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Preface

These are the proceedings of the 12th edition of ICIAR. This series of annual con-
ferences offers an opportunity for the participants to interact and present their latest
research in theory, methodology, and applications of image analysis and recognition.
ICIAR 2015, the International Conference on Image Analysis and Recognition, was
held in Niagara Falls, Canada, July 22–24, 2015. ICIAR is organized by AIMI ––
Association for Image and Machine Intelligence –– a not-for-profit organization reg-
istered in Ontario, Canada.

For ICIAR 2015, we received a total of 80 papers, 69 regular and 11 short papers,
from 24 countries. Before the review process all the papers were checked for similarity
using a comparison database of scholarly work. The review process was carried out by
members of the Program Committee and other reviewers. Each paper was reviewed by
at least two reviewers, and checked by the conference chairs. A total of 60 papers
(55 regular and five short) were finally accepted and appear in these proceedings. We
would like to sincerely thank the authors for responding to our call, and we thank the
reviewers for the careful evaluation and feedback provided to the authors. It is this
collective effort that resulted in the strong conference program and high-quality
proceedings.

We were very pleased to include three outstanding keynote talks: “Computational
Inference of Emotion in Images: A Final Frontier and a Data-Intensive Approach” by
Jiebo Luo, University of Rochester, USA; “Relating Retinal Anatomy, Pathology,
Function, and Therapy Guidance: Precision Medicine via Analysis of Ophthalmic 3D
OCT” by Milan Sonka, University of Iowa, USA; and “Objective Image Quality
Assessment ? Current Status and What's Beyond” by Zhou Wang, University of
Waterloo, Canada. We would like to express our gratitude to the keynote speakers for
accepting our invitation to share their vision and recent advances in their areas of
expertise.

We would like to thank Khaled Hammouda, the webmaster of the conference, for
maintaining the website, interacting with the authors, and preparing the proceedings.

We are also grateful to Springer’s editorial staff, for supporting this publication in
the LNCS series. We would also like to acknowledge the professional service of Cathie
Lowell in taking care of the registration process and the special events of the
conference.

Finally, we were very pleased to welcome all the participants to ICIAR 2015. For
those who were not able to attend, we hope this publication provides a good view into
the research presented at the conference, and we look forward to meeting you at the
next ICIAR conference.

July 2015 Mohamed Kamel
Aurélio Campilho
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Abstract. In this work we determine how well the common objective
image quality measures (Mean Squared Error (MSE), local MSE, Signal-
to-Noise Ratio (SNR), Structural Similarity Index (SSIM), Visual Signal-
to-Noise Ratio (VSNR) and Visual Information Fidelity (VIF)) predict
subjective radiologists’ assessments for brain and body computed tomog-
raphy (CT) images.

A subjective experiment was designed where radiologists were asked
to rate the quality of compressed medical images in a setting similar to
clinical. We propose a modified Receiver Operating Characteristic (ROC)
analysis method for comparison of the image quality measures where the
“ground truth” is considered to be given by subjective scores. The best
performance was achieved by the SSIM index and VIF for brain and
body CT images. The worst results were observed for VSNR.

We have utilized a logistic curve model which can be used to predict
the subjective assessments with an objective criteria. This is a practical
tool that can be used to determine the quality of medical images.

1 Introduction

Speed limitations of existing networks along with the explosive growth of image
modalities with extremely high volume outputs have combined to make the issue
of irreversible medical image coding one of the key considerations in the design
of future PACS systems. Existing lossy image compression techniques are well
suited for images where the only concern is visual quality.
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 3–13, 2015.
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As expected, increasing the degree of compression of an image leads to
decreasing fidelity. The extent of allowable irreversible compression is dependent
on the imaging modality and the nature of the image pathology and anatomy.
Image compression often results in the distortion of the images and therefore
creates the risk of losing or altering relevant diagnostic information.

If not implemented properly, distortions resulting from lossy compression can
impede the ability of radiologists to make confident diagnoses from compressed
medical images. However, defining the amount of accepted distortion is a complex
task. For this reason, reliable image quality assessment methods are needed in
order to achieve “Diagnostically Acceptable Irreversible Compression (DAIC)”,
defined in [13], which refers to an irreversible compression that has no effect on
diagnostic task.

2 Image Quality Assessment

Many objective image quality metrics have been proposed in the last decade. Due
to the wide variety of image types and applications, image quality assessment is
not (yet) fully automatic and subjective approaches are still predominant [12].
How do we measure diagnostic quality?

There is no standard method to measure the quality of compressed medical
images, however, three approaches are usually considered [3]:

1. Subjective image quality rating using psychovisual tests or questionnaires
with numerical ratings.

2. Diagnostic accuracy is measured by simulating a clinical environment with
the use of statistical analysis (e.g. Receiver Operating Characteristic (ROC)).

3. Objective quality measures such as the Mean Squared Error (MSE) and Struc-
tural Similarity (SSIM).

2.1 Objective Image Quality Methods

The existing objective image quality measures are not necessarily reliable mea-
sures of diagnostic quality for medical images. Moreover, compression ratios,
generally used as pre-compression quality predictors, indicate a poor correlation
with image quality and are image dependent [4]. According to Marmolin [10]:
“MSE is not very valid as a quality criterion for pictures reproduced for human
viewing and the improved measures could be derived by weighting the error in
accordance with assumed properties of the visual system.” Although MSE is
shown to poorly correlate with visual quality, it should not be taken for granted
that any perceptual object quality measure must be better. According to the
relevant literature, SSIM and other objective measures show better performance
than MSE for natural image/video content for consumer electronics applications
based on subjective tests [16,17]. It cannot be assumed that an objective quality
metric that performs well for natural images will ensure a superior diagnostic
quality for medical images. In spite of these pitfalls, MSE and other objective
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methods have been used in medical image quality assessment. Moreover, no
objective model has been yet “established” for medical images, especially when
using radiologists as subjects.

There are many full reference image quality assessment algorithms proposed
in the literature. A lengthy review of objective image quality was presented in
[5]. Full reference methods are based on comparison between the original image
and its distorted version. Among the most common ones are Mean Squared Error
(MSE), Signal-to-Noise Ratio (SNR), Structural Similarity (SSIM) [15], Visual
Signal-to-Noise Ratio (VSNR) [1] and Visual Information Fidelity (VIF) [14].

MSE is related to the L2 distance between image functions. The MSE between
the compressed image g and the original image f is given by

MSE(f, g) =
1

MN

M∑

i=1

N∑

j=1

(f(i, j) − g(i, j))2 . (1)

The SSIM index, introduced by Wang and Bovik [16], assumes that the HVS
is highly sensitive to structural information/distortions (e.g. JPEG blockiness,
“salt-and-pepper” noise, ringing effect, blurring) in an image and automatically
adjusts to the non-structural (e.g. luminance or spatial shift, contrast change)
ones [15]. Another assumption of the SSIM index is that images are highly struc-
tured and there exist strong neighbouring dependencies among the pixels, which
the MSE totally ignores. The SSIM index measures the difference/similarity
between two images by combining three components of the human visual sys-
tem: luminance, l(f, g), contrast, c(f, g) and structure, s(f, g).

The (local) SSIM is given by:

SSIM(f, g) =

(
2μfμg + C1

μ2
f + μ2

g + C1

)
·
(

2σfσg + C2

σ2
f + σ2

g + C2

)
·
(

σfg + C3

σfσg + C3

)
. (2)

where μ is the mean, σ2
f is the variance, and σfg is the covariance. SSIM is com-

puted over m × n pixel neighbourhoods. The (non-negative) parameters C1, C2

and C3 are stability constants of relatively small magnitude, which are designed
to avoid numerical “blowups”, which could occur in the case of small denomi-
nators. In the special case C3 = C2/2, the following simplified, two-term version
of the SSIM index is obtained:

SSIM(f, g) =

(
2μfμg + C1

μ2
f + μ2

g + C1

) (
2σfg + C2

σ2
f + σ2

g + C2

)
. (3)

For natural images there are recommended default values for these parame-
ters [15]. On the other hand, the question of optimal values for these stability
constants for medical images is still an open one. The smaller the values of
these constants, the more sensitive the SSIM index is to small image textures
such as noise. In our study the constants were adopted from our previous work
[8,9], where we examined a range of stability constants in order to determine the



6 I. Kowalik-Urbaniak et al.

value(s) which are optimal for the assessment of diagnostic quality of medical
images.

In this study, we also employ the local MSE. This score is computed in a sim-
ilar manner as the SSIM index, i.e. for a local m × n pixel neighbourhood. The
quality score is computed by averaging the local MSE scores. In this work we use
11 × 11 pixel neighbourhoods for the computation of SSIM and local MSE mea-
sures, which is the default parameter in the computation of the SSIM index [15].

SNR is a measure of quality that considers the MSE and the variance of the
original signal. It is defined as follows,

SNR(f, g) = 10 log10
σ2
f

MSE(f, g).
(4)

The result is measured in decibels. SNR is considered in the literature as a valid
quality measure [3].

Another image fidelity measure that we consider in our work is the VSNR
[2]. The VSNR is a low complexity method that considers near-threshold and
suprathreshold properties of the HVS. There are two stages in the algorithm.
In the first one, wavelet-based models for the computation of contrast thresh-
olds for distortions detection are used in order to determine whether distortions
are visible. Based on the outcome of the first step, if the distortions are below
the threshold of detection, then no further computation is required and the
distorted image is of perfect visual fidelity. In the case where distortions are
“suprathreshold”, a second step of the algorithm is applied. In the second step,
two properties are computed: the perceived contrast of the distortions and the
disruption of global precedence. Finally, VSNR is computed as follows,

V SNR(f, g) = 20 log10

(
C(f)

αdpc + (1 − α)(dgp/
√

2)

)
(5)

where C(f) denotes the contrast of the original image f , dpc = C(E) is the
perceived contrast of the distortions, E = f − g is the distortion, dgp is the
global precedence and α ∈ [0, 1] determines the relative contribution of dpc and
dgp. A detailed explanation and equations required to compute the VSNR are
presented in [2]. According to the author, the VSNR metric has relatively low
computational complexity.

VIF is based on visual information fidelity that considers natural scene sta-
tistical information of images. A detailed description can be found in [14]. The
idea is to quantify the statistical information that is shared between the original
and distorted images using conditional mutual information.

VIF(f,g) = Distorted Image Information / Reference Image Information. (6)

3 Design of the Subjective Experiment

A subjective experiment was designed in order to assess the global prediction
of the image quality assessments being examined. The experiment employed
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sixty CT slices - thirty neurological and thirty upper body images- obtained
from Medical Informatics Research Centre at McMaster (MIIRC@M), Hamilton,
Canada. These images were first windowed according to their default viewing
parameters (window width and window centre) in order to reduce their bit-
depth from 16 to 8 bits per pixel (bpp). The resulting 512 × 512 pixel, 8 bpp
images were compressed at five different compression levels using both the JPEG
and JPEG2000 compression algorithms. Preliminary visual observations were
used to select the compression levels employed in the experiment. The range of
compression ratios was intended to represent a wide variety of visual qualities,
from no and barely noticeable to fairly noticeable distortion.

An image viewer was developed specifically for this study in order to pro-
vide an easy-to-use graphical interface for the radiologists. The viewer displayed
a compressed image beside its uncompressed counterpart without zoom. The
compressed images were presented randomly and independently to each subject.
During the course of the experiment, each compressed image was presented to
each radiologist with some repetitions, but without the radiologists’ knowledge.
The subjects were not made aware of the compression ratios or quality factors
of the compressed images. Three buttons were placed at the bottom of the user
interface: (1) not noticeable and acceptable, (2) noticeable and acceptable and
(3) noticeable and not acceptable. A confirmation was requested before passing
to the next stimulus. The experiment can be summarized as follows,

– The subjects were six radiologists including experienced radiologists as well
as residents (McMaster University, Hamilton, ON, Canada).

– Types of pathologies: Based on previous findings by Koff et al. [6,7], the
pathologies include subtle lesions in the liver for the body, and parenchyma
and posterior fossa for brain. Subtle lesions include the following two types:
• Very small lesions, limit in size, of less than 2 mm, but high contrast (cal-

cifications) or low density (tiny cysts);
• Subtle parenchymal alterations translating into subtle differences in density

such as cerebral infarcts.
– The brain CT and body CT images used in the experiment were carefully

chosen with the help of radiologists and contain pathological and normal cases
(about 1/3 of images represented normal cases).

– Working environment: MIIRC@M office (Hamilton, ON, Canada); Eizo Radi-
force monitor, 54 cm (21.3”) display, with a 1200×1600 native resolution (3:4
aspect ratio) and a viewing size of 324.0 × 432.0 mm. Capable of displaying
10-bit colors.

– Compression levels: Five quality factors (JPEG input parameters) were
chosen:
• [90, 65, 45, 20, 5] for brain CT images, [90, 75, 55, 35, 10] for body CT images.

First the images were compressed using JPEG algorithm, then using
JPEG2000 with the corresponding compression ratios.

– Trial and main experiments:
• Trial experiment included 6 images from each brain CT and body CT sets.

These images were repetitions of images that were included in the main
part of the experiment.
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• Main experiment: Number of images: 306 brain CT, 306 body images (30
different images compressed at five compression ratios using JPEG and
JPEG2000 algorithms including 6 repetitions added at the end of the
sequence).

– Repetitions were included in the trial experiment as well as at the end of the
first part of the main experiment.

– Duration of the experiment: The number of images was adjusted to the time
limitation of the experiment. Expected duration of the experiment: 60 min.
• Trial experiment including explanation of the task: 10 min.
• Main experiment, Part 1:

∗ brain CT: 25 min, body CT: 25 min.

4 Data Analysis

4.1 Modified ROC Analysis

The Receiver Operating Characteristic (ROC) curve is a common tool for visu-
ally assessing the performance of a classifier in medical decision making [11].
ROC curves illustrate the trade-off of benefit (true positives, TP) versus cost
(false positives, FP) as the discriminating threshold is varied. In our experiment,
we employed a three-level subjective rating of image quality by radiologists: (1)
not noticeable and acceptable, (2) noticeable and acceptable and (3) notice-
able and not acceptable. Since we are concerned about diagnostic quality, we
combine the images that fell into the two classes during subjective assessments:
(1) not noticeable (distortions) and acceptable, (2) noticeable (distortions) and
acceptable. By doing so, we now have a binary rating scale: acceptable and
unacceptable images. At this point, we must clarify that due to the nature of
the problem we are investigating, our definitions of FP and TP differ from those
normally applied for the purposes of medical diagnosis. In this study, we wish to
examine how well different “image quality indicators” compare to the subjective
assessments of image quality by radiologists. As such, we must assume that the
“ground truth” for a particular experiment, i.e., whether or not a compressed
image is acceptable or unacceptable, is defined by the radiologist(s). From this
ground truth, we measure the effectiveness of each image quality indicator in
terms of FP, TP, etc. This leads to the following definitions of P, N, TP, FP,
etc.:

P= FP+TP total positives (acceptables) and N= TN+FN total negatives
(unacceptables): these refer to radiologists’ subjective opinions, which represent
the True Class. On the other hand, P’ and N’ belong to the Hypothesis Class
which, in our experiment, corresponds to a given objective image quality assess-
ment method.

TP (true positives): images that are acceptable to both radiologists and a given
quality assessment method.
TN (true negatives): images that are unacceptable to both radiologists and a
given quality assessment method.
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FN (false negatives): images that are acceptable to radiologists but unaccept-
able to a given quality assessment method.
FP (false positives): images that are unacceptable to radiologists but acceptable
to a given quality assessment method.

The Acceptability/unacceptability of a given quality measure is defined with
respect to the discrimination threshold s′ associated with the method, where
0 ≤ s′ ≤ 1 . Using this threshold value s′, FPR and TPR are computed. Each
threshold value s′ generates a point on the ROC curve which corresponds to the
pair of values (FPR, TPR) = (1-SP, SE), where SP denotes specificity and
SE denotes sensitivity, i.e.,

FPR (false positive rate) = FP/N = 1 − SP (specificity)
TPR (true positive rate) = TP/P = SE (sensitivity)
FNR (false negative rage) = FN/N = 1 − SE
TNR (true negative rate) = TN/N = SP.

4.2 ROC Analysis Results

ROC curves were computed corresponding to SSIM, MSE, SNR, VIF, VSNR
for body and brain CT images; they are shown in Fig. 1 and 2. Table 1 shows
the Area Under the (ROC) Curve (AUC) scores corresponding to each of the
objective measures studied. The largest AUC corresponds to the SSIM index.
The second best method is the VIF measure. We observed that MSE, MSE
local, SNR and VSNR have smaller AUC. Moreover, the AUC scores from ROC
analysis are larger for brain CT images than for body CT images with respect to
all objective image quality measures considered. This indicates that the studied
objective measures can predict the subjective assessments of radiologists of brain
CT images with better accuracy than those corresponding to body CT images.

According to the presented modified ROC analysis, SSIM index provides the
closest match with radiologists’ subjective assessments. The second best measure
is the VIF. A worse performance is observed for MSE, local MSE, SNR and

Table 1. AUC scores resulting from ROC analysis corresponding to objective quality
measures and subjective radiologists’ assessments for brain and body CT images.

Objective quality measure AUC (brain CT) AUC (body CT)

SSIM 0.9924 0.9618

MSE (local) 0.9899 0.9326

MSE 0.9892 0.9366

SNR 0.9896 0.9351

VNSR 0.9662 0.9400

VIF 0.9916 0.9571
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Fig. 1. ROC curves corresponding to
SSIM, MSE, local MSE, SNR, VSNR
and VIF for brain CT images(Color
figure online).
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Fig. 2. ROC curves corresponding to
SSIM, MSE, local MSE, SNR, VSNR
and VIF for body CT images(Color
figure online).

VSNR. According to our previous work, where we studied both local and global
image quality [9], SSIM also showed a better correspondence with subjective
assessments of image quality.

4.3 Logistic Curve Model

For medical images, the goal is to find an objective image quality measure that
can best predict the subjective radiologists’ assessments. The performance of
an objective quality measure to predict subjective scores is usually measured
by means of a curve-fitting model. First MSE values are plotted against mean
scores of subjective assessments, then a curve (e.g. polynomial spline, quadratic,
exponential, logistic) is fitted to the resulting points [3].

In this study we used a logistic curve model as a proposed predictor of sub-
jective radiologists’ assessments corresponding to the studied objective quality
measures. In order to take into account the variability in the subjective quality
assessment of compressed medical images, a logistic cumulative probability dis-
tribution is assumed to model the decision of a radiologist to either accept or not
accept an image at a given objective score. A robust curve-fitting is performed
on the plot of the average subjective score over all the radiologists as a function
of the objective score.

Given x1, the predicted value (SSIM, VIF) and y1, the average subjective
score, we determine the parameters a and b of the logistic function

y = 1/(1 + exp (−a ∗ x + b))

that produce the least weighted square error, with weighting according to the
bisquare method.

A threshold can be selected so that the cumulative probability distribution
model represents the desired level of confidence that the quality of the compressed
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Fig. 3. Logistic curves corresponding to SSIM for (top left) brain, (bottom left) body
CT images and VIF for (top right) brain, (bottom right) body CT images.

image is diagnostically acceptable. For example, if one requires a 99 % confidence,
the recommended threshold has to be selected at the value for which the fitted
logistic curve is at 0.99. Figure 3 shows logistic curves fitted with LAD Regression
corresponding to SSIM and VIF for brain and body CT images.

5 Conclusions

The task of achieving Diagnostically Acceptable Irreversible Compression
(DAIC) of medical images is a complex one. It involves tuning technology
with radiological subjective responses/preferences. In this work, we compared
the performances of some of the most popular image quality measures (MSE,
SNR, SSIM, VSNR, VIF) based on experimental data collected in an experiment
involving radiologists’ subjective assessment of image quality. The experiment
involved a global quality assessments of brain and body CT images at several
compression ratios. Six radiologists evaluated compressed images as acceptable
(with and without noticeable distortions) or unacceptable as compared to their
uncompressed counterparts. An ROC analysis indicates that SSIM demonstrated
the best performance, i.e., it provides the closest match to the radiologists’ assess-
ments. The worst performance was observed for the VSNR quality measure.

We have utilized a logistic curve model, which can be used to predict the
subjective assessments with an objective criteria. This is a practical tool that
can be used to determine the quality of medical images. The optimal quality
score can be selected so that the cumulative probability distribution model rep-
resents the desired level of confidence that the quality of the compressed image
is diagnostically acceptable.
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Our current work involves developing advanced techniques of choosing a
threshold for compression using the most popular quality measures.
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Abstract. In this paper, a new universal blind image quality assessment
algorithm is proposed that works in presence of various distortions. The pro-
posed algorithm uses natural scene statistics in spatial domain for generating
Wakeby distribution statistical model to extract quality aware features. The
features are fed to an SVM (support vector machine) regression model to predict
quality score of input image without any information about the distortions type
or reference image. Experimental results show that the image quality score
obtained by the proposed method has higher correlation with respect to human
perceptual opinions and it’s superior in some distortions comparing to some
full-reference and other blind image quality methods.

Keywords: Blind image quality assessment � Natural scene statistics of special
domain � Wakeby distribution model � Support vector machine

1 Introduction

Image quality assessment (IQA) algorithms are widely used in many image processing
and video applications, such as watermarking, ton mapping, compression and
enhancement. Today, the most trustworthy way of evaluating an algorithm is subjective
human perception [1]. Subjective IQA is the most reliable approach because the end
user always would be a human. Thus, subjective assessments offer high correlation
with human vision system. Subjective methods are time consuming, expensive, and
cannot be performed in real-time applications [2]. It is therefore necessary to define an
objective criterion that can calculate the human-like judgment score difference between
a reference image and its distorted version. Ideally, such an objective metric should be
highly correlated by the perceived difference between distorted and reference images
and should be varied linearly with the subjective quality assessment. Based on the
availability of the reference image, the objective image quality methods are categorized
into three classes [1]: full-reference methods that need both original and distorted
images to compute quality of input image [3], reduced reference methods that besides
the input image, need an access to some of the information from original image to
calculate quality score [4] and finally, no-reference or blind methods are those which
designed to compute the quality metric of a distorted image without any kind of need to
access the original image’s data [5]. The point is, reference image or its extracted
features-information may not be always available. For instance, think of shared images
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in social networks on the internet. As the original image would not be accessible, the
only way to assess quality of them is using blind image quality assessment approaches.

2 Related Works

Most of no-reference image quality assessment (NR-IQA) methods are based on prior
knowledge of the distortion type, called distortion-specifics [6, 7]. This constraint limits
the algorithm applications. For example, in the real world, images are usually corrupted
by more than one distortion, and the distortion type is usually unknown. Recently,
some methods proposed to overcome this problem. Such methods make no assumption
about the type of distortions. In [8] a NR-IQA algorithm which operates in DCT
domain is proposed. In this method, features are computed from natural scene statistics
(NSS) of block DCT coefficients. Then quality aware features based on modeling these
NSS are calculated and fed to a regression SVM to predict quality of the input image.
This method is a good achievement but requires nonlinear sorting of the block based
natural scene statistic features which makes it slow for real time applications. BRIS-
QUE [5] is another recent state of the art method using suitable quality-aware NSS
features in the spatial domain to learn human opinion scores on databases including
some sort of distortions, even large ones [9]. Saad et al. [10] Proposed BLIINDS-II
image quality method which extracts NSS of discrete cosine transform (DCT) using a
single-stage framework. Liu et al. [11] proposed dubbed spatial–spectral entropy based
quality metric (SSEQ) to predict image quality blindly. SSEQ utilizes local spatial and
spectral entropy features of distorted images to form quality aware features. The fea-
tures then feed to a regression machine to predict image quality. The problem of these
methods is the limitation of possible applications caused by limited range of distortion
types they have been trained on. Consider their performance is directly affected by the
ability of distortions that they are familiar with.

In this work, Wakeby distribution –also known as advanced distribution- is used to
modeling the NSS coefficients and extracting quality aware feature vectors. This dis-
tribution has a couple of scale and shape parameters (four parameters), which makes it
more flexible in comparison to the other distribution models used in the state of the art
methods. These parameters let us form a feature vector that is very sensitive to changes
in an NSS coefficient’s empirical distribution which causes more accurate model fitting
and better prediction of image quality score.

3 Proposed Method

A novel method to assess quality of natural images based on NSS modeling is proposed
in the presented model, the natural features are extracted from input images that would
be a composition of the local mean subtraction and contrast divisive normalization
(MSCN) coefficients. Additionally, the product of MSCN coefficients in four directions
(horizontal, vertical and two diagonals) is calculated and used as a part of the feature
vector. Wakeby distribution has been adapted for modeling of the MSCN coefficients
and their relative products. This model is achieved by estimating the distribution
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parameters obtained by the best fitting trials of MSCN coefficients. Then the estimated
parameters of Wakeby distribution has been used to form the quality aware feature
vector. Since the range of raw data values vary widely, in order to obtain faster
converges, the range of all features should be normalized between [-1, 1] so we make a
fair deal between each feature’s contribution. The feature vectors of the training
samples are fed to an SVM to form the model. Then the SVM model and feature vector
of each testing sample is being used as a prediction module to find a blind approxi-
mation of quality score for the test image.

3.1 Natural Scene Statistics Extraction

The statistics of natural images, have been studied for more than 50 years by vision
scientists and television engineers. The idea is simple: All natural images share some
common statistical behaviors regularities related to the real world. One of the best
examples of NSS is MSCN coefficients where its histogram is approximately Gaussian
like for a natural image [12]. Figure 1 shows the behavior of these statistics in presence
of different distortions is predictable. It helps the reader to have a better imagination of
the relation between NSS and severity of distortions. As it is shown in Fig. 1 each
distortion affects each image distribution in a distinguishable way and all the behaviors
are independent of image contents. For example, presence of JPEG2000 and JPEG
distortions, makes the distributions highly picked but JPEG makes it sharper and when
it comes to white noise, we see the distribution is more Gaussian like. By generating
models based on these regular behaviors, presence and severity of the distortions are
objectively sensible. To model the statistical regularities observed in natural images,
the local mean subtraction and contrast divisive normalization (MSCN) coefficients are
calculate by the Eq. (1):

Î i; jð Þ = Iði; jÞ � lði; jÞ
rði; jÞ þ d

ð1Þ

Where i 2 1; 2; ::;Mð Þ and J 2 1; 2; ::;Nð Þ are spatial indices of a natural image’s
pixels with size of, M � N and d is a small value to prevent division by zero. µ and r
can be calculated by Eqs. (2) and (3) respectively:

l i; jð Þ ¼
XK

k¼�K

XL

l¼L

xk;lIk;l i; jð Þ ð2Þ

rði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

k¼�K

XL

l¼L

xk;l½Ik;lði; jÞ � lði; jÞ�2
vuut ð3Þ

Where is xk;l k ¼ �K; . . .;K; l ¼ �L; . . .; Lj is a 2D circularly symmetric Gaussian
weighting function.
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3.2 Wakeby Distribution Model

The MSCN coefficients can be modeled by different statistical distributions, in [5],
zero-mean general Gaussian distribution (GGD) with two parameters and in [13]
Weibull distribution with three parameters is used to model the MSCN coefficients.
Both of these distributions have some inabilities to fit the coefficients efficiently, and it
encouraged us to use a more flexible distribution with more degree of freedom to model
MSCN coefficients. Therefore, our choice comes to the advanced continuous Wakeby
distribution [20] with five parameters for modeling and extract quality aware features.
The Wakeby distribution’s mathematic definition is shown in Eq. (4):

xðFÞ ¼ fþ a
b
ð1� ð1� FÞbÞ � c

d
ð1� ð1� FÞ�dÞ ð4Þ

x Fð Þ represents Wakeby distribution with shape parameters β and d, scale parameters α
and γ, and location parameter ζ. Where F ¼ FðxÞ ¼ PðX � xÞ is non-exceedance
probability and x Fð Þ is F corresponding quantile value. Also the following conditions
are necessary to satisfy:

a 6¼ 0 or c 6¼ 0

bþ d[ 0 or b ¼ k ¼ d ¼ 0

if a ¼ 0 then b ¼ 0

if c ¼ 0 then d ¼ 0

c� 0 and aþ c� 0

Fig. 1. Empirical histograms of the MSCN coefficients of three random reference images from
LIVE database and their distorted versions.

Blind Image Quality Assessment Through Wakeby Statistics Model 17



An analytical technique based on probability-weighted moments [21] is used to esti-
mate b; d; a; c; fð Þ parameters of the Wakeby distribution. Also, mean and variance (m,
v) of best Wakeby distribution fitted of MSCN coefficients are calculated and used for
the Wakeby distribution modeling.

3.3 Quality Aware Feature Extraction

In addition to the MSCN coefficients that have been modeled in previous section, the
statistical relationships between adjacent pixels are also modeled. A study [5] shows
that the MSCN coefficients are more homogenous for original natural images, and the
product values of adjacent coefficients exhibit a regular structure that changes in
presence of different distortions. Same to BRISQUE [5], To model this regular
structure between neighbor coefficients, pairwise products on a distance of one pixel
along four orientations (horizontal, vertical, main diagonal and secondary diagonal)
between adjacent MSCN coefficients, are calculated by Eqs. (5), (6), (7) and (8)
respectively. Figure 2 shows the neighboring MSCN coefficients which are computed
along four directions and their horizontal (i,j) histograms for a sample image and its
distorted versions.

Horizontal i; jð Þ ¼ Îði; jÞ � Îði; jþ 1Þ ð5Þ

Vertical i; jð Þ ¼ Îði; jÞ � Îðiþ 1; jÞ ð6Þ

Main diagonal i; jð Þ ¼ Îði; jÞ � Îðiþ 1; jþ 1Þ ð7Þ

Secondary diagonal i; jð Þ ¼ Îði; jÞ � Îðiþ 1; j� 1Þ ð8Þ

In each orientation, for each paired products the Wakeby distribution parameters (β, δ,
α, γ, ζ) are estimated. Due to independency of position parameter to distortions, this
parameter is not used in the feature vector. Therefore, the 22 quality aware features are
a composition of these four parameters: b; d; a; cð Þ (from modeling MSCN coefficients)
and 16 elements obtained from the products of adjacent MSCN coefficients along the
four directions, and the last two elements are (µ, v). The features are extracted over two
scales and this yields 44 features that extracted from each image and forms the quality
aware feature vector. This is done because the human visual system (HVS) extracts
structural information from the natural images, therefore by modeling the structural
similarities, a good approximation of image quality is obtained. In [14] multiscale
nature of HVS and the affection of distortions on natural images are described.

3.4 SVM Model and Prediction

In this paper, a support vector machine (SVM) regression (SVR) [15] is used to predict
the quality score of the test images. LIBSVM [16] package is used beside the imple-
mentation of this algorithm as the regression machine, implementing SVR with radial
basis function (RBF) kernel that makes the suggested SVM model. The feature vectors
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of training samples (described in previous section), and corresponding differential
mean opinion score (DMOS) (described in Sect. 4.1) are fed to the SVR to generate the
suggested SVM model. Then the prediction module uses the SVM model and the test
image feature vector to estimate quality score. The prediction module is also imple-
mented in the LIBSVM package.

4 Experimental Results

4.1 Database

LIVE II IQA database [17] consists of images with five types of distortions including
JPEG2000, JPEG, white noise (WN), Gaussian blur (Blur) and fast fading channel
distortion (FF). All of them derived from 29 reference images. In this database the
differential mean opinion score (DMOS) of each distorted image is included. DMOS
scores are in range [0, 100], where lower DMOS indicates higher quality.

4.2 Performance Evaluation

Two commonly used performance metrics, Pearson Linear Correlation Coefficient
(PLCC) and Spearman Rank-Order Correlation Coefficient (SRCC) as suggested in
[18] are employed to evaluate the proposed algorithm. First, 80 % of LIVE database are
randomly selected as training samples. To prove method’s content independency, we
made sure there is no content overlap between train and test samples. We conducted
performance comparisons between the proposed method and six other state of the art
image quality assessment methods: Three full reference algorithms including (PSNR
[19], SSIM [3], MS-SSIM [14]), and other three no-reference (blind) algorithms
including (SSEQ [11], BRISQUE [5], BLIINDS-II [10]). All of them tested via the
mentioned performance evaluation metrics. To make a fair comparison, we performed
random 20 % test and 80 % training samples for 100 times. Then we employed mean of

Fig. 2. Left: Pairwise products of MSCN coefficients are computed along four directions, Right:
Horizontal(i,j) histograms of buildings reference image and its five distorted versions from
LIVE II database that shows the product values of adjacent coefficients exhibit a regular
structure.
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all 100 times repeated tests as the final performance of the algorithms, since the FR
algorithms do not need training, mean of 100 runs on the test samples’ results are
reported. Table 1 shows PLCC metric across all train-test trials on the LIVE II IQA
database for the proposed and other six mentioned state of the art method. The PLCC
metric shows that the proposed method has a more accurate performance in presence of
all distortions of the LIVE II IQA database. Table 2 shows the performance of the
proposed method with the metrics SRCC. This metric also demonstrates our method is
superior in total on LIVE II IQA database. The best results in the full references and the
blind methods are highlighted in all tables.

5 Conclusion

In this paper a novel general purpose blind image quality assessment model is pre-
sented, which uses MSCN spatial natural scene statistics of the input images. A feature
vector with 44 dimensions is then extracted based on the Wakeby distribution mod-
eling. Then an SVM is trained to predict image quality scores from these feature
vectors. We then evaluated performance of the proposed method in terms of correlation
with human perception. The experimental results have shown this method is statisti-
cally better than the full reference PSNR and SSIM metrics as well as highly com-
petitive to all state of the art blind image quality methods.

Table 1. PLCC metric across 100 train-test trials on the LIVE II IQA database.

Methods JPEG2k JPEG WN Blur FF ALL

PSNR 0.8814 0. 9112 0.9221 0.8134 0.8933 0.8781
SSIM 0.9555 0.9531 0.9832 0.9143 0.9518 0.9165
MS-SSIM 0.9689 0.9733 0.9832 0.9592 0.9501 0.9573
SSEQ 0.9492 0.9595 0.9709 0.9445 0.9033 0.9310
BRISQUE 0.9486 0.9407 0.9891 0.9450 0.9101 0.9239
BLIINDS-II 0.9358 0.9399 0.9637 0.9102 0.8994 0.9198
Proposed method 0.9540 0.9330 0.9716 0.9219 0.9186 0.9414

Table 2. SRCC metric across 100 train-test trials on the LIVE II IQA database

Methods JPEG2k JPEG WN Blur FF ALL

PSNR 0.8577 0.9014 0.9398 0.7776 0.8803 0.8665
SSIM 0.9399 0.9500 0.9601 0.9112 0.9369 0.9088
MS-SSIM 0.9665 0.9801 0.9760 0.9502 0.9411 0.9533
SSEQ 0.9443 0.9454 0.9770 0.9443 0.9104 0.9358
BRISQUE 0.9246 0.9699 0.9803 0.9433 0.8888 0.9370
BLIINDS-II 0.9519 0.9220 0.9655 0.9207 0.9021 0.9359
Proposed method 0.9575 0.9410 0.9737 0.9406 0.9135 0.9437
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Abstract. Tiled displays provide an effective means of displaying very
large images but suffer from a grid distortion caused by gaps between
individual tiles. This paper introduces new image correction algorithms
that use elements of the human visual system to improve perceived qual-
ity of the displayed images without directly modifying the static grid dis-
tortion. These correction techniques, validated through use of a formal
user study, provide statistically significant improvements over unmodi-
fied grid-distorted images.

Keywords: Image quality · Image tiling · Image enhancement

1 Introduction

Tiled displays allow for visualization of images that cannot be practically viewed
on individual displays. They support sizes that are orders of magnitude greater
than the largest individual display, with equivalent or superior pixel densities,
and they offer this support with the option of different shapes and configurations
that are infeasible using individual displays.

These advantages come at the cost of certain distortions that are unique
to tiled displays such as non-uniformity, inter-tile brightness or colour mis-
match, and misaligned tiles [2,4], but these distortions can generally be managed
through careful design and manufacturing.

Another distortion inherent to tiled displays, caused by the gaps between each
active region, creates the appearance of a grid overtop of any image displayed.
This grid distortion is not correctable with current manufacturing techniques,
making it an objectionable artifact on every tiled display. The image quality
impact of this grid distortion has been largely unresearched; [6] and [7] have
investigated the grid distortion’s quality measurement and impact, but there
has thus far been no work done for improvement of this distortion.

Improving the quality of grid-distorted images is a problem requiring percep-
tual image processing where the goal is to modify pixels in the image “active
areas” such that the grid (i.e., “pixels” that cannot be modified) appears less
objectionable. We address this problem by developing new image correction algo-
rithms that use characteristics of the human visual system (HVS) to perceptually
improve the quality of grid-distorted images. Formal verification of these correc-
tion algorithms shows that viewers clearly and consistently prefer the corrected
images over unmodified grid-distorted images.
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 22–29, 2015.
DOI: 10.1007/978-3-319-20801-5 3
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2 Theory

This section describes the theory behind the algorithms used to improve tiled
image quality without directly modifying the grid.

2.1 Edge Brightening

Brightening pixels near the grid distortion can reduce its perception due to the
point spread function (PSF) of the human eye. The PSF describes the effect of
passing a point source of light through an imperfect lens [3]. The diffraction-
limited PSF (i.e., ignoring effects of defocus, aberrations, and scatter), provides
the luminance distribution in the resulting image according to Eq. 1,

L(ζ) =
[2J1(ζ)]2

ζ2
, (1)

where L(ζ) represents the relative light level at distance ζ from the center of the
PSF, J1(ζ) is a Bessel function, and

ζ =
πθD

λ
, (2)

where θ is the angular distance (in radians), D is the pupil diameter, and λ is
the light wavelength. An example of a point-spread function is shown in Fig. 1.

Fig. 1. PSF example; (Left) Input point source; (Right) Output image.

The application of the PSF to improving tiled image quality relies on the
effect shown in Fig. 1. At sufficient viewing distances, the “spread” of any point
source of light (i.e., pixels) overlaps with one or more adjacent points (Fig. 2).
We can therefore affect the perceived values of unmodifiable “grid pixels” by
changing the values of nearby pixels. A similar procedure has been used to hide
individual defective display pixels [5] but this procedure aims only to hide a
single pixel. Hiding a large supra-threshold distortion such as a grid is more
difficult because each “grid pixel” has fewer adjacent “compensation pixels” and
the grid is a global distortion that spreads across the entire image (Fig. 3).
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Corner Brightening. Corner brightening is a special case of edge brightening
that must be accounted for. As illustrated in Fig. 4, corner “grid pixels” have
fewer adjacent “correction pixels”. Therefore, any correction applied to these
pixels must be greater than that of a typical grid correction pixel.

Fig. 2. PSF illustration; (Left) Input point grid (i.e., pixels); (Right) Perceived image.

Fig. 3. PSF illustration with Grid Line; (Left) Input point grid (i.e., pixels); (Right)
Perceived image; squares represent “grid pixels”. Note that each “grid pixel” has a
minimum of three adjacent “correction pixels”.

Fig. 4. PSF illustration with Grid Corner; (Left) Input point grid (i.e., pixels); (Right)
Perceived image; squares represent “grid pixels”. Note that “grid pixels” have fewer
adjacent “correction pixels” as they approach a corner.

2.2 Global Darkening

Edge brightening cannot be applied when pixels are near their maximum val-
ues and the display is operating at maximum brightness. In these cases, contrast
compression can be applied to the entire image, mapping the original pixel inten-
sities to a smaller range. This darkens the image as a whole but enables image
correction through brightening of pixels near the grid.

3 Image Correction Algorithms

We used the concepts presented in Sect. 2 to develop six1 image correction algo-
rithms for comparison:
1 Arguably five new algorithms; Algorithm 0 is a “do nothing” reference case.
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Algorithm 0. This “algorithm” leaves the grid-distorted reference image unch-
anged, applying no edge brightening and no global darkening. These images
represent typical uncorrected images as viewed on a tiled display.

Algorithm 1. This algorithm performs no edge brightening but applies global
darkening (“contrast reduction”) of 40 % by scaling the pixel range of [0,255] to
[0,182]. These images represent a common reference for comparing edge bright-
ening independent of any potential clipping.

Algorithm 2. This algorithm performs 40 % global darkening of the images,
followed by a 40 % “step correction” edge brightening. Step correction brightens
only the rows and columns immediately adjacent to the grid and is the simplest
form of edge brightening.

Algorithm 3. Algorithm 3 applies a “sinc correction” brightening with no global
darkening. This correction applies 40 % brightening to the first row/column, 20 %
darkening to the second, and 10 % brightening to the third. With no global dark-
ening, immediately adjacent pixels above the level of 182 will clip at 255.

Algorithm 4. This algorithm applies the same sinc correction as Algorithm 3
(40/-20/10), but does so after a 20 % global darkening (i.e., [0,255] scaled to
[0,212]). This algorithm represents a trade-off between global darkening and
potential clipping during edge brightening.

Algorithm 5. Algorithm 5 applies the same sinc correction as Algorithm 3 and
Algorithm 4 (40/-20/10), but applies global darkening of 40 % (i.e., [0,255] scaled
to [0,182]), allowing for full edge brightening with no clipping.

Corner Correction. All algorithms with edge brightening (i.e., Algorithms
2-5) apply an extra corner brightening of 20 %.

4 Validation

We tested the effectiveness of our image correction algorithms with a formal user
study roughly based on the TID2008 image database [8].

4.1 Methodology

Each session consisted of an instruction and training phase, where subjects were
familiarized with the study, followed by the experiment phase. For the exper-
iment, we used a forced-choice side-by-side image presentation similar to that
used for the TID2008 database, but we elected not to show reference images in
the user interface (Fig. 5) and we added extra options for subjects to select.
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We excluded reference images because we were more interested in each sub-
ject’s preference between the two distorted images than in the fidelity to the
original undistorted image. We felt inclusion of the “perfect” reference image
would skew results by making both grid-distorted images look relatively “bad”.
The extra options (“Certainly Better” and “Probably Better”) were added to
distinguish strong preferences from weak.

We used a round-robin comparison instead of the Swiss tournament principle
used for TID2008 to gain a higher granularity in scoring results (i.e., every image
was directly compared against every other image). This came at the expense
of efficiency with round-robin requiring O(N2) image comparisons while Swiss
tournament only requires O(N log2(N)) comparisons (to determine a distinct
“winner” and “loser”; the rankings of intermediate images are much less defined
for Swiss tournament). The use of round-robin limited the number of source
images and correction algorithms that could be included in the study without
exceeding the recommended maximum session time ([1]) of 30 minutes.

User Interface. Figure 5 shows our user study interface. Subjects selected
between four possible options: “Certainly Better” for left image, “Probably Bet-
ter” for left image, “Probably Better” for right image, and “Certainly Better”
for right image. The image ordering was reversed for roughly half of the user
subjects to account for potential bias in left/right vs. right/left placement.

Scoring. User selections were converted to opinion scores by assigning “points”
to an image each time it was preferred: 2 points for “Certainly Better” and 1

Fig. 5. The image-correction user study interface. The ‘Next’ button is shown inactive
because the subject must select a score before moving to the next image. Left/right
ordering of images is reversed between viewing sessions.
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point for “Probably Better”. With 6 algorithms, each image ended with a score
in the range [0,10].

Subjects. The study recruited 31 subjects from undergraduate engineering and
various graduate university programs. The male-to-female ratio of subjects was
22:9 and average subject age was 26.4 years with a standard deviation of 5.1
years. Average session duration was 17:39 minutes with a standard deviation of
3:45 minutes.

Images. Use of the round-robin method (with O(N2) image comparisons)
required a reduction in the number of images used compared to earlier tiled
display quality studies [6,7] and only the 16 images shown in Fig. 6 were used.

Fig. 6. Source images used in the image-correction user study.

Equipment. All images were displayed on a 23′′ IPS LCD monitor set to its
native resolution of 1920×1080 and factory default settings. Subjects were seated
at a fixed distance of 1.5 metres from the display in a windowless room with
typical office lighting.2

4.2 Results

Results from our user study are shown in Fig. 7. Notches on each box plot indicate
95 % confidence intervals.
2 This distance was greater than the typical recommended viewing distance of 3–4

times the image height because the image correction algorithms require a minimum
viewing distance to be effective (as described in Sect. 2).
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Fig. 7. Mean opinion scores across all images.

5 Discussion and Conclusions

Based on the results of Sect. 4, we note the following key points:3

1. The “darken-only” algorithm (“Correction 1”) is statistically worse than the
“no-modification” algorithm (“Correction 0”).

2. All other correction algorithms result in statistically better quality images
than the unmodified grid-distorted image (“Correction 0”).

3. Algorithms with significant darkening (i.e., Algorithms “2” and “5”) are sta-
tistically worse than those without (i.e., Algorithms “3” and “4”).

4. Corrections “3” and “4” show similar performance; “Correction 3” has a
higher average score, but also a much higher spread of scores.

5.1 Conclusions

1. Global Darkening is always4 undesirable.
2. Edge Brightening is always desirable, even at the expense of a darker image.
3. The “best” image correction algorithm studied here is either “Correction 3”

or “Correction 4”, subject to preference and interpretation:
(a) Correction 4 is best if consistency is more highly valued.
(b) Correction 3 is best if maximum potential quality is prioritized.
(c) If “the majority of cases” is considered, Correction 3 is best; preferred

over Correction 4 by a ratio of nearly 2:1 when directly compared.

3 All statements of “statistically better” or “statistically worse” refer to a 95 % confi-
dence interval).

4 True for our user study; may not hold true for darker environments.



Improving Image Quality of Tiled Displays 29

5.2 Future Work

Future work is required to determine the optimal tradeoff between edge bright-
ening correction and global darkening, allowing development of a dynamic algo-
rithm that darkens by the minimal amount required for optimal edge brightening.
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Abstract. In this paper we propose a new method of solving optimiza-
tion problems involving the structural similarity image quality measure
with L1-regularization. The regularization term ‖x‖1 is approximated by
a sequence of smooth functions ‖x‖ε

1 by means of C∞
0 functions known as

mollifiers. Because the functions ‖x‖ε
1 epi-converge to ‖x‖1, the sequence

of minimizers of the smooth objective functions converges to a mini-
mizer of the non-smooth problem. This approach permits the use of
gradient-based methods to solve the minimization problems as opposed
to methods based on subdifferentials.

1 Introduction

Many problems in image processing may be cast into the following form: Given
a y ∈ R

m and a compact subset D ⊂ R
n, find

min
x∈D

1
2
‖Ax − y‖22 + γ‖x‖1, (1)

where A is an m × n transformation matrix (e.g., wavelet, Fourier, random
matrix, etc.). Such a functional is known as the Lasso problem, whose L1 reg-
ularizing term induces sparseness in its solution [1,16,23]. The quadratic term,
which is usually called the “fidelity term”, keeps the solution close to the obser-
vation y.

A great variety of algorithms have been proposed to solve the Lasso prob-
lem, e.g., Fast Iterative Soft-Thresholding Algorithm (FISTA) [1] and the Least
Angle Regression [16]. These specialized methods usually rely on techniques from
subdifferential calculus to overcome the non-differentiability of the regularizing
term of (1). Nevertheless, classical methods can be employed by either casting
(1) as a Quadratic Program (QP) [16] or by approximating the L1 norm with a
family of smooth functions ϕε ∈ C∞

c (Rn) known as mollifiers [12].
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 33–42, 2015.
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In particular, in [24], the Gaussian distribution is used as an approximate
mollifier to solve a smooth version of (1), which is obtained by convolving each
component of the L1 norm with a standard one-dimensional Gaussian density
function of variance ε2. This technique allows the usage of gradient-based meth-
ods for approximating the optimal solution x� of (1). In this case, the smooth
approximation of the original problem is given by

min
x∈D

1
2
‖Ax − y‖22 + γ‖x‖ε

1, (2)

where ‖x‖ε
1 is equal to

‖x‖ε
1 =

n∑

i=1

∫

R

|xi − zi|φ̂ε

(zi

ε

)
dz. (3)

Here, φ̂(x) is the standard normal distribution in one dimension.
In an imaging context, the main drawback of these approaches is that they

employ the square of the Euclidian distance as a fitting term, which is not
the best choice when it comes to measure visual closeness [28,29]. To overcome
this difficulty, many authors have incorporated the Structural Similarity Index
Measure (SSIM) as a fidelity term in different types of optimization problems
[6,7,17–20]. The SSIM is one of the most popular measures of visual quality,
which was introduced in [28], and it has been shown to outperform the square
of the Euclidian distance as a measure of visual quality.

Nevertheless, mathematical treatment of the SSIM is difficult, thus simpler
versions of the SSIM are desirable. In particular, the definition of this measure
as a normalized metric has been employed in [6,17,18]. This simplified version
of the SSIM has nice properties such as quasi-convexity [4,18], which allows the
use of quasi-convex techniques to solve optimization problems that employ the
SSIM as a fidelity term [18].

In [18], several imaging tasks are carried out by solving different types of
quasi-convex optimization problems in which the SSIM is minimized subject to
a set of convex constraints. One of the problems that is addressed is

min
x

T (Ax, y) (4)

subject to ‖x‖1 ≤ λ.

Here, the fidelity term is given by T (Ax, y) = 1 − S(Ax, y), where S(·, ·) is the
simplified version of the SSIM as a normalized metric [6,17,18]. The uncon-
strained counterpart of (4) was studied in [17]. In this case, an algorithm that
uses a generalization of the soft-thresholding operator [11,23] is employed for
solving the following optimization problem:

min
x∈D

T (Ax, y) + γ‖x‖1 . (5)

The advantage of these formulations is that the concepts of similarity and spar-
sity are combined into a single optimization problem; therefore, solutions of this
problem are similar to the observation y in the SSIM sense and also sparse.
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In this paper, we extend the work of [17] by solving (5) via mollifiers. This
approach allows us to use gradient-based methods for solving the non-smooth
problem (5). In this case, the following smooth version of (4) is solved:

min
x∈D

T (Ax, y) + γ‖x‖ε
1, (6)

where ‖x‖ε
1 is obtained by convolving the L1 norm with a multivariate Gaussian

distribution of variance ε2. As expected, the sequence of minimizers x∗
ε of (6)

converges to an optimal solution x∗ of (5) when ε → 0. Numerical results that
show the performance of the gradient-based method presented in this paper are
also included.

2 Smoothing via Mollifiers

In this section we recall some basic notions and properties of mollifiers and
introduce a smoothing approach. For each ε > 0, let us consider a family of
functions ϕε ∈ C∞

0 (Rn) that satisfies the following properties:

1. ϕε(x) ≥ 0, for all x ∈ R
n,

2. support(ϕε) ⊆ {x ∈ R
n : ‖x‖ ≤ ε},

3.
∫
Rn ϕε(x)dx = 1.

Such functions are called mollifiers [12].
We now provide a way to construct a family of smooth functions approxi-

mating any function f in L1
loc (locally integrable functions). Given a family of

mollifiers {ϕε : Rn → R+|ε ∈ R+}, we can define a smooth function approxima-
tion fε of f through the convolution

(f ∗ ϕε)(x) :=
∫

Rn

f(x − z)ϕε(z)dz =
∫

Rn

f(z)ϕε(x − z)dz .

The sequence f ∗ ϕε is said to be a sequence of mollified functions. Some prop-
erties of mollified functions can be considered classical. From a computational
perspective let us notice that if Yε(x, ·) is a random vector with density defined
by z → ϕε(x − z), the above definition can be written as

(f ∗ ϕε)(x) := E(f(Yε(x, ·))) ,

where E is the expected value of the random variable f(Yε(x, ·)). This stochas-
tic interpretation allows us to avoid the calculation of the above integral by
estimating the expected valued of f(Yε(x, ·)) instead.

Theorem 1. [2] Let f ∈ C(Rn). Then f ∗ ϕε converges continuosly to f , i.e.
f ∗ϕεm

(xm) → f(x) for all xm → x. In fact, f ∗ϕε converges uniformly to f on
every compact subset of Rn as εm → 0.

The previous convergence property can be generalized.
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Definition 1. [2] A sequence of functions fm : Rn → R epi-converges to f :
R

n → R at x if:

1. lim infm→+∞ fm(xm) ≥ f(x) for all xm → x;
2. limm→+∞ fm(xm) = f(x) for some sequence xm → x.

The sequence fm epi-converges to f if this holds for all x ∈ R
n. In this case we

say that f is the epi-limit of fm.

It can be easily checked that when f is the epi-limit of some sequence fm,
then f is lower semicontinuous. Moreover if fm converges continuously, then
it also epi-converges. The notion of epi-convergence ensures the convergence of
mimimizers of fm to the minimizers of f (see [22]).

Definition 2. [12] A function f : R
n → R is strongly lower semicontinuous

(s.l.s.c.) at x if it is lower semicontinuous at x and there exists a sequence
xm → x with f continuous at xm (for all m) such that f(xm) → f(x). The
function f is strongly lower semicontinuous if this holds at all x.

Theorem 2. [12] Let εm → 0 if m → +∞. For any s.l.s.c. function f : Rn → R,
and any associated sequence fεm

of mollified functions we have that f is the epi-
limit of fεm

.

Lemma 1. The mollified norm ‖x‖ε
1 is greater or equal than its non-smooth

counterpart ‖x‖1 for any x ∈ R
n.

Proof. Let f(z) = ‖x− z‖1. Then, by convexity of f and using Jensen’s inequal-
ity, we have that

‖x − E(z)‖1 ≤
∫

Rn

‖x − z‖1ϕε(z)dz. (7)

Given that E(z) = 0, we immediately obtain that ‖x‖1 ≤ ‖x‖ε
1 for all x ∈ R

n.

Theorem 3. Let g : Rn → R and (εm) be a sequence of positive real numbers
such that εm → 0. The function g(x) + γ‖x‖1 is the epi-limit of the sequence of
functions hm : Rn → R defined as

hm(x) := g(x) + γ‖x‖εm
1 . (8)

Proof. Let (xm) be a sequence in R
n such that xm → x. Since ‖x‖εm

1 converges
to ‖x‖1 as m tends to infinity, we have that

lim
m→∞ hm(xm) = g(x) + γ‖x‖1. (9)

Also, by lemma 1, it follows that for any xm ∈ R
n and any εm ∈ R+

g(xm) + γ‖xm‖εm
1 ≥ g(xm) + γ‖xm‖1. (10)

Taking lim inf at both sides over all sequences xm → x we obtain that

lim inf
m→∞ g(xm) + γ‖xm‖εm

1 ≥ g(x) + γ‖x‖1. (11)

This completes the proof.
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By means of mollified functions it is possible to define generalized directional
derivatives for a non-smooth function f , which, under suitable regularity of f ,
coincide with Clarke’s subdifferential. In [12] (see also [8,9,15] for alternative
definitions of generalized derivatives through mollified functions), a generalized
gradient w.r.t. the mollifier sequence fεm

has also been defined in the following
way:

∂εf(x) :=
{

lim sup
m→+∞

∇fεm
(xm), xm → x

}
. (12)

Theorem 4. [12] Let f : Rn → R be locally Lipschitz at x; then ∂εf(x) coincides
with Clarke’s subdifferential at x.

Theorem 5. Let g : Rn → R be differentiable and locally Lipschitz at x. Also, let
h(x) = g(x) + γ‖x‖1. Then, ∂εh(x) coincides with Clarke’s subdifferential at x.

Proof. Clearly, ‖x‖1 is Lipschitz continuous with Lipschitz constant one since

|‖x‖1 − ‖y‖1| ≤ ‖x − y‖1. (13)

Moreover, since g is locally Lipschitz at x, it follows that h is locally Lipschitz
at x as well. Also, by definition of ∂ε(·) one has that

∂εh(x) :=
{

lim sup
m→+∞

∇(g(xm) + γ‖xm‖εm
1 ), xm → x

}
(14)

:=
{

lim sup
m→+∞

∇g(xm) + γ∇(‖xm‖εm
1 ), xm → x

}
(15)

:= ∇g(x) + γ

{
lim sup
n→+∞

∇(‖xm‖εm
1 ), xm → x

}
, (16)

where the last equation is indeed the set of Clarke’s subgradients of h at x.

In the sequel we will use the following family of smoothing Gaussian func-
tions:

φ̂ε(x) =
1
εn

φ̂
(x

ε

)
, (17)

where
φ̂(x) =

1√
2π

e− ‖x‖2
2

2 . (18)

It is well known that φε is a density function, so its integral over R
n is equal to

one, it is smooth, and φε goes to zero when ‖x‖ → +∞. However, this sequence
is not a proper family of mollifiers as each element φ̂ε does not have a compact
support. Nevertheless, it can be proved that, given a function f , the family of
smooth functions

f̂ε(x) = (f ∗ φ̂ε)(x) =
1
εn

∫

Rn

f(x − z)φ̂
(z

ε

)
dz (19)
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epi-converges to f when ε → 0. This easily follows by taking a sequence of
mollifiers ϕδ with compact support converging to φ̂ when δ → 0, and then use
the convergence properties of mollifiers.

Furthermore, Theorems 3 and 5 guarantee that the sequence of minimizers
x∗

ε of (6) converges to a minimizer x∗ of (5) when ε tends to zero. In other words,
x∗

ε → x∗ as ε → 0.

3 SSIM-Based Optimization with Sparsity

The Structural Similarity Index Measure (SSIM) between x and y, where x, y ∈
R

n, is defined as [28]

SSIM(x, y) =
(

2μxμy + C1

μ2
x + μ2

y + C1

)(
2σxσy + C2

σ2
x + σ2

y + C2

)(
σxy + C3

σxσy + C3

)
. (20)

Here, μx and μy denote the mean values of x and y, respectively, and σxy denotes
the cross correlation between x and y, from which all other definitions follow.
The small positive constants, C1, C2 and C3 provide numerical stability and can
be adjusted to accommodate the Human Visual System (HVS) [28,29].

Under the assumption that the vectors x and y have zero mean, the latter
expression can be simplified:

S(x, y) =
2xT y + C

‖x‖22 + ‖y‖22 + C
, (21)

where C = (n − 1)C2. Reformulation of the SSIM as a normalized metric comes
out from the definition of the following distance-dissimilarity function T (x, y)
[6,17,18]:

T (x, y) = 1 − S(x, y) =
‖x − y‖22

‖x‖22 + ‖y‖22 + C
. (22)

Note that 0 ≤ T (x, y) ≤ 2. Furthermore, T (x, y) = 0 if and only if x = y.
Algorithms for solving (6) can be developed by first computing its gradient.

To do this, we define the following non-linear functional:

f(x) = T (x, y) + γ‖x‖ε
1. (23)

Its gradient is given by

∇fε(x) =
2S(x, y)AT Ax − 2AT y

‖Ax‖22 + ‖y‖22 + C
+ γ

∫

Rn

‖z‖1∇φ̂ε

(
x − z

ε

)
dz, (24)

where ∇φ̂ε(x) is equal to

∇φ̂ε

(x

ε

)
=

−x√
(2π)nεn+2

e− ‖x‖2
2

2ε2 . (25)

By using (24), and defining 1 = [1, · · · , 1]T ∈ R
m, we propose the following

algorithm for solving (6):
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Algorithm 1. Gradient descent for unconstrained SSIM-L1 optimization via
mollifiers

initialize Choose x = x0, λ;
data preprocessing ȳ = 1

n1
T y, y = y − ȳ1;

repeat
x = x − λ∇fε(x);

until stopping criterion is met (e.g., ‖x(new) − x(old)‖∞ < δ);
return x, y = y + ȳ1.

Notice that this algorithm will return an optimal x∗ such that the mean of
Ax∗ is zero. Nevertheless, it is possible to obtain the non-zero mean optimal x�

by means of the following equation:

x� = x∗ + ȳ(AT A)−1AT1, (26)

provided that the inverse of AT A exists (see [17] and [18] for more details).

4 Experiments

In these experiments we solve the approximate sparse reconstruction problem
(6) with the proposed gradient-descent algorithm. Its performance is measured
by comparing its recovered solutions with the solutions obtained by the algo-
rithm introduced in [17] for solving (5) and the solutions of problem (1). In all
computations a set of Discrete Cosine Transform (DCT) coefficients is to be
recovered; therefore, problem (1) was solved by means of the soft-thresholding
(ST) operator [16,23].

In all the experiments images were divided into non-overlapping 8 × 8 pixel
blocks. As expected, the means of each block are subtracted prior to processing,
which are added after the non-overlapping blocks have been processed. This is
also done when problem (1) is solved at each pixel block for the sake of a fair
comparison between the different methods.

It is worthwhile to mention that for computing the integral of the gradient
of (23) we performed a Monte Carlo integration (see Eq. (24)). This can be done
by noticing the fact that calculating

∫

Rn

‖z‖1∇φ̂ε

(
x − z

ε

)
dz (27)

is equivalent to compute the expected value E(‖z‖1(x − z)), where z follows a
Gaussian distribution of variance ε2 and mean equal to x.

In Fig. 1, in the left plot it can be observed an example of the optimal DCT
coefficients that are obtained by the different methods that are being compared.
Plots in red and green correspond to the solutions obtained by the algorithm
introduced in [17] and ST respectively. The blue plot is the optimal solution
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that was obtained by the proposed method when ε = 0.001. True sparsity in the
solution is not achieved since this occurs in the limit when ε → 0; nevertheless,
it can be seen that the proposed method gives a good non-sparse approximation
of the solution of the non-smooth problem (5). This in fact can be useful for
providing a good initial guess of a thresholding method that solves (5) [24]. In
the plot on the right it can be seen how a sequence of optimal solutions of (6)
gets closer to a solution of (5) as ε tends to zero. In this case, the plot in magenta
corresponds to the set of optimal DCT coefficients that is obtained by solving
problem (5).

As for visual results, these are shown in Fig. 2. In the presented example, a
sub-image of the test image Lena was employed. In the bottom row the original
sub-image and its recovered counterparts can be observed. Regularization was
carried out at all non-overlapping pixel blocks in such a way that the number
of non-zero DCT coefficients obtained by the algorithm introduced in [17] and
the ST operator is always 19. As for the regularization of the proposed algo-
rithm, the values of the regularization parameter that were used were the same
that were employed for the algorithm that solves the non-smooth problem (5).

Fig. 1. The plot on the left shows an example of the different solutions that were
obtained by the three methods that were compared. The plot on the right shows how
a sequence of minimizers x∗

ε of the mollified SSIM-based optimization problem (6)
converges to a minimizer x∗ of the non-smooth problem (5).

Original Mollified

Mollified

Non mollified

Non mollified

ST

ST

Fig. 2. Visual results for a sub-image from the test image Lena. In all cases, regular-
ization is carried out to induce the same degree of sparsity for all methods at each
non-overlapping pixel block. In the bottom row the original image and its reconstruc-
tions are shown. The corresponding SSIM maps can be seen in the top row.
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This was done in this way since in the limit when ε → 0, both problems (5)
and (6) are equivalent. In other words, the strength of the regularization tends
to be the same for these two methods. Along with the images of the bottom row,
the SSIM maps that depict the similarity between the original sub-image and
its reconstructions are shown in the top row. The higher the brightness of these
maps at a given location, the higher the SSIM at that particular point [28]. As
mentioned in [17], performance of the ST approach and their algorithm is very
similar, however, the average T (Ax, y) of the non-mollified SSIM-based optimiza-
tion problem (0.9156) is higher than the average T (Ax, y) of the L2 counterpart
(0.9117). As for the proposed approach, the recovered image is visually more
appealing than the other two methods, and as expected, the average T (Ax, y)
is the highest of the three approaches that are being compared (0.9629). This
should not be surprising since several recovered DCT coefficients are not set to
zero by the proposed algorithm, which is not always the case for the other two
methods.
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Abstract. Non-Local Means is an image denoising algorithm based on patch
similarity. It compares a reference patch with the neighboring patches to find
similar patches. Such similar patches participate in the weighted averaging
process. Most of the computational time for Non-Local Means scheme is con-
sumed to measure patch similarities. In this paper, we have proposed an
improvement where the image patches are projected into a global feature space.
Then we have performed a statistical t-test to reduce the dimensionality of this
feature space. Denoising is achieved based on this reduced feature space. The
proposed modification exploits an improvement in terms of denoising perfor-
mance and computational time.

Keywords: Non-Local Means algorithm � Image denoising � Image smooth-
ing � Image enhancement � Additive white Gaussian noise � Spatial domain
filtering

1 Introduction

An image may be numerically represented as a two dimensional discrete function u, in
the spatial coordinates x and y. Intensity or gray level is the amplitude of u at any pair
of coordinates. A digital image is composed of finite number of elements called pixels.
An image may be contaminated with noise during acquisition, transmission or trans-
formation. Noise is a variation of pixel intensity. Such noise can be additive or mul-
tiplicative. Additive noise is generally independent of image data whereas
multiplicative noise is dependent on image data. Additive noise can be formularized as,

v ið Þ ¼ u ið Þ þ n ið Þ; ð1Þ

whereas, multiplicative noise is formularized as,

v ið Þ ¼ u ið Þ � n ið Þ: ð2Þ

Here, u(i) is the original value, n(i) is the noise value and v(i) is the observed
value at pixel i. Despite the good quality of acquisition devices, an image denoising
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method is always required to reduce unwanted noise signals. An image denoising
scheme is used to find the best estimate of the original image from its noisy version.

Some of the basic filtering such as Gaussian and average filtering have a drawback
of over-smoothing on edges and losing image details. Wavelet based denoising method
[1], anisotropic diffusion [2], and bilateral filtering [3] try to overcome this drawback
and preserve the image quality by preserving edges. But they may introduce a staircase
effect or false edges. Recently, Buades et al. [4] proposed a denoising algorithm called
Non-Local Means (NLM) which allows neighboring patches in the search window to
participate in the denoising process for a certain reference patch in the noisy image.
Most of the computational time for NLM is allocated to the similarity assessments
between patches. In a general case, NLM needs to search the entire image for similar
patches and performs weighted average based on the similarities. However, searching
in a fixed area around the pixel of interest (POI) can reduce this computational time.
Our main focus is to further reduce this computational time and improve denoising
performance over the original Non-Local Means algorithm.

Many improvements have been suggested on the Non-Local Means algorithm in
recent years. Bhujle et al. [5] proposed a dictionary based denoising in which patches
with similar photometric structures are clustered together to create groups. Mahmoudi
et al. [6] accelerate the NLM algorithm by pre-classifying neighborhood patches based
on average gray values, gradient orientation, or both. Chaudhury et al. [7] claimed that
the denoising performance of the Non-Local Means algorithm can be improved by
replacing the mean operation by a median operation. Vignesh et al. [8] proposed a
speed up technique for the Non-Local Means algorithm based on a probabilistic early
termination (PET). Tasdizen et al. [9] proposed principal component based Non-Local
Means algorithm where a global feature space is created to select important features.
Brox et al. [10] proposed a technique to improve the performance of the NLM method
using a clustering tree.

In this paper, we have proposed to created feature vectors for the noisy image. Then
we have implemented a statistical t-test on these feature vectors to reduce their
dimensionality. Our proposed method reduces the computational time and improves the
overall performance of the original NLM algorithm.

2 Methods

The Non-Local Means algorithm searches neighboring patches to match with the
reference patch. The original algorithm requires an extensive amount of time to select
patches similar to the reference patch. These similar patches contribute to the
weighted averaging process to denoise the center pixel of the reference patch. The
computation time for the NLM algorithm can be reduced by improving this searching
process.

We have formalized our proposed work into three steps. In the first step (pre-
processing), we have created a global feature space and stored all possible
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neighborhood pixels. Then in the second step, we have performed a statistical t-test
to reduce the dimensionality of the feature space on the previous feature points.
Finally, we implement the non-local means algorithm, where we have used the
selected feature points for calculating similarity measures of image neighborhood.

2.1 Preprocessing

In this step, we have created a feature vector space for the noisy image. An image patch
is linearized and represented as a row vector of size j. Thus the dimension of this
feature vector space will be j × N, where N is the total number of image pixels. Feature
vectors can be represented as matrix C,

C ¼
c 1; 1ð Þ � � � c 1; jð Þ

..

. . .
. ..

.

c N; 1ð Þ � � � c N; jð Þ

2

64

3

75 ð3Þ

Here, for example if we have a patch size of 7 × 7 then j will be equal to 49. This matrix
will be used during the dimensionality reduction process.

2.2 t-Testing

We have implemented a paired t-test of the null hypothesis. This test is performed on the
matrix C. For each test case (i.e., each column in the matrix C), once the t value is
determined, the students t-distribution lookup table is used to find the value of p. When
the calculated p value is below a given threshold value, then the null hypothesis is
rejected. In our denoising problem, we have considered each patch as a feature vector.
The hypothesis tries to accept or reject a feature (i.e. an entire column in the matrix C).
Here, the null hypothesis is whether a feature is significant or not. In calculating the null
hypothesis, one uses the following normalization equation

T ¼ �x� l0
s=

ffiffiffi
n

p ð4Þ

Where, �x is the sample mean, l0 is the population mean, s is the sample standard
deviation and n is the sample size. When the null hypothesis is accepted, it concludes
that the feature is significant. Otherwise, this feature is not significant. Thus the entire
column is deleted and hence reduces the size of matrix C.
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2.3 Non-Local Means Algorithm

In the Non-Local Means algorithm a discrete noisy image v = {v(j) | j ϵ I}, where I is
the input image, can be denoised by the estimated value NL[v](i) for a pixel i. It is
computed as a weighted average for all of the pixels in the image,

NL v½ � ið Þ ¼
X

j2I
w i; jð Þv jð Þ ð5Þ

where, the weight w(i, j) depends on the similarity between the pixel i and the pixel j of
the intensity gray level vectors v(Ni) and v(Nj). Here, Nk is the square patch around the
center pixel k. The weight is then assigned to value v(j) to denoise pixel i. The
summation of all weight is equal 1 and each weight value w(i, j) has a range between
[0, 1]. To measure similarity between patches, the Euclidean distance between patches
is calculated,

v Nið Þ � v Nj
� ����� 2

2;r ð6Þ

where, σ > 0 is the standard deviation of the Gaussian kernel. The weight
w(i, j) are computed as follows,

w i; jð Þ ¼ 1
z ið Þ e

�
v Nið Þ�v Njð Þk k2

2;r
h2 ð7Þ

where, Z(i) is a normalization constant such that,

Z ið Þ ¼
X

j
e�

v Nið Þ�v Njð Þk k2

2;r
h2 ð8Þ

Here, h is a smoothing kernel width which controls decay of the exponential
function and therefore controls the decay of the weights as a function of the Euclidean
distances. In our proposed method Nk is replaced by fk, where fk is the reduced feature
vector. Then we have selected similar patches and calculated weights based on this
reduced feature vector.

Our proposed algorithm is summarized as follows.
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3 Results

The performance of our proposed method is compared in terms of PSNR with other
denoising schemes, namely the original NLM method, the principal component anal-
ysis based NLM method (PCA-NLM), the patch regression based NLM method (NLM-
Patch) and the BM3D method. Eight 512 × 512 test images (Bridge, Columbia, Lake,
Lax, Milk drop, Plane, Woman1 and Woman2) are utilized to assess the performance
of these schemes. See Fig. 1.

Tables 1 and 2 show the average PSNR and SSIM comparative performance,
respectively, for all test images. The bolded values in Tables 1 and 2 represent the
highest PSNR and SSIM values, respectively, among all of the algorithms for a given
noise level.
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For noise level σ < 50, the proposed method performs better than any other de-
noising scheme, including the BM3D method. Yet, for noise level σ > 50 the proposed
method performs better than the original NLM and its variants. Yet, the BM3D method
performs better at higher noise levels.

Table 3 compares the average running time performance for all test images for the
proposed method and the other denoising schemes. It has been found that our proposed
method outperforms the NLM method, variants of the NLM method and the BM3D
method at all noise levels, as it requires fewer features to compare and calculate
weights. Thus the computational time is dramatically reduced while keeping the de-
noising performance in an acceptable range.

Fig. 1. The set of the test images (512 × 512) for performance analysis.
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Table 1. Average PSNR(dB) comparison for all test images among the proposed method, the
NLM method, variants of the NLM method and the BM3D method for various noise levels.

Noise level NLM PCA-NLM NLM-patch Proposed method BM3D

10 32.52 32.94 31.47 33.94 33.84
20 29.87 29.95 29.04 31.0 30.50
30 28.13 28.26 27.45 28.96 28.38
40 26.69 26.43 25.87 27.72 27.70
50 25.49 25.38 24.61 26.49 26.86
60 23.85 23.87 22.75 24.30 25.94
70 22.90 22.81 22.31 23.22 25.29
80 22.32 22.32 21.92 22.60 24.75
90 21.73 21.57 20.89 21.86 24.18
100 21.13 20.94 20.14 21.19 23.68
Average 25.46 25.45 24.64 26.15 27.11

Table 2. Average SSIM comparison for all test images among the proposed method, the NLM
method, variants of the NLM method and the BM3D method for various noise levels.

Noise level NLM PCA-NLM NLM-patch Proposed method BM3D

10 0.9078 0.9015 0.9051 0.9201 0.9124
20 0.8625 0.8605 0.8610 0.8785 0.8711
30 0.8389 0.8341 0.8291 0.8469 0.8415
40 0.8071 0.8065 0.8017 0.8202 0.8201
50 0.7689 0.7597 0.7659 0.7810 0.7841
60 0.7487 0.7491 0.7412 0.7524 0.7617
70 0.7059 0.7032 0.7015 0.7195 0.7217
80 0.6925 0.6912 0.6907 0.7079 0.7138
90 0.6857 0.6815 0.6851 0.6992 0.7051
100 0.6711 0.6504 0.6522 0.6975 0.7004
Average 0.7878 0.7819 0.7823 0.8022 0.8099

Table 3. Running time (in milliseconds) for Lena image among the proposed method, the NLM
method, variants of the NLM method and the BM3D method for different noise levels.

Noise level NLM PCA-NLM NLM-patch Proposed method BM3D

10 209.5 195.1 208.1 161.2 223.2
20 210.7 196.7 210.6 164.5 224.2
30 212.3 197.4 210.0 165.7 225.1
40 212.6 198.8 211.5 169.9 229.3
50 212.4 200.3 211.0 173.9 230.2
60 213.0 204.4 212.8 181.2 230.8
70 214.5 207.9 213.1 182.5 231.3
80 214.9 208.6 213.9 184.0 231.6
90 216.0 209.9 214.0 185.2 232.9
100 217.1 210.1 216.4 185.9 233.1
Average 213.3 202.9 212.1 175.4 229.8
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4 Conclusions

Non-Local Means is a popular image denoising algorithm implemented in the spatial
domain. In this research, we have proposed a statistics based improvement for the
Non-Local Means algorithm. The key of this improvement is to reduce the size of
the feature space, which reduces the patch similarity measurement time and increases
the overall denoising performance. We have utilized a statistical t-test to reduce the
dimensionality of the feature space Experimental results show that our proposed
method provides the best running time among all other algorithms in all test cases at
various noise levels. It also provides a good denoising improvement in terms of the
PSNR and the SSIM values. In addition, it performs better than the NLM method and
its variants at all noise levels and perform better than the BM3D method for lower noise
levels.
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Abstract. We present a novel stereo image denoising algorithm. Our
algorithm takes as an input a pair of noisy images of an object captured
form two different directions. We use the structural similarity index as a
similarity metric for identifying locations of similar patches in the input
images. We adapt the Non-Local Means algorithm for denoising collected
patches from the input images. We validate our algorithm on various
stereo images at various noise levels. Experimental results show that the
denoising performance of our algorithm is better than the original Non-
Local Means and Stereo-MSE methods at low noise level (σ � 20).

Keywords: Non-local means · Patch-based image filtering · Stereo
imaging · Structural similarity index · Additive noise reduction ·
Disparity map

1 Introduction

Digital images are captured using sensors during the data acquisition phase,
where they are often contaminated with an undesired random noise. Such noise
can also be produced during image transmission or image compression. Additive
noise is generally modelled as:

υ(x) = u(x) + n(x)d, x ∈ Ω (1)

where υ(x) is the noisy component of the image, u(x) is the true image, n(x)d
is the random additive noise, and Ω denotes the set of all pixels in the image.
In particular, if n(x)d is a Gaussian random process, then the noise is identified
as a Gaussian noise. The noise level in digital images vary from being almost
imperceptible to being very noticeable. Image denoising schemes attempt to
produce a new image that has less noise, i.e., closer to the noise-free image u(x).

Denoising techniques can be grouped into two main approaches: pixel-based
image filtering and patch-based image filtering. A pixel-based image filtering
scheme is mainly a proximity operation used for manipulating one pixel at a
time based on its spatial neighbouring pixels. Such methods include low-pass
filtering using Gaussian filter [1], Yaroslavsky filter [2], bilateral filter [3], total
variation filter [4], and anisotropic diffusion filter [5]. On the other hand, in
patch-based image filtering, the noisy image is divided into patches, or “blocks”,
c© Springer International Publishing Switzerland 2015
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which are then manipulated separately in order to provide an estimate of the
true pixel values based on similar patches located within a searching window.
Such methods include Non-Local Means [6], patch-based PCA [7], K-SVD [8],
and BM3D [9]. Patch-based image filtering approach utilizes the redundancy and
the similarity among the various parts of the input image.

Non-Local Means (NL-Means) is a patch-based image filter proposed by
Buades et al. [6] as a modification to the pixel-based bilateral filter. Like the
bilateral filter, it blurs the homogeneous areas and preserves edges.

As a new application for NL-Means filter, we would like to adapt it for denois-
ing stereo images in order to improve the extracted depth information coming
from noisy stereo images. A stereo image uses two or more images generated from
cameras at different locations. By computing the differences between the images,
the depth information can be extracted. Noisy stereo images would give disap-
pointing results when they are used for extracting depth information. In this
work, NL-Means is utilized for denoising stereo images. Our proposed method
extends the searching window to search the two images when seeking similar
patches.

Using multi-view images for noise reduction has a unique advantage over
using only one-view image. In multi-view images, a pixel in one image is esti-
mated based on the corresponding pixels from all other images. This approach
is popular in video denoising where multi-frames are used for noise reduction
[10,11]. Recently, great progress has been made to break the limits of using
one input image when denoising 3D images. Zhang et al. extended the idea of
using patch-based PCA for denoising single image to multi-view images [12].
While patch-based PCA collects similar patches locally and globally from single
image before applying the PCA algorithm, Zhang et al. algorithm collects simi-
lar patches from multiple images. Heo et al. use Maximum A Posteriori-Markov
Random Field (MAP-MRF) as a model for energy minimization in order to
find the disparity maps from stereo image [13]. In order to find the disparity
maps, they proposed an algorithm that consists of two terms: the first term is
the restored intensity difference, and the second term is the dissimilarity of sup-
port pixel distribution. They adapted NL-Means algorithm for the restoration
of intensity values of the first term. They extended the NL-Means algorithm
for denoising stereo images by grouping similar patches by using MSE from two
similar windows in left and right images, we called this method Stereo-MSE.

The rest of the paper is organized as follow. Section 2 introduces the NL-
Means filter and its mathematical formulation. Section 3 describes our proposed
method. In Sect. 4, we compare the performance of the proposed method with
other denoising filters. Section 5 offers concluding comments, and future works.

2 NL-Means Algorithm

The NL-Means filter divides the input image into sub-images and then filters each
sub-image separately in a technique that is referred to as being patch-based. Each
sub-image contains several patches. As in the bilateral filter, the similarity in NL-
Means filter is assessed based on two measurements: (1) the Euclidean distance
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between the centres of the patches, and (2) the luminance distance between the
patches. In contrast to the bilateral filter, NL-Means filter uses patches from
a searching window instead of using single neighbouring pixels when assigning
weights and averaging. This is why it is called a non-local method. Patches
with similar grey levels are assigned larger weights when averaging. Similar to
bilateral filter, NL-Means filter preserves edges regardless of their directions.

Equation 2 is used to estimate a pixel i using NL-Means filter,

NLMeans [v]i =
∑

j∈I

ω(i, j) [v]j (2)

where [v]i and [v]j are pixels intensities at location i and j, respectively, and
ω(i, j) is a similarity measure between pixels i and j. The similarity weight,
ω(i, j), satisfies the condition 0 ≤ ω(i, j) ≤ 1 and

∑
j ω(i, j) = 1. It depends on

the grey level similarity and the Euclidean distance between vectors N [v]i and
N [v]j , where N [v]k denotes a square neighbourhood of fixed size and centred
at a pixel k. The weights are described as,

ω(i, j) =
1

Z(i)
e− ‖(N[v]i)−(N[v]j)‖2

h2 (3)

where Z(i) is a normalization factor and h is a filtering parameter set depending
on the noise level.

The level of noise determines the sizes needed for the searching window
and patches. For a robust comparison between patches, the size of the patches
increases when the noise level is high. Accordingly, the value of the filtering
parameter h increases as the size of the patch is increased. Meanwhile, the size
of the searching window must be increased in order to find more similar patches.

3 Proposed Algorithm

In this section, we describe a new algorithm for solving the problem of denoising
stereo images. The novelty of this algorithm is the use of the NL-Means algorithm
to denoise multi-view images. We increase the number of similar patches by
grouping similar patches from left and right images of a stereo image. Figure 1
shows the way of collecting similar patches.

3.1 Algorithm Outline

Our algorithm is illustrated in Fig. 2. The left stereo image is processed in a
raster scan. At each pixel, the following procedure is performed:

1. Obtain from the left image a fixed-size square patch “reference patch” N [vl]k
centred at location k.

2. Use the structural similarity (SSIM) index [14] to find from the right image
the best patch N [vr]q centred at location q that is similar to the reference
patch and identify its window location.
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Fig. 1. Collecting similar patches from a stereo image: the patch with a black border
is the reference patch, and the patches with white borders are similar patches

3. Collect patches from the two windows (using MSE) and assign weights ω to
each patch. Similar patches to the reference patch are assigned high weights.
The weights are assigned as described in Eq. 3.

4. Calculate the weighted average of patches, in order to estimate the true pixel
of the left image. The estimated value NLMeans [vl]i, for a pixel i located
in the left image, is computed as:

NLMeans [vl]i =
∑

j∈I

ω(i, j) [v]j (4)

where [vl]i and [v]j are pixel intensities at location i in the left image and j
from the left or right image, and ω(i, j) is a similarity weight between pixels
i and j.

Fig. 2. A block digram of the proposed denoising method for stereo image denoising

3.2 Structural Similarity Index

Patch-based denoising methods achieve better results when there are enough
similar patches that are accurately grouped before starting the actual denois-
ing process. Choosing an accurate similarity metric would improve the whole
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denoising process. The main contribution of our method is to use the structural
similarity index as a similarity metric for extending the search area, which makes
our algorithm groups better similar patches from left and right images.

SSIM index is a metric for measuring the similarity between two images.
Unlike the traditional approaches, e.g., peak signal-to-noise ratio (PSNR) and
mean squared error (MSE), SSIM has been proven to be consistent with human
perception. SSIM considers image degradation as perceived change in structural
information, traditional approaches estimate perceived errors in image data. The
SSIM metric between two patches of size n × n is calculated as:

SSIM(N [vl]k , N [vr]q) =
(2μLμR + C1) (2σLR + C2)

(μ2
L + μ2

R + C1) (σ2
L + σ2

R + C2)
(5)

where N [vl]k is a reference patch from the left image, N [vr]q is a correspond-
ing patch from the right image, μL and μR are the mean of the reference and
corresponding patches, respectively. σ2

L and σ2
R are the variance of the reference

and corresponding patches, respectively. σLR is the covariance between the ref-
erence and the corresponding patches. C1 and C2 are constants used to avoid
instability.

4 Experimental Results

The objective of this section is to experimentally study the performance of the
proposed method at various noise levels. The complexity of our algorithm is
linear with respect to the size of stereo input image. We use a fixed 5 × 5 patch
size and a fixed 11 × 11 searching window size. Four stereo images are used to
perform this experiment. The four images are grey-scale images, they are shown
in Fig. 3. MatLab is used for this experiment. The computer’s processor is Intel�

CoreTM i7 (2.5 GHz). In Subsects. 4.1 and 4.2, the methods are evaluated both
quantitatively and qualitatively, respectively.

4.1 Quantitative Evaluation

Image Similarity Metrics. Two image similarity metrics are used for objec-
tive comparison between the results: (1) SSIM, and (2) peak signal-to-noise ratio
(PSNR). The best result for SSIM is 1, while the PSNR has good result when its
value is high. Equations 5 and 6 show the formulas for these two quality metrics.
The peak signal-to-noise ratio is defined as:

PSNR = 10 log

(
(2n − 1)2

MSE

)
(6)

where n is an integer number representing the number of bits per pixel. When
n = 8, i.e., in case of grey-scale images.

It is worth mentioning that a study conducted by Horé et al. [15] has revealed
that SSIM is less sensitive to additive noise than PSNR. They used F-score
test to compare between SSIM and PSNR performances with additive Gaussian
white noise.
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Fig. 3. The four used images in the experiment: (a) cones images 450× 375, (b) teddy
image 450 × 375, (c) tsukuba image 384 × 288, and (d) venus image 434 × 383.

Experimental Results. The experimental results of our proposed method are
shown in Table 1, which compares the performance of our method with two other
denoising methods: the original NL-Means [6] and Stereo-MSE [13]. The highest
values of SSIM are highlighted by a bold font with a wavy under-bar, while the
highest values of PSNR are highlighted with a bold font. The results in Table 1
are computed by measuring the differences between the true original images and
the denoised images. At low noise level (σ � 20) our method performs better
than the original NL-Means and Stereo-MSE (from both SSIM and PSNR point
of views).

Table 1. The performance of the denoising algorithms at various noise levels (σ).
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(a) (b)

(c) (d) (e)

Fig. 4. The results of the denoising methods when denoising Tsukuba image at noise
levels (σ = 20): (a) Tsukuba image 384 × 288, (b) AWGN image, (σ = 20), (c) NL-
Means, (d) Stereo-MSE, and (e) Our method

(a) (b)

(c) (d) (e)

Fig. 5. Zoomed images of the denoised Tsukuba images shown in Fig. 4: (a) Tsukuba
image, (b) AWGN image (σ = 20), (c) NL-Means, (d) Stereo-MSE and (e) Our method
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Stereo-MSE and our algorithm are slower than the original NL-Means, as
they search both images, not just a single image like the original NL-Means.

4.2 Qualitative Evaluation

The evaluation in this section is subjective, where the quality of the denoised
images is addressed via the visual perception. Denoised Tsukuba images with
AWGN (σ = 20) are chosen to perform this evaluation. The results of denoising
Tsukuba’s image are shown in Fig. 4.

Figure 4e shows that our method achieved the best results. Our method pre-
serves sharp edges; i.e., the books in the background of Tsukuba image. Homo-
geneous regions are smoothed properly by our method; i.e., head and lamp in
the Tsukuba image. Our method does not restored clearly words with small font
size written on the board that shown in the Tsukuba image. A zoomed version
of Fig. 4 is shown in Fig. 5.

5 Conclusion and Future Work

In this paper, we looked at stereo image as a multi-view image and sought to
restore left image by using SSIM and NL-Means approaches. Empirical results
show that our method achieved better denoising than the original NL-Means and
Stereo-MSE methods, at low noise level (σ � 20). Stereo-MSE and our method
are slower than the original NL-Means. We believe that our work opens several
interesting doors for future work. First, our current method does not consider
denoising right image at the same time when it denoising left image. We believe
that denoising left and right image at the same time would produce two denoised
image in shortest time. Second, our algorithm does not use SSIM for assigning the
weights between similar patches. Since SSIM combats the traditional similarity
metrics, we believe that using SSIM as a similarity metric for assigning weights
would help to improve our algorithm. Last, the speed of our algorithm could be
reduced when the interesting search region in the right image is reduced.
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Abstract. Wiener filter is widely used for image denoising and restora-
tion. It is alternatively known as the minimum mean square error fil-
ter or the least square error filter, since the objective function used in
Wiener filter is an age-old benchmark called the Mean Square Error
(MSE). Wiener filter tries to approximate the degraded image so that
its objective function is optimized. Although MSE is considered to be a
robust measurement metric to assess the closeness between two images,
recent studies show that MSE can sometimes be misleading whereas
the Structural Similarity (SSIM) can be an acceptable alternative. In
spite of having this misleading natured objective function, Wiener fil-
ter is being heavily used as a fundamental component in many image
denoising and restoration algorithms such as in current state-of-the-art
of image denoising- BM3D. In this study, we explored the problem with
the objective function of Wiener filter. We then improved the Wiener fil-
ter by optimizing it for SSIM. Our proposed method is tested using the
standard performance evaluation methods. Experimental results show
that the proposed SSIM optimized Wiener filter can achieve signifi-
cantly better denoising (and restoration) as compared to its original
MSE optimized counterpart. Finally, we discussed the potentials of using
our improved Wiener filter inside BM3D in order to eventually improve
BM3D ’s denoising performance.

Keywords: Wiener filter · Structural similarity · Mean square error ·
Image denoising · Image restoration · BM3D

1 Introduction

Image denoising is a salient image pre-processing step in sophisticated imaging
applications like medical and satellite imaging. There are a number of mecha-
nisms proposed over years for reducing noises from digital images. These mech-
anisms vary with the type of noise introduced during image acquisition. Wiener
filter is one such popular mechanism which works in frequency domain for image
denoising/restoration [1]. This filter assumes that the noise and the image are
random processes (i.e., they are uncorrelated) and either of the two has zero
mean. Based on these assumptions, Wiener filter is used for image denoising
c© Springer International Publishing Switzerland 2015
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as well as for image restoration [1,2]. Throughout this paper, we will assume
zero-mean Additive White Gaussian Noise (AWGN) whenever the term noise is
used.

For experimental purposes, we start Wiener filter with an uncorrupted image
I and add noise to it in order to degrade it. Then the objective of Wiener filter
is to estimate a denoised version of this noisy image so that the mean square
error between original image I and the estimated image Î is minimized. This
error measure is given by Eq. 1.

e2 = E{(I − Î)2} (1)

Wang et al. [3] showed that the MSE can generate higher error despite the
similarity of the overall structure between two images are same. For instance, if
we just increase the brightness of an image by adding a constant to all intensity
levels, MSE still generates huge errors, although both the images are visually
same. To deal with such misleading measures, Wang et al. proposed a new error
measurement metric called the Structural Similarity (SSIM) that takes the sim-
ilarity between two images into consideration rather than the distance between
them. The SSIM is given by Eq. 2.

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(2)

In Eq. 2, x and y are considered two image blocks taken from exactly same
locations of I and Î, respectively. SSIM is calculated block by block in order
to take advantages of local similarity and a mean of those blocks is calculated
for representing the SSIM value for the whole estimated image Î. For a detailed
explanation of Eq. 2, we refer the reader to original article [3].

In this study, we attempted to answer the question- can we improve the
Wiener filter that performs significantly better than the MSE optimized one?
With much detailed experiments, we discovered that the age-old MSE opti-
mized Wiener filter can be modified in such a way that the overall denoising and
restoration performance is improved.

The rest of the paper is organized as follows. In Sect. 2, we will discuss the
related background and the motivation for this work. In Sect. 3, we will dis-
cuss the improvement we propose. We will discuss our performance analysis in
detail in Sect. 4. We discuss the potentials of our proposed method to eventually
improve the performance of BM3D in Sect. 5. Finally we conclude in Sect. 6 by
briefly discussing the future work of this study.

2 Background

2.1 Wiener Filter

Wiener filter was designed based on a popular restoration filter called the Inverse
filter. The inverse filter is used for image restoration only. In contrast, Wiener
filter is capable of both image denoising and restoration. If there is no noise (i.e.,
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zero noise) in the degraded image, Wiener filter simply reduces to Inverse filter
and performs only restoration. This is one of the unique properties of the Wiener
filter [2].

Wiener filter works in frequency domain, meaning that it does not directly
take into consideration the pixel intensities of the degraded image; instead, it
works with the Fourier Transform of the degraded image. This filter also requires
a degradation function for performing denoising/restoration. The degradation
function is usually unknown but can be estimated by a number of ways [2]. For
experimental purposes, although we can have a well-suited degradation function,
in practical cases, it is a tough job to find a suitable one. The response of Wiener
filter largely depends on the choice of the degradation function. Since estimating
the degradation function is beyond the scope of our study, we assume that a
suitable degradation function is available.

Wiener filter is defined by Eq. 3 where H(u, v) is the degradation func-
tion. H∗(u, v) is the conjugate complex of H(u, v), and G(u, v) is the Fourier
Transform of the degraded image. Sn and Sf are power spectrum of noise and
power spectrum of the undegraded image, respectively. The term Sn

Sf
can also be

replaced by a constant K and a suitable value for K can easily be obtained.

F̂ (u, v) =
H∗(u, v)

H2(u, v) + Sn

Sf

G(u, v) (3)

The filter produces an output F̂ (u, v) which is the Fourier Transform version
of the denoised image. Using Inverse Fourier Transform, we can have f̂ (or Î as
we defined in Sect. 1). Finally, our target is to minimize Eq. 1. Since a suitable
K is found, it is guaranteed that Eq. 1 will be minimized.

2.2 Recent Advances and Usage of Wiener Filter

Over the past few decades, there have been numerous modifications suggested to
improve the performance of Wiener filter. Also, many of its usages are currently
outlined in the literature. To report its usage in this section, We do not consider
any area of signal processing other than image denoising and restoration.

Sandeep et al. [4] suggested an empirical Wiener filter specially designed for
Wavelet domain. They could achieve better denoising performance than the orig-
inal Wiener filter, however, they re-designed the Wiener filter for Wavelet domain
instead of trying to improve it in Fourier domain. Peng Shui [5] proposed a dou-
bly local Wiener filter that also works in Wavelet domain. Similar to BM3D [10],
their strategy is to use the Wiener filter twice in Wavelet domain, one for gen-
erating a pilot image and the other is for generating the final denoised/restored
image based on the pilot image or degradation function. There are other good
usage and improvements of Wiener filter available in Wavelet domain as in [6].

Some studies tried to use Wiener filter adaptively to improve its performance
as in [7,13]. Some studies tried to use a hybrid Wiener filtering technique by
combining 1D and 2D Wiener filters [8,9]. There are other studies that focused
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on improving the denoising performance by some modified usage of Wiener filter,
but they did not focus on improving the Wiener filter itself.

Perhaps BM3D (Block Matching and 3D Filtering) discussed in [10] is the
best usage of Wiener filter presented so far in image denoising/restoration liter-
ature. Although it is similar in nature with [5], BM3D is current state-of-the-art
of image denoising. BM3D has an excellent way of estimating the degradation
function and then denoising the image by Wiener filter with the help of previ-
ously estimated degradation function. As stated earlier, Wiener response largely
depends on how perfect the degradation function is; Wiener filter responses really
great with BM3D since BM3D provides a nearly perfect degradation function to
Wiener.

2.3 Motivation

Our study is motivated by some interesting findings that suggest that MSE based
linear estimators and optimizers can be optimized for SSIM [11,12]. The linear
SSIM optimized denoising filters in [11,12] was compared with MSE optimized
Wiener filter. Reported results show that they were able to achieve higher SSIM
than MSE optimized Wiener filter. However, the PSNR achieved by MSE opti-
mized Wiener was still high. So, there is much scope to improve Wiener filter
to achieve high quality denoising of noisy images (and restoration of degraded
images), which is demanding for any image denoising method that uses Wiener
filter.

Unlike achieving only higher SSIM as in [11] and [12], we focused on achieving
both higher PSNR and SSIM for our proposed method. Experimental results will
show that we have been able to do so.

3 Proposed Improvement

We wanted to record Wiener filter’s response when it is optimized for SSIM, not
for MSE. We modified the Wiener filter’s objective function so that it can now
assess the similarity between the degraded image and undegraded image, instead
of assessing the distance. For doing so, we changed the objective function of
Wiener filter from Eq. 1 to Eq. 2 considering that x and y are I and Î respectively.
As before, we will still get F̂ (u, v) as the output of Wiener filter, however, Î will
no longer be used in Eq. 1. Instead, it will be used in Eq. 2.

Generally, x and y used in Eq. 2 are two image blocks of same size from
undegraded and denoised images and the SSIM calculated by Eq. 2 provides
the similarity between two blocks, not between two images. What is done to
measure the similarity between two images is to apply Eq. 2 on images in a sliding
window manner and keep the SSIM values from each block. Finally a mean of all
obtained SSIM values is calculated which gives the mean similarity between the
images in a 0 to 1 scale, where 1 is possible only if both the images are exactly
same. A higher SSIM value (close to 1) indicates more closeness than a lower
SSIM value. An SSIM optimized Wiener filter should yield better visual results.
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This is because, in MSE optimized Wiener, the whole image was considered as
one single signal while in our proposed method, the optimization is done in block
by block, dividing it into many signals and hence yielding better results.

While it is guaranteed that (see Sect. 2) a suitable value for K should be
found, there are many ways to find the K. One such way is to solve the Eq. 3
over a range of K and take the K for which the error is minimum. Likewise, in
our case of SSIM optimization, we can find a K for which the error is maximum.
For the results presented in this paper, we obtained the K empirically.

4 Performance Analysis

We used eight standard gray scale test images for our experiment. For all these
images, we recorded the responses of MSE optimized Wiener filter and our pro-
posed SSIM optimized Wiener filter. All plots used in this paper are based on
the average output of these eight test images for each noise level.

We assumed the Gaussian Blur function as our degradation function as given
by Eq. 4. However, in practical cases the degradation function is often unknown.
For many image denoising applications, the degradation function is usually esti-
mated prior starting denoising.

G(x, y) =
1

2πσ2
e− x2+y2

2σ2 (4)

We added noise to the test images in different levels using the variance of
Gaussian noise function. We re-scaled the variance of Gaussian function in 0.0 to
1.0 range. However, for the experiments presented in this paper, we used noise
variance from 0.01 to 0.25 only.

We considered two types of degraded images for our experiment. First, the
images are contaminated by only noise. Second, the images are contaminated by
noise and further degraded by Gaussian blur. Since the Wiener filter is capable of
dealing with both denoising and restoration, these two types of degraded images
will represent the Wiener response for denoising and restoration, respectively.

We used standard quality measurement metrics for our performance evalua-
tion. We measured Peak Signal to Noise Ratio (PSNR) which is given by Eq. 5
and is based on MSE. A higher value indicates a better restored/denoised image.
Note that, since the MSE measure is the core of the PSNR measure, we do not
separately report the responses of MSE measures in this paper.

PSNR = 10 log10

(
MAX2

I

MSE

)
(5)

We also measured the mean SSIM between our denoised/restored image and
the original undegraded image. The mean SSIM is basically the mean value from
all the blocks obtained from Eq. 2. For SSIM, higher value means better or close
approximation.

Our obtained result is promising. For all the performance measurement
metrics, we obtained better results as compared to original Wiener filter.
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Fig. 1. Average PSNR comparison for denoising

Fig. 2. Average SSIM comparison for denoising

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

18

20

Blur Level

P
ea

k 
S

ig
na

l t
o 

N
oi

se
 R

at
io

 (
P

S
N

R
)

SSIM Based Wiener

MSE Based Wiener

Fig. 3. Average PSNR comparison for restoration

Figures 1 and 2 respectively show the average PSNR and SSIM comparison of our
proposed SSIM optimized Wiener filter with the MSE optimized Wiener filter.
Clearly, the proposed method achieves consistent improvement. These results
are given for our first degradation environment i.e., for image denoising only.

To observe the SSIM optimized Wiener response for restoration, we take into
consideration the images that are noisy as well as Gaussian blurred (degraded).
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Fig. 4. Average SSIM comparison for restoration

We present the average PSNR and SSIM comparison for them in Fig. 3 and in
Fig. 4, respectively.

5 Potentials of Proposed Wiener Filter in BM3D

Block Matching and 3D (BM3D) filtering proposed in [10] can be described by
the block diagram shown in Fig. 5. As stated earlier, BM3D algorithm works in
two identical steps. In first step, it generates a basic estimate from the noisy
image, and in second step, it performs denoising on the noisy image by col-
laborative Wiener filtering with considering the basic image as the degradation
function. Since the performance of Wiener filter depends largely on how good
the degradation function is, performance of BM3D, in turns, largely depends
on the estimation of the basic image. Since the estimation of basic image is
defined based on some fixed parameters (see [10]) and since these parameters
are rigorously reviewed and assumed to be fixed [14], we can say that the only
scope remains to improve the performance of BM3D is in its second step. Again,

Fig. 5. Block diagram of BM3D [10]
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Fig. 6. Performance comparison of original BM3D and BM3D with our improved
Wiener filter

components in second step except Wiener filter are either fixed or largely influ-
enced by first step. Therefore, visibly, the only possibility to improve BM3D is
to improve Wiener filter.

Having improved the performance of Wiener filter by optimizing it for SSIM,
we can simply replace the existing Wiener filter of BM3D by our improved one.
Experimental results show that (in Fig. 6) this idea essentially improves the
performance of BM3D.

6 Future Work and Conclusion

We explored the core of Wiener filter in this study. We reported the recent
attempts for Wiener filter improvements. We also reported how these studies
are case dependent. We then proposed an SSIM optimized Wiener filter. Our
experimental results showed that our proposed method can achieve consistent
improvement over MSE optimized Wiener Filter for all perceptual noise levels
in terms of standard quality measurement metrics. We conducted more exper-
iments and comparisons to prove the superiority of our proposed method over
Wiener filter, however, due to the page limitation, we only discussed partial
outcomes. Moreover, we briefly discussed the potential of using our improved
Wiener filter in the current state-of-the-art image denoising- BM3D. In future,
we will report in detail how our proposed Wiener filter helps us achieve bet-
ter denoising performance for all profiles of the state-of-the-art image denoising
technique- BM3D.
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Abstract. In any nation, many long linear infrastructures exist, which
need to be periodically inspected for faults and subsequent mainte-
nance. These include power grid, pipelines, railway corridor etc. Most of
these infrastructures support critical utilities, and hence operated 24 x 7
throughout the year. The length of these infrastructures can be in tens
of kilometers. Hence maintenance inspections via acquisition of aerial
imagery is gaining popularity. Since such video can have thousands of
frames, it is imperative that its analysis be automated. Such infrastruc-
ture detection is against a background that is quite heterogeneous and
complex. In this paper, we propose an algorithmic framework that can
be used for automatic, real-time detection of different linear infrastruc-
tural objects in outdoor aerial images. The five-stage algorithm focuses
on minimization of false positives. The algorithm was tested against video
data captured for two different power grids in outskirts of Bangalore. The
results show seldom false positives, and false negatives in certain frames
occur sparsely enough that we are able to do a continuous video tracking.
We believe that this framework will be useful in real deployments as well.

1 Introduction

Almost all countries have certain critical utility infrastructures that have the char-
acteristic of being long and linear. These infrastructural systems are vast, running
into hundreds of kilometers. Maintenance, both preventive and breakdown, of all
such systems is an obvious must, and typically a costly legal responsibility towards
public safety. Usage of UAVs for maintenance inspections, especially of long lin-
ear infrastructures, is rapidly emerging as a popular option [6,11]. However, the
amount of video or image data acquired is typically huge, due to vastness of
infrastructures. Hence automated analysis of such images/video is being increas-
ingly sought. Such analysis entails detection of elongated foreground objects, com-
monly subjected as linear feature detection.

So far, for automated linear feature detection, most researchers have used
Hough space for clustering of lines [16–18]. However, the Hough Transform has a
computational complexity of the order of O(n3) i.e. very high. Some researchers
use Gabor filters for edge detection stage [8] or canny edge detection [6], but
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 71–81, 2015.
DOI: 10.1007/978-3-319-20801-5 8
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both approaches have high complexity of the order of O(n2 log n). In [7], detec-
tion of linear structure is followed by region filtration. With similar objective, [1]
designed a near-real time algorithm that uses geometric relationships to detect
line segments in aerial images using canny and steerable filters. In [11], a 3-stage
algorithm for automatic detection of power lines in aerial images is described.
However, the method is not much robust against false positives, and also higher
complexity, O(n2 log n). The literature of medical image analysis is replete with
linear feature extraction [4,12]. However, the background is not as heteroge-
neous/complex as is the case with outdoor video of infrastructures. Hence the
methods are not directly applicable to this class of application.

To summarize, to the best of authors’ knowledge, there is no vision- or
learning-based framework that is publicly known and targets near-real-time
automatic detection of multiple linear infrastructural objects, especially against
highly varying and complex background using color images (RGB) till date.
The background is complex since in aerial imagery, multiple different artefacts
on the ground get imaged as well, e.g. trees, barren patches, unpaved roads, occa-
sional hutment etc. Further, most of these background artefacts are texture-rich,
while the foreground objects of consideration are almost texture-less (other than
being fairly thin), which makes the detection problem very challenging. For this
requirement, we propose a five-stage algorithm, having following properties.

– As a novelty, at the core stage of edge-based segmentation, we mark a seed
point pair along the linear feature boundary instead of traditional seed seg-
ments. From such pairs, we “grow” the boundary/contour of the desired elon-
gated foreground, again in a novel way.

