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    Abstract     The term sphingolipid was coined by J.L.W. Thudichum before the turn of 
the nineteenth century, referring to the enigmatic (related to the Sphinx myth) nature 
of this class of molecules. One hundred thirty years later, the enigma is not yet com-
pletely solved. Nevertheless, much progress has been made, shedding light on the 
numerous roles these lipids play in eukaryotes. How sphingolipids are synthesized, 
transformed and degraded in mammalian cells, and how some of them transduce 
signals and regulate biological functions is reviewed in this chapter. Special attention 
is given to those sphingolipid species which regulate key aspects of the development 
of malignancies in humans, and therefore represent potential targets for therapy.  
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  ER    Endoplasmic reticulum   
  GalCer    Galactosylceramide   
  GlcCer    Glucosylceramide   
  GSL    Glycosphingolipid   
  S1P    Sphingosine 1-phosphate   
  SL    Sphingolipid   
  SM    Sphingomyelin   
  SPC    Sphingosylphosphocholine   

1           Introduction: Sphingolipids Are Bioactive Metabolites 

 Sphingolipids (SLs) are found in all eukaryotes and represent a class of lipids with 
considerable structural diversity. In mammals, there are likely tens of thousands of 
SL molecular species [ 1 ]. Because of their amphiphilic nature, most of them are 
membrane components; some are present in biological fl uids, being constituents of 
circulating lipoproteins or transported by other proteins. 

 The smallest molecule common to all SLs is an aliphatic amino-alcohol, also 
known as long chain base, the most frequent one being 4-sphingenine (also termed 
sphingosine). Its condensation to a fatty acid, through an amide bond rather unusual 
in the lipid world, forms the core of most SLs, ceramide (Cer). This structural ana-
logue of diacylglycerol (DAG) constitutes the hydrophobic anchor of all complex 
SLs, determining the membrane location of both, glycosphingolipids (GSLs) and 
sphingomyelin (SM), the two major classes of complex SLs. The analogy between 
DAG and Cer extends to their common ability to convey signals; these signals, how-
ever, often are of diverging nature (see Sect.  3 ). With regard to the signalling proper-
ties of SLs, the best documented roles are undoubtedly attributed to sphingosine 
1-phosphate (S1P), the phosphorylated derivative of sphingosine, which is abundant 
in plasma while one of the least represented SLs within the cells. Nevertheless, Cer 
and S1P are not the only SLs that behave as SL signalling intermediates or second 
messengers. Glycosylated or  N -methylated forms of sphingoid bases, sphingo-
sylphosphocholine (SPC), phosphorylated Cer, as well as some GSLs can transduce 
signals and/or modulate biological functions. 

