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Preface

The theory of nonlinear waves is located right at the intersection of the linear wave
theory, the theory of nonlinear oscillations, and the theory of nonlinear partial
differential equations (PDEs), radiating into numerous fields of applied science,
including studies in oceanography, nonlinear optics, plasma physics, weather and
climate prediction.

It is hard to imagine that just a few decades ago the same equations arising
in different fields of science were studied independently of each other, and the
phenomena which they describe were called by different names. Probably one of
the most illustrative examples of this kind is the phenomenon discovered in early
1960s, which is named modulational instability in purely mathematical texts, while
known as modulation instability in nonlinear optics, as Benjamin-Feir instability in
theory of water waves, as Oraevsky instability in plasma physics, etc. etc.

Only in the late 1980s gradually began to crystallize the idea of creating a new
nonlinear science that would synthesize all known results into a single overall
scheme and would allow to describe them all in one and the same language. I
remember the annual meeting of the physical branch of the Russian Academy
of Sciences, traditionally held at the Institute of Oceanology in Moscow, where
Vladimir Eugenievich Zakharov very emotionally expounded the idea of creating
such a language and writing an encyclopedia on nonlinear science, in which all of
the most important results would be collected in one place. The late V.I. Arnold,
who was in the audience, said that such language has long been there and it’s called
mathematics. Roars of laughter drowned out the answer of V.E. Zakharov.

Every physicist knows how long the road is from the physical level of accuracy,
which is sufficient for solving many theoretical and practical problems in physics, to
a rigorous mathematical definition and proof. The simplest example, as very often in
physics, gives us the study of the physical pendulum. Galileo studied its movement
and discovered the phenomenon of resonance in 1637. The rigorous mathematical
definition of resonance was given by Poincaré 250 years later. And without an
accurate notion of resonance, most of the chapters in this book principally could
not have been written. In fact, much of the modern theory of nonlinear waves could
not have been developed.

v



vi Preface

Since then many years have flown, and the notion of nonlinear science has
become an integral part of our scientific language, and the first encyclopedia of
nonlinear science saw the light of day in 2002 already, thanks to the invaluable
effort of the late Alwyn Scott, who edited this great work of more than 1000 pages,
written by scholars from all over the world.

However, the science does not halt, and new questions are coming forth, to which
there is no answer in this encyclopedia. How to describe both discrete and kinetic
regimes of wave turbulence resting on a unified strict mathematical approach?
What new physical phenomena can be described if Phillips’ definition of resonance
is generalized to the case of moderate nonlinearity? Why does generalized NLS
describe weakly nonlinear processes in water waves and strong nonlinear processes
in optics? Etc. etc.

Answers to these and some other questions are given in this volume. A brief
overview of individual chapters of the book is provided in the introductory Chap. 1.
I also tried to position all the subjects in a logical consequence, i.e., scientific results,
yielding new questions and then new results and again new questions ad infinitum.
The choice of topics, of course, is biased and reflects my research interests and
expertise. The last and longest Chap. 8 in the book has been written by Lev Shemer,
one of the best modern experimentalists with water waves. The main goal of this
chapter is to demonstrate why direct comparison of theoretical and numerical results
with experimental measurements is often challenging; the author discusses in detail
experiments devised to provide a basis for evaluation of the domain of validity of a
theoretical model.

Understanding came to me already in 2011 that time is ripe again for gathering
stones in the theory of nonlinear waves. At first, it was transformed into the idea of
organizing a series of regular bi-annual conferences called Wave Interaction (WIN)
to discuss new and promising topics in the area. The idea of writing a book was
already discussed at WIN-2012. The format and content of the present volume was
finalized during several meetings being held in 2012–2014:

• (2012) Wave Interaction (WIN-2012), 23–26 April (Johannes Kepler University
Linz, Austria)

• (2013) Thematic Program on the Mathematics of Oceans, April 29–June 28
(Fields Institute for Research in Mathematical Sciences, Toronto, Canada)

• (2014) Weak Chaos and Weak Turbulence, 3–7 February (Max Planck Institute
for the Physics of Complex Systems, Dresden, Germany)

• (2014) Wave Interaction (WIN-2014), 23–26 April (Johannes Kepler University
Linz, Austria)

• (2014) Theory of Water Waves, 14 July–8 August (Isaac Newton Institute,
Cambridge, UK)

All chapters are based on talks delivered at these conferences by selected
invited speakers. I am very grateful to all attendants of these conferences who
actively helped me to make a choice of topics. I would like to mention particularly
N. Akhmediev, T. Bridges, W. Craig, A. Degasperis, K. Dysthe, R. Grimshaw,



Preface vii

P. Janssen, C.C. Mei, M. Onorato, D. Pelinovsky, E. Pelinovsky, A. Pikovsky,
D. Shepelyansky, V. Shrira, and S.K. Turitsyn.

My aim was to create a book accessible to graduate students, engineers and
researchers working in various fields of physics and applied mathematics. Con-
sequently, the authors tried to make their exposition as clear as possible without
harming scientific rigor. All theoretical chapters contain not only a conceptual
background, but also illustrative examples of how these new techniques and
approaches can be applied to specific problems. I am very much obliged to all the
authors of this volume for their contributions and their patience when handling my
remarks and making revisions.

I am also greatly indebted to all reviewers of the individual chapters which took
over the hard and unremunerated work that resulted in tangible improvement of the
quality of this book.

I am specially grateful to Shalva Amiranashvili, whose invaluable remarks and
suggestions allowed me to improve the text of the introductory chapter.

I also would like to thank Dr. Aldo Rampioni and Kirsten Theunissen, Editors of
the Springer Series Lecture Notes in Physics, who constantly assisted me during the
preparation of the manuscript.

Linz, Austria Elena Tobisch
April 2015
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Chapter 1
Introduction

Elena Tobisch

Abstract In the first chapter, we throw a brief glance at the topics presented in the
following chapters and their place in the context of the general theory of nonlinear
wave systems with dispersion. Starting with the concept of the wave resonance, we
proceed through the formalism and presently known results in the theory of discrete
and kinetic wave turbulence to the list of open questions and possible theoretical
generalizations. At the end of the introductory chapter, we outline a few challenging
problems in the area of matching theory and experiment, generally overlooked.

1.1 Brief Historical Overview

The study of nonlinear waves started over 150 years ago with seminal works of
Stokes [45] and Riemann [42] and continues to evolve rapidly to this day.

One of the most important developments in mathematical physics in the past
40 years is the development of the method of Inverse Scattering Transform (IST),
[8]. The method can be regarded as a nonlinear analogue of the Fourier transform
and can be applied to a number of exactly solvable model equations such as
the Korteweg-de Vries equation (KdV), nonlinear Schrödinger equation (NLS),
Kadomtsev-Petviashvili equation and some others. The great success of this method
is due to the fact that it allows to find exact solutions of some nonlinear PDEs,
without explicit restrictions on the magnitude of their nonlinearity. This does not
exclude, of course, introduction of one or more small parameters while deriving a
specific model PDE.

