and illustrated above, follows the same struc-
ture as standard algorithms for performing, say marginal, inference in CLG
networks. Thus, the algorithms share the same computational complexity. In
particular, in the example above we see that the elimination order is able to
exploit the conditional independencies in the model structure, and we therefore
avoid the computational blow-up of having to consider all combinations of the
discrete variables, cf. the discussion in Sect. 3. Furthermore, when identifying
MPE configurations for the continuous variables we see that these configura-
tions can easily be identified as either corresponding to the conditional means of
the densities involved or they can be found by maximizing a quadratic function.

5 Conclusion and Future Work

In this paper we have discussed the MPE problem in conditional linear Gaussian
networks. The behavior of the proposed algorithm was illustrated with the help
of a small example model, successfully calculating the most probable explanation
over the variables in the domain. The run-time complexity of the proposed algo-
rithm is identical to that of standard probabilistic inference in CLG networks,
and all maximization operations can be done efficiently using analytic solutions.
The key contributor to the complexity is maintaining the list of Gaussian com-
ponents representing the densities of the unobserved continuous variables.

Our next step is to extend our results to the maximum a posteriori (MAP)
problem. This is significantly more difficult than the MPE problem, as we will
have to do both summation and maximization operations over the discrete vari-
ables. Consider again the model in Fig. 1, and assume we are interested in the
MAP configuration over Y and T . Eliminating S (by summation) will result in a
mixture of Gaussians potential, while eliminating T (by maximization) results in
a maximum of Gaussians potential; the two potentials should later be combined.
Maintaining these two separate types of potentials is inconvenient, as they are
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not closed under the required operations, something that is highly unsatisfactory
from a computational point of view.

We are currently investigating a technique to approximate the max-potentials
using sum-potentials, see Fig. 4, which will enable us to do the calculations using
a single data structure. We are looking into the quality of the generated approxi-
mations, and we are also working towards an implementation of the approximate
inference technique. We are also studying strategies for selecting optimal variable
orders for computing the buckets.
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Abstract. Social messages classification is a research domain that has
attracted the attention of many researchers in these last years. Indeed,
the social message is different from ordinary text because it has some
special characteristics like its shortness. Then the development of new
approaches for the processing of the social message is now essential to
make its classification more efficient. In this paper, we are mainly inter-
ested in the classification of social messages based on their spreading
on online social networks (OSN). We proposed a new distance metric
based on the Dynamic Time Warping distance and we use it with the
probabilistic and the evidential k Nearest Neighbors (k-NN) classifiers
to classify propagation networks (PrNets) of messages. The propagation
network is a directed acyclic graph (DAG) that is used to record prop-
agation traces of the message, the traversed links and their types. We
tested the proposed metric with the chosen k-NN classifiers on real world
propagation traces that were collected from Twitter social network and
we got good classification accuracies.

Keywords: Propagation Network (PrNet) · Classification · Dynamic
Time Warping (DTW) · k Nearest Neighbor (k-NN)

1 Introduction

During the past decade, many classification methods have been appeared, like k
Nearest Neighbors (k-NN), Naive Bayes, Support Vector Machines (SVM), etc.
Those methods have been applied to several problems among them text classi-
fication and they proved their performance, [19]. However, when working with
short text like online communications, chat messages, tweets, etc., we are face to
a new challenge. In fact, in a short text there is no sufficient word occurrences
or shared context for a good similarity measure. Let’s take Twitter for example,
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 419–428, 2015.
DOI: 10.1007/978-3-319-20807-7 38
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Twitter is a micro-blogging service that allows its users to share messages of
140 characters that are called tweets. As a consequence, using a traditional text
classification technique to classify tweets, like the “Bag-Of-Words” method, fail
to achieve good classification rates due to the message shortness. Existing works
on classification of short text integrate meta-information from external sources
like Wikipedia, World Knowledge and MEDLINE [3,11,17]. They tend to enrich
the content of the message.

The purpose of this paper is to classify social messages without any access
to their content. Our work is motivated by two facts; first, it is not always
possible to have access to the content of the message but we may have access
to its propagation traces, in such a case, our approaches are useful. Another
motivation is that, text processing techniques, always, need a pre-processing
step in which it is necessary to remove URLs, stop words, questions, special
characters, etc. When working with tweets, for example, after the pre-processing
step, it falls, very often, on empty messages. Those empty messages can not be
classified by a text based classification technique. Hence comes the necessity of
new classification approaches that consider the propagation of the message.

Our work is driven by the motivations above, and it achieves the following
contributions: (1) we adapted the Dynamic Time Warping (DTW) distance [16]
to be used to measure the distance between two propagation networks (PrNet for
short)1. (2) we proposed to incorporate the proposed distance in the probabilistic
k-NN and the evidential k-NN [8] to classify propagation networks of social
messages. Then (3) we tested the classifiers on real world propagation traces
collected from Twitter social network.

This paper is organized as follow: Sect. 2 discusses some related works.
Section 3 provides relevant background. Section 4 introduces the proposed PrNet-
DTW distance. And in Sect. 5 presents results from our experiments.

2 Related Works

2.1 Content Based Approaches

Methods that are used for text classification or clustering always have some
limitation with short text, in fact, in short text there is no sufficient word occur-
rences. Then, traditional methods are not suitable for the classification of the
social message that is characterized by its shortness. For example, the use of
the traditional “Bag-Of-Words” method to classify tweets may fail to achieve
good classification rates. This limitation has attracted the attention of many
researchers who developed several approaches. The authors in [25] classified
tweets to “News”, “Events”, “Opinions”, “Deals” and “Private Messages” using
a set of features among them author information and features extracted from the
tweet. In [3] and [11], the authors propose approaches for short text clustering
that use not only the content of the text but also an additional set of items that
1 We call propagation network the network that conserves propagation traces of the

message, i.e. traversed links and nodes.
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is extracted from an external source of information like Wikipedia and World
Knowledge. Also, [17] classify short and sparse text using a large scale external
data collected from Wikipedia and MEDLINE.

Social messages are, also, classified for sentiment analysis and opinion mining
purposes [13]. The task here, is to identify the dominant opinion about a product
or a brand using text mining techniques. The author of [14] used 3516 tweets to
identify costumer’s sentiment about some well known brands. In [10], authors
used text published on Twitter and Facebook to analyze the opinion about three
chain of pizza. The reader can refer to [15] for a recent survey.

Our work is different from all of the above in that we propose to classify the
social message without access to its content. In fact, we predict the class of the
message by interpreting its propagation traces through the social network. We
think that the proposed approaches will be useful in the case where there is no
access to the content of the message or when text based methods are unable to
classify the message due to its shortness.

2.2 Propagation Based Approaches

Now we move to present two methods that were used to classify propagation
networks and that were published in [12]. The first method uses the probability
theory and the second one incorporates the theory of belief functions. As we said
above, existing classification approaches that are used for text classification and
characterization, always, have some limitation with short text. To overcome this
limitation, we propose to classify the propagation traces of the message instead
of its content. For an illustrative example, when you receive a letter from your
bank, it is likely to be about your bank account.

The PrNet classifiers work in two main steps, the first step, is used to learn
the model parameters and the second step, uses the learned model to classify new
coming messages (propagation network of the message). Both methods have the
same principle in the two steps. In the parameter learning step, we need a set of
propagation networks, PrNetSet that is used to estimate a probability distribu-
tion defined on types of links for each level2. In the belief PrNet classifier, we use
the consonant transformation algorithm, also called inverse pignistic transforma-
tion, [1,2] that allows us to transform the probability distribution (output of the
probabilistic parameter learning step) to a BBA distribution while preserving
the least commitment principle [23]. Once model’s parameters are learned, we
can use it to classify a new message (propagation network of the message). The
reader can refer to [12] for more details.

These classifiers need a transit step through a compact structure that assigns
a probability distribution to each propagation level. This step leads to a loss of
information that may be significant in the classification step. Another drawback
is that these methods do not work with continuous types of links and a dis-
cretization step is always needed in such a case. We think that the proposed
PrNet-DTW classifiers will avoid these problems.
2 We call propagation level the number of links between the source of the message and

the target node.



422 S. Jendoubi et al.

3 Background

3.1 Theory of Belief Functions

The Upper and Lower probabilities [7] is the first ancestor of the evidence theory,
also called Dempster-Shafer theory or theory of belief functions. Then [20] intro-
duced the mathematical theory of evidence and defined the basic mathematical
framework of the evidence theory, often called Shafer model. The main goal of
the Dempster-Shafer theory is to achieve more precise, reliable and coherent
information.

Let Ω = {s1, s2, ..., sn} be the frame of discernment. The basic belief assign-
ment (BBA), mΩ , represents the agent belief on Ω. mΩ (A) is the mass value
assigned to A ⊆ Ω, it must respect:

∑
A⊆Ω mΩ (A) = 1. In the case where we

have mΩ(A) > 0, A is called focal set of mΩ .
Combination rules are the main tools that can be used for information fusion.

In fact, in real world applications, we do not have the same kind of information to
be combined, that’s why the same combination rule may performs well in some
applications and may gives unsatisfiable results with other applications. Among
these combination rules, we find the Dempster’s rule [7], the conjunctive rule of
combination (CRC) [21,22] and the disjunctive rule of combination (DRC) [22].

3.2 k Nearest Neighbors

In this paper, we choose the k nearest neighbors classification technique because
it is distance based. It will be used to classify propagation traces of social mes-
sages together with the proposed distance. In this section we present two k-NN
based approaches which are the probabilistic k-NN and the evidential k-NN.

Probabilistic k Nearest Neighbors (k-NN) is a well known supervised
method that is generally used for classification. It needs as input a set of training
examples that we know their features values and their classes, and of course the
object to be classified. Besides we have to specify a measure of distance that will
be used to quantify the matching between the new object x and every object in
the training set. First, the k-NN starts by computing the distance between x and
every object in the training set, then, it selects the k nearest neighbors, i.e. that
have the shortest distance with x. Finally, the object x is classified according
to the majority vote principle, i.e. the algorithm chooses the class that has the
maximum occurrence count in the k nearest neighbors set to be the class of x.
The k-NN technique is surveyed in [5].

Evidential k Nearest Neighbors is an extension of the probabilistic
k-NN to the theory of belief functions [8]. The probabilistic k-NN uses distances
between the object x, to be classified, and objects in the training set to sort
the training example, then it chooses the k nearest neighbors to x. However,
according to [8], the distance value between x and its nearest neighbors may be
significant. The evidential k-NN differs from the probabilistic one in the deci-
sion rule. Let Ω = {s1, s2, ..., sn} the set of all possible classes, be our frame
of discernment and dj be the distance between x and the jth nearest neighbor.
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The idea behind the evidential k-NN consists on representing each object of the
k neighbors by a BBA distribution defined by:

m ({si}) = α (1)
m (Ω) = 1 − α (2)
m (A) = 0∀A ∈ 2C \ {Ci} (3)

such that 0 < α < 1. If dj is big, α have to be small. Then it will be calculated
as follow:

α = α0Φi (dj) (4)

Φi (dj) = e−γid
β
j (5)

where γi > 0 and β ∈ {1, 2, . . .}. After estimating a BBA distribution for each
nearest neighbor, the decision about the class of x is made according to the
following steps; first we combine all BBA distributions using a combination rule.
Second, we apply the pignistic transformation, [24], in order to obtain a pignistic
probability distribution. And finally, we choose the class that have the biggest
pignistic probability. In the next section, we will introduce the dynamic time
warping distance and its extension to compute similarity between propagation
networks.

4 Proposed Dynamic Time Warping Distance
for Propagation Networks Similarity

The propagation network is a graph based data structure that is used to store
propagation traces of a message. The PrNet has two main characteristics that
distinguish it from an ordinary DAG3; first, its arcs are weighted by the type
of the relationship between users, and second, its paths are time dependent. In
this paper, we choose to use distance based classifiers; the probabilistic and the
evidential k-NN, then, we need to measure the distance between the PrNet to
be classified and the training set. In [12], we presented two PrNet classifiers that
are based on mathematical distances like the Euclidean distance and the Jaccard
distance. This solution need to transform the PrNet to a set of probability or
BBA distributions, then it computes the distance between those distributions
instead of PrNets. This transformation may lead to a loss of the information.
A second solution may be to use a graph distance metric to measure the simi-
larity between PrNets. In the literature, we found several distances like Graph
edit distances [9], and Maximal common sub-graph based distances [6]. However,
all these distances do not consider the time dimension which is a character of
the PrNet. Then comes the need of a new distance that is adapted to weighted
time dependent DAGs like the PrNet. As a solution to this problem we pro-
pose the Dynamic Time Warping distance for propagation networks similarity
(PrNet-DTW).
3 Directed Acyclic Graph.
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The Dynamic Time Warping similarity measure [18] was first proposed for
speech recognition, it consider the fact that the speech is time dependent.
Recently, [16] propose to use it to measure the similarity between two sequences,
i.e. a sequence is an ordered list of elements. DTW distance is used to consider
the order of appearance of each element in the sequences while computing the
distance between them. Let A = (a1, a2, . . . , aS) and B = (b1, b2, . . . , bT ) be
two sequences. DTW (Ai, Bj) is the DTW distance between A and B and it is
defined as [16]:

DTW (Ai, Bj) = δ (ai, bj) + min

⎧
⎪⎨

⎪⎩

DTW (Ai−1, Bj−1)
DTW (Ai, Bj−1)
DTW (Ai−1, Bj)

(6)

Note that δ (ai, bj) is a the distance between the two elements ai ∈ A and
bj ∈ B. As mentioned in [16], the implementation of this recursive function leads
to exponential temporal complexity. They propose the memoization technique
as a solution to speed up the computation. Hence, we need a | S | × | T | matrix
in which we record previous results in order to avoid their computation in next
iterations. This computation technique maintain the time and space complexity
of the DTW distance to O (| S | × | T |).

The PrNet-DTW distance is used to measure the distance between two prop-
agation networks. In the first step, we transform each PrNet to a set of dipaths.
We define a dipath as a finite sequence vertices connected with arcs that are
directed to the same direction (line 1 and 2 in Algorithm 1). We note that all
dipaths starts from the source of the message. In the second step, the PrNet-
DTW algorithm loops on the DipathSet1, at each iteration, it fixes a Dipath
and compute its DTW distance with all Dipaths in DipathSet2 and it takes
the minimal value. Finally, it computes the mean of minimal distances between
Dipaths in DipathSet1 and those in DipathSet2 to be the PrNet-DTW distance.
Details are shown in Algorithm 1. We choose the k-NN algorithm and eviden-
tial k-NN algorithm to classify propagation networks because they are distance
based classifiers and they can be used with the proposed PrNet-DTW distance.

5 Experiments and Results

We used the library Twitter4j4 which is a java implementation of the Twitter
API to collect Twitter data. We crawled the Twitter network for the period
between 08/09/2014 and 03/11/2014. After a data cleaning step, we got our
data set that contains tweets of three different classes: “Android”, “Galaxy”
and “Windows”. To simplify the tweet classification step, we consider a tweet
that contains the name of a class C, for example a tweet that contains the word
“Android”, of type that class C, i.e. the class “Android” in our example. Table 1
presents some statistics about the data set.
4 Twitter4j is a java library for the Twitter API, it is an open-sourced software and

free of charge and it was created by Yusuke Yamamoto. More details can be found
in http://twitter4j.org/en/index.html.

http://twitter4j.org/en/index.html
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Algorithm 1. PrNet-DTW algorithm
input : PrNet1 and PrNet2 : Two propagation networks
output: Distance: The distance between PrNet1 and PrNet2.
begin

1 DipathSet1 ← PrNet1.T ransformToDipathSet()
2 DipathSet2 ← PrNet2.T ransformToDipathSet()
3 for i = 1 to DipathSet1.size() do
4 D ← maxV alue
5 for j = 1 to DipathSet2.size() do
6 D ← min (D, DTW (DipathSet1.get(i), DipathSet2.get(j)))
7 Distance ← Distance + D

8 Distance ← Distance/DipathSet1.Size ();

Table 1. Statistics of the data set

The remainder of this section is organized as follow: we present our experi-
ments configuration, the method with which we extracted propagation and the
computation process of link weights. Then, we compare the proposed classifiers
with those of [12].

5.1 Experiments Configuration

In our experiments, we need to extract propagation traces of each type of mes-
sage. Here, we consider that a tweet of type a was propagated from a user u to
a user v if and only if u posts a tweet of type a before v and at least one of these
relations between u and v exists: (1) v follows u, (2) u mentions v in a tweet of
type a, (3) v retweets a tweet of type a written by u. After getting propagation
traces we extract propagation networks such that each PrNet has to have one
source.

We define types of links that are used to measure the similarity between
propagation networks. In Twitter social network there are three possible relations
the first one is explicit which is the follow relation, the second and the third
relations are implicit which are the mention and the retweet. Another property
of Twitter, is that between two users u and v we can have a follow, a mention
and/or a retweet relation. We assign to each of those a weight [4] and we assign
to each link a vector of weights that has the form (wf , wm, wr). Let Su be the
set of successor of u, Pu the set of predecessor of u, Tu the set of tweets of u,
Ru (v) the set of tweets of u that were retweeted by v, Mu (v) the set of tweets
of u in which v was mentioned and Mu the set of tweets in which u mentions
another user. We compute weights [4] as follow:
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Fig. 1. k variation

– Follow relation: wf (u, v) = |Su∩(Pu∩{u})|
|Su|

– Mention relation: wm (u, v) = |Mu(v)|
|Mu|

– Retweet relation: wr (u, v) = |Ru(v)|
|Tu|

Finally, we choose the euclidean distance to evaluate the δ (ai, bj) in the compu-
tation process of the PrNet-DTW.

5.2 Experiments Evaluation

In our experiments, we want to evaluate the performance of the PrNet-DTW
distance, then, we integrate it in the k-NN and the evidential k-NN classifiers
and we compare the proposed classifiers with those proposed in [12]. As PrNet
classifiers works with a discrete types of links [12], a discretization step was
needed, i.e. if the weight value (wf , wm or wr) is greater than 0 we replace it
by 1 in the discrete weight vector elsewere we replace it by 0. For example, if the
link is weighted by the vector (wf = 0.5, wm = 0, wr = 0.25), the output after
the discretization step will be (1, 0, 1). In the remainder of our experiments, we
divide, randomly, our data set into two subsets; the first one contains 90 % of
PrNets and it is used for training and the second one (10 %) is used for testing.

The algorithm k-NN is known to be dependent to k value, and varying k may
vary the classification accuracy. Then, to see the impact of the parameter k, we
made this experiment; we run our k-NN based algorithms with multiple k values
and we obtained results in Fig. 1. We note that odd values are more appropriate
to k when we use PrNet-DTW Probabilistic k-NN. Moreover, the PrNet-DTW
belief k-NN has not the same behavior as the PN-DTW Probabilistic k-NN. In
fact, the curve of the evidential classifier is more stable than the curve of the
probabilistic one and the variation of the value of k does not have a great effect
on the classification accuracy.

A second experiment was done to evaluate and compare the proposed clas-
sification methods. We fixed the parameter k to 5 and we obtained results in
Table 2. As shown in Table 2, the probabilistic and the belief classifiers do not
give good classification accuracy, this behavior is a consequence of the discretiza-
tion step that leads to the loss of the information given by weights values. In
contrast, the PrNet-DTW based classifiers show their performance, indeed, we
have got good accuracy rates: 88.69 % (±3.39, for a 95 % confidence interval) and
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Table 2. Comparison between PrNet classifiers

89.92 % (±3.20) respectively. We see also that the PrNet-DTW belief classifier
gives slightly better results.

6 Conclusion

To sum up, we presented a new distance metric that we called PrNet-DTW. Our
measure is used to quantify the distance between propagation networks. Also,
we showed the performance of our measure in the process of classification of
propagation networks, indeed, we defined two classification approaches that uses
the PrNet-DTW measure which are the probabilistic k-NN and the evidential
k-NN.

For future works, we will search to improve the PrNet-DTW based classifiers
by taking into account the content of the message to be classified, in fact, we
believe that a classification approach that uses information about the content
of the message and information about its propagation will further improve the
results.
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Abstract. In this paper, we develop a reliably weighted collaborative
filtering system that first tries to predict all unprovided rating data by
employing context information, and then exploits both predicted and
provided rating data for generating suitable recommendations. Since
the predicted rating data are not a hundred percent accurate, they are
weighted weaker than the provided rating data when integrating both
these kinds of rating data into the recommendation process. In order
to flexibly represent rating data, Dempster-Shafer (DS) theory is used
for data modelling in the system. The experimental results indicate that
assigning weights to rating data is capable of improving the performance
of the system.

1 Introduction

Research on collaborative filtering systems (CFSs) has focused on the sparsity
problem, which is that the total number of items and users is very large while
each user only rates a small number of items. The challenge in this problem
is how to generate good recommendations when a small number of provided
rating data is available. Until now, various methods have been developed for
overcoming the problem. In [14], the author introduced a method that employs
additional information about the users, e.g. gender, age, education, interests,
or other available information that can help to classify users. Recently, Matrix
Factorization methods [8,10,15,18] have become well-known for combining good
scalability with predictive accuracy; but they are not capable of tackling the data
imperfection issue caused by some level of impreciseness and/or uncertainty in
the measurements [9]. In [19], the authors proposed a new method that not only
models rating data by using DS theory but also exploits context information of
users for generating unprovided rating data. Further to the method developed
in [19], the method in [12] employs community context information extracted
from the social network for generating unprovided rating data. However, the
methods in both [19] and [12] consider the role of the predicted rating data to
be normally the same as that of the provided rating data, and they are not
capable of predicting all unprovided rating data (see Example 1 in Sect. 4). In
this paper, these two limitations will be overcome.

Additionally, over the years, management of data imperfection has become
increasingly important; however, the existing recommendation techniques are
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 429–439, 2015.
DOI: 10.1007/978-3-319-20807-7 39
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rarely capable of dealing with this challenge [19]. So far, a number of mathe-
matical theories have been developed for representing data imperfection, such as
probability theory [4], fuzzy set theory [20], possibility theory [21], rough set the-
ory [13], DS theory [3,16]. Most of these approaches are capable of representing
a specific aspect of data imperfection [9]. Importantly, among these, DS theory
is considered to be the most general one in which different kinds of uncertainty
can be represented [7,19].

For CFSs, DS theory provides a flexible method for modeling information
without requiring a probability to be assigned to each element in a set [11]. It
is worth to know that different users can have different evaluations on the same
item in that users’ preferences are subjective and qualitative. Additionally, the
existing recommender systems usually provide rating domains representing as
finite sets, denoted by Θ = {θ1,θ2,...,θL}, where θi < θj whenever i < j; these
systems only allow users to evaluate an item as a hard rating value, known as a
singleton, θi ∈ Θ. However, in some cases, users need to rate an item as a soft
rating value, also referred to as a composite, representing by A ⊆ Θ. For example,
according to some aspects, a user intends to rate an item as θi, but regarding
other aspects, the user would like to rate the item as θi+1; in this case, it is
better to use a soft rating value as a set A = {θi, θi+1}. With DS theory, rating
entries in the rating matrix can be represented as soft rating values. Besides, this
theory supports not only modeling missing data by the vacuous mass structure
but also generating both hard as well as soft decisions; here, hard and soft
decisions can be known as the recommendations presented by singletons and
composites, respectively. Specially, regarding DS theory, some pieces of evidence
can be combined easily by using Dempster’s rule of combination to form more
valuable evidence. Under such an observation, DS theory is selected for modeling
rating data in our system.

In short, the system in this paper is developed for not only dealing with the
sparsity problem, but also overcoming the data imperfection issue. The main
contributions of the paper include (1) a new method of computing user-user
similarities which considers the significant role of the provided rating data to be
higher than that of the predicted rating data, and (2) a solution for predicting
all unprovided rating data using context information.

The remainder of the paper is organized as follows. In the next section, back-
ground information about DS theory is provided. Then, details of the method-
ology are described. After that, system implementation and discussions are
represented. Finally, conclusions are illustrated in the last section.

2 Dempster-Shafer Theory

Let us consider that a problem domain is represented by a finite set, denoted
as Θ = {θ1, θ2, ..., θL}, of mutually exclusive and exhaustive hypotheses, called
frame of discernment [16]. A mass function, or basic probability assignment
(BPA), m : 2Θ → [0, 1] is the one satisfying m(∅) = 0 and

∑

A⊆Θ

m(A) = 1, where

2Θ is the power set of Θ. The mass function m is called to be vacuous if m(Θ) = 1
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and ∀A ⊂ Θ, m(A) = 0. A subset A ⊆ Θ with m(A) > 0 is called a focal
element of m, and the set of all focal elements is called the focal set. If a source
of information providing a mass function m has probability δ ∈ [0, 1] of trust,
the discounting operation is used for creating new mass function mδ, which takes
this reliable probability into account. Formally, for A ⊂ Θ, mδ(A) = δ × m(A);
and mδ(Θ) = δ × m(Θ) + (1 − δ).

Two evidential functions, known as belief and plausibility functions, are
derived from the mass function m. The belief function on Θ is defined as a map-
ping Bl : 2Θ → [0, 1], where A ⊆ Θ, Bl(A) =

∑

B⊆A

m(B); and the plausibility

function on Θ is defined as mapping Pl : 2Θ → [0, 1], where Pl(A) = 1 − Bl(Ā).
A probability distribution Pr satisfying Bl(A) ≤ Pr(A) ≤ Pl(A),∀A ⊆ Θ is
said to be compatible with the mass function m; and the pignistic probabil-
ity distribution [17], denoted by Bp, is a typical one represented as Bp(θi) =

∑

{A⊆Θ|θi∈A}
m(A)
|A| . Additionally, a useful operation that plays an important role in

the forming of two pieces of evidence into a single one is Dempster’s rule of com-
bination. Formally, this operation is used for aggregation of two mass function
m1 and m2, denoted by m = m1 ⊕ m2, in the following

m(A) =
1

1 − K

∑

{C,D⊆Θ|C∩D=A}
m1(C) × m2(D),

where K =
∑

{C,D⊆Θ|C∩D=∅}
m1(C) × m2(D) 
= 0, and K represents the basic

probability mass associated with conflict.

3 Methodology

3.1 Data Modeling

Let U = {U1, U2, ..., UM} be the set of all users and let I = {I1, I2, ..., IN} be
the set of all items. Each user rating is defined as a preference mass function
spanning over a finite, rank-order set of L preference labels Θ = {θ1, θ2 ..., θL},
where θi < θj whenever i < j. The evaluations of all users are represented
by a DS rating matrix created as R = {ri,k}, where i = 1,M , k = 1, N . For
a provided rating entry regarding the evaluation of a user Ui on an item Ik,
ri,k = mi,k, with

∑

A⊆Θ

mi,k(A) = 1. Each unprovided rating entry is assigned the

vacuous mass function; that means ri,k = mi,k, with mi,k(Θ) = 1 and ∀A ⊂ Θ,
mi,k(A) = 0. All items rated by a user Ui, and all users rated an item Ik are
denoted by IRi = {Il | ri,l 
= vacuous}, and URk = {Ul | rl,k 
= vacuous},
respectively.

3.2 Predicting Unprovided Rating Data

As mentioned earlier, each unprovided rating entry in the rating matrix is mod-
eled by the vacuous mass function. It can be seen that this function has high
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C
C1 CP...

G1,1 G1,2 ... G1,Q1 GP,1 GP,2 ... GP,QP

Ui... ... Ik ......

Fig. 1. The context information influencing on users and items

uncertainty. Thus, context information from different sources is used for the pur-
pose of reducing the uncertainty introduced by the vacuous representation [19].
Here, context information, denoted by C, is considered the concept for grouping
users. Let us consider a movie recommender system. In this system, characteris-
tics such as user gender, user occupation, movie genre can be considered concepts
because they may have significantly influenced user ratings. Each concept can
consist of a number of groups, e.g. the movie genre might contain some groups
such as drama, comedy, action, mystery, horror, animation. We assume that, in
our system, there are P characteristics considered as concepts, and each concept
Cp ∈ C, consists of Qp groups [12,19], as shown in Fig. 1. Formally, the context
information can be represented as follows

C = {C1, C2, ..., CP };Cp = {Gp,1, Gp,2, ..., Gp,Qp
}, where p = 1, P .

Simultaneously, a user Ui as well as an item Ik may belong to multiple groups
from the same concept. For each Cp ∈ C, the groups in which a user Ui is
interested are identified by the mapping functions fp : U → 2Cp : Ui �→ fp(Ui) ⊆
Cp; and the groups to which an item Ik belongs are determined by the mapping
function gp : I → 2Cp : Ik �→ gp(Ik) ⊆ Cp, where 2Cp is the power set of Cp.

We also assume that the users belonging to a group can be expected to possess
similar preferences. Based on this assumption, the unprovided rating entries are
generated. For a concept Cp ∈ C, let us consider an item Ik, the overall group
preference of this item on each Gp,q ∈ gp(Ik), with q = 1, Qp, is defined by
the mass function Gmp,q,k : 2Θ → [0, 1]. This mass function is calculated by
combining all the provided rating data of the users who are interested in Gp,q

and have already rated Ik, as below

Gmp,q,k =
⊕

{j|Ik∈IRj ,Gp,q∈fp(Uj)∩gp(Ik)

mj,k. (1)

If a user Ui has not rated an item Ik, the process for predicting the rating entry
ri,k regarding the preference of user Ui on item Ik is performed as follows

– Firstly, the concept preferences corresponding to user Ui on item Ik, denoted
by the mass functions Cmp,i,k : 2Θ → [0, 1], with p = 1, P , are computed by
combining the related group preferences of item Ik as follows

Cmp,i,k =
⊕

{q|Gp,q∈fp(Ui)∩gp(Ik)}

Gmp,q,k. (2)
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– Secondly, the overall context preference corresponding to a user Ui on item
Ik, denoted by the mass function Cmi,k : 2Θ → [0, 1], is achieved by combining
all related concept mass functions as below

Cmi,k =
⊕

p=1,P

Cmp,i,k. (3)

– Next, the unprovided rating entry ri,k, which is vacuous, is replaced with its
corresponding context mass function as follows

ri,k = Cmi,k. (4)

– Finally, in case the rating entry ri,k is still vacuous after replacing such as
Example 1 in Sect. 4, we propose that this entry is assigned the evidence
obtained by combining all preference mass functions of the users already rated
item Ik as below

ri,k =
⊕

{j|Uj∈URk}
mj,k. (5)

Please note that, at this point, all unprovided rating data are completely
predicted.

3.3 Computing User-User Similarities

In the DS rating matrix, every rating entry ri,k = mi,k represents user Ui’s pref-
erence toward a single item Ik. Let us consider that the focal set of mi,k is defined
by Fi,k = {A ∈ 2Θ|mi,k(A) > 0}. The user Ui’s preference toward all items
as a whole can be defined over the cross-product Θ = Θ1 × Θ2 × ... × ΘN ,
where Θi = Θ,∀i = 1, N [7,19]. The cylindrical extension of the focal element
A ∈ Fi,k to the cross-product Θ is cylΘ(A) = [Θ1...Θi−1AΘi+1...ΘN ]. The map-
ping Mi,k : 2Θ → [0, 1] generates a valid mass function defined on Θ by extending
ri,k; and if B = cylΘ(A), Mi,k(B) = mi,k(A), otherwise Mi,k(B) = 0 [7].

For a user Ui, let us consider the mass functions Mi,k defined over the cross-
product Θ, with k = 1, N . The mass function Mi : 2Θ → [0, 1], where Mi =
N⊕

k=1

Mi,k, is referred to as the user-BPA of user Ui.

Consider user Ui’s user-BPA Mi and the rating mass functions mi,k, k = 1, N ,
each defined over Θ. The pignistic probability of the singleton θi1×...×θiN ∈ Θ, is

Bpi (θi1 × ... × θiN ) =
N∏

k=1

Bpi,k(θik), where θik ∈ Θ, and Bpi and Bpi,k are user

Ui’s pignistic probability distributions corresponding to its user-BPA and prefer-
ence rating of user Ui on item Ik , respectively [19].

For computing the distance among users, we adopt the distance measure
method introduced in [2]. According to this method, the distance between two
user-BPAs Mi and Mj defined over the same cross-product Θ is D(Mi,Mj) =

CD(Bpi, Bpj), where CD refers to the Chan and Darwiche distance measure [2]
represented as below
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Table 1. The values of the reliable
function

xi,k xj,k µ(xi,k, xj,k)

0 0 1

0 1 1 − w1

1 0 1 − w1

1 1 1 − 2 × w1 − w2 Fig. 2. The domains of w1 and w2

CD(Bpi, Bpj) = ln max
θ∈Θ

Bpj(θ)
Bpi(θ)

− ln min
θ∈Θ

Bpj(θ)
Bpi(θ)

.

In addition, CD(Bpi, Bpj) =
N∑

k=1

CD(Bpi,k, Bpj,k) [19]. Obviously, for each item

Ik, it is easy to recognize as follows

– In case neither user Ui nor user Uj has rated item Ik, that means both ri,k and
rj,k are predicted rating data. Since Bpi,k and Bpj,k are derived from entries
ri,k and rj,k, respectively, the value of the expression CD(Bpi,k, Bpj,k) is not
fully reliable.

– The value of the expression CD(Bpi,k, Bpj,k) is also not fully reliable if either
user Ui or user Uj has rated item Ik.

– The value of the expression CD(Bpi,k, Bpj,k) is only fully reliable if both user
Ui and Uj have rated item Ik.