 The last 2–3 decades have witnessed an enormous improvement in our knowl-
edge of the structural diversity, metabolism, cell biology and pathology of SLs. Such 
a progress has been facilitated thanks to (1) the development of new technologies for 
analyzing the sphingolipidome (see Part II of this book), (2) the cloning of most 
enzymes of SL metabolism, (3) the synthesis and use of SL analogues for studying 
their metabolism, location, targets (or interacting partners) and mechanism of action, 
(4) the generation of animal models harboring alterations of SL metabolism [ 2 ,  3 ], 
and (5) the identifi cation of new human genetic disorders characterized by disturbed 
homeostasis of SLs [ 4 ]. Moreover, the involvement of SLs in the pathophysiology of 
numerous conditions, including multiple types of solid cancers and hematological 
malignancies, has been explored. The intent of this overview is not to cover in a 
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comprehensive manner the many effects and modes of actions of SLs, but to  highlight 
some important aspects of SL metabolism and signalling in mammalian organisms. 
The reader is also referred to recent excellent reviews [ 5 – 9 ]. In the fi eld of cancer 
biology and treatment, SLs are currently viewed as multifaceted mediators and, as a 
consequence, potentially new therapeutic targets. The biological and physiological 
effects modulated by SLs include cancer (and cancer stem) cell death, survival, dif-
ferentiation, cell cycle arrest, cell motility, autophagy, epithelial– mesenchymal tran-
sition, but also effects on the tumor microenvironment through angiogenesis, 
recruitment of infl ammatory and immune cells, or phenotypic changes of adjacent 
fi broblasts. This astounding variety is SL-dependent, sometimes SL species- 
dependent (underscoring the importance of the metabolic source of SLs) [ 10 ], and 
cellular context-dependent. Figure  1  illustrates some of these diverse effects.
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  Fig. 1    Sphingolipid-mediated biological effects in cancer. The fi gure summarizes how SLs affect 
hallmarks of cancer (adapted from [ 95 ]). Note that not all bioactive SLs are indicated in this 
scheme. SLs written in red promote tumor development whereas those written in green have anti-
tumor effects. Numbers in brackets indicate some key references.  Cer  ceramide,  Cer1P  ceramide 
1-phosphate, 2′-OHCer, 2′-hydroxyceramide,  DMS N,N -dimethyl-sphingosine,  GalCer  galacto-
sylceramide,  GlcCer  glucosylceramide,  S1P  sphingosine 1-phosphate,  So  sphingosine,  SPC  sphin-
gosylphosphocholine,  TMS N,N,N -trimethyl-sphingosine. References cited: (1) [ 96 ], (2) [ 97 ], (3) 
[ 8 ], (4) [ 98 ], (5) [ 99 ], (6) [ 54 ], (7) [ 100 ], (8) [ 101 ], (9) [ 102 ], (10) [ 103 ], (11) [ 104 ], (12) [ 56 ], (13) 
[ 105 ], (14) [ 106 ], (15) [ 107 ], (16) [ 108 ], (17) [ 109 ], (18) [ 110 ], (19) [ 111 ], (20) [ 112 ], (21) [ 113 ], 
(22) [ 114 ], (23) [ 115 ], (24) [ 116 ], (25) [ 117 ], (26) [ 118 ], (27) [ 119 ], (28) [ 120 ], (29) [ 121 ], (30) 
[ 122 ], (31) [ 52 ], (32) [ 123 ]       
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2        How Are Sphingolipids Formed, Transformed 
and Degraded? 

 The astonishing variety of biological effects of SLs is not only related to their struc-
tural diversity but also their tissue and subcellular distribution [thanks to the newly 
developed imaging mass spectrometry methods, subtle differences in tissue distri-
bution of particular molecular species of SLs begin to be appreciated; see Part II of 
this book]. Understanding which, where (in the cell or in the body) and how a given 
SL can exert a biological effect requires prior knowledge of SL metabolism and 
transport. Although there are still a few gaps, the picture of SL biosynthesis and 
catabolism is almost complete. Figures  2  and  3  depict the pathways of SL synthesis 
and turnover in humans (for details, the reader is referred to   www.sphingomap.org    ).

    SL biosynthesis starts in the endoplasmic reticulum (ER) with the condensation 
of  L -serine and a fatty acyl-CoA, usually palmitoyl-CoA, by serine- palmitoyl
transferase (note that instead of  L -serine,  L -alanine or  L -glycine can be used under 
some pathological conditions, leading to the formation of 1- deoxysphingolipids 
[ 11 ,  12 ]). The resultant 3-keto-sphinganine is then reduced to sphinganine (also 
named dihydrosphingosine) before  N -acylation by Cer synthases. In the  de novo  
pathway, these enzymes form dihydroceramides. They are encoded by six different 
genes that exhibit distinct tissue expression and produce enzymes with different 
acyl-CoA (or 2-hydroxyacyl-CoA) chain length specifi cities, leading to numerous 
non-hydroxy and 2-hydroxy-dihydroceramide species with possibly distinct prop-
erties [ 5 ]. The  de novo  synthesis of Cer is completed by a desaturase that introduces 
a  trans -Δ4 double bond in the sphingoid backbone. 