The most known particular solution of this kind has been called soliton in 1965
[48], though first observed as a hydrodynamical phenomenon by John Scott Russell
in 1834 while conducting experiments to determine the most efficient design for
channel boats. These solutions have the characteristic property to resume their shape
after highly nonlinear mutual interactions.
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2 E. Tobisch

This remarkable convergence of theory with practice attracted great attention of
the scientific community to this novel method. It turned out that the set of solutions
which can be found with the IST is much richer. For example, besides solitons it also
contains kinks, breathers, multi-soliton solutions, to name a few. Later these exact
solutions were observed in many fields of physics other than fluid mechanics, e.g.
nonlinear optics, plasma physics, radioelectronics, etc. The modern state-of-the-art
in experimental observation of various exact solutions in a laboratory wave tank
will be given in Chap. 8 of this book. During the last 50 years all these outstanding
developments were discussed in numerous journals, monographs and volumes of
collected papers. We do not provide here a complete literature review. As two
reference points in this field one can use the monumental Encyclopedia of Nonlinear
Science [44] written by Scott and the more recent monograph of Osborne [36].

One of the main drawbacks of the IST is that the class of integrable PDEs is only
a tiny part of all equations appearing in mathematical physics, and probably not
even the most interesting class. As students of the late Vladimir Arnold remember,
he liked to say that if an equation is integrable, then it has necessarily lost some very
important information about the world around us, for example, about chaos.

Another general approach to the study of nonlinear problems consists in introduc-
ing into equations one or more small parameters which can be chosen in a number
of ways, depending on the phenomenon under consideration. For instance, wave
steepness " D Ak (here k is the wavenumber and A is the wave amplitude) is taken
as a small parameter while studying modulation instability in the frames of both
KdV-type and NLS-type equations. On the other hand, in soliton studies a small
parameter for KdV-type equations is chosen as " D A=h, where h is the depth of
undisturbed fluid.

The presence of a small parameter " is used in fluid dynamics to reduce the
original PDE problem to the study of resonantly interacting waves whose time
evolution is governed by one or more systems of nonlinear ordinary differential
equations (ODEs). Various technical questions about this reduction and some
properties of resulting dynamical systems, resonance curves, invariants, etc. were
discussed in [28], which is presumably the first volume devoted to the nonlinear
theory of wave propagation and edited by Lighthill in 1967. The first laboratory
experiments on wave resonances have been also described in that volume.

On the other hand, practical needs stemming from oceanography led Phillips
[38] in 1960 to the idea of considering coupled dynamics of ODEs in statistically
averaged sense. Later this approach was successfully finalized by Hasselmann [10]
in 1962, who derived the first wave kinetic equation for surface water waves in
deep water possessing 4-wave interactions. Soon afterwards similar wave kinetic
equations were derived for other 3- and 4-wave systems. Henceforth, the kinetic
approach, based on statistical description of a weakly nonlinear wave system,
became the central topic of the Wave Turbulence Theory (WTT).

The first stationary solution of the wave kinetic equation was found by Zakharov
and Filonenko in 1967 [49] for capillary water waves. Their method was later
successfully applied to other wave kinetic equations; details can be found in the
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original monograph on the WTT published in 1992 by Zakharov et al. [51]. The
developments in the WTT during the next 20 years are summarized by Nazarenko
in his comprehensive educational volume [34].

The following years highlighted a list of important open problems of the WTT,
coming mostly from experiments (e.g. nonexistence of an inertial interval) but also
the lack of rigor in the underlying mathematical theory. An excellent review with
the list of open problems was written by Newell and Rumpf in 2011 [35]. All
open problems can be conventionally divided into internal problems of the theory
(e.g. divergence of the cumulants) and external problems coming from the theory’s
limited applicability.

The most significant external problem of the WTT is the description of large scale
systems, also known as resonators, with characteristic wavelengths comparable to
the system size. In this practically important case the wave kinetic equation does
not apply, having been obtained in the large box limit, i.e. for wave lengths much
smaller than the size of the box. Hence, the need for novel approaches was realized.
Several attempts were undertaken to extend the WTT to include large scale systems
into the overall picture. A non-exhaustive list of recent attempts includes the frozen
[39], mesoscopic [52], laminated and discrete [13] and finite-dimensional [29] wave
turbulence theories.

The main feature of large scale systems is that the set of resonantly interacting
modes can be partitioned in the Fourier space into non-intersecting subsets with
independent time evolution, which does not allow a statistical description of such a
system.

This fundamental fact was established for the first time by Kartashova in 1990
[14] while the general theory of these systems is presented in her monograph [19].
The new approach was called discrete WTT in contrast to the original WTT, which
is referred to nowadays as the kinetic WTT. Until recently, any rigorous transition
between discrete and kinetic regimes in the WTT was not known. Very recently a
theory developed by Kuksin and his disciples, presented in Chap. 2, finally yielded
a concise answer to the question whether discrete or kinetic regime will be observed
as a result of time evolution of a given weakly nonlinear system.

Before proceeding with a more detailed analysis of methods and approaches
presented in this volume, we shall give a few simple definitions and present some
ideas needed for further understanding.

1.2 Main Notions

It is inherent to human nature to describe the external world in terms of different
objects and interactions between them. A physicist, more focused on the practical
application of his theoretical descriptions, is always trying to find a number of
simple basic objects with clear features, and then combine them into more complex
objects. An ideal set of simple objects is given by linear Fourier harmonics which
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are solutions of linear PDEs with constant coefficients

 D A expfi Œkx � !t�g (1.1)

which are called waves in physics for an obvious reason (for real wave vector and
frequency). Accordingly, A, k and ! are called wave amplitude, wave vector and
wave frequency, while k and t are space and time variables. Direct substitution of  
into a linear PDE yields (for periodic boundary conditions) a polynomial connection
between k and ! which is called dispersion relation (or dispersion function), e.g.

L. / D  tt �  xxxx D 0 ) !2.k/ D k4; (1.2)

where k D jkj. Accordingly, a nonlinear PDE possessing time- and space-
like variables and linear part with wave-like solutions is called an evolutionary
dispersive PDE. Notice that the standard mathematical classification into elliptic,
hyperbolic and parabolic PDEs is based on the form of a PDE while the physical
classification—into dispersive and non-dispersive PDEs—is based rather on the
form of their solutions, and they are not complementary [47].

Notoriously, there is no general method for solving an arbitrary nonlinear PDE.
On the other hand, there exist some general methods for finding approximate
solutions of a weakly nonlinear evolutionary dispersive PDE which can be written
as a perturbation of the linear equation L.'/ D 0

L.'/ D "N.'/ (1.3)

where N is an arbitrary nonlinear operator and " is a small parameter, 0 < " � 1.
Indeed, if nonlinearity "N.'/ is small enough, as it usually happens in many

applied problems, the general form of solutions of Eq. (1.3) remains the same as
in Eq. (1.1), only the amplitude A turns into a slowly changing function of time,
A D A.�/; � � "˛ for some rational ˛. If waves with slowly changing amplitudes
do not form a resonance, the overall picture is virtually identical to the linear case.
If resonance conditions are satisfied and "N.'/ remains small, an unlimited growth
of solutions occurs and this is an interesting case to study. The resonant conditions
read

!1 ˙ !2 ˙ : : :˙ !N D 0; (1.4)

k1 ˙ k2 ˙ : : :˙ kN D 0; (1.5)

where kj, j D 1; : : : ;N are the wavevectors of resonantly interacting waves and
wave frequencies !j D !.kj/, j D 1; : : : ;N are related to kj through the dispersion
relation. This implies in particular that, for example, 3- and 4-wave resonances can
be regarded on different time scales and, thus, studied independently. In a 3-wave
system the dynamical time scale (discrete WTT) �dyn � "�1 while the kinetic time
scale is �kin � "�2.
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In particular, resonance conditions for a 3-wave system read

!1 C !2 D !3; k1 C k2 D k3I !j D !.kj/ (1.6)

and any multi-scale method produces a dynamical system for complex amplitudes
of three resonantly interacting waves (in canonic variables aj):

Pa1 D V3
12a
�
2a3; Pa2 D V3

12a
�
1a3; Pa3 D �V3

12a2a3; V3
12 D V3

12.k1;k2;k3/
(1.7)

which should be supplemented by 3 complex conjugate equations in order to
produce a completely integrable system. Such an abbreviated form of dynamical
system is commonly used in fluid dynamics as a.k/ D a�.�k/; accordingly the
word mode is a common word uniting waves with wave vectors k and �k. The form
of the initial PDE is now hidden in the form of the interaction coefficient V3

12 which
is a function of the wave vectors satisfying resonance conditions given by Eq. (1.6).