– The gradient magnitudes, gradient orientations and pixel value in HSV space
are selected as key features for our algorithm. It is expected that gradient will
always be a common feature for detection of any linear infrastructure, and
pixel value for most infrastructures since they have mostly metallic surface.

– Complexity of our algorithm is shown to be O(N).
– The proposed algorithm aims to minimize false negatives in detecting linear

structures like power line in UAV based color images (RGB) and guarantees
a minimum tracking of linear feature across all frames.

– We also minimize mis-classification of random linear feature i.e. false positive,
by using a novel feature, rigidity.

The rest of the paper is organized as follows. We first describe our detection
algorithm in Sect. 2. We then describe the nature of our experiments in Sect. 3,
which is followed by the main Sect. 4 on results and analysis. We conclude the
paper finally in Sect. 5.

2 Proposed Detection Algorithm

Various long linear infrastructures, when imaged aerially, exhibit following char-
acteristics that are similar, if not same.
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– Objects such as railway lines being rigid metal-based structures, are close to
a straight thick line, i.e., with a very small curvature in the aerial image.

– During monitoring of infrastructures using down-looking camera, the UAVs
can fly at a height, yet in relative proximity. Hence there is no occlusion over
the linear image objects.

– Typically being constructed using metals/alloys which reflect brightly, the
corresponding linear artefacts in the aerial image exhibit high pixel intensity.

– High gradients are found at least along the contour of the infrastructure.

RGB
Image Background Suppresion

Mean−shift based Gradient Image

Extraction point pair selection

Rigidity−based

False Positive Removalpoint pair growing
RGB
Image

Output

Boundary−Seed

Boundary−Seed

Input

Fig. 1. Functional block diagram of detection algorithm

Using these properties, we construct a 3-dimensional feature space to locate
required conductors with high fidelity. The value component in HSV space of pix-
els corresponding to interior of infrastructural objects shows prominent peaks.
This is the first distinguishing feature that we consider. The second distin-
guishing feature we consider is a set of paired gradients within a short vertical
window of configurable pixel width. The pairing happens because both bound-
aries are approximately at the same distance, and same tangential slant with
respect to camera optical center. The third distinguishing feature is a novel
feature called rigidity, which we introduce later.

The proposed detection algorithm consists of five stages for detection of linear
structures, especially power lines in aerial images, as shown in Fig. 1. We describe
relevance and other details of each stage over next few sections. The overall
algorithm is summarized in Algorithm 1.

Algorithm 1. Detection of infrastructural linear features
For Each Frame in the Video

Mean shift filtering to find the peak of a confidence map using the color histogram
of the image.
Gradient image generation that retains all linear features.
Based on camera position, the medial strip is considered, and seed point pairs for
contour growing selected based on gradient magnitude and pixel value as features.
Detection of contour of infrastructural linear features in Image Space using
contour growing approach.
Removal of false positives using rigidity feature, as represented by total sum of
gradient orientations.

End For
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(a) Sample Video Frame (b) Mean-shift Back-
ground Suppression

(c) Gradient Image Gen-
eration

(d) Candidate Seed Point
Pair Selection

(e) Output with False
Positives

(f) Output post Rigidity
Considerations

Fig. 2. Stage-wise output of detection algorithm for typical frame

2.1 Mean Shift Filtering

Due to vastness and complexity of background as discussed earlier, almost all
edge detection algorithms give a number of edges in the background, along with
those in the foreground. Therefore, to reduce background clutter and simulta-
neously accentuate the foreground, we first filter the images. The comparison in
[15], as well as our prior research [2] concur in the fact that mean shift proce-
dure outperforms other popular segmentation schemes for outdoor images. The
typical output of this filtering for single frame is shown in Figs. 2a and 2b.

2.2 Gradient Vector Image Generation

After background suppression, the gradient magnitudes for all edges of the seg-
mented image is estimated as first feature, using Sobel function [13]. The typical
gradient profile for a background-suppressed frame of Fig. 2b is shown in Fig. 2c.

2.3 Context-Based Potential Seed Point Selection

Our algorithm detects linear features by tracking the prominent boundary of
such objects in the gradient image. Since the objects are linear, the boundary
contour is open in some sense, and occurs in a pair of approximately parallel
lines. Due to perspective projection in image via side-looking camera, the lines
are thickest near the middle of the frame. To extract such open contour with
two boundaries [9], we use a novel method for boundary growing. We focus on
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having just a (boundary) seed point pair along the prominent middle vertical
cut. We use the first two features to identify the boundary seed point pairs.

The construction of set of seed point pairs is done via construction of another
set of candidate seed points. Let us define the set of gradient magnitudes of the
pixels along medial vertical line as Gw/2, and set of values from HSV space
as Vw/2, for a w × h-sized image. Every seed point which is part of any pair
can be represented by s(g, v), where g and v are appropriate gradient and HSV
value, respectively. Conversely, let g(s) and v(s) represent the gradient and HSV
value of a seed point. Also, let L(s) represent pixel location of a seed point, and
v(l) : l ∈ L be value at a pixel location. First, the set of candidate seed points C
is prepared by taking high gradient pixels on the medial vertical line as follows.

C =
{∃ s(g, v) :

{
g(s) >

(
mean(Gw

2
) + var(Gw

2
)
)} ∧

L(s) ∈
{

(
w

2
, 0), (

w

2
, 1), · · · , (w

2
, (h − 1))

}}
(1)

where mean(Gw
2
) and var(Gw/2) are mean and variance of gradient magnitudes

respectively. From this candidate set C, the set of paired seed points, S, is
constructed as follows.

S ⊂ C = {∃ s1, s2 : {|s1 − s2| < 10} ∧ {|g(s1) − g(s2)| < 15% × max(g(s1),g(s2))} ∧
{∃ l : {L(s1) < l < L(s2)} ∧ {v(l) > 85% × max(Vw/2)

}}}
(2)

Seed point pairs such extracted for a typical gradient profile shown in Fig. 2c
are illustrated in Fig. 2d. One may also note that if the camera position is front-
facing, the seed points will be detected from the bottom horizontal line. Such
context based sensory information is assumed to be provided as prior knowledge.

2.4 Contour Growing Approach

After selection of seed points, a novel iterative contour growing approach is ini-
tiated to detect the boundaries of linear features. The method is derived from
non-maximum suppression method for thinning of boundaries detected by Sobel
operator [13]. The image is scanned along the gradient direction from each seed
point. The local maxima of a pixel (x, y) is estimated in the current neighbor-
hood window including the orientation, i.e. 3 pixels {(y+0, x+1), (y+1, x+ 1),
(y−1, x+1)}, notionally represented by GO0,1, GO1,1 and GO−1,1. Here, 1 rep-
resents the gradient direction. After comparison, new seed points that are local
maxima in both the left- and right 3-neighborhoods are located, and simultane-
ously considered for growing the boundary, in the next iteration. Boundary pairs
thus grown from various seed point pairs for a typical frame shown in Fig. 2d
are shown back-annotated on original frame as in Fig. 2e. If we represent a seed
point at a particular location as s(x,y), location of the seed as L(s), (second)
feature value of the seed as V(s), then

s(x,y) ≡ {L,V}
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By this definition, it is easy to conjure a bijective mapping and its inverse
between a L-V pair, which we can denote as L ↔ V and V ↔ L respectively.
If N(s) is the next location of boundary seed point that is computed in an iter-
ation, then

N(s) = {V ↔ L} [max {V(L(s) + GO0,1),V(L(s) + GO1,1),V(L(s) + GO−1,1)}]

(3)

2.5 Rigidity-Based Removal of False Positives

All linear infrastructures are thick metallic objects, and hence have a limited
degree of elasticity. Due to high rigidity, their curvature, if any, manifests itself
as a very gradual change in gradient orientation across a sequence of boundary
pixels, thus limiting them into a narrow band of orientation values. As a byprod-
uct, the range of orientations is also limited, somewhat influenced by the camera
pose as well as distance of object from camera optical center (c.f. Fig. 3a).

On the other hand, most of the false positives occurring in the heterogeneous
background exhibit certain degree of randomness in gradient orientations. Unlike
rigid infrastructures, such false positives do not have spatial correlation and
banding of gradient orientations in a narrow band, but a spread out function
(c.f. Fig. 3b). We use this observation to weed out false positives in the final,
fifth stage. We use newly defined third distinguishing feature called rigidity of
the linear infrastructural object for this purpose. It is hard to parameterize band
shape and size, which in turn defines rigidity. This is because mechanical bends
(e.g. sag in power line, slow turn in railway line) can be purposefully introduced
in the infrastructure, and the amount of such bend differs in various conditions.
However, to compensate for the somewhat dependency of band size on camera
pose and distance, we use the metric of total orientation sum to threshold
and identify/remove false positives. The sum of all orientations along each of the
grown boundary pair sequence, is defined as the total orientation sum for that
object. The threshold for total sum is taken as 90 % of maximum total gradient
sum for all the boundary pairs identified after fourth stage. This is because the
maximum total sum, for a true positive, will be dominated by spatially correlated
angles, clustered around a mean, while total sum for a false positive is expected
to a sum of random angles as per some spread function, thus having lesser mean

(a) Banding of Rigidity Feature in True
Positive

(b) High Dispersion of Rigidity in False
Positive

Fig. 3. Rigidity distribution for true and false detection
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value. Many times, usage of this feature also removes a linear feature whose
boundary tracking strays away from actual boundary during iterations till a late
stage (up to almost complete tracking). This occurs because once strayed, the
gradient orientation of remaining part of tracked boundary becomes random,
and hence total sum becomes less than expected threshold for most of the times.

2.6 Computational Complexity

Mean Shift. The computational cost of mean shift is O(N) by the use of
the volume integral to compute the mean in a constant manner, where N is the
number of image pixels and the mean is directly computed via only few additions
without any search for neighboring colors samples in the Parzen window [5].

Sobel Operation. If there are N pixels and k discrete values are used for esti-
mating first derivative, then complexity is O(kN). To reduce the computational
complexity, we might make k smaller or constant. In this case, time complexity
for n pixels is O(n) [3].

Other Operations and Final Complexity. It can be argued in a straightfor-
ward manner that the complexity of seed selection, which is along one vertical
line, is O(N). Similarly, for each of the pair of seed points, the complexity of
contour growing, by considering 3-neighborhood each time, is also at maximum
O(N). The number of paired up seed points is a finite constant. Hence the over-
all cost of contour growing is in the order of ≤ O(N). Finally, the complexity of
using rigidity feature to remove false positives is O(N), since calculation of total
sum, the dominant computation, is O(N).

In summary, by taking the maximum of above complexity orders, the
overall complexity of infrastructural linear feature detection is O(N). It is an
improvement over complexity of some of the recent works on fast linear detec-
tor, including [10,11,14], all of which have complexity in order of O(N2).

3 Experiments and Data Collection

A 11 MP f/2.8 120◦ FOV wide-lens RGB camera, GoPro Hero3, was mounted
on a mini-UAV and used for imaging. The frame rate chosen was 10 fps (low
value). This is because the UAV speed is high enough and higher frame rates
lead to significant overlap between successive frames. Test sites provided by Hot
Line Training Center, outside Bangalore, were used for collection of power line
video data. The legal permission to fly atop railway corridors has just been
granted, and data collection will be done soon. For other national utilities of
long linear nature, permission to capture video is still awaited. Hence we have so
far evaluated our algorithm against power line data only. A quadcopter provided
by our collaborators was flown at a speed of around 40 km/hour, while having
a sideways view of the power grids, having approximately 8 meter separation
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from the grid. For such view, the pitch of the camera mount was fixed to around
60◦, while yaw was azimuth-facing and roll angle towards horizon. Given the
typical separation between conductors of a power grid so as to avoid unnecessary
harmonics due to induction, quick modeling revealed that such angle provides
the best view while avoiding occlusion by one near conductor of a far conductor
to a good extent. The length captured was around 380 meters for each of the
two sites, which resulted in around 420 frames per flight. While the testing and
analysis has been carried out on entire video, we only show results from sample
frames for the sake of brevity.

4 Results and Performance Analysis

The proposed algorithm was implemented using OpenCV. Due to high degree
of scene overlap between two successive frames, we downsample the frame rate,
pick every 4th frame, and test our algorithm over 209 representative frames,
out of 837 frames captured. To showcase our algorithm’s effectiveness, we show
suggestive tracking of power line in two specific frames in this paper, in Figs. 2
and 4. The two images have been chosen with different enough background.

Given the average speed of UAV, frame size, frame rate, camera FOV and
average distance of UAV from the grid, all provided in previous section, it can
be easily calculated that per frame, we need to just track around 51 pixels (26
pixels on either side of the medial vertical cut) in each frame, so that we do
not miss out tracking any segment of any line, across all frames. The reason
being that we want to cover as much segment length in terms of automated
tracking, as does the UAV move between successive frames at a certain speed.
In such a case, we can claim that segment-by-segment, we have tracked entire
linear feature. More specifically, this tantamounts to continuous video tracking
of linear feature with no segment-wise false negatives.

(a) Sample Video Frame 1 (b) Frame Overlaid with Detected
Power Lines

Fig. 4. Detection of linear features in sample frame 1



A Real-Time Framework for Detection 79

Due to nature of iterations during boundary growing, the boundary grows
unbounded to both left/right sides of each frame. There are times when the track-
ing strays away from actual boundary especially in late iterations (c.f. Fig. 4).
From the tracking statistics generated after manual inspection of all output
frames, we have found that up to 78 % of the detected lines do not stray away, and
hence are detected fully i.e. around 1280 pixels. Such detection caters to more
than 25× amount of required pixels to be tracked per frame, i.e. 51 pixels.

From the inspection, we also found that only up to around 20 % frames have
shown false negatives. In these frames, most of the time 1 conductor out of 5 or
6 conductors have missed detection. On observation, we have found that such
missed detections are either due to power lines that have got imaged from so
close that their curvilinear image does not cross the medial vertical cut in the
wide-angle image at all, or there is another closeby power grid whose lines, being
somewhat far away, do not have reflected luminance within 85 % of maximum
which is governed by the closest conductor of the closest grid. Degeneracy in
latter case can also happen when UAV drifts away sometimes to such distance
from the grid that the reflected luminance in a frame falls beyond the required
threshold for all conductors. In the former case, since we are covering more than
20 times the required amount of pixels for all detected conductors, we clearly
expect that we cover the segment that is un-imaged around middle cut to get
imaged around left/right sides of some prior or later frame. In the latter case, the
objective of tracking is to track one power grid corridor at a time, so any missed
detection in another nearby but distant corridor has no practical implications.

Similarly, while analyzing manually for false positives, we have again found
that upto around 20 % of the frames have typically 1 false positive detected. In
around 3 % of frames where the maximum of 2 false positives were detected, it
was found that tracked conductors had strayed near left/right boundaries of the
image, mostly due to barren patches beneath, or finding similar linear feature
in the beams of the pylon truss. However, as mentioned in Sect. 2.5, the last
stage tends to omit a partially detected line many a times. Hence partially true
detection has got misclassified into false positive in around 3 % of frames.

For a comparison, we also ran the program corresponding to our earlier work
[11] on the same videos. It was observed that a) in many frames, previous algo-
rithm detects true positive linear features almost partially, while the current one
detects almost full length, and b) Few false positives are detected in many frames
using previous algorithm, while current one barely detects any false positive.

To summarize, our detection algorithm not only improves on our earlier work,
but also exhibits very limited false positives per frame. False negatives do occur
in around 20 % of the frames. But since the typical detected lengths are long
(around 960 pixels), across the video, we are able to detect each possible con-
ductor segment, and hence are able to have continuous video tracking.

5 Conclusion

Automatic detection of linear infrastructure in aerial images is a practically
useful field of research for the community of computer vision. The usage of aerial



80 H. Sharma et al.

platform such as UAV is the most feasible solution to inspect tens of kilometers
of infrastructure installation. The challenge of detection and tracking problem in
corresponding aerial imagery is that we are looking to detect thin linear structure
against highly complex and vast background, due to usage of aerial sensing
platform. However, so far, certain algorithms to detect specific infrastructures
have been proposed, with most of them being at maximum near-real-time. A real-
time framework for detection of this important class of objects is expected to be
of high importance, in a variety of surveillance and maintenance applications.
In this paper, we have proposed one such real-time framework. The framework
uses a 3-D feature space, including a novel feature to represent rigidity. The way
of growing boundary from seed points is also novel. The entire algorithm was
tested on data acquired from 2 sites, of around 380 m length infrastructure. The
results show seldom false positives, and false negatives in certain frames (upto
20 %) occur sparsely enough that we are able to do a continuous video tracking.
We believe that our framework is robust enough with good performance, and
hence can be scalably used in real deployment scenarios.
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Abstract. Registration of multi-modal images has been a challenging
task due to the complex intensity relationship between images. The
standard multi-modal approach tends to use sophisticated similarity
measures, such as mutual information, to assess the accuracy of the
alignment. Employing such measures imply the increase in the computa-
tional time and complexity, and makes it highly difficult for the optimiza-
tion process to converge. A new registration method is proposed based
on introducing a structural representation of images captured from dif-
ferent modalities, in order to convert the multi-modal problem into a
mono-modal one. Structural features are extracted by utilizing a mod-
ified version of entropy images in a patch-based manner. Experiments
are performed on simulated and real brain images from different modal-
ities. Quantitative assessments demonstrate that better accuracy can be
achieved compared to the conventional multi-modal registration method.

Keywords: Multi-modal registration · Structural features · Entropy

1 Introduction

Image registration is the process of aligning images by finding the correct spa-
tial transformation between corresponding elements and structures in images.
In medical imaging applications, registration of images acquired from different
sensors or imaging protocols helps clinicians in diagnosis and computer-aided
surgery by using complementary information obtained from different modali-
ties [1]. Because of the intensity variations originated from illumination changes,
inhomogeneities, or simply different imaging techniques, the registration task is
becoming more difficult.

To deal with this problem, a key issue is to define an appropriate simi-
larity measure robust to those intensity variations. Traditionally, multi-modal
registration is carried out by measuring statistical dependency using similarity
measures, such as mutual information (MI)[10], assuming a functional or statis-
tical relationship between image intensities [1]. However, these measures would
be problematic in those cases with complex and spatially dependent intensity
relations [7]. Conditional mutual information (cMI) [9], contextual conditioned
c© Springer International Publishing Switzerland 2015
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mutual information (CoCoMI) [12] and self-similarity weighted mutual infor-
mation (α-MI) [11] are further works that try to overcome this problem by
integrating spatial and contextual information in the MI formulation in expense
of higher computational time and complexity.

Structural information has been used in the literature of multi-modality
problem for improving the robustness of similarity measures to image intensity
variations [3,6,8,18]. Edge and intensity information was utilized in [8] to regis-
ter visible and infra-red (IR) images. Employing the dual-tree complex wavelet
transform (DT-CWT) for registering IR and visible images in a multi-resolution
approach was proposed in [3]. Complex phase order has been used as a similar-
ity measure in registering magnetic resonance (MR) with computed tomography
(CT) images in [18]. A structural similarity measure relying on un-decimated
wavelet transform coefficients was proposed in previous work for cross-modality
label fusion [6].

Structural information has been recently utilized to transform multi-modal to
mono-modal registration. Reducing the multi-modal problem to a mono-modal
one results in using simple L1 or L2 distance metrics that are computationally
less expensive than statistical or structural similarity measures. Usage of gradient
intensity, ridge, and estimation of cross correlating gradient directions are exam-
ples of creating a structural representation of input images for registration [4].
Structural representation based on entropy images followed by measuring sum
of squared distances (SSD) was proposed in [16]. In our previous work, we have
proposed a method based on a combination of phase congruency and gradient
information to form a structural representation of different MR modes [5].

In this paper, a registration method is proposed based on converting the
multi-modal problem into a mono-modal one by using a new structural repre-
sentation of multi-modal images. Structural features, which are invariant to the
image intensity, are obtained from modified version of entropy images in a patch-
based paradigm. Simple measure based on intensity difference is used that will
lead to faster evaluation of the image similarity and efficient optimization. In our
experiments, the application of proposed structural representation is evaluated
for registration. Simulated and real brain images of different modalities are used
to assess the accuracy of the registration.

2 Methodology

The problem of registering two images Im, If : Ω −→ I, as the moving and
fixed image, defined on the grid Ω and the intensity values I = {1, · · · , n} is
formulated as:

T̂ = argmin
T

D
(
If , T (Im)

)
, (1)

where T represents the space transformation and D stands for the dissimilarity
(distance) measure to evaluate the degree of alignment. For images being repre-
sented with the same intensity values, sum of absolute differences (SAD) or SSD
can be good choices for the distance measure. Registration of images with com-
plex intensity relationships requires more complicated similarity/dissimilarity
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P1 P2 P3 WP2 WP3 Mask
B A C Am Cm

H1 = 2.24 H2 = 2.24 H3 = 2.24 H4 = 4.05 H5 = 3.73

Fig. 1. Applying a location dependent weighting to differentiate patches with different
structures and the same entropy: P1 and P2, with the same structure and entropy, are
encoded in two different intensity mappings. P3 has different structure and the same
entropy, encoded with the same intensity mapping as P2. Applying a Gaussian kernel
(Mask) to P2 and P3 results in WP1 and WP2 with different entropy values.

measures. Correlation coefficient (CC), correlation ratio (CR), and MI are widely
used in this case [1]. In this paper, we aim to find a new structural representa-
tion, R, of different modalities and therefore, reduce the problem of multi-modal
registration to a mono-modal one, so that a simple measure can effectively be
employed to assess the degree of alignment. For the representation R, the regis-
tration problem stated in (1) will be reformulated as

T̂ = argmin
T

D
(
Rf , T (Rm)

)
, (2)

where Rf and Rm stand for the structural representation of images If and Im,
respectively.

Consider patches Px defined on the local neighborhood Nx centered at x.
To form the new representations, the idea is to extract structural information
of each patch based on the amount of information content in the patch. The
bound for patch information can be represented by Shannon’s entropy which is
defined as

H
(
I(x)

)
= −

∑

x∈Px

p(I = I(x)) log
(
p(I = I(x))

)
, (3)

where the random variable I gets the pixel intensity values in Px with possible
values in I characterized by the patch histogram p. However, it is possible that
patches with different structures can end up with the same histogram and there-
fore the same entropy. Figure 1 shows how entropy value differentiates patches
with different structures. In this figure, patches P1 and P2, which are encoded
in two different intensity mappings but the same structure, take the same value
as entropy. Patch P3, encoded with the same intensity mapping as P2, have
different structure than P1 and P2 but the same entropy value. Weighting patch
histogram based on spatial information can differentiate different patches with
the same information content. A Gaussian weighting kernel defined as follows is
employed for this purpose

G(x) = Gσ(‖x − x0‖), (4)

where G(x) is centered at x0 with variance σ. Therefore, the entropy for the
patch Px will be modified to
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H̃
(
I(Px)

)
= −

∑

x∈Px

G(x)p
(
I = I(x)

)
log

(
p(I = i)

)
. (5)

Patches WP2 and WP3 in Fig. 1 illustrate how weighting two 5×5 patches with
the same entropy by using a Gaussian Mask helps to differentiate them.

Patch information is mainly concentrated on structures and edges, whereas
smooth areas contain less information in the patch. Edges and structures are
mostly pixels with lower probability and smooth areas are represented with the
higher probability values in the patch histogram. To extract patch structural
information, we propose to focus on structures and highlight the pixels with
higher uncertainty while decreasing the contribution of those pixels in the patch
that are located in smooth areas.

Let’s define
h(y) = −y log(y) (6)

as the weighted pixel information, where y = p
(
I = I(x)

)
for calculating patch

entropy in (5). In Fig. 2.a, h(y) is shown by the blue curve. When y represents
the histogram for the patch intensity, smoother areas will take larger values of
y, and edges and structures will take smaller ones. To lessen the contribution of
smoother areas and highlight edges and structures, one way is to use the function
f to map the probability values of the patch histogram such that f(y) > y for
large ys, and f(y) < y for small ys. Therefore, the weighted pixel information in
(6) will be modified to

h(y) = −y log(f(y)). (7)

The green curve in Fig. 2.a is the result of applying such function on the patch
histogram. As is illustrated in this figure, applying f increases the contribution
of pixels with lower probability and highly weakens the pixel contribution in
the smooth areas compared to calculating the conventional entropy. Finally, the
modified entropy with respect to Px will be defined as

H̃
(
I(Px)

)
= −

∑

i∈I
G(x)p

(
I(x) = i

)
log

(
f(p(I(x) = i))

)
, (8)

which is used as the new representation, R(x), for the pixel located at x.

Hx = −p(x) log
(
p(x)

)
. (9)

Having these characteristics for the function f(.), it should be an ascending
function defined in the range of [0, 1] with lower derivatives on the two endpoints
of the range [−1, 1] and a linear behavior in the middle of the range. The function
f , which is able to satisfy those characteristics, can simply be chosen as an m–th
order polynomial function with symmetry property:

f(y) =
m∑

i=0

aiy
i. (10)

As an example of such function, we chose a polynomial function with order
m = 5. The resulting polynomial function, which is shown in Fig. 2.b, will be:

f(y) = 6y5 − 15y4 + 10y3. (11)
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(a) Weighted pixel information (b) Polynomial function f

Fig. 2. Applying function f on the patch histogram. (a) Weighted pixel-information
before and after applying the function f on the patch histogram. Applying f makes
the curve tilt towards the vertical axis and highly attenuates its value around y = 1,
where we have higher intensity probabilities. (b) Function f to apply on the patch
histogram, which has almost linear behaviour around center and a smooth slope around
boundaries.

Structural features will be calculated by applying the proposed function, f ,
and weighting kernel, G. Figure 3 shows structural representation of different
MR modes for a slice of a brain scan from simulated BrainWeb MR data [13].
As indicated in this figure, structural representation changes the problem of
multi-modal registration to a mono-modal one. Therefore, SSD can be used to
measure the alignment accuracy:

D(Rm, Rf ) =
∑

n

∣∣Tn(Rm(n)) − Rf (n)
∣∣2. (12)

3 Experimental Results

3.1 Experimental Setup

In order to evaluate the performance of the proposed method, experiments are
conducted on the BrainWeb simulated database [13] and a real dataset from the
Retrospective Image Registration Evaluation (RIRE) [15] that are provided by
ground truth alignment. BrainWeb simulated database contains simulated MR
brain scans in T1, T2, and PD modes with different levels of noise and intensity
non-uniformity. In the following experiments, scans with 3% noise and 20%
intensity non-uniformity are chosen. Real brain scans that are used from the
RIRE dataset are in different modes of T1, T2, PD, and CT images.

In the experiments, the registration accuracy is quantitatively assessed using
the target registration error (TRE), which measures the Euclidean distance
between the pixel positions in the transformed image and their corresponding
position in the ground truth [2].

TRE =
1

|Ω|
|Ω|∑

i=1

(xi − x′
i)

2, (13)
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Original
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tions

T1 T2 PD

Fig. 3. Structural representation for different MR modes. The first row shows a slice
of brain scans in T1, T2, and PD modes from BrainWeb database. Second row shows
the structural features associated with the first row images.

where xi and x′
i are respectively the position of the i-th pixel in the ground truth

and aligned image.
The proposed method, which is represented as Reg in the following tables, is

compared with the MI-based registration (MI) [17] and SSD on entropy images
(eSSD) [16]. The optimization for the rigid registration is carried out by MAT-
LAB tools based on gradient descent optimizer for the SSD based mono-modal,
and one-plus-one evolutionary optimizer for the MI-based multi-modal regis-
tration. Both rigid and deformable registration scenarios are considered for the
evaluation procedure. The deformable registration is performed by free-from
deformation (FFD) based on cubic B-Splines using Image Registration and Seg-
mentation Toolkit (ITK) [14]. In our simulations, the patch size and number of
bins in the histogram are empirically chosen to be 7 × 7 pixels and 64 bins.

3.2 Rigid and Deformable Registration

For rigid registration, the proposed method is evaluated by using MI and eSSD
for the alignment, when translation is in the range of [−20, 20] mm with 0◦

rotation, and maximum rotation of ±20◦ with zero translation. Table 1 reports
the average results for 100 multi-modal rigid registration over different rotations
and translations in terms of TRE in mm.

For deformable registration, a set of training data was generated from the
dataset using artificial deformations by the thin-plate spline (TPS). The defor-
mation field is normalized such that the maximum displacement is limited to
15 mm. The results of deformable registration is given in Table 2 for different
combinations of image modalities. Similar to Table 1, the proposed method is
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Table 1. Multi-modal rigid registration (translation T and rotation R) for RIRE and
BrainWeb datasets. Registration errors are represented in average pixel displacement.

Similarity BrainWeb RIRE

T1-T2 T1-PD T2-PD T1-T2 T1-PD T2-PD T1-CT

Rotation MI 0.83 0.76 0.32 3.02 1.14 1.15 3.62

eSSD 0.65 0.54 0.14 2.03 0.83 0.64 2.87

Reg 0.44 0.38 0.08 1.74 0.61 0.43 2.64

Translation MI 0.41 0.52 0.29 1.58 0.87 0.93 2.53

eSSD 0.72 0.64 0.18 0.35 0.44 0.48 1.69

Reg 0.51 0.48 0.24 0.28 0.33 0.31 1.73

Table 2. Multi-modal deformable registration for RIRE dataset. Registration errors
are represented in average pixel displacement.

Similarity T1-T2 T1-PD T2-PD T1-CT

MI 1.83 2.12 2.87 3.12

eSSD 0.67 0.61 0.55 7.32

Reg 0.61 0.68 0.81 6.43

compared with eSSD and MI-based registration results. Quantities in this table
are obtained by averaging the results of aligning ten randomly deformed images
to a fixed image.

As can be seen, the proposed method in most cases outperforms the eSSD and
MI-based registration. Since the proposed method tends to extract structural
features and structural features are mainly located in the rigid body of the
image, the improvement in the alignment accuracy for the rigid registration is
more significant. It can be seen that for non-rigid registration, the method is not
able to outperform the eSSD method in all of the cases, however, the results are
still comparable.

4 Conclusions

We proposed a method based on introducing a structural representation for the
purpose of registering multi-modal images. Unlike common multi-modal registra-
tion techniques that utilize sophisticated similarity measures, the new structural
representation helps to map different intensity mappings to a common inten-
sity space, so that a simple similarity measure can be employed to assess the
alignment accuracy. The statistical representation is generated in a patch-based
framework by modifying the patch entropy. To validate the merit of the method,
experiments were carried out on different brain image modalities. Based on the
results presented in this paper, the proposed method improved the registration
accuracy compared to the eSSD and conventional MI registration methods.
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Abstract. In object recognition accurate segmentation of a particular
object of interest (OOI) is critical. The OOI usually consists of a set
of homogeneous regions with spatial relations among them. Thus, class-
specific knowledge on the visual appearance and spatial arrangement of
the regions can be useful in discriminating among objects from different
classes. In this paper, we propose the use of the Attributed Relational
Graph (ARG)-based formalism as a means of representing both visual
and spatial information in a single structure. In the proposed framework,
a training set of images, each of which contains an instance of the OOI,
is given. Afterwards, each image is over-segmented into a set of visually
homogeneous regions and the corresponding ARG is constructed. Given
such graph representations, OOI model learning reduces to a subgraph
matching problem.

1 Introduction

Automatic extraction of objects of interest (OOI) from an image is an important
problem that remains unsolved in computer vision applications like object-specific
segmentation and recognition. Traditional image segmentation techniques, e.g.,
[2,4,5,13,17], generally use low-level visual features, e.g., color, texture, to seg-
ment an image into a set of homogeneous regions, which do not necessarily corre-
spond to semantically meaningful objects.

In order to improve segmentation accuracy, several methods [1,3,6–8,10–12,
16] employ machine learning. In [3], an object recognition framework is presented
that adapts the segmentation parameters based on the quality of segmentation
achieved by comparing the segmentation results with a target model. This algo-
rithm is restricted by the fact that the object model and position of the target
object are assumed to be known. The work proposed in [11] continued along this
direction by using reinforcement learning as part of the evaluation function to
relax the assumption of known position of the target object. However, the object
model still has to be provided in advance. In [10] an interactive model based graph
matching approach is proposed where the object model is defined by the user
according to traces drawn over the input image. This approach also needs signif-
icant user intervention.

In [1,6–8], Multiple Instance Learning (MIL) [9] is used to determine which
regions in an oversegmented image are part of an OOI and, in turn, learn a model
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 90–99, 2015.
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of it. In MIL each training sample consists of a “bag” (set) of instances, which
is labeled positive if at least one instance in the bag is positive, or negative
otherwise. Different from standard supervised learning, we are only given the
labels of the bags, but not the labels of the instance(s). The goal of MIL is to find
a representation of the instance(s) that the positive bags have in common. In [6],
a regional directional spatial template is proposed where the object segmentation
algorithm learns a model which includes both visual and spatial information.
Although templates are an effective way of including visual and spatial relations
into the model they are not invariant to scaling, rotation and translation.

In traditional MIL, instances in a bag have been treated as independently and
identically distributed. However, it is often the case that they are related. For
example, in the case of object segmentation, objects have inherent structures. An
OOI in an image is usually composed of homogeneous regions, i.e., “instances”,
with (spatial) relations among them. Such relations and their overall structure
can be modeled with, e.g., a graph (see Fig. 1(a)–(c)). The work by Zhou et. al.
[18] on MIL treats instances in a bag as non-i.i.d. samples. They propose the
use of an undirected graph to represent the instances in a bag. In the graph,
each instance is a node. They compute the distance (based on visual similarity)
of every pair of nodes and, if smaller than a predefined threshod, an edge with
weight equal to the inverse of the distance is added connecting the two nodes.
After extracting the graphs of a set of training images, a subgraph matching
algorithm can then be used to find a common subgraph, i.e., what the positive
bags have in common, which can then serve as a model of the common object.
An undirected graph used in [18] can only represent a single type of relation,
i.e., visual similarity, among the regions. In this paper, we extend the work in
[18] by employing an attributed relational graph [14] that can represent visual
as well as multiple (spatial) relations in a single structure (see Fig. 1(d)).

2 ARG-Based Learning of OOI Model

2.1 Attributed Relational Graph Representation

The attributed relational graph (ARG) [14] is a directed, weighted and multi-
relational graph defined as G = (V,E, μ, ν), where V stands for its set of vertices,
E its set of (directed) edges, μ represents the vertex attributes, i.e., μ(v) denotes
the attributes of v ∈ V , and ν represents the edge attributes, i.e., ν((u, v))
denotes the attributes of (u, v) ∈ E. In this paper, vertices represent image
regions and edges represent spatial relations among these regions. Each edge has
a weight which represents the connectivity between two regions with respect to
a particular spatial relation between them. Subscripts are used to denote the
corresponding graph generated from an image, e.g., ui ∈ Vi denotes a vertex of
Gi = (Vi, Ei, μi, νi) generated from an image Ii, similarly (ui, vi) ∈ Ei denotes
an edge of Gi.
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(a)

(b)

(c)

(d)

Fig. 1. Modeling relations among instances in a bag: (a) sample “bags”, with marked
“instances” of the OOI; (b) if we do not consider relations among instances the three
bags are similar as they all have a black, a red and a white region; (c) simple graph
can represent one relation, e.g., adjacency. Middle and rightmost graphs are similar;
model cannot distinguish the two objects; (d) multi-relational graph: bold, dotted and
dashed edges mean below, surrounded and right spatial relations respectively. Graphs
are all different.

2.2 OOI Model Learning

Let Ii denote an image (or “bag”) for a given training set T = {I1, I2, . . .} of
images which contain OOI instance(s). A pixel pi = (pxi , pyi , p

R
i , pGi , pBi ) in Ii is

represented by its x and y coordinates and R,G,B color components. A set of
visually homogeneous regions {Ri,1, Ri,2, . . .} is extracted, where Ri,j ⊂ Ii and
xi,j is the visual feature vector which represents the color and shape of Ri,j ,

xi,j =
1

|Ri,j |

⎛

⎝
∑

pk∈Ri,j

pRk ,
∑

pk∈Ri,j

pGk ,
∑

pk∈Ri,j

pBk , |BRi,j
|
⎞

⎠ (1)

where | · | denotes set cardinality and BRi,j
is the set of pixels on the border of

Ri,j ,

BRi,j
=

{
pk

∣∣(pk ∈ Ri,j) ∧ (pl ∈ N) ∧ border(pk, pl) == 1
}

where

N =
{

pl
∣∣pxl ∈ {pxk, px−1

k , px+1
k } ∧ pyl ∈ {pyk, p

y−1
k , py+1

k } ∧ (pl ∈ Ii) ∧ (pl �= pk)
}

border(pk, pl) =
{

1 if ‖ (
pRk , pGk , pBk

) − (
pRl , pGl , pBl

) ‖2 ≥ δ
0 otherwise

where δ, 0 ≤ δ ≤ 255 is a color feature threshold.



Attributed Relational Graph-Based Learning of Object Models 93

We consider four binary directional relations: above(A), right(R), below(B)
and surrounded(S). The regions are sorted in ascending order with respect to
the top leftmost coordinates of their corresponding minimum bounding boxes
(see Fig. 2). In the sorted order, if Ri,j is to the right of Ri,k, it is obvious that
Ri,k must be to the left of Ri,j . Thus, we can ignore the left spatial relation.
Region Ri,j is surrounded by region Ri,k if Ri,k is above, below, to the right of
Ri,j and Ri,j is to the right of Ri,k. Region Ri,j is connected to region Ri,k with
respect to a directional relation d if BRi,j

∩ BRi,k
�= ∅ and Ri,k is in direction

d of Ri,j . The set of regions with which Ri,j is connected with respect to d is
denoted by Cd

Ri,j
, where d ∈ {A,R,B, S}. Algorithm 2 is used to construct an

ARG Gi(Vi, Ei, μi, νi) for each Ii ∈ T . The visual appearance information of
a vertex vi, i.e., region Rvi

, is denoted by μ(vi) = xvi
. Similarly, the spatial

relational attributes of an edge (ui, vi) ∈ Ei, denoted by ν((ui, vi)), correspond
to the following weight and directional label attributes,

ν((ui, vi)) =

⎛

⎜⎜⎝

∑

pj∈Rui
;pk∈Rvi

∈Cd
Rui

adj(pj , pk)

|BRui
| , d

⎞

⎟⎟⎠

where

adj(pj , pk) =
{

1 if (pj �= pk) ∧ pxk ∈ {pxj , px−1
j , px+1

j } ∧ pyk ∈ {pyj , p
y−1
j , py+1

j }
0 otherwise

After constructing ARG (see Fig. 2) for each Ii ∈ T , a graph matching algo-
rithm Algorithm 3 is applied to find a best-matching smallest common (sub)graph
Gm from the ARG set D = {G1, G2, . . .}. The “model” ARG Gm(Vm, Em, μm, νm)
represents the visual and structural pattern of the particular OOI. In Algo-
rithm3, two (sub)graphs Gi and Gj are considered equal when |Vi| = |Vj |,
|Ei| = |Ej | and structural and appearance dissimilarities are smaller than a
color 0 ≤ δ ≤ 255, shape 0 ≤ β ≤ 1 and edge weight 0 ≤ γ ≤ 1 threshold. In
Algorithm 3, Ei(ui) denotes the set of edges that originate from ui such that
(ui, vi) ∈ Ei, vi ∈ Vi. A 1-edge (u, v) subgraph G′ of graph G is a graph with
V ′ = {u, v}, E′ = {(u, v)}, μ′(u) = μ(u), μ′(v) = μ(v), ν′((u, v)) = ν((u, v)). The
union of two graphs Gi(Vi, Ei, μi, νi) and Gj(Vj , Ej , μj , νj), denoted by Gi ∪Gj ,
is the graph Gk(Vk, Ek, μk, νk) where Vk = Vi ∪Vj , Ek = Ei ∪Ej , μk(u) = μi(u)
if u ∈ Vi and μk(u) = μj(u) otherwise, νk((u, v)) = νi((u, v)) if (u, v) ∈ Ei and
νk((u, v)) = νj((u, v)) otherwise. Algorithm 1 summarizes the learning process.

3 ARG-Based Segmentation

Given a new image I, it is over-segmented into a set of visually homogeneous
regions {R1, R2, . . .}, where Ri ⊂ I and xi is the visual feature vector of Ri, as
defined in Eq. (1). The ARG G(V,E, μ, ν) of I is constructed using Algorithm 2.
Afterwards, Algorithm 3 with input D = {Gm, G} is used to find a subgraph of G
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)b()a(

(c)

Fig. 2. Sample ARG construction; (a) image; (b) regions with corresponding minimum
bounding box; (c) corresponding ARG.

Algorithm 1. OOI model learning
Inputs: T = {I1, I2, . . .}, δ, β, γ
Output: frequent subgraph Gm

for each Ii ∈ T do
Generate Gi using Algorithm 2 with inputs I, δ

Generate Gm using Algorithm 3 with inputs D = {G1, G2, . . .}, δ, β, γ

Algorithm 2. ARG construction
Inputs: Ii, δ
Output: Gi

Oversegment Ii to generate {Ri,1, Ri,2, . . .}
for each region Ri,j do

Compute visual features xi,j and minimum bounding box (MBB) of Ri,j

Sort regions in ascending order of top leftmost coordinates of MBB
for each region Ri,j do

for each spatial relation d do
Compute Cd

Ri,j

Form Gi(Vi, Ei, μi, νi)
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Algorithm 3. Frequent sub-graph mining
Inputs: D = {G1, G2, . . .}, δ, β, γ
Output: frequent subgraph Gf

Gs ← smallest graph in D
D ← D − {Gs}
minSup ← |D| − 1
Gf ← φ
for each vertex us ∈ Vs do

for each edge (us, vs) ∈ Es(us) do
G′ ← 1-edge (us, vs) subgraph of Gs

support ← 0
for each graph Gi ∈ D do

if G′ is a subgraph of Gi then
support = support + 1

if support = minSup then
Gf ← Gf

⋃
G′

that matches the model Gm. If such subgraph Gf is found the final segmentation
S is generated by keeping only the pixels of I that appear in regions represented
by Gf . Algorithm 4 summarizes the segmentation process.

Algorithm 4. OOI segmentation
Inputs: I, model ARG Gm, δ, β, γ
Output: S

S ← I
Generate G using Algorithm 2 with inputs I, δ
Generate Gf using Algorithm 3 with inputs D = {Gm, G}, δ, β, γ
if Gf = Gm then

Remove pixels in S that do not appear in any of the regions represented by Gf

4 Results

We experimented with both an artificial dataset of JPEG-format images of a
parrot (see Fig. 3(a)) and with a real image dataset of JPEG-format images of a
computer mouse (see Fig. 4(a)). The artificial dataset consists of a training set
and a test set containing 10 and 5 images respectively of the OOI in a variety
of settings. The real image dataset consists of 15 images, 10 images were used
for training and 5 images for testing. In both cases Algorithm1 runs with input:
training set T , δ = 20, β = .2 and γ = .05.

Let S be the final set of OOI pixels generated by the segmentation algorithm
Algorithm 4. The segmentation quality measure is,

Q =
∣∣∣∣
S ∩ G

G

∣∣∣∣ ×
∣∣∣∣
S ∩ G

S

∣∣∣∣
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(a)

(b)

(c)

(d)
Q = 0.706 Q = 0.735 Q = 0.772 Q = 0.654 Q = 0.773

(e)
Q = 0.847 Q = 0.836 Q = 0.848 Q = 0.851 Q = 0.846

(f)
Q = 0.943 Q = 0.962 Q = 0.962 Q = 0.952 Q = 0.962

Fig. 3. Segmentation comparison: (a) training images; (b) test images; (c) ground truth
images; (d) VIS segmentations; (e) TEM segmentations; (f) ARG segmentations

where G is the set of pixels corresponding to the OOI in the ground-truth seg-
mentation. Hence, Q is the percentage of pixels in agreement with the ground-
truth segmentation over the OOI. Thus, Q is to be maximized. Figs. 3 and 4
show the segmentations and their Q values obtained with our proposed method
Algorithm 4 (ARG) and with three other methods. The first method (VIS) uses
the standard MIL formulation in which relations among instances in a bag are
not considered. Thus, the resulting OOI model consists of a description of the
visual appearances of the OOI regions (see Fig. 1(b)). To segment a new image,
every pixel whose color is sufficiently similar (threshold δ = 20) to that of the
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(a)

(b)

(c)

(d)
Q = 0.147 Q = 0.068 Q = 0.028 Q = 0.110 Q = 0.059

(e)
Q = 0.279 Q = 0.141 Q = 0.041 Q = 0.073 Q = 0.033

(f)
Q = 0.717 Q = 0.947 Q = 0.952 Q = 0.972 Q = 0.872

Fig. 4. Segmentation comparison: (a) training images; (b) test images; (c) ground truth
images; (d) VIS segmentations; (e) WAT segmentations; (f) ARG segmentations

colors in the OOI model is included as part of the OOI. The second method is
the regional directional spatial template approach [6] (TEM). The third method
is the Watershed segmentation algorithm [15] (WAT).

The average Q values in the artificial dataset are 0.956, 0.728, 0.845 for ARG,
VIS, TEM respectively. The average Q values in the real image dataset are 0.892,
0.082, 0.113 for ARG, VIS and WAT respectively. These results clearly show that
the proposed ARG-based MIL formalism is capable of learning a more accurate
model of the OOI which in turn results in a more accurate segmentation. Also,
differently from our method, the regional directional spatial template approach
presented in [6] is not invariant to geometric transformations of the OOI such
as scaling and translation.
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5 Conclusion

We proposed the attributed relational graph based multiple instance learning
formalism. It is an effective way of including both visual and spatial informa-
tion into the object model. The proposed framework does not require human
interaction or preexisting knowledge of the object model. Experimental results
show that the framework works well for real images. Although it is robust with
geometric transformations such as scaling and translation, it is not invariant to
rotation. Given this encouraging results, our future work will be on making the
framework invariant to rotation and experimenting with a larger set of more
complex real images.
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Abstract. Multi-atlas based segmentation is a popular approach in
medical image analysis. Majority voting, as the simplest label fusion
method in multi-atlas based segmentation, is a powerful tool for seg-
mentation. In this paper, a novel majority voting-based label fusion
algorithm is proposed by introducing a patch-based analysis for auto-
matic segmentation of brain MR images. The proposed approach, by
comparing the similarity between patches, avoids the over-segmentation
problem of the majority fusion. The approach is successfully applied to
the segmentation of hippocampus, and the experimental results demon-
strate significant improvement over three state-of-the-art approaches in
the literature.

Keywords: Multi-atlas segmentation · Majority voting · Label fusion

1 Introduction

Segmentation of anatomical structures in medical images is essential for scientific
inquiry into the complex relationships between biological structure and clinical
diagnosis, treatment and assessment. As a method of incorporating the prior
knowledge and the anatomical structure similarity between target image and
atlases, multi-atlas segmentation has been successfully applied in segmenting a
variety of medical images, including brain, cardiac, and abdominal images [1–3].
Motivated by the observation that segmentation strongly correlates with image
appearance, atlas segmentation transfers spatial information from an existing
dataset (labeled atlas) to a target image via deformable registration based on
image similarity. In multi-atlases segmentation, multiple atlases are separately
registered to the target image, and voxelwise label conflicts between the regis-
tered atlases are resolved by using label fusion.

The label of the voxel in target image is determined by fusing the labels of
corresponding voxels in each atlas. Weighted voting is the most popular method
for label fusion, where the label of each atlas voxel contributes to the final result
with a weight. One approach to obtaining the optimal weight is to compute the
similarity between the image patch centered at the target voxel and the image
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 100–106, 2015.
DOI: 10.1007/978-3-319-20801-5 11



Label Fusion for Multi-atlas Segmentation Based on Majority Voting 101

patch centered at the corresponding atlas voxel, and this forms the patch-based
segmentation [4]. Other methods of considering correlated labelling errors [1] or
employing sparse representation [5] are also used to determine the weight. In
addition to weighted voting, another type of label fusion method is statistical
label fusion, such as STAPLE [6], or non-local STAPLE [7].

Although weighted fusion and statistical fusion yield good results in segmen-
tation of magnetic resonance (MR) image [1,2,7], the estimation of the weight
and the EM estimation, which play important roles in weighted fusion and statis-
tical fusion, is very computationally intensive. In contrast, majority voting, which
is probably the simplest label fusion method, has been demonstrated to yield
powerful segmentation results with less computation. Majority voting method,
however, may yield over-segmentation since it does not utilize image intensity
information. Patch-based method, which compares the similarity of intensity
between patches, can be combined with majority voting multi-atlases segmenta-
tion to avoid such over-segmentation errors.

Motivated by this idea, we propose a novel label fusion method which com-
bines majority voting with patch-based method to achieve automatic segmen-
tation in brain MR images. The proposed method is successfully applied to the
segmentation of hippocampus. In addition, the influences of different parameters
are studied empirically, and a comparison with three closely related methods is
performed to demonstrate the effectiveness of the proposed approach.

Fig. 1. Illustration of label generation for the target patch. Where red square in target
image denotes the target patch; the blue, pink and green squares in atlas image denote
patches in a searching window; and the best matched patch in each atlas is shown as
red squares (Color figure online).

2 The Proposed Method

Consider an image I = {I(x)|x ∈ Ω}, where x denotes the voxel; and Ω ⊂ R
3

denotes the lattice on which the image is defined. The goal of segmentation is
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to estimate a label map L associated with the image I, in which each voxel is
assigned a discrete label l. The label l takes discrete values from 1 to L for all
the possible labels for the voxels in the image. In multi-atlas segmentation, IT is
a target image and A1, · · · , An are n atlases with Ai = (Ii, Si), where Ii is the
atlas image which has aligned to the target image (Ii is also called warped atlas
image); and Si is the corresponding manual segmentation of this atlas image.
After combing the warped atlas images, a fused label map is generated which
can be considered as the segmentation of the target image.

Figure 1 illustrates the generation of labels for the target patch of the pro-
posed method. First, the atlases (intensity and label image) are pairwisely reg-
istered to the target image. Then, for each atlas image, a patch selection scheme
is performed to choose the patch in each atlas with the highest similarity with
the target patch. Finally, by applying label fusion algorithm to the patches with
corresponding location of the patches in atlas images, we obtain the estimated
label of each patch. The approach is applied for every voxel in the target image
so as to obtain the labels for the entire target image.

2.1 Patch Selection

The performance of atlas-based segmentation can be moderately improved by
applying a local searching technique [4]. Although deformable registration has
been performed before label fusion, the correspondence obtained from the reg-
istration may not guarantee the maximal similarity between the patch in the
target image and that in the warped atlas image. Therefore, local searching
within a small neighborhood around the voxel in the warped image is performed
to achieve the maximal similarity.

Summed squared distance (SSD) is used to measure the similarity between
the target patch and that in the atlas image. The SSD between the patch centered
at x in the target image and the patch centered at x′ in the atlas image is shown
below.

SSD(x, y) = ‖IT (N (x)) − Ii(N (x′))‖2 (1)

where x′ ∈ N ′(x) with N ′(x) a local searched neighborhood. Equation (1) indi-
cates that given a patch IT (N (x)) in the target image and Ii(N (x)) in the ith
atlas image, it is possible to find a patch Ii(N (x′)) whose center belongs to the
neighborhood N ′(x). The patch centered at xi, which is called locally searched
optimal correspondence, has higher similarity with the target patch than other
patches with centers inside the neighborhood N ′(x). Thus, the locally searched
optimal correspondence is

xi = argminx′∈N ′(x)[SSD(IT (N (x)), Ii(N (x′)))] (2)

where Ii(N (x′)) is the patch in the ith atlas image centered at x′ with a radius
r, and IT (N (x)) is the target patch centered at x with a radius r. x′ is the
voxel in the local neighborhood N ′(x) with a radius rs. By calculating the SSD
between the patches in the target and the atlas images, we obtain xi, which is
the location from the ith atlas with the best image matching for the location x
in the target image.



Label Fusion for Multi-atlas Segmentation Based on Majority Voting 103

2.2 Label Fusion and Validation

Majority Voting: After label fusion, n patches are selected as the candidate
of voting for the target patch. The probability of that the label of x is l can be
computed by counting the number of occurrence for l from xi, i ∈ 1, 2, . . . , n.
Then, the label for x in the target image can be determined by choosing the
label with the highest probability. The final label L̂(x) is obtained by

L̂(x) = argmaxl∈{1,...,L}px(l) = argmaxl∈{1,...,L}
1
n

n∑

i=1

p(l|Ai, x) (3)

where x indexes through image voxels; p(l|Ai, x) is the posterior probability that
Ai votes for the label l at x. Typically, deterministic atlases have unique label
for every location, which means p(l|Ai, x) = 1 if Si(x) = l, and 0, otherwise.

Improvement on Majority Voting: The label of the center voxel of the
target patch can be produced using majority voting. However, since we have
chosen the most similar patch to the target patch from each atlas images based
on the intensity information, these selected patches can be considered to have
similar segmentation to the target patch. For each voxel in the target patch,
we can find a candidate voxel from the corresponding position in each selected
patch, and thus, the label of each voxel in target patch can be determined by
performing (1) from its n candidate voxels. Given a three-dimensional image, for
every patch with a radius r in the target image, (2r+1)3 voxels within the patch
will be labeled by performing the above majority voting scheme. Assuming that
there are N voxels in the target image, (2r+1)3×N labels will be produced and
each voxel in the target image have (2r+1)3 candidates. Therefore, the majority
voting is performed twice to generate the final label for the target voxel.

Validation: The kappa index (Dice coefficient or similarity index) [9] was com-
puted by comparing the manual segmentations with those obtained with our
method. For two binary segmentations A and B, the kappa index was com-
puted as

κ(A,B) =
2|A ∩ B|
|A| + |B| (4)

In quantitative MR analysis, manual segmentation is usually considered as a
gold standard. The segmentation quality was estimated with the Dice coefficient
by comparing the expert-based segmentations with the automatic segmentations.

3 Experimental Evaluation

The proposed approach is applied to segment the hippocampus using T1-
weighted MR images. The dataset used in the experiment includes 35 brain
MR imaging scans obtained from the OASIS project. The manual brain segmen-
tations of these images were produced by Neuromorphometrics, Inc., using the
brain-COLOR labeling protocol. The dataset was applied in the MICCAI 2012
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Multi-Atlas Labeling Challenge, where 15 subjects were used at the atlases and
the remaining 20 images were used for testing.

In the experiment, we perform pairwise registered transformations between
the atlas and the target images, as well as between each pair of the atlas images.
The ANTs registration tool was used in this study to implement pairwise regis-
tration [10]. The antsApplyTransforms with linear interpolation was applied to
generate the warped images, and the antsApplyTransforms with nearest neigh-
bor interpolation was applied to generate the warped segmentations.

In order to improve computation efficiency, we select a region of interest
(ROI) before computing. First, for every atlas image, a 3D binary image which
segment the hippocampus region is generated. Then, OR operator is applied in
these 3D binary images, and a new 3D binary image is obtained which fuses all
the hippocampus segmentation of the atlas images. The resulted image is dilated
by a (2(r + rs) + 1)-dimensional cubic structuring element to produce the ROI
of computation. In order to increase the robustness of image matching, instead
of using the raw image intensities, we normalize the intensity vector obtained
from each local image intensity patch such that the normalized vector has zero
mean and a constant norm for each label fusion method.

3.1 Impact of the Size of 3D Patch and Search Volume

The proposed method has two parameters, r for the local patch radius and
rs for the local searched neighborhood. The influence of these parameters are
studied by evaluating a range of values r ∈ {1, 2, 3}; rs ∈ {1, 2, 3, 4, 5} in the
experiment. First, we studied the impact of the patch radius on segmentation
accuracy. The mean dice overlap coefficient results are shown in Fig. 2 (left).
Using the patch radius of r = 1, the algorithm performs much better than using
larger patch radius. The segmentation accuracy also improves with the increase
of the searched radius rs. However, the dice overlap decreases when the searched
radius rs > 4. Larger searched radius improves the probability to find a similar
patch with target patch, however, it also leads to an increase of mismatches.
Figure 3 shows the segmentation results for different sizes of local patch and
searched patch.

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Left Hippocampus Right Hippocampus

Fig. 2. (left) Hippocampus segmentation performance using different patch radius and
searched patch radius. (right) The dice overlap coefficient of the left and right hip-
pocampi.
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3.2 Comparison Results in Hippocampus Segmentation

The average Dice overlap between automatic segmentation and manual segmen-
tation for testing data is measure in the experiment. We compared our results
with three popular benchmark approaches, i.e. majority voting, global weighted
fusion, and STAPLE [8]. The dice overlap coefficient of the left and the right
hippocampi by the proposed approach is 0.8473 ± 0.0325 and 0.8447 ± 0.0370,
respectively, and the average overlap is 0.846 ± 0.03. The box plot is shown in
Fig. 2 (right), where the central mark is the median, the edges of the box are the
25th and 75th percentiles. The whiskers extend to 2.7 standard deviations around
the mean, and the outliers are marked individually as a ‘+’. As a comparison,
the average Dice overlap obtained by majority voting, global weighted fusion,
and STAPLE are 0.821, 0.807, and 0.836, respectively [8]. It is clear that the pro-
pose technique yields more than 1.2% Dice overlap improvement. In addition,
the results of other three approaches were obtained by conducting the experi-
ments in a leave-one-out strategy on a data set containing 39 subjects, while our
approach use only 15 subjects as atlas set. Overall, the proposed method yields
better segmentation accuracy while using significantly fewer atlases than other
reported methods.

Fig. 3. Sagittal views of the segmentations produced by different patch radius and
searched patch radius. Where the red region shows the overlap between the automatic
and the manual segmentation; the green region is the manual segmentation; and the
blue region is automatic segmentation using the proposed method (Color figure online).

4 Conclusion

In this paper, we have proposed a novel approach to automatically segment
anatomical structures based on the majority voting method. A patch selection
strategy is proposed to ensure that the patch in the atlas with the highest similar-
ity to the target patch is selected as the voting candidate. The proposed approach
is verified by experimental evaluations on a standard dataset. Compared with
three benchmark techniques, the segmentation results are significantly improved
by the proposed method.
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Abstract. Selective Encryption (SE) offers effective and efficient pro-
tection of visual content for assuring video confidentiality. However, it
is challenging to optimize SE’s computational overhead while maintain-
ing encryption effectiveness. This paper suggests the study of classifying
the targeted sign-flip Quantized Coefficients (QC) so as to minimize the
Encryption Computation Overhead (ECO), while maximizing Percep-
tual Encryption Effectiveness (PEE) both across the H.264/AVC and
the HEVC video coding standards. The evaluation of this min-max opti-
mization is based on the number of encryption bits used to flip the tar-
geted QC sign and the Peak Signal to Noise Ratio (PSNR) estimated
post encryption for quantifying ECO and PEE respectively. Results of
simulation on different video sequences indicate that the derived set of
QC’s can reduce ECO cost by up to 78 % without affecting the video
confidentiality when compared to state-of-the-art approaches.

1 Introduction

The wide use of visual analytical systems in video surveillance has raised the threat
of the information being accessed by non-authorized users [1]. Therefore, providing
video confidentiality is critical and various approaches such as: raw video encryp-
tion [2], compressed video stream encryption [3] and selective encryption(SE) [4]
have become popular. Among these approaches, SE is well known for its scalability
and format compliance features [5]. As the name suggests, the SE technique targets
a selected portion of the video signal, such as a region-of-interest [6] or motion vec-
tor difference or Quantized Coefficients (QC) [7,8] for encryption. This targeted
part of the signal could be scrambled randomly using a pseudo random number
generator [8], or based on chaotic sources [1], or even more commonly using the
Advanced Encryption Standard (AES) algorithm [5].

One of the earliest SE schemes based on sign flipping QC was proposed by
Dufaux et al. in [9], where SE targeted all QC. Although well known, this scheme
was inefficient as it considered all QC equivalently. Therefore, many optimization
techniques have been proposed in order to minimize the computational overhead
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 109–118, 2015.
DOI: 10.1007/978-3-319-20801-5 12
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of the encryption process. For example, in [10], Tong et al. proposed a scheme
that excluded the DC QC, while in contrast, the scheme proposed in [11] tar-
geted the DC QC exclusively. Despite improving the Encryption Computation
Overhead (ECO), both methods were restricted by their inability to maximize
the perceptual encryption effectiveness (PEE). In contrast, Shahid et al. [12] pro-
posed targeting all non-zero (NZ) QC to achieve better trade-off between ECO
and PEE. In this paper, this method of [12] has been treated as a benchmark
due to its superior performance in minimizing ECO while not compromising on
maximal PEE when compared with other state of the art schemes.

This paper studies the impact that different classes of QC have on SE, par-
ticularly optimized against constraints of ECO and PEE, have been proven to
exceed the benchmark SE of [12], by saving nearly 60 %-78 % of computational
overhead with small improvements (0.18-2.51 dB) in PEE.

This paper is divided into four sections. In Sect. 2 the background of SE
is introduced. Section 3 covers the methodology, experimental framework, and
details of the experimental results for Classification and Optimization. Section 4
concludes with recommendations and some highlights of future work.

2 Background

Fundamentally, the SE scheme generates bits to be used in an Exclusive-OR
operations with the encoded bit stream. A state-of-the-art SE approach [12] uses
encryption bits to flip the signs of targeted QC; QCx, where x = {1, 2, . . . , 16}
for a 4x4 block [5]. This approach uses the encryption Sign Flip (SF) bit-stream
bits (SFBi

= {1, 0}, i = 1, 2, ..., S, where S is the size of the SFBi
) to flip the

sign values of selected or targeted QC, (QCx), based on the following simple
condition:

SF (QCx) =

{
−QCx if SFBi

= 1
QCx if SFBi

= 0

Figure 1 shows a general overview of a SE scheme based on sign flip for a
set of targeted QC. In this study, this category of SE has been adapted and its
effectiveness based on specifically chosen (QC) has been investigated.

The criteria for optimizing the performance of the SE strategy based on
targeted QC can be based on many indicators including performance over-
head (memory and computation), coding efficiency (bit-rate) and even security
(encryption algorithm or key size). In this paper, since the assessment method-
ology is focused on evaluating performance optimization within the bounds of
acceptable confidentiality. The two metrics that have been considered are a) PEE
for confidentiality and b) ECO for performance. The objective is to minimize
ECO without compromising on video content confidentiality measured through
maximizing PEE.

In order to quantitatively estimate PEE, the Peak Signal to Noise Ratio
(PSNR) metric has been used. PSNR assesses the gap in quality between the
authorized and non-authorized video retrieval (decoding), while ECO uses SQCx
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(size of the sign flip bits) as the performance overhead indicator. SQCx
reflects

the number of encryption operations to be generated in order to sign flip the
targeted QCx. The choice of QC chosen by different SE scheme vary, for exam-
ple in [9] QCx=[1−16] are used, while in [10] QCx=[2−15] is chosen by ignoring
the DC QC. The PEE metric based on PSNR measures the gap in quality
between the ’secured’ and ’intercepted’ videos using Eq. 1.

PSNR(X,Y ) = 10 log
h.w.n.2552

∑n
k=1

∑w
j=1

∑h
i=1(Xi,j,k − Yi,j,k)2

(1)

where h, w and n represent the height, width and number of the video frame
respectively. Xi,j,k represents a pixel in i and j coordinates at k frame. X and
Y are ‘secured’ and ‘intercepted’ decoded video frame. Furthermore, a target
PEE value (PEEτ ) has been considered as a benchmark to ensure that the
derived approach does not compromise on video confidentiality beyond the base-
line counterpart. In other words, any scheme that at the least does not achieve
the benchmarked PEE, PEEτ , was marked unacceptable. Beyond achieving,
PEEτ , high ECO is preferred to guarantee bounded computational overhead.

The ECO indicator has been based on the number of encryption operation
required to encrypt the QCx. For simplicity, this indicator has to be normalized
to a percentage amount of encryption performed in [12]. Equation 2 illustrates
ECOQCx

reflecting percentage saving based on the optimized selection of QC,
where SBM denotes the size of the encryption stream used in [12].

ECOQCx
= 100 × (1 − SQCx

SBM
) (2)

Fig. 1. An overview of the SE based on SF approach. QCx represent selected (targeted)
QC to be encrypted using SF bitstream
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3 SE Optimization

One outcome of this paper was to study the impact of targeted QC (indepen-
dently and when combined) on the performance of the SE. In other words, a
specific combination of QC’s can provide better trade-off between quality of
encryption and encryption cost saving. In order to systematically verify this
hypothesis, targeted QC assessment has been undertaken in 3 stages: a) Classifi-
cation through independent QCx assessment, b) Optimization through combined
class (groups of QCx) assessments and c) Validation of extended optimization
over other standards.

During the classification stage Sect. 3.2, the individual QCx are assessed
based on the quality of encryption using the H.264/AVC coding standard. Fur-
ther, in the optimization phase Sect. 3.3, combinations of specific classes and
targeted QCx have been explored for investigation on the performance based
on encryption cost and quality. Finally, in the validation step, the chosen com-
bination of targeted QCx has been applied on the HEVC coding standard and
evaluations reported in Sect. 3.4.

3.1 Experimental Framework

In the first stage, the SFB bitstream is used to encrypt the targeted QC (QCx)
and generate an encrypted bit stream. During the second stage, two decoding
schemes are used to retrieve each video sequence. The first decoding scheme
undergoes the SF effect using symmetric SFB to reconstruct a high quality
’secured’ video, while, the second decoding scheme decodes the QCx with SF
effect and reconstructs a poor quality ’intercepted’ video. In the last stage, the
ECO and PEE estimates are computed.

In order to conduct these experiments, the AES has been used as the encryp-
tion algorithm1 which has been used to generate the encryption bitstream SFB ,
has been chosen. The selected compression algorithm is H.264/AVC (Advanced
Video Coding) baseline codec used in [13]. A set of 10 standard videos2 have been
used for assessments3. Each standard video was a set of 100 gray-scale frames
in QCIF format. The SE targeted signal were non-zero QC of AVC intra-coded
I-Frames only. The group-of-picture was IPPP and coded with quality parameter
(QP=27). The PEE and ECO results in Sects. 3.2 and 3.3 is an average value of
all standard videos.

3.2 Classification: Independent Assessment

The objective of this approach was to assess the PEE of each QC independently. As
part of this approach, the PEE metric used is the PSNR and this is calculated using

1 AES website: http://buchholz.hs-bremen.de/aes/aes.html.
2 Standard videos: Highway, News, Foreman, Bridge (Close), Carphone, Coastguard,

Container, Hall Monitor, Highway and Mobile.
3 Standard Video Website: http://trace.eas.asu.edu/yuv/.

http://buchholz.hs-bremen.de/aes/aes.html
http://trace.eas.asu.edu/yuv/
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Eq. 1. In order to show the independentQCx assessment, this paper considered the
case study of the H.264/AVC video codec. This codec has 16 (4 x 4) QCx per block
which are accessed in a zig-zag order. To assess each QCx independently, 16 exper-
iments have been conducted and in each experiment a single QC was encrypted.
Subsequently, measurement of ECOQCx

and PSNR were calculated using Eqs. 1
and 2 respectively. This approach of optimization can be extended to other stan-
dards and an example of how this has been applied to HEVC standard is presented
in Sect. 3.4.

Figure 2 represents the histogram of calculated PEE (PSNR, dB) values for
each QCx. The normalized ECOQCx

value depicted over each bar represents
the share (percentage) of each QCx as compared to the bitstream size (Eq. 2) of
the benchmark algorithm [12]. For example, QCx=1 (number 1 in zig-zag order)
shows maximum PEE indicator with PSNR value of almost 30 dB. However,
this improved confidentiality raises the ECO by up to 12 % of the total QC as
obtained from the benchmark [12].

It can be observed in Fig. 2 that the PEE and ECO values decrease when
assessed the QCx in zig-zag order. We desire higher PEE values with minimum
corresponding ECO costs. Furthermore, as shown in the same Fig. 2, the quality
of encryption (PEE) varies for different QCx while the encryption cost (ECO)
remains equivalent. For example, (a) QCx=2 and QCx=4 have a PEE value of
12.45 dB and 16.11 dB respectively while their ECO value is 9 % (b) QCx=7 and
QCx=11 have a PEE value of 12 dB and 10 dB respectively while their ECO value
is 5 %. This indicates that some QCx can achieve higher quality of encryption
while maintaining low encryption cost. It also helped to understand which QCx
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can be targeted for better quality of encryption than others. This led to propose
a classification model of QCx based on PEE indicators.

Since the performance of any individual QCx did not reach the optimal PEE,
and remained ineffective against the benchmark results, there was a need to
seek for combinations of QCx to accomplish this target. However, exploring all
possible combinations of 16 QCx=1−16 can often be impractical, a smaller subsets
of these individual coefficients were first chosen. Here, based on the study of
the performance of individual QCx, 4 classes (or groups) were defined across
the entire PEE range. The details of these classes are shown in the Table 1. The
class that has the highest quality of encryption (25-30 dB), with QCx=1 has
alone been categorized into Class 1. Class 2 and Class 3 include the QCx=2 -
QCx=5 and QCx=6 - QCx=12 respectively. These 2 classes have a mid level of
quality of encryption (10-25 dB). Class 4 includes the QCx=13 - QCx=16 which
have the least quality of encryption (!10 dB) QCx.

Table 1. Classification model outcomes, classified QCx based on the PEE indicator
(PSNR) range.

Classification PEE ECO

(Classes) (PSNR) (ECOQCx)

Class 1: QCx=1 (25-30) dB 12 %

Class 2: QCx=2 - QCx=5 (20-25) dB (8-10) %

Class 3: QCx=6 - QCx=12 (10-20) dB (5-7) %

Class 4: QCx=13 - QCx=16 (5-10) dB (2-4) %

3.3 Optimization: Combined Assessment

In the second step of assessments, the performances of the individual classes
generated from the classification step were studied. In this context, experiments
on individual classes of QCx did not reach the targeted benchmark PEE (PEEτ )
of 31 dB. Therefore, further fusion of QCx between the pairs of classes of QCx

in a hierarchical manner were explored such that the combination yielded sig-
nificant savings in encryption cost and improvement in quality. A subset of
these proposed schemes assessed is summarized in Table 2. The first 4 schemes
are examples of accepted SE proposals (CaseA1-CaseA4), while the following 4
schemes (CaseR1-CaseR4) represent the unaccepted SE proposals. These pro-
posed schemes are a product of fewer combinations that can be accomplished
using the constraints set by the optimization model.

Based on the quality of encryption and encryption cost indicators shown
in Fig. 3, a set of cases which have a positive confidentiality level have been
identified. This set of cases have high encryption cost saving of nearly (60 % -
78 %). One observation that can be highlighted from Table 2 is that, all accepted
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Table 2. Optimization model outcomes: 8 proposed schemes (4 accepted and 4 unac-
cepted)

SE Class Accepted PEE ECO QCx

(Cases) (SE) (Gaining) (Saving) (Zigzag order)

CaseA1 1-2 Yes +0.18 dB 78 % x = 1, 3

CaseA2 1-2 Yes +0.35 dB 69 % x = 1 − 3

CaseA3 1-2 Yes +0.63 dB 61 % x = 1 − 3, 5

CaseA4 1-2 Yes +2.51 dB 60 % x = 1 − 4

CaseR1 4 No -23.37 dB 88 % x = 13 − 16

CaseR2 1 No -0.8 dB 88 % x = 1

CaseR3 3-4 No -15.20 dB 77 % x = 9 − 12

CaseR4 2-3 No -13.12 dB 75 % x = 5 − 8

proposals are based on the combination of QCx from Class 1 and Class 2. As an
example, the SE designer could save 60 % of the encryption cost by targeting the
first 4 QC (CaseA4) only, as opposed to targeting all QC (as in [12]). Moreover,
the scheme will also yield higher quality of encryption (PEE gaining is 2.5 dB
on average). In another example, the designer could gain more than 75 % of
encryption cost saving by implementing the CaseA1 (with QCx=1 and QCx=3 ).
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Table 3. The set of benchmark video sequences used to study the performance of the
proposed optimizations in HEVC video codec

Sequences Frames Transform Cases (ECO saving)

Class Name Resolution Number Rate 4 x 4 Share CaseA1 CaseA2 CaseA3 CaseA4

A People On Street 2560 x 1600 150 30 28% 56% 38% 20% 37%

Traffic 150 30 23% 55% 39% 20% 38%

B BQ Terrace 1920 x 1080 600 60 28% 69% 57% 42% 55%

Kimono 1 240 24 6% 49% 35% 17% 34%

Park Scene 240 24 25% 59% 43% 26% 43%

C Basketball Drill 832 x 480 500 50 40% 66% 52% 39% 49%

BQ Mall 600 60 34% 63% 49% 36% 46%

Race Horses 300 30 26% 66% 52% 39% 50%

D Basketball Pass 416 x 240 500 50 31% 65% 51% 37% 47%

Blowing Bubbles 500 50 61% 69% 55% 45% 51%

BQ Square 600 60 56% 78% 68% 59% 63%

E Four People 1280 x 720 600 60 23% 58% 36% 21% 33%

Johnny 600 60 12% 49% 33% 19% 29%

Kristen And Sara 600 60 14% 58% 40% 27% 35%

Average 29% 61% 46% 32% 43%

3.4 HEVC Case Study

The combined assessment of the targeted QCx classes revealed superior perfor-
mance of 4 schemes. In this section, these 4 acceptable schemes are validated
using the HEVC standard on the 4 x 4 transform block size only. However, HEVC
being the latest standard supports three additional transform block sizes: 8 x 8,
16 x 16, and 32 x 32, to which the optimization could be extended and applied
to. This investigation is beyond the scope of this paper. From this point onward,
HEVC Reference Software (HM) version 16.24 is used for validation experiments.

Table 3 shows that the percentage share of 4x4 transform block size on the
HEVC codec is on an average 29 % compared to the other 3 transform block sizes
for the HEVC standard. In addition, Table 3 also refers to those video sequences
(from classes A to E) that are selected as part of this study, which have also been
used in many HEVC standardization tasks [14] and in testing SE schemes such
as in [4]. All the considered video sequences for the HEVC experiments were in
4:2:0 color format with 8 bit per color sample and coded with 4 different QP
values (22, 27, 32 and 37).

Using the essential statistics as above, the proposed SE optimization has
been applied on 29 % (4x4 transform block) of the QC. In line with the previous
optimization results (as in Sect. 3.3), CaseA1 demonstrated the highest ECO
savings of 61 % with low depreciation of PEE (-0.8 dB, on average). CaseA2

and CaseA4 showed equivalent PEE changes (-0.4 dB) with moderate ECO sav-
ing (46 % and 43 % respectively). The best quality of encryption was achieved
by CaseA3 with a compromise of -0.1 dB in PEE and an ECO saving of 32 %.
Despite small variations in performance, the experiments on HEVC confirmed

4 HEVC software repository (main at HHI), http://hevc.hhi.fraunhofer.de.

http://hevc.hhi.fraunhofer.de
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that the judicious choice of targeted QCx needs to be made for achieving favor-
able trade-off between encryption cost and quality.

4 Conclusion

In this paper, the classification, optimization and validation stages of applying
selective encryption for video confidentiality has been introduced. The classifi-
cation model assesses and groups the targeted QC independently. The optimiza-
tion model proposes the schemes (with combined QC) with acceptable quality of
encryption (PEE) above the targeted quality of encryption (PEEτ ), then sorts
them based on the encryption cost saving (ECO). The optimized selection of
QC for selective encryption indicates an enhancement in PEE of up to 2.5 dB
(PSNR) and an ECO saving between 60 % and 78 %. An adaptive system may
trade-off 18 % ECO to enhance PEE with more than 2 dB (PSNR) by utilizing
CaseA4 which guarantees the minimum PEE.
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Abstract. The paper presents a compression method based on Princi-
pal Component Analysis applied to reduce the volume of data in seabed
Digital Terrain Model. Such data have to be processed in a manner
very different from typical digital images because of practical aspects
of analysed problem. Hence, the developed algorithm features a variable
compression ratio and a possibility to control a maximal reconstruction
error. The main objective is to build an orthogonal base and find a num-
ber of PCA coefficients representing analysed surface with an acceptable
reconstruction accuracy. We present two variants of processing: an itera-
tive compression approach and an approach predicting a number of coef-
ficients before compression starts. It yields much lower computational
demand and is faster. The later algorithm employs several statistical
measures of an input surface describing its complexity at the prediction
stage. Employed, simple classifier based on Classification and Regression
Tree do not introduce high additional time overhead. Performed experi-
ments on real data showed high compression ratios, better than for typ-
ical DCT-based methods. The possible application of developed method
is modern data management system employed in maritime industry.

1 Introduction

Most of bodies of water (in terms of large accumulations of water, such as oceans,
seas, and lakes) have a specific structure, created by common physical phenom-
ena, mainly from tectonic movement, and sediment from various sources. Their
main areas are abyssal plains featuring variable forms and structures. The knowl-
edge of such forms is crucial in many different application areas, e.g. maritime
cartography, deep-sea exploration, hydrography, environmental protection and
natural resources exploitation.

The use of water areas in most cases requires the knowledge of detailed bathy-
metric data. This type of information is more and more frequently visualized and
processed with geo-information tools, so that more profound and comprehensive
analyses can be made. At present, sounding by a multibeam echosounder (MBES)
is one of the most effective and most accurate methods of depth measurements,
yielding a set of measured points covering the entire seabed. As a rule, multibeam
c© Springer International Publishing Switzerland 2015
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echosounder data recordings consist of a huge collection of measurement points,
characterized by irregular spatial distribution. Such data, due to their large quan-
tity and irregular distribution are not suitable for direct processing, such as visu-
alization or analysis. For these reasons sounding data are processed into more
ordered structures, such as grid (regular square network), that describes a digital
terrain model (DTM) [9,10,17]. Grid structures are often created through inter-
polation of measurement data [9,16,18].

Thanks to advanced equipment (multibeam echosounders, precise position-
ing systems) and complex numerical algorithms, we get high quality output
data. However, the constant increase in their volume and the need of retaining
their quality makes a problem of compression very up-to-date [22]. The proposed
algorithm of compression should meet specific requirements such as high com-
pression ratio and accurate reconstruction. Hence, it will make the measurements
of larger areas possible. Input data characteristics and their amount determine
the most important features of compression method. For practical application,
it should be a lossy compression (giving higher compression ratios), incorporate
predefined, maximal reconstruction error in any grid node (difference between
original and reconstructed depth), involve adaptive and variable compression
ratio in small sub regions (maximal compression for requested accuracy), imple-
ment fast retrieval and reconstruction for small sub areas.

1.1 Previous Works

Despite the fact that the problem of handling measurement data is present in
scientific literature [1,3,13], it seems that a particular issue of seabed data com-
pression has not been solved in an acceptable way. Although certain approaches
have been proposed, they only work in limited cases [7,12] or are insufficient
for modern applications [2,23,26,27]. Even the sophisticated software known to
the authors of this work and used in maritime business does not provide any
satisfactory data compression.

On the other hand, there are many scientific works addressing general compres-
sion of elevation (depth) data. Most of them describe the compression of land sur-
faces, often gathered using the Light Detection and Ranging technology (LIDAR)
and stored as grayscale images.The authors of [20] proposed the Triangulated
irregular network DEM (TIN DEM) compression using second-generation wavelet
transform (SGWT). In [24] the Over-determined Laplacian Partial Differential
Equation solver (ODETLAP) method was presented, applied to the compression
and reconstruction of terrain data used in GIS systems. In [8] different meth-
ods of DEM images compression were proposed. In [28] authors described surface
data compression by means of overdetermined Laplacian approximation. In [21]
compression of elevation data based on general JPEG-LS was presented. In [1] an
application of 3-D DCT and hybrid DPCM/DCT for compression of hyperspectral
imagery was presented.

Above literature survey shows, that, most of the works in this area deals
with compression of elevation data stored in images (bitmaps). The assumption
about regular structure of depth measurements was also taken in this work.



Near-Lossless PCA-Based Compression of Seabed Surface with Prediction 121

It is extremely difficult to compare the results of different research performed
on various datasets (mainly DEMs and DTMs). Most of the works related to
the compression are devoted to land data, which is gathered and processed in a
different manner. Moreover, such data have different characteristics than seabed,
i.e. rapid changes of shape, often faults versus smooth forms, large areas of
constant depth (in case of seabed).

Hence, the article is focused on two aspects of the presented problem. The
first one is near-lossless compression of seabed data by means of two-dimensional
analysis and projection based on two-dimensional Principal Component Analy-
sis. It is an advancement over the method presented in [19]. The second one is
the increase in computations speed thanks to predicting an initial number of
compression coefficients. The idea of using a set of simple statistical measures
and a simple classifier learned on ground-truth surfaces and compression coeffi-
cients is inspired by a more general approach applied to natural images, which
was described in [5]. In this case, however, the features are slightly different and
the classification is no longer based on a linear model.

2 Algorithm Description

2.1 Assumptions

During the compression of DTM-based measurements we have to cope with data
denoted with real values (representing depth). Such an approach is very differ-
ent from typical digital image processing techniques where pixels are denoted
with integer numbers. The main objective of compression is therefore to obtain
the highest compression factor while not exceeding pre-defined reconstruction
error. Both assumptions should be fulfilled in order to satisfy IHO standards [11].
During compression involving PCA we have to select the minimal number of trans-
form coefficients satisfying criteria related to compression factor and reconstruc-
tion accuracy.

2.2 Base Algorithm

The compression algorithm (see Fig. 1) is divided into two stages, namely offline
processing of reference surfaces (based on two-dimensional Principal Component
Analysis) in order to create a set of eigensurfaces (similar to eigenfaces [25])
and online compression of actual measurement data based on two-dimensional
Karhunen-Loeve Transform. We intentionally distinguish PCA from KLT, since
the first one is used for analysis and the later - for transformation [14]. Hence,
the compression consists of the following steps:

1. Decompose data matrix into non-overlapping, square blocks D of N × N
elements,

2. For each block D:
(a) perform two-dimensional Karhunen-Loeve Transform;
(b) set components number M in each direction to 1;
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(c) extract a square submatrix of M ×M form upper-left corner of 2DKLT
spectrum of D;

(d) perform inverse two-dimensional Karhunen-Loeve Transform for spectrum
with M ×M components (the rest is set to zero);

(e) evaluate the difference (reconstruction error E between original block D
and reconstructed one);

(f) if error E is greater than a set threshold (according to given IHO norm)
increment M (while M < N) and go to (2c);

(g) otherwise store M × M components of 2DKLT spectrum for analysed
block D,

3. Save all 2DKLT components for all blocks describing whole surface.

We applied 2DPCA/2DKLT as it has some advantages over typical Discrete
Cosine Transform, namely it creates an optimal base for any specific class of
images (in this case - seabed surface) and captures most of energy in few first
components of its spectrum. In comparison to the classical PCA/KLT where
we have to create large covariance and transformation matrices of N2 × N2

elements, we create two transformation matrices, one for row and one for column
representations of data block of N × N elements [14]. It makes handling large
blocks easier and requires less memory space.

If we assume a seabed surface being an image, then the application of
2DPCA/ 2DKLT is rather straightforward. This approach to the surface com-
pression assumes also that data are placed in a regular grid and from this point of
view differs from other “geometrical” approaches [15]. The reconstruction error
is calculated on a basis of maximum absolute difference and verified according
to appropriate surface class [11] (in terms of threshold). In order to achieve
adequate accuracy, data were stored on real (double precision) values.

2.3 Predicting the Number of Coefficients

Proposed algorithm, in its basic form, is rather straightforward in terms of look-
ing for final M value for each block, hence the steps (2c,2d,2e) are executed
many times, making the search for optimal compression factor a typical lin-
ear search problem. During experiments, those steps were often repeated more
than 10 times, which is far from optimum. The obvious solution is a binary
search, that halves the number of items to check with each iteration, so locating
proper M value takes logarithmic time. For example, if N = 32 then we perform
log2(N) = 5 searches for each block.

In order to further increase the speed of computations (in terms of decreasing
the number of reconstruction/error estimation stages) we propose to predict M
value on a base of surface characteristics. It is clear than the more complex the
surface is, the less it can be compressed (hence the number of 2DPCA compo-
nents is larger). Therefore, we calculate a set of characteristics for each block as
an input to the classifier and get the value of M . Since the prediction of M is
not 100 % error-free, we introduce a stage of local search in the neighborhood of
predicted M to find its final value. Full algorithm is presented in Fig. 1.
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Fig. 1. Compression algorithm with prediction

2.4 Surface Characteristics in Blocks

We investigated several typical scalar measures that describe the complexity
level of surface under compression. In our investigations we assumed, that there
is a link between surface complexity (seen as a grayscale image) and reconstruc-
tion accuracy (in terms of compression quality). Hence we propose to use the
following measures calculated for each block being compressed, independently:
variance, standard deviation, entropy, contrast, autocorrelation, features derived
from Gray-Level Coocurrence Matrix (contrast, correlation, energy, homogenity)
calculated for horizontal and vertical directions in two-pixel neighborhood. Such
selection was inspired by our previous works aimed at graphical objects detection
and classification [4,6].

Hence, we create a 13-element vector for each block and on its base predict
compression ratio. The further analysis leads to the conclusion that not all values
are equally important, hence we investigated an additional variant of feature
vectors - a reduced one, containing only standard deviation, entropy, contrast,
and autocorrelation. They were selected as a compromise between calculation
complexity and their discrimination ability.
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3 Experiments

There are two groups of experiments that were performed. The first one was
devoted to investigation of compression factor in respect to pre-defined recon-
struction accuracy, while the second one was aimed at evaluating the perfor-
mance of several classifiers used to predict the number of 2DPCA coefficients.
The experiments were performed on our own benchmark database consisting of
real data representing seabed. The measurements were collected from Szczecin
Lagoon and Pomeranian Bay (courtesy of Maritime Office in Szczecin, Poland).
The details of benchmark surfaces are provided in Table 1.

Table 1. Characteristics of benchmark surfaces

No Name Grid resolution Grid size No. points Raw filesize

[meters] [nodes] [thousands] [MBytes]

1 gate 0.5 1888 × 1888 3081 23.51

2 rotator 0.75 2464 × 1760 4336 33.09

3 wrecks 0.01 1856 × 672 1247 9.52

The surfaces rendered in 3D perspective are presented in Fig. 2. They include
a surface of rather high and uniform complexity (“rotator”) and surfaces with
high local depth variance (“wrecks” and “gate”) as well as many areas of near-
constant depth. The “gate” is a visualization of a route gate, “wrecks” presents
an area with car wrecks, and “rotator” is a place where ships can rotate. They
have been intentionally chosen to cover most representative types of seabed.
While the seabed in most areas in the world is not so variable the results of
the experiments should give good approximation of projected efficiency of the
method. The measurements are given in meters. Hence, after decomposition, the
benchmark database consists of three above surfaces decomposed (in total) in
3875 blocks of 32 × 32 elements. We investigated four accuracies, namely 0.01,
0.05, 0.1 and 0.3 m, which are much more strict than IHO-suggested accuracies
for that kind of areas (more than 0.3 m).

The results of compression experiment on all benchmark surfaces for 2DPCA
are provided in Fig. 3. As for comparison, we investigated the same procedure,
but using classical 2DDCT approach (the results are also provided). It should
be noted that the compression ratio does not take into consideration the size
of eigenvectors which are common for all surfaces. If they are calculated for a
representative set of seabed surfaces, they can be taken as a constant for the
algorithm.

As it can be seen, the compression ratio is, in general, much higher for
2DPCA-based approach. It increases with the decrease of reconstruction error
and increase of block size. For small acceptable errors and small block size, the
difference between methods is less visible. Due to practical aspects of implemen-
tation (see previous research [19]), block size of 32 × 32 pixels is advisable.
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Fig. 2. Benchmark surfaces

Fig. 3. Compression efficiency for 2DPCA/2DKLT and 2DDCT approaches as a func-
tion of block size and reconstruction error

At the prediction stage we selected several state-of-the-art classifiers, namely:
Decision Trees (Random Tree, Random Forest, CART, REPTree, J48), Naive
Bayes Classifier (NBC), Multi-Layer Perceptron (MLP), Nearest Neighbor with
k = 1 (1NN), Support Vector Machine (both with RBF and linear kernels). We
employed typical 10-fold cross validation technique to make the results objective.

As a ground truth, we took values of M (the number of iterations) cal-
culated for each test block using above mentioned linear search (brute-force
strategy). As for the comparison, we included the number of iterations using
binary search (also described above). The performance was evaluated on a basis
of the number of correctly predicted M values and the number of additional
reconstruction/error estimation iterations in case of failure (consisting of incre-
ment/decrement stages in algorithm presented in Fig. 1).

Based to the results, we selected CART classifier as a compromise between
accuracy and computational overhead. It was slightly worse than MLP, but much
more efficient (especially at the stage of learning). Using prediction, for the most
strict 0.01 m accuracy, we are able to reduce the number of compression iterations
(in case of N = 32) from 32421 (linear search, for those particular benchmark
data) and 19375 (binary search, theoretical value) to just 16773.
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Table 2. Number of iterations as a function of accuracy, feature vector length and
classifier for all benchmark surfaces

Accuracy [m] 4-el. feature vector 13-el. feature vector

0.1 0.05 0.01 0.1 0.05 0.01

Linear Search 15423 18934 32421 15423 18934 32421

Binary Search 19375 19375 19375 19375 19375 19375

NBC 11077 12035 19380 11611 13237 21926

MLP 10414 11006 17243 10111 10723 16544

1NN 11175 12278 21024 11295 12247 19552

SVM (RBF) 10797 11470 18060 10936 11741 18346

SVM (Linear) 10771 11371 18292 10936 11308 17905

Random Tree 11109 12098 20347 10609 11508 18560

Random Forest 10495 11207 17952 10061 10778 16655

J48 10678 11503 18327 10290 11124 17059

REPTree 10498 11144 17513 10224 10981 16780

CART 10439 11101 17344 10166 10892 16773

The results in Table 2 prove that the proposed algorithm based on simple
image (surface) features and a classifier is able to predict the number of stored
components used at the compression stage and, hence, reduce the number of
computations (in average, comparing to the binary search, of more than 34 %).
As it can be seen, the usage of full, 13-element feature vector is not justified.
In most cases, the best results gave the Multi-Layer Perceptron, hoverer it is
complex in training. When we forget the computational overhead associated with
calculating four simple features and an appropriate, unsophisticated classifier (in
most cases tree-based, e.g. CART or J48), it leads to the real improvement in
performance.

It is important for the proposed algorithm, that a total computational overhead
depends not only on the number of reconstruction/error estimation iterations but
also on the features calculation and classification. However, those operations are
rather fast and do not influence much the total computations time. It should be
also noted that the algorithm’s efficiency (in terms of a gain in computations speed
in comparison to binary search) depends on the requested accuracy. For example,
it gives 46 % less reconstruction/error estimation operations for accuracy of 0.1 m,
while 43 % for 0.05 m and 11 % for 0.01 m, respectively.

4 Summary

A novel approach for compression of seabed data was presented. It consists
of data processing stage employing Principal Component Analysis and some
elements from digital image processing together with data-mining algorithms.
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It has been tested on real data and proved its efficiency. In a comparison to typi-
cal Discrete Cosine Transform it gives significantly higher compression ratio and a
significant decrease in computational overhead (in comparison to direct method of
searching the coefficients number). Another important practical aspect of the pro-
posed method is that in comparison to the classical one-dimensional PCA/KLT,
developed algorithm requires less memory and processing power. The performed
experiments showed also that when we employ much lower number of surface fea-
tures (4 out of 13), we will be able to significantly reduce the number of operations
needed while retaining high reconstruction accuracy and compression rate.
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Abstract. Adaptive Weighted Neighbors Lossless Image Coding AWN
is a symmetric lossless image compression algorithm. AWN makes two
initial predictions, creates a weighted combination of the initial predic-
tions before adjusting the prediction to end up with the final prediction.
In order to achieve more compression, we encode the error in multiple
bins depending on the expected error magnitude. Also, instead of encod-
ing the signed error, the algorithm attempts to guess the sign and encodes
the error magnitude and whether guessing the sign was successful or not.

Keywords: Image compression · Lossless compression · Context
modeling · Adaptive prediction · Entropy coding

1 Introduction

Data compression is the process of representing information using fewer bits than
the original representation would use. The main objective of data compression is
to reduce the size of the information being encoded. As the size of different kinds
of data (text, audio, and video) is growing, the need to have better compression
techniques is increasing [5,7].

In general, compression can be broken down into two major fields, namely:
lossy compression and lossless compression. Lossy compression usually achieves
excellent compression rates at the expense of information loss. In other words,
the reconstructed information after compression and decompression is not an
exact replica of the original information before compression. On the other hand,
lossless compression achieves less compression than lossy. The main advantage of
lossless compression is that the reconstructed information matches the original
information exactly. This is very important for legal and medical applications.
The research presented in this paper is a lossless image compression. Therefore,
the reconstructed image is exactly the same as the original image.

There are many methods that are used on image to achieve compression. These
methods include statistical methods (Huffman encoding [3] and Arithmetic encod-
ing [9]), dictionary methods (Lempel-Ziv-77 (LZ77) scheme [11] and Lempel-Ziv-
78 (LZ78) scheme [12]), prediction methods (Differential pulse-code modulation
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 129–138, 2015.
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Fig. 1. Algorithm Overview: AWN consists of two main stages. The first stage is the
Prediction Enhancement Stage, which consists of three steps that starts with two initial
predictions and ends with a final prediction. The second stage aims to improve the
entropy to achieve a better compression. This is achieved by grouping the errors in
different encoding bins and attempting to guess the sign of the error.

(DPCM) scheme [2]), and context methods (Context-based Adaptive Lossless
Image Codec (CALIC) scheme [10], LOw COmplexity LOssless COmpression for
Images (LOCO-I) scheme [8], Prediction by Partial Matching (PPM) scheme [1],
and Weighted Ratio-based Adaptive Lossless Image Coding [4]).

In this paper, we introduce Adaptive Weighted Neighbors (AWN) Lossless
Image Coding. AWN is a lossless image codec. It combines statistical-based,
prediction-based, and context-based techniques to achieve an excellent compres-
sion rate. The rest of the paper is organized as follows. Section 2 provides a
general overview about the proposed algorithm. Sections 3 to 6 explain each
component of the codec in more details. Section 7 presents our experimental
works by showing the bit rates we achieved along with a comparison with other
lossless compression algorithms. Finally, Sect. 8 concludes this work.

2 General Overview

The system can be broken down into 6 major steps. These steps are: calculating
two initial predictions, combining the two predictions, prediction adjustment,
error sign guessing, choosing an encoding bin and entropy encoding.

Figure 1 shows how these steps can be broken down into two stages: pre-
diction enhancement stage and encoding improvement stage. In the prediction
enhancement stage, we start with two initial predictions. Then, we combine them
into an intermediate prediction. After that, the prediction is adjusted through
an error context feedback. The aim of this stage is to come up a prediction of the
pixel being encoded.

Better compression can be achieved when encoding the error in an effective
way. This is done in the encoding improvement stage. In this stage, we choose
the encoding bin that promises to yield the lowest entropy. In addition, we do
not encode the sign of the error. Instead, we try to guess the sign. Finally, we
perform entropy encoding such as: arithmetic encoding.
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3 Predictors: Calculating Initial Predictions

Statistical redundancy in a set of pixels is the smoothness of the intensity func-
tion. In other words, pixels spatially close to each other tend to have similar
values. The predictor of AWN views the prediction as depending on the direc-
tion of the small changes. There are four directions that we use to calculate
the prediction. These directions are: horizontal, diagonal (45 degrees), vertical,
diagonal (135 degrees). The direction with the smallest absolute change tends
to give the best prediction.

Based on this notion, we designed our predictor. The predictor gives more
weight to predictions that are inferred from the directions with the least changes.
Equations 1–4 define the gradient magnitude estimates in the four directions:

GMh = ||IW − IWW || + ||INW − INWW || + ||IN − INW || + ||INE − IN || (1)

GMD1= ||IW − INWW || + ||INW − INNWW || + ||IN − INNW || + ||INE − INN ||
(2)

GMv = ||IW − INW || + ||INW − INNW || + ||IN − INN || + ||INE − INNE || (3)

GMD2 = ||IW − IN || + ||INW − INN || + ||IN − INNE || + ||INE − INNEE ||
(4)

where IW , IWW , ..., INNEE are the values of the neighbours of the pixel. For
example, IW is the pixel to the west of the current pixel and INW is the north-
west neighbour of the pixel.

Figure 2 shows how we calculate the gradient magnitude estimates in the four
directions. The gradient magnitude estimate in each direction is the summation
of the absolute differences of the neighboring pixels. The lower the value of the
magnitude, the more likely a prediction based on the corresponding direction
can yield better results.

The less the magnitude of absolute changes in one direction, the higher the
weight of the corresponding pixel should be. In other words, the weight of each
pixel is determined by dividing the total absolute changes in all directions by
the directional absolute changes.

δ = GMh + GMd1 + GMv + GMd2 (5)

wh =
δ

GMh
, wd1 =

δ

GMd1
, wv =

δ

GMv
, wd2 =

δ

GMd2
(6)

We define two initial predictions. The first initial prediction is a weighted
combination of the neighboring pixels: W, NW, N, and NE. The Horizontal,
Diagonal 1, Horizontal, and Diagonal 2 directions correspond to W, NW, N, and
NE, respectively. The resulting weights are normalized. We need to normalize
them when we calculate the predictions.

wtotal1 = wh + wd1 + wv + wd2 (7)
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Fig. 2. Gradient magnitude estimation: (a) The estimation of the horizontal gradient
magnitude, which is performed by taking the absolute values of the differences indicated
by the arrows. (c),(b) and (d) are the gradient magnitude estimations in the vertical
directions and the diagonals respectively.

wh,norm =
wh

wtotal1
, wd1,norm =

wd1

wtotal1
, wv,norm =

wv

wtotal1
, wd2,norm =

wd2

wtotal1
(8)

After normalizing the weights for the initial prediction 1, we can now calculate
the initial prediction 1. The weights play a significant role in computing the
first initial prediction. If the gradient magnitude estimation in one of the four
directions is low, the corresponding neighbor will have higher contribution to
the first initial prediction.

Iinitial1 = wh,norm × IW + wd1,norm × INW + wv,norm × IN + wd2,norm × INE

(9)
The second initial prediction uses only the pixels that correspond to the

directions with the least changes and the second least changes (lowest and
second lowest gradient magnitude estimations). More weight is given to the pixel
that corresponds to the direction with the least change. To do that, we boost
the original weight of the pixel with the minimum change. The boosting value
will always be larger than 1 because the nominator is always larger than the
denominator.

wLowestBoosted =
wlowest

w2ndLowest
× wlowest (10)

In order to use these weights, we should normalize them first. The normal-
ization process is similar to the one we did for the initial prediction 1. We first
get the total of the 2 weights. Then, we divide these weights by the total.

wtotal2 = wLowestBoosted + w2ndLowest (11)

wLowestBoosted,Norm =
wLowestBoosted

wtotal2
(12)

w2ndSmoothest,Norm =
w2ndSmoothest

wtotal2
(13)
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Fig. 3. This figure shows the weights of the neighbours of the pixel being encoded.

Using the normalized weights, we can compute the second initial prediction
(Eq. 14). The contribution of the neighbor that corresponds to the best prediction
is always more than the one with the second best. For example, if the lowest
and second lowest gradient magnitude estimations were in the horizontal and
the vertical directions, the best and second neighbors that we use to compute
the second initial prediction are the W and N pixels.

Iinitial2 = wLowestBoosted,Norm × Ibest + w2ndSmoothest,Norm × I2ndbest (14)

4 Combining the Two Predictions

Using the two initial predictions we calculated, we compute the intermediate
prediction. The intermediate prediction is a weighted combination of the two
initial predictions. We have found that creating a weighted combination of the
two initial predictions yields a better compression rate. In order to determine
the weight of the two initial predictions, we examine their errors for pixels that
are spatially close to the pixel being encoded. Pixels closer to the pixel we are
encoding are much more important than pixels that are far away. Figure 3 shows
the weights of the neighbours surrounding the pixel being encoded.

Using the weights shown in Fig. 3, we can now compute the spatial sum of errors
that correspond for the initial prediction 1 and 2 as shown in Eqs. 15 and 16:

Einitial1 =
∑

n∈Neighbours

wn||Iinitial1,n − In|| (15)

Einitial2 =
∑

n∈Neighbours

wn||Iinitial2,n − In|| (16)

In order to speed up the computation in Eqs. 15 and 16, a shift left operation
may be performed instead of the multiplication since all weights are multiples
of 2.

To get the intermediate prediction, we combine the initial predictions for
this block. The weight of each initial prediction depends on the value of the sum
of absolute error E for each prediction. The prediction with the higher sum of
absolute error E will contribute less to the intermediate prediction. On the other
hand, the prediction with the lower sum of absolute error E will contribute more
to the intermediate prediction. Equation 17 show how we calculate the weights
of each prediction using the spatial error of each:

winitial1 = 1 − Einitial1

Einitial1 + Einitial2

winitial2 = 1 − winitial1

(17)
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The intermediate prediction is the weighted combination of the 2 initial pre-
dictions. It is calculated as shown in Eq. 18:

Iintermediate = winitial1 × Iinitial1 + winitial2 × Iinitial2 (18)

5 Contexts

In order to improve the compression performance, we quantize the blocks into
a set of contexts based on different features such as: comparisons between the
prediction to other pixels in the block, the magnitude of the gradient, the direc-
tion of the gradient, and the quantization of the average prediction error in the
block. Using contexts helps us to:

– Adjust prediction through error context feedback (Sect. 5.1)
– Guess the sign of the error (Sect. 5.2)
– Choose an Encoding Bin (Sect. 5.3)

5.1 Prediction Adjustment Through Error Context Feedback

After we calculated the intermediate prediction, we adjust the prediction to end
up with the final prediction. Adjusting the intermediate prediction to get the
final prediction is a very important step. This step removes any redundancy
in predicting pixels that belong to the same context. In other words, this step
allows the algorithm to improve the quality of the prediction for each context.
Equation 19 shows how we calculate the adjustment value. The adjustment value
is the result of dividing the running sum of the error for a context by the running
count of the pixels that belong to this context.

eC =
sum(C)
count(C)

Ifinal = Iintermediate + eC

(19)

5.2 Sign Guessing

When encoding an image, it is expected that the number of positive and the
number of negative errors to be almost the same. For example, the total number
of +2 errors is expected to be similar to −2. Therefore, instead of encoding the
sign, we can encode our success or failure in guessing the sign. For example,
when the encoder receives the error −2, it knows that the absolute error 2 and
we were not successful at guessing the sign. Since both the encoder and decoder
use the same method to guess the sign, the sign can be inferred.

In order to guess the sign, we collect the above features about the block and
keep track of the number of positive and negative errors for each context. When
encoding a pixel, we check its context, if the number of negative error is more
than the positive, it is more likely that the sign of error is negative. Therefore, the
error magnitude is encoded and in case the guess was not successful, a negative
error is encoded.
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5.3 Choosing Encoding Bin

Instead of encoding all errors as one sequence of numbers, the performance can
be enhanced by grouping the pixels into different bins. Ideally, if all errors in a
bin have the same values, the entropy is 0 (for the bin). Of course, this is very
unlikely to happen. However, having similar errors in each bin tends to yield
better compression.

In order to determine the best bin to add the error to, we examine both the
spatial neighbors of the pixel and the context of the pixel.

Bin = round(Wspatial × Espatial + Wcontext × Econtext) (20)

where ESpatial is the average absolute error of the neighbours surrounding the
pixel and EContext is the average absolute error of the context.

In other words, the bin is a weighted combination of the spatial absolute error
and the context absolute error. The weights in this equation are calculated as
shown in Eqs. 21. If the weighted average of the absolute errors of the encoding
block is higher than the context average absolute error, the spatial weight will
be low. On the other hand, if it is lower than the context average absolute error,
the spatial weight will be high. The values of the spatial weight and the context
weight add up to 1.

Wspatial = 1 − ESpatial

ESpatial + EContext

Wcontext = 1 − WSpatial

(21)

The outcome of this process is an integer that determines the bin number
that we will add the error to encode. This number is a weighted combination of
the spatial weighted average of the absolute error of the block and the average
context error.

Fig. 4. This figures shows the bit rate (lower values are better) of our algorithm along
with other algorithms. AWN achieves good results than many well known algorithms.
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Table 1. Table showing the compressed size, compression rates, and encoding/decoding
times (in seconds) achieved for each image in the Kodak image set. The original size
for all images is 393,231 bytes.