 Newly synthesized Cer can be transformed to fi ve different lipids: (1) ceramide 
1-phosphate (Cer1P), by Cer kinase; (2) sphingomyelin, one of the most abundant 
SL, by sphingomyelin synthases; (3) ceramide phosphoethanolamine, by sphingo-
myelin synthase 2 or sphingomyelin synthase-related protein; (4) galactosylce-
ramide, a myelin lipid, by galactosylceramide synthase; and (5) glucosylceramide 
(GlcCer), the precursor of most GSLs, by glucosylceramide synthase. As shown in 
Fig.  2 , these reactions occur in the ER or in discrete compartments of the Golgi 
apparatus, either on the cytosolic or luminal side. Selection of one of these path-
ways may be dictated by the expression of the corresponding enzymes. Nevertheless, 
it implies some sophisticated regulation of Cer channelling to these distinct loca-
tions in order to serve specifi c metabolic needs. Although this issue is imperfectly 
solved, recent progress has been made regarding SL transport. Cer can be trans-
ported from the ER to the Golgi either by a vesicular process [ 13 ] or by a 
 CERT- mediated non-vesicular mechanism [ 14 ]. Once synthesized, GlcCer might be 
retrogradely transported to the ER by FAPP2 [ 15 ], and Cer1P carried from the trans- 
Golgi to other membrane destinations by CPTP [ 16 ]. Besides Cer-metabolizing 
enzymes, these transporters represent additional targets to manipulate SL metabo-
lism and biological effects, as illustrated by the role of CERT in modulating the 
sensitivity of cancer cells to chemotherapeutic drugs [ 17 ]. 
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  Fig. 2    Subcellular compartmentalization of sphingolipid biosynthesis. For each enzymatic reac-
tion or transport event, the names of the corresponding protein (in  boxes ) and gene are indicated. 
 Cer  ceramide,  Cer1P  ceramide 1-phosphate,  CERK  ceramide kinase,  CERPase  ceramide 
1- phosphate phosphatase,  CerpE  ceramide phosphoethanolamine,  CERS  ceramide synthase, 
 CERT  ceramide transport protein,  CGT  UDP-galactose: ceramide galactosyltransferase,  CPTP  
ceramide 1-phosphate transfer protein,  DES  dihydroceramide desaturase,  DHCer  dihydrocer-
amide,  FAPP  four-phosphate-adaptor protein,  GalCer  galactosylceramide,  GBA  beta-glucosidase, 
 GCS  glucosylceramide synthase,  GlcCer  glucosylceramide,  GSLs  glycosphingolipids,  KSa  
3- ketosphinganine,  KDSR  ketosphinganine reductase,  LacCer  lactosylceramide,  LCS  lactosylce-
ramide synthase,  Palm-CoA  palmitoyl-CoA,  Sa  sphinganine,  SM  sphingomyelin,  SMS  sphingomy-
elin synthase,  SMSr  sphingomyelin synthase-related protein,  SPT  serine palmitoyltransferase       
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 Most of the GSLs are synthesized from GlcCer at the luminal face of Golgi 
vesicles (as this part of SL metabolism is beyond the topic of the present chapter, the 
reader is referred to recent reviews, e.g., [ 18 ,  19 ]). Because of their luminal orienta-
tion and vesicular transport to the cell surface, GSLs and SM become constituents 
of the extracellular leafl et of the plasma membrane, and concentrate, along with 
cholesterol, within the so-called microdomains. A fraction of these complex SLs is 
incorporated in the circulating lipoproteins. 

 Constitutive turnover of plasma membrane elements, endocytosis of extracellu-
lar lipoproteins as well as (macro)autophagy result in the entry of SLs into the 
endosomal/lysosomal compartment where the bulk of SL catabolism takes place 
(Fig.  3 ). Stepwise degradation of GSLs occurs through a unique sequence of reac-
tions catalyzed by exoglycosidases that ends by the release of Cer [ 20 ]. Formation 
of Cer in endosomes/lysosomes also results from the action of acid sphingomyelin-
ase. Eventually, Cer is cleaved by acid ceramidase, which releases a fatty acid and 
sphingosine. How these end-products exit the lysosome is still unclear. 