If no 3-wave resonance occurs, one proceeds the same way looking for a 4-wave
resonance,1 with resonance conditions being

!1 ˙ !2 ˙ !3 ˙ !4 D 0; k1 ˙ k2 ˙ k3 ˙ k4 D 0; (1.8)

and so on. Dynamical systems, both for 3- and 4-wave resonances can be solved
analytically in terms of Jacobian elliptic functions. More details and examples can
be found in [19].

Now that an isolated resonance (say, a triad or a quartet) is fully described, there
exist two different frameworks for further study of the initial PDE.

The first framework is called discrete WTT; in this case an approximate solution
to the original PDE given by Eq. (1.3) is constructed without making use of any
additional assumptions.

The second framework is called kinetic WTT. It does not provide any direct
solution of the initial PDE; instead, the original PDE is replaced with a wave kinetic
equation whose stationary solutions describe approximately the energy spectrum
of the original PDE. Some additional assumptions are used while applying this
approach.

A brief description of these two frameworks is given below. It aims to demon-
strate the most important open problem in the WTT, namely, the lack of constructive
transition between discrete and kinetic regimes.

1There is no general theory answering the question whether indeed exact 4-wave resonances or
approximate 3-wave resonances should be studied in this case. Even an unambiguous definition
of approximate resonance is not yet available, [46]. This is the reason why we do not consider
this topic, which undoubtedly has a great potential in applications, in the present volume. A brief
overview of the problem is given in Sect. 1.2.3.



6 E. Tobisch

1.2.1 Resonance Clusters

Discrete WTT describes weakly nonlinear wave systems with periodic or zero
boundary conditions, i.e. waves with length comparable to the size of the interaction
domain. This means that the resonance conditions given by Eqs. (1.6), (1.8) should
be fulfilled for wave vectors with integer coordinates. Existence of independent
sets of resonantly interacting modes (called resonance clusters) among many non-
resonant modes and other general properties of wave resonant systems with discrete
spectra were demonstrated in early 1990s in [14, 15]. Physical implications of these
results were discussed in [16] which is the foundational paper of the discrete WTT.2

To understand what a resonance cluster is, let us imagine that in a 3-wave system
with resonance conditions (1.6) we have found two resonant triads which have one
mode k3 in common:

!1 C !2 D !3; k1 C k2 D k3; (1.9)

!4 C !5 D !3; k4 C k5 D k3: (1.10)

Such a system is called a 2-triad resonance cluster and is described by the dynamical
system

Pa1 D V3
12a
�
2a3; Pa2 D V3

12a
�
1a3; Pa3 D �V3

12a2a3 � V3
45a4a5; (1.11)

Pa4 D V3
45a
�
5a3; Pa5 D V3

45a
�
4a3: (1.12)

A resonance cluster can contain from a few to many hundred waves and energy
exchange among the waves of a cluster can be periodic or chaotic, while non-
resonant modes do not change their energy at the corresponding time scale and
are called frozen modes. Their existence has been first demonstrated in numerical
simulations with spherical planetary waves in [16] and later on for capillary waves
in [39, 40] where the term “frozen” modes has been first introduced.

The dynamical system for an arbitrary resonance cluster is energy conserving.
When all the clusters are constructed and their dynamical systems solved (ana-
lytically or numerically), an approximate solution Q' of the original PDE given by
Eq. (1.3) can be found:

Q' D
X

kj2fRCg
aj.�/ exp ifkj x � !j tg C c.c.; (1.13)

where the sum is taken over all resonance clusters fRCg and c.c. means complex
conjugate. The so-called slow dynamical time is �dyn � "�1 in a 3-wave system and

2Modern terminology “discrete WTT” and “resonance clusters” has been first introduced almost
20 years later, in [18].
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�dyn � "�2 in a 4-wave system. Another (equivalent) way to represent Q' is to sum
all Fourier modes but additionally use the multiplicative Kronecker symbol in the
r.h.s. of Eq. (1.13) which is equal to 1 for resonant modes kj and 0 for non-resonant
ones, as it is done in Chap. 2.

1.2.2 Power Law Energy Spectrum

Kinetic WTT describes long-time evolution of a system of weakly nonlinear
dispersive waves possessing resonances. To this aim, a wave kinetic equation is
deduced which is in a sense similar to the Bolzmann kinetic equation (indeed, both
are different limiting cases of the quantum Bose-Einstein equation) and is used for
describing the evolution of wave energy spectra in Fourier space. Kinetic equations
have been used since late 1920s in optics and plasma physics.

A qualitative leap that led to the creation of a constructive theory was the
development of a new method for finding stationary solutions of kinetic equations
in 1967 [49]. These stationary solutions are called Kolmogorov-Zakharov energy
spectra and have power-law shape, � jkj�˛; ˛ > 0 if dispersion function !.k/ is
proportional to some rational power of jkj. Here ˛ depends only on the form of the
dispersion function and the space dimension.

For this great achievement one had to pay by introducing some additional
assumptions which are absent in the discrete WTT. The main idea underlying
the deduction of the wave kinetic equation is the transition from the dynamical
description given by Eq. (1.13) to the statistical one given in full detail in [51].

First of all, assuming that wave phases are random and independent one can
eliminate them by transition from dynamical variables to interaction representation
in terms of correlation functions, haka�k i in a 3-wave system. Further on, two limiting
procedures are performed: the size of the spectral domain goes to infinity and the
small parameter to zero, " ! 0; yielding the 3-wave kinetic equation

d
dt

ha23i D
ˆ

jV3
12j2ı.!3 � !1 � !2/ı.k3 � k1 � k2/

�.a1a2 � a�1a3 � a�2a3/dk1dk2: (1.14)

Unlike a dynamic system for a resonance cluster, the wave kinetic equation is
obtained as a result of averaging and limiting procedures which do not necessarily
conserve the energy. To ensure that we are still dealing with an energy conserving
system, one has to introduce forcing and dissipation far separated in the Fourier
space, and to assume the existence of an energy conserving inertial interval in
between.

Making some more assumptions, stationary solutions of the kinetic equation
given by Eq. (1.14) are found which exist within the inertial interval, and they are
called Kolmogorov-Zakharov energy spectra. These solutions are valid within the



8 E. Tobisch

inertial interval and at kinetic time scales: � "�2 in a 3-wave system and � "�4 in a
4-wave system.