Image name Compressed (Bytes) Bit rate Encoding time Decoding time

Kodim01 251,815 5.12 1.417 0.997

Kodim02 190,330 3.87 1.401 0.919

Kodim03 161,017 3.28 1.308 0.872

Kodim04 194,411 3.96 1.307 0.919

Kodim05 237,627 4.83 1.479 0.981

Kodim06 220,010 4.48 1.416 0.967

Kodim07 166,452 3.39 1.337 0.889

Kodim08 253,493 5.16 1.556 0.982

Kodim09 185,926 3.78 1.323 0.903

Kodim10 187,353 3.81 1.339 0.903

Kodim11 210,567 4.28 1.354 0.936

Kodim12 181,273 3.69 1.274 0.887

Kodim13 288,567 5.87 1.604 1.043

Kodim14 234,230 4.77 1.417 0.965

Kodim15 181,350 3.69 1.34 0.935

Kodim16 194,952 3.97 1.307 0.903

Kodim17 191,591 3.9 1.339 0.919

Kodim18 244,072 4.97 1.432 0.982

Kodim19 213,896 4.35 1.369 0.919

Kodim20 149,730 3.05 1.229 0.889

Kodim21 217,703 4.43 1.4 1.013

Kodim22 217,811 4.43 1.386 0.966

Kodim23 164,854 3.35 1.277 0.888

Kodim24 217,589 4.43 1.386 0.951

Average - 4.2 1.38 0.94

6 Entropy Encoding

We use an adaptive arithmetic encoder to encode prediction errors and sign
guessing data. Depending on the context of the errors being encoded, the error
can go into one of 16 encoding bins.

In a similar manner to the entropy encoding in [10], each encoding bin is
further split into 2 bins. In other words, the total number of encoding bins is
32. Depending on the value of the error and the bin, the encoder may encode an
escape symbol and encode the error in an extended bin. The values of the bins
are: {5, 9, 12, 13, 15, 17, 21, 25, 29, 33, 37, 41, 46, 57, 93, 128}. If the absolute value
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of an error being encoding is higher than the boundary, an escape symbol is
encoded and the error is encoded in a separate bin.

7 Results and Experiments

We tested AWN on the well known Kodak image set, which is comprised of 24
gray-scale images. The total size of the images is 9437544 bytes. The overall bit
rate we achieved for the whole set is 4.2, which is comparable to many state of
the art algorithms.

Figure 4 shows a comparison between our algorithm with other algorithms.
AWN achieves better results than our older proposed algorithm WRALIC [4].
In addition, AWN outperforms JPEG-LS [8] and CALIC [10]. On the other
hand, PAQ [6] achieved better results than our proposed algorithm. However,
because PAQ uses neural nets, the execution time is very high. Table 1 shows
the compression rates and encoding/decoding times for each image in the Kodak
set. As shown in Table 1, the average encoding and decoding times is 1.38 s and
0.94 s, respectively, on a machine with 2.2 GHz processor.

8 Conclusion and Future Work

We have presented a symmetric lossless image compression algorithm. The algo-
rithm makes two initial predictions, creates a weighted combination of the initial
predictions before adjusting the prediction to end up with the final prediction.
In order to achieve more compression, we encode the error in multiple bins
depending on the expected error magnitude. Also, instead of encoding the signed
error, the algorithm attempts to guess the sign and encodes the error magnitude
and whether guessing the sign was successful or not.

While developing our solution, we noticed that using multiple predictions
enhances the compression rate. Therefore, we intend to build on this observa-
tion in the future and make more initial predictions. We can create a ensemble
(weighted combination) of these initial predictions by using an on-line stochas-
tic gradient descent SGD. The objective of the SGD is to give more weights to
predictions that are closer to the real pixel values in a certain image.
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Abstract. In this paper, a novel method is proposed for dimensional-
ity reduction of proportional data. Non-negative, unit-sum data, namely,
proportional data emerges in many applications such as document clas-
sification, image classification using visual bag of words, etc. The intro-
duced method is supervised and can be used for classification of data
into binary classes. In the proposed method, the intra-class correlation
is maximized while minimizing the interclass correlation, using a lin-
ear transform. Design of this transform is formulated as an optimization
problem with proper cost function. The projected data is matched to two
Dirichlet distributions with careful parameter selection which allows to
separate the classes in the Dirichlet parameter space. Finally, simulations
are performed to demonstrate the effectiveness of the algorithm.

Keywords: Dimensionality reduction · Supervised learning · Data clas-
sification · Dirichlet distribution

1 Introduction

With the advancements in manufacturing techniques which made cheap sen-
sors and storage devices possible, the amount of acquired and stored data grew
exponentially. This enormous amount of data which is used in different fields
of science and engineering for several purposes such as analysis, classification
and clustering demands strong processing power and large storage devices along
with unaffordable processing time [1]. Therefore, the problem of high dimension-
ality has been tackled by researcher in different fields, and considerable amounts
of investigation have focused to solve this problem [2,3]. The main purpose of
dimensionality reduction (DR) is to find a lower dimensional manifold on which
the data lie, and to eliminate highly correlated data.

DR techniques are divided into two major categories of Linear and Non-
Linear, where the former uses a linear transform to project the data into a low
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 141–149, 2015.
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dimensional space. Any technique that does not use such a linear transform is
called a Non-Liner method. Among various linear methods, PCA and Factor
Analysis are the most known [4–6] in both which the second statistics of the
data is used. Also, non-linear techniques such as kernel PCA [7,8], MDS [9],
MVU [10] and LLE [11] have been proven to be efficient on some real data. Non-
linear methods can capture more complex structures in the data, however, due
to faster and more efficient transformation, easier implementation and strong
tendency for maintaining the topology of the original data [12], linear methods
are better candidates for DR. Furthermore, exploiting some general properties of
the data, one can design methods that exhibit improved performance compared
to general methods. For example, considering the consistency of the positive,
unit-sum property of proportional data with Dirichlet distribution support, this
distribution has been proven to be effective in modeling such data [13,14]. In
this paper, a novel method is introduced for dimensionality reduction of propor-
tional data. The method is especially designed for classification, and can be used
along with SVM classifier to result in high detection rates. Through a supervised
learning process using very few training samples, the algorithm will find a proper
model for the projected data, and optimize the projection to separate the data
efficiently. Since Dirichlet distribution is a proper fit for proportional data, the
algorithm exploits this model to fit each class of data to one Dirichlet distribu-
tion after projection. The projection matrix is designed such that the parameters
of the resulting model make the data separable easily using a standard classifier.
Unlike PCA, this method considers nonlinear correlation between the data, and
thus, results in better detection rates. The parameters of the fitted distributions
are used to define a proper objective function with a high cost for the case where
projected data lie on similar models. Therefore, using a constrained optimization
technique, the algorithm is able to find the projection matrix that makes this
separation possible.

The rest of this paper is organized as follows. In Sect. 2, the proposed method
is explained in details, and a proper objective function is introduced. An opti-
mization problem is formulated to find the optimum separating transform in
Sect. 3. In Sect. 4, the effectiveness of the algorithm is demonstrated through
comparison with the method proposed in [14] (which will be called Dirichlet
Component Analysis, DCA hereafter) as well as the standard PCA. Finally, in
Sect. 5 some concluding remarks are drawn.

2 Proposed Method

2.1 Projection Matrix Properties

Consider M samples of proportional data in the form of N dimensional column
vectors xi such that

N∑

k=1

xi,k = 1, xi,j ≥ 0, ∀i ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N} (1)
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where xi,j is the j-th element of the i-th vector (sample) xi. This set of data
is on an (N-1)-simplex which will be denoted by ΔN−1. The first step in the
proposed algorithm is a linear projection from the high dimensional space to
the low dimensional space. Let this projection be performed by the matrix Π
consisting of elements πr,s where r ∈ {1, 2, . . . ,K} and s ∈ {1, 2, . . . , N}. Also,
assume that the matrix X denotes the complete set of data consisting of xis as
its columns. Therefore, the projected data can be obtained as follows

Y = ΠX (2)

where Y is a K by M matrix of the projected data in the new K dimensional
space and K < N . Note that, to keep the proportional data on a simplex after
projection, and making Y a mapping from ΔN−1 to ΔK−1, elements of Π must
satisfy the following properties

K∑

t=1

πt,s = 1, πr,s ≥ 0, ∀r ∈ {1, 2, . . . ,K}, ∀s ∈ {1, 2, . . . , N} (3)

It also can be shown that the above conditions are necessary and sufficient for
the projected data to be in ΔK−1 for any x in ΔN−1. Moreover, considering all
the possible projections that satisfy (3), it can be seen that there is N(K − 1)
free parameters in Π to be determined.

2.2 Data Separation

The Dirichlet distribution, which is the multivariate generalization of the beta
distribution, is also the conjugate prior of the multinomial distribution

Dirα(y) =
Γ (

∑N
i=1 αi)∏N

i=1 Γ (αi)

N∏

i=1

yαi−1
i (4)

where Γ (.) is the Gamma function, and the parameter ααα is a vector of the same
size of the vector y with non-negative elements. The density and concentration
of the samples drawn from a Dirichlet distribution depend on the elements of
the parameter vector ααα. In fact, if αi < 1, the data tend to be concentrated
around the corresponding axis, and, on the contrary, for αi > 1 the corresponding
dimension of the data is concentrated around the central point. This property
of the Dirichlet distribution is exploited in the proposed algorithm to separate
the projected data.

Assume the projected training data of each class consists of samples of a
Dirichlet distribution with parameters ααα(0) for class 0 and ααα(1) for class 1. Note
that with no prior knowledge of the data, the elements of ααα(0) and ααα(1) are
considered to be equal and will be denoted by α0 and α1, respectively. The
principal idea of the proposed algorithm is that if the projection matrix Π is
designed such that the projected samples from classes 0 and 1 come from two
Dirichlet distributions with distant parameters α0 and α1, the projected data



144 W. Masoudimansour and N. Bouguila

will be easily separable. To quantify this main idea, a proper objective function
must be defined along with an optimization problem. Solving this problem, one
can obtain a projection matrix to separate the data for efficient classification.

2.3 Objective Function

To define a proper objective function, one needs to find a family of functions of
two variables (namely α0 and α1) for which the value of the function is mini-
mum for distant parameters. Considering the previously mentioned property of
Dirichlet distribution choosing α0 � 1 and α1 � 1 (or vice versa) will serve the
model most efficiently. On the other hand, considering the numerical method
used for calculating the derivative of the objective function, the following func-
tion proves to be efficient in resulting two separate distributions.

JY (α0, α1) =
1 + α0α1

α0 + α1
+

1
(α0 − α1)2

(5)

3 Optimization Algorithm

In this section, we formulate the optimization problem to find a proper projection
to separate the data in ΔK−1. Note that as mentioned before, based on (3), we
have N(K−1) variables to solve. Let the training samples from classes 0 and 1 be
shown by the sets C0 and C1, respectively, such that |C0| = M0 and |C1| = M1.
In the first step, the EM algorithm is used to estimate ακ, κ ∈ {0, 1}. The
likelihood of ακ is obtained as follows

L(ακ;Y ) =
Mκ∏

i=1

fy|ακακακ
(yi|ακακακ), κ ∈ {0, 1} (6)

Note that, all the samples of one class are assumed to be from the same distrib-
ution and independent. Now, replacing the distribution function with Dirichlet
distribution we obtain

L(ακ;Y ) =
Mκ∏

i=1

Dirακ
(yi) =

ΓMκ(Kακ)
ΓKMκ(ακ)

Mκ∏

i=1

K∏

j=1

yακ−1
i,j (7)

Finally, using the log-likelihood, and replacing the projected data by the original
data from (2), we obtain

ln(L(ακ;Y )) = Mκ ln(Γ (Kακ)) − KMκ ln(Γ (ακ)) + (ακ − 1)
Mκ∑

i=1

K∑

j=1

yi,j =

Mκ ln(Γ (Kακ)) − KMκ ln(Γ (ακ)) + (ακ − 1)
Mκ∑

i=1

K∑

j=1

N∑

r=1

πj,rxi,r (8)
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To maximize (8), the derivative is calculated and is set to 0. Therefore

d ln(L(ακ;Y ))
dακ

= KMψ(Kακ) − KMψ(ακ) +
Mκ∑

i=1

K∑

j=1

N∑

r=1

πj,rxi,r = 0 (9)

where ψ(.) = Γ ′(.)
Γ (.) is the Digamma function. Assuming that α∗

κ satisfies (9), this
equation can be solved using a numerical method such as Newton-Raphson to
estimate α∗

κ for κ = 0, 1, and then, these values can be used to evaluate the
objective function and its numerical gradient.

Using the above results, one can formulate the following optimization problem

minimize
πr,s

JY (α∗
0, α

∗
1)

subject to
K∑

r=1

πr,s = 1

πr,s ≥ 0 (10)

where r ∈ {1, 2, . . . ,K} and s ∈ {1, 2, . . . , N}. To optimize the proposed objec-
tive function, we use a gradient descent method [15]. The value of the objective
function is calculated by first estimating α∗

κ from (9) and then substituting the
values in (5). The gradient is also evaluated through small steps in πr,s using
the following two point formula

∂JY (α∗
0, α

∗
1)

∂πr,s
≈ JY (α∗

0, α
∗
1)|πr,s+δ − JY (α∗

0, α
∗
1)|πr,s−δ

2δ
(11)

where δ is a small variation in πr,s. In each iteration, a small step is taken
toward the opposite direction of the gradient. If the resulting Π satisfied the
constraints, its values are used for the next iteration; otherwise, the elements
of this Π are projected into the constraint space and the resulting values are
used for the next iteration. Note that projection into the constraint space can
be solved defining a standard quadratic programming problem. Eventually, the
standard SVM classifier with a linear kernel is used to classify the data.

4 Experimental Results

To evaluate the efficiency of the proposed algorithm, it has been tested for clas-
sification in different real world applications against DCA and PCA. The SVM
classifier with linear kernel is used in each experiment, and equal number of
samples are chosen randomly from each class. Then, the remaining samples are
used as test data. To cancel the effect of outliers in each random selection of
training data, especially for the case of small number of training samples, every
test is performed several times and the average of the detection rates is reported
in each case.
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4.1 Image Classification

The Caltech 101 is one of the well known image datasets, and it is used in
this scenario for evaluating the detection rate of the introduced method. There
are images from 101 object categories in the dataset. Two of the image classes,
namely Airplanes and Motorbikes, are used as classes 0 and 1. In each test,
after choosing the training samples, SIFT features are extracted from each image,
and a vocabulary of 100 words is built from all the features of the training set
using kmeans algorithm. Then, the bag of visual words is built for the training
set and is fed to the algorithm. This test has been repeated 100 times for each
case, and the results are average detection rates. Figure 1 shows the detection
rate for different values of target dimension and training samples.

From this figure, it can be seen that the proposed method almost always
results in comparable detection rates with the original data which is highly
efficient considering the low value of the projection space dimension. Moreover,
it outperforms DCA and PCA, especially for small numbers of training data.
Particularly, Fig. 1a shows that with only 10 samples (5 from each class), the
proposed method is still able to produce results as good as the original data.
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Fig. 1. Detection rates vs. target dimension for different numbers of training samples.
The data are two image classes from Caltech 101.
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Fig. 3. Detection rates vs. target
dimension for 10 training samples. The
data are two tumor types from Wiscon-
sin Breast Cancer Diagnostic Dataset.

To illustrate proper data separation, Fig. 2 shows a visualization of the pro-
jected test data using a target dimension of 3 (K=3) with 10 total training
samples. In this figure, points from classes 1 and 0 are shown using red dots and
blue crosses, respectively. Also, the 2-simplex is shown as a triangle with black
solid lines. As it can be seen, the data are properly separated and the interclass
variance is higher. Note that by looking at the figure, one can deduce that the
Dirichlet parameter of class 1, α∗

1, must be higher than the Dirichlet parameter
of class 0, α∗

0. In fact, in this case, α∗
1 = 4.39 and α∗

0 = 0.23.

4.2 Tumor Classification

In this experiment, we use Wisconsin Breast Cancer Diagnostic Dataset which is
available in UCI Machine Learning Repository. This dataset contains 569 sam-
ples with 30 features where the features are physical properties of the cells such
as radius, compactness and perimeter of the nucleus. The tumors are categorized
to Malignant and Benign classes. After a preprocessing step consisting of nor-
malizing each sample to unit-sum, 10 training samples have been used for each
test, and it has been repeated 20 times. The average resulting detection rates
are shown in Fig. 3. As it can be seen, the proposed algorithm detects the tumor
type more efficiently compared to both DCA and PCA. It is also worth men-
tioning that, PCA starts to fail in higher target dimensions which can be due to
redundancy of the features. Note that the change in detection rate of the original
data is due to random choice of a relatively small number of training data.

5 Conclusion and Future Work

In this paper, a novel supervised linear algorithm is introduced for dimensional-
ity reduction of proportional data. The projected data which is assumed to be
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from two classes is modeled using a Dirichlet distribution for each class, and the
separation of classes is ensured by making the two class models as distinct as
possible by defining a proper objective function. An optimization technique is
used based on gradient descent to find a proper projection such that each class of
the projected data under this linear transform best fits one of the two Dirichlet
models. Eventually, projected data is classified using an SVM with linear kernel,
and the simulations show that the introduced method outperforms DCA which
has been introduced in [14]. It also offers higher detection rates than PCA for
a wide variety of applications. In fact, the detection rates are very similar to
those of the original data using very few training samples and low target dimen-
sionality. As future works, the method can be extended to multi-class cases, and
through releasing the constraint on the Dirichlet model parameters, allowing
parameter vectors with non-equal elements. This, along with new definition of a
cost function, can result in better separation of the data.
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Abstract. One approach to image categorization is the use of clustering
algorithms to sets of images represented by various image descriptors. We
propose the use of an automatic clustering algorithm to categorize an
image-set represented by color moments. Using this clustering algorithm
based on hierarchical clustering, this approach produced adequate results
with only minimal user input when applied to a restricted image-set.

Keywords: Image classification · Image processing · Clustering

1 Introduction

Image categorization, or the separation of image sets into significant subgroups,
can be simplified by the use of meta-data containing relevant information about
said images. However there are cases where meta-data is unavailable or simply
not relevant to the desired categorization, in which case only the data present
in the image itself must be used. We represent images by their color moments as
described by Stricker and Orengo in (Stricker and Orengo, 1995) and apply the
automatic clustering method presented in (LaPlante et al., 2014) to categorize
an image set.

2 Related Works

2.1 Image Classification

In this paper, we use the terms image categorization or image classification to
refer to the grouping of multiple images together to form meaningful classes. This
is opposed to the grouping of regions within an image into meaningful classes,
for which the term is also used in (Vailaya et al., 2001) but we will refer to it as
image segmentation (Sathya and Manavalan, 2011).

In order to classify images, an appropriate representation of the images must
be used. These can vary from simple colour histograms to more complex features
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 150–158, 2015.
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such as the bag of features presented in (Bouachir et al., 2010) or color indexing
proposed in (Deng et al., 2001). The method we have chosen to use is color
moments as described in (Stricker and Orengo, 1995). These representations can
vary in both time and space complexity, and suitability to a given dataset.

2.2 Clustering

Clustering methods can be categorized in many ways such as hard or fuzzy,
hierarchical or partitional, and as combinations of these types.

Hard vs. Fuzzy Clustering. Hard clustering is a type of clustering where
every datum belongs to one and only one cluster. In contrast, fuzzy clustering is
a form of clustering where data belong to multiple clusters according to a mem-
bership function (Gan, 2011). Hard clustering is generally simpler to implement
and has lower time complexity. It performs well with linearly separable data but
tends to not perform as well with non linearly separable data, outliers, or noise.
Fuzzy clustering often has a larger memory footprint as it often requires a c × n
matrix to store memberships, where c is the number of clusters and n is the
number of data points. Fuzzy clustering is generally able to handle non-linearly
separable data as well as outliers, and noise better than hard clustering.

Hierarchical vs. Partitional Clustering. A hierarchical clustering method
yields a dendrogram representing the nested grouping of patterns and similarity
levels at which groupings change (Jain et al., 1999). A partitional clustering
method yields a single partition of the data instead of a clustering structure,
such as the dendrogram produced by a hierarchical method (Gan, 2011).

Automatic Clustering. Automatic clustering is a form of clustering where the
number of clusters c is unknown and determining its optimal value is left up to
the clustering method. Some automatic clustering methods may require an initial
number of clusters, from which clusters will be split and merged until a pseudo-
optimal number of clusters is achieved. Other methods require no initial value
or additional information regarding the number of clusters and will determine a
pseudo-optimal value without any user input. Other parameters, such as a fuzzy
constant (for fuzzy clustering algorithms) or thresholds, may still be required,
but are generally kept to minimum or are optional with good default values.

3 Clustering Method

The proposed clustering method, Heuristic Divisive Analysis (HDA), consists
of two phases: splitting and merging. The first phase splits the data set into
a number of clusters, often leading to more cluster than optimal. The second
phase merges (or links) clusters, leading to a more optimal clustering. The rea-
son for this two-step approach is to address one of the larger drawbacks of many
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hard clustering methods; poor performance when dealing with data which is not
linearly separable. Both steps use different approaches to computing the dissim-
ilarity between clusters, which allows for the creation of non-elliptical clusters
which may be nested or interlocked.

3.1 Splitting

The splitting algorithm is a divisive hierarchical method based on the DIANA
clustering algorithm (Kaufman and Rousseeuw, 1990). However, the proposed
method employs a heuristic function to interrupt the hierarchical division of the
data set once an “adequate” clustering for this step has been reached.

DIANA. DIANA (DIvisive ANAlysis) is a divisive hierarchical clustering algo-
rithm based on the idea of MacNaughton-Smith et al. (MacNaughton-Smith,
1964). Given X = x1, x2, . . . , xn a data set consisting of n records and beginning
with all points being in one cluster, the algorithm will alternate between sepa-
rating the cluster in two and selecting the next cluster to split until every point
has become its own cluster. To split a cluster in two, the algorithm must first
find the point with the greatest average dissimilarity to the rest of the records.
The average dissimilarity of a record xi with regards to X is defined as

Di =
1

n − 1

n∑

j=1,j �=i

D(xi, xj) (1)

where D(x, y) is a dissimilarity metric (in this case, we use Euclidean distance).
Given Dmax = max0≤i≤n−1Di, xmax is the point with the greatest average
dissimilarity which is then split from the cluster. We then have two clusters:
C1 = {xmax} and C2 = X\C1. Next, the algorithm checks every point in C2

to determine whether or not it should be moved to C1. To accomplish this, the
algorithm must compute the dissimilarity between x and C1 as well as the dis-
similarity between x and C2\x. The dissimilarity between x and C1 is defined as

DC1(x) =
1

|C1|
∑

y∈C1

D(x, y), x ∈ C/1 (2)

where |C1| denotes the number of records in C1. The dissimilarity between x
and C2\x is defined as

DC2(x) =
1

|C2 − 1|
∑

y∈C2,y �=x

D(x, y), x ∈ C2 (3)

If DC1 < DC2 , then x is moved from C2 to C1. This process is repeated until
there are no more records in C2 which should be moved to C1.

To select the next cluster to separate, the algorithm will chose the cluster
with the greatest diameter. The diameter of a cluster is defined as

Diam(C) = max
x,y∈C

D(x, y) (4)
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Heuristic Stopping Function. The first phase in our method consists of run-
ning the DIANA algorithm with a heuristic function in order to stop it once an
“adequate” clustering has been reached. This function consists of first calculat-
ing the average intra-cluster dissimilarity (again, we use Euclidean distance) of
each cluster, defined as

AvgIntraClusterDistance(C) =

∑
x∈C

D(x, x̄)

|C| (5)

where x̄ denotes the mean of all points in cluster C. The heuristic index for
this clustering is the average of all the average intra-cluster dissimilarities. If
the heuristic index for this clustering is lower than that of the previous cluster-
ing, the current clustering is considered the most optimal to date. Otherwise, we
have reached our “adequate” clustering at the previous step, but we will continue
running the DIANA algorithm for a set number of iterations as a preventative
measure against falling into a local optimum. We chose this rather simple heuris-
tic instead of one of the many known validity indices because it allowed us to
decrease the complexity (as it uses values which our implementation had already
calculated) and still produced good results.

3.2 Merging

The splitting phase’s result can be non-optimal, especially when data sets contain
clusters which are not linearly separable or have irregular shapes. In these cases,
the “adequate” clustering will usually contain instances where multiple clusters
should be one and the same. These clusters will be very close to each other in
relation to the other clusters and it is the goal of this merging phase to collect
them into optimal clusters.

For each pair of clusters, we calculate the average nearest neighbor dissimi-
larity, defined as

AvgNearestNeighbor(C) =

∑
x∈C

min
y∈C,y �=x

D(x, y)

|C| (6)

for both clusters and keep the greater of both values as our merging dissimilarity
threshold MT . We then go through each pair of objects with one object from
each cluster and if we find a pair where the dissimilarity between the two objects
is less than the merging dissimilarity threshold (multiplied by a constant), then
the two clusters would be merged. We express the test for merging as

CanMerge(C1, C2) =

{
true, ∃x ∈ C1,∃y ∈ C2|D(x, y) < MT · K

false, otherwise
(7)

where K is a merging constant. Our approach differs from that of (LaPlante
et al., 2014) in that pairs of candidate clusters are not merged as they are found
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but in order of increasing average nearest neighbor dissimilarity. Additionally,
because single-object clusters have an average nearest neighbor dissimilarity of 0,
any pair of clusters where one contains a single object will use the other cluster’s
average nearest neighbor dissimilarity as MT . In the case of two single-object
clusters, MT will be the average standard deviation across all clusters.

Once all merges are completed, we are left with the final clustering. The value
of the merging constant can be adjusted depending on the data set and we have
found experimentally that a value of 2 generally produces good results.

We have also tested an alternative merging method based on the Y-means
approach to merging. Because the Y-means algorithm uses dissimilarities
between cluster centroids, merging clusters will relocate the centroids in such
a way that is detrimental to our method. To avoid this drawback, we link clus-
ters by attributing them labels instead of merging them until all pairs are linked,
after which we merge all linked clusters. We express the test for linking as

CanLink(C1, C2) =

{
true D(C1, C2) ≤ (σC1 · σC2) · L

false otherwise
(8)

where σCi
is the standard deviation of the dissimilarity between the objects in a

cluster Ci to the centroid of that cluster and L is a linking constant. The value
of the linking constant can be adjusted depending on the data set and we have
found that a value of 0.5 generally produces good results with our method.

4 Data

The dataset used is a subset of the COIL-100 dataset (Nayar et al., 1996). The
subset consists of 72 images each of 9 objects, taken in rotation around
the objects at 5◦ of rotation intervals for a total of 648 of the 7200 images
in the dataset. The objects in question are:

#4 A red tomato
#17 A yellow plastic cat figurine
#19 A red toy fire truck
#23 A red toy sports car
#24 A white and orange plastic bottle
#34 A green yo-yo
#36 A blue plastic wall hook
#37 A white and grey toy tank
#41 A wood block

We represent each image using the three central color moments defined by
Stricker and Orengo in (Stricker and Orengo, 1995). These three moments, cal-
culated on each of the three RGB channels of the images, produce our nine-
dimensional vector representation of the image. Given the value of the ith color
channel at the jth image pixel being defined as pij , the three color moments are
defined as:
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Fig. 1. Cluster 0. Fig. 2. Cluster 1. Fig. 3. Cluster 2.

1 - Average

Ei =
1
N

N∑

j=1

pij (9)

2 - Variance

Ei =

√√√√ 1
N

N∑

j=1

(pij − Ei)2 (10)

3 - Skewness

Ei = 3

√√√√ 1
N

N∑

j=1

(pij − Ei)3 (11)

5 Results

Adjusting the merging constant K to a value of 3.0 produced the best results
for this dataset. With this value, ten clusters were produced. clusters 0, 1, 4, 5,
8, and 9 correspond to all pictures of objects objects #34, #24, #4, #41, #36,
and #17 respectively and no images of other objects (Figs. 1, 2, 7, 8, 9 and 10).
Cluster 2 contains the majority of images of object #37, cluster 3 contains three
images of object #19 and four of object #23, cluster 6 contains the remaining
two images of object #37, and cluster 7 contains the remaining majority of
images of both object #19 and #23 (Figs. 3, 4, 5 and 6).

Fig. 4. Cluster 3. Fig. 5. Cluster 6. Fig. 6. Cluster 7.
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In clusters 3 and 7, within which images of different objects occur, the objects
confused as the same are visually rather similar, more so when considering that
color is primary factor used in comparison. Both are a similar shade of red,
occupy a similar space (leave a similar amount of background color), have a
black rectangular shape near the center, and have white areas (stripes or lad-
der). Clusters 3 and 6 contain relatively very few objects and could be seen as
aberrations. Table 1 shows the results of clustering with different values of K,
outlining the total number of cluster produced, the number of clusters considered
aberrations (clusters with a small enough number of objects to be negligible),
and the number of conjoined clusters (clusters containing images of more than
one object, i.e. which should be separate clusters) including the numbers of
clusters which were conjoined into one. Table 2 shows the results of calculating
validity indices on the same clustering results using some of the same indices as
(LaPlante et al., 2014), namely: Xie & Beni index (Xie and Beni, 1991), Kwon
Index (Kwon, 1998), and Compose Within and Between Scattering (Rezaee
et al., 1998), for which a lower value represents a better clustering, as well as
PBM index (Pakhira et al., 2004) and Silhouettes index (Rousseeuw, 1987), for
which higher values represent a better clustering.

Fig. 7. Cluster 4. Fig. 8. Cluster 5.

Fig. 9. Cluster 8. Fig. 10. Cluster 9.

An attempt was made to cluster the entirety of the COIL-100 dataset, how-
ever the results were not as ideal. As we have seen with the 9 object subset, some
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Table 1. Results of clustering the 9-object subset of COIL-100 using HDA clustering
algorithm with different merging constants K

Merging Total # of # of aberration # of instances of conjoined clusters

constant K clusters clusters (# of clusters conjoined)

2.0 16 7 1(2)

2.5 16 7 1(2)

2.75 13 5 1(2)

3.0 10 2 1(2)

3.25 8 1 1(3)

3.5 8 1 1(3)

4.0 8 1 1(3)

5.0 6 1 1(5)

Table 2. Cluster validation results of the 9-object subset of COIL-100 using HDA
clustering algorithm with different merging constants K

Merging constant K Xie & Beni Kwon CWB PBM Silhouettes

2.0 0.294688 201.069 0.0699704 6118.08 0.695539

2.5 0.294688 201.069 0.0699704 6118.08 0.695539

2.75 0.349674 235.375 0.0939078 7104.66 0.688336

3.0 0.146937 98.1284 0.0449371 8307.76 0.678347

3.25 0.441257 289.001 0.0505758 4663.42 0.540493

3.5 0.441257 289.001 0.0505758 4663.42 0.540493

4.0 0.441257 289.001 0.0505758 4663.42 0.540493

5.0 1.16144 756.173 0.0572099 3694.55 0.30045

similar images end up being grouped together whether or not this is desired as
well as some images of the same object may not end up in the same cluster. In
our subset, these issues are minor, the aberrant clusters are small and the differ-
ent objects being clustered together are quite similar. In the full dataset, these
effects can be amplified. Seeing as the method relies on evolving averages and
standard deviations, the complete dataset has a less pronounced overall varia-
tion between objects. The level of difference which may be allowed in a same
cluster to address this would be so strict as to likely break up adequate clusters.

6 Conclusion

The chosen clustering method’s two-step approach provides very similar results
as some better known algorithms with the added benefit of being able to identify
non-linear data. The potential disadvantage is that inadequate initial parameters
can lead to poor results. We used a single color descriptor to represent the image
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data, it is possible that better results (also for the complete COIL-100 dataset)
could be obtained with a different representation of the images, such as alternate
color descriptors or adding form descriptors, and with more fine tuning of the
parameters. However, an adequate result was obtained with a fairly simple data
representation and very few and minor adjustments to the clustering algorithm’s
initial parameters. This adequate result with minimal user input was our primary
objective, and as such we consider this application of the clustering method
successful in its goal.
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Abstract. The work proposed in this paper is motivated by the need
to develop powerful approaches for scene classification which is a chal-
lenging problem mainly due to varying conditions. In this paper, we are
mostly interested in automatically assigning a scene image to a semantic
category when RGB channels and near infrared information are simulta-
neously available. We represent images by a collection of local image
patches that we use to learn a global generalized Gaussian mixture
(GGM) using the split and merge expectation-maximization (SMEM)
algorithm. Using this approach, we built an effective scene classification
system capable of handling outliers and noise level in the data. Extensive
experiments show the merits of the proposed framework.

1 Introduction

Recently, scene understanding and classification has gained a lot of interest.
The goal of scene classification is to automatically classify a scene image to a
semantic category based on analyzing the visual content of the image. Most
of existing computer vision approaches are applied on visible (RGB) images
due to their wide availability. However, lighting condition represents one of the
most challenging problem when dealing with RGB images. Hence, researchers
were encouraged to employ thermal infrared sensors. Despite its robustness to
illumination changes, infrared has various drawbacks such as its sensitivity to
ambient temperature and its higher cost compared to RGB cameras. Thus, some
researchers decided to look beyond the conventional visible band and into the
near-infrared (NIR) part of the electromagnetic spectrum (700–1100 nm). NIR
has three main advantages: 1- robust to variation in ambient lighting compared
to visible images, 2- less affected by ambient temperature relative to infrared,
3- can work in both daytime and nighttime. Furthermore, NIR images can be
easily obtained by removing the NIR blocking filter affixed to digital cameras.
Moreover, RGB and NIR cues have been successfully combined in many applica-
tions [1,2]. In this paper, we examine whether fusion of visual and NIR images
can increase the overall performance of scene classification systems.

Most existing scene classification approaches differ by: the image represen-
tation method, the learning algorithm, and the classification method. In [3],

c© Springer International Publishing Switzerland 2015
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the authors built a scene classification system without the need for segment-
ing and processing individual objects or regions. The work in [4] presented an
approach to find intermediate semantic models of natural scenes using region-
based information. Firstly, the scene images are divided into local regions, which
are represented by a combination of a color and a texture feature. Secondly,
through so-called concept classifiers (k-NN or SVM), the local regions are clas-
sified. Thirdly, each image is represented by a concept occurrence vector (COV)
computed as the histogram of the semantic concepts. Finally, in order to classify
a novel image, its COV representation is used as input to an additional SVM.
However, a large number of local regions of training images need to be anno-
tated manually with the above semantic concepts which is not effective. In [5],
the authors presented an approach based on local invariant features and proba-
bilistic latent semantic analysis (pLSA). Motivated by this work we try to model
the semantic of the image in an unsupervised manner. In the training process, we
represent an image by a collection of local image patches from which we extract
local features that we quantize into a visual codebook using a global mixture
model. Next, we use the posterior to distribute each patch in the image to the
best component in the mixture (codeword) in order to represent each image with
a histogram of codeword occurrences. Then, we use these bag-of-words (BoW)
histograms as feature vectors to discover “Z” latent topics using pLSA. Finally,
we use the topics representation of the training images to learn an SVM clas-
sifier. In the testing phase, each input image is partitioned into patches and
local features are extracted from each patch. Next, it is represented by a BOW
histogram and then its topic distribution vector is determined. Finally, SVM
is used to choose the best category to the image. A complete diagram of our
approach is shown in Fig. 1. Generally, the Gaussian is used, but is not the best
choice in real life applications. Therefore, we consider the generalized Gaussian
density (GGD) has been widely used recently for its flexibility. Moreover, we use
the split and merge EM (SMEM) for the parameters estimation.

The rest of this paper is organized as follows. Section 2 introduces the GGM
and its parameters estimation algorithm. In Sect. 3, we present the method used
for scene classification. We assess the performance of the new approach on RGB
and NIR images; while comparing it to other model in Sect. 4. Our last section
is devoted to the conclusion.

2 The GGM and Its Parameters Estimation Algorithm

In this paper, we break all training images down into orderless N patches. Then
we select a 40 dimensional feature vector for each patch (D=40). Thus, the
input for our GGM is a set of N i.i.d vectors X= (X 1,. . . , XN ), each of
D-dimensions Xi = [Xi1, . . . , XiD]T . If we assume that X arise from a finite
generalized Gaussian mixture model with K components then:

p(X|Θ) =
N∏

i=1

K∑

j=1

p(X i|ξj)pj (1)
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Fig. 1. Complete diagram of our approach

where p(X i|ξj) is a generalized Gaussian probability distribution given by:

p(X i|ξj) =

D∏

d=1

λjd

[
Γ (3/λjd)

Γ (1/λjd)

]1/2

2σjdΓ (1/λjd)
exp

[
− A(λjd)

∣∣∣∣
Xid − μjd

σjd

∣∣∣∣
λjd

]
(2)

where A(λjd) =
[

Γ (3/λjd)
Γ (1/λjd)

]λjd/2

; ξj is the set of the parameters of the j compo-

nent given by ξj=(μj , σj , λj) where μj = (μj1,. . . ,μjD), σj = (σj1,. . . ,σjD),
λj = (λj1,. . . , λjD) are the mean, the standard deviation, and the shape para-
meters of the D-dimensional GGD, respectively. Note that pj are the mixing
proportions which must be positive and sum to one and Θ the set of parameters
of the mixture with K classes is defined by Θ = (μ1,. . . , μK , σ1,. . . , σK , λ1,. . . ,
λK , p1,. . . ,pK). The EM algorithm for the GGM can be summarized as [6]

1. Start with an initialized parameter set Θ(0)

2. Compute the posterior probabilities: p(j|X i) =
p(X i|ξ(l)

j )p
(l)
j

∑K
j=1 p(X i|ξ(l)

j )p
(l)
j

3. Compute a new set of parameters:

p̂
(l+1)
j =

1
N

N∑

i=1

p(j|X i) (3)
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μ̂
(l+1)
jd =

∑N
i=1 p(j|X i)|Xid − μjd|λjd−2Xid
∑N

i=1 p(j|X i)|Xid − μjd|λjd−2
(4)

σ̂
(l+1)
jd =

[
λjdA(λjd)

∑N
i=1 p(j|X i)|Xid − μjd|λjd

∑N
i=1 p(j|X i)

]1/λjd

(5)

λ̂
(l+1)
jd � λjd −

[(
∂2 log[p(X|Θ)]

∂λ2
jd

)−1(
∂ log[p(X|Θ)]

∂λjd

)]
(6)

4. If the parameter estimates converge, then stop. Otherwise, go to Step 2.

The SMEM algorithm is based on the following: 1- use the EM algorithm repre-
sented above until convergence; 2- use a split and merge criteria to choose two
components (g, h) to merge and one component q to split; 3- apply an efficient
method to initialize the merged and split parameters; 4- perform the next EM
round; 5- iterate split-and-merge and the EM until meeting some criterion.

2.1 Split and Merge Parameters Initialization

The combination of the gth and hth components are merged into the g∗th com-
ponent by matching the zeroth, first, second, and fourth moments:

pg∗ = pg + ph (7)

pg∗μg∗d = pgμgd + phμhd (8)
pg∗(μ

2
g∗d + σ2

g∗d) = pg(μ2
gd + σ2

gd) + ph(μ2
hd + σ2

hd) (9)

pg∗

(

σ4
g∗d

Γ (5/λg∗d)Γ (1/λg∗d)

Γ 2(3/λg∗d)
+ 6μ2

g∗dσ2
g∗d + μ4

g∗d

)

=

pg

(

σ4
gd

Γ (5/λgd)Γ (1/λgd)

Γ 2(3/λgd)
+ 6μ2

gdσ2
gd + μ4

gd

)

+

ph

(

σ4
hd

Γ (5/λhd)Γ (1/λhd)

Γ 2(3/λhd)
+ 6μ2

hdσ2
hd + μ4

hd

)

(10)

Suppose that we want to split the qth component in the mixture to two components
g and h. Thus, we construct a set of solutions for this problem:

pg = u1pq ph = (1 − u1)pq (11)

μgd = μqd − u2σqd

√
ph

pg
μhd = μqd + u2σqd

√
pg

ph
(12)

σ2
gd = u3(1 − u2

2)σ
2
qd

pq

pg
σ2

hd = (1 − u3)(1 − u2
2)σ

2
qd

pq

ph
(13)

where u1, u2, and u3 are randomly sampled from the Beta distribution β(2, 2), β(2, 2),
β(1, 1), respectively. For λg and λh we set them equal to λq.



Semantic Scene Classification with Generalized Gaussian Mixture Models 163

Country Field Forest Mountain Indoor Old Building Street Urban Water

Fig. 2. Sample images from the EPFL scene classification data set.

2.2 Split and Merge Criteria

We define the following merge criterion:

Jmerge(g, h, Θ) =
Pg(Θ)T Ph(Θ)

||Pg(Θ)||||Ph(Θ)|| (14)

where Pj(Θ) = (p(j|X 1), . . . , p(j|XN )), T denotes the transpose operation, and ||.||
denotes the Euclidean vector norm. If the two components g and h have large Jmerge

(g, h, Θ) then they are a good candidate for the merge. For the split criterion, we adopt
the local Kullback divergence as:

Jsplit(q, Θ) =

∫

fq(X|Θ) log
fq(X|Θ)

p(X|ξq)
dx (15)

where fq(X , Θ) is an empirical distribution weighted by the posterior probability [7].
Thus, if the component q has the largest Jsplit(q, Θ) this means that it has the worst
estimate and we should try to split it. Therefore, the SMEM algorithm can be sum-
marized by:

1. Run EM algorithm from initial parameters Θ(0) until convergence Θ∗

2. Sort the Split and Merge candidates using Θ∗ (described in 2.2). Let (g, h, q)c

denotes the cth candidate.
3. For c = 1, ..., Cmax initialize the split and merge parameters (See 2.1).
4. Perform the full EM algorithm until convergence Θ∗∗

5. If log[p(X|Θ∗∗)] > log[p(X|Θ∗)] then set Θ∗ ← Θ∗∗, log[p(X|Θ∗)] ← log[p(X|Θ∗∗)],
and go to step 2

3 Experimental Results: Scene Classification

In our approach, an image is represented as a number of 5×5 patches. Our next step
is feature extraction. For RGB images, experimental evaluation of several color models
has indicated significant correlations between the colour bands and that the luminance
component amounts to around 90 % of the signal energy, thus, we consider only the
luminance channel. On the other hand, NIR has only one channel that has a much
weaker dependence on R, G and B than they do to each other. Moreover, we consider
the Haralick texture measurements [8] derived from the Gray-Tone Spatial Dependency
Matrix (GLCM). Following [9], we calculate four angular Gray-Tone Spatial Depen-
dency Matrices with 1 or 2 pixel offsets for each patch. Therefore we end up with
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RGB NIR

RGB+NIR

Fig. 3. Confusion tables for scene classification.

8 GLCMs for any image patch. Using these matrices, we extract 5 features namely:
dissimilarity, Angular Second Moment (ASM), mean, standard deviation (STD) and
correction. Thus, we end up with 40 component feature vector measures for each image
patch. The next step is to use the global GGM introduced above to build a codebook
for the data set, where each component in the mixture represents a codeword. Knowing,
the different codewords we can deduce the BoW histogram for each image by classi-
fying each patch to the component that gives the highest posterior probability. Later,
we apply the pLSA model to the bag of visual words representation which allows the
description of each image as a Z-dimensional vector, where Z is the number of aspects
(or learnt topics) [10]. Finally, SVM classifier is used via LIBSVM package [11].

Our experimental study is applied on the EPFL scene classification data set (EPFL)
[12]. This dataset consists of 477 images in 9 categories, (Country (52), Field (51), Forest



Semantic Scene Classification with Generalized Gaussian Mixture Models 165

Table 1. Classification accuracy.

RGB NIR RGB+NIR

GGM 80.1±(2.4) 80.7±(3.2) 82.9±(2.1)

Kmeans 77.2±(2.7) 77.5±(4.2) 79.3±(3.2)

(53), Mountain (55), Indoor (56), Old Building (51), Street (50), Urban (58),Water (51)),
captured in RGB and NIR. As described in [12], the NIR images in this data set were
captured by removing the NIR blocking filter in the digital camera. Sample images of
different categories from the EPFL data set are displayed in Fig. 2. The major chal-
lenge in this data set is the overlap between object categories. For example urban and
old building classes can be confused with each others also country can be confused
with water class. For evaluation, we followed the same protocol as in [2] where we ran-
domly selected, 10 times, 11 images per class for testing and trained the classifier using
the remaining images. Firstly, we experiment with various different sizes of the visual
vocabulary or in our case GGM components (80–512). We found that starting from
K = 125 the classification accuracy did not changed as compared to difference in com-
putational time. Thus, we have chosen to use K=125 in our approach. Concerning the
number of latent topics used in the pLSA model we have used Z = 25. In order to assess
if NIR can be a good alternative for RGB in classification, we applied our approach on
the RGB images as well as the NIR images. In the case of using both RGB and NIR
information together, we have built two codebooks: one for the luminance channel and
one for NIR channel. Then, in order to fuse both information, we concatenated both
BOW histograms together as input to the pLSA model. Figure 3 shows the confusion
matrix of the EPFL data set for RGB, NIR, and RGB+NIR, respectively. In order
to validate our method, we have compared it with the same method when K-means
and Euclidean distance are used for codebook construction and BOW histogram cal-
culation. From Table 1 we can conclude that our approach outperformed the K-means
method. In addition, NIR performs better than RGB in case of scene classification,
and fusing both the RGB and NIR cues together shows a small improvement over both
individual results which confirms that both cues contain complementary information.

4 Conclusion

This paper makes three contributions. First, we implement a SMEM approach for the
estimation of the GGM parameters. This approach can overcome the EM problem
related to local maxima. Second, we use a global GGM to build a codebook for the
image data set. This approach overcome the different problems of using K-means due to
its robustness to outliers and noise level. Finally, we explore the idea that near-infrared
(NIR) information, captured from an ordinary digital camera, can be useful in scene
recognition. The obtained results show the merits of the approach.
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Natural Sciences and Engineering Research Council of Canada (NSERC).
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Abstract. The application of teeth as biometric features for human
identification purposes is widely known thanks to their durability and dis-
tinguishability. Nowadays, due to both improved dental care and dental
filling materials that are invisible on dental radiographs, the identifica-
tion should focus on the analysis of tooth shapes, both crown and root,
alongside their positions in the mouth. Such an approach requires the
automation of digital radiograph processing methods, including: image
enhancement, tooth contour extraction, tooth classification and num-
bering. This paper considers and examines the problem of tooth shape
classification using simple shape descriptors and a template matching
approach. An attempt is made to establish which simple shape descrip-
tor gives the best classification results.

Keywords: Human identification · Teeth classification · Dental biomet-
rics · Dental radiographs · Forensic odontology

1 Introduction

Over the past decades, the use of dental biometrics has systematically increased,
and presently is commonly acceptable and appreciated thanks to a characteristic
tooth’s resistance to high temperatures and decomposition as well as its dura-
bility and distinguishability [1]. Dental data is frequently analysed by forensic
odontology specialists, who are responsible for the proper handling, evaluation
and examination of dental evidence that is to be further presented in the interest
of justice. Odontology aims to identify unique features of human dentition [2].
This identification could concern the recognition of both suspects and victims
and include age estimations or lesion detections.

In order to establish the identity of a dead person, post-mortem (PM) and
ante-mortem (AM) data must be compared. This comparison uses dental records
and/or dental radiographs [3]. Tooth features, fillings and other dental modifi-
cations and restorations can make identification possible without the need for
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 169–177, 2015.
DOI: 10.1007/978-3-319-20801-5 18
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additional evidence [4]. Recent advances in dentistry have resulted in several
obstacles that need to be dealt with during the identification process. Better
oral hygiene has caused some people to have never undergone dental treatment.
Additionally, during dental radiograph analysis, modern filling materials are
barely distinguishable from natural tooth tissue. These changes have led to a
greater focus on other dental characteristics, such as the shapes of crowns and
roots, the size of the teeth, and the gaps between the teeth [5]. This, alongside
the increasing amount of dental records and advances in image processing, cre-
ated a need for the automation of the dental radiograph matching process and
ultimately caused the creation of the Automated Dental Identification System
(ADIS, e.g. [6]). ADIS comprises three main modules: i.e. feature extraction, den-
tal atlas registration and feature matching. All of these stages aim to improve the
dental radiograph comparison process through its automation and eliminating
the need for human involvement. For the identification to be handled properly,
it is crucial to select an appropriate description algorithm that can extract the
most distinguishable tooth features.

This paper focuses on finding a suitable simple shape descriptor for tooth
shape classification. Such a classification can act as a stage of the automated
human identification process, which might occur before dental atlas registration
or could be used to reduce the database before a more detailed shape matching
process takes place. The rest of the paper is organized as follows: the second
section presents some applications of dental data and examples of tooth classi-
fication. The third section describes some selected simple shape descriptors and
the fourth section presents the experimental conditions and some results. The
final section summarises and concludes the paper.

2 Example Applications of Dental Data

Teeth are built of different tissues whose hardnesses and densities and thereby
visibilities on dental radiographs vary. There are a few types of dental radi-
ographic images: i.e. periapical, bitewing and panoramic. The last one, whose
images are called orthopantomograms (see Fig. 1 for examples), makes the vis-
ibility of all teeth and adjacent structures possible. Therefore, panoramic radi-
ographs are considered a valuable source of data to determine the condition of
teeth and their relative positions in the mouth, and the presence of other tis-
sues [6]. For example, in [7–9], orthopantomograms were utilized as input data
for methods proposed for an automatic forensic human identification process.

There are situations, such as plane crashes or natural disasters, when identi-
fication of victims becomes complicated and time-consuming, especially when a
human body is severely damaged, or when there are a large number of victims
and difficult conditions within the crash site or affected area. In these cases, den-
tal data can be utilised to increase the accuracy of the identification process. In
the past, certain catastrophic events have proven the efficiency of this approach
and confirmed the need for dental identification systems. The Asian tsunami of
26th December 2004 left over 5000 people from 44 countries dead in Thailand.
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Fig. 1. Sample panoramic dental radiographs [6,10].

By 11th May 2005, 1474 bodies had been successfully identified and in general,
dental features helped in 87 % of the identifications [11]. An earthquake in the
Christchurch region of New Zealand on 22nd February 2011 caused the deaths
of 181 people from 22 nations. 117 victims were successfully identified, among
which 33 % of identifications were attributed to odontology alone and a further
14 % to odontology combined with fingerprint and DNA analysis. Moreover, for
fragmented remains alone, odontology was either the primary identifier or par-
ticipated to a total of 85 % of identifications [12].

The dental data can be considered as a group of images, each representing a
tooth contour. In this case, the problem becomes one of a two-class classification
of the tooth’s type. There are several applications in which this approach is
valuable. Firstly, it can be applied as a coarse classification in an attempt to
reduce the size of the data space that will be further recognized using more
sophisticated algorithms. Segmenting this data by tooth type should increase
the degree of similarity within the class and of dissimilarity between the classes.
Secondly, such pre-processing could simplify tooth numbering, i.e. dental atlas
registration. Furthermore, only corresponding teeth of the same number would
be matched during the identification process, hence decreasing computation time
and increasing matching accuracy.

There are several examples of tooth classification found in the literature.
In [13] a classification into molars and premolars based on bitewing radiographs
is suggested as a step to precede tooth numbering. Teeth were classified using
the Support Vector Machine (SVM) method and the classification accuracy was
89.07 % [13]. The authors of [14] proposed the use of Bayesian classification and
tooth contour analysis to classify teeth into molars and premolars for bitew-
ing radiographs. Contours were represented by Fourier descriptors calculated
using a complex coordinate signature and the centroid distance function. For
the pre-classification stage, the teeth were divided into molars and premolars.
Final classification was then performed by considering the arrangement of the
teeth and correcting any misclassifications. The pre-classification performance
ratios varied from 72 % to 95.5 % depending on the type and position of each
tooth, i.e. molars or premolars in the maxilla or the mandible [14]. Another way
of classifying teeth into molars and premolars for dental bitewing radiographs
was described in [15]. The authors of this paper proposed a binary linear SVM
using three features: relative length to width ratios of both teeth and pulps, and
relative crown size. The percentage classification accuracy was 95.1 % [15].



172 K. Gościewska and D. Frejlichowski

3 A Description of Selected Simple Shape Descriptors
and a Shape Matching Approach

An automated dental identification process requires a selection of effective meth-
ods and algorithms to extract distinctive features from dental radiographs and
for feature matching. Here the problem of tooth classification using simple shape
descriptors is considered. The template matching approach was selected for shape
matching. The purpose of this approach is to represent all shapes in the same
way and to calculate the dissimilarities between every test object and every
template representations in order to indicate a template that least differs from
a particular test object. Then the template that has the smallest dissimilarity
indicates the test object’s class.

Simple shape descriptors are basic shape measurements or shape factors that
represent specific shape characteristics by a single number. Basic shape measure-
ments are for example the area A or perimeter P , which might be the number
of pixels within a shape’s region or contour respectively. In turn, shape factors
are dimensionless quantities based on at least two shape measurements, which
makes them invariant to scaling and translation of the shape within an image
plane. Some selected shape descriptors are presented below.

There are three basic Feret measures (or Feret diameters): the X Feret—
i.e. the distance between the minimal and maximal horizontal coordinates of
a contour; the Y Feret—i.e. the distance between the minimal and maximal
vertical coordinates of a contour; and the Max Feret—i.e. the maximum distance
between any two points of a contour. A fourth measure, the X/Y Feret, is the
ratio of the X Feret measure to the Y Feret measure [16].

A minimum bounding rectangle (MBR) is the smallest rectangular region
that can contain every single point of a shape. The area, perimeter, length, and
width of an MBR can be used as shape measurements. Moreover, they can be
combined either with the area of an original shape or with each other to create
three different shape factors—rectangularity, eccentricity and elongation. Rec-
tangularity is the ratio of the area of a shape to the area of its MBR. Eccentricity
is calculated as the ratio of width to length of the MBR, whereby length repre-
sents the longer side of the MBR and width the shorter one. Elongation is then
the value of eccentricity subtracted from 1 [17].

A convex hull is the smallest convex region that contains all points of the orig-
inal shape. The concept of this approach is similar to that of the MBR method,
except the convex hull is better fitted to the shape. Two basic measurements
of the convex hull are area and perimeter, from which two shape factors can
be calculated, i.e. convexity as the ratio of the convex hull’s perimeter to the
original shape’s perimeter [17] and solidity as the ratio of the area of a shape to
the area of its convex hull. The solidity value is equal 1 for convex shapes [18].

The elongation and eccentricity measures can also be computed using the
principal axes method (PAM). Principal axes are two unique line segments that
cross each other orthogonally within the centroid of a shape [19]. The computa-
tion of eccentricity and elongation comprises several steps. Firstly, the covariance
matrix C of the contour shape is calculated. Secondly, the lengths of the principal
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axes are equivalent to the eigenvalues λ1 and λ2 of the matrix C. Furthermore,
the eccentricity is the ratio of λ2 to λ1, and the elongation is the eccentricity
value multiplied by 2.

Another six shape factors are also taken into consideration, i.e. compactness,
roundness, circularity ratio, circle variance, ellipse variance and the ratio of width
to length. Compactness can be computed as the ratio of the square of the shape’s
perimeter to its area. The most compact shape is a circle. The roundness is a
measure of a shape’s sharpness and is based on two basic shape features, i.e.
the area and perimeter. The circularity ratio defines the degree of similarity
between an original shape and a perfect circle. It can be calculated as the ratio
of the shape’s area to the square of the shape’s perimeter. The ellipse variance
is defined as the mapping error of a shape fitting an ellipse that has an equal
covariance matrix as the shape [17]. The ratio of width to length is based on the
distance between the shape’s centroid and its contour points. It is computed as
a ratio of the maximal distance between the centroid and the contour points to
the minimal distance [16].

4 Experimental Conditions and Results

The main goal of the experiments was to choose the best simple shape descriptor
for two-class tooth classification. The test database consisted of 903 images (586
non-molars and 317 molars), each with a single tooth contour (which included
both roots and crowns), extracted from panoramic radiographs of 30 different
people. The template database consisted of ten other tooth contour images (see
Fig. 2) and only one template set was used. Five of these images, with sample
molar contours, represented the molar class. The rest represented the non-molar
class (i.e. premolars, canines and incisors). Since the original tooth classes were
known, it was possible to obtain a percentage classification accuracy.

Fig. 2. Templates used in the experiments: non-molar class representatives are on the
left, and molar class representatives are on the right.

The appearance of templates and test objects results from the type of the
images and their low quality, which influence the teeth contour extraction. All
teeth contours were automatically extracted from pantomograms using methods
described in [7–9]. The general steps of contour extraction process include: pan-
tomogram enhancement using Laplacian pyramid, separation of the upper and
lower jaws, localization of the areas between the necks of teeth, removing the
areas below the roots of teeth, extracting areas possibly containing a tooth based
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on separation lines, image morphological opening, image entropy filtration, cal-
culation of each segment’s features based on original image (segment’s centroid,
normalized mean value of the intensities of its pixels and the normalized vertical
distance from the centroid to the curve separating the upper and lower jaw),
determination of a tooth existence in a given segment using a fitness function
and threshold value depending on the type of the tooth, morphological dilation
on segments containing a tooth, tracing exterior objects boundaries, selection of
the longest contour lying closest to the jaws separating line, Gaussian filtration
of border pixels and ultimately the generation of final contour as a list of points.

Twenty-five experiments were performed in an attempt to ascertain the clas-
sification accuracy of the simple shape descriptors. Each experiment was carried
out in the same way—all templates and test objects were represented using the
same shape description algorithm. Each test object was then compared with
each template using the template matching approach. The template that was
the least different from a corresponding test object indicated the object’s class.
The classification results were compared with the original tooth classes in order
to calculate the final classification accuracy. The percentage accuracy values
obtained in the experiments using shape measurements and shape factors are
provided in Tables 1 and 2 respectively.

Table 1. Percentage classification accuracy of the experiments using shape measure-
ments.

Shape Percentage classification accuracy

measurements Molar class Non-molar class In total

Shape – area 58.7% 91.5% 80.0%

Shape – perimeter 52.7% 79.0% 69.8%

X Feret 82.6% 91.8% 88.6%

Y Feret 32.8% 66.2% 54.5%

Max Feret 43.2% 68.1% 59.4%

MBR – width 81.7% 71.2% 74.9%

MBR – length 61.2% 50.3% 54.2%

MBR – perimeter 53.9% 86.5% 75.1%

MBR – area 65.6% 90.1% 81.5%

Convex hull – perimeter 47.0% 80.4% 68.7%

Convex hull – area 61.2% 91.0% 80.5%

In the experiments utilizing shape measurements (see Table 1) the best classi-
fication results were obtained for the X Feret measure and equal 88.6 % in total,
where the accuracy of non-molar classification was 91.8 % and of molar—82.6 %.
The shape’s area, the area of the shape’s convex hull and the MBR’s area
are also good solutions for non-molar classification—the accuracy values for
these were 91.5 %, 91.0 % and 90.1 % respectively. Among the shape factors the
best was the X/Y Feret measure—the total classification accuracy equal 87.2 %.
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Table 2. Percentage classification accuracy of the experiments using shape factors.

Shape Percentage classification accuracy

factors Molar class Non-molar class In total

Roundness 49.5% 55.3% 53.3%

Compactness 47.6% 56.8% 53.6%

Eccentricity (PAM) 80.1% 69.8% 73.4%

Circularity ratio 49.5% 55.3% 53.2%

Ellipse variance 52.7% 78.5% 69.4%

Elongation (PAM) 80.1% 69.7% 73.4%

Ratio of width to length 54.6% 56.6% 55.9%

Circle variance 65.9% 63.8% 64.6%

X/Y Feret 94.0% 83.4% 87.2%

Eccentricity (MBR) 88.0% 64.1% 72.5%

Elongation (MBR) 88.6% 76.1% 80.5%

Rectangularity 58.0% 40.1% 46.4%

Convexity 63.7% 67.4% 66.1%

Solidity 59.3% 59.7% 59.6%

The second best result can be attributed to the elongation measure and equal
80.5 % in total. Test objects were best classified to molar class using X/Y Feret,
elongation, and eccentricity measures, the latter two being both based on MBRs.
The percentage classification accuracy for these was 94.0 %, 88.6 % and 88.0 %
respectively. Exemplary shapes that were correctly or incorrectly classified are
presented in Fig. 3. Miscalssifications result from the image quality (noise, blur),
quality of tooth contours extraction and the dentition type—dental implants or
dental bridges give contours that differ from the selected templates.

Fig. 3. Exemplary results showing correct and incorrect classifications for the experi-
ment using X Feret measure.

The experimental results led to a significant conclusion. Taking into consid-
eration the highest results obtained for individual classes it turned out that the
shape measurements provided better solutions for the classification of non-molars
while the shape factors were more suitable for molar classification. However, dur-
ing the classification we process unknown tooth contours and the applied solution
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should be equally efficient for the classification to both classes. Therefore, based
on the total percentage accuracy the most effective simple shape descriptors are
the X Feret and the X/Y Feret measures. Surprisingly, such simple features were
sufficient to distinguish between the two types of teeth and to obtain high classi-
fication performance ratios. The compact forms of the simple shape descriptors
and the possibility of fast and easy matching are additional advantages, espe-
cially in the case of large databases. For the classification of molars, the results
were similar to those presented in [13–15] despite the fact that here all human
teeth extracted from orthopantomograms were taken into consideration, not only
a dentition segment from bitewing radiograph images, such as in the above cited
papers. The exact comparison of the results cannot be performed due to the
mentioned differences in the input data used in the experiments.

5 Summary and Conclusions

This paper discussed the problem of teeth classification based on simple shape
features. Such a classification can precede the teeth numbering process in auto-
mated dental identification systems or can be utilized to reduce the number of
objects in large databases. Teeth are able to maintain their properties even in
the cases of fire, water soaking, drying and decomposition. A high resistance to
unfavourable conditions and the diversity of human dentition has resulted in the
extensive use of teeth as biometric features for human identification in the field
of odontology.

The main goal of the experiments was to find the best method for tooth clas-
sification. 903 test objects were classified into molar and non-molar classes across
twenty-five experiments. Each of these was performed using different simple
shape descriptors and a template matching approach. The experimental results
were compared to the original tooth classes and the percentage classification
accuracy was calculated. The best classification results for the non-molar class
were obtained in the experiment using the X Feret measure, with an accuracy
value of 91.8 %. Very similar results were produced through utilization of the
shape’s area measure and the area measure of the convex hull. The X/Y Feret
measure turned out to be the most appropriate solution for classifying molars
with an accuracy value of 94 %. The selection of the best simple shape descriptor
should be based on total performance, therefore the best were X Feret measure
with the total percentage accuracy value equal to 88.6 % and X/Y Feret measure
for which total accuracy value equal to 87.2 %.

There is some future work to be done in the field of tooth classification.
Obviously, other shape descriptors should be experimentally tested as well as
different shape matching techniques wherever possible. Moreover, an attempt
could be made to perform teeth classification over more than two classes.
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Abstract. Most of the current iris recognition methods utilize the iris images
that are captured between the 700 and 900 nm range for verification and
identification purposes. However, iris images acquired beyond this narrow range
have shown to uncover identifiable information not previously available within
the 700 − 900 nm near-infrared range (NIR). In this work, we will employ a
feature extraction technique on iris images from 450 nm to 1550 nm to elicit iris
information on a wider electromagnetic spectrum. We will employ the use of a
Genetic and Evolutionary Feature Extraction technique (GEFE) and compare the
performance against an exploratory data analytic approach, referred to as
mGEFE. The mGEFE technique discovers salient pixel regions in iris images.
We also perform cross spectral analysis among the wavelengths. Results show
that GEFE outperforms mGEFE and LBP in regards to recognition accuracy, but
mGEFE produces FEs that show salient areas of iris images to explore for
optimal recognition.

Keywords: Iris recognition � Exploratory data analysis � Genetic and evolu-
tionary feature extraction � Genetic and evolutionary computation

1 Introduction

Iris recognition technologies are becoming more renown due to the ease at which iris
samples can be obtained as well as their recognition accuracy. The iris as a form of
identification and verification has the advantages of not being easy to forget or steal,
unlike traditional text based or token based artifacts. The iris image is normally cap-
tured in the 700-900 nm range [1, 2]. However, more information can be captured
using different ranges outside of the norm. More specifically, a multispectral image
contains information across multiple wavelengths (or wavelength bands) of the elec-
tromagnetic spectrum [2].

In this work, we are focused on texture based feature extraction. Some popular iris
texture based extraction techniques include Gabor filters [3], HAAR transforms [4],
and the Local Binary Patterns (LBP) technique [5–7]. It is the LBP technique that
our focus is on, due to its simplistic nature and resistance to illumination invariance.
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This technique divides an image into even sided grids and extracts features from each
grid, or patch.

Previous research has been done on hybridizing the LBP technique with Genetic
and Evolutionary Computation (GEC) for iris recognition [8, 9]. This hybrid technique,
Genetic and Evolutionary Feature Extraction (GEFE), evolves the locations, number,
and dimensions of patches in order to extract features from the most discriminatory
regions of an image. GEFE has been shown to outperform the traditional LBP approach
on facial datasets [9]. Other research has been conducted using GEFE at the Center for
Advanced Studies in Identity Science (CASIS) involving iris recognition [10, 11].

In this work, we will use a variation of GEFE that reduces the patch size to its
smallest possible dimensions. By constraining the patches to this degree, patches will
discover the most salient pixels within iris images. This variation will be known as
micro-GEFE (mGEFE), and we can consider this to be an exploratory data analysis
approach for biometric data.

Exploratory data analysis is an approach that employs techniques in order to
identify the key features of a data set, its uses ranging from age distribution of Viet-
namese population to regional per capita GDP in Europe [12–16]. Exploratory data
analysis can be characterized by putting emphasis on “substantive understanding of
data that address the broad question of ‘what is going on here’ [16].” In our experi-
ments, we apply exploratory techniques in order to discover the highest discriminating
pixels within an iris image. This will result in not only a reduction of the amount of
time for feature extraction, but an increase in recognition accuracy.

The remainder of this paper is as follows. In Sect. 2, we will discuss the feature
extraction techniques used. In Sect. 3, we will describe the process used to execute our
experiment. Section 4 will contain the results of the experiments and Sect. 5 concludes
the manuscript.

2 Feature Extraction Methods

2.1 Local Binary Patterns

One of the more popular texture based feature extraction techniques is the LBP
technique [6]. This technique can locate texture patterns within an image and form a
feature vector (FV). The LBP technique is effective in the field of biometric recognition
for extracting texture features. The LBP technique will create a unique FV for each
uniquely textured image, and FVs can be enrolled in the biometric system for future
comparisons.

The LBP technique divides images using a user specified grid-based scheme. This
scheme, or group of patches, is referred to as a feature extractor (FE). Within each
partition, or patch, the pixels are compared to one another. Each pixel that is sur-
rounded by neighboring pixels is associated with a texture pattern. The surrounded
pixel is referred to as the center pixel. The number of neighboring pixels and the
distance between neighboring pixels and center pixels is user specified. We use the 8
closest neighboring pixels for each center pixel. A texture pattern is then represented as
a binary string, which is formed by taking the differences between neighboring pixels
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and the corresponding center pixel. If the difference is less than zero, a 0 bit is placed in
the texture pattern; else a 1 bit is used.

Each patch has a histogram associated with it, where the bins within the histogram
represent a texture pattern. The number of bins is equivalent to the number of possible
texture patterns given the specification of the binary string length as well as any other
specifications. For example, using 8 neighboring pixels will result in 28 = 256 possible
texture patterns, and 256 bins in the histogram. The histograms are filled in and
concatenated together to form the FV for the input image.

2.2 GEFEML and MGEFEML

The feature extraction technique we are using is a hybrid between the LBP technique and
GECs. GECs are an artificial intelligence technique that simulates Darwinian principles
to evolve solutions for problems. Important components within a GEC include candidate
solutions (CSs) and a fitness function. The CSs are possible solutions to the problem, and
the fitness function is a function that evaluates the effectiveness of CSs.

In the case of GEFE, a CS consists of the locations, dimensions and numbers of
patches in a LBP based FE. The fitness function is the representation of how accurate a
FE is on a biometric system. The resulting fitness is the number of errors that occurs on
the simulated system plus the percentage of patches being used for extraction.

GEFE will create patches within the range of 3 by 3 to the entire image dimensions.
These patch areas encompass enough of an area to extract salient information. How-
ever, by restricting the size of the patches to a dimension of 5 by 5, the patches will
focus on the most salient pixels in an image. This variation will be known as mGEFE.
The fitness function for mGEFE is based on recognition accuracy, so patches that
extract from the most salient pixels will be strongly considered. Apart from the patch
dimensions, mGEFE functions exactly like GEFE.

In the original implementation of GEFE, a set of FEs is evolved on a training set to
produce FEs that could correctly identify subjects in that particular data set. To produce
FEs that could generalize well on unseen subjects, cross validation concepts are
incorporated into GEFE.

Cross validation in Genetic and Evolutionary Feature Extraction – Machine
Learning (GEFEML) is done by initially generating a population of random FEs. Every
candidate FE is then evaluated on the training set and additionally evaluated on a
validation set. The results of the FEs on the validation set do not affect the training of
FEs. While a stopping condition has not been met, FEs are selected to breed, and
offspring FEs are created. The offspring are evaluated on the training set, but they are
also applied on the validation set.

The FE with the best results on the validation set is stored as FE*. FE* is only
updated when a new candidate FE performs better on the validation set than the
currently stored FE*. The offspring are used to create the new population and this
process repeats until the stopping condition has been met. Under this design, FE*
should generalize better on unseen subjects opposed to the best performing FE on the
training set. The mGEFE technique with cross validation is simply referred to as
mGEFEML.
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3 Experiments

In this paper, we conducted our experiments on 38,129 iris images [17]. These images
were divided into 13 sections, each section approximating roughly 3000 images. Each
section corresponded to spectral band used to capture each image, ranging from 405 nm
to 1550 nm. For our first experiment, we conducted pair-wise comparisons for each
band. We divided the set into three sections: training, validation, and testing. The
training, validation, and testing have a total of 44, 18, and 29 subjects respectively. For
both GEFEML and mGEFEML, we ran it for 30 runs and for each run; we ran it through
1000 generations. For cross-spectral analysis, we used the FEs evolved from the
pair-wise comparisons and applied them to each of the opposing spectral bands in our
dataset. FEs were evolved based on iris identification performance, while verification
performance is shown in the form of the Receiver Operating Characteristic
(ROC) curve. The LBP variation that we used uses all 256 possible texture patterns;
this variation proved to have the best performance on the face and iris datasets [10, 11].
Previous research has shown similar results, where using 256 patterns has shown to be
the best variation [10]. We tested different partitions of LBP and found that 7 columns
by 10 rows was the best performing partition. This 70 patch LBP partition is compared
to GEFEML & mGEFEML in the results.

4 Results

In Table 1, the performances of LBP and mGEFEML are shown. The performance
includes not only the identification accuracy but the percentage of patches activated as
well. The purpose of GEFEML and mGEFEML is to evolve FEs that will accurately
match subjects that they were not trained on. With this in mind, all performances are of
the feature extraction techniques on the test set. Please note that GEFEML evolves a set
of FEs that were optimized on the training set and FEs that performed best on the
validation set. We refer to each set as <opt> or <val> .

The first column shows the spectrum in which the performances are based on. The
second column shows the spectrum from which the FEs were evolved. For each
spectrum, the cross spectrum chosen was the spectrum that the spectrum FEs had the
best performance on. Because LBP is deterministic, there is only a single accuracy
associated with each spectrum. The columns below mGEFEML are the accuracies
of <Opt> mGEFEML and <Val> mGEFEML. The last two columns are the average
numbers of patches used from the 30 FEs for both <Opt> FEs and <Val> FEs.

The results of mGEFEML are varied by spectrum. In every case, mGEFE outper-
formed LBP in respect to number of patches used. However, in certain spectrums LBP
outperformed mGEFEML in regards to recognition accuracy. GEFEML was run and had
a statistically significant performance over mGEFEML and LBP in regards to accuracy.
To determine statistical significance, a t-test was used to compare the performances
of <opt> and <val> for each spectrum. A confidence value of 0.05 was used to
determine significance. The 800-1300 nm cross spectral range had the best recognition
accuracies for GEFE overall, with the 800 nm spectrum being the best for GEFEML. It
should be noted that the <Val> FEs had an average fewer amount of patches used.
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Though mGEFEML had the worse accuracy than LBP in the 910-1550 nm range, in the
405-620 nm spectrum range mGEFEML had a better accuracy.

Figures 1, 2, 3 and 4 show the ROC curves for both GEFEML and mGEFEML. ROC
curve plots the rate of impostor attempts accepted on the x-axis, against the corre-
sponding rate of genuine attempts accepted on the y-axis along a rising threshold.
Figure 1 shows that the pair wise matching achieved 48 % true accept rate (TAR) at
1 % false accept rate (FAR) in the 800 nm spectrum using GEFEML. Figure 2 shows
that the cross spectral matching reached 54 % TAR at 1 % FAR in the 800 nm
spectrum using GEFEML. Figure 3 shows that the pair wise matching obtained 48 %
TAR at 1 % FAR in the 800 nm spectrum using mGEFEML. In Fig. 4, the cross spectral
performance reached 40 % TAR at 1 % FAR in the 800 nm spectrum using mGEFEML.
The 800 nm spectrum seems to show the best performance whereas the 450 spectrum
has the worst performing FEs for both GEFEML and mGEFEML. Figures 5 and 6 show

Table 1. Comparison of mGEFEML and LBP.

Spectrum Cross Spectrum Accuracy Patches

LBP mGEFEML Opt Val
<Opt> <Val>

405 405 7.02 7.02(2.57) 8.77(3.16) 30.17 31.22
1300 n/a 10.53(3.68) 8.77(3.68) 39.90 40.42

505 505 45.61 59.65(46.32) 54.39(44.15) 36.91 35.16
1300 n/a 61.40(48.95) 61.40(47.84) 39.90 40.42

620 620 64.91 68.42(60.35) 71.93(59.59) 37.92 38.94
1300 n/a 75.44(61.40) 75.44(59.82) 39.90 40.42

700 700 50.87 35.09(27.60) 36.84(27.72) 44.30 42.33
1300 n/a 52.63(34.97) 52.63(37.87) 39.90 40.42

800 800 91.23 96.49(89.24) 91.23(86.84) 39.53 39.57
970 n/a 96.49(90.76) 96.49(89.82) 39.77 39.93

910 910 89.66 77.19(66.55) 75.44(63.27) 46.80 45.48
970 n/a 87.82(70.58) 87.72(65.79) 39.77 39.93

911 911 87.93 75.44(55.15) 77.19(51.58) 39.53 37.96
1300 n/a 84.21(61.46) 84.21(59.18) 39.90 40.42

970 970 84.48 78.95(59.01) 78.95(54.85) 39.77 39.93
1300 n/a 73.68(58.13) 75.44(54.80) 39.90 40.42

1070 1070 89.66 70.18(58.30) 68.42(51.99) 49.23 45.45
505 n/a 80.70(48.83) 71.93(39.82) 36.91 35.16

1200 1200 93.10 70.18(61.17) 68.42(55.96) 40.36 40.46
1300 n/a 82.46(64.68) 82.46(60.29) 39.90 40.42

1300 1300 82.76 70.18(51.36) 66.67(47.95 39.90 40.42
911 n/a 70.18(48.25) 70.18(42.75) 39.54 37.96

1450 1450 36.21 14.04(3.98) 8.77(3.45) 34.97 32.93
910 n/a 8.77(4.04) 17.54(5.79) 46.80 45.48

1550 1550 31.03 8.77(3.68) 8.77(2.81) 35.36 33.92
1300 n/a 14.04(5.32) 12.28(4.74) 39.90 40.42
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Fig. 1. ROC curve for pair wise matching using GEFE

Fig. 2. ROC curve for cross spectral matching using GEFEML

Fig. 3. ROC curve for pair wise matching using mGEFEML
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the best mGEFEML FEs on the 800 nm dataset. It appears that the right area is the
preferred area of extraction for distinguishing between different individuals.

5 Conclusions and Future Work

In this manuscript, optimized feature extraction for iris recognition was explored. The
GEFEML technique was compared to the baseline LBP algorithm as well as a GEFEML

variation that used micro sized patches. GEFEML outperformed both techniques, but
the main purpose was to highlight the salient features in an iris image. It appears that
we have been able to locate key areas on the iris for optimal extraction. We can most
likely explore these focused areas in detail in later work. It would also be beneficial to
explore other GECs for evolving FEs using GEFEML and mGEFEML.
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Abstract. Biometric ear authentication has received enormous popularity in
recent years due to its uniqueness for each and every individual, even for
identical twins. In this paper, two scale and rotation invariant feature detectors,
SIFT and SURF, are adopted for recognition and authentication of ear images;
an extensive analysis has been made on how these two descriptors work under
certain real-life conditions; and a performance measure has been given. The
proposed technique is evaluated and compared with other approaches on two
data sets. Extensive experimental study demonstrates the effectiveness of the
proposed strategy.
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1 Introduction

Biometric authentication of people based on various anatomical characteristics, like
eye, ear, face, iris, and fingerprint have attracted lots of attention during the past few
decades, and some of these techniques have already been successfully applied for
recognition and authentication. However, many systems are not very robust and may
fail to work under certain conditions. Biometric ear recognition is a relatively new
technique that may surpass the existing systems due to several significant reasons. For
example, the acquisition of ear images is relatively easy and, unlike iris, can be cap-
tured without the co-operation of individuals [1].

Human ear contains rich and stable features which are more reliable than face
features, as the structure of the ear is not subject to change with age. It has also been
found out that no two ears are exactly the same even for identical twins [3]. The
detailed structure of ear is not only very unique but also permanent, since the shape of a
human ear never shows drastic changes over the course of life. The research on ear
identification was first conducted by Bertillon, a French criminologist, in 1890. The
process was refined by American police officer, Iannarelli [6], who divided the ear
based on various distinctive features of seven parts: i.e. helix, concha, antihelix, crux of
helix, intertragic notch, tragus, and antitragus [3].

In this Paper, we propose to use two scale and rotation invariant feature detectors,
i.e. SIFT (scale invariant feature transform) and SURF (speed up robust features), for
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ear recognition. Both SIFT and SURF extract specific interest points from an image and
generate descriptors for the feature points to a form a reliable matching results.
Extensive experiments have been carried out on two different sets of databases to
evaluate their performance with respect to various rotations and scales. One of the most
important feature of ear images is its easiness in acquisition, however, the acquired
images may be in different scales, rotations, and illumination. The scale and rotation
invariant property of the SIFT and SURF algorithms makes them perfect for ear
authentication under various circumstances.

The rest of the paper is organized as follows. Some background and related
research are discussed in Sect. 2; the proposed method is presented in details in Sect. 3;
some experimental results and analysis are given in Sect. 4; and the paper is concluded
in Sect. 5.

2 Background and Related Research

Human ears start to develop between fifth and seventh weeks of pregnancy. At this
stage, the embryo face takes on more definition as mouth perforation, nostrils and ear
indentations become visible. Forensic science literature reports that ear growth after the
first four months of birth is highly linear [6]. The rate of stretching is five times greater
than normal during the period from 4 months to the age of 8, after which, it is constant
until the age of seventy when it again increases. Thus it can be said that ear remains
almost unchanged during a substantial period of 62 years and, thus, it is one of the
strong points of considering ear for biometric authentication.

An ear biometric system can be viewed as a typical pattern recognition problem,
where the input image is reduced to a set of features that are subsequently used to
compare against the feature sets of the other images in the database in order to find a
best match to determine identity [2]. Based on this finding, a good amount of research
has been done on ear recognition [5, 8].

Haar-based methods have given fairly better results for face detection as it is robust
and fast. The different types of ear recognition systems include those of intensity-based,
force-field based, 2D curves geometry, wavelet transformation, Gabor filters, SIFT, and
3D features. The force-field transforms gained popularity due to its uniqueness and
efficiency [10]. Similar methods have also been implemented on other kinds of ear
recognition systems [8].

Fig. 1. The pipeline of the propose ear recognition system
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3 The Proposed Method

Real-life ear images can be acquired in various formats with different scaling and
rotation conditions. In this paper, we propose to use scale and rotation invariant feature
detectors to describe interested features and match them with other images in the
databases. The proposed ear recognition technique is shown in Fig. 1. Below is a brief
description of each function block.

3.1 Ear Image Enhancement

The ear enhancement process starts with contrast enhancement, where we apply his-
togram equalization to improve the contrast in an image in order to stretch out its
intensity range, from which, we get an enhanced version of the original image by
maximizing the contrast level of an image, as shown in Fig. 2.

It has been experimentally found that after contrast stretching, both the SIFT and
SURF detectors are able to find more feature points. Thus, image enhancement is an

Fig. 3. (a) 10 SIFT features detected in the original image; (b) 32 SIFT features detected in the
enhanced image.

Fig. 2. Image enhancement result.(a) Original image;(b) enhanced image; (c) histogram
distribution of the original image;d) histogram distribution of the enhanced image
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essential step of the entire process. As shown in Fig. 3, 10 SIFT keypoints were
detected in the original image, while 32 features were detected in the enhanced image.

3.2 Feature Extraction and Matching

Feature Extraction is the process of extracting salient features from the image, and each
feature is described by a vector which summarizes the required information for that
point [2]. Features are extracted exclusively in order for the image to be matched with
the features of the input image to authenticate the ear so that a decision can be made. In
this paper, two rotation and scale invariant features are studied.

Speed Up Robust Features (SURF): SURF is a high performance, fast scale and
rotation invariant point detector and descriptor. It outperforms previously proposed
schemes with respect to repeatability, distinctiveness and robustness [9]. The detector is
based on the Hessian matrix and uses a very basic Laplacian-based detector, called
difference of Gaussian (DoG). The implementation of SURF can be divided into three
main steps. First, interest points are selected at distinctive locations in the image, such
as corners, blobs, and T-junctions. Then, the neighborhood of every interest point is
represented by a feature vector. This descriptor has to be distinctive and robust to noise,
detection errors, and geometric and photometric deformations. Finally, the descriptor
vectors are matched between different images. When working with local features, the
issue that needs to be settled is the required level of invariance. Here the rotation and
scale invariant descriptors seem to offer a good compromise between feature com-
plexity and robustness to commonly occurring deformations, skew, anisotropic scaling,
and perspective effects [9].

Given a point in an Image, the Hessian matrix is defined as follows:

H x; rð Þ ¼ LXXðx; rÞ LXyðx; rÞ
LXyðx; rÞ Lyyðx; rÞ

� �
ð1Þ

where LXXðx; rÞ is the convolution of the Gaussian second order derivative @2

@x2 g(rÞ at
the point. This method leads to a novel detection, description and subsequent matching
steps. Using relative strengths and orientations of gradient reduces the effect of pho-
tometric changes. Figure 4 shows the detection results with respect to rotation and scale
change. As shown in Sect. 4, it has been found that though SURF is rotation invariant,

Fig. 4. The detected SURF features (left), matching result under rotation (middle) and scale
change (right).
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its performance in matching, i.e. matching score, decreases sharply when the images
are rotated or scaled. The SURF features are not stable over various rotation angles and
scale changes.

Scale Invariant Feature Transform (SIFT): The SIFT features are invariant to image
scaling and rotation and shown to provide robust matching across a substantial range of
affine distortion, change in 3D viewpoint, addition of noise, and change in illumination.
The computation stages of SIFT are as follows.

Step 1. Scale space extrema detection: The first step is to construct a Gaussian scale
over all the locations. It is implemented efficiently by using a difference of Gaussian
(DoG) to identify potential interest points. The 2D Gaussian operator G(x,y,σ) is
convolved with the input image I(x,y):

Lðx; y; rÞ ¼ Gðx; y; rÞ � Iðx; yÞ ð2Þ

where the DoG images are obtained by subtracting the subsequent scales in each
octave.

Gðx; y; rÞ ¼ Lðx; y; krÞ � Lðx; y; rÞ ð3Þ

Step 2. Accurate keypoint localization: Once a keypoint has been detected, a
detailed model is fitted to determine its location and scale. The keypoints are selected
based on measures of their stability. Further details can be found in [4].

Step 3. Orientation assignment: One or more orientations are assigned to each
keypoint location based on local image gradient directions. All future operations are
performed on image data that has been transformed relative to the assigned orientation,
scale, and location for each feature.

Step 4. Keypoint descriptor: The local image gradients are measured at selected
scale in the region around each keypoint. They are transformed into a certain repre-
sentation that allows for significant levels of local shape distortion and shape
illumination.

Figure 5 shows an evaluation of the SIFT detector. It is evident the SIFT keypoints
are very stable when the images are rotated and scaled. The scaling results are much
better compared to the rotation results in our experiments.

Fig. 5. The matching results of SIFT detectors under rotation (left) and scale change (right).
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Matching of Ear Images: Image matching is the process by which the features
extracted from the SIFT and the SURF descriptors of the input image are being mat-
ched with the features already computed and stored in the database. Figure 6 shows the
matching results using the SURF and SIFT detectors, where the nearest neighbor is
defined as the keypoint with the minimum Euclidean distance for the invariant
descriptor vector.

4 Experimental Results and Analysis

The proposed approach has been evaluated on two data sets. One is the AMI database
[7], which consists of 175 ear images; and the other is the IIT Delhi database [5], which
consists of 494 images of 125 distinct persons. The images were all converted to
grayscale images for ease of work. It has also been found out that contrast enhancement
is an important factor for feature detection and matching, because it makes the feature
detectors find better set of keypoints and increase the effectiveness of matching.

According to the experiments performed, it has been found that upper helix,
antihelix, and tragus are the most important regions for feature selection compared to
others. These regions contribute to about 64 % of the feature points.

Figure 7 shows the average number of keypoints found and matched by the SIFT
and SURF detectors when the images are rotated from 0 to 180°. The results suggest
that the SIFT detector is fairly stable over a variation from 20° to 160°, whereas the
SURF detector, though faster and rotation invariant, is not very stable.

Fig. 6. The matching results of SURF detector (left) and SIFT detector (right).

Fig. 7. The detected and matched keypoints by SURF and SIFT
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Table 1 shows the keypoints detected and matched by the SIFT and SURF
detectors, where the performance ratio is the ratio of the number of matched points to
that of detected features. It is obvious that the SIFT algorithm performs better when the
sizes of images are decreased, while the SURF algorithm performs better when the
image sizes are increased. However, the amount of detected keypoints by the SIFT
detector is always higher than that by the SURF detector.

Table 2 shows an overview of how the two detectors work in real-life conditions
where some images are not matched due to illumination changes as those images were
mostly taken at night and at different angles. Thus, the descriptors fail to find enough
feature keypoints for matching. The overall recognition rates of the SIFT and SURF
algorithms on the IIT Delhi database are 96.8 % and 94.4 %, respectively. As a
comparison, we also implemented other methods for ear recognition. The template
matching technique yields a recognition rate of 93 % for [12], and 92.6 % for [11],
whereas the recognition rate by the contour extraction technique [13] is 85 %. It is
evident that the proposed technique yields a higher recognition rate.

5 Conclusion

In this paper, we have studied two scale and rotation invariant feature detecters and
their application to ear recognition. Although both the SIFT and the SURF are invariant
under scale and rotation changes, their performance decreases under certain conditions.
The SIFT detector is more stable than the SURF detector under rotation changes. It is
also found that the SIFT algorithm performs better for image decreasing, in contrast,
the SURF algorithm performs better for image increasing. Experimental evaluations
have demonstrated the effectiveness of the proposed techniques in ear recognition.

Table 1. SIFT and SURF detection and matching results at different scales

Scaling 0.25 0.5 0.75 1.0 2.0 3.0 4.0

Number of features SIFT 28 53 58 64 170 247 233
SURF 3 12 30 41 39 41 44

Number of matches SIFT 24 45 52 64 53 47 51
SURF 2 9 23 41 20 21 16

Performance ratio SIFT 0.85 0.85 0.89 1 0.32 0.20 0.22
SURF 0.67 0.75 0.75 1 0.51 0.51 0.30

Table 2. Experimental results on the IIT Delhi database

Method Number of
images

Matched
images

Unmatched
images

Time for
matching (s)

Recognition
rate (%)

SIFT 125 121 4 0.21 96.8
SURF 125 118 7 0.183 94.4
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In future study, we will further investigate how to increase the performance and reli-
ability of the proposed approach.
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Abstract. Biometric systems based on a single biometric trait have drawbacks
that are alleviated by multibiometric systems, which combine multiple sources
of information. The novelty of this research effort is that Coalition Game Theory
(CGT) is applied to improve the performance of the iris and face based multi-
biometric system. The CGT technique selects the most salient patches obtained
using the Local Binary Patterns (LBP) and modified LBP (mLBP) feature
extraction techniques. The CGT chooses patches that have better individual
importance along with a strong interaction with other patches based on the
Shapely value. Results show that CGT model maintains impressive recognition
accuracy while using smaller image areas for recognition. More specifically,
CGT outperforms the LBP and mLBP techniques.

Keywords: Multibiometric system � Coalition game theory � Modified local
binary pattern � Patch selection

1 Introduction

Researchers have been conducting extensive investigations on biometrics. Most of the
state-of-the-art biometric systems focus on a single biometric modality. However,
systems using a single biometric trait have drawbacks due to lack of uniqueness,
non-universality and noisy data. Multibiometric systems overcome these drawbacks by
using multiple sources of information [1]. Face and iris traits are commonly imple-
mented and studied due to the popularity of the individual traits. In addition, both face
and iris features can be extracted from facial images. Although there is research based
on face and iris traits, a very small amount of research has been conducted on combined
facial and iris biometrics [2].

The face is one of the most broadly used biometric traits, and iris is one of the most
accurate and stable. Face and iris traits have been combined to improve overall per-
formance in several applications [2, 3]. Face and iris identification have been used in
many biometric applications in an effort to improve the verification and identification
performance. However, there are some practical issues that need to be resolved in both
systems. For example, face recognition accuracy is influenced by illumination, pose,
and facial expression [3]. In the case of iris recognition, the quality of the image may
affect the iris identification systems. Eye disease may also alter the iris, resulting in
poor performance on an iris based system. Multibiometric identification systems can
overcome or reduce the influence of these issues [3].
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In this research effort, the Local Binary Patterns (LBP) and modified LBP (mLBP)
techniques are used to extract features from different patches of normalized iris and
face images [4]. Both techniques divides an image into a grid of patches and extracts
features from each patch. The mLBP technique combines both the sign and magnitude
features to improve feature extraction and enhance the accuracy whereas with tradi-
tional LBP, only the signed difference information is used [5].

An important aspect in machine learning and pattern recognition is the feature
selection step. In this research, a Coalition Game Theory (CGT) model is deployed to
select only important iris and face patches over the entire image. The CGT evaluates
each patch based on its influence to the intricate and intrinsic interrelations among all
patches by using the Shapley value [6]. Each patch is considered as a player in CGT
model and the selected patches have the most significant contributions in the coalition’s
outcome. We have applied the CGT based approach previously for multispectral iris
recognition [7] and face recognition [8].

The remainder of this paper is organized as follows. Section 2 briefly describes the
preprocessing steps of iris and face images and patch based CGT. Section 3 reports the
experimental results and Sect. 4 provides our conclusions.

2 Proposed Approach

2.1 Prepossessing

In this experiment, we segment the iris from eye images using the fuzzy level set
method [3]. We divide the iris and face image samples into a multitude of different
patch combinations. We then apply the LBP and mLBP techniques on each patch to
feed into the CGT methods. Iris and face image samples are shown in Fig. 1.

2.2 Patch Based Coalition Game Theory (CGT)

The process of CGT is as follows: the decision makers communicate with each other
and the reward for each participant in the coalition depends not just on its own deci-
sions but on the decisions made by every participant. Coalition games involve a set of
players and an associated reward based on different groups or coalitions of players. As
a result, the reward of a certain coalition is based on individual contributions of players
composing this coalition to the game where the larger the contribution of a player is,

Fig. 1. Samples of iris and facial images.
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the greater the benefit of having this player in a coalition [6]. Coalitions with high
reward are selected over those with small reward. This perspective yields an iterative
algorithm, called contribution selection algorithm (CSA), for patch selection on unseen
data classifier. Each patch in CGT is obtained using a LBP/mLBP based feature
extractor and is considered as a player. The CSA algorithm ranks each patch on each
step. The ranking is based on the Shapley value, a well-known concept from game
theory. The purpose of that is to estimate the importance of each patch by considering
the interactions between patches [6]. In our previous research efforts, we applied CGT
for multispectral iris recognition [7] and facial recognition [8].

The Shapley value is computed by measuring the distribution of the power among
the players in the voting game that can be transformed into the arena of patch selection
where the importance of each patch can be estimated. Every subset of patches can be
considered as a candidate subset for the final selected optimal subset. Each patch’s
power can be measured by averaging the contributions that it makes to each - subset it
belongs to.

The Shapley value is defined as follows [6]. Let the marginal importance of player
i to a coalition S (i 62 S) be

Mi ¼ v S[ if gð Þ � v Sð Þ ð1Þ

where v(S) is the reward associated with coalition S. The reward can be negative, zero,
or positive. Negative or zero reward means no benefits of inclusion of player i into the
current coalition. The Shapley value is then defined as

/iðtÞ ¼
1
n!

X
p2P Di SiðpÞð Þ ð2Þ

where n is the total number of players, Si(p) is the set of players appearing before
player i in permutation p, and P is the set of permutations over n. Therefore, the
Shapley value of a given player is the mean of its marginal importance averaged over
all possible coalitions of players.

3 Experimental Results

To build the datasets for the multimodal experiments, we took images from the FERET
[9] and the CASIA version 3 interval datasets [10]. We took 175 subjects from each
dataset, and for each subject, we took 6 samples from each dataset. We divide the
dataset into training and test sets. In the multimodal dataset, we include 2 random
samples from each of the 175 subjects in the test set and rest of the samples in the
training set. We divide each sample image into a multitude of different patch variations
and generate LBP/mLBP feature vectors for each patch. While each LBP patch pro-
vides 256 features (only sign components), each mLBP patch produces 512 features as
it utilizes both the sign and magnitude components for experiments. CGT methods
select patches that have strong individual contribution along with strong interaction
with other patches, as shown in Figs. 2 and 3. Then these selected patches are used to
verify samples in the test set. The results of this approach are included in Table 1.
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In Table 1, the number of patches are represented in the first column where R is the
number of rows and C is the number of column. The second and forth columns include
the accuracies without CGT model, and third and the fifth column represent the
accuracies with CGT model including percentage of surface area used in this experi-
ment in parenthesis. The second and the third columns correspond to the LBP tech-
nique, where the fourth and fifth columns show results using the mLBP technique. The
results in Table 1 indicates that CGT based approach maintains better accuracies and
exploits less surface area than the LBP and mLBP approaches on the face and iris
images. The results of Table 1 states that CGT based approach achieves better

Fig. 2. Sample patch combination of iris images. (a) 28 patches given input to CGT model.
(b) CGT model selects only 10 important patches.

Fig. 3. Sample patch combination of face images. (a) 72 patches given input to CGT model.
(b) CGT model selects only 16 important patches.

Table 1. Recognition results of the proposed scheme

Patches
(R × C)

Accuracy
with LBP

Accuracy with LBP and
CGT (% area used)

Accuracy
with
mLBP

Accuracy with mLBP
and CGT (% area used)

4 × 5 0.8857 0.9257 (50 %) 0.9143 0.9257 (50 %)
5 × 5 0.8800 0.9086 (40 %) 0.8971 0.9200 (40 %)
5 × 7 0.8914 0.9486 (28 %) 0.9029 0.9200 (28 %)
5 × 8 0.8629 0.9200 (25 %) 0.8571 0.9371 (25 %)
6 × 5 0.9200 0.9257 (28 %) 0.8800 0.9371 (33 %)
6 × 7 0.9143 0.9314 (47 %) 0.9257 0.9200 (24 %)
6 × 9 0.8743 0.9200 (37 %) 0.9029 0.9200 (27 %)
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accuracies and uses less surface area than the regular LBP and mLBP based approa-
ches. For 5 × 8 patches combination, we achieve the best accuracy of 94 % with CGT
and LBP even though smaller surface area of 25 % is used. For CGT and mLBP, we
achieved 93 % accuracy with 5 × 8 combinations.

Further analysis is shown using the Cumulative Match Characteristics (CMC) and
Receiver Operator Characteristics (ROC) curves. In this experiment, we used the CGT
model with LBP and mLBP techniques for 5 × 8 patch combination. We also compared
CGT based approaches with regular LBP and mLBP. In Fig. 4, the ROC curve shows the
verification performance of the multibiometric system. The CMC curve (see Fig. 5) shows
the identification results of the proposed scheme. Genuine Accept Rate (GAR) is 35 % at
1 % False Accept rate (FAR) for LBP with CGT. On the other hand, GAR is 36 % at 1 %
FAR for mLBP with CGT. From Fig. 5, we can find that the rank-1 accuracies are
89.15 % and 90.85 % for LBP with CGT and mLBP with CGT, respectively.

4 Conclusions

In this research effort, a CGT based patch selection model is deployed on iris and face
images. The results of this research show that CGT based approach achieves better
accuracies than the regular LBP/mLBP. The CGT based path selection model yields

Fig. 4. ROC curve

Fig. 5. CMC curve
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not only the individual importance of a patch but also its interactions with other patches
based on the Shapley value. The CGT model also achieves better accuracy and reduces
the amount of surface area required for matching. In future research, we will apply an
evolutionary game theory based approach with LBP and mLBP in an effort to improve
the performance.
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Abstract. Correlation filters have been extensively used in face recogni-
tion but surprisingly underused in head pose classification. In this paper,
we present a correlation filter that ensures the tradeoff between three cri-
teria: peak distinctiveness, discrimination power and noise robustness.
Such a filter is derived through a variational formulation of these three
criteria. The closed form obtained intrinsically considers multiclass infor-
mation and preserves the bidimensional structure of the image. The filter
proposed is combined with a face image descriptor in order to deal with
pose classification problem. It is shown that our approach improves pose
classification accuracy, especially for non-frontal poses, when compared
with other methods.

Keywords: Head pose classification · Bidimensional correlation filter

1 Introduction

The orientation of a subject’s head relative to a given coordinate systems is
commonly referred as head pose in computer vision [11]. The pose of a human
head in such a system depends on the muscular movement of the neck as well as
the orientation of the body. Pose estimation can be useful in multiple practical
applications including face recognition, gaze direction estimation and hands-free
human computer interaction. Taking into account the level of precision, we can
carry out either a fine or a coarse pose estimation. In the first case, we aim at
determining the pitch, roll and yaw rotation angles by assuming that human
head is limited to three degrees of freedom [11]. In the second case, a finite
number of poses are modeled so that pose estimation becomes a classification
problem.

Pose estimation problem from both perspectives has been tackled using differ-
ent types of approaches. The reader can find further details about the taxonomy

c© Springer International Publishing Switzerland 2015
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of these methods in [11]. In this work, we address in particular the appearance-
based category for coarse pose classification [1,2,9,16–18]. Appearance-based
approaches extract facial features assuming that such features are related to
the pose of the head [9]. As a result, a statistical learning technique is used
from the features extracted in order to infer each pose class. According to [11],
these methods are advantageous because they do not require facial points to be
detected. However, their most significant drawback is the fact that a different
identity can produce more dissimilarity than a change in pose classification.

An interesting technique that has not been widely exploited for pose classifi-
cation are correlation filters, especially considering that they are quite popular
in face recognition [4,7,8]. A correlation filter represents a template for recog-
nizing a specific pattern. Thus, a sharp peak is expected to indicate the presence
of the such a pattern when correlating the filter with a target image. Such a
technique allow us to operate in frequency domain, beneficial for recognition
problems, while providing shift-invariance, noise robustness and a closed form
solution [7]. Consequently, a correlation filter can be advantageous for coping
with the problem of appearance-based pose classification.

A well-know filter is the Optimal Trade-off Filter (OTF) [13], which is derived
from the constrained optimization of two criteria: Signal-to-Noise Ratio (SNR)
and the Peak-to-Correlation Energy (PCE). Other filters (MVSDF [6], ECPSDF
[12], MACE [10], and POUMACE [8]) are special cases of the OTF. However,
most of these correlation filters are designed by transforming the image into a
one-dimensional vector. It means that the spatial structure of the image is some-
how neglected. In this work, a correlation filter is derived from three criteria
through a variational formulation. As a result, we obtain a close form preserving
image spatial structure unlike existing correlation filters. The correlation filter
proposed is compared with state-of-the-art approaches for face pose classifica-
tion. The rest of the paper is structured as follows. In Sect. 2, the derivation
of the filter is presented. Experimental results are shown in Sect. 3. Finally, the
conclusions are drawn in Sect. 4.

2 Derivation of 2D Correlation Filter

In this section, we propose a new correlation filter hk(X) where X = (x, y) rep-
resents space domain coordinates. For this purpose, we assume that common
features are mostly shared within the same class k and not with other classes.
Firstly, we define the three criteria to be fulfilled by our correlation filter. Sec-
ondly, a closed form is obtained by using variational calculus.

The first criteria represents that a correlation filter should deliver a sharp
peak at the origin for an image belonging to the correct class. For this reason,
we force the correlation space to resemble a known function gk(X) having the
maximal energy in the origin such as: Gaussian function or a Dirac distribution.
It would be then defined as follows:

minhk

∮ +∞

−∞
((vik c©hk)(X) − gk(X))2dX (1)
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where the correlation space (v c©h)(X) represents an inner product of the image
v(X) and the shifted correlation filter h(X).

The second criteria imposes that the correlation energy between a filter and
an image of the same class should be maximal while being minimal otherwise.
Then, it can be simply expressed as the minimization of the correlation energy
with respect to other classes:

minhk

M∑

l �=k

Nl∑

j=1

∮ +∞

−∞
(vjl c©hk)2(X)dX (2)

The third requirement focuses on the effects of noise in filter performance.
According to Rice [14], noise produces several maxima in the correlation surface.
Setting the distance between maxima to a specific constant reduces the number of
maxima in the correlation space. It has been shown in [3], that such a requirement
is equivalent to derive a filter that ensures a smooth correlation space. Then,
the smoothness can be measured through the norm of the field produced by a
differentiation operator applied to the correlation space:

minhk

∮ +∞

−∞
||∇(vik c©hk)(X)||2dX (3)

Therefore, the variational problem can be formulated as the minimization of
the weighted sum of the three criteria. Taking into account all images of the kth

class, it can be written as:

hk = argminhk

∮ +∞

−∞
(

Nk∑

i=1

((vik c©hk)(X) − gk(X))2

+ λ2

Nk∑

i=1

((vik c©hxk)(X)2 + (vik c©hyk)(X)2) (4)

+ λ1(
M∑

l �=k

Nl∑

j=1

(vjl c©hk)2(X)))dX

where λ1 and λ2 are Lagrangian multipliers, Nk is the number of samples for
the kth class, and hkx(X) and hky(X) are the first order derivatives of hk(X). In
this variational formulation, we notice the multiclass nature of this correlation
filter, i.e., it depends on both the images of the kth class and those of the other
classes. Moreover, the bidimensional structure of the images is preserved because
they are never transformed into a column vector. This is a distinctive point of
our proposal when compared to traditional correlation filters.

In order to derive the closed form of the filter hk(X) solving the variational
problem, Gateaux derivatives are used to find the Euler-Lagrange partial differ-
ential equation (PDE). A straightforward manipulation of the PDE in Fourier
domain results in the following closed form (see Appendix):

ĥk(W ) =
ĝk(W )

∑Nk
i=1 ||v̂ik(W )||2(1 + λ2||W ||2) + λ1

∑M
l�=k

∑Nl
j=1 ||v̂jl(W )||2

Nk∑

i=1

v̂∗
ik(W )
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Fig. 1. Pose classes in CMU PIE database (Left:-90◦ to Right: 90◦)

where ˆ denotes the Fourier Transform, ∗ the complex conjugate and W =
(wx, wy) represents the frequency domain coordinates.

3 Experimental Results

In the experiments, the CMU PIE database [15] is employed for comparing the
correlation filter proposed with state-of-the-art approaches in pose classification.
This database was constructed from 68 individuals, each one captured under 9
different horizontal poses (yaw) and 21 illumination conditions. Since we are
evaluating pose variations, only the 612 images frontally illuminated will be
used in our experiments. Those poses range from -90◦ to 90◦ using a 22.5◦

step, see Fig. 1. From all these images, the faces were automatically detected
and cropped to a 32 x 32 resolution based on the position of the eyes. Then, a
half of the images per each pose class are randomly selected for training, 306
in total, and the other 306 are used for testing. This two-fold cross-validation is
the same experimental setup used for testing the other three methods to which
we will compare our approach. Additionally, we use the Local Binary Patterns
(LBP) descriptor of the face images for designing the corresponding correlation
filter because LBP has been effective in face recognition [5]. It should be noticed
that we refer to the LBP descriptor as an image, i.e. we do not compute the
histogram, so that the bidimensional structure is preserved. This idea of using
a face descriptor instead of the raw image is also exploited in [2] but employing
Gabor features.

Table 1. Pose estimation accuracy (%) per Class for 32 x 32 resolution.

Per pose class

Mean -90◦ -67.5◦ -45◦ -22.5◦ 0◦ 22.5◦ 45◦ 67.5◦ 90◦

Brown(Probabilistic) [2] 91 – – – – – – – – –

Brown(Neural Network) [2] 91 – – – – – – – – –

Takallou [16] 90.1 85 87 91 87 94 97 89 93 88

LBP+2DCorrFilter 94.38 91.18 91.18 95.88 95.29 95.88 100 94.71 89.41 95.88

In Table 1, we present the performance delivered by pose estimation
approaches in CMU PIE database. The first column shows the mean score, i.e.
considering all pose classes, and the other columns the specific score per class if
provided. In the case of the state-of-the-art methods, we simply display the per-
centages reported by each of them. For this reason, we limit our comparison to
those pose classification approaches that has been tested in CMU PIE database
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following the experimental setup described above. For our proposal, the average
pose estimation accuracy computed from 10 different two-fold cross-validation
configurations is reported.

On one hand, it can be seen in the first column that the LBP+2DCorrFilter
approach improves the other methods in more than 3 % in terms of the mean
score. The best performance of the 2D correlation filter is obtained by setting
λ1 = λ2 = 0.5 and using a Gaussian function as gk(X). On the other hand,
we appreciate that our method is superior to Takallou’s approach in 8 out of
the 9 pose classes considered. For frontal pose, 0◦, both of them deliver com-
parable percentages. In the case of 67.5◦ pose, Takallou’s method overcomes
LBP+2DCorrFilter in about 4 %. However, in the remaining pose classes the dif-
ference in favour of LBP+2DCorrFilter combination is clearly observed reaching
a maximal gap of about 8 % for the 90◦ pose class.

Overall, we can see that the LBP+2DCorrFilter method delivers the top
mean pose classification score among the approaches compared. More impor-
tantly, our approach is capable of overcoming Takallou’s approach for most of
the pose classes deviated from the frontal pose. It means that preserving bidi-
mensional image structure actually contributes to improve pose estimation when
dealing with non-frontal head orientations. In terms of computational complex-
ity, the design of the correlation filters representing each class is O(Nd(1+log d))
where N the total number of training images and d the dimension of one image.
It means that the complexity of our proposal is based on the computation of N
Fourier Transforms which can be executed in O(d log d). If we consider that the
correlation filters can be derived off-line, such a cost is reduced to computing
one Fourier Transform for the target image in recognition phase.

4 Conclusions

In this work, a bidimensional correlation filter is presented. It is derived from
three criteria which take into account the peak at the origin, the discrimina-
tion power and the robustness to noise of the filter. The closed form obtained
through variational calculus has a multiclass nature and preserves the bidimen-
sional structure of an image representation. In the experimental evaluation, we
combine the effective LBP descriptor with the correlation filter proposed for
head pose classification. When compared with other state-of-the-art methods,
our approach delivers the top performance in terms of the mean percentage as
well as for most of the nine pose classes evaluated.

5 Appendix

Let us now compute Gateaux derivative of the variational problem in Eq. (4).

∂

∂ε
Ek(hk + εϕk))|ε=0 =

∮ ∞

−∞
(

Nk∑

i=1

((vik c©hk)(X) − gk(X))(vik c©ϕk(X))

+λ2

Nk∑

i=1

((vik c©hxk)(X)(vik c©ϕxk)(X) + (vik c©hyk)(X)(vik c©ϕyk)(X))
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+λ1

M∑

l �=k

2
Nl∑

j=1

(vjl c©hk)(X)(vjl c©ϕk)(X))dX = 0

The first term of this equation can be rewritten as:

∮ ∞

−∞

Nk∑

i=1

((vik c©hk)(X) − gk(X))(vik c©ϕk)(X)dX

=
∮ ∞

−∞
ϕk(t)

Nk∑

i=1

(vik c©((vik c©hk) − gk)(t)dt

We apply the same analysis for second and third terms. Then, the result of
the second term is integrated by parts. As a result, we get the following Euler-
Lagrange equation:

Nk∑

i=1

(vik c©vik c©hk)(X) + λ2

Nk∑

i=1

((vik c©vik c©hxk)x(X) + (vik c©vik c©hyk)y(X))

+ λ1

M∑

l �=k

Nl∑

j=1

(vjl c©vjl c©hk)(X) =
Nk∑

i=1

(vik c©gk)(X)

A straightforward manipulation allows to write:

Nk∑

i=1

(vik c©vik c©hk)(X) + λ2

Nk∑

i=1

((vxik c©vxik c©hk)(X) + (vyik c©vyik c©hk)(X))

+ λ1

M∑

l �=k

Nl∑

j=1

(vjl c©vjl c©hk)(X) =
Nk∑

i=1

(vik c©gk)(X)

This equation is solved in the Fourier domain by using the properties ââ∗ = ||â||2
and ˆfx(X)(W ) = jwxf̂(W ), the resulting filter is given by:

ĥk(W ) =
∑Nk

i=1 v̂∗
ik(W )ĝk(W )

∑Nk

i=1 ||v̂ik(W )||2(1 + λ2||W ||2) + λ1

∑M
l �=k

∑Nl

j=1 ||v̂jl(W )||2

where ∗ denotes the complex conjugate.
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Abstract. A method for illumination robust facial feature detection on
frontal images of the human face is proposed. Illumination robust features
are produced from weighted contributions of the texture and illumina-
tion components of an image where the illumination is estimated via
Bayesian least-squares minimization with the required posterior proba-
bility inferred using an adaptive Monte-Carlo sampling approach. This
estimate is used to decouple the illumination and texture components,
from which Haar-like features are extracted. A weighted aggregate of each
component’s features is then compared with a cascade of pre-trained clas-
sifiers for the face, eyes, nose, and mouth. Experimental results against
the Yale Face Database B suggest higher sensitivity and F1 score val-
ues than current methods while maintaining comparable specificity and
accuracy in the presence of non-ideal illumination conditions.

Keywords: Illumination robust · Object detection · Image processing

1 Introduction

The detection of facial features such as the eyes, nose, or mouth on human
faces is useful in a wide variety of applications. Examples of such applications
include biometric authentication [7], gaze tracking [16], and human-computer
interaction [2]. Methods exist to address the problem of facial feature detection
in controlled environments, however, their performance suffers when non-ideal
illumination conditions are present.

Viola and Jones [22] suggest a method for object detection using a cascade
of simple features and apply this method specifically to face and facial fea-
ture detection. By cascading a collection of Haar-like features over an image
at different scales, strong and weak classifiers can be trained. Weak classifiers
determine regions of likely facial features in order to narrow the search area
and progressively stronger classifiers are used to positively identify objects of
interest. This results in a fast and scale-invariant method for object detection.

We would like to thank the Natural Sciences and Engineering Research Council of
Canada (NSERC), the Canada Research Chairs Program, and the Ontario Ministry
of Research and Innovation for their sponsorship of this research.
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Various improvements to speed and accuracy [4,23,24] have made this method
widely used. Naruniec [17] compiled a comprehensive survey of facial feature
detection methods and while this survey recognizes the accuracy and speed of
appearance-based methods, it notes that trained classifiers are unreliable when
recognizing features not well represented in the training data, such as facial hair,
face orientation, or illumination conditions.

Methods exist to address the problem of inconsistent illumination of human
faces. Gourier et al. [9] present a method to extract features from a face which
are robust to pose and illumination using linear combinations of Gaussian deriv-
atives. Hu et al. [12] detect faces under varying illumination conditions by
using a YCbCr skin-colour model. Local binary patterns (LBPs) [18] have been
used with success for the purpose of face recognition [1,13,21] and have been
extended to general object detection tasks [26,27] as well as face detection in
particular [10,11,20]. One other possible alternative is to first employ Retinex
approaches [5,14,25] prior to feature extraction.

This paper will be organized as follows: the proposed method is first pre-
sented, followed by a description of the experimental setup, a discussion of the
experimental results, and conclusions.

2 Proposed Method

The proposed method aims to build upon the framework established by Viola
and Jones [22] by extracting illumination robust features for comparison against
trained classifiers to compensate for non-ideal illumination conditions. This is
achieved by decoupling the illumination and texture components of an image
through Bayesian least-squares estimation with Monte Carlo posterior sam-
pling [25]. Weighted contributions from each of these aspects are then used to
produce robust features for comparison against trained classifiers. A flow chart
illustrating the steps used in this method can be seen in Fig. 1.

Fig. 1. General illustration of the proposed method. A weighted combination of fea-
tures extracted from the texture and illumination components is obtained for each
classifier in a cascade. This feature is then compared based on methods described by
Viola and Jones [22].
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2.1 Illumination Robust Features

Since the texture component of an image is both useful in quantifying local dis-
tinctiveness and relatively insensitive to spatially-varying illumination changes,
contributions from texture are helpful in producing illumination robust features.
However, texture alone fails to encapsulate sufficient geometric information, lead-
ing to the need to also incorporate the information from the illumination aspect
of an image. We model the image I as an additive relation of the texture, T ,
and illumination, L, components:

I = T + L. (1)

Let fT and fL denote sets of Haar-like features [19] extracted from T and L
respectively. A weighted combination of these feature sets can be produced as

fI′ = αfT + βfL, (2)

where α and β are weighting factors and fI′ represents the set of illumination
compensated features.

2.2 Texture Illumination Decoupling

To produce these features, the texture (T ) and illumination (L) aspects of an
image are required. We aim to disassociate T and L by first producing an approx-
imation of L (denoted as L̂) and calculating an estimate of T (denoted as T̂ )
based off of the model described in Eq. 1 as T̂ = I − L̂. To obtain L̂, a Bayesian
least-squares minimization approach is used. This minimization can be formu-
lated as

L̂ = arg min
L̂

E((L − L̂)2|I), (3)

where E(.) denotes the expectation and L̂ represents the estimate of L. Based
on work by Lui et al. [15], the solution to the minimization can be written as

L̂ =
∫

Lp(L|I)dL (4)

The posterior probability, p(L|I), is necessary for this calculation; however,
it is difficult to obtain analytically. For this reason, we adapt the Monte Carlo
sampling approach proposed in [25] to infer the required posterior probability
distribution. We first establish a set of pixels, Ω, from a region of interest, ηq̄,
surrounding a pixel of interest, q̄. From a uniform distribution, Q(qk, q̄), pix-
els q1, q2, ..., qM are sampled with equal probability. An acceptance probability,
α(qk|q̄), is calculated for each sampled pixel, qk, based on its regional similarity
to the center pixel, q̄, as follows:

α(qk|q̄) = exp

(
σ − 1

N

N∑

i=1

(ℵqk(i) − ℵq̄(i))2
)

(5)
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where ℵqk and ℵq̄ are regions of equal size surrounding qk and q̄ respectively, σ is
a constant, and N represents the number of pixels in each region. The likelihood
that qk is added to Ω is determined by α(qk|q̄). The sampling process is repeated
until M sample pixels are acquired, at which point, the posterior probability can
be estimated as

p̂(L|I) =
∑M

k=0 α(qk|q̄)δ(L − I(qk))
Z

, (6)

where Z is a normalization factor such that
∑

p̂(L|I) = 1 and δ(.) represents
the Dirac function.

2.3 Feature Cascade Object Detection

Feature cascade object detection [22] relies on many classifiers trained over
a large number of positive and negative sample images. These classifiers are
trained by applying Haar-like features to each training image at various posi-
tion and scale to produce many classification features. AdaBoost [6] is used to
select the features which best classify the objects and combine these features
into weak classifiers. By iteratively comparing analogous features from the input
image with those in the weak classifiers, areas of unimportance can be quickly
discarded. Weak classifiers alone cannot classify an image, however, a strong
classifier consisting of the weighted summation of weak classifiers is sufficient to
detect objects of interest.

3 Experimental Setup

For the purpose of testing the performance of the proposed method under dras-
tic lighting conditions, the Yale Face Database B was used [8]. This database
provides images of human faces for 39 different subjects facing various angles
under 64 different illumination conditions per subject. For this project, only
the frontal view of each face was used. Each image is 256 bits, 480 × 640, and
grayscale. The various illumination conditions include combinations of lighting
angles ranging from −130o to +130o horizontally and −40o to +90o degrees ver-
tically. In addition, one image taken with ambient lighting is included for each
subject. Example images from the database can be viewed in Fig. 2. It should
be noted that subject 14 was not available for download and subject 16 had no
corresponding frontal view and were therefore omitted from testing.

Ground truth was obtained for each subject by performing detection under
ideal lighting conditions. These results were visually verified and manually cor-
rected. Because each of the 64 different illumination condition images were taken
in rapid succession, it was assumed that the location of facial features for each
subject did not vary. For this reason, the ground truth acquired for each subject
under ideal lighting conditions was used as the ground truth across all lighting
scenarios for the same subject.

For every subject and lighting condition, the method proposed by Viola and
Jones [22] as well as our method were applied. For comparison purposes, we also
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tested two Retinex-based methods for improving illumination robustness in facial
feature detection: (i) Gaussian Retinex as described by Jobson et al. [14], and
(ii) Bilateral Retinex as proposed by Elad [5]. To increase computation speed,
illumination estimation for all decoupling methods was performed on images
which were down sampled by a factor of four. In addition, the α and β values
used throughout this project are 0.85 and 0.15 respectively.

Pre-trained classifiers available through the OpenCV library [3] were used
throughout this paper. Because multiple instances of faces, eye pairs, noses, and
mouths may be returned, automatic selection of the most probable true features
is performed based on logical assumptions regarding the face. Such assumptions
include: each face contains only one eye pair, one nose, and one mouth, and each
eye pair, nose, and mouth feature is approximately horizontally centered on the
face.

From the detected regions, areas of true positive (TP ), true negative (TN),
false positive (FP ), and false negative (FN) were calculated based on areas
of overlap with the ground truth data. The resulting values were then used to
calculate four metrics for analysis: sensitivity, specificity, accuracy, and F1 score.
The equations for these metrics are defined as follows:

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
,

Accuracy =
TP + TN

TP + TN + FP + FN
, F1 Score =

2TP

2TP + FP + FN
, (7)

(a) Ambient lighting (b) Light shone at
+45o vertically

(c) Light shone at
+90o horizontally

(d) Light shone at
+35o horizontally
and +40o vertically

Fig. 2. Selection from Yale Face Database B

4 Experimental Results

The average sensitivity, specificity, accuracy, and F1 score across all subjects
and lighting conditions can be seen in Table 1. Our method achieves sensitivity
values and F1 scores which are generally higher than those achieved by the other
presented methods, however, the specificity and accuracy values remain similar.
These values are likely skewed due to the difference in the number of detected
features; in these cases, regions of false positive are zero while the regions of
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Table 1. Average values of sensitivity, specificity, accuracy, and F1 score calculated
across all subjects and lighting conditions. The number of features that went undetected
are also shown. The most desirable values for each metric are presented in boldface.

Viola [22] Jobson [14] Elad [5] Ours Viola [22] Jobson [14] Elad [5] Ours

Face Eyes

Sensitivity 80.21% 93.31% 90.02% 93.92% 45.47% 64.42% 71.62% 76.34%

Specificity 98.03% 97.79% 98.52% 98.41% 99.95% 99.92% 99.90% 99.92%

Accuracy 94.30% 96.85% 96.74% 97.45% 98.86% 99.20% 99.33% 99.44%

F1 Score 85.32% 92.38% 91.83% 93.82% 61.09% 76.02% 80.65% 84.25%

Undetected 73 27 22 0 1054 635 478 358

Nose Mouth

Sensitivity 52.81% 65.14% 61.27% 73.01% 46.38% 62.85% 61.27% 64.87%

Specificity 99.66% 99.62% 99.78% 99.53% 99.54% 99.58% 99.70% 99.64%

Accuracy 99.19% 99.28% 99.40% 99.26% 98.82% 99.09% 99.18% 99.17%

F1 Score 55.93% 63.73% 66.12% 65.90% 51.13% 64.27% 65.83% 67.29%

Undetected 443 313 481 85 325 84 71 31

a) Viola [22] b) Jobson [14] c) Elad [5] d) Proposed

−
1
3
0
o
h
o
ri
z
o
n
ta

l
2
0
o
v
e
rt
ic
a
l

−
1
1
0
o
h
o
ri
z
o
n
ta

l
−
2
0
o
v
e
rt
ic
a
l

−
1
1
0
o
h
o
ri
z
o
n
ta

l
6
5
o
v
e
rt
ic
a
l

Fig. 3. Examples of facial feature detection performed for the face, eye pair, nose, and
mouth. Results from the aforementioned methods are shown in each column, while
each row represents a different lighting angle as labelled.

true negative are the entire image, thus leading to large specificity and increased
accuracy values as per Eq. 7. The improved sensitivity values and F1 scores
demonstrated by our method suggest that all facial features were detected with
greater regions of true positive and smaller regions of false negatives than in the
case without illumination compensation.

While all illumination-robust methods resulted in improved performance
when compared to the method proposed by Viola and Jones [22], our method
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results in better performance with the exception of F1 score for the nose. This
suggests that the proposed method is able to better handle complex non-ideal
illumination scenarios to facilitate for improved facial feature detection. While
Elad [5] and Jobson et al. [14] rely on the assumption that L is piece-wise smooth,
our method is able to avoid this assumption, leading to better handling of sharp
illumination changes (Fig. 3).

5 Conclusions

A method for illumination robust facial feature detection by considering contri-
butions from both the illumination and texture aspects of an image was pro-
posed. Furthermore, it was proposed that the decoupling of illumination and
texture be achieved by Bayesian minimization. Results indicate higher sensitiv-
ity and F1 score values while achieving similar specificity and accuracy when
compared to the method proposed by Viola and Jones [22], as well as two
Retinex-based methods.

Future work will include further validation against a wider variety of state of
the art methods. In addition, training of classifiers from illumination compen-
sated features will be explored as a means to achieve improved performance.
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Abstract. In this paper, a method for the detection of posed facial
expressions in still images is proposed. The method exploits a combina-
tion of geometrical deviations between sets of landmark points together
with the difference in quality of visual appearance of patches around
these landmark points for accurate and robust detection of posed facial
expressions. First, novel descriptors are derived based on the Hausdorff
distances between triangulated landmark point sets within a given image
satisfying reflective symmetry constraints. Further, the structural sim-
ilarity of patches around these point sets that are reflection symmetri-
cal is calculated and fused with the geometric features for classification.
Experiments using selected examples from publicly available dataset have
demonstrated that the proposed method can sufficiently encapsulate the
intensity of a facial expression and thus achieve superior accuracy in the
separation of posed from spontaneous expressions.

1 Introduction

Non-verbal communication is often dominated by strong facial expression that is
considered a reflection of the psychological state of the human mind. Autonomous
detection of facial expressions, particularly recognizing posed expression in facial
images can contribute to the future in human behaviour analysis in videos. The
problem of Spontaneous versus Posed (SVP) expressions recognition has gained
increased attention in recent years. Despite initial work in this domain, the prob-
lem of posed expression detection is complicated due to factors such as: comple-
mentary assumptions in various paradigms for SVP expression analysis, need for
encapsulating psycho-physical aspects that makes modelling of SVP expressions
difficult, inter-and-intra sample variations of facial expressions, and other extrin-
sic factors including pose, illumination variations, etc.

In the literature, several methods have been proposed to study posed facial
expressions and quantitatively represent its differences from spontaneous expres-
sions. The use of facial action units has been the most familiar approach in facial
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 218–228, 2015.
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expression analysis [12]. However, research in this context has extended into the
study of mutually exclusive action units and their contributions towards facial
expression analysis. For example, Valstar et al. [16] formulates the SVP prob-
lem based on eyebrow movements. The use of geometry and appearance has
dominated the research within SVP expression analysis including the work of
Cohn and Schmidt [13], who proposed spatio-temporal local texture descriptors,
and the work of Bhaskar et al. [15] that explored the combination of Gabor fil-
ter banks with geometric morphometric features, among others. SVP expression
classification has also been looked from the point-of-view of specific expressions,
and smile recognition is the most popular within this category. Posed smile recog-
nition has been addressed in a few recent literature including the work of Valstar
et al. [11], Dibeklioglu et al. [14], etc. Since the proposed work focuses on using
reflection symmetry to detect posed expressions, some related literature that
exploit facial asymmetry for SVP expression analysis include the work of Fasel
et al. [22] that demonstrates a technique of estimating facial asymmetry under
constrained conditions. Further in the research of Liu et al. [24], an improve-
ment to facial identity recognition is proposed through the combination of facial
asymmetry information together with EigenFace and FisherFace. Finally, one of
the earliest known work in expression (happy, anger and disgust) analysis by
deriving features from facial asymmetry was proposed by Mitra et al. [23].

In this paper, a combination of geometric descriptors based on reflective
symmetry and appearance quality indicators using structural similarity is pro-
posed for the detection of posed facial expressions. It is hypothesized that the
fusion of geometric descriptors based on reflection symmetry and appearance
quality indicators using structural similarity can collectively encapsulate the
differential exaggeration of specific facial features that typically characterises
that facial expression. The combined features then provide necessary attributes
for the accurate classification of posed expressions using a conventional Support
Vector Machine (SVM) classifier.

One novelty of the proposed framework is the quantification of exagger-
ation or intensity in facial expression using fused geometric descriptors and
appearance quality indicators for the detection of the posed facial expressions.
Furthermore, the assumptions on the reflection symmetry of facial landmark
point sets allows determining symmetric point pairs across an autonomously
detected line-of-symmetry which further permits measuring differential varia-
tions of specific facial features illustrating that posed facial expression. In addi-
tion, the extraction of geometric deviations in symmetric shape structures using
Hausdorff distance and appearance quality variations in image patches surround-
ing such symmetric point pairs using structural similarity can also be considered
a unique contribution of this research to posed expression analysis. Finally, the
joint representation of both the geometric descriptors and appearance indicators
into a fused descriptor using form matrices is different from other methods in
the literature.
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2 Proposed Methodology

A detailed block diagram of the proposed classification model is presented in
Fig. 1. The proposed framework functions in two distinct phases. In phase 1,
(top row in Fig. 1), reflection symmetrization is applied on the original face fea-
ture points to obtain the line of symmetry. Further, in the latter phase, the
reflective-symmetry-segmented landmark points are subjected to feature extrac-
tion using geometric and appearance constraints to obtain robust descriptors for
classification (bottom row in Fig. 1).

Fig. 1. Block diagram illustrating the process flow of the posed expression detection
framework.

2.1 Facial Feature Localization

The proposed framework begins by representing the face model, after con-
ventional face detection using [29], as a set of N landmark points, X =
{x1 , x2 , . . . , xN }. First, our aim to estimate an optimal set, X ∗, that minimizes
the posterior probability,

p(X |I ) ∝ p(I |X )p(X ) (1)

Several different techniques are available in the literature to solve this
optimization problem including the Active Shape Model (ASM) [25], Active
Appearance Model (AAM) [26], among many others. In the proposed work,
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the combined shape models of [17] has been used. According to this method, a
restrictive set of optimal candidates for each xi is chosen, and by making cer-
tain assumptions on the conditional independence of features, a Markov Random
Field (MRF) is used to derive an approximate solution Y efficiently. In summary,
the method begins by initializing the point locations to X ∗

0 and iteratively over
time instants t, candidates solutions are selected as argmaxY p(I |Y )p(Y |X ).
Finally, a regularization step is applied to update the land mark points to the
optimal set X ∗.

2.2 Feature Space

Reflection Symmetry. This work is inspired by the method of Niloy et al.
in [28]. The method begins by considering the optimal set of landmark points
X ∗ fitted on image I . Our goal now is to determine the most optimal transfor-
mation T ∗ that maps every point pair in the optimal set {x∗

i = (ui, vi)} into the
transform domain characterized by points {Γj = (mj , φj)}. Suppose p and q are
the point-pair under consideration, then there exists a transformation T that
maps p to q. Simply, T can be represented by the line that passes through the
midpoint m = p+q

2 with normal direction p − q. The transform space formed by
m and φ will host each unique pair votes between landmark points in the optimal
set X ∗. The largest cluster Γ ĉ

j (identified as the peak of the distribution) in the
density plot of this transformation domain is representative of the accumulation
of local evidence for the symmetry plane characterised in the spatial domain.
These clusters Γ c

j are generated using the Density Based Clustering algorithm
DBSCAN [30]. The underlying principle of the DBSCAN algorithm is the classi-
fication of each landmark point in the transform space Γj into one of the 3 main
types based on the δ-neighbourhood ηδ(Γj). First, a core point characterised by
ηδ(Γj) ≥ MinPts, where MinPts is a user-defined threshold. Second, as a noise
point that is not density-reachable from any core point and finally, a boundary
point, otherwise; where density-reachability of point Γk from another point Γj

is conditioned by: Γk ∈ ηδ(Γj) and there exists points Γ1, Γ2, . . . , Γl such that
Γj+1 ∈ ηδ(Γj) and Γj is a core point, j = 1, . . . , l − 1 with Γ1 = Γj and Γl = Γk.
A density cluster Γ c

j is detected when the following two conditions are met: 1)
∀Γk, Γj : If Γj ∈ Γ c

j , and Γk is density reachable from Γj , then Γk ∈ Γ c
j and

2)∀Γk, Γj : Γk is density connected with Γj , iff there exists a point Γl where from
Γk and Γj are density reachable.

Thus, the largest cluster is estimated as,

Γ ĉ
j = max

j
Γ c

j (2)

Each, Γj ∈ Γ ĉ
j inverse maps to a set of points in the transform space that maps

to a unique set of Ns points that represents a subset of landmark points X ∗
s

falling in the line of symmetry. Thus, the optimal set of landmark points X ∗

are partitioned into set, {X ∗
s ,X ∗

l ,X ∗
r }, where N = Ns + Nl + Nr, Nl = Nr,

X ∗
l represents the subset of landmark points representing the landmark points

on the left of the line of symmetry and X ∗
l is the subset of points representing
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landmarks on the right of line of symmetry. Note, that there is a one to one
mapping between X ∗

l = �(X ∗
r ); � is a function of reflection symmetry.

Hausdorff Distance. The Hausdorff distance is one among the most common
measures of similarity between two point sets. Many properties of the Hausdorff
distance and its application to image analysis and processing (including fractal
image compression) can be found in [7,8,10]. Using this measure, the set P is
considered similar to Q iff every point in P is close to at least one point in
Q . That is, the Hausdorff distance is the maximum distance of a set P to the
nearest point in the other set Q . Mathematically,

H(P ,Q) = max{h(P ,Q), h(Q ,P)} (3)

where
h(P ,Q) = max

p∈P
{min
q∈Q

{d(p, q)}} (4)

Let us notice that the term h is oriented (or in other words asymmetrical), which
means that

h(P ,Q) �= h(Q ,P) (5)

Structural Similarity. Let A and B denote two image patches generated
around point pairs that are reflective symmetric. The SSIM measure between
A and B was defined originally as follows [5,6],

S(A,B) = S1(A,B)S2(A,B)S3(A,B)

=
[

2μAμB + γ1
μA

2 + μB
2 + γ1

] [
2σAσB + γ2

σ2
A + σ2

B + γ2

] [
σAB + γ3
σAσB + γ3

]
, (6)

where,

μA=
1
Nl

Nl∑

i=1

Ai, σAB=
1

Nl−1

Nl∑

i=1

(Ai−μA)(Bi−μB), σA=
√

σAA, etc.. (7)

The small positive constants γk are added for numerical stability and can be
adjusted to accommodate the perception of the human visual system. Other con-
tributions on the properties of the SSIM measure and its application to image
analysis can be found in [1–3,9]. As well described in [4,6], the form of the
component S1 in Eq. (6) was chosen to model Weber’s law of perception: it mea-
sures the similarity between the means of A and B and it compares local patch
luminance or brightness value. The form of S2 follows the idea of divisive normal-
ization and it measures the similarities of local patch contrasts. The component
S3, if γ3 = 0, coincides with the correlation Ξ(A,B) between A and B and mea-
sures the similarities of local patch structures. Note that −1 ≤ S(A,B) ≤ 1, and
S(A,B) = 1 if and only if A = B. One main limitation of measuring SSIM in the
spatial domain is its increased sensitivity to the translation, scaling, and rota-
tion of image patches which are non-structural distortions [27]. In order to cope
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with this problem, the complex wavelets SSIM (CW-SSIM) metric was proposed
in [27] with the underlying principle that separates phase from magnitude dis-
tortion measurement and thereby penalize inconsistent phase distortions. Math-
ematically, the CW-SSIM is formulated as follows. Given two sets of complex
wavelet coefficients cu = {cu,i |i = 1 , 2 , . . . ,M } and cv = {cv ,i |i = 1 , 2 , . . . ,M }
extracted at the same spatial location (u, v) in the same wavelet sub-bands of
the two images being compared, the local CW-SSIM index is defined as,

Ŝ(cu , cv ) =
2 |∑M

i=1 cu,ic∗
v ,i | + κ

∑M
i=1 |cu,i |2 +

∑M
i=1 |cv ,i |2 + κ

(8)

where c∗ denotes the complex conjugate of c and κ is a small positive stabilizing
constant. The value of the CW-SSIM index is in the range between 0 to 1,
where 1 indicates no structural distortion, invariant to translation, rotation and
scale. The global CW-SSIM index Ŝ(A,B) is computed as the mean of all local
CW-SSIM values

⋃
Ŝ(cu , cv ) over the entire wavelet sub-band and across all

sub-bands.

2.3 Fused Descriptor

According to our research hypothesis, the fusion of the geometrical distances
and appearance quality variations into a unified descriptor shall provide essen-
tial attributes for posed expression classification. In this paper, the concept
of distance matrices, as presented in the study by [15] is extended to incor-
porate the joint distances in geometry and appearance. In order to accom-
plish this, Delaunay triangulation is applied the optimal set of landmark points
X ∗ = {X ∗

s ,X ∗
l ,X ∗

r }. Further, K triangle pairs satisfying reflective symme-
try constraints, and pinned at any landmark point in set X ∗

s are denoted
as {p1, p2, ..., pK} and {q1, q2, ..., qK} respectively. Correspondingly, the images
patches of specified dimension M , for each triangle pairs are denoted as
{a1, a2, ..., aK} and {b1, b2, ..., bK}. In order to compute geometric deviations
of triangle (in general, polygon) pairs, the Hausdorff distance metric described
in Sect. 2.2 is used. A form matrix representation of the facial expression using
K polygon pairs is computed as,

FMH =

⎡

⎢⎢⎢⎢⎣

H(p1, q1) H(p1, q2) H(p1, q3) . . H(p1, qK)
H(p2, q1) H(p2, q2) H(p2, q3) . . H(p2, qK)

. . . . . .

. . . . . .
H(pK , q1) H(pK , q1) H(pK , q3) . . H(pK , qK)

⎤

⎥⎥⎥⎥⎦
(9)

Similarly, the appearance quality indicators of composite image patch pairs is
measured using the SSIM index as in Sect. 2.2. Since, each pair of triangle (in gen-
eral, polygon) chosen consists of ρ (= 3 for triangle) image patches representing
the facial feature point, the overall SSIM is factorized as

∏ρ
℘=1 S̄(a℘,.,�(b)℘,.),
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where S̄ could represent original SSIM S or the CW-SSIM, Ŝ. Therefore, a sim-
ilar form matrix for SSIM based appearance quality indicator using K polygon
pairs is estimated using,

FMS =

⎡

⎢
⎢
⎢
⎢
⎣

∏ρ
℘=1 S̄(a℘,1,�(b)℘,1))

∏ρ
℘=1 S̄(a℘,1,�(b)℘,2) . . .

∏ρ
℘=1 S̄(a℘,1,�(b)℘,K)

∏ρ
℘=1 S̄(a℘,2,�(b)℘,1))

∏ρ
℘=1 S̄(a℘,2,�(b)℘,2) . . .

∏ρ
℘=1 S̄(a℘,2,�(b)℘,K)

. . . . . .

. . . . . .∏ρ
℘=1 S̄(a℘,K ,�(b)℘,1))

∏ρ
℘=1 S̄(a℘,K ,�(b)℘,2) . . .

∏ρ
℘=1 S̄(a℘,K ,�(b)℘,K)

⎤

⎥
⎥
⎥
⎥
⎦

(10)

Since, form matrices FMH and FMS are triangular, the two are composed into,

(11)

2.4 Classification

In order to detect posed expressions, the geometric descriptors based on reflective
symmetry and form matrix is augmented with the appearance descriptors using
structural similarity, forming the combined descriptor ζ that is presented as an
input to the two class SVM classification model [31] that separates the posed
from spontaneous expression.

3 Results and Analysis

In order to validate the claims of the proposed system, and to benchmark it
against competing baseline algorithms, posed smile detection is chosen as an ini-
tial case study. Systematic experiments are conducted both evaluating the per-
formance of the proposed framework and measuring the impact of the descriptors
on the classification of posed smile expressions. A total of 800 samples from the
“happy” expressions category have been chosen from various publicly available
databases including, the MUG facial expression dataset [21], the Cohn-Kanade
(CK) dataset [19], the extended Cohn-Kanade (CK+) dataset [18] and JAFFE
dataset [20] for training and testing purposes. Since, the proposed work relies on
asymmetry in the expressions, images where at least 2 out of 3 FACS labellers
identified an asymmetric smile were chosen as positive samples and those where
none identified an asymmetric smile, were considered negative samples. After
appropriate labelling of positive (representing posed smiles) and negative sam-
ples (representing spontaneous smiles) using FACS labellers, 300 samples from
each category were chosen for training the SVM classifier and 100 samples left
for testing. The performance of the detection procedure was evaluated using
conventional metrics of precision, recall, accuracy and f-measure.
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Results of the proposed method on smile detection demonstrate the superior
accuracy and robustness in comparison to the baseline method of [15] as illus-
trated in Table 1 (row 1). In order to assess the contribution of the individual
descriptors towards the overall accuracy, the proposed method was tested using
the individual form matrices. Performance, as reported in Table 1 (rows 2 & 3),
indicate that the geometric descriptors play a dominating role in posed smile
detection. However, the use of appearance quality indicators (in this case using
the CW-SSIM) improves the overall accuracy and robustness of the method
against outliers. The SSIM metric on its own suffered of higher false positives
than its CW-SSIM counterpart. Although not directly comparable, these results
are nearly 5 % higher than the nearest counterpart in [16]. We acknowledge that
this comparison cannot be direct due the differences in the composition of images
chosen between the baseline and ours. However, these results present a general
idea of the superiority of the proposed method.

Table 1. Results of posed smile detection using: the fused model [row 1], only the
geometric descriptor [row 2], only the appearance variation indicators [row 3] and
Baseline Model [row 4].

Method Precision Recall Accuracy F-Measure

Proposed on smile (Posed class) 0.9529 0.9643 93 % 0.9586

(Other class) 0.8000 0.7500 - 0.7742

Proposed w.o. geometric (Posed class) 0.9176 0.9286 87 % 0.9231

(Other class) 0.6000 0.5625 - 0.5806

Proposed w.o. appearance (Posed class) 0.9014 0.8101 78 % 0.8533

(Other class) 0.4828 0.6667 - 0.5600

Bhaskar et al. [15] (Posed class) 0.9375 0.9494 91 % 0.9434

(Other class) 0.8000 0.7619 - 0.7805

In the second phase of experimental validation, in order to explore the capa-
bilities of the method against other expression, 300 samples of other expressions
were collected and tested using the proposed model (230 samples were used for
training and 70 for testing). Experimental results in Table 2 indicate that spe-
cific expressions such as sadness (row 1), disgust (row 2) are better classified
using the proposed strategy as against the others. This is mainly because, the
proposed method formulates posed expressions as deviations in landmark points
when measured across the perpendicular axes to the plane of symmetry. There-
fore, the proposed posed expression detection schema did not work well on other
expressions such as anger (row 3), fear (row 4) and surprise (row 5), due to high
false positives, where the geometric deformation was found to be in the direction
parallel to the plane of symmetry.

Although the experiments so far have focused on individual expressions
(trained and tested on individual expressions), facial expressions in the wild
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Table 2. Results of posed sad [row 1], disgust [row 2], anger [row 3], fear [row 4],
surprise [row 5] and all [row 6] expressions detection

Method Precision Recall Accuracy F-Measure

Proposed on sad (Posed class) 0.9512 0.9176 90 % 0.9341

(Other class) 0.6111 0.7333 - 0.6667

Proposed on disgust (Posed class) 0.9474 0.8889 87 % 0.9172

(Other class) 0.6250 0.7895 - 0.6977

Proposed on anger (Posed class) 0.9241 0.8795 84 % 0.9012

(Other class) 0.5238 0.6471 - 0.5789

Proposed on fear (Posed class) 0.8974 0.8434 79 % 0.8696

(Other class) 0.4091 0.5294 - 0.4615

Proposed on surprise (Posed class) 0.9873 0.8211 82 % 0.8966

(Other class) 0.1905 0.80003 - 0.3077

Proposed on all (Posed class) 0.8974 0.8861 83 % 0.8917

(Other class) 0.5909 0.6190 - 0.6047

will require posed expression detection to function in an expression-independent
manner. Therefore, finally, all posed expressions are submitted as a joint set and
classified against its corresponding spontaneous counterpart in an expression-
independent manner. The results of this classification in Table 2 (row 6) indi-
cates that there is a marginal improvement in the overall accuracy from any
individual expression. This could be because, during training the subtle varia-
tions in descriptors across different expressions can be captured better when all
the expressions are treated as a whole.

4 Conclusion

In this paper, a framework for posed expression detection combining geometric
deviations and appearance variation descriptors, is proposed. The framework
has been shown to be more accurate than other baseline methods. However, it
is often restricted due to the assumptions of facial asymmetry that is significant
for only a subset of expressions. Also, it could be observed that the framework
would work compelling better on images captured in the wild (natural images)
as against those captured under restrictive constrained conditions. The future
work will focus on incorporating the structural texture similarity descriptor and
geometric deviations w.r.t. neural expression counterpart for more generic posed
facial expression recognition.
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Abstract. The paper presents a problem of reducing the influence of
natural occlusion on face recognition accuracy. It is based on transfor-
mation (two-dimensional Karhunen-Loeve Transform) of face parts into
local subspaces calculated by means of two-dimensional Principal Com-
ponent Analysis and two-dimensional Linear Discriminant Analysis. We
use a sequence of operations consisting of face scale and orientation nor-
malization and individual facial regions extraction. Independent recog-
nitions are performed on extracted facial regions and their results are
combined in order to perform a final classification. The experiments on
images taken from publicly available datasets show that such a simple
algorithm is able to successfully recognize faces without high compu-
tational overhead, in contrast to more sophisticated methods presented
recently. In comparison to typical, whole-face-based approach, developed
method gives significantly better accuracy.

1 Introduction

1.1 Motivation

An automatic face recognition performed by a computer system is one of the
classical problems in pattern recognition. A myriad of methods have been pro-
posed so far and it seems that this problem has already been successfully solved.
However, due to its complex characteristic, it is still interesting. Such constant
interest is driven by the fact that most of the proposed methods of facial portrait
recognition works mainly in the controlled conditions of imaging, with strictly
defined illumination, orientation, pose, expression etc. The continuous progress
in this field is influenced also by the need of algorithms that are able to work
on devices having processing power significantly lower than general-purpose per-
sonal computers (e.g. smartphones, tablets, set-top boxes) [5]. Therefore, certain
effective, yet simple solutions are still needed.

Despite a large progress in the field of imaging sensors, low quality of input
data processed by a typical face recognition algorithm is still one of the issues.
Actually, such low quality comes not necessary from the low spatial or dynamic
c© Springer International Publishing Switzerland 2015
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resolution of images (which is good) but from other distortions observed in the
image area, mainly related to physical obstacles like occlusions/incompleteness
of face portrait. They often occur as full or partial occlusion of different face
areas by an independent object like scarf, dark glasses, hats etc. Such situation
highly degrades the performance of FaReS, thus this is the main reason of lasting
interest of researchers [20]. We should remember, that in many practical situa-
tions we have an access only to a limited training dataset [7], hence we have to
perform facial recognition without knowing images having all possible variants
of global and/or local distortions (opposite to setups proposed in [20]).

1.2 Related Works

According to the literature review, in order to recognize faces under occlusion we
have to select certain invariant features [2]. There are many complex approaches
that solve only some of all possible problems, e.g. changing poses [1] or illumi-
nation [26]. Except several sophisticated anthropometrical approaches, there are
also many straightforward appearance-based methods that combine various ele-
mentary features to describe an image. However, as it was mentioned, they lead
to the very complex multi-tier algorithms, which are inutile in low-end devices.

An interesting, yet complex algorithm was presented in [14]. It is proposed
to detect the presence of scarf or sunglasses and then analyse non-occluded
facial regions only. Occluded regions are detected using Gabor wavelets, Prin-
cipal Component Analysis (PCA) and Support Vector Machines (SVM), while
the recognition is done by means of block-based Local Binary Patterns (LBP).
The main drawback is related to the assumption about the presence of sun-
glasses or scarf, without taking into account other occlusion types. Moreover,
face recognition by means of LBP is not the most optimal approach.

Most of popular approaches to face recognition employ different kinds of
dimensionality reduction techniques [18]. A classical one, namely Eigenfaces [23],
works well if images are properly registered, have the same expression, orien-
tation and illumination characteristics. Unfortunately, in case of large image
matrices, such an approach is difficult to implement and requires significant
memory space. In order to overcome this limitation, taking into account the two-
dimensional characteristics of images, many quasi-two-dimensional approaches
have been developed, e.g. 2DPCA [15,25] or MatPCA [4]. Unfortunately, most
of them are associated with the processing of two-dimensional data by means of
data reduction algorithms performed along one dimension only or by dividing
an image into smaller parts and treating them with help of classical PCA. The
literature survey shows, that even if those methods have been successfully imple-
mented, they operate on fully visible facial portraits not considering a problem
of occlusion and local distortions.

The authors of [19] address a problem of reconstructing images using so
called Fast-Robust PCA. It was shown that it is possible to recover missing
pixels in facial portraits, however it is computationally expensive. An extended
method presented in [9] uses a modified (faster) PCA approach, namely Fast
Weighted Principal Component Analysis (FW-PCA) and makes it possible to
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reconstruct distorted pixels in facial portraits. In that approach, occluded regions
are detected and recursively updated. Unfortunately, the authors do not address
the problem of recognition of reconstructed facial portraits. Another extension
of classical PCA, called Lophoscopic PCA, aimed at recognition of occluded
faces was presented in [22]. In the experiments single small part of face was
synthetically covered with uniform rectangles which hardly represents real-life
conditions. Moreover, in that approach a precise face registration and localization
of facial parts is required. Since such algorithm is complex and time-consuming
(six times slower than a classical PCA) it could not be implemented on low-end
devices.

There is another large group of methods employing Local Non-Negative
Matrix Factorization (LNMF) [16,27]. In [16] the authors decompose a facial
portrait into pre-defined parts. Then the parts with distortions are detected
using PCA and Nearest-Neighbor classifier. The final recognition is performed
using Selective Local Non-Negative Matrix Factorization with a help of a map
of distorted regions.

The common drawback of above methods is the computational complexity
associated with an iterative nature of calculating reconstructed images or the
need of detecting occluded regions. Hence, it is a general disadvantage when it
comes to robust and fast implementation.

In this paper we focus on subspace approaches based on two-dimensional ver-
sions of Principal Components Analysis and Linear Discriminant Analysis. They
have been proved to be very efficient, yet not very computationally expensive,
especially in case of currently available computing power. Further in the paper
we present an algorithm of facial recognition under natural occlusion, which
is much simpler in comparison to the above presented approaches, yet its effi-
ciency is very similar. It employs a reference database of facial parts that does
not include images with local distortions. At the stage of preprocessing it uses
fully automatic face normalization and facial regions extraction. At the stage
of feature transformation it uses 2DPCA/2DLDA as the only instruments of
projection of original data into the low dimensional space [10]. Finally, obtained
feature matrices are classified by means of minimum distance classifier with
weighting and voting.

2 Algorithm Description

2.1 Algorithm Outline

Developed algorithm is based on an observation that in most situations faces
are occluded only to some extent. If an algorithm successfully recognizes most
of facial parts (like eyes, nose, mouth), then it can lead to the recognition of the
whole face. Presented algorithm is a modification and extension of a previously
presented work [8]. In comparison to that solution, we introduced three new
elements. First, at the preprocessing stage, we add fully automatic facial parts
detection and localization [12] by means of two-stage approach. It consists of
AdaBoost detection [24] with template matching and does not assume all facial
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parts to be clearly visible. Second, we eliminated forehead from recognition, since
it did not add much discriminative power. Third, we introduced a weighting to
the voting stage in order to promote more important (informative) parts of facial
portrait. Introduced improvements made it possible to perform experiments on
higher number of images then in case of images with manually marked facial
features.

2.2 Image Preprocessing

The input image is a grayscale en-face portait of not-assumed spatial resolution.
Firstly, it has to be normalized and four characteristic areas have to be extracted.
It is done using AdaBoost approach implemented in a Viola-Jones detector [24].
The cascades of V-J detector were learned on respective databases containing
gathered facial elements, namely eyes (right and left, independently), noses and
mouths [3]. If V-J detector returns more then one candidate (for each class:
right eye, left eye, nose and mouth), candidates having dimensions different
from expected are eliminated. The rest are compared with templates (averaged
images for each class). This same applies to the case, when V-J detector does
not find any required facial element. Hence, a fragment closest to the template
is returned. It can happen that it is occluded or even a random part, thus its
low weight at the final voting stage will decrease its influence.

Above approach is much better then one presented previously [8], since it
works in a fully automatic manner. The exemplary results of preprocessing were
presented in Fig. 1. The first image (on the left) is an input portrait, which is
cropped, using V-J detector. It can successfully detect faces even if they are
partially occluded. Detected candidates are verified using simple geometrical
criterion (size and orientation). Finally, four above mentioned facial areas are
extracted using four dedicated cascades of V-J detector. Further, we use these
sub-matrices without any information about geometrical relation between them.

In order to normalize images’ dimensions across reference database, they are
re-scaled to uniform sizes, in order to comply with different sources (whole face
350×350, left/right eye 40×60, nose 56×68, mouth 63×105 pixels, respectively).

Fig. 1. Results of facial portrait preprocessing
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2.3 Projection and Classification

The recognition system works in two modes. The first one is dedicated to data-
base creation (Rdbk). Actually, there are k = 4 independent databases, each one
holding images of specific facial element (eyes, nose and mouth). At this offline
stage we collect images, preprocess them, calculate transformation matrices and
project them into subspaces. The second mode is an actual recognition, when
we get an input image, preprocess it (in the same way as reference images),
decompose into facial areas and project into respective subspaces (using trans-
formation matrices calculated at the offline stage). Then, each facial element Qk

is recognized independently in its subspace. The recognition is based on mini-
mum distance classifier, namely 1-Nearest Neighbor as it proved many times to
be effective in such tasks.

In the experiments presented here, we applied two-dimensional variant of
Karhunen-Loeve Transform (2DKLT) [11] employing transformation matrices
calculated using two-dimensional Principal Component Analysis (2DPCA) and
for comparison, two-dimensional Linear Discriminant Analysis (2DLDA).

The distance of each feature k is calculated using Manhattan distance metric,
defined as a sum of absolute values between adequate elements (i, j) of feature
matrices R from Rdbk and query object Q:

Dk(R,Q) =
∑

i,j

|ri,j − qi,j | . (1)

For each k-th facial element (facial feature) we get an individual answer
(closest class number or individual number) and a calculated distance Dk. This
distance is later subject to normalization (weighting). It is performed using pre-
defined weights, calculated for a special calibration probe (a set of facial areas Tk

- eyes, noses and mouths, with no distortions/occlusions belonging to n faces).
The weights w1, w2, w3, w4 are the average distances of all images (actually their
reduced representations) from a testing probe to all images from reference data-
base Rdb:

wk =
∑n

l=1 Dl(R, T )
n

. (2)

The weights calculated independently for 2DPCA/2DKLT and 2DLDA/2DKLT
approaches are presented in Table 1. During detection, if a closest match is found
for an arbitrary facial part but its distance is higher than a value shown in
Table 1, then it is assumed to be wrongly detected or highly occluded. If the
distance is lower that above threshold, then the match is useful for recognition.
It improves the recognition rate in case of low quality or strongly distorted
images.

The final stage is voting. After classification, each individual result points to
a specific class (owner of this facial fragment). Associated, normalized distance
serves as a sorting criterion. Classes are sorted in an increasing distance order
and based on the results, they obtain the following scores: 7, 5, 4, 4. Scores for
the same resulting classes are summed. The class with the highest final score is
a recognition result.
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3 Experiments

3.1 Reference Database

First, it should be noted, that there is no universal benchmark database contain-
ing facial portraits under occlusion of variable type [6]. There are several publicly
available dataset consisting of image presenting humans wearing glasses, scarfs,
hats, but the complex approach to such problem could not be found. In contrast
to the database created for the purpose of previous research [8], we have cho-
sen three well-known large databases containing occlusions by different natural
objects (e.g. glasses, scarfs, sheets of paper, other body parts or local illumina-
tion changes) or heavy changes in grimace and image quality. Thus, we selected
the following:

– AR Face Database [13] - 4000 images (135 individuals) taken in two series
(different days); resolution 768 × 576;

– Euro Kinect Face Database [17] - 936 images (52 individuals) taken in two
series (different days); resolution 256 × 256;

– GTAV Face Database [21] - 653 images (44 individuals), resolution 320× 240.

The final benchmark database was created using only enface portraits with
different kinds of occlusions. In effect, it consists of 3793 images of 227 individu-
als. There are three non-overlapping subsets: the reference subset which includes
1519 images without occlusions, calibration probe for weights calculation - 227
images and testing subset with 2047 images with occlusions. There is a minimum
one image per class, maximum 11 images and an average of over 6 images per
individual.

3.2 Results

Using a similar experimental setup [8] we tested developed algorithm on images
having different distortions. They are divided into 7 subsets (A–G), as follows
(see Fig. 2):

(A) All occlusion types with no differentiation (2047 images);
(B) Images from AR database (1529 images);
(C) Images from Euro Kinect database (219 images);
(D) Images from GTAV database (299);
(E) Images with eyes covered (861 images);
(F) Images with occluded lower part of face (741 images);
(G) Additional, not classified occlusions (299 images).

Table 1. Weights calculated for a testing probe associated with two projection methods

Subspace Left eye Right eye Nose Mouth

2DPCA 17.4771 17.2780 20.1345 27.2012

2DLDA 0.2534 0.2666 0.1016 0.0785
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Fig. 2. Sample images belonging to six occlusion categories (in columns): B,C,D,E,F,G

The recognition accuracy, understood as a percentage of correctly recognized
portraits for all above subsets and two projection methods is provided in Table 2.
The results should be interpreted as follows. For example, if we use only mouth
part (M) for experiment E (occluded eyes), then the PCA-based recognition
accuracy of whole face is equal to 35.65 %.

An analysis of above table unveils that in most cases LDA-based approach
fails. It is probably because of not perfect alignment of facial areas and small
number of samples required to form high quality covariance matrices. Moreover,
in all cases, the recognition accuracy for individual facial parts is rather low
(average 30 % and not more than 60 %). However, we assumed that based on all
four individual facial areas we can increase the overall recognition accuracy.

Table 2. Recognition accuracy for individual facial areas compared to whole-face-based
and part-based approaches for 7 subsets and two projection methods

Recognition rate for subset [%]

Facial part Subspace A B C D E F G

Left eye (LE) 2DPCA 31.75 30.01 25.37 41.80 0.81 50.75 27.86

2DLDA 22.71 23.08 1.82 2.67 0.58 50.20 19.77

Right eye (RE) 2DPCA 34.44 33.55 33.33 42.14 0.58 59.02 37.07

2DLDA 27.99 22.49 0.45 1.00 0.81 58.56 29.66

Nose (N) 2DPCA 17.20 13.14 34.24 34.11 4.99 26.05 46.29

2DLDA 1.03 1.43 2.27 1.67 0.11 0.53 3.59

Mouth (M) 2DPCA 17.78 18.70 24.20 22.74 35.65 4.8 12.13

2DLDA 0.68 1.37 2.27 2.34 0.58 0.26 1.57

Whole Face (WF) 2DPCA 29.55 29.43 58.90 52.84 18.35 21.05 65.38

2DLDA 23.59 22.04 3.19 12.37 10.34 16.87 56.85

All parts (AP) 2DPCA 52.61 52.84 47.94 64.21 27.78 68.30 58.65

2DLDA 27.01 23.94 1.82 2.00 0.81 53.81 28.54

AP + WF 2DPCA 56.62 56.90 58.45 68.56 23.11 64.64 72.81
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In addition, we compared developed algorithm with standard recognition
based on whole facial portraits (see Fig. 3). In part-based method each facial
area was represented (after projection) by a matrix of 10× 10 coefficients, while
whole image-based approach, with 20 × 20 elements. Hence, the dimensionality
of feature spaces in both cases was the same (4 × 100 versus 400). The results
are provided in rows marked WF and AP in Table 2. As it can be seen, in most
cases our algorithm is better than traditional algorithm based on whole images.
It is worth noticing that 2DPCA method is superior to 2DLDA. As it can be
seen, the accuracy for experiments C and G is significantly lower. It is caused
by parallel occlusion in the eyes and mouth areas.

Fig. 3. Exemplary results of recognition: the first row is a query image, the second
row - result of whole-face-based recognition and the third row - result of all-parts-based
recognition; Four first columns present result where WF and AP are equal, while the
last four columns show the superiority of AP approach

In order to further increase the recognition rate it is possible to add a fifth
recognition procedure, based on whole face image (facial portrait re-scaled to 70×
70 pixels). After that, the recognition accuracy for 2DPCA is further increased.
In such case the scores for individual results are as follows: 7,5,4,4,3. The weight
for whole face was equal to 36.39.

Further increase in recognition rate may be obtained by fine-tuning spatial
positions of nose and mouth. An additional experiment on subset A, when nose
and mouth has been cropped manually, showed further increase in recognition
accuracy: 62.97 % (for 2DPCA) together with 33.7 % for mouth only and 26.2 %
for nose, respectively.

Presented method has some important advantages over the other, recently
published approaches. The first one is related to the number of testing images
and their origin. In most of works, only one, limited database was used (mostly
AR and GTAV). When there were more databases employed, they were taken
for independent experiments. In the experiments presented here, we used a large
database comprising of a number of images, taken from 3 different origins. Our
method was investigated in terms of natural occlusion, as opposite to other
works, when a synthetic distortions have been introduced. In such cases (e.g. [22],
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when e.g. dark rectangle covers face part put in only one of few pre-defined
places, the recognition would be much higher. It should be stressed, that it does
not represent real-life conditions. The method presented in this paper does not
assume a type of occlusion or an object that occludes a face, as opposite to the
work [14]. In that paper, the authors constructed individual classifiers for various
objects, which increases the computational overhead. In our approach we do not
pre-define any facial part position, in contrast ot other methods that depend on
exact e.g. eyes positions [14].

4 Summary

Performed experiments confirm advantages of developed method over a tradi-
tional approach. The decrease in recognition accuracy comes from not perfect
extraction of facial areas like nose and mouth. It leads to high intra-class visual
variability of individual features. It is especially true for features that are hard to
model (nose) and non-rigid (mouth). Although, single facial areas are not useful
for facial recognition (see Table 2), when we join them the final recognition rate
is acceptable.

The bottom line is, that LDA-based recognition is not suited for such prob-
lems. It is caused by small number of samples having high variability making
eigenproblem solution hard to find.
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Abstract. Age estimation determines a person’s age or age group using
facial images and has many real-world applications. This paper investi-
gates various algorithms used to improve age estimation. A combination
of features and classifiers are compared. A database of facial images is
trained to extract features using algorithms such as local binary patterns
(LBP), active shape models and histogram of oriented gradients (HOG).
The age estimation is done using three age groups: child, adult, senior.
The ages are classified using support vector machine (SVM), K-nearest
neighbour (KNN), gradient boosting tree (GBT). The age estimation
model is evaluated using the FG-NET aging database obtaining positive
results of 82 % success rate.

1 Introduction

The human face can be described as a window to the soul [1], as it reveals
personal information relating to an individual, such as identity, gender and age.
For humans, it is relatively easy to be able to estimate an individual’s age. We
have the ability to use facial information to interpret and understand faces and
facial gestures as we see them [2]. For computers, the task of estimating an
individual’s age is much more complex. Computers have to rely on biometric
features extracted from facial images and implement algorithms that can allow
the age estimation of an individual [3]. Age estimation has numerous real world
applications, such as providing internet safety for minors, by preventing access
to web pages. It can also be a valuable tool for law enforcement, by providing
enhanced security and surveillance measures.

The task of capturing aging variations becomes more difficult with the fol-
lowing challenges [4]:

– Incomplete aging patterns: Face aging is uncontrollable.
– Personalized aging patterns: Each individual can age in a different way.
– Temporal aging pattern: The aging process must follow the order of time.

The aim of this research work is to investigate a variety of algorithms that can
be used for efficient age estimation.

2 Literature Review

The topic of face image processing has been active and much interest has been
shown. Face image processing is a broad topic and has been active for many years.
c© Springer International Publishing Switzerland 2015
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There have been various contributions and different approaches that attempt to
solve or improve age estimation. Kwon and Lobo [5] discuss anthropomorphic
models, which are the measurements and proportions of the face. They proposed
calculations for age classification of facial images which is based on craniofacial
morphology (the study of shape of face and skull) and wrinkle analysis. They
were able to classify face images into three age groups; babies, young adults, and
senior adults, by combining the analysis of face ratios and wrinkle analysis. The
anthropomorphic models only work effectively when distinguishing minors from
adults, as an adult human head experiences very little change [6]. Kwon and
Lobo [5] failed to address the problem of varying face orientation, as they only
concentrated on mugshot viewpoints, which made the ratio calculations easy.

T. Cootes et al. [7] initially proposed the active appearance model (AAM)
which is a statistical face model used for coding face images. The AAM depends
on landmark points in the training set. A statistical shape model and intensity
model can be learned separately, with Principle Component Analysis (PCA).
AAM can deal with any age and it considers both shape and texture of the face.
Lanitis et al. [8] proposed an aging function to explain the variation in age, thus
extending the AAMs for face aging. The experiments by Lanitis et al. [8] relied
on PCA, which discards local and unsystematic sources of variability. The per-
formance could be improved by incorporating the details of a face with the age
estimation procedure. Luu et al. [9] attempted to improve the accuracy of age
estimation by focusing on a technique that combined AAMs and Support Vector
Machines (SVMs). The AAMs were used for extracting facial features, and the
SVMs were used for age estimation. Although there were some incorrect classi-
fications of adults instead of youths, this technique did achieve higher accuracy
rates compared to other existing methods.

Geng et al. [10] proposed AGES (AGing pattEn Subspace) method, which
analyses a sequence of individual images as a whole, not separately. An aging
pattern (data structure), defined as a sequence of images from the same person
sorted in temporal order, is created [11]. The AGES method has two stages [4]:
In the learning stage, the PCA technique is used to create a subspace repre-
sentation. In the age estimation stage, the most suitable age needs to be found
for a single test face image. The preprocess method of AGES relied on many
landmark points in the face images, and did not retain information about the
outer contour of the face.

3 Methodology

3.1 Preprocessing

Histogram Equalization. Histogram equalization enhances the contrast of
images by adjusting their intensities. The probability of an occurrence of a pixel
of level i is

px(i) = p(x = i) =
ni

n
, 0 ≤ i ≤ L (1)
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with L being the total number of gray levels, n being the total number of pixels
in the image, and px(i) being the image’s histogram for pixel value i, normalized
to [0,1].

The cumulative distribution function corresponding to px(i) is:

cdfx(i) =
i∑

j=0

px(j) (2)

which is the image’s accumulated normalized histogram.

3.2 Region of Interest

The face detection is a haar feature-based classifier proposed by Viola and Jones
[12]. A classifier is trained using AdaBoost with hundreds of positive examples
and negative examples. Rectangular features are extracted from a sub-window
and are compared against facial features.

3.3 Feature Extraction

Principle Component Analysis (PCA). Principle component analysis
(PCA) is used to determine the vectors that measure the variation in a set
of face images. These vectors, called Eigenfaces, are the set of eigenvectors of
the covariance matrix that are extracted from the face image vectors. Eigenfaces
extracts important facial information used to determine the variation between
face images. By using a small number of parameters used to represent each face
image, this reduces the space and time complexity [13].

Active Shape Models (ASMs). The ASMs, introduced by T. Cootes [7], are
statistical models of the shape of objects that use ‘landmarks’ points to describe
the location of structures in an image. The facial landmarks can be located using
Stasm [14]. Using Stasm 4, the landmarks were extended to 77 points.

Local Binary Patterns (LBP). The Local Binary Pattern operator, intro-
duced by Ojiala et al. [15], is useful in summarizing local gray-level structure.
LBP is resistant to lighting effects and they have been shown to be effective for
texture classification [15]. The LBP operator labels the pixels of an image by
thresholding the 3×3 neighbourhood of each pixel:

LBP (xc, yc) =
7∑

n=0

2ns(in − ic) (3)

with n running over 8 neighbours of the central pixel c,ic and in are the gray-level
values at c and n, and s(u) = 1 if u ≥ 0 and otherwise 0.

Gabor Filter. The facial wrinkles are important information for age estimation.
The Gabor filter is commonly used for segmentation and texture classification
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[16], which makes it effective in analysing facial wrinkles. The two dimensional
Gabor filter in the spatial domain is:

g(x, y) =
(

1
2πσxσy

)
exp

[
− 1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx

]
(4)

where the standard deviations of the x- and y- axes are σx and σy, and W is the
radial frequency of the sine wave.

Histogram of Oriented Gradients (HOG). Histogram of Oriented Gradi-
ents (HOG) are feature descriptors used for object detection. Dalal and Triggs
[17] introduced this feature for human detection. The main idea of HOG descrip-
tors is that the distribution of intensity gradients or edge detections can char-
acterize an object’s appearance and shape effectively. The image is separated
into small regions or cells. The descriptors can be implemented by adding a his-
togram of gradient orientations to each cell. The descriptor is represented by the
combination of the histograms. [18]

Gradient Computation. The calculation of the gradient is done by using a
centred point discrete derivative mask either in vertical or horizontal directions
or both. The following filter kernels can be used:

Mx = [−1, 0, 1] (5)

My = [−1, 0, 1]T (6)

3.4 Age Facial Model

The feature vectors extracted from the facial images are used as inputs to the
classifier. These extracted feature vectors f1=[l1, ...., lm] and f2=[g1, ...., gn] can
be combined into one new vector (m and n are the dimensions of f and g respec-
tively). The new concatenated feature vector is fnew=[l1, ...., lm, g1, ...., gn] with
dimension m+n. The combination results in an increased dimension of the fea-
ture vector, which means a dimensionality reduction technique (such as PCA)
is used.

3.5 Age Estimation Algorithms

Once the model has been created for training and test images, common machine
learning algorithms were used to construct a classifier. A supervised learning
approach is taken, the classifier is trained with the feature vector of the training
images and their corresponding labels/classes. After the classifier is trained, each
test image’s label is classified/predicted. The machine learning algorithms used
are described below:

Support Vector Machines (SVM). Support Vector Machine is a binary linear
classifier which finds an optimal hyperplane to separate two classes [9]. Given N
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training points d = {xi, ci|xi ∈ R
N , ci ∈ { −1,+1, i = 1, ..., N}}, and suppose the

points are linearly separable. We need to maximize the distance to the support
vectors, by finding a set of NS support vectors si, coefficient weights αi, constant
b and the linear decision surface:

〈w, x〉 + b = 0

where 〈., .〉 is the scalar product and w is the normal vector:

w =
NS∑

i=1

αiyisi

The basic SVM, which only allows linear classification, can be expanded to
become non-linear decision surfaces using a ‘kernel trick’. The kernel linearly
transforms/maps the original data to a high-dimensional space.

K-Nearest Neighbour (KNN). The K-nearest neighbour (KNN) classifies a
test sample based on similarity of known training samples. The KNN works by
calculating the distances from the test sample to every known training sample
[19]. Then the K-nearest samples are selected and the most common class is used
to classify the test sample.

Fisherfaces (LDA). Linear Discriminant Analysis (LDA), introduced by R.A.
Fisher [20], is used to find a subspace representation of a set of face images. LDA
finds the combination of features that best separate the classes by maximizing
the ratio between the between-class and the in-between classes scatter.

Random Forest. A random forest joins a group of randomly selected decision
trees at training. It outputs the most frequently occurring class from all the
individual trees [21].

Gradient Boosting Trees (GBT). Gradient boosting trees, introduced by
Friedman [22], is an ensemble method which uses decision trees as weak learners.
A sequence of simple binary trees are computed, where each tree builds on the
prediction residuals of the the previous tree. GBT supports both binary and
multi-class classification using the deviance loss function. GBT uses the additive
model:

F (x) =
M∑

m=1

γmhm(x) (7)

where hm are the basis functions.

4 Results and Discussion

The age estimation experiments were performed on the FG-NET Aging Data-
base [23], which contains 1002 colour/gray images of 82 individuals with varying
expression, pose and lighting. The ages range from 0 to 69. The experiment
performed used 400 training images and 559 test images.

The test results from the experiments performed are shown in Figs. 1 and 2:
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Fig. 1. Age estimation results (Color figure online)

Fig. 2. Hybrid age estimation results (Color figure online)

Figure 1 shows the results for the individual feature vectors. From the results
shown, GBT outperforms the other classifiers using the various feature vectors.
The GBT uses decision trees and each tree improves on the prediction of the
previous tree, which can give better results. LBP achieved the highest average
success rate, as it is effective for texture classification. The texture classification
is useful for wrinkle analysis, which is important for estimating ages. It was
observed that the hybrid age estimation achieved an in-between success rate of
the combined feature vectors. Figure 2 shows the results of hybrid age estimation,
using a combination of feature vectors.
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5 Conclusion

In this paper, methods for efficient age estimation have been investigated using
various feature extraction and classification algorithms. The age estimation
model proposed, uses a combination of features extracted from facial images.
The experimental results achieved a very promising results of an 82 % success
rate when the gradient boosting tree (GBT) classifier is used. Further investi-
gation of the effect of the proposed approach by increasing the number of age
groups is envisioned.
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Abstract. One of the limitations of the existing face recognition algo-
rithms is that the recognition rate significantly decreases with the
increase in dataset size. In order to eliminate this shortcoming, this paper
presents a new training dataset partitioning methodology to improve
face recognition for large datasets. This methodology is then applied to
the Eigenface algorithm as one of the algorithms that suffer from this
problem. The algorithm represents the training face images as a fully
connected graph. This graph is then divided into simpler sub-graphs
to enhance the overall recognition rate. The sub-graphs are generated
dynamically, and a comparison between different sub-graph selection
techniques including minimizing edge weight sums, random selection, and
maximizing sum of edge weights inside the sub-graph are provided. It is
concluded that the optimized hierarchical dynamic technique increased
the recognition rate by more than 40 percent in a large benchmark image
dataset compared to the original single large graph method. Furthermore,
the developed technique is compatible with several other unsupervised
face recognition techniques such as ICA, KPCA, RBM, SIFT, and LBP...
etc., and other datasets, specially if the number of images per person in
the training data are low.

Keywords: Sub-graph selection · Graph theory · Hierarchical recogni-
tion · Face recognition

1 Introduction

Identity detection is one of the important problems in the fields of security and
intelligence. Face recognition is one of the computer vision fields that is charged
with this task. Several face recognition algorithms have been proposed and devel-
oped in the last decades including Direct Correlation, Principal Component
Analysis (PCA) [9,14], Linear Discriminant Analysis (LDA) [8,16], Indepen-
dent Component Analysis (ICA) [2,3,9], Kernel methods (i.e. KPCA and SVM)
[11,15], and other high dimension features methods such as LBP, SIFT, or 3D
methods. . . etc. Some of these methods are supervised (e.g., LDA and SVM)
where the given data is divided into training, testing and validation datasets.
The training dataset is then divided into labeled groups (i.e., classes) with each
c© Springer International Publishing Switzerland 2015
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class containing images of one person. The other methods for face recognition
are unsupervised and use extracted features from faces (e.g., PCA, KPCA, ICA,
LBP and SIFT) where the given data is separated into training and testing
datasets. In this case, the training dataset is unlabeled and the algorithm han-
dles class separation process. Various research and experiments have proven that
simple recognition algorithms like Eigenface produce good recognition rates with
small sized (typically less than 100 images) datasets with accurately clipped face
images. However, when the number of images in the dataset slightly exceeds hun-
dred, the recognition accuracy of these algorithms reduce significantly. One of
the ways to handle this problem is to use indexing [13]. However, indexing is
only applicable to specific features and techniques, in addition to being very
sensitive to image normalization, orientation and features calculation. The hier-
archical partitioning technique can be used to improve the recognition rate when
large datasets are required. This technique divides the given training dataset into
smaller subgroups. This way the input image is compared with the stored images
located in relatively smaller sets. The best matches are then selected and fed to
the groups that are in the subsequent levels until a single small group remains.
Finally, the best result from this final group determines a match or mismatch.
Such hierarchical grouping principle on the training dataset has been used in
[6,7]. These studies utilize a supervised grouping where the training dataset is
divided according to the image class. In other words, the images of the same
person are grouped together resulting in a clear separation between groups. One
major drawback of this approach is that it implies the group size to be reduced to
one when multiple images of the same person are not available. Furthermore, the
number of groups increases significantly as the number of different individuals
increase, especially when there are few images for each person in the database.
The proposed unsupervised grouping technique can solve these problems since
it will group images without considering identity. This work distinguishes itself
from its counterparts and contributes to the related literature by:

1. Introducing a new unsupervised grouping technique for large training
datasets,

2. Applying different grouping criteria in the proposed method,
3. Demonstrating the efficiency of the proposed method by providing a compar-

ative study using multiple databases.

The remaining of the paper is divided into five sections. The following section,
Sect. 2 explains the sub-graph selection process. This is followed by a compre-
hensive description of the proposed hierarchical algorithm (Sect. 3). Section 4
demonstrates how to further improve the recognition rate by optimizing the
grouping process. Section 5 depicts the results of the proposed technique. Con-
clusions and future work are discussed in Sect. 6.

2 Sub-graph Selection Process

The sup-graph selection process requires selecting a sub-graph ko from a graph
G that has a specific criterion. The algorithm assumes that all training face
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images are a fully connected graph (G) with number of nodes (L) and the edge
between every two nodes wij is the sum of the Euclidean distances between the
features of these the nodes i and j. The goal is to obtain the best sub-graphs set
S = {k1, k2, k3, ..., kN} where each sup-graph has a number of nodes (l), where
ko is the sub-graph number o, and N is the total number of reconstructed sub-
graphs that will be used in the hierarchical technique. Different strategies for this
sub-graph selection process are investigated including (1) minimizing the weight
of the sum of edges within the entire sub-graph; (2) randomly choosing nodes
for the sub-graph and, (3) maximizing the weight of the sum of edges within the
entire sub-graph. After sub-graphs are created, regular face recognition technique
(Eigenface, in this case) is applied to each fully connected sub-graph to select
the top best matches from each group. These sets of matches from the first sub-
graphs level form the subsequent level of sub-graphs. This process is repeated
until a single small full connected graph of (l) nodes remain. This hierarchical
grouping algorithm is presented and different variations are explored by testing
it on benchmark datasets to prove the possible improvement in the recognition
rate over full connected images graph. Figure 1 shows 2D example for different
strategies for the sub-graph selection process.
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Fig. 1. 2D example for two sub-graphs selection

3 Hierarchical Recognition Technique

Testing various face recognition algorithms proved that recognition rate in unsu-
pervised algorithms such as standard Eigenface technique drops down if the
number of images in the dataset is approximately above hundred. In order to



250 A. ElSayed et al.

understand the impact of smaller subsets generated from the entire training
set, the paper proposes the following. As also detailed in the previous sections,
assuming that the face images are a fully connected graph (G) with number of
nodes (L) with a goal to select the best sub-graphs set S = {k1, k2, k3, ..., kN}
each having a number of nodes (l ≤ 100), where N is the number of reconstructed
sub-graphs to improve the recognition rate over the hierarchical technique. With
this goal, applying recognition algorithm over each of these sub-graphs (groups),
a few top matched nodes from each sub-graph (group) (2 to 5) are selected. Then
new groups are generated from these top matches. Depending on the number of
images in the dataset, a number of hierarchical levels are created. Recognition
algorithm (e.g. Eigenface) is then applied on each level group. As the final step,
the top matched images from the final subgroups are collected, and recognition
algorithm is re-applied on this final group to select the best-matched image.
Figure 3 shows the block diagram of the proposed hierarchical technique with
the Eigenface as the recognition method. The main challenge of this technique
is to determine the best sub-graphs selection strategy to improve the overall
face recognition rate. There are three possible grouping strategies: i) Similarity
Grouping by minimizing the sum of weights in the entire sub-graph where similar
images are added to the same group (the similarity measurement is the distance
between faces features, eg. pixels gray level), this can be achieved by using reg-
ular clustering techniques, ii) Random Grouping by assigning the images to the
groups (sub-graphs) randomly, iii) Dissimilar Grouping by maximizing sum of
weights in the entire sub-graph, in other words, maximizing the standard devi-
ation within the same group where the grouping process based on dissimilarity
(Maximizing metric distance between faces features in the same group). An
additional challenge is to obtain the suitable number of levels in the hierarchical
system along with the number of matched images to be selected from each level
to feed into the next level in the hierarchy. In order to achieve these, these three
possibilities have been tested on a large dataset (Extended Yale B+) [1] having
different positioning and illumination levels to determine the best approach for
the hierarchical face recognition technique. Figure 2 shows examples of datasets
images for the proposed sub-graph selection algorithm.

Fig. 2. Examples of the dataset images used
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Fig. 3. The proposed hierarchical system for rank 1 recognition

4 Optimized Dissimilarity Sub-graph Selection Technique

As also detailed in the results section, the simple dissimilarity measurement
(maximizing distances between in group images by taking the mean image as a
reference) performed superior compared to the other two grouping techniques
(similarity and random selection). However, this method is not without some
drawbacks since these criteria will not guarantee the exact dissimilarity between
each group’s images. To explain further, consider a 2-D set of (x,y) points. If
the training dataset includes {(-2,3),(2,3),(-2,-3),(2,-3)} and is required to group
these values into two groups based on dissimilarity, then the mean point will be
(0,0) and the Euclidean distance between each one of these points and the total
mean will be similar for all four points. This will results in poor grouping. It
can easily be observed that the best dissimilarity grouping for this case would
be {(-2,3), (2,-3)} as one group, and {(2,3), (-2,-3)} as the second group. Math-
ematically, stated as the variance between all the sub-graph (group) nodes over
all basis should be maximized. Therefore applying this method to a face image
dataset sub-graphs selection leads to Eq. (1):

σtotal =
N∑

l=1

m×n∑

k=1

σlk (1)

where m and n are the number of rows and columns of the face image respectively
(assuming that the pixels gray level are the image features), N is the number
of extracted sub-graphs. σlk is the standard deviation of image dimension k in
the sub-graph l. Equation (1) will be valid if the number of hierarchical grouping
levels is 2. If dataset is very large however, a regrouping is required again to the
third or higher levels. To ensure this, an additional term guaranteeing that the
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variance of the next grouping stage is also be maximized is included in Eq. (1).
This term deals with the inter-sup-graphs mean (the difference between means
of different groups), forcing groups far from each other to have the maximum
variance between its group members:

μdiff =
N∑

j=1

N∑

i�=j

d (μi, μj) (2)

where d (μi, μj) is the Euclidean distance between the mean of sub-graph i and
the mean of sub-graph j. Equation (3) is the required objective function to be
maximized:

max
Iij

g (Iij) = max
Iij

(σtotal + μdiff ) (3)

where I is the face image vector. Equation (3) can be expressed in terms of
minimization as given in Eq. (4).

min
Iij

g (Iij) = min
Iij

(−σtotal − μdiff ) (4)

It has been reported in that L1 (absolute difference) metric works better than
L2 (Euclidean distance) to measure the distance between two projected images
in the Eigen space. Therefore, the effect of both metrics in the grouping process
are tested to obtain the best recognition rate. The optimized group generation
using Eq. (4) can be done as a separate process through the utilization of meta
heuristics such as Simulated Annealing.

5 Results

The results section is divided into two parts for two different datasets. The
first section is dedicated to ORL AT&T whereas the rest of the results involve
Extended B+ Yale dataset. Each part provides comparisons between the different
grouping techniques as well as the difference when using optimum dissimilarity
metric. The proposed techniques have been implemented using MATLAB on
Ubuntu 12.04 OS.

ORL AT&T Dataset

Total number of images in the dataset is 400. These images have been divided
into two sets. A set of 200 images for training, and another set of 200 images
for testing. Since the number of images in the dataset is not too large, two level
hierarchies have been implemented. The group size is considered as 50 images
for the first grouping level. The following table shows the results obtained for
rank 1 best match:
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Method Recognition rate

Original Eigenface 92.5 %

Similarity Grouping 94.5 %

Random Grouping 94.0 %

Mean Dissimilarity Grouping 93.5 %

Optimum Dissimilarity L2 Metric 95.0 %

Optimum Dissimilarity L1 Metric 94.0 %

Extended B+ Yale Dataset

The number of images in the dataset is 14,800. Similar to the ORL AT&T dataset
the images are divided into two sets. One set of 7,400 images for training, and
another set of 7,400 images is for testing. Due to the large number of images, a
three level hierarchy has been used (the two levels recognition did not provide
significant improvement in recognition rate). The training images have been
divided into 140 groups, each with approximately 50 images. Three different
grouping strategies have been tested. Following results are obtained for rank 1
best match:

• The original Eigenface algorithm recognition rate is 55 %.
• Similarity Grouping: The recognition rate improves to approximately

77 % - 83.5 % depending on the number of best images selected from each group
in the first level, and the number of groups in the regrouping step in the second
level. A recognition rate of 83.5 % is achieved when the best 5 matching images
are selected from each first level group. A group constructed from these images
is regrouped into the next grouping level. Then best 5 matches are selected from
each subgroup, and a final Eigenface step is applied on these to obtain the best
match. Results are shown in Fig. 4. The main disadvantage of this grouping
method is that, the execution time increases when the number of groups in the
second level increases. The algorithm used for grouping is the K-means clustering
algorithm.

• Random Grouping: The recognition rate improves to a range of 88 % -
88.65 % depending on the number of best matching images selected from the
first level groups (from 2 to 5), and the number of groups in the regrouping step
in the second level. The recognition rates are noted to be less dependent on the
number of best images selected from each group. Further, the execution time is
almost independent of the number of best images selected from a group, and the
number of regroups.

• Dissimilar Grouping (based on the L2 distance from the mean image on
the training set): The recognition rate improves to the range of 89 % - 90.15 %
depending on the number of best images selected from each group in the first
level, and the number of groups in the regrouping step in the second level. The
recognition rates are less dependent on the number of best images selected from
first level groups. Further, the execution time is almost similar for any number
of best matches selected from a group, and number of regroups.
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• Optimum Dissimilarity (based on L2 metric): Images are grouped based
on the stated objective function in three level hierarchy with L2 metric. This
method improved rank 1 rate to 91.5 %.

• Optimum Dissimilarity (based on L1 metric): Images are grouped based on
stated objective function in three level hierarchy with L1 metric. This method
improved rank 1 rate to 93.6 %. Also, for this dataset, the probability that the
correct person appears in the best top 10 images is tested (rank 10), as shown
in Fig. 5.

The results in Fig. 4 indicate that the recognition rate increased signifi-
cantly when the hierarchical technique was used, especially for large databases
(Extended B+ Yale). The recognition rate has improved further by the proposed
optimum dissimilarity grouping criteria. In summary, compared to the results
in [4,5,10,12] where the ICA and Boltzmann machines are used on the same
datasets (around 82 % for ICA and 83 % for Boltzmann approach), the recogni-
tion rate of the proposed algorithm is superior. Further, the proposed optimized
dataset grouping technique is compatible with other powerful recognition meth-
ods such as ICA or LBP, and not just with the PCA based Eigenface technique.
Another advantage of this algorithm is that it uses all the training datasets as
one bulk with the unsupervised grouping technique, which is completely inde-
pendent of the face background and illumination levels.

6 Conclusions

The paper presented a hierarchical sub-graph selection algorithm that aims
at overcoming the large dataset limitation of the standard face recognition
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algorithms. The algorithm is based on creating small sub-graphs, selecting best
matches from each sub-graph, and then dynamically creating next-level sub-
graphs until a single group remains. The best match from this last group is
accepted as the rank 1 final result of face recognition. The study also investigated
the best approach for creating sub-graphs by developing an objective function
that can be used for best dissimilarity between groups at all levels. Detailed
testing on large benchmark datasets indicates that the proposed method pro-
duces best results with a sub-graph size of approximately 50 nodes (images) for
the Eigenface technique. Compared to the standard Eigenface algorithm, the
new hierarchical sub-graph selection algorithm improves the recognition rate by
more than 40 % on the original Eigenface algorithm, and by more than 2 % on the
mean based dissimilarity method. The future work involves applying the hier-
archical technique to additional unsupervised face recognition algorithms such
as Independent Component Analysis (ICA), KPCA, LBP, SIFT and other com-
puter vision algorithms that suffer from degradation in recognition rate due to
large dataset size.
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Abstract. The demand for gesture/action recognition technologies has been
increased in the recent years. State-of-the-art systems of gesture/action recog-
nition have been using low-level features or intermediate bag-of-features as
gesture/action descriptors. Those methods ignore the spatial and temporal
information on shape and internal structures of the targets. Dynamic Perceptual
Attributes (DPAs) is a set of descriptors of gesture’s perceptual properties. Their
context relations reveal gestures/actions’ intrinsic structures. This paper utilizes
the hidden conditional random fields (HCRF) model based on DPAs to describe
complex human gestures and facilitate the recognition tasks. Experimental
results show our model gains better performance against state-of-the-art
methods.

Keywords: Perceptual features � Gesture recognition � Shape extraction �
HCRF

1 Introduction

Recently human action/gesture analysis has been drawn increasing research attention
due to high demands of emerging applications, including E-healthcare, security system,
human computer interface (HCI), video games and so on. 3D gesture recognition
is mainly boosted by the developments of the 3D sensor technologies. Human
gesture/action understanding is a challenging task as it involves modeling multiple
dynamic structural components in 4D spatiotemporal space.

We argue that there are mainly two factors affecting the performance of computer
vision-based human action interpretation: low-level spatiotemporal features with less
high-level semantics and holistic gesture representations without the description about
internal relationships. To deliver more semantics, some state-of-the-art approaches
[7, 8] use intermediate gesture features, such as codebook, visual words or
bag-of-features based on clustered low-level features. However, they are still far from
being able to achieve high-level interpretation. Besides the local and global appearance
gesture features, there exist internal structural properties, that are less visually apparent
and difficult to describe in terms of visual appearances, in gestures. For example,
temporal relationship among multiple gesture features is not as simple as a sequential
chain. It could be a fuzzy structure, i.e. a mixture of chain, overlapped and stride modes
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with uneven steps. Due to its complexity and uncertainty, many previous approaches
model gestures by either ignoring its intrinsic structures or using assumptions to
simplify corresponding representations. In fact these intrinsic structural properties
reflect the discriminative gestures features, and are able to facilitate recognition tasks.
Some research [17] showed that incorporating latent structures into the system can
improve the performance.

In this work, we use a set of perceptual gesture descriptors, Dynamic Perceptual
Attributes (DPAs) [1] to describe the components of gesture properties. Each DPA is a
gesture spatiotemporal segment that represents one type of dynamic changes in 4D
spatiotemporal space, and contains rich extrinsic properties, such as duration, change
type, change volume, change rate, temporal moment etc. Meanwhile, their intrinsic
properties are modeled as the temporal context relations among DPAs, which is
governed by hidden conditional random fields (HCRF) (circles in Fig. 1). The proposed
gesture modeling method well describes gesture’s intrinsic and extrinsic properties, and
would be potentially benefit many recognition tasks. In the following parts, we will
discuss related work, describe system architecture and HCRF model, and present the
evaluation results.

2 Related Work

Salient points or regions-based representational methodologies have been widely used
for human action recognition from RGB data, and they detect salient features, such as
space-time interest points (STIP) [2], Cuboids [3] and Hessian [4], then form up feature
description using the local information, such as HOG/HOF [5], HOG3D [6] and
Extended SURF [3]. Inspired from the text mining area, the intermediate level feature
descriptor for RGB videos, Bag-of-Word (BoW) [7, 8], has been popular due to its
semantic representation and robustness to noise. Recently, BoW-based methods have
been extended to depth data [9]. These intermediate level descriptors have more dis-
criminative powers, but got failures when handling complex gestures/actions, because
BoW-based methods ignore the temporal and spatial structural properties. Shotton et al.
[10] proposed a Random Forest-based classification method to find body joints from
depth images in an efficient way. Real time skeleton data facilitates the human activity

Gesture Internal structure 

Dynamic perceptual attributes

Temporal order

3D Images

Fig. 1. Gesture representation model.
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analysis research. In [11], visual features for activity recognition are computed based
on the 4D differences among joints. This feature set contains static, motion and offset
information. Wang et al. [12] described skeleton joints by pairwise and local occupancy
patterns, and Fourier Temporal Pyramid is used to model the temporal patterns. Their
Actionlet Ensemble model can handle tracking errors and characterize the intra-class
variations.

Recognition of complex human activities is challenging as it requires understanding
both extrinsic and uncertain intrinsic dynamic properties. Some approaches generate
representations of gesture/action videos by using graph [13, 14], attribute list [8], or
probabilistic model etc. Among them, graphical models have been used to capture the
structure of an activity in terms of the hierarchy and spatiotemporal arrangement of its
internal components. Xia et al. [15] used HMMs to model the relationship among
visual words, a histogram of 3-D joint locations (HOJ3-D) for body posture repre-
sentation. Sminchisescu et al. [16] introduced CRF model into the motion recognition
tasks. Since the human actions are complex, some internal structure cannot be
explicitly observed even by human vision. A hidden CRF (HCRF) model has been
applied in some systems [17], where the gesture class is modeled as a root template and
a set of hidden labels that are implicitly correlated with feature representation. But their
HCRF models either ignore temporal structures, or just use an oversimplified chain
structure to model complex dynamic properties. Furthermore, their gesture features are
based on global dynamics without the motion information of individual body parts. Our
approach recognizes individual body parts and considers the structural relations among
them in 4D space.

3 Our DPA-Based System

Our approach (Fig. 2) is based on a set of novel perceptual gesture descriptors,
Dynamic Perceptual Attributes (DPAs). 3D perceptual shape features are extracted
from depth images for body parts classification. Figure 2b shows the motion sequences
of tracked body parts where a set of DPAs (Fig. 2c) are extracted. The DPA contain the
information about motion trajectory, object shape and orientation, which are repre-
sented as a set of 3D blocks with different colors and sizes. These blocks can be viewed
as puzzle pieces, and their combination and layout present different view about the

(a)   (b)  (c)  (d) (e)

Gesture

Fig. 2. Overall illustration: (a) 3D Perceptual feature extraction & Body parts estimation,
(b) Motion sequences tracking, (c) DPAs, (d) HCRF model, (e) Recognition.
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gesture properties. We use HCRF to model the temporal context relation of these
“puzzle pieces” (Fig. 2d). A gesture representation featured by both extrinsic properties
and the intrinsic temporal structure is able to facilitate gesture recognition/classification
tasks.

3.1 3D Perceptual Shape Feature for Human Body Part Estimation

Contour features exploit object boundary information and are able to provide shapes in
arbitrary view settings. In our approach, each object is represented as a group of generic
edge tokens (GETs) and Curve Partitioning Points (CPPs) (Fig. 3(a–b)) defined as
PCPG model in [18]. GETs and CPPs are perceptual shape features that are extracted
from edge contours. Eight types of segmented edge tokens, GETs, are connected at
points (CPPs) along the edge curves. Since each edge pixel from depth images has
XYZ values, 3D GETs/CPPs can be derived accordingly. 3D GETs/CPPs can be
further clustered into several groups according to their spatial distribution. Each
clustered group contains the bottom-up saliency features representing the shapes of a
target object (body part), and provides a set of unique visual content descriptors
(Fig. 2a).

• Head: it is a set of stable GET/CPP primitives with convex hull-like shapes based
on the metrics: CPP vertical distribution, location and size.

• Torso: it is modeled as a set of 3D GET and CPP primitives with left/right sym-
metric long vertical GETs.

• Limbs: a set of GETs and CPPs that connect to torso.
• Hands/Feet: a set of GETs/CPPs located at end areas of the limbs, a minimal

spanning tree-based index method is applied to determine hands/feet locations.

CPPs are shape salient points, which reveal shape semantics. In this work, CPP clusters
are classified into head, torso and limb CPPs. Figure 3(c–f) show the head-torso
boundary boxes, and the red, yellow and green/blue points are the head, torso and limb
CPPs respectively. The green boxes are the detected hands. The details of the body
parts estimation algorithm can be found in [1].

(c) Forward left hand (d) Left hand in front of head (e) Leftward left hand (f) Raised left hand

(b) CPP types(a) 8 GET types

Fig. 3. GET/CPP features and body parts classification for different poses.
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3.2 Dynamic Perceptual Attributes (DPAs)

DPAs represent the perceptual changes of body parts. Overall there are three types of
dynamics: motion trajectory, shape and orientation.

1. Motion trajectory: it is measured by the CPP dense trajectories. The trajectory of a
body part is collectively determined by all 3D CPP’s matches, and can be
decomposed into X, Y and Z.

2. Shape dynamics: we track the size of the 3D GET clusters to get shape dynamics,
which is simple yet effective for shape estimation. The object size is determined by
the volume of the 3D boundary box of the target. Besides the object size, other
shape properties could be used, such as GET type distribution.

3. Orientation dynamics: For some gestures, object orientation is discriminative, e.g.
flip palm. It can be measured by the angle between the camera’s front panel and the
object planes. Figure 4’s orientation sequence shows the angel changes.

All these perceptual dynamics have three types of perceptual dynamics: increase (+),
decrease (−) and remaining same (0). Then, each sequence can be divided into seg-
ments, dynamic perceptual attributes (DPAs) (see red boxes in Fig. 4). Each DPA d,
can be viewed as a 3D block whose length and height represent duration and change
volume respectively. We define a feature vector as its descriptor:

f dð Þ ¼ DPA type; Start time;Duration;Volumef g: ð1Þ

DPA type of each body part (e.g. hand) has 15 values: 5 dynamic properties (x, y, z, size
and orientation) with 3 possible changes (+, −, 0); Start time is related to the sequential
order in the video sequence. The value of the start time is the moment where the DPA
begins. Duration is related to the ratio of the DPA respect to the whole sequence.
Volume is the normalized dynamic change value wrt. the same dynamic type within the
video sequence. For instance, a single-hand Throw gesture x in Fig. 4 has 6 DPAs:

• d1: x, with all zeros on the sequence
f(d1) = {x0, 0, 1, 0}

• d2: y, with positives, 40 % duration, 35 % changes
f(d2) = {y + , 0, 0.4, 0.35}

• d3: y, with negatives, started at 40 %, 60 % duration, 65 % change
f(d3) = {y−, 0.4, 0.6, 0.65}

• d4: z, with positives, started at beginning, 100 % duration, 100 % changes
f(d4) = {z + , 0, 1, 1}.

• d5: size, with all zeros, started at beginning, 100 % duration
f(d5) = {size0, 0, 1, 0}.

• d6: orientation, with negatives, 100 % duration, started at 0, 100 % changes
f(d6) = {ori−, 0, 1, 1}.

A gesture can be characterized by a combination of various DPAs, which are a set of
perceptual gesture descriptors in the spatiotemporal space. We emphasize that our
model is not limited to the above three features and can be generalized to any other
dynamics.
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4 Hidden Conditional Random Field Model

Each DPA reflects one aspect of dynamic properties within the spatiotemporal space.
We propose a DPA-based HCRF model for gesture recognition. HCRF well represents
the intrinsic properties of complex human gestures. Each video sequence containing a
gesture yi 2 {y1,y2, …, yn} is a 4D data x that has been segmented into several
overlapped DPAs {x1,x2, …,xm} for each body part. Each DPA xi describes one type of
dynamic property. The temporal relations among them reflect the discriminative ges-
ture properties, and is governed by a set of hidden labels {h1,h2, …,hm}, where each hi
takes values from a finite set H of possible labels for each DPA. Intuitively, those
hidden labels correspond to the local motion patterns, and their internal structure is able
to represent the coherence of any complex gestures. These latent relations are to be
learned in training.

We assume that the internal temporal structure is represented by an undirected
graph structure G = (V, E), where each vertex vi 2 V corresponds to a hidden variable
hi. We use E to denote the set of edges, and e(j, k) 2 E is an edge between variables hj
and hk. In this paper we assume that E is a tree, which is formed by a minimum
spanning tree over the labels. The cost of an edge between is the temporal difference
between xj and xk within the 4D space. Our choice of E encodes our assumption that
latent variables conditioned on DPAs that are temporally close are more likely to be
dependent. The gesture x is classified as y* if y* = argmaxyfω(x, y). The pair <x, y> is
evaluated by:

fx x; yð Þ ¼ maxhxU x; h; yð Þ ð2Þ

where ω is a vector of parameters and h is a set of hidden variables. Ф(x, h, y) is a set of
potential functions that measure the compatibility among the gesture class y, the
configuration of DPAs x, and hidden labels h. The details of the potential functions are:

α(xi, hi) gives the measure of the compatibility of the DPA xi and the hidden label
hi. It is to predict the label hi for the DPA xi without considering its gesture class or
other DPAs. The parameter ωα(xi, hi) for predicting is estimated by counting the
co-occurrence frequencies of the combinations of {xi, hi} on the training data.

a xi; hið Þ ¼ I hið Þ � I xið Þ � f xið Þ ð3Þ

where I(·) is the identity function while f(xi) denotes the feature vector of DPA xi in (1).

X Y Z

Size Orientation

x
y
z

size

orientation

Fig. 4. Five dynamic sequences and a 3D block pattern for a throw gesture.
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β(y, hi) models the agreement between the class y and a hidden label hi. It is
estimated by counting the co-occurrence frequencies of the pairs of variables on
training dataset:

b y; hið Þ ¼ I yð Þ � I hið Þ ð4Þ

φ(y, hi, hj) is a pairwise potential function which models the transition between a
pair of hidden labels e(hi, hj) for a gesture y. A matrix of transition is built during the
training stage. Each element of this matrix is the frequency of the transition between 2
DPAs:

u y; hi; hj
� � ¼ I yð Þ � I hið Þ � I hj

� � ð5Þ

Putting everything together, the overall model can be computed as

xU x; h; yð Þ ¼
X

i2V
xaa xi; hið Þ þ

X

i2V
xbb y; hið Þ þ

X

e i;jð Þ2E
xuu y; hi; hj

� � ð6Þ

where e(i, j)is an edge, hi is a node, ue and ω = {ωα, ωβ, ωφ}, xe are model parameters.
Our model encodes the temporal relations among multiple gesture properties (tra-

jectory, shape and orientation). Even for a simple gesture, e.g. a dart throw, there are
three major dynamics: a hand moving forward, a hand opening and palm orientation
changes. Most existing gesture representations only capture the coarse dynamic
properties, and ignore the subtle dynamics. In contrast, our model is able to capture
those co-occurrence dynamics by exploring the dependence from training data. In this
way, the model is able to capture important connections of, for example, hand opening
moment and velocity that both affect the throw gesture.

For the model learning and inference, given a set of N gesture training video
sequence X with labeled body parts, segmented XYZ change sequences, shape and
orientation DPAs, and hidden label number, the goal is to learn a model that can be
used to assign the class label Y to a gesture. The learning step needs to estimate
parameter to maximize Eq. 2. The output of the learning is a set of models, each
representing a set of potential weights ω = {ωα, ωβ, ωφ}, xe for DPAs and hidden
labels in one gesture class. The objective of inference is to classify gestures from a new
gesture video sequence according to the trained model. We first extract all DPAs, and
then estimate all potential functions for each trained gesture model and find the gesture
y* that corresponds to the maximum likelihood score.

5 Experiments and Evaluation

We recorded 3D videos containing 10 types of human gestures/actions performed
several times by 5 subjects individually. The environmental settings for video recording
are: a single user in front of a fixed Kinect camera, interacts with a computer by
performing gestures/actions including: throw, wave, flip palm, knock and pull-down
for one hand, push, drive, expand, clap, climb rope with 2 hands. Currently the dataset
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contains 506 sequences with one gesture/action for each. Roughly 50 samples per
gesture were collected. To obtain a better quality dataset, some constraints and
pre-processes were imposed: (i) setting the camera 1.5–2 m far from a subject to get
best depth data; (ii) scaling into a grayscale depth image; (iii) smoothing by a 3 × 3
median filter.

To evaluate the performance of the proposed method, we compare our approach
with state-of-the-arts local spatio-temproal feature descriptor methods by using a
standard BoW SVM approach against our 3D gesture dataset. We take 4 baselines for
evaluation: (a) Harris3D detector [2] + HOG/HOF descriptor [5], (b) Dense sampling
[19] + HOG3D descriptor [6]; (c) Harris3D detector + HOG3D descriptor; (d) DPA +
Histogram [1]. The outputs of first three methods are the list of long feature vectors.
The BoW method is applied to get histogram of visual word (V = 200) occurrences as
the gesture representation. The DPA-based histogram [1] with 60 bins for 2
hand-gestures is similar to the BoW methods. SVM is used for classification for all 4
baseline methods. Each classifier was trained with a χ2-RBF-kernel using
Leave-One-Out (LOO) cross validation, and one-against-rest approach is applied to
select the gesture class with the highest score as the recognized one. Figure 5(a) shows
the average classification rates.

Our DPA-based HCRF model gives the best performance on our dataset. The
reason is two-fold: first 3 baseline methods only take 2D pixel intensity, but our
method derives depth value from pixel intensities; histogram-based methods do not
encode intrinsic properties; our DPA-based HCRF reveal more gesture semantics.
Dense + HOG3D outperforms DPA + histogram due to its ability to capture useful
context information e.g. head, torso etc. Context may be helpful for human gesture
recognition. Figure 5(b) shows the confusion matrix for DPA-based HCRF represen-
tation. As we can see, there is a clear separation between single hand and 2-hand
gestures. The most confusion occurs between the wave and flip gestures because both
of them have similar motions and the palm orientation was not able to reflect their
differences.

(a) Recognition rates for 5 representations  (b) confusion matrix for DPA+HCRF

Fig. 5. Comparison results on our 3D gesture/action dataset.
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6 Conclusion

In this paper, we presented a dynamic perceptual attributes (DPAs)-based HCRF model
for gesture modeling. DPAs are the extrinsic gesture descriptors that are able to present
high-level semantics. The intrinsic context relations among DPAs reflect the discrim-
inative properties for diverse gestures. Hidden conditional random fields model is
applied to capture the internal temporal relations among DPAs. Our model combines
both extrinsic and intrinsic properties that contribute gesture classification tasks. The
promising results show its potentials for different applications. Though current model is
tested on gesture recognition tasks where the related body parts are specified, the
method is valid for generic action modeling, and should perform well for any human
activities in general.
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Abstract. The bag of words is a popular and successful method for
human activity recognition. This method usually uses visual based sparse
features for activity classification. It is also known that movement has
useful clues for activity detection, but sparse features usually miss this
vital piece of information. Two-dimensional image planar motion infor-
mation is easy to extract but it is very dependant on depth and calibra-
tion parameters. Three-dimensional motion is rich in information and
can be calculated from active cameras or multiple passive cameras, but
it restricts the applicability of the method. To overcome these issues, we
have proposed the use of disparity maps, which are relatively easy to
extract from stereo videos and are more informative than 2D image pla-
nar motion information. In this work, we have combined the motion infor-
mation and disparity maps to introduce a new sparse feature descriptor
that encodes motion information, instead of visual information.

Keywords: Micro-movements · Feature descriptor · Motion-based
descriptor · Human Activity Recognition · Machine vision

1 Introduction

Automated human activity recognition (HAR) is one of the most interesting
and challenging areas of machine vision. There are many potential applications
for a fully functional HAR system. Human computer interactions, surveillance
systems and video content analysis are only few examples of those applications.
During last two decades many different approaches have been proposed and
tested [1–16], but none of them could fully address all the complexities that
exist in a human activity recognition system.

One of the successful methods proposed was the Bag of Features (BOF) [17],
which is based on the success of Bag of Words (BOW) assumption in document
classification problems. BOW states that the topic (or class) of a document can
be determined solely by looking at the words that appeared in that document1,
regardless of their place of appearance. BOF proposed to extract sparse features
from input videos and treat them as words in a document.
1 More accurately by the number of times a word appeared in a document compared

to the number of times it appeared in other documents.
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Different feature point extraction methods have been proposed in the liter-
ature [3,9,10,13,14], each of them have their own pros and cons, but almost
all of them follow the same approach. First, the points of interest (usually cor-
ners) are extracted [3,9,10,17,18]. Then, a descriptor for each interest point is
calculated by looking into its neighbourhood [3,9,19]. These descriptors are cal-
culated directly or indirectly from pixel values around a feature point. Here we
call them appearance based feature points because these descriptors encode the
appearance of their neighbourhood.

The bag of words algorithms try to match two documents based on the words
that appear in both documents. In BOF paradigm this translates to matching
two videos based on the same words (similar neighbourhoods) appearing in two
videos. BOF is a powerful method because it removes complexities related to the
duration of an activity or the speed of it. Even though BOF showed promising
results, the type of features that was used are barely used by humans for activity
recognition.

In the current work we try to find a new descriptor which encodes the motion
information in a way that could be effectively used by BOF algorithms. Our work
is inspired by [20] which have introduced the motion trajectory descriptors. Our
contribution is to combine disparity maps with motion information to improve
the motion descriptors that we refer to them as micro-movement descriptors.
Disparity maps are relatively easy to extract and they do not need camera cali-
bration and they also provide a depth clue. We believe that disparity maps have
enough discriminative information for many applications including HAR. Our
descriptor could be used by any sparse recognition method, but bag of features
should produce better results.

2 Motivations

The motion is a good clue for activity recognition and many different meth-
ods used motion information for activity recognition with different approaches
[1,2,4–8,11,15]. Some methods have tracked the location of human joints in 3D
space [1,11]. Other methods tried to track joint locations in 2D image plane
[4,5]. These methods usually require human skeleton whose extraction, from 2D
images, is still prone to errors. Some other methods have used only parts of the
body for activity recognition. For example [2] tracked the hand positions of a
human and used these trajectories for activity recognition. This method is lim-
ited to activities that could be done only by hands. The spatio-temporal space
has also been used to obtain a 3D object in that space [6,8]. Other techniques
used the compression of the motion into rigid 2D images [7,15].

On the other hand, one of the most successful methods for activity recog-
nition, that showed promising results, is the Bag of Features [17]. This method
is based on sparse representation of activities; i.e.; each activity video is rep-
resented by a set of isolated feature descriptors. Traditionally, these feature
descriptors were directly or indirectly calculated based on the appearance of
the neighbourhoods around the feature points [3,9,10]. Most of these descrip-
tors were inspired by their still image counterparts. That explains why most of
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the sparse feature extractors used appearance based information and completely
neglected the motion. One exception is [20] which used dense trajectories and
defined a trajectory descriptor. They have also used these trajectories to align
feature point neighbourhood frames and made a traditional feature point over
aligned neighbourhood. In their experiment, trajectory aligned vision based fea-
ture points showed better performance and, later [13,14] they only used motion
to align the feature point neighbourhood frames.

It has been suggested in [20] that tracking interest points in 2D image using
KLT tracker yields good results. The captured movements happen in x-y image
plane and can be expressed in number of pixels. Each image interest point (x, y)
represents an space point (X,Y,Z) and the relationship can be expressed by the
distance of the space point to the camera and intrinsic and extrinsic parameters
of the camera. So the captured movement depend on the depth of scene points
movements which is unknown. We believe that combining dense information
with 2D motion information could improve the result.

One solution is to capture the depth with the help of active cameras. Even
though active cameras are cheap and accessible, their functionality is limited.
Since they are using time of flight (TOF) calculation to estimate the depth, they
can work in low to moderate resolution and they can cover certain range (between
one and three meters depth). Besides, existing active cameras are limited to
indoor environments.

Another solution is to use stereo cameras. Let’s say a space point P is mapped
to P1 in the first image and to P2 in the second image. It is possible to calculate
the coordinates of P in the scene coordinate system by having the coordinates of
P1 and P2 in the image plane coordinate systems, using triangulation, assuming
the two cameras have the exact same orientation and, the images are horizontally
aligned and coplanar. In this situation it can be shown that the depth of pointP
depends only on the baseline2 and the focal length3 of two cameras. In practice,
such configuration is hard or impossible to achieve and researchers usually use
image rectification [21] to align them, which needs more calculation and camera
calibration.

Even though depth information are very useful in transforming motion in
image coordinate system to motion in scene coordinate system, this information
is hard to extract. Disparities, on the other hand, are much easier to extract
and there is no need for camera calibration. In this work we proposed to use
disparity instead of depth information to represent motion in a third coordinate
system which is similar to scene coordinate system.

3 Micro-Movement Descriptors

Our method captures the motions of interest points as the main clue. First the
interest points from both left and right frames are extracted and, for each of
them a descriptor is calculated. Here we have used opencv implementations of
2 The distance between two center of projections.
3 The distance between center of projection and the image plane.



