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Abstract. Fundamental matrix estimation from two views plays an
important role in 3D computer vision. In this paper, a fast and robust
algorithm is proposed for the fundamental matrix estimation in the
presence of outliers. Instead of algebra error, the reprojection error is
adopted to evaluate the confidence of the fundamental matrix. Assum-
ing Gaussian image noise, it is proved that the reprojection error can
be described by a chi-square distribution, and thus, the outliers can be
eliminated using the 3-sigma principle. With this strategy, the inlier
set is robustly established in only two steps. Compared to classical
RANSAC-based strategies, the proposed algorithm is very efficient with
higher accuracy. Experimental evaluations and comparisons with previ-
ous methods demonstrate the effectiveness and advantages of the pro-
posed approach.
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1 Introduction

Fundamental matrix plays an important role in epipolar geometry since it con-
tains all geometric information about the relative transformation between two
images. Fundamental matrix estimation is based on solving a homogeneous linear
system in which each linear equation is formed by a pair of correspondence fea-
ture points. When the data is free of outliers, the nonlinear seven-point method
[1] or linear eight-point method [2] is used to recover the fundamental matrix
from the linear system via least squares. In practice, however, the outliers or large
measurement errors are inevitable due to the inconsistency in feature extraction
and matching process. Therefore, a robust algorithm that is resilient to outliers
is vital for fundamental matrix estimation.

A large number of robust estimation approaches have been proposed to
alleviate the influence of outliers to the fundamental matrix estimation. The
M-estimator method [1,3] reduces the effect of outliers by applying weight func-
tions to transform the problem to a weighted least squares problem. However, the
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approach needs a good initial estimation and only works under low percentages
of outliers. LMedS [4,5] evaluate each estimation in terms of the median sym-
metric epipolar distances of the point correspondences and choose the one which
minimizes the median error. The method does not need to know the percentage
of outliers, but it is very time-consuming. RANSAC is a very popular robust
algorithm for fundamental matrix estimation [6,7]. The algorithm use minimal
points set to estimate an initial guess. Then, the confidence of the estimation
is established by testing each point correspondence against the hypothesized
model; and an inliers set is determined by choosing points that have error below
a given threshold. Next, a new fundamental matrix is estimated by the inliers
set. Iteratively, the RANSAC algorithm attempts to find a solution that max-
imize the amount of the inlier set. In the last two decades, several RANSAC
based algorithm have been proposed.

PROSAC algorithm [8], by taking into account additional information of
the quality of the errors of the point matches, largely reduces the number of
iterations. The MLESAC algorithm [9] maximizes a likelihood which is a mixture
model of normal distribution for inliers and uniform distribution for outliers. The
parameter of the model is estimated by expectation maximization. MAPSAC
[10] maximizes the posterior estimation of the fundamental matrix and matches.
Feng et al. [11] proposed a robust estimation method that measure the point
matches by means of 2D reprojection error. The algorithm uses the mixture
models of Gaussian and Uniform distributions. Huang et al. [12] improved the
RANSAC algorithm by means of constructing a voting array for all the point
correspondence pairs to record the consistency votes for each pair from a number
of fundamental matrix estimations to better identify the outliers. Carro et al.
[13] proposed a new robust method by combining the PROSAC and LMedS
algorithms. All the above RANSAC-based approaches basically concentrate on
the evaluation criterion of the estimation instead of the iteration step. Although
these methods can achieve a better estimation of the fundamental matrix, the
time cost issue is still not solved. The iterations increase greatly with the increase
of outlier percentages, as a result, much more computation time is required.