1.2.3 Detuned Resonances

An unambiguous definition of a detuned resonance (also called quasi-resonance
and approximate resonance) is not yet available [46]. We illustrate this using as an
example a 3-wave system. Usually a detuned resonance is described by three vectors
which approximately satisfy the resonance conditions given by Eq. (1.6), i.e.

j!.k1/C !.k2/ � !.k3/j D �!; k1 C k2 D k3; (1.15)

with �.!/ > 0 being called resonance detuning.
However, such a definition does not define a unique object. In fact, this definition

is quite open, admitting solutions with completely different dynamics. We mention
just two of them to emphasize the point: quasi-resonances, all three wave vectors
having integer coordinates satisfying Eq. (1.15), and non-resonant interactions, with
real wave numbers. The difference between these two types of detuned resonances
is illustrated schematically in the Fig. 1.1.

Three wave vectors .m1; n1/; .m2; n2/; .m3; n3/ satisfying the exact conditions of
resonance given by Eq. (1.6) are connected by bold red lines. Quasi-resonant triads
.m1; n1/; .m2 � 1; n2/; .m3; n3/ and .m1; n1/; .m2 C 1; n2/; .m3; n3/ are shown by
(green) dashed-dotted and (blue) dotted lines correspondingly. Obviously, the set

Fig. 1.1 Graphical illustration of the notion of resonance detuning (Color figure online)
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of all quasi-resonances for a given resonant triad is countable (finite in a limited
spectral domain) and is defined uniquely.

On the other hand, detuning for non-resonant interactions can be regarded e.g.
as a circle with radius R around one node of the lattice .M;N/ shown as a (yellow)
circle around the node .m2; n2/. Obviously, any point on its circumference gives the
same resonance detuning �!. This means that an infinite number of waves with
different wavelengths and different phases will produce the same �!, i.e. in this
case no unique representation in the k-space exists for the set of non-resonances.

The main difference between these two types of detuned resonances is that in
the case of quasi-resonances frequency detuning �! is bounded from below [17],
while for the case of non-resonant interactions detuning can be arbitrary small.

This leads to the situation that at first sight is paradoxical. On the one hand, the
general dynamics of a non-resonant triad with small enough�! is well understood:
it well known that their contribution to energy exchange is negligible at time
scale t=", e.g. [6, 37]. On the other hand, recent research of Annenkov and Shrira
demonstrate that detuned resonances of wind waves can be used for constructing the
so-called generalized kinetic equation (GKE) [1].

The GKE has faster time evolution than the Hasselmann equation given by
Eq. (1.14) with ! � .m2Cn2/1=4 and “includes all interactions, although only those
not too far from resonance contribute to spectral evolution” [2]. The study of wave
field dynamics under squall action demonstrates that temporal spectral evolution of
the GKE and the Hasselmann equation are almost identical—before the appearance
of the squall but not after it. During the squall, a dip in the shape of the energy
spectrum is observed in the GKE which is followed by “noticeably more narrow
spectra characterized by a substantially higher peakedness parameter” [2].

Quite similar effect can be observed in numerical simulations with the simplest
possible model of a detuned resonance triad. Indeed, let us regard dynamical system
of 3 resonantly interacting spherical Rossby waves

8
ˆ̂<

ˆ̂:

N1 PA1 D �2iZ.N2 � N3/A�2A3 expf�ie�!Tg;
N2 PA2 D �2iZ.N3 � N1/A�1A3 expf�ie�!Tg;
N3 PA3 D 2iZ.N1 � N2/A1A2 expfie�!Tg

(1.16)

(and their complex conjugate equations) where e�! WD �!=" [23]. Chose the
coefficients Z; Nj corresponding to a fixed resonance triad (the data are given in
[22]) and plot the energy variation range as a function of the frequency detuning
(shown in Fig. 1.2).

The fact that a detuned resonant triad may have a substantially larger energy
variation range than the corresponding exact resonant triad contradicts physical
intuition. However, there exists a simple qualitative explanation of this phenomenon,
in terms of quasi-resonances and approximate interaction defined above.

Indeed, our intuition comes from the linear pendulum usually taken as the model
of a linear wave, and an exact resonance is due to the action of an external force
which is modeled by the nonlinearity N on the right hand side of Eq. (1.3), with
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Fig. 1.2 Typical dependency of the energy variation range �E on the frequency detuning �!.
The vertical (red) dashed and black solid lines show local maximums of �E while the (blue)
dash-dotted line shows the location of the exact resonance (Color figure online)

periodic boundary conditions. Exact and quasi-resonances then can be regarded as
a particular case of free motion of an elastic pendulum [19].

In the case of approximate interactions detuning is so small that it can not be
implemented via the nonlinearity N and we need to introduce an additional term
into our initial PDE,

L.'/ D "N.'/C F (1.17)

where F is a small non-zero forcing/dissipation term and the resonance detuning
e�! is regarded as frequency of an external force. Accordingly, in this case we have
a system similar to elastic pendulum under the action of an external force, and it has
exact resonances different from those of a freely moving elastic pendulum. That is,
an approximate resonance in a system governed by Eq. (1.3) may become an exact
resonance in the frame of systems described by Eq. (1.17).

This is a novel area of research which is not yet ripe for a constructive theory and
therefore it is not presented in our further chapters.

1.2.4 Summary

Summing up the aforesaid, two regimes are described in which weakly nonlinear
dispersive wave system can exist, for each on its own time scale. However, answers
to a multitude of important questions are not known. It transition from discrete
to kinetic regime always possible? Can independent resonance clusters survive
during long time evolution under the action of forcing and/or dissipation? If yes,
is it possible to distinguish between these two situations beforehand taking into
account only the form of the original PDE and the boundary conditions? etc.
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Answers to these questions are given in the Chap. 2, where a novel theoretical
approach is described which uses the same main assumption as the WTT: there
exist independent time scales for 3- and 4-wave resonant interactions.

This assumption is violated in fluid dynamic systems if the small parameter " �
O.10�1/, as has been shown by direct numerical simulations in [1]. This observation
opens up two important research areas.

The first is related to detuned resonances of waves with linear dispersion which
was discussed above. The second important approach in the further study of wave
resonances is examination of exact resonances of waves with nonlinear dispersion
function depending on wave amplitudes. This study is performed in the Chap. 3.

1.3 Resonant Interactions (Chaps. 2 and 3)

In Chap. 2 the same weakly nonlinear dispersive wave systems are studied as in
discrete and kinetic WTT. This means that: (a) nonlinear resonances are formed by
modes with linear dispersion (i.e. with dispersion function not depending on wave
amplitudes); and (b) the small parameter in the system is small enough to provide
time-scale separation for 3- and 4-wave resonances.

A novel approach of studying these systems is presented in Chap. 2. It allows
to answer the questions formulated at the end of the previous section and gives
constructive conditions for determining whether or not transition from discrete to
kinetic regime exists. This method consists of two main steps. In the first step the
so-called effective equation(s) is (are) derived from the original PDE with stochastic
forcing and dissipation. The resulting effective equations include only resonant
interactions and are obtained using special averaging techniques for stochastic PDEs
developed in [26].

If one effective equation is sufficient to describe all resonant interactions in
Fourier space, then the second step is applied and energy spectrum can be obtained.
The shape of this spectrum is power-law similar to the predictions of kinetic
WTT, however the dissipation coefficient � enters explicitly into the exponent,
� k�˛.�/. In the case when effective equations apply only to disjoint parts of
the Fourier spectrum, a power-law spectrum cannot be generally formed. Instead,
energy oscillations within individual resonance clusters are observed (as predicted
by discrete WTT for the simplest case of an energy conserving wave system).