Under such an observation, in order to improve the accuracy of the distance mea-
surement between two users, we propose a new method to compute the distance
between two user-BPAs Mi and Mj , as shown below

D̂(Mi,Mj) =
N∑

k=1

μ(xi,k, xj,k) × CD(Bpi,k, Bpj,k),

where μ(xi,k, xj,k) ∈ [0, 1] is a reliable function referring to the trust of the evalu-
ation of both user Ui and user Uj on item Ik. ∀(i, k), xi,k ∈ {0, 1}; xi,k = 1 when
ri,k is a provided rating entry, otherwise ri,k is a predicted rating one. Note that
because of μ(xi,k, xj,k) ∈ [0, 1], the distinguishing of the provided and the pre-
dicted rating data does not destroy the elegance of the selected distance measure
method [2]. When μ(xi,k, xi,k) < 1 indicates that the distance between user Ui and
user Uj is shorter than it actually is. That means user Ui has a high opportunity
for being a member in user Uj ’s neighborhood set, and vice versa.

The reliable function μ(xi,k, xj,k) can be selected according to specific applica-
tions. In the general case, we suggest that μ(xi,k, xj,k) = 1 − w1 × (xi,k + xj,k) −
w2 × xi,k × xj,k, where w1 ≥ 0 and w2 ≥ 0 are the reliable coefficients repre-
senting the state when a user has actually rated an item and two users together
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have rated an item, respectively. Because of ∀(i, k), xi,k ∈ {0, 1}, the function
μ(xi,k, xj,k) has to belong to one of four cases as shown in Table 1. Under the con-
dition 0 ≤ μ(xi,k, xj,k) ≤ 1, the domains of w1 and w2 must be in the parallel
diagonal line shading area as illustrated in Fig. 2.

Consider a monotonically deceasing function ψ: [0,∞] �→ [0, 1] satisfying
ψ(0) = 1 and ψ(∞) = 0. Then, with respect to ψ, si,j = ψ(D(Mi,Mj)) is
referred to as the user-user similarity between users Ui and Uj . We use the function
ψ(x) = e−γ×x, where γ ∈ (0,∞). Consequently, the user-user similarity matrix is
then generated as S = {si,j}, i = 1,M, j = 1,M .

3.4 Selecting Neighborhoods

The method of neighborhood selection proposed in [5] is an effective one because
it prevents the recommendation result from the errors generated from very dis-
similar users. This method, selected to apply in our system. Formally, we need to
select a neighborhood set Ni,k for a user Ui. First, the users already rated item
Ik and whose similarities with user Ui are equal or greater than a threshold τ are
extracted. Then, K users with the highest similarity with user Ui are selected from
the extracted list. The neighborhood is the largest set that satisfies Ni,k = {Uj ∈
U | Ik ∈ IRj , si,j ≥ max∀Ul /∈Ni,k

{τ, si,l}}. Note that for a new user, the condition
Ik ∈ IRj is removed.

The estimated rating data for an unrated item Ik of a user Ui is presented as
r̂i,k = m̂i,k, where m̂i,k = m̄i,k ⊕ mi,k. Here, m̄i,k is the mass function corre-
sponding to the neighborhood prediction ratings, as shown below

m̄i,k =
⊕

{j|Uj∈Ni,k}
m

si,j

j,k ,with m
si,j

j,k =

{
si,j × mj,k(A), for A ⊂ Θ;
si,j × mj,k(Θ) + (1 − si,j), for A = Θ.

3.5 Generating Recommendations

Our system supports both hard and soft decisions. For a hard decision, the pig-
nistic probability is applied, and the singleton having the highest probability is
selected as the preference label. If a soft decision is needed, the maximum belief
with overlapping interval strategy (maxBL) [1] is applied, and the singleton whose
belief is greater than the plausibility of any other singleton is selected; if such as
class label does not exist, decision is made according to the favor of composite class
label constituted of the singleton label that has the maximum belief and those sin-
gletons that have a higher plausibility.

4 Implementation and Discussions

Movielens data set1, MovieLens 100 k, was used in the experiment. This data set
consists of 100,000 hard ratings from 943 users on 1682 movies with the rating
1 http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/
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value θl ∈ Θ = {1, 2, 3, 4, 5}, 5 is the highest value. Each user has rated at least
20 movies. Since our system requires a domain with soft ratings, each hard rating
entry θl ∈ Θ was transformed into the soft rating entry ri,k by the DS modeling
function [19] as follows

ri,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi,k × (1 − σi,k), for A = θl;
αi,k × σi,k, for A = B;
1 − αi,k, for A = Θ;
0, otherwise,

with B =

⎧
⎪⎨

⎪⎩

(θ1, θ2), if l = 1;
(θL−1, θL), if l = L;
(θl−1, θl, θl+1), otherwise.

Here, αi,k ∈ [0, 1] and σi,k are a trust factor and a dispersion factor, respectively
[19]. In the data set, context information is represented as below

C = {C1} = {Genre};C1 = {G1,1, G1,2, ..., G1,19} = {Unknown, Action, Adventure, Animation,

Children
′
s, Comedy, Crime, Documentary, Drama, Fantasy, F ilm-Noir,

Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western}.

Because the genres to which a user belongs is not available, we assume the gen-
res of a user Ui are assigned by the genres of the movies rated by user Ui. Each
unprovided rating entry was replaced with its corresponding context mass func-
tion predicted according to Eqs. 1,2,3,4 and 5. Note that if the context mass func-
tions are fused by using the methods in [12,19] (just applying Eqs. 1,2,3 and 4,
some unprovided rating entries are still vacuous after replacing, as in Example 1.

Example 1. In the Movielens data set, let us consider a user Uc with f1(Uc) =
{G1,4, G1,5, G1,6, G1,18} = {Animation,Children′s, Comedy,War} and an item
It with g1(It) = {G1,17} = {Thriller}. Assuming that user Uc has not rated item
It and we need to predict the value for rct. The predicting process is as follows

– According to equation (1), Gm1,17,t =
⊕

{j|It∈ URj ,G1,17∈f1(Uj)}
mj,t;

∀G1,q ∈ C1 and q 
= 17, Gm1,q,t = vacuous.
– Using equation (2), Cm1,c,t =

⊕

{q|G1,q∈f1(Uc)∩g1(It)}
Gm1,q,t = vacuous.

– According to equation (3), Cmc,t = Cm1,c,t = vacuous.
– Applying equation (4), rc,t = Cmc,t = vacuous.

Firstly, 10% of the users were randomly selected. Then, for each selected user, we
accidentally withheld 5 ratings, the withheld ratings were used as testing data
and the remaining ratings were considered as training data. Finally, recommen-
dations were computed for the testing data. We repeated this process for 10 times,
and the average results of 10 splits were represented in this section. Note that in
all experiments, some parameters were selected as following: γ = 10−4, β = 1,
∀(i, k){αi,k, σi,k} = {0.9, 2/9}.

For recommender systems with hard decisions, the popular performance assess-
ment methods are MAE, Precision, Recall, and Fβ [6]. Recently, some new meth-
ods allowing to evaluate soft decisions are proposed, such as DS-Precision and
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Table 2. Overall MAE versus w1 and
w2

Table 3. Overall DS-MAE versus w1

and w2

Fig. 3. Visualizing overall MAE Fig. 4. Visualizing overall DS-MAE

DS-Recall [7]; DS-MAE and DS-Fβ [19]. We adopted all these methods for evalu-
ating the proposed system. Since the system is developed for aiming at extending
CoFiDS [19], we also selected CoFiDS for performance comparison.

Tables 2 and 3 show the overall MAE and DS-MAE criterion results computed
by mean of these evaluation criteria with K = 15, τ = 0 according to two reliable
coefficients w1 and w2, respectively. The statistics in these tables indicate that the
performance of the proposed system is almost linearly dependent on the value of
w1; this finding is the same for the other evaluation criteria. The coefficient w2 just
slightly influences the performance in hard decisions, but seems not to affect the
performance in soft decisions; the reason is that, in the data set, when considering
two users, the number of movies rated by these users is very small while the total
of movies is large. Figures 3 and 4 depict the same information as Tables 2 and 3
in a visualization way.

For comparing with CoFiDS, we conducted the experiments with w1 = 0.5,
w2 = 0, τ = 0, and several values of K. Figures 5 and 6 show the overall MAE and
DS-MAE criterion results of both CoFiDS and the proposed system change with
the neighborhood size K. According to these features, the performances of two
systems are fluctuated when K < 42, and then appear to stabilize with K ≥ 42.
In particular, both features show that the proposed system is more effective in
all cases.
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Fig. 5. Overall MAE versus K Fig. 6. Overall DS-MAE versus K

Table 4. The comparison in hard deci-
sions

Table 5. The comparison in soft deci-
sions

Tables 4 and 5 show the summarized results of the performance comparisons
between the proposed system and CoFiDS in hard and soft decisions with K =
30, w1 = 0.5, w2 = 0, τ2 = 0, respectively. In each category in these tables, every
rating has its own column; and the bold values indicate the better performance,
and underlined values illustrate equal performance. Importantly, the statistics in
both tables show that, except for soft decisions with true rating value θ4 =4, the
proposed system achieves better performance in all selected measurement criteria.
However, the absolute values of the performance of the proposed system are just
slightly higher than those of CoFiDS. The reason is that the MovieLens data set
contains a small number of provided rating data. In case more provided rating
data are available, the proposed system can be much better than CoFiDS.

5 Conclusions

In summary, in this paper, we have developed a CFS that uses the DS theory
for representing rating data, and integrates context information for predicting all
unprovided rating data. Specially, after predicting all unprovided data, suitable
recommendations are generated by employing both predicted and provided rating
data with the stipulation that the provided rating data are more important than
the predicted rating data.
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Abstract. When combining belief functions by conjunctive rules of
combination, conflicts often appear. Combination of conflicting belief
functions and interpretation of conflicts is often questionable in real
applications, thus a series of alternative combination rules was suggested
and a series of papers on conflicting belief functions published in last
years.

This theoretical contribution presents one of the perspective recent
approaches — author’s plausibility conflict — and Harmanec’s approach
which stands, unfortunately, aside the recent interest: conflict based
on uncertainty measure and Dempster’s rule. Both the approaches are
analysed and compared here.

The compared approaches are based on completely different assump-
tions, thus some of their properties are very different almost counter-
intuitive when first look at; on the other hand, they have some
analogous properties, which distinguish them from other commonly used
approaches to conflict between belief functions.

Keywords: Belief function · Dempster-Shafer theory · Internal
conflict · Conflict between belief functions · Plausibility conflict ·
Amount uncertainty · Conflict based on amount of uncertainty

1 Introduction

The original Shafer’s measure of conflict called weight of conflict between belief
functions, unfortunately, does not fully correspond to reality see, e.g., [1,19].
Thus a series of alternative approaches was initiated, e.g., [12,18–22] and author’s
approaches [5,8,9,11].

Unfortunately all these approaches to conflict of belief functions ignore
Harmanec’s degree of conflict between BFs which is based on measure of uncer-
tainty and Dempster’s rule [14]. Amount of uncertainty comes from Harmanec
& Klir research on theory of information [16,17]. For an overview of a long series
of preceding definitions of uncertainty measures see SIPTA’s Summary of uncer-
tainty measures [15]. As Harmanec’s approach is out of the scope of the above
mentioned recent works on conflicts; and despite of its completely different foun-
dation it has some features common with the plausibility conflict, we will analyze
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 440–450, 2015.
DOI: 10.1007/978-3-319-20807-7 40
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and compare it with plausibility conflict here. Due to an extent limitation, for
more detail, more explanations, and proofs see [10].

2 Preliminaries

We assume classic definitions of basic notions from theory of belief functions [23]
on finite frames of discernment Ωn = {ω1, ω2, ..., ωn}, see also [3,4].

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such
that

∑
A⊆Ω m(A) = 1; the values of the bba are called basic belief masses

(bbm). m(∅) = 0 is usually assumed. A belief function (BF) is a mapping
Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅�=X⊆A m(X). A plausibility function

Pl(A) =
∑

∅�=A∩X m(X). There is a unique correspondence among m and cor-
responding Bel and Pl thus we often speak about m as of belief function.

A focal element is a subset X of the frame of discernment, such that m(X) > 0.
If all the focal elements are singletons (i.e. one-element subsets of Ω), then we
speak about a Bayesian belief function (BBF); in fact, it is a probability distri-
bution on Ω. If there are only focal elements such that |X| = 1 or |X| = n we
speak about quasi-Bayesian BF (qBBF). In the case of m(Ω) = 1 we speak about
vacuous BF (VBF).

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕ m2)(A) =∑
X∩Y =A Km1(X)m2(Y ) for A �= ∅, where K = 1

1−κ , κ=
∑

X∩Y =∅ m1(X)m2(Y ),
and (m1⊕m2)(∅) = 0, see [23]; if κ > 0 then we say that m1 and m2 are combinable
(by Dempster’s rule), see [14].

Normalized plausibility of singletons1 of Bel is a probability distribution
Pl P such that Pl P (ωi) = Pl({ωi})∑

ω∈Ω Pl({ω}) [4].

Fig. 1. Dempster’s semigroup D0. Homo-
morphism h is in this representation a pro-
jection of the triangle representing D0 to
its hypotenuse G along the straight lines
running through the point (1, 1).

We may represent BFs by enumer-
ation of their m-values, i.e., by (2n−1)-
tuples or by (2n−2)-tuples as m(Ωn) =
1 − ∑

X�Ωn
m(X); thus we have pairs

(a, b) = (m({ω1}),m({ω2})) for BFs
on Ω2.

Hájek-Valdés algebraic structure
D0 of these pairs with Dempster’s rule
⊕ is called Dempster’s semigroup, see
[13] and also (Fig. 1) it was further
studied and generalised by the author,
e.g., in [3,7]. In this study we need
only a mapping h(a, b) = (a, b) ⊕ 0′

which is a homomorphism of the struc-
ture to substructure of Bayesian BFs,
i.e., h((a, b)⊕(c, d)) = h(a, b)⊕h(c, d),
where h(a, b) is an abbreviation for
h((a, b)); in general h(Bel) = Bel ⊕ Un, where Un = ( 1

n , 1
n , ..., 1

n , 0, 0, ..., 0),

1 Plausibility of singletons is called contour function by Shafer in [23], thus Pl P (Bel)
is a normalization of contour function in fact.
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0′ = (12 , 1
2 ) = U2. And mapping −(a, b) = (b, a), which was generalized to

Bayesian BFs (BBFs) in [6,7], such that Bel ⊕ −Bel = Un.

3 Plausibility Conflict of Belief Functions

Conflict between BFs is distinguished from internal conflict in [5,8], where inter-
nal conflict of a BF is included inside the individual BF. Total/global conflict of
two BFs Bel1, Bel2, which is equal to sum of all multiples of conflicting belief
masses: m ∩©(∅) =

∑
X∩Y =∅ m1(X)m2(Y ), includes internal conflicts of both

individual BFs Bel1, Bel2 and also a conflict between them.

Definition 1. The internal plausibility conflict Pl-IntC of BF Bel is defined as

Pl-IntC(Bel) = 1 − maxω∈Ωn
Pl({ω}),

where Pl is the plausibility corresponding to Bel (Fig. 2).

Fig. 2. Plausibility internal conflict;
Pl-IntC decreases in direction of arrows
and it is constant along lines without
arrows.

Fig. 3. Plausibility conflict between
fixed BF (u, v) and general BF (a, b)
on Ω2; Pl-C0 decreases in direction of
arrows and it is constant along lines
without arrows.

Definition 2. Let Bel1, Bel2 be two belief functions on Ωn given by bbms m1

and m2 which have normalised plausibility of singletons Pl P1 and Pl P2. The
conflicting set ΩPlC(Bel1, Bel2) is defined to be the set of elements ω ∈ Ωn

with conflicting Pl P masses, it is conditionally extended with union of sets
max Pl Pi value elements under condition that they are disjoint. Formally we
have ΩPlC(Bel1, Bel2) = ΩPlC0(Bel1, Bel2) ∪ ΩsmPlC(Bel1, Bel2), where
ΩPlC0(Bel1, Bel2) = {ω ∈ Ωn | (Pl P1(ω) − 1

n )(Pl P2(ω) − 1
n ) < 0},

ΩsmPlC(Bel1, Bel2) = {ω∈Ωn | ω∈{maxω∈Ωn
Pl P1(ω)} ∪ {maxω∈Ωn

Pl P2(ω)}
& {maxω∈Ωn

Pl P1(ω)} ∩ {maxω∈Ωn
Pl P2(ω)} = ∅}.
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Plausibility conflict between BFs Bel1 and Bel2 is then defined by the for-
mula

Pl-C(Bel1, Bel2) = min(Pl-C0(Bel1, Bel2), (m1 ∩©m2)(∅)),

where2

Pl-C0(Bel1, Bel2) =
∑

ω∈ΩP lC(Bel1,Bel2)

1
2

|Pl P1(ω) − Pl P2(ω)|

(Fig. 3).

4 Conflict Between Belief Functions Based on Amount
of Uncertainty and the Dempster Rule

Definition 3. Let Bel denote a belief function defined on a general frame of dis-
cernment Ω. A measure of the amount of uncertainty contained in Bel, denoted
as AU(Bel), is defined by

AU(Bel) = max

{

−
∑

ω∈Ω

pω log2 pω

}

,

where the maximum is taken over all {pω}ω∈Ω such that pω ∈ [0, 1] for all ω ∈ Ω,∑
ω∈Ω pω = 1, and for all A ⊆ Ω, Bel(A) ≤ ∑

ω∈A pω. See [16,17].

Theorem 1. Let us suppose two combinable belief functions Bel1 and Bel2 on
a two-element Ω2 given by pairs (a1, b1), (a2, b2); assume further a1 ≥ b1. Then

AU(Bel1 ⊕ Bel2) ≤ min(AU(Bel1), AU(Bel2))

if and only if at least one of the following holds

(i) 0 ≤ a1, a2, b2 ≤ 1
2 , (i.e. also 0 ≤ b1 ≤ 1

2); (see Fig. 4)
(ii) a2 ≥ b2; (see Fig. 5)
(iii) a2 < b2, (1 − b1)(1 − b2) ≥ (1 − a1)(1 − a2),

a2(1 − b1) ≥ a1b2,
(1 − b2)(1 − a1b2 − b1a2) ≥ (1 − a1)(1 − a2); or

(iv) a2 < b2, (1 − b1)(1 − b2) < (1 − a1)(1 − a2),
b1(1 − a2) ≥ a1b2,
(1 − a1)(1 − a1b2 − b1a2) ≥ (1 − b1)(1 − b2). For proof see [14].

Definition 4. Let Bel1 and Bel2 denote combinable belief functions on Ω. We
define the degree of conflict of Bel1 and Bel2 denoted C(Bel1, Bel2), by

C(Bel1, Bel2) = max (0, AU(Bel1 ⊕ Bel2) − miniAU(Beli)) .

That is the degree of conflict is equal to the amount of uncertainty gained (or,
equivalently, the amount of information lost3) by Dempster’s combination. [14].
2 Pl-C0 is not a separate measure of conflict in general; it is just a component of Pl-C.
3 The information gain G(Bel1, Bel2) is defined dually in [14].
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5 A Comparison of the Approaches

5.1 Uncertainty and Internal Conflict

Unlike author’s plausibility approach, there is no internal conflict specified in
Harmanec’s approach. On the other hand, there is uncertainty of individual
beliefs Bel1 and Bel2, uncertainty of their combination Bel1⊕Bel2, and conflict
between Bel1 and Bel2. Thus there is some kind of analogy of the approaches.

Let us present AU(Bel) in two-element case on Fig. 4. For Bayesian BFs, AU
is really analogous to Pl-IntC(Bel), AU is maximal for 0′ = U2 (AU(U2) = 1 =
log2 n = log2 2) and it decreases to 0 towards both (0, 1) and (1, 0). On the other
hand AU(Bel) it is not decreasing towards VBF 0 = (0, 0), but it is constant
(AU(Bel) = 1) for all Bel ∈ S. VBF is completely without any internal conflict
Pl-IntC, but it has maximal uncertainty AU(V BF ) = 1. Non-analogous are also
all simple (support) BFs (a, 0) ∈ S1 and (0, b) ∈ S2, they are decreasing from 1
to 0, but Pl-IntC(a, 0) = Pl-IntC(0, b) are constantly equal to 0. Big difference
is also maximal uncertainty AU(a, b) = 1 for all BFs such that 0 ≤ a, b ≤ 1

2 (the
grey part of Fig. 4).

Fig. 4. Uncertainty AU(Bel) of Bel =
(a, b) on Ω2.; uncertainty decreases in
direction of arrows; it is constant along
the lines without arrows.

Fig. 5. Belief functions on Ω2: a ≥ b,
Bel({ω1}) ≥ Bel({ω2}).

In the case of Bayesian BFs on Ωn, AU is maximal for Un (AU(Un) = log2 n)
and it decreases towards categorical Bayesian BFs (Belω : m({ω}) = 1). For
general BFs, AU is maximal for all symmetric BFs, for all qBBFs such that
m({ωi})≤ 1

n ; and AU decreases towards categorical BFs. Note that AU(BelC) =
log2 |C|, for any categorical BF on any frame, thus always AU(Belω) = 0.
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5.2 Analysis of Conflict Between BFs on Ω2

Let us start with mutual conflictness non-conflictness of two BFs. This is very
easy in the case of plausibility conflict Pl-C. Two BFs Beli = (ai, bi) on Ω2 are
mutually non-conflicting, i.e., there is no conflict between them if and only if,
both of them support same ωi and both of them oppose the other element of Ω2

thus if and only if both of Beli are in grey part of the triangle on Fig. 5 or both
of them are in the white part. Otherwise, the BFs are mutually conflicting.

In the case of Harmanec’s conflict, Beli are mutually non-conflicting if and
only if AU(Bel1 ⊕ Bel2) ≤ AU(Bel1), AU(Bel2), i.e., if and only if the condi-
tion from Theorem 1 is satisfied (or its dual condition in the case that a1 ≤ b1).
Subcondition (i) says that both BFs are in a/the grey square on Fig. 4, subcon-
dition (ii) says that both BFs are in the grey triangle on Fig. 5, while its dual
subcondition is related to the white triangle (when a1≤b1); see detail in [10].

Theorem 2. Let Bel1, Bel2 be two combinable BFs on two-element Ω2, given by
pairs (a1, b1) and (a2, b2). If Pl-C(Bel1, Bel2) = 0 then also C(Bel1, Bel2) = 0.

Conflict Between a Free (a,b) and a Fixed Bayesian (u,1-u). Let us look
at C((a, b), (u, v)) analogously as at Pl-C((a, b), (u, v)) in Sect. 3. We will start
with a simplified but important case of a Bayesian BF, thus (u, v) = (u, 1−u).
For a special case of Bayesian BF 0′ = U2 = (12 , 1

2 ) we have the following lemma.

Lemma 1. U2=(12 , 1
2 ) is non-conflicting with any belief function on two-element

frame of discernment, i.e.. for any Bel on Ω2 it holds that C(Bel, U2) = 0.

Let us suppose u > 1
2 , v = 1−u now, see Fig. 6. If a ≥ b then AU((a, b)⊕ (u, 1−

u) ≤ AU(a, b), AU(u, 1−u) according to subcondition (i) from Theorem1, hence
C((a, b), (u, 1 − u)) = 0. Maximal uncertainty AU(⊕) = 1 (read: AU((a, b) ⊕
(u, 1 − u) = 1 = log2|n|) appears for (a, b) = (1 − u, u) and for all BFs lying on
the same h-line as (1 − u, u), i.e. such that Pl P (a, b) = (1 − u, u).

C((a, 1 − a), (u, 1 − u)):
Let assume b = 1 − a for a moment: AU(⊕) increases for a decreasing from

1
2 to 1 − u, AU(a, 1 − a) ≥ AU(u, 1 − u) there (for a ∈ [1 − u, 1

2 ]), thus conflict
C((a, 1−a), (u, 1−u)) = AU(⊕)−AU(u, 1−u) increases with uncertainty from
0 for a decreasing from 1

2 to 1 − u. For a ≤ 1 − u, C((a, 1 − a), (u, 1 − u)) =
AU(⊕)−AU(a, 1−a), both AU(⊕) and AU(a, 1−a) decrease there, AU(a, 1−a)
decreases more when closer to (1 − u, u) thus the conflict still increases till its
maximum for (am, 1 − am), 0 < am < 1 − u. Further it decreases till zero for
a = 0. We can show that the conflict is positive for any a > 0, see [10]. This is
represented by arrows from (am, 1 − am) to (0, 1) and to U2 in Fig. 6.

Analogously we can analyse the other special cases: C((a, b), (u, 1 − u)) for
a < b, b ≤ u, C((a, b), (u, 1 − u)) for a < b, b ≥ u, and C((0, b), (u, 1 − u)), see
[10], using homomorphic properties of h and h-lines on Fig. 6. From the analysis
of the last case we obtain two subcases for u ≥ 0.618 corresponding to Fig. 6, and
for 1

2 < u ≤ 1
2 (

√
5 − 1) .= 0.618034 where non-conflicting area corresponding to

subcondition (iv) from Theorem1 appears, see a modification of the figure in [10].
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Fig. 6. Harmanec’s conflict C((a, b),
(u, 1 − u)) for u > 0.618.

Fig. 7. Harmanec’s C((a,b),(u,v)). Modi-
fied figure with u>v both relatively close
to U2; white area non-conflicting with
(u,v).

Conflict Between a Free (a, b) and a Fixed General (u, v)

Lemma 2. Any symmetric BF Sym = (s, s) is non-conflicting with any other BF
on Ω2, i.e.. for any Bel = (a, b) and any (s, s) it holds that C((a, b), (s, s)) = 0.

Let us assume that u > v, see Fig. 7, the situation is more complicated now.
In Dempster’s combination Pl P (u, v) plays principal role (h-lines in Figures),
whereas at AU(u, v) directly u plays principal role (horizontal and vertical
straight lines in Figures), hence there is more of important points in the Figure.

Special subcases are step by step analysed in [10]: C((a, 1−a), (u, v)), C((a, b),
(u, v)), and C((0, b), (u, v)); the results are displayed in Fig. 7: In this general
case also area related to subcondition (iii) appears, a triangle 0 = (0, 0), U2

and (a0, 1 − a0). Fig. 7 is the modified version of the figure, which includes also
non-conflicting area related to subcondition (iv): a white area aside of left leg of
the triangle. For a (non-modified) figure without area related to (iv) see [10].

Theorem 3. Let Bel1, Bel2 be two combinable BFs given by pairs (a1, b1) and
(a2, b2) on Ω2. It holds that C((a1, b1), (a2, b2)) ≤ Pl-C((a1, b1), (a2, b2)).

5.3 Harmanec’s Conflict and its Comparison to Plausibility Conflict
of Quasi-Bayesian Belief Functions on Ωn

We can represent any qBBF by enumeration of its singletons and their values or
by n-tuples of all m({ωi}) values. Analogously to the simplest case of Ω2, where
are only qBBFs, we can use h-lines defined by homomorphism h (straight lines
through a qBBF in question and point (1, 1, ..., 1) in this case. Similarly to Ω2,
AU decreases along h-lines in direction to BBFs as less and less iso-AU levels
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are crossed in this direction, analogously to Fig. 4. On the other side Harmanec’s
conflict C is again constant along h-lines or it increases towards Bayesian BFs.
Thus we can relatively simply generalize the previous results.

Theorem 4. Any symmetric quasi-Bayesian BF BelS = (s, s...s) is non-
conflicting with any other qBBF on general Ωn, i.e.. for any qBBF Bel and
any symmetric qBBF BelS both on Ωn it holds C(Bel,BelS) = 0; specially,
C(Bel,Un) = 0.

Theorem 5. Let Belω be a categorical singleton, i.e., BF such that mω({ω})=1
for someω∈Ωn. For any qBBFBel combinable withBelω holdsC(Bel,Belω) = 0.

Note that C(Bel,Belω) is not defined for Bel whose core does not include ω
because Belω ⊕ Bel is not defined there. From the same reason C(Bel1, Bel2) is
not defined either for any pair of BFs with disjunctive cores (C)1 ∩ (C)2 = ∅.
Hence full/total conflict is not defined by Harmanec degree of conflict C.

Analysing situations analogous to those described for Ω2, see Fig. 6, we obtain
(for detail see [10]):

Theorem 6. (max C) Let Belu be a fixed quasi-Bayesian BF on Ωn and Bel
any qBBF on Ωn combinable with Bel. Maximal C(Bel,Belu) appears for a
BBF Belm, which lies between BBF −h(Belu) and border of n − 1 dimensional
simplex of BBFs in the direction opposite to the direction to BBF h(Bel).

Theorem 7. If Pl-C(Bel1, Bel2) = 0 for any two combinable quasi-Bayesian
BFsBel1,Bel2 on a general frame of discernmentΩn then also C(Bel1,Bel2) = 0.

Hypothesis 1. Let us suppose two combinable quasi-Bayesian belief functions
Bel1 and Bel2 on Ωn. It holds that C(Bel1, Bel2) ≤ Pl-C(Bel1, Bel2).

5.4 A Comparison of the Approaches for General Belief Functions

Due to the proof of Theorem5 holds for any BF Bel, we can simply formulate
it also for general BFs. Nevertheless, situation is much more complicated for
general belief functions, as there are not only one-dimensional h-lines, but multi-
dimensional structures instead of them on Ωn. For an introduction on algebra
of belief functions on Ω3 see [7].

Due to this, we can observe a difference in common properties of conflicts
between belief functions which are not quasi Bayesian. Thus a symmetric BF
BelS (even Un) is not non-conflicting with any BF in general; and a sim-
ple generalization of Theorem 4 does not hold true in general. We have nei-
ther a simple generalization of Theorems 3 and 7, because, e.g., there is always
Pl-C(Bel,BelS) = 0, but there are situations for which C(Bel,BelS) > 0 thus
C(Bel,BelS) � Pl-C(Bel,BelS) in such situations. See the following example:

Example 1. Let m1({ω1}) = 1
2 , m1({ω2, ω3}) = 1

2 ; Bel2 = ( 2
10 , 2

10 , 2
10 , 1

10 , 1
10 ,

1
10 ; 1

10 ); AU(Bel1) = − 1
2 log2

1
2 − 2 1

4 log2
1
4 = 1.500, AU(Bel2) = AU(U3) = −3
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1
3 log2

1
3 = 1.585. Bel1 ⊕ Bel2 = ( 4

11 , 3
11 , 3

11 , 0, 0, 1
10 ; 0), AU(Bel1 ⊕ Bel2) = − 8

22
log2

8
22 − 2 7

22 log2
7
22 = 1.582;

Thus C(Bel1, U3) = AU(Bel1 ⊕ U3) − AU(Bel1) = AU(U3) − AU(Bel1) =
0.085 > 0 and also C(Bel1, Bel2) = AU(Bel1 ⊕ Bel2) − AU(Bel1) = 0.082 > 0.

We have examples where U3 and symmetric BFs are non-conflicting with other
BFs and also counter-examples. Thus there arises an interesting open problem
to specify conditions under which assertion of Theorem7 holds for general BFs
on a general frame. The related interesting open question is also generalization
of Theorem 3 (including verification of Hypothesis 1) and Theorem 4.

6 Summary

We have seen that C(Beli, Belj) is a weaker measure of conflict than Pl-C(Beli,
Belj) on quasi-Bayesian BFs in the sense, that all non-conflicting couples of
qBBFs with respect to Pl-C are also non-conflicting with respect to C. More-
over, we have Hypothesis C(Beli, Belj) ≤ Pl-C(Beli, Belj), which has already
been proved on a two-element frame of discernment. This is important as Pl-C
classifies as non-conflicting many cases which are considered to be positively
conflicting by the other measures of conflict (m(∅), distances, Liu’s cf , Martin’s
approach, Destercke-Burger’s approach). A similar feature as we have observed
at Pl-C and C have also a new measure of conflict based on non-conflicting parts
of BFs defined in [9] and measures defined by consonant conflict approach [11].

On the other hand, there are several properties of Harmanec’s degree of con-
flict C which seem surprising or even strange and which are significantly different
even from plausibility conflict Pl-C: e.g., decreasing of conflict in the direction to
categorical singletons (mω({ω}) = 1) and non-conflictness of categorical single-
tons with all combinable BFs, non-conflicting areas according to subconditions
(iii) and (iv) from Theorem1. This ‘strange’ behaviour is based on completely
different assumptions. Harmanec’s conflict does not measure either difference or
opposition of beliefs, but increase/decrease of uncertainty when BFs are com-
bined, thus this ‘strange’ property of C-conflict is sound from its point of view.
The ‘strange’ property of C comes from the nature of Dempster’s rule. The
plausibility conflict is quite different as it is based on accord/opposition of BFs.

All of these properties should be discussed (accepted or explicitly rejected)
when a general axiomatic approach to conflicts between belief functions will
be formulated based on Destercke & Burger [12], Martin’s [20] and author’s
approaches [5,8,9] and his new consonant conflict approach [11].

When using Harmanec’s conflict C we have to be careful about values (spe-
cially about values around 1) as rounding of the values may produce relatively
different results, see Example in [10]. A disadvantage of C is its strong rela-
tion to Dempster’s rule of combination4, thus C is applicable only in the classic
Dempster-Shafer approach with the Dempster’s rule.
4 We can, of course, generalise Harmanec’s C by substitution of Dempster’s rule by

another rule of combination. But a nature of a such conflict may be substantially
different from the nature of C, thus a new analysis should be done. Analogously we
can use instead of C Cattaneo’s minimal joint conflict, see [2].
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Let us close this Section by remark, that a reader can find a comparison of
the plausibility conflict to m ∩©(∅) and to Liu’s degree of conflict in [8].

7 Conclusion

Two completely different approaches to conflict of belief functions were analysed
and compared. The common features were observed and the significant difference
in behaviour was explained. The warning for application of Harmanec’s conflict
was presented.

The theoretic analysis and comparison of the approaches coming from sig-
nificantly different assumptions move us to better understanding of nature of
conflicts of belief functions in general. This may consequently serve as a basis
for better combination of conflicting belief functions in future, whenever con-
flicting belief functions appear.

Acknowledgements. The partial institutional support RVO: 67985807 is acknowl-
edged.
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Abstract. In supervised time-series segmentation, each instance in the
training set has to be assigned a label. However, elicitation of labels
from experts or their estimation may be time consuming and prone to
errors. The problem considered in this paper is focused on time-series
segmentation based on noisy and uncertain labels by using discrete Hid-
den Markov Models (dHMM). Maximum likelihood parameter learning
in dHMM with such labels is tackled by two methods: the Eviden-
tial Expectation-Maximization (E2M) algorithm where weights repre-
sent plausibility functions, and the Weighted Likelihood Principle (WLP)
coupled with the usual Expectation-Maximization algorithm. The model
is tested using the E2M solution on simulated datasets. The results allows
to evaluating the sensitivity of the quantization phase, with report to the
noise level and the level of uncertainty on labels, on the quality of the
statistical modelling of continuous-valued time-series.

1 Introduction

Hidden Markov models (HMM) are powerful tools for sequence modeling and
state sequence recognition that have been used in many different applications.
Discrete HMM represents a particular of HMM where the observations are dis-
crete symbols. One of the most extended use has been text character recognition
from several scripts as Latin [9], Korean [11] or Farsi (Arabic) [6]. Other appli-
cations concerned signal processing [16], video event classification [3], medical
applications [1] or transformer relaying protection [12].

A dHMM is composed of observed variables (outputs) Xt, t = 1 . . . T where
t is a discrete time index and latent discrete random variables (hidden states)
Yt [14]. The sequence of states Y1, Y2, ...YT is a first-order Markov chain and the
distribution of the output Xt at time t depends only on Yt.

One of the objective of a dHMM is to estimate the state sequence hidden
within the observations. In order to improve the convergence (quicker and more
precise) and to better estimate the parameters, it is proposed to use partial prior
knowledge about the states. For that, we first apply the Evidential Expectation-
Maximization (E2M) algorithm [8] by assuming that the prior is encoded by
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 451–460, 2015.
DOI: 10.1007/978-3-319-20807-7 41
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a set of plausibility functions or basic belief assignments (Sect. 2). We then
apply the Weighted Likelihood Principle (WLP) coupled with the Expectation-
Maximization algorithm and we discuss the differences between both solutions.
Experiments are focused on continuous-valued time-series segmentation with the
solution provided by E2M. We illustrate the impact of the quantization phase
with report to uncertain and noisy labels on the quality of the results (Sect. 3).

2 Developing the Model

2.1 Model and Notations

The following parameters are used to describe a HMM:

– Prior probabilities ΠΠΠ = {π1, ..., πk, ..., πK}, where πk = P (Y1 = k) is the
probability of being in state k at t = 1 being K the number of states;

– Transition probabilities A = [akl], where

akl = P (Yt = l|Yt−1 = k), (k, l) ∈ {1, ...,K}2

is the probability for being in state l at time t given that it was in state k at
t − 1 with

∑
l akl = 1;

– Observation symbol probabilities B = [bkv] where

bkv = P (xt = v|Yt = k), k ∈ {1, ...,K} & v ∈ {1, ..., V }
is the probability for being in state k at time t and observing symbol v with∑

v bkv = 1

The set of parameters is denoted as θ = (A,B,ΠΠΠ).
The complete data is defined as z = (x,y) composed of the observed output

sequence x = (x1, ..., xT ) and the corresponding sequence of hidden states y =
(y1, ..., yT ). In the discrete case each observation takes a discrete value v ∈
{1, ..., V } called symbol.

2.2 Learning Procedures Based on Soft Labels

E2M Algorithm. Let Y be a variable taking values in a finite domain Ω =
{1, 2 . . . K}, called the frame of discernment. Uncertain information about Y (i.e.
partial knowledge about hidden states, also called soft labels) is supposed to be
represented by a mass function m on Ω,

∑
A⊆Ω m(A) = 1 (assumed normalized).

Maximising the likelihood in presence of such uncertain information about
hidden states can be performed by applying the E2M algorithm [8]. For that,
it is first required to express the likelihood function over hidden and observed
variables which, in the dHMM, is given by

L(θ;z) = p(y1;Π)
( T∏

t=2

p(yt|yt−1;A)
) T∏

t=1

p(xt|yt;B)

=
( K∏

k=1

πy1k
k

)( T∏

t=2

∏

k,l

a
y(t−1,k)ytl

kl

)( T∏

t=1

K∏

k=1

V∏

v=1

bytk

kv

)
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where ytk is a binary variable such that ytk = 1 if state k is true at time t.
The second step is to take the conditional expectation of the log-likelihood
given partial knowledge on states which can then be obtained at iteration q
of E2M as [8]:

Q(θ,θ(q)) = Eθ(q) [log(L(θ;z)|x, pl] =

∑
y∈Ω log(L(θ;z))p(y|x,θ(q))pl(y)

L(θ(q);x, pl)

where pl is the contour function (plausibility of singleton states) associated to m.
L(θ(q);x, pl) is a generalized likelihood function [8] evaluated by using the
forward-backward propagations [15]. By expanding the expectation, we get three
terms:

– Two terms involving prior and transitions and similar to HMM with contin-
uous observations [15];

– The third one is specific to the dHMM and concerns the emission probability
model B from which the maximum likelihood estimate can be obtained as:

b
(q+1)
kv =

T∑

t=1

γ
(q)
tk 1{xt = v}

T∑

t=1

γ
(q)
tk

where γtk = Eθ(q) [yt,k|x, pl] has the same expression as in [15].

Weighted Likelihood Principle (WLP). It is described in detail in [18,19]
and aims at exploiting pieces of information obtained from independent samples
generated by some distributions with unknown parameters that have justly to
be estimated. In the WLP model, a sample is produced by a weighted likelihood
function [13,18]. For the dHMM, it is given by

L(θ;z,W) = p(y1;Π)w1k

( T∏

t=2

p(yt|yt−1;A)w(t−1,k)wtl

) T∏

t=1

p(xt|yt;B)wtk

which can be rewritten by using multinomial variables as

L(θ;z,W) =
( K∏

k=1

πw1ky1k
k

)( T∏

t=2

∏

k,l

a
w(t−1,k)y(t−1,k)wtlytl

kl

)( T∏

t=1

K∏

k=1

V∏

v=1

bwtkytk

kv

)
(1)

where the weights W = {wt,k, t = 1 . . . T, k = 1 . . . K : wt,k ≥ 0} can be obtained
by optimization (given a target) [13,19] or provided by an end-user. By taking
the logarithm of Eq. 1, we have:
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log L(θ;z,W) =
K∑

k=1

w1ky1k log πk +
T∑

t=2

∑

k,l

w(t−1,k)y(t−1,k)wtlytl log akl

+
T∑

t=1

K∑

k=1

V∑

v=1

wtkytk log bkv

(2)

We then apply the usual EM algorithm [7] to estimate the parameters θ in an
iterative way as in standard dHMM. Assuming independence between hidden
variables and weights, the expression of the expectation of E[wtkytk|x,θ] can be
obtained as:

E[wtkytk] =
wtkp(yt = k|x,θ)

K∑

l=1

wtlp(yt = l|x,θ)

This posterior distribution is then used to find the expectation of the complete-
data log likelihood evaluated for some general parameter value [2]. The M-step
then makes use of this posterior that relies on soft labels to estimate the para-
meters for the next iteration.

Differences Between the Two Models. The E2M and WLP models differ
from two main points, independently on the statistical model considered (dHMM
or another).

Firstly, in E2M, the prior on latent variables is expressed as a plausibility
function (in [0, 1]), while the WLP allows more general weights provided posi-
tiveness. In practice, it permits more flexibility. Real applications are necessary
to assess if this difference actually plays a role, either for weights elicitation or
estimation, or concerning the performance.

Secondly, and more fundamentally, the plausibilities used in E2M play a role
of weights on the emission model that generates the likelihood of the current data
given the current state (p(xt|yt)). Therefore, the computation of the posterior
probability on states (γt) at time t makes use of the plausibilities at t (in the
forward propagation [2]) and on t + 1 (in the backward propagation [2]). In
comparison, in the WLP model, the weights are combined conjunctively only
once with the posterior probability on states (p(yt|x)). Eventually, this difference
leads to models with different likelihoods, and more interestingly, it shows that
the WLP acts similarly as the approach proposed in [4,5].

3 Simulations

We consider a dHMM with 3 states and three symbols per state distributed with
report to uniform distribution defined as:
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ΠΠΠ = (1/3, 1/3, 1/3)′, A =

⎛

⎝
0.6 0.3 0.1
0.1 0.6 0.3
0.1 0.3 0.6

⎞

⎠

S1 ∼
⎧
⎨

⎩

x ∼ U(0, 0.2)
y ∼ U(0.8, 1)
z ∼ U(0, 0.1)

S2 ∼
⎧
⎨

⎩

x ∼ U(0.8, 1)
y ∼ U(0, 0.2)
z ∼ U(0, 0.1)

S3 = {S31} ∪ {S32} S31 ∼
⎧
⎨

⎩

x ∼ U(0.4, 0.6)
y ∼ U(0, 1)
z ∼ U(0, 0.1)

S32 ∼
⎧
⎨

⎩

x ∼ U(0, 1)
y ∼ U(0.4, 0.6)
z ∼ U(0, 0.1)

Two sets of samples are represented in Fig. 1.
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Fig. 1. Distribution of signal points

The Kmeans algorithm was used for vector quantization [14] in order to
transform those continuous-valued observations into discrete symbols. Different
number of clusters were tested to estimate the impact of the quantization on
the performance. Two different experiments were carried out with this model in
order to study the influence of “label imprecision” and “labeling error” [5,8,15].

3.1 Influence of Label Imprecision

To study how the influence of imprecision of knowledge on hidden states affects
the performing of the learning procedures described above, a learning sequence
(x,y) of length T was generated using the model above. Uncertain labels were
generated as follows:

pltk

{
1 if yt = k,
ν otherwise.
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ν represents the nonspecificity coefficient, which quantifies the imprecision
of the contour function plt. To assess the quality of learning, a testing dataset
of 1000 observations was generated following the same distribution. The most
probable state at a given time was given by the maximum a posteriori prob-
ability [14], assuming no previous knowledge about hidden states in the test
sequence. The precision of the predicted state sequences was assessed using the
adjusted Rand index (ARI) [10] (equals 0 on average for a random partition,
and 1 when comparing two identical partitions). The whole experiment (data
generation, clustering and learning) was repeated 30 times, for different number
of clusters and for T = 100 and T = 300.
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Fig. 2. Medians of the adjusted Rand index as a function of the nonspecificity coeffi-
cient over 30 repetitions for different number of clusters, from 3 to 50.

Results are shown in Figs. 2 and 3. We can observe that the results degrade
from the fully supervised (ν = 0) to the fully unsupervised (ν = 1) case. In
Fig. 2 we can see different curves representing the results for different number of
clusters. For a small number of clusters, the results with precise knowledge about
states (ν < 0.4) are lower than for a larger number of clusters. However, from
that point and till the fully unsupervised situation, curves representing larger
number of clusters decrease faster and reach values near to 0. Those with fewer
number of clusters keep a higher ARI till ν = 1 and do not decrease so fast.

3.2 Influence of Labeling Error

To simulate a situation where information on states may be wrong, we proceed
as proposed in [5,8,15]. At each time step t, an error probability qt was drawn
randomly from a beta distribution with mean ρ and standard deviation 0.2. With
probability qt, the state yt was then replaced by a completely random value ỹt

(with a uniform distribution over possible states). The plausibilities pltk were
determined as

pltk = P (yt = k|ỹt) =
{

qt/K + 1 − qt if ỹt = k,
qt/K otherwise.
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Fig. 3. Boxplots of the adjusted Rand index as a function of the nonspecificity coeffi-
cient over 30 repetitions for 5 clusters. Learning datasets of T=100 (left) and T=300
(right) observations.

Uncertain labels are more imprecise when the error probability is high. Training
and test data sets were generated as in previous section, and results were eval-
uated in the same way. For each randomly generated data set, the dHMM was
applied with uncertain labels pltk, noisy labels ỹtk and no information on states.

Figure 4 shows the ARI as a function of mean error ρ for uncertain (left) and
noisy (right) labels for different number of clusters and T = 100. As expected,
a degradation of the segmentation quality is observed when the mean error
probability ρ increases. The ARI tends to a value close to zero as ρ tends to 1
for a larger number of clusters. For fewer clusters, the results when ρ tends to
1 stay over 0. From the curves, we see that a smaller number of clusters give
generally better results. The number of clusters used for quantization produces
a side effect called distorsion [14] which remains difficult to assess in practice.
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(a) Uncertain labels, T=100
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(b) Noisy labels, T=100

Fig. 4. Medians of the adjusted Rand index as a function of the labeling error for
uncertain and noisy labels over 30 repetitions for different number of clusters, from 3
to 50. Learning datasets made of T=100 observations.
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In Fig. 5 we show the same experiments as in Fig. 4 but with longer sequences
(T = 300). Results are quite similar in both cases but we appreciate that with
a larger number of observations, the curves scatter less and results are better
for all values of ρ. This is an expected result since the dHMM is a statistical
model where the parameters are learned by maximum likelihood and therefore
the quantity of learning data may have an important impact on estimations.
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(b) Noisy labels, T=300

Fig. 5. Medians of the adjusted Rand index as a function of the labeling error for
uncertain and noisy labels over 30 repetitions for different number of clusters, from 3
to 50. Learning datasets made of T=300 observations.
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Fig. 6. Average values (plus and minus one standard deviation) of the adjusted Rand
index over the 30 repetitions, as a function of the mean error probability for learning
datasets of T=100 (left) and T=300 (right) observations

Figure 6 shows the evolution of both the noisy and uncertain labels for the
experiment with 5 clusters. It is proved that the use of partial information on
states in the form of uncertain or noisy labels allows to reach better results than
the unsupervised case in every condition. Noisy labels reach better results than
the uncertain labels till ρ = 0.9.
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4 Conclusion

This paper studies the influence of labelling errors on the performance of of
discrete Hidden Markov Models for continuous-valued time-series segmentation.
Noisy and uncertain labels can be taken into account by the Evidential EM
algorithm or by the weighted maximum likelihood principle, yielding two dif-
ferent results. The results shows that the degradation of the performance was
accentuated when the quantization phase was inappropriately tuned. In con-
trast with the continuous HMM proposed in [15], the model can behave better
when considering noisy labels than uncertain labels. The way to integrate impre-
cise knowledge on latent variables in HMM is under study. This would lead to
imprecise transition matrices and observation models generating sets of possible
sequences of states [17].
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Abstract. One of the difficulties that arises when using the K-nearest
neighbor rule is that each of the labeled training samples is given equal
importance in deciding the class of the query pattern to be classified,
regardless of their typicality. In this paper, the theory of belief functions
is introduced into the K-nearest neighbor rule to develop an eviden-
tial editing version of this algorithm. An evidential editing procedure is
proposed to reassign the original training samples with new labels rep-
resented by an evidential membership structure. With the introduction
of the evidential editing procedure, the uncertainty of noisy patterns or
samples in overlapping regions can be well characterized. After the evi-
dential editing, a classification procedure is developed to handle the more
general situation in which the edited training samples are assigned depen-
dent evidential labels. Two experiments based on synthetic and real data
sets were carried out to show the effectiveness of the proposed method.

Keywords: Data classification · K-nearest neighbor · Theory of belief
functions · Evidential editing

1 Introduction

The K-nearest neighbor (KNN) rule, first proposed by Fix and Hodges [6], is
one of the most popular and successful pattern classification techniques. Given
a set of N labeled training samples T = {(x(1), ω(1)), · · · , (x(N), ω(N))} with
input vectors x(i) ∈ RD and class labels ω(i) ∈ {ω1, · · · , ωM}, the KNN rule
classifies a query pattern y ∈ RD based on the class labels represented by its
K nearest neighbors (according to, e.g., the Euclidean distance measure) in the
training set T . The basic rationale for the KNN rule is both simple and intuitive:
samples close in feature space are likely to belong to the same class. The KNN
rule is a suboptimal procedure. However, it has been shown that, in the infinite
sample situation, the error rate for the 1-NN rule is bounded above by no more
than twice the optimal Bayes error rate. Furthermore, as K increases, this error
rate approaches the optimal rate asymptotically [7].

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-20807-7 42
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One of the problems encountered in using the KNN classifier is that each
of the training samples is considered equally important in the assignment of
the class label to the query pattern. This limitation frequently causes difficulty
in regions where the data sets from different classes overlap. Atypical samples
in overlapping regions are given as much weight as those that are truly repre-
sentatives of the clusters. Furthermore, it may be argued that training samples
containing noise should not be given equal weight. In order to overcome this
difficulty, the editing procedure was proposed to preprocess the original train-
ing samples and the KNN rule was used to classify the query pattern based on
the edited training samples [10,11,16]. According to the structure of the edited
labels, the editing procedures can be divided into two categories: crisp and soft
editing. In [16], Wilson proposed a simple editing procedure to preprocess the
training set. This procedure classifies a training sample x(i) using the KNN rule
with the remainder of the training set, and deletes it from the original training
set if its original label ω(i) does not agree with the classification result. Later,
concerned with the possibility of large amounts of samples being removed from
the training set, Koplowitz and Brown [11] developed a modification of the sim-
ple editing technique. For a given value of K, another parameter K ′ is defined
such that (K + 1)/2 ≤ K ′ ≤ K. Instead of deleting all the conflicting samples,
if a particular class (excluding the original class) has at least K ′ representatives
among these K nearest neighbors, then x(i) is labeled according to that majority
class. Essentially, both the simple editing procedure and its modification belong
to the category of crisp editing procedures, in which each edited sample is either
removed or assigned to a single class. In order to overcome the difficulty of the
crisp editing method in severely noisy conditions, a fuzzy editing procedure was
proposed that reassigns fuzzy membership to each training sample x(i) based on
its K nearest neighbors [10]. This fuzzy editing procedure belongs to the soft
editing category, in which each edited sample can be assigned to several classes.
It provides more detailed information about the samples’ membership than the
crisp editing procedures.

Different kinds of uncertainty may coexist in real-world classification prob-
lems, e.g., fuzziness may coexist with imprecision or incompleteness. The fuzzy
editing procedure, which is based on fuzzy set theory [17], cannot address impre-
cise or incomplete information effectively in the modeling and reasoning processes.
In contrast, the theory of belief functions [1,14,15], also called Dempster-Shafer
theory, can well model imprecise or incomplete information thanks to the belief
functions defined on the power set of the frame of discernment. The theory of belief
functions has already been used in the pattern classification field [2,4,8,9,12]. An
evidential version of KNN, denoted by EKNN [2], has been proposed based on the
theory of belief functions; it introduces the ignorance class to model the uncer-
tainty. In [12], the EKNN was further extended to deal with uncertainty using a
meta-class. Neither the EKNN method nor its extension consider any editing pro-
cedure and the original training set is used to make classification. More recently,
an editing procedure for multi-label classification was developed in [9] based on
an evidential multi-label KNN rule (EMLKNN) [5], but it essentially belongs to
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the crisp editing category as each edited sample is either removed or assigned to
a new set of classes without considering the class membership degrees.

In this paper, an evidential editing K-nearest neighbor (EEKNN) is proposed
based on the theory of belief functions. The proposed EEKNN classifier contains
two stages: evidential editing and classification. First, an evidential editing pro-
cedure reassigns the original training samples with new labels represented by an
evidential membership structure. Compared with the fuzzy membership used in
fuzzy editing, the evidential labels provide more expressiveness to characterize
the imprecision for those samples with great noise or in overlapping regions. For
a training sample x(i), if there is no imprecision among the frame of discern-
ment, the evidential membership reduces to the fuzzy membership. After the
evidential editing procedure, a classification procedure is developed to classify a
query pattern based on the edited training samples.

The rest of this paper is organized as follows. In Sect. 2, the basics of
belief function theory are recalled. The evidential editing K-nearest neighbor
(EEKNN) classifier is developed in Sect. 3 and then two experiments are devel-
oped to evaluate the performance of the proposed EEKNN in Sect. 4. Finally,
Sect. 5 concludes the paper.

2 Background on the Theory of Belief Functions

In the theory of belief functions [1,14], a problem domain is represented by a
finite set Θ = {θ1, θ2, · · · , θn} of mutually exclusive and exhaustive hypotheses
called the frame of discernment. A basic belief assignment (BBA) expressing
the belief committed to the elements of 2Θ by a given source of evidence is a
mapping function m: 2Θ → [0, 1], such that

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1. (1)

Elements A ∈ 2Θ having m(A) > 0 are called the focal elements of the BBA m.
Each number m(A) measures the degree of belief exactly assigned to a proposi-
tion A. The belief assigned to Θ, is referred to as the degree of global ignorance.
A BBA is said to be simple if it has the following form

{
m(A) = 1 − w
m(Θ) = w,

(2)

for some A ⊂ Θ and w ∈ [0, 1]. Let us denote such a mass function as Aw.
Shafer [14] also defines the belief and plausibility functions as follows

Bel(A) =
∑

B⊆A

m(B) and Pl(A) =
∑

B∩A �=∅
m(B), for all A ∈ 2Θ. (3)

Bel(A) represents the exact support to A and its subsets, and Pl(A) represents
the total possible support to A and its subsets. The interval [Bel(A),Pl(A)] can
be seen as the lower and upper bounds of support to A.
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For decision making, Smets [15] proposed the pignistic probability BetP to
approximate the unknown probability in [Bel(A),Pl(A)], given by

BetP(A) =
∑

B∩A �=∅

|A ∩ B|
|B| m(B), for all A ∈ 2Θ, (4)

where |X| is the cardinality of set X.
Two useful operations in the manipulation of belief functions are Shafer’s dis-

counting operation and Dempster’s rule of combination. The discounting oper-
ation is used when a source of evidence provides a BBA m, but one knows that
this source has a probability α ∈ [0, 1] of being reliable. Then, one may adopt
(1 − α) as the discount rate, which results in a new BBA αm defined by

αm(A) =
{

αm(A), for A �= Θ
αm(Θ) + (1 − α), for A = Θ.

(5)

Several distinct bodies of evidence characterized by different BBAs can be com-
bined using Dempster’s rule. Mathematically, the combination of two BBAs m1

and m2 defined on the same frame of discernment Θ yields the following BBA,

(m1 ⊕ m2)(A) =

⎧
⎨

⎩

0, for A = ∅
∑

B∩C=A

m1(B)m2(C)

1− ∑

B∩C=∅
m1(B)m2(C) , for A ∈ 2Θ and A �= ∅.

(6)

To combine separable BBAs [14] induced by nondistinct bodies of evidence,
a cautious rule of combination and, more generally, a family of parameterized
t-norm based combination rules with behavior ranging between Dempster’s rule
and the cautious rule are proposed in [3]:

m1 �s m2 =
⊕

∅�=A⊂Ω

Aw1(A)
sw2(A), (7)

where m1 and m2 are separable BBAs, such that m1 =
⊕

∅�=A⊂Ω

Aw1(A) and m2 =
⊕

∅�=A⊂Ω

Aw2(A), and 
s is the Frank’s parameterized family of t-norms:

a
sb =

⎧
⎪⎨

⎪⎩

a ∧ b, if s = 0
ab, if s = 1
logs

(
1 + (sa−1)(sb−1)

s−1

)
, otherwise,

(8)

for all a, b ∈ [0, 1], where s is a positive parameter. When s = 0, the t-norm based
rule corresponds to cautious rule and when s = 1, it corresponds to Dempster’s
rule.

3 Evidential Editing K-Nearest Neighbor Classifier

Let us consider an M -class classification problem and let Ω = {ω1, · · · , ωM}
be the set of classes. Assuming that a set of N labeled training samples
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T = {(x(1), ω(1)), · · · , (x(N), ω(N))} with input vectors x(i) ∈ RD and class
labels ω(i) ∈ Ω are available, the problem is to classify a query pattern y ∈ RD

based on the training set T .
The proposed evidential editing K-nearest neighbor (EEKNN) procedure is

composed of the following two stages:

1. Preprocessing (evidential editing): The evidential editing algorithm assigns
evidential labels to each labeled sample.

2. Classification: The class of the query pattern is decided based on the distance
to the sample’s K nearest neighbors and these K nearest neighbors’ evidential
membership information.

3.1 Evidential Editing

The goal of the evidential editing stage is to assign to each sample in the training
set T a new soft label with an evidential structure as follows:

T ′ = {(x(1),m(1)), (x(2),m(2)), · · · , (x(N),m(N))}, (9)

where m(i), i = 1, 2, · · · , N , are BBAs defined on the frame of discernment Ω.
The problem is now to compute an evidential label for each training sample.

In [2], an evidential K-nearest neighbor (EKNN) rule was proposed based on the
theory of belief functions, where the classification result of the query pattern is
a BBA. In the following part, we use the EKNN rule to carry out the evidential
editing.

For each training sample x(i), i = 1, 2, · · · , N , we denote the leave-it-out
training set as T (i) = T \ {(x(i), ω(i))}, i = 1, 2, · · · , N . Now, we consider the
evidential editing for one training sample x(i) on the basis of the information con-
tained in T (i). For the training sample x(i), each neighbor x(j) (j �= i) provides
an item of evidence regarding the class membership of x(i) as follows

⎧
⎨

⎩

m(i)({ωq} | x(j)) = αφq(dij)
m(i)(Ω | x(j)) = 1 − αφq(dij)
m(i)(A | x(j)) = 0, ∀A ∈ 2Ω \ {Ω, {ωq}},

(10)

where dij = d(x(i),x(j)), ωq is the class label of x(j) (that is, ω(j) = ωq), and α
is a parameter such that 0 < α < 1. As suggested in [2], α = 0.95 can be used to
obtain good results on average. When d is the Euclidean distance, a good choice
for φq is

φq(d) = exp(−γqd
2), (11)

with γq being a positive parameter associated to class ωq and can be heuristically
set to the inverse of the mean squared Euclidean distance between training
samples belonging to class ωq.

Based on the distance d(x(i),x(j)), we select the Kedit nearest neighbors
of x(i) in training set T (i) and calculate the corresponding Kedit BBAs in
the above way. As the items of evidence from different neighbors are distinct
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(because the training samples are usually measured or collected independently),
the Kedit BBAs are combined using Dempster’s rule displayed as Eq. (6) to form
a resulting BBA m(i), synthesizing the final evidential membership regarding the
label of x(i) as

m(i) = m(i)(· | x(i1)) ⊕ m(i)(· | x(i2)) ⊕ · · · ⊕ m(i)(· | x(iKedit)), (12)

where i1, i2, · · · , iKedit are the indices of the Kedit nearest neighbors of x(i)

in T (i). Generally, the selection for parameter Kedit depends on the specific
classification problem. In practice, we can use cross-validation for the training
set to search for the best value.

3.2 Classification

After the evidential editing procedure introduced in Sect. 3.1, the problem now
turns into classifying a query pattern y ∈ RD based on the new edited training
set T ′ as shown in Eq. (9). In this section, we extend the evidential K-nearest
neighbor (EKNN) rule [2] to handle the more general situation in which the
edited training samples are assigned dependent evidential labels. This classifi-
cation procedure is composed of the following two steps: first, the BBAs from
the query pattern’s K nearest neighbors are computed; then, the K BBAs are
combined to obtain the final result.

Determination of the BBAs. Considering the K nearest neighbors of the
query pattern y, if one training sample x(i) is very close to y, generally, it
means that x(i) is a very reliable piece of evidence for the classification of y. In
contrast, if x(i) if far from y, then it provides only little reliable evidence. In the
theory of belief functions, Shafer’s discounting operation can be used to discount
the unreliable evidence before combination.

Denote m(i) as the class membership of the training sample x(i), and βi as
the confidence degree of the class membership of y with respect to the training
sample x(i). The evidence provided by x(i) for the class membership of y is
represented with a discounted BBA βim(i) by discounting m(i) with a discount
rate 1 − βi. The confidence degree βi is determined based on the distance di

between x(i) and y, in such a way that a larger distance results in a smaller
confidence degree. Thus, βi should be a decreasing function of di. We use a similar
decreasing function with Eq. (11) to define the confidence degree βi ∈ (0, 1] as

βi = exp(−λid
2
i ), (13)

where λi is a positive parameter associated to the training sample x(i) and is
defined as

λi =

(
M∑

q=1

m(i)({ωq})d
q

+ m(i)(Ω)d

)−2

, (14)

with d being the mean distance between all training samples, and d
q

being
the mean distance between training samples belonging to each class ωq, q =
1, 2, · · · ,M .
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Combination of the BBAs. To make a decision about the class of the query
pattern y, the generated K BBAs should be combined to obtain the final fusion
result. For combination, Dempster’s rule lies in the assumption that the items of
evidence combined be distinct or, in other words, that the information sources be
independent. However, in the editing process, common training samples may be
used for calculating the class membership of different edited samples. Therefore,
the items of evidence from different edited samples to classify the query pattern
y cannot be regarded as independent.

To account for this dependence, we use the parameterized t-norm based com-
bination rule shown in Eq. (7) to obtain the final combination result for query
pattern y as

m = βi1 m(i1) �s
βi2 m(i2) �s · · · �s

βiK m(iK), (15)

where i1, i2, · · · , iK are the indices of the K nearest neighbors of y in T ′. The
selection of parameter s depends on the potential dependence degrees of the
edited samples. In practice, we can use cross-validation to search for the optimal
t-norms based combination rule.

For making decisions based on the above combined BBA m, the pignistic
probability BetP shown in Eq. (4) is used and the query pattern y is assigned
to the class with the maximum pignistic probability.

4 Experiments

The performance of the proposed evidential editing K-nearest neighbor
(EEKNN) classifier was compared with other nearest-neighbor-based meth-
ods (the modified simple editing KNN (SEKNN) [11], the fuzzy editing KNN
(FEKNN) [10] and the evidential KNN (EKNN) [2]) through two different types
of experiments. In the first experiment, the behavior of the proposed method was
studied using synthetic data sets. In the second experiment, six real benchmark
data sets from the UCI repository [13] were used to compare the methods.

4.1 Synthetic Data Sets Test

This experiment was designed to evaluate the proposed EEKNN with other
nearest-neighbor-based methods using synthetic data sets with different class
overlapping ratios, defined as the number of training samples in the overlap-
ping region divided by the total number of training samples. A training sample
x(i) is considered to be in the overlapping region if its corresponding maxi-
mum plausibility Pl(i)max after evidential editing is less than a set upper bound
Pl∗, namely, Pl∗ = 0.9. A two-dimensional three-class classification problem was
considered. The following class-conditional normal distributions were assumed.
For comparisons, we changed the variance of each distribution to control the
class overlapping ratio.

Case 1 Class A: μA = (6, 6)T ,ΣA = 3I; Class B: μB = (14, 6)T ,ΣB = 3I;
Class C: μC = (14, 14)T ,ΣC = 3I. Overlapping ratio ρ = 6.67%
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Case 2 Class A: μA = (6, 6)T ,ΣA = 4I; Class B: μB = (14, 6)T ,ΣB = 4I;
Class C: μC = (14, 14)T ,ΣC = 4I. Overlapping ratio ρ = 10.00%

Case 3 Class A: μA = (6, 6)T ,ΣA = 5I; Class B: μB = (14, 6)T ,ΣB = 5I;
Class C: μC = (14, 14)T ,ΣC = 5I. Overlapping ratio ρ = 21.33%

A training set of 150 samples and a test set of 3000 samples were generated
from the above distributions using equal prior probabilities. For each case, 30
trials were performed with 30 independent training sets. Average test classifi-
cation rates and the corresponding 95% confidence intervals were calculated.
For each trial, the best values for the parameters Kedit and s in the pro-
posed EEKNN method were determined in the sets {3, 6, 9, 12, 15, 18, 21, 24}
and {1, 10−1, 10−2, 10−3, 10−4, 10−5, 0}, respectively, by cross-validation. For all
the considered method, values of K ranging from 1 to 25 have been investi-
gated. Figure 1 shows the classification results for synthetic data sets with dif-
ferent overlapping ratios. It can be seen that, for the three cases, the EEKNN
method provides better classification performance than other nearest-neighbor-
based methods. With the increase of the class overlapping ratio, the performance
improvement becomes more important. Furthermore, the EEKNN method is less
sensitive to the value of K and it performs well even with a small value of K.
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Fig. 1. Classification results for synthetic data sets with different overlapping ratios

4.2 Benchmark Data Sets Test

The main characteristics of the six real data sets used in this experiment are
summarized in Table 1. To assess the results, we considered the resampled paired
test. A series of 30 trials was conducted. In each trials, the available samples
were randomly divided into a training set and a test set (with equal sizes). For
each data set, we calculated the average classification rates of the 30 trials and
the corresponding 95% confidence intervals. For the proposed EEKNN method,
the best values for the parameters Kedit and s were determined with the same
procedure used in the previous experiment. For all the considered method, values
of K ranging from 1 to 25 have been investigated.
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Table 1. Description of the benchmark data sets employed in the study

Data set # Instances # Features # Classes Overlapping ratio

Balance 625 4 3 19.23 %

Haberman 306 3 2 18.59 %

Liver 345 6 2 19.19 %

Pima 336 8 2 19.05 %

Vertebral 310 6 3 11.20 %

Waveform 5,000 21 3 19.60 %
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Fig. 2. Classification results of different methods for benchmark data sets

Figure 2 shows the classification results of different methods for benchmark
data sets. It can be seen that, for data sets with high overlapping ratios, like
Balance, Haberman, Liver, Pima and Waveform, the EEKNN method provides
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better classification performance than other nearest-neighbor-based methods,
especially for small value of K. In contrast, for those data sets with relatively
low overlapping ratios, like Vertebral, the classification performances of differ-
ent methods were quite similar. The reason is that, for this data set, the best
classification performance was obtained when K took a small value and, under
this circumstance, the evidential editing cannot improve the classification per-
formance.

5 Conclusions

An evidential editing K-nearest neighbor (EEKNN) classifier has been devel-
oped based on an evidential editing procedure that reassigns the original train-
ing samples with new labels represented by an evidential membership structure.
Thanks to this procedure, patterns situated in overlapping regions have less
influence on the decisions. Our results show that the proposed EEKNN classi-
fier achieves better performance than other considered nearest-neighbor-based
methods, especially for data sets with high overlapping ratios. In particular, the
proposed EEKNN classifier is not too sensitive to the value of K and it can gain
a quite good performance even with a small value of K. This is an advantage in
time or space-critical applications, in which only a small value of K is permitted
in the classification process.
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Abstract. This paper addresses the problems of learning from labelled
data contextual discounting and contextual reinforcement, two correction
schemes recently introduced in belief function theory. It shows that given
a particular error criterion based on the plausibility function, for each of
these two contextual correction schemes, there exists an optimal set of
contexts that ensures the minimization of the criterion and that finding
this minimum amounts to solving a constrained least-squares problem
with as many unknowns as the domain size of the variable of interest.

Keywords: Belief functions · Learning · Contextual discounting ·
Contextual reinforcement · Source biases · Expert tuning

1 Introduction

Classically, in belief function theory, the correction of the information provided
by a source concerning a variable of interest x defined on a finite domain X ,
is achieved using the discounting operation [8–10]. This operation admits one
parameter, a real β belonging to [0, 1], reflecting the degree of reliability of the
source of information [9, Sect. 5.7] [5, Sect. 2.5].

Discounting operation has been extended by Mercier et al. in [5], where it is
considered that one may have some knowledge about the reliability of a source,
conditionally on different subsets (contexts) of X , the set of contexts forming a
partition of X . This operation, called contextual discounting based on a coarsen-
ing, is controlled by a vector of parameters βA, each βA belonging to [0, 1] and
reflecting the degree of reliability of the source given context A ⊆ X (in other
words, knowing that the true value of x lies in A). In this same article [5, Sect. 5],
following preceding work from Elouedi et al. for the classical discounting [3],
a computationally efficient method to automatically learn from labelled data the
parameters βA of a contextual discounting based on a coarsening, once a parti-
tion (a set of contexts) has been fixed, is also introduced; the idea is to find the
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parameters values which minimize a measure of discrepancy between the ground
truth and the outputs of the source corrected according to the parameters values.
This method is potentially useful to improve a source performance in, e.g., a clas-
sification application, as well as to discover its contextual reliability. However, the
problem of finding the optimal partition of X for a given source was left open.

In [6], Mercier et al. have extended this contextual discounting based on a
coarsening to be applicable to any set of contexts (i.e., the set of contexts no longer
needs to form a partition of X ). This mechanism is therefore simply called con-
textual discounting (CD). The contextual reinforcement (CR) of a source is also
introduced as the dual of CD. This new correction operation is also controlled by
a vector of parameters βA in [0, 1] associated with a set of subsets (contexts) A of
X . However, the interpretation of CR was not clear (it was only known that CR
amounts to the negation [2] of the CD of the negation of the information provided
by the source) and the problem of learning CD and CR from labelled data was not
tackled. Recently, in [7], Pichon et al. gave an interpretation to CR: it amounts to
assuming, for each context A, that the source is truthful with mass βA, and that
with mass (1 − βA) it lies only when it tells that the true value of x is in A; but
the question of learning CD and CR from data remained open.

In this paper, we address the problems of learning from labelled data contex-
tual discounting and contextual reinforcement, the former problem being only
partially addressed so far – its solution is restricted to the case where a set of
contexts has been fixed beforehand and where this set must also form a parti-
tion of X – and the latter problem not being addressed at all. Especially, we
show that given the discrepancy measure used in [5], there exists an optimal set
of contexts for the most general form of CD (the CD proposed in [6] and that
does not require the set of contexts to form a partition of X ) that ensures the
minimization of the measure, and that finding this minimum amounts to a com-
putationally simple optimization problem (a constrained least-squares problem
with K unknowns, K being the size of X ). Furthermore, we show that a similar
result holds for CR. In addition, an illustrative example of the proposed learning
of CD and CR is given. This example is also useful to make insightful additional
remarks on CD and CR, and in particular the potential superiority of the recently
introduced CR mechanism over CD, to improve a source performance.

This paper is organized as follows. Required basic concepts on belief functions
and contextual correction mechanisms are exposed in Sect. 2. Learning of CD and
of CR is formally studied in Sect. 3 and illustrated in Sect. 4, where a comparison
of CD and CR correction capacities is also presented. Finally, Sect. 5 concludes
the paper.

2 Belief Functions and Contextual Correction
Mechanisms: Basic Concepts and Notations

2.1 Representation and Combination of Beliefs

The necessary background material on the representation and combination of
beliefs is given here.
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Representation of Beliefs. A mass function (MF) represents an agent’s opin-
ion regarding a variable of interest x taking values in a finite domain X [8,10].
It is defined as a mapping m : 2X → [0, 1] verifying

∑
A⊆X m (A) = 1. The

negation m of a mass function m is defined as m(A) = m(A), ∀A ⊆ X .
A MF m defined by m(X ) = w and m(A) = 1 − w, with w ∈ [0, 1] and

A ⊂ X , can be conveniently noted Aw. Likewise a MF m such that m(∅) = v
and m(A) = 1− v, with v ∈ [0, 1], A ⊆ X , A �= ∅, can be conveniently noted Av.

A MF m is in one-to-one correspondence with a plausibility function pl,
a commonality function q and an implicability function b, which are respec-
tively defined by: pl(A) =

∑
B∩A �=∅ m(B), q(A) =

∑
A⊆B m(B) and b(A) =∑

B⊆A m(B), for all A ⊆ X .

Combination. Two MF m1 and m2 can be combined using the conjunctive
rule of combination [10] denoted by ∩© and defined by:

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B) · m2(C), ∀A ⊆ X . (1)

Numerous combination rules exist [11] to merge mass functions. The other
combination of particular interest in this paper is the disjunctive rule of combi-
nation ∪© [2,9] defined by replacing the symbol ∩ in (1) by ∪.

Let us also recall that if m = m1 ∩©m2, the corresponding commonality func-
tions verify q = q1 · q2, and if m = m1 ∪©m2, the corresponding implicability
functions verify b = b1 · b2.

2.2 Contextual Discounting and Reinforcement of a Belief Function

Throughout this paper, mS is a MF defined on X , provided by a source S, and
A is a set of subsets (contexts) of X .

Contextual Discounting (CD). The contextual discounting [5–7] of mS is
the MF m defined, with βA ∈ [0, 1], ∀A ∈ A, by:

m = mS ∪©A∈AAβA
. (2)

The classical discounting [8,9] is retrieved when A is composed of just one
element which is the whole domain X :

m = mS ∪©Xβ = β mS + (1 − β)mX , (3)

with mX defined by mX (X ) = 1.
In practice, βA represents the proportion of mS(B) which remains on B, and

(1−βA) represents the part of mS(B) transferred to B∪A, ∀A ∈ A and ∀B ⊆ X .

Contextual Reinforcement (CR). The contextual reinforcement [6,7] of mS

is the MF m defined, with βA ∈ [0, 1], ∀A ∈ A, by:

m = mS ∩©A∈AAβA . (4)

In practice, βA represents the fraction of mS(B) remaining on B, and (1−βA)
the part of mS(B) transferred to B ∩ A, ∀A ∈ A and ∀B ⊆ X .
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3 Learning CD and CR from Labelled Data

3.1 Description of the Learning Process

In this section, we study how to automatically learn CD and CR from:

1. A training set describing the outputs of a source (expressed in the form of a
MF) regarding the classes in X = {x1, . . . , xK} of n objects oi, i ∈ {1, . . . , n}
(A small illustrative example is given in Sect. 4 in Table 2);

2. And a measure of discrepancy to be minimized between the corrections of the
mass functions provided by the source and the reality.

In this paper, the following measure of discrepancy between the corrected infor-
mation and the ground truth has been chosen:

Epl(β) =
n∑

i=1

K∑

k=1

(pl{oi}({xk}) − δi,k)2, (5)

where ∀i ∈ {1, . . . , n}, pl{oi} is the plausibility function obtained from a con-
textual correction of the output mS of the source with a vector of coefficients
β ∈ [0, 1]|A|. The binary variable δi,k indicates the class of oi as follows:
∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , K}, δi,k = 1 if object oi belongs to the class
xk, and δi,k = 0 otherwise.

Our choice to use measure Epl (5) is mostly based on the fact that, as it will
be seen in Propositions 2 and 4, its minimization has the advantage to yield con-
strained least-squares problems, which can be solved efficiently. Moreover, it was
the one used in the approach proposed in [5], which we are clearly extending with
this current work. At last, using the plausibility on singletons is in accordance
with the Shafer [8] and Smets [10] singular [1] interpretation of belief functions,
which is adopted in this paper. However, we may note that other measures of dis-
crepancy could be used, e.g., a measure based on the pignistic probability [10] or
on a distance measure [4], but then it is not guaranteed that their minimization
can be performed efficiently.

3.2 Learning CD

Plausibilities on the singletons after having applied CD on a MF mS provided
by a source are given by next proposition.

Proposition 1. Let m = mS ∪©A∈AAβA
, βA ∈ [0, 1], ∀A ∈ A, be the CD of a

MF mS. The plausibility function associated with m is defined for all x ∈ X by:

pl({x}) = 1 − (1 − plS({x}))
∏

A∈A,x∈A

βA. (6)

Proof. See AppendixA.1



476 D. Mercier et al.

Next proposition indicates that the minimization of Epl when CD has been
applied, is obtained using the vector β composed of the K parameters β{xk},
which means the parameters associated with the singletons of X . Moreover the
minimization of Epl using this vector constitutes a constrained least-squares
problem which can then be solved efficiently using standard algorithms.

Proposition 2. The minimization of Epl with CD is obtained using the vector
β = (β{xk}, k ∈ {1, . . . , K}) and constitutes a constrained least-squares problem
as (5) can then be rewritten as:

Epl(β) = ‖Qβ − d‖2 with Q =

⎡

⎢
⎣

diag(pl1 − 1)
...

diag(pln − 1)

⎤

⎥
⎦ and d =

⎡

⎢
⎣

δ1 − 1
...

δn − 1

⎤

⎥
⎦, (7)

with diag(v) a square diagonal matrix with the elements of vector v on the
main diagonal, and with pli = (plS{oi}({x1}), . . . , plS{oi}({xK}))T , and δi =
(δi,1, . . . , δi,K)T the column vector of 0-1 class indicator variables for object oi.

Proof. See AppendixA.2

This answers a prospect given in [5] concerning the study of the set of contexts
which yields the best possible value for the measure of discrepancy Epl. The
answer given here is that there will be no smaller value reachable for Epl than
the one obtained with the set of the singletons of X with associated coefficients
β = (β{xk}, k ∈ {1, . . . , K}).

3.3 Learning CR

Plausibilities on the singletons after having applied CR are given in next
proposition.

Proposition 3. Let m = mS ∩©A∈AAβA , βA ∈ [0, 1], ∀A ∈ A, be the CR of a
MF mS. The plausibility function associated with m is defined for all x ∈ X by:

pl({x}) = plS({x})
∏

A∈A,x �∈A

βA. (8)

Proof. See AppendixA.3

Proposition 4. The minimization of Epl with CR is obtained using the vector
β = (β{xk}, k ∈ {1, . . . , K}) and constitutes a constrained least-squares problem
as (5) can then be written as:

Epl(β) = ‖Pβ − δ‖2, with P =

⎡

⎢
⎣

diag(pl1)
...

diag(pln)

⎤

⎥
⎦ and δ =

⎡

⎢
⎣

δ1

...
δn

⎤

⎥
⎦, (9)

with the same notations as in Proposition 2.

Proof. See AppendixA.4
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4 CD and CR Learnings: Comments and Illustration

4.1 CD and CR Respective Correction Capacities

The differences between CD and CR concerning their respective plausibilities
ranges on singletons after having been applied are briefly discussed here.

With CD, as pl({xk}) = 1 − (1 − plS({xk}))β{xk} for each k ∈ X , k ∈
{1, . . . , K}, with β{xk} varying in [0, 1], pl({xk}) can take any values in the
interval [plS({x}), 1]. It means that with CD the value on each singleton plS({x})
can be shifted as close to 1 as required, in other words weakened as required.

In contrast, with CR, as pl({xk}) = plS({xk})β{xk} for each xk ∈ X , k ∈
{1, . . . , K}, pl({xk}) can take any values in [0, plS({xk})] with β{xk} varying
from 0 to 1. With CR, the value of the plausibility on each singleton can then be
carried as close to 0 as necessary. In other words, CR strengthens the information
provided by the source by decreasing the plausibilities on certain singletons.

The following example illustrates these different capacities of adjustment to
the reality on simple scenarios for CD and CR.

Example 1. Let us suppose that X = {a, b, c} and, without lack of generality,
that the ground truth is a.

Let us suppose that a source n◦1 outputs a mass mS({b, c}) = 1 which means
that plS({a}) = 0 and plS({b}) = plS({c}) = 1. To bring closer source n◦1 output
and the reality: CD can increase plS({a}) to 1; CR can decrease plS({b}) to 0
and plS({c}) to 0.

This example is taken again in Table 1, and two more situations are con-
sidered: a source n◦2 giving mS({c}) = 1, that is plS({a}) = plS({b}) = 0
and plS({c}) = 1 and a source n◦3 giving mS({a, b}) = 1, that means
plS({a}) = plS({b}) = 1 and plS({c}) = 0.

Table 1. Attainable plausibilities with CD and CR for three sources outputs.

Ground Source CD CR Source CD CR Source CD CR

truth n◦1 n◦2 n◦3

pl({a}) 1 0 1 0 0 1 0 1 1 1

pl({b}) 0 1 1 0 0 0 0 1 1 0

pl({c}) 0 1 1 0 1 1 0 0 0 0

CD: Epl = 2 CD: Epl = 1 CD: Epl = 1

CR: Epl = 1 CR: Epl = 1 CR: Epl = 0

As it can be observed in Table 1, CD can improve only one value of plausibil-
ity: the plausibility on the ground truth by increasing it as close as possible to
1, whereas CR can improve all the other plausibility values (all except the one
associated with the ground truth) by decreasing them as near as possible to 0.
CR has then more degrees of flexibility to improve the plausibility output of
the source. Situations where CD can be of more help than CR, are in particular
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Table 2.Ouputs of two sensors regarding the classes of 4 objects which can be airplanes
(a), helicopters (h) or rockets (r). Data come from [3, Table 1].

{a} {h} {r} {a, h} {a, r} {h, r} X Ground truth

Sensor 1 mS1{o1} 0 0 0.5 0 0 0.3 0.2 a

mS1{o2} 0 0.5 0.2 0 0 0 0.3 h

mS1{o3} 0 0.4 0 0 0.6 0 0 a

mS1{o4} 0 0 0 0 0.6 0.4 0 r

Sensor 2 mS2{o1} 0 0 0 0.7 0 0 0.3 a

mS2{o2} 0.3 0 0 0.4 0 0 0.3 h

mS2{o3} 0.2 0 0 0 0 0.6 0.2 a

mS2{o4} 0 0 0 0 0 1 0 r

Table 3. Results for the minimization of Epl with the data in Table 2 for each contex-
tual correction mechanism for both sensors 1 and 2.

Contextual correction Sensor 1 Sensor 2

CD β = (0.76, 1.00, 1.00) β = (0.74, 1.00, 1.00)

Epl(β) = 3.39 Epl(β) = 4.81

CR β = (0.94, 0.66, 0.38) β = (0.65, 0.22, 0.55)

Epl(β) = 2.33 Epl(β) = 2.39

those where all the plausibilities on singletons which are not the ground truth
are equal to zero, for example: plS({b}) = plS({c}) = 0 and plS({a}) = 0.5,
which means mS({a}) = 0.5 and mS(∅) = 0.5.

4.2 An Illustrative Example

Inspired from [3] and [5, Sect. 5], we consider the following small example of
target recognition illustrated in Table 2.

Example 2. Two sensors are in charge of recognizing flying objects which can be
airplanes (a), helicopters (h) or rockets (r). Data are composed of 4 known objects
on which two sensors have expressed their outputs as MF on X = {a, h, r}.

Results of the minimization of Epl for CD and CR are summarized in Table 3
for both sensors 1 and 2. Let us recall that β = (β{a}, β{h}, β{r}) for CD, and β =
(β{a}, β{b}, β{c}) for CR with different meanings for each correction mechanism.

For CD it can be observed that β{h} = β{r} = 1 for both sensors, which
means that both sensors are reliable to detect objects h and r. There is no
need to transfer a portion of mass mS(B) to B ∪ {h} or B ∪ {r} with B ⊆ X
(1 − β{h} = 1 − β{r} = 0). It is not the case for objects of type a which cause
problems for both sensors, sensor 1 being slightly more reliable.

Minimizing Epl with CR confirms that both sensors are more truthful to recog-
nize objects h and r as β{a} = 0.94 > β{h} > β{r} for sensor 1 and β{a} = 0.65 for



Learning CD and CR from Labelled Data 479

sensor 2. In terms of mass transfers, there is less need to transfer a portion of mass
mS(B) to B ∩ {a} = B ∩ {h, r} (1 − 0.94 = 0.06 for sensor 1, and 1 − 0.65 = 0.35
for sensor 2) than to B ∩{h} = B ∩{a, r} (0.34 for sensor 1, and 0.78 for sensor 2)
or B ∩{r} = B ∩{a, h} (0.62 for sensor 1, and 0.45 for sensor 2). With these data,
CR also permits to obtain lower values for Epl than those reached with CD, which
confirms the advantages of CR over CD exposed in Sect. 4.1 and in Example 1 con-
cerning the minimization of Epl.

4.3 On the Absence of Link Between Learning CR and CD

Even if CR and CD are related (CR amounts to the negation of the CD of the
negation of the information provided by the source [6]), CR and CD parameters
minimizing Epl (5) cannot be deduced analytically from each other.

Let us consider next example which is a slight modification of Example 2.

Example 3. By modifying in Table 2, MF mS1{o1} by mS1{o1}({r}) = 0.5282,
mS1{o1}({h, r}) = 0.3 and mS1{o1}(X ) = 0.1718 (information coming from
Sensor 1 is slightly deteriorated, the truth being a), learning of CD parameters for
sensors 1 and 2 yields the same vector β = (0.74, 1.00, 1.00), while the learning of
CR parameters yields β = (0.92, 0.68, 0.38) for sensor 1 and β = (0.65, 0.22, 0.55)
for sensor 2.

Example 3 shows that knowing the vector β minimizing Epl for CD does not
imply knowing the vector β minimizing Epl for CR.

5 Conclusion

In this paper, we have studied the learning of CD and of CR from labelled data,
given a measure of discrepancy based on the plausibility function. We have shown
that for each of these two contextual correction schemes, there exists an optimal
set of contexts that ensures the minimization of the measure and that finding
this minimum amounts to solving a constrained least-squares problem with K
unknowns. These results can find applications in at least two domains: learning
the biases of a source of information (what are the characteristics of a source?)
and in source tuning (how to tune a source to obtain the best performances?).
Future work will consist in exploiting these mechanisms in more complex appli-
cations and investigating the tuning of the combination of several sources.

A Appendices

A.1 Proof of Proposition 1

As m = mS ∪©A∈AAβA
, CD is given in terms of implicability functions by:

b = bS

∏
A∈A bβA

with bβA
(B) = 1 if A ⊆ B, βA otherwise, for all B ⊆ X . Thus,

for all B ⊆ X : b(B) = bS(B)
∏

A∈A,A �⊆B βA, and consequently, for all x ∈ X :
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pl({x}) = 1 − b({x}) = 1 − bS({x})
∏

A∈A,A �⊆{x}
βA

= 1 − bS({x})
∏

A∈A,x∈A

βA = 1 − (1 − plS({x}))
∏

A∈A,x∈A

βA.

A.2 Proof of Proposition 2

From Proposition 1, after having applied CD on mS , the discrepancy measure
Epl (5) can be written: Epl(β) =

∑K
k=1 Epl(β, xk), with for all k ∈ {1, . . . , K}:

Epl(β, xk) :=
n∑

i=1

⎛

⎝

⎛

⎝1 − (1 − plS{oi}({xk}))
∏

A∈A,xk∈A

βA

⎞

⎠ − δi,k

⎞

⎠

2

. (10)

As Epl(β, xk) ≥ 0 for all k ∈ {1, . . . , K}, the minimum value of Epl(β) is
obtained when each Epl(β, xk) reaches its minimum.

Besides, as all coefficients βA belong to [0, 1], for each xk, k ∈ {1, . . . , K}, the
product

∏
A∈A,xk∈A βA of coefficients βA in Epl(β, xk) (10) also belongs to [0, 1]

and can be denoted by a variable βk ∈ [0, 1]. Hence, for each k ∈ {1, . . . , K}, the
minimum of Epl(β, xk) is reached for a particular value of βk.

Now, we can remark that each coefficient β{xk} ∈ [0, 1], k ∈ {1, . . . , K}, only
appears in the expression of Epl(β, xk) (10), k ∈ {1, . . . , K}. Hence, choosing
βk = β{xk} for all k (which means choosing A composed of the set of singletons
of X ) constitutes then a solution, i.e., a set of contexts for which the minimum
value of Epl(β) is reached.

Each value of Epl is then reachable using the vector β of coefficients βk :=
β{xk}, k ∈ {1, . . . , K}, and as already mentioned in [5, Sect. 5.1], the computation
of the coefficient β with CD based on the singletons is a constrained least-squares
problem. Indeed, for all k ∈ {1, . . . , K}, and for all i ∈ {1, . . . , n}:

pl{oi}({xk}) − δi,k = 1 − (1 − plS{oi}({xk}))βk − δi,k (11)
= (plS{oi}({xk}) − 1)βk − (δi,k − 1). (12)

Then (5) can be rewritten as (7).

A.3 Proof of Proposition 3

As m = mS ∩©A∈AAβA , the CR is determined in terms of commonality functions
by q = qS

∏
A∈A qβA with qβA(B) = 1 if B ⊆ A, βA otherwise, for all B ⊆ X .

Then, for all B ⊆ X : q(B) = qS(B)
∏

A∈A,B �⊆A βA, which means that after
having applied CR, plausibilities on singletons are defined, for all x ∈ X , by:

pl({x}) = q({x}) = qS({x})
∏

A∈A,x �∈A

βA = plS({x})
∏

A∈A,x �∈A

βA
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A.4 Proof of Proposition 4

From Proposition 3, for each k ∈ {1, . . . , K}, coefficient β{xk} takes its values in
[0, 1] and only appears in pl(xk) when a CR has been applied. Then, with the
same reasoning as for the CD case, the minimum value of Epl with CR can be
reached using the set of contexts {xk = X \ {xk}, k ∈ {1, . . . , K}}.

The minimization of Epl with CR based on the vector β = (βk := β{xk}, k ∈
{1, . . . , K}) is also a constrained least-squares problem as (5) can be writ-
ten as (9) (as ∀k ∈ {1, . . . , K} and ∀i ∈ {1, . . . , n}, pl{oi}({xk}) − δi,k =
plS{oi}({xk})βk − δi,k).
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Abstract. This paper studies the extension of possibilistic logic to the
case when weights attached to formulas are symbolic and stand for vari-
ables that lie in a totally ordered scale, and only partial knowledge is
available on the relative strength of these weights. A proof of the sound-
ness and the completeness of this logic according to the relative certainty
semantics in the sense of necessity measures is provided. Based on this
result, two syntactic inference methods are presented. The first one cal-
culates the necessity degree of a possibilistic formula using the notion of
minimal inconsistent sub-base. A second method is proposed that takes
inspiration from the concept of ATMS. Notions introduced in that area,
such as nogoods and labels, are used to calculate the necessity degree of
a possibilistic formula. A comparison of the two methods is provided, as
well as a comparison with the original version of symbolic possibilistic
logic.

1 Introduction

Possibilistic logic [1] is an approach to reason under uncertainty using totally
ordered propositional bases. In this logic, each formula is assigned a degree, often
encoded by a weight belonging to (0, 1], seen as a lower bound on the certainty
level of the formula. Such degrees of certainty obey graded versions of the princi-
ples that found the notions of belief or knowledge in epistemic logic, namely the
conjunction of two formulas is not believed less than the least believed of their
conjuncts. This is the basic axiom of degrees of necessity in possibility theory
[2]. See [3] for a recent survey of possibilistic logic. Deduction in possibilistic
logic follows the rule of the weakest link: the strength of an inference chain is
that of the least certain formula involved in this chain. The weight of a formula
in the deductive closure is the weight of the strongest path leading from the
base to the formula. Possibilistic logic has developed techniques for knowledge
representation and reasoning in various areas, such as non-monotonic reasoning,
belief revision and belief merging see references in [3].

About 10 years ago, a natural extension of possibilistic logic was proposed
using partially ordered symbolic weights attached to formulas [4], we call here
symbolic possibilistic logic, for short. Weights represent ill-known certainty val-
ues on a totally ordered scale. Only partial knowledge on the relative strength

c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 485–495, 2015.
DOI: 10.1007/978-3-319-20807-7 44
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of weights is supposed to be available, under the form of weak inequality con-
straints. In that paper, a possibilistic knowledge base along with the knowledge
pertaining to weights is encoded in propositional logic, augmenting the atomic
formulas with those pertaining to weights. They give a characterisation, and a
deduction method for plausible inference in this logic using the idea of forgetting
variables. This generalisation of possibilistic logic differs from other approaches
that represent sets of formulas equipped with a partial order in the setting of
conditional logics [5]. It also contrasts with another line of research consisting
in viewing a partial order on weights as a family of total orders, thus viewing a
symbolic possibilistic base as a set of usual possibilistic bases [6].

In this paper, we revisit symbolic possibilistic logic, first by assuming strict
inequality constraints between weights and by focusing on the weighted com-
pletion of a possibilistic knowledge base. We provide an original completeness
proof, absent from [4]. This proof is more general than the completeness proof of
standard possibilistic logic as, contrary to the latter, we cannot rely on classical
inference from sets of formulas having at least a given certainty degree. Specific
inference methods to compute the symbolic weight attached to a conclusion are
proposed, especially some inspired by the literature on abductive reasoning ini-
tiated by Reiter [7]. Our approach yields a partial order on the language, while
the alternative partially ordered generalizations of possibilistic logic [4,6] only
compute a set of plausible consequences.

2 Symbolic Possibilistic Logic Revisited

In this section, first we recall the construction of possibilistic logic. Then, we
present symbolic possibilistic logic. In the paper, L denotes a propositional lan-
guage. Formulas are denoted by φ1 · · · φn, and Ω is the set of interpretations. [φ]
denotes the set of models of φ, a subset of Ω. As usual, � and |= denote syntactic
inference and semantic entailment, respectively.

2.1 Background on Standard Possibilistic Logic

Possibilistic logic is an extension of classical logic which handles weighted formu-
las of the form (φj , pj) where φj is a propositional formula and pj ∈ ]0, 1]. (φj , pj)
is interpreted by N(φj) ≥ pj , where N is a necessity measure, the conjugate of
a possibility measure. A possibility measure [2] is defined on subsets of Ω from
a possibility distribution π on Ω as Π(A) = maxω∈A π(ω) expressing the plausi-
bility of any proposition φ, with [φ] = A, and the necessity measure expressing
certainty levels is defined by N(A) = 1−Π(A) where A is the complement of A.

A possibilistic base is a finite set of weighted formulas Σ = {(φj , pj), j =
1 · · · m}. It can be associated with a possibility distribution πΣ on Ω in the
following way:

∀j, πj(ω) =

{
1 if ω ∈ [φj ],
1 − pj if ω �∈ [φj ]

πΣ(ω) = min
j

πj(ω). (1)



Symbolic Possibilistic Logic: Completeness and Inference Methods 487

Note that πj is the least informative possibility distribution among those such
that N(φj) ≥ pj , where a possibility distribution π is less informative than ρ if
and only if π ≥ ρ. Likewise πΣ is the least informative possibility distribution
compatible with the base Σ, on behalf of the principle of minimal specificity. It
can be checked that NΣ(φj) = minω �∈[φj ](1 − πΣ(ω)) ≥ pj is the least necessity
degree in agreement with Σ. However, it may occur that NΣ(φj) > pj . The
(semantic) closure of Σ is then defined by {(φ,NΣ(φ)) : φ ∈ L : NΣ(φ) > 0},
which simply corresponds to a ranking on the language. The semantics of pos-
sibilistic logic allows to replace weighted conjunctions (

∧
i φi, p) by a set of

formulas (φi, p) without altering the underlying possibility distribution, since
N(φ∧ψ) = min(N(φ), N(ψ)): from the minimal specificity principle, we can asso-
ciate the same weight to each sub-formula in the conjunction. Therefore, we can
turn any possibilistic base into a semantically equivalent weighted clausal base.

Syntactic Inference in Possibilistic Logic. A sound and complete syntactic
inference �π for possibilistic logic can be defined using axioms of classical logic
turned into formulas weighted by 1 and inference rules [1]:

– Weakening rule: If pi > pj then (φ, pi) �π (φ, pj)
– Modus Ponens : {(φ → ψ, p), (φ, p)} �π (ψ, p)

This Modus Ponens rule embodies the law of accepted beliefs at any level,
assumed they form a deductively closed set [8]. It is related to axiom K of
modal logic. The soundness and completeness of possibilistic logic for the above
proof theory can be translated by the following equality [1]: NΣ(φ) = max{p :
Σ �π (φ, p)}.

Note that we can also express inference in possibilistic logic by classical infer-
ence on p-cuts Σ≥

p = {φj : pj ≥ p}[1]: NΣ(φ) = max{p : (Σ≥
p ) � φ}.

Inconsistency degree Inc(Σ) of a possibilistic base Σ is defined as follows:
Inc(Σ) = max{p|Σ �π (⊥, p)}. It can be proved that NΣ(φ) = Inc(Σ ∪
(¬φ, 1)) [1,9].

2.2 Symbolic Possibilistic Logic (SPL)

In symbolic possibilistic logic (SPL), only partial knowledge is available on
the relative strength of weights attached to formulas. So, weights are symbolic
expressions taking values on a totally ordered necessity scale (such as ]0, 1]),
and there is a set of constraints over these weights, describing their relative
strength. The name “symbolic possibilistic logic” indicates that we shall per-
form symbolic computations on the weights. The set P of symbolic weights pj

is recursively obtained using a finite set of variables (called elementary weights)
H = {a1, . . . , ak} taking values on the scale ]0, 1] and max /min expressions
built on H: H ⊆ P, 1 ∈ P, and if pi, pj ∈ P, then max(pi, pj),min(pi, pj) ∈ P.

Let Σ = {(φj , pj), j = 1, · · · ,m} be a symbolic possibilistic base where
pj is a max /min expression built on H. A formula (φj , pj) is still interpreted
as N(φj) ≥ pj [4]. The knowledge about weights is encoded by a finite set
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C = {pi > pj} of constraints between max /min expressions, a partial ordering on
symbolic expressions. We can prove p > q, denoted by C � p > q if and only if
every valuation of symbols appearing in p, q (on ]0, 1]) which satisfies the con-
straints in C also satisfies p > q.

At the semantic level, NΣ(φ) is now a symbolic max /min expression of
the form

NΣ(φ) = min
ω ��φ

max
j:ω ��φj

pj . (2)

We directly use the expression defined in standard possibilistic logic. The main
difference with standard possibilistic logic is that we cannot simplify this expres-
sion down to a single weight. To perform inference at the syntax level, one must
slightly reformulate the inference rules of possibilistic logic in order to account
for the symbolic nature of weights:

– Fusion rule: {(φ, p), (φ, p′)}�π(φ,max(p, p′))
– Weakening rule: (φ, pi) �π (φ,min(pj , p)),∀p
– Modus Ponens : {(φ → ψ, p), (φ, p)}�π(ψ, p)

We call skeleton of a possibilistic base Σ the set of propositional formulas appear-
ing in it, and denote it by Σ∗. If B is a subset of the skeleton Σ∗ of Σ that
implies φ, it is clear that (Σ, C) �π(φ,minφj∈B pj). Using syntactic inference, we
can compute the expression representing the strength of deduction of φ from Σ:

N�
Σ(φ) = max

B⊆Σ∗,B�φ
min

j:φj∈B
pj . (3)

Note that in the above expression, it suffices to take max on all minimal subsets
B for inclusion that imply φ. The aim of SPL is to compare the strength degrees
of any two formulas in the language via their resulting weights.

Definition 1. (Σ, C) implies that φ is more certain than ψ ((Σ, C) |= φ > ψ) if
and only if C � N�

Σ(φ) > N�
Σ(ψ).

Example 1. Let Σ = {(x, p), (¬x ∨ y, q), (¬x, r), (¬y, s)}, C = {p > q,
q > r, q > s}. Then, N�

Σ(y) = max(min(p, q),min(p, r)) = q and N�
Σ(x) = p. So,

x > y.

Note that in SPL, comparing the certainty degrees of formulas as per Definition 1
requires that the set of constraints C be not empty. Otherwise, no strict inequal-
ities can be inferred between formula weights.

3 The Completeness of Symbolic Possibilistic Logic

The completeness of SPL comes down to proving that the two following expres-
sions are equal : NΣ(φ) = N�

Σ(φ),∀φ ∈ L. This proof does not appear in [4],
where the focus is on plausible inference.
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Proposition 1. SPL is sound and complete for the above inference system.

The proof cannot rely on cuts, like for standard possibilistic logic, due to the
fact that the weights are partially ordered. So we provide the sketch of a direct
proof that the two expressions of NΣ(φ) and N�

Σ(φ) coincide independently of
constraints in C. In this proof, we use the notion of hitting-set [7]:

Definition 2 (Hitting-Set). Let S be a collection of sets. A hitting-set of S is
a set H ⊆ ∪Si∈SSi such that H ∩ Si �= ∅ for each Si ∈ S. A hitting-set H of S
is minimal if and only if no strict subset of H is a hitting-set of S.
Proof of Proposition 1: Due to the lack of space, we only give the list of
steps and results needed. Let Σ−

ω be the subset of formulas in Σ∗ falsified by
ω, and Σ+

ω be the subset of formulas in Σ∗ satisfied by ω. We have to prove
that minω �|=φ maxj:φj∈Σ−

ω
pj = maxB⊆Σ∗,B�φ minφj∈B pj . We distinguish cases

according to whether Σ∗ is consistent or not.

1. Suppose that Σ∗ is consistent. Then all B’s implying φ are consistent.
We note that:
– For N�

Σ(φ), it is sufficient to consider the minimal (for set-inclusion) subsets
of Σ∗, say Bi, i = 1, n, that imply φ: N�

Σ(φ) = maxi=1,··· ,n minφj∈Bi
pj .

– For NΣ(φ), it is sufficient to consider the interpretations ω such that ω �|=
φ and Σ−

ω is minimal (for set inclusion) : NΣ(φ) = minω �|=φ,Σ−
ω minimal

maxj:φj∈Σ−
ω

pj .

Lemma 1. If Σ∗ is a minimal (for set inclusion) base that implies φ, NΣ(φ) =
N�

Σ(φ).

We conclude that NΣ(φ) ≥ N�
Σ(φ) since for each B ⊆ Σ,NΣ(φ) ≥ NB(φ) =

N�
B(φ). Using distributivity, we can rewrite the syntactic necessity degree in

terms of the minimal hitting-sets of the set {B1, . . . , Bn}. By indexing all the
minimal hitting-sets Hs of {B1, . . . , Bn} by s ∈ S we obtain:

N�
Σ(φ) = max

B⊆Σ∗,B�φ
min
φj∈B

pj = min
s∈S

max
φj∈Hs

pj .

Lemma 2. ∀ω �|= φ,Σ−
ω is a hitting-set of {B1, . . . Bn} (that is ∀i, Bi∩Σ−

ω �= ∅).
Note that the above result holds in particular when Σ−

ω is minimal. The sub-
bases Σ−

ω such that ω �|= φ that are minimal are the complements of the maximal
sub-bases M¬φ of Σ∗ consistent with ¬φ, the set of which we denote by M¬φ.
Notice that:

Lemma 3. The complement of each minimal hitting-set Hs of {B1, . . . Bn} is
a maximal sub-base of Σ∗ consistent with ¬φ.

Then we can obtain the converse inequality NΣ(φ) ≤ N�
Σ(φ) since: N�

Σ(φ) =
mins∈S maxφj∈Hs

pj = minM¬φ=Hs,s∈S maxφj �∈M¬φ
pj ≥ minM¬φ∈M¬φ

maxφj �∈M¬φ
pj = NΣ(φ).
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2. Suppose that Σ∗ is inconsistent with no constraint on the weights. Then,
some of the minimal sub-bases that imply φ may be inconsistent. We have
the following results:
– Let I1, . . . , Ip be the minimal inconsistent sub-bases of Σ∗ (smallest incon-

sistent sub-bases in the sense of inclusion). The inconsistency degree of
Σ is Inc(Σ) = N�

Σ(⊥) = maxp
k=1 minφj∈Ik

pj , and N�
Σ(φ) = max(Inc(Σ),

maxn
i=1 minφj∈Bi

pj), Bi being the minimal consistent sub-bases that imply
φ (if any).

– N�
Σ(φ) ≥ Inc(Σ). However there is never strict inequality if C = ∅.

– The definition of NΣ(φ) is the same as in the consistent case. However,
∀ω,Σ+

ω ⊂ Σ (since Σ+
ω is consistent).

Now, we are able to prove completeness:

– Lemma 1 can be used. Now, Σ∗ is a minimal inconsistent base implying φ,
and none of its sub-bases implies φ. The inequality NΣ(φ) ≥ N�

Σ(φ) still holds
(note that minimality does not exclude inconsistency).

– For Lemma 2, Σ+
ω is always consistent. So in the case of an inconsistent set

Ii, we cannot have Ii ⊂ Σ+
ω . The proof of Lemma 2 still holds, since the sets

Hs are consistent, as the M¬φ.

So completeness has been proved even if the base Σ∗ is inconsistent. ��
Remark. However, it may happen that some minimal inconsistent subset Ii of
Σ∗ is not a minimal sub-base implying φ. For instance, if Σ = {(φ, a), (¬φ, b)} the
unique minimal sub-base implying φ is {φ}. In that case, N�

Σ(φ) = maxB⊆Σ∗,B�φ

minφj∈B pj = max(min(a, b), a) = a = NΣ(φ). Similarly, N�
Σ(¬φ) = b. So we

have N�
Σ(⊥) = min(a, b) ≤ N�

Σ(φ) and N�
Σ(⊥) ≤ N�

Σ(¬φ). We have {a} ⊂ {a, b}
but it cannot be concluded that N�

Σ(⊥) < N�
Σ(¬φ).

4 Toward Inference Methods in Symbolic Possibilistic
Logic

In this section, we will present two syntactic inference methods that calculate the
necessity degree N�

Σ(φ) of a possibilistic formula. The first method is based on
the use of the notion of minimal inconsistent sub-base. The second one is inspired
by abductive reasoning. We assume that the weights bearing on formulas of the
original SPL base are elementary, with possibility of assigning the same weight
to different formulas.

4.1 Syntactic Inference Based on Minimal Inconsistent Sub-bases

Given a formula φ, computing the expression in Eq. (3) requires the determination
of all minimal sub-bases Bi such that Bi � φ. Some of the minimal sub-bases that
imply φ may be inconsistent. In that case, they are minimal inconsistent in Σ∗.
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Lemma 4. Let B ⊆ Σ∗ inconsistent and minimal implying φ. Then B is min-
imal inconsistent in Σ∗.

So, if B ⊆ Σ∗ is a minimal sub-base implying φ, either B is consistent or B
is a minimal inconsistent sub-base of Σ∗. However, it may happen that some
minimal inconsistent sub-base in Σ∗ is not a minimal sub-base implying φ. It
follows easily:

Proposition 2. Let B1, · · · , Bk be the minimal consistent sub-bases of Σ∗ imply-
ing φ. Let I1, · · · , Il be the minimal inconsistent sub-bases in Σ∗ which do not con-
tain any Bj, j = 1 · · · k, N�

Σ(φ) = max(maxk
i=1 minφj∈Bi

pj ,maxl
i=1 minφj∈Ii

pj).

Besides, we know that B ⊆ Σ∗ is minimal implying φ if and only if B is minimal
such that B ∪ {¬φ} is inconsistent. We can prove even more:

Proposition 3. Let (Σ, C) be an SPL base, and B a sub-base of Σ∗.

– If B is consistent and minimal implying φ then B ∪{¬φ} is a minimal incon-
sistent sub-base of Σ∗ ∪ {¬φ}.

– If K is a minimal inconsistent sub-base of Σ∗ ∪ {¬φ} containing ¬φ, then
K \ {¬φ} is consistent, minimal implying φ.

Due to Propositions 2 and 3, computing N�
Σ(φ) amounts to determining:

– the set of minimal inconsistent subsets Ki of Σ∗ ∪ {¬φ} containing ¬φ;
– the minimal inconsistent sub-bases of Σ∗ which do not contain any of the

Bi = Ki \ {¬φ}’s obtained in the previous step.

The above computation comes down to the well-known problem of determin-
ing the minimal inconsistent sub-bases, forming a set MIS(S), of a given set
of formulas S. Let B�(φ) = {B ⊆ Σ∗|B ∪ {¬φ} ∈ MIS(Σ∗ ∪ {¬φ})} and
Bi(φ) = {B ∈ MIS(Σ∗)|B does not contain any base from B�(φ)}. Then let
B(φ) = B�(φ)

⋃ Bi(φ). So, the necessity degree of a formula φ can be computed
as follows:

N�
Σ(φ) = max

Bi∈B(φ)
min

φj∈Bi

pj (4)

The most efficient method for solving the MIS problem exploits the duality
between minimal inconsistent subsets MIS(S), and maximal consistent subsets
MCS(S), and the fact that checking the consistency of a base is less time-
consuming than checking its inconsistency [10]. Given a propositional base S,
MIS(S) is obtained from MCS(S) using hitting-sets [10,11].

Once we are able to compute the necessity degree of a formula, according
to Definition 1, we can compare two SPL formulas by comparing their necessity
degrees which are max /min expressions. So we have to check whether C �
N�

Σ(φ) > N�
Σ(ψ) that is C � maxB∈B(φ) mini:φi∈B ai > maxC∈B(ψ) minj:φj∈C bj .

That amounts to finding an expression min(a1, · · · an) in N�
Σ(φ) which dominates

all expressions min(b1, · · · , bm) in N�
Σ(ψ). Rather than applying this test in a

brute force way, it is natural to use sets of elementary weights instead of formulas,
and to simplify the expressions of N�

Σ(φ) and N�
Σ(ψ) using C prior to comparing

them. The inference technique proposed next is useful to that effect.
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4.2 Syntactic Inference Based on ATMSs

In this section, we present another syntactic method for SPL inference, based
on abductive reasoning. Namely, consider the weights involved in the compu-
tation of N�

Σ(φ) as assumptions that explain the certainty of φ. It suggests to
use an Assumption-based Truth-Maintenance System (ATMS [12]), in which a
distinction is made between two kinds of data, the data representing knowledge
and the data representing assumptions. We first recall the basic definitions of
ATMS, then we show how we encode an SPL base in order to use an ATMS for
computing the necessity degree of a formula.

Definition 3. Let (J , A) be an ATMS base where J is a consistent base of propo-
sitional formulas, and A is a set of propositional variables (the assumptions).

– Any subset E of A is called an environment
– An environment E is J -incoherent if and only if E ∪ J is inconsistent
– A nogood is a minimal J -incoherent environment
– An environment E supports φ if and only if E is not J -incoherent and E ∪

J � φ

Given (J , A) and a formula φ, the ATMS is able to provide all the minimal
environments that support φ, under the form of a set Label(φ).

Given an SPL base (Σ, C), the possibilistic base Σ is encoded by a pair (J , A)
as follows : each elementary weight ai is associated with a propositional variable
(for simplicity we keep ai as propositional variable) and each SPL formula (φi, ai)
is encoded by the propositional formula ¬ai ∨ φi.

Definition 4. Let (Σ, C) be an SPL base. The associated ATMS base (JΣ ,A)
is defined by : JΣ = {¬ai ∨ φi|(φi, ai) ∈ Σ} and A = {ai|(φi, ai) ∈ Σ}.
As shown in Sect. 4.1, in order to compute N�

Σ(φ), we have to consider the sub-
bases of Σ∗ which are minimal implying φ and consistent, and then some of
the minimal inconsistent sub-bases of Σ∗. Moreover, for computing N�

Σ(φ), we
only need the weights associated with the formulas belonging to these sub-bases.
With the encoding of Definition 4, it is easy to see that each consistent sub-base
of Σ∗ which is minimal implying φ exactly corresponds to an environment in
Label(φ) with respect to the ATMS base (JΣ , A). And each minimal inconsistent
sub-base of Σ∗ exactly corresponds to a nogood with respect to the ATMS base
(JΣ , A). So, it follows easily from Proposition 2 that:

Proposition 4. Given an SPL base (Σ, C) and the associated ATMS base (JΣ,
A), let U(φ) = {U1, · · · , Uk} be the so-called useful nogoods for φ, i.e. the
nogoods which do not contain any environment of Label(φ). Then we have:

N�
Σ(φ) = max(maxE∈Label(φ) mina∈E a,maxk

i=1 mina∈Ui
a).

See [13] for further details on calculating labels and nogoods.
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Example 2. Let Σ = {(¬x ∨ y, a), (x, b), (¬y, c), (¬x, e)}. This SPL base is
encoded by the ATMS base: JΣ = {¬a ∨ ¬x ∨ y,¬b ∨ x,¬c ∨ ¬y,¬e ∨ ¬x} and
A = {a, b, c, e}.

We obtain Label(y) = {{a, b}}. The nogoods are {a, b, c}, {b, e}, hence only
the second one is useful for y. So, N�

Σ(y) = max(min(a, b),min(b, e)).

4.3 Comparing Complex Symbolic Weights

One of the benefits of the last method lies in the fact that everything is computed
only in terms of weights (in the label of the formula and the useful nogoods).
Then constraints on weights can be used to simplify the max /min expressions,
while in the previous method, we use all formulas in the symbolic possibilistic
base. Moreover, in the ATMS method, one can think of exploiting constraints
and simplify the sets of weights involved in the comparison of the necessity
degrees at the moment we are producing them. So it is natural to simplify the
expressions of N�

Σ(φ) and N�
Σ(ψ) prior to comparing them,

– first by replacing each set of weights B ∈ Label(φ) ∪ U(φ) by the reduced
set of weights W = minC(B) consisting of the least elementary weights in B
according to the partial order defined by the constraints in C.

– Then by deleting the dominated sets W in the resulting family in the sense that
C � min{a ∈ W ′} > min{a ∈ W} for some other set W ′, using Algorithm 1.

Of course we can apply these simplifications as soon as elements of the labels or
useful nogoods are produced.

Example 2 (Continued). Consider again Σ = {(¬x ∨ y, a), (x, b), (¬y, c),
(¬x, e)} with C = {a > b, a > c, b > e, c > e}. We want to check if C �
N�

Σ(y) > N�
Σ(¬x). Note that Label(y) = {{a, b}} and U(y) = {{b, e}}. Likewise

Label(¬x) = {{a, c}, {e}}, and there is no useful nogood for ¬x.
Using C we can reduce {a, b} to {b} and {b, e} to {e} and the necessity degree

of y to b, since b > e ∈ C. Likewise we can reduce {a, c} to {c} and the necessity
degree of ¬x to c since c > e ∈ C. Now, b > c �∈ C, so we cannot conclude y > ¬x
(nor the converse).

In general, the deletion of dominated sets of weights can be achieved by means
of Algorithm 1 applied to all pairs of reduced sets in Label(φ) ∪ U(φ). Finally
we can compare the set of non-dominated reduced subsets from Label(φ)∪U(φ)
with the one for Label(ψ)∪U(ψ), in order to decide if φ > ψ, using Algorithm 2.

5 Related Works

The question of reasoning with a partially ordered knowledge base encoded in a
symbolic possibilisitic logic has been addressed previously in [4]. These authors
have proposed to encode symbolic possibilistic pairs in propositional logic like
in Sect. 4.2. However there are several differences:
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– A possibilistic formula (φ, a) in [4] is encoded as a formula A ∨ φ where A is
a variable supposed to mean “≥ a”, i.e. [a, 1] (while we use ¬a ∨ φ ∈ JΣ).

– Constraints between weights in [4] are reflexive (not strict), of the form p ≥ q
with complex max-min weights. It allows them to be encoded also as proposi-
tional formulas (for elementary constraints, ¬A ∨ B encodes a ≥ b). It is then
possible to express all pieces of information (formulas and weights) about an
SPL base in a single propositional base containing only clauses, which makes
it natural to use the variable forgetting technique so as to deduce the neces-
sity degree of a formula. We cannot encode strict constraints using a material
implication, hence the use of the ATMS approach. We must encode the SPL
base in two parts and we thus apply techniques such as MIS, and ATMS
notions plus specific algorithms to compare complex weights.

– In [4], C � p > q means C � p ≥ q and C �� q ≥ p and is somewhat analogous to
strict Pareto order between vectors. With this vision, from Σ = {(φ, a), (ψ, b)}
and C = ∅ we could infer infer NΣ(φ∨ψ) > NΣ(φ). Indeed, one has NΣ(φ) =
a,NΣ(φ ∨ ψ) = max(a, b) C � max(a, b) ≥ a but not C � a ≥ max(a, b).
This is problematic because it amounts to interpreting strict inequality as the
impossibility of proving a weak one, which is non-monotonic. In our method,
p > q holds provided that it holds for all instantiations of p, q in accordance
with the constraints. Only such strict constraints appear in C.

In the future it should be interesting to handle both strict and loose inequality
constraints, since loose constraints between formula weights can be derived in
our setting just by means of the weakening inference rule.

6 Conclusion

This paper is another step in the study of inference from a partially ordered
propositional base. We present a version of possibilistic logic with partially
ordered symbolic weights. It differs from conditional logic frameworks [5] by
the use of the minimal specificity principle which is not at work in such logical
frameworks. We provide a proof of the soundness and completeness of this logic.
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Two syntactic inference methods are defined which allow us to infer new for-
mulas with complex symbolic weights (necessity degrees of formulas): One that
requires the enumeration of minimal inconsistent subsets to calculate necessity
degrees. The other use results from the ATMS formalism. It enables constraints
over weights to be taken into account so as to simplify the comparison of sym-
bolic necessity degrees. This work has potential applications for the revision and
the fusion of beliefs, as well as preference modeling [14].
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Abstract. We introduce an epistemic logic with probabilistic common
knowledge and infinitely many agents, and provide its strong complete-
ness for the class of measurable structures.

Keywords: Probabilistic epistemic logic · Strong completeness · Prob-
abilistic common knowledge · Infinite number of agents

1 Introduction

Reasoning about knowledge, as well as reasoning about probability, are widely
used in many applied fields such as computer science, artificial intelligence, eco-
nomics, game theory etc. [4,6]. Notion of common knowledge has been shown
as crucial for a variety of applications dealing with reaching agreements or coor-
dinated action [4,9]. Infinite sets of agents can be convenient for modelling sit-
uations where the group of agents and its upper limit are not known apriori.
Economies, when regarded as teams in a game, are often modeled as having
infinite number of agents [7]. The main purpose of this paper is to prove strong
completeness of the probabilistic common knowledge in a setting with possibly
infinitely many agents.

We use the classical model for reasoning about knowledge based on the semat-
ics of possible worlds, i.e. we say that an agent knows a fact ϕ, denoted by Kiϕ,
if that fact is true in all the worlds (or states) he considers possible. Group
knowledge where all members of a group G know ϕ is denoted by EGϕ. Com-
mon knowledge CGϕ informally means that everyone in group G knows ϕ, and
everyone in G knows that everyone in G knows ϕ etc [8].

In many applied areas, it is often the case that reasoning about knowledge
should be combined with reasoning about probabilities, which includes sentences
like “according to agent i the probability of ϕ is at least 0.2”, denoted by Pi,≥0.2ϕ
or “agent i knows that probability of ϕ is at least 0.5”, Ki(Pi,≥0.5ϕ). These situ-
ations occur for example in analysis of probabilistic programs and their behavior
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in the context of distributed systems [3]. In game theory and economics, multi-
agent framework typically incorporates assumptions about probability [8]. Since
common knowledge in formal sense is not attainable in many practical systems,
its close forms are being investigated, and probabilistic common knowledge Cr

Gϕ
is one of them [3,8,10].

Related work. Here we review some of the literature that is relevant for this
paper, and compare the results with ours.

In the paper [5] Fagin et al. provide weakly complete axiomatization for a
probability logic which includes linear inequalities involving probabilities e.g.
expressions of the form: a1p(ϕ1) + ... + akp(ϕk) ≥ b, where a1, .., ak, b ∈ Q,
k ≥ 1. Our logic doesn’t allow such linear expressions. Instead we use only
unary operators for statements about probability as in [21], in order to gain
simpler axiomatization for the purposes of this paper. With some straightforward
changes, our language and results can be extended to include the more general
polynomial weight formulas (see [23]).

In [3] Fagin and Halpern present a joint frame for reasoning about knowledge
and probability, and prove weak completeness for a logic which combines expres-
sions about knowledge with above mentioned linear probabilistic inequalities. In
this setting, each agent in each state determines a probability space, and we use
that approach in our paper. They also define probabilistic common knowledge
and propose the corresponding axioms and rules. In this paper, we prove strong
completeness for this notion of probabilistic common knowledge.

A strongly complete axiomatization of common knowledge which doesn’t
include reasoning about probabilities was proved in [16] by de Lavalette, Kooi
and Verbrugge. The authors introduce an infinitary rule for obtaining common
knowledge. The iterative property of this rule is convenient for proofs of the
deduction theorem and strong necessitation.

We point out that the above mentioned epistemic logics do not support infi-
nite group of agents. In [7], a weakly complete axiomatization for common knowl-
edge with infinite number of agents (in non-probabilistic setting), is presented.
In all the papers, knowledge EGϕ of a finite group G is represented as a con-
junction of knowledge of its members. In our axiomatization, the conjunction is
replaced with an infinitary rule in the case of infinite number of agents.

From the technical point of view, we modify some of our earlier developed
methods presented in [1,13–15,17,18,20–22].

2 Syntax and Sematics

In this paper, we consider a propositional modal logic with probabilistic common
knowledge for a (possibly infinite) set of agents, denoted by PMLCP

∞ .

Syntax. Let [0, 1]Q be the set of all rational numbers from the real interval [0, 1],
N the set of positive integers, Ψ a denumerable set of primitive propositions, A
an at most countable set of agents, and G a countable set of nonempty subsets
of A. We define our language LCP

G as the least set L containing Ψ such that if
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ϕ,ψ ∈ L then ¬ϕ, ϕ∧ψ, Kiϕ, EGϕ, CGϕ, Er
Gϕ, Cr

Gϕ, Pi,≥rϕ ∈ L, where i ∈ A,
G ∈ G, r ∈ [0, 1]Q.

We use negation and conjunction (¬ and ∧) as the primitive connectives and
we define other Boolean connectives (→, ∨, ≡) as abbreviations, in a usual way.
Symbols ⊥ and 	 abbreviate formulas ϕ ∧ ¬ϕ and ϕ ∨ ¬ϕ, respectively.

Kr
i ϕ is an abbreviation for Ki(Pi,≥rϕ). We define (EG)1ϕ = EGϕ, and

(EG)k+1ϕ = EG((EG)kϕ), k ∈ N. Also (F r
G)0ϕ = 	, (F r

G)k+1ϕ = Er
G(ϕ ∧

(F r
G)kϕ), k ∈ N. We also introduce other probabilistic operators: Pi,<rϕ is

¬Pi,≥rϕ, Pi,≤rϕ is Pi,≥1−r¬ϕ, Pi,>rϕ is ¬Pi,≤rϕ and Pi,=rϕ is Pi,≤rϕ ∧ Pi,≥rϕ.
For example, a formula EG(Kr

i ϕ ∧ ¬CGψ) says that everyone in a group G
knows that agent i knows that the probability of ϕ is greater than or equal to r,
and that ψ is not common knowledge in G.

We define Φi,k(τ, (θj)j<ω) as a k-nested implication for the knowledge of an
agent i and for formula τ based on the sequence of formulas (θj)j<ω in the
following recursive way:

Φi,0(τ, (θj)j<ω) = θ0 → τ , Φi,k+1(τ, (θj)j<ω) = θk+1 → KiΦi,k(τ, (θj)j<ω).

For example, Φi,3(τ, (θj)j<ω) = θ3 → Ki(θ2 → Ki(θ1 → Ki(θ0 → τ))). This
definition follows the form of probabilistic k-nested implication presented in [18].
The form is suitable for proving Deduction theorem and Strong necessitation
theorem.

Semantics. The logic PMLCP
∞ uses possible world semantics – it is based on

Kripke structures and extended with probability spaces.
A Kripke structure M for knowledge and probability over a group A of agents

and set Ψ is defined as a tuple (S, π,K,P), where:

– S is a nonempty set of states or possible worlds
– π associates with each state in S a truth assignment to the primitive propo-

sitions in Ψ , i.e. π(s) : Ψ → {true, false},
– K = {Ki | i ∈ A} is a set of binary relations on S, called possibility relations.

We define Ki(s) = {t ∈ s | (s, t) ∈ Ki}.
– P is a probability assignment which assigns to each agent i ∈ A and state

s ∈ S a finitely-additive probability space P(i, s) = (Si,s, χi,s, μi,s), where
Si,s ⊆ S, χi,s is an algebra of subsets of Si,s, and μi,s is a finitely-additive
probability measure on χi,s.

Now we introduce a binary satisfiability relation |=M for a Kripke structure M
between a state s in M and formula ϕ, where s |=M ϕ is read as either “ϕ is
true at s”, “s satisfies ϕ” or “ϕ holds at s”. When M is clear from the context,
we will write s |= ϕ instead of s |=M ϕ.

1. s |= p, for p ∈ Ψ iff π(s)(p) = true
2. s |= ϕ ∧ φ iff s |= ϕ and s |= φ
3. s |= ¬ϕ iff not s |= ϕ
4. s |= Kiϕ iff t |= ϕ for all t ∈ Ki(s)
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5. s |= EGϕ iff s |= Kiϕ for all i ∈ G
6. s |= CGϕ iff s |= (EG)kϕ for every k ∈ N

7. s |= Pi,≥bϕ iff μi,s({s ∈ Si,s | s |= ϕ}) ≥ b
8. s |= Er

Gϕ iff s |= Kr
i ϕ for all i ∈ G

9. s |= Cr
Gϕ iff s |= (F r

G)kϕ for every k ∈ N

Note that the possible problem with the definition of |= is that {s ∈ Si,s | s |= ϕ}
is not necessarily in χi,s. If {s ∈ Si,s | s |= ϕ} ∈ χi,s for all i ∈ A, s ∈ S
and ϕ ∈ LG(Ψ)CP , we say that M is a measurable structure. The class of all
measurable Kripke structures is denoted by MMEAS

A .
Given a measurable structure M = (S, π,K,P), we say that ϕ is valid in M ,

noted as M |= ϕ, if s |= ϕ for every state s ∈ S; we say that ϕ is satisfiable in
M if s |= ϕ for some state s ∈ S. A formula ϕ is valid in a class M of structures
in notation M |= ϕ if ϕ is valid in all structures in M. Similarly, ϕ is satisfiable
in a class of structures M if ϕ is satisfiable in some structure in M. A set T of
formulas is satisfiable if there is a state s in some structure M ∈ A such that
s |=M ϕ for every ϕ ∈ T .

Notice that the logic presented above is not compact, i.e. there exist infinite
unsatisfiable sets of formulas such that all of their finite subsets are satisfi-
able. Examples of these sets are: {(EG)kϕ | k ≥ 1} ∪ {¬CGϕ} or {Pi,≥1− 1

k
ϕ ∧

Pi,≤1− 1
k
ϕ | k ≥ 1} ∪ {¬Pi, �=1ϕ}. As a consequence, there arises a problem of

finding the corresponding axiomatization which is strongly complete (every con-
sistent set of formulas has a model), since it cannot be finitary [12]. One of the
approaches for solving this issue, which we follow here, is to introduce inference
rules with countably many premises [16,21], so the object language is countable,
and formulas are finite, but proofs are allowed to be infinite.

3 The Axiomatization of PMLCP
∞

The axiomatic system AxMEAS
∞ for PMLC

G contains the following axiom sche-
mata and rules of inference:

I Axioms and rule for propositional reasoning
Prop. All instances of tautologies of the propositional calculus

MP.
ϕ,ϕ → ψ

ψ
(Modus Ponens)

II Axioms and rules for reasoning about knowledge
AK. (Kiϕ ∧ Ki(ϕ → ψ)) → Kiψ , i ∈ G (Distribution Axiom)
RK.

ϕ

Kiϕ
(Knowledge Generalization)

AE. EGϕ → Kiϕ, i ∈ G

RE.
{Φi,k(Kiϕ, (θj)j<ω) | i ∈ G}

Φi,k(EGϕ, (θj)j<ω))
AC. CGϕ → EG(ϕ ∧ CGϕ)

RC.
{Φi,k((EG)mϕ, (θj)j<ω) | for all m ∈ N}

Φi,k(CGϕ, (θj)j<ω))
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III Axioms and rule for reasoning about probabilities
P1. Pi,≥0ϕ
P2. Pi,≤rϕ → Pi,<tϕ, t > r
P3. Pi,<tϕ → Pi,≤tϕ
P4. (Pi,≥rϕ ∧ Pi,≥tψ ∧ Pi,≥1¬(ϕ ∧ ψ)) → Pi,≥min(1,r+t)(ϕ ∨ ψ)
P5. (Pi,≤rϕ ∧ Pi,<tϕ) → Pi,<r+t(ϕ ∨ ψ), r + t ≤ 1
RP.

ϕ

Pi,≥1ϕ
(Probabilistic Necessitation)

RA.
{Φi,k(Pi,≥s− 1

m
ϕ, (θj)j<ω) | for every m ∈ N, m ≥ 1

s
and s > 0 }

Φi,k(Pi,≥sϕ, (θj)j<ω))
(Archimedean rule)

IV Axioms and rules for reasoning about probabilistic knowledge
APE. Er

Gϕ → Kr
i ϕ, i ∈ G

RPE.
{Φi,k(Kr

i ϕ, (θj)j<ω) | i ∈ G}
Φi,k(Er

Gϕ, (θj)j<ω))
APC. Cr

Gϕ → Er
G(ϕ ∧ Cr

Gϕ)

RPC.
{Φi,k((F r

G)mϕ, (θj)j<ω) | for all m ≥ 0}
Φi,k(Cr

Gϕ, (θj)j<ω))

Let us now discuss the given axioms and rules. They are divided in four sections
according to the type of reasoning. The first part concerns the usual propositional
reasoning. In the second part, axiom AK and rule RK are known from modal
logics. Axiom AE and RE are used to obtain group knowledge, while AC and
RC for common knowledge. Third part introduces probabilistic axioms and rules
as in [21]. In the last part, axiom APC is as in [3], while other axiom and rules
are by our definition.

ϕ ∈ LCP
G is a theorem, which we denote by  ϕ if there exists a countable

sequence of formulas ϕ0, ϕ1, . . . , ϕ called the proof, such that every member of the
sequence is an instance of some axiom schemata or is obtained from the previous
formulas using an inference rule. Note that the length of a proof (the number of
formulas in the corresponding sequence) is a countable successor ordinal. Thus,
every proof has the last formula.

A formula ϕ is derivable from a set of formulas (T  ϕ) if there is an at most
denumerable sequence of formulas ϕ0, ϕ1, . . . , ϕ called the proof such that each
ϕi is an instance of some axiom schemata or a formula from the set T , or it is
obtained from the preceding formulas by an inference rule, with the exception
that the inference rules RK and RP can be applied to theorems only.

A set T of formulas is inconsistent if T  ϕ for every formula ϕ, otherwise
it is consistent. Equivalently, T is inconsistent iff T  ⊥. A set of formula is
maximal if for every formula ϕ either ϕ ∈ T or ¬ϕ ∈ T .

Some parts of the following results can be proved in analogous way as in
[11,18,21]. We point out main differences and results characteristic for our logic.

Theorem 1 (Soundness). The axiomatic schemata AxMEAS
∞ is sound with

respect to the MMEAS
A class of measurable Kripke structures over A.
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Proof. We show that rule RPC produces a valid formula from a set of valid
premises by induction on k. The soundness for the rest of the infinitary rules
is proved analogously. Suppose s |=M Φi,k((F r

G)mϕ, (θj)j<ω), for all m ∈ N,
M ∈ MMEAS

A . Then also s |=M Φi,k(Cr
Gϕ, (θj)j<ω, for each state s in M :

Induction base. k = 0. Let s |= θ0 → (F r
G)mϕ, for all m ∈ N. Assume that it

is not s |= θ0 → Cr
Gϕ, i.e. s |= θ0 ∧ ¬Cr

Gϕ. Then s |= (F r
G)mϕ, for all m ∈ N,

and so s |= Cr
Gϕ, which is a contradiction.

Inductive step. Let s |= Φi,k+1((F r
G)mϕ, (θj)j<ω), for all m ∈ N , i.e. s |=

θk+1 → KiΦi,k((F r
G)mϕ, (θj)j<ω), for all m ∈ N. Assume the opposite, that

s �|= Φi,k+1(Cr
Gϕ, (θj)j<ω), i.e. s |= θk+1 ∧ ¬KiΦi,k(Cr

Gϕ, (θj)j<ω). Then also
sV |= KiΦi,k((F r

G)mϕ, (θj)j<ω), for all m ∈ N, so for every state t ∈ Ki(s)
we have t |= Φi,k((F r

G)mϕ, (θj)j<ω), and by the induction hypothesis t |=
Φi,k(Cr

Gϕ, (θj)j<ω). Therefore s |= KiΦi,k(Cr
Gϕ, (θj)j<ω), which is a contra-

diction. ��
Theorem 2 (Deduction Theorem). Let T be a set of formulas in LCP

G , and
let ϕ be a formula. Then T ∪ {ϕ}  ψ implies T  ϕ → ψ.

Proof. We use the transfinite induction on the length of the proof of ψ from
T ∪ {ϕ}. We consider the case in induction step where ψ was obtained by the
inference rule RPC. The proof for the rest of infinitary rules is analogous.

Assume that T, ϕ  ψ where ψ = Φi,k(Cr
Gη, (θj)j<ω).

T, ϕ  Φi,k((F r
G)mη, (θj)j<ω), for all m ∈ N,

T  ϕ → Φi,k((F r
G)mη, (θj)j<ω), by the induction hypothesis,

T  ϕ → (θk → KiΦi,k−1((F r
G)mη, (θj)j<ω)), by the definition of Φi,k

T  (ϕ ∧ θk) → KiΦi,k−1((F r
G)mη, (θj)j<ω), by the propositional tautology

(p → (q → r)) ←→ ((p ∧ q) → r).

If we denote by (θj)j<ω the sequence which coincides everywhere with (θj)j<ω

for j �= k, with the exception that θk ≡ ϕ ∧ θk, we get that:

T  θk → KiΦi,k−1((F r
G)mη, (θj)j<ω),

T  Φi,k((F r
G)mη, (θj)j<ω), for all m ∈ N

T  Φi,k(Cr
Gη, (θj)j<ω) by application of RPC

T  (ϕ ∧ θk) → KiΦi,k−1(Cr
Gη, (θi)j<ω)

T  ϕ → (θk → KiΦi,k−1(Cr
Gη, (θj)j<ω))

T  ϕ → Φi,k(Cr
Gη, (θj)j<ω)

T  ϕ → ψ. ��
Lemma 1. Let V be a maximal consistent set of formulas.

1. EGϕ ∈ V iff ( Kiϕ ∈ V for all i ∈ G )
2. Er

Gϕ ∈ V iff ( Kr
i ϕ ∈ V for all i ∈ G )

3. CGϕ ∈ V iff ( (EG)kϕ ∈ V for all k ∈ N )
4. Cr

Gϕ ∈ V iff ((F r
G)kϕ ∈ V for all k ∈ N)
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Proof. 1–3. follow directly from the axioms AE, APE and AC, and the rules
RE, RPE and RC where we choose Φi,0 and θ0 = 	. Using  Pi,≥1(α → β) →
(Pi,≥rα → Pi,≥rβ) (see [21] for the proof), one can show that if  α → β
then  Er

Gα → Er
Gβ. We use that fact to we prove  Cr

Gϕ → (F r
G)kϕ, for all

k ∈ N (by induction on k). Now 4. follows immediately from the rule RPC and
 Cr

Gϕ → (F r
G)kϕ, k ∈ N. ��

4 Completeness

In order to achieve the completeness result, we extend the consistent set of
formulas T to a maximal consistent T ∗, and prove that T it is satisfiable in the
corresponding state sT ∗ of the canonical structure.

Theorem 3. Every consistent set of formulas T can be extended to a maximal
consistent set T ∗.

Proof. Let {αi | i ∈ N} be an enumeration of all formulas in LG(Ψ)CP . We define
a family (Ti)i∈N of consistent sets of formulas, and a set T ∗ in the following way:

1. T0 = T .
2. For every i ∈ N:

a. if Ti ∪ {αi} is consistent, then Ti+1 = Ti ∪ {αi}
b. if Ti ∪ {αi} is inconsistent, and

b1. αi = Φl,k(EGϕ, (θj)j<ω), then Ti+1 = Ti ∪ {¬αi,¬Φl,k(Kjϕ, (θj)j<ω)},
for some j ∈ G such that Ti+1 is consistent

b2. αi = Φl,k(CGϕ, (θj)j<ω), then Ti+1 = Ti ∪ {¬αi,¬Φl,k(Em
G ϕ, (θj)j<ω)},

for some m ∈ N such that Ti+1 is consistent
b3. αi = Φl,k(Er

Gϕ, (θj)j<ω), then Ti+1 = Ti ∪ {¬αi,¬Φl,k(Kr
j ϕ, (θj)j<ω)},

for some j ∈ G such that Ti+1 is consistent
b4. αi = Φl,k(Cr

Gϕ, (θj)j<ω),thenTi+1 = Ti∪{¬αi,¬Φl,k((F r
G)mϕ,(θj)j<ω)},

for some m ∈ N such that Ti+1 is consistent
b5. αi = Φl,k(Pi,≥rϕ, (θj)j<ω), then Ti+1 = Ti ∪ {¬αi,¬Φl,k(Pi,≥r− 1

m

ϕ, (θj)j<ω)},
for some m ∈ N such that Ti+1 is consistent

b6. Otherwise, Ti+1 = Ti ∪ {¬αi}.

3. T ∗ =
∞⋃

i=0

Ti.

The existence of j and m in b1-b5. is a consequence of Deduction theorem and
infinitary inference rules. T ∗ is maximal by its construction. It is straightforward
to show that T ∗ is deductively closed, using the induction on the length of proof.
The only problem could arise with infinitary rules. Here we prove that T ∗ is
closed under RPC, and other cases can be considered in a similar way.

Suppose that T ∗  φ is obtained by application of the rule RPC, that is
T ∗  {Φl,k((F r

G)nϕ, (θj)j<ω) |n ∈ N} and φ = Φl,k(Cr
Gϕ, (θj)j<ω). Then, by

induction hypothesis, we have Φl,k((F r
G)nϕ, (θj)j<ω) ∈ T ∗ for all n ∈ N (1).
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Assume that Φl,k(Cr
Gϕ(θj)j<ω) �∈ T ∗; if αi = Φl,k(Cr

Gϕ, (θj)j<ω), then Ti ∪ {αi}
is inconsistent (otherwise Φl,k(Cr

Gϕ, (θj)j<ω) = αi ∈ Ti+1 ⊂ T ∗), so Ti+1 = Ti ∪
{¬Φl,k((F r

G)mϕ, (θj)j<ω)} for some m, and therefore ¬Φl,k((F r
G)mϕ, (θj)j<ω) ∈

T ∗, which contradicts (1) (because the formula and its negation are members of
some consistent set Tj).

If T ∗  ⊥, then ⊥ ∈ T ∗ since T ∗ is deductively closed. This means that
⊥ ∈ Ti, for some i, which is impossible. Thus, T ∗ is consistent. ��
For a given set of formulas T , and i ∈ A we define the set KiT = {Kiϕ |ϕ ∈ T}.

Theorem 4 (Strong Necessitation). If T is a set of formulas and T  ϕ,
then KiT  Kiϕ for all i ∈ A.

Proof. We use the transfinite induction on the length of proof of T  ϕ. Suppose
that T  ϕ where ϕ = Φi,k(Cr

Gψ, (θj)j<ω) is obtained by rule RPC. Then:

T  Φi,k((F r
G)mψ, (θj)j<ω), for all m ∈ N

KiT  KiΦi,k((F r
G)mψ, (θj)j<ω), by induction hypothesis

KiT  	 → KiΦi,k((F r
G)mψ, (θj)j<ω), for all m ∈ N

KiT  Φi,k+1((F r
G)mψ, (θj)j<ω), where (θj)j<ω is a nested k + 1-sequence

such that θk+1 ≡ 	, and which coincides everywhere with (θj)j<ω for j �=
k + 1.
KiT  Φi,k+1(Cr

Gψ, (θj)j<ω), by RPC
KiT  	 → KiΦi,k(Cr

Gψ, (θj)j<ω)
KiT  	 → Kiϕ
KiT  Kiϕ. ��

Suppose P≥
i,V (ϕ) = {r |Pi,≥rϕ ∈ V }. We define a special, so called canonical

structure M∗ = (S, π,K,P), where:

– S = {sV |V is a maximal consistent set in LCP
G } ,

– if p ∈ Ψ , then π(sV )(p) = true ⇐⇒ p ∈ V ,
– K = {Ki | i ∈ G}, Ki = {(sV , sU ) |V/Ki ⊆ U}, where V/Ki = {ϕ |Kiϕ ∈ V }.
– P(i, s) = (Si,s, χi,s, μi,s), where Si,s = S,
– χi,s = {[α] |α ∈ LCP

G }, where [α] = {sV ∈ S |α ∈ V }
– if [α] ∈ χi,s then μi,sV

([α]) = sup P≥
i,V (α).

Lemma 2. M∗ is a measurable Kripke structure for probability and knowledge.

Theorem 5 (Strong Completeness). Every consistent set of formulas is sat-
isfiable.

Proof. We prove that ψ ∈ V iff sV |=M∗ ψ (*) by induction on complexity of ψ.

– ψ = Kiϕ. Suppose Kiϕ ∈ V , then ϕ ∈ V/Ki, so ϕ ∈ U for each U - such that
sV KisU (by the definition of relation Ki), therefore sU |=M∗ ϕ by induction
hypothesis (ϕ is subformula of Kiϕ), and then sV |=M∗ Ki ϕ.

Conversely, let sV |=M∗ Kiϕ and assume the opposite i.e. that Kiϕ �∈ V .
Then V/Ki ∪{¬ϕ} is consistent. Otherwise, by Theorem 2 we have V/Ki  ϕ,
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and V ⊃ Ki(V/Ki)  Kiϕ by Theorem 4, therefore Kiϕ ∈ V , which is a
contradiction. Thus, V/Ki∪{¬ϕ} can be extended to a maximal consistent U ,
so we have sV KisU . Since ¬ϕ ∈ U , then sU |=M∗ ¬ϕ by induction hypothesis,
so sV �|=M∗ Kiϕ, which is a contradiction.

– Case ψ = Pi,≥rϕ can be proved as in [21]. The cases when ψ is one of the for-
mulas EGϕ, CGϕ, Er

Gϕ, (F r
G)kϕ, k ∈ N, Cr

Gϕ are proved using Lemma 1. ��

5 Conclusion

The starting point for our research were the papers [3,7] where weakly complete
axiomatizations for a logic combining knowledge and probability, and a non-
probabilistic logic for knowledge with infinitely many agents (respectively), are
presented. We combine those to approaches obtaining an expressive language,
and we provide strongly complete xiomatization for our logic. Since the logic is
not compact, we use infinitary rules of inference. We consider the most general
semantics, with independent modalities for knowledge and probability. On the
other hand, our axiomatization can be straightforwardly extended in different
ways, to capture several interesting relationships between the modalities, con-
sidered in [3]. For example, if an agent knows a fact to be false, it seams natural
to assume he doesn’t place a positive probability on that fact, which is seman-
tically represented by the condition: for all i, s, if P(i, s) = (Si,s, χi,s, μi,s), then
Si,s ⊆ Ki(s) [3]. The corresponding axiom is Kiϕ → Pi,=1ϕ.

A first-order logic extension of the logic PMLCP
∞ is an idea to consider for

further work on this topic. Since the language of such extension extends classical
first order language, the set of all valid formulas is not recursively enumerable [2]
and no (even weakly) complete finitary axiomatization is possible in this unde-
cidable framework. On the other hand, our completion techniques are already
applied to some first order probabilistic logics [17,19,21].
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19. Ognjanović, Z., Perović, A., Doder, D.: A first-order dynamic probability logic. In:
van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS, vol. 7958, pp. 461–472. Springer,
Heidelberg (2013)
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Abstract. A knowledge base in the logic FO-PCL is a set of relational
probabilistic conditionals. The models of such a knowledge base are prob-
ability distributions over possible worlds, and the principle of Maximum
Entropy (ME) selects the unique model having maximum entropy. While
previous work on FO-PCL focused on ME model computation, in this
paper we propose two possible approaches towards lifted inference based
on independent rule sets.

1 Introduction

The logic FO-PCL [6] allows uncertain reasoning with probabilistic relational
conditionals and is thus in the line of combining logic with probabilities (e.g.
[4,8,13]). To select a best model among all probability distributions that satisfy
an FO-PCL knowledge base R, the principle of Maxmimum Entyropy (ME)
[11,12,14] is employed.

Previous work on FO-PCL [2,5,6] focused on the computation of the ME
model p∗

R of R. FO-PCL inference under maximum entropy determines the prob-
ability of a query q under p∗

R. While this can be done in a straightforward, but
possibly quite inefficient way having the ME model p∗

R at hand, in this paper
we will elaborate on approaches to lifted inference (cf. [15,16]) for FO-PCL. In
particular, as new results, we will present a method that is based on maximal
independent rule sets (Sect. 3) and an approach for answering queries that are
independent of the size of the universe under consideration (Sect. 4). In Sect. 2,
we briefly recall the basics of FO-PCL as required here, and in Sect. 5, we con-
clude and point out future work.

2 Background: FO-PCL and Parametric Uniformity

FO-PCL Syntax. FO-PCL uses function-free signatures of the form Σ =
(S,D,Pred) where S is a set of sorts, D =

⋃
s∈S D(s) is a finite set of (disjoint)

sets of sorted constant symbols, and Pred is a set of sorted predicate symbols.
Variables V also have a unique sort, and all formulas and variable substitutions
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 506–516, 2015.
DOI: 10.1007/978-3-319-20807-7 46



Towards Lifted Inference Under Maximum Entropy 507

must obey the obvious sort restrictions. In the following, we will adopt the unique
names assumption, i. e. different constants denote different elements.

An FO-PCL conditional R = 〈(φR|ψR)[ξR], CR〉 is composed of a premise ψR

and a conclusion φR, which are quantifier and function free first-order formulas
(over Σ and V) without equality, a probability value ξR ∈ [0, 1], and a constraint
formula CR which is a quantifier-free first-order formula using only the equality
predicate. For ¬(V = X) we also write (V �= X), and � resp. ⊥ denote a
tautology resp. a contradiction. An FO-PCL knowledge base is a pair (Σ,R)
where R is a set of conditionals over Σ,V.

Example 1 (Misanthrope). The knowledge base RMI = {R1,R2}, adapted from
[6], models friendship relations within a group of people, with one exceptional
member, a misanthrope. In general, if a person V likes another person U, then it
is very likely that U likes V, too. But there is one person, the misanthrope, who
generally does not like other people: R1 : 〈(likes(U, V )|likes(V,U))[0.9], U �= V 〉,

R2 : 〈(likes(a, V ))[0.05], V �= a〉.
Please note that given the set of contants D = {a, b, c}, instantiating the con-
ditionals in R without considering their constraint formulas would yield the
contradictory conditional 〈(likes(a, a)|likes(a, a))[0.9].

When the constraint formula of a ground instance of R evaluates to true,
that instance is called admissible, and gnd(R) denotes the set of all admissible
instances of R (over Σ), in the following also just called instances.

FO-PCL Models. The Herbrand base H(R) is the set of all atoms in all
gnd(Rk) with Rk ∈ R, and every subset x ⊆ H(R) is a Herbrand interpre-
tation, also called world, defining a logical semantics for R. The set X(R) =
{x | x ⊆ H(R)} denotes the set of all Herbrand interpretations. The probabilis-
tic semantics of R is a possible world semantics [9]. An FO-PCL interpretation
p of R is thus a probability distribution over X(R). For performing lifted infer-
ence, it will be useful to regard H(R) as a tuple of binary random variables
X = (X1, . . . , Xn) and p as a joint distribution p(X1, . . . , Xn). A world x ∈ X(R)
will then be regarded as a variable assignment (X1 = x1, . . . , Xn = xn), where,
for 1 � i � n, xi = 1 if Xi ∈ x and 0 otherwise. The notation p(x) can then be
regarded as a shorthand for p(X1 = x1, . . . , Xn = xn). If H(R) = Y1 ∪· Y2 and
yi is a variable assignment for Yi, we let (Y1 = y1,Y2 = y2) denote the variable
assignment for H(R) that assigns yi to the variables in Yi. Correspondingly, the
expressions p(Y1,Y2) and p(y1, y2) correspond to p(X ) and p(Y1 = y1,Y2 = y2),
respectively.

For Rk ∈ R and every gRk
∈ gnd(Rk), let θRk

be an admissible ground sub-
stitution for the variables in Rk so that gRk

= 〈(θgRk
(φRk

) | θgRk
(ψRk

))[ξRk
],�〉.

Then pX(R) satisfies Rk iff for every instance gRk
∈ gnd(Rk) we have:

pX(R)(θRk
(φRk

) ∧ θRk
(ψRk

)) = ξRk
· pX(R)(θRk

(ψRk
)).

Note that for the case of pX(R)(θRk
(ψRk

)) > 0, this equation is equivalent to
pX(R)(θRk

(φRk
)∧θRk

(ψRk
))

pX(R)(θRk
(ψRk

)) = ξRk
and thus to pX(R)((θgRk

(φRk
) | θgRk

(ψRk
))) =



508 C. Beierle et al.

ξRk
, expressing conditional probability. A distribution pX(R) is a model of R,

denoted by pX(R) |= R, if it satisfies every Rk ∈ R.

Maximum Entropy Model and Parametric Uniformity. A knowledge base
R = {R1, . . . , Rm} may have many different models, and the principle of maxi-
mum entropy [11,12,14] provides a method to select a model that is optimal in
the sense that it is the most unbiased one. The uniquely determined model of R

p∗
X(R) = arg max

pX(R)|=R
H(pX(R)) (1)

having maximum entropy H(p∗
X(R)) can be represented by a Gibbs distribu-

tion [7]:

p∗
X(R)(x) =

1
Z

exp

⎛

⎝
m∑

k=1

∑

gRk
∈gnd(Rk)

λgRk
fgRk

(x)

⎞

⎠ (2)

where

fgRk
(x) =

⎧
⎨

⎩

1, if x |= ψRk
φRk

0, if x |= ψRk
φRk

ξRk
, if x |= ψRk

.
(3)

is the feature function determined by gRk
, λgRk

is a Lagrange multiplier [3] and
Z is a normalization constant (see [6] for details). Note that according to Eq. (2),
one optimization parameter λgRk

has to be determined for each single ground
instance gRk

of each conditional Rk. However, if R is parametrically uniform
[6], it suffices to compute a single λRk

per conditional Rk :

p∗
X(R)(x) =

1
Z

exp

⎛

⎝
m∑

k=1

λRk

∑

gRk
∈gnd(Rk)

fgRk
(x)

⎞

⎠ (4)

By applying the set of transformations rules PU given in [2], each FO-PCL
knowledge base R can be transformed into a parametrically uniform knowledge
base that has the same ME model, see [2, Proposition 13].

Example 2 (PU(RMI )). When applying PU to RMI (Example 1), in the first step,
R1 is replaced by the two conditionals R1·1 : 〈(likes(U, a)|likes(a, U)))[0.9], U
�= a〉 and R1·2 : 〈(likes(U, V )|likes(V,U)))[0.9], U �= V, V �= a〉. In the second
step, R1·2 is replaced by the two conditionals R1·2·1 and R1·2·2, resulting in
PU(RMI ) with:

R1·1 : 〈(likes(U, a)|likes(a, U)))[0.9], U �= a〉
R1·2·1 : 〈(likes(a, V )|likes(V, a)))[0.9], V �= a〉
R1·2·2 : 〈(likes(U, V )|likes(V,U)))[0.9], U �= V, V �= a, U �= a〉
R2 : 〈(likes(a, V )|�)[0.05], V �= a〉
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3 FO-PCL Inference and Independent Rule Sets

Inference under maximum entropy inductively completes the knowledge given
by a knowledge base R to the full probability distribution having maximum
entropy, which will often be denoted by p∗

R in the following. Given a ground
query q, ME inference returns the probability ξ such that p∗

R(q) = ξ holds.

Definition 1 (FO-PCL Entailment Relation). Let R be a FO-PCL knowl-
edge base, q a ground formula, and ξ ∈ [0, 1]. R entails q[ξ], denoted by R |∼∗q[ξ],
iff p∗

R(q) = ξ.

For performing FO-PCL inference, one can thus distinguish two phases: (1) For
given R, determine p∗

R, and (2), for a query q determine the probability ξ such
that p∗

R(q) = ξ holds. Previous work on FO-PCL has focused on the computation
of p∗

R, and in [5] it is shown how parametric uniformity of R can be exploited to
simplify the computation of p∗

R. Using the following example, we will illustrate
that for a given query q, we may not need to compute the full distribution p∗

R
for determining p∗

R(q).

Example 3 (Rdog). TheknowledgebaseRdog = {Rdog1, Rdog2} is a clone obtained
from RMI (Example 1) by replacing person by dog, {a, b, c} by {e, f, g} and likes
by dog likes: Rdog1 : 〈(dog likes(U, V )|dog likes(V,U))[0.9], U �= V 〉,

Rdog2 : 〈(dog likes(a, V ))[0.05], V �= a〉.
Now PU(Rdog) is a corresponding clone of PU(RMI ). Moreover, when taking

the union RMI and Rdog (and the union of the corresponding signatures), we
have PU(RMI ∪ Rdog) = PU(RMI ) ∪ PU(Rdog).

In Example 3, the sets H(RMI ) and H(Rdog) are disjoint. Statements referring
to the probability of ground atoms of the person universe are not affected by the
conditionals of Rdog , and any statement about the probabilty of ground atoms
from H(Rdog) is not influenced by rules outside the universe of dogs. In fact,
the ME probability for any query q involving only persons is the same for both
RMI and RMI ∪ Rdog , i.e.

RMI |∼∗q[ξ] iff RMI ∪ Rdog |∼∗q[ξ].

The following definitions generalize these observations.

Definition 2 (Independent Rule Sets). Let R = {R1, ..., Rm} be an FO-
PCL knowledge base. Ri and Rj are directly connected, denoted by Ri ∼ Rj,
iff H(Ri) ∩ H(Rj) �= ∅. Ri and Rj are connected iff Ri ∼+ Rj holds where ∼+

is the transitive closure of ∼. Two rule sets Ri,Rj ⊆ R are called independent
rule sets iff for all Ri ∈ Ri and all Rj ∈ Rj, Ri and Rj are not connected, i.e.
Ri �∼+ Rj.

Definition 3 (Partition of Independent Rule Sets). A partition R1, ...,Rk

of an FO-PCL knowledge base R is called partition of independent rule sets iff
for all different i, j ∈ {1, . . . , k}, Ri and Rj are independet rule sets. In addi-
tion, the partition R1, ...,Rk is called maximal iff there is no other partition of
independent rule sets of R consisting of more than k partition classes.
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If R1, ...,Rk is a maximal partition of independent rule sets for R, then H(Ri)∩
H(Rj) = ∅ for any i �= j. To see uniqueness of the maximal partition, consider
the undirected graph GR having the conditionals in R as nodes and an edge
between nodes R and R′ iff H(R)∩H(R′) �= ∅. The subgraphs of GR determined
by R1, . . . ,Rk are exactly the connected components in GR. Since the connected
components of a graph are uniquely determined, we get:

Proposition 1. Every R has a unique maximal partition of independent rule sets.

Since the H(Ri) contain pairwise disjoint random variables, the knowledge bases
Ri constrain independent languages, and general independence properties of ME
distributions [17, page 33] yield:

Proposition 2. Let R1, ...,Rk be the maximal partition of independent rule sets
of R, and let i ∈ {1, . . . , k}. Then for any ground formula q containing only
atoms from H(Ri) we have Ri |∼∗q[ξ] iff R |∼∗q[ξ].

Thus, in situations where the ME distribution that is relevant for a query can
be computed with respect to a subset of the full knowledge base, exploiting this
fact could significantly simplify ME inference.

Example 4 (Maximal partition of RMI ). The maximal partition of RMI (Exam-
ple 1) is the trivial partion consisting of just RMI itself. However, the maximal
partition of PU(RMI ) is RMI (1), RMI (2) with RMI (1) = {R1·1, R1·2·1, R2} and
RMI (2) = {R1·2·2}. Thus, applying PU to RMI helps to split up the condi-
tionals; thereby, the Herbrand base H(RMI ) is partitioned into the two subsets
H(RMI (1)) and H(RMI (2)).

The observations above demonstrate that the PU transformation process, in
addition to simplifying the ME model computation [5] may also enable a more
efficient ME inference. This is the case for FO-PCL knowledge bases R where the
maximal partition of independent rule sets of PU(R) results in a finer partition
and where the corresponding Herbrand bases are smaller than those for the
maximal partition of R.

4 Answering Queries Independent from the Number
of Constants

In the following, we will investigate how ME inference and entailment can be
simplified when the number of available constants increases. To this end, we
introduce the notion of an extended signature.

Definition 4 (Extended Signature). Let Σ = (S,D,Pred) be a signature.
For s ∈ S and n ∈ N let Σs(n) = (S,D ∪ {cs

1, . . . , c
s
n},Pred) be the signature

obtained from Σ by adding n new constants cs
i of sort s, that is, D∩{cs

1, . . . , c
s
n} =

∅. Σs(n) is called the extended signature obtained from Σ by adding n new
constants of sort s.
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Example 5 (Extended Signature for RMI ). Let ΣMI = (S,D,Pred) be the sig-
nature with S and Pred as for RMI (Examples 1 and 3). For n ∈ N, the signature
ΣMI

person(n) has the set of constants {a, b, c, c1, c2, . . . , cn}. With Rn
MI we denote

the corresponding knowledge base RMI over the signature ΣMI
person(n) having

n + 3 constants.

Remark 1. Since the transformation system PU is independent of any con-
stants in D that are not explicitly mentioned in the conditionals of R, we have
PU(RMI ) = PU(Rn

MI ) for any n (assuming that there are enough constants in
the signature in order to avoid degenerated cases [2]). Hence, the maximal parti-
tion of PU(Rn

MI ) is identical to the maximal partition of PU(RMI ) in Example 4.

One key insight that we are going to employ is that sometimes our ground query
q depends only on a fixed number of ground conditionals that does not change if
we add new constants to our language. To make this idea more precise, we need
some additional definitions. The dependency closure of a set of ground atoms
contains all ground conditionals on which the ground atoms depend.

Definition 5 (Dependency-Closure). Let S be a set of ground atoms over a
signature Σ and let R be a knowledge base over Σ. Define a sequence Si of sets
of ground atoms over Σ and a sequence Ri of sets of ground conditionals from
gnd(R) as follows:

1. S1 = S, R1 = {R ∈ gnd(R) | ∃G ∈ S1 : G ∈ H(R)},
2. Si+1 = H(Ri), Ri+1 = {R ∈ gnd(R) | ∃G ∈ Si+1 : G ∈ H(R)} for i � 1.

The dependency-closure of S is defined as DepCl(S) =
⋃

i Ri.

Remark 2. How can we compute DepCl(S)? Note that since there are at most
|H(R)| ground atoms, Si+1 = Si for some i < |H(R)|. If Si+1 = Si, then Ri =
Ri+1. But then Si+2 = H(Ri+1) = H(Ri) = Si+1 and therefore Ri+1 = Ri+2

and so on. Hence, there is an n < |H(R)| such that DepCl(S) =
⋃n

i=1 Ri = Rn.
Equality holds because Ri ⊆ Ri+1 by definition. To generate DepCl(S) start
with S1 and for i � 1, generate Ri and Si+1 until Si+1 = Si or Ri+1 = Ri. As
explained before, the algorithm stops after at most |H(R)| iterations.

Example 6. Let Rn
MI be defined like in Example 5. Let us compute

DepCl({likes(b, a)}) for Rn
MI . For n = 1, we have the following steps:

S1 = {likes(b, a)},

R1 = {〈(likes(a, b)|likes(b, a))[0.9],�〉, 〈(likes(b, a)|likes(a, b))[0.9],�〉},

S2 = {likes(b, a), likes(a, b)},

R2 = R1 ∪ {〈(likes(a, b))[0.05],�〉},

S3 = S2,

R3 = R2.

Hence, we are done after three iterations. For the knowledge bases Rn
MI with n >

1, nothing changes since each ground instance of a conditional that contains a new
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constant ci will contain only ground atoms likes(ci, const) or likes(const , ci) with
const being a constant in ΣMI

person(n), but neither likes(b, a) nor likes(a, b). Hence,
the dependency closure DepCl({likes(b, a)}) = {〈(likes(a, b)|likes(b, a))[0.9],�〉,
{〈(likes(b, a)|likes(a, b))[0.9],�〉, 〈(likes(a, b))[0.05],�〉} is independent of n.

Likewise, when computing DepCl({likes(ci, cj)}) for Rn
MI with i, j � n,

we get DepCl({likes(ci, cj)}) = {〈(likes(ci, cj)|likes(cj , ci))[0.9],�〉, 〈(likes(cj ,

ci)|likes(ci, cj))[0.9],�〉} which does not change for Rn′
MI with n′ > n.

In our running example, the ground atom likes(b, a) depends only on three
ground conditionals and likes(ci, cj) depends only on two ground conditionals,
independently of the number of additional constants in our language. In this
sense, the queries likes(b, a) and likes(ci, cj) are closed. The following definition
generalizes this observation. For an atom A, let A0 = ¬A and A1 = A.

Definition 6 (Dependency-Closed Elementary Ground Query and
Dependency Set). Let R be a knowledge base over Σ and let G1, . . . , Gk be
ground atoms from H(R) over which we want to construct a conjunctive query.
Let DepCl({G1, . . . , Gk}) be the dependency closure of {G1, . . . , Gk} with respect
to Σ and R. For all sorts s ∈ S and all numbers n ∈ N, let DepCls,n{G1, . . . , Gk}
denote the dependency closure of {G1, . . . , Gk} with respect to Σs(n) and R.

If for all sorts s ∈ S and all numbers n ∈ N, DepCl({G1, . . . , Gk}) =
DepCls,n{G1, . . . , Gk} holds, then for all e1, . . . , ek ∈ {0, 1}, the conjunction∧k

i=1 Gei
i is called a dependency-closed elementary ground query with respect

to Σ and R. The set DepCl({G1, . . . , Gk}) is called the dependency set of the
query.

Remark 3. In general, DepCl({G1, . . . , Gk}) can be large and in the worst-case it
can be gnd(R) itself. However, there are interesting special cases where
DepCl({G1, . . . , Gk}) isguaranteedtobesmallandeasilycomputable.For instance,
this is the case if all Gi are atoms whose corresponding predicate symbols appear
only in conditionals that contain only a single variable. Another example of a
small dependency closure was given in Example 6:

Example 7. As we saw in Example 6, likes(b, a) is a dependency-closed elementary
groundqueryand{〈(likes(a, b)|likes(b, a))[0.9],�〉,〈(likes(b, a)|likes(a, b))[0.9],�〉,
〈(likes(a, b))[0.05],�〉} is its dependency set.

To make full use of dependency-closed queries, it is desirable that our knowledge
base is also closed in the sense that it is parametrically uniform and the Lagrange
multipliers do not change if we increase n.

Definition 7 (Parameter-ClosedKnowledgeBase).Let R = {R1, . . . , Rm}
be a parametrically uniform knowledge base over Σ. For 1 � i � m, let λi denote
the Lagrange multiplier corresponding to Ri in the ME optimal Gibbs distribu-
tion with respect to R and Σ. Analogously, let for all s ∈ S and n ∈ N, λs,n

i

denote the corresponding Lagrange multiplier with respect to R and Σ. R is
called parameter-closed with respect to Σ and R iff for all s ∈ S and n ∈ N,
λi = λs,n

i .
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Example 8. PU(R0
MI ) is indeed parameter-closed. That is, the Lagrange mut-

lipliers corresponding to ground instances of conditionals in PU(Rn
MI ) do not

change as we increase n.

Definition 8 (Factor Corresponding to Ground Conditional). Let R =
{R1, . . . , Rm} be a knowledge base over Σ and let X = H(R). For each ground
conditional R ∈ gnd(R), let

ΦR(X ) = exp(λRfR(X )) (5)

where fR is the feature function corresponding to R and λR denotes the lagrange
parameter corresponding to R in the ME-optimal Gibbs distribution with respect
to R and Σ. ΦR(X ) is called the factor corresponding to the ground conditional
R with respect to R and Σ.

Remark 4. By definition of fR, ΦR(X ) does not depend on the complete inter-
pretation of X but only on the interpretation of YR = H(R). Therefore, we will
just write ΦR(YR) when exploting this property.

The following lemma says that all mentioned ME-optimal Gibbs distributions
can be decomposed into two factors, where only the first factor depends on the
ground atoms that Q depends on independently of s and n. In particular, the
first factor itself is independent of s and n.

Lemma 1. Let R be a parameter-closed knowledge base over Σ, let X = H(R),
and let Q be a dependency-closed elementary ground query with respect to Σ and
R. Let RQ denote the dependency set of Q and let YQ = H(RQ). Define

ΦQ(YQ) =
∏

R∈RQ

ΦR(YQ). (6)

Let YQ = H(R) \ H(RQ) be the set of remaining ground atoms with respect
Σ and R. Then there is a factor ΦQ(YQ) such that for the ME-optimal Gibbs
distribution p with respect to R and Σ,

p(X ) =
1
Z

ΦQ(YQ)ΦQ(YQ). (7)

For all s ∈ S and n ∈ N, let Ys,n

Q
= Hs,n(R) \ H(RQ) be the set of remaining

ground atoms with respect to Σs(n) and R. Then for all s ∈ S and n ∈ N, there
is a factor Φs,n

Q
(Ys,n

Q
) such that for the ME-optimal Gibbs distribution ps,n with

respect to R and Σs(n)

ps,n(X ) =
1

Zs,n
ΦQ(YQ)Φs,n

Q
(Ys,n

Q
). (8)
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Proof. Note that ps,0 = p for all s ∈ S, therefore it suffices to consider ps,n.
Each ps,n can be written in the form

ps,n(X ) =
1

Zs,n
exp

⎛

⎝
∑

R∈gnd(R)

λRfR(YR)

⎞

⎠ =
1

Zs,n

∏

R∈gnd(R)

exp (λRfR(YR))

=
1

Zs,n

∏

R∈gnd(R)

ΦR(YR),

where λR and fR denote the lagrange multiplier and the feature function corre-
sponding to the ground conditional R and YR is the set of ground atoms that
fR depends on. Since Q is a dependency-closed elementary ground query, only
the feature functions of conditionals in RQ depend on YQ independently of s
and n. Therefore, each Gibbs distribution can be rewritten as

ps,n(X ) =
1

Zs,n

∏

R∈RQ

ΦR(YQ)
∏

R∈gnd(R)\RQ

ΦR(Ys,n

Q
)

=
1

Zs,n
ΦQ(YQ)Φs,n

Q
(Ys,n

Q
),

where Φs,n

Q
(Ys,n

Q
) =

∏
R∈gnd(R)\RQ

ΦR(Ys,n

Q
). Dependent on s and n, both Ys,n

Q

and Φs,n

Q
(Ys,n

Q
) can change, but only ΦQ(YQ) depends on YQ. In particular,

ΦQ(YQ) is independent of s and n because R is parameter-closed. ��
Theorem 1 (Domain-Size Independent Queries).Let R be a parameter-
closed knowledge base over Σ, let X = H(R), and let Q be a dependency-closed
elementary ground query with respect to Σ and R. Let p be the ME-optimal Gibbs
distribution with respect to R and Σ and, for s ∈ S and n ∈ N, let ps,n be the
ME-optimal Gibbs distribution with respect to R and Σs(n).

Let YQ be defined like in Lemma 1. Let eQ denote the variable assignment
corresponding to Q, i.e., if Q =

∧k
i=1 Gei

i , then eQ = (e1, . . . , ek) and let Z =
YQ \ {G1, . . . , Gk} contain the ground atoms from YQ that do not appear in Q.
Then

ps,n(Q) = p(Q) =
∑

z ΦQ(eQ, z)
∑

y ΦQ(y)
(9)

for all s ∈ S and n ∈ N, where ΦQ(YQ) is defined like in Lemma 1 and y and
z range over the possible truth assignments to the ground atoms in YQ and Z,
respectively.

Proof. We know from Lemma 1 that each of the mentioned Gibbs distributions
(again p = ps,0) can be rewritten as

ps,n(X ) =
1

Zs,n
ΦQ(YQ)Φs,n

Q
(Ys,n

Q
).
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From normalization of ps,n it follows that Zs,n =
∑

y1

∑
y2

ΦQ(y1)Φ
s,n

Q
(y2),

where y1 ranges over YQ and y2 over Ys,n

Q
. Then

ps,n(Q) =
∑

z

∑

y2

p(eQ, z, y2) =

∑
z ΦQ(eQ, z)

∑
y2

Φs,n

Q
(y2)

∑
y1

ΦQ(y1)
∑

y2
Φs,n

Q
(y2)

=
∑

z ΦQ(eQ, z)
∑

y1
ΦQ(y1)

.

In particuar, the result is independent of s and n and therefore equal for all
Gibbs distributions. ��
Example 9. Consider the dependency-closed query Q = likes(b, a) from Exam-
ple 7. We have RQ = {〈(likes(a, b)|likes(b, a))[0.9],�〉, 〈(likes(b, a)|likes(a,
b))[0.9],�〉, 〈(likes(a, b))[0.05],�〉} and YQ = {likes(a, b), likes(b, a)}. We denote
the random variables corresponding to ground atoms in YQ by Xa,b,Xb,a and the
factors corresponding to the conditionals in RQ by Φ1(Xa,b,Xb,a), Φ2(Xa,b,Xb,a),
Φ3(Xa,b). Then

ΦQ(Xa,b,Xb,a) = Φ1(Xa,b,Xb,a) · Φ2(Xa,b,Xb,a) · Φ3(Xa,b).

If ps,n denotes the ME-optimal Gibbs distribution with respect to Rn
MI (cf.

Example 5), then Theorem 1 says that

ps,n(likes(b, a)) = ps,n(Xb,a) =
ΦQ(0,Xb,a) + ΦQ(1,Xb,a)

ΦQ(0, 0) + ΦQ(0, 1) + ΦQ(1, 0) + ΦQ(1, 1)
.

Note that when computing ps,n(likes(b, a)) naively instead, the number of factors
grows linearly with n and the number of sum terms grows exponentially with n
(because we had to marginalize out all ground atoms but likes(b, a)).

In Theorem 1, we are in a situation, where our query depends only a subset of
the knowledge base similar to Proposition 2. In particular, this subset is closed
in the sense that it does not change if we add new constants. As in Proposition 2,
we can apply general independence properties of ME distributions [17, page 33]
to conclude that pQ is the unique ME-optimal probability distribution over YQ

that satisfies RQ.

Example 10. In Example 9, we computed p and then marginalized to obtain
p(Xa,b,Xb,a). However, we can get p(Xa,b,Xb,a) immediately, by just comput-
ing the ME-optimal probability distribution over the random variables Xa,b,Xb,a

that satisfies {〈(likes(a, b)|likes(b, a))[0.9],�〉, 〈(likes(b, a)|likes(a, b))[0.9],�〉,
〈(likes(a, b))[0.05],�〉}.

5 Conclusions and Future Work

In this paper, we proposed two approaches towards lifted inference for FO-PCL
knowledge bases under ME semantics. For answering queries independent of the
size of the universe, we studied lifted inference for parameter closed knowledge
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bases and dependency closed queries. We are currently working on further elab-
orating these methods, aiming also at lifted ME model computation for parame-
ter closed knowledge bases. Parts of the PU transformation process used in this
paper are related to the shattering of parfactors [15,16], while the transforma-
tion rules removing intra-rule interactions [2] do not correspond to shattering.
Our future work also includes investigating whether and to what extend aspects
of lifted inference as in [1,10,15,16] can be transferred to the maximum entropy
setting studied here.
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Abstract. Data sets are growing in complexity thanks to the increasing
facilities we have nowadays to both generate and store data. This poses
many challenges to machine learning that are leading to the proposal of
new methods and paradigms, in order to be able to deal with what is
nowadays referred to as Big Data. In this paper we propose a method
for the aggregation of different Bayesian network structures that have
been learned from separate data sets, as a first step towards mining data
sets that need to be partitioned in an horizontal way, i.e. with respect
to the instances, in order to be processed. Considerations that should be
taken into account when dealing with this situation are discussed. Scal-
able learning of Bayesian networks is slowly emerging, and our method
constitutes one of the first insights into Gaussian Bayesian network aggre-
gation from different sources. Tested on synthetic data it obtains good
results that surpass those from individual learning. Future research will
be focused on expanding the method and testing more diverse data sets.

Keywords: Gaussian Bayesian network · Fusion · Scalability · Big data

1 Introduction

Nowadays, we are entering the era of Big Data, as a result of both the generalised
trend of massive data collection and the increasing computer capabilities for
processing and storage. These data sets are characterized mainly for their huge
volume and complexity (they can be noisy, have a fast change rate, etc.). Machine
learning methods are rapidly being revised and new paradigms are arising in
order to be able to adapt to this kind of data.

One of the main approaches for dealing with high volume of data is to parti-
tion it across a cluster, perform some operations and then aggregate the results.
This partition can be either horizontal (across the instances) or vertical (across
the variables). Horizontal partitions can also naturally arise when we want to
jointly analyse information contained at different sources, e.g. records of patients
in different hospitals that store the same variables about each of them.

Bayesian networks (BNs) are well-known tools for modelling and dealing
with uncertain knowledge and data. Their aggregation has been studied since
the days of their conception as belief models from an expert. Martzkevich and
c© Springer International Publishing Switzerland 2015
S. Destercke and T. Denoeux (Eds.): ECSQARU 2015, LNAI 9161, pp. 519–528, 2015.
DOI: 10.1007/978-3-319-20807-7 47
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Abramson [7] consider the problem of fusing networks from different experts
which shared some variables. They provide an algorithm which seeks to obtain
a graph containing all the nodes and arcs from the individual networks, or their
reversals. This however may not be the case of interest always when we are
thinking about fusing networks that have been learned from data, since the
individual networks in this case may contain spurious connections.

The work by del Sagrado and Moral [1] focuses on studying the fusion of
DAGs by means of intersection and union of the independence statements rep-
resented by each of the involved networks. Richardson and Domingos [11] use
knowledge from a group of experts to compute a prior distribution over the BN
structures. They motivate their proposal by stating that knowledge elicitation
can be facilitated if we allow experts to be noisy on their statements about the
BNs, and make up for this flexibility by using multiple different experts. This
argument is interesting because it can be compared with the case of huge, noisy
data sets, where instead of sub-sampling and learning an individual network, an
alternative approach could be to learn multiple networks on different partitions
of data and aggregate them afterwards.

Another use case where horizontal partitioning arises naturally is the problem
described by López-Cruz et al. [5]. In this case a set of experts were asked to
classify different neurons, giving rise to one supervised training set from each
expert. A cluster process was applied to the set of the individual BNs obtained
and a representative BN for each cluster was constructed. These representative
networks were then aggregated into a Bayesian multinet.

Regarding the aggregation of parameters, recently Etminani et al. [2] propose
a method in which they cluster experts’ parameters and aggregate only those
that correspond to the cluster with the highest number of members, resembling
democratic societies. Other popular strategies for parameter fusion in Bayesian
networks are Linear Opinion Pools (LinOP) [6] and Logarithmic Opinion Pools
(LogOP) [9].

We propose a method for the aggregation of Gaussian BNs (GBNs), which
to the best of our knowledge is the first proposal of this kind. It covers both
the structure of the network and the parameters of the Gaussian distribution
encoded by it. The experiments carried out show promising results for the pro-
posed method.

The paper is organised as follows. Section 2 introduces the necessary back-
ground knowledge for the rest of the paper. In Sect. 3 the details of the method
are described, whose results from experimental evaluation are discussed in
Sect. 4. Finally, the conclusions and future research lines are presented in Sect. 5.

2 Preliminaries

2.1 Bayesian Networks

A BN can be defined as a way of representing the factorization of a joint prob-
ability distribution over a random vector X = (X1, ...,Xp), where Pa(Xi) are
called the parents of Xi,
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f(x) =
p∏

i=1

f(xi|pa(xi)). (1)

A BN consists on a qualitative part, commonly called the structure, and a quan-
titative component, the parameters. More formally, it is defined [10] as a pair
(G,Θ), where G is a DAG and Θ are the numerical parameters which define the
factorization in Eq. (1). The nodes of G are the components of X and its arcs
represent probabilistic dependencies between the variables, in such a way that
the DAG satisfies the Markov condition: each variable is conditionally indepen-
dent of its non-descendants given its parents. Two DAGs are Markov equivalent
if they represent the same set of conditional independences between the vari-
ables. This defines a binary relation which gives rise to equivalence classes and
partitions the DAG space.

In order to learn a BN from data it is necessary to learn both the struc-
ture (G) and the numerical parameters (Θ). There are two main approaches for
BN structure learning: constraint based and score-and-search. Constraint based
methods try to find the Bayesian network structure that represents most of
the dependence relations present in data, detected by means of statistical tests.
The PC algorithm [14], which has as output an equivalence class of DAGs, is a
representative example of these types of methods.

On the other hand, score-and-search methods try to find the structure that
best fits the data. They are characterized by a representation of the solution
space, a search method and a score. The KES algorithm [8] is an example of such
methods, which performs the search in the equivalence class space. Searching in
this space has several advantages when compared to the DAG space, such as
it being a more efficient and robust representation [16], although there is still
some controversy regarding this choice. Many search heuristics and scores can
be combined and give rise to the different methods appearing in the literature.

2.2 Gaussian Bayesian Networks

A GBN [4] encodes a joint Gaussian distribution over X, i.e., with joint density
function

f(x) =
1

√
(2π)p|Σ| exp

{
−1

2
(x − μ)tΣ−1(x − μ)

}
,

where μ = (μ1, ..., μp) is the vector of unconditional means and Σ is the covari-
ance matrix. Each factor in Eq. (1) corresponds in this case to a univariate
normal distribution,

f(xi|pa(xi)) ≡ N
⎛

⎝μi +
∑

xj∈pa(xi)

βji(xj − μj), vi

⎞

⎠, (2)

where βji reflects the strength of the relationship between Xi and its j-th parent,
and vi is the conditional variance of Xi given its parents, i.e.,

vi = σi − ΣiPa(Xi)ΣPa(Xi)Σ
t
iPa(Xi)

. (3)
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In Eq. 3 σi is the unconditional variance of Xi, ΣiPa(Xi) is the matrix of covari-
ances between Xi and Pa(Xi), and ΣPa(Xi) is the covariance matrix of Pa(Xi).

Thus, the parameters of a GBN are the vector of means μ, the vector of
conditional variances v and the coefficients βji. Assuming standardized data
(μi = 0 and vi = 1), the parameter estimation is reduced to solving the linear
regression model

xi =
∑

xj∈pa(xi)

βjixj + εi,

with εi being the Gaussian noise term with zero expectation.

3 Method

Although the aggregation of different individual GBNs is a first step towards the
analysis of massive data, where the data set would be split into slices distributed
across a cluster, here we will assume that we already have different data sets over
the same variables available (i.e., at this stage we are not concerned with the
preprocessing and splitting processes).

The structure learning method we have used for learning the individual net-
works is the score-and-search hill climbing [15] with the Bayesian information cri-
terion (BIC) [12] score on the DAG space. After each network has been learned,
they are aggregated using majority vote below a threshold. This procedure is
outlined in Algorithm 1.

Algorithm 1. Structure learning
Input: datasets. Data sets from where the individual Bayesian networks will be

learned.
Input: threshold. Threshold for the majority arc voting.
Output: Aggregated Bayesian network structure learned with the specified thresholds.

1: n bn ←size(datasets);
2: bn list ←list();
3: for i ∈ {1, n bn} do
4: bn list[i] ←learn struc(datasets[i])
5: end for
6: v matrix ← get votes(bn list);
7: result ←bn aggr(threshold, v matrix);
8: return result;

The functions get votes and bn aggr in Algorithm 1 are further detailed in
Algorithms 2 and 3 respectively. get votes consists of the process of extracting
how many networks contribute to the same arc, i.e., how common across the
learned networks an arc is. Thus a matrix containing the sums of the appearances
of each arc in the networks is obtained. The threshold for the majority vote is the
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Algorithm 2. get votes
Input: bn list. List of BN structures already learned on each data set.
Output: Matrix containing the votes for each arc.
1: n nodes ←nodes(bn);
2: v matrix ←matrix(n nodes, n nodes);
3: for bn ∈ bn list do
4: bn arcs ←arcs(bn);
5: for arc ∈ bn arcs do
6: from ←from(arc);
7: to ←to(arc);
8: v matrix[from][to] ← v matrix[from][to] + 1;
9: end for

10: end for
11: return v matrix;

main parameter of this method and we will analyse it further on the experimental
section.

In bn aggr the threshold is compared with each of the entries in the matrix of
arcs, and the corresponding arc is added to the final network if its value reaches
the threshold. In the same algorithm we can notice that when an arc addition
causes a cycle in the DAG it is discarded.

Algorithm 3. bn aggr
Input: threshold. Threshold for the arc voting.
Input: Matrix containing the votes for each arc.
Output: bn. Aggregated Bayesian network.
1: bn ← empty dag();
2: for i ∈ cols(v matrix) do
3: for j ∈ rows(v matrix) do
4: if v matrix[i][j] ≥ threshold then
5: if not arc causes cycle(bn, i, j) then
6: add arc(bn, i, j);
7: end if
8: end if
9: end for

10: end for
11: return bn;

After the aggregation of the structure has finished, the linear regression coeffi-
cients of each variable on its parents is learned by maximum likelihood estimation
(MLE) from each data set, but this time using the aggregated structure. This is
what del Sagrado and Moral [1] call topological fusion, that is, obtaining a consen-
sus structure and then estimating the model parameters, as opposed to graphical
representation of consensus, which consists of aggregating the probability distri-
butions of each network and then obtaining the structure that represents it.
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The aggregation of the parameters obtained from each data set is performed
using the method explained hereafter. Consider a multiple linear regression
model on {X1, ...,Xn} predictors. Assume that the data is distributed across
k slices. Let β̂j = (β̂1j , ..., β̂nj) be the vector of estimates obtained in slice j. For
each predictor Xi, i ∈ {1, ..., n}, let

β̃i =
k∑

j=1

wij β̂ij

be the aggregated estimate, where wij = σ−2
ij /

∑k
j=1 σ−2

ij , σij = var(β̂ij).
Because we are dealing with GBNs, MLE is equivalent to the least squares (LS)
method, and thus β̇i is the estimator of minimum variance [3] among those with
form

k∑

j=1

wij β̂ij , where
k∑

j=1

wij = 1,

Asymptotic normality is also established on Fan et al. [3].
The pseudo-code of the outlined procedure for learning the parameters of the

linear regression for each variable on its parents can be found in Algorithm 4.

Algorithm 4. Parameter learning
Input: datasets. Data sets from where the individual parameters will be learned.
Output: Bayesian network parameters aggregated.
1: n bn ←size(datasets);
2: param list ←list();
3: for i ∈ {1, n bn} do
4: param list[i] ←learn param(datasets[i]);
5: end for
6: n param ←size(param list);
7: n nodes ←nodes(param list);
8: param ←matrix(n nodes, n nodes);
9: for i ∈ {1, n param} do

10: for node ∈ param list[i] do
11: for parent ∈ parents(node) do
12: coef ←get coeff(param list[i], node, parent);
13: weight ←get weight(param list[i], node, parent);
14: param[node][parent] ← param[node][parent] + coef ∗ weight;
15: end for
16: end for
17: end for
18: return normalize(param);
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4 Experiments

We have used some utilities from the R package bnlearn [13] and tested the pro-
posed method using synthetic data sets generated from a multivariate Gaussian
distribution whose DAG structure is shown in Fig. 1.

Fig. 1. Structure of the Bayesian network used for the experiments.

In a real use case of this method we could have been given a number of
separate data sets over the same variables but differing in the number of instances
each one contains. On the other hand, if we were to apply it to a huge data set,
the different partitions would probably contain a similar amount of instances.
In this synthetic experiment we have generated eight different data sets with a
sample size of 50 instances each.

Figure 2 shows the different BN structures obtained from each data set. We
can notice that a high portion of the original network is learned in most of the
cases, being false positives the most common error. We have aggregated the
results using all possible values for the threshold parameter, getting as result
the networks that appear on Fig. 3.

Fig. 2. Structure learned on each of the data sets. Green arcs are those correctly
learned, red arcs are false positives and blue arcs are false negatives (Color figure
online).
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Fig. 3. Aggregated structures for the different thresholds (1 to 8), increasing from left
to right and top to bottom. Green arcs are those correctly aggregated, red arcs are
false positives and blue arcs are false negatives (Color figure online).

The metrics we are going to use to evaluate the results obtained with respect
to the original structure are the false positive, false negative and true positive
rate and the Structural Hamming Distance (SHD) [15]. The latter consists of the
number of operations needed to match the Partial DAGs (PDAGs) representing
the equivalence classes of each network. The operations considered are arc addi-
tion, deletion or reversal and edge addition or deletion. Therefore, the PDAG
is extracted from the respective DAGs before calculating this metric. SHD pro-
vides a way to compare the two BNs in terms of the conditional independencies
encoded by the BN, and thus avoids the penalization of differences in arcs that
might be statistically undistinguishable.

In Table 1 we can see the value metrics for the individual structures (left)
and the aggregated ones (right) when compared with the original network.

Table 1. Results of the GBN learned on each data set (left) and the aggregated GBN
(right) compared with the original network. TP, FP and FN indicate the true positive,
false positive and false negative rates (respectively). SHD denotes the Structural Ham-
ming Distance. The networks are numbered according to their order of appearance in
Fig. 2

Network SHD TP FP FN

1 3 7 2 0
2 3 6 2 1
3 2 7 2 0
4 3 6 2 1
5 2 7 2 0
6 0 7 0 0
7 0 7 0 0
8 5 6 4 1

Threshold SHD TP FP FN

1 8 7 8 0
2 3 7 3 0
3 0 7 0 0
4 0 7 0 0
5 0 7 0 0
6 1 6 0 1
7 1 6 0 1
8 1 6 0 1
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Obviously when the threshold is 1 every arc that appears in the individual
networks is added to the final one (unless a cycle is caused), so this produces
worse results than any individual network when comparing it to the original
structure. However, for thresholds above 1 the aggregated result is better than
most of the isolated ones, because thanks to the majority threshold false depen-
dences are eliminated. For too restrictive thresholds this can however result in
the deletion of a valid arc, so it should be adjusted to an intermediate value
for the best results. In a real use case this would depend on the data character-
istics, the application domain and the availability of a training set.

Finally, parameter learning is influenced by noise if the structure is not cor-
rectly learned because false parents of variables arise, which means that false
coefficients are estimated in the linear regression. However it is the case, as one
would expect, that the coefficients corresponding to these false parents are very
close to zero (e.g., 0.007 mean for the extreme case of threshold 1) and the vari-
ations on the value of the other parents are barely noticeable. This is not the
case when we learn from a single network. For example, in the last network in
Fig. 2, βBF = 1.5, and B is a false parent of F .

5 Conclusions and Future Work

We have considered the problem of horizontal partitioning in the context of
Big Data and proposed a method for aggregating several GBNs learned from
different data sets as a first step towards scalable GBN learning. The method
obtains good results both in the case of structure and parameter learning on
synthetic data. The aggregated results surpass in most cases those derived from
learning from a single data set by taking into account all the data available
without the need of analysing it as a single block. This is specially useful for its
potential applications when analysing partitions of massive data sets.

As a future line of research, when learning the aggregated structure the treat-
ment of cycles will be refined and will involve more sophisticated techniques such
as arc reversal, checking the strength of the connection in each of the individual
networks (coefficients of the regression), establishing a suitable ordering of arc
consideration, etc.

In the case of applying the proposed method on a distributed setting, where
each data set is in a computer within a cluster, it would be interesting to define
some communication protocol during the learning process. This would be useful
for gathering stepwise information that could be used later on for example when
aggregating the individual networks (e.g. cycles) but also for developing more
sophisticated voting schemes which could depend on the adequateness of each
data set for the learning process.

Finally, we will also focus on performing more testing with diverse (noise,
missing values) and real data sets.
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Abstract. This paper presents an application of Bayesian networks where early
recognition of traffic maneuver intention is achieved using features of
lane change, representing the relative dynamics between vehicles on the same
lane and the free space to neighbor vehicles back and front on the target lane.
The classifiers have been deployed on the automotive target platform, which has
severe constraints on time and space performance of the system. The test driving
has been performed with encouraging results. Even earlier recognition is pos-
sible by considering the trend development of features, characterizing the
dynamic driving process. The preliminary test results confirm feasibility.

Keywords: Early recognition of maneuver intention � Dynamic bayesian net-
works � Situation analysis � Big data streams

1 Introduction

Highway traffic involves complex scenes with many vehicles, driving on several lanes at
high speed. To assess the situation and reduce any risks, a driver must interpret accu-
rately the hazards. This requires correct assessment of driving behavior and intended
maneuvers of all neighboring vehicles. There are several approaches, which have been
be used for maneuver recognition, most of them originate from the research area of
“Detection and Pattern Recognition”. All of them analyze continuously the traffic sit-
uation based on frequently sampled measurements (called features) of the dynamic
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characteristics of a driving vehicle and its surrounding neighbor vehicles. One should
distinguish between EGO-vehicle (own vehicle, performing the situation analysis) and
OBJ-vehicles (surrounding vehicles, detected by the EGO-vehicle). Research in this
area can be divided into three groups: 1) considers only the recognition of driving
maneuvers for the EGO-vehicle; 2) considers only maneuvers of OBJ-vehicles and
3) investigates maneuvers of both. The works of [1] and [2] use physiological data, the
driver’s gaze direction (head position of driver) with other features to recognize
EGO-maneuvers. Such data are not available for the driver of an OBJ-vehicle to predict
a maneuver from EGO perspective. In [3] several approaches for maneuver recognition
of the EGO-vehicle have been investigated. These include: neural networks and support
vector machines (SVMs). SVMs are used in [4] together with Bayesian filtering for
prediction of driving maneuvers of the EGO-vehicle. They show an average prediction
time of the lane change maneuvers of about 1.3 s. In [5] the maneuver recognition is
based on fuzzy logic and probabilistic finite-state machines (PFSM) with low compu-
tational complexity. Measurements (features) like velocity, acceleration, steering angle
and the status of the turn indicator have been used. The approach of [6] extracts by
feature selection the set, maximizing the predictive power of a classifier. The conditional
probabilities of relevant features are obtained by Gaussian mixtures. It uses a Naive
Bayesian classifier and is able to detect the maneuver up to 2.2 s earlier.

Our early work on maneuver recognition is based on the perception of EGO and its
surrounding OBJ-dynamics, [7–10]. It represents our application scenario 1:
approaching of lane marking, after a car (EGO or OBJ) was following another vehicle
at a comparable speed. Here the situation features at each time step are analyzed
independently during the transition from lane follow to lane change, involving lane
marking crossing. In this work, we consider such lane change transition as a dynamic
process, exploring the trend of features. The solution development is part of the RTD
project AMIDST [12]. The recent automation challenges for maneuver recognition
have given rise to the current objectives: 1) Meeting the requirements of the automotive
target platform to ensure operation in real time. 2) Earlier maneuver recognition for
future-situation awareness. The last requires analyzing the trend of features as well as
the relative dynamics between vehicles (which defines application scenario 2 described
in Sect. 3) see Fig. 1, [11]. The combination of both scenarios allows continuous
situation analysis of all surrounding vehicles, interpreting the development of a situ-
ation and assessment of possible collision risks, to ensure proactive safe driving.
A detailed requirements analysis can be found in [13].

Fig. 1. Relative dynamics between EGO
(= F1) and a slower moving vehicle (OBJ) in
front F0 with its relation to a front vehicle F00.

Fig. 2. EGO (own vehicle: red), OBJ-vehicles
(blue) in-front (hidden ones - detected by radar)
and one OBJ-vehicle left back (Color figure
online).
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The task we consider involves high speed analysis of massive amounts of streaming
data. Consider a highway scenario involving a vehicle driving in a lane with three other
vehicles driving in three different lanes in front of it. The data typically consists of 252
observations acquired with fixed sampling rate, a.k.a. cycle time (* 42 or 60 ms,
dependent on used cameras). If a test drive from only one hour is to be analyzed, this
results in millions of database records/hour (total: 22.320.000). The raw data streams
used for model development and testing are obtained from several sensors: 1) on-board
sensors; 2) stereo camera & image processing; 3) radar sensors & data pre-processing.
Their data are serving as an input to the Sensor Data Fusion (SDF) module, which
generates the reconciled object data to extract the situation features and characterize
each surrounding vehicle of the own or neighbor vehicles. Since the analyzed data are
noisy and to resolve the combinatorial and interpretation issues of all possible
maneuvers of surrounding vehicles, Bayesian networks (BN) (see [14, 15]) have been
selected as the method for reasoning under uncertainty and to mimic the cognitive art of
situation analysis.

2 Baseline Model: Bayesian Networks

All future developments for maneuver recognition are compared towards our earlier
developed “Original OOBN” (Object-Oriented Bayesian Network), described in details
in [7, 8, 10] and [12], which was also deployed in a prototype vehicle.

For easy reference, the overall structure of the original OOBN model is shown in
Fig. 3, where OBJi can denote the own (EGO) or another vehicle. The class S (Sensor)
is used to model uncertainties in features, extracted from measurements and thereof
computed variables, which are used to characterize a traffic situation. The class H
(Hypothesis) combines the features and is used to recognize situation changes. The set
of used hypotheses Hi and their features Si includes (see Figs. 3 and 4): a) H1: Lateral
evidence (LE) with S1 = {lateral offset (O_LAT) of the vehicle to the lane marking,
lateral velocity (V_LAT)}; b) H2: Trajectory (TRAJ) with S2 = {steering angle (PSI) of

Fig. 3. Baseline model: OOBN structure Fig. 4. Class hierarchy of the original OOBN,
representing the original classifier ORIG
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the vehicle relative to road direction; lateral acceleration (A_LAT); time to lane-
marking crossing (T_LCR)}; c) H3: Free space (FS) on the target lane, represented by
an occupancy grid (OCCGRID) with S3 = {times to enter (TTE) and disappear (TTD)
from surrounding occupancy cell and the corresponding distances (STTE, STTD)}. The
class E (Event) is used at three hierarchical levels of abstraction (Figs. 3 and 4). Event
is modelling the relation of a vehicle: a) to the lane markings (class LMC); b) to the
lane of current motion (class Lane Change (LC) i.e. lane change towards left or right;
or lane follow); c) to another neighbor vehicle (class MNVR). The last event is rec-
ognized by the probability distribution of a random variable “maneuver’’ (MNVR).

3 Static BN of “Relative Dynamics” for Earlier Recognition

The concept of relative dynamics explores the relation between vehicles driving on the
same lane, providing a source for earlier recognition of possible driving intentions (or
need) of lane change. It considers the relative states (distance, speed, acceleration)
between the vehicles, see [6, 7]. This is realized in the following by extending the
Original OOBN with these relative features. In the Original OOBN the BN-hypothesis
LE, used for the evaluation of LMC (Figs. 3 and 4), can recognize a maneuver only
when the car approaches the lane marking. Hence, the intention of a driver to make a
lane change cannot be detected with it. Therefore, we explore for application scenario 2
the new hypothesis “Relative Dynamics” (REL_DYN), where we use the
radar-measured features, extracted from vehicle-vehicle relations, providing additional
advantage of a longer view-horizon (up to 200 m) than the camera (up to 60 m).

Since the hypotheses REL_DYN is contributing to maneuver recognition, it should
be integrated into the forth layer LC of the Original OOBN (Fig. 3), since we use
information on how fast the vehicles in front on the same lane are driving. At first, we
apply a similar handling of uncertainties in measurements as in [7], see Fig. 3, layer 1.
For simplicity, we will take two measured features (relative distance X_REL_MEAS
and relative velocity V_REL_MEAS to the vehicle in front) and their variances r2 to
improve the maneuver recognition time performance, i.e. earlier as in [7–9]. The
structure of the static BN-Model on relative dynamics is shown in Fig. 5.

Fig. 5. Static BN-Model for hypothesis “Relative Dynamics”. Evidence nodes are coded with
blue color; chance nodes – with yellow; decision – with red border (Color figure online).
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The new hypothesis should answer the question if the driver’s intention is to
change the lane to the left L, right R or follow F the lane. Therefore, the node Relative
Dynamics REL_DYN models the recognized maneuver and has three states LC = {Left
L, Right R, Follow F). By domain knowledge, we model the node expressing the speed
influence on the hypothesis REL_DYN_V_REL with 3 states: faster, comparable and
slower. The distance influence on REL_DYN_X_REL is modeled with 3 states: close,
comfort distance and far away. Their CPDs are defined through logistic functions,
based on domain knowledge, expressing a general driving behavior in highway traffic.
The CPD of REL_DYN expresses driving experiences, e.g. if a vehicle is approaching
closer-and-closer with higher relative speed than the one in front, it will change the lane
towards left. If it drives at nearly constant distance and comparable speed, then it
follows the object on the lane. The CPTs for variance- and real-valued-nodes are
defined with uniform distributions. The measurements-nodes are modeled with normal
distributions. Hereby the measurement uncertainties are modeled with class S (see
Fig. 3). Similarly to the free space hypothesis OCCGRID (in class H in Fig. 3, see also
[9]), the “relative dynamics” is combined with a slightly modified (reflecting the
dynamics shown in Fig. 2) safety concept (Safe_RD).

4 Deployment on Automotive Platform

After extending the Original OOBN with the relative dynamics, we have deployed the
resulting models on the automotive platform. To study the effect of different parameters
on recognition, we have defined three classifiers (called ORIG; STAT_TR; STAT) as
shown in Table 1. ORIG classifier is the one using the Original OOBN (see Fig. 3 and
[7, 8]). All three statical classifiers use hypotheses LE and FS, while only ORIG and
STAT_TR use TRAJ. The concept of the three static classifiers (deployed in the same
way) is based on the ORIG classifier. The automotive platform has severe constraints
on time (0.1-0.15 ms) and space performance (* 102 kB in RAM and ROM) of the
system. To meet the memory and time cost requirements of the target platform, we use
the “Divide-and-Conquer” (D&C) method for the classifiers’ implementation, see [10].
The idea of D&C implementation is to split the network into fragments (see Figs. 3 and 4)
and to use the posterior distribution of its classification node (e.g. LE) as likelihood
(soft evidence) over the corresponding (LE) node at the next level of an “upstream”
network. To account for the extension with relative dynamics the LMC and LC models
have been modified as shown in Figs. 6 and 7. The results from the statistical evalu-
ation of the three implemented static classifiers (ORIG, STAT, STAT_TR) show earlier
average recognition time (-0,84, -0.93, -0.96 s) and reduced false negatives for both
classifiers, containing REL_DYN. The test drives on real highway confirm, that traffic
scenarios with “relative dynamics” are recognized as intentions before a vehicle is
initiating a maneuver due to the recognition of slower moving vehicle in front on the
same lane, see Figs. 8 and 9. Thus, earlier recognition of the need for a lane is feasible,
even when the OBJ (or EGO) vehicle is still driving on the same lane as the slower
moving vehicle in front.
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5 Dynamic Models for Earlier Recognition

Here, we focus on the use of two-time slice dynamic Bayesian networks DBNs
(2T-DBNs) to achieve earlier recognition of traffic maneuvers, see [12]. They are
characterized by an initial model representing the initial joint distribution of the process
and a transition probability distribution (TPD) representing a standard BN repeated
over time. They satisfy both the first-order Markov assumption and the stationary
assumption. Figure 10 shows the graphical structure of a 2T-DBN model for the

Table 1. Overview of the three deployed static classifiers (ORIG, STAT_TR, STAT). “X”
shows which static BN fragment is included.

static BN
(= hypothesis)
Classifier

LE TRAJ Free Space (FS):
OCCGR_OBJ1-OBJ2

REL_DYN Free Space:
Safe_RD

ORIG X X X – –

STAT_TR X X X X X
STAT X – X X X

Fig. 6. Modified BN-fragment “Lane Mark-
ing Crossing” of the static classifiers: the
LMC with LMC_LE contains only LE.

Fig. 7. Modified BN-fragment for recognition
of Lane Change. It includes Maneuver Advice,
based on REL_DYN and check for safety on the
target lane.

Fig. 8. On-road demo with REL_DYN (sce-
nario 2) shows early recognition of the need
for a lane change, even when the OBJ vehicle
is still on the same lane as the slower vehicle
in front.

Fig. 9. Scenario 2 (at rainy weather conditions)
with slower moving vehicle/truck (recognized
by radar and symbolized by a blue vertical bar)
in front of another vehicle/car (symbolized by a
violet virtual box of data fusion) (Color figure
online).
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hypothesis LE, while Fig. 11 represents REL_DYN, which is a DBN extension of Fig. 5
with the hidden node AREL REALðtÞ, which was added for purposes as explained below.
The TPD between the time slices t and t + 1 are assumed conditional Gaussian N(µ,σ2).
Here, since we do not have observations on the mean value µ, it is specified by physical
models.

LE_DBN (Fig. 10) is combining the real values (inferred by Bayesian inference) of
three lateral features (see Sect. 2): OLAT REALðtÞ; VLAT REALðtÞ and ALAT REALðtÞ.
When OLAT REALðtÞ is steadily increasing and VLAT REALðtÞ is high or increasing
(requiring also A

LAT REALðtÞ ), their combination clearly indicates that the vehicle is
leaving its lane. Note, that in [7, 8], ALAT REAL was included in hypothesis Trajectory
(TRAJ) and not as part of LE. The TPDs for the LE-variables: OLAT REALðtÞ;
VLAT REALðtÞ and ALAT REAL are defined as given in (2)-(4):

OLAT REALðtÞ�NðOLAT REALðt � 1Þ þ VLAT REALðt � 1Þ � Dt; rO LATðtÞ2Þ ð2Þ

VLAT REALðtÞ�NðVLAT REALðt � 1Þ þ ALAT REALðt � 1Þ � Dt; rV LATðtÞ2Þ ð3Þ

ALAT REALðtÞ�NðALAT REALðt � 1Þ; rA LATðtÞ2Þ ð4Þ

The time step Δt is the cycle time, i.e., 42 ms or 60 ms depending on the camera used.
The variances σ2 are modeling the uncertainties of the variables. This dynamic
extension incorporates the trend of real values, while their physics relations are rep-
resented as causal dependencies between time steps Δt. By analogy are defined the
TPDs for the REL_DYN features: distance XREL REALðtÞ and velocity VREL REALðtÞ and
the hidden variable relative acceleration AREL REALðtÞ.

5.1 The Method of Computing the Time Savings for Earlier Prediction

Due to the goal of early recognition of intended maneuvers, we have investigated two
criteria (denoted below as A), B)) on how to interpret the inferred values of probability.
For the classifier using static BNs, it is natural to base the decision on a statistical
threshold value. For a DBN, following the development trend of features, it seems more

Fig. 10. LE_DBN: 2T-DBN structure for the
hypothesis LE (Lateral Evidence) extended
with the measured lateral acceleration A_LAT

Fig. 11. REL_DYN_DBN: The 2T-DBN struc-
ture for the hypothesis REL_DYN (Relative
Dynamics) with A_REL_REAL as hidden node
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natural, instead of using a threshold, to base the decision on the consistent growth of
the trend of probability, thus reflecting its development over time.

A) Decision based on probability-threshold (p > 65 %): The choice of this
probability-threshold value is based on statistical evaluation of the probability of “false
positives” for the Original OOBN [7–9]. Thus, to avoid false recognized maneuvers,
the system was allowed to classify a maneuver as recognized, only if its probability is
bigger than the threshold. If no state has p > 65 %, no any maneuver is recognized.

B) Decision based on consistent trend growth of probability: If we base a decision not
on a probability-threshold, but instead on the consistent growth of probability (over a
certain number of time steps, e.g. 3-5 steps and above a certain value, e.g. 30 % or the
highest probability value of modeled states of an event (i.e. maneuver), which is much
lower than the threshold A), then the model may be able to achieve even earlier rec-
ognition, possibly at the cost of more false alarms, dependent on a situation and
assuming that the initiated maneuver is not ceased due to new observations with possible
safety impact. Both parameters are still to be defined by statistical analysis of all data in
order to define the decision criteria for a consistent trend growth of probability.

5.2 Preparing the DBN Classifier for Automotive Integration

The deployment of a classifier, using the described DBNs is still work in progress. The
main differences of a DBN-classifier compared to the statistical classifier (Table 1) are
the DBN-fragments LE and REL_DYN (see Figs. 10 and 11), which follow the trend
of features. The advantage in the implementation of the D&C-method is that the
extended static classifiers, as well as the DBN classifier, employ at the higher
abstraction levels (see Fig. 3) the same modified versions of logic BNs at level LMC
(Fig. 6) and at LC (Fig. 7). D&C integrate the likelihoods of hypotheses from static
BNs or DBNs.

The results for the DBN classifier for Scenario 1 (approaching of lane marking) are
shown on a specific sequence in Fig. 12 and demonstrate the best recognition per-
formance for a model, including ALAT REALðtÞ, which reflects driving experience with
increased lateral acceleration shortly before the lane change. To be more explicit, in
Figs. 12, 13 and 14 the x-axis represents the time steps of a maneuver sequence of
streaming data, while the y-axis shows the probability of maneuver recognition for
different variants of BN hypothesis and the red horizontal line marks the probability-
threshold p = 65 %. Here, we compare recognition performance of different models at
different abstraction levels (H, LMC, LC, except MNVR, see Fig. 3). Note that the
performance at a certain level is not correlated 1-1 with the performance at other levels.

Figures 8 and 9 demonstrated early recognition of the need for a lane change
maneuver with the static BN with relative dynamics. For the DBN classifier, the static
BN is extended with REL_DYN_DBN (Fig. 11) combined with maneuver safety
concept Safe_RD (Fig. 2). The possibility for earlier recognition in such situations is
motivated by extensive driver experience and confirmed by the analysis results (by
comparing the time gain on LMC and LC recognition, based on decision criteria with
threshold and with trend growth of probability, shown in Figs. 13 and 14 respectively).
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A) Based on the decision criteria with threshold: The DBN model REL_DYN_DBN
(Fig. 13) is recognizing a lane change maneuver towards left (LC = LEFT) earlier than
both static models (the original LE_STATIC_ORIG and the extended REL_DYN_
STATIC). Both (dynamic and static versions) of the extended with REL_DYN model are
able to recognize the need for a lane change earlier than LE_DBN or LE_STATIC. The
same holds for the test results (Fig. 14) on level LC (as of Fig. 3), integrating the results
from the level LMC and hypotheses Hi. REL_DYN_DBN is recognizing the event at
level LMC 0.76 s earlier (in Fig. 13) than LE_STATIC_ORIG, while in Fig. 14 the next
level LC is recognized 0.46 s earlier.

Fig. 12. BN-model performance for hypothesis LE_DBN as compared to LE_STATIC

Fig. 13. Application scenario 2, level LMC:
BN-model performance for the hypotheses
LE and REL_DYN. Comparison on a selected
sequence

Fig. 14. DBN-model performance on level LC
(blue: using LE_DBN and REL_DYN_DBN) and
same level LC_LE (orange: recognition using
only LE_DBN). Comparison with results from
Fig. 13 on level LMC and level LC (Color figure
online).
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B) Based on the decision criteria with consistent trend growth, Figs. 13 and 14 show
that the same model can recognize the events LMC and LC earlier (2.02 s and 2.14 s
correspondingly) than with the use of threshold. This is additionally improved by the
use of a smaller variance parameter σ2 = 0.0025 in the TPD. Moreover, if we consider
the trend growth P(LC) for the extended model as compared to the threshold for the
original P(LE = true) model, the recognition is even earlier (2.77 s at LMC and 2.6 s at
LC). This confirms the initial assumption that the extension of the original model with
the hypothesis “relative Dynamics” together with the trend development of its features
in DBN, allows to reach the goal of earlier maneuver recognition. This is an argument
in favor of the requirement on predicting the need for a lane change at least 2 s earlier
than the actual lane marking crossing (LMC). Smoothing is still needed for the free
space BN fragments in case of time cycles with missing data, e.g. by using its DBN
extension.

6 Summary of Preliminary Results and Outlook

The static BNs have an inbuilt “mechanism” to check “collision avoidance” (for traffic
safety) based on the free space hypotheses. Therefore, the probability drops when the
evidence is not sufficient to confirm that LC is safe. And missing data leads to oscil-
lating probability development (Figs. 12, 13 and 14), which is no problem for its
implementation on the automotive platform, since in case of missing data, no propa-
gation of evidence is performed. Extending the static BN to DBNs with smaller var-
iance allows probability smoothing and achieving more robust performance, though at
the price of growing size of memory requirements. For the DBNs, the contribution of
adding ALAT REALðtÞ and AREL REALðtÞ with smaller variance σ2 = 0.0025 is not only
smoothing, but also earlier recognition. Thus, the analysis of the static and dynamic
BN-fragments shows (see Figs. 12, 13 and 14) what is essential for deployment:

1. The moment of applied acceleration has an influence on the time step of maneuver
recognition and contributes to recognition a few time steps (ts) earlier or later
dependent on the traffic situation and driver behavior.

2. For the static BN (REL_DYN_STATIC): the oscillating development of probability
is much stronger exhibited for the cases with missing data, thus the static BN can’t
compete with the DBN (on this driving sequence for application scenario 2).

3. Using DBNs extends the models and requires more memory. This has to be con-
sidered in relation to the space requirements of the target platform.

4. The decision criteria based on consistent trend growth allows earlier recognition
than the criteria based on threshold.

For engineering purposes, “consistent trend-growth in probability” could be detected
by observing a certain number of time steps in sequence (not counting a step with
missing data), where the probability is growing consistently above a certain value
(defined by statistical analysis). We have to develop this criterion formally to make
sure it covers all cases/situations. Alternatively, a top level BN can monitor and rec-
ognize such trend of growth for earlier maneuver recognition. This will be a subject of
further study. The preliminary results, described in Sects. 5 and 6, suggest that even
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earlier maneuver recognition by use of a DBN classifier is feasible. The implementation
of an efficient inference algorithm for DBNs is work in progress. Finally, after
DBN-deployment on the automotive platform, a comparison of static and DBN clas-
sifiers on the automotive platform and evaluation based on statistical analysis with all
maneuver sequences will be a subject of further study.
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and Manuel Gómez-Olmedo1

1 Department of Computer Science and Artificial Intelligence CITIC,
University of Granada, Granada, Spain

{rcabanas,acu,mgomez}@decsai.ugr.es
2 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA),

Galleria 2, Manno-Lugano, Switzerland
alessandro@idsia.ch

Abstract. Influence diagrams are probabilistic graphical models used to
represent and solve decision problems under uncertainty. Sharp numer-
ical values are required to quantify probabilities and utilities. Yet, real
models are based on data streams provided by partially reliable sensors
or experts. We propose an interval-valued quantification of these parame-
ters to gain realism in the modelling and to analyse the sensitivity of the
inferences with respect to perturbations of the sharp values. An extension
of the classical influence diagrams formalism to support interval-valued
potentials is provided. Moreover, a variable elimination algorithm espe-
cially designed for these models is developed and evaluated in terms of
complexity and empirical performances.

Keywords: Influence diagrams · Bayesian networks · Credal networks ·
Sequential decision making · Imprecise probability

1 Introduction

Influence diagrams are probabilistic graphical models able to cope with decision
problems with uncertainty. The parameters of an influence diagram are condi-
tional probabilities for single variables given some other variables, or utilities
depending on given sets of variables. The quantification of these parameters is
based on a statistical processing of data or on the elicitation of expert knowledge.

Exactly as Bayesian networks, influence diagrams require sharp estimates of
their parameters. Yet, when coping with expert knowledge, sharp values can be
unfit to express judgements (e.g., which is the number modelling the probability
for an option more probable than its negation?). This issue appears also when
coping with scarce or missing data (e.g., probabilities conditional on rare events).

For reasons of this kind, in the last two decades, various extensions of
Bayesian networks to support more general probabilistic statements have been
proposed. These models have been developed in the field of possibility theory [2],

c© Springer International Publishing Switzerland 2015
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evidence theory [17], and imprecise probability [4]. The latter models, called
credal networks, offer a direct sensitivity analysis interpretation: a credal net-
work is a collection of Bayesian networks, all over the same variables and with the
same graph, whose parameters are consistent with constraints (e.g., intervals)
modelling a limited ability in the assessment of sharp estimates. Similarly, vari-
ous extensions of decision trees have also been proposed [9,11]. The situation is
different for influence diagrams. The early attempts of Fertig and Breese [7] first,
and Zaffalon [6] after, to extend these models to non-sharp quantification are to
the best of our knowledge the only works in this direction.1 This is unfortunate
as the above considerations about the difficulty of assessing sharp estimates for
probabilities are even more compelling for utilities, which are supposed to model
intrinsically qualitative objects such as preferences.

In this paper we extend to the interval-valued case the formalism of influ-
ence diagrams by keeping the same sensitivity-analysis interpretation of credal
networks: a generalized influence diagram is a collection of classical influence
diagrams consistent with the interval constraints. When coping with interval-
valued utilities we might have overlaps between the different expectations. In
these cases we adopt a conservative approach which rejects decisions leading to
certainly dominated options and keeps all the other ones. A first example of vari-
able elimination to compute inferences in these generalized models (arc reversal
was considered in [7]) is also proposed together with some preliminary tests.

2 Basics

Let us first define the basic notation. We use upper-case letters for variables and
lower-case for states. Given a variable X, x is an element of the domain of X,
which we denote as ΩX . Given a set of n variables X := (X1, . . . , Xn), and a
multi-valued index J ⊆ [1, n], XJ is the joint variable including any Xi such
that i ∈ J . Thus, ΩXJ

= ×i∈JΩXi
, where × is the Cartesian product. Given a

second index I, notation xI ∼ xJ is used to express consistency, i.e., to denote
the fact that the two states have the same values on XI∩J . Chance variables are
those whose actual value might be unknown, decision variables are those whose
actual value can be set by the decision maker. A potential over XJ is a map
ψ : ΩXJ

→ R. Probability potentials (PP, also called conditional probability
tables) are special potentials. Given two disjoint set of variables XI and XJ ,
φ(XI ,XJ ) is a PP over XI given XJ if and only if it is a nonnegative potential
such that

∑
xI∈ΩXI

φ(xI , xJ ) = 1 for each xJ ∈ ΩXJ
.

Influence Diagrams. Influence diagrams (IDs) [8] are a class of graphical mod-
els designed to formalize sequential decision problems with uncertainty. The
uncertainty is represented by PPs, while the user preferences are represented by
generic potentials called here utility potentials (UPs).

1 Sensitivity analysis does not require the specification of more general class of models,
being only focused on the results of the inferences. Thus, it should be regarded as a
different topic, which, as a matter of fact, received more attention (e.g., [14]).
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An ID over a set of variables (X,D) is made of a qualitative and a quanti-
tative part. The qualitative part is a directed acyclic graph (DAG) G with three
types of nodes. Chance nodes are depicted as circles and are in one-to-one cor-
respondence with the chance variables, i.e., the variables in X. Decision nodes
are depicted as squares and associated to decision variables D. Utility nodes are
depicted as a diamonds and should be barren. For chance and decision variables
we use the terms node and variable interchangeably. Utility nodes are not asso-
ciated to variables. Still, these nodes are jointly denoted as U . The immediate
predecessors of a node Y according to the G are called parents and denoted as
ΠY . From the quantitative point of view, for each chance node, a PP over the
corresponding variable and its parents is defined, while, for each utility node, a
UP potential over the parents should be assessed. The formal definition of ID is
the following.

Definition 1. An influence diagram is a tuple 〈G,X,D,U , Φ, Ψ〉, where G is a
DAG over X ∪ D ∪ U , while Φ = {φ(X,ΠX)}X∈X and Ψ = {ψ(ΠU )}U∈U are
collections of, respectively, PPs and UPs.

To model sequential decision problems with IDs, some additional information
should be provided. A complete order of decision variables (e.g., D1 ≺ . . . ≺ Dn),
and a partial order for X ∪ D consistent with the partial one for D should be
formulated. Accordingly the partial order has form I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺
In, with ∪n

j=0Ij = X and Ii ∩ Ij = ∅ for each i, j. This reflects a temporal
interpretation: the chance variables in Ii are observed before decision Di+1 is
taken, and the ordering over D reflects the order in which the different decisions
are taken. An ID of this kind is called regular. Non-forgetting assumption is
usually required as well: previous decisions and observations are known at each
decision. Here we only consider regular IDs with the non-forgetting assumption.
A classical example is here below.

Example 1 (The oil wildcatter [15,16]). An oil wildcatter must decide whether
to drill or not. He is uncertain whether the amount of oil (O) in the place is
empty (e), wet (w) or soaking (s). The wildcatter can make seismic tests (S)
that will give a closed reflection pattern (c) indicating much oil, an open pattern
(o) indicating for some oil, or a diffuse pattern (d) denoting almost no hope for
oil. These two are chance variables, while the decision variables are T [to test (t)
or not (nt)] and D [to drill (d) or not (nd)]. The utility nodes P and C describe
the profit possibly obtained from the presence of oil and the cost of the tests. The
DAG of an ID modelling this problem is in Fig. 1. Decision T precedes decision
D, while the partial order is complete being T ≺ {S} ≺ D ≺ {O}.

ID Evaluation. A policy for a decision variable D is a map δD : ΩΠD
→ ΩD,

i.e., a rule to assign D on the basis of the values of the parents. A strategy Δ is
a collection of policies, one for each D ∈ D. From a joint observation x of the
chance variables and a strategy Δ, we deduce a joint specification of the decision
variables, and hence of the values of the utilities, which are assumed additive.
Accordingly, we can compute the expected utility of a strategy as follows:
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Fig. 1. The oil wildcatter’s decision problem as an ID

EU(Δ) :=
∑

x

∏

X∈X

φ(x, πX)
∑

U∈U

ψ(πU ), (1)

with x, πX , πU ∼ x, and the values of πX and πU also consistent with the values
of D obtained from x and Δ. A typical task with IDs is to detect the strategy
Δ∗ maximizing the expected utility. This should respect the partial order, i.e.,

EU(Δ∗) =
∑

I0

max
D1

· · · max
Dn

∑

In

∏

X∈X

φ(X|ΠX)
∑

U∈U

ψ(ΠU ) (2)

The components of this optimal strategy, are called optimal policies, and they can
be regarded as the intermediate steps of the above maximization. The optimal
policy δ∗

Di
associated to Di is therefore:

δ∗
Di

(ΠDi
) = arg max

Di

∑

Ii

max
Di+1

· · · max
Dn

∑

In

∏

X∈X

φ(X|ΠX)
∑

U∈U

ψ(ΠU ). (3)

Example 2. In the oil wildcutter’s problem (Ex. 1), when seismic tests have been
done and returned a closed reflection pattern the right thing to do is to drill, i.e.
δ∗
D(S = c, T = t) = d as EUD(S = c, T = t) = 77.5.

Variable Elimination. Variable elimination (VE) is a typical approach to
inference in graphical model. VE algorithms for IDs [10,18] are commonly used
to solve Eq. (2). Unlike VE for Bayesian networks, in regular IDs the elimination
order is not arbitrary: it should be the inverse of an order consistent with the
partial order associated to the ID [12]. Furthermore, while chance variables are
removed by sum, decision variables are instead eliminated by maximization. To
describe VE, we first show how to remove a single variable Y in Algorithm 1.
The whole algorithm consists in iterating the procedure over X ∪D. When the
last variable is eliminated, the algorithm returns a potential with no arguments
(i.e., a constant) with the value in Eq. (2).

The operator dom returns the variables in the argument of a potential. Sums
in line 4 and maxima in line 6 of Algorithm 1 are two different forms (the first for
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Algorithm 1. Removing a single (chance or decision) variable Y

1: (ΦY , ΨY ) ← ({φ ∈ Φ|Y ∈ dom(φ)}, {ψ ∈ Ψ |Y ∈ dom(ψ)}) � Select
2: (φY , ψY ) ← (⊗φ∈ΦY φ, ⊗ψ∈ΨY ψ) � Combine
3: if Y ∈ X then
4: (φ′

Y , ψ′
Y ) ← (

∑
Y φY ,

∑
Y φY ⊗ψY∑

Y φY
) � Remove by sum (chance vars)

5: else
6: (φ′

Y , ψ′
Y ) ← (φY =y, maxY ψY ) � Remove by max (decision vars)

7: δ∗
Y ← arg maxY ψY � Optimal policy (as a byproduct)

8: end if
9: (Φ, Ψ) ← (Φ\ΦY ∪ {φ′

Y }, Ψ\ΨY ∪ {ψ′
Y }) � Update

10: return (Φ, Ψ)

decision, the second for chance variables) of marginalization, removing the variable
from the argument of the potential. The division (line 4) is defined element-wise.
For the PP in line 6, Y can be eliminated by instantiating an arbitrary value [12].
When eliminating a decision variable, the maximization of the UP also gives the
corresponding optimal policy (line 7).

The operator ⊗ in Algorithm 1 combines pairs of potentials as explained
here below. It is easy to check that these definitions are well-posed and that the
operator is associative and commutative.

(i) given two UPs, say ψ(XI) and ψ′(XJ ), their combination ψ⊗ψ′ is a UP over
XI∪J obtained by element-wise sums, i.e., (ψ⊗ψ′)(xI∪J ) := ψ(xI)+ψ′(xJ)
for each xI∪J ∈ ΩXI∪J

, with xI , xJ ∼ xI∪J ;
(ii) given a PP φ(XI ,XJ ) and a UP ψ(XK), their combination φ⊗ψ is a UP over

XL := XI∪J∪K defined by element-wise products, i.e., (φ ⊗ ψ)(xI∪J∪K) :=
φ(xI , xJ ) · ψ(xK), for each xI∪J∪K ∈ ΩXI∪J∪K

, with xI , xJ , xK ∼ xI∪J∪K ;
(iii) finally, given two PPs, say φ(XI ,XJ ) and φ′(XK ,XL), their combination

φ⊗φ′ is a PP over XI∪K given X(J∪L)\(I∪K) defined by element-wise prod-
ucts, i.e., (φ ⊗ φ′)(xI∪K , x(J∪L)\(I∪K)) := φ(xI , xJ ) · φ(xK , xL) for each
xI∪K ∈ ΩXI∪K

and x(J∪L)\(I∪K) ∈ ΩX(J∪L)\(I∪K) , with xI , xJ , xK , xL ∼
xI∪K , x(J∪L)\(I∪K).

3 Interval-Valued Potentials

The main goal of this paper is to extend IDs to support interval-valued specifica-
tions. To do that, we first formalize the basic notion of interval-valued potential.

Definition 2. An interval-valued utility potential (IUP) over XI is a pair of
UPs over XI . We use the compact notation ψ(XI) for a IUP over XI , ψ and
ψ are the two UPs involved in the specification and are called, respectively, the
lower and upper bounds of the IUP. The extension ψ

∗
(XI) of this IUP is the

set of UPs consistent with the bounds, i.e.,

ψ
∗
(XI) :=

{
ψ : ΩXI

→ R
∣
∣ψ(xI) ≤ ψ(xI) ≤ ψ(xI),∀xI ∈ ΩXI

}
. (4)
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The extension of a IUP ψ is non-empty if and only if ψ(xI) ≤ ψ(xI) ∀xI ∈
ΩXI

. We similarly define an interval-valued probability potential (IPP) over XI

given XJ as a pair of (not necessarily normalized) PPs over XI given XJ . We
denote such a IPP as φ(XI ,XJ ), where φ(XI ,XJ ) and φ(XI ,XJ ) are the two
(unnormalized) bounds. The extension is also defined in terms of consistency.

φ
∗
(X) :=

⎧
⎨

⎩
φ : ΩXI

× ΩXJ
→ R

+
0

∣
∣
∣
∣
∣
∣

∑
xI

φ(xI , xJ ) = 1,

φ(xI , xJ ) ≤ φ(xI , xJ ) ≤ φ(xI , xJ ),
∀(xI , xJ ) ∈ ΩXI

× ΩXJ

⎫
⎬

⎭
. (5)

Condition φ(xI , xJ ) ≤ φ(xI , xJ ) for each xI , xJ , together with
∑

xI
φ(xI , xJ ) ≤

1 ≤ ∑
xI

φ(xI , xJ), for each xJ ∈ ΩXJ
is necessary and sufficient for the exten-

sion of the IPP to be non-empty. The additional condition φ(x′
i)+

∑
xi �=x′

i
φ(xi) ≤

1 and the analogous expression for the lower instead of the upper bounds is called
reachability [5]. The meaning is that for each p ∈ [φ(xI , xJ ), φ(xI , xJ )], there is
at least a PP φ ∈ φ

∗
s.t. φ(xI , xJ) = p. Note also that an IPP with non-empty

extension can be always reduced to a reachable one by shrinking its bounds.
Both the extensions of a IUP and a IPP are therefore convex sets of, respec-
tively, UPs and PPs. Vice versa, while any convex set of UPs can be regarded
as the extension of a IUP, the same does not hold for IPPs.

Example 3. Figure 2 reports an interval-valued specification of the five potential
associated to the ID in Fig. 1. It is a trivial exercise to check that: the IPPs have
non-empty extensions and are reachable, and the UPs and PPs of the original
model are included in the extensions of their interval-valued counterparts.

O
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φ(O)

φ(S|O, T = t) φ(S|O, T = nt)

ψ(O, D) ψ(T )

Fig. 2. A set of IUPs and IPPs for the oil wildcatter’s decision problem

Combining Interval-Valued Potentials. The combination operation over
potentials in Algorithm 1 can be extended to interval-valued potentials as follows:

(i) given two IUPs, say ψ(XI) and ψ
′
(XJ ), their combination ψ ⊗ ψ

′
is a IUP

over XI∪J s.t. (ψ ⊗ ψ′)(xI∪J ) := ψ(xI) + ψ′(xJ) for each xI∪J ∈ ΩXI∪J

with xI , xJ ∼ xI∪J ; and similarly for the upper bounds;
(ii) given a IPP φ(XI ,XJ ) and a IUP ψ(XK), their combination φ⊗ψ is a IUP

over XI∪J∪K s.t. (ψ ⊗ ψ)(xI∪J∪K) := φ(xI , xJ) · ψ(xK) for each xI∪J∪K ∈
ΩXI∪J∪K

, with xI , xJ , xK ∼ xI∪J∪K ; if ψ(xK) < 0 the lower bound of the
combination is obtained by multiplying the lower bound of the IUP for the
upper bound of the IPP (and vice versa for the upper bound);
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(iii) given two IPPs, say ψ(XI ,XJ ) and ψ
′
(XK ,XL), their combination ψ ⊗ ψ

′

is a IPP over XI∪K given X(J∪L)\(I∪K) s.t. (ψ⊗ψ′)(xI∪K , x(J∪L)\(I∪K)) :=
ψ(xI , xJ ) · ψ(xK , xL), for each xI∪K ∈ ΩXI∪K

and x(J∪L)\(I∪K) ∈
ΩX(J∪L)\(I∪K) , with xI , xJ , xK , xL ∼ xI∪K , x(J∪L)\(I∪K). If ψ ⊗ ψ

′
is not

reachable, the transformation to make it reachable is performed.

The following result, whose proof is left to the reader provides a sensitivity-
analysis justification for the proposed generalization of the combination operator.

Proposition 1. Given potentials (no matter whether IUPs or IPPs) ψ and φ

the extension of their combination is s.t. (ψ ⊗ φ)∗ =
{

ψ ⊗ φ
∣
∣
∣ψ ∈ ψ

∗
, φ ∈ φ

∗ }
.

4 Interval Influence Diagrams

IDs can be extended to the interval framework by simply replacing the PPs and
UPs in Definition 1 with an equal number of IPPs and IUPs defined on the same
domains. We call a model of this kind an interval-valued influence diagram (IID).
As an example, the ID in Example 1 with the interval-valued quantification in
Fig. 2 is an IID over the graph in Fig. 1. Before applying to IIDs the VE scheme in
Algoritm 1, the different operations over the potentials involved in the algorithm
should be extended to intervals. In the previous section we discussed how to do
that with the combination. Here we generalize the operations in lines 4 and 6.

Eliminating Chance Variables. We start from line 4. To sum out a variable
from a IPP, we sum out the variable from the two bounds and, if needed, we
make the result reachable. Concerning the sum and division in the second term,
given an IPP φ(XI ∪ Y,XJ ) and a IUP ψ(XK ∪ Y ), we set the result as a IUP

ψ̂ over XI∪J∪K s.t.

ψ̂
∗
(XI∪J∪K) :=

{

ψ̂(XI∪J∪K)

∣
∣
∣
∣
∣
ψ̂(xI∪J∪K) =

∑
y φ(xI ,y,xJ )·ψ(y,xK)
∑

y φ(xI ,y,xJ )

∀xI∪J∪K ,∀φ ∈ φ
∗
,∀ψ ∈ ψ

∗

}

. (6)

This allows to obtain a result as in Proposition 1. Note that the argument of
the sum in the numerator can be regarded as an element of (φ ⊗ ψ)∗. By com-
puting the bound of the extension in Eq. (6), we eventually obtain the required
IUP. Because of Eqs. (4) and (5), the extensions ψ

∗
and φ

∗
are convex regions

defined by linear constraints. Furthermore, the objective function to optimize is
linear-fractional. So the task reduces to a linear program by the Charnes-Cooper
transformation. Equivalently, the task can be regarded as a combinatorial opti-
mization by considering only the extreme points of the feasible region.2 Faster,
but approximate, approaches can be also considered. To obtain the lower bound,
we can take the lower bound of the numerator and the upper bound of the denom-
inator in Eq. (6) (and vice versa for the upper bound). This induces an outer

2 The solution of a linear program is an extreme point of the feasible region.
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approximation. A heuristic alternative consists in consider as PP specifications
a lower bound for a value of Y and the upper bounds for the other values (or
vice versa).

Eliminating Decision Variables. Here we discuss the operations in lines 6
and 7. The arg max operation is intrinsically related to the fact that a UP has
sharp values. The problem of deciding the “maximal” options in the interval
case might be arguable. The most conservative approach is the following.

Definition 3. Let ψ be a IUP over Y ∪ XI . An element y ∈ ΩY is interval-
maximal given xI ∈ ΩXI

if there is no y′ ∈ ΩY s.t. ψ(y′, xI) > ψ(y, xI).

Let D be a decision to be eliminated from ψ(D,XI). To detect the optimal policy
δ∗
D(XI) we compute the interval-maximal states of D given each xI ∈ ΩXI

. This
corresponds to a so-called credal policy allowing for indecision between two or
more possible options. Finally the maximization of the IUP is done as usual by
acting separately on the two bounds.

Example 4. In the oil wildcutter’s problem (Example 1), if the combinatorial app-
roach is used, δ∗

D(S = c, T = t) = {d} as EUD(S = c, T = t) ∈ [46.24, 115.78].

Complexity Analysis. VE in IDs takes time exponential in the maximum
clique size (i.e., the arity of the biggest potential generated during the evalu-
ation). The same holds for IIDs, apart from a possible bottleneck during the
elimination of the chance variables as in Eq. (6). This is the case when the com-
binatorial optimization is adopted: the number of extreme points to be evaluated
is exponential in the number of states. This is not the case with the outer approx-
imation and the heuristic, as well as the linear programming which is polynomial
in the number of constraints, and hence in the number of states.

5 Empirical Validation

For a preliminary validation of the VE algorithm we consider six IDs [1,3,13,15].
Table 1 details the number of nodes of each type for these models. These IDs are
transformed in IIDs by a perturbation of the original parameters. The approaches
in Sect. 4) are compared. Figure 3 shows the computation times. As expected,
the outer approximation and the heuristic method roughly take the double of the
time required by the precise evaluation. The exact approach with the extreme

Table 1. Number of chance, decision and utility nodes for the benchmark IIDs

NHL Jaundice Appendicitis Comp. Assym Oil Thinkbox

|X | 17 21 4 3 2 5

|D| 3 2 1 5 2 2

|U | 1 1 1 2 1 4
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Fig. 3. Evaluation times for the IIDs in Table 1 and relative duration w.r.t. the evalu-
ation of the corresponding IDs

Fig. 4. Size of EU(Δ∗) for different sizes of the IPPs

Fig. 5. Size of EU(Δ∗) for different sizes for the IUPs

points might be very slow if there are chance variables with many states, this
being the case of NHL, which has a chance variable with 12 states. The exact
approach based on linear programming is slightly slower than the heuristic and
the outer approximation.

A sensitivity analysis has also been done to evaluate the effect of the size
of the intervals of the initial potentials affects the informativeness of the solu-
tions. Figure 4 shows the size of the (interval-valued) expected utility of the
optimal policy EU(Δ∗) as a function of the sizes of the intervals of the poten-
tials. The results based on the linear programming and on the enumeration of the
extreme points are exact and therefore coincide. As expected the heuristic is more
precise than the outer approximation, which in some cases returns infinite values
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because of a division by zero. If sharp values are assumed for the IPPs and the
intervals are only in the IUPs, the results are those in Fig. 5. The four methods,
which differs only in the treatment of the IPPs, produce the same results. Com-
paring the scales of Figs. 4 and 5, it can be observed that the imprecision in the
IPPs has a stronger effect that in the IUPs.

6 Conclusions and Future Work

We have generalized the formalism of influence diagrams to the interval frame-
work by allowing both probabilities and utilities to take interval values. A vari-
able elimination algorithm has been also proposed and preliminary tested. In the
experimental part, four different methods for eliminating chance variables have
been compared, showing that the best results are obtained if the linear program-
ming approach is considered. As a future work intend to develop approximate
evaluation algorithms for these models.
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