In this paper, we adopt reprojection error, rather than the widely used alge-
braic error, to evaluate the confidence of the fundamental matrix. By assuming
Gaussian image noise, it is shown that the reprojection error of point correspon-
dences can be described by a chi-square distribution, and the outliers usually
yield very large reprojection errors. Thus, the outliers can be simply eliminated
using the 3-sigma principle. Based on this observation, a fast and robust algo-
rithm is proposed for the fundamental matrix estimation. With this strategy,
the inlier set can be robustly established in only two steps. Compared to other
robust algorithms, the proposed technique is not only very efficient, but also
extremely accurate. The algorithm is validated by extensive experiment using
both synthetic and real image data.
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2 Robust Fundamental Matrix Estimation

2.1 Eight-Point Linear Algorithm

Fundamental matrix is estimated from a set of point correspondences between
two images. Given an image pair I and I′, suppose xi ∈ I and x′

i ∈ I′ are a
pair of corresponding homogeneous points between the two images. Then, the
fundamental matrix F satisfies the following equation.

x′T
i Fxi = 0 (1)

where the fundamental matrix is a 3 × 3 homogeneous matrix defined up to
scale. Each pair of point correspondence yield one linear constraint the entries
of F. Thus, the fundamental matrix can be linearly estimated from eight point
pairs. When more correspondences are available, the fundamental matrix can be
estimated via least squares.

2.2 Algebric Error and Reprojection Error Evaluation

After obtaining an estimation of the fundamental matrix, an error measure can
be evaluated for each pair of point correspondence. The most commonly used
criterion is the algebraic error defined as ea(i) = x′T

i Fx′
i. This definition is

simple, however, it does not have any geometric meaning.
Based on the initially estimated fundamental matrix, a pair of camera matri-

ces can be recovered, and thus, a perspective 3D reconstruction of all correspond-
ing points is obtained via triangulations [14]. Then, the reconstructed 3D points
can be reprojected back to the two images via the camera matrices. Suppose x̂i

and x̂′
i are the reprojected images of point i, the 2D reprojection error of the

corresponding point is defined as

er(i) =
1
2

∑
‖xi − x̂i‖2F + ‖x′

i − x̂′2
i ‖F , s.t. x̂′T

i Fx̂i = 0 ∀i (2)

The 2D reprojection error is proven to be more superior to other geometric
errors. Optimal triangulation [14] is a linear triangulation method which converts
the least-square function to a one parameter function and finds a global optimal
solution.

Fig. 1. (left) The histogram distribution of the real added noise and outliers. (right)
The histogram distribution of the reprojection errors.



Fast and Robust Algorithm for Fundamental Matrix Estimation 319

Fig. 2. Evaluation results from synthetic data. (left) Outlier detection rates; (middle)
reprojection errors; and (right) computation time (second) by different algorithms.

2.3 Outlier Detection Strategy

The image noise is normally modeled by Gaussian distribution. Under this
assumption, it can be verified that the reprojection error should follow chi-square
χ2 distribution, as shown in our simulation result Fig. 1.

In Fig. 1, the added noise is Gaussian, while the added outliers are some
random points with large standard deviations. As shown in the figure, the points
located at the leftmost and rightmost areas are added outliers. Through extensive
simulations, we found that the reprojection errors of outliers are usually greatly
larger than those of inliers. This result is also support by our early study on
structure from motion [16]. As a result, these outliers can be identified using
3-sigma principle. Points with reprojection errors larger than the triple variance
of all the reprojection error can be classified as outliers. Based on robust statistics
[15], we can obtain a robust standard deviation of the reprojection errors by the
following equation.

σ = 1.4826
(
1 +

5
n − q

)
mediani|eri | (3)

The above equation is the median absolute deviation (MAD) scale estimate
[15]. The first number is obtained from the inverse of the cumulative normal
distribution, and the term (1 + 5

n−q ) is the finite sample correction factor with
the total number of parameters q = 8 and n the total number of features. The
details of the derivation can be found in [15]. According to the distribution
model, we distinguish the inliers from their reprojection errors of each pair of
corresponding points. The points whose reprojection errors are less than 3σ
are deemed as inliers, since 99.14% of the data points lies within 3σ under the
assumption of the Gaussian distribution error model.