Thus, this methodology encompasses both types of evolutionary behavior:
formation of an energy cascade in the entire Fourier space and quasi-periodic energy
oscillations in low-dimensional independent subspaces of the Fourier space. The
former is illustrated by the Nonlinear Schrödinger (NLS) equation while the latter—
by the Charney-Hasegawa-Mima (CHM) equation.

In order to facilitate reading Chap. 2, we should mention that notations used for
describing resonances in discrete and kinetic regimes are slightly different. In dis-
crete WTT resonant wave vectors of an N-wave system are consequently numbered
as k1;k2; ::;kN while in kinetic WTT they are numbered as k;k1;k2; ::;kN�1. This
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is done in order to emphasize that k is a running index, i.e. that the kinetic equation
is written for an arbitrary wave vector. In Chap. 2 the latter presentation is used for
both discrete and kinetic regimes.

In Chap. 3 a different type of resonances is considered, namely, with dispersion
function depending on wave amplitude. They are studied by the Homotopy Analysis
Method (HAM) which is the main focus of this chapter. The HAM does not require
introduction of a small parameter and guarantees convergence of series solutions in
most cases. If you just ask Google about “homotopy analysis method” + name of
any applied branch of science, you get hundreds of thousands, sometimes millions
of links. For instance, geography yields 1,420,000 (Lorenz equation being the most
popular), chemistry 163,000, finance 119,000, etc.

From the mathematical point of view, the HAM was, in recent years, widely
generalized beyond its original definition. It is enough to mention its application
to solving important integral equations, like Volterra-Fredholm equation [12], and
even integro-differential equations [33]. One of the most outstanding generalizations
is, of course, the homotopy perturbation method and its synthesis with integral
transformations [24].

Every branch of applied science which uses mathematics seriously is—rather
sooner than later—challenged by nonlinear problems with both weak and strong
nonlinearities. And the HAM comes to rescue in nearly every tricky and cumber-
some situation when classical methods fail—as soon as the researcher is aware of
its existence. There belong e.g. flow problems in areas as wide apart (on the first
glance) as polymer processing, coating, ink-jet printing, microfluids, geological
flows in the earth mantle, homodynamics and many others [43]. The HAM has
been successfully applied for solving various problems emerging in the theory of
electrohydrodynamics [32], heat transfer [11] or diffusion-convection [31].

In Chap. 3 it is demonstrated how to find steady-state resonant quartets and
their clusters for surface water waves with dispersion function depending on wave
amplitude. It was established by Stokes in 1847 that dispersion function for the
surface water waves has the form

!2 D g kŒ1C 1

2
.Ak/2 C : : :�; (1.18)

i.e. it depends on the wave amplitude A. An assumption " WD Ak � O.10�2/ allows
to omit the term .Ak/2 and high-order terms in Eq. (1.18) and to obtain standard
linear dispersion relation !2 D g k widely used in the weakly nonlinear theory
of water waves. In laboratory experiments with water waves, the small parameter
" is usually chosen of the order of � O.10�1/ in order to reduce characteristic
times of wave interactions in which one can observe effects predicted by the
weakly nonlinear theory. For these magnitudes of small parameter, dependence of
dispersion function on wave amplitude can be substantial. Some special type of 4-
wave resonances among the surface water waves with dispersion function depending
on amplitude is studied in Chap. 3. To distinguish between resonances described
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above and this new type of resonances, dispersion function in this chapter is denoted
by � , not by !.

The 4-wave resonance conditions in this case read

�1 ˙ �2 ˙ �3 ˙ �4 D 0; (1.19)

k1 ˙ k2 ˙ k3 ˙ k4 D 0; (1.20)

and have the form similar to Eqs. (1.4) and (1.5). However, dispersion function �
depends not only on the corresponding wavevector but also on the amplitudes of
four resonantly interacting waves, �j D �.kj;A1; : : : ;A4/.

Unlike in the previous Chapter where each resonant quartet is characterized by
periodic energy exchange among the modes of the quartet, there exist so-called
steady-state quartets of resonant modes satisfying Eq. (1.19). In a steady-state
quartet all amplitudes Aj, wavevectors kj and frequencies �j of the resonant wave
system are constant, i.e. independent of time, so that the spectrum of wave energy
is also independent of time.

This peculiar type of resonances has been first found theoretically by the
Homotopy Analysis Method (HAM) and later also observed experimentally.

1.4 Modulation Instability (Chaps. 4 and 5)

Our Chap. 4 is devoted to various aspects of PDEs possessing the Modulation
Instability (MI). The MI is a widely known phenomenon appearing in various
physical systems met in nonlinear optics, plasmas, electrodynamics, etc. [53]. In
the theory of water waves, the MI is also known as the Benjamin-Feir instability
or side-band instability. It was discovered in 1967 by Benjamin and Feir while
performing experiments with surface water waves [3]. The existence of small water
waves of permanent shape (stationary nonlinear Stokes waves) was suggested by
Stokes in 1845 [45] and proven by Levi-Chivita in 1925 [27]. However it occurred
nobody to explore stability of these waves, and the observation of the wave train’s
disintegration was a big surprise. A wave with constant frequency and wavelength
generated by the wave maker was breaking up into groups of waves with varying
frequencies and wavelengths. After a year of attempts and efforts to improve the
accuracy of the experiments, Benjamin and Feir concluded that the reason lies not
in some imperfectness of the wave maker but rather in the instability of a nonlinear
Stokes wave itself [3].

The MI is a process of disintegrating of a monochromatic wave train called
carrier wave into two waves with close frequencies and wave vectors called side-
band waves. This can only happen under certain conditions that have been derived
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by Benjamin and Feir for the Stokes waves on infinitely deep water. This condition
reads

0 � �!

ak!
� p

2; (1.21)

where �! is a small frequency mismatch defining the distance between the
carrier wave and its side-bands in Fourier space. It is deduced as a result of the
linear stability analysis, which means that under this condition amplitudes of the
side-bands may exhibit unbounded growth. The simplest mathematical model for
studying surface water waves is the so-called focusing NLS

i't C ˛ 'xx D ˇ j'j2'; with ˛ ˇ < 0: (1.22)

If ˛ ˇ > 0; the NLS does not possess the MI and is called non-focusing.
The simplest mathematical description3 of the MI can be given in terms of four-

wave resonances of the special form

!1 C !2 D 2!3; k1 C k2 D 2k3; (1.23)

with !1;2 D !3 ˙�, 0 < � � 1; and k1;2 D k3 ˙ ı, 0 < ı � 1.
From the theoretical point of view, any Stokes wave train with finite value of k a,

however small, is modulationally unstable. However, “since viscous damping rates
are approximately independent of wave amplitude, the effect of dissipation can be
expected to suppress the instability if k a is sufficiently small” [3]. Benjamin and
Feir confirmed experimentally that for water waves k a D O.10�1/. This allows
to consider the MI as a main physical mechanism underlying various nonlinear
phenomena in systems with moderate nonlinearity in which the WTT does not
work, for instance, appearance of freak waves [25] or formation of dynamic energy
cascades [20, 21].

