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    Chapter 29   
 Beyond Current HIMS: Future Visions 
and a Roadmap       

       James     Fackler     

29.1             Introduction 

 This chapter explores a future vision for technologically supported healthcare 
beyond where current health information management systems (HIMS) have taken 
us. This vision is informed from over three decades of experience as a Pediatric 
Intensivist working in academic medical centers; as well as being a Medical 
Informatician engaged for the past 20 years in system design for a major EHR 
 vendor and multiple consulting roles for smaller niche and start-up health informa-
tion technology (HIT) companies. Based on these experiences and supported by the 
HIT literature [ 1 ] and health policy bodies [ 2 ], I believe:

    1.    The current health care system is not safe,   
   2.    The billions of dollars spent designing, testing, and implementing HIMSs have 

been spent instantiating the same workfl ows that created the unsafe current 
health care system.   

   3.    It is not just unlikely, but rather  impossible , that current HIMSs can improve the 
value of care delivered.   

   4.    The primary way HIMS can improve the value of care delivered [ 3 ] is by improv-
ing the clinical decisions leading to an improvement in patient outcomes.    

  The cliché that insanity is repeatedly doing the same processes but expecting 
different results is quite relevant here. Thus, this chapter describes a signifi cant 
deviation from the United States healthcare industry’s current HIMS strategy built 
as it is upon a few monolithic electronic health record (EHR) vendors with the 
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inherent limitations associated with  monolithic size. Instead, what is envisioned 
here is an altogether different  technology support road that has been started by 
 others and importantly, presents solutions built on twenty-fi rst century technologies. 
Three more predicates will guide this new journey:

    1.    Current HIMSs can play a valuable role in the data collection process.   
   2.    The data collected by these HIMSs must be augmented with data not now 

 routinely captured in HIMSs.   
   3.    The data collected by these HIMSs must then be made accessible to vendor- 

agnostic patient-centric applications.      

29.2     The Imperative for Clinical Decision Support Begun 
by Others… 

 Two meta-analyses reviews on clinical decision support (CDS) systems, published 
independently in 2005, concluded that for a CDS to be effective, the system must be 
automated [ 4 ] and must interrupt workfl ow [ 5 ]. Pushing these two points to their logi-
cal extensions, for technology to support our clinical decisions, there must be a tight 
coupling of the clinician and the computer. There must be more than good human 
computer interfaces; there must be human-computer symbiosis. In 1960 (yes, 55 years 
ago), JCR Licklider, a psychologist and pioneer in computer science coined the con-
cept of “man-computer symbioses” [ 6 ], noting that while none existed in 1960:

  The hope is that, in not too many years, human brains and computing machines will be 
coupled together very tightly, and that the resulting partnership will think as no human brain 
has ever thought and process data in a way not approached by the information-handling 
machines we know today. [ 6 ] 

   Licklider’s vision of the tight coupling of man and computers is closer to being 
realized, but not yet a reality. We may be on the threshold of Licklider’s vision, if 
the opinions of Kurzweil [ 6 ] and others predicting the “singularity” state – the time 
when there will be no distinction between human and machine – are correct. It 
would be a fair bet that clinicians in their early 1940s have a good chance of making 
clinical decisions in a setting of true human-computer symbiosis.  

29.3     Decision Support … 

 Looking at what’s involved in decision support must begin with a discussion of 
what decisions clinicians make, how those decisions are made, and how the deci-
sions are best supported. Broad, often excellent, theoretical guidance is published 
on clinical decisions [ 7 ], but again little guidance is available in the literature cata-
loging the decisions clinicians actually make. A 2010 study of ten faculty pediatric 
cardiologists found that each physician made close to 160 decisions per day, and of 
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these, 80 % were made without any basis in published data [ 9 ]. The authors further 
reported that fewer than 3 % of decisions were based on a study relevant to the spe-
cifi c decision [ 8 ]. Even less guidance in the form of evidence-based data is available 
to entrepreneurs and developers of clinical decision support systems in terms of 
pointing to which decisions  should  be supported. 

 The best place to start deciding where to start should follow from the work of 
Daniel Kahneman whose book “Thinking, Fast and Slow” should be required read-
ing for any developer of future clinical decision support applications [ 9 ]. Kahneman 
suggests a dichotomy between System One (fast) thinking and System Two (slow) 
thinking. System One operates automatically and quickly with little or no effort and 
no sense of voluntary control. In contrast, System Two allocates attention to the 
effortful mental activities that demand it, including complex computations or in a 
clinical context, puzzling through a complicated patient. 

 At the bedside, a System One decision is often what is euphemistically called 
“the art of medicine” but is better recognized as intuition. Gary Klein has long stud-
ied intuition in experts [ 10 ] lauding the expert’s pattern recognition capabilities. 
Again, pattern recognition is a core cognitive task and senior physicians perform 
better than do junior physicians [ 11 ,  12 ]. However, given that the vast majority of 
clinical decisions are based on precious little data and the most senior clinicians do 
not often make these decisions, it begs the question whether CDS can support the 
System One, intuition-based pattern recognition decisions. The answer is – yes; but 
few such solutions, even as prototypes exist [ 13 ]. The reader is referred to a recent 
review on the subject of supervised classifi ers that may have applicability to medi-
cal diagnosis [ 14 ]. 