272 P. Habashi et al.

FAST corner detector [22] for interest point detection and SIFT descriptors [19]
for feature descriptor calculation. Then this descriptor is used to match feature
points between the left and right frames. Having the point correspondences,
this descriptor is no longer needed. Each interest point is now represented as
I (xli, yli, di) in which Pl (xli, yli) represents pixel coordinate of interest point i
in left image and di is the distance between left and right frame calculated as
an Euclidean distance:

di =
√

(xri − xli)
2 + (yri − yli)

2 (1)

If we assume the cameras are aligned such that there is no y-displacement,
i.e., yri − yli = 0, then the above distance will be reduced to di = |xri − xli|
which is x-disparity. Since we are trying to reduce any precondition over camera
placements, we have used the 2D Euclidean distance.

We have used KLT tracker to track the interest points in the left and right
frames. We tracked the interest points for l consecutive frames before recalculat-
ing the interest points for the l+1 frame. This way several trajectories of length
l have been made.

After extracting trajectories, the displacement vector calculated based on the
amount of movement that each point has undergone. For example, if l = 3 and
a sample trajectory Ti given by:

Ti = ([x1, y1, d1] , [x2, y2, d2] , [x3, y3, d3]) (2)

Then the displacement Di is calculated as:

Di = ([x2 − x1, y2 − y1, d2 − d1] , [x3 − x2, y3 − y2, d3 − d2]) (3)

Note that each displacement calculated between two consecutive frames (not
left and right frames). The displacement contains the motion information that
existed in the video. In general case:

Dij = Ii(j+1) − Iij (4)

where Dij represents the component j of trajectory i and Iik represents the
interest point triplets (xik, yik, dik) in trajectory i. Note that when the length of
Ti is l then the length of Di would be l − 1.

We have defined an energy measurement for each trajectory, given by:

ei = Σl−1
k=1|Dik|2 Where |Dik| =

√
x2
ik + y2ik + d2ik (5)

The energy of a displacement determines the amount of movement of the corre-
sponding trajectory. Low energy trajectories will represent steady feature points
in a video. These points are usually background points or points on human body
which are steady in l consecutive frames. These points have no or little dis-
criminative information and they are removed by a simple thresholding. This
eliminates the trajectories with very low information.
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The remaining displacements are mapped onto a three dimensional space
which has the characteristics of scene coordinates. From the stereo camera model
and triangulation it can be deducted that:

Z = fB/d ∝ 1/d (6)

X = uZ/f ∝ uZ ∝ u/d (7)

Y = vZ/f ∝ vZ ∝ v/d (8)

In which f is focal length and B is the baseline distance. Assume D (u, v, d)
represents a point in displacement coordinate system measured in pixel values.
We calculated our micro-movement descriptor by normalizing a displacement as
follows:

M (X,Y,Z) = (u/d, v/d, 1/d) (9)

where M (X,Y,Z) is represented in an independent coordinate system. Move-
ments in this space are similar to movements in the scene coordinate system.

4 Experimental Result

To the best of our knowledge, there is no stereo vision dataset for human activity
recognition. Hence, it is hard to compare our proposed method to other methods
in the literature. To demonstrate the effectiveness and discriminative power of
our proposed micro-movements representation, we have created our own stereo-
dataset. The latter contains 12 different simple activities.

Each activity is done several times by two volunteer actors, a male and a
female. The videos are recorded with two very low quality and cheap but similar
cameras attached to a rigid bar. The videos are captured and recorded in VGA
quality. Some sample frames of dataset are also provided on first row of Fig. 1.
The second row shows the cameras itself, the left and right images of one sample
frame with their corresponding feature points, and the calculated disparity map.

After extracting the micro-movement descriptors, we cluster them using the
well known K-Means clustering algorithm. In particular, each cluster represents
a word. For each instance of an activity in our dataset, we have counted the

Fig. 1. First row: Sample frames of five different activities, Second row: Cameras
used, the left and right extracted feature points and their matching result
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Table 1. Twelve activity confusion matrix

Activity Name Class a b c d e f g h i j k l

Walking Right a 10 0 0 0 0 1 0 0 0 0 0 1

Walking Left b 0 11 0 0 0 0 0 0 0 0 0 0

Walking (Toward Camera) c 1 1 2 3 0 0 1 0 0 0 0 0

Walking (Away Camera) d 0 0 2 8 0 0 0 0 0 0 0 0

Hand Waving (Right) e 0 0 0 1 5 0 0 0 3 1 0 0

Hand Waving (Left) f 0 0 0 0 1 4 0 1 1 0 0 0

Jumping g 0 0 1 0 1 0 10 4 0 0 0 0

Sitting Down (Front View) h 0 0 0 0 0 0 1 10 4 1 0 0

Standing Up (Front View) i 0 0 0 0 0 0 0 2 11 0 1 0

Sitting (Side View) j 0 0 0 0 0 0 0 1 1 13 0 0

Standing (Side View) k 0 0 0 0 0 0 0 0 1 0 14 0

Jumping Jack l 0 0 0 0 0 1 0 0 1 1 0 10

Table 2. Six activity confusion matrix

Activity Name Class a b c d e f

Walking a 36 1 3 0 0 1

Hand Waving b 1 11 0 4 1 0

Jumping c 1 2 13 0 0 0

Sitting Down d 0 0 2 27 2 0

Standing Up e 0 0 0 4 25 0

Jumping Jack f 0 1 0 1 0 10

number of times each word appears in it. Then, we have made a vector of length
w words, where w represents the number of clusters. For this experiment we
fixed the length of trajectories to l = 9 frames and w = 400 as a rule of thumb.
We have used Bayes Net for classification of activities based on the word count
vector. We were able to correctly classify 73.47 % of the activities without any
parameter tuning. It is hard to compare this value with other works. The nearest
work to ours is the image plane motion descriptors of [20]. They achieved 67.2 %
accuracy on YouTube dataset which shows the effectiveness of our descriptor.
However, their trajectory aligned descriptor hit 83.9 % which is better than many
other descriptors including ours. The confusion matrix of twelve activities are
represented in Table 1. We should emphasise that our result is preliminary and
we are sure it will be improved during the future research. We proposed several
trends for improvement in the next section of this paper.

Our test setting neither designed nor optimized for online processing, however
with current setting the extraction of features is done in 8.3 frames per second
on a single thread ran on a 2.8 GHz Core i7 CPU. With some improvements
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one might be able to implement it in real time, but the original BOF algorithm
should also be altered to work in online manner.

To further demonstrate the flexibility of our classifier, considering that some
of the activities in our dataset are very similar and they typically have the same
name in our natural language, we have combined the similar classes to examine
the discriminative power of our descriptors. We summarized our activities into six
different classes. Using same Bayes Net classification method without parameter
tuning we have achieved 83.56 % accuracy. This is a lot better compared to
67.2 % of closest work [20]. The confusion matrix of this experiment is shown
in Table 2.

5 Conclusion and Future Work

This paper proposed a new sparse feature descriptor based on movement clues.
To the best of our knowledge, this is the first work which take advantage of
disparity-maps in stereo-image videos for human activity recognition. We have
proposed a new descriptor, that is easily extracted from stereo videos, to be
used to discriminate between different activities. Since the proposed descriptor is
based on disparity map information, there is no need for camera calibration. Our
simple experiments demonstrate the discriminative power of our descriptor. Even
though we tested it against a small dataset, we believe it would work well in more
sophisticated cases. Our descriptor is not bound to human activity detection by
any means. It may be used for many other event detection applications where
the movement of interest points seems discriminative.

There are many ways to improve the results, which we consider for future
work. (1) The number of actors and activity classes will be significantly increased.
Furthermore, because some activities are shorter in time, they might be repeated
more often in dataset in order to have enough instances of each activity for learn-
ing. (2) Because there are different algorithms/tools for the different stages of
our micro-movement descriptor extraction process, we will need to test and com-
pare alternative algorithm/tools for possible improvement of our final results. (3)
We will investigate other classifiers, in addition to Bayes Net, used for the clas-
sification of bag of features. (4) Another possible improvement would be the
combination of appearance-based clues with our descriptor.
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Abstract. Human Action Recognition is one of the intriguing research area of
modern Artificial Intelligence and Computer Vision where different techniques
are followed to distinguish various human actions. Accuracy of such methods
mainly depend on how a sequence of action frames can be represented by a
number of most distinguishable frames, otherwise called key frames. In this
paper, we have introduced an efficient method to extract key frames by maxi-
mizing accumulation of motion between frames for recognizing human actions
using the help of 3D skeletal joint locations. Our feature representation is the
combination of histogram of joint 3D (HOJ3D) and static posture feature of 3D
skeletal joint locations. Then we used Hidden Markov Model (HMM) for human
action recognition from the extracted frame sequence.

Keywords: Discriminative patterns � 3D skeletons � 3D depth images � Key
frame extraction � Action recognition

1 Introduction

Enabling machines to recognize human actions is a prominent area of studies in com-
puter vision and artificial intelligence. Its application is extended from tracking humans
in smart homes, security establishments or video gaming to augmented reality or gesture
navigation. To recognize human actions, silhouettes and spatiotemporal interest points
are selected as discriminative features. With the invention of novel devices like
Microsoft Kinect, new techniques have emerged to extract human joint locations for
each frame from action videos [1]. Researchers who used silhouettes have followed one
of two major categories to classify actions. One is to extract patterns from silhouette
sequence [4, 5, 6, 7, 14, 15] and the other is to create a model from each silhouette [6, 8,
9, 10, 11, 16, 17]. The major challenges for human action recognition using 3D skeletal
joint locations are: selection of significant frames, overlapping actions, diversity in
actions, representation of temporal sequence, arbitrary viewing angel, discriminative
features, noise, subjective interpretation of actions, etc. In [12], an approach-based
taxonomy is presented to categorize all the different approaches researches follow to
recognize human activities [13, 12]. There are two broad approaches: (a) single-layered
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and (b) hierarchical. These approaches are followed to classify human actions where the
distinctive features can be of different types. One of the feature is the Histogram of Joints
3D (HOJ3D). In [18], HOJ3D is created from skeleton sequence and then Key frames
are extracted from Self Similarity Matrix based on the video summarization method
proposed by Huang P. et al. [19]. At last the actions are classified using TF-IDF. Lu Xia
et al. [3] used probabilistic voting on HOJ3D to generate the key frames and then used
HMM to recognize actions. X. Yang et al. [2] used Eigen Joints, difference between
neighboring frames and difference between current frame and initial frame as distinctive
features and then used PCA and LDA for dimension reduction.

The objective of this paper is to use efficient algorithm for extracting key frames
from a video of action sequence and to classify them. As not all frames in an action
sequence are informative, temporal segments of an action can be intuitively approxi-
mated by the statuses of neutral, onset, apex, and offset. The discriminative information
is not evenly distributed in the four statuses, but concentrates more on the frames from
onset and apex statuses. On the other hand, motions of neutral and offset statuses are
usually similar across different action categories. So informative frame selection cor-
responds to extract frames from onset and apex but discard frames from neutral and
offset. For this purpose we have proposed a new method where we extract a fixed
number of frames that best summarizes the action sequence. In this paper, we at first
take 3D human skeleton joint locations from Kinect, combine HOJ3D and static
posture of 3D joints together as feature and extract the key frames. Then we use HMM
to classify the actions.

Our main contribution in this paper is to device a method for key frame extraction
that is both computationally inexpensive and robust. Our work is motivated by the
video summarization technique which used a graph based technique to extract sig-
nificant frames from a video sequence [3]. But since computational complexity of that
approach was significantly high we tried to reduce the complexity by devising a
simpler but efficient approach.

2 Proposed Method for Key Frame Extraction

Our proposed method starts with extracting 3D human skeletal joints from sequential
depth images [1]. After that these 3D joints go through a series of pre-processing steps.
Then feature vector is generated by combining 3D joint vector difference as static
posture feature [2] and histogram of joint 3D (HOJ3D) [3].

Then we have used our approach to extract key frames from the action sequence.
After that codebook is generated and feature vectors are converted to observation
symbols. For Action recognition we used discrete HMM. An overview of the proposed
system is given in Fig. 1.

2.1 3D Skeletal Joints Pre-processing

3D skeletal joint locations are pre-processed to make these extracted 3D co-ordinate
suitable for subsequent operations. In our proposed system the following
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pre-processing steps are used on the 3D skeletal joints to make the 3D skeletal model
view and scale invariant:

i. User to Kinect Sensor Distance Adaptation.
ii. Rotating and aligning the model along the right shoulder.
iii. Normalising each joints with respect to radial distance.
iv. 3D joint position normalization

First problem with the 3D skeletal joints is direction of the camera changes along
with the movements of the user. So we need to adapt these changing direction of the
camera. To resolve this scenario we used the hip center of the user as the Centre of
Gravity (COG) and translate 3D model of human skeleton to the hip center.

Pj
new ¼ Pj

old � Pj
hp ð1Þ

Here, Pj
hp is the coordinate of the hip centre of jth subject. Then 3D skeletal model is

rotated and aligned with the right shoulder. This step is performed to reduce variability
of data across multiple subjects. Rotation of the 3D skeletal model is done around the Y
axis and rotation angle is calculated in spherical co-ordinate system.

Pj
new ¼ Mj

uP
j
old ð2Þ

Here Mj
u is the transformation matrix for jth subject and u is the angle of the right

shoulder. After the previous step we need to normalize the joints with respect to the
radial distance to make the 3D skeletal model scale invariant. We used the following
equation for this purpose:

Rj
i ¼

Rj
i

Rj
max

ð3Þ

Here Rj
i = Radial distance of ith co-ordinate of jth subject and Rj

max ¼ maximum radial
distance of the jth subject. As the co-ordinates are only an approximation of the real
co-ordinates and also these are subject to noise we need to minimize the error as much

Depth Image 
Sequence

3D joint locations 
of human skeleton

3D Joints Pre-
processing

Feature 
Repre-
sentation 
(HOJ3D 
+ Static 
Posture 
Feature)

Key Frame 
ExtractionAction Recognition using Discrete HMM

Fig. 1. Overview of the human action recognition system
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as possible. 3D skeletal co-ordinates are normalized by associating a range of values to
a particular value using the following equation.

Pj
new ¼

$
Pj
old � Pj

min

P j
max � Pj

min

� Gsize

%
ð4Þ

Here Pj
min = minimum Co-ordinate of jth subject Pmax

j = maximum co-ordinate of jth

subject and Gsize = Grid size (User defined).

2.2 Feature Representation

Human action is modelled as a sequence of frames. So we need to find a suitable feature
descriptor for each and every frame of the sequence. In our proposed framework to
model human action sequence we have employed vector difference of 3D skeletal joints
as static posture feature fsp and histogram of joint 3D skeletal co-ordinate system fhoj3d .
We then concatenate these two feature channels as f .

f ¼ fhoj3d
fsp

� �
ð5Þ

Here fsp ¼ Xi � Xjji; j ¼ 1; 2; . . .. . .;N; i 6¼ j
� �

; fhoj3d ¼ hel
haz

� �
haz ¼ histogram of 3D

joints along azimuth (θ) direction and hel ¼ histogram of 3D joints along elevation (φ)
direction.

We partition the 3D space into n bins. The azimuth angle θ and elevation angle φ
both are divided into 12 bins. With our spherical coordinate, any 3D joint can be
localized at a unique bin. The azimuth angle θ has a 30 degree resolution and elevation
angle φ has a 15 degree resolution. To make the representation robust against minor
errors we have used a Gaussian weight.

For each joint, we only vote over the bin it is in and the two neighboring bins. We
calculate the probabilistic voting on θ and φ separately since they are independent.
Standard deviation σ is calculated by dividing the corresponding resolution by two [3]
(Fig. 2).

Fig. 2. (a) 3D Human Skeleton in spherical co-ordinate system. (b) Number of bins used for
elevation (Φ) and azimuth (θ) in spherical co-ordinate system.
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We accumulate these values for each of the 16 joint locations over these two bins.
After the accumulation we concatenate these two bins to produce fhoj3d .

2.3 Key Frame Extraction

First self-similarity matrix S is calculated. For any two skeletons i and j, let their feature
descriptor be expressed as fi and fj where a measure of similarity between the skeletons
can be computed using the following distance function:

Si;j ¼ d i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fi � fj
� �T

fi � fj
� �q

where i; jð Þ 1; 2; . . .::Number of framesf g ð6Þ

Then we have derived a Cost Matrix (C) which is defined by the following equation:

Ci;j ¼
Xj�1

n¼i
Sn;nþ1 ð7Þ

Here Ci,j represents accumulation of motion from frame i to frame j. Let’s say sig-
nificant frames between the first frame, f and the last frame l needs to be calculated.
Then we need to split the sequence on frame p such that,

p ¼ argmini Cf ;i � Ci;l

		 		 ð8Þ

On the next iteration using the same approach we further split the frame sequence f to p
and frame sequence p to l. This process is iterated k number of times to produce 2k + 1
number of significant frames. If the value of k is too small then many discriminative
action poses might be lost. Again if the value is set too high then extracted frame
sequence might contain too many frames with little discriminative patterns. To test our
algorithm to generate key frames, we acquired 3D joint location data used by Lu Xia
et al. [3] of 10 subjects performing 10 different actions each performed twice which are
spread throughout an arbitrary number of frames. All the actions are performed dif-
ferently. The joint locations are captured using a static Kinect hardware in an indoor
environment with 30 fps speed. Each frame consists of 3D joint locations of twenty
joints of a human body (Figs. 3 and 4).

2.4 Action Recognition Using Discrete HMM

Vector quantization on the extracted frame sequence is performed to reduce the number
of observation symbol. We clustered the feature vectors into 16 clusters (a 16-word
vocabulary) using K-means algorithm. Then each frame is represented by an obser-
vation symbol.

Our system used a left to right HMM to model sequential events of human activity.
We have used 5 hidden states in our experiment. Each of the human activity is
modelled using a HMM model. The maximum likelihood among these trained HMM
models are chosen as the recognized human action:

An Efficient Method for Extracting Key-Frames 281



Lmax ¼ argmaxNi¼1 P OjHið Þð Þ:

Here Lmax is the maximum likelihood of the action sequence based on the observation
symbol O and Hi represents HMM model parameters of activity i.

2.5 Experimental Results

In our experiment we used 10-fold cross subject validation technique. Based on the
extracted frame sequence we achieved a mean accuracy of 94.9 % and best accuracy of
achieved is 95.26 %.

As we can see from Fig. 5 is that our technique performs better than some of the
existing methods. This is because extracted frame sequences are quite discriminative.
Also our feature representation is quite robust compared to other methods.

Fig. 3. Self-similarity matrix of 100 frames Fig. 4. Key Frames extracted from a walking
video sequence using our method

Fig. 5. Comparative analysis of different methods
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As frame number is increased accuracy of the recognition is also increased because
it allowed the frame sequence to capture more informative frames. But increasing frame
number too much might result in a reduced performance because redundant frames are
selected with very little discriminative capability. Figure 6 shows how accuracy of the
system changes with respect to the changing number of key frames.

3 Conclusion

We have seen how efficiently we can extract key frames from a frame sequence of
arbitrary length. The approach discussed has proven to be quite robust. Extracted key
frames using the proposed method showed significant discriminative patterns and the
feature descriptor is also quite robust. This claim is supported by better action recognition.
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Abstract. This paper describes the design and implementation of a
basic architecture for view-based autonomous navigation of a mobile
robot platform. Our system is composed by an interface module which
communicates a robotic platform with a decisions module. The system
tries to follow a original trained path by calculating a rotation angle
using a scene comparison. We implemented this comparison by perform-
ing a matching between the current view of the robot and a memorized
panoramic image. The matching process is carried out by two methods:
NCC-based template matching and SURF-based marching. Our results
demonstrate an acceptable performance of the autonomous navigation
for both methods when no changes in the environment are present, and
a superior performance of the SURF-based method even in the presence
of new objects which were not present during the training stage.
abstract environment.

Keywords: Robot vision · Autonomous navigation · Template match-
ing · SURF features · RANSAC

1 Introduction

The great necessity of relieving people from monotonous and repetitive tasks
has accelerated the evolution of technology by investing many resources aided
to design more intelligent robots with the ability to perform their work without
any human intervention and automatically within non controlled environments
and unforeseen situations. Perhaps, the best example of these kind of robots are
those with an autonomous navigation system [1–9]. Probably, the recent need for
designing robots with autonomous navigation capability arises from the growing
complexity of the human society. This complex society demands much brute
workforce which could be accomplished by machines, freeing people for more
creative and intellectual work. In this context, autonomous navigation opens a
window to a wide range of complex tasks which were reserved just for human
beings during a long time.
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Several works have been proposed for vision-based autonomous navigation,
specifically, those which only use a camera as a single sensor have demanded
special attention [5,10,11]. View-based approaches commonly have to deal with
many problems like environmental changes between the training stage and the
autonomous navigation stage. In indoor environments, those changes can include
lighting variation, image noise, and new unknown objects appearing in the scene,
like persons and all kind of office or home stuff. Some works which deal with this
kind of problems have been proposed and they use SIFT features for view-based
autonomous navigation, because its inherent computational speed [9].

Similarly to the SIFT features approach [12], a faster version known as SURF
features technique [13,14] has been used in autonomous navigation implementa-
tions which use a panoramic camera as primary sensor [6,10]. Except in [9] where
the SIFT features method was used, the above works do not face the problem of
new objects appearing in the scene. Here, we describe a simple autonomous nav-
igation system which uses a conventional camera and software modules in which
we have implemented SURF features detection in combination with RANSAC
algorithm in order to compare the current view of the robot during navigation
with images of the learned path stored in its memory. We face the problem
of navigating in the presence of new obstacles not present during the training
stage. Additionally, in a similar way as [1,3], and [15] who uses the SAD (sum of
absolute differences) distance as a measure to compare images, we implemented
an appearance-based navigation which uses NCC (Normalized Cross Correla-
tion) template matching. We compare the performance of the both methods
proposed.

The overall system is composed by a third-party two-wheeled robot platform
equipped with a single conventional camera and two software modules developed
in this work. The first module is a software interface programmed in Visual
Basic which communicates the physical platform X80SV (from Dr. Robot) with
a software module programmed in MATLAB which is actually a decisions-
making machine. All the computer vision algorithms were programmed in the
MATLAB module. The autonomous navigation system described in this work
has many useful applications. Particularly, an autonomous navigation system
can be implemented in wheelchairs to transfer disabled patients from one place
to another without any supervision. This application could take place in home
or in public hospital facilities.

2 System Overview

In this work, we developed autonomous navigation software modules for a X80SV
robotic platform. The X80SV is a two-wheeled mobile robot [16] which can be con-
trolled by a PC computer via USB serial communications port, or WiFi TCP/IP
communications link [17]. An interface module was programmed in Microsoft
Visual Basic .Net language and it provides a communication link between sensors
data from the robot and a MATLAB function called decision maker. Similarly,
movement commands generated by the decision maker function are sent back to
the robot via the interface module.
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Additionally, the interface module also has a training submodule that
was designed in order to perform a training stage as a previous step before
autonomous path tracking. The training submodule was programmed in Visual
Basic .Net and allows the user to control the robot to follow an arbitrary path.
Each time the user gives a command to the robot from the interface, for instance
turn left 30o and go straight 0.3m, the robot performs the following procedure:
(1) The robot rotates on its own axis 30o left; (2) Captures three views around
before starting its movement; (3) starts an straight movement of 0.3 m towards
the next waypoint selected by the user. Internally, the interface program cap-
tures three images covering 76o×3 = 228o of field of view and calls a MATLAB
function which stores the three images in real time. In this way, a trained path is
nothing but n sets of three images where n is the number of waypoints, named
from now on as pathnodes.

3 Path Tracking by Image Matching

The decisions maker function is the core of our system. When this function
determines that the matching process between the current view and the respec-
tive three memorized images is successful, then it computes a rotation angle that
the robot should perform before moving straight towards the next path node.

Specifically, the current view of the robot is compared with three memorized
images belonging to the waypoint where the robot supposes to be there. The
comparison is used to compute the angle that the robot should turn (rotate) in
order to correct the path towards the following waypoint. Two methods were
developed for this purpose: the first one is by template matching and the second
one by SURF matching. The template matching approach is the computation of
the NCC between the current view and a sequence of consecutive regions taken
from the panoramic image composed of the three aforementioned images. The
horizontal location of the maximum NCC value corresponds to the best match,
and therefore indicates the magnitude of the angle to rotate.

In the other hand, in the SURF matching approach, SURF features are cal-
culated for the current view and for each one of the three images. The image with
the best match of SURF features is selected. We make sure that this is the best
match by using RANSAC in order to eliminate possible outliers. A good match
is considered when there are at least 4 SURF pairs who have survived the stage
of outliers elimination. Then, the horizontal translation of the matched SURF
features is calculated by Procrustes analysis. Finally, this horizontal translation
quantity is transformed to a proper rotation angle value. When the computed
rotation angle is very small (< 3 degrees), the robot is commanded to rotate the
specified rotation angle and to move straight 0.3m. Conversely, if the angle is
greater, the robot is commanded to rotate and stay in the same path node. Then,
the next time the function is called, the rotation angle is computed again. When
there is not a match between the images a random rotation angle is calculated
and a rotation command is sent.
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3.1 Path Tracking by NCC Template Matching

We have designed and implemented a path tracking algorithm based in direct
image comparison also known as the template matching approach. Here, we
take the current view that the robot sees, and we compare it with consecutive
sample images taken from a panoramic view. The sample images are taken by
shifting one pixel to the right the position of the ROI (Region Of Interest)
over the panoramic image (three views merged). In computer vision, there are
some known measures of similarity between images: SAD (Sum of Absolute
Differences), SSD (Sum of Squared Differences), Euclidean distance, and NCC
(Normalized Cross Correlation), see [14]. Although NCC is more complex than
the other mentioned measures, we have chosen that because it is invariant to
affine intensity changes, typically appearing in real images when illumination
changes occur. Once the NCC is calculated between the current view and all the
ROI’s taken from the panoramic image, we select the position where the NCC
value is maximum. This position minus the central position (that corresponding
to the first pixel of the central image, remembering that the three images form
a panoramic) gives a vector which is proportional to the angle that the robot
should rotate in order to be ready to begin its travel towards the next path node.
Figure 1 illustrates this technique.

Fig. 1. The rotation angle is obtained by computing NCC between the current view
and the panoramic image

3.2 Path Tracking by SURF Features Matching

The SIFT (Scale invariant features transform) method was proposed by Lowe
et al. in [12]. It is a technique for finding feature points on the image whose
descriptors are invariant to variations in scale, rotation, translation, illumina-
tion, and viewpoint of the objects in the scene. In this way, if we have two
images containing the same object but perhaps rotated, scaled and with differ-
ent illumination, the SIFT points found in both images will be located on the
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same physical points of the object. The descriptors of two corresponding points
should be very similar if these points belong to the same location on the object.
In order to eliminate possible outliers (false positive matches), we have to keep
only the pairs of points with the highest similarity.

On the other hand, SURF, an acronym of Speeded Up Robust Features, was
proposed in [13]. This scale-invariant features detector is based on SIFT but it is
several times faster. Because its fast processing speed, we have used SURF fea-
tures. The similarity criterion that we utilized for comparing the 128−elements
descriptors was the euclidian distance. Even when an appropriate threshold was
used to eliminate outliers in the set of pairs of SURF points, there could be sur-
vivors that are outliers. In fact, frequently, inliers are points which have the same
relative positions with respect to their neighbors in both images. This configu-
ration of relative positions is preserved in the second image even when changes
in scale and rotation have taken place, i.e., the polygon formed by the SURF
points in the second image should be a rotated and scaled version of that in the
first image. Therefore, in order to reduce even more the quantity of outliers, we
have to find and eliminate those pairs of points which do not fit in the aforemen-
tioned configuration. We have used the RANSAC (Random Sample Consensus)
algorithm for that purpose, see [18].

A set of SURF features is extracted from the current view and each one
of the three images in the memorized panoramic. By measuring the Euclidean
distance between descriptors from image pairs (current view vs each one of the
three the memorized images). In order to eliminate the outliers we execute the
RANSAC elimination process. Next, we choose the image in the panoramic
with the highest number of SURF matches with respect to the current view.
The next step is to determine horizontal translation between the two polygons.
We have solved this task by using Procrustes Analysis [19]. Procrustes analysis
translates, re-scales, and rotates the points of the polygon in the second image
into an optimal superimposition over the points of the first image. This horizontal
translation is proportional to the angle that the robot has to rotate in order to
be ready to begin its travel towards the next path node. Figure 2 illustrates this
process.

4 Results

In the first experiment, the robot learned a path with 81 path nodes. During the
training stage, the robot was tele-commanded to follow the desired path and to
take 3 pictures in each node. We use the two methods of navigation, NCC and
SURF , to evaluate their performance in ideal conditions: the same illumination
that in the training stage and no new objects in the scene. From Fig. 3, which
shows the navigation results, we observe that both methods achieved a very
good performance reaching the goal point. In order to obtain a better knowledge
about the performance of the both methods, we performed five trials of the
autonomous path tracking for each method. Figure 3 shows the position error
average that we have measured as an absolute distance between the original path
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Fig. 2. SURF features are computed for each one of the 3 images in the panoramic
stored in memory. Similarly, SURF features are computed in the current view. Best
matches are found and possible outliers are eliminated. In this example, the image of
the center is considered to be the best match, because it has the highest number of
SURF matches

node (marked on the floor) and the actual position of the robot for each path
node. We see that the position error is small, some centimeters, in comparison
to the path size (several meters) (3).

Subsequently, we have placed new objects along the path in order to evaluate
the performance of both methods of autonomous navigation. These objects were
placed so that they did not obstruct the way of the learned path. The NCC
template matching method was unable to reach the goal point. In fact, when
the robot approached to the first object, it was unable to determine the correct
rotation angle towards the next path node. Figure 4 illustrates this case, where
the NCC value is higher in a wrong position on the panoramic view.

4.1 Is It a Small Bit of the Scene Enough to Not Getting Lost?

In contrast to the NCC-based navigation, in the same experiment with the same
new objects along the trajectory, the SURF -based navigation method worked
correctly and the goal point was reached successfully. We observed that despite
the presence of new objects in the scene, a sufficient quantity of SURF matches
guarantees the recognition of the scene, and therefore, a successfully navigation
towards the goal point is possible. Figure 5 illustrates that when a new object
appears in one of the two images to be compared, there are still a sufficient
quantity of SURF matches in order to claim that a match exists between the
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Fig. 3. (a) Two autonomous path trackings. One by using NCC template matching
(blue) and the other by using SURF features (red). The environmental conditions were
the same that those existing during the training stage. (b) Position error average for
5 autonomous navigation rounds using NCC template matching and SURF features
matching. In both cases, vertical segments represent standard deviation (Color figure
online).

Fig. 4. The presence of a new object in the scene causes a wrong determination of the
position of the current view on the panoramic image.

two images. Procrustes analysis gives us the translation distance between both
polygons, and that distance is used to calculate the rotation angle of the robot.

Finally, Fig. 6 shows a comparison between the autonomous path tracking
of the two methods when new objects were present along the path. We observe
that NCC-based method was unable to reach the goal point.
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Fig. 5. In the approach that uses SURF , RANSAC and ProcrustesAnalysis, we
observed that an acceptable number of SURF matches were found always out of the
region where the new object lies. This fact ensures that the image can be recognized
despite the existence of new objects in the scene.

Fig. 6. Two autonomous path trackings. NCC template matching method was unable
to finish the route (red path). In contrast, SURF-based matching method finished
successfully the travel towards the goal point (blue path). Green path corresponds to
the original trained path (Color figure online).

5 Conclusions

In this paper, we have described the implementation of a basic autonomous nav-
igation system. Our system is integrated by two software modules: an interface
module programmed in Microsoft Visual Basic .Net and a decisions maker mod-
ule programmed in MATLAB. The decisions maker module is the heart of our
architecture and it is basically a reactive agent type function which is iteratively
called by a timer control from the interface module. Autonomous path tracking
is achieved by the decisions maker module by computing a rotation angle that
the robot has to move in order to go straight ahead to the next path node.
Two approaches for this angle calculation have been proposed for our system.
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The first one is based in directly comparing the current view with a panoramic
image from a set of stored images captured during the training stage. In this
mentioned method, we have selected NCC as a measure for image comparison
because its distinctiveness and its robustness to illumination changes. In the sec-
ond approach, we used SURF features in combination with RANSAC algorithm
and Procrustes Analysis in order to compute the rotation angle. Our results show
that the NCC matching method is prone to give wrong rotation angles when
new objects, absent during the training stage, are present during navigation. In
contrast, we found that the proposed approach which uses SURF , RANSAC
and Procrustes Analysis is tolerant to new objects even if these are as large as
one third of the area of the full image. With respect to the position error, we
refer the superiority of the NCC-based method over the SURF -based one to
the inherent tolerance of the SURF features to variations in scale and viewpoint.
Nevertheless, and although with a slightly higher position error, we can conclude
that the SURF-based method overcomes to the NCC-based approach, because
the first one is certainly more robust to appearance changes in the scene. Finally,
we estimate that it is possible to improve our results if we take into account the
viewpoint differences, i.e., if the implicit linear transformation between the poly-
gon pairs of SURF points in both images is used to correct the position of the
robot with respect to the objects in the scene.
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Abstract. In RGB-D based SLAM methods, robot motion is gener-
ally computed by detecting and matching feature points in image frames
obtained from an RGB-D sensor. Thus, feature detectors and descrip-
tors used in a SLAM method significantly affect the performance. In this
work, impacts of feature detectors and descriptors on the performance
of an RGB-D based SLAM method are studied. SIFT, SURF, BRISK,
ORB, FAST, GFTT, STAR feature detectors and SIFT, SURF, BRISK,
ORB, BRIEF, FREAK feature descriptors are evaluated in terms of accu-
racy and speed.

Keywords: SLAM · Feature detector · Feature descriptor

1 Introduction

Simultaneous Localization and Mapping (SLAM) is one of the most fundamen-
tal problems in the field of robotics. Determining position in the environment
is an important requirement for an autonomous robot. If the robot is in an
unknown environment (in other words it does not have map of the environ-
ment), it must create map of the environment and determine its position on the
map simultaneously. However, position information is needed for creating the
map while environment map is needed for obtaining the position information.
In this respect, SLAM is similar to chicken and egg problem.

In SLAM systems, laser or sonar range sensor based methods [1–3] are pro-
posed as well as stereo or monocular camera based approaches [4–6]. Estimating
the motion of the robot and detecting whether the robot has visited a previ-
ously mapped region of the environment (loop closure) are main problems. Solv-
ing loop closure problem becomes more difficult in range sensor based methods
because only depth information is available. It is possible to develop more suc-
cessful solutions to the loop closure problem by using color data obtained from
the camera. However, operations performed during the transition from 2D to
3D create a serious computational overhead. With the introduction of RGB-D
sensors like the Microsoft Kinect, which provide color images and depth maps
together in real-time, SLAM approaches using both RGB and depth data have
become increasingly popular. By using color and depth data together, more
c© Springer International Publishing Switzerland 2015
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effective solutions for the loop closure and illumination change problems can
be developed.

In SLAM, registration of data frames is an important step to compute the
robot’s motion. In most SLAM methods, preferred approach for registration is
matching feature points detected in image frames. Thus, feature detectors and
descriptors have critical importance for SLAM performance. In this work, effects
of several feature detectors and descriptors on the accuracy and speed of an
RGB-D SLAM method are investigated. The RGB-D SLAM method proposed
in [7] is used as a test environment. SIFT [8], SURF [9], BRISK [10], ORB [11],
FAST [12], GFTT (Good Features to Track) [13], CenSurE based STAR [14]
feature detectors and SIFT, SURF, BRISK, ORB, BRIEF [15], FREAK [16]
feature descriptors are tested and their effectiveness on the system performance
is evaluated.

2 Related Work

Computing the robot’s motion and building map with an RGB-D camera is
a new research area. Henry et al. [17] developed a SLAM method that uses
visual features and shape based alignment together. SIFT feature points are
detected in RGB frames and associated with depth data. Then the transforma-
tion between matched features is calculated using RANSAC [18] and the set of
feature pairs that produce best transformation is obtained. ICP algorithm [19]
is applied to minimize odometry error by initialization with the transformation
found by RANSAC. In loop closure detection step, RANSAC transformation
between related frames is calculated and count of inliers is needed to exceed
a predefined threshold. After each loop closure detection, optimization is per-
formed on the graph with TORO [20]. In [21], Henry et al. use FAST detector
with Calonder descriptor [22] in their previous approach and improve system
performance. When calculating the transformation between frames, ICP algo-
rithm is not applied if inlier count after RANSAC exceeds a threshold. Sparse
Bundle Adjustment [23] is used for graph optimization. Endres et al. [24] use
SIFT, ORB and SURF for feature detection. They calculate transformation with
RANSAC and apply g2o [25] for graph optimization. Fioraio and Konolige [26]
use color and depth features together to perform global adjustment as well as
frame registration. Also the effect of noise is reduced by subsampling depth
images. g2o is preferred for optimization.

3 Method

One of the most popular solutions for SLAM is the graph based approach. Nodes
of the graph contain robot positions in time and edges hold constraints between
positions connected [27]. In this approach, SLAM problem is described as a least
squares optimization of an error function in a graph [25]. For minimizing error,
optimization is performed on this graph structure and the most probable values
for the robot positions are determined.
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In this paper, graph based RGB-D SLAM method of Endres et al. [7] is
used. In this method, feature points in RGB frames are detected and descriptor
vectors are constructed. 3D coordinates of each feature point are calculated by
using depth data in the related depth frame. After matching feature points,
transformation between frames is calculated from 3D point correspondences via
RANSAC for computing motion. For each new frame from the RGB-D sensor,
if a valid transformation can be calculated with candidate frames, an edge is
added to the graph between the related nodes. Candidate frames are divided
into 3 different groups. First group is the n frames preceding the current frame.
Second group consists of k frames chosen from the neighborhood of the previous
frame in the graph (candidates in the first group are not considered). Third
group contains l frames chosen from keyframes. The candidates in the second
and third groups are used for loop closure detection. In this way, the graph grows
with the addition of new nodes and edges by arrival of frames from the sensor.
g2o method is used for graph optimization. The edges having higher error values
than a certain level are pruned. The positions during the movement of the robot
are computed to determine the trajectory. Map of the environment is created by
combining observations of each position in a common coordinate system.

In this study, effects of feature detectors and descriptors on SLAM perfor-
mance are studied. SIFT, SURF, BRISK, ORB, FAST, GFTT, GFTT HARRIS
(GFTT with Harris detector [28] enabled) and STAR are used as feature detec-
tors. BRIEF and FREAK feature descriptors are tested with all detectors. SIFT,
SURF, BRISK and ORB descriptors are also tested with their own detectors.

4 Experiments and Evaluation

In the experiments, TUM RGB-D benchmark [29] dataset and its error metric
are used. The dataset contains RGB and depth frames recorded with an RGB-
D camera and ground truth camera trajectory obtained with a motion capture
system. 9 sequences of the fr1 dataset containing scenes of an office environment
are chosen for the experiments. Absolute Trajectory Error (ATE) metric is used
for performance evaluation. This error metric represents difference between the
ground truth and the estimated trajectory. The experiments are performed on
a PC running Ubuntu 12.04 with Intel Core i7-2600 3.40GHz CPU, 8GB RAM
and NVIDIA GeForce GTX 550 Ti graphics card. OpenCV implementations of
the feature detectors and descriptors are used in the experiments.

The maximum number of feature points extracted from a frame is set to
700. The number of RANSAC iterations for the transformation calculation is
chosen as 250. These parameters are determined after doing several experiments
and observing the results. Candidate frame parameters n, k and l are assigned
to equal values of 4, 8, or 12. Thus the candidate value of 4 means that n =
k = l = 4. The optimization is performed after processing of all data frames.
While matching feature points, Bruteforce-Hamming method is used for binary
descriptors (BRISK, ORB, BRIEF and FREAK) and FLANN method is used
for floating point descriptors (SIFT and SURF).
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Table 1. Accuracy (root mean square error of ATE) results for fr1 dataset

Feature detector Feature descriptor Cand.=4 Cand.=8 Cand.=12 Average

BRISK BRIEF 0,0461 m 0,0491 m 0,0381 m 0,0444 m

BRISK FREAK 0,0559 m 0,0430 m 0,0411 m 0,0467 m

BRISK BRISK 0,0502 m 0,0464 m 0,0460 m 0,0475 m

FAST BRIEF 0,0680 m 0,0587 m 0,0567 m 0,0611 m

FAST FREAK 0,0832 m 0,0629 m 0,0584 m 0,0682 m

GFTT BRIEF 0,0402 m 0,0377 m 0,0383 m 0,0387 m

GFTT FREAK 0,0396 m 0,0380 m 0,0373 m 0,0383 m

GFTT HARRIS BRIEF 0,0404 m 0,0390 m 0,0387 m 0,0394 m

GFTT HARRIS FREAK 0,0399 m 0,0392 m 0,0376 m 0,0389 m

ORB BRIEF 0,1081 m 0,1134 m 0,0824 m 0,1013 m

ORB FREAK 0,2614 m 0,2181 m 0,2329 m 0,2375 m

ORB ORB 0,1630 m 0,1601 m 0,1058 m 0,1430 m

SIFT BRIEF 0,0551 m 0,0521 m 0,0515 m 0,0529 m

SIFT FREAK 0,0459 m 0,0472 m 0,0436 m 0,0456 m

SIFT SIFT 0,0426 m 0,0387 m 0,0372m 0,0395 m

STAR BRIEF 0,0460 m 0,0383 m 0,0381 m 0,0408 m

STAR FREAK 0,0395m 0,0365m 0,0377 m 0,0379m

SURF BRIEF 0,0490 m 0,0405 m 0,0396 m 0,0430 m

SURF FREAK 0,0526 m 0,0492 m 0,0497 m 0,0505 m

SURF SURF 0,0409 m 0,0389 m 0,0385 m 0,0394 m

Average 0,0684 m 0,0624 m 0,0575 m 0,0627 m

Accuracy results of all test combinations are given in Table 1. Accuracy is
expressed as root mean square of ATE. Smaller value means more precise tra-
jectory estimation. STAR+FREAK combination has the best results on average
with 3,79 cm root mean square of ATE. Although STAR+FREAK is the most
successful choice for 4 and 8 candidates, SIFT+SIFT is the most successful for 12
candidates. GFTT+FREAK and GFTT+BRIEF combinations also have close
performance to STAR+FREAK combination in average results. Error rates of
the most successful 6 combinations for 9 sequences in fr1 dataset are analyzed
in Fig. 1. Sequences containing loops, such as 360, plant, room, and teddy, gen-
erally produce higher error values except floor sequence. The error value for
floor sequence is relatively lower since camera movements are more stable and
angular velocity is low. Ground truths and estimated trajectories for desk and
plant sequences with STAR+FREAK and candidate value of 8 are given in Fig. 2.
The estimated trajectory for the desk sequence is very close to the ground truth.
However, deviation between the ground truth and the estimated trajectory for
plant sequence is more notable due to the larger error rate.
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Fig. 1. Detailed error rates of the best 6 combinations for 9 sequences in fr1 dataset
(Average of 4, 8 and 12 candidate value results)

(a) desk (b) plant

Fig. 2. x-y plane projections of ground truth and estimated trajectory for desk and
plant sequences with STAR+FREAK (Candidate=8)

Besides accuracy, computational complexity is important in SLAM applica-
tions. Table 2 shows runtime results of all tested cases. The time spent for opti-
mization is considered when calculating processing time per frame. The fastest
method on average is ORB+FREAK with 0,0866 seconds per frame. In our
experiments, ORB is the fastest feature detector with all descriptors but its
accuracy is worst as it can be seen in Table 1. When accuracy and speed are evalu-
ated together, the most appropriate option is STAR+FREAK with 3,79 cm error
and 0,1657 s processing time on average. GFTT+FREAK and GFTT+BRIEF
seem to be next best options after STAR+FREAK. Enabling Harris detector
with GFTT provides an increase in speed but the error rate grows. Processing
time increases with larger candidate values because more frames are compared
for loop closure detection. However, larger values of candidates in the loop clo-
sure detection generally reduce the error rate as it can be seen in Table 1. On
the other hand, accuracy of the system may decrease in some cases, such as
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Table 2. Runtime (processing time per frame) results for fr1 dataset

Feature detector Feature descriptor Cand.=4 Cand.=8 Cand.=12 Average

BRISK BRIEF 0,1182 s 0,1775 s 0,2120 s 0,1692 s

BRISK FREAK 0,1253 s 0,1902 s 0,2365 s 0,1840 s

BRISK BRISK 0,1258 s 0,1917 s 0,2567 s 0,1914s

FAST BRIEF 0,1194 s 0,1806 s 0,1960 s 0,1653 s

FAST FREAK 0,1194 s 0,1687 s 0,2551 s 0,1811 s

GFTT BRIEF 0,1354 s 0,1926 s 0,2460 s 0,1913 s

GFTT FREAK 0,1301 s 0,2132 s 0,2825 s 0,2086 s

GFTT HARRIS BRIEF 0,1315 s 0,1762 s 0,2233 s 0,1770 s

GFTT HARRIS FREAK 0,1296 s 0,2100 s 0,2757 s 0,2051 s

ORB BRIEF 0,0915s 0,1193 s 0,1210 s 0,1106 s

ORB FREAK 0,0836 s 0,0867 s 0,0895 s 0,0866 s

ORB ORB 0,0955 s 0,1089 s 0,1315 s 0,1120 s

SIFT BRIEF 0,1875 s 0,2337 s 0,2603 s 0,2272 s

SIFT FREAK 0,1865 s 0,2310 s 0,2909 s 0,2361 s

SIFT SIFT 0,2815 s 0,3343 s 0,3385 s 0,3181 s

STAR BRIEF 0,1242 s 0,1680 s 0,2195 s 0,1706 s

STAR FREAK 0,1205 s 0,1671 s 0,2094 s 0,1657 s

SURF BRIEF 0,2524 s 0,2941 s 0,3126 s 0,2864 s

SURF FREAK 0,2360 s 0,2752 s 0,3196 s 0,2769 s

SURF SURF 0,4349 s 0,4986 s 0,5584 s 0,4973 s

Average 0,1614s 0,2109 s 0,2518 s 0,2080 s

STAR+FREAK, SURF+FREAK, GFTT+BRIEF, etc. This problem may hap-
pen due to false detection of loop closures while examining more candidates. In
Fig. 3, processing times of the most successful 6 combinations for 9 sequences
are given in detail. Except xyz and rpy sequences, the results are generally close
to each other. xyz and rpy sequences consist of simple and small scale camera
movements. Therefore, the number of candidate frames that a valid transforma-
tion can be calculated for each new frame increases faster comparing to other
sequences. Thus the number of edges added to the graph grows faster and com-
putation time increases for each frame.

BRIEF and FREAK descriptors are tested with all detectors in the experi-
ments. Considering the results in Table 1, BRIEF produces 5,27 cm average error
on 8 different combinations while FREAK produces 7,04 cm. According to the
runtime results, 0,1872 s are spent for each frame with BRIEF and 0,1930 s with
FREAK on average. When BRIEF and FREAK are used with SIFT, SURF,
BRISK and ORB detectors, which have their own descriptors, processing time
generally decreases. On the other hand, when SIFT and SURF detectors are
used with their proposed descriptors, more accurate results are obtained.
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Fig. 3. Frame processing times of the best 6 combinations for 9 sequences in fr1 dataset
(Average of 4, 8, and 12 candidate value results)

5 Conclusion

In this study, effects of various feature detectors and descriptors on performance
of an RGB-D SLAM method are analyzed in terms of accuracy and speed. When
considering both accuracy and speed, the most efficient option is STAR+FREAK
combination with 3,79 cm error and 0,1657 s processing time per frame on aver-
age. The best results in terms of speed are reached with ORB+FREAK com-
bination. Experiments have shown that feature detector and feature descriptor
selections are important in SLAM performance. The factors such as detecting
few feature points in the frame, sudden change of the light level in the environ-
ment and noise level of the frame effect performance adversely. Fast movement
of the camera and vibration cause to blurring problems and increase error rate.
As a future work, filtering techniques can be studied to improve the quality of
feature detection and matching.
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Abstract. We have proposed three-dimensional recovery methods using
random camera rotations imitating involuntary eye movements of a human
eyeball. Those methods are roughly classified into two types. One is a
differential-type using temporal changes of image intensity, and is suit-
able for coarse textured images relative to the amplitude of the image
motion. Another is an integral-type using image blur caused by the cam-
era motions, and is proposed for fine textured images. In this study, we
focus on the differential-type method. In this method, it is important
that unsuited image pairs for the gradient equation should not be used
for computing. We attempt to improve the accuracy by selecting suitable
image pairs at each pixel and using only those to recover a depth map.
Additionally, we evaluate the performance of the improved method by
actually implementing the camera system which can capture images with
performing small irregular rotations.

Keywords: Shape from motion · Gradient method · Random camera
motions · Fixational eye movements

1 Introduction

Recently, in the field of computer vision, depth reconstruction has gotten high
accuracy and a binocular stereopsis [1] has become a mainstream. By the usual
binocular stereopsis, we can get relatively large disparities, which enables high
accurate depth reconstruction. However, exact point correspondences between
two images is difficult, and additionally, occlusions may often occur. To solve
these problems, a huge number of studies have been carried out. We focus on a
motion stereo vision, i.e. a monocular stereopsis, in which these problems are not
severe as compared with a binocular stereo. In a motion stereo vision, to recover
a dense depth map with less computations, the analytic solution using spatiotem-
poral differentials of image intensity called the gradient method has attracted
attention. The gradient method is effective for a small motion parallax between
two successive images, therefore it cannot get high accurate reconstruction in
c© Springer International Publishing Switzerland 2015
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general. Accordingly, we expect to increase depth information for each pixel, i.e.
each three-dimensional (3-D) point on a target object.

On the other hand, the human vision system has unconscious irregular eye
movements called fixational eye movements [2]. Fixational eye movements consist
of three components; the drift moving gradually toward a certain direction, the
microsaccade generating momentarily a large movement and the tremor indi-
cating random and small vibrations. Because the tremor covers only a small
number of visual cells of a retina and hence, it can acquire depth information of
the same 3-D point approximately without point tracking on a retina, we have
picked up the tremor so far. When we rotate a camera randomly by imitating
the rotations of a human eyeball, translational motions occur at the lens center,
which enables depth recovery as a motion stereo vision.

Using such an imaging system imitating the tremor, we can use many image
pairs obtained simultaneously by the random camera rotations, and already pro-
posed the algorithms based on the gradient method [3,4]. For processing multiple
image pairs simultaneously, we constructed the direct method in which depth
is defined as a common variable explicitly instead of optical flow regarded as a
variable in many gradient based methods [5–7]. The gradient equation, which
is a fundamental equation in the gradient method, is defined as a first-order
approximation of the invariant constraint of image intensity before and after
the camera motion. The equation indicates the relation between spatiotemporal
differentials of image intensity and optical flow. Since the effectiveness of the
gradient equation highly depends on the adaptability of the first-order approx-
imation, in the case when the optical flow is greatly large as compared with
the spatial wavelength of the image intensity, the error in the depth reconstruc-
tion can be regarded as a result of the aliases of the optical flow, which are not
detected explicitly. Therefore, to improve the accuracy we propose a strategy
that only the suitable image pairs expected to have little approximation error
are used to recover the depth. In this study, we implement the proposed camera
system and carry out the calibration of it [8]. Using this system, we confirm
the performance of the proposed method for selecting suitable image pairs and
acquire the useful results leading future studies.

The proposed imaging system having random camera rotations is expected to
be used to improve the performance of a binocular stereopsis. In a future system
which we plan, both camera systems in a binocular stereopsis firstly detect a
rough depth map respectively or cooperatively using random camera rotations,
which accuracy is not so high but is hard to be affected by occlusions. Using the
detected rough depth map, the stereo matching can be done stably with avoiding
occlusions. In addition, the rough depth map can be used as a feature amount
for the stereo matching together with intensity information.

2 Camera Model Imitating Tremor

In this study, we assume the perspective projection. A camera is fixed in the
(X,Y,Z) coordinate system, shown in Fig. 1, and we set the lens center of the
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Fig. 1. Camera motion and image projection model.

camera at the origin O, the optical axis along Z axis, the camera focus length as
f = 1, and the image plane as Z = 1. A 3-D vector X = [X,Y,Z]T indicating
a 3-D point on an object is projected onto a point (x, y, 1) in the image using a
homogeneous coordinate. We show the camera motion model also in Fig. 1. The
translational velocity vector u = [ux, uy, uz]T and the rotational velocity vector
r = [rx, ry, rz]T are indicated. Optical flow at each pixel satisfies the following
equations.

vx = xyrx − (1 + x2)ry + yrz − (ux − xuz)d, (1)

vy = (1 + y2)rx − xyry − xrz − (uy − yuz)d, (2)

where d is an inverse of Z, and is unknown at each pixel. On the other hand,
(u, r) are unknown parameters for a whole image. On the analogy of a human
eyeball, we can set a camera’s rotation center at the back of a lens center with
Z0 along an optical axis, and we assume that there is no explicit translational
motions of a camera. This rotation with the rotational velocity vector r can
also be represented using the coordinate origin as its rotation center with the
same rotational vector. On the other hand, this difference between the origin
and the rotation center causes a translational velocity vector u implicitly, and
is formulated as follows:

u = r ×
⎡

⎣
0
0
Z0

⎤

⎦ = Z0

⎡

⎣
ry

−rx
0

⎤

⎦ . (3)

Using this representation, we can formulate optical flow specially for the tremor-
like camera motions as follows:

vx = xyrx − (1 + x2)ry − Z0ryd ≡ vr
x − ryZ0d, (4)

vy = (1 + y2)rx − xyry + Z0rxd ≡ vr
y + rxZ0d. (5)
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3 Outline of Depth Recovery Method Using Tremor

We represent image intensity as f(x, y, t), and a first-order approximation of the
intensity invariant constraint before and after the camera motion is derived as
follows and is called the gradient equation.

ft = −fxvx − fyvy, (6)

where ft, fx, fy are the partial derivatives of f . By substituting Eqs. 4 and 5
into Eq. 6, the gradient equation for rigid motion can be formulated as follows:

ft = −(fxvr
x + fyv

r
y) − (−fxry + fyrx)Z0d ≡ −fr − fud. (7)

Usual gradient method firstly detects optical flow, and next depth is recovered
from the detected optical flow. However, to use multiple image pairs simulta-
neously and efficiently, depth should be defined as a common variable for all
images.

We model that f
(i,j)
t includes the observation error according to the normal

distribution with an average of 0 and a variance of σ2
o . The pixel position and

the frame number are indicated by i and j respectively. In addition, we assume
that r(j) is a sample of the 2-D normal distribution with an average of 0 and a
variance of σ2

r . Using these probabilistic models, the joint probability of {f
(i,j)
t }

and {r(j)} is given as follows, where Θ = {σ2
o , σ

2
r} is unknown parameters.

p({f
(i,j)
t }, {r(j)}|Θ) =

N∏

i=1

M∏

j=1

p(f
(i,j)
t |d(i)

, r
(j)

, σ
2
o)

M∏

j=1

p(r
(j)|σ2

r)

=
1

2πM(N+1)/2σMN
o σ2M

r

exp

⎧
⎪⎨

⎪⎩
−
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i=1
∑M

j=1

(
f
(i,j)
t + fr(i,j) + fu(i,j)d(i)

)2

2σ2
o

−
∑M

j=1 r(j)�
r(j)

2σ2
r

⎫
⎬

⎭
, (8)

where i = 1, · · · , N and j = 1, · · · ,M .
In this study, we use many frames vibrating caused by the random camera

rotations, therefore the detected depth should be considered as the average value
of the neighboring local area, namely, d(i) has a local correlation as a result. The
spatial extension of this correlation also depends on the value of depth, but now,
for simplification, we use the prior probability as the next formula.

p(d|σ2
d) =

1
(
√

2πσd)N
exp

{
−d�Ld

2σ2
d

}
, (9)

where d is an N -dimensional vector composed of {d(i)} and L indicates the
matrix corresponding to the N -dimensional Laplacian operator under a free
boundary condition. The variance-covariance matrix of the prior probability is
σ2
dL

−1, which models succinctly a smooth depth map because of d�Ld = ‖Dd‖2
with a first order differential operator D. σ2

d is a control parameter for the depth
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Fig. 2. Illustration of alias using profiles of image intensity of successive image pairs.

smoothness, which is treated as a known value in this method. Based on the
above models, we can determine {σ2

o , σ
2
r} as a maximum likelihood estimate and

d and {r(j)} are a MAP estimate. To do those stably, we can apply the EM
scheme [9], especially the One-Step-Late (OSL)-MAP-EM algorithm [10].

4 Proposed Technique for Accurate Depth Recovery

4.1 Alias in Optical Flow Detection

Aliases are the state caused by a low sampling rate against the maximum fre-
quency of a signal. In our problem, when the image motion is large comparing
with the spatial length of image intensity pattern, the direction of the implicitly
detected optical flow is opposite to the true direction and causes a large recovery
error of depth. We illustrate the example of the image intensity profiles of two
successive images, when alias occurs in Fig. 2.

In this figure, the red sine wave has moved toward the right direction from
the position shown as the blue sine wave. Since the displacement is larger than
λ/2, where λ means the wavelength of a signal, by the human perception and
many methods for detecting optical flow, the incorrect motion directed to the left
side is obtained. To avoid such a mistake, the displacement, i.e. the amplitude
of optical flow should be sufficiently smaller that λ/2.

4.2 Selective Use of Image Pairs to Improve Accuracy

As we can use many image pairs for each pixel, we propose a scheme that at
each pixel we exclude the gradient equations, i.e. the successive image pairs,
having a large approximation error at each pixel. M means the number of images
given according to the random camera rotations. An inner product of the spatial
gradient vectors of two successive images can be used to select the image pairs
causing no alias problems. For each pixel, the image pairs of which the sign
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of the inner product f (i,j)
s

�
f (i,j−1)
s is negative are discarded. It is noted that

f (i,j)
s = [f (i,j)

x , f
(i,j)
y ]�.

In the next step, from the image pairs remained by the above decision, we
additively select the good image pairs for each pixel by estimating the amount
of the nonlinear terms included in the observation of ft. ft is exactly represented
as follows:

ft = −fxvx − fyvy − 1
2

{
fxxv2

x + fyyv
2
y + 2fxyvxvy

}
+ · · · . (10)

After discarding the wrong image pairs, the nonlinear term can be considered
small, and in this case the second-order term in Eq. 10 can be estimated at each
pixel i as follows:

− 1
2

{
(f (i,j)

x − f (i,j−1)
x )v(i,j)

x + (f (i,j)
y − f (i,j−1)

y )v(i,j)
y

}
. (11)

Spontaneously, we can define the measures as a ratio for the amount of the
first-order term for estimating the amount of the equation error.

J =
|(f (i,j)

x − f
(i,j−1)
x )v(i,j)

x + (f (i,j)
y − f

(i,j−1)
y )v(i,j)

y |
2|f (i,j)

x v
(i,j)
x + f

(i,j)
y v

(i,j)
y |

. (12)

This measure depends on the direction of optical flow but is invariant with
respect to the amplitude of optical flow. To use J for estimating the equation
error, the true value of optical flow is required to be known. By examining the
details of J , even if the difference of the spatial gradient f (i,j)

s − f (i,j−1)
s is

large, when the direction of f (i,j)
s − f (i,j−1)

s is perpendicular to that of optical
flow, the equation error becomes small. Hence, the value |f (i,j)

s −f (i,j−1)
s |/|f (i,j)

s |
can be used as a worst value. In this study, the image pairs for which |f (i,j)

s −
f (i,j−1)
s |/|f (i,j)

s | is less than the certain threshold value are selected at each pixel
to be used for depth recovery.

5 Performance Evaluation Through Experiments

5.1 Implementation of Camera System

From the past, we have variously improved the depth recovery method based on
the camera rotations imitating fixational eye movements through many sim-
ulations. Therefore, we attempted to build the camera hardware system for
examining the practical performance of our camera model shown in Fig. 1. The
implemented camera system which we use in the experiments of this study is
shown in Fig. 3(a), and the monitor image of the control software is shown in
Fig. 3(b).

The camera system can be rotated around the horizontal axis i.e. X-axis and
around the vertical axis, i.e. Y-axis. The rotation around the optical direction,
i.e. Z direction, cannot be performed, which is not needed to obtain the depth
information. The parameters of the system are shown as follows:
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Fig. 3. Experiment system: (a) camera system implemented for tremor rotations, (b)
monitoring display of software to control camera rotation and capture images.

– Focal length: 2.8 − 5.0 mm
– Image size : 2 million (1200 × 1600) pix.
– Movable width : X-axis 360 deg., Y-axis (−10,+10) deg.
– Drivable minimum unit : X-axis : 1 pulse = 0.01 deg. , Y-axis : 1 pulse =

0.00067 deg.

The 1st and 2nd columns shown in the right side in Fig. 3(b) are the sections to
input the rotation values around X-axis and Y -axis respectively. These data can
be input by manual operation or loaded from data files by the control software,
and then the camera moves according to them. For each rotation angle, an image
can be captured continuously.

5.2 Experiments

We refer to the results of the experiments using the real images captured by the
developed camera system. Our camera system has the parallel stereo function,
namely the camera can move laterally by a slide system. Before experiments, the
system was calibrated by the method in [8] and the stereo vision. The images
are gray scale and consist of 256×256 pixels with 8 bit digitization. An example
is shown in Fig. 4(a). The true inverse depth of the target object is shown in
Fig. 4(b). In this figure, the horizontal axis indicates the position in the image
plane, and the vertical axis indicates the inverse depth using a focal length as a
unit. We captured 100 images. The maximum repetition number of the MAP-EM
algorithm was set as 600, within which almost iterations converges. In addition,
we determined σ2

d heuristically. The average value of |f (i,j)
s − f (i,j−1)

s |/|f (i,j)
s |

explained in the previous section with respect to all pixels was defined for each
image pair as a standard magnification (×1) of the threshold for each image pair
to select the suitable image pairs for each pixel. Namely, by decreasing the thresh-
old magnification, we can discard more image pairs. Conversely, by increasing
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Fig. 4. Data for experiments: (a) example of captured image, (b) true inverse depth of
object.

Fig. 5. Profiles of cross-section of recovered inverse depth: (a) all image pairs are used
(100 %), (b) threshold ×1.5(94 % image pairs were used), (c) threshold ×1.25(86 %),
(d) threshold ×1(68 %), (e) threshold ×0.75(62 %), (f) threshold ×0.5(62 %).
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the threshold magnification, many image pairs can be used for recovery. Because
of the limit of pages, we only show the results with σ2

r = 2.64 × 10−2 by which
the average of the optical flow’s amplitude approximately coincides with λ/4.

Figure 5 indicates the results of the recovered inverse depth as a cross section
for several magnification of the threshold values. The result using all image pairs
was examined also. For simplicity, the profile views of the cross-section of the
recovered d are shown. From theses results, we can confirmed that by decreasing
the magnification, the unsuitable image pairs can be discarded and the accuracy
of the recovery is improved. The percentage in the figure captions indicates the
image number used for recovery which is averaged about all pixels and is varied
in conjunction with the threshold value. Since the proposed technique is expected
to be effective especially for fine textured images, depth recovery of the texture
shown in Fig. 6 was also carried out. The results under the same condition of
Fig. 5 are shown in Fig. 7.

6 Conclusions

In this study, we proposed the scheme to improve the accuracy of depth from
multi-views. In our scheme, with consideration of the higher-order terms included

Fig. 6. Captured image having fine texture.

Fig. 7. Profiles of cross-section of recovered inverse depth for fine image: (a) all image
pairs are used (100 %), (b) threshold ×1.5(45 % image pairs were used).
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in the observed temporal differentials, we selected the image pairs having less
higher-order terms using the difference of the spatial gradient of the image inten-
sity between two successive images as an estimate. Through the real image
experiments using the developed camera system, we confirmed that our scheme is
effective for the accuracy. We will perform more actual experiments using objects
having general textures and shapes. In the future, we are going to develop the
binocular stereo system each camera of which has the function proposed in this
study to obtain high performance.
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Abstract. Fundamental matrix estimation from two views plays an
important role in 3D computer vision. In this paper, a fast and robust
algorithm is proposed for the fundamental matrix estimation in the
presence of outliers. Instead of algebra error, the reprojection error is
adopted to evaluate the confidence of the fundamental matrix. Assum-
ing Gaussian image noise, it is proved that the reprojection error can
be described by a chi-square distribution, and thus, the outliers can be
eliminated using the 3-sigma principle. With this strategy, the inlier
set is robustly established in only two steps. Compared to classical
RANSAC-based strategies, the proposed algorithm is very efficient with
higher accuracy. Experimental evaluations and comparisons with previ-
ous methods demonstrate the effectiveness and advantages of the pro-
posed approach.

Keywords: Fundamental matrix · Robust estimation · Outlier
elimination

1 Introduction

Fundamental matrix plays an important role in epipolar geometry since it con-
tains all geometric information about the relative transformation between two
images. Fundamental matrix estimation is based on solving a homogeneous linear
system in which each linear equation is formed by a pair of correspondence fea-
ture points. When the data is free of outliers, the nonlinear seven-point method
[1] or linear eight-point method [2] is used to recover the fundamental matrix
from the linear system via least squares. In practice, however, the outliers or large
measurement errors are inevitable due to the inconsistency in feature extraction
and matching process. Therefore, a robust algorithm that is resilient to outliers
is vital for fundamental matrix estimation.

A large number of robust estimation approaches have been proposed to
alleviate the influence of outliers to the fundamental matrix estimation. The
M-estimator method [1,3] reduces the effect of outliers by applying weight func-
tions to transform the problem to a weighted least squares problem. However, the
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approach needs a good initial estimation and only works under low percentages
of outliers. LMedS [4,5] evaluate each estimation in terms of the median sym-
metric epipolar distances of the point correspondences and choose the one which
minimizes the median error. The method does not need to know the percentage
of outliers, but it is very time-consuming. RANSAC is a very popular robust
algorithm for fundamental matrix estimation [6,7]. The algorithm use minimal
points set to estimate an initial guess. Then, the confidence of the estimation
is established by testing each point correspondence against the hypothesized
model; and an inliers set is determined by choosing points that have error below
a given threshold. Next, a new fundamental matrix is estimated by the inliers
set. Iteratively, the RANSAC algorithm attempts to find a solution that max-
imize the amount of the inlier set. In the last two decades, several RANSAC
based algorithm have been proposed.

PROSAC algorithm [8], by taking into account additional information of
the quality of the errors of the point matches, largely reduces the number of
iterations. The MLESAC algorithm [9] maximizes a likelihood which is a mixture
model of normal distribution for inliers and uniform distribution for outliers. The
parameter of the model is estimated by expectation maximization. MAPSAC
[10] maximizes the posterior estimation of the fundamental matrix and matches.
Feng et al. [11] proposed a robust estimation method that measure the point
matches by means of 2D reprojection error. The algorithm uses the mixture
models of Gaussian and Uniform distributions. Huang et al. [12] improved the
RANSAC algorithm by means of constructing a voting array for all the point
correspondence pairs to record the consistency votes for each pair from a number
of fundamental matrix estimations to better identify the outliers. Carro et al.
[13] proposed a new robust method by combining the PROSAC and LMedS
algorithms. All the above RANSAC-based approaches basically concentrate on
the evaluation criterion of the estimation instead of the iteration step. Although
these methods can achieve a better estimation of the fundamental matrix, the
time cost issue is still not solved. The iterations increase greatly with the increase
of outlier percentages, as a result, much more computation time is required.

In this paper, we adopt reprojection error, rather than the widely used alge-
braic error, to evaluate the confidence of the fundamental matrix. By assuming
Gaussian image noise, it is shown that the reprojection error of point correspon-
dences can be described by a chi-square distribution, and the outliers usually
yield very large reprojection errors. Thus, the outliers can be simply eliminated
using the 3-sigma principle. Based on this observation, a fast and robust algo-
rithm is proposed for the fundamental matrix estimation. With this strategy,
the inlier set can be robustly established in only two steps. Compared to other
robust algorithms, the proposed technique is not only very efficient, but also
extremely accurate. The algorithm is validated by extensive experiment using
both synthetic and real image data.
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2 Robust Fundamental Matrix Estimation

2.1 Eight-Point Linear Algorithm

Fundamental matrix is estimated from a set of point correspondences between
two images. Given an image pair I and I′, suppose xi ∈ I and x′

i ∈ I′ are a
pair of corresponding homogeneous points between the two images. Then, the
fundamental matrix F satisfies the following equation.

x′T
i Fxi = 0 (1)

where the fundamental matrix is a 3 × 3 homogeneous matrix defined up to
scale. Each pair of point correspondence yield one linear constraint the entries
of F. Thus, the fundamental matrix can be linearly estimated from eight point
pairs. When more correspondences are available, the fundamental matrix can be
estimated via least squares.

2.2 Algebric Error and Reprojection Error Evaluation

After obtaining an estimation of the fundamental matrix, an error measure can
be evaluated for each pair of point correspondence. The most commonly used
criterion is the algebraic error defined as ea(i) = x′T

i Fx′
i. This definition is

simple, however, it does not have any geometric meaning.
Based on the initially estimated fundamental matrix, a pair of camera matri-

ces can be recovered, and thus, a perspective 3D reconstruction of all correspond-
ing points is obtained via triangulations [14]. Then, the reconstructed 3D points
can be reprojected back to the two images via the camera matrices. Suppose x̂i

and x̂′
i are the reprojected images of point i, the 2D reprojection error of the

corresponding point is defined as

er(i) =
1
2

∑
‖xi − x̂i‖2F + ‖x′

i − x̂′2
i ‖F , s.t. x̂′T

i Fx̂i = 0 ∀i (2)

The 2D reprojection error is proven to be more superior to other geometric
errors. Optimal triangulation [14] is a linear triangulation method which converts
the least-square function to a one parameter function and finds a global optimal
solution.

Fig. 1. (left) The histogram distribution of the real added noise and outliers. (right)
The histogram distribution of the reprojection errors.
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Fig. 2. Evaluation results from synthetic data. (left) Outlier detection rates; (middle)
reprojection errors; and (right) computation time (second) by different algorithms.

2.3 Outlier Detection Strategy

The image noise is normally modeled by Gaussian distribution. Under this
assumption, it can be verified that the reprojection error should follow chi-square
χ2 distribution, as shown in our simulation result Fig. 1.

In Fig. 1, the added noise is Gaussian, while the added outliers are some
random points with large standard deviations. As shown in the figure, the points
located at the leftmost and rightmost areas are added outliers. Through extensive
simulations, we found that the reprojection errors of outliers are usually greatly
larger than those of inliers. This result is also support by our early study on
structure from motion [16]. As a result, these outliers can be identified using
3-sigma principle. Points with reprojection errors larger than the triple variance
of all the reprojection error can be classified as outliers. Based on robust statistics
[15], we can obtain a robust standard deviation of the reprojection errors by the
following equation.

σ = 1.4826
(
1 +

5
n − q

)
mediani|eri | (3)

The above equation is the median absolute deviation (MAD) scale estimate
[15]. The first number is obtained from the inverse of the cumulative normal
distribution, and the term (1 + 5

n−q ) is the finite sample correction factor with
the total number of parameters q = 8 and n the total number of features. The
details of the derivation can be found in [15]. According to the distribution
model, we distinguish the inliers from their reprojection errors of each pair of
corresponding points. The points whose reprojection errors are less than 3σ
are deemed as inliers, since 99.14% of the data points lies within 3σ under the
assumption of the Gaussian distribution error model.

2.4 Outline of the Proposed Approach

Based on the above discussion, the implementation details of proposed approach
is summarized as below.
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1. Normalize the coordinates of all matching points;
2. Estimate an initial fundamental matrix using eight-point linear algorithm;
3. Compute the reprojection error and determine an outlier threshold;
4. Re-estimate the fundamental matrix using the inliers detected in step 3;
5. Repeat the steps 3 and 4 one time to refine the inlier set;
6. Estimate the optimal fundamental matrix using the inliers obtained in step 5.

3 Evaluations on Synthetic Data

The proposed algorithm was evaluated on synthetic data and compared with
previous algorithms. During the simulation, 200 space points were randomly
generated with a cube of [10, 10, 10], and two images were produced from these
points. The image size is 800 × 800; and the focal lengths of the two cameras
are set at 800. Gaussian noise with zero mean and 2 pixels standard deviation is
added to each pixel. Outliers are simulated as Gaussian noise with large standard
deviation (greater than 8 pixels in the test); and they are randomly added to
part of the image points. The percentage of outliers varies from 5% to 30% in a
step of 5%.

We evaluated and compared the performance of the proposed algorithm with
three popular previous algorithms proposed in [12,13], and [11], which are named
as Ransac1, Ransac2, and Ransac3, respectively. The evaluation criteria include
outlier detection rate, final reprojection error, and computational cost. 200 inde-
pendent trials are carried out under each configuration in order to yield a more
meaneaingful statistical result. Figure 2 shows the experimental results, from
which we can see that the proposed algorithm obviously outperforms all other
three approaches in terms of the outlier recall precision and the reprojection
error. The computational cost of the proposed algorithm is also noticeably lower
than the Ransac1 and Ransac3 algorithms.

4 Evaluations on Real Images

The proposed algorithm has been evaluated using extensive real images, and only
one result is reported here due to limited space. Two images from the “Model
House” sequence (http://www.robots.ox.ac.uk/∼vgg/data1.html) are used in the
experiment, as shown in Fig. 3. The points marked in red circles denote the point
correspondences between the two images. We randomly select different ratios of
the matched points and add large random noise onto them to simulate the out-
liers. Figure 4 shows the outlier detection rates, final reprojection errors, and
computational cost with respect to different percentage of outliers by different
algorithms. We can see from Fig. 4 that the results are similar to those on syn-
thetic data. The proposed algorithm yields obviously better results than other
three approaches in the real image test.

http://www.robots.ox.ac.uk/~vgg/data1.html
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Fig. 3. Two images of a model house with matching result shown in red circles.

Fig. 4. Evaluation results on model house images. (left) Outlier detection rates; (mid-
dle) reprojection errors; and (right) computation time (second) by different algorithms.

5 Conclusion

In this paper, we have proposed a new robust algorithm for fundamental matrix
estimation based on reprojection errors. Compared with previous algorithms, we
adopted a more meaningful error criterion to evaluate the confidence of the esti-
mated fundamental matrix. With the new outlier detection strategy, the outliers
can be identified from all pairs of point correspondences in two steps, leading to
a more robust and more accurate estimation of the fundamental matrix. Com-
pared to the RANSAC-based algorithms, the proposed algorithm can find the
optimal solution in two steps.
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Abstract. We propose a novel Brain-Inspired Multi-Scales and Multi-
Orientations (BIMSO) segmentation technique for the retinal images
taken with laser ophthalmoscope (SLO) imaging cameras. Conventional
retinal segmentation methods have been designed mainly for color RGB
images and they often fail in segmenting the SLO images because of the
presence of noise in these images. We suppress the noise and enhance the
blood vessels by lifting the 2D image to a joint space of positions and
orientations (SE(2)) using the directional anisotropic wavelets. Then
a neural network classifier is trained and tested using several features
including the intensity of pixels, filter response to the wavelet and multi-
scale left-invariant Gaussian derivatives jet in SE(2). BIMSO is robust
against noise, non-uniform luminosity and contrast variability. In addi-
tion to preserving the connections, it has higher sensitivity and detects
the small vessels better compared to state-of-the-art methods for both
RGB and SLO images.

Keywords: Scanning laser ophthalmoscope · Primary visual cortex ·
Anisotropic wavelets · Multi-scale · Orientation score · Left-invariant
Gaussian derivatives · Blood vessel segmentation · Diabetic retinopathy

1 Introduction

Diabetic retinopathy (DR) is the result of progressive damage to the network of
tiny blood vessels that supply blood to the retina and it is the leading cause of
vision loss in working adult populations. Patients with severe levels of DR are
reported to have poorer quality of life and reduced levels of physical, emotional,
and social well being [15]. Therefore, it is essential to diagnose and control DR
at early stages.

It has been shown that quantitative delineation of morphological attributes
of the retinal vasculature is very useful for diagnosis and monitoring of diabetes
at early stages [8]. It is also possible to study other early DR signs, such as nerve
damage in the cornea with confocal laser microscopy, or changes in retina neural
tissue layer thickness with optical coherence tomography (OCT), but these are
c© Springer International Publishing Switzerland 2015
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less suitable and more costly for large-scale screening. That is why, an extensive
research has been investigated on retinal blood vessel segmentation. However,
an automated computer-aided diagnostic system is far from being clinically used
and still suffers from major difficulties like enhancing and crossing-preserving
segmentation of the vessels at low-contrast and noisy images.

Almost all the proposed segmentation techniques in the literature are designed
based on RGB color fundus images. Supervised pattern recognition methods
often outperform unsupervised ones, because they are based on pre-classified
data. Several features were introduced in the literature for discrimination of the
vessel from non-vessel pixels e.g. the gray level-based properties [11,13], moment-
invariant-based features [11]. Moreover, spatial-frequency techniques (including
Gabor wavelets) and also differential descriptors (including Gaussian derivatives
and steerable filters) were frequently used in the literature [12,13]. Although.
several methods have been proposed, but most of them are not universal and
highly dependent on the imaging technology. This requires us to redesign or
modify the segmentation algorithms for new images. The scanning laser oph-
thalmoscope (SLO) camera is one of these technologies. These cameras use laser
light instead of bright flash of white light and provide high contrast images
with different noise and background profiles, compared to normal color images.
Despite the advantage of the new SLO images, very few studies (e.g. [16]) were
dedicated to them.

The main purpose of this study is to propose a fully automatic and super-
vised delineation technique for SLO images. The proposed method (called Brain-
Inspired Multi-Scales and Multi-Orientations: BIMSO) is inspired by recent
findings about orientation-selective property of receptive fields in primary visual
cortex (V1) [7]. Orientation scores are constructed by projecting the 2D images
to the joint space of positions and orientations (identified by SE(2)) [4], which
results in disentanglement of vessels at crossings and differentiating between
their features. The contextual information is extracted at several orientations
and scales using cake wavelets and left-invariant Gaussian derivatives in rotation-
translation group (SE(2)) [2,6]. BIMSO is mainly proposed for SLO images, but
the performance on RGB images is also as good as state-of-the-art methods. It
has a high sensitivity for both types of images and detects the small vessels
(clinically important) very well compared to state-of-the-art techniques.

This article is structured as follows: Sect. 2 provides the theory of invertible
orientation score, its transformation and reconstruction. The proposed method
is explained in detail in Sect. 3. After suppressing noise at individual orien-
tation layers at preprocessing, different intensity-based and contextual features
are extracted from the enhanced images. Then a feed-forward neural network
is trained using two datasets (RGB and SLO images). The datasets used for
validating our method and the performance measurements are all explained in
Sect. 4. The article is concluded is Sect. 5.
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2 Invertible Orientation Score

The orientation score as a function on SE(2) ≡ R
2 × S1 domain is obtained by

correlating the input image (f) with an anisotropic wavelet ψ [3]:

Uf (x, θ) = (Rθ(ψ) � f)(x) =
∫

R2
ψ(R−1

θ (y − x))f(y)dy (1)

where Rθ is the 2D counter-clockwise rotation matrix over angle θ, the overline
denotes the complex conjugate and � represents the correlation.

Cake Wavelets. The cake wavelets are directional wavelets similar to the
Gabor wavelets [2]. They have quadratic property in the direction orthogonal to
the structures to be detected, meaning that the real part contains information
about the locally even structures, e.g. ridges, and the imaginary part contains
information about the locally odd structures, e.g. edges. Despite Gabor wavelets,
cake wavelets uniformly cover the entire frequency domain and they ensure that
the information at all scales are preserved in transformation; so they allow for a
stable inverse transformation. In this case, 2D image reconstruction is achieved
by summing over all orientations as f(x) =

∑No−1
j=0 Uf (x, jsθ) (2) where No is

the finite number of orientations. By using a symmetric cake wavelet, sθ = π/No

where π is the periodicity of the orientation score [3,6].

Left-Invariant Gaussian Derivatives in SE(2). Theoretically, because of
the curved geometry of orientation space, it is wrong to take the derivatives
in orientation score using {∂x, ∂y, ∂θ} derivative frame (we use shorthand nota-
tion ∂i = ∂

∂i
) [4]. Therefore, left-invariant differential operators {∂ξ, ∂η, ∂θ} =

{cos θ∂x+sin θ∂y,− sin θ∂x+cos θ∂y, ∂θ} are used in SE(2). The ∂ξ and ∂η are the
spatial derivative tangent and orthogonal to the orientation θ. The parameter μ,
with unit 1/length, is also introduced to deal with the different physical dimen-
sions in this domain. It is important to mention that not all the left-invariant
derivatives commute e.g. ∂θ∂ξU �= ∂ξ∂θU [3,6].

In order to regularize the differential operators in SE(2) the convolution with
Gaussian kernel Gσs,σo

(x, θ) = Gσs
(x)Gσo

(θ) is used. The spatial and angular
scales are determined by 1

2σ2
s and 1

2σ2
o , and in case of left-invariant operators

the spatial Gaussian kernel is isotropic i.e., σs = σξ = ση.

3 Proposed Method

The proposed Brain-Inspired Multi-Scales and multi-Orientation segmentation
method (BIMSO) has four main steps: preprocessing, feature extraction, classifi-
cation and post-processing. The green channel from the color fundus photographs
and the images taken with green laser of the SLO camera are used at all steps,
because they ensure the best contrast between vasculature and background.
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3.1 Preprocessing

Retinal images are often affected by noise, non-uniform luminosity and contrast
variability, because of non-ideal image acquisition conditions. These imperfec-
tions cause low quality images followed by wrong results in analysis. Therefore,
before doing any analysis, it is effective to attenuate these effects and enhance
the blood vessels. We use the luminosity and contrast normalization method
proposed by [5]. This method is preferred to other techniques in the literature,
because it is only based on the background part of the image and it does not
smooth the vessels or lesions.

In next step, the image is denoised and the vessels get enhanced in a novel
approach. By using the directional cake wavelets in orientation score transform
the elongated structures (vessels) get high responses in this domain, while non-
elongated structures including background and noise get low responses. By con-
sidering this characteristic and using an appropriate non-linear filter it is possible
to attenuate low orientation score responses (noise) and enhance high values (ves-
sels). We propose to use the gamma transform (Ǔf̃ = α |Uf̃ |γ) for this purpose.
Because of the quadratic property of cake wavelets, absolute value of orientation
score (|Uf̃ |, phase invariant) is used for gamma correction and α is determined
by the sign of the real part of orientation score (Re(Uf̃ )). By setting the γ para-
meter to a value larger than 1 (typically we use γ = 1.5), the blood vessels get
enhanced while the noise is suppressed. The image after applying the gamma
correction in SE(2) could be reconstructed (f̌) based on Eq. (2). Figure 1 shows
two sample image patches from SLO and RGB images before and after apply-
ing the proposed preprocessing steps. As depicted in this figure, the proposed
preprocessing technique is very effective for both RGB and SLO images.

(a) f , SLO (b) f̌ , SLO (c) f , RGB (d) f̌ , RGB

Fig. 1. Results of applying the proposed preprocessing on SLO and RGB images

3.2 Feature Extraction

Next step is to assign a feature vector to each pixel of preprocessed image (f̌)
to be used for training the classifier. Since the blood vessels have different orien-
tations and widths, the feature vector is extracted in different orientations and
scales. The feature vector proposed in BIMSO includes the intensity of pixels,
the filter response to half-cake wavelet and multi-scale Gaussian derivatives jet
of orientation scores. Each of these features is explained in detail.
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Gray Level. The blood vessels are normally darker than background in both
RGB and SLO images. Therefore, the intensity of preprocessed image (f̌) is
considered as one of the main features for segmentation.

Multi-scale Gaussian Derivatives Jet of Orientation Scores. Different
linear and non-linear combinations of first and second order Gaussian derivative
operators were used very often in the literature for detection of edges, ridges and
contours as local differential structures in images. We propose to use the first and
second order regularized left-invariant Gaussian derivatives of the preprocessed
orientation score (Ǔf̃ ) instead of normal derivatives of 2D images. Lifting the
vessels especially at crossings and junctions makes it possible to take the deriv-
atives in the directions (eξ, eη, eθ) attached to individual structures in different
orientation layers. Since there are three directions for taking the derivatives, it
is possible to take 3 first order and 9 second order derivatives at each point in
SE(2). As mentioned in Sect. 2 not all the left-invariant derivatives commute,
that is why there are only 8 unique second order derivatives and in total 11 (first
and second order) derivatives at one scale. The maximum detection of differential
structures is obtained when the spatial scale is selected as σs = r/

√
2, where r

stands for the vessel caliber [10]. So in order to detect all the vessels with varying
widths, the appropriate range of scales need to be selected according the vessel
calibers in each dataset. If we call the number of considered scales and discrete
orientations Ns and No respectively, there would be 11 × Ns × No derivatives
in total. In order to decrease the number of features and make them orientation-
invariant, for each of the derivatives at multiple scales, the maximum intensity
projection over all orientations is used. So at the end only 11 × Ns derivatives
would be obtained at this step. The selected scales for different datasets are
explained in Sect. 4.

Second Local Maximum Intensity Projection. The selectiveness of cake
wavelets as directional wavelets is π-periodic and the response of the filter is the
weighted average over the forward and backward directions. At high curvature
points there is a drastic change in orientation. The difference between the forward
and backward orientation of the structure of investigation is no longer π, which
results in a non-accurate filter response. A similar behavior can also occur at
background points nearby high curvature points. This behavior results in streaks
in the area around high curvature points after applying maximum over the ori-
entations (see Fig. 2b). Instead, we use half-cake kernels to find the response
for forward and backward directions separately. Applying maximum intensity
projection using these single-sided wavelets still results in some streaks, as seen
in Fig. 2c and that is because of the presence of background noise in pixels near
high curvature points. But the second local maximum value over the orientations
for every spatial position gives a streak free result (see Fig. 2d). This response
(not sensitive to noise) is also included in feature vector.

To conclude, the entire feature vector has the size of 11×Ns+2. It includes the
information about the pixel intensity, the orientation score response to half-cake
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(a) (b) (c) (d)

Fig. 2. (a) Exemplary image patch, (b) maximum intensity projection over the orien-
tations using double-sided cake wavelets, (c) using single-sided cake wavelets, and (d)
second highest local maxima projection over the orientations using single cake wavelets.

wavelets and also the Gaussian derivatives jet of orientation scores. At the end,
the extracted features are normalized for each image in order to reduce the
inter-image variation and the classification error.

3.3 Classification

Next step after extracting the features is training the classifier and preparing it
for further classifications. Among different classifiers trained for this purpose, the
feed-forward neural network (NN) classifier results in the highest performance.
This classifier has been often used and performed well in supervised blood vessel
segmentation techniques (e.g. [11]). For each dataset a separate classifier was
trained. The configuration of these classifiers is explained in Sect. 4. By classify-
ing the pixels in test images and thresholding the outputs of the classifier (called
soft segmentations) final segmentations are obtained. The threshold selection
scheme is explained in Sect. 4.

4 Validation and Discussion

4.1 Datasets

The method is trained, validated and tested on two different datasets. The public
DRIVE [14] dataset includes 40 RGB color images, acquired with a Canon CR5
non-mydriatic 3CCD camera with a 45◦ field of view (FOV) and resolution
of 565 × 584. The IOSTAR dataset is a private dataset and the images were
taken with an EasyScan camera1 based on SLO technology (using the green and
infrared lasers). These high contrast images have a resolution of 1024×1024 with
45◦ FOV. The blood vessels in 24 images have been annotated and corrected by
two different experts in order to decrease the inter-user variability. Half of the
images in each dataset are considered as the training and other ones as the test
images.

1 Provided by i-Optics B.V. company in the Netherlands.
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4.2 Performance Evaluation

In order to compare the performance of the BIMSO with state-of-the-art seg-
mentation algorithms, four common parameters are measured: a)true positives
(tp), b) false positives (fp), c) true negatives (tn), and d) false negatives (fn),
where vessel pixels are positives and non-vessel pixels are negatives. These four
measurements are used to obtain the receiver operating characteristics (ROC)
curve, area under ROC curve (AUC), sensitivity (Se), specificity (Sp), accuracy
(Acc) and Matthews correlation coefficient (Mcc). Two separate threshold values
(tacc and tmcc) are defined for each dataset. They are the values that maximize
the average accuracy (Acc) and average Mathews correlation coefficient (Mcc)
for the entire dataset respectively. Although, maximizing the average accuracy
(which is the proportion of correct predictions) is often used in the literature, it
is not a good criterion for blood vessel segmentation as mentioned by [1]. Because
in our target images the two classes (vessel and non-vessel) have very different
sizes, and assigning every object to the larger set (non-vessel class) achieves a
high accuracy but it is not a good and useful classification.

We compare the performance of BIMSO with one of the best supervised seg-
mentation methods (introduced by [13] for color fundus images) for our private
dataset (IOSTAR). Therefore, we trained a Gaussian mixture model (GMM)
classifier (as proposed in this work) with different parameter settings in order to
find the best parameters for this dataset. The performance of our method on the
public DRIVE dataset is also compared to the best supervised and unsupervised
segmentation methods reported in the literature.

The best configuration of NN for both datasets had 2 hidden layers and
rectified linear activation function at each hidden layer. Each layer had 222
and 186 hidden nodes for the IOSTAR and DRIVE datasets respectively. The
parameters used for each dataset in both methods (BIMSO and [13]) are reported
in Table 1, where ns denotes the number of randomly selected samples used for
training the classifiers. A small and fixed angular scale (σθ) is selected for both
datasets. The spatial scales are selected according the vessel calibers in each
dataset. In all our experiments we set μ = σo/σs. As mentioned by [13] {a, k0, ε}
are the parameters used for adjusting the shape of Gabor wavelets as directional
elongated filters and k is the number of vessel and non-vessel Gaussians modeling
each class likelihood of GMM classifier. Similar to BIMSO, No is the number of
orientations used in this approach.

Table 1. Parameters used in BIMSO and method by [13]

BIMSO [13]

Ns No γ σξ = ση σo ns No a ko ε k ns

IOSTAR 6 18 2 {1, 2, . . . , 6} π/18 5.5m 18 {1,2,. . . ,9} 3 4 20 4m

DRIVE 5 18 1.5 {1, 2, . . . , 5} π/18 3m 18 {1,2,. . . ,5} 3 4 20 1m
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Table 2. Comparison of segmentation results for the DRIVE and IOSTAR datasets

tacc tmcc Mcc Se Sp Acc AUC

D
R

IV
E

Supervised
BIMSO 0.5 − 0.7590 0.7403 0.9794 0.9485 0.9525
BIMSO − 0.45 0.7608 0.7695 0.9742 0.9477 0.9525
[13] − − − 0.7332 0.9782 0.9466 0.9614
[11] − − − 0.7067 0.9801 0.9452 0.9588
[14] − − − − − 0.9441 0.9520
[12] − − − − − 0.9416 0.9229
Unsupervised
[1] − − 0.7475 0.7655 0.9704 0.9442 0.9614
[9] − − − 0.7517 0.9741 0.9468 −

IO
S
T
A

R Supervised
BIMSO 0.54 − 0.7726 0.7523 0.9805 0.9507 0.9615
BIMSO − 0.47 0.7752 0.7863 0.9747 0.9501 0.9615
[13] 0.38 − 0.7502 0.7291 0.9787 0.9461 0.9603
[13] − 0.32 0.7535 0.7676 0.9720 0.9453 0.9603

(a) original image (b) ground truth (c) BIMSO (d) [13]

Fig. 3. Comparison between the segmentations obtained by BIMSO and the method
proposed by [13] for RGB (first row) and SLO images (second row).

Table 2 represents the performance measurements of BISMO compared to
the best results reported in the literature for the DRIVE and obtained for the
IOSTAR dataset. In this table, the third and fourth columns specify the thresh-
old value which was used in final step. Based on these results, BIMSO has
the highest Mcc and Se (when using tmcc) for both the DRIVE and IOSTAR
datasets compared to state-of-the-art techniques. Because it is able to detect
the small vessels in low contrast regions very well. Comparing the quality of
segmentations support these quantitative measurements. Figure 3 depicts two
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sample segmentations obtained for one of the images of the DRIVE (top row)
and one of the images of the IOSTAR dataset. As seen in this figure, the number
of small detected vessels by BIMSO is higher for both RGB and SLO images
compared to the method by [13]. The segmentations obtained by BIMSO are also
less sensitive to the noise in SLO images thanks to the proposed enhancement
approach. It can be observed as lots of small components in Fig. 3d, which have
been falsely considered as vessel pixels but they are created because of noise. In
addition, the connectivity of the vessel pixels are preserved better by BIMSO.
The reason for this effect is lifting the vessels in rotation-translation space and
finding their features separately especially at crossings and bifurcations.

5 Conclusion

We developed a biologically inspired blood vessel segmentation technique (called
BIMSO) for SLO retinal images. Although, it was mainly designed for the images
taken with SLO cameras (using laser instead of white light), the validation results
proved that the performance of this method on RGB images is as good as state-
of-the-art methods. The sensitivity of the method for both types of images is
high and the smaller vessels are detected well compared to other methods. Small
vessels are attractive in a screening setting, because it is expected that just the
smaller vessels will show effects of the disease, as diabetic retinopathy, earlier.
Moreover, by taking advantage of the extracted features using full and half cake
wavelets, the connectivity of the vessels are preserved better especially at cross-
ings and junctions where two elongated structures meet. Although, the detection
of small vessels in low contrast regions is very good, but still the connectivity
of these vessels is not preserved well (compared to thicker vessels). Therefore,
a post-processing step is needed for correcting these missing connections. More-
over, more quantitative experimental validations will be investigated in future
works to support the strength of the method in detecting the smaller vessels and
robustness against noise.
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Abstract. The Arteriolar-to-Venular Ratio (AVR) is an index used for
the early diagnosis of diseases such as diabetes, hypertension or cardio-
vascular pathologies. This paper presents three automatic approaches for
the estimation of the AVR in retinal images that result from the combi-
nation of different methodologies in some of the processing phases used
for AVR estimation. Each one of these methods includes vessel segmen-
tation, vessel caliber estimation, optic disc detection or segmentation,
region of interest determination, vessel classification into arteries and
veins and finally AVR calculation. The values produced by the proposed
methods on 40 images of the INSPIRE-AVR dataset were compared with
a ground-truth obtained by two medical experts using a semi-automated
system. The results showed that the measured AVRs are not statistically
different from the reference, with mean errors similar to those achieved
by the two experts, thus demonstrating the reliability of the herein pro-
posed approach for AVR estimation.

Keywords: Artery/Vein classification · Arteriolar-to-Venular Ratio ·
Optic disc detection · Retinal images · Vessel segmentation

1 Introduction

Retinal vessel features play an important role in the early diagnosis of several
systemic diseases, namely diabetes, hypertension and vascular disorders. In dia-
betic retinopathy, the blood vessels often show abnormalities at early stages [11].
Changes in retinal blood vessels, such as significant dilatation and elongation of
main arteries, veins, and their branches, are often associated with hypertension
and other cardio-vascular pathologies [10].

Among several characteristic signs associated with vascular changes, the
Arteriolar-to-Venular Ratio (AVR) is used as an indicator of cardiovascular risk,
since it reflects the narrowing of the retinal blood vessels. A lower AVR value is
associated with a high blood pressure increasing the risk of stroke, diabetes and
hypertension [5]. Manual estimation of AVR is a difficult task and currently most
of the medical approaches for computing this index are semi-automatic. Differ-
ent automatic algorithms for AVR calculation have been presented previously
[9,13,14].
c© Springer International Publishing Switzerland 2015
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In this paper, we propose two new approaches for the estimation AVR, which
are alternatives to the one previously described in Dashtbozorg et al. [1]. The
methods use automated techniques for vessel segmentation, vessel caliber mea-
surement, optic disc (OD) detection and segmentation, artery/vein (A/V) clas-
sification and AVR calculation. For defining the region of interest (ROI) where
the index is to be measured, the coordinates of disc center and disc diameter
are needed. For A/V classification a graph-based method is used to classify the
retinal vessels using a combination of structural information taken from the vas-
culature graph with intensity features from the original color image. Besides the
supervised classification approach described in Dashtbozorg et al. [2], we propose
a new unsupervised alternative for integrating the intensity information in the
final A/V classes.

2 Methods

The estimation of AVR requires the detection of several retinal landmarks,
namely the optic disc and the vessels, followed by vessel caliber measurement and
artery/vein classification [5]. For segmenting the vessels, the method previously
proposed by Mendonça et al. [8] was chosen and adapted for the segmentation
of high resolution images [7]. The segmented vascular structure generated by
this method for the image presented in Fig. 1(a) is the binary image shown in
Fig. 1(b). Vessel calibers are estimated on the binary vessel image, using the
Euclidean distance transform for labelling each pixel (p) on the vessel with its
distance to the closest boundary point, dp. For each vessel centerline pixel, the
vessel caliber, vc(p), is simply estimated by vc = 2dp − 1.

2.1 ROI Definition

AVR is calculated from the calibers of vessels inside a ROI, defined as the stan-
dard ring area within 0.5 to 1.0 disc diameter from the optic disc margin [5].
As a consequence, both the localization of the optic disc center (ODC) and its
diameter are required for automating the AVR calculation. The center of the OD
is estimated using an automatic methodology based on the entropy of vascular
directions described in Mendonça et al. [6].

Two main options were considered for ROI definition: the first one uses the
ODC as the center of the ROI, which is afterwards established considering a fixed
disc diameter adapted to the size and field of view (FOV) of the image under
analysis; the second approach calculates a disc diameter for each image using a
segmentation algorithm for delineating the OD border proposed by Dashtbozorg
et al. [3]. In this OD segmentation method, the response of a filter suitable for
the enhancement of bright circular regions, the sliding band filter (SBF), is used
for estimating both the OD center and the OD boundary. For high resolution
images, the SBF is used twice. The first SBF is applied on downsampled images
to estimate the initial ODC which is then used for defining a region of interest
where the second SBF is afterwards applied for fine boundary extraction.
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Fig. 1. (a) Input image; (b) Binary vessel image result; (c) ROI for AVR calculation
(delimited by the two green circles) centered on the initial ODC and a fixed OD radius
of 180 pixels; (d) ROI for AVR calculation (delimited by the two green circles) and
approximation of the extracted OD boundary by a circle (white circle with radius of
215 pixels)(Color figure online).

The ROI defined using a fixed OD radius of 180 pixels is presented in Fig. 1(c),
while Fig. 1(d) refers to ROI definition after OD segmentation.

2.2 Artery/Vein Classification

In order to classify a vessel as artery or vein, two alternatives are compared
in this work: an improved version of the automatic graph-based A/V classifica-
tion method previously described in Dashtbozorg et al. [2] and a new proposal
that combines the structural information obtained from the retinal vessels and
unsupervised classification. Both methods represent the segmented vasculature
as a graph whose nodes are extracted from the centerline image by finding the
intersection points (pixels with more than two neighbors) and the endpoints or
terminal points (pixels with just one neighbor). The graph is afterwards modi-
fied for removing some typical errors, such as node splitting and missing or false
links. Afterwards, the modified graph is analyzed for deciding on the type of
intersection points (graph nodes) and, based on the node types in each separate
subgraph, all vessel segments (graph links) that belong to a particular vessel are
assigned an identical label. The extracted graph is depicted in Fig. 2(a), while
Fig. 2(b) illustrates the result of the labeling procedure.

The two A/V classification approaches mainly differ in the methodology for
assigning the final A/V class to each one of the labels resulting from graph analy-
sis. In the method described in Dashtbozorg et al. [2], the structural information
provided by the graph is combined with the individual setting of A/V class for
each vessel provided by a linear discriminant analysis (LDA) classifier and a set
of intensity features extracted from the image. The result of A/V classification
is displayed in Fig. 2(c), where the red color is used for representing arteries and
veins are shown in blue.

Since images of different datasets have diverse properties, the LDA classi-
fier in the supervised A/V class assignment approach requires a computation-
ally demanding training phase for each dataset. This requirement prevents the
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Fig. 2. (a) Graph representing the segmented retinal vasculature after modification;
(b) Subgraphs with distinct labels assigned; (c) A/V classification combining the graph
and LDA classifier.

method from achieving the expected A/V classification performance when the
classifier is trained with images from a different set. In order to overcome this
limitation, a new unsupervised approach for the final A/V class assignment is
developed using a k -means clustering algorithm. The histogram of artery pix-
els and vein pixels in different color planes using the manual A/V classification
showed that the red intensity is the best discriminator between artery pixels
and vein pixels. For this reason, we selected the red component for using in the
k -means clustering algorithm.

First from the original color image, a normalized intensity image is obtained
from the red plane, and the red intensity for all vessel pixels are extracted and
stored in a set, I. The elements of the obtained set are sorted in ascending order
which is used for determining three cluster centroids, Cv, Cu and Ca, that allow
the initializing of a k -means algorithm for clustering each vessel pixel into one
of three classes: (1) Artery; (2) Vein; (3) Unknown.

As retina arteries normally appear thinner and brighter red than the corre-
sponding veins with a normal artery-to-vein caliber ratio of 2:3 [4], to compute
the initial centroids the sorted set of intensities is divided into 7 intervals, each
one containing the same number of pixels. The first 3 intervals are considered
as the initial vein cluster, the 2 last intervals belong to the initial artery cluster
and the 2 middle intervals are initially considered as the unknown cluster. The
different number of intervals in the artery and vein classes derives from the fact
that veins are larger than arteries, so we have more vein pixels than artery pixels.
All intensities in the 2 middle intervals are associated with the unknown class
for the case of uncertainty. The initial centroids, Cv, Cu and Ca, are set equal
to the centers of vein, unknown and artery initial clusters, respectively.

Using the k -means algorithm and the calculated initial centroids all vessel
pixels are clustered as artery, vein or unknown as shown in Fig. 3(a). Then, the
probability of a label being an artery is calculated based on the relation between
the number of pixels in each cluster. Subsequently, in each paired subgraph
(Fig. 3(b)), the label with higher artery probability will be considered as an
artery, and the other one as a vein, where the result is illustrated in Fig. 3(c).
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Fig. 3. (a) k -means clustering result (Red: artery, Blue: vein and Green: unknown);
(b) Paired subgraphs; (c) Result of assigning A/V classes to paired subgraphs using k -
means algorithm; (d) Final result of unsupervised graph-based A/V classification(Color
figure online).

In the next step, the two thresholds are recalculated based on the result of
A/V assignment in paired-subgraphs. The threshold values for arteries (Ta) and
veins (Tv) are set as

Ta = μa − σa (1)

Tv = μv + σv (2)

where μa is the average intensity and σa is the standard deviation of all pixels
in the artery subgraphs previously classified, respectively, and μv and σv have
identical definition for the vein subgraphs. Afterwards, the classification process
is repeated for all vessel pixels based on the obtained threshold. Each pixel (p)
with intensity of Ip is classified as following:

For each pixel (P )

⎧
⎪⎨

⎪⎩

if Ip ≤ Tv ⇒ p ∈ Vein class
if Ip ≥ Ta ⇒ p ∈ Artery class
if Tv < Ip < Ta ⇒ p ∈ Unknown class

(3)

For the subgraphs, each vessel pixel is counted as a vein or an artery using the
threshold values and the probability of each label to be an artery is calculated.
Then for each label in each unpaired subgraph if the probability of being artery
is higher than 0.5 then the label will be assigned as artery or otherwise it will be
assigned as vein; and for each pair of labels in paired subgraphs, the label with
higher artery probability is assigned as an artery class, and the other as a vein
class.

Finally, to prevent a wrong classification of a link as a result of an error in the
analysis of the graph, the A/V probability for each individual vessel (graph link)
is also calculated. If one of these probabilities is higher than 0.8, the vessel is
considered as belonging to that class independently of the result derived from the
subgraph classification procedure. Final result of unsupervised A/V classification
is shown in Fig. 3(d).
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2.3 AVR Calculation

The Arteriolar-to-Venular Ratio is defined as the quotient between CRAE and
CRVE, where CRAE is the Central Retinal Artery Equivalent and CRVE is
the Central Retinal Vein Equivalent. We have followed Knudtson’s revised for-
mula [5] to calculate the CRAE and the CRVE. An approach similar to the one
described in Niemeijer et al. [13] is applied for the AVR measurement. The ROI
is equidistantly sampled to provide six regions for performing distinct AVR cal-
culations. For each region, the six largest arteries and the six largest veins are
identified, and the CRAEs and CRVEs are obtained for calculating the regional
AVRs. The final AVR estimate for the complete image is the average of the six
regional values.

3 Results

For validating the proposed AVR calculation methods, we have used the
INSPIRE-AVR dataset which contains 40 high resolution color images. This
dataset includes two AVR measures that were computed by two ophthalmolo-
gists using a semi-automated computer program, IVAN, developed at the Uni-
versity of Wisconsin [12]. The AVR estimates of Observer 1 are used as reference
for calculating the errors for the results of both Observer 2 and our methods.
Three different methods for AVR calculation are used which mainly differ in the
approach for A/V classification and ROI determination.

Method 1 : In this method, the results of supervised A/V classification are
used and the ROI is determined by defining a ring area within 0.5 to 1.0 disc
diameter from the optic disc margin and considering a fixed radius of 180 pixels
for the OD.

Method 2 : Similar to method 1, the results of supervised A/V classification
are used but the ROI is determined using the OD radius obtained from SBF-
based OD segmentation method.

Method 3 : In this method, the A/V classification result is obtained using the
unsupervised technique and the ROI is defined based on the OD radius obtained
from the SBF-based OD segmentation method.

Figure 4 shows the arteries and veins found inside the ROI for different meth-
ods for AVR calculation. Table 1 summarizes the estimated AVR values for the
images of the INSPIRE-AVR dataset, and besides the results achieved by the pro-
posed methods, it includes the values computed by the two human observers and
the results produced by the recent approach presented by Niemeijer et al. [13].
The analysis of values in Table 1 allow the conclusion that the correlation coeffi-
cients and errors produced by proposed methods are similar to those of Observer
2 and of the approach presented in Niemeijer et al. [13].

The AVR value can be used as a sign for screening patients in the case of
diabetes, hypertension or other cardiovascular diseases. Different values of AVR
are considered as a threshold for the differentiation between subjects with or
without pathological conditions, depending on the method which is used for the
AVR calculation. Here, in order to evaluate the performance of the proposed
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Fig. 4. A/V classification results inside the ROI for (a) Method 1 (supervised AV
classification and fixed OD radius); (b) Method 2 (supervised AV classification and OD
segmentation); (c) Method 3 (unsupervised AV classification and OD segmentation.

Table 1. AVR values for the 40 images of the INSPIRE-AVR dataset

Image Reference Observer 2 Niemeijer’s Method 1 (OD Method 2 (OD Method 3 (OD

number AVR method location + Fixed segmentation + segmentation +

OD radius) + supervised A/V unsupervised A/V

supervised A/V classification) classification)

classification)

AVR Error AVR Error AVR Error AVR Error AVR Error

Mean 0.67 0.66 0.05 0.67 0.06 0.65 0.05 0.68 0.05 0.649 0.05

Stdev 0.08 0.08 0.05 0.07 0.04 0.09 0.04 0.10 0.05 0.07 0.04

Min 0.52 0.45 0.00 0.55 0.01 0.48 0.00 0.55 0.00 0.49 0.00

Max 0.93 0.85 0.29 0.81 0.15 0.86 0.15 0.95 0.17 0.82 0.16

Correlation

coefficient - 0.55 - 0.59 - 0.67 - 0.69 - 0.64 -

methods for clinical applications, the 40 subjects of INSPIRE-AVR dataset are
classified based on a threshold as pathological and non-pathological using the
obtained AVR values for each method. Since there is no information about the
average of AVR values for the normal subjects, several values between the range
of 0.63-0.70 are defined as a threshold (TAV R) for the classification of subjects. If
the AVR value of a subject is higher than the threshold the subject is considered
as non-pathological, otherwise as pathological one. Figure 5 shows the number
of subjects with matched classification for different methods when compared
with the reference values. As defined in Eq. 4, the matched classification means
that the classification result of a subject based on the reference value (RAV R)
and the method value (MAV R) is the same, while the mismatched classification
represents that the results of classification using reference value and method
value are not the same.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MAV R ≤ TAV R and RAV R ≤ TAV R ⇒ Matched classification
MAV R > TAV R and RAV R > TAV R ⇒ Matched classification
MAV R ≤ TAV R and RAV R > TAV R ⇒ Mismatched classification
MAV R > TAV R and RAV R ≤ TAV R ⇒ Mismatched classification

(4)
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Fig. 5. Number of subjects with matched classification between methods and reference.

As it can be seen in Fig. 5, the number of matched classifications for the pro-
posed approaches are similar to the ones for the second observer when different
AVR values are considered as a threshold.

4 Conclusion

We have described two new automatic approaches for the measurement of AVR
in retinal images to increase the independence of AVR calculation from the par-
ticular characteristics of the images to be evaluated. The proposed new solutions
are alternatives to the one previously described in Dashtbozorg et al. [1]. One
of the methods complements the OD detection algorithm with a segmentation
approach that allows the estimation of the actual disc radius of the image under
analysis, thus making the definition of the ROI for AVR calculation a fully auto-
mated procedure. The other method is an unsupervised classifier using intensity
features whose results still needs to be combined with the structural information
extracted from the graph representation for A/V classification purposes. This
is also an important step towards automation because the classifier is naturally
adapted to the intensity characteristics of each particular image.

The obtained AVR values show that the proposed methods have a perfor-
mance similar to those of human observers. The low errors and good correla-
tion with reference AVR values are promising and demonstrate that described
approaches have a high potential for clinical application.
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Abstract. This paper presents an automatic method for the segmenta-
tion of vertebrae in ultrasound images. Its goal is to determine whether
each pixel belongs to the bone surface, its acoustic shadow or other tis-
sues. The method is based on the extraction of several image features
described in the literature and which we adapted to our problem, and on
a random forest classifier. Morphological operations and vertebra-specific
constraints are then used in a regularisation step in order to obtain homo-
geneous regions of both the surface and the acoustic shadow of the verte-
bra. Experiments on a test database of 9 images show promising results,
with average recognition rates for the bone surface and acoustic shadow
of 81.87%, and 91.01%, respectively.

Keywords: Segmentation · Vertebrae · Ultrasound · Acoustic shadow ·
Random forests

1 Introduction

Ultrasound is increasingly used for imaging the spine, with applications in image
guided epidural needle insertion [8–10] and in the study of spine deformities such
as scoliosis [11–14]. The principle of ultrasound imaging is that acoustic waves
are sent through the body, and their reflections off the anatomy are detected to
form an image. However, when they meet with a highly echogenic bone surface,
the acoustic waves are totally reflected, creating an acoustic shadow immediately
below the bone surface, and a bright area at the soft tissue-bone interface. When
the bone surface is the spinous process, however, the interface is very short and
it is difficult to determine exactly where the acoustic shadow begins and ends.
Thus, the interpretation of vertebral ultrasound images by non-experts is difficult
and not entirely reproducible.

A few algorithms have been developed for the purpose of automatic bone
segmentation in ultrasound images. Two different categories of methods can
be distinguished. First, there are the methods that try to delineate the bone
surface. Foroughi et al. [3] proposed a method that computes a “bone probability
c© Springer International Publishing Switzerland 2015
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map” based on the quantity of shadow and a local edge detector. Hacihaliloglu
et al. [2] used local phase symmetry as a measure for the presence of bone surface.
Another method proposed by Daanen et al. [1] consists in a set of heuristics based
on the reasoning of a medical expert. The second class of methods is concerned
with the detection of acoustic shadows in ultrasound images. For this purpose,
an automatic method was developed by Hellier et al. [6] combining the shape of
the ultrasound image and a statistical test along each of its lines, providing the
boundary between the acoustic shadow and the tissues above it. More recently,
Karamalis et al. [7] used random walks to provide an ultrasound data confidence
map that highlights acoustic shadows.

In the context of ultrasound guided epidural needle insertion, some vertebra
detection methods were also developed. Tran et al. [9] proposed a method for
automatic detection of the lamina in ultrasound images based on a ridge detec-
tor. Automatic detection of spinous processes in panoramic ultrasound images
was proposed by Al-Deen Ashab et al. [10]. Their method uses a bilateral fil-
ter followed by Otsu thresholding to extract a wave-like profile in which local
maxima correspond to spinous processes.

All these methods were devised either for bone surface or acoustic shadow
detection, and most of them were not developed for the specific purpose of
segmenting vertebrae. In the context of measuring the quality of the acquired
vertebral ultrasound image, it would be useful to detect both the soft tissue-bone
interface and the acoustic shadow which reflects the shape of the vertebra, as
these are the defining features of a high quality vertebral image [10]. This paper
proposes a unique method allowing automatic and simultaneous detection of the
acoustic shadow and of the bone surface in vertebral ultrasound images. It is
based on the combination of different features from the literature and on the use
of random forests [5] for pixel classification. The paper is organized as follows:
in Sect. 2, we describe our methodology for feature extraction, pixel classifica-
tion and regularisation. In Sect. 3, we present our experimental results, which
demonstrate the promise of the proposed approach, and conclude in Sect. 4.

2 Proposed Segmentation Algorithm

The segmentation algorithm aims at classifying each pixel into one of three
regions: ‘Bone surface’, ‘Acoustic shadow’, and ‘Other tissues’, which corre-
sponds to the other tissues found in the ultrasound image. The proposed app-
roach is illustrated in Fig. 1. First, a set of training data is created using pixels
chosen randomly from a learning database of ultrasound images. A feature
extraction step is performed to train a random forest classifier. Next, the segmen-
tation of new ultrasound images is performed in three steps: first, the extraction
of the different features for each pixel, then their classification using the random
forest, and finally the regularisation of the different regions in the image.

2.1 Feature Extraction

Several features such as image gradient [1], Foroughi et al.’s bone probability
map [3], phase symmetry [2] and Hellier et al.’s rupture points [6] were already
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Fig. 1. Block diagram of the proposed image segmentation method in three regions.

shown to be effective in characterizing soft tissue-bone interfaces or acoustic
shadows. We exploit all of these, in addition to Local Binary Patterns [4] (LBP),
which are successful with texture analysis in medical images. The complete set
of extracted features is described below.

Gradient and Intensity Images: The gradient and the intensity (Fig. 2(c), (d))
are considered as features, since the gradient gives information about the tran-
sition between the shadow area and the bone surface, and the image itself gives
information about the acoustic shadow and the bone surface.

BoneProbability: Foroughi et al. [3] proposedaboneprobabilitymap (Fig. 2(a))
based on the high reflection of bones obtained with the Laplacian of Gaussian
(LoG) filter and the quantity of shadow (SH) below the bone defined as

SH(x, y) =

∑H
j=y G(j − y)I(x, j)
∑H

j=y G(j − y)
, (1)

where x and y correspond to the position of the pixel, G(.) and I(.) represent a
Gaussian weighting function and the image intensity, respectively, and H is the
number of rows in the image.

Phase Symmetry: Hacihaliloglu et al. [2] used the phase symmetry (Fig. 2(b))
as a ridge detector to describe the bone surface. The phase symmetry feature is
based on Log Gabor filters:

PS(x, y) =
∑

r

∑
m�[|erm(x, y)| − |orm(x, y)|] − Tr�∑

r

∑
m

√
e2rm(x, y) + o2rm(x, y) + ε

, (2)
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where erm(x, y) and orm(x, y) correspond to the responses of quadrature Log
Gabor filters [2] with scale r and orientation m.

Local Binary Patterns: The texture of an ultrasound image contains a lot of
useful information. LBP are pixel texture descriptors defined as

LBP SignP,R =
P−1∑

p=0

s(gp − gc)2p, s(x) =
{

1 x ≥ 0
0 < 0 (3)

LBP MagP,R =
P−1∑

p=0

m(gp − gc)2p, m(x) = |x| (4)

where gp and gc correspond to the intensity of the central pixel and the neigh-
bouring pixels, P and R correspond to a neighbourhood size for each pixel and
a scale parameter, respectively. LBPs were not only computed on the inten-
sity image, but also on the phase symmetry, bone probability, and the gradient
images, thus providing a total of 8 additional features (Fig. 2(e)–(l)).

Rupture Points: This feature is derived from the work of Hellier et al. [6]
on acoustic shadow detection. A statistical test based on physical ultrasound
properties is performed on each scan line of the image. For each line, the purpose
of the test is to detect a rupture in the signal, corresponding to the transition
between a region with low signal intensity and a structure with high echogeneicity
(Fig. 2(m)).

Each of these features has potential for characterizing a specific region. For
instance, the rupture points (Fig. 2(m)) and LBP sign (Fig. 2(i)) provide useful
information about the shape of the acoustic shadow but none about the bone
surface, whereas the bone probability map (Fig. 2(a)) provides a mediocre outline
of the former, but enhances the latter. That is, the ability of each feature to
discriminate the three regions is limited, but their combination is promising.

2.2 Random Forest Classification

A random forest [5] is an ensemble of decision trees. As a learning machine
method, it is reasonably fast, allows the classification of non linearly-separable
elements and does not require much effort on feature selection to attain good
performance. In this work, an ensemble of 90 of decision trees is created from a
learning database of pixels from 16 ultrasound images. Nine other images were
used as the testing database. For all 25 images, the ground truth segmentation
was obtained manually by an expert. The learning database contains 2.2 × 104

pixels from acoustic shadows, 4.4 × 103 pixels from bone surfaces and 2.2 × 104

pixels from other tissues. We consider five times more pixels for the acoustic
shadow and the other tissues because these regions are larger and more diverse
so more data are required to describe them well. Each decision tree is created
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Fig. 2. Normalized feature images used for the classification (a) Bone probability, (b)
Phase symmetry, (c) Gradient, (d) Intensity, (e)–(l) LBP features extracted from the
bone probability, phase symmetry, gradient and intensity images, respectively, (m)
Rupture points.

iteratively, and for each node, the best feature which splits the node into two is
selected among 4 features chosen randomly. Additionally, it was determined that
each tree should have at least 2 leaves. These optimal parameters for the random
forest were obtained by cross-validation within the learning database, with 2/3
of the data used to create the random forest and 1/3 to test it. The new input
data from the 9 image test database are classified using all the decision trees.
The final decision of the random forest (i.e. the class assigned to each pixel) is
based on a majority vote of the ensemble of decision trees.

2.3 Regularisation

Because some artefacts appear in the segmented image due to the misclassifica-
tion of some pixels, it is important to regularise the segmentation results to reflect
our context-specific constraints. First, we expect that a pixel will usually belong
to the same class as its neighbour. To enforce this, median filtering, followed
by morphological closing and opening operations, are applied to the binarized
segmented images of the bone surfaces and of the acoustic shadow. Only con-
nected components larger than a hundred pixels are kept. We also expect the
segmentation results to agree with the known geometrical properties of verte-
brae. A vertebra casts only one acoustic shadow and has a spinous process as its
highest point. The highest pixel of the acoustic shadow is thus taken to repre-
sent the spinous process, and all the acoustic shadow regions beneath it in the
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direction of the wave propagation are merged into a single region. All the bone
surface regions above this highest pixel in the direction of wave propagation are
also kept. Finally, we obtain one connected component for the acoustic shadow,
a few connected components for the bone surface above it, and one connected
component for the other tissues.

3 Experiments and Results

We acquired the database of 25 ultrasound images (400× 260) of vertebrae in the
coronal plane using a Siemens 14L5 linear probe at a depth of 4.5 cm. The images
were acquired from healthy adult volunteers (aged 21–24) in prone position. All
the algorithms were implemented using Matlab on an Intel Core I5 PC.

Table 1 shows the result of our approach combining all proposed features as
a confusion matrix. The average classification rates on 9 images are 81.97 % for
the bone surfaces, 91.01 % for the acoustic shadow and 92.30 % for the other
tissues. The average standard deviation of the classification rates (Table 2) are
16.33 % for the bone surface, 4.88 % for the acoustic shadow and 3.09 % for
the other tissues. The low standard deviation obtained for the acoustic shadow
classification rate shows that the proposed method is particularly robust for
this class. The bone surface classification rate has a higher standard deviation
because this region contains fewer pixels. Each image had an average of only 291
pixels in this region, so, for instance, 10 misclassified pixels alone introduce an
error of 3.43 %.

Table 1. Confusion Matrix of the method, averaged over 9 images

Classification rate Classifier output

Actual value Bone Acoustic shadow Other

Bone 81.97% 0.30% 0.32%

Acoustic shadow 0% 91.01% 7.38%

Other 18.03% 8.69% 92.30%

Table 2. Standard deviation of the classification rates, averaged over 9 images

Bones surface Acoustic shadow Rest

Standard deviation 16.33% 4.88% 3.09%

Figure 3 shows sample qualitative results for visual inspection. These images
are typical vertebral ultrasound images. In Figs. 3(c) and (g), the general shape
of the acoustic shadow and bone surface were distinguished clearly by our algo-
rithm, but there are some small regions with misclassified pixels. In the second
example (Fig. 3(g)), the acoustic shadow is broken into two distinct regions.
Regularisation (Fig. 3(d)) removes many of these artefacts.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Automatic segmentation results in two vertebral ultrasound images. (a)&(e)
Original image, (b)&(f) Ground truth segmentation. Dark: acoustic shadow, medium:
bone surface, light: other tissues. (c)&(g) Segmented image after random forest classi-
fication. (d)&(h) Segmented image after regularisation.

Another criterion which has to be considered is the computational efficiency
of the method. Feature extraction and pixel classification take an average of
24 seconds per image. The method is fast but not fast enough to be used in
real-time. Optimizing our implementation would likely improve its speed to a
large extent. Alternative, possibly more computationally efficient classifiers (in
combination with feature selection) could also be investigated in future work.

4 Conclusions

In this paper, we presented an automatic method for the segmentation of verte-
brae in ultrasound images. In contrast with the methods already proposed in the
literature, our method allows accurate detection of both the acoustic shadow and
the bone surface. Our method is based on the combination of different features
proposed in the literature and the use of random forests as a pixel classification
method. A regularisation step which accounts for the properties of vertebrae
was introduced to refine the segmentation. We obtained classification rates of
81.97 % for bone surfaces, 91.01 % for acoustic shadows and 92.30 % for other
tissues. These results are promising and the method could be used to evalu-
ate the quality of vertebral ultrasound image acquisitions. Other directions for
future work include improving the classification rate for bone surfaces. For this
purpose, other features will be investigated. We will also diversify our image
database (thereby increasing the generalisability of our method) by using a vari-
ety of ultrasounds probes and acquiring images on more subjects.
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Abstract. Age-related macular degeneration (AMD) is the leading cause of
visual deficiency and irreversible blindness for elderly individuals in Western
countries. Its screening relies on human analysis of fundus images which often
leads to inter- and intra-expert variability. With the aim of developing an
automatic grading system for AMD, this paper focuses on identifying the best
features for automatic detection of AMD in fundus images. First, different
features based on local binary pattern (LBP), run-length matrix, color or gradient
information are computed. Then, a feature selection is applied for dimension-
ality reduction. Finally, a support vector machine is trained to determine the
presence or absence of AMD. Experiments were conducted on a dataset of 140
fundus images. A classification performance with an accuracy of 96 % is
achieved on preprocessed images of macula area using LBP features.

Keywords: Age-related macular degeneration � Fundus photography � Auto-
matic grading system � Texture analysis � Support vector machine

1 Introduction

Age-related macular degeneration (AMD) is an eye disease leading to progressive
degeneration of the macula. It is the main cause of visual deficiency and irreversible
blindness in elderly individuals in Western countries [1]. Although it is asymptomatic
in early stages, central vision is gradually lost until legal blindness in advanced stages.
Even though there is currently no cure to AMD, treatments for slowing its progression
exist and thus, regular eye examination is required.

Fundus photography is a common imaging modality used for eye examination. It is
a fast and non-invasive modality that allows direct visualisation of structures of the
retina. Based on fundus photography, grading AMD’s severity stages, illustrated in
Fig. 1, helps in determining specific and optimal treatment. A recommended clinical
classification is the simplified AREDS classification [2], dividing AMD cases into four
categories: non-AMD, early, moderate and advanced. However, human evaluation of
retinal images is time-consuming and leads to inter- and intra-expert variability. To
address this problem, automatic grading systems for AMD have been proposed for a
faster and reproducible assessment.

Previous work on AMD focuses mostly on drusen segmentation. Drusen are early
signs of AMD and depending on their number, size and position, a severity stage can
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be determined [3]. However, it is not sufficient for a complete AMD grading because
drusen are not present in some advanced cases with large hemorrhages or geographic
atrophies, which will then not be detected. Thus, methods with features directly
computed on fundus images, such as visual context [4] or texture [5], were proposed to
characterize the different forms of AMD. Generally, AMD vs. non-AMD classification
is performed for AMD screening. Other binary classifications such as non-AMD vs.
moderate cases or non-AMD and early cases vs. moderate and advanced cases are also
considered in [4] to highlight moderate cases on which we must pay attention, because
the patient still has a good visual acuity but there are high risks to progress to an
advanced stage. These methods show a good accuracy (> 90 %) for binary classifi-
cations of good quality images. However, an automatic system performing AMD
screening which is sufficiently robust to image quality does not exist.

The aim of this project is to identify the best set of image features that allows a
robust AMD classification. The considered features are based on texture, color and
gradient information and a support vector machine (SVM) with Gaussian kernel is used
for classification.

2 Materials and Methods

In this method, a classical preprocessing is first applied to assure robustness to image
quality, which is highly variable depending on the acquisition system. Features are then
extracted from the preprocessed images and are submitted to a procedure of feature
selection to use only the most relevant ones for classification.

2.1 Preprocessing

The fundus images come from different acquisition systems via telemedicine. For a
non-biased comparison of these images, a classical preprocessing is first applied. For
each color channel of the image, a large median filter with a kernel size of one-fourth
the image size is applied in order to estimate the background illumination. The median
filtered image is subtracted from the original image color channel, and then, the result is
multiplied by 2 for contrast enhancement and the mean of the intensity range is added
for the sake of visualization. An image with illumination normalization and contrast
enhancement is obtained (Fig. 2c).

Fig. 1. Macula images of AMD stages: early with hard drusen (a), moderate with soft drusen (b),
advanced with hemorrhages (c) and advanced with geographic atrophy (d)
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2.2 Feature Extraction

This section presents the different features considered for image classification.

Local Binary Pattern (LBP) Features. Multiresolution information is used to analyze
the images on different scales. In this study, it is obtained through Lemarié wavelet
transform with four levels of decomposition. For each level, an approximation coef-
ficient containing low resolution information and three detail coefficients containing
high resolution information are obtained. With the original image, there are 17 images
on which textural information are extracted. LBP is commonly used for texture analysis
and shows its efficiency in many classification problems [5]. It consists in measuring
the occurrence of local textures primitives, such as corners or edges. To do so, the sign
of LBP [6] is computed for each pixel of grey value gc in a neighborhood of radius
R and P neighbors of gray value gp :

LBPP;R ¼
XP�1

p¼0

s gp � gc
� �

2P ð1Þ

With s xð Þ ¼ 1; if x� 0
0;Otherwise

�

In this study, the parameters are empirically set to R = 1 and P = 4 or 8. The magnitude
of LBP [7] is also computed from the absolute differences of gray intensity between the
central pixel and the neighbors mp = |gp - gc| :

LBPMP;R ¼
XP�1

p¼0

t mp; c
� �

2P ð2Þ

With t x; cð Þ ¼ 1; if x� c
0;Otherwise

�

The threshold c is set to the image mean value. From the sign and magnitude of LBP,
two histograms are computed by measuring the occurrence of the different patterns in

Fig. 2. Image type for each database: retina images (a), macula images (b) and preprocessed
macula images (c)
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the image. The features vector is then constructed by their concatenation. This method
is applied separately on each color channel (red, green and blue).

Grey Level Run-Length Matrix (GLRLM). GLRLM is another simple method for
texture analysis. For a given image and a given direction, the GLRLM P(i, j) measures
the number of runs in the image of a grey level i and a run-length j [8]. As there are
many zeros in the matrix, it is generally represented by 11 scalars derived from the
GLRLM. The features vector is obtained by concatenation of the 11 features computed
in the four principal directions (0°, 45°, 90° and 135°). Again, the method is applied
separately on each color channel.

Color Histograms. Generally, works on fundus images analysis only use green
channel because blood vessels and lesions are more visible on it [3–5]. Because
structures characterizing AMD have different colors, the information from the other
color channels must also be considered. In this study, red and blue channels are used
with the green one. Once all the color plans are extracted, 4 and 8 bins histograms are
computed on each channel. The features vector corresponds to the concatenation of the
three color histograms.

Histograms of Oriented Gradients. HOG [9] is a feature used for edge detection, but
can be used as directional information for classification. Indeed, images with lesions
should show more gradient in a specific direction. The method consists in calculating
the magnitude and the direction of the gradient for each pixel. The gradient images in
horizontal Gx and in vertical Gy are obtained by applying 1D point centered derivatives
kernels [1 0 -1], on the image. The gradient’s magnitude and direction are computed
from Gx and Gy. Then, the image is divided in 16x16 cells and histograms of 4 and 8
directions are locally constructed by measuring the number of pixels in a certain
direction, weighted by the gradient’s magnitude.

2.3 Feature Selection

Generally, feature extraction leads to a large number of features compared to the number
of samples. To avoid the curse of dimensionality and data overfitting, a sequential
floating forward selection (SFFS) [10] is used to find the optimal subset of features. It
consists in applying iteratively sequential forward selection (SFS) and sequential
backward selection (SBS). SFS begins with an empty model of features subset and
successively adds the best feature which, when combined to the previously selected
features maximizes a criterion function. In this study, we considered a non-optimized
Gaussian kernel SVM classification performance, with parameters set on C = 1 and
γ = 1, on the validation set as the criterion function. SBS starts with all the features
computed on the image and consists in deleting the worst feature at each iteration
according to the same criterion function. In SFFS, it starts with an empty model. Then, at
each iteration, the SFS algorithm is applied l times and the SBS algorithm is applied
r times. The l and r parameters are determined by the system itself and thus they are left
floating. The process is repeated until the maximum number of iteration is achieved or
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until no more improvement of the criterion function, whichever comes first. This method
tends to find a close to optimal solution.

2.4 Classifier Modeling

To determine the presence or absence of AMD, an SVM classifier with Gaussian kernel
[11] is chosen because it is efficient for small samples and for more complex separation
than a linear classifier. The decision boundary function is computed using the elements
xi of a learning set and their label yi:

H xð Þ ¼
Xl

i¼1

aiyik xi; xð Þ þ b ð3Þ

With k x; yð Þ ¼ expð�c x� yj jj j2Þ

k(x, y) is the Gaussian kernel, l the number of elements in the learning set, αi and
b coefficients from margin optimisation. The classifier is then optimized with c, the
kernel parameter and C, a tolerance parameter for elements to be on the margin. The
optimal parameter values are chosen according to the performance assessment using 10
folds cross-validation strategy. In the testing stage, a new element x is classified with a
label y depending on its relative position to the decision boundary:

y xð Þ ¼ sign H xð Þð Þ ð4Þ

2.5 Validation Method

Most of the fundus images used in this project is provided by the telemedicine platform
of DIAGNOS Inc. (Canada). Because it has been acquired in a real screening context
and using various cameras, the images are highly heterogeneous in terms of quality,
resolution, illumination and contrast. To complete this private database, images from
public databases such as Automated Retinal Image Analysis (ARIA, United Kingdom)
and Structured Analysis of Retina (STARE, United States) are added. These databases
contain images with low resolution and low quality, such as blurred images or bad
illumination. This preliminary study focuses solely on AMD vs. non-AMD classifi-
cation. All the images have been labelled by a clinical expert. Overall, the considered
dataset is composed of 80 images with different stages of AMD and 60 images without
AMD. Another dataset is derived from the first one. It is obtained by manually iden-
tifying and segmenting the macula area when visible. This second dataset is thus
composed of 76 macula images with AMD and 49 without AMD. A third dataset is
established from the same macula images with preprocessing.

The three datasets are divided in a learning set for system modeling and in a testing
set for performance assessment. The retinal learning set is composed of 115 images, 65
of which are with AMD with a large proportion of advanced cases and some early and
moderate cases, and 50 of which are non-AMD images with healthy and other eye
diseases cases. The macula learning sets (with and without preprocessing) are composed
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each of the same 100 macula images, 63 of which are with AMD, and 37 without AMD.
The testing datasets are composed of 15 AMD and 10 non-AMD cases for retina images,
13 AMD and 12 non-AMD for macula images and 13 AMD and 12 non-AMD for
preprocessed macula images. These images were selected to represent the different
AMD severity stages and the different image quality levels.

3 Results and Discussion

For each testing set, the images are represented using each of the features vectors
described in Sect. 2.3. Tables 1, 2 and 3 show the features sets that achieved the best
classification performance for each testing dataset. The performance assessment is
based on the accuracy (proportion of well classified elements), the sensitivity (pro-
portion of well classified AMD elements) and the specificity (proportion of well
classified non-AMD elements). For ends of comparison, the last row corresponds to the
results obtained for the method proposed in [5] and applied on the same datasets.

Table 1. Best performance on retina images

Features set Parameters Sensitivity Specificity Accuracy

LBP4 (blue) C = 10, γ = 1 93.33 % 40 % 72 %
HOG8 C = 10, γ = 0.1 86.67 % 50 % 72 %
LBP4 (red) C = 10, γ = 1 86,67 % 50 % 72 %
Garnier [5] LDA 80 % 60 % 72 %

LBP4 = local binary pattern with 4 neighbors, HOG8 = histograms of oriented gradient with 8
directions, LDA = linear discriminant analysis.

Table 2. Best performance on macula images

Features set Parameters Sensitivity Specificity Accuracy

LBP8 (blue) C = 1, γ = 1 100 % 75 % 88 %
LBP8 (green) C = 50, γ = 1 92,31 % 83,33 % 88 %
HOG4 C = 100, γ = 1 100 % 66,67 % 84 %
Garnier [5] LDA 100 % 66,67 % 84 %

LBP8 = local binary pattern with 8 neighbors, HOG4 = histograms of oriented gradient with 4
directions, LDA = linear discriminant analysis.

Table 3. Best performance on preprocessed macula images

Features set Parameters Sensitivity Specificity Accuracy

LBP8 (green) C = 1, γ = 1 100 % 91,67 % 96 %
HOG4 C = 1, γ = 1 100 % 75 % 88 %
Color8 C = 1, γ = 1 92.31 % 83.33 % 88 %
Garnier [5] LDA 69,23 % 58,33 % 62 %

LBP8 = local binary pattern with 8 neighbors, Color8: Histograms of color with 8 bins,
HOG4 = histograms of oriented gradient with 4 directions, LDA = linear discriminant analysis
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In Fig. 3, examples of misclassified images are illustrated. For the retina dataset, the
best accuracy achieved is 72 %, which is similar to the one reported in [5]. Misclas-
sifications were noted on images with bad quality, in particular with reflections or with
non-visible macula. When the analysis is focused only on the macula area, the results
are improved with 88 % accuracy for the best features (LBP applied on blue and green
channels). These features combined with an SVM classifier perform better than the
method used in [5]. Here, misclassification were noted on advanced AMD images with
large hemorrhages and on images with reflections. When the features are extracted on
preprocessed macula images, the performance increases significantly. Common mis-
classification with HOG and color features are noted on early AMD images with visible
reflections. The best result, with 96 % accuracy, is obtained with LBP applied on the
green channel of the preprocessed images. In this case, the only misclassified image
contains exudates, retinal lesions highly similar to drusen.

The method with LBP features on preprocessed images shows robustness to image
quality with a good classification of bad quality images, that the method proposed in
[5] could not perform. Some examples are illustrated in Fig. 4.

Fig. 3. Examples of misclassification for each testing dataset

Fig. 4. Examples of good classification of bad quality images: bad illumination (a), low
resolution (b) and visible reflections (c)
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4 Conclusion

The proposed automatic classification system for AMD showed promising results, with
good classification and robustness to image quality. The conducted experiments
demonstrate the effectiveness of features based on texture with a Gaussian kernel SVM
for this application. The preliminary results highlights the discriminative strength of a
local analysis of fundus images using LBP computed on preprocessed images. The
proposed method outperforms previous published work applied on the same dataset. In
future work, we plan on evaluating a combination of the features sets used in this study.
Moreover, an extensive validation with a more complete dataset will be conducted in
order to develop an automatic AMD grading system with the four different stages.
Once improved and validated, this system should allow a reliable AMD diagnosis.
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Abstract. This paper proposes a method to detect a reference frame in
an ultrasound video of the carotid artery. This reference frame, usually
located at the end of the diastole, is used as the location to measure
several vascular biomarkers. Our approach is based on the analysis of
the movement of the carotid walls in ultrasound images using an optical
flow technique. A periodic movement resembling heart beat is observed
in the resulting signals. The comparison of these signals with electro-
cardiograms validates the proposed method for detecting the reference
frame.

Keywords: Optical flow · Carotid ultrasound · Electrocardiogram ·
Heart rate

1 Introduction

Ultrasound (US) imaging techniques are widely used for the diagnosis of car-
diovascular diseases. This real-time harmless and usually non-invasive modality
allows movement analysis of the vessel walls. Common carotid artery (CCA) US
image is commonly used to evaluate the risk of cardiovascular diseases through
the analysis of atherosclerosis markers like carotid intima media thickness (IMT)
[1] and plaque formation [2].

The IMT is correlated with the adventitia-to-adventitia and intraluminal
CCA diameters, which vary along the cardiac cycle. Thus, for comparison pur-
poses, it should be always measured at the same stage of the cardiac cycle [1,3,4].
Despite IMT measurement can be performed manually, several semi-automatic
or fully-automatic methods have been proposed [5–7]. These methods rely on
segmentation algorithms to locate and delineate the CCA walls from an input
US image. It is usually assumed that the reference frame within the cardiac cycle
is provided as input image. Likewise, in the standard acquisition protocols, it
is recommended to use a clear 3-lead electrocardiographic signal, to define the
location of end-diastole frame in US video sequences.
c© Springer International Publishing Switzerland 2015
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In this work, an alternative method for the location of the standardized
frame of measurement from US video sequences is proposed. Unlike previous
approaches, the proposed method relies on carotid wall movement analysis to
infer the cardiac cycle, so that a synchronized electrocardiographic signal is not
required. To that end, Optical Flow (OF), which is a technique that allows to
estimate movement on a sequence of frames [8], is used. Movement analysis has
been previously used for diagnosis from US sequences. These techniques include
block matching with Kalman filters [9–11], OF [9,11] and speckle traking tech-
niques [12]. These methodologies have been sucessfuly used for the estimation of
vessel diameter during systole and diastole [9], the assessment of plaque vulner-
ability [10], the measurement of elasticity of vessel walls [11], and the estimation
of the blood movement and velocity [12], demonstrating the correlation of the
local movement of image patterns with physiological features of the blood ves-
sels that are relevant to the diagnosis of atherosclerosis. Concretely, optical flow
demonstrated higher performance in some of these applications in comparison
with other alternative techniques [9,11]. However, to our knowledge, the use of
such techniques for the application herein described has not been explored in
the bibliography, being the use of a 3-lead ECG the only available method.

This document is structured as follows: Sect. 2 describes the algorithms used
for the analysis of the US videos; Sect. 3 presents the description of the experi-
mental setting, and the discussion of the obtained results; finally, Sect. 4 provides
a summary of the conclusions derived from the research herein presented.

2 Methods

This section explains each step of our approach to find an optimal reference frame
in the US video for the automatic measurement of cardiovascular biomarkers.
Briefly, the algorithm is divided in the following two stages. First, a region of
interest (ROI) containing the vessel walls is automatically selected, and a set of
regions around the wall is detected for each frame. Then, in the second stage,
OF is computed, quantized and integrated for each region, in order to allow the
characterization of vessel wall movement.

2.1 Selection of the Region of Interest

To apply OF on an US video a ROI is selected, so that only the movement of
the vessel walls is taken into account in the analysis. A Canny edge detector [13]
with a high sigma is applied to obtain a rough location of the vessel walls. Note
that an accurate segmentation is not needed, since the objective is to adjust
the selection of the ROI near the CCA walls. The CCA is automatically located
using a lumen centerline detection algorithm, based on [14]. From the detected
centerline, the nearest upper and lower Canny edges are selected for each image
column, and then the largest connected component on each side is selected as the
vessel wall. This allows to select a ROI containing the CCA walls as depicted
in Fig. 1, along with the identification of the upper and lower wall contours.
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Fig. 1. A - ROI (green rectangle) containing upper and lower walls (red) based on the
segmented lumen (yellow). B - Resulting squares along the vessel walls (Color figure
online).

After this initial step both upper and lower wall contours are divided in segments
of 50 pixels width. For each segment the movement is analyzed inside a set of
square regions that contain 20 % lumen and 80 % wall, as shown in Fig. 1B. The
square positions are updated on the basis of the Canny results for each frame t,
and the union of these small ROIs for each wall w is denoted as Ωw(t).

2.2 Optical Flow: Lucas-Kanade Algorithm

The movement analysis is performed using the Lucas-Kanade algorithm with a
single frame [8]. With this technique, for each pixel a 2D vector that gives the
pixel displacement compared to the previous frame is determined. This method
has a good performance for small image displacements, as it is the case in the
present study. Also, this approach is based on the brightness constancy con-
straint, i.e. the intensity of a pixel that has a small motion between two frames
that are close in time is the same, as expressed in the following equation:

I(x, y, t) = I(x + δx, y + δy, t + δt) (1)

where I(x, y, t) denotes the image intensity at the position (x, y) and time t.
Assuming small movement, the development in Taylor series of the image

intensity I(x, y, t), leads to the following equation

Ixvx + Iyvy = −It (2)

where Ix and Iy denote the x and y derivatives of I(x, y, t); vx and vy are the
x and y components of the OF velocity vector v = (vx, vy) and It denotes the
time derivative of I(x, y, t). Other equations, imposing additional constraints,
are needed to determine the OF. In the case of the Lucas-Kanade method, it is
assumed that the OF in a small neighborhood of a pixel is the same for every
pixel in that window (smoothness assumption). The OF velocity vector v(x, y)
for each pixel is then determined using least squares fit.

After computing the OF on the video sequence, the resulting velocity vec-
tors v(x, y; t) are quantized in disjoint angle intervals, and their magnitudes are
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Fig. 2. Distribution of movement in the different directions with time of the upper and
lower walls.

integrated for each wall position Ωw(t). The amount of movement mw(α; t) for
each angle α, time t and wall w, is given by

mw(α; t) =
∑

(x,y)∈Ωw(t)

‖v(x, y; t)‖ × Φα(v(x, y; t)) (3)

where Ωw(t) denotes the ROI at the wall w and time t; Φα is an indicator
function of the vector angle, having value 1 in the interval [α − 30◦, α + 30◦]
and 0 elsewhere; and α ∈ {−150◦,−90◦,−30◦, 30◦, 90◦, 150◦}. The amount of
movement mw(α; t) is used to analyse the wall movement through time. An
example is shown in Fig. 2. As expected, the main movement is evidenced in
the vertical direction α = ±90◦, corresponding to the contraction and dilation
movements of the vessel walls.

From the analysis of Fig. 2 it also possible to verify a periodic behavior of
the movement, divided into two distinct stages: a faster movement in convergent
wall direction, and a noisier and slower movement (approximately two times the
duration) on the divergent wall direction. This is related to the cardiac cycle,
which is also divided on a strong contraction (systole) followed by a period of
rest with twice the systole duration (diastole). The hypothesis validation of the
detected movement being related to the cardiac cycle is discussed on the next
section.

3 Results and Discussion

The proposed method is evaluated on 3 US video sequences provided by Centro
Hospitalar São João. This dataset consists on multiframe DICOM files (frame
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Fig. 3. Comparison of the signal extracted from OF for the down direction on the
upper wall, the signal extracted from OF for the up direction on the lower wall and
the ECG signal, along with the detected peaks.

rate: 33 Hz; resolution: 800× 600) recorded using a Philips Healthcare iU22 ultra-
sound system on healthy individuals, with age of approximately 20 years. The
files also contain the synchronized ECG signals.

The ECG and OF signals are compared to evaluate the systole synchronism.
To that end, both the R-peaks of the ECG signals (the peak from the QRS seg-
ment that corresponds to ventricular depolarization, i.e., heart contraction) and
the peaks of the up and down OF signals are detected and compared with each
other using a Bland-Altman analysis [15]. In this sense, R-peaks are compared
with peaks obtained from the movement signal extracted from OF for the down
direction on the upper wall (mupper(−90; t)), and for the up direction on the
lower wall (mlower(90; t)). These signals are depicted in Fig. 3 for comparison
purposes.

From the analysis of Fig. 3 it is possible to verify that the systolic movements
of the lower and upper wall are synchronous, as expected. It is also possible
to verify that this periodic movement resembles the cardiac cycle due to its
similarity in frequency with the retrieved ECG waveform. Furthermore, a delay
between the ECG and the derived movement is also noticeable.

Figure 4 shows a graphic representation (Bland-Altman plot) of the wall
movement obtained for each window, during the systole, and for three US videos.
Likewise, Table 1 shows the mean time difference (μd) and the standard deviation
of the time differences (σd) measured for each video and for each wall. Through
the analysis of the results, several conclusions can be taken. Firstly, for the top
window, it is visible that the mean difference is almost equal for all the three
videos, leading to infer that the delay between the wall systole and the cardiac
systole is almost constant. It is also noticeable that the differences for videos 1
and 2 are more spread (larger σd) than for videos 2 and 3, respectively. This can
be due to the fact that video 3 was the video during which the subject had a
more constant and lower heart rate: in video 1, the heart rate decreased from
74 bpm to 65 bpm. This can introduce physiological constraints in the results,
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Table 1. Mean and standard deviation of the delay (in seconds) between the ECG
R-peaks and the OF movement signal peaks for each wall.

Video 1 Video 2 Video 3

Upper wall −0.22 ± 0.06 −0.21 ± 0.03 −0.18 ± 0.02

Lower wall −0.20 ± 0.04 −0.18 ± 0.02 −0.18 ± 0.02

Fig. 4. Bland-Altman plot comparing the systole peaks derived from OF and ECG
signals. Full lines represent the mean difference μd and dashed lines represent μ± 2σd.

since the response of the vessels to a change in the heart rate can suffer a non
linear variation, i.e. the increase in the frequency of the heartbeat may not lead
to an immediate and proportional increase in the frequency of contraction of the
vessel.

For the bottom window the proximity of the means for the three videos can
still be observed, leading to the same conclusions as before. Additionally, the
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means obtained for the top window are close to those obtained for the bottom
window (showing a small difference, in the order of a few milliseconds, being that
the bottom window shows a smaller mean). Nevertheless, some differences in the
two results can be noticed. The difference spreads σd for the bottom windows
are also smaller than for the top windows.This can be justified by the fact that
lower wall has a higher imaging quality, due to the contrast enhancing effects of
fluids in ultrasonography [16], which leads to a more accurate movement analysis
and consequently to a more stable difference between the peaks.

Finally, it should be noted that the frame duration for the analysed videos
is about 0.03 seconds. Thus, the obtained difference spread σd is usually lower
than one frame (two frames in the worst case).

4 Conclusions

An alternative method to assess the cardiac cycle without ECG for the evalua-
tion of an optimal reference frame on US videos is presented. On the proposed
approach OF is used to retrieve the movement from both upper and lower walls
of the CCA. Results show that there is high time similarity between the obtained
OF signal and the ECG. It is thus possible to obtain an approximation of the
cardiac cycle using only US videos of the carotid, allowing an objective and
reproducible selection of a reference frame. Further work includes the validation
on larger datasets, and to derive diagnosis markers from OF signals.
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Abstract. Prostate cancer is the most diagnosed form of cancer, but
survival rates are relatively high with sufficiently early diagnosis. Cur-
rent computer-aided image-based cancer detection methods face notable
challenges including noise in MRI images, variability between different
MRI modalities, weak contrast, and non-homogeneous texture patterns,
making it difficult for diagnosticians to identify tumour candidates. We
propose a novel saliency-based method for identifying suspicious regions
in multi-parametric MR prostate images based on statistical texture
distinctiveness. In this approach, a sparse texture model is learned via
expectation maximization from features derived from multi-parametric
MR prostate images, and the statistical texture distinctiveness-based
saliency based on this model is used to identify suspicious regions. The
proposed method was evaluated using real clinical prostate MRI data,
and results demonstrate a clear improvement in suspicious region detec-
tion relative to the state-of-art method.

Keywords: Computer-aided prostate cancer detection · Multi-
Parametric Magnetic Resonance Imaging (MP-MRI) · Texture-based
saliency · Statistical textural distinctiveness

1 Introduction

Prostate cancer is the most commonly diagnosed cancer in Canadian men
(excluding non-melanoma skin cancers), with an estimated 23,600 new cases
and 4,000 deaths from it in 2014 [5]. According to the Canadian Cancer Society,
prostate cancer is the third leading cause of death from cancer, accounting for
10% of cancer deaths in Canadian men. Despite these statistics, survival rates
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Fig. 1. From left to right: pathology samples, identification results of proposed method
(6 texture atoms), identification results for [4].

are relatively high with sufficiently early diagnosis, making the need for fast and
reliable detection methods crucial.

The current clinical model uses a digital rectal exam (DRE) or a prostate-
specific antigen (PSA) test for initial screening. Men with a positive DRE or
elevated PSA require a follow-up transrectal ultrasound (TRUS) guided biopsy
to assess malignancy. Recent studies [2,13] indicate that the PSA test has a
high risk of overdiagnosis, with an estimated 50% of screened men being diag-
nosed with prostate cancer. This oversensitivity results in expensive and painful
prostate biopsies, which cause discomfort, possible sexual dysfunction, and may
result in increased hospital admission rates due to infectious complications [10].
The challenge diagnosticians face is how to improve prostate cancer diagnosis
by reducing the overdiagnosis caused by conventional screening methods while
still maintaining a high sensitivity (Fig. 1).

Current imaging-based cancer screening methods (such as the use of magnetic
resonance imaging or MRI) require extensive interpretation by an experienced
medical professional. One notable challenge is the variability between diagnos-
ticians (“inter-observer variability”) and the variability of a single diagnosti-
cian over multiple sittings (“intra-observer variability”) when evaluating features
using multi-parametric MRI (i.e., different MRI modalities) [7]. The European
Society of Urogenital Radiology (ESUR) recently introduced PI-RADS, or the
Prostate Imaging - Reporting And Diagnosis System [3]. PI-RADS is a set of
guidelines for interpreting multiple MRI images, and aims to raise the consis-
tency between diagnosticians through a common set of criteria.

Despite PI-RADS and further development to standardize the interpreta-
tion of multi-parametric MRI images [11], there is still a level of subjectiveness
that can lead to inconsistent diagnosis. Notable challenges include noise in MR
images, variability between different MRI modalities, weak contrast, and non-
homogeneous texture patterns, making it difficult for diagnosticians to identify
tumour candidates. Computer-aided cancer detection methods are being devel-
oped to help the physicians with the process.

One specific area of research is the identification of suspicious regions to aid
physicians with performing a more efficient and accurate diagnosis. The current
method for identifying suspicious regions is to threshold apparent diffusion coef-
ficient (ADC) maps, as low ADC values are associated with tumorous tissue [6].
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Fig. 2. Proposed framework for identifying suspicious regions using prostate multi-
parametric MRI. Unique texture features extracted from different MRI modalities are
used to learn a sparse texture model, and suspicious regions are identified via a statis-
tical textural distinctiveness-based saliency map.

Cameron et al. [4] proposed a threshold-based approach where tissue associated
with ADC values within a threshold range are automatically identified as suspi-
cious. However, this method depends on fixed thresholds, making it susceptible
to noisy MR images and ADC variations across different sets of multi-parametric
MRI data.

To facilitate a more reliable diagnosis, a novel method for identifying suspi-
cious regions indicative of potential prostate cancer using texture-based saliency
in multi-parametric MR images is proposed. The proposed method uses unique
texture information from each MRI modality to learn a sparse texture model,
and better characterize suspicious tissue within a patient’s MRI data.

2 Methods

A novel method is proposed for identifying suspicious regions to better aid
physicians with performing more efficient and accurate diagnoses. The proposed
method uses multi-parametric MR images and incorporates cross-modality tex-
ture features to better identify suspicious regions via statistical textural distinc-
tiveness. Figure 2 shows the general algorithmic framework developed.

2.1 Region-Based Textural Representations

Region-based textural representations are used to allow for the characterization
of texture features indicative of suspicious regions in prostate MR images. For
region-based textural representations, we incorporate the feature set proposed
by Khalvati et al. [8], which consists of sets of 19 low-level texture features
extracted each from T2-weighted (T2w) images, apparent diffusion coefficient
(ADC) maps, computed high-b diffusion-weighted imaging (CHB-DWI) data,
and correlated diffusion imaging (CDI) data, to better capture healthy and can-
cerous tissue characteristics. These MRI modalities were selected based on their
potential to separate cancerous from healthy prostate tissue.

The sets of texture features are combined into a single textural representation
h(x), and a compact version of the textural representation is produced using
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principal component analysis (PCA). A compact textural representation t(x) is
produced using the u principal components of h(x) with the highest variance:

t(x) = 〈Φi(h(x))|1 ≤ i ≤ u〉 (1)

where Φi is the ith principal component of h(x). While u can be selected based on
variance compactness, u components of h(x) were selected to represent 90% of
the variance of all the textural representations as determined through extensive
empirical testing.

2.2 Sparse Texture Model

To characterize healthy and suspicious tissue for a patient, a sparse texture
model is learned using the extracted multi-parametric MRI texture features [8].
The sparse texture model incorporates unique texture features from each MRI
modality to learn tissue characteristics via cross-modality texture information.
Thus, the sparse texture model can better identify healthy and suspicious tissue.

Using a subset of t(x) as training data, a global texture model is defined to
represent the heterogeneous characteristics of healthy and suspicious prostate
tissue. As global texture modelling is computationally expensive, we generalize
an MRI slice as being composed of a set of regions where a particular texture pat-
tern is repeated over a given area. In addition, the number of areas with unique
texture patterns is assumed to be much fewer than the number of individual
voxels in the training data.

Using this generalization, we can establish a textural sparsity assumption,
and the global textural characteristics of prostate tissue can be well-represented
using a small set of distinctive local textural representations. This allows for the
use of a sparse texture model, defined as a set of m representative texture atoms:

T r = {tri |1 ≤ i ≤ m} (2)

The sparse texture model used in the proposed method is a set of represen-
tative texture atoms corresponding to healthy or suspicious tissue, where each
texture atom represents the mean and covariance (i.e., tri = μ

i
, Σi) of a particular

texture pattern characteristic of healthy or suspicious tissue. The representative
atoms in the sparse texture model are learned via expectation maximization [1].

2.3 Statistical Textural Distinctiveness

Suspicious regions in prostate MRI data can be characterized as areas that
are highly unique and texturally distinct. Using the concept of statistical tex-
tural distinctiveness [12], we quantify the distinctiveness of texture patterns and
uncover the underlying saliency by using the statistical relationship between
texture patterns across different MRI modalities.

To define statistical textural distinctiveness between two representative tex-
ture atoms (denoted as tri and trj) in the sparse texture model, we use Kullback-
Leibler (KL) divergence [9] to measure the statistical difference between the
representative texture atoms in the sparse texture model:
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βi,j = log
|Σj |
|Σi| − u + trace(Σ−1

j Σi) +
(μ

j
− μ

i
)T Σ−1

j (μ
j
− μ

i
)

2
(3)

where u is the number of PCA components selected, μ
i

and μ
j

represent the
mean of tri and trj , respectively, and Σi and Σj represent the covariance of tri
and trj , respectively. Thus, the distinctiveness metric βi,j increases as the texture
patterns become more distinct from one another.

2.4 Suspicious Region Detection via Saliency Map Computation

As the majority of prostate tissue is considered to be healthy, salient regions
can be interpreted as suspicious due to the uniqueness and statistical occurrence
of the corresponding cross-modality texture characteristics. Given a subset of
compact texture features used for testing (denoted as t(x)Z), the saliency map for
a given MRI image can be computed using the previously determined statistical
textural distinctiveness graphical model. The saliency αi is defined as:

αi =
m∑

j=1

βi,jP (tri |t(x)Z) (4)

where P (tri |Z) is the occurrence probability of tri in t(x)Z .
For Si being the set of texture representations that corresponds to saliency

αi, voxels belonging to salient representative texture atoms Si (i.e., αi > αmax

2 )
are classified as regions of suspicious tissue, with all other voxels classified as
healthy tissue. That is, each voxel x in a given MRI image is assigned a label y:

y =

{
1 x ∈ Si, αi > αmax

2

0 otherwise
(5)

3 Results

3.1 Experimental Setup

The performance of the proposed method was evaluated using the MRI data
of 13 patients acquired using a Philips Achieva 3.0 T machine at Sunnybrook
Health Sciences Centre, Toronto, Ontario, Canada. The resolution of the sig-
nal acquisitions ranged from 1.36 mm× 1.36 mm to 1.67 mm × 1.67 mm, with a
median of 1.56 mm × 1.56 mm. Institutional research ethics board approval and
patient informed consent for this study was obtained at Sunnybrook Health Sci-
ences Centre. The patients’ ages ranged from 53 to 75. The data set includes
segmentation information to isolate the prostate, and ground truth data for
tumour size and location. All images were reviewed and marked as healthy and
cancerous tissue by a radiologist with 18 and 13 years of experience interpreting
body and prostate MRI, respectively.
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Each patient dataset had corresponding T2w images, ADC maps, CHB-DWI
data, and CDI data. Using the radiologist contour of the prostate, a rectangle
cropped around the prostate gland was selected as the region of interest (ROI)
for each MRI slice. The performance of each method was evaluated using leave-
one-patient-out cross-validation. A subset of the training texture features were
randomly selected and used to train the classifier, and the voxels in a single
MRI slice were classified as either healthy or cancerous tissue and assigned the
saliency value of the nearest texture atom.

In addition, the number of texture atoms used to compute the spare texture
model (as described in Subsect. 2.2) was varied to determine the optimal number
of representative texture atoms for identifying suspicious regions in prostate MR
images. The ADC-based method was compared against the proposed texture
distinctiveness method (TD) via sensitivity, specificity, and accuracy metrics.

Sensitivity =
TP

P
Specificity =

TN

N
Accuracy =

TN + TP

N + P

where the performance of each method was quantified by the metrics’ closeness
to one. TP is the number of voxels in the intersection of the identified cancerous
tissue and the radiologist’s tissue segmentation, TN is the number of voxels not
in the identified tissue that are also not in the radiologist’s segmentation, N
is the number of voxels not in the radiologist segmented tissue, and P is the
number of voxels in the radiologist segmented tissue.

3.2 Experimental Results

The proposed textural distinctiveness method (TD) was evaluated using both
four-atom and six-atom sparse texture models. Table 1 shows the performance
metrics for the ADC-based method [4] and the proposed method. The testing
data contained 52 tumours (as identified by an experienced radiologist) across
the slices from 13 different patients.

As seen in Table 1, the proposed TD method outperforms the ADC-based
method [4] in terms of sensitivity, specificity, and accuracy. While there is only
a relatively small increase in sensitivity (approximately 1.5%), TD shows an
increase of at least 10% in specificity and accuracy relative to the ADC-based
method. This is especially beneficial, as a low specificity negatively impacts a

Table 1. Comparison of TD (trained with both 4 and 6 texture atoms) with ADC-
based method [4]. TD has similar sensitivity values as the ADC-based method, and
improved specificity and accuracy values.

Sensitivity Specificity Accuracy

ADC-based method [4] 0.7911 0.7107 0.7115

TD (4 texture atoms) 0.8088 0.8285 0.8283

TD (6 texture atoms) 0.8103 0.8303 0.8301
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(a) (b) (c) (d)

Fig. 3. Visual comparison of identified suspicious regions (shown in red) between (a)
ADC-based method [4], (b) TD using four texture atoms, (c) TD using six texture
atoms, and (d) radiologist segmented regions (colour figure online).

diagnostician’s ability to perform quick and accurate assessments of MRI data.
By increasing specificity, TD minimizes the number of wrongly detected regions
that contain no tumour candidates. This is important for procedures such as
radical prostatectomy where an extremely high specificity rate is required.

Figure 3 shows the suspicious regions detected using the ADC-based method
[4] and the proposed TD method using four and six representative texture atoms.
While all methods identify the cancerous regions as suspicious, the ADC-based
method in particular has a tendency to be over-sensitive and often identifies a
large portion of the prostate tissue as suspicious. A visual inspection of the iden-
tified suspicious regions shows that TD consistently produces spatially compact
and useful regions regardless of the number of texture atoms.

4 Conclusion

A novel method was proposed to aid physicians in efficiently and accurately
diagnosing patients via the identification of suspicious regions in prostate MR
images. We extracted unique textural information from different MRI modalities,
and used a sparse texture model to learn tissue texture characteristics. As the
majority of prostate tissue is considered to be healthy, texturally distinct regions
can be interpreted as suspicious due to the uniqueness and statistical occurrence
of the corresponding cross-modality texture characteristics.
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The proposed statistical textural distinctiveness approach (using four-atom
and six-atom sparse texture models) was evaluated against the ADC-based
method [4]. In both cases, statistical textural distinctiveness has higher sensi-
tivity, specificity, and accuracy values than the state-of-art ADC-based method.
In additional, statistical textural distinctiveness also identifies suspicious regions
on a per patient basis, rather than relying on a fixed ADC value characteristic of
typical cancerous tissue (as is the case with the ADC-based threshold method).
Thus, statistical textural distinctiveness shows potential for more flexible and
visually meaningful identification of suspicious tumour regions.

Future work includes the further investigation of additional MRI modalities,
and the use of spatial consistency to enforce more compact identified suspicious
areas. Applications include identifying suspicious regions for clinicians to better
stream-line a patient’s diagnosis, and automatically identifying regions of interest
for computer-aided tumour detection methods.
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Berenguer, A., Määttänen, L., Bangma, C.H., Aus, G., Villers, A., Rebillard, X.,
van der Kwast, T., Blijenberg, B.G., Moss, S.M., de Koning, H.J., Auvinen, A.:
Screening and prostate-cancer mortality in a randomized European study. N. Engl.
J. Med. 360(13), 1320–1328 (2009)



Automatic Detection of Immunogold Particles
from Electron Microscopy Images

Ricardo Gamelas Sousa1,2, Tiago Esteves1,2,4, Sara Rocha6,
Francisco Figueiredo1,3, Pedro Quelhas1,2,7, and Lúıs M. Silva1,2,5(B)
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Abstract. Immunogold particle detection is a time-consuming task
where a single image containing almost a thousand particles can take
several hours to annotate. In this work we present a framework for the
automatic detection of immunogold particles that can leverage signifi-
cantly the burden of this manual task. Our proposal applies a Laplacian
of Gaussian (LoG) filter to provide its detection estimates to a Stacked
Denoising Autoencoder (SdA). This learning model endowed with the
capability to extract higher order features provides a robust performance
to our framework. For the validation of our framework, a new dataset was
created. Based on our work, we determined that solely the LoG detector
attained more than 74.1 % of accuracy and, when combined with a SdA
the accuracy is improved by at most 11.4 %.

1 Introduction

Immunogold electron microscopy is a high-resolution method for the selective
localization of biological molecules at the subcellular level. Antibodies coupled
to particles of colloidal gold, which are visible in the Transmission Electron
Microscopy (TEM), can reveal the localization and distribution of the biological
molecules of interest. We have used this technique to determine the composition
of cell walls which ultimately differentiate into reticulate and flange ingrowths of
maize (Zea mays L.) endosperm transfer cells [9]. However, a manual immuno-
gold particle detection is a time-consuming task prone to error [11] (Fig. 1 [6])
and which can increasingly benefit from an automatic detection tool.

In this paper we present a method that permits an automatic detection of
immunogold particles. We show that Laplacian of Gaussian (LoG) is tolerant to

c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 377–384, 2015.
DOI: 10.1007/978-3-319-20801-5 41
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Fig. 1. Representative images of our dataset illustrating different structures that can
interfere in the detection of the immunogold particles due to: cellular overlapping, tis-
sues and background noise. Each image has 4000× 2600 pixels of dimension with parti-
cles diameter ranging from 8 to 20 pixels. (a) Example of a sample with a magnification
of 15000 (1µm, particles with a diameter of 8 pixels—red line); (b) magnification of
20000 (0.5µm, 12 pixels diameter particles); (c) magnification of 30000 (0.5µm, 15
pixels diameter particles); and, (d) magnification of 50000 (200 nm, 20 pixels diameter
particles) (Color figure online).

feeble changes of immunogold particles sizes and to noise that may occur during
the image acquisition. However, its sole application is insufficient since the recog-
nition solely based on shape and image intensities can induce a higher number
of false detections requiring further a-posteriori heuristics. Our proposal consists
on coupling the state-of-the-art Stacked Denoising Autoencoder (SdAs) to the
detections provided by the LoG filter. This framework explores the capability
of SdAs to extract high representative features of our images that lead to the
improvement of the recognition rates.

2 Immunogold Particles Detection

Although there is not much work in the automatic analysis of immunogold par-
ticle from Electron Microscopy, there is however some previous work for the
detection of similar cellular structures. For instance, Fisker et al. in [5] explored
the possibility to automatically estimate particle sizes in immuno-microscopy
imaging. Their approach is based on deformable models that can be fitted to
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the prior known shape of the particles. As in [5], a different approach was pre-
sented by Mallic et al. in [8] by using cascade of classifiers. The usage of image
filters for image analysis and for organelle detection on cryo-electron microscopy
images is not new [14]. However, these methodologies were not tailored neither
evaluated on immunogold particles. For the detection of biological structures,
there is the publicly available Spot Detector (SD) [10] algorithm that is included
in the well-known Icy bioimaging software [3]. Icy (in short) is an open source
software with resources to visualize, annotate and quantify bio-imaging data. SD
is based on the non-decimated wavelet transform allowing the detection of spots
that can be organelles or other biological structures [10]. This approach aggre-
gates a response for each resolution and scale of the image providing detailed
information of the objects. As a generic form of spot detection it includes a set
of parameters that need to be defined for an appropriate detection. It requires
the identification of a trade-off between particles and background; the definition
of a scale and sensibility that controls both size of the particles to be detected
and a threshold for noise removal.

Our work is distinguished from the aforementioned proposals by addressing
different cellular structures that are not irregular (immunogold particles better
viewed in Fig. 3) but of difficult detection and quantification. Our work will be
focused on the detection of immunogold particles with regular spherical shape,
thus avoiding the adoption of a highly parameterized formalism for its detection.

2.1 Immunogold Particles Detection Using LoG Filter

For the task of immunogold particles detection we used the LoG filter, which is
based on the image scale-space representation to enhance the blob like structure
as introduced by Lindeberg [7]. Given an input image I(x, y), the Gaussian scale
space representation at a certain scale t is:

L(x, y, t) = g(x, y, t) ∗ I(x, y), where g(x, y, t) =
1

2πt
exp− x2+y2

2t , (1)

where ∗ is the convolution operation. The scale normalized LoG operator is
then defined as: �2L(x, y, t) = t2(Lxx(x, y, t) + Lyy(x, y, t)), where Lxx and Lyy

are the second derivatives of the input image in x and y respectively, and t
is the scale parameter so that t = r/1.5 for a particle radius r [7]. We set
the scale of the filter (t) given the expected range of the immunogold particle
radius (Fig. 1). We perform detection of immunogold particles by detecting local
maxima of LoG response (Fig. 2 — center) in the input image (Fig. 2 — left).
The detected maxima enable us to estimate the position of immunogold particles
(Fig. 2 — right). This sole approach however can induce a significant number
of false positives or false negatives. Here, we propose a second stage for the
immunogold recognition by coupling a SdA to filter the outputs given by the
LoG method.
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Fig. 2. LoG based cell detection: (left) Original image (crop from an image with mag-
nification of 50000); (center) LoG response; right) Detections overlaid in the original
image.

2.2 Immunogold Recognition Through SdAs

An autoencoder is a simple Neural Network (NN) with one hidden layer designed
to reconstruct its own input, having, for that reason, an equal number of input
and output neurons. The reconstruction accuracy is obtained by minimizing
the average reconstruction error between the original (which can be corrupted
by some noise [13]) and the reconstructed instances. Hence, these methods are
governed by the objective of capturing relevant information of the underlying
distribution of the samples [12].

Stacking autoencoders, gives the model the advantage of hierarchical features
with low-level features represented at lower layers and higher-level features rep-
resented at upper layers [2, Sect. 3]. The unsupervised training of the SdAs is
usually referred to as pre-training. On the top of the network a logistic layer
is added where the entire network is “fine-tuned” in order to minimize some
classification loss function [1,2].

SdA robustness makes it a very promising learning tool for the recognition of
the circular shaped immunogold particles. A representative sample of the images
that were used to train the SdA is depicted in Fig. 3. Given the similarity of the
immunogold particles, it is expected that SdA can capture relevant features
from these samples and easily discriminate from the remaining artifacts or cel-
lular structures. A far more complex scenario occurs when multiple immunogold
particles are comprised in the same patch (see Fig. 3). In doing so, SdA has also
to be robust to the number of particles existing in the same image patch.

3 Experimental Study

Dataset: We have created a new dataset containing 100 images with size of
4000 × 2600 to assess the performance of our algorithms for the detection of
the immunogold particles. This dataset is available upon request to the authors
of this work. All images were acquired using a TEM JEOL JEM 1400 with a
GATAN Orius SC10000A2 CCD. These images were recorded in four different
magnifications: 15, 20, 30 and 50 thousand times from different biological samples
(see Fig. 1) whereas manual annotation was conducted with the plugin ‘manual
counting’ within Icy [3].
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Fig. 3. Different types of patches in the dataset with magnification of 50000 (a): patches
of the background and containing artifacts (first row); and, patches containing at least
one immunogold particle (second row); and, (b) analogous, but for patches in the
dataset with a magnification of 15000.

Parameter and Training Settings for LoG and SdA: For the LoG filter, the
scale parameter was set based on the known immunogold particle size varying
between 3 to 13 pixels. We also measure the performance for each threshold
applied to the filter response with values ranging from 5 to 55. To find the
best parameterization we have performed a three-fold cross validation with 60 %
(60 images, 15 samples per resolution) for training and 40 % for evaluating the
performance of our method. The performance of the LoG is represented by a
Precision-Recall curve on the validation set [4].

In order to build (train) the SdA models we proceeded as follows: For a given
resolution we used the same 60 % of images that were used to train the LoG
filter. From this train set we extracted patches with 20×20 pixels containing all
immunogold particles and the same amount of patches containing background,
(portions of) cellular structures or artifacts. A patch could contain more than
one particle or portions of several other particles (see Fig. 3). Finally, patches
were labelled as containing at least one immunogold particle if the Euclidean
distance between the patch position (on the image) and the annotation position
was below the size of the patch. Pixels values from all patches were normalized to
be within [0, 1]. To find the best SdA model parameterization we have performed
a grid search on the pre-training learning rate (0.01 and 0.001), fine-tune learning
rate (0.1 and 0.01) and the number of neurons per layer (500, 750 and 1000) by
carrying out a three-fold cross-validation in the training set. The number of
hidden layers was fixed to 3. Corruption level was set to 0.1 across all hidden
layers.

Once we obtained the best parameterization for the LoG and SdA, given a
test image, we apply the LoG filter. The filter response give us an estimate of a
possible nanoparticle localization. Then, a patch with 20 × 20 pixels centered at
the position of the LoG detection is extracted and evaluated by the SdA. The
assessment of the methods performance is described in the following paragraph.
Finally, to assess the variability of our methods’ performance the experiment
was repeated 20 times by randomly shuffling the data.
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Fig. 4. Illustrates the Precision-Recall curves on the 20 repetitions for the LoG on
the validation set by averaging. Isolate points correspond to test results for LoG and
LoG+SdA. (a–d) results for images with a magnification of 15000, 20000, 30000 and
50000, respectively.

Evaluation: For an objective evaluation each detection is assigned to a ground-
truth if the Euclidean distance between them is below the size of the particle
radius r. Moreover, we ensure that there is a one-to-one mapping between detec-
tion and ground-truth. Based on the assignments we propose the following mea-
sures for error counting: (a) True Positive (TP): detected immunogold particle
for a corresponding ground-truth; (b) False Positive (FP): detected immunogold
particle that does not have a corresponding ground-truth; and (c) False Negative
(FN): ground-truth for which no corresponding immunogold particle detection
was found.

The performance of both methods was plotted according a Precision-Recall
curve as follows: Precision = TP

TP+FP , and Recall = TP
TP+FN . The final perfor-

mance is given by the F-measure which combines both precision and recall as:
F-measure = 2Precision×Recall

Precision+Recall .

Results and Discussion: For magnification of 15000—see Fig. 4(a), we observed
that the expected immunogold particle radius tested during the detection of
immunogold particles attained the best results (radius = 3). Comparing to
the other radius tested, with radius = 3 it achieved a higher recall, which
means a higher number of immunogold particles well detected. A similar analysis
can be performed for the remaining figures stating the importance of the size
of the radius. As expected, in the majority of our experiments we obtained
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Table 1. F-measure performance for the best Precision and Recall for LoG and LoG
coupled with SdA (see Fig. 4). Best results are in bold and presented in percentage.

Magnification LoG LoG+SdA

Precision Recall F-measure Precision Recall F-measure Improvement

15000 79.2 69.6 74.1 91.9 80.0 85.5 11.4%

20000 94.2 77.5 85.0 93.9 78.4 85.0 0.0%

30000 95.9 89.8 92.7 99.8 89.0 94.1 1.4%

50000 92.6 87.0 89.7 99.9 85.5 92.1 2.4%

the best performance for the radius corresponding to the real dimension of the
immunogold particle making this an easy method to parameterize.

We can also claim that the best results are achieved for a magnification of 30
and 50 thousand. These results are coherent with the quality of the acquisitions
which contain feeble noise and artifacts as well as sparse immunogold particles
(see Fig. 1). This could in fact be a desirable setting for the automatic analysis of
these images. However, a low magnification (inferior to 30000) can nevertheless
be useful to identify important cellular structures and ultra-structures to which
immunogold particles can easily bind to.

When we couple the SdA learning models to the results provided by the LoG
we can find an interesting result: SdA can efficiently discard detections that
correspond to background. Such is confirmed by the increase of the Precision
performance. For almost all magnifications SdA was able to discard samples
which could be considered as a false immunogold particle. In the overall, LoG
coupled with the SdA lead to a noteworthy improvement on the detection of
immunogold particles. Towards a better inspection these results we present a
table with the F-measure results for the test set on both methods (see Table 1).

4 Conclusion

In this work we have proposed a framework for automatic detection of immuno-
gold particles in different magnifications. We found that solely the LoG filter
attained results over 74 % of accuracy. When coupled with the state-of-the-art
SdA machine learning algorithm it was possible to outperform the LoG filter.
These results show that these approaches are also resilient to the presence of
noise, artifacts and cluttered background and easy to set-up based on the few
parameters of the framework (only dependent on the threshold parameter of the
LoG filter response).
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Abstract. A novel stochastic Bayesian estimation method is introduced
for the purpose of suppressing specular reflectance in endoscopic imagery,
benefiting both computer aided and manual analysis of endoscopic data.
The maximum diffuse chromaticity, which is necessary for the calculation
of the specular reflectance, is estimated via Bayesian least-squares mini-
mization, with the posterior probability of maximum diffuse chromatic-
ity given maximum chromaticity constructed via an adaptive Monte
Carlo sampling approach. Experimental results using a set of clinical
endoscopic imagery showed that the proposed method resulted in lower
coefficient of variation values when compared to existing methods in
homogeneous regions contaminated by strong specular highlights, which
is indicative of improved specular reflectance suppression. These findings
are further reinforced by visual assessment of the specular suppressed
endoscopic imagery produced by the proposed method.

Keywords: Endoscopy · Specular reflectance suppression · Image
processing · Minimally invasive surgery

1 Introduction

Minimally invasive surgery has recently become more widely used in place of
classic surgical techniques, with benefits including smaller incision wounds or
avoidance of incision wounds entirely, less post-operative pain, faster recovery
times, and reduced visible scarring [6]. Minimally invasive surgery is often guided
by imagery collected via an endoscope, a flexible tube with a light source and a
camera attached at the tip, which is displayed to a surgeon.

Both computer-aided analysis and manual review of endoscopic imagery is
beneficial for accurate diagnosis, surgical planning, and surgical assistance. Com-
puterized processing of endoscopic imagery is useful in numerous applications
including automated annotation and feature extraction [3], automated classifica-
tion [4,17], assisted endoscope guidance [7,13], and computer-aided comparison
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(a) Gastric Fundus (b) Proximal Esopha-
gus

(c) Gastric Cardia (d) Gastric Fundus

Fig. 1. Examples of specular highlights in endoscopic imagery [2]. Regions of high
specular content are circled.

between endoscopic imagery and imaging data obtained through an alternate
modality [8,10]. However, image analysis algorithms for endoscopic imagery are
often hindered by the presence of strong specular highlights caused by the spec-
ular reflectivity of mucous membranes within the human body. Such effects can
be seen in Fig. 1, in which specific examples of strong specular highlights have
been circled. Furthermore, in a double-blind study conducted by Vogt et al. [16]
in which physicians were asked to choose between two of the same endoscopic
images, one with suppressed specular reflectance and the other unprocessed, it
was concluded that physicians preferred to view endoscopy imagery in which
specular reflectance has been suppressed. Hence, methods for suppressing strong
specular reflectance in endoscopic imagery are highly desired.

Oh et al. [11] proposed a method for detecting specular highlights in
endoscopy imagery via thresholds on the saturation and value channels in the
HSV colour space, as well as on segmented regions of similar texture and colour.
However, the threshold values were inflexible and required calibration, and the
segmentation algorithm was computationally expensive. Arnold et al. [1] used
adaptive colour channel thresholds to identify a set of potentially specular pix-
els, and refined the set via thresholds based on an estimated non-specular colour
image for each channel obtained through median filtering. While this has been
shown to run faster than [11], the need for manually defined parameters decreases
the robustness and reliability of this algorithm in a wide variety of applications.

Tan and Ikeuchi [14] proposed a method for separating the specular and dif-
fuse components of an image by estimating an initial specular-free image and
iteratively correcting it to produce a diffuse (specular free) image. This method
eliminates the need for thresholds or colour segmentation, but was shown to
be very computationally expensive. Yang et al. [19] demonstrated an improved
method for decoupling the specular and diffuse components of an image which
is capable at operating at speeds suitable for real-time applications, and yields
more accurate results than [14]. Bilateral filters are used to estimate the maxi-
mum diffuse chromaticity which, based on work by Tan et al. [15] and Shafer’s
dichromatic reflectance model [12], can be used to estimate the specular-free
diffuse image. While this method resulted in real-time capabilities and improved
suppression performance, the use of bilateral filters enforces piecewise smooth
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reflectance assumptions that may not be well suited for drastic reflectance vari-
ations such as those seen in endoscopy imagery. In this work, we propose a novel
stochastic Bayesian estimation approach to specular reflectance suppression in
endoscopic imagery that extends upon the work of Tan et al. [15] to better handle
such drastic reflectance variations.

2 Methodology

The proposed method aims to decouple the specular and diffuse components of
endoscopic imagery in order to suppress specular reflectance. Building upon work
done by Tan et al. [14], a stochastic Bayesian estimation approach is introduced
to estimate the specular component of endoscopic imagery. Such an approach
is better suited for drastic reflectance changes by better use of the underlying
image statistics. An overview of the proposed method is shown in Fig. 2.

2.1 Dichromatic Reflection Model

The reflection model used throughout this formulation (Eq. 1) assumes an RGB
video endoscope. Based upon Shafer’s dichromatic reflection model [12], the
light reflected from an object, J , is comprised of two components; the diffuse
reflection, JD, and the specular reflection, JS :

J = JD + JS . (1)

Furthermore, let chromaticity, σc, diffuse chromaticity, Λc, and specular chro-
maticity, Γc, be defined as

σc =
Jc

Jr + Jg + Jb
, Λc =

JD
c

JD
r + JD

g + JD
b

, Γc =
JS

c

JS
r + JS

g + JS
b

(2)

where c ∈ {r, g, b}, the colour channels captured by an RGB endoscope.

P (Λmax|σmax)

Adaptive

Monte

Carlo

Sampling

Original Λ̂max
Specular Component Specular Suppressed

Bayesian

Mini-

mization

Calculate

ĴS

Calculate

ĴD

Fig. 2. Overview of the proposed method for specular reflectance suppression in endo-
scopic imagery
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2.2 Specular Reflection Estimation

It was shown by Tan et al. [15] that given the estimated illumination chromatic-
ity, the specular colour component of each reflected light can be normalized such
that JS

r = JS
g = JS

b = JS and Γr = Γg = Γb = 1
3 . The diffuse reflection can then

be calculated as:
JD

c = Jc − JS . (3)

In addition, Tan and Ikeuchi [14] have shown that JS can be calculated as a
function of the maximum diffuse chromaticity (Λmax) where,

Λmax = max(Λr, Λg, Λb) (4)

and

JS =
max(Jr, Jg, Jb) − (Jr + Jg + Jb)Λmax

1 − 3Λmax
. (5)

2.3 Stochastic Bayesian Estimation of Λmax

Given Eq. 5, it can be seen that a reliable estimate of the maximum diffuse
chromaticity Λmax is critical in the calculation of the specular reflectance JS .
Here, we formulate the problem of obtaining the maximum diffuse chromaticity,
denoted by Λ̂max, as a Bayesian least-squares minimization problem, which can
be formulated as follows:

Λ̂max = arg min
Λ̂max

(E((Λmax − Λ̂max)2|σmax))) (6)

where σmax is formulated as:

σmax = max(σr, σg, σb). (7)

By the same approach as Lui et al. [9], the solution of Eq. 6 can be written as:

Λ̂max =
∫

P (Λmax|σmax)ΛmaxdΛmax, (8)

where P (Λmax|σmax) denotes the posterior probability. Since the posterior prob-
ability P (Λmax|σmax) is unknown and difficult to obtain analytically, we employ
an adaptive Monte Carlo sampling approach to obtain a reliable estimate based
on inherent image statistics [5,18]. In such an approach, for each pixel, xc, in
image space Φ, a set of pixels q1, q2, ..., qN , are sampled stochastically from Φ
based on an acceptance probability relating qi and xc [18], where qi refers to the
ith sampled pixel. The acceptance probability, α(qk|xc), is calculated as

α(qk|xc) = exp

(
σ1 − 1

N

N∑

i=1

(ℵqk(i) − ℵxc
(i))2

)
, (9)

where σ1 is a constant and ℵqk and ℵxc
represent regions of equal size surrounding

qk and xc respectively. The set of sampled pixels are used to construct a weighted
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histogram estimate of P (Λmax|σmax), where the weight of each sampled pixel’s
contribution, wk, to the estimate of P (Λmax|σmax) is determined by [18] as

wk = exp

(
−

1
N

∑N
i=1(ℵqk(i) − ℵxc

(i))2

σ2

)
(10)

where σ2 is a constant.

3 Experimental Setup

3.1 Phantom Data Experiment

To validate the effectiveness of the proposed method in general, a simulated
phantom model was created. Glossy texture and a simulated light source were
then applied to produce the effect of specular highlights. In order to obtain
ground truth data, the same object was given a matte texture as to remove
the effect of specular highlights. The model’s shape is that of a twisted tube
with a ridged inner surface to replicate similar reflective qualities as those seen
in endoscopy images. The phantom model and ground truth can be seen in
Fig. 3. To evaluate the success of the proposed method, the peak signal to noise
ratio (PSNR) of the simulated ground truth and the post-processed image were
compared.

3.2 Endoscopy Data Experiment

To validate the performance of the proposed method on endoscopic imagery, an
experiment was conducted using thirty endoscopy data sets obtained from the
Clinical Outcomes Research Initiative [2]. The resolution of each data set ranges
from 183×190 to 530×460 pixels and each was captured with an RGB endoscope.
Since no ground truth exists for these data sets, the coefficient of variation (COV)
was used to quantitatively evaluate the effectiveness of the proposed algorithm.

(a) Specular Phantom Model (b) Diffuse Phantom Model

Fig. 3. Specular and diffuse phantom models where the diffuse phantom model acts as
ground truth for experiments run on this data set.
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(a) Phantom Data (b) Ground Truth (c) Yang [19]
PSNR = 70.63 dB

(d) Proposed
PSNR = 72.13 dB

Fig. 4. Results from performing specular highlight suppression on the phantom dataset.
PSNR values are also shown, with the most desirable PSNR value indicated in boldface.

The COV was calculated over a set of selected regions (as shown in Fig. 5)
with largely homogeneous tissue characteristics that have been contaminated by
strong specular reflectance. The COV of a region, X, was calculated as follows:

COV =
σX

μX
(11)

where σX and μX represent the standard deviation and mean of the region, X,
respectively. COV provides a good indication of intensity homogeneity within a
region, and offers a consistent comparison of variation across all data sets. Since
standard deviations in the selected largely homogeneous regions should be low,

Table 1. Tabulated COV calculated over thirty endoscopic data sets. Lower COV
indicate better performance. The average and standard deviation across the COV for
each method are also displayed. The best results are highlighted in boldface.

Test Original [19] Proposed Test Original [19] Proposed

1 0.0815 0.0251 0.0209 17 0.1415 0.0441 0.0435
2 0.1144 0.0275 0.0262 18 0.2660 0.0485 0.0352
3 0.1124 0.0417 0.0293 19 0.1429 0.0412 0.0509
4 0.1688 0.0329 0.0266 20 0.0984 0.0232 0.0266
5 0.1671 0.0526 0.0413 21 0.0979 0.0286 0.0206
6 0.1136 0.0408 0.0320 22 0.0376 0.0262 0.0132
7 0.0848 0.0280 0.0320 23 0.3211 0.0519 0.0335
8 0.1123 0.0304 0.0320 24 0.2029 0.0441 0.0357
9 0.1224 0.0458 0.0426 25 0.0779 0.0291 0.0253
10 0.2273 0.0389 0.0316 26 0.0680 0.0385 0.0409
11 0.0768 0.0406 0.0337 27 0.1253 0.0208 0.0189
12 0.0671 0.0334 0.0234 28 0.0703 0.0307 0.0250
13 0.1470 0.0232 0.0176 29 0.0684 0.0277 0.0289
14 0.2347 0.0554 0.0580 30 0.1541 0.0438 0.0384
15 0.0889 0.0370 0.0416 AVE 0.1240 0.0362 0.0318
16 0.0654 0.0252 0.0205 STD 0.0525 0.0097 0.0102
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a smaller COV is desirable and indicative of specular reflectance suppression
performance. For comparison, the method proposed by Yang et al. [19] was
evaluated as it represents state-of-the-art in specular reflectance suppression. In
addition, values of σ1 = 0.272 and σ2 = 0.0172 were used throughout as they
were empirically determined to produce strong results.

4 Experimental Results

4.1 Phantom Data Experiment

The results produced by both Yang et al. [19] and the proposed method when
applied to the phantom dataset are shown along with the ground truth and spec-
ular phantom images in Fig. 4. In addition, PSNR values are indicated beneath
each figure where applicable. For the PSNR metric, larger values are desirable
as this indicates a lower contribution from noise to the overall signal. By visual
inspection, it is clear that both methods perform well to suppress specular high-
lights, however, PSNR values indicate slight improvements by the proposed
method. This can likely be attributed to presence of discontinuous geometry

Fig. 5. Visual results from four of the tested endoscopic data sets. The regions used to
compute the coefficient of variation are indicated, and the corresponding coefficient of
variation is shown below each data set. Column (a) contains the unprocessed image,
column (b) contains the results obtained by [19], and column (c) contains the results
obtained by the proposed method.
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and the ability of the proposed method to handle such scenarios, whereas the
method proposed by Yang et al. [19] assumes piece-wise smooth geometry.

4.2 Endoscopy Data Experiment

The COV results computed for the thirty endoscopic data sets are tabulated in
Table 1. Both of the tested methods resulted in a lower COV than the original
endoscopic imagery, indicating that both methods provided specular reflectance
suppression. However, the proposed method, on average, produced COV values
lower than those produced by [19]. A T-test between the two COV distributions
produced a P-value of less than 10 % (0.094), indicating statistical significance.
This signifies that within the selected regions, the specular suppressed imagery
produced by the proposed method are more homogeneous than those produced
by [19] and could be indicative of improved specular reflectance suppression
performance. While COV is one way of offering a quantitative comparison, this
does not necessarily reflect the benefit to clinicians when visually assessing the
specular suppressed endoscopic imagery. As such, a visual comparison for four
of the endoscopic data sets is shown in Fig. 5, along with the regions used for
the COV calculation. While both methods are effective at suppressing strong
specular reflectance in all data sets, the specular suppressed endoscopic imagery
produced by the proposed method exhibits fewer artifacts, which is important
for both visualization and endoscopic image analysis.

5 Conclusions

A method for suppressing specular reflectance in endoscopic imagery via sto-
chastic Bayesian estimation has been proposed. Experiments show that the pro-
posed method achieved strong specular reflectance suppression with minimal
visual artifacts. Future work will include further validation with a more com-
prehensive clinical study to ensure relevant medical information is unaffected by
the proposed method.
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Abstract. The use of medical images by medical practitioners has increased to
an extent that computers have become a necessity in the image processing and
analysis. This research investigates if the Edge density and Local Directional
Pattern can be used to characterize medical images. The performance of the
Edge density and Local Directional Pattern features is assessed by finding their
accuracy to retrieve images of the same group from a database. The combination
of the Edge density and Local Directional Pattern features has shown to produce
good results in both, classification of medical images and image retrieval. For
the classification using the nearest neighbor and 5-nearest neighbor techniques
yielded 98.2 % and 99.6 % classification success rates respectively and 99.4 %
for image retrieval. The results achieved in this research work are comparable to
other approaches used in literature.

1 Introduction

There exist various medical imaging devices which have been used for many years in
medicine. Magnetic resonance imaging (MRI), computerized tomography (CT), digital
mammography, X-rays and ultrasound images provide effective means for creating
images of the human body for the purpose of medical diagnostics. These allow medical
professionals to clearly isolate different parts of the human body and determine if
disease or injury is present and also improves the decisions made in treatment planning.
With the increasing size and number of medical images being produced by various
imaging modalities, the use of computers and image processing techniques to facilitate
their processing and analysis has become necessary. These medical images can be
characterized by the use of image processing techniques to assist medical practitioners
with medical diagnostics. Medical images can be characterized by color, texture, shape
and region-based descriptors.

In this paper, the Edge density and Local Directional Pattern features are investi-
gated to determine if they can be used to classify medical images. This paper provides
an overview of the system used and explains the details of the image enhancement and
feature extraction techniques used. And finally assesses the results obtained from using
the edge density feature to classify the medical images and to retrieve images from a
database.
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2 Background and Related Work

Prior to 2005, automatic classification of medical images was often restricted to a small
number of classes and has evolved from a task of 57 classes to a task of almost 200
classes in 2009 [1]. Maria et al. [2] proposed a method to characterize mammograms
into two categories; normal and abnormal. In their research four features where
extracted; mean, variance, skewness and kurtosis, along with these features additional
features were added to the training of the classification system, these features are; the
type of tissue and the position of the breast. The results obtained where 81.2 % and
69.1 % using neural networks and association rule mining respectively. Yanxi et al. [3]
developed a semantic-based image retrieval system centered classification using fea-
tures that related to size, shape and texture obtained 80 % accuracy on classification
and retrieval. Vanitha et al. [4] used the support vector machine (SVM) to characterize
medical images and used three approaches for feature extraction, namely, structural,
statistical and spectral approaches, with results of 97.5 % during training and 93.33 %
during testing.

Edge information can provide essential information of an image, in the universal
model for content-based image retrieval done by Nandagopalan et al. [5], edge his-
togram descriptors were used and compared with other statistical features such as
colour and texture. The colour outperformed all other statistical features but the edge
histogram descriptor was shown to be successful in precision and recall. In the survey
done by Surya et al. [6], the feature proposed by Phung et al. [7], namely edge density,
which differentiates objects from non-objects in an image using edge characteristics,
was shown to have a good discriminating capability when compared to other features
such as Haar-Like features. Phung et al. [7] have also used the concept of edge density
to detect people in images and in this work edge density was also found to have
stronger discriminating capabilities and can be easily implemented. The work done on
texture classification and defect detection by Propescu et al. [8] had used many sta-
tistical features including edge density. It was found that edge densities once again had
good discriminating capabilities but can achieve better results in texture classification
by combining second order type statistical features.

3 Methods and Techniques

The system uses part of the content based image retrieval model proposed by [5]. The
system is trained with a set of known images and tested with an unseen image. The
feature vectors of both training and unseen images are constructed in exactly the same
way. Firstly, the feature vector of every training image is taken and stored in a feature
database and, secondly, the Euclidean distance is taken from the feature vector of the
unseen image to every image in the feature vector database. The images are ranked and
only the images corresponding to the feature vectors that produce the smallest
Euclidean distance are retrieved. All images, before undergoing feature extraction, have
to be preprocessed.

The medical images characterization system is divided into five processes; image
preprocessing, feature extraction, building the feature vector, similarity comparison and
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image retrieval and classification. The image preprocessing is divided into three steps,
finding the edges within the image and creating a new image consisting of these edges,
then sharpening of the edges and the image is finally converted to a binary image. The
image is then passed to feature extraction where the image is windowed and the edge
densities of these windows are computed including the global edge density of the
image, as well as computing the Local Directional Pattern features. After feature
extraction the feature vector is constructed using these values and used for similarity
comparison to finally retrieve images from the database and classifies the query image.
The similarity comparison is done using the nearest neighbor method.

3.1 Preprocessing

Image preprocessing involves methods which enhance the quality of the images and
prepare the image for feature extraction. Before feature extraction takes place the image
is segmented by detecting the edges within the image followed by an enhancement to
sharpen the edges. Finally the image is converted to a binary image. In this paper, the
feature extraction is performed on the binary image produced by the preprocessing
techniques. These preprocessing techniques used ensures that all images provided to
the feature extraction mechanism contains pixels that are either black or white and that
the edge density is only influenced by pixels that form the main edges of the image.
This ensures that noisy edge pixels that have a negative influence on the results are
removed.

Image Enhancement. The edges within an image are of primary interest in this
process. Image sharpening is performed using the Laplace filter given below.

HL ¼ HL
x þ HL

y ¼
0 1 0
1 �4 1
0 1 0

2

4

3

5 ð1Þ

Image Segmentation. The segmentation process involves two steps, edge detection
and converting to a binary image. The Sobel operator is used to detect the edges and
produce a new image with clearly visible edges. The two filters below make up the
Sobel operator.

HS
x ¼

�1 0 1
�2 0 2
�1 0 1

2
4

3
5And HS

y ¼
�1 �2 �1
0 0 0
1 2 1

2
4

3
5 ð2Þ

As with the Prewitt operator the Sobel operator also performs smoothing before
computing the gradient with an additional part of assigning a higher weight to the
current line and column. Hx

S Performs smoothing over three lines and Hy
S performs

smoothing over three columns before computing the x and y gradients respectively.
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An adaptive threshold value t is determined from the processed images histogram.
The value is used to convert the image to a binary image which will be used for feature
extraction.

It x; yð Þ ¼ 0 if I x; yð Þ� t
1 if I x; yð Þ\t

�
ð3Þ

Where I(x, y) is the current intensity of pixel (x, y) and It(x, y) is the resultant
intensity after the threshold is performed. The new intensity value is either 0 or 1 where
0 is black and 1 is white.

3.2 Feature Extraction

The global and local edge densities are extracted from the binary image produced by
the preprocessing techniques described. These include one global edge density value
and seven local edge density values. The image is subdivided into seven smaller
regions to obtain these local edge densities. The global edge density alone is not
sufficient to distinguish between two images of different classes hence the use of local
edge density to improve results.

Image Windowing. The image is subdivided into seven smaller regions which overlap
each other and the entire image region. These regions are given by x1; y1ð Þ and x2; y2ð Þ,
these are the two dimensional co-ordinates of the top-left corner and bottom-right
corner of the image respectively.

TL0 ¼ 0; 0ð Þ BR0 ¼ W ;Hð Þ; ð4Þ

TL1 ¼ 0; 0ð ÞBR1 ¼ W
2
;
H
2

� �
; ð5Þ

TL2 ¼ 0;
H
2

� �
BR2 ¼ W

2
;H

� �
; ð6Þ

TL3 ¼ W
2
; 0

� �
BR3 ¼ W ;

H
2

� �
; ð7Þ

TL4 ¼ W
2
;
H
2

� �
BR4 ¼ W ;Hð Þ; ð8Þ

TL5 ¼ W
4
;
H
4

� �
BR5 ¼ 3W

4
;
3H
4

� �
; ð9Þ

TL6 ¼ 0;
H
4

� �
BR6 ¼ W

2
;
3H
4

� �
; ð10Þ
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TL7 ¼ W
2
;
H
4

� �
BR7 ¼ W ;

3H
4

� �
ð11Þ

The regions are described by Eqs. (4)-(11). Where TLi and BRi are the top-left and
bottom-right corners of each region i ¼ 0. . .n; n ¼ 7. All co-ordinates are taken with
the top-left corner of the image being (0, 0) and W, H are the width and height of the
image respectively.

Edge Density. For any region r with the top-left and bottom-right corners given by
x1; y1ð Þ and x2; y2ð Þ respectively, and the edge magnitude of the pixels within r given
by e (u, v), the edge magnitude of the region r is given by Eq. (12).

Edge density ¼ 1
Ar

Xx2

u¼x1

Xy2

v¼y1

e u; vð Þ ð12Þ

Where Ar is the area of region r.

Ar ¼ x2 � x1 þ 1ð Þ y2 � y1 þ 1ð Þ ð13Þ

Edge Density Feature Vector. The feature vector is composed of eight components,
one component is the edge density of the whole image and the other seven components
are the edge densities of the seven sub regions described by Eqs. (5)-(11). Because
there is more than one region being used to compute the edge densities for the feature
vector a more efficient approach is adopted from [9]. Let I x; yð Þ be the input image with
height H and width W. The edge magnitude E x; yð Þ is computed using the filters given
in Eq. (2) and is given by,

E x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E x; yð Þ2HþE x; yð Þ2V

q
ð14Þ

The edge magnitude is a combination of the horizontal and vertical edge strengths
E x; yð ÞH and E x; yð ÞV respectively.

From the edge magnitude an integral image S x; yð Þ is computed by,

S x; yð Þ ¼
Xx

u¼1

Xy

v¼1

E u; vð Þ ð15Þ

Where S x; yð Þ is the sum of edge magnitudes in a rectangular region {(1, 1), (x, y)}.

Edge density ¼ 1
Ar

ðS x2; y2ð Þ þ S x1 � 1; y1 � 1ð Þ � S x2; y1 � 1ð Þ � S x1 � 1; y2ð Þ ð16Þ

398 S. Viriri



With just a single pass over the image to compute the edge magnitudes, given a sub
region r ¼ x1; y1ð Þ; x2; y2ð Þf g and the computed edge magnitude integral image, the
edge density of region r can be easily computed by Eq. (16).

The feature vector given below will be the final representation after all edge den-
sities of each region within an image is computed.

Feature vector ¼ v0; v1; v2; v3; v4; v5; v6; v7f g ð17Þ

Where v0 is the global edge density and v1 to v7 are the local edge densities.

Local Directional Pattern (LDP). The Local Directional Pattern (LDP) is an eight bit
binary code assigned to each pixel of an input [10, 11]. This pattern is computed by
comparing the relative edge response value of a pixel in different directions. The eight
directional edge response values of a pixel are calculated using Kirsch masks in eight
different orientations (M0-M7).

Applying eight masks, eight edge response values are obtained m0;m1; . . .q7; each
representing the edge significance in its respective direction. The presence of edge
show high response values in particular directions. The k most prominent directions are
used to generate the LDP. The computed top k values |mi| are set to 1 (in this case
k = 3). The other (8-k) bit of 8-bit LDP is set to 0 [11].

Local Direction Pattern Feature Vector. The medical image is represented using the
LDP operator, ILDP. Then the histogram of LDP, HLDP is computed from the ILDP.
Since k = 3 (from empirical experiments), the histogram labeled image, HLDP is a 56
bin histogram. HLDP histogram contains detail information of an image, such as edges,
corner, spot, and other local texture features. In order to incorporate some degree of
location information, the medical images are divided into n number of small regions,
R0; R1; …; Rn, and extracted the HLDPRi

from each region Rn. These n HLDP histograms
are concatenated to get a spatially combined global histogram for the global image.

3.3 Feature Normalization

The scales of Edge density features and Local Directional Pattern features are com-
pletely different. Firstly, this disparity can be due to the fact that each feature is
computed using a formula that can produce various ranges of values. Secondly, the
features may have the same approximate scale, but the distribution of their values has
different means and standard deviations. A statistical normalization technique is used to
transform each feature in such a way that each transformed feature distribution has
means equal to 0 and variance of 1.

The similarity between the query image and a training image is given by the
Euclidean distance between the two feature vectors. The distances from the query
image to all training images are then ordered and images resulting in the smallest
distance to the query image are regarded as the relevant images.

Distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

qi � tið Þ2
s

ð18Þ
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Where the ith entry of the test images feature vector is qi, ti is the ith entry of the
query images feature vector and n is the dimension of the feature vector.

The classification of the query images uses the nearest neighbor technique. The
query image will be classified as an image of the class of the closest image retrieved.
The nearest neighbor technique is split into the first nearest neighbor (NN) and the
5-nearest neighbor (5-NN).

4 Results and Discussions

The experiments were carried out using a dataset of 2500 medical images obtained
from the medical research centre. The dataset consisted of 125 images of each the
researched body region images (hand, pelvis, breast, skull and chest), and other human
body images. The researched model is evaluated in two ways, using content based
image retrieval and using the nearest neighbor technique for classification. The
researched model is used to assess the performance of the edge density feature, LDP
features, and the combination of both features. The classification of the query image is
based on the first nearest neighbor technique and using the 5-nearest neighbor tech-
nique. With the nearest neighbor technique, the class of the closest image to the query
image is assigned to the query image, whereas with the 5-nearest neighbor, the class
which has the most number of entities within the five closest images is assigned to the
query image.

Table 1 shows the results of the classification accuracy along with the image
retrieval precision achieved from the characterization of the images. It shows that the
Edge density and LDP features complement each other in extraction local distinctive
features for global characterization of images. Hence, the combination of the two
techniques improved the overall accuracy rate. The 5-NN technique achieved better
results than the NN method on all the techniques used. The results obtained show that
the edge density and LDP can classify medical images and also be used in content
based image retrieval systems for medical applications.

5 Conclusions

An effective approach based on Edge density and LDP for characterizing medical
images has been presented. The results obtained were 98.2 % and 99.6 % classification
success using the first nearest neighbor and the 5-nearest neighbor respectively.
The LDP has also shown to work well in the retrieval of medical images. The results
obtained are comparable to the results in the literature. The overall experimental results

Table 1. Classification and Image Retrieval Accuracy

Method NN % 5-NN % Retrieval %

Edge density 90.1 93.3 88.9
LDP 92.4 96.0 98.1
Edge density & LDP 98.2 99.6 99.4

400 S. Viriri



show that the proposed approach has a high true positive rate. Further investigation of
the effect of the proposed approach with image processing in general is envisioned.
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Abstract. Transcatheter aortic valve implantation provides a minimal invasive
treatment in patients with severe aortic stenosis. CT Angiography is used for the
pre-operative planning, in which the accessibility of the aorta-femoral tract for
the catheter and the prosthetic type and size can be determined. Preprocedure
planning includes the determination of annulus radius, area and coronary ostia to
annulus distance. These measurements use the location of five landmarks; the
two coronary ostia and the three hinge points. Automatic landmarks detection is
beneficial to speed up the calculation of the sizing parameters. In this paper, we
introduce an automated approach to extract the aortic root landmarks and cal-
culate sizing parameters. Our proposed algorithm has a high accuracy in com-
parison with the manual reference with a mean point-to-point error of 2.47 mm
in 20 patients; where the interobserver variation had a mean point to point of
2.30 mm. With the high accuracy shown, the proposed method can be intro-
duced in clinical practice.

Keywords: CTA � TAVI � Landmarks detection � Aortic root � Segmentation

1 Introduction

Aortic stenosis is the most common valvular heart disease [1]. Aortic stenosis occurs
mainly due to calcium accumulation on the aortic valve leaflets. The open-heart aortic
valve replacement is an effective method to treat severe aortic valve stenosis. Aortic
valve replacement (AVR) is the most common heart valve operation, accounting for 60
to 70 percent of all valve surgery performed in the elderly. With a quarter of a mil-
lion procedures performed annually, it is the most common valvular heart surgery [2].
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However, at least 30 % of patients cannot tolerate the surgical trauma due to the
advanced age or presence of various comorbidities [3]. Transcatheter aortic valve
implantation is a coming up, less invasive procedure to treat severe aortic valve ste-
nosis, where the prosthetic valve is inserted and deployed using a catheter through a
small puncture of the femoral artery (the transfemoral approach) or a small incision at
the heart apex (the transapical approach) [4]. However, TAVI is associated with a
number of adverse effects, such as paravalvular leakage, stroke, coronary obstruction,
and conduction disorders [5]. CT Angiography imaging plays an important role in
pre-operative surgical planning and patient selection and can be used for post-operative
outcome assessment. Planning for this intervention is crucial for assessing the eligi-
bility of the patient and sizing parameters of the aortic root to choose the suitable
prosthesis dimensions and type [6]. During the pre-procedure planning, several
important sizing parameters of the aortic valve need to be measured. For example, the
distance between the coronary ostia and the aortic valve annular plane is a critical
parameter for patient selection since a short distance increases the risk of blocking
coronary ostia after valve deployment [7]. The diameter and area of aortic valve
annulus needs to be measured accurately to select a valve with an appropriate size.
These measurements assess the distances of five landmarks that are on the aortic root
surface; right coronary ostia, left coronary ostia, right coronary hinge point, left cor-
onary hinge point and the no coronary hinge point. The automated aortic root land-
marks detection would speed up the process of measurement and planning and has the
potential to reduce interobserver variation.

Two previous studies presented methods for detection of the aortic root landmarks
for TAVI purposes. Zheng et al. [8] introduced a fully automatic landmarks detection in
C-arm images using a hierarchical approach by first detecting a global object using
marginal space learning with subsequent refinement in a small region under the
guidance of specific landmark detection. In [9], a model based segmentation was used
to locate the coronary ostia and annulus plane. This coronary ostia detection used
intensity pattern matching as an extra step for refinement of the ostia location. In their
study [9] the accuracy was not compared with manual interobserver variation, which is
an important constraint for introduction in clinical practice.

In this work, we introduce a fully automated algorithm to extract the aortic root
landmarks, calculate sizing parameters in CTA of patients eligible for TAVI. The
accuracy of our approach is assessed by comparison of the interobserver variation.

2 Methods

We propose an image analysis algorithm in which we first segment the aortic root
surface [10] which is used as a search span for the required landmarks. These land-
marks are used for calculating sizing parameters required for the TAVI procedure. Each
landmark was extracted based on landmark specific features combined with a rough
estimate of the proximal and distal ends of the aortic root.

In the next sections, we describe the used image data, the aortic root surface
segmentation, the landmarks detection methods, and the validation of the detected
landmarks by the comparison with the manual delineated landmarks.
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2.1 Image Data

We collected a dataset of twenty 3D CT angiography volumes for preprocedure TAVI
patients from our institute (Academic Medical Center, The Netherlands). For all
patients, ten cardiac phase CTA volumes were acquired. For analysis, we selected the
volume at 70 % of the cardiac cycle, which is a phase in which the aortic valve is
closed. With the closed valve, there is a separation between the aortic root lumen and
the left ventricle outflow tract lumen, which is important for accurate aortic root
detection [10]. All image volumes contain about 500–600 slices. The size of each slice
in a volume is 512 × 512 pixels with a 16 bit depth. The in plane image resolution is
isotropic and varies from 0.44 mm to 0.68 mm. The slice thickness for all data sets is
0.9 mm and the overlap between each two successive slices is 0.45 mm.

2.2 Aortic Root Surface Segmentation

The aortic root in the CTA volumes was automatically segmented by performing the
following steps: first, the volume of interest is detected using adaptive thresholding,
voxel classification and connected component analysis [10]. The centerline through the
ascending aorta and aortic root is determined next. Subsequently, high intensities due
to calcifications are masked. Finally, the aortic root is represented in cylindrical
coordinates allowing the segmentation of the aortic root using 3D normalized cuts.

2.3 Proximal and Distal Detection of the Aortic Root

To refine the detection of the landmarks, we implemented a technique to locate distal
and proximal ends of the aortic root. We exploit the segmented surface and converted
this 3D Cartesian surface into 2D radial map. Based on the aorta centerline, CMPRs
perpendicular to this centerline are calculated. For every slice, the Fourier transform of
the radius of aorta surface is calculated. The elliptical shape of the LVOT is expressed
by strong second harmonic contributions; the three sinuses are associated with a strong
third harmonic contribution of the Fourier decomposition. We analyzed the ratio of the
third harmonic and the second harmonic. This ratio enhances the detection of the three
sinuses, minimizing the effect of the elliptical shape at the LVOT. We applied
the Laplacian operator on the resulted ratio which produces a signal with two local
maxima that represent the proximal and distal extents of the aortic root.

2.4 Coronary Ostia Detection

To locate the coronary ostia on the 3D aorta surface, the relative high intensity in the
coronary arteries is used as the main feature. To detect the high intensity contributions,
an image of the average value of the volume between the segmented aortic surface and
a dilated surface is calculated. Each pixel in this image represents the average intensity
along a cylinder starting at the aortic root surface with a length of 2.5 mm. This
cylinder has a radius of 0.75 mm. The rows in this image represent the MPR slices and
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the columns represent the angle around the centerline. The direction of the cylinders is
shown as arrows in Fig. 1. The formed image shown in Fig. 1 is weighted using a
calculated probability map based on the expected location of the distal extent of the
aortic root. We believe that the distal extent represent the sinutubular junction that is
generally close to the location of the coronary ostia. The probability map was calcu-
lated using Gaussian function centered in the distal slice and had standard deviation of
4 mm in both proximal and distal directions.

Two 1D profiles are created by the projection of the maximum values of the image
in both dimensions. The projection in proximal-distal direction (PD) generates a profile
as a function of the angle. In this profile, two distinct local maxima represent the
angular location of the two coronary ostia. The profile in which the contributions for
each angle are projected in as a function of the PD direction, a single maximum is
found, which represents the location of the ostia along the centerline.

2.5 Hinge Points Detection

The aortic valve annulus represents the narrowest part of the aortic root and is defined
as a virtual ring with three anatomical anchor points at the base of each of the
attachments of the aortic leaflets. Often, patients have a heavily calcified annulus,
disguising these hinge points. In this section, we are proposing an algorithm to detect
the Right Coronary (RC), Left Coronary (LC) and Non Coronary (NC) hinge points.
The hinge points are detected using combination of three 2D maps; the Gaussian
curvature map (GCM), the minimum intensity inward the aortic wall map (MIIAM),
and maximum intensity inward the aortic wall map (MXIAM). These three maps
comprehend the usage of intensity and geometrical based features. The Gaussian
curvature of the aorta wall is determined by computing the curvature tensor and the
principal curvatures at each vertex of the surface mesh.

The MIAAM highlights low intensities representing the leaflets. Each pixel in this
map represents the minimum intensity along a cylinder starting at the aortic root surface

Fig. 1. (Left) Aortic root image in polar coordinates. The aortic root boundary is shown in red.
The arrows represent the direction for which an average intensity projection images is created.
(Center) The projection image is displayed in the middle showing the two local maxima
representing the coronary ostia. Two 1-D maximum projection curves were calculated (Right) to
determine the proximal-distal and angular locations of the coronary ostia (Color figure online).
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directed inward with a length of 1.5 mm and radius of 0.75 mm. MXIAM is formed in
the same manner but only determining the maximum intensity. In the three 2D maps
y-axis represent the MPR slices and the x-axis represents the angle around the cen-
terline. We combine the three formed maps by its multiplication forming one map.

The combined image is split into three radial tiles representing the three sinuses and
each radial sinus tile represents one sinus and is thresholded using a threshold value of
the half of maximum value. The binary pixels are analyzed finding the principal
component using Eigen vectors. The principal component for each tile (sinus) is used
as a search direction for the hinge points on the combined map.

Figure 2 shows the combined map and the three extracted main Eigen vectors. By
resampling the combined map data using each sinus Eigen vector points, An one
dimensional profile is provided to locate the first local maximum that represent the
hinge point. By applying this on each sinus tile, RC, LC and NC hinge points are
detected. RC hinge point is identified as the most anterior point, where LC hinge point
is the most posterior and left one.

2.6 Validation

To validate the accuracy of the automatic landmarks detection, we compared these
landmarks with manual assessment in 20 CTA image datasets.

Two expert observers (EW and FvK) manually selected the five landmarks using
3mensio software in a 3D curved MPR volume. To reduce interobserver variation due
to differences in centerline definitions, the same centerline was used for both observers.
The software allowed scrolling though different 2D MPR slices to select the landmarks.
In the validation, the manually set landmarks were considered the reference values. The
differences between the automated method and reference values are compared with
the manual interobserver variation. The sizing parameters that are required for the
pre-procedure planning of TAVI were calculated. These sizing parameters include the

Fig. 2. (Left) Aortic root image in polar coordinates. The aortic root boundary is shown in red.
The arrows represent the direction of projections. (Center) a combined image of minimal,
maximal, and curvature images shows the leaflet structure. (Right) the Gaussian curvature map
shows the convex curvature of the surface (Color figure online).
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location and orientation of the annulus plane and the perpendicular distance between
right and left coronary ostia to the annulus plane.

We calculated common TAVI sizing parameters using the automated extracted and
manually set landmarks. The ostia to annulus distances were calculated. The annulus
plane was defined as the plane connecting the three hinge points. The difference
between the annulus planes using the automated and manually set hinge points is
determined by calculating the angle between the two normal vectors of the planes and
by calculating the distance between centers of the three points. Furthermore, we cal-
culated the radius of the circle connects the three hinge points.

The accuracy was evaluated for three measurements; Euclidean paired distance
between the landmarks, angle difference between annulus planes, Euclidean paired
distance between the annulus centers, and the estimated circle radius difference was
calculated. The interobserver variation analysis was done based on the same accuracy
measurements for the two observers.

3 Results

3.1 Evaluation of Landmark Detection

The aortic root segmentation was successfully applied for all 20 patients. Figure 3
shows the boxplots of the accuracy of each landmark in terms of Euclidean paired
distance between landmarks. Table 1 shows the interobserver variation and accuracy
for the detection of the location of the landmarks. Our proposed algorithm has shown
good performance in comparison with the reference standard with a mean error of
2.47 mm ranging from 2.06 mm to 2.88 mm; where the interobserver variation had a
mean paired difference of 2.30 mm ranging from 2.02 mm to 2.59 mm.

3.2 Evaluation of Sizing Parameters for TAVI

In Table 2, the annulus center shift and angle difference are shown, the ostium to
annulus distance differences and minimum circle radius that fits the three hinge points
differences are shown as well.

The annulus angle mean difference and annulus center mean distance were 6.2
degrees and 1.82 mm when it is compared to the ground truth annulus plane angle and
center; where the mean difference and centers distance between observers were 4.4
degrees and 1.56 mm. The mean difference for ostia to annulus distance was 1.58 mm;
which is comparable to the interobserver’ mean difference of 0.96 mm.

4 Discussion

We have presented a fully automated method for detecting landmarks in the aortic root,
which are commonly used in TAVI measurement procedures. Our proposed algorithm
has shown good performance in comparison with the reference standard. Since, the
accuracy of the proposed algorithm is comparable to the manual interobserver variation
this method is suitable in clinical practice.
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Previous studies on aortic root landmarks detection have been reported, based on
various imaging modalities. Waechter et al. applied their proposed technique on CT
data, where Zheng et al. applied the marginal space learning algorithm on C-arm CT
data. These studies have presented similar or less mean error [9] and [8]. Work done in
those studies has been validated using reference manual segmentation. In [9], the
proposed technique successfully detected 39 ostia out of 40 with root mean square error
of 0.9 mm. Evaluation of work done in [8] show accuracy for the ostia to annulus
distance of 2.31 ± 1.95 mm. None of the prementioned work has studied the inter-
observer variability. Since the mean error of the current study with one observer is

Fig. 3. Four boxplots represent the accuracy of the proposed technique and the interobserver
variation for determining the hinge points and coronary ostia.

Table 1. Average, median and standard deviation of the Euclidean distance between points for
accuracy and interobserver variation is listed in the table

Proposed algorithm Interobserver
variation

Measurement error Mean STD Median Mean STD Median

Hinge points (mm) 2.88 1.69 2.59 2.59 1.40 2.29
Coronary ostia (mm) 2.06 1.13 1.93 2.02 1.24 1.53
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comparable to interobserver deviations, we believe that the obtained accuracy is suf-
ficient for clinical practice.

The manual annotation of the hinge points was not straight-forward due to the
presence of severer calcifications in the region of the annulus plane and the left ven-
tricle outflow tract. These difficulties are reflected in large differences between the
manual measurements (up to 2.59 mm for the hinge points in comparison with coro-
nary points with 2.02 mm).

The difference between the accuracy of the proposed algorithm for detecting ostia
and hinge points is according the differences for the manual annotations. The accuracy
of the detection of the left coronary ostium was higher than for the right coronary ostia.
We believe that this improved accuracy is caused by the larger right coronary artery
diameter. The large diameter of the right coronary artery [11] make assignment of the
ostium is less accurate than left coronary ostium.

For the sizing parameters, the annulus angle mean difference and annulus center
mean distance were t is compared to the reference value for the annulus plane angle and
center. It is notable that the annulus angle error is not strongly affecting the ostia to
annulus distance and the distance error is of the same order as the interobserver
accuracy.

This study suffered from a number of limitations. The automatic aortic root surface
approach produced over-smoothed surfaces, which affect the accuracy of landmarks.
We have used data from only a single medical center and scanner. Although there was
a large variety in scanned volumes, image to noise ratio, and anatomy, it could be that
different scanning protocols require adjustments of the presented algorithm.

5 Conclusion

We have presented an automated sizing pipeline for sizing in CTAs of patients eligible
for TAVI procedures based on the detection of aortic root landmarks. The imaging
pipeline starts with segmenting the aortic root, after which the proximal and distal
extent of the aortic root were determined. The coronary ostia have been initially
identified close to the distal plane and detected based on the average intensity intact
with the aortic root surface. The hinge points have been initially identified close to the
proximal plane and detected based on the combination of three geometrical and

Table 2. The average, median and standard deviation of the annulus angle difference, ostia to
annulus distance, annulus center error and corresponding annulus radius for the accuracy of the
proposed algorithm and interobserver variation.

Proposed algorithm Interobserver
variation

Measurement error Mean STD Median Mean STD Median

Annulus plane (º) 6.24º 3.56º 5.31º 4.44º 3.07º 4.43º
Ostia to annulus distance (mm) 1.58 1.51 1.23 0.96 0.63 0.95
Annulus center (mm) 1.82 0.85 1.69 1.56 0.79 1.37
Corresponding annulus radius (mm) 0.48 0.45 0.32 0.77 0.50 0.75
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intensity based features. The accuracy of the proposed algorithm was evaluated on 20
CTA datasets and showed that the sizing parameters was comparable to the interob-
server variation in terms of ostia to annulus distance, angle error, shift in annulus
center, and corresponding annulus radius.
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Abstract. Hypertensive Retinopathy (HR) is an eye disease occurs due to high
blood pressure. This disease primarily damages the blood vessels in retina by
altering the vessel caliber. The damage is evaluated by calculation of
Arterio-venous Ratio (AVR), which quantifies the change in diameter of retinal
blood vessels. It is basically the ratio of arterioles to venules diameter. In order
to calculate AVR for an automatic diagnosis of HR, the vascular characteriza-
tion is an essential step. This paper presents an automatic system for retinal
vessel classification which is based on novel combination of intensity and
gradient based features. The automated system first segments the retinal vessels,
then extracts features and finally classifies the vessels as arteries and veins. The
proposed system is tested and validated on locally gathered fundus image
database, taken from AFIO, Pakistan. The proposed approach provides an
accuracy of 93.49 % and 93.47 % for veins and arteries, respectively.

Keywords: Hypertensive Retinopathy (HR) � Support Vector Machine
(SVM) � Arterio-Venous Ratio (AVR) � Optic Disk (OD) � Region Of Interest
(ROI)

1 Introduction

Fundus imaging is a technique which allows non-invasive and efficient examination of
various retinal anatomical structures [1]. Automated fundus image analysis tools are
quite useful as they provide significant assistance to ophthalmologists for an early
detection and diagnosis of different complications including hypertension, diabetes,
and stroke [2]. Hypertension is a condition which is caused because of high
blood pressure. Hypertension mainly affects the blood vessels in the human body.
Relevance between increased blood pressure and alteration in retinal vessel calibre has
been proved [1]. This alteration in blood vessels causes a complication in retina known
as HR.

AVR is an important parameter which is used to quantify the change in vessel
diameter and, thus evaluation of disease severity [3]. The classification of retinal
vessels into arteries and veins and then measurement of those classified vessels is

© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 411–418, 2015.
DOI: 10.1007/978-3-319-20801-5_45



essential for the calculation of AVR. The automated differentiation of vessels is also
helpful for assessment of other biomarkers of hypertensive retinopathy such as analysis
of increase in arteriolar central light reflex [3].

Several methods have been proposed in the past for the automatic classification of
retinal vessels. These systems have mainly used intensity features for retinal vascula-
ture differentiation. D. Ortíz et al. [4] developed a system for the diagnosis of HR, in
which the retinal vessels are classified using vessel intensity in red channel. A. Ruggeri
et al. [5] proposed a system for AVR calculation, which makes use of vessel intensity
in hue and red channel to discriminate between arteries and veins. G. Mirsharif et al. [6]
presented an automated technique for retinal vessel classification using color features
extracted from RGB and HSL color space. Linear Discriminant classifier is used for
classification. Profile based features are proposed by M. Saez et al. [7] for retinal vessel
differentiation. Profiles across vessels are extracted, which are then classified using
k-means clustering algorithm. A. Zampirini et al. [8] developed a system for an
automatic labeling of retinal vessels, in which they have used color, structural and
spatial information as features. Another system for vessel classification is proposed by
C. Muramatsu et al. [9] in which intensity-based features from vessel center-line pixels
are used. The system is tested on DRIVE database using LDA classifier and it showed
75 % accuracy.

In our previous work [10], we achieved an overall 81 % accuracy in vessel clas-
sification. We extend our research in this paper by developing a larger feature set which
is a combination of intensity and gradient based features. With the inclusion of gradient
based features, the average accuracy is improved.

The paper is organized in four sections. Flow diagram of our methodology is
illustrated in Sect. 2 along with the details of the implementation. Experimental results
are given in Sect. 3 followed by conclusion in Sect. 4.

2 Proposed Technique

The proposed system consists of four main modules i.e. background removal, seg-
mentation of blood vessel, determination of Region of Interest (ROI) and classification
of vessels lying within this region. Many algorithms proposed previously have clas-
sified the complete vessel network for differentiation; however classification of entire
retinal vasculature is not necessary for AVR calculation. According to the standards
[3], the vessels are measured in a circular zone of twice the radius of Optic Disk (OD),
taken some distance away from the OD boundary. Figure 1 shows the flow diagram of
proposed system.

2.1 Background Removal

In preprocessing stage, the background mask is segmented from the digital fundus image.
Following steps are carried out for the retinal image background segmentation; [11].
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– An initial threshold (th = 10) is applied on the red channel of retinal image and
morphological operations are used to remove holes and false regions.

– Then, the objects present in the binary image are labeled using connected com-
ponent labeling algorithm [12].

– Finally the objects having the largest fundus region is selected [13]. Figure 2(b)
shows the result of background segmentation.

Fig. 1. Flowchart of proposed technique

Fig. 2. Background Removal and Blood Vessel Extraction: (a) Original Image, (b) Background
Mask, (c) Vessel Enhancement, (d) Segmented Vessels
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2.2 Segmentation of Retinal Vessels

After preprocessing, the retinal vasculature is extracted and segmented. In proposed
system, 2D Gabor Wavelet is used to enhance the retinal blood vessels. Since the
retinal vessels have directional pattern, so Gabor wavelets can enhance them well due
to their own directional selectiveness capability [14]. Green channel of RGB
color-space is preferred for enhancement and segmentation of vessels. Equation 1
shows the expression of Gabor wavelet [15]. Figure 2(c and d) shows the enhanced
retinal vascular tree and the segmented binary vessels, respectively.

G x; yð Þ ¼ 1
2prb

e
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x�x0ð Þ2
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h i

ei d0xþ#0y½ � ð1Þ

2.3 Identification of Region of Interest (ROI)

The detection of OD allows us to define a ROI in order to classify the vessels. In this
paper, OD is localized using maximum intensity region finding technique [16]. Red
channel is chosen for this purpose and an averaging mask of size 31 × 31 is applied to
remove the background artifacts which can cause false localization. The maximum
intensity region is detected in the resultant image because the intensity values of optic
disk are greater than the background region [16]. After the detection of OD, ROI is
defined approximately as an annulus of quarter to twice the radius of optic disk, taken
from the OD’s margin. Figure 3(a) shows the image with OD position detected and
ROI super-imposed on it.

2.4 Feature Extraction

Vessels lying within the region of interest are considered for differentiation. We have
developed a feature set comprising of 12 features based on gradient and statistical
measures. For the extraction of gradient features, following steps are implemented;

Fig. 3. OD detection and bounding rectangles: (a) OD detection and ROI super-imposed,
(b) Vessels lying within ROI shown in bounding rectangles
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– First, a minimum bounding rectangle is defined for each vessel segment in ROI and
this smallest bounding rectangle contains every pixel of the vessel segment [17].
This step generates sub-images containing vessel segments and their corresponding
binary masks. Figure 3(b) shows the bounding rectangles along with their respective
sub-images and masks.

– Connected component labeling algorithm [12] is used for discarding those bounding
rectangles, which contain more than one binary object. This problem arises due to
overlapping bounding boxes. If the features from ‘overlapping’ bounding boxes are
selected, they result in ambiguous features due to presence of more than one vessel
in bounding box. Therefore, features from those bounding boxes will not be con-
sidered. Figure 4 shows the overlapping bounding rectangles.

– For the bounding rectangle contining only one sub-vessel, gradient Gðx; yÞ [18] of
the corresponding sub-imge Is(x, y) is computed using Sobel masks. Eqs. 2 and 3
show the expression for image gradient and gradient magnitude, respectively [18].
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q
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The gradient magnitude of sub-vessels is computed for red and green channels of
RGB color space. The gradient magnitude values are greater for vein segments due to
sharp change in intensity. This feature correlates with clinical characteristic of veins,
containing lower intensity values because of less oxygenated content. Arteries are rich
in oxygen and therefore gradient magnitude of arteries do not exhibit steep changes.

Fig. 4. ROI is shown with bounding rectangles, sub-image at the top shows two over-lapping
bounding windows, whereas other sub-images show the sub-vessel and its respective binary
mask
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The gradient magnitude of veins and arteries is read into a vector. Other color features
are concatenated with the gradient features. Table 1 shows all the features used for
classification.

3 Results

The quantitative assessment of the proposed system is done by using a local dataset,
collected from AFIO, Pakistan. This dataset contains 25 images with a resolution of
1504 × 1000. We have considered 233 sub-vessels from 25 retinal images. The vessels
in the images are annotated as arteries and veins in red and blue color respectively by
our ophthalmologist using a MATLAB based annotation tool. These annotated images
are used as ground truth for comparison with the experimental results. Only the vessels
that are annotated by our ophthalmologist will be used for classification.

LS-SVM is used for classification. SVM separates arteries and veins from each
other with maximum margin by using a separating hyper-plane. We have implemented
least squares SVM using LS-SVM toolbox [19] which classifies candidate object into
artery or vein. Leave-one-out Cross Validation approach is followed in classification.
In this approach, one sample is left for testing and all other samples are used for
training. Thus, each and every sample is tested. Table 2 shows classification perfor-
mance. Figs 5(a) and (b) shows an original RGB retinal image and the vessels classified
in ROI as arteries and veins, respectively. Figure 6 shows results on different retinal
images from AFIO database using proposed methodology.

Table 1. Description of feature set

Features Description

1-4 Minimum and maximum of intenity values of vessel pixels in Green
(MinG, MaxG) and Hue (MinH, MaxH) channel of RGB and HSV color-space

5-8 Mean and standard deviation of intensity values of vessel segmnets in Green
(MeanG, StdG) and Luminance (MeanL, StdL) channel

9-12 Mean and maximum of gradient magnitude of vessel segments in Green
(GradmeanG, GradmaxG) and Red (GradmeanR, GradmaxR) channel

Table 2. Classification Performance Parameters

Performance parameter Veins Arteries

Sensitivity 0.9130 0.9429
Specificity 0.9565 0.9130
Positive Predictive Value 0.9545 0.9167
Negative Predictive Value 0.9166 0.9544
Positive Likelihood Ratio 20.9885 10.8379
Negative Likelihood Ratio 0.0909 0.0625
Accuracy 0.9349 0.9347
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4 Conclusion

An automated system classification of retinal is proposed in this paper. This system
mainly consists of three phases, pre-processing, segmentation of vessels and vessels
classification. A new combination of gradient magnitude and color features is presented
in this paper for accurate classification of vessels. As compared to our previously
proposed system which achieved an average accuracy of 81 %, this classification
approach provides an accuracy of 93.49 % and 93.47 % for veins and arteries,
respectively. With an addition of gradient magnitude features, this labeling feature set
offers high accuracy than those reported in [4–10].
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Abstract. Skeletonization is a morphological operation that summa-
rizes an object by its median lines while preserving the initial image
topology. It provides features used in biometric for the matching process,
as well as medical imaging for quantification of the bone microarchitec-
ture. We develop a solution for the extraction of structural and morpho-
metric features useful in biometric, character recognition and medical
imaging. It aims at storing object descriptors in a re-usable and hier-
archical format. We propose graph data structures to identify skeleton
nodes and branches, link them and store their corresponding features.
This graph structure allows us to generate CSV files for high level analy-
sis and to propose a pruning method that removes spurious branches
regarding their length and mean gray level. We illustrate manipulations
of the skeleton graph structure on medical image dedicated to bone
microarchitecture characterization.

1 Introduction

Skeletonization is used in various applications such as biometrics [1,2], medical
imaging [3–5] and character recognition [6] since it provides features that enables
user to access high-level analysis of the image objects. In fact, object matching
methods based on skeleton features are used in biometric identification through
minutiae comparison of hand vein [1] or digital fingerprint [2], in bronchial airway
trees monitoring [5], in symbols identification [7] and in character recognition [6].
In addition, classification methods using morphometric features extracted from
skeleton helps diagnose osteoporosis [4] and osteoarthritis [3] diseases.

Graph-based representation of the skeleton is widely investigated for match-
ing issues since the correspondence between skeleton branches with graph edges
and nodes with its vertices is natural and intuitive. The proposed solutions in the
literature are based on shock graphs [7] or attributed relational graphs [9]. These
representations based on adjacency matrix can only consider acyclic graphs
which restricts the application domains.
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Our contribution is to develop a solution for the exploitation of skeleton
features in binary and grayscale domain and to save them in a re-usable format
easily manipulated. We propose to construct a graph able to represent any skele-
ton and to store its structural and morphometric features. To this purpose, we
identify skeleton with multigraph [10] where multiple edges between nodes and
emergence of mass of junctions are permitted. We store the skeleton structural
and morphometric features in data structures that link graph vertices to their
adjacent edges. This solution allows us to manipulate the skeleton information
and to implement a pruning procedure that takes into account not only segments
lengths but also their average gray values in order to decide which branches are
spurious and thus, delete them. The use of this contribution is illustrated in the
context of medical application that cover almost all usable features.

This work is composed of five sections. The first one presents skeleton fea-
tures for medical application which covers biometric and character recognition
structural features. The second section describes the used topological definitions
for the graph construction. The third section is devoted to the graph data struc-
tures proposed in this work. The fourth section is dedicated to the implemented
pruning and the manipulation of the structured graph skeleton on image of
subchondral bone in the tibial knee with the aim of characterizing its microar-
chitecture.

2 Skeleton Features in Medical Imaging

Concerning the characterization of bone microarchitecture, studies has shown
that bone changes from a healthy person to a person with osteoporosis [4] or
osteoarthritis [3]. These changes are quantified using morphometric parameters
of bone microarchitecture such as the number of pixels of the skeleton, the half-
width and the length of trabeculae, the number of trabeculae and the num-
ber of nodes and ends. These morphometric parameters covers also structural
descriptors (detection of nodes and extremities) used in biometric and character
recognition applications [1,2,6]. We notice that skeletonization methods used to
extract features for applications cited above are binary or gray. Consequently, we
choose to make this feature extraction tool applicable on both types of skeleton.
Furthermore, we notice that skeleton gray levels are not actually exploited. We
propose to consider in the extracted features the segment mean gray level which
is useful for the pruning of insignificant skeleton branches.

3 Identification of Topological Configurations

First of all, we need to identify the topological nature of each skeleton point
in order to position it in the graph. A skeleton is formed of ridge, junction
and end pixels. A ridge is a skeleton pixel placed on a crest line that splits
the local background in 2 4-connected components. A junction splits the local
background to 3 or 4 4-connected components and an end is a skeleton pixel
with a unique skeleton neighbor.
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Fig. 1. Topological configurations of skeleton pixels.

Our graph proposal is designed to accept as input any type of skeleton. To
do so, it is important to identify critical situations that a conventional graph
cannot handle. Indeed, a skeleton could have a mass of junctions that cannot be
thinned. In Fig. 1, pixels noted x and identified as mass of junctions divide the
background in two 4-connected components according to their 8-neighbors. How-
ever, these pixels belong to a mass of nodes that should be entirely considered as
a unique junction. In the literature, an erosion at nodes is performed before the
construction of adjacency matrix in order to eliminate such configurations and
to avoid a cyclic graph. A decomposition of the possible mass junctions in 3× 3
configurations (with rotations) is made for our proposal in order to identify these
pixels when processing the skeleton for graph construction. Once the ambiguous
configurations identified, we can proceed with the construction of graph data
structures.

4 Graph Construction

Since we intend to conceive a graph that takes into account any kind of skele-
ton, simple graphs constructed using an adjacency matrix are not appropriate.
A graph with multiple edges (multigraph) that manages mass of junctions and
stores other morphometric features of skeleton branches is chosen in this work.
We detail in the next the data structures used to construct the proposed multi-
graph and the linking step that permits to connect graph vertices and edges.

4.1 Data Structures for the Graph Construction

First, we define in Table 1 Point data structure that differentiates end, junction
and ridge pixels and establish a primary link between current pixel and its direct
skeleton neighbors.

Table 1. Data structure: Point

Structure Point Description

Identifier Pixel index in the image (unique)

flag (1): end (2): ridge (3): junction

neighbors only one 8-connected neighbor Table of size [2..4] Table of size [3..8]
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Having defined the point structure, we can define the Segment structure
that corresponds to a graph edge. Intuitively, a segment has two extremities.
There are 3 types of segments. The first one has two free extremities. The second
has its extremities identified as junctions and the third one has a free end and a
junction at its respective extremities. Therefore, we need to identify the segment
extremities in the data structure in order to point out the segment type. The
data structure segment is defined by the attributes listed in Table 2.

Table 2. Data structure: Segment

Structure Segment Description

Label Segment identifier

Head Table of point indentifiers for the segment head (maximum size is 3)

Next to head Index of the point that follows the head in the segment

Tail Table of point indentifiers for the segment tail (maximum size is 3)

Next to tail Index of the point that follows the tail in the segment

Stack Stack containing segment pixels (index of ridge points)

Segment features Number of pixels, Euclidean length, Mean gray level, Half width

Tail and head attributes correspond to segment extremities. These attributes
are useful to establish links between graph edges. Since our solution is intended
to be general, covering all types of skeleton graph, we consider segments having
multiple heads and tails as illustrated by Fig. 2.(a). Hence, we choose for the
head attribute (respectively tail) an array of points of size 3.

Fig. 2. Particular situations for segment structure. In blue: segment end. In red: seg-
ment head (or tail) labeled as junction. In yellow: segment ridge point (Color figure
online).

Furthermore, and unlike graphs based on adjacency matrix that cannot han-
dle loops, we get our solution to consider a general case that defines more than
one segment between two nodes. Consequently, we add two other attributes to
the data structure, which are “Next to head” and “Next to queue” in order to
distinguish the multiple segments appearing between two junction pixels. Such
a case is illustrated by Fig. 2.(b).
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4.2 Linking Step for Segment Structure

This module enables the implementation to fill point data structures and then,
create segment structures by browsing the skeleton. It proceeds by first searching
for graph nodes (junctions or ends) and second, by monitoring the ridge pixels
of the same segment structure. Using the “neighbor”attribute stored in the point
structure, it is possible to follow the segment and fill its remaining attributes.
A stop condition of filling a segment is the detection of an end or other junction.
This means that the linking step reached the end of the segment, can finally
calculate its features and move to the next segment via the “tail” attribute.
Figure 3 illustrates an example of segments attributes obtained for the binary
skeleton sample of Fig. 2.(b).

Fig. 3. Segments data structures for image from Fig. 2.(b).

Finally, the flow chart of Fig. 4 resumes the complete processing stages for
the extraction of skeleton features. The graph construction is applicable to gray
or binary skeleton resulting from any method of the literature.

Fig. 4. Flow chart of features extraction tool.
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5 Pruning as an Application of Graph Structuring

Skeletonization methods, and especially homotopic thinning are often subject to
the emergence of spurious branches. For better reliability of results and perti-
nence of analysis, a pruning step is performed to eliminate these branches. In
some applications, it is the orientation of the segment that indicates its “signif-
icance”. However, orientation cannot be pertinent for microarchitecture quan-
tification since trabeculae moves in various directions. Through experiments,
we notice that the average gray level of spurious branches is informative and
generally smaller than the average gray level of significant ones. We propose to
implement a pruning procedure based on our graph construction that takes into
account not only the length but also the mean gray value of segments to suppress
noisy branches. In fact, according to the resulting skeletons of Fig. 5 and their
respective features, we can establish an upper threshold for segment lengths and
gray values at a fixed percentile (50% in this case). These thresholds adequately
adjusted permit to detect spurious branches and delete them in both cases.

Fig. 5. Results of gray skeletonization using methods published in [11] and in [12].
Color intensity (white to blue) reflects segments lengths (Color figure online).

An application of such process is performed on high resolution peripheral
computed tomography (HR-pQCT) slice image from Voxelo project1 as illus-
trated in Fig. 6. We note respectively Nb.S, Nb.N , Nb.E, Nb.seg the number
1 ANR Voxelo TECS-0018.
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of skeleton pixels, nodes, ends and segments, and Nb.pix seg, Length of seg,
Gray level of seg the mean pixelwise length, euclidian length an gray level of
segments. We observe in the update of skeleton features a gain in pertinence
after pruning spurious branches while preserving significant trabeculae.

Fig. 6. Skeleton pruning of the trabecular microarchitecture in a slice image of suchon-
dral bone in tibial knee: Gain in relevance of features.

6 Conclusion

The proposed graph construction applies to binary and gray skeletons and facil-
itate a high level manipulation of the skeleton via the structural and morphome-
tric features it stores. The analysis of the trabecular microarchitecture aiming
to differentiate normal bone from osteoarthritis is an example of skeleton graph
structure usefulness. The pruning procedure exploiting graph and skeleton fea-
tures eliminates efficiently spurious branches according to thresholds of the mean
gray level and length of segments. This high level skeleton manipulation can be
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used in biometric and character recognition applications in the matching process.
Our perspective is to create a GUI for easy handling of the graph: tracking lines,
measuring distance between nodes/edges, updating interactively the features. In
addition, other features such as branches orientation could be easily added to
the data structure segment in order to monitor skeleton lines and add another
optional threshold to the pruning.

Acknowledgments. This work is financed by ANR Voxelo TECS-0018.
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5. Tschirren, J., Palágyi, K., Reinhardt, J.M., Hoffman, E.A., Sonka, M.: Segmenta-
tion, skeletonization, and branchpoint matching - a fully automated quantitative
evaluation of human intrathoracic airway trees. In: Dohi, T., Kikinis, R. (eds.)
MICCAI 2002, Part II. LNCS, vol. 2489, pp. 12–19. Springer, Heidelberg (2002)

6. Wshah, S., Zhixin, S., Govindaraju, V.: Segmentation of arabic handwriting based
on both contour and skeleton segmentation. In: 10th International Conference on
Document Analysis and Recognition, ICDAR, pp. 793–797 (2009)

7. Siddiqi, K., Shokoufandeh, A., Dickenson, S.J., Zucker, S.W.: Shock graphs and
shape matching. In: 6th International Conference on Computer Vision, pp. 222–229
(1998)

8. Xiang, B., Latecki, L.J.: Path similarity Skeleton graph matching. IEEE Trans.
Pattern Anal. Mach. Intel. 30(7), 1282–1292 (2008)

9. Di Ruberto, C.: Recognition of shapes by attributed skeletal graphs. Pattern Recog.
37(1), 21–31 (2004)

10. Gross, J.L., Yellen, J.: Graph Theory and Its Applications, 2nd edn. (Discrete
Mathematics and Its Applications). Chapman & Hall/CRC, p. 3 (2005)

11. Youssef, R., Sevestre-Ghalila, S., Ricordeau, A.: Statistical control of thinning algo-
rithm with implementation based on hierarchical queues. In: 6th International Con-
ference of Soft Computing and Pattern Recognition, SoCPaR, pp. 365–370 (2014)

12. Couprie, M., Bezerra, F.N., Bertrand, G.: Grayscale image processing using topo-
logical operators. In: SPIE Vis. Geom. VIII vol. 3811, pp. 261–272 (1999)



Applications



Vehicle Detection Using Approximation
of Feature Pyramids in the DFT Domain

Mohamed A. Naiel, M. Omair Ahmad(B), and M.N.S. Swamy

Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC H3G 1M8, Canada

{m naiel,omair,swamy}@ece.concordia.ca

Abstract. Multi-resolution vehicle detection usually requires extract-
ing a certain kind of features from each scale of an image pyramid to
construct a feature pyramid, which is considered as a computational bot-
tleneck for many object detectors. In this paper, a novel technique for
the approximation of feature pyramids by using feature resampling in the
2D discrete Fourier transform domain is presented. Experimental results
show that the proposed scheme provides higher detection accuracy than
that provided by the state-of-the-art techniques on two sequences from
LISA 2010 dataset, while maintaining the real-time detection speed.

1 Introduction

Vehicle detection is one of the challenging problems in the field of computer
vision. It has many applications such as driver assistance systems, autonomous
vehicles and intelligent transportation systems. A review for several methods
can be found in [1].

There are several types of image features, such as histogram of oriented gradi-
ents (HOG) [2], and Haar-like features [3], that have been used for the purpose
of object detection. HOG [2] and its variants have been experimented widely
and currently are among the state-of-the-art techniques for object detection [4].
However, neither HOG nor its variants are scale-invariant. Thus, object detec-
tors with multiscale scanning approach usually require extracting certain kind
of features at each scale from an image pyramid, which is considered to be com-
putational bottleneck for many object detectors [2,5,6].

In [7,8] Dollár et al. proposed a feature approximation technique in the spatial
domain, where the gradient histograms and color features extracted at one scale
from an image pyramid can be used to approximate feature responses at nearby
scales. This method reduces the cost of constructing the feature pyramid and
achieves a speedup over other methods, namely, [5,6], with only a small reduction
in the detection accuracy. Later, in [9] a classifier pyramid, instead of an image
pyramid, has been used, resulting in a speedup over [7]. However, the method in
[9] is based on constructing a classifier pyramid that spans different scales (with
a scale step of 2), which requires large storage, and training costs.

In this paper, we present a novel feature pyramid approximation technique in
the 2DDFT domain for the purpose of vehicle detection. The proposed scheme
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 429–436, 2015.
DOI: 10.1007/978-3-319-20801-5 47
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is based on 2D feature resampling in the 2DDFT domain. It is shown that by
considering the effect of resampling an input image on the feature responses,
the exact features extracted at a certain scale from the image pyramid can
be used to approximate the features at a lower or higher scale. The proposed
technique provides a speedup over the exact method, while maintaining the
highest detection accuracy of the state-of-the-art techniques on two sequences
from LISA 2010 dataset [10].

2 Feature Approximation in the Spatial Domain

In this section, we present a brief description of the work proposed in [8]. Let
s denote a resampling factor, where s < 1 represents downsampling, and s >
1 represents upsampling. Let I and Is denote, respectively, an image and its
resampled version by a factor s, where Is = P(I, s), and P denotes a function
for 2D signal resampling in the spatial domain.

Figures 1 (a) and (b) show the exact and the approximated feature extrac-
tion pipelines, respectively. Let Ω denotes a 2D feature extractor in the spatial
domain. It has been shown in [8] that the exact features, g = Ω(I), of size
(N1 ×M1 ×β) where N1, M1, and β represent the number of rows, columns, and
layers, respectively, computed at the original scale can be used to approximate
the features at scale s as

gl
s ≈ ḡl

s = γsP(gl, s) (1)

where l denotes the layer number, l = 1, 2, ..., β, gs = Ω(Is) are the exact features
of size (N2 × M2 × β) in the spatial domain, ḡs are the approximated features
of size (N2 × M2 × β) in the spatial domain, γs is a multiplicative constant, and
the factor s = N2/N1 = M2/M1. It has been shown in [8] that the value of γs

can be modeled by using the power law as

γs = aΩs−λΩ (2)

where aΩ and λΩ are constants that can be obtained empirically in the training
phase for several types of features, such as color images, gradient magnitude,
and gradient histograms.

3 Proposed Algorithm

The proposed scheme is based on approximating the features extracted from the
image pyramid by using feature resampling in the 2DDFT domain, and by con-
sidering the effect of resampling an input image on the feature responses. Figure 1
(c) illustrates an overview of the proposed feature approximation scheme. First,
the exact features g = Ω(I) of size (N1 × M1 × β) are extracted, where N1,
M1, and β represent the number of rows, columns, and layers, respectively. The
objective is to obtain the approximated features g̃s of size (N2 ×M2 ×β), where
s = N2/N1 = M2/M1, and N1,M1, N2 and M2 are even integers.
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Fig. 1. (a) The exact 2D feature extraction scheme from the image I after resampling
by a factor s, (b) 2D feature approximation in the spatial domain proposed by Dollár
et al. [8], (c) The proposed 2D feature approximation in the 2DDFT domain.

Second, the 2DDFT is employed on the lth layer of the exact features extracted
at the original scale, gl ∈ R

2, in order to obtain Gl = FN1,M1(g
l), where l =

1, 2, ..., β, Gl denotes the lth layer of the features in the 2DDFT domain of size
(N1 × M1), and FN1,M1 denotes N1 × M1-point 2DDFT. Next, if s < 1, which
represents the downsampling case, a truncation process is employed to remove
coefficients corresponding to the high frequency components as

Ĝl
s[u, v] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gl[u, v], 0 ≤ u <
N2

2
, 0 ≤ v <

M2

2

Gl[u+N1 − N2, v],
N2

2
≤ u < N2, 0 ≤ v <

M2

2

Gl[u, v +M1 − M2], 0 ≤ u <
N2

2
,
M2

2
≤ v < M2

Gl[u+N1 − N2, v +M1 − M2],
N2

2
≤ u < N2,

M2

2
≤ v < M2

(3)

where Ĝl
s of size (N2×M2), u and v represent the frequency indices. On the other

hand, if s > 1, which corresponds to the upsampling case, a padding process is
utilized as

Ĝ
l
s[u, v] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gl[u, v], 0 ≤ u <
N1

2
, 0 ≤ v <

M1

2

Gl[u + N1 − N2, v], N2 − N1

2
≤ u < N2, 0 ≤ v <

M1

2

Gl[u, v + M1 − M2], 0 ≤ u <
N1

2
, M2 − M1

2
≤ v < M2

Gl[u + N1 − N2, v + M1 − M2], N2 − N1

2
≤ u < N2, M2 − M1

2
≤ v < M2

p, otherwise

(4)

where Ĝl
s of size (N2 × M2), and p is the value of the padding. It is shown in

[11] that the value of p when selected to be the value of the coefficient at half
of the spectrum provides higher approximation accuracy than that provided
by selecting a zero padding. In this paper, we use p = Gl[N1/2,M1/2] which
provides high detection accuracy. In order to solve the detection problem in the
spatial domain, the inverse 2DDFT, F−1

N2,M2
, is performed on the lth layer of Ĝl

s,
and the features in the spatial domain, ĝl

s, can be obtained as

ĝl
s = Re(F−1

N2,M2
(Ĝl

s)) (5)
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Finally, the approximated features of the lth layer, g̃l
s, are obtained as

g̃l
s = αsĝ

l
s (6)

where αs is a multiplicative constant that depends on the channel type and the
factor s. In the following sections, we provide more details about the value of αs

if the feature extractor, Ω, is a grayscale image (Sect. 3.1), and other types of
2D features (Sect. 3.2).

3.1 Grayscale Image Downsampling in the 2DDFT Domain

In [11] the effect of resampling a 1D discrete time sequence in the 1DDFT domain
has been presented. Let hN1,M1 ∈ R

2 represent a grayscale image in the spatial
domain of size (N1 ×M1), where N1 and M1 are even integers. Let sx = M2/M1

and sy = N2/N1 denote the resampling factors in the x, and y directions, respec-
tively, where N2 and M2 are even integers. By employing the N1 × M1-point
2DDFT on the image we obtain the 2DDFT coefficients of the original image
as HN1,M1 = FN1,M1(hN1,M1). Similar to the case of 1DDFT [11], if sx < 1 and
sy < 1, the downsampled image in the spatial domain, h̃N2,M2 , can be obtained
from the 2DDFT coefficients of the original image, HN1,M1 , as

h̃N2,M2 = sxsy Re(F−1
N2,M2

(ĤN2,M2)) (7)

where ĤN2,M2 is obtained after applying the truncation process on HN1,M1 , as
seen in (3). From (7) the truncation process, which truncates the coefficients cor-
responding to the high frequency components, and the multiplicative constant,
αsx,sy

= sxsy, are used to downsample the image in the 2DDFT domain. Similar
relation can be obtained in the case of image upsampling in the 2DDFT domain,
where the factor αsx,sy

= sxsy. In the next subsection, we derive the relation of
the multiplicative constant that is applicable to several types of 2D features.

3.2 Feature Downsampling in the 2DDFT Domain

In this section, we obtain the relation that governs the multiplicative constant,
αs, for several kinds of features in the case of downsampling (s < 1). A similar
relation can be obtained for the upsampling case. In the object detection frame-
work, our objective is to approximate the features in the 2DDFT domain, such
that g̃s downsampled in the 2DDFT domain approximates the exact features gs.

For simplicity, let sx = sy = s, i.e., the downsampling factor be the same in
both the x, and y directions. It can be shown that the multiplicative constant
αs can be modeled as a combination of the power law (2) and 2DDFT domain
downsampling (7) effects as follows

gl
s ≈ g̃l

s = aΩ(s)−λΩ

︸ ︷︷ ︸
(Power law effect)

s2ĝl
s︸︷︷︸

(2DDFT effect)

= αsĝ
l
s (8)
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Fig. 2. The multiplicative constant value at different downsampling factor (1/s) and
three different features types: (a) color channel, (b) gradient magnitude, and (c) gra-
dient histograms with 6 orientation bins.

αs = aΩ(s)2−λΩ (9)

where l denotes the layer number, l = 1, 2, ..., β, aΩ , and λΩ are the channel
parameters, which can be estimated in the training phase for several types of 2D
features as will be shown in the next paragraph. From (6) and (9), the features
extracted from the original scale, g, can be used to approximate the features at
a lower scale, g̃s.

In order to estimate the parameters of a certain type of 2D features, we
use a training set of Nt training images to infer the value of the multiplicative
constant, α̂i

s, for the ith example that solves the following optimization problem

min
α̂i

s

∥∥gi
s − α̂i

sĝ
i
s

∥∥2

2
(10)

where i = 1, 2, ..., Nt, s = 2−n/n0 , n ∈ {1, 2, ..., Nl − 1}, Nl being the num-
ber of levels in the feature pyramid and n0 being the number of scales per
octave. By using the mean value of the estimated multiplicative constant α̂s =
1/Nt

∑Nt

i=1 α̂i
s, and the model of αs given by (9), the channel parameters, aΩ ,

and λΩ , can be estimated by using the least square method.

4 Experimental Results

Channel Parameter Estimation. In this experiment, the channel parame-
ters, aΩ and λΩ , are estimated by using the parameter estimation technique
presented in Sect. 3.2, where Nt = 200 rear view vehicle images of size 64 × 64
from KITTI dataset [12] are used. The proposed scheme is tested on three types
of channels, namely, color, gradient magnitude, and gradient histograms with 6
orientation bins. Figure 2 shows the value of the estimated multiplicative con-
stant and channel parameters that best fit the curve for the corresponding type
of channel, where s = 2−n/n0 , n ∈ {1, 2, ..., Nl−1}, Nl = 12, and n0 = 8. In order
to measure the quality of the curve fitting for each channel, the mean absolute
error (MAE) defined by MAE = 1/(Nl −1)

∑
s |(αs − α̂s)| is used. For the color

channel, Fig. 2(a), λΩ ≈ 0, aΩ ≈ 1, and MAE ≈ 0; thus by substituting in
(9), the power law effect is neglected and the 2DDFT domain effect dominates.



434 M.A. Naiel et al.

Figures 2(b) and (c) show that the proposed technique can model the gradient
magnitude, and gradient histogram channels effectively.

Application to Vehicle Detection. The LISA 2010 dataset [10] is used to
measure the detection accuracy of the proposed scheme. This dataset consists
of three test sequences of resolution (704 × 480) for rear view vehicles of differ-
ent sizes, and the dataset was captured under several illumination conditions.
The first sequence (1600 frames) taken on a high density highway during a
sunny day (H.-dense), the second (300 frames) on a medium density highway
(H.-medium), and the third (300 frames) from a low traffic urban area during a
cloudy day (Urban). The dataset does not include training data; therefore, we
collect training images of size (64 × 64) from other datasets as follow: (1) 9013
images of vehicles in rear/front views from KITTI dataset [12], and USC multi-
view car dataset [13], and (2) 8415 negative samples from CBCL street scenes
dataset1. Similar to [10], we collect a number of hard negative samples from the
test sequences (229 samples from H.-medium, and 806 samples from H.-dense).

In the training phase, the detector of Dollár et al. [8]2 is trained on the train-
ing dataset described above. In this detector, the aggregated channel features
(ACF) have been used, and the detector consists of the following channels: LUV
color, normalized gradient magnitude, and gradient histograms with 6 orienta-
tion bins. Further, these features are used to train boosted decision trees for
classification. For more details about ACF, the readers are referred to [8]. In
the detection phase, the proposed feature approximation in the 2DDFT domain
is used to approximate the feature pyramid (ACF-DFT) instead of using the
approximation technique in the spatial domain (ACF-SD) [8] or the exact fea-
tures (ACF-Exact) [8].

We use the same evaluation metrics as in [10]: true positive rate (TPR)
or recall, false detection rate (FDR) or 1-precision, average false positive per
frame (AFP/F), average false positive per object (AFP/O), and average true
positive per frame (ATP/F). True positive detections are computed by using
the PASCAL VOC criterion [14] with overlap threshold 0.5.

Table 1 gives the performance measures by using the proposed scheme3 and
that provided by using various techniques [8,10,15]. The method presented in
[10] is based on using Haar-like features and cascade of boosted classifiers, while
the method in [15] is based on using a block-partitioned 2DHOG in the 2DDCT
domain and multiple support vector machine classifiers with fast histogram inter-
section kernel (FIKSVM) [6] trained at different vehicle resolutions. It is seen
that the proposed scheme yields the highest detection accuracy which is bet-
ter than that provided by the methods in [10,15] on Urban and H.-medium
sequences, while the method itself achieves slightly lower performance than that
of the methods in [10] and ACF-Exact on H.-dense sequence. The H.-dense
sequence consists of vehicles of various resolutions and several vehicles are in
partial occlusion.

1 http://cbcl.mit.edu/software-datasets/streetscenes.
2 Code: http://vision.ucsd.edu/∼pdollar/toolbox/.
3 Supplementary material shows several detection qualitative results https://www.

youtube.com/watch?v=y5-m9c4TJMY.

http://cbcl.mit.edu/software-datasets/streetscenes
http://vision.ucsd.edu/~pdollar/toolbox/
https://www.youtube.com/watch?v=y5-m9c4TJMY
https://www.youtube.com/watch?v=y5-m9c4TJMY
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Table 1. Performance measures of the various techniques using the LISA dataset,
where the figures in bold denote the best performance

Sequence Method TPR FDR AFP/F ATP/F AFP/O

H.-dense Proposed (ACF-DFT) 90.11 % 9.89 % 0.48 4.4 0.1

ACF-Exact 90.14 % 9.86 % 0.48 4.4 0.1

ACF-SD 89.87 % 10.13 % 0.5 4.39 0.1

[15] 75.97 % 24.03 % 1.05 3.33 0.24

[10] 93.50% 7.10% 0.32 4.2 0.07

H.-medium Proposed (ACF-DFT) 100.00% 0.00% 0.00 3.00 0.00

ACF-Exact 100.00% 0.00% 0.00 3.00 0.00

ACF-SD 100.00% 0.00% 0.00 3.00 0.00

[15] 97.67 % 2.33 % 0.07 2.93 0.02

[10] 98.80 % 10.30 % 0.37 3.18 0.11

Urban Proposed (ACF-DFT) 100.00% 0.00% 0.00 1.00 0.00

ACF-Exact 100.00% 0.00% 0.00 1.00 0.00

ACF-SD 100.00% 0.00% 0.00 1.00 0.00

[15] 99.33 % 0.67 % 0.01 0.99 0.01

[10] 80.20 % 41.70 % 0.72 0.98 0.57

Note: higher values of TPR and ATP/F indicate a better performance, whereas
lower values of FDR, AFP/F, and AFP/O indicate a better performance.

The average detection speed is computed on 60 images with resolution of
512 × 512. The average detection speed of the proposed ACF-DFT is 38.46
frames per second (fps), while those of ACF-SD and ACF-Exact are 47.62 fps,
and 32.26 fps, respectively, where the scanning window step size is 4 pixels,
and the feature pyramid consists of one octave of 8 scales4. Thus, the proposed
scheme is faster than ACF-Exact by 16.12 %, and lower than ACF-SD. Most
of the running time of the proposed technique is spent on computing the for-
ward and inverse transforms of the ACF. In future work, we will explore several
methods to improve the running time of the proposed scheme.

5 Conclusions

We have presented a novel technique for the approximation of feature pyramids
in the 2DDFT domain for vehicle detection. The proposed method is based on a
feature resampling technique in the 2DDFT domain and by considering the effect
of resampling an input image on the feature responses. Experimental results have
shown that the proposed technique achieves a higher detection accuracy than
that of the state-of-the-art techniques on two sequences from LISA 2010 vehicle
detection dataset, while maintaining the real-time detection speed.

4 The test is carried out on a PC with 2.9 GHz CPU.
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Abstract. Traffic-sign detection and recognition using computer vision is
essential for safe driving when using an advanced driver assistance system
(ADAS). Among the few types of traffic signs used, in this paper, we focus on
the detection and recognition of speed-limit signs because such signs can ensure
the safety of drivers and other road users, and facilitate an efficient traffic flow.
To detect a speed-limit sign, we first choose the candidate regions for a
speed-limit sign using the border color and apply sliding windows to the can-
didate regions using a two-class boosted random forest (BoostRF) classifier
instead of simple random forest. To reduce the computational cost for the image
pyramid, the optimal levels of scaling using the search area is adapted. Detected
speed-limit signs are fed into the speed-limit sign classifiers based on the
multiclass BoostRF. As the feature of the BoostRF, we use spatial pyramid
pooling (SPP) based on oriented center symmetric-local binary patterns
(OCS-LBP) because SPP is simple and computationally efficient, and maintains
the spatial and local information by pooling the local spatial bins. The proposed
algorithm was successfully applied to the German Traffic Sign Detection
Benchmark (GTSDB) and German Traffic Sign Recognition Benchmark
(GTSRB) datasets, and the results show that detection and recognition capa-
bilities of the proposed method are similar or better than those of other methods.

Keywords: Speed-limit sign detection � Speed-limit sign recognition � ADAS �
Boosted random forest � Spatial pyramid pooling

1 Introduction

With increasing interest in intelligent vehicles, many researches related to internet and
communication technique (ICT) techniques have focused on advanced driver assistance
systems (ADASs). In particular, computer vision and machine learning are the most
important techniques for implementing an intelligent ADAS. One of the active areas
studied in the field of ADAS is automatic traffic-sign detection and recognition.
Although a driver can receive traffic-sign information from a navigation system using a
geographic database and GPS information, the navigation system used may not give
the driver up-to-date information owing to changes in the roads and their traffic signs.
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Therefore, camera-based traffic-sign recognition provides significant assistance for safe
driving. In particular, speed assistance systems became a new item in car safety testing
in European Union’s new car assessment program (NCAP) in 2015. In NCAP, rec-
ognizing and limiting the vehicle speed are the core functions of car safety because they
can ensure the safety of the driver and other road users, facilitate an efficient traffic
flow, and promote safe driving conditions [1].

Traffic signs are designed based on specific colors, shapes, and the presence of text
or symbols with high contrast with the background, as shown in Fig. 1. Therefore,
human drivers can detect and recognize traffic signs easily even when the signs suffer
from occlusions, geometric distortion, or variations in illumination [2, 3]. However,
under real road conditions, automatic traffic-sign recognition using a camera remains a
very challenging problem because of variations in perspective, illumination (from rain,
fog, or shadows), motion blur, scaling, rotation, and occlusions [3]. Among the dif-
ferent types of traffic-sign recognition, the recognition of speed-limit signs is more
difficult than for other traffic signs because they have similar patterns, such as a round
shape, black text, red boundary, and white background.

1.1 Related Works

For traffic-sign recognition, the signs should first be detected. Conventional methods
use sliding window approaches to detect and recognize traffic signs concurrently.
However, because sliding window approaches require a certain amount of computa-
tional time, many researches have been using color- [4] or gray-based [5] segmentation
to reduce the search space by considering the traffic-sign characteristics. However,
chromatic shifts from changes in lighting are the main problem of color- or gray-based
segmentation. To overcome the limitations of color-based segmentation, shape infor-
mation is also used for sign detection. Barnes and Zelinsky [6] used the radial sym-
metry of traffic signs based on a Hough transform for circular shapes. However, this
type of method has a limitation in that it can detect only circular shapes.
A Histogram-of-oriented gradient (HOG) is the representative feature for shape-based
sign detection because it provides an effective way to capture the shape information [7].

(a) (b)

Fig. 1. Candidate pixel detection using color probability models (a) and five sizes of template
model (b) for sign detection
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Creusen et al. [8] incorporated HOG to color information and proved that CIE-Lab and
YCbCr color spaces achieve the best results.

After traffic-sign detection is applied, classification is subsequently conducted alone
or simultaneously with the detection. For classification, neural networks [9] and
multi-class support vector machines (MSVM) [3] are widely used owing to their high
performance and accuracy. However, these methods are not suitable when the feature
used has high-dimensionality and the database contains over 1,000 images, which
result in computational complexity. Convolutional networks (ConvNets) and a deep
neural net [10] have recently become popular classification methods because of their
high classification performance. ConvNets learn the multiple stages of invariant fea-
tures using a combination of supervised and unsupervised leaning. Sermanet and Le-
Cun [11] modified a ConvNet by feeding the first and second stage features into the
classifier Cireşan [10] combined various DNNs trained from differently preprocessed
data into a Multi-Column DNN (MCDNN) to further boost the recognition perfor-
mance. Although this method showed a higher classification rate based on the German
Traffic Sign Recognition Benchmark (GTSRB) [2], a detailed algorithm for detecting
traffic signs on a real road and incorporating the detection into the classifier in real time
was not proposed.

In this paper, we introduce algorithms for detecting and recognizing speed-limit
signs for supporting an ADAS. We first choose the candidate regions of the traffic signs
using the border color and determine the final traffic signs using the sliding window
method. To reduce the computational cost for an image pyramid, optimal levels of
scaling are applied using the search area. To detect the presence of a traffic sign, we use
a two-class boosted random forest [12] with low-dimensional oriented center
symmetric-local binary patterns (OCS-LBP) [13]. Detected traffic signs are passed to
the speed-limit sign classifiers based on the multiclass BoostRF. For the BoostRF
feature, we use OCS-LBP-based spatial pyramid pooling (SPP) [13] owing to its
simplicity and computational efficiency, and because it maintains spatial information
by pooling the local spatial bins.

2 Speed-Limit Sign Detection

For traffic-sign detection, the detection efficiency and speed are important aspects of a
real-time application. Because traffic signs, particularly speed-limit signs, in Asia and
Europe commonly have a red border with a white background, in contrast with those in
North America, which have a black border with a white background, we first use the
color information to segment the candidate speed-limit sign regions. Many types of
color spaces (e.g., RGB, HSV, YUV, and L*a*b*) have been used for segmentation,
and we use the UV color chrominance channel of a YUV space to reduce the influence
of changes in lighting. In general, speed-sign images are highlighted in the U channel
on a white background and have a relatively low V value when compared to the
background and other signs. Therefore, using these characteristics, we determine
candidate pixels based on several threshold values using the following formula:
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Ii ¼ 255 If ðthminu\Ui\thmaxu & thminv\Vi\thmaxvÞ
0 otherwise

�
ð1Þ

where U and V is an normalized image of U and V channel, thmin and thmax is minimum
and maximum threshold values for each channel. However, if the border regions of a
speed-limit sign are accurately detected, some false regions may also be detected owing
to the presence of a color similar to the sign border, as shown in Fig. 1 (a). After the
candidate pixels are detected, an additional process is needed to remove these false
candidate pixels and detect the exact pixels of the speed-limit sign.

2.1 Optimal Size of Template Model

The main problem of a sliding window method is the computational burden of a
multi-scale image pyramid and the dense amount of sliding windows per scale.
However, if we know the height of the installed camera, we can limit the size of
template model By modifying the work in [14], we conduct an cropping of speed-limit
signs for all training images, and generate a Hough Windows Map [14] by voting the
frequency according to the size of cropped signs. After accumulating of Hough
Windows Map, we decide representative five template sizes for speed-limit sign, such
as 24 × 24, 36 × 36, 48 × 48, 64 × 64, and 100 × 100, as shown in Fig. 1 (b).

2.2 Boosted Random Forest for Speed-Limit Sign Verification

In this study, we use the OCS-LBP [2] from a detected sign target owing to its
simplicity and similar performance when compared to HOG. In OCS-LBP, the gradient
orientations are estimated for every pixel within a mask, and a histogram of the
neighborhood orientation is formed. Each pixel influences the gradient magnitude of
the closest orientation bin ranging from 0° to 360° in increments of 45°. A normalized
OCS-LBP is represented using eight-component histograms, where the OCS-LBP for
the target model is denoted by in 8 × 8 sub-blocks. Therefore, the total dimension of
OCS-LBP for one target region is 512 (8 × 8 × 8).

For verification of a speed-limit sign, we apply a scanning window with a random
forest classifier to only the candidate pixels. The random forest classifier is an ensemble
of several weak decision trees, and has the capacity to process large amounts of data at
high training and testing speeds owing to its randomized characteristic [15]. Although
randomization is an advantage of random forests, it depends heavily on the number of
decision trees and requires a certain amount of memory and CPU capacity. Therefore,
we apply BoostRF [12] to our verification system to maintain the generality with a
small number of decision trees when considering the fact that sequential training
constructs complementary decision trees for the training samples. BoostRF adds a
bootstrapping phase during the learning step, which is similar to the Adaboost algo-
rithm. BoostRF [12] is trained using Algorithm 1.
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Algorithm 1 BoostRF learning 

T: number of iterations  
D: the maximum depth of trees to extend 
M: number of classes 

nS : Training set, including positive and negative samples with their labels and 

weight,  MyXwywy iNNN ∈∈ ,};,,{},...,,,{ 111 xxx  

Initialize sample weight iw         Nwi 1)1( =  
For t  to T do 

Select subset  s  from training set nS  
Grow an unpruned tree using the s  subset samples with their corresponding 
weights.  

For d to D do  
Each internal node randomly selects p variables and determines the best 
split function using only these variables. 

Using different p-th variables, the split function )( pvf  iteratively splits 

the training data into left ( ll ) and right ( rl ) subsets using equation (2).  
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Compute information gain GΔ  function )( pvf  

If ( GΔ = max) then determine the best split function )( pvf  for node d 

If (d= D) then store the probability distribution )|( lcP in the leaf node 
         End For 
Output: A weak decision tree 
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else 

          Reject the decision tree 
End For 
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After BoostRF training using the positive and negative training data, OCS-LBP
feature vectors are extracted from the target region, which are used as input to the
learned BoostRF. The detection probability of a speed-limit sign class is computed by
ensemble averaging each probability distribution of all trees L = (l1, l2,…, lT) with their
corresponding weights (αt) for the t-th decision tree as

PðcjLÞ ¼ 1
T

XT

t¼1

atPðcjltÞ: ð7Þ

Then, if the speed-limit sign class has the highest probability and is over the
minimum threshold τ(0.5), we choose the target region as a real speed-limit sign.

Speed sign ¼ argmax
C

PðcjLÞ[ s ð8Þ

3 Speed-Limit Sign Classification

After speed-limit sign verification, the same BootRF classifier is used to confirm the
speed of the region indicated by the speed-limit sign through the use of finer features
extracted by SPP [13], which is a collection of order-less feature histograms computed
over cells defined through a multi-level recursive image decomposition, as shown in
Fig. 2.

SPP partitions the image into cells from finer to coarser levels and aggregates the
spatial information by pooling within the local spatial histograms [13]. In this study, we
construct a spatial pyramid with three levels and generate eight-dimensional OCS-LBP
histograms from each cell. Therefore, the target sign region has 848 dimensions
(8 + 32 + 128 + 680).

Fig. 2. Training steps for sign recognition using a spatial pyramid based on BoostRF and
OCS-LBP
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4 Experimental Results

First, to evaluate the performance of the speed-limit sign detection, we used training
and test images from the German Traffic Sign Detection Benchmark (GTSDB) dataset
[16], which consists of 900 images in total (divided into 600 training images and 300
evaluation images) with 1,360 × 860 pixels. In our experiment, we compared the
detection performance for only prohibitive signs because they include speed-limit
signs. Figure 3 (a) shows the results as compared with two leading sign-detection
algorithms [7, 17] based on the overlapping accuracy. As the figure shows, our pro-
posed method has similar or somewhat higher detection results compared with the other
two algorithms. In particular, the other two methods require a longer computation time
(at 2.5 and 60 s per image, respectively) than the proposed method (at 0.9 s) because of
several processing steps required with high dimensionality.

Second, to evaluate the speed-limit sign recognition performance, we also used the
GTSRB dataset [18], which was created from approximately ten hours of video
recorded while driving on different road types in Germany during the daytime.
The GTSRB dataset consists of 39,209 training images and 12,630 test images in 43
classes. In fact, although the GTSRB dataset includes lifelike images of more than
12,630 traffic signs in 43 classes, we selected only data on 12,630 images from nine
speed-limit sign classes from the available 43 classes because the goal of our study is
speed-limit sign recognition. To evaluate the effectiveness of the proposed method, we
examined its average correct classification rate (CCR) through a comparison with the
IDSIA [10] and INI-RTCV [18] methods, which are known to be the highest
traffic-sign recognition methods available. As shown in Fig. 3 (b), our proposed
method produces a similar recognition performance as these other methods. The
results indicate that a spatial pyramid provides both global and local features when
compared to the feature extraction from a whole image, and BoostRF eliminates a
large number of false positives using an aggregated spatial pyramid based on the
OCS-LBP features.

Fig. 3. Comparison of speed-limit sign detection (left) and recognition (right)
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5 Conclusion

This paper proposed a speed-limit sign detection and recognition algorithm for
real-time application. For the sign detection, we used simple color and OCS-LBP
features with BoostRF. Using BoostRF, the sign detector can improve the detection
performance by utilizing only the optimal number of decision trees. For the speed
recognition, we used a spatial pyramid of the OCS-LBP feature to extract both the finer
and coarser features from one image at the same time. When we use the same BoostRF
with a spatial pyramid, our method shows a similar or somewhat higher recognition
result than other deep neural network based methods [10, 18]. For future works, we
intend to focus on a reduction in the detection time for speed-limit signs and improving
the recognition time and accuracy by combining the convolutional neural network
concept with BoostRF.
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Abstract. In this paper a methodology for an automatized measurement of the
nacre thickness of Tahitian pearls is presented. An adapted snake approach as
well as our own developed circle detection algorithm are implemented to extract
the nacre boundaries out of X-ray images. The results are validated by experts
currently performing manually the obligatory nacre thickness control for mil-
lions of Tahitian pearls that are exported each year. Equivalent articles propose
methods suitable for round pearls, whereas this paper contains methods to
evaluate the nacre profile of pearls independently of their shape. As the algo-
rithms are not specifically parametrized for Tahitian pearls, the methods can be
adapted for quality assessment of other pearls as well.

Keywords: Pearl classification � X-ray image analysis � Active contours �
Circle detection

1 Introduction

The Tahitian pearl is a precious natural gem that is cultivated in the clear warm
la-goons of French Polynesia. On the international market the pearl is known under the
name ‘Queen of Pearls’, due to its high quality and the large diversity of different color
nuances. To keep its high reputation, the French Polynesian government introduced an
obligatory quality control for each pearl that is supposed to be exported. This oblig-
atory control is conducted by the administration of marine and mining resources
(Direction des Ressources Marines et Minières, DRMM), where the quality of a pearl
is evaluated by its form, size, color, luster, surface quality and nacre thickness. The
evaluation is done manually by experts, which is a time consuming process, especially
seeing the large amount of pearls that are exported each year (over 11 million in 2014,
tendency increasing). As the pearl is the first source of export income in French
Polynesia (export volume of over 70 million Euro in 2014), one goal of our project is to
support this important branch by implementing a computer vision based quality con-
trol. An automatized quality assessment can help to guarantee a fast and stable export
procedure, which is in the interest of the local pearl farmers as well as the French
Polynesian government.

The Tahitian pearl is cultivated by inserting an artificially formed sphere, the
nucleus, into a Black-Lip Pearl Oyster (Pinctada margaritifera). The pearl grows
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afterwards as a result of a biological defense mechanism of the oyster that ‘neutralizes’
this foreign substance by building layers of nacre around it (see Fig. 1 on the left for a
cut through 3 Tahitian pearls). One of the quality parameters to control is the minimal
nacre thickness, a parameter that has to be evaluated by imaging the internal structure
of the pearl. For this purpose the DRMM uses X-ray machines. The pearls are stored in
boreholes of a wooden plate that is placed in the machine for image capturing (Fig. 1 in
the middle). Afterwards an employee evaluates manually the numeric image taken
separately for each pearl (Fig. 1 on the right). An obligatory export criterion for a
Tahitian pearl is that its minimal nacre thickness has to exceed 0.8 mm. The manual
evaluation of the X-ray images serves accordingly the purpose of rejecting pearls with a
minimal nacre thickness lower than 0.8 mm from exportation.

In this paper our methodology to automatize the measure of the nacre profile out of
X-ray images is presented. The crucial regions to detect to automatize this measure-
ment are visualized in Fig. 2. The example in the left column shows a round pearl
situated completely in the plates borehole (green circle). The outer boundary of the
pearl (blue line) and the nucleus (red circle) have to be detected and the distance
between both describes the nacre thickness profile. The second column shows a pearl
with a cavity inside. As the cavity must not contribute to the thickness measurement,
the inner boundary of the nacre has to be extracted additionally (cyan line). The
distance between the inner and the outer boundary describes the nacre thickness. The
third example shows a pearl, whose outer boundary surpasses completely the borehole,
leading to superposed gradients of the borehole and the inner structure of the pearl, a
complication that will be discussed in section four.

Fig. 1. A cut through three Tahitian pearls (left), a Tahitian pearl positioned in a borehole of a
wooden plate for X-raying (middle) and the resulting X-ray image (right).

Fig. 2. Three example images (first row) and the crucial regions to detect (second row).
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In the next section, related work concerning pearl quality assessment based on
nacre thickness, color and shape is described. Section three contains our methods to
measure the nacre thickness of Tahitian pearls. In three subsections the stages of
extracting the inner and outer boundary of the nacre with active contours, as well as
extracting the nucleus with circle detection are described. The fourth subsection con-
tains the final measurement of the nacre profile out of the previously extracted infor-
mation. In section four perspectives concerning the improvement and further validation
of our methods as well as suggestions to improve the image configuration can be found,
followed by the conclusion in section five.

2 Related Work

Even though the international pearl market yields large profit in several countries,
scientific work in the domain of computer science to improve this industry is rare. An
article proposing a method for an automatized nacre thickness measurement can be
found under [1]. Optical coherence tomography (OCT), a shallow-depths laser imaging
technique, is used to generate greylevel images of the internal structure of a pearl.
The OCT images undergo denoising, edge detection and median filtering, to detect the
edges of the outer boundary of the nacre. According to the assumption that the outer
boundary of the nacre is round, the final boundary is obtained by fitting a circle to the
obtained edges using the least-square method. The edge pixels for the inner boundary
are identified with Support Vector Machine and the results are treated the same way as
for the outer boundary. Further developments of this method are described in [2, 3].
The approaches are based on the assumption that the nacres’ boundaries are round,
which covers only one of several classes concerning the Tahitian pearl. The left image
in Fig. 3, taken from [1], shows two circles in blue that approximate the inner and the
outer boundary of a pearl, as a result of the described algorithm. In the middle an image
of Tahitian pearls that are controlled for export at the DRMM can be seen, most of
them with a ‘baroque’ shape that cannot be approximated by circles. On the right a
typical X-ray image of a pearl with a ‘baroque’ shape is shown to further illustrate the
need for another approach to automatically measure the nacre thickness of Tahitian
pearls independently of its shape.

Fig. 3. One result image of the nacre thickness measurement from [1] (left), several Tahitian
pearls with ‘a baroque’ shape prepared for X-raying (middle) and an X-ray image of a typical
Tahitian ‘baroque’ pearl (right).
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Further related articles concern the quality assessment of pearls based on color and
shape. In [4–7] the relation between the physical properties of a pearl and its human
evaluation are investigated. A model is built which aims to support automated
inspection systems in regards of for example the spectrum, diffusion and position of a
light source. In [8] the pearls shape is described with Zernike moments and afterwards
classified with a fuzzy membership function, while an approach to classify the pearls
color is presented in [9].

3 Measuring the Nacre Thickness

To measure the nacre thickness out of X-ray images the outer and the inner boundary of
the nacre have to be extracted. Our methodology consists of three stages: (i) detecting
the outer boundary of the nacre, (ii) detecting the nucleus, and (iii) detecting the inner
boundary of the nacre. The methods for these stages will be presented in the following
three sections. In the fourth section the final measurement of the nacre thickness out of
the obtained information is described.

3.1 Detecting the Outer Boundary

As the intensity and the gradient of the outer boundary of the pearls in X-ray images
vary largely, classical edge detection (such as Canny, Sobel or Prewitt) for the
detection of the outer boundary failed in first tests. A more efficient approach is to use
the active contour approach ‘snakes’ [10]. This advanced edge integrator consists of a
curve that is moved by image-dependent external forces while its form keeps a certain
degree of ‘smoothness’. The mathematical idea is to maintain equilibrium between
internal and external energy defined over the whole curve at each iteration. The
according formula is described as:

Z
a sð Þ d x sð Þð Þ

ds

� �2

þb sð Þ d2 x sð Þð Þ
ds2

� �2

þF sð Þ
 !

ds ¼ 0: ð1Þ

The first two terms contain the first two derivatives of the curve that describe the
smoothness of its contour (internal energy). The third term is the force that moves the
curve (external energy), usually a gradient calculated over the whole image. This
integral describes an optimization problem that can be solved with the Euler-Lagrange
formalism. A simple numeric implementation of the solution can be described by

X
*

tþ1 ¼ I � A
� ��1

F
* þ X

*

t

� �
: ð2Þ

In this formula I is the identity matrix, A is a matrix that contains the weighted second

and fourth derivative of the curve at time t, F
*

is a force vector that moves the curve and

X
*

is a vector that contains the x-coordinates of the curve at time t, respectively, as the
algorithm is iterative at time t + 1. The algorithm (executed for the x- and
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y-coordinates) results in a moving curve that stops moving when the external and
internal energy at each point are in equilibrium.

The implementation for detecting the outer boundary of the nacre is the following:
the initial contour is set to the outer boundary of the image, assuring that the pearl is
situated inside the contour (Fig. 4 first row in blue color for three example images). The
normal vectors at each point of the curve point to the inside of the curve. The moving
force is a negative ‘balloon’ force, meaning the curve is constantly shrinking in
direction of its normal vectors (for a description of the balloon force please see [11]).
This force is diminished if the curve touches positive image gradients (dark pixel to
light pixel) in direction of its normal vectors. The effect of this configuration can be
seen in Fig. 4 second and third row: while the curve in each image passes the strong
gradient between the light and the dark background (negative gradient) it stops at the
positive gradient that describes the outer boundary of the pearl. These three examples
contain different possibilities of pearl position. While the pearl on the right is situated
completely in the borehole of the plate on which the pearls are positioned (see as well
Fig. 1), the image on the left shows a pearl whose boundary surpasses partially the
hole. The image in the middle is an example of a pearl whose boundary surpasses
completely the hole. Even though the local gradients of the pearl boundaries are
different, no case differentiation has to be done, as for all three configurations the same
algorithm with the same parametrization was used.

After obtaining the outer boundary of the pearl, the second stage consists of
detecting the nucleus within the pearl.

3.2 Detecting the Nucleus

As described in the introduction, the nucleus is an artificially formed sphere, which
appears as a circle in X-ray images. The goal of this stage is accordingly classical circle
detection. One of the most popular approaches is the circular Hough transform [12].
Even though with high performance, this ‘brute force’ approach is time and memory

Fig. 4. The initial snake contour for the outer boundary detection in blue (top), after several
iterations (middle) and the final result (bottom).
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consuming. As center and radius of the nucleus are a priori unknown, each pixel within
the outer boundary has to be considered as potential center pixel for all radii in this
approach. The low gradients and the nacre thickness dependent intensity makes pixel
preselection with edge detection difficult. Using the snake approach instead does not
guarantee that the result will be a circle, especially if the boundary of the nucleus is
only partially visible. For the purpose of the nucleus detection we developed a heuristic
approach that consists of an artificial circle with a variable radius that is moved by
image gradient forces. The basic idea is: if an artificial circle stays all time in a circular
object to detect, while its radius is increased, it will at one time fully cover the outer
boundary of the circular object. For this application it means that an initial artificial
circle has to move into the nucleus and stay in it while its radius is constantly increased.
At a certain moment the artificial circle will fully cover the outer boundary of the
nucleus. The mathematical formula satisfying this movement can be denoted as

F
* ¼

Xm

i¼1
fin

*

i: ð3Þ

In this formula n*i denotes the inside pointing normal vector of point i of the artificial
circle and fi the local gradient force at this point (positive from dark to light pixels in
direction of the normal vector). The sum over all m points of the circle determines its

moving direction F
*

. Each time the center of the moving circle touches the same pixel
for the second time its radius is increased. The implementation for one of the example
images is visualized in Fig. 5. On the top left the initial circle is shown with its normal
vectors at each point weighted by the local gradient (blue arrows). Due to the spherical
form of the nucleus, the gradients at the border are stronger, resulting according to
Eq. 3 in a moving direction (black arrow) pointing to the center of the nucleus. As the
border between the nucleus and the nacre is barely visible, a red arrow points for
clarification at the partial border. The bigger circle with strong gradients in this image
belongs to the borehole of the plate where the pearl is placed for X-raying (see as well
Figs. 1 and 2). At the bottom of Fig. 5 is the average of all local gradients of all circle
points over each movement visualized in blue. Each time the radius is increased is
marked by a vertical black line.

After the first two radius increases, the circle moved further inside the nucleus close
to its center (second image on the top). The third image shows the circle and its
weighted normal vectors at the moment it fully covers the boundary of the nucleus.
Almost all gradients are positive and at a local maximum. A few movements later the
circle surpasses this boundary, resulting in an abrupt change of gradient directions in
this area (fourth image), due to the beginning of the nacre area. This moment, even
though the boundary of the nucleus is only partially visible, can be clearly detected in
the trend of the average gradients (on the bottom of Fig. 5). The automatically detected
nuclei of all three example pearls with this algorithm are shown in Fig. 6. On the top
are the circles initialized at the geometric center of the previously detected outer
boundary and the results are on the bottom. For the two example pearls in the right two
columns, all necessary information to calculate the nacre thickness is obtained (the
inner nacre boundary is equivalent to the boundary of the nucleus). The pearl on the left
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however, has a cavity inside the nacre which must not contribute to the nacre thickness
measurement. Therefor a third stage of detecting the inner boundary has to be executed.

3.3 Detecting the Inner Boundary

In Fig. 7 on the left the result of the first two stages for one of the example images of
the previous sections is shown. Within the nacre a slightly darker region can be
identified. This region is a cavity within the pearl. Accordingly this region must not
contribute to the nacre thickness measurement. For the same reasons as before, the
active contour approach ‘snakes’ can as well be used for this stage.

In this implementation the initial contour is set identical to the detected outer
boundary of the pearl. The moving force is like previously a negative ‘balloon’ force,
resulting in a constant shrinking of the curve. This time the shrinking is diminished if
the curve touches negative gradients or the detected nucleus. The right three images in
Fig. 7 visualize the execution of the algorithm. The final result approximates the inner
boundary of the nacre. For the other two pearls seen in the previous section, the inner

Fig. 6. The initial artificial circle of the implemented algorithm for the nucleus detection in red
(top) and the detected nucleus (bottom).

Fig. 5. Four different iteration stages of our circle detection algorithm (top) and the average
gradient of each circle point at each iteration (bottom).
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boundary is equivalent to the detected boundary of the nucleus, as their inner structure
possesses no cavities. As by now all necessary information for the three pearls are
extracted, the actual nacre thickness can be evaluated.

3.4 Measuring the Thickness

To evaluate the nacre thickness the distance between the outer and inner boundary is
calculated at every point, which describes the nacre thickness profile of the whole pearl
(Fig. 8 in the middle). The last step is to identify the regions of the nacre profile that are
thinner than the minimal authorized nacre thickness of 0.8 mm for Tahitian pearls to be
exported. The areas of the nacre greater than this margin are colored in green while the
thinner areas are colored in red (Fig. 8 on the bottom). The results were validated by
employees of the DRMM.

4 Perspectives

As by this case study the used methods are generally validated as suitable, the next step
is to acquire a large amount of test images to further improve and adapt the used
algorithms. We are currently in contact with the DRMM to obtain a set of several

Fig. 7. Different stages for the detection of the inner boundary of the nacre in case of a cavity
within the pearl. The final result is on the right.

Fig. 8. Original images (top), automatically calculated nacre profiles (middle) and a
visualization of areas lower than the minimal allowed nacre thickness for exporting a Tahitian
pearl (bottom, areas lower than 0.8 mm in red).

Automatic Nacre Thickness Measurement of Tahitian Pearls 453



hundred X-ray images together with manual evaluation results. Furthermore several
special cases exist as shown in Fig. 9. The image on the left shows a pearl with two
inner boundaries, while the image in the middle shows a pearl whose inner structure
does not allow a visual discrimination between nucleus and nacre.

The image on the right shows a pearl whose inner structure is highly complex. The
goal is to automatically identify the special cases to at least, if an automatic detection is
impossible, avoid false detections.

Another perspective concerns the plate that is used to position the pearls for
X-raying. Currently the pearls are placed in boreholes of a wooden plate (see Figs. 2
and 3).

These additional gradients superposed on the internal structure of the nacre com-
plicate and decelerate the automatic analysis, as well as the manual evaluation by
experts. We proposed two possibilities to the DRMM how to avoid these constella-
tions. One possibility is to enlarge the boreholes of the plate so that every pearl is
always situated completely within the borehole (Fig. 10 in the middle). Another pos-
sibility is to change the profile of the plate completely, so that the intensity of the
exiting X-rays is at every point equal (Fig. 10 on the right).

5 Conclusion

In this paper we presented a methodology to automatically measure the nacre thickness
of Tahitian pearls out of X-ray images. This work aims to support and improve the
French Polynesian pearl business by automatizing an obligatory measurement that is
currently done manually. Equivalent articles cover only one particular case of round

Fig. 9. Special cases of inner nacre structure: two inner boundaries (left), inner boundary not
visible (middle) and complex inner structure (right).

Fig. 10. Profile schema of the currently used wooden plate (left) and variations with enlarged
boreholes (middle) and a complete profile change (right) to avoid superposed gradients.
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pearls, whereas this paper contains a more general approach for pearls of different
shape. An adapted snake approach as well as our own developed circle detection
algorithm are used to extract the necessary information from the X-ray images. Our
results were validated by employees of the administration of marine and mining
resources of French Polynesia, a governmental institution that is in charge of the
obligatory nacre thickness control of Tahitian pearls that are exported. The automatic
detection is performed in real-time, a necessary requirement for the quality assessment.
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Abstract. This paper presents a practical classification system for recognising
diseased wheat leaves and consists of a number of components. Pre-processing
is performed to adjust the orientation of the primary leaf in the image using a
Fourier Transform. A Wavelet Transform is then applied to partially remove low
frequency information or background in the image. Subsequently, the diseased
regions of the primary leaf are segmented out as blobs using Otsu’s thres-
holding. The disease blobs are normalised and then radially partitioned into
sub-regions (using a Radial Pyramid) representing radial development of many
diseases. Finally, global features are computed for different pyramid layers and
combined to create a feature descriptor for training a linear SVM classifier. The
system is evaluated by classifying three types of wheat leaf disease:
non-diseased, Yellow Rust and Septoria. The classification accuracies are
slightly over 95 % and 79 % for images captured under controlled and
uncontrolled conditions, respectively.

Keywords: Wheat disease recognition � Radial pyramid � Rotation using
Fourier

1 Introduction

With the rapid development of technologies for camera devices, especially on smart-
phones, the use of image processing algorithms now play an important role for a
number of applications; for example, face and object recognition and biomedical
applications are important topics in computer vision. Another application area which
could benefit significantly from the use of image processing techniques is that of
agriculture. For example, plant disease can cause serious damage with regard to the loss
of agricultural products and can thus contribute to the problems of world economy and
human health. This paper proposes an automated classification system for preliminary
recognition of different wheat diseases to assist farmers in crop management (example
images can be seen later in Fig. 2). Our study is initially focused on three commonly
seen types of foliar wheat disease, which differ in visual appearance [1]. The paper is
divided into four main sections. Literature review is detailed in Sect. 2. Section 3
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explains the details of the proposed system. The experimentation and results are dis-
cussed in Sect. 4. Finally conclusions are presented in Sect. 5.

2 Literature Review

In machine vision Histogram of Oriented Gradients (HOG) and Scale-Invariant Feature
Transform (SIFT) algorithms have been shown to be potential local feature descriptors,
especially for object classification or detection. Considering the challenges of computer
vision for a plant pathology application, disease shapes or distribution patterns can
appear differently within the same type of disease depending on their severity levels.
Additionally, the colours and the distributions can exhibit similarly but with slight
differences between different types of diseases. Other challenges generally include the
effects of illumination change and background clutter.

The use of imaging techniques in plant pathology applications has been conducted
over the past decade. In 2003, El-Helly et al. [2] implemented Fuzzy c-means to
segment diseases from a leaf and then applied various shape characteristics, such as
principal axis length, eccentricity, and compactness on three types of cucumber dis-
eases. Amongst the studies in this area, the combination of global colour, texture and
shape features are the most frequently applied features which have been shown to be
accurate in classifying various diseases [3–5]. Wang et al. [5] applied this combination
of features in an expensive classifier based on Neural Networks to discriminate wheat
stripe rust from leaf brown rust completely. Tian et al. [4] constructed multiple SVM
classifiers for each feature set of colour, texture and shape which achieved 95 %
accuracy for classifying four wheat diseases. In general, the feature combination
approach considers global properties of an interesting area, to use all features from each
feature set is time consuming and can also decrease the classification accuracy
(over-fitting). Combinations of features within each feature set were investigated in our
previous work [6] to ensure that a selected feature subset contributes significant
information representing disease/non-disease area. Moreover, most of the recent studies
initially experimented on several diseases whose images were acquired under con-
trolled conditions or required a manual process to reduce the effect of the background.
This paper proposes a practical system that is partially tolerant to background clutter
and changes in lighting conditions using previously selected feature sets and an
extended version of the features which models how a disease develops.

3 Methodology and Proposed Classification System

Our proposed system is illustrated in Fig. 1 and consists of four main components:
pre-processing, segmentation, feature extraction and classification. Images are initially
scaled and rotated to standardise image size and to adjust the leaf orientation for
consistency. Then the background is partially removed and diseased regions are
extracted from the leaf during the segmentation process. Each disease region is nor-
malised to a square patch representing a disease texton. Inspired by the Spatial Pyramid
method [7] which divided an image into sub-regions for different levels, our disease
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texton is radially partitioned into layers for different levels regarding the natural
characteristics of diseases. Then global features based on texture, colour and visual
perception are calculated for sub-regions of the radial pyramid. Finally, the features are
combined to create a feature descriptor which is later used as an input for training a
multiclass SVM model. Details of the processes are described below.

3.1 Leaf Rotation Using Discrete Fourier Transform

As the visual pattern associated with a wheat disease often aligns with the direction of
the leaf’s major axis, the extracted features rely on disease orientation on the leaf.
Hence rotation is performed to promote the consistency of the leaf alignment. Firstly,
we calculate the image gradient using a Canny edge detector to provide information on
the alignment of the leaf and leaf veins; this operator is also reasonably invariant to
different light conditions. Then, a two-dimensional discrete Fourier transform (DFT) is
applied to compute major frequency components in the edge image. The Fourier
spectrum shows a major dominant line that is orthogonal to the leaf orientation, and the
computed direction of the line is used to determine the rotation required for leaf
alignment (see example in Fig. 8(b)). The approach is also robust to rotate leaves that
reside in a cluttered background.

3.2 Leaf Segmentation Using Multi-resolution Discrete
Wavelet Transform

To remove the effect of the image background, we deployed a single-level
two-dimensional Wavelet transform (DWT), which is exploited to decompose an
image into coefficients of four different components: an approximation component (cA),
and horizontal, vertical, and diagonal details (cH, cV , and cD). We combined horizontal,
vertical and diagonal detail information based on Daubechies wavelets and then
thresholded out the low coefficient values to remove part of the background from
consideration in the subsequent stages of our process; a segmentation mask M(i, j)leaf is
computed as shown in (1) at pixels (i, j) using the three detail components; μcH, lcV , μcD,
σcH, σcV and σcD are means and standard deviations of horizontal, vertical and diagonal
coefficients respectively. An example of a segmented leaf is shown in Fig. 8(d).

Fig. 1. Our proposed system for wheat disease classification
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M i; jð Þleaf¼
1 if cHi;j [ lcH þ rcH ; cVi;j [ lcV þ rcV and cDi;j [ lcD þ rcD
0 Otherwise

�
ð1Þ

3.3 Disease Segmentation Using Otsu’s Threshold

Provided that the non-disease area is consistently greenish, Otsu’s threshold is used to
maximize between-class variance of the diseased leaf to segment out the disease
regions. However, to eliminate the effects of lighting conditions we empirically
selected thresholds from Cb and Cr colour components.

3.4 Feature Extraction

Radial Pyramid. Our radial Pyramid is inspired by a spatial pyramid, an extended
version of local feature descriptors such as SIFT for scene classification (Lazebnik et al.
[7]). The radial pyramid structure aligns with the typical radial development of many
diseases. The Septoria disease develops from a small brown-spot surrounded by a
yellow halo; yellow rust disease (stripe rust) usually develops on leaf veins; leaf rust
usually has a brown or yellow circular shape [1]. Figure 2 displays examples of
different wheat diseases exhibiting different characteristics.

Assuming we have segmented disease blobs from the previous stages of our pro-
cess, these blobs are normalized into square patches or disease textons [8] representing
fundamental disease structures. Two types of texton normalization are explored.
A nearest neighbour method is used to normalize a patch with a selection of the nearest
neighbouring pixels alternating to maintain the disease scale or to scale a texton into a
square patch; eleven normalized patches using this approach are illustrated in Fig. 9(a).
Figure 10(a) displays another method, a bicubic normalization that creates a patch by
averaging the neighbouring pixels to give a smoother texture in the patch.

Global Feature Descriptor. We deployed three different types of features based on
textures, colours and visual perception investigated in [6]. Textural features (FH) is
developed through a spatial grey-level matrix [9]. Colour features (FC) are based on
statistical information of each disease patch, such as mean, variance, skewness and
kurtosis of a colour component distribution. Lastly, Tamura [10] proposed a set of
features (FT) describing image patterns more visually, such as coarseness, contrast and

(a)  (b) (c) (d) 

Fig. 2. Nature of different diseases (a) Non-disease (b) Yellow rust (c) Septoria (d) Leaf rust
(Color figure online)
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directionality. These features are calculated for each level (k) and layer (l) of a radial
pyramid (see Fig. 3 and disease examples in Fig. 9(b-g)). A final feature descriptor (FK)
is constructed from the concatenation of the combined features (F(k, l)) from the lower
levels (k = 1,…, K - 1) and the current level (K) (K is also equal to the number of layers
(L) of the current level). The concatenation process is shown in (2) and (3). Different
feature characteristics are computed for different pyramid layers and each descriptor
represents a variety of diseases.

F k; lð Þ ¼ FH k; lð Þ FC k; lð Þ FT k; lð Þ½ � ð2Þ

FK ¼ F 1; 1ð Þ F 2; 1ð Þ F 2; 2ð Þ. . .F K; 1ð Þ. . .F K; Lð Þ½ � ð3Þ

3.5 Multiclass SVM Classification

In order to create a practical application, we empirically selected a linear SVM as our
classifier as it has been shown to obtain high accuracy, good generalisation and
computational efficiency compared to k-NN or neural network-based classifiers. In the
learning phase, all created disease textons are trained for a linear SVM classifier.
Assuming that all the patches are equally important, the output class of the image is the
group that has the most frequently displayed results from the classified textons.

4 Experimentation and Results

We experimented with two types of datasets: data obtained under controlled conditions
and uncontrolled conditions. Each dataset contains three types of wheat leaf (50 images
each for non-disease, yellow rust and Septoria diseases). The controlled data some of
which are shown in Fig. 4 were obtained from the Food and Environmental Research
Agency (FERA [11]) and the leaves are manually segmented out from the background

Fig. 3. Example of three-level radial pyramid. There are 1, 2 and 3 layers for levels 1, 2 and 3.

(a)  (b) (c) (d) (e) (f)

Fig. 4. Controlled images (FERA) (a)–(b) yellow rust, (c)–(d) Septoria, (e)–(f) non-disease
(Color figure online)
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before being used as inputs for the system. Uncontrolled data (from the Internet) were
obtained from more than 50 different online sources that were collected from different
farms and at different times using different capture devices, providing various illumi-
nation effects and colour tones. Additionally these images are also challenging due to
background clutter and different image resolutions (see some examples in Figs. 5, 6 and
7 for yellow rust, Septoria and non-disease images, respectively.

The system was evaluated using MATLAB 2014b. During pre-processing, the
images are resized to 300 × 300 pixels. Four radial pyramid levels and four different
patch sizes (15, 20, 25, and 30) are investigated in the experimentation. The best results
are based on 15 × 15 texton patch size using the nearest neighbour normalisation
method. The colour representation was empirically selected as the YCbCr colour space.
The testing scheme is based on 5-fold cross-validation testing.

(a)  (b) (c) (d) (e) (f)

Fig. 6. Uncontrolled images – Septoria from (a)-(b) Rothamsted Research, (c)-(d) The American
Phytopathological Society, (e) Biotechnology and Biological Sciences Research Council
(BBSRC), (f) Government of Western Australia

(a)  (b) (c) (d) (e) (f)

Fig. 5. Uncontrolled images – Yellow rust from (a)-(c) Washington State University, (d) Plant
Management Network, (e) A Global Wheat Rust Monitoring System, (f) Bayer Group (Color
figure online)

(a)  (b) (c) (d) (e) (f)

Fig. 7. Uncontrolled images - non-disease from (a)–(d) The Food and Research Agency,
(e) Mississippi State University, (f) International Maize and Wheat Improvement Center
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The results are summarised in Table 1 and are compared with the previous works
[4–6]. The wheat disease identification systems [4, 5] which deployed colour, texture
and shape features on high quality data of two and four types of wheat diseases and
obtained the classification accuracies of 100 % and 95.16 % for [4] and [5], respec-
tively. Our previous work [6] applied sets of global features on the whole image only.
The classification accuracy is about 90 %; adding correlation in the system [6] slightly
increased the overall performance by 0.5-2.0 % for uncontrolled and controlled data.
Although, the results from the literature [4–6] show high classification accuracies, the
systems [4, 6] are limited to work with only pre-manually segmented data. The flex-
ibility of [6] is improved in our system to promote more practical application and cope
with a variety of data and background clutter. Even though the datasets are different,
our proposed system with the data acquired under controlled conditions produced
comparable results with the previous works [4–6]. Also, our current system shows
improvements of the original system [6] from 91.78 % to 95.78 % when applying the
radial pyramid method (level size = 2). However, the classification is not improved
further by increasing the level size. Considering the uncontrolled data from the Internet,
the use of the previous system [6] obtained classification accuracy of 72.33 %.
Including rotation and segmentation from this paper, the results rise to 80.13 % as

Table 1. Classification accuracies of the proposed system compared to previous works [4–6]

Dataset Feature Accuracy
(%)

4 wheat diseases
(Controlled)

Colour + Shape + Texture using 2-stage SVM
multi-classifier [4]

95.16

2 wheat disease
(Controlled)

Colour + Shape + Texture using PCA and BP networks [5] 100

FERA
(Controlled)

Top Textural Features [6] (rectangular rotation)1 90
Top Textural Features + Haralick Correlation 91.87
Top Textural Features with DFT rotation and pyramid
level = 4

95

Top Textural Features + Haralick
Correlation with DFT rotation,
segmentation

Pyramid
level = 1

95.73

Pyramid
level = 2

95.78

Pyramid
level = 4

95.5

Internet
(Uncontrolled)

Top Textural Features [6] 72.33
Top Textural Features + Haralick Correlation 72.67
Top Textural Features + Haralick Correlation with DFT
rotation and segmentation

80.13

Top Textural Features + Haralick
Correlation with DFT rotation,
segmentation

Pyramid
level = 3

78.27

Pyramid
level = 4

79

1Accuracy is lower than in [6] due to a different value of the box constraint being used to allow
the model to be more flexible and converge when constructing an SVM model.
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accurate feature extraction relies on the consistency of the leaf alignment and the
diseased leaf patterns. Our system with a 3-level pyramid produces slightly lower
accuracy of 78.27 %, but the accuracy rises to 79 % by increasing the level size to 4.
The investigation shows that the effect of the background remaining after the seg-
mentation phase has an impact on creating accurate disease textons, especially for
non-disease patches, most of which are built from the background.

5 Conclusion

Human-in-the-loop advisory systems for crop management have emerged to assist
remote famers in acquiring advice to prevent or mitigate agriculture losses from crop
diseases. To enable such systems to cope with the demands at scale, an automated and

(a) (b) (c) (d) (e) 

Fig. 8. Uncontrolled image processing in the system (a) original image, (b) DFT on Canny edge,
(c) rotated image, (d) partially segmented image, (e) segmented disease.

(b) (c) (d) (e) (f) (g) 

(a) 

Fig. 9. Normalized textons of diseases in using nearest neighbour technique (a) constructed
disease patches, (b) original disease blob (#5), (c) normalised disease patch (d) 1-level (e) 2-level
(f) 3-level (g) 4-level radial pyramid patches.

(b) (c) (d) (e) (f) (g) 

(a) 

Fig. 10. Normalized textons in using bicubic technique (a) constructed disease patches,
(b) original disease blob (#5), (c) normalised disease patch (d) 1-level (e) 2-level (f) 3-level
(g) 4-level radial pyramid patches
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practical classification system is proposed in this paper initially for classifying three
types of wheat diseases. Consistency of leaf alignment is achieved by rotating the
primary leaf based on the orthogonal direction of the frequency spectrum from a
Fourier transform, and a 2-D Wavelet transform is used to partially remove low fre-
quencies or background. A Radial Pyramid, an extended version of global feature
descriptors, is established to model the nature of disease development. We have
demonstrated the robustness of our system using controlled and uncontrolled images
and the classification accuracies obtained show that this initial system can be imple-
mented to support a real application. In particular, a smartphone is ubiquitous and
affordable for use both in image capture and communication of data and expert advice.
The proposed crop image analysis system can be integrated with the technologies of the
smartphone and cloud computing to enable remote farmers to have online access to
timely advice for crop management and to mitigate future losses from crop diseases.

References

1. Agriculture and Horticulture Development Board: HGCA Wheat Disease Management
Guide (2012)

2. El-Helly, M., Ahmed, R., El-Gammal, S.: An integrated image processing system for leaf
disease detection and diagnosis. In: Proceedings of the 1st Indian International Conference
on Artificial Intelligence, pp. 1182–1195 (2003)

3. Barbedo, J.G.A.: Digital image processing techniques for detecting, quantifying and
classifying plant diseases. SpringerPlus. 2, 660 (2013)

4. Tian, Y., Zhao, C., Lu, S., Guo, X.: SVM-based Multiple Classifier System for Recognition
of Wheat Leaf Diseases. In: Conference on Dependable Computing, Yichang, China, pp. 2–
6 (2010)

5. Wang, H., Li, G., Ma, Z., Li, X.: Image recognition of plant diseases based on
backpropagation networks. In: Fifth International Congress on Image and Signal Processing,
pp. 894–900 (2012)

6. Siricharoen, P., Scotney, B., Morrow, P., Parr, G.: Effects of different mixtures of features,
colours and svm kernels on wheat disease classification. In: Proceedings of the Irish
Machine Vision and Image Processing Conference. pp. 43–48 (2014)

7. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for
recognizing natural scene categories. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 2169–2178 (2006)

8. Zhu, S.C., Guo, C.E., Wu, Y., Wang, Y.: What Are Textons? Int. J. Comput. Vision 62,
101–143 (2005)

9. Haralick, R.M., Shanmugam, K.: DinsteinIts’shak: textural features for image classification.
IEEE Trans. Syst. Man Cybern. SMC-3, 613–621 (1973)

10. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception.
IEEE Trans. Syst. Man Cybern. 8, 460–473 (1978)

11. Food & Environment Research Agency (FERA): Wheat Diseases: Non-disease, Septoria,
and Yellow Rust. http://fera.co.uk/

464 P. Siricharoen et al.

http://fera.co.uk/


Color Space Identification for Image Display

Martin Vezina1, Djemel Ziou1(B), and Fatma Kerouh2

1 Dept. Informatique, Univ. de Sherbrooke, Québec, Canada
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Abstract. Available color images can be encoded in any color space.
However, according to the image display model, it is assumed that the
color image is encoded in a specific color space belonging to the RGB
family. Displaying an encoded image in a color space by using a system
designed for the display of encoded images in another color space leads
to a poor reproduction of colors. To overcome this problem, the encoded
image in a color space must be converted to the color space used by the
display system. Unfortunately, the image color space can be not included
in the image metadata and therefore it is unknown. Even if the display
systems are massively used, this issue does not seem to be tackled before.
In this paper, we propose the identification of the image color space
from its colors. First, the Gamut of color spaces is estimated by using a
collection of images. Then, the image color histogram is compared to the
estimated Gamuts. The obtained identification scores using four color
spaces and a collection of 2106 images are encouraging.

Keywords: Color image · Display system · Color space · Gamut

1 Introduction

The trichromatic and opponent color theories lead to the representation of the
color in 3D space. Based on those theories, many 3D color spaces such as the
RGB, LMS, XYZ, Lab, and HSI have been proposed. Some of them such as Lab
and LMS are used to explain perceptual phenomena, while others such as RGB
and XYZ are used in color reproduction systems. Requirements of the textile,
display, cameras, and other industries requiring of high fidelity of colors lead
to the design of various RGB color spaces such as ISO RGB, ROMM RGB,
RGB adobe, Apple RGB, and sRGB. The printing have brought higher dimen-
sional color space such as CMYK and RGBY. Note that beyond technology,
animals color vision varies between the monochromacy and pentachromacy [1].
One important issue is the choice of a color space for a specific image process-
ing or computer vision task. The answer involves knowing how scene features
are represented in each color space. For example, how the distance difference
in a given space is and how it is related to the color difference perceived by
the human visual system. Knowing that the set of color spaces can be infinite
(obviously, all are not physically realizable), the suitable color space selection
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 465–472, 2015.
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for any given task is not easy to implement. There exists some works about the
selection and the evaluation of the color spaces in the case of chromatic adap-
tation, color matching, skin detection, and image segmentation. In chromatic
adaptation, an encoded image in RGB color space is successively transformed
to the LMS color space, and then to von Kries space, and finally to the RGB
color space [2]. The scheme was revisited in order to replace LMS color space by
a color space providing a better color adaptation [3,11,16]. Time and accuracy
of color matching have been compared in five color spaces [4]. It has been shown
theoretically that, the performance of skin detectors cannot be affected by the
color space [6]. However, the experimentation has shown the opposite [5,7,9,10].

In this paper, we are interested in a different issue which is the identification
of a given image color space. When acquiring the image, most cameras will save
the color space name in the image file header. According to their life cycle,
the output images are converted to other color spaces in order to be stored,
displayed, exchanged, or processed. The color space of these images must be
known before carrying out the conversion. For example, the display softwares
are designed to display an encoded image in a specific RGB color space such
as sRGB. Unfortunately, the color space in which an image is coded cannot be
known because of the earlier manipulation operations it undergone. For example,
many available conversion operations of image file format do not necessarily
keep the metadata. It follows that, the identification of an image color space
is necessary in order to faithfully reproduce colors. Figure 1 shows the same
image encoded in six color spaces, saved in JPEG, and then displayed by using
IrfanView. The first row is the encoded image in sRGB and the image of the
difference between sRGB and AdobeRGB. This last image has been scaled in
order to make explicit the differences between the two RGB-like color spaces.
The differences between the other colors spaces is obvious. The identification of
the color space is straightforward when the color space is a part of the image
header. Unfortunately, as we mentioned before, sometimes the image metadata
is lost. This is why, we propose to identify an image color space from its colors.
The dimension, the white coordinates, the structure, the uniformity as well as
the Gamut shape and volume of a color space can be relevant features for the
identification. The estimation of some of these features is not so accurate to allow
the discrimination. We then propose to use the Gamuts of color spaces estimated
from a collection of images. The histogram of a given image is compared to the
estimated Gamuts by using histogram intersection. The obtained identification
scores using four color spaces and a collection of 2106 images are encouraging.
Note that, the automatic identification of a given image color space does not seem
to be tackled in the state of art. The next section is devoted to the proposed
method. The experimental results are described in Sect. 3.

2 Proposed Model

A color space can be characterized by a set of attributes including the dimen-
sion, the range, the structure (i.e., linear, non-linear), the Gamut and the white



Color Space Identification for Image Display 467

Fig. 1. The same image encoded in six different colors spaces, saved in JPEG, and
displayed by using IrfanView. In the first row, the image in sRGB and the scaled
difference image between sRGB and AdobeRGB, HSV and HLS (second row), and Lab
and XYZ (third row)(Color figure online).

object seen under a standard light. For the color spaces like RGB and XYZ,
primaries are also attributes. For example, the attributes of Adobe 98 RGB are
3D, 8 bits/dimension, linear, extended CRT, D65 while those of sRGB are 3D,
8 bits/dimension, CRT, D65. The reader can find the attributes of the standard
RGB color spaces in [8]. One can think to estimate all these attributes from an
image and use them for the color space identification. Unfortunately, to the best
of our knowledge, there is no available algorithm for the estimation of primaries
from real images. However, according to color matching paradigm, the estima-
tion of the primaries from a given image can be achieved by the resolution of the
following linear system: for the ith pixel, the color ci = Mie where both the 3x3
matrix Mi and the primaries e are unknown. The estimation of the color space
white can be carried out by using the illuminant estimation algorithm such as
color by correlation [12]. The accuracy estimation lack of some of these attributes
is not enough to discriminate between spaces. Algorithms for the estimation of
the Gamut and related features have been already proposed [13]. However, most
of them were not designed for the Gamut estimation from real images but from
a set of predefined colors.

We argue that, the discrimination between color spaces of different families
(e.g., RGB, Lab) does not require an accurate estimation of both the shape and
the volume. We propose to use the shape of the three-dimensional color space
Gamut. As our goal is to estimate the color space from a given image, we need
to estimate the Gamut from real images, which is no other but the histogram
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of colors of image collection. In Fig. 3, we present the histograms of each band
collected from a collection of 382 images encoded in four color spaces, that are
sRGB, HSV, HLS, and Lab. It should be noted that, there is a difference between
the histograms of any two color spaces. Moreover, the non interchangeability of
bands can be of a great help for their identification. For example, the second
band of HSV color space is the third band of the HLS color space. It follows
that, in order to derive an efficient algorithm, the three bands are considered in
the order defined by the standards and independent from each other. For the
sake of reducing the computational complexity of the proposed algorithm, we
opted for the assumption of independence. The image color space identification
is seen as that of recovering the similarity between the color space of this image
and the Gamuts estimated from a collection of images encoded in different color
spaces.

Let us consider a set of color spaces C and a collection of images encoded
in a color space c ∈ C. As we mentioned before, we consider that the his-
togram h(b1, b2, b3, c) of collection images is separable; that is h(b1, b2, b3, c) =
h1(b1, c)h2(b2, c)h3(b3, c), where

hk(b, c) =
1

|I|
∑

n,m,i∈I
δ(Iic(n,m) − b) (1)

where I is a set of pixels of the image collection, |I| its size, Iic the image encoded
in the color space c, and δ the Kronecker delta. The histogram hk(b, s) of the
test image is built using this equation where the set I is its pixels. The goal is
then to find the unknown variable s which can take any value of the set C. Two
important observations have to be noted. First, the collection size influences the
identification accuracy. If |I| is too small the shape of the estimated Gamut will
be too different from the shape of the true gamut and therefore the estimation
error will be high. In Fig. 4, we present the histogram of the third band of each of
the four color spaces (sRGB, HSV, HLS, Lab) build by using 67000, 1.0 million,
1.6 million pixels drawn randomly from the image collection. The collection size
is therefore considered as a parameter which needs to be set by trial and error.
Second, we assume that the shape of the Gamut estimated from a single image
is relevant. This is one of the main outcomes of the paper, because we will show
experimentally how valid is this assumption.

The identification is carried out by sorting the candidate Gamuts according
to their similarity to the observed color space. The color space having the highest
similarity is chosen. Several similarity measures between histograms have been
already proposed. Among them, the histogram intersection was used with some
success for image retrieval [15]. It can be written as:

s = argminc

3∑

k=1

sim(hk(x, c), qk(x, s))) (2)

Where qk is the histogram of the kth band of the test image, sim is the inter-
section between the two 1D histograms. Even if it seems simple, this rule needs
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Fig. 2. A subset of images used for the experimentation.

further explanation. A classifier is associated with each band, where the nor-
malized output is between 0 and 1. The three classifiers output mean is used
for ranking. Note that, many classifier fusion rules exist. However, it was proven
that the mean rule minimizes the misclassification error [14].

To summarize, the algorithm consists on building three 1D histograms of each
color space by using an image collection. This operation is performed offline
by using Eq. 1. Given a test image, its histogram is built by using the same
equation. The identification of its color space is carried out by using Eq. 2. The
computational complexity of the identification algorithm is O(N × M + 2b),
where b is the number of bits required to encode the largest intensity of the
three bands.

3 Experimental Results

To validate the proposed method, we use two collections of real images; Col1 con-
tains 382 images and Col2 1724 images. Example images from the two considered
collections are presented in Fig. 2. The collection Col1 is used for the estimation
of the Gamuts while Col2 is used for the test. Initially, both Col1 and Col2 are
encoded in the sRGB color space. They are converted to HLS, HSV, and LAB
by using the open source library OpenCV. As we explained earlier, an histogram
per converted collection is computed by using one million pixels drawn at ran-
dom from the set of all pixels of Col1. For the test purpose, the histogram of
each image band of Col2 encoded in each of the color space is built. The iden-
tification of each test image color space is carried out as explained earlier. As
the ground truth is available, the confusion matrix between color spaces is used
as a measure of the algorithm accuracy. The four first columns and the four
rows of the Table 1 presents the confusion matrix between the color spaces. The
percentage of the correct identification is given in the last column. For example,
59 confusions between sRGB and HLS are noted and the percentage of correct
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identification of sRGB is 83.06 %. The easiest space to identify is the Lab and
the most difficult one is the HLS. Note that, the proposed method is simple,
efficient, and the obtained scores are promising. The computational time is 3.71
millisecond Pentium processor with 6 Gig memory for an image of 4000 × 3000
pixels using Matlab software.

Table 1. Confusion matrix

sRGB HSV HLS Lab Percentage

sRGB 1432 191 59 42 83.06 %

HSV 149 1470 96 9 85.27 %

HLS 67 366 1275 16 73.96 %

Lab 25 0 0 1699 98.55 %

Fig. 3. The histogram of each band of the color spaces sRGB, HLS, HSV, and Lab.
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Fig. 4. The histogram of the third band of the four color spaces (sRGB, HSV, HLS,
Lab) built by using 67000, 1.0 million, 1.6 million pixels drawn randomly from the
image collection

4 Conclusion

Several color spaces exists and they are massively used. Available images can
be encoded in any of these color spaces. Unfortunately, the color space of an
image may not be in the metadata saved in the image header. However, the
display systems are designed for the display of an encoded image in some specific
color space. It follows that, improving the image quality display requires the
identification of an image color space and its conversion to the display system
color space. In this paper, we focus on the content based identification of the color
space of a given image. The main idea is to compare the image histogram to the
Gamuts of existing color spaces. The proposed method is simple, efficient, and
promising in the case of color spaces of different families. However, the Gamut as
we implemented seems to be insufficient for the discrimination between RGB-like
spaces. These spaces may share several attributes such as the number of bits and
the white. The consequences is that, the shape of Gamuts and the distribution
of colors within the Gamuts are close. In further work, we will refine the Gamut
estimation in 3D space without using the separability properties.
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Abstract. The paper discusses the problem of the General Shape Analy-
sis (GSA) and considers an attempt to adapt this approach for binary
silhouette analysis in the ‘SM4Public’ system. In the GSA, for a particu-
lar test shape, one or a few most similar, general templates are indicated.
Shapes are represented using shape descriptors and representations are
matched using similarity or dissimilarity measure. In the paper the GSA
is explained and the application of the GSA in the ‘SM4Public’ system
is investigated. Using a test dataset containing binary silhouettes of vari-
ous objects (extracted from the ‘SM4Public’ video database) and selected
shape description algorithms, an experiment was carried out. The aim
of the experiment was to verify whether the GSA can be applied in the
‘SM4Public’ system as a solution for determining the class of binary
silhouettes (as a preliminary classification).

1 Introduction

Shape of an object extracted from a digital image is considered as the most
characteristic and distinguishable feature among other appearance-based fea-
tures such as colour or texture. Information about a shape is low-dimensional
what decreases the computational complexity of the shape analysis. It has to
be taken into account that an object’s silhouette on the video sequence can
be deformed, occluded or distorted by noise [1]. Nevertheless, minor changes
resulted from noise should not influence the possibility of shape recognition—
affine transformations (i.e. scaling, translation or rotation) may occur, since they
do not influence the original shape [2].

Depending on the task, the shape analysis can be very detailed, like in case of
the identification, or more coarse, what is a base of the General Shape Analysis.
In this approach shapes are processed similarly to the traditional recognition or
retrieval, but at the more general level. The exact recognition or identification are
not performed, but for each of the processed objects a general class is indicated.
Each general class is represented by one general shape, e.g. a triangle, circle or

c© Springer International Publishing Switzerland 2015
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rectangle. Originally ten classes are used, each represented by one general tem-
plate, and a larger group of test objects which are more diversified shapes. In
the GSA each test object is matched with all templates in order to indicate one
or a few most similar general templates. For matching purposes the similarity or
dissimilarity measure is employed. Moreover, shapes are matched based on their
representations—shape descriptors—obtained using a particular shape descrip-
tion algorithm. The GSA process results in the extraction of predominant shape
features which can enable simple separation or reduction of the data subjected
e.g. to an exact identification at a later stage.

Besides GSA there is another approach to the analysis of an objects’ general
shape. It was introduced by Paul Rosin and uses global shape measures which
describe a region using a single value [2–4]. Global shape measures are based on
the deviation of a processed shape from the best matching perfect instance of this
shape. Additionally, if a region is described by a significantly large combination
of shape measures, then it would enable to discriminate one shape from another.
The main goal of a global shape measure is to capture a general shape class,
therefore the similarity of this idea to the GSA is obvious.

In the paper we discuss an attempt to introduce the General Shape Analysis
procedure in the ‘SM4Public’ system for the purpose of distinguishing between
several classes based on object silhouettes. The main goal of the research is to
find out which general shapes can be used to represent a particular test object
class and to verify if, by using sets of general shapes, the class separation can be
performed. The mentioned ‘SM4Public’ system is now being developed within
the framework of the EU co-founded project and is aimed at the creation and
implementation of an innovative system prototype that will enable automatic
analysis of public spaces where busy environments with multiple objects are
observed.

The rest of the paper is organized as follows. The second section describes
the GSA and shape description algorithms that have been employed so far. The
third section explains the idea of the experiments and discusses the obtained
results, while the last section concludes the paper.

2 The General Shape Analysis: Definition, Applications
and Employed Shape Descriptors

The General Shape Analysis is a problem similar to the traditional recogni-
tion or retrieval of shapes but with some significant differences. In the GSA a
small group of templates (simple shapes, e.g. triangle or rectangle) and a larger
group of more complicated test shapes are analysed. By finding one or few most
similar templates for each test object it is possible to determine the general infor-
mation about it, e.g. how rectangular or triangular it is. In order to estimate
the similarity between particular objects, their representations obtained using
shape description algorithms are matched by means of the template matching
approach—the idea is to represent all shapes in the same way and to compare
each test object with every template using similarity or dissimilarity measure.
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The GSA problem has been discussed in the literature repeatedly and a vari-
ety of shape description algorithms have been investigated. For instance in [5]
the Two-Dimensional Fourier Descriptor, UNL-Fourier Descriptor and Point Dis-
tance Histogram were employed. The first mentioned benefits from frequency
domain, whereas the latter two are polar transform-based shape description algo-
rithms. These two methods—similarly to the Generic Fourier Descriptor that
has also been employed in the GSA—produce shape representations invariant to
translation within an image plane, and changeable object scale if normalization
is performed. Another group of applied methods are moment-based descriptors,
namely Moment Invariants, Contour Sequence Moments and Zernike Moments.

Originally in the GSA shapes were matched using the Euclidean distance.
Moreover, a specific method for the estimation of experimental effectiveness was
employed, namely the results of the experiments were compared with human
benchmark results, collected by means of inquiry forms, and the percentage coin-
cidence between benchmark and experimental results gave the final effectiveness
value. Thanks to that the best solution could be indicated.

Further publications concerned the experimental investigation of other solu-
tions to the GSA problem or modifications of the original approach. For example
in [6] the use of the correlation coefficient instead of the Euclidean distance was
proposed. In [7] three Fourier Transform-based shape description algorithms were
investigated and used to produce multiple shape descriptors of different size. In
turn in [8] the possibility of using various measurements and shape factors based
on the Minimum Bounding Rectangle method was studied. The original GSA
test dataset is presented in Fig. 1. There are 50 various shapes stored as 200×200
binary images—10 templates (first row) and 40 test objects. For the purpose of
our experiment we utilized the same template set. These templates have always
been used in the GSA problem and are considered as a basic standard.

There are some practical applications of the GSA given in the literature. For
instance in [9] it was used for the recognition of stamp types. The proposed solu-
tion included the detection, localisation and extraction of stamps from scanned
documents stored in digital form. The aim of stamp recognition is to avoid print-
ing the falsified document copies and can be considered as a coarse classification

Fig. 1. The original GSA test data set—templates are given in the first row.
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preceding the detailed analysis of the text on the stamp. Another application
is the coarse separation of the data to initially reduce the number of shapes
subjected to more detailed recognition or identification. The GSA can also be
applied to iteratively search multimedia databases using voice commands, e.g.
‘find yellow circular object’ [5].

The use of the General Shape Analysis in the ‘SM4Public’ system can cover
the analysis of foreground objects, extraction of general features, preliminary
separation or coarse classification of silhouettes to four main classes: people,
cats, dogs and cars. As can be seen, the General Shape Analysis utilizes various
shape description algorithms which are popular in the image analysis and shape
recognition tasks. Based on the literature review we have decided to experi-
mentally investigate six shape description algorithms, namely Two-Dimensional
Fourier Descriptor [5], Generic Fourier Descriptor [10], UNL-Fourier Descrip-
tor [11], Zernike Moments [12], Point Distance Histogram [13] and Moment
Invariants [14], along with the Euclidean distance as a dissimilarity measure.
If possible, several shape descriptor versions were prepared using a particular
algorithm. More detailed explanation of the selected methods along with the
appropriate formulas can be found in the given literature sources.

3 Experimental Conditions and Results

In order to verify the possibility of incorporating the General Shape Analysis
approach into the ‘SM4Public’ system we have prepared an experiment divided
into several tests. In each case one variant of the shape description algorithm was
used and representations of all test objects and templates were obtained. Then
each test object representation was matched with all template representations
using Euclidean distance. Finally, as an experimental result, three most similar
(less distant) templates were indicated for each test object. The following vari-
ants of shape description algorithms were used: original Moment Invariants (MI,
7 values); full representation of the UNL-Fourier Descriptor (UNL-F); 2nd, 5th
and 10th order of Zernike Moments (ZM); 2, 5 and 10 histogram bins in Point
Distance Histogram (PDH); 2 × 2, 5 × 5 and 10 × 10 spectrum subparts for the
Two-Dimensional Fourier Descriptor (2DFD); 2× 2, 5× 5 and 10× 10 spectrum
subparts and full spectrum in case of the Generic Fourier Descriptor (GFD).

The test dataset (test objects, see Fig. 2) are binary silhouettes extracted
from the video sequences used in the research on the methods and algorithms
to be implemented in the ‘SM4Public’ system. Test objects are divided into four
classes: people, dogs, cats and cars. The classes are directly related to the types
of objects appearing in the test video sequences. The templates are shown in
the first row of Fig. 1. As a result of the experiment it is expected to find out if
the General Shape Analysis approach can be employed for coarse classification
in the ‘SM4Public’ system.

Having in mind that in each test we obtain a set of templates—three most
similar templates for each test object—the interpretation of the results is a little
problematic. Due to the fact that the proposed approach is atypical and there
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Fig. 2. Test objects—95 object silhouettes used in the experiments.

is no benchmark for comparison, some elements have to be analysed jointly.
Therefore, three aspects have to be taken into consideration: test shapes, classes
and shape descriptors (where a shape descriptor is a variant of the representation
obtained using a particular shape description algorithm). According to that, and
by choosing the most frequently occurring template, the results can be analysed
in three ways:

1. For all shape descriptors jointly and each test object separately, what gives
information about percentage similarity of a test object to all templates (see
Fig. 3 for examples);

2. For all shape descriptors, for all test objects and for each class separately, what
gives information about percentage similarity of templates to all objects in a
particular class (Fig. 4);

3. For all test objects, for each class separately and for each shape descriptor sep-
arately, what gives information about a possibility of class separation based
on a set of templates resulted from the particular test (Fig. 5; in three cases
it was impossible to extract the most frequent template due to the fact that
at least two templates have the same percentage frequency of occurrences).

Several conclusions can be made based on the first and second interpretation,
and the results given in Figs. 3 and 4:

– Human silhouettes are most similar to a star, cross and rectangle;
– Star and cross templates are common in case of people, dogs and cats;
– Car silhouettes are most frequently considered similar to ellipse, trapeze and

rectangle;
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Fig. 3. Percentage similarity of exemplary test objects to all templates.

Fig. 4. The occurrence frequency of templates in each class.

– Objects with protruding elements, like legs, arms or paws are mostly consid-
ered similar to a star or cross;

– The most frequently indicated templates for dogs are ellipse, trapeze and rec-
tangle.

Figure 5 contains a table with the pictorial interpretation of the results accord-
ing to the third approach. Three most frequently occurring templates were indi-
cated. It can be seen that in most cases the resulted templates in each class are
common with the templates indicated in the table illustrated in Fig. 4. We can
also observe significant discrepancies between sets of templates, depending on
the applied shape descriptor. This may result from the fact that various shape
description algorithms are based on different shape characteristics. However, in
case of shape descriptors, there are also some similarities. For example, consid-
ering a class of cats, all variants of 2DFD and GFD indicated almost the same
templates. Moreover, if a set of templates with preserved order will be used,
then, in case of the full representation of the GFD, cats and dogs could be dis-
tinguished. In addition, some predominant characteristics of object classes can
be concluded.

Ultimately, considering all tests, it is not possible to classify objects based
only on the selected templates. However, there is a possibility that if some
changes in the pre-assumed conditions will be made, then the results would
be more unambiguous and useful. For instance, we can eliminate some less fre-
quently occurring templates or increase the number of test objects in the dataset,
or employ other set of shape descriptors. The potential in this type of analysis
can be seen, but some improvements could be implemented.
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Fig. 5. The most frequently occurring templates in each class.

4 Summary and Conclusions

In the paper, the problem of the General Shape Analysis was discussed and an
attempt to introduce this approach to the ‘SM4Public’ system has been made.
It was proposed that the GSA can be applied as a method for the indication
of the object’s general class or extraction of predominant features. The initial
results give us some general rules, however more effective solution is needed.
Hence, future work on the problem is necessary. It is possible that after some
modifications the analysis of general shape can be introduced to some extent to
the system.
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Abstract. Academic institutions such as universities and technical colleges
usually employ paper-based examinations and reports to evaluate the academic
performance of students. Consequently, teachers expend considerable time and
energy in the marking of such paper-based examinations. We are developing an
automatic paper marking system geared towards reducing this paper-marking
burden on teachers. To execute paper marking, handwritten character lines are
extracted from examination papers, and then characters on those lines are rec-
ognized. In this paper, we primarily discuss how the character line is extracted
from handwritten examination papers without ruled lines. The extraction of
character lines from non-ruled papers is difficult because of the writing char-
acteristic of students. Further, extraction accuracy is an important factor in
character recognition performance. Conventional character line extraction
algorithms for printed documents perform poorly on this problem. Furthermore,
most proposed methods conduct tests using document images that include only
character lines. In this paper we develop a less time-consuming algorithm for
this task.

Keywords: Examination paper � Character line � Document image analysis �
Figure detection

1 Introduction

Various kinds of paper-based examinations are employed in academic institutions such
as universities and technical colleges to evaluate the academic performance of students.
In Japan, examinees are provided with answer sheets in most of these kinds of
examinations. The answer sheets provided are of two types: marking sheets and writing
sheets. The former is a special mark sheet or OCR sheet and can be marked auto-
matically by current automatic marking systems. For example, these marking sheets are
used in most university entrance examinations under the auspices of the National
Center for University Entrance Examinations in Japan. In such examinations, exami-
nees mark on the paper and grading is conducted automatically. The latter type of sheet
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requires handwritten answers and cannot be marked automatically by current character
recognition software. Current character recognition software can recognize most
printed characters with high accuracy; however, their accuracy with handwritten
characters is inadequate. Consequently, handwritten document recognition is a sig-
nificant problem in Japanese document analysis. A very important factor that can help
to achieve accurate character recognition of handwritten documents such as exami-
nation sheets is character line extraction.

Figure 1 shows a sample image of a handwritten examination sheet. The sheet
comprises multiple character lines, but those lines are not straight. The complexity of
the structure of the document varies according to the writing style of the examinee. An
automatic marking system that is able to accurately process these kinds of handwritten
examination papers is one of the most desired practical applications in the Japanese
education system.

Currently, most teachers expend considerable time and energy marking examina-
tion papers. The development of an automatic marking system for such handwritten
examination papers would reduce the burden on these teachers. The results of surveys
conducted indicate that most teachers desire automatic marking of non-ruled
paper-based examination papers. Consequently, we are currently conducting studies
on automatic marking of non-ruled handwritten examination papers. As stated above,
character line detection is an important stage in this project. As a consequence, this
paper focuses on the problems besetting handwritten character line extraction. Con-
ventional methods found in the literature for character line extraction [1–7] are very

Fig. 1. Handwritten examination paper image
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time-consuming. Furthermore, they are usually tested using only document images
with character lines and figure, and no consideration is given to character line classi-
fication. In this paper, figure extraction is first conducted using one of our previously
proposed methods [3]. Then, a simple and less time-consuming algorithm is proposed
for character line extraction. The proposed algorithm extracts character lines via image
block-based horizontal histogram analysis. Tests conducted of the proposed algorithm
using appropriate handwritten examination papers indicate that its computational time
is faster than that of conventional methods. Furthermore, it exhibits good character line
extraction performance.

The remainder of this paper is organized as follows. Section 2 discusses previous
approaches to handwritten character line extraction. Section 3 presents the details of
our proposed approach. Section 4 presents and discusses experimental results obtained.
Finally, Sect. 5 concludes and outlines plans for further work in this project.

2 Previous Studies on Character Line Detection

Several studies have been conducted on character line extraction of printed documents
and blackboard images.

Adachi et al. [1] and Tsuruoka et al. [2] proposed a method that uses a thinning
approach to detect character lines. In their proposed method, all characters are thinned
and their gravity points then used to detect character lines. Unfortunately, experience
has taught us that these methods require more than 40 s to process a single image.
Consequently, they are not appropriate for real time applications. Hirabayashi et al. [3]
proposed an interesting method that detects character lines via the Hough Transform
(HT). In the proposed method, the gravity points of characters are detected and then HT
is used to detect the character lines. However, this method is very time-consuming
because of the voting-based processing utilized by HT. In addition, it cannot be used to
detect handwritten curved character lines because classical HT cannot detect randomly
curved lines. However, it exhibits good performance in the detection of printed char-
acter lines. Louloudisa et al. [4] proposed a multi-step method: The first step in the
proposed method comprises image binarization and enhancement, connected compo-
nent extraction, partitioning of the connected component domain into three spatial
sub-domains, and average character height estimation. In the second step, a
block-based HT is then used to detect potential text lines. A third step is employed to
correct possible splitting, detect text lines that the previous step did not reveal, and
finally, to separate vertically connected characters and assign them to text lines. This
method is also very time-consuming because connected component detection and HT
typically require considerable time for computation. Chaudhuri et al. [5] proposed a
method that detects character lines by following the gap between two lines. The method
is interesting; however, it has difficulty detecting character lines with high accuracy
when the gap between two lines is very small. Yin and Liu [7] proposed an approach to
character line detection based on minimum spanning tree (MST) clustering with new
distance measures. First, the connected components of the document image are grouped
into a tree by MST clustering with a new distance measure. The edges of the tree are
then dynamically cut to form text lines using a new objective function to find the
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number of clusters. This method also includes time-consuming connected component
analysis. In particular, connected component analysis takes time to process large
document images. More recently, Khayya et al. [8] proposed detection of handwritten
text lines by applying an adaptive mask to morphological dilation. This method first
identifies the characteristics of the document and its connected components to set the
parameters and thresholds of the algorithm. The final smearing of the document is then
decided by the dynamic mask. The recursive function separateLines(blob) plays an
important role in the method as it breaks up blobs according to the attraction and
repulsion of the text within those blobs. This is also an interesting idea; however, it is
also time-consuming because of the connected component analysis process.

The approaches cited above consider character line detection of documents that
include only characters. In addition, they require at least 20 s to process a 744 × 1053
pixel document image. This paper proposes a method that reduces the character line
detection time by analyzing block-based histograms because histogram calculation is a
very simple process.

3 Proposed Method

3.1 Figure Extraction

In the method proposed in this paper, we extract figures from the image before con-
ducting character line extraction. We use a simple method [3] in which the maximum
rectangle of each object in the image is generated in accordance with their aspects, as
illustrated in Fig. 2. Figure 2(a) and (b) are the original image and its maximum
rectangle calculation image, respectively. Following this calculation, the rectangles
larger than a certain threshold are extracted as figures, as depicted in Fig. 2(c).

3.2 Character Line Extraction Algorithm

We propose a new, less time-consuming algorithm that is completely different from
that of previous methods. In the new algorithm, character lines are extracted by

Fig. 2. Figure extraction: (a) original image, (b) maximum rectangle calculation, and (c) result
of figure extraction.
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calculating the horizontal histograms of vertical image blocks. The details of the
proposed algorithm are as follows.

First, the examination paper image is divided into n (n = 12) vertical image blocks
(Fig. 3). The process then counts the number of black pixels in the horizontal direction
(horizontal distribution of the pixel) in each domain and a histogram is generated, as
shown in Fig. 4. The horizontal pixel counting of a single line hc,1 is summarized in
Eq. 1. In the equation, w indicates the width of a domain while fi indicates the scanning
pixel.

hc;1 ¼
Xw

i¼0

fi
fi ¼ 1 black pixelsð Þ
fi ¼ 0 white pixelsð Þ

�
ð1Þ

As Fig. 4 illustrates, the histogram appears with horizontal mountains. The peak of
each mountain is determined and all peaks are plotted on image domain borders, as
illustrated in Fig. 5—in which the vertical coordinate of the peak values are plotted.

Fig. 3. Examination paper divided into blocks

Fig. 4. Counting the number of black pixels

Fig. 5. Extracting the maximum value of the number of black pixels
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Horizontal straight lines are then determined by using the plotted coordinates. The
plotted coordinates are tracked from left to right keeping an almost constant direction.
The initial direction is determined using the first two points tracked. After completing a
vertical tracking, a straight line equation is determined by using the first and last
points in the tracking. A point pair is indicated as (x1, y1), (x2; y2Þ. Then, determination
of a straight line equation can be conducted following Eqs. (2), (3), and (4).
The character area is extracted by detecting the corresponding pixels to create the
histogram peak of each image block. Figure 6 illustrates the detected lines of the image
shown in Fig. 3.

y ¼ axþ b ð2Þ

a ¼ y2 � y1
x2 � x1

ð3Þ

b ¼ x1y2 � y1x2
1� x2

ð4Þ

4 Experiments

4.1 Experimental Environment

All experiments were conducted using a computer with the following configuration:

Windows 8.1, Core i5 3.2 GHz, RAM: 8.00 GB
Programing Language: C#

The images used in the tests had the following specifications:

Handwritten examination papers: 34
Image Size: 744 × 1053 pixels
Number of character lines: 802

The experiments were conducted to confirm character line extraction performance
and processing time reduction performance of our proposed method. Further, its per-
formance was compared with that of a previous method mentioned in Sect. 2. Details of
the experimental results are given in the next sub-section.

Fig. 6. Extracted straight line from the character line
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4.2 Experimental Results

Figures 7 and 8 show the character line extraction results obtained using the proposed
method. The left side image in each figure is the original image while the image on the
right denotes the extracted character lines.

Table 1 shows the character line extraction rate of the proposed method and the
method proposed by Yin and Liu [6]. The average processing time of the proposed
method is 2.7 s. The results indicate that our proposed method has better character line
extraction and processing time performance than that of Yin and Liu.

Fig. 7. Character line extraction result

Fig. 8. Character line extraction result

Table 1. Comparison of Extracted Character Lines

Method Character line
extraction rate [%]

False positive
rate [%]

Average processing
time [s]

Yin and Liu [6] 89.1 10.0 41.6
Proposed method 91.1 1.2 2.7
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5 Conclusions

In this paper, we proposed a new and simple method that utilizes image block histo-
gram analysis to conduct character line extraction from handwritten examination
papers. Evaluations conducted of the proposed method using appropriate images of
paper-based handwritten reports and examination documents indicate that it has a better
processing time performance than a previously proposed method. It also showed better
character line extraction performance than that of the previous method.

In the future, we plan to further improve the character line extraction rate. We also
plan to develop an automatic marking system by applying the character line extraction
approach.

References

1. Adachi, Y., Yoshikawa, T., Tsuruoka, S.: Character string segmentation using thinning
algorithm from handwritten document image (in Japanese), Technical report of IEICE (The
Institute of Electronics Information and Communication Engineers), PRMU98-208, pp. 121–
126 (1999)

2. Tsuruoka, S., Kimura, F., Yoshimura, M., Yokoi, S., Miyake, Y.: Thinning algorithms for
digital pictures and their application to hand-printed character recognition. Trans. Inst.
Electron. Inf. Commun. Eng. (IEICE) Inf. Syst. J66-D(5), 525–532 (1983)

3. Hirabayashi, K., Tsuruoka, S., Kawanaka, H., Takase, H., Ozaki, T.: Character line seg-
mentation from blackboard image using hough transform. In: Proceedings of Mie Section of
the Society of Instrument and Control Engineers (SICE-Mie), pp. B11-1–B11-4 (2008)

4. Louloudisa, G., Gatosb, B., Pratikakisb, I., Halatsisa, C.: Text line detection in handwritten
documents. Pattern Recogn. 41, 3758–3772 (2008)

5. Chaudhuri, B.B., Bera, S.: Handwritten text line identification In: Indian Scripts, 10th
International Conference on Document Analysis and Recognition, pp. 636–640 (2009)

6. Yin, F., Liu, C.L.: A variational bayes method for handwritten text line segmentation. In: 10th
International Conference on Document Analysis and Recognition, pp. 436–440 (2009)

7. Yin, F., Liu, C.L.: Handwritten text extraction based on minimum spanning tree clustering. In:
International Conference on Wavelet Analysis and Pattern Recognition, pp. 1123–1128
(2007)

8. Khayyat, M., Lam, L., Suen, C.Y., Yin, F., Liu, C.L.: Arabic handwritten text line extraction
by applying an adaptive mask to morphological dilation. In: 10th IAPR International
Workshop on Document Analysis Systems, pp. 100–104 (2012)

488 C. Premachandra et al.



Detecting Parked Vehicles in Static Images
Using Simple Spectral Features

in the ‘SM4Public’ System

Dariusz Frejlichowski1(B), Katarzyna Gościewska1,2, Adam Nowosielski1,
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Abstract. In the paper, the use of selected algorithms for the detec-
tion of specific objects and extraction of their characteristics from static
images is presented. The problem concerns the selection of algorithms to
be implemented in the ‘SM4Public’ security system for public spaces and
is focused on specific system working scenario: detecting vehicles parked
in restricted areas. Two popular feature extractors based on the Discrete
Cosine Transform and Discrete Fourier Transform were experimentally
tested. The paper contains the description of the ‘SM4Public’ system,
explanation of the problem and presentation of similar solutions given in
the literature. The stress is put on the definition of the employed feature
extractors and the description of the experimental results.

1 Introduction

This paper concerns the scientific research on the algorithms to be implemented
in the prototype ‘SM4Public’ system. The system is now being developed within
the framework of EU co-founded project and is aimed at construction and imple-
mentation of innovative video content analysis-based system prototype that will
ensure the safety of various public spaces using real-time solutions and typical
computer components. The idea of the project was risen during the development
of the previous system entitled ‘SmartMonitor’ [1–4]—an intelligent security sys-
tem based on image analysis, created for individual customers and home use.
The analysis of alternative system applications has shown that there is a need
to build other solution for public space video surveillance to effectively detect
events threatening public safety, especially in places characterized by simultane-
ous movement of large number of people.

The complexity of captured scenes along with a variety of places, events and
objects under video surveillance make it impossible to create a universal solution
that would be equally effective in all cases. For this reason such system should be
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highly customizable and offer features enabling adaptation of system operation.
In other words, it should be possible to implement different working scenarios.
According to that, ‘SM4Public’ system will be able to work under scenarios
specific for public spaces, such as scenarios associated with vehicle traffic (e.g.
failing to stop at the red light, accident detection), infrastructure protection (e.g.
devastation or theft detection), breaking the law (e.g. drinking alcohol in public
spaces, prohibited in many countries) or treats to life or health (e.g. a fall). In
the paper we propose an algorithmic solution to be implemented for the another
scenario concerning the detection of vehicles parked in restricted areas.

In the paper, the problem of object detection in static scenes is investigated
using two popular feature extractors, based on the Discrete Cosine Transform
and Discrete Fourier Transform. The second section contains the description
of the problem and lists some related publications. The third section briefly
presents employed algorithms. In the fourth section the experimental conditions
and results are given, and the last section concludes the paper.

2 Problem Statement

In some public areas, i.e. pavements, roads or parking, we can observe diverse
movements of people and vehicles. In such places it is important that the move-
ment should comply with the traffic regulations in order to avoid accidents, traffic
congestion and impeding the movement of other people and vehicles. Nowadays,
one can often encounter problems with parking spaces, which can lead people to
stop vehicles improperly or on restricted areas, and simultaneously breaking the
law. By using a system with a scenario detecting improperly parked vehicles we
can facilitate the work of the police and the movement of the other road users.

Despite the need for real-time complex solutions we should not forget about
the capabilities of those less complicated. The type of monitored scene can deter-
mine the occurrence probability of specific objects or the limitation of the scene
area under analysis. By employing Visual Content Analysis algorithms we aim
at automatic detection and differentiation of vehicles in restricted areas. The
considered scenario do not require complex calculations and high computational
power, and is characterized by a high detection rate and a small error probabil-
ity. Therefore, it is possible to perform static image analysis with a time interval
of a few or more seconds—the analysis of static scenes with given time interval
may enable the analysis of even tens of frames on a single central unit.

The task of extracting specific objects from a static scene involves the deter-
mination of the image part containing the searched object. This process has two
steps: object detection and object localization. The main problem with the detec-
tion of objects from static images is an appropriate selection of characteristic fea-
tures (i.e. building an object model), the mechanism of feature matching and the
method for scanning the source image. The detection problem presented in the
literature assumes the absence of information about the object under detection—
the probable object size and location are unknown. Additional difficulties result
from changes in scene lighting and appearance of objects (e.g. various vehicle
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silhouettes shape and colour, see Fig. 1). When scanning a source image using
the sliding window approach, the detection of object refers to an appropriate
scanning of the image and matching the selected image parts with templates
from the training set. In case of the lack of information about an object, the
object detection from static images requires to perform search process in all
possible locations and using all probable object scales, which increases the com-
putational complexity. In some of the planned scenarios the mentioned problems
can be omitted. It is important to take into account certain clues associated with
a scenario and camera location—this concept was presented also in [5]. System
calibration is the key—in the video surveillance system it is possible to deter-
mine the approximate size of the object, e.g. the size of vehicles appearing in
different parts of the scene.

Fig. 1. Variation in appearance of the vehicle silhouettes.

The analysis of images containing parking areas can be associated with sev-
eral issues. Depending on the needs it can be a vehicle detection, free park-
ing space detection and parking lot occupation detection. Therefore various
objects/regions would be under analysis—a car or a single parking space—as
well as the aim of the detection process would vary, e.g. detecting ‘no parking’
area violation or free parking lot. For instance in [6] an unsupervised system
based on image analysis for the evaluation of parking place status is presented.
For every rectangular image of parking place a related weight map is obtained
and quad tree decomposition can be used to evaluate uniform image segments.
If the resulting segments overpass a defined threshold value, parking space is
evaluated as occupied. Another video-based parking space detection system was
proposed in [7]. In turn authors of [8] adopt a self-organizing model based on
the scene background and foreground analysis to detect vehicles stopped in ‘no
parking’ areas. In [9] a real-time method for illegally parked vehicles is presented.
The proposed methodology uses a novel one dimensional image projection for
‘no parking’ zones representation. Other methodology using Fourier transform
for vehicle detection can be found in [10].
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3 Feature Extraction Algorithms Applied for the Object
Detection in the Considered Scenario

Discrete Cosine Transform (DCT) of the two-dimensional signal (an image con-
taining rows and columns) decomposes it to a weighted sum of cosine functions
oscillating at different frequencies. The base of this transform is a set of orthonor-
mal cosine functions, which are the modified real part of the Fourier Transform.
The Two-Dimensional DCT for an input image XM×N can be calculated as
follows [11]:

C(p, q) = αpαq

M−1∑

m=0

N−1∑

n=0

X(m,n) cos
(2m + 1)πp

2M
cos

(2n + 1)πq

2N
, (1)

αp =

{
1√
M

, for p = 0
2√
M

, for 1 ≤ p ≤ M − 1 , αq =

{
1√
N

, for q = 0
2√
N

, for 1 ≤ q ≤ N − 1 ,

where the C matrix contains a set of coefficients, has a size equal to the size of
the input image and is called a spectrum. The use of the two-dimensional DCT
as a feature extractor results from the characteristics of the transform coefficients
and their spatial arrangement. Low frequencies with large values are located in
the left top part of the coefficient matrix and correspond to the image regions
containing similar pixels (low variability), while in the right bottom corner of the
matrix the high frequency values are found, which correspond to high variability
of pixel values, e.g. the image regions containing object edges. According to that,
a small amount of low frequency coefficients carry a substantial part of image
energy. The most important coefficients are selected from the top left corner of
the transformation matrix using the triangle method, i.e. a triangular part of the
matrix is composed of consecutive diagonals: diagonal 1 and the corresponding
point (0, 0); diagonal 2 and the corresponding points (1, 0), (0, 1); diagonal 3
and the corresponding points (2, 0), (1, 1), (0, 2); etc. Selected coefficients, from
tens to a hundred of features, are transformed into a vector, which is used in the
recognition process. However, there is another issue to be solved—DCT is not
invariant to the size of the object. Feature vectors extracted for images or their
parts having various scales would be proportional to each other but not equal.
Therefore the additional normalization step is introduced.

Based on the above explanations the DCT feature extractor has been imple-
mented and experimentally verified due to two aspects: scale problem and object
differentiation. Figure 2 shows the analysis results of the scene observed by the
pan-tilt-zoom camera. For various focal lengths, three images of the same scene
were obtained and one particular object in different scales was extracted from
each image. For all selected images’ subparts, containing the extracted object,
the DCT feature vectors were obtained. Each feature vector consisted of 50 coef-
ficients, wherein the first coefficient was omitted. The number of coefficients has
been arbitrarily selected, and an optimal number of coefficients can be accu-
rately determined for each particular training set. The graph demonstrates that
all vectors are similar. In turn Fig. 3 shows the results of the ability of the DCT
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feature extractor to differentiate various objects—it can be seen from the graph
(right part of Fig. 3) that different objects are characterized by various feature
vectors.

Fig. 2. An example of the effective operation of the DCT feature extractor for an
object of different scales.

Fig. 3. An example of the effective operation of the DCT feature extractor for various
objects.

The second feature extractor uses the Two-Dimensional Discrete Fourier
Transform (DFT) which, for an input image XM×N , can be calculated using
the following formula:

C(p, q) =
1

MN

M−1∑
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N−1∑

n=0

X(m,n) · exp−i2π( pm
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N ) · exp−i2π( pm
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N )
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2π

(pm

M
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N
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− i sin
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2π
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M
+

qn

N

))
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where the C matrix contains a set of coefficients, has a size equal to the size of
an input image and is called a spectrum. The Two-Dimensional DFT is based
on the set of sine and cosine features which are symmetrical to one another due
to the phase shift. Therefore, the spectrum is symmetrical as well. Coefficient
values located in the four corners of the original spectrum have high values
and correspond to low frequencies in the image, and simultaneously carry the
most information. For high frequencies the reverse is true. For simple calculation
of the Two Dimensional DFT, the Fast Fourier Transform algorithm is used.
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Object recognition is performed using a part of the original spectrum—a × a
square subparts are taken from the left and right corners of the coefficient matrix.
In the case of the shifted spectrum a rectangular block of the coefficient matrix
located in the central part under the horizontal symmetry axis is used [12]. The
number of selected coefficients varies from tens to more than a hundred, and the
first coefficient is not included in the feature vector. Each spectrum value is a
complex number, which in pattern recognition tasks is represented as modulus
and phase angle. Therefore, a feature vector is composed of modulus values
and thanks to that is invariant to object translation within an image plane.
Figure 4 shows the differences and similarities between feature vectors obtained
for various parts of the single scene image. The selected image parts have the
same size but different content. Two of them contain the same person’s silhouette
but in different locations. Despite this, corresponding X and Y feature vectors
presented on the graph are very similar—this results from translation invariance.

Fig. 4. An example of the effective operation of the DFT feature extractor for various
objects.

4 Experimental Conditions and Results

Several experiments have been carried out in order to verify the effectiveness of
the implemented feature extractors in the task of detecting vehicles parked in
the restricted areas. The proposed solution is very specific and specially designed
for the implementation in the video-based security system, where small, key
areas have to be protected. This can be considered as opposite to the solutions
presented in the literature, where the occupancy of all parking lots is verified.
In the experiments, three video sequences from the project database were used.
The sequences were recorded with the resolution of 1440 × 1080 pixels, and 25
frames per second. Each video sequence contained a scene in which a parking
area and a lawn are visible. The scene is observed in perspective view—for a
video surveillance purposes it is better to look down on objects than to see them
from the side.
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Figure 5 shows the analysed static scene with the quadrangular region reflect-
ing the restricted area (a parking place for people with disabilities) and its cor-
responding binary mask, marked manually at the calibration stage. In the video
sequences we can observe moving objects—cars and people. However, a person in
restricted area, unlike the car, should not induce the alarm. In the experiments,
DCT and DFT feature extractors were tested in the process of static image
analysis. The restricted area shown in Fig. 5 was used as a template. The tem-
plate was matched with the frames extracted from three video sequences—every
25th frame was under analysis. Only features corresponding to pixels under the
masked area were used for detection.

Fig. 5. The analysed scene with the selected restricted area and the corresponding
binary mask (first row), and the analysed scene with objects on restricted area—a
walking person and a parked car.

Figure 6 shows the results for the first video sequence and the DCT feature
extractor. The first graph presents two feature vectors, one for the template and
one for the test image—both feature vector plots overlap. The second graph is a
cumulative graph of differences calculated using the Euclidean distance between
the template and consecutive frames from the video sequence (treated as test
images). The Euclidean distance is sufficient since recognition is not performed.
Large temporary differences (high peaks) correspond to the situation when a
person passes through the protected area repeatedly.

Another two video sequences were tested using the same template and the
DCT feature extractor. These sequences contain a scene in which a vehicle
parks in the restricted area and drives away after a while. Moreover, these
two sequences were analysed together with the first, previously processed video
sequence. The experimental results are shown in Fig. 7. The graph on the right
contains two types of distance increase—smaller, singular peaks correspond to
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Fig. 6. The results of the analysis of the consecutive static images extracted from the
first video sequence.

a person passing through the restricted area without stopping (a short change),
while the larger group of high peaks reflects the situation in which a vehicle parks
in the restricted area. Changes caused by a vehicle last significantly longer. It can
also be concluded that a group of people would generate high peaks, similarly to
a car, however the change would be short and dynamic due to small movements
of people. Moreover, the detection of a significant change can precede a more
complex object recognition module for the verification of alarm activation.

Fig. 7. The results of the analysis of the consecutive static images for three combined
sequences and the DCT feature extractor.

The same experiment was repeated using the DFT feature extractor and
the results are shown in Fig. 8. In this case the effective event detection was
observed as well. Therefore, it can be concluded that changes in restricted area
can be successfully detected using a threshold value for the distance between a
test image and the template as well as by determining the tolerance time for the
change.
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Fig. 8. The results of the analysis of the consecutive static images for three combined
sequences and the DFT feature extractor.

5 Conclusions

In the paper, the problem of object detection and feature extraction using static
images was investigated. Firstly, some general information about the ‘SM4Public’
project and the considered problem were given. Secondly, two selected algo-
rithms for feature extraction were presented and evaluated, namely the Two
Dimensional DCT and DFT feature extractors. Then, the experiments using
three video sequences and both algorithms were performed. Static image analy-
sis can have practical importance in the part of the planned scenarios of the
‘SM4Public’ system, because these scenarios are characterized by a low com-
putational complexity and high event detection rate. Moreover, there is a low
probability of error. The theoretical analysis enabled an appropriate preparation
of the two feature extractors based on DCT and DFT which proved out to be
effective. The future work would include the implementation of dynamic image
analysis which takes into account background modelling, tracking and object
recognition, and can be helpful in the detection of complex events in the other
scenarios.

Acknowledgments. The project “Security system for public spaces—‘SM4Public’
prototype construction and implementation” (original title: Budowa i wdrożenie pro-
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Abstract. The rapid growth in using remote sensing data highlights the need to
have computationally efficient geospatial analysis available in order to semanti-
cally interpret and rapidly update current geospatial databases. Object identifi-
cation and extraction in urban areas is a challenging problem and it becomes even
more so when very high-resolution data, such as aerial images, are used. In this
paper, we use Random Forest Classifier tree based ensemble to enhance the
extracting accuracy for roads from very dense urban areas from aerial images.
Both the spatial and the spectral features of the data are used for pre-classification
and classification. Comparisons are made between the RF ensemble and other
ensembles of statistic classifiers and neural networks.
The proposed method is tested to aerial and satellite imagery of an urban area.

The result shows that the RF ensemble enhances the overall classification
accuracy for roads by 8 %. Also, it demonstrates that the approach is viable for
large datasets due to its faster computational time performance in comparison to
other ensembles.

Keywords: Random forest classifier � Ensemble of classifiers � Remote sens-
ing � Very high resolution � Aerial images � Road extraction

1 Introduction

Objects extracted from very high resolution Remote Sensing (RS) imagery [1] have
numerous applications in urban planning, forest monitoring, disaster management, and
climate modeling. Urban land-cover/land-use maps are still generated by human
experts, which makes the process both expensive and time consuming. Human experts
tend to favor higher spatial resolution to higher spectral ones as higher spatial reso-
lution increases the visibility of terrestrial features. This is the case especially with
urban objects through reducing per-pixel spectral heterogeneity and thereby improving
land cover identification. This explains why aerial imagery has traditionally been the
primary source used for urban planning. Recent developments in sensor technology
demonstrate a shift from aerial imagery to satellite based images for urban applications,
as a new high spatial resolution multispectral satellite has recently been launched (e.g.,
GeoEye and WorldView). However, increase in resolution has also lead to augmen-
tation of manual costs. This has also lowered accuracy, particularly in urban image
classification, as urban areas are dense objects that become visible with the use of very
high resolution. This visibility leads to displaying complex urban features [2], which
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may not be the case for other non-man made land covers and land uses such as forests,
wetland, desert landscape, and agriculture.

Various classifiers have been used in extracting land-cover/land-use from RS
imagery. Typical methods include multivariate regression models, spectral mixture
models, machine learning models and integration with geographical information
systems [3] among others. It is desirable to use spectral-spatial data in order to extract
as much information as possible concerning the area being classified. The superiority
of one technique over the others cannot be claimed [4]. In contrast to standard
classifiers, which are based solely on the decision of a single classifier, the ensemble
approach combines several different classifier outputs. In doing so the overall
accuracy usually increases. Random Forest classifiers (RF) are one example of such a
classifier system [5]. Ensembles of Multiple Classifiers/Multiple Classifier Systems
have proved to be the most remarkable applications for over two decades in RS
applications [6–10, 12].

In this paper, the RF Tree Based ensemble is used for the classification of urban
data when using aerial images. Motivated by its relatively low computation
requirement, robustness to outliers and because of reported good results with other
RS in literature, we choose the RF Tree Based Ensemble. To the best of our
knowledge, few researchers have exploited the use of RF in very high-resolution
aerial images for dense urban areas [10, 11], especially when there is no height
information available. In our experiment we use both the spatial and spectral features
when performing classification. We compare the performance of RF ensemble with
three types of ensembles of neural network and three ensemble based ones on sta-
tistical classifiers.

The paper is organized as follows. Section 2 briefly introduces the Random Forest
Classifier while Sect. 3 describes ensembles of multiple classifiers. In Sect. 4, we
present the results and finally, our conclusion is drawn in Sect. 5.

2 Random Forests (RF)

Random Forest [13] is a tree-based ensemble machine- learning technique that is
increasingly used in RS image classification. A Random Forest Classifier consists of a
number of decision trees whose predictions are typically combined using majority
voting. The goal of the training procedure is to reduce the variance of the ensemble by
attempting to produce de-correlated trees. This is achieved by learning each tree on a
random subset of the dataset and by using a random subset of the input variables. We
selected each trained sample from the original training sample by the bootstrapped
method.

Gini Index is used as a based for construction of RF classifier. This targets locating
the biggest homogeneous subclass within the training set to differentiate the rest of the
train sample [14].

We can reduce the computational complexity and reduce the correlation between
trees by limiting the number used in split. This makes it possible for RF to handle the
complexities found in very high resolution RS imagery for urban areas.
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3 Ensemble of Multiple Classifiers

The concept of ensemble of multiple classifiers can be described concisely as: The final
classification decision is taken by the fusion of the output of multiple learning machines
based on a certain decision fusion scheme [4]. Multiple classifiers are commonly
structured in 2 schemes: parallel and serial connection. The parallel combination is
typically used in remote sensing applications.

The performance of an ensemble is highly correlated with individual classifiers and
their combination scheme. For this reason, it is imperative to make a decision about
how to choose classifiers from a classifier ensemble and how to combine them [15]. In
classifier ensemble approaches, two approaches have been commonly appliled in lit-
erature: (1) the static selection, where the best classifier (or a subset of classifiers) for all
samples is selected from the individual classifiers pool. (2) Dynamic selection, where
for each unclassified pixel is a specific classifier (or a subset of classifiers) that appears
to be more suitable to be selected [16].

This study focuses on the Static Classifier Selection. In this method, a classifier
ensemble is addressed that use a variant of the base classifier that is known to be a weak
base classifier where the classifier is not tuned to performs its best. We distributed the
feature space randomly among the ensemble. As a combination scheme we used
majority voting.

4 Experiment Setup and Outcomes

In this part, we investigate the ability of RF Tree Based Ensemble to extract land-use
classes in dense urban areas. Its average performance is also compared to other clas-
sifier based ensemble such as three ensembles of neural networks: FFNN based clas-
sifiers, radial basis neural network base classifiers and three ensembles of statically
based classifiers: Linear Classifier, K-nearest Neighbour Classifier and Parzen Window
Classifiers.

4.1 Data Set

One important point of using machine learning for very high resolution aerial/satellite
image analysis is the size of the data used in the analysis. In literature, most studies rely
on ground truth data that were manually labeled for both training and testing purposes
[11, 17]. However, this is not only time consuming but also results in small datasets in
aerial image analysis. Usually, very high resolution datasets cover a fairly small area of
a city, ranging from 1 km2 to 10 km2 [11]. Good results on a small dataset do not
necessarily indicate good performance regarding a whole urban area, specifically if that
area differs from the scene observed while training. Consequently, acquiring labeled
data that are highly accurate is essential for both evaluating present approaches and
training new algorithms.

In our experiments, hand-labeling data is not necessary as the ground truth infor-
mation is provided by the city. The wealth of correctly labeled data for roads makes it
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an excellent land-use/land-cover where one can apply machine-learning algorithm for
road extraction. In our experiment we detect roads from a large dataset for the city of
Kitchener-Waterloo (K-W) and the city of Toronto Ontario, Canada. The Geospatial
Centre of the University of Waterloo [18] had made the dataset available for this
research. We used three datasets: two aerial datasets for the city of KW and one
QuickBird satellite for the city of Toronto. The ortho-rectified aerial mosaic images for
the KW dataset are 12 cm in pixel resolution and were taken by a digital color airborne
camera with 8-bit radiometric resolution as well as infrared (CIR) mosaic images. We
divided the ortho-mosaic into 280 images to be input into the classifiers while the
ortho-rectified aerial mosaic images for the Toronto greater area dataset 19 is available
in RGB bands only and was taken in April 2007. The QuickBird satellite dataset [20] is
of 60 cm resolution and was taken in 2006. The main land-cover/land-uses of interests
in our study are roads, buildings and green areas such as parks.

4.2 Experiment Setup

The data is segmented first as in [21] where both the spatial and spectral features were
used in the clustering based segmentation process.

We used standard MATLAB classifiers that were trained with 50 % of the input
data, validated over 20 % of the input data tested over 30 % of the data. The divided
datasets have the same classes’ distribution as the originally input data set in each of the
three dataset used. The input features of the ensemble are the colour (RGB, Lab and
HIS) and texture (Gray-level Co-occurrence Matrix) of the segmented parts. Using the
3 multispectral bands of the image for a window of 5 by 5 pixel size, the input feature
vector is 261 dimensional image features.

For the RF tree based ensemble we investigated the effect of the number of indi-
vidual trees. We conducted an experiment were the number of trees was varied from
10–100 trees and used the default values in Matlab for the rest of the variables. We
found that 30 trees give the best performance in our case.

We are comparing our results to those of neural network and statically based
ensembles. Each ensemble has 9 base classifiers and each classifier in the ensemble was
fed with an input feature vector of 29 sub-features. All classifiers were trained/validated
separately applying the training/validation sets. The classification results were averaged
over forty runs. As we targeted a set of weak classifiers, no parameter optimization was
done for the ensemble.

4.3 Experiment Results

The training and test accuracies for the different approaches are demonstrated in
Table 1. The results are averaged over the three datasets. The table clearly indicates the
advantages of the RF tree based ensemble. The accuracy increased up to 89 % for road
class, which is 14 %, enhanced over the best ensemble method and 8 % enhanced over
the average ensemble performance. The computation time of RF- tree is almost 1/3 less
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than the neural network compared ensemble approaches. Qualitative result is shown in
Fig. 1 for KW aerial dataset.

5 Conclusion

Road classification in dense urban areas from aerial data has been investigated.
Experimental results indicate that the RF tree based ensemble yielded excellent
accuracies: 89 % for classification of complex dense urban scenes, and it outperformed
the highest accuracies for the other compared ensemble by 14 %. These results are
obtained using a large dataset which are expected to get close results when applied to
other urban datasets.

In addition, RF computational time is normally 55 % less than that of other
ensemble methods used in our experiments. This should encourage the use of RF
classifiers for large datasets of very high-resolution images and when updating geo-
spatial databases.

Table 1. Comparison of the averaged classification accuracies of road using: Random forest tree
based ensemble, and ensembles of Linear Classifiers, KNN Classifiers, Parzen Window
Classifiers and Neural Networks Classifiers, applied on the three datasets training, validation and
test sets images.

Ensemble of classifier Training accuracy Validation accuracy Test accuracy

Linear classifier 76.155 75.021 74.814
KNN 100 81.514 80.831
Parzen Window 81.121 81.051 80.571
FFNN 80.112 79.552 79.588
RBN 81.522 82.017 87.536
PNN 81.561 82.451 82.019
RF tree base ensemble 90.612 89.691 89.301

(a) A sample of a test scene from the 
KW aerial image dataset 

(b) The extracted roads are overlaid 
the original test scene

Fig. 1. Road classification and extraction using a RF tree based ensemble for KW aerial dataset.
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Abstract. An object extracted from a digital image has to be rep-
resented using particular features, e.g. shape, colour, texture. In the
paper the Polar–Fourier Greyscale Descriptor is employed for this pur-
pose, which applies the information about silhouette and intensity of
an object. Its properties are experimentally analysed using the images
of traffic signs extracted from real video sequences. These objects were
selected, because in many cases the images of traffic signs are strongly
distorted, which hampers the proper recognition. During the experiments
500 images were used for each of the 20 classes, which resulted in 10000
instances. The average recognition rate was above 89 %.

1 Introduction

In computer vision tasks, the object extracted from the digital image for fur-
ther analysis or recognition has to be properly represented. So called descriptors
are applied for this purpose. The algorithms work on particular features, e.g.
luminance, colour, texture, shape, context of the information, etc. [1]. The selec-
tion of a feature is crucial, strongly depends on the application, and influences
the obtained results. For example, shape descriptors perform better for rigid
objects, e.g. machine parts, car license plates, airplanes, while they are worse for
the recognition of living beings, like animals or humans. It does not mean that
they cannot be used for those types of silhouettes, but usually more sophisticated
algorithms or more numerous template database have to be used in such cases.
The colour would be applicable for the analysis of art images, e.g. the classifica-
tion of paintings made by an artist [2]. The texture is better for the analysis of
aerial images. Many other examples could be easily recalled. The combination
of various features is becoming very popular nowadays and is effective in some
applications [3,4].

In this paper the usage of greyscale information for object representation and
further recognition is analysed. Such an approach was applied for example in [5],
where the moment theory is applied for shapes with greyscale attributes. The
described algorithm is experimentally investigated using signatures and hand
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 506–513, 2015.
DOI: 10.1007/978-3-319-20801-5 56
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gestures. Another example is described in [6], where the gradient and curvature
of the greyscale is applied for the recognition of handwritten numerals. A very
similar application (character recognition) is described in [7]. The detection of
three types of objects in an image, based on greyscale information was described
in [8]. These are only few exemplary applications of the greyscale as a feature
for various computer vision tasks. In this paper the Polar–Fourier Greyscale
Descriptor is applied for the automatic recognition of traffic signs. The main
goal is the experimental analysis of the algorithm’s parameters, when applied
for greyscale objects that are significantly distorted by various factors. In [9]
the most typical problems occurring when recognising road signs were identi-
fied: color fading, similarity among various classes, varying standardization for
particular countries, weather conditions (e.g. rain, snow, fog, sunlight), objects
visible in the scene that are similar to signs, disorientation, occlusion, damage,
car vibration and motion blur, variations in illumination, shadows, highlights.
Several distorted traffic signs images are provided in Fig. 1.

Fig. 1. Examples of distorted images containing traffic signs.

Recently the automatic road signs recognition has become popular. Many car
producers have applied the system assisting the driver this way, which is a result
of many years of research on the problem. In this paper only the last stage is con-
sidered, namely the description and classification of the previously located and
extracted traffic signs, since the stress is put on the distortions hampering the
recognition. Several approaches were applied for the description of the extracted
road signs so far, e.g. Scale-Invariant Feature Transform (SIFT) [10], Haar-like
features [11], Error Correcting Output Codes (ECOC) [12], FOveal System for
Traffic Signs (FOSTS) [13], fractal reconstruction [14], Fourier Descriptors [15],
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genetic algorithms [16], HOG features [17], Colour DistanceTransform (CDT)
[18], blob signature [19], Gabor wavelets [20], Zernike moments [21]. In the paper
the Polar–Fourier Greyscale Descriptor (P-FGD) is applied to the problem.

The rest of the paper is organised as follows. The second section describes
the applied algorithm. The third section provides the experimental conditions
and results, and finally, the last section concludes the paper.

2 The Polar–Fourier Greyscale Descriptor

The descriptor under consideration (Polar–Fourier Greyscale Descriptor, P–FGD)
was introduced in [22]. So far it has been applied for the identification of ery-
throcyte types for the automatic diagnosis of some diseases [22], the biometric
identification based on ear images [23], and the recognition of objects similar
in shape [24]. The algorithm is composed of several stages, however, the most
important is the usage of polar and 2D Fourier transforms for greyscale object.
The extracted subspectrum (10×10 size) describes the represented object. The
P-FGD is invariant to size, rotation and location within the image plane. It is also
robust to some level of noise. In Fig. 2 some examples of various objects repre-
sented using the P-FGD are presented. The original images in greyscale as well
as the obtained representation — the normalized polar–transformed images –
are provided.

In the research described in this paper the improved version of the descriptor
is employed. The algorithm can be described as follows:

1. Median filtering of the input subimage I with the kernel of size 3.
2. Low–pass convolution filtering using the square mask composed of nine ones

and the normalization parameter of 9.
3. Derivation of the centroid denoted as O:

mpq =
∑

x

∑

y

xpyqI(x, y), (1)

xc =
m10

m00
, yc =

m01

m00
. (2)

4. Finding the maximal distances dmaxX , dmaxY for X− and Y −axis respec-
tively from the boundaries of I to the centroid O.

5. Expanding the image into both directions by dmaxX −xc and dmaxY −yc and
filling in the occurring new parts using greyscale level 127.

6. Derivation of the polar coordinates and insertion in the image P :

ρi =
√

(xi − xc)
2 + (yi − yc)

2
, θi = atan

(
yi − yc
xi − xc

)
. (3)

7. Resizing the image P into square size, e.g. 128 × 128.
8. Derivation of the absolute two-dimensional Fourier transform [25]:

C(k, l) =
1

HW

∣∣∣∣∣

H∑

h=1

W∑

w=1

P (h,w) · e(−i 2π
H (k−1)(h−1)) · e(−i 2π

W (l−1)(w−1))

∣∣∣∣∣ , (4)
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where:
H, W — height and width of P ,
k — sampling rate in vertical direction (k ≥ 1 and k ≤ H),
l — sampling rate in horizontal direction (l ≥ 1 and l ≤ W ),
C(k, l) — the coefficient of discrete Fourier transform in k− th row and l− th
column,
P (h,w) — value in the image plane with coordinates h, w.

9. Selection of the spectrum subpart, e.g. 10 . . . 10 size and concatenation into
vector V .

Fig. 2. Examples of various objects represented using the Polar–Fourier Greyscale
Descriptor — the normalised polar–transformed images are presented, before the appli-
cation of two–dimensional Fourier transform.

3 Conditions and Results of the Experiment

As it was already mentioned, the main goal of the performed experiment was to
investigate the efficiency of the Polar–Fourier Greyscale Descriptor when applied
to strongly deformed and distorted objects extracted from the digital images. For
this purpose the traffic signs were selected as they sometimes are very difficult to
recognise in real world conditions. Amongst several publicly available databases
one of the most popular is The German Traffic Sign Recognition Benchmark
[26], hence it was used as the source of the images for the described experiments.
The extracted road signs were used. In total, 10000 images were applied and 20
different classes were used. The examples of images employed in the experiment
were presented in Fig. 1. For each class 50 instances were randomly selected from
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the 500 images and used as the learning examples (i.e. they were the templates)
and 200 random images were employed as the test data. This procedure was
repeated ten times and the average recognition rate was obtained. The Polar–
Fourier Greyscale Descriptor was employed for the representation of the objects
and the Euclidean distance was used for the selection of the template closest to
a test instance. As a result, the recognised class was established. The average
efficiency for particular classes is provided in Table 1.

Table 1. The average efficiency obtained for particular classes.

Class Correct results Wrong results Efficiency

class 1 1630 370 81.50 %

class 2 1832 168 91.60 %

class 3 1728 272 86.40 %

class 4 1743 257 87.15 %

class 5 1715 285 85.75 %

class 6 1910 90 95.50 %

class 7 1863 137 93.15 %

class 8 1535 465 76.75 %

class 9 1901 99 95.05 %

class 10 1959 41 97.95 %

class 11 1821 179 91.05 %

class 12 1875 125 93.75 %

class 13 1750 250 87.50 %

class 14 1876 124 93.80 %

class 15 1412 588 70.60 %

class 16 1694 306 84.70 %

class 17 1945 55 97.25 %

class 18 1837 163 91.85 %

class 19 1712 288 85.60 %

class 20 1954 46 97.70 %

TOTAL 35692 4308 89.23%

The obtained average efficiency exceeds 89%. It seems not perfect, however
it has to be stressed that the images used in the experiments were in many
cases difficult to recognise even for humans. Several examples are presented in
Fig. 1. The analysis of the results brings the conclusion that the most difficult
are blurred images (resulting from the fast movement of the car with installed
recording camera) and unusual light conditions, when the images are too dark
or too bright. In those cases the evaluated descriptor failed. The examples of
wrongly recognised traffic signs are provided in Fig. 3.
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Fig. 3. Examples of wrongly recognised speed limit traffic signs.

4 Concluding Remarks

In the paper the experimental results on the application of the Polar–Fourier
Greyscale Descriptor to the recognition of traffic signs were described. The algo-
rithm is based on the combination of the polar and Fourier transforms. The usage
of greyscale gives more information than when using only the shape. In case of
the analysed descriptor the method of its derivation allows for the consideration
of the object’s silhouette as well. However, above all the greyscale is taken into
account. It is assumed that this makes the final representation more effective.

For the experiments the images from The German Traffic Sign Recognition
Benchmark [26] were applied. The selection of the traffic signs for the experi-
ments was based on the strong distortions and deformations of the real data for
this case. The main goal was the analysis of the efficiency of the P–FGD in this
difficult case. In total, 10000 images were employed and the average efficiency
above 89% was obtained, which can be considered as a good result, considering
the strong distortions of the experimental data (some examples can be seen in
Figs. 1 and 3).
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Abstract. Advanced driver assistance systems (ADAS) and autonomous
driving (AD) have increasingly gained more attention in automotive indus-
tries and road safety research. Several sensors such as Radar, LiDAR, GPS,
ultrasonic sensors and cameras are often embedded in modern vehicles
to facilitate ADAS and AD applications. The data obtained from these
sensors can often be used in combination with machine learning models
to create an empirical approach for ADAS vision tasks such as lane detec-
tion (LD). In this paper we survey recent techniques and approaches in
vision-based lane marking detection for ADAS systems. We introduce
a benchmark dataset and initial lane marking detection results using
probabilistic Hough transform.

Keywords: ADAS · Lane Detection (LD) · Hough transform · Machine
learning

1 Introduction

Lane detection and estimation is a crucial task for controlling vehicle’s lat-
eral position in road safety applications such as lane change assistance systems
(LCAs) [1], vehicle localization [2], lane departure warning [3], and lane keeping
assistance (LKA) [4]. Lane marking detection in urban and high traffic roads,
faded lane markings, illumination variation and harsh weather conditions make
LD applications challenging. Monocular camera, GPS, RGB camera, stereo cam-
era, LiDAR sensors are often utilized to facilitate data collection for LD tasks.
Availability, cost and human perception make cameras an invaluable source of
sensory information in LD applications. In this paper, we adopt camera as pri-
mary source of data.

Lane detection and road understanding algorithms are composed of multi-
ple modules: image pre-processing, feature extraction and model-fitting. Image
(frame) pre-processing reduces noise and disturbing imaging artifacts, enhances

c© Springer International Publishing Switzerland 2015
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Fig. 1. LD challenges in different lane types is illustrated. From the left: unknown
curve and illumination variation, shadow, high traffic roads are main challenges in lane
detection applications.

image quality using appropriate filters and defines the region of interest (ROI)1.
Illumination variations often make pre-processing an important step for LD
applications. Figure 1 illustrates existing challenges in LD such as illumination
variations, shadow, high traffic road conditions and various lane types. Various
methods have been proposed in the literature to address illumination variation
such as vanishing point detection using a voting map [5] and pixel classifica-
tion [6]. Inverse perspective mapping method (IPM) maps the image to a bird’s
eye-view and makes the lane markers appear straight and parallel to eliminate
the perspective effect in model fitting [7].

Hough Transform (HT) is the most popular line detection method which is
mainly suitable for detecting straight lines on the edge image. Canny along with
Sobel are the most popular edge detectors [5]. Conventional HT is computation-
ally expensive in illumination processing due to voting on the pixel level in the
edge map [8]. Parallelizing the processing hierarchical HT is also computation-
ally expensive due to re-computing the HT at each level. Various models have
been proposed in the literature to describe cost effective features for LD such
as accumulator-based method [8], Oriented Distance Transform (ODT) [9] and
band-pass filters [10].

A wide range of lane structures can be modeled as straight line model, Hyper-
bola [11], least square method, B-Snake, B-Spline [3] and RANSAC (RANdom
SAmple Consensus) model fitting [12]. Kang et al. [13] uses RANSAC method
for extracting lane features. Lane fitting can then be achieved via RANSAC par-
abolic model and RANSAC straight lines’ histogram [10]. To deal with curves
on the road model a combination of four algorithms is proposed [14]: segmenta-
tion of curves into several Hough lines, separating curves (lanes) based on their
slope, clustering Hough lines, and applying a feedback algorithm to continuously
compare parameters of consecutive frames. The Tracking part of LD is mainly
performed using Kalman filters [3], particle filters, or meanshift with assump-
tion of constant velocity or acceleration for the vehicle as motion models. LD
applications have also been tested in virtual scenes [3]. Using a single camera on
a virtual and real dataset, Li et al. [3] performed detection and tracking of lane
marks for highway and urban scenarios.

1 The ROI is often in front of the vehicle which contain fallacious information and
mostly occurs in the bottom half of image.
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2 Hurdles and Gaps

Hillel et al. [15] provided well-researched information in the road and lane detec-
tion field. While for a short distance ahead, HT algorithm solves the problem
of detection in 90 % of the highway cases, urban scenarios remain a challenge.
Diverse road shapes and lane marking types, image clarity problem (too much
illumination or shadow or snow on the road), and poor visibility situations
(heavy rain, fog, reflection on the road in night) are the most challenging parts of
LD [15]. Traditional machine learning models such as convolutional neural net-
works (CNNs) and SVM for lane marking detection suffer from broad variations
in learning data with lane markings and the assumption of a pre-specified motion
model of the vehicle [16]. LD studies also suffer from two fundamental weakness
in terms of evaluation of results [9]: first, the lack of a benchmark dataset to
compare various models using the same data, and second, the lack of a defined
performance measure for automatic evaluation of the results. Son et al. [5] and
Li et al. [3] have reported their experimental result for various datasets such as
DIML-dataset1 (vehicular camera), SLD-2011 and Caltech Lanes Dataset using
different evaluation techniques. This presents a need for a benchmark dataset.
In this paper, we introduce a benchmark dataset to create a baseline for LD
research in Germany’s road. We present two initial lane marking detection based
on HT and IPM that can be used in combination with machine learning models
to perform LD under various road and illumination conditions.

Fig. 2. Conventional Lane-Mark detection based on the search for maximum gradient
magnitude is illustrated. Detected vehicle regions were removed from the thresholding.
Top left: edge image, top right: searching for gradient magnitude, bottom left: model
fitting, bottom right: lane-mark detection results.



Camera-Based Lane Marking Detection for ADAS and Autonomous Driving 517

3 Benchmark Dataset

In this section we introduce our benchmark dataset along with canny edge detec-
tion and IPM-Hough as baseline feature extraction and pre-processing methods
for LD applications. Our dataset consists of more than 5400 min of 640× 480,
30 Hz video captured from our test vehicle Carai-12 [17]. The videos were taken
in 60 different daylight and weather conditions for the same predefined path in
Chemnitz urban environment and autobahn. The data were taken from a cali-
brated monocular camera, mounted on the top-inner of windscreen of Carai-1.
Image data along with data captured from other integrated sensors are stored in
a common stream file format to facilitate the offline access and processing steps.
The BASELABS Connect3 is used for accessing the raw data captured during
the test drive and visualization of results with precise time stamps.

As a benchmark approach, gradient magnitude in the edge image is used in
combination with Kalman filters to achieve a robust lane detection and tracking.
Figure 2 illustrates conventional lane marking detection and estimation result in
a sample frame of the benchmark dataset. In this method, lane markings are
detected based on the changes in gradient magnitude in the edge image. The
idea behind lane detection via gradient magnitude changes is that there should
be a brightness gradient near every point along the lane edges. The larger the
magnitude of that gradient, the more likely it is to correspond to a lane edge.
Unscented Kalman Filter (UKF) is then employed for the tracking over the next
frames. In this approach the vehicles offset with respect to the right and left lane
markings are modeled as a function of time (assuming a set of frames over time
is available). The UKF is then used to predict the future values of these offset
parameters, based on observations in preceding frames. Our initial results show
that while this approach is robust in LD given ideal lane marking conditions,
constant range of illumination, and autobahn scenarios, the results are not sat-
isfactory for urban roads and complicated traffic situations. The detection result
also does not fulfill our requirement of determining lane markings types such as
dashed-line or continuous-line.

The next approach as shown in Fig. 3, is based on IPM transform and Hough
line detection and is tested as a baseline model to address the shortcomings of
UKF modeling. Figure 3 shows an original frame, IPM image, Canny edge image
and detected Hough lines on a sample frame from the benchmark dataset. As dis-
cussed before, IPM removes the perspective effect from the acquired image from
the road and remaps it into a new 2-dimensional domain. Thus, the distribution
of information in the new 2D domain is homogeneous among all pixels. Gaussian
smoothing filter of OpenCV4 is used on the image and subtracted from the orig-
inal image to sharpen the edges and to remove the blur from the image. After-
wards, probabilistic Hough transform (PHT) is applied on the Canny edge image
as an efficient line detection method. PHT minimizes the portion of points used

2 http://www.carai.de.
3 http://www.baselabs.de.
4 http://opencv.org.

http://www.carai.de
http://www.baselabs.de
http://opencv.org
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Fig. 3. IPM-Hough method (feature extraction) and line detection process is illus-
trated. Top left: original image, top right: IPM image, bottom left: Canny edge image,
bottom right: Hough lines.

for voting process and returns in line segments represented by starting and ending
points. Experimental results are visually tested for 45300 frames in daytime and
show acceptable performance in an initial testing of lane markers in urban roads.
This model generates a viable candidate for lane marking detection which can
be used in combination with classifiers such as SVM and CNNs to create a real-
time lane marking classifier. We anticipate that the lane detection and tracking
classifier will be able to deal with challenging scenarios such as a lane curvature,
worn lane markings, lane changes, and emerging, ending, merging, and splitting
lanes.The information captured from GPS sensor could also be integrated in order
to derive a ground truth for the detection results in future studies.

4 Conclusion and Future Work

This work represents an initial study on understanding lane-marking detection
in urban roads through various models presented in the state-of-the-art. We sur-
veyed the state-of-the-art in lane marking detection. We introduced the urge of
lane marking detection in ADAS and different possible sensory information for
LD and enumerated the components of a typical LD algorithm. We introduced
a benchmark dataset and two sets of LD models: Hough transform and IPM.
In the future we intend to apply machine learning models such as convolutional
neural networks to boost the performance of real-time lane detection applica-
tions in challenging environments. We believe a calibrated model can enhance
the accuracy of detection on the benchmark dataset and deal with challeng-
ing scenarios such as a lane curvature, worn lane markings, lane changes, and
emerging, ending, merging, and splitting lanes.
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Abstract. This paper presents a novel social interaction relation, attrac-
tion (interaction that would lead to occlusion for inter-object) for multi-
object tracking to handle occlusion issue. We propose to build attraction
by utilizing spatial-temporal information from 2D image plane, such as
decomposed distance between objects. Then pairwise attraction force
is obtained by the modeled attraction. Lastly, the attraction force is
used to improve tracking when hierarchical data association performs.
To meet requirements of practical application, we have our method eval-
uated on widely used PETS 2009 datasets. Experimental results show
that our method achieves results on par with, or better than state-of-
the-art methods.

Keywords: Attraction force ·Occlusion handling ·Multi-object tracking

1 Introduction

Inter-object occlusion is one of the most difficult task to deal with in object
tracking field. This issue could be explained by the spatial-temporal information
for the objects, that are involving occlusion is quite different from those are not.
However, most of these approaches ignore that spatial-temporal information is
not exploited sufficiently.

Many research have been accomplished great achievement w.r.t. occlusion
handling. In [1,7,17], the authors focus on focus on the appearance change while
occlusion happens. [12] propose to utilize scene knowledge to solve objects miss-
ing caused by occlusion. Nevertheless, most of them neglect the spatial-temporal
information when occlusion happens. By contrast, the social force interaction
among multi-object [6], which is based on exploring spatial-temporal informa-
tion, provides a different perspective for multi-object tracking. Whereas none of
the research in such a field considers that, inter-object occlusion is caused by
social force interaction. For example, [11] and [13] use the interaction to predict
objects location, without considering occlusion between objects.

Intuitively, the spatial-temporal information for objects that are involving
occlusion is different from those are not. For instance, the distance for those
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 520–527, 2015.
DOI: 10.1007/978-3-319-20801-5 58
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Fig. 1. Our framework of attraction force modeling. After initialization, the spatial-
temporal information, such as distance, is utilized to decide whether there is attraction.
The final step would be to integrate the attraction force into the tracking scheme.

occluded objects would be relative closer. Similar rationale has been employed
lately for scene understanding [4]. The idea of considering the global scene
spatial-temporal information has been receiving great attention in the field of
more complex activity recognition [3] as well. Motivated by this intuition and
based on the observation above, in this work we present a framework of inter-
object occlusion handling for multi-object tracking based on attraction force
(social force that may lead to occlusion between objects). The framework of our
attraction force modeling is shown in Fig. 1.

The contributions of our work1 are summarized as follows: 1. We extend the
concept of social force by building attraction force. Attraction force is particular
for the situations that would lead to inter-object occlusion. This model is com-
pletely based on 2D image plane information without any scene knowledge, such
as camera calibration, etc. By utilizing change of distance between objects, the
relative velocity as well, we propose that attraction force suggests information of
occlusion between objects in next frame. 2. A novel occlusion handling method
is proposed. Our approach focus on dealing with occlusion in data-association
level. Attraction force is used as penalty to optimize final association score. The
authors in [2] utilizes a similar rationale, But our method differs in occlusion
modeling and data association framework

The reminder of this paper is organized as follows: Firstly, hierarchical tracking-
by-detection framework is discussed in Sect. 2. Section 3 focus on modeling attrac-
tion force utilizing spatial-temporal information, and handling occlusion based
on attraction force in hierarchical data-associations, followed by a set of detailed
experimental results and analysis in Sect. 4. Finally, we conclude in Sect. 5.

1 This work is performed when the first author was with Institut Mines Télécom,
Paris. The author would like to thank Prof. Isabelle Bloch, Dr. Ling Wang and Dr.
Henrique Morimits for meaningful discussion and very helpful suggestions.
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2 Hierarchical Tracking-by-Detection

Online tracking-by-detection approach combines discriminative [14] and gen-
erative methods [10] for multi-object tracking. Such a method treats frame by
frame data association as pair-wise assignment problem, that matches the detec-
tion with tracking results. In our work, hierarchical data-association method is
adopted. Assuming in t frame, all the detection inputs are taken as one of detec-
tion division DE , and tracking results are taken into target division T R. Can-
didates CA is the subset of DE , which is used to represent new objects appear
in the scene. To sum up, we have DE + T R as input for every frame. Regarding
birth and death of tracker, we follow the same procedure in [16], which is the new
tracker is generated from CA. The data-association would be performed between
DE and T R. Noted that since the CA may contain false positive, we follow the
procedure by [2], tracker will be generated when one candidate is matched for
at least 2 consecutive frames.

To assign correct detection to correct tracking result, one matching score
by computing likelihood between detections and tracking results is used. The
matching score (M) includes several components, in our case, we use

M = Pos · Size · App (1)

where Pos = N (0, dis(Pde − Ptr)), with (P∗) is position of detector and
tracker in current frame, Size = N (0, sizede−sizetr

sizetr
) with (size∗) is the size of

detector and tracker. N is Gaussian distribution with zero mean. For the appear-
ance, we employ Hellinger distance the HSV color histogram. It consists on com-
puting the histogram of both detector and tracker on the HSV color space. In
order to deal with situation such as illumination changing and occlusion, we
keep the color histogram information of first frame and last frame that object
has correctly tracked . After having those matching score, Hungarian algorithm
[9] provides the best match.

For each object, the tracking result and its matched detection is output, if
there is one; otherwise, only the tracking result is used as output instead.

3 Inter-object Occlusion Handling Strategy Based on
Attraction Force

Even hierarchical tracking-by-detection tackles occlusion implicitly by using color
histogram from first and last frame. The matching score cannot always give the
best result when inter-object occlusion occurs, since detector may not always
find the right object under occlusion. In this section, we will present our method
to handle occlusion by detailedly analysis and model attraction force.

3.1 Initialization of Attraction Force

We manually set search region as square shape to eliminate the objects that
are too far away to have attraction. The size of one side of the search region
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is considered as twice as the height of the object. Euclidean distance between
center point of bounding boxes of objects is employed to estimate the distance
among objects. Only the objects are within the search region of other objects,
and without any occlusion are initialized for attraction force. Additionally, If
the overlapping area of two bounding boxes is more than 40%, we consider the
spatial information is invalid in order to avoid potential errors. Furthermore, the
example that to deal with size of the object may lead to information lost. For
instance, x1 and x2 is object with bigger and smaller size respectively. When we
consider attraction of x2, besides of all the objects within the search region, we
need enumerate attraction of x1. If we find out attraction between x1 and x2 for
x1, this information is stored and taken into account for x2.

3.2 Attraction Analysis

Intuitively, inter-object occlusion would only happen for objects moving towards
each other from at least one axis from image plane. Let us start with the situation
such that two objects annotated as xi and xj walk towards each other , and there
is an attraction between them. The following equation is used to describe this
situation: {

DX
t−1(xi, xj) − DX

t(xi, xj) > 0
DY

t−1(xi, xj) − DY
t(xi, xj) > 0 (2)

where DX
t−1(xi, xj) and DY

t−1(xi, xj) is the Euclidean distance between xi

and xj in X and Y axis, at time t − 1 and t. In order to avoid some confused
ambiguities lead by general distance, decomposed distance in X and Y axis is
employed. For instance, when two pedestrian are passing by each other from
image plane, no occlusion will be observed. Nevertheless utilizing the general
distance is hard to distinguish whether these two objects are passing by or having
occlusion. This reason remains in the following.

Equation 2 implies two things: firstly, xi and xj are closer; besides, the relative
displacement of xi and xj between two subsequent frame could present as relative
velocity between these two objects, and Eq. 2 indicates that they tend to meet
each other.

Two objects are moving towards from only one axis, X axis is used as par-
adigm. Two cased is considered for this situation. The first one is no distance
change in Y axis, and the second one is repelling from Y axis. To asses if there
is attraction, we still rely on the distance information, with aiding by the size of
the object. First case could be described by

⎧
⎨

⎩

DX
t−1(xi, xj) − DX

t(xi, xj) > 0
DY

t−1(xi, xj) − DY
t(xi, xj) = 0

DY
t(xi, xj) < 0.5(Hxi + Hxj )

(3)

and second case is
⎧
⎪⎨

⎪⎩

DX
t−1(xi, xj) − DX

t(xi, xj) > 0
DY

t−1(xi, xj) − DY
t(xi, xj) < 0

0.5(Hxi+Hxj )−DY
t,xi (x

j)

V Y
t,xi (xj)

>
−0.5(Wxi+Wxj )+DX

t,xi (x
j)

V X
t,xi (xj)

(4)
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where Hx∗ and Wx∗ is height and width of the xi and xj respectively. and
V ∗

t,xi(xj) is the relative velocity between xi and xj ..
Two objects have attraction or not judging by the size information.
Similar situation for Y axis is symmetrical to the situation described by Eq. 3

and Eq. 4 (simply switch X and Y, height and width).

3.3 Attraction Force

Attraction modeled previously is utilized as properties for attraction force. Noted
only objects satisfy one of these properties, will be taken into account for attrac-
tion force.

The attraction force is modeled as:
⎧
⎨

⎩
FX,t

att (xi, xj) = I ·
(
1 − exp−|V X

t,xi (x
j)|·(α−DX

t(x
i,xj))

)

FY,t
att (xi, xj) = I ·

(
1 − exp−|V Y

t,xi (x
j)|·(α−DY

t(x
i,xj))

) (5)

I is indicator function that equals one if there is attraction between xi and xj

based on the explanation of previous sections, equals zeros if otherwise. α equals
to the height of xi. α − DX

t(xi, xj) > 0 makes sure xj is within the search
region of xi.

∣∣V X
t,xi(xj)

∣∣ is the absolute of relative velocity of xi and xj , which
is defined by object state (Subsect. 4.3).

3.4 Occlusion Handling Strategy

In this work, all inter-object occlusion relation (only the matching score > τ is
taken as occlusion, where τ is the threshold manually set ) between objects will
be enumerated within the same division, only the matching score of at least two
detections and two targets are considered connected, are treated as occlusion
group. As we have already pointed in previous subsection, attraction force based
occlusion rationale is to predict occlusion for t+1. Therefore the data-association
in this section performs in t + 1 as well. Assuming that dm, trn are within the
same occlusion group, we propose

M̂ = arg max
m,n

∑

m,n

M(dm, trn) − ˆF t
att (6)

for optimizing matching score. Where F̂ is overall attraction force in this occlu-
sion group, and used to penalize the occlusion. ˆF t

att is only considered once for
each pair. For example, if attraction force F t

att(x
h, xk) exists between occlusion

group which is comprised of object xh and xj , ˆF t
att = F t

att(x
h, xk).

4 Experiments

4.1 Datasets

To better evaluate the capability of our method, We have our approach tested
on widely used PETS2009 benchmark provided by [15].
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The most challenges of this dataset is frequently occlusion caused by dynamic
pedestriansmovement.Wealso run experiments onmore challengedS2L2datasets,
which more pedestrian presents in the scene.

To achieve fair comparison score, we use the goundtruth provided by [15],
where all the person occurring in the scene have been annotated.

4.2 Metrics

To measure performance, the CLEAR MOT metrics [8] is adopted. The metrics
include: 1. Multiple Object Tracking Accuracy (MOTA, higher value is better)
returns a accuracy score; 2. Multiple Object Tracking Precision (MOTP, lower
value is better), which consider intersection union of bounding boxes; 3. Mostly
Tracker (MT) and 4. Mostly lost (ML). MT and ML is not used for our evaluation
for PETS2009 S2L2 dataset, because most of the methods in our comparison do
not provide such a value. The procedure provided by [9] is adopted, in which the
results will be re-evaluated by 2D matching protocol.

4.3 Experiment Settings

Performing tracking, Kalman filter is employed. The entire object state is defined
as {X ,Y,H,W, V X

t, V
Y

t}, where X ,Y is the position in X axis and Y axis
respectively, H,W is the height and width of xi, V X

t, V
Y

t is the velocity w.r.t
each axis. The noise of them are manually set as N (0, 10) and N (0, 5) respec
tively, Δt is the time between 2 consecutive frames.

The noises of them are both manually set as N (0, 10) and N (0, 5) respec-
tively. V X = V Y = 0 at the frame that tracker is initialized.

Similar to [12], DPM (Deformable Part based Model detector)[5] is utilized
to generate detection input. In additional, following the settings presented in
[16], the false positives of detection is removed by the size.

4.4 Results and Analysis

Figure 2 depicts our results for exemplar two consecutive frames. Table 1 illus-
trates the quantitative comparison of our method and state-of-the-art online
tracking approaches.

Table 1 compares the performance of the tracker on PETS2009 S2L1 dataset.
Utilizing scene knowledge, camera calibration for instance, makes the approach
of [12] outperforms to other methods, however, our approach performs favorably
compared to most of online trackers. Our novel occlusion handling improves the
capability to deal with occlusion of the tracker. For the tracking method employ
similar hierarchical data-association scheme [16], our occlusion handling makes
the tracker more robust. Thus, we achieve better MOTA score and significant
improved MOTP score.

Considering more challenged PETS2009 S2L2 sequences, our method pro-
vides better scores in both MOTA and MOTP than most of other approaches.
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Fig. 2. The experimental results of our method for exemplar two consecutive frames,
on PETS2009-S2L1 (the first and the second on the left) and PETS2009-S2L2 (the
first and the second on the right) respectively. Our method shows good capability to
handle occlusion. The details of experiments presents in Sect. 4.

Both datasets confirm that the proposed method are beneficial by employ-
ing occlusion handling method. Comparing with other methods only consider
appearance under occlusion [2,12,16], spatial-temporal information could be
more reliable. Furthermore, the experimental results suggest that, employing
scene knowledge [12] may lead to further improvement of tracking performance.

Table 1. Comparison of different online tracking methods.

PETS2009-
S2L1

MOTA
[%]

MOTP
[%]

MT [%] ML [%] PETS2009-
S2L2

MOTA
[%]

MOTP
[%]

Proposed
method

93.6 71.3 100.0 0.0 Proposed
method

68.2 60.7

Breitenstein
et al. [2]

79.7 56.3 - - Breitenstein
et al. [2]

50.0 56.3

Possegger
et al. [12]

98.1 80.5 100.0 0.0 Possegger
et al. [12]

66.0 64.8

Jianming
et al. [16]

93.4 68.2 100.0 0.0 Jianming
et al. [16]

66.7 58.6

5 Conclusion

A novel occlusion handling method based on attraction force is proposed.By
detailed analysis every possible situation would lead to attraction, occlusion
handling is performed in data-association level. The experimental results show
that our method could be comparable with, even better than state-of-the-art.
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Abstract. There has been a lot of research on automatic recognition of
Sign languages and is an effective means of transferring information for
Deaf and Hard of Hearing (HoH) community. Here we propose a system
for Indian Sign Language recognition, which uses Microsoft Kinect sen-
sor and Machine learning for effectively recognizing some signs used in
Indian Sign Language. Kinect generates the skeleton of a human body
and detects 20 joints in it. We use 11 out of 20 joints and extract 34
novel features per frame, based on distances and angles involving upper
body joints. These features are trained with a multi-class Support Vector
Machine achieving an accuracy of 100 % and 86.16 % on train and test
data respectively. Proposed system recognizes 37 signs in real time. The
data is used in the proposed system is generated by the Deaf and Hard
of Hearing (HoH) persons in our lab.

1 Introduction

Sign Language recognition has been a popular topic of research for some years
now. A sign is a form of non-verbal communication made with some part of
the body, mainly involving facial expressions and hand movements. Most people
use signs and body movements in addition to words when they speak. Sign
Language recognition can be seen as a way for computers to begin to understand
human body language. Sign recognition enables humans to communicate with
the machine and interact naturally without any mechanical devices. This can
be a promising medium for man-machine communication without any intrusive
mechanical device. The ability of Kinect, to capture scene depth information and
generate 3D skeletal data for body movements has made them highly popular
among researchers. The major use is in Sign language Recognition and Gesture
Recognition. The classifier used for recognition task is a multi-class Support
Vector Machine(SVM). It is basically a binary classifier but it can also be used
for multi-class problems. The SVM has been effectively used in many pattern
recognition applications.

Vast number of research has been done on the Sign Language Recognition
which is described in Sect. 2, Sect. 3 explains the proposed approach, Sect. 4
discusses the experimental results, and Sect. 5 concludes the work with a word
about the future direction of research.

c© Springer International Publishing Switzerland 2015
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2 Literature Review

In the past, human gesture recognition has been based on color image processing
as explained by Chua et al. [7]. For hand detection which is an essential compo-
nent for sign recognition, Bretzner et al. [6] and Pavlovic et al. [12] use color or
motion information. For these approaches tracking hand motion is non-trivial task
under challenging light conditions. Above methods worked with a single camera,
which may lead to self occlusion in subjects resulting in low performance. Further
research introduced multi-camera systems to solve occlusion. The attempt was to
track a particular body part as done by Madabhushi et al. [11] or to track the
joints as done by Ali et al. [4] and Uddin et al. [15].

Since the introduction of Kinect by Microsoft in 2010 and release of Kinect
SDK in 2011, lots of work is happening using Kinect sensor for gesture recog-
nition [2]. Depth information from kinect sensor is used by Biswas et al. [5] to
recognize signs in Japanese Sign Language (JSL). They use low level features
and achieve more than 90 % accuracy on 8 signs. Agarwal et al. [3] use Depth and
Motion profile for sign language recognition. Rajam et al. [13] and Ghotkar et al.
[10] have only hands gestures for alphabet recognition in Indian sign language.

With the introduction of skeleton tracking feature in kinect, research in ges-
ture recognition has received further boost. Zahoor et al. [17] used the kinect
sensor for educational games for deaf children. Recently, Saha et al. [14] use the
skeleton information for Indian Classical Dance Gesture recognition for classify-
ing 5 dance gestures. Also, Geetha et al. [9] and Agarwal et al. [3] are recognizing
10 Indian gestures using Kinect for words and numerals respectively. Compara-
tively, proposed approach has attempted to increase the number of gestures to
37 Indian langauge signs (for recognition).

The Kinect provides us with two type of output feeds i.e. Depth and Skeleton.
In case of depth information, it is always a challenge to separate the hands from
other body parts, if the hands are too close to the body, then it will not be
clear enough to segment the body parts. Also the depth information very much
depends on the illumination. In Skeleton Information, it tracks the skeleton of a
human standing in front of the camera at a finite distance. The skeleton gives us
20 joints in R

3,out of which we have used 11 joints in our approach. The Fig. 1c
shows the skeleton as detected by Kinect.

3 Proposed System

In this paper, we present our work for recognizing a set of commonly used 37
Non-Continuous Indian Signs as shown in Table 1. These signs depicts different
festivals, objects, cities, and are also part of Indian Sign Language, one of the
gestures for “computer” is shown in Fig. 2a. We have used 11 joints per frame
from 3-D Skeleton of the human, standing in front of kinect as shown in Fig. 2. We
have extracted the features from joints based on angles and distances. Support
Vector machine is trained for building the model out of these features. Finally,
SVM classifies the signs done by the presenter.
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(a) Kinect Sensor (b) RGB
Image from
Kinect

(c) Skele-
ton Im-
age from
Kinect

Fig. 1. Kinect sensor and its output components

Table 1. List of signs

Agra (City) Airport Bank Bengali (Language)

Christmas Cinema Computer Dhobi (Laundry person)

Diwali (Festival) Dosa (Food Dish) Farmer Film

Flute Ganpati (Hindu God) Guitar Holi (Festival)

Kite Leather Magnet Marathi (Language)

Milk Police Pune (City) Poster

Ramzan (Festival) Shooting Video Camera Shimla (City)

Urdu (Language) World Karate Pooja (Worship)

Buddha Poornima (Festival) Dhol (Drum) Mechanic Floppy

Tea

(a) Signer depicting Sign of “Computer” (b) Joints of Skeleton

Fig. 2. Gestures and joints
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3.1 Data Acquisition

The skeleton data from the Kinect SDK is extracted for each frame. To record
the sign, performer stands in front of kinect. Each sign starts by raising the
hands above hip level and ends once both hands are below hip level. In between
these actions, the sign is performed. Since only the co-ordinates of skeleton joints
are used, we store the co-ordinates given by Kinect SDK for feature extraction
discussed in Sect. 3.2.

Sign data is collected using kinect from 15 different users. Each user performs
a sign 5 times, thus a total of 2775 samples are collected. Further we divide the
data into train and test sets of 1943 and 832 samples respectively. The signs are
taken from FDMSE [1].

3.2 Feature Extraction

All the discussed 37 signs are done using upper body parts. So, we have only
considered 11 out of 20 joints (covers upper body parts) per frame for feature
extraction. The red dots in the skeleton in Fig. 3 shows these 11 joints which is
in R

3.

Fig. 3. Red joints used for feature extraction

In our approach, features are extracted from 11 different joints by calculating
angles and distances.

Joint Angle. The Joint Angle is an essential feature as all the signs listed above
are done primarily by hands and the angle changes a lot. We have calculated var-
ious such angles considering different joints. These angles are calculated between
3 joints on all 3 planes, making 3 features per joint angle. Also, when those joints
are considered which have both left and right joints as shown in Fig. 4, features
count goes to 6 per joint angle. Joint Angle can be calculated as described below:

A(x1,y1,z1), B(x2,y2,z2) and C(x3,y3,z3) are 3 joints for which we have to
calculate joint angle in XY plane.
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Step 1: Calculate Euclidean Distance between all three joints:

Dxy
1 =

√
(x2 − x1)2 + (y2 − y1)2 (1)

Dxy
2 =

√
(x3 − x2)2 + (y3 − y2)2 (2)

Dxy
3 =

√
(x3 − x1)2 + (y3 − y1)2 (3)

Similar distances can be calculated using Eqs. 1, 2 and 3 for YZ and XZ
plane.

Step 2: Calculating angle by using Law of Cosines which relates the lengths
of the sides of a triangle to the cosine of one of its angles:

α = arccos

(
(Dxy

1 )2 + (Dxy
2 )2 − (Dxy

3 )2

2 ∗ Dxy
1 ∗ Dxy

2

)
∗ 180

π
(4)

(a)
Angle
between
Shoulder-
Elbow-
Wrist
(left &
right)

(b) Angle
between
Elbow-
Shoulder-
Shoulder
Center
(left &
right)

(c)
Angle
between
Elbow-
Shoulder-
Hip (left
& right)

Fig. 4. Angle between joints

In Eq. 4, angle α on B made by A and C in XY plane. Similarly, we calculated
the angle β and γ in YZ and XZ plane respectively.

Following features are extracted via Joint Angle:

1. Shoulder-Elbow-Wrist: The angle is made on Elbow by Shoulder and Wrist
joints as shown in Fig. 4a. This angle is calculated for left and right and on
all the three planes making it 6 features.

2. Elbow-Shoulder-Shoulder Center: The angle is made on Shoulder by Elbow
and Shoulder Center joints as shown in Fig. 4b. Similarly, this angle is also
calculated for left and right and on all the three planes making it 6 features.
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3. Elbow-Shoulder-Hip: The angle is made on Shoulder by Elbow and Hip joints
as shown in Fig. 4c. This angle is too calculated for left and right both the
sides and on all the three planes making it as 6 features.

4. Wrist, Head and Shoulder Center: The angle is made on Head by Wrist and
Shoulder joints. This angle is calculated for left and right both the sides and
on all the three planes making it as 6 features.

Euclidean Distance. The distance between two joints varies for every gesture
and is different for different performers. The Euclidean Distance between Joint
A(x1,y1,z1) and B(x2,y2,z2) is

D =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (5)

Following features are extracted via Euclidean distance. The joint combina-
tions for calculating the distance using Eq. 5 are as follows:

1. Shoulder-Wrist: Distance between Shoulder and Wrist joints for left and right
as shown in Fig. 5a.

2. Elbow-Hip Center: Distance between Elbow and Hip center joints for left and
right as shown in Fig. 5b.

3. Elbow-Hip: Distance between Elbow and Hip joints for left and right.
4. Wrist-Hip: Distance between Wrist and Hip joints for left and right.
5. Ratio of Distances:

(a.) A ratio of distances between Wrist Left and Wrist Right to Shoulder
Center and Hip Center as shown in Fig. 5c.

(b.) A ratio of distances between Elbow Left and Elbow Right to Shoulder
Left and Shoulder Right as shown in Fig. 5d.

(a) Distance
between
Shoulder and
Wrist(left &
right)

(b) Distance
between El-
bow and Hip
Center

(c) Distance
between
Wrist Left
and Wrist
Right

(d) Elbow
to Shoulder
distance
ratio

Fig. 5. Distance between joints

Features like Ratio of Distances are calculated so that features are indepen-
dent of signer’s height. Thus, we have selected novel features, which uniquely
represents 37 signs considered in this paper.
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Total of 34 features are extracted per frame using above mentioned joint
angle and euclidean distances.

3.3 Classification

The data in the train sets was used to build the Support Vector machine model
[8], and data in the test sets was used to evaluate the performance of the classi-
fier. The SVM classifier aims to identify a handful of points called the support
vectors from the entire data-set which allow us to draw a linear or a non-linear
separating surface in the input space of the data-set. SVM models are typically
built with the help of kernel functions which allow us to transform the data
into n-dimensional space where a hyper plane can be easily constructed to par-
tition the data. We used RBF kernel with cross validation and grid search [16]
for selecting the best parameters value in checking the performance of SVM
classifier.

4 Experimental Results

For the purpose of our study, we collected signs data on our own as described
in Sect. 3.1. To demonstrate the experiment, a signer stands in front of the
kinect with his/her hands below hip level. Once the signer raises his/her hands
above hip level, 11 skeleton joints are collected for each frame and features are
extracted as described in Sect. 3.2. This continues till the signer’s both hands are
below hip level which signifies sign completion. Then feature vector is formed by
appending features recorded from each frame. This process is then repeated for
all 37 gestures, for all 15 users. Thus, making it a total of 2775 samples which
we divide into train and test sets of 1943 and 832 respectively.

Signer doing the signs can be of different heights, so we scale our data-set to
normalize in [0,1] range before feeding into the SVM.

Furthermore, we have empirically calculated a threshold of 70 frames as a
maximum limit for recording a sign, i.e. features are extracted only from the
first 70 frames whenever user raise his hands above the hip level till the hands
are below hip level. Data in the train set was trained using SVM to obtain
parameters which gave best performance. For best parameters of SVM, the test
set performance was 86.16 %.

5 Conclusion and Future Work

This is the first time that a system recognizes 37 Indian signs using Kinect
sensor. While extracting the 3D human skeleton, Kinect sensor is robust to
performer’s height, weight, and dress. Consequently, the proposed system also
shows robustness to the above variations. We have experimented with a minimal
set of features to distinguish between the given signs with practical accuracies.

Presently, we have worked on non-continuous gestures. For each sign, the
performer needs to lift his hands above the hips to start a sign and again bring
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them below the hips to end. The future scope of our work will be to recognize
continuous gestures. This will require non-trivial segmentation. Also, we aim
to extend our system to a wider set of practical gestures by adding advanced
features. Latest kinect sensor with more accurate and robust functioning will
push our work towards the said goals.
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Abstract. The minimally invasive aortic valve replacement procedure provides
a good alternative to conventional open heart surgery. Currently, Planning of the
mini-AVR is supported by the selection of closest intercostal space to the sin-
utubular junction manually. In this work, we automate and standardize this
planning by automatically detecting the intercostal spaces and the sinutubular
junction, from which we calculate the closest incision location. The proposed
algorithm provides qualitatively and quantitative accurate results; where the
sinutubular junction detection has mean error of 3.4 mm. This work has the
potential to be implemented in the clinical practice for reproducible and accurate
mini-AVR planning.

Keywords: CT angiography � Mini-AVR � Segmentation � Sinutubular
junction � Intercostal spaces

1 Introduction

Aortic stenosis is the most common form of valvular heart disease. Aortic stenosis
occurs mainly due to calcium accumulation on the aortic valve leaflets. Severe aortic
stenosis usually requires aortic valve replacement (AVR). During AVR the aortic valve
is replaced with a new prosthesis. The standard procedure to replace the aortic valve is
conventional open heart surgery (full sternotomy) [1]. Recently, minimally invasive
aortic valve replacement (mini-AVR) was introduced to reduce the recovery time after
the surgery and produce smaller scars in comparison with conventional open heart
surgery [2] (Fig. 1). Minimally invasive AVR has shown excellent results in terms of
mortality, morbidity, and patient satisfaction, providing less pain, faster recovery, and a
shorter hospital stay [3]. As intraoperative trans-esophageal echocardiography became
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the standard imaging modality to use during the procedure, 3D CTA has much to offer
in the preoperative planning and supports the decision making system.

Usage of 3D CTA is helpful in assessing the required measurements for the surgery
[4]. Preoperative evaluation is performed with the aid of CT angiography images,
assessing the amount of the calcification in the ascending aorta in addition for mea-
suring the closest distance between the sinutubular junction and the different intercostal
spaces as shown in Fig. 2.

Currently, these preoperative measures are performed manually, which makes it
prone to interobserver variation. Therefore we propose the usage of image analysis to
standardize and automate the preoperative planning. In this work, we introduce a fully
automated algorithm detecting the sinutubular junction, intercostal spaces, and finding
the closest intercostal space to propose the incision location. The accuracy of the
algorithm was assessed quantitatively and qualitatively.

2 Methods

To determine the closest intercostal space to the sinutubular junction, we automatically
extract the sinutubular junction, and 2nd, 3rd and 4th intercostal spaces. We imple-
mented the aortic root segmentation technique by Elattar et al. [5] to segment the
surface of the aortic root.

Fig. 1. Schematic figure showing open heart surgery (Left) Mini-AVR (Right)

Fig. 2. Reconstructed hyper plane shows the three intercostal spaces and the ascending aorta.
The three colored lines showing the three distances to the sinutubular junction
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The sinutubular junction is detected by performing the following steps: the
2segmented surface is converted to the polar domain for each slice of the shape and
perpendicular to centerline. The Fourier transform is applied on each slice’s radius. The
second and the third harmonic component of the radius function are extracted per slice
forming two 1D signals representing the contribution of the elliptical and the three
cusps shapes respectively. Subsequently, we applied the Laplacian operator on the ratio
of the third harmonic to the second harmonic contributions. Finally, the second local
maximum is extracted which corresponds to the sinutubular junction slice.

The intercostal spaces are detected based on these steps: the sternum is located
using thresholding and morphological operators resulting in a set of seed points, which
are used to apply a region growing extracting only the bone marrow of the sternum.
The resulted volume is dilated, and subsequently the surface of the dilated volume is
used to generate a multi-planar reconstructed image.

Figure 3 shows the reconstructed images which intersect with the cross sections
of the ribs cartilages. K-means clustering is used to segment each cartilage cross
section appearing in the formed reconstructed image. Finally, the centroids of the
segmented cartilages clusters are calculated from which the intercostal spaces are
estimated.

The distance between the 2nd, 3rd and 4th intercostal space and the sinutubular
junction of the aortic root was calculated and the minimum distance was presented.

Fig. 3. Sagittal view for the sternum with located seed points and the binary region growing
result is shown (upper) coronal view for the sternum and the cartilages cross section image is
shown on both sides with detected centroids in red and intercostal spaces in green (Bottom)
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The evaluation of the detection of the intercostal spaces was done visually by
giving a score of Good, Bad, or Reject for each detected intercostal space. The sinu-
tubular junction detection error was evaluated by measuring the 3D Euclidean distance
between the center of the detected sinutubular junction contour and the manual
annotated contour center.

3 Results

The developed algorithms were applied on 20 severe aortic stenosis patients for
validation purposes. The sternum has been detected successfully in 19 patients. The
intercostal spaces were extracted successfully in 18 out of 19 patient datasets.
Visual inspection of the detected intercostal spaces showed high accuracy. The
sinutubular junction was detected successfully in the 20 patient datasets with mean
error of 3.4 ± 2.4 mm; where the error between observers was 1.9 ± 1.0 mm
(Table 1).

4 Discussion

We present a fully automatic algorithm detecting the sinutubular junction, the three
intercostal spaces on both sternum sides which were used for calculating their distances
to present the optimal incision location. The proposed algorithm showed quantitatively
good accuracy for sinutubular junction detection. The visual assessment of the inter-
costal spaces showed good accuracy as well. Sternum detection failed in a single case
because of high levels of noise in this image data. Another case suffered from
incomplete volume of interest which led to incorrect detection of intercostal spaces.
Further quantitative analysis and validation for the detection of the sinutubular junction
is in progress.

5 Conclusion

In this work, we proposed an automated method, which is composed of two techniques
to extract the sinutubular junction and the intercostal spaces to evaluate the minimum
distance for optimal ascending aorta access. The whole workflow was evaluated and
showed good accuracy. We believe that this is the first solution to be developed. This
work has the potential to be implemented in the clinical practice tool for supporting
mini-AVR planning.

Table 1. Accuracy of the sinutubular junction detection for the proposed technique and the
interobserver analysis.

Sinutubular junction detection Mean Median STD

Proposed algorithm 3.4 mm 2.6 mm 2.4 mm
Interobserver variation 1.9 mm 2.8 mm 1.0 mm
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