The Benjamin-Feir theory can be extended to water waves of finite depth: the
MI may occur only if the undisturbed water depth h is large enough compared to
the wave amplitudes a. Consequently, the NLS type equations are usually taken as
model equations for modulation instability, with a monochromatic wave train being
unstable only if

k h > 1:363: (1.24)

For many decades, it was understood that the condition given by Eq. (1.24)
excludes the shallow water case which is modeled by the KdV equation and
modulation instabilities have only been studied for modified KdV equations. These

3This definition has been used successfully in many physical applications for several decades.
However, a rigorous mathematical proof of instability of the Stokes periodic wavetrain (within the
Hamiltonian framework) was given by Bridges and Mielke almost 30 years later in [5].
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studies in physical science are presently rather scarce and restricted to the case when
modification of the KdV equation can be transformed (after making a number of
assumptions and changes of variables) into a focusing NLS equation, e.g.[9, 41].

Quite recently, a new theory leading to the emergence of the KdV equation
has been proposed by Bridges. The theory is based on modulation and implies
that the assumption of shallow water is neither necessary nor sufficient for the
emergence of KdV as a model for water waves [4]. This achievement opens up
a totally new perspective on the relevance of the KdV and KdV-type equations
for modeling physical phenomena. Consequently, it becomes very important to
understand what mathematical results in this area already exist and whether or not
they are constructive.

In Chap. 4 MI in KdV-type equations is investigated from the rigorous mathe-
matical point of view. In 1965 Whitham introduced his now famous modulation
theory that provides an asymptotic (WKB) method of analyzing this question.
This theory is purely formal, however, and there has been much recent interest
in the mathematical community in providing rigorous justifications of predictions
from Whitham’s theory. In Chap. 4, the authors present a detailed survey of
recently developed analytical methods for studying modulational instability of
periodic traveling waves for KdV-type equations. This general theory is independent
of integrability of the governing equations and may also include systems with
dissipation. To illustrate robustness of the theory, the authors also discuss its possible
extensions and present detailed results for a number of examples including Shamel
equation, Benjamin–Oro equation, Whitham equation for water waves, etc.

In Chap. 5 the authors discuss a problem which has important physical appli-
cations: connection between modulational instability and possible existence of
breathers in the context of integrable KdV-type equations. This connection is well
studied in the frame of the focusing nonlinear Schrödinger equation which possesses
both the MI and breather solutions which are often used as models for rogues waves.
In Chap. 5 this connection is reviewed for a suite of long wave models, such as the
KdV equation, the extended KdV (Gardner) equation and a coupled set of Korteweg-
de Vries equations (Hirota-Satsuma model). For each model conditions for the MI
are written out explicitly and also a non-singular breather solution is found, if
it exists, based on a two-soliton solution. This is a simple and robust method to
establish a connection between modulation instability and breathers.

1.5 Frameworks (Chaps. 6 and 7)

Since the end of the eighteenth century two main paradigms, stemming from
classical mechanics, are known. The first is the Lagrangian description of physical
systems involving the action integral which contains generalized positions and
momenta, and the second one is the Hamiltonian approach when canonical variables
can be chosen. In most practical situations these two approaches are equivalent since
they can be related with the Legendre transformation applied to the Lagrangian
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functional. It may appear that both approaches can be applied with equal success to a
problem in hand. The major difference consists in the choice of dynamical variables
which are the generalized position and momenta in the Hamiltonian formalism,
and the generalized coordinates and velocities in the Lagrangian framework.
Consequently, the final choice has to be made depending on the problem under
consideration. For instance, in the presence of holonomic constraints the Lagrangian
formulation is preferred, while in the water wave community it is the Hamiltonian
formulation of Zakharov which is widely used [50], in particular as the theoretical
base for efficient numerical algorithms of wave propagation [7].

In Chap. 6 it is shown that Hamiltonian formalism allows to explain why
extremely short and strongly nonlinear optical pulses can be fairly well described
by the standard (envelope) generalized NLS equation (gNLS), usually regarded as
the weakly-nonlinear limit of primitive equations. This paradoxical situation is due
to the fact that the standard optical gNLS equation is just a reformulation of general
Hamiltonian equations and, in a sense, no approximations are required. Thus it is
demonstrated that the Hamiltonian formalism can indeed be used as a universal
approach also in extremely nonlinear optics.

In Chap. 7 the Relaxed Variational Principle (RVP) is introduced and illustrated
by several examples. It generalizes the classical Luke’s Lagrangian formulation
[30]. The introduction of additional variables into the variational Lagrangian
framework allows for easier and more flexible derivation of approximate models
for water waves. This method should not be necessary opposed to the Hamiltonian
formalism, since in many cases the corresponding Hamiltonian functional can be
recovered. However, the Hamiltonian framework is too tight for the approximation
process, since the choice of canonical variables is quite rigid. In connection to water
waves, it is the velocity potential at the free surface '.x; t/ D �.x; y D �.x; t/; t/
which necessarily appears in the Hamiltonian. However, for modeling purposes it
is sometimes advantageous to choose the velocity potential at an arbitrary level
˛ > 0 inside the fluid domain, i.e. '˛.x; t/ D �.x; y D �˛h; t/. The Lagrangian
framework is flexible enough to allow for this kind of simplifications. A few
examples illustrating advantages of this approach are given.

1.6 Reality Check (Chap. 8)

The last and the largest Chap. 8 in the book is entirely devoted to the critical
discussion of how theoretical and numerical predictions could be verified in a
laboratory experiment. What are the factors to be taken into account? What are
the applicability limitations of existing mathematical models in fluid dynamics?
One major simplification in water waves’ studies is decoupling of randomness
and nonlinearity. One can thus concentrate first on deterministic, as opposed to
stochastic, wave fields. The problem of evolution of a deterministic nonlinear wave
system still remains extremely complex, and additional simplifications are required.
In view of numerous simplifying assumptions accepted not just in theoretical
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models but also in fully nonlinear solutions, the validity of the results has to be
verified by carrying out controlled experiments that allow quantitative comparison
of theoretical predictions with measurements. Direct comparison of theoretical
and experimental results is often challenging, just because numerical solutions
customarily consider evolution of waves in time while in experiments the wave
field evolves in space. The numerical and the experimental results may thus differ
both quantitatively and qualitatively. This chapter presents the perspective of an
experimentalist on these questions. This analysis seems to indicate that we stand
rather in the beginning of a long way towards successful confirmation of theory by
practice.
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Chapter 2
The Effective Equation Method

Sergei Kuksin and Alberto Maiocchi

Abstract In this chapter we present a general method of constructing the effective
equation which describes the behavior of small-amplitude solutions for a nonlinear
PDE in finite volume, provided that the linear part of the equation is a hamiltonian
system with a pure imaginary discrete spectrum. The effective equation is obtained
by retaining only the resonant terms of the nonlinearity (which may be hamiltonian,
or may be not); the assertion that it describes the limiting behavior of small-
amplitude solutions is a rigorous mathematical theorem. In particular, the method
applies to the three- and four-wave systems. We demonstrate that different possible
types of energy transport are covered by this method, depending on whether the set
of resonances splits into finite clusters (this happens, e.g. in case of the Charney-
Hasegawa-Mima equation), or is connected (this happens, e.g. in the case of the
NLS equation if the space-dimension is at least two). For equations of the first type
the energy transition to high frequencies does not hold, while for equations of the
second type it may take place. Our method applies to various weakly nonlinear wave
systems, appearing in plasma, meteorology and oceanography.