2.4 Outline of the Proposed Approach

Based on the above discussion, the implementation details of proposed approach
is summarized as below.
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1. Normalize the coordinates of all matching points;
2. Estimate an initial fundamental matrix using eight-point linear algorithm;
3. Compute the reprojection error and determine an outlier threshold;
4. Re-estimate the fundamental matrix using the inliers detected in step 3;
5. Repeat the steps 3 and 4 one time to refine the inlier set;
6. Estimate the optimal fundamental matrix using the inliers obtained in step 5.

3 Evaluations on Synthetic Data

The proposed algorithm was evaluated on synthetic data and compared with
previous algorithms. During the simulation, 200 space points were randomly
generated with a cube of [10, 10, 10], and two images were produced from these
points. The image size is 800 × 800; and the focal lengths of the two cameras
are set at 800. Gaussian noise with zero mean and 2 pixels standard deviation is
added to each pixel. Outliers are simulated as Gaussian noise with large standard
deviation (greater than 8 pixels in the test); and they are randomly added to
part of the image points. The percentage of outliers varies from 5% to 30% in a
step of 5%.

We evaluated and compared the performance of the proposed algorithm with
three popular previous algorithms proposed in [12,13], and [11], which are named
as Ransac1, Ransac2, and Ransac3, respectively. The evaluation criteria include
outlier detection rate, final reprojection error, and computational cost. 200 inde-
pendent trials are carried out under each configuration in order to yield a more
meaneaingful statistical result. Figure 2 shows the experimental results, from
which we can see that the proposed algorithm obviously outperforms all other
three approaches in terms of the outlier recall precision and the reprojection
error. The computational cost of the proposed algorithm is also noticeably lower
than the Ransac1 and Ransac3 algorithms.

4 Evaluations on Real Images

The proposed algorithm has been evaluated using extensive real images, and only
one result is reported here due to limited space. Two images from the “Model
House” sequence (http://www.robots.ox.ac.uk/∼vgg/data1.html) are used in the
experiment, as shown in Fig. 3. The points marked in red circles denote the point
correspondences between the two images. We randomly select different ratios of
the matched points and add large random noise onto them to simulate the out-
liers. Figure 4 shows the outlier detection rates, final reprojection errors, and
computational cost with respect to different percentage of outliers by different
algorithms. We can see from Fig. 4 that the results are similar to those on syn-
thetic data. The proposed algorithm yields obviously better results than other
three approaches in the real image test.

http://www.robots.ox.ac.uk/~vgg/data1.html
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Fig. 3. Two images of a model house with matching result shown in red circles.

Fig. 4. Evaluation results on model house images. (left) Outlier detection rates; (mid-
dle) reprojection errors; and (right) computation time (second) by different algorithms.

5 Conclusion

In this paper, we have proposed a new robust algorithm for fundamental matrix
estimation based on reprojection errors. Compared with previous algorithms, we
adopted a more meaningful error criterion to evaluate the confidence of the esti-
mated fundamental matrix. With the new outlier detection strategy, the outliers
can be identified from all pairs of point correspondences in two steps, leading to
a more robust and more accurate estimation of the fundamental matrix. Com-
pared to the RANSAC-based algorithms, the proposed algorithm can find the
optimal solution in two steps.

Acknowledgment. The work is partly supported by the Kansas NASA EPSCoR
Program, and the NSFC (61273282).

References

1. Zhang, Z.: Determining the epipolar geometry and its uncertainty: a review. Int.
J. Comput. Vision 27, 161–198 (1998)

2. Hartley, R.: In defense of the 8-point algorithm. In: Proceedings of the 8th Inter-
national Conference on Computer Vision, pp. 1064–1070 (1995)



322 M. Zhang et al.

3. Stewart, C.V.: Robust parameter estimation in computer vision. SIAM Rev. 41,
513–537 (1999)
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