  Fig. 3    Subcellular compartmentalization of sphingolipid catabolism and interconversion. For 
each enzymatic reaction, the names of the corresponding protein (in  boxes ) and gene are indicated. 
 ACDase  acid ceramidase,  AlkCDase  alkaline ceramidase,  ASMase  acid sphingomyelinase,  Cer  
ceramide,  CerpE  ceramide phosphoethanolamine,  CERS  ceramide synthase,  EP  ethanolamine 
1-phosphate,  FA  fatty acid,  GALC  galactosylceramidase,  GalCer  galactosylceramide,  GBA  beta- 
glucosidase,  GCase  glucosylceramidase,  GlcCer  glucosylceramide,  GSLs  glycosphingolipids, 
 LacCer  lactosylceramide,  NCDase  neutral ceramidase,  NSMase  neutral sphingomyelinase,  SM  
sphingomyelin,  So  sphingosine,  S1P  sphingosine 1-phosphate,  SK  sphingosine kinase,  SPL  sphin-
gosine 1-phosphate lyase       
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 Whether protein-mediated or not, the effl ux out of the acidic compartments of 
the sphingoid base initiates the SL ‘salvage’ pathway that allows re-use of the 
sphingoid moiety for SL synthesis. Unless sphingosine gets access to the ER 
because of close vicinity with lysosomal membranes, a prerequisite for this recy-
cling pathway might be the phosphorylation of sphingosine by sphingosine 
kinase(s). The transient formation of S1P, a much less hydrophobic molecule than 
sphingosine, would represent a way to transport the sphingoid base to the ER, where 
S1P is dephosphorylated prior to  N -acylation by Cer synthases. An alternative des-
tination for S1P is its irreversible degradation by a single enzyme, S1P lyase, which 
produces phosphoethanolamine and a fatty aldehyde, two molecules that connect 
SL and glycerophospholipid metabolisms [ 21 ]. What directs S1P either to be recy-
cled (after dephosphorylation) or broken down is still unknown; clarifying this issue 
is, however, critical for understanding the bioactive properties of S1P and manipu-
lating its levels for therapeutic purposes. 

 Of note, turnover of GSLs and SM is not restricted to the acidic compartments, 
and it can occur at the plasma membrane level, both—at least for SM—on the extra-
cellular side and the cytosolic side [ 22 ]. This location has long been envisioned as 
the starting point for the generation, or modulation, of bioactive signals. As a matter 
of fact, cleavage of SM and Cer, followed by phosphorylation of sphingosine can 
occur at the level of the plasma membrane. These reactions can be catalyzed by 
plasma membrane-located enzymes but also by secreted or translocated enzymes 
such as acid sphingomyelinase [ 23 ]. In addition, secreted hydrolases or ectoen-
zymes ensure SL degradation in the intestinal lumen to digest dietary lipids [ 24 ], 
providing not only nutrients but also potential bioactive lipids to prevent colon car-
cinogenesis. Moreover, although information remains scarce, GSL, SM and Cer 
turnover likely exists at the level of mitochondria, the nucleus, Golgi and ER mem-
branes that are closely associated with mitochondria [ 25 – 27 ]. For instance, neutral 
and alkaline ceramidases localize to mitochondria, ER and Golgi [ 28 ]. 

 Finally, the pathway that leads to the generation of some minor SLs, including 
sphingosylphosphocholine (SPC), psychosine or glucosylsphingosine, remains to 
be unambiguously identifi ed. These lysosphingolipids are normally present in trace 
amounts but they mediate biological effects and underlie the molecular pathogene-
sis of some inherited disorders [ 29 ]. 

 In summary, SL metabolism starts from structurally simple molecules, i.e., an 
amino acid and an acyl-CoA, produces thousands of distinct lipids, and ends by the 
release of small metabolites that are recycled into glycerophospholipids. Complex 
SLs are abundant membrane constituents that act as reservoirs for the production of 
simple, bioactive lipids. Transformations occur in multiple subcellular compart-
ments, serving different functions and possibly also spatially restricting the biologi-
cal effects of these lipids. Such a sophisticated metabolism is undoubtedly regulated 
to comply with the cell’s demand and to control the levels of highly bioactive 
metabolites. However, how this metabolism is regulated and how the many  pathways 
aforementioned are coordinated is still poorly understood [ 30 ]. These are key issues 
to appreciate the importance of the dysregulated expression of SL-metabolizing 
enzymes seen in tumor cells [ 8 ].  
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3      How Do Sphingolipids Signal and Mediate 
Biological Effects? 

 SLs are no longer considered just as inert membrane components. Some of them 
behave as intracellular second messengers to transduce extracellular signals; some 
elicit cellular outcomes through binding to cell surface receptors; some others alter 
the cell’s responses by changing the physicochemical properties of membranes. Here, 
we will not describe the numerous physiological effects that can be modulated by 
SLs (see Fig.  1 ) but will emphasize their mode of action at the cellular level through 
some selected examples that are particularly relevant to cancer biology or therapy. 