2.1 Introduction

It is well known that solutions of linear evolution PDEs in finite volume are
superpositions of normal modes of oscillations (in most cases of interest these are
the Fourier modes). When a nonlinearity is added as a perturbation, different modes
start to interact and the solutions of the equation can be approximated by suitable
power series expansions, provided that the nonlinearity is sufficiently small (or, in
other words, the PDE is weakly nonlinear). In such cases, the equation can be
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written as

ut C L.u/ D "N.u/ ; (2.1)

where L is the linear operator, N denotes the nonlinearity and " is a small parameter,
0 < " � 1. The equation may contain a stochastic force, and in that case it reads

ut C L.u/ D "N.u/C p
" hrandom forcei (2.2)

(the scaling of the random force by the factor
p
" is the most natural, see below). We

will show that the limiting, as " ! 0, exchange of energy between the modes may be
described by replacing the original system with a suitable effective equation. This
result may be regarded as a PDE-version of the Bogolyubov averaging principle
(see [1]) which implies a similar property for distribution of energy between the
oscillating modes for small-amplitude oscillations in finite-dimensional nonlinear
systems.

The mentioned above convergence that holds as " ! 0 and various properties
of the corresponding effective equations have been rigorously established (see
[7, 10–14] and the discussion in [7]). The treatments of the deterministic and
stochastic equations are similar, but the results, obtained in the stochastic case,
are significantly stronger: while the deterministic effective equation controls the
dynamics only on time intervals of order "�1, in the presence of stochastic forcing
the corresponding effective equation also approximates the stationary measure for
the original equation, thus controlling the asymptotical in time behavior of solutions
when " � 1. Moreover, in the absence of forcing we only get information
concerning the exchange of energy between the modes, whereas in the stochastically
forced case, the stationary measure for the effective equation controls both the
energies and the phases of the normal modes of solutions.

Below we explain how to construct the effective equations for Eqs. (2.1) and (2.2)
from the resonant terms of the nonlinearities. We will discuss two examples: the
nonlinear Schrödinger equation and the Charney-Hasegawa-Mima equation on the
ˇ plane. These two equations display completely different types of energy exchange
between modes, and we will explain why this happens.

2.2 How to Construct the Effective Equation

We consider hamiltonian PDEs, whose linear parts have imaginary pure point
spectra and are diagonal in Fourier modes. Written in terms of the complex Fourier
coefficients v D fvkg (also called waves), the equations which we study read

d

dt
vk D i!kvk C Pk.v/ ; k 2 Z

d : (2.3)
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Here !k are real numbers and P.v/ D .Pk.v/;k 2 Z
d/ is a polynomial nonlinearity

in v of certain order q, of the form

Pk.v/ D
X

p�q

X

k1:::kpkpC1:::kq

ck1:::kqkvk1 � � �vkpv
�
kpC1 � � �v�kq

ı
1:::p
pC1:::q k ; (2.4)

where ck1:::kqk are some complex coefficients, v� is the complex conjugate of v and

ı
1:::p
pC1:::qk D

�
1 if k1 C : : :C kp D kpC1 C : : :C kq C k
0 else

: (2.5)

We always assume that “the nonlinearity does not pump energy in the system”:

Re
X

k

Pk.v/ Nvk � 0 (2.6)

(in most case of interest the l.h.s. vanishes).
The quantities Ik WD jvkj2=2, Ek D !kIk and 'k D Arg.vk/ are called,

respectively, the wave action, wave energy and wave phase. The relation between
! and k, i.e. the function k ! !k, is called the dispersion relation, or dispersion
function.

The weakly nonlinear regime corresponds to solutions of small amplitude ".
We will study it in the presence of damping and, possibly, a random force, whose
magnitude is controlled by another parameter, call it �. So, instead of Eq. (2.3), we
will consider

d

dt
vk D i!kvk C "qPk.v/ � �	kvk C 


p
� bk P̌

k ; k 2 Z
d ; (2.7)

where 	k � 	� > 0 controls the damping term, bk > 0 controls the forcing and
the parameter 
 2 f0; 1g is introduced to consider at the same time the forced and
non-forced cases. The P̌

ks are complex white noises, independent from each other.1

The factors � and
p
� in front of the damping and the dissipation are so chosen that,

in the limit of � ! 0, the solutions stay of order one, uniformly in t > 0.
Note that, while " controls the size of the solutions, 1=� is the time-scale

on which the forcing acts significantly, as it is the time needed for the standard
deviations of the processes

p
�ˇk to become of order one. If 
 D 0 and the system

of Eq. (2.7) is deterministic, still its time-scale is 1=� since, as we explain below, its
solutions with initial data of order one stay of order one for t . ��1, while for much
bigger values of time they are very small since in view of Eq. (2.6) their `2-norms

1 That is, P̌ k D .d=dt/ˇk, ˇk D ˇ
C
k C iˇk�, where ˇ˙

k are standard independent real Wiener
processes.
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satisfy

jv.t/j2`2 � jv.0/j2`2e�t�	� : (2.8)

We will consider the regime

� D "q (2.9)

(where q is the degree of P), and study solutions of the equation with given initial
conditions on the time-scale 1=�, examining them under the limit � ! 0. Passing
to the slow time � D �t (so that time t � 1=� corresponds to � of order 1), Eq. (2.7)
becomes

Pvk D i��1!kvk C Pk.v/ � 	kvk C 
bk P̌
k ; k 2 Z

d ; (2.10)

where the upper dot stands for d
d� .

We claim that, in the limit when � (or, equivalently, ") goes to zero, the
distribution of the energies Ek on times � of order one is described by an effective
equation whose nonlinearity is constituted by resonant terms of the nonlinearity
(see Eq. (2.20) below).

It is easier to understand the role of resonances and the form of the effective
equation by passing to the interaction representation (cf. [1, 16, 18]), i.e., by
performing the time-dependent change of variables from vk to

ak D e�i��1!k�vk ; (2.11)

which transforms Eq. (2.10) to

Pak D Rk.a; �
�1�/ � 	kak C 
bke�i��1!k� P̌

k ; k 2 Z
d ; (2.12)

where Rk denotes the nonlinearity, written in the a-variables. That is

Rk.a; �
�1�/ D

X

p�q

X

k1:::kpkpC1:::kq

ck1:::kqkvk1 � � �vkpv
�
kpC1 � � �v�kq

ı
1:::p
pC1:::q k

� exp
�
i��1�

�
!k1 C : : :C !kp � !kpC1

� : : : � !kq � !k
��
:

(2.13)

Noting that the collection of the processes fe���1!k� P̌
kg is another set of standard

independent complex white noises, we re-write Eq. (2.12) as

Pak D Rk.a; �
�1�/ � 	kak C 
bk P̌

k ; k 2 Z
d : (2.14)
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In the sum defining Rk, the terms for which the resonance conditions

�
!k1 C : : :C !kp D !kpC1

C : : :C !kq C !k

k1 C � � � C kp D kpC1 C � � � kq C k
(2.15)

are satisfied (called the resonant terms) under the limit � ! 0 behave completely
differently from others terms (called the nonresonant terms). Namely, the nonres-
onant terms oscillate faster and faster, whereas the resonant terms do not. We will
say that a set of Zd-vectors fk1; : : : ;kq;kg forms a resonance if relations given by
Eqs. (2.15) are satisfied, if ck1:::kqk ¤ 0, and the set fk1; : : : ;kpg does not equal the
set fkpC1; : : : ;kq;kg. The collection of all resonances is called the resonant set.