 The operations of System Two are often associated with the subjective experi-
ences of choice and concentration. The highly diverse operations of System Two 
have one feature in common: they require attention and are disrupted when attention 
is drawn away. In the medical context, System Two decisions are those that demand 
thought, often because a well-established pattern is not recognized and even partial 
patterns are not obvious or are confl icting. Data may be missing, wrong, and/or are 
confl icting. Rarely, is there time in a busy clinical environment to engage System 
Two thinking. While there are strengths and weaknesses associated with System 
One and System Two thinking, both used at the right times, are crucial for optimal 
patient care [ 15 ]. IT support of the clinical decisions will differ depending on which 
System is being supported. 

 At the most fundamental level, CDS should help protect clinicians, and the 
patients they serve, from cognitive biases. The formal study of cognitive biases was 
launched in 1974 by Amos Tversky and Daniel Kahneman [ 16 ]. Although there are 
a number of excellent references in the medical literature describing cognitive 
biases [ 17 – 20 ], a better place for CDS developers to start deciding which apps to 
build is with a crosswalk of an anti-bias checklist proposed for business decisions 
[ 21 ] into medical decisions. Twelve bias checks are proposed (e.g. check for group-
think, check for saliency bias, check for availability bias – which is also called, 
below, WYSIATI). Whether deciding to build a new manufacturing facility or 
whether to initiate an invasive surgery for cancer, the decision should seek  dissenting 

29 Beyond Current HIMS: Future Visions and a Roadmap



496

opinions (to avoid groupthink), be certain the recommendation is based on more 
than the memory of a recent success (to avoid saliency bias) and be certain there 
isn’t a better option not yet considered (to avoid availability bias). CDS developers 
will do well focusing on as many of the twelve categories of bias as outlined by 
Kahneman, and his colleagues as is possible.  

29.4     Getting the Data in … 

 Although it sounds too mundane an issue for a discussion of future HIMS systems, 
accuracy of the clinical documentation by nurses, physicians and other team mem-
bers is an under appreciated problem. The cliché of garbage in – garbage out (GIGO) 
continues to be a major contributor to unsafe systems and renders clinical decision 
support ineffective, or worse, dangerous. If we are to improve outcomes, we cannot 
do so if the primary data that clinicians use for their decisions are wrong. Yes, the 
electronic data are legible, they can be graphed and used in calculations, but unfor-
tunately, all too often the data are erroneous due to omissions, incorrect readings, or 
disparities between human and medical device readings. Finding evidence for prob-
lems with nursing documentation is not hard. One notable study reported on a qual-
ity improvement effort in an Italian emergency department and found that triage 
vital signs were missing in acutely ill trauma victims 10 % of the time even  after  
their quality improvement intervention [ 22 ]. Mentioning this is not to suggest these 
adults received poor care – but it does mean as decision support solutions are cre-
ated with triage vital signs (to, for example, focus the attention of clinicians in a 
busy environment) that trauma victims might be inappropriately classifi ed by the 
decision support solution and then these patients might be harmed. Another small 
survey of trauma resuscitation documentation with a HIMS showed that serial vital 
signs were not documented a quarter of the time and fully half of the time the 
Glasgow coma scale and the fl uid input-output data were missing [ 23 ]. Imagine try-
ing to create a decision support solution for trauma resuscitation without input- 
output data! However, at this time, HIMSs fl ow sheets will always be necessary for 
clinicians to input relevant data that cannot be captured automatically. Level of con-
sciousness, Glasgow coma scale, and capillary refi ll are extremely important param-
eters that machines cannot, yet, accurately acquire. The workfl ow for clinicians 
(e.g. with voice-based data input) must be augmented and routine use of data error 
checking routines should be incorporated. HIMSs should prohibit entry of biologi-
cally impossible data (e.g. a weight of 874 kg when 87.4 is correct) as well as 
“implausible” data (e.g. a weight of 87.4 lbs when the patient’s most recent weight 
was 87.4 kg). These implausible data elements should be based not on population 
norms for healthy people, but based on that specifi c, individual patient’s norms and 
that person’s trends as one would expect to fi nd in a patient-centric system. 

 Another category of error occurs when other sources of data that are available are 
just wasted. For example, clinicians periodically do record heart rate – at shorter 
time intervals when physiological instability demands. Often, EMRs interface with 
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the physiological monitors and some therapeutic devices to automate data entry into 
the HIMS system. Doing so requires use of Medical Device Data Systems (MDDS) 
and these “middle-ware” solutions have well-established regulatory [ 24 ] require-
ments and are commercial availability from a number of vendors. MDDS interface 
with existing bedside medical devices and offer the clinician a time-stamped value 
for them to verify and then store in the HIMSs data tables. Because, for example, 
the electrocardiogram (ECG) is routinely available as a 240 Hz waveform signal, 
even verifying and recording the data every 5 min (as is done routinely in by anes-
thesiologists) means that almost one million data points are lost per patient per hour 
for just this one signal. That there is value in this single example of wasted data is 
evidenced by heart rate variability (HRV) analysis and its proposed ability to predict 
disparate conditions like extubation readiness [ 25 ] and subarachnoid hemorrhage 
[ 26 ]. HRV analysis has been shown in a randomized controlled trial to allow early 
detection of sepsis in low-birth-weight newborns and that with early detection new-
born lives are saved [ 27 ]. 

 It is important to dig a bit deeper into the challenges of manual data entry biases 
and the waste of high-fi delity data. A detailed look into the MIMIC II (Multiparameter 
Intelligent Monitoring in Intensive Care) database work by Hug and Clifford (2007) 
is in order [ 28 ,  29 ]. Best described on the PhysioNet website (  http://www.physio-
net.org/    ), the MIMIC-II research database has three defi ning major characteristics: 
it is publicly and freely available; it encompasses a diverse and very large popula-
tion of [mostly adult] ICU patients; and it contains high temporal resolution data 
including lab results, electronic documentation, and bedside monitor trends and 
waveforms. Developers should also note that because it is built on open source, it 
allows volunteers to continuously build, refi ne and share data management and 
analysis apps. Hug and Clifford (2007) fi rst wanted to determine if the electrocar-
diogram, systemic arterial blood pressure, and systemic oxygen plethysmography 
waveform data recorded outside the HIMS (from automated downloads from the 
physiological monitors) differed from the nursing documented data in the EHR 
[ 28 ]. After developing a fi ltering algorithm to reject some artifacts, Hug and Clifford 
found that the monitoring and vital sign data automatically captured as compared to 
nurse-captured recordings differed not just statistically, but also differed by clini-
cally signifi cant ranges. For example, they found that the least error for each of the 
four measurements studied occurred on Wednesdays, the highest error rate occurred 
on Fridays, and errors were most prevalent on the weekend. Diurnal differences 
were seen as well. And signifi cantly, they detected a signifi cant variation in errors 
(mean and variance) between data entered by clinicians who logged in anonymously 
(not now allowed in most mainstream EMRs) compared to those clinicians who 
were logged in appropriately [ 28 ]. 

 In their follow-up paper, Hug and colleagues (2011) analyzed MIMIC II records 
with both nursing documented data and the automatically captured waveform data 
not available with the EHR in their 2007 study [ 29 ]. For each patient they deter-
mined baseline states and then used either the EHR data or the waveform data in an 
algorithm to predict hypotension. Again in short, the automated data fi ltered out 
major artifacts and better predicted episodes of hypotension. Thus, it is not just 
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interesting that there is variability in the quality of EHR data rather the data quality 
has potential patient outcome effects. Assuming others confi rm these investigator’s 
fi ndings, there are crucial ramifi cations for restructuring documentation workfl ows 
in all areas using continuous vital sign monitors. The takeaway from this research, 
suggests that clinicians should be viewed as “annotators” of these continuous 
 waveforms rather than arbiter of “truth”.  

29.5     Federal Drug Administration and Medical Devices 
Regulation 

 The above discussion on reliable vital sign capture and recording has comingled two 
critically distinct regulatory issues. The issue of how to obtain device data (e.g. physi-
ological monitor data and/or therapeutic device data) via an automatic interface for 
clinician validation and storage within an EHR is regulated as Medical Device Data 
Systems (MDDS). However, the issue of how to obtain and use the “raw” data from 
monitors and devices in clinical decision support solutions is not as cleanly described. 

 In 2011, the Federal Drug Administration (FDA) fi nalized a rule describing 
MDDSs stating:

  Medical Device Data Systems (MDDS) are hardware or software products that transfer, store, 
convert formats, and display medical device data. An MDDS does not modify the data or 
modify the display of the data, and it does not by itself control the functions or parameters of 
any other medical device. MDDS are not intended to be used for active patient monitoring. [ 24 ] 

   This MDDS rule does not cover the routine use of fi ltering algorithms and hypo-
tension prediction as illustrated above in the MIMIC II work of Hug and Clifford. The 
FDA has issued the Food and Drug Administration Safety and Innovation (FDASIA) 
Health IT Report and delayed a defi nitive position on the regulation of clinical deci-
sion support systems [ 30 ]. The report clearly implied a hands-off approach as long as 
any recommendations passed from a CDS go to a “learned intermediary”, meaning 
any clinician who assumes responsibility for any actions taken [ 31 ]. The regulation of 
an artifact-fi ltering algorithm used by Hug et al. [ 29 ] and any closed-loop CDS solu-
tions will likely be regulated as are current medical devices [ 31 ]. 

 Finally, were all these issues not enough as problems in need of solutions in 
future HIMSs, actually getting the data acquired remains a challenge. A diatribe 
asking why consumer electronics are increasing often “plug-and-play” whereas 
medical devices wallow in a proprietary morass has been done many times by every 
clinician. As of this writing, there are two well-organized and funded efforts to bring 
true plug-and-play to medical devices. Most long standing is the Medical Device 
Plug-and-Play effort spearheaded by Julian Goldman [ 32 ,  33 ]. Work is in part 
focused on an integrated data environment [ 33 ] and dissemination of practical lan-
guage for health care organizations to use during request for proposals and contract-
ing that would demand vendors support plug-and-play. West Health is also expending 
substantial effort in the domain of interoperability (see:   http://www.westhealth.org/
initiative/our-research    ). 
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 So far, the discussion of getting the data in has focused solely on the data 
 collected by clinicians (largely nurses) using standard clinical parameters often 
facilitated with standard medical equipment. However, there is also a massive 
untapped trove of data streaming from consumer products. Connected pedometers, 
scales, pulse oximeters, sphygmomanometers are mainstream consumer devices 
and are becoming far more common. Location tracking coupled with environmental 
data and consumer-grade air quality monitors will add previously unavailable data 
(and might, for example, be useful in an asthma CDS solution). Consumer focused 
genetic data is also available and although not without problems [ 34 ], has broader 
acceptance than might be guessed [ 35 ]. The “Quantifi ed Self” movement has a 
devoted but still rather small community (see an excellent discussion in the context 
of a broader vision of the future [ 36 ]). Consumers are putting substantial effort into 
data acquisition, visualization, and analysis. There is some data suggesting the use 
of consumer device data can improve outcomes [ 37 ]. Skepticism should remain 
high as these early successful reports emerge; the Hawthorne effect can be powerful 
[ 38 ]. However, it seems likely that as sensors improve and become more smoothly 
incorporated into normal consumer workfl ow (e.g. by being built into clothing or, 
maybe, watches) that data quality and availability will improve. Consumer electron-
ics companies, fi tness clothing companies and a wide array of startup companies are 
pushing efforts in this area. HIMSs companies are noticeably absent in this arena, 
again, making the integration of consumer-generated data with HIMSs data ripe for 
creation of patient-centric applications that are HIMS vendor agnostic. 

 Somewhat more established is the use of patient entered data; and “more estab-
lished” still means efforts less than 10 years old. Consumers have been sharing 
health stories for millennia if only at the level of chicken soup, garlic necklaces etc. 
But in early 2006, the social website,  PatientsLikeMe,  opened to the public (  http://
www.patientslikeme.com/    ). There are hundreds of other such consumer-focused 
sites but  PatientsLikeMe  has shown some extraordinary successes. From their web-
site, they have about 300,000 members who are recording health data for more than 
2,300 conditions and have accumulated 25 million data points [ 39 ]. Most extraordi-
nary, if “patientslikeme” is used as a PubMed search term, 46 articles are retrieved. 
This link between research and social media dynamic is illustrated by this example 
of lithium and Amyotrophic Lateral Sclerosis patients (ALS). An early (2007) arti-
cle focused on the story behind an early success understanding on the use of lithium 
for suppression of symptoms of ALS [ 40 ]. In brief, a randomized trial of 44 patients 
with ALS followed a cohort of 16 who were treated with lithium [ 41 ]. No disease 
progression was reported in this small sized, ALS patient study population when it 
was published in February 2008. Before then, however, the data had been presented 
in a conference format and was picked up by the  PatientsLikeMe  social-media com-
munity. Working with the investigators from the report, around the time the article 
was publically released, 116 patients with ALS were already reporting their symp-
toms within  PatientsLikeMe  while taking doses of lithium much like those reported 
at the conference. Thereafter, a complete analysis of the  PatientsLikeMe  data was 
done based on a dataset fi nalized in February 2010, when 149 patients were eligible 
for analysis having taken lithium for a part of a year and 78 patients who took 
 lithium for a full year. In short, the analysis showed lithium had no effect on the 
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progression of ALS (albeit with a low side effect profi le) [ 42 ]. In an extraordinary 
waste of resources, a larger randomized controlled trial enrolled patients between 
2009 and 2011 and showed the same result as the completely patient entered data 
from the  PatientsLikeMe  analysis. This randomized clinical trial was published in 
2013 [ 43 ]. An accompanying editorial [ 44 ] simply dismissing the patient entered 
data analysis should itself be dismissed [ 45 ]. To bring this discussion back to point 
from which it was launched, HIMSs of the future must better acquire accurate data 
that effectively tells the patient story. But HIMSs must also morph to accommodate 
this massive consumer-patient data treasure.  

29.6     The Future Roadmap Builds on Twenty-First Century 
Technologies for Vendor-Agnostic Patient-Centric 
Applications… 

 If there is a single message readers should take from this chapter it is this: the future 
of health care information technology is in the dissemination of applications (or 
“apps”) in a fashion completely analogous to the Android and iOS platform devices. 
These apps may be as “simple” as gathering data from worn sensors or as “compli-
cated” as combining diagnostic, laboratory, and device data into specifi c clinical 
recommendations – even to the point of passing closed-loop instructions to thera-
peutic devices. Building these apps will require the same entrepreneurial passion 
and follow through that has gone, and continues to go, into the Angry-Birds-like 
enterprises. Health care apps, however, must be built with the experience of sea-
soned clinicians who have the odd combination of out-of-the-box thinking who can 
entertain the “impossible”, coupled with a 20-something developer partner but with 
the clinicians’ wisdom to keep the programmer out of clinical trouble. 

 This concept of the dissemination of apps in a fashion completely analogous to 
the Android and iOS platform devices for healthcare was fi rst proposed by Ken 
Mandl and Zak Kohane in an 2009 opinion piece in the New England Journal of 
Medicine [ 46 ]. In that article, Mandl and Kohane wrote:

  As we seek to design a [HIM] system that will constantly evolve and encourage innovation, 
we can glean lessons from large-scale information-technology successes in other fi elds. An 
essential fi rst lesson is that ideally, system components should be not only interoperable but 
also substitutable. The Apple iPhone, for example, uses a software platform with a pub-
lished interface that allows software developers outside Apple to create applications. 

   Pushing further in a 2012 opinion piece, aptly titled, “Escaping the EHR 
Trap – The Future of Health IT” [ 47 ], Mandl and Kohane urge Health IT vendors 
to adopt modern technologies wherever possible, and argue that “…” Incentive 
Programs should not be held hostage to EHRs that reduce…effi ciency and stran-
gle  innovation. New companies will offer bundled, best-of-breed, interoperable, 
substitutable technologies…that can be optimized for use in health care 
 improvement. Properly nurtured, these products will rapidly reach the market, 
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effectively addressing the goals of ‘meaningful use’, signaling the post-EHR era, 
and returning to the innovative spirit of EHR pioneers. 

 What has emerged from Mandl and Kohane’s concepts is the SMART Platform 
[ 48 ] illustrated in Fig.  29.1 . A SMART platform enabled HIMS (because, yes, this 
does describe a post-EHR Health Information Management System) is built on a 
data container. Writing in 2012, Mandl and colleagues [ 45 ] refl ected that the 
SMART data models were still very much a work in progress and limited in scope. 
The authors further explained that the goal of their data modeling work is not to 
provide a detailed model for every possible aspect of a patient’s medical history; but 
rather, to provide highly consistent views for the most common data elements. 
Because the SMART data models are freely available, this foundational work is 
accessible to other innovators as well. The SMART model is evolving and now 
incorporates the Fast Healthcare Interoperability Resources within the Health Level 
Seven standards organization (or HL7 FHIR pronounced “fi re” [ 49 ]). As shown in 
Fig.  29.1 , the application program interface (API) also now leverages FHIR. Most 
remarkable is, within this platform, the wise clinician and 20-something developer 
dyad can create apps and place them in a public exchange. Local organizations 
(e.g. hospitals, group practices, payers) can vet applications and then individuals 

  Fig. 29.1    The SMART Platform. Central to the success of the SMART platform is the SMART 
API that delivers to developers a consistent way to acquire data (from the Container) upon which 
CDS apps can be built. See text for further details (Reproduced from Mandl et al. [ 48 ], with per-
mission of Oxford University Press and the authors)       
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(clinicians and/or consumers) can further decide which apps to use. Today, SMART 
enabled applications are being used clinically and in environments beyond those of 
the original developers [ 50 ,  51 ].

29.7        Using Humans to the Best of Their Ability … 

 So now that more and better data is into a vendor-neutral patient-centric platform so 
the wise clinician/20-something developer dyad can build and disseminate apps, 
what should they build? According to Licklider, the answer lies in what he called the 
“man-computer symbiosis” and, therefore, demands an understating of what 
humans do best. Humans are masters of pattern recognition. In a cognitive task 
analysis focused on critical care physicians, Fackler and colleagues (2009) identi-
fi ed fi ve broad categories of cognitive activities: pattern recognition; uncertainty 
management; strategic vs. tactical thinking; team coordination and maintenance of 
common ground; and, creation and transfer of meaning through stories [ 35 ]. Pattern 
recognition is, however, the prime task after which all other cognitive tasks follow. 
Additionally, the authors found that while many members of a critical care team 
used the term ‘pattern’, most physicians could neither defi ne what they meant by 
‘patterns’ nor give specifi c examples of a ‘pattern’. Regardless that clinicians could 
not be explicit about just what a pattern is, the cognitive task analysis, however, 
found that pattern recognition did happen in two forms. One pattern was of a com-
plete ‘template’. Asthma is one such complete template based on a minimal history, 
appearance and breath sounds. A typical template of severe asthma includes the 
constellation of cues of a patient who is in an upright position, sweaty, speaking in 
one word answers, exhibiting labored breathing and attentive to his or her own 
breathing. However, such ‘classic’ complete templates are uncommon. 

 The second but distinct cognitive task is the real-time merging of pattern frag-
ments (also called ‘packets’) into unique (patient specifi c) templates. Observed more 
frequently than identifying a complete template, these packets are recognized as cues 
that are postulated to be related. It is only through a fl exible and dynamic integration 
of these packets that a complete (or a more complete, but still, partial) template can 
be created. These templates are context specifi c. The cue of systolic blood pressure 
of 80/40 mmHg is quite different in a patient with respiratory failure than in a patient 
with renal failure, chronic hypertension and altered mental status. Two other cogni-
tive themes from our research [ 11 ] are also related and will tie into the decision sup-
port discussion below. Critical care clinicians may be uncertain, for example, about 
missing or possibly erroneous laboratory values. They may be uncertain if a patient’s 
symptoms do, or do not fi t a complete pattern or even partial template. What is often 
lost in all these discussions, however, is that regardless of this uncertainty, decisions 
are made, actions are taken, and outcomes may then be equally as uncertain. 

 Finally, inter-clinician communication is built on pattern recognition but in our 
study the cognitive theme was identifi ed as creation and use of stories. The term ‘story’ 
was used explicitly during rounds as senior clinicians often ask, “What’s the patient’s 
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story?” Reference was also made to the patient’s ‘picture’. Despite differences in ter-
minology, the observational and interview data suggest a common cognitive activity 
that is closely related to patterns. In both settings, health care teams develop a frame-
work of causal connections and a central theme that tied the various packets of patient 
data (medical history, test results, etc.) together in a meaningful way.  

29.8     Using Machines to the Best of Their Ability … 

 So in the man-computer symbiosis, if man is a pattern recognition master, what in a 
man-computer symbiotic relationship should be the role of computer? In brief, the 
computer should be a bias-fi ghter. Pulling again from Kahneman’s book [ 9 ], the 
bias best initially tackled by computers is the “What You See Is All There Is” (or 
WYSIATI, also called as mentioned above, “the availability bias” [ 21 ]). This par-
ticular bias is easily understood as its defi nition is nicely described in its name. It’s 
equally relevant in what Donald Rumsfeld so famously called “unknown unknowns” 
or, “you can’t know what you’ve not seen and you don’t even know what you’re 
missing”. Croskerry (2013) provides an excellent critique of cognitive bias in clini-
cal decision making [ 52 ]; and Hough (2013) extends this topic to examine irratio-
nality in decision making throughout our healthcare systems [ 53 ]. Again, the reader 
is referred to the checklist of Kahneman and his colleagues [ 21 ].  

29.9     Advances in Computer Science and Artifi cial Intelligent 
Machines … 

 As of this writing (and within my WYSIATI bias) the best potential vendor-agnostic 
patient-centric decision support solution is exemplifi ed by Watson from IBM. Watson 
became famous in 2011 when the system crushed the two reigning human champi-
ons in  Jeopardy! . Watson uses a combination of mathematical and computer science 
techniques applied to massive amounts of unstructured facts. Watson parsed clues 
of puns and slang and most importantly ranked the confi dence of potential answers. 
Watson meets Licklider’s man-computer symbiosis as it is described on the IBM 
website (see   http://www.ibm.com/smarterplanet/us/en/ibmwatson/    ) as being “a 
cognitive system that enables a new partnership between people and computers that 
enhances and scales human expertise.” When Watson approaches a question, 
“Watson relies on hypothesis generation and evaluation to rapidly parse relevant 
evidence and evaluate responses from disparate data.” Again, because Watson is 
handling natural language and most its available data is unstructured text (think 
textbooks and the medical literature), vast tracks of what to any human is an 
unknown then become available. Further (and again quoting from the IBM website 
above), “Through repeated use, Watson literally gets smarter by tracking feedback 
from its users and learning from both successes and failures. Watson ‘gets smarter’ 
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in three ways: by being taught by its users, by learning from prior interactions, and 
by being presented with new information.” 

 The two frames in Fig.  29.2  shows a hypothetical encounter between an expert 
clinician and Watson for Oncology symbiotic dyad as treatment options are opti-
mized after a diagnosis has been established. Watson for Oncology offers case 
information, test options, and treatment options. This example shows both the 

  Fig. 29.2    Two screen shots from Watson Oncology. Watson summarizes the EMR data and then 
suggests the best treatment option based on a diagnosis made solely by the clinicians. Watson is 
then able to display the available supporting literature including local expert knowledge and patient 
preferences (Reproduced with permission of IBM)       
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power of Watson, but also the crucial role of the expert clinician. To be purposely 
redundant, this must be a symbiotic interaction.

   Watson presents the clinical facts as it knows them. These data may come from 
patient entered data, specifi c EMR data fi elds (e.g. age and smoking history) and/or 
from natural language processed clinical notes. As discussed elsewhere in this chap-
ter these data may be right, wrong, and/or incomplete. The expert clinician must 
always be cognizant the primary data may be wrong making to avoid the bias of 
premature closure. Said differently the expert clinician must repeatedly question the 
primary diagnosis. 

 In the second frame Watson for Oncology suggests potential treatment plans 
(along with the hyperlinks to the data and literature supporting the recommenda-
tions). Patient preferences can be incorporated into the treatment plan decisions. Yet 
again, in the symbiotic relationship between the clinician and the computer, it is the 
human that that will help the patient balance the options. 

 However, it is important to again emphasize all the work shown in the above 
example is done to optimize treatment and is not at all focused on the much harder 
problem of making the correct diagnosis. Diagnostic decision support has long been 
a focus of clinical informatics [ 54 ] but after 40 years of work diagnostic decision 
support systems remain poorly penetrated [ 55 ]. While integration of available data 
is certainly a problem, even more problematic is the inability of current systems to 
integrate into the workfl ow [ 56 ]. Said differently, the current diagnostic support 
systems do not operate in a symbiotic relationship. 

 Further, although focus on therapy for cancer is laudable and will undoubt-
edly contribute to adherence to both application of best therapies as well as to 
patient personalization, there are far more complex problems the approach 
Watson embodies has the potential to revolutionize. Actually assisting the expert 
clinician make the diagnosis would yield far more benefi t. In only the domain of 
pediatric critical care, children arrive with a wide array of critical illness that are 
beyond the full understanding of even the most seasoned clinician [ 57 ]. Tests 
and procedures are done based on precious little data [ 58 ]. Diagnostic errors are 
signifi cant [ 59 ]. 

 One need only morph the frames in Fig.  29.2  to imaging the workfl ow associ-
ated with a CDS solution assisting clinicians with diagnostic precision. (And the 
use of the word “only” in this last sentence is not to trivialize the computer science 
and engineering necessary.) This CDS solution would fi rst pull data from the 
EMR and present the available data. Before moving from a case overview work-
fl ow to recommendations for testing workfl ow, many interactions of questions 
might be necessary. It is the clinician’s role to elicit symptoms and work with the 
CDS to create as complete a pattern as is possible. As new data becomes available, 
CDS might assigns new confi dences to each potential diagnosis. The CDS solu-
tion might “ask” for specifi c data elements if the solution learns its diagnostic 
model confi dences would be enhanced with additional specifi c data elements. As 
more data becomes available, (e.g. family history and a patient’s past medical his-
tory) even if no new diagnoses become relevant the confi dences the CDS assigns 
to each diagnosis might fl uctuate. With the addition of medication data, side 
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effects and drug-drug interactions can be added to the problem list. To an 
 experienced clinician even a to rather obvious diagnosis, the CDS has the poten-
tial to add diet and life style counseling and/or medication changes to minimize 
side effects. To be purposefully redundant, in the man-computer symbiosis, will 
let the clinician be the human touch, the translator of the computer generated con-
fi dences, and the overall pattern recognition guru and let the computer make 
unknown unknowns, known. Again quite cognizant of WYSIATI, there is only 
one reference to Watson within PubMed [ 60 ] and is primarily a descriptive manu-
script of work within oncology. 

 The title of this chapter includes the phrase “a Roadmap”. It is not hyperbole to 
suggest that opportunities are endless for the wise-clinician/developer dyad to 
improve patient outcomes. The path should use the SMART platform to build apps 
that incorporate Watson-like cognitive de-biasing characteristics, and as mentioned 
in the opening of the chapter, place them within the clinician’s workfl ow [ 5 ]. Not at 
all parenthetically, as apps are built and evaluated, the outcome analyses must 
include  patient-centric  measures.  

29.10     Data visualization: A Special Instance 
of Man- Computer Symbiosis 

 Finally, with good data in both a SMART platform and Watson-consumable forms, 
data visualization techniques hold a special place in the man-computer symbiosis 
and decision support efforts of any future HIMS. Again, because humans are pat-
tern recognition masters, presentation of data in a picture is often an effective way 

  Fig. 29.3    Napoleon’s 1812 Russian Campaign showing devastation of French army as drawn by 
Charles Minard.  Note there are six dimensions of data presented: direction of travel, the global 
position, time, the soldiers alive and temperature; the latter being responsible for many soldiers’ 
deaths.  Reprinted from Wikimedia Common:   https://commons.wikimedia.org           
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for data to be presented to facilitate full or partial template recognition by the 
 clinicians, and also to allow the clinician to see new patterns. Much has been writ-
ten on data visualization both in the lay press [ 61 ] as well as the medical literature. 
This brief review will highlight only two examples. 

 Many authors believe the 150-year-old visualization shown in Fig.  29.3  to be 
the best graphic of all time [ 62 ]. The map, drawn by Charles Joseph Minard, 
shows the losses suffered by Napoleon's army during the Russian campaign of 
1812. The size of the top, light-colored band shows the location between the 
Polish-Russian border and Moscow and the thickness of the band represents the 
number of soldiers. It is obvious from the diminishing gold bandwidth that the 
French sustained substantial losses on their march to Moscow. The retreat from 
Moscow is shown in the black on the bottom, distance is fi xed on the “x-axis”, and 
temperature is added to the graphic in the French troops’ retreat from Moscow. 
The narrow black line on the bottom right corner captures the devastation of 
Napoleon’s army at a glance.

   Books, too numerous to reference, have been written about data visualization 
and about medical data visualization (see [ 63 ,  64 ]). The points to make here, in a 
discussion of the future of HIMSs and a roadmap to the future, are that: (1) there are 
no current “main-stream” data displays that should be emulated and (2) data visual-
izations must push not just to present data, but should push into interactive visual-
izations that allow visual explorations into both patient-centric and population-level 
data sets with the intent to discover new patient-centric and population-level insights 
[ 65 ]. This latter point will not be explored further here except to point out yet again 
that the wise-clinician/developer/designer (now) triad must have access to unfet-
tered vendor-agnostic patient-centric data.  

  Fig. 29.4    Causes of death among the English during the Crimean war as drawn by Florence 
Nightingale. Reprinted from Wikimedia Common:   https://commons.wikimedia.org           
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29.11     Conclusion 

 I will close this roadmap discussion by highlighting one very and two other rather 
old visualizations that I believe should serve as “headlights” as the road to the future 

  Fig. 29.5    An example of a novel visualization that promotes rapid understanding of complex data 
(in this case renal function) (Reproduced from Wenkebach et al. [ 66 ], with permission of the 
American Medical Informatics Association, Inc. Frame  a  is normal. Frame  b  shows 8 abnormal 
patterns. Frame  c  shows a time series of one abnormal pattern. Frame  d  labels the 3 axes)         

a

b

c
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is travelled. Figure  29.4  is now famously about 170 years old from the pen of 
Florence Nightingale and it still, instantly, tells a story. The distance from the center 
represents mortality from all causes (in this case during 1 year of the Crimean War). 
Because the text does not reproduce well here, certainly the reader should ask what 
is represented by the red, black and blue? The blue wedges represent “Preventable 
or Mitigable Zymotic Diseases”. The black wedges represent “all other causes”. 
Only the relatively small wedges actually represent death from “wounds”. Future 
visualizations should tell so much so “simply”. Enhance the graphic with 2015 
available interactions. Allow drill downs into sub-populations such as those dying 
of cholera, or from a different war, the fl u. Drill into the causes of wound mortality 
to identify patterns so soldier protection can be improved.

   In addition, there are two relatively old papers from the medical literature that are 
worth special mention. First, please look at Fig.  29.5  and assume that the hemi-
sphere drawn in Fig.  29.5a  represents normal function. Without knowing anything 
about the axes, you can then look at the eight patients in Fig.  29.5b  and know that 
none of them are “normal” and that each vary from normal in a different pattern. 
Finally, in Fig.  29.5c  a fourth dimension (time) is added by the sequence of plots for 
a single patient. Yes, in 2015 this might be animated and additional dimensions may 
be added with color/shading. But from 1992 when this was published [ 66 ], the 
reader knows that from Fig.  29.5c  that function is changing (and either improving 
or not depending on the direction of time between the pictures). That this was drawn 
to show renal function is irrelevant (Fig.  29.5d ) because the wise-clinician/devel-
oper/designer triad, with unfettered vendor-agnostic patient-centric data can create 
any number of these novel visualizations.

   The second paper that the wise-clinician/developer/designer triad with unfet-
tered vendor-agnostic patient-centric data should know about is from Powsner and 
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Tufte (1994) also from about 20 years ago [ 67 ]. Powsner and Tufte describe design 
characteristics that can be oversimplifi ed as that can be and in brief, “transmit as 
much information with as few pixels as is possible.” See Fig.  29.6  as a prototypical 
representation of serum glucose over time. Note that time on the x-axis is not linear. 
Much like the example in Fig.  29.5  where pattern recognition in easily supported, 
here the user quickly knows this particular result that was critically high on hospital 
admission had not been tested in the previous year, but also that it was normal more 
than once a year or more before admission. An app designer would do well to heed 
the design principles these authors espouse. So too, the wise-clinician should 
encourage the designer to use new visualization techniques.

   In conclusion I would like to reproduce the concluding paragraph of the Powsner- 
Tufte paper and add to it a challenge. Twenty-one years ago, Powsner and Tufte 
concluded their paper with,

  Fig. 29.6    A prototype graphic suggested by Powsner and Tufte [ 67 ] for the routine display of 
medical data. To fully appreciate the power of this representation cover the text explanations and 
realize how much information is transmitted with very few pixels (Reproduced from Powsner and 
Tufte [ 67 ], with permission of Elsevier)       
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  Medical computer systems will soon be able to print a fresh summary for each patient every 
day. Our proposal for a graphical summary should encourage doctors and nurses to reshape, 
perhaps re-invent, the medical record  before computer programmers cast institutional 
convenience into silicon  .  Legal and organizational demands for detailed information will 
not disappear, but these demands need not compromise clinical needs for accessible patient 
information. 

   The emphasis is added in the above quote to highlight that Powsner and Tufte 
saw coming not just the instantiation of 100 year-old, paper-based, data entry and 
analysis workfl ows cast into silicon, but also that the codifying these ancient paper- 
based workfl ows would compromise accessibility of patient information. Thus the 
challenge is now even greater, because the roadmap to the future of HIMSs must be 
disruptive in the every sense of the word [ 68 ,  69 ] The challenge for entrepreneurs 
plus the wise-clinician/developer dyad or wise-clinician/developer/designer triad is 
now not merely to undo what the main-stream HIMSs have codifi ed in silicon but 
to use the data HIMSs record, augment the data as is possible and build apps 
(including novel visualizations) on the vendor-agnostic patient-centric data. A self- 
perpetuating cycle must be created as more apps are built and users (again, clini-
cians and consumers) will clamor for more. As more apps are used they will become 
more refi ned. As this cycle spins, there can be optimism that the ultimate goal – 
improved patient care – will be realized.     
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