3.1     History of Signalling Sphingolipids: Where Are 
We One Generation Later? 

 Perhaps, the fi rst SL recognized to mediate pathological changes is psychosine (i.e., 
galactosylsphingosine). While almost undetectable in normal brain, this lysolipid 
was found to accumulate in the cerebral white matter of patients affected with 
Krabbe disease (globoid cell leukodystrophy) [ 31 ,  32 ], a lysosomal disorder due to 
defi cient activity of beta-galactosylceramidase. Psychosine was already known to 
be a cytotoxic substance; later studies suggested that this lysolipid, like sphingo-
sine, inhibits protein kinase C (PKC) [ 29 ]. It also disturbs cytokinesis (thus explain-
ing the formation of globoid, multinucleated cells) through binding to the G-protein 
coupled receptor TDAG8 [ 33 ]. However, whether psychosine regulates cytokinesis 
via TDAG8 [ 34 ] or antagonizes the proton-sensing properties of TDAG8 [ 35 ] is still 
debated. 

 Further indication that SLs could act as signal transducers was provided 25 years 
ago by the demonstration that the effects of vitamin D3 on leukemic cell differentia-
tion were preceded by an increased activity of a neutral sphingomyelinase, transient 
hydrolysis of SM and concomitant production of Cer, and recapitulated by treat-
ment with an exogenous sphingomyelinase [ 36 ]. This report immediately followed 
the observation that the phenothiazine trifl uoroperazine stimulated SM breakdown 
and Cer generation in pituitary cells [ 37 ]. These data were the fi rst of a series docu-
menting the “sphingomyelin cycle”, that is the transient formation of Cer from SM 
via activation of a sphingomyelinase by a wide variety of physiological or patho-
logical agents [ 38 ,  39 ]. This pathway was viewed as a means to serve the production 
of bioactive SLs mediating the biological outcome triggered by the applied stimu-
lus. However, it soon appeared that SM turnover is not the only source of signalling 
Cer. Activation of the Cer biosynthetic ( de novo ) pathway was reported as an alter-
native mechanism, especially in mediating cell death [ 40 ,  41 ]. Other mechanisms, 
such as the inhibition of SM synthesis [ 42 ,  43 ] or of ceramidase activity [ 44 ], likely 
contribute to stress-induced Cer generation. In addition, more recently production 
of bioactive Cer from glycolipids has been reported [ 45 ,  46 ]. 
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 Of note, whatever its metabolic source, Cer may not be necessarily the 
 “signalling” SL that directly transduces the observed effect. Other SLs display bio-
logical roles, including in cancer (see Fig.  1 ). For instance, bioactive S1P, some 
effects of which were already described in 1990–1991 [ 47 ,  48 ], can originate from 
the metabolic cascade starting with SM breakdown [ 49 ]. Even products of S1P 
catabolism appear to be biologically active [ 50 ,  51 ]. 

 Studies reported in the beginning of the 90s disclosed opposite effects of some 
SLs. Such a dichotomy is typically illustrated by the antagonistic actions of Cer and 
S1P on cell growth/death and survival, which led to the “rheostat” concept [ 52 ]. 
This concept initially proposed that the balance between Cer and S1P levels con-
trols the cell fate via distinct effects on members of the MAPK family. However, 
such an equilibrium is presumably not maintained by the overall intracellular con-
centrations of these two SLs, which differ by about two orders of magnitude. One 
can imagine that the subcellular location (and thus, the accessibility to the protein 
target) and/or the nature of the molecular species are key determinants in the action 
of these lipid mediators. Accordingly, even a minute amount of a given Cer species 
may counteract the action of S1P if appropriately located. 

 To substantiate such hypotheses, considerable technological progress has been 
made during the last two decades that allowed a “higher-resolution view” of SL 
metabolism and signalling (see Part II of this book). In particular, mass spectrometry- 
based techniques for analysis of individual SL molecular species have permitted to 
reveal the specifi c role of particular SL molecules. Examples of the diversity/diver-
gence of biological outcomes include differences due to the acyl chain-length, 
unsaturation or hydroxylation of Cer [ 10 ,  53 ]. Thus, current questions in the SL 
signalling fi eld include which precise SL molecule is bioactive, in which subcellular 
compartment or even in which cell membrane domain it is formed or transported to, 
and which protein it targets. The answer to these questions is linked to the identifi -
cation of the pathway that generates the candidate SL molecule. However, one 
should not forget that SL metabolism is a very dynamic process involving multiple 
reactions occurring in different compartments (and likely regulated by mechanisms 
that we have yet to discover). This implies that changes in the local concentration of 
one SL bioactive molecule may be accompanied by changes in the content of 
another bioactive SL, in the same or another subcellular location, indicating the 
need for a full spatiotemporal picture of SLs in order to accurately appreciate any 
variation of potential biological signifi cance.  

3.2     Sphingosine 1-Phosphate: A Paradigmatic 
Signalling Molecule 

 S1P meets the criteria that defi ne a lipid mediator, coupling cell stimulation and 
functional activation, with regulation of cell proliferation being one of the fi rst 
examples of its role as second messenger [ 54 ]. Not only is this small lipid, charac-
terized by very low intracellular levels, able to activate specifi c cell surface 
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receptors but also some intracellular targets (see Figs.  4  and  5 ). For detailed 
 information regarding S1P signalling, the reader is referred to some recent reviews 
[ 6 ,  7 ,  9 ,  55 ,  56 ].

    Upon activation of sphingosine kinase(s), for instance in response to cytokines or 
growth factors, S1P can be transported out of the cell (possibly by SPNS2) to acti-
vate its cognate G-protein coupled receptors. These receptors belong to a family of 
proteins, initially described as products of endothelial differentiation genes, some of 
which can bind the S1P-related lipid lysophosphatidic acid [ 57 ]. Engagement of 
S1P receptors modulates cell growth, migration, angiogenesis, lymphangiogenesis 
and the immune response [ 58 ]. Distinct outcomes arise from differential coupling of 
these fi ve receptors to heterotrimeric G proteins and their downstream effectors 
(Fig.  5 ). Whereas no  bona fi de  intracellular receptor of S1P has been reported, S1P 

  Fig. 4    Signalling cascades regulated by sphingosine 1-phosphate. Upon stimulation by growth 
factors and cytokines, sphingosine kinase 1 (SK1) gets activated by ERK1/2 and phosphorylates 
sphingosine (So) to sphingosine 1 phosphate (S1P). S1P controls cell fate by regulation of Bcl-2 
members [ 124 – 127 ]. In the nucleus S1P, produced by sphingosine kinase 2 (SK2), binds and inhib-
its histone deacetylases (HDACs) that regulates gene transcription [ 60 ]. S1P can function as an 
intracellular messenger or is secreted out of the cell by SPNS2 or ATP-binding cassette (ABC) 
transporters to signal through G-protein-coupled receptors (S1PR) in an autocrine and/or paracrine 
manner to regulate proliferation, migration, angiogenesis or autophagy in cancer cells and tumor 
microenvironment. Activation of S1P1 receptor leads to the activation of signal transducer and 
activator of transcription 3 (STAT3) [ 128 ]. STAT3 is a transcription factor for S1P1, which then 
reciprocally activates STAT3, resulting in its persistent activation and interleukin-6 production, a 
pro-infl ammatory cytokine. S1P binds to and activates TNF receptor-associated factor 2 (TRAF2) 
that is implicated in activation of NF-κB in response to TNF. Activation of NF-κB and STAT3 
induce chronic infl ammation that promotes cancer cell progression       
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can physically interact with and regulate some intracellular proteins. Indeed, S1P 
can function as a cofactor for the E3 ubiquitin ligase activity of the adaptor protein 
tumor necrosis factor receptor-associated factor 2 (TRAF2), regulating NF-κB acti-
vation [ 59 ] and thus explaining, among other processes, the cytoprotective function 
of S1P. In the nucleus, S1P binds to and inhibits HDAC1 and HDAC2, leading to 
increased levels of histone acetylation and gene transcription [ 60 ]. At the level of 
mitochondria, S1P is able to bind prohibitin-2 [ 61 ] and BAK [ 51 ], providing links 
with mitochondrial respiration and apoptosis, respectively. Finally, interaction of 
S1P with Cer synthase 2 provides a potential regulatory mechanism of the func-
tional crosstalk between Cer and S1P [ 62 ].  

3.3     How Are Other Sphingolipids Bioactive? 

 Early reports demonstrated that free sphingoid bases can inhibit PKC by preventing 
its interaction with DAG/phorbol esters [ 63 – 65 ]. Subsequent studies indicated that 
sphingosine regulates the function of many additional proteins, including members of 
the MAPK pathway, the sphingosine-dependent protein kinase 1, Akt and caspases 
(for a review see [ 66 ]). Modulation of these effectors by long-chain bases or sphingoid 
base analogues (i.e.,  N,N -dimethylsphingosine or  N,N,N - trimethylsphingosine ) has 

  Fig. 5    Receptor-mediated effects of sphingosine 1-phosphate. S1P receptors couple to various 
heterotrimeric G proteins ( a ), activate partially overlapping downstream signalling pathways, and 
regulate several functions such as angiogenesis, proliferation, migration and autophagy ( b )       
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been classically associated with induction of cell death. Interestingly, natural 
unusual sphingoid bases called sphingadienes (because of the presence of an addi-
tional double bond at the C6 or C8 position) were found to inhibit colon tumorigen-
esis in animal models [ 67 ]. These sphingadienes, which derive from the catabolism 
of SLs present in food sources, inhibit the phosphoinositide 3-kinase/Akt and Wnt 
signalling pathways and promote apoptosis [ 68 ,  69 ]. They may also suppress intes-
tinal tumorigenesis by inducing S1P lyase expression and reducing S1P colonic 
levels [ 70 ]. 

 The way Cer mediates biological effects has attracted much attention. However, 
unlike DAG—a structurally similar lipid—the answer is not univocal and remains 
unclear. The search for potential Cer-binding proteins has faced technical diffi cul-
ties [ 71 ] and has not yet provided unambiguous targets that could transduce all Cer 
actions. Nevertheless, diverse cellular proteins have been identifi ed that relay the 
anti-mitogenic effects of Cer (Fig.  6 ; see also reviews by [ 8 ,  72 – 74 ]). Indeed, 
through modulation of cell cycle effectors, caspase-dependent and independent 
pathways and macroautophagy, Cer-activated cascades converge to antiproliferative 
signals. Some of them appear to be initiated by direct interaction of Cer with kinases 
such as PKC isoforms [ 75 ,  76 ], KSR1 [ 77 ], or the inhibitor 2 of protein phosphatase 
2A [ 78 ]. Because of its rather hydrophobic nature, this membrane-localized SL may 
interact with proteins in distinct subcellular compartments, including the plasma 
membrane, ER, mitochondria or mitochondria-associated membranes. Of note, 
however, Cer may also modulate signalling pathways by changing the properties of 
membranes (i.e., membrane fl uidity and curvature) or microdomains. For instance, 
ceramide synthase 6 expression is down-regulated during the epithelial-to- 
mesenchymal transition process, increasing plasma membrane fl uidity as a conse-
quence of reduced C16-Cer levels, and enhancing breast cancer cell motility [ 79 ]. 
Even modest variations (a few percent) in overall Cer levels largely exceed total S1P 
levels, suggesting that some actions of Cer might be related to membrane alterations 
that in turn infl uence the recruitment of key protein effectors or the activation of 
membrane receptors or channels [ 10 ,  80 – 82 ].

   What about glycolipids? Although this topic is not discussed in this book, it is 
important to note that, because they localize in the extracellular leafl et of the plasma 
membrane, these SLs not only can affect membrane processes but also actively 
interact with the environment [ 83 – 85 ]. Hence, gangliosides, whose expression is 
altered in many tumors, can modulate the proliferation of malignant cells as well as 
cell–cell and cell–matrix adhesion. The biological effects of GSLs are likely 
 mediated by interactions of their carbohydrate moieties, either on the same cell 
surface or between two different cells [ 86 ]. Perturbations of the membrane proper-
ties, the subsequent binding of ligands to membrane receptors, as well as the activ-
ity of multidrug resistance transporters could also be implicated [ 87 ]. In addition, 
shedding of tumor gangliosides provides both immunosuppressive and angiogenic 
signals [ 88 ,  89 ].   
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4     Current and Future Challenges 

 A renewed interest in SLs manifested 25 years ago with the discovery of specifi c 
biological functions mediated by members of this class. Since then, not only has 
our knowledge of metabolic pathways, enzymes and transport proteins greatly 
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  Fig. 6    Signalling cascades regulated by ceramides. Various stress stimuli, such as chemotherapy, 
radiotherapy and death receptor (DR) ligands, trigger the accumulation of Cer as a consequence of 
(1) increased  de novo  Cer synthesis, (2) inhibition of Cer conversion to complex SLs, (3) hydroly-
sis of SM or GlcCer and/or (4) inhibition of ceramidase. Cer behaves as an anti-oncometabolite, 
inhibiting cancer cell motility and proliferation or inducing cancer cell death. For the sake of clar-
ity, not all signalling pathways modulated by Cer are depicted. The anti-proliferative signalling 
pathway triggered by Cer involves the activation of both Kinase Suppressor of Ras/Cer-Activated 
Protein Kinase (KSR/CAPK) and p53, inhibiting the cdk-dependent phosphorylation of Rb, which 
sequesters E2F. Cer can activate the extrinsic apoptotic signalling pathway by facilitating DR 
oligomerization and subsequent caspase cascade activation. Alternatively, Cer stimulates the mito-
chondrial (i.e., intrinsic) apoptotic signalling pathway as a consequence of (1) PKCζ and PP2a- 
dependent Akt inhibition and subsequent Bad activation, (2) PP2a-dependent Bcl-2 inhibition, (3) 
cathepsins and/or caspase-8-dependent Bid cleavage. All these events lead to the mitochondrial 
outer membrane permeabilization followed by cytochrome c (Cyto c) release and caspase-9 activa-
tion. Both initiator caspases-8 and -9 cleave and activate effector caspases, such as caspase-3. AIF 
release from the mitochondria and ROS production are involved in Cer-induced caspase- 
independent cell death. Cer-triggered cell death can be amplifi ed by ER stress and macroautoph-
agy. Whereas p8 is involved in Cer-induced ER stress, the inhibition of mTOR and nutrient 
transporters, as well as the JNK-dependent Beclin-1 up-regulation and activation, facilitate the 
macroautophagy process       
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improved but also the way some SL molecules exert their regulatory roles has been 
 molecularly characterized. Their abilities to modulate critical events in cancer 
development and progression (Fig.  1 ) suggest that certain SLs (e.g., S1P) behave as 
“oncometabolites” while some others (e.g., Cer) as “anti-oncometabolites”. Even 
though mutations in the genes encoding SL-metabolizing enzymes that would con-
fer neomorphic activity (as mutations in the  IDH1  gene do) have not—yet—been 
identifi ed in tumors or leukemic cells, some SL molecules share properties with 
known oncometabolites such as 2-hydroxyglutarate [ 90 ]. For instance, levels of 
S1P-forming enzymes (mRNA and/or protein) are higher in tumor vs. normal tis-
sues, and S1P acts as a pro-oncogenic signal, infl uencing the epigenome [ 60 ], tran-
scriptional programs (e.g., [ 91 ]), hypoxia-inducible factor biology [ 92 ], tumor 
development [ 93 ] (see also numerous examples of reduced tumor growth upon 
treatment with inhibitors of the sphingosine kinase/S1P/S1P receptors axis) and 
sensitivity to anticancer regimens (for a review see [ 6 ]). 

 That said, despite considerable advances in our understanding, the world of SLs-
and- cancer still faces a number of challenges. First, the metabolism of some SLs 
needs to be unequivocally elucidated. This includes the way: (1) some minor sphin-
goid bases (i.e., sphingadiene), omega-esterifi ed Cer species and other unusual SLs 
are produced; (2) some lysosphingolipids, e.g., SPC, glucosylsphingosine and psy-
chosine, are synthesized; (3) free sphingoid bases are transported into the cell, (4) 
S1P gets out of the cell; (5) Cer is oriented to spatially distinct compartments for the 
biosynthesis of SM, GlcCer, GalCer or Cer1P. Enzymes and transport proteins/
transporters for such pathways are to be identifi ed. Equally important is the need to 
fully understand how SL metabolism is regulated (little is known about transcrip-
tional regulation of the genes encoding SL-metabolizing enzymes, regulation by 
microRNAs, or possible sensors of SL levels). 

 Second, the mode of action of bioactive SLs has to be further deciphered, imply-
ing the identifi cation of direct protein targets and receptors [ 71 ]. In this regard, one 
should consider the possibility that changes in SL metabolism and composition in a 
given cell (e.g., the cancer cell) impact surrounding cells (i.e., the tumor microenvi-
ronment) through exosomes [ 94 ]. Third, efforts to characterize alterations in the 
sphingolipidome of tumor cells (or even plasma from patients with cancer) as well 
as (epi)genomic and transcriptomic changes in the genes of SL metabolism will 
hopefully defi ne novel markers. They could serve as diagnostic, prognostic and/or 
predictive biomarkers, useful for the stratifi cation of cancers or the tumor response 
to therapy. It is anticipated that advances in the above directions will help under-
stand the roles of SLs in cancer and develop targeted therapies based on the manipu-
lation of SL metabolism.     
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