In the spirit of the finite-dimensional averaging, following the Bogolyubov
averaging principle (see [1]), the behavior of solutions of Eq. (2.14) under the limit
� ! 0 is obtained by replacing the nonlinearity Rk with its time average, i.e. with

lim
T!1

1

T

ˆ T

0

Rk.a; t/dt : (2.16)

Since for any real number � we have

lim
T!1

1

T

ˆ T

0

ei�tdt D
�
1 if � D 0

0 if � ¤ 0
; (2.17)

then only the resonant terms survive in the averaged nonlinearity. We write their
sum as

Rk.a/ D
X

p�q

X

k1:::kpkpC1:::kq

ck1:::kqkvk1 � � �vkpv
�
kpC1 � � �v�kq

ı
1:::p
pC1:::q kı.!

1:::p
pC1:::q k/ ;

(2.18)

where

ı.!
1:::p
pC1:::qk/ D

�
1 if !k1 C : : :C !kp D !kpC1

C : : :C !kq C !k

0 else
: (2.19)

This suggests to take for the effective equation the following system:

PQak D Rk.Qa/� 	k Qak C 
bk P̌
k ; k 2 Z

d : (2.20)

Indeed, it is proved in [7] (also see [10–12]) that, if the original Eq. (2.7) is well
posed on time intervals t . 1=�, then Eq. (2.20) describes the limiting behavior of
the variables ak (and, as well, the distribution of energy since jvkj D jakj) in the
time-scale t � 1=�, for any sufficiently regular initial data. This holds both in the
presence and in the absence of the random forcing (i.e., both for 
 D 0 and 
 D 1).
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Moreover, in the forced case we also control the limiting behavior of the stationary
solutions for Eq. (2.7). So if Eq. (2.7) and the effective equation both are mixing,
then we control the behavior of all solutions for Eq. (2.7) under the iterated limit

lim
"!0 lim

t!1 : (2.21)

Remarkably, in this case the effective equation describes not only the limiting
behavior of the actions, but also that of the angles. That is, it completely controls the
limiting distribution of solutions. So if f .v/ is a functional on the space of sequences
v D .vk/, satisfying some mild restriction on its growth as the norm of v goes to
infinity, and v".t/ is any solution for Eq. (2.7), then

lim
"!0 lim

t!1Ef .v".t// !
ˆ

f .v/ 
.dv/ ; (2.22)

where 
 is the unique stationary measure for the effective Eq. (2.20) and E signifies
the expectation. See in [7, 11, 12].

2.3 Structure of Resonances

We intend to use the effective equations as a tool to investigate the energy transport
in different physically relevant PDEs. We will show that the limiting, as " ! 0,
energy transport for any specific equation depends on the structure of the resonances
(which, in turn, is determined by the form of the dispersion function !k).

Three possibilities can occur:

(1) The resonant set is empty. Then if the degree q of the nonlinearity is even,
the effective equation is linear. If q is odd, the equation may contain nonlinear
integrable terms of the form f .I/vk. But these terms do not contribute to the
dynamics of the wave actions. So in any case different modes do not exchange
energy, and no energy transport to high frequencies occurs.

Now assume that the resonant set is not empty. We say that integer vectors
k1;k2 2 Z

d are equivalent if there exist vectors k3; : : : ;kq;k 2 Z
d , such that

the relations given by Eqs. (2.15) hold. This equivalence divides Z
d to clusters,

formed by elements which can be joined by chains of equivalences (see [8, 9] for a
discussion of the role of resonant clusters in weak turbulence).

The two remaining cases are:

(2) All resonances are connected, so the whole Z
d is a single cluster. In this case,

in the limit when the volume of the space-domain goes to infinity, under some
additional assumptions a new type of kinetic equation can be derived, the energy
transport takes place and power law stationary spectra, which depend only on
the form of the dissipation, can be obtained.
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(3) All resonances are divided to non intersecting clusters. Now the energy transfer
should be studied separately within each cluster. If sizes of the clusters are
bounded, then no energy transport to high frequencies occurs.

See [5, 11] for the case (1), [12, 14] for the stochastic case (2) and [6] for the
deterministic case, and see [13] for the stochastic case (3). See [7] for discussion
and for theorems, applicable in all three cases, deterministic and stochastic.

Note that many examples of systems which fall to type (2) are given by Eq. (2.7)
with completely resonant spectra f!kg, i.e. with spectra of the form !k D !�˝k,
where ˝k are integers. Averaging theorems for completely resonant deterministic
Eq. (2.7) with � D 0 were discussed in [3, 4, 6]; also see [7].

Below we discuss examples for the case (2) when all resonances are connected
(Sect. 2.4), and for the case (3) when the resonances make non intersecting finite
clusters (Sect. 2.5). For more examples of systems of types (2) and (3) see [9].

2.3.1 The Equations

Our first example is the cubic NLS equation on the d-dimensional torus of size L
(see [12, 14]):

@tu � i�u D i"2ı juj2 u C �hdissipationi C 

p
�hrandom forcingi ; (2.23)

where u D u.t; x/ 2 C ; x 2 T
d
L D R

d=.2�LZd/

and the parameter ı D ı.L/ is introduced in order to control different scaling
for solution as the size L of the torus varies.2 The dissipation is a linear operator,
diagonal in the exponential base of functions on T

d
L

f�k.x/ D eiL�1k�x; k 2 Z
dg : (2.24)

As before, by v D fvk;k 2 Z
dg we denote the Fourier coefficients of u.x/:

u.x/ D
X

k2Zd

vk�k.x/ : (2.25)

If d D 1, the resonance condition given by Eq. (2.15) takes the form

k21 C k22 D k23 C k2; k1 C k2 D k3 C k : (2.26)

2More exactly, Eq. (2.23) is the damped/driven cubic NLS equation. See [16, 18] for the non-
perturbed NLS equations.
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All solutions for this system are such that k1 D k; k2 D k3, or k1 D k3; k2 D k.
So in this case the resonant set is empty, and no energy cascade to high frequencies
happens when "2 D � ! 0. This is well known.

Now consider a higher-dimensional NLS equation, write it in the Fourier
variables fvk, k 2 Z

dg, and pass to the slow time � D �t. Then, if the forcing
and the dissipation are chosen in accordance with the prescription of the previous
section (cf. Eq. (2.7)), the equation reads

Pvk D �i��1!N
k vk C iı

X

k1;k2;k32Zd

vk1vk2v
�
k3 ı

12
3k � 	kvk C 
bk P̌

k : (2.27)

Here �	k are the eigenvalues of the dissipation operator. The eigenvalues of the
operator ��, call them !N

k , follow the dispersion relation

!N
k D jkj2 =L2 ; k 2 Z

d : (2.28)

Below we will see that if d � 2, then the whole Z
d forms a single cluster, so the

equation fits the case (2).
An interesting example of the case (3) of isolated clusters is provided by the

Charney-Hasegawa-Mima (CHM) equation on the ˇ plane (see [13, 16, 18] for this
equation with � D 0), which we write as

.��C F/@t � "J. ;� / � @x D �h dissipationi C 

p
�hrandom forcingi ;

 D  .t; x/ 2 R : (2.29)

Here the constant F � 0 is called the Froude number and J. ;� / denotes the
Jacobian determinant of the vector . ;� /. The space-domain is a strip of hori-
zontal size 
 and vertical size one, under double periodic boundary conditions, i.e.,

x D .x; y/ 2 T
2

;1 D R=.2�
Z/ � S1 ; S1 D R=.2�Z/ : (2.30)

Again we pass to the Fourier modes3 fvk; k D .m; n/ 2 Z
2g and to the slow time �

to re-write the equation as

Pvk D �i��1!C
k vