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Abstract. Registration of multi-modal images has been a challenging
task due to the complex intensity relationship between images. The
standard multi-modal approach tends to use sophisticated similarity
measures, such as mutual information, to assess the accuracy of the
alignment. Employing such measures imply the increase in the computa-
tional time and complexity, and makes it highly difficult for the optimiza-
tion process to converge. A new registration method is proposed based
on introducing a structural representation of images captured from dif-
ferent modalities, in order to convert the multi-modal problem into a
mono-modal one. Structural features are extracted by utilizing a mod-
ified version of entropy images in a patch-based manner. Experiments
are performed on simulated and real brain images from different modal-
ities. Quantitative assessments demonstrate that better accuracy can be
achieved compared to the conventional multi-modal registration method.
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1 Introduction

Image registration is the process of aligning images by finding the correct spa-
tial transformation between corresponding elements and structures in images.
In medical imaging applications, registration of images acquired from different
sensors or imaging protocols helps clinicians in diagnosis and computer-aided
surgery by using complementary information obtained from different modali-
ties [1]. Because of the intensity variations originated from illumination changes,
inhomogeneities, or simply different imaging techniques, the registration task is
becoming more difficult.

To deal with this problem, a key issue is to define an appropriate simi-
larity measure robust to those intensity variations. Traditionally, multi-modal
registration is carried out by measuring statistical dependency using similarity
measures, such as mutual information (MI)[10], assuming a functional or statis-
tical relationship between image intensities [1]. However, these measures would
be problematic in those cases with complex and spatially dependent intensity
relations [7]. Conditional mutual information (cMI) [9], contextual conditioned
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mutual information (CoCoMI) [12] and self-similarity weighted mutual infor-
mation (α-MI) [11] are further works that try to overcome this problem by
integrating spatial and contextual information in the MI formulation in expense
of higher computational time and complexity.

Structural information has been used in the literature of multi-modality
problem for improving the robustness of similarity measures to image intensity
variations [3,6,8,18]. Edge and intensity information was utilized in [8] to regis-
ter visible and infra-red (IR) images. Employing the dual-tree complex wavelet
transform (DT-CWT) for registering IR and visible images in a multi-resolution
approach was proposed in [3]. Complex phase order has been used as a similar-
ity measure in registering magnetic resonance (MR) with computed tomography
(CT) images in [18]. A structural similarity measure relying on un-decimated
wavelet transform coefficients was proposed in previous work for cross-modality
label fusion [6].

Structural information has been recently utilized to transform multi-modal to
mono-modal registration. Reducing the multi-modal problem to a mono-modal
one results in using simple L1 or L2 distance metrics that are computationally
less expensive than statistical or structural similarity measures. Usage of gradient
intensity, ridge, and estimation of cross correlating gradient directions are exam-
ples of creating a structural representation of input images for registration [4].
Structural representation based on entropy images followed by measuring sum
of squared distances (SSD) was proposed in [16]. In our previous work, we have
proposed a method based on a combination of phase congruency and gradient
information to form a structural representation of different MR modes [5].

In this paper, a registration method is proposed based on converting the
multi-modal problem into a mono-modal one by using a new structural repre-
sentation of multi-modal images. Structural features, which are invariant to the
image intensity, are obtained from modified version of entropy images in a patch-
based paradigm. Simple measure based on intensity difference is used that will
lead to faster evaluation of the image similarity and efficient optimization. In our
experiments, the application of proposed structural representation is evaluated
for registration. Simulated and real brain images of different modalities are used
to assess the accuracy of the registration.

2 Methodology

The problem of registering two images Im, If : Ω −→ I, as the moving and
fixed image, defined on the grid Ω and the intensity values I = {1, · · · , n} is
formulated as:

T̂ = argmin
T

D
(
If , T (Im)

)
, (1)

where T represents the space transformation and D stands for the dissimilarity
(distance) measure to evaluate the degree of alignment. For images being repre-
sented with the same intensity values, sum of absolute differences (SAD) or SSD
can be good choices for the distance measure. Registration of images with com-
plex intensity relationships requires more complicated similarity/dissimilarity
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Fig. 1. Applying a location dependent weighting to differentiate patches with different
structures and the same entropy: P1 and P2, with the same structure and entropy, are
encoded in two different intensity mappings. P3 has different structure and the same
entropy, encoded with the same intensity mapping as P2. Applying a Gaussian kernel
(Mask) to P2 and P3 results in WP1 and WP2 with different entropy values.

measures. Correlation coefficient (CC), correlation ratio (CR), and MI are widely
used in this case [1]. In this paper, we aim to find a new structural representa-
tion, R, of different modalities and therefore, reduce the problem of multi-modal
registration to a mono-modal one, so that a simple measure can effectively be
employed to assess the degree of alignment. For the representation R, the regis-
tration problem stated in (1) will be reformulated as

T̂ = argmin
T

D
(
Rf , T (Rm)

)
, (2)

where Rf and Rm stand for the structural representation of images If and Im,
respectively.

Consider patches Px defined on the local neighborhood Nx centered at x.
To form the new representations, the idea is to extract structural information
of each patch based on the amount of information content in the patch. The
bound for patch information can be represented by Shannon’s entropy which is
defined as

H
(
I(x)

)
= −

∑

x∈Px

p(I = I(x)) log
(
p(I = I(x))

)
, (3)

where the random variable I gets the pixel intensity values in Px with possible
values in I characterized by the patch histogram p. However, it is possible that
patches with different structures can end up with the same histogram and there-
fore the same entropy. Figure 1 shows how entropy value differentiates patches
with different structures. In this figure, patches P1 and P2, which are encoded
in two different intensity mappings but the same structure, take the same value
as entropy. Patch P3, encoded with the same intensity mapping as P2, have
different structure than P1 and P2 but the same entropy value. Weighting patch
histogram based on spatial information can differentiate different patches with
the same information content. A Gaussian weighting kernel defined as follows is
employed for this purpose

G(x) = Gσ(‖x − x0‖), (4)

where G(x) is centered at x0 with variance σ. Therefore, the entropy for the
patch Px will be modified to
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H̃
(
I(Px)

)
= −

∑

x∈Px

G(x)p
(
I = I(x)

)
log

(
p(I = i)

)
. (5)

Patches WP2 and WP3 in Fig. 1 illustrate how weighting two 5×5 patches with
the same entropy by using a Gaussian Mask helps to differentiate them.

Patch information is mainly concentrated on structures and edges, whereas
smooth areas contain less information in the patch. Edges and structures are
mostly pixels with lower probability and smooth areas are represented with the
higher probability values in the patch histogram. To extract patch structural
information, we propose to focus on structures and highlight the pixels with
higher uncertainty while decreasing the contribution of those pixels in the patch
that are located in smooth areas.

Let’s define
h(y) = −y log(y) (6)

as the weighted pixel information, where y = p
(
I = I(x)

)
for calculating patch

entropy in (5). In Fig. 2.a, h(y) is shown by the blue curve. When y represents
the histogram for the patch intensity, smoother areas will take larger values of
y, and edges and structures will take smaller ones. To lessen the contribution of
smoother areas and highlight edges and structures, one way is to use the function
f to map the probability values of the patch histogram such that f(y) > y for
large ys, and f(y) < y for small ys. Therefore, the weighted pixel information in
(6) will be modified to

h(y) = −y log(f(y)). (7)

The green curve in Fig. 2.a is the result of applying such function on the patch
histogram. As is illustrated in this figure, applying f increases the contribution
of pixels with lower probability and highly weakens the pixel contribution in
the smooth areas compared to calculating the conventional entropy. Finally, the
modified entropy with respect to Px will be defined as

H̃
(
I(Px)

)
= −

∑

i∈I
G(x)p

(
I(x) = i

)
log

(
f(p(I(x) = i))

)
, (8)

which is used as the new representation, R(x), for the pixel located at x.

Hx = −p(x) log
(
p(x)

)
. (9)

Having these characteristics for the function f(.), it should be an ascending
function defined in the range of [0, 1] with lower derivatives on the two endpoints
of the range [−1, 1] and a linear behavior in the middle of the range. The function
f , which is able to satisfy those characteristics, can simply be chosen as an m–th
order polynomial function with symmetry property:

f(y) =
m∑

i=0

aiy
i. (10)

As an example of such function, we chose a polynomial function with order
m = 5. The resulting polynomial function, which is shown in Fig. 2.b, will be:

f(y) = 6y5 − 15y4 + 10y3. (11)
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(a) Weighted pixel information (b) Polynomial function f

Fig. 2. Applying function f on the patch histogram. (a) Weighted pixel-information
before and after applying the function f on the patch histogram. Applying f makes
the curve tilt towards the vertical axis and highly attenuates its value around y = 1,
where we have higher intensity probabilities. (b) Function f to apply on the patch
histogram, which has almost linear behaviour around center and a smooth slope around
boundaries.

Structural features will be calculated by applying the proposed function, f ,
and weighting kernel, G. Figure 3 shows structural representation of different
MR modes for a slice of a brain scan from simulated BrainWeb MR data [13].
As indicated in this figure, structural representation changes the problem of
multi-modal registration to a mono-modal one. Therefore, SSD can be used to
measure the alignment accuracy:

D(Rm, Rf ) =
∑

n

∣
∣Tn(Rm(n)) − Rf (n)

∣
∣2. (12)

3 Experimental Results

3.1 Experimental Setup

In order to evaluate the performance of the proposed method, experiments are
conducted on the BrainWeb simulated database [13] and a real dataset from the
Retrospective Image Registration Evaluation (RIRE) [15] that are provided by
ground truth alignment. BrainWeb simulated database contains simulated MR
brain scans in T1, T2, and PD modes with different levels of noise and intensity
non-uniformity. In the following experiments, scans with 3% noise and 20%
intensity non-uniformity are chosen. Real brain scans that are used from the
RIRE dataset are in different modes of T1, T2, PD, and CT images.

In the experiments, the registration accuracy is quantitatively assessed using
the target registration error (TRE), which measures the Euclidean distance
between the pixel positions in the transformed image and their corresponding
position in the ground truth [2].

TRE =
1

|Ω|
|Ω|∑

i=1

(xi − x′
i)

2, (13)
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Fig. 3. Structural representation for different MR modes. The first row shows a slice
of brain scans in T1, T2, and PD modes from BrainWeb database. Second row shows
the structural features associated with the first row images.

where xi and x′
i are respectively the position of the i-th pixel in the ground truth

and aligned image.
The proposed method, which is represented as Reg in the following tables, is

compared with the MI-based registration (MI) [17] and SSD on entropy images
(eSSD) [16]. The optimization for the rigid registration is carried out by MAT-
LAB tools based on gradient descent optimizer for the SSD based mono-modal,
and one-plus-one evolutionary optimizer for the MI-based multi-modal regis-
tration. Both rigid and deformable registration scenarios are considered for the
evaluation procedure. The deformable registration is performed by free-from
deformation (FFD) based on cubic B-Splines using Image Registration and Seg-
mentation Toolkit (ITK) [14]. In our simulations, the patch size and number of
bins in the histogram are empirically chosen to be 7 × 7 pixels and 64 bins.

3.2 Rigid and Deformable Registration

For rigid registration, the proposed method is evaluated by using MI and eSSD
for the alignment, when translation is in the range of [−20, 20] mm with 0◦

rotation, and maximum rotation of ±20◦ with zero translation. Table 1 reports
the average results for 100 multi-modal rigid registration over different rotations
and translations in terms of TRE in mm.

For deformable registration, a set of training data was generated from the
dataset using artificial deformations by the thin-plate spline (TPS). The defor-
mation field is normalized such that the maximum displacement is limited to
15 mm. The results of deformable registration is given in Table 2 for different
combinations of image modalities. Similar to Table 1, the proposed method is
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Table 1. Multi-modal rigid registration (translation T and rotation R) for RIRE and
BrainWeb datasets. Registration errors are represented in average pixel displacement.

Similarity BrainWeb RIRE

T1-T2 T1-PD T2-PD T1-T2 T1-PD T2-PD T1-CT

Rotation MI 0.83 0.76 0.32 3.02 1.14 1.15 3.62

eSSD 0.65 0.54 0.14 2.03 0.83 0.64 2.87

Reg 0.44 0.38 0.08 1.74 0.61 0.43 2.64

Translation MI 0.41 0.52 0.29 1.58 0.87 0.93 2.53

eSSD 0.72 0.64 0.18 0.35 0.44 0.48 1.69

Reg 0.51 0.48 0.24 0.28 0.33 0.31 1.73

Table 2. Multi-modal deformable registration for RIRE dataset. Registration errors
are represented in average pixel displacement.

Similarity T1-T2 T1-PD T2-PD T1-CT

MI 1.83 2.12 2.87 3.12

eSSD 0.67 0.61 0.55 7.32

Reg 0.61 0.68 0.81 6.43

compared with eSSD and MI-based registration results. Quantities in this table
are obtained by averaging the results of aligning ten randomly deformed images
to a fixed image.

As can be seen, the proposed method in most cases outperforms the eSSD and
MI-based registration. Since the proposed method tends to extract structural
features and structural features are mainly located in the rigid body of the
image, the improvement in the alignment accuracy for the rigid registration is
more significant. It can be seen that for non-rigid registration, the method is not
able to outperform the eSSD method in all of the cases, however, the results are
still comparable.

4 Conclusions

We proposed a method based on introducing a structural representation for the
purpose of registering multi-modal images. Unlike common multi-modal registra-
tion techniques that utilize sophisticated similarity measures, the new structural
representation helps to map different intensity mappings to a common inten-
sity space, so that a simple similarity measure can be employed to assess the
alignment accuracy. The statistical representation is generated in a patch-based
framework by modifying the patch entropy. To validate the merit of the method,
experiments were carried out on different brain image modalities. Based on the
results presented in this paper, the proposed method improved the registration
accuracy compared to the eSSD and conventional MI registration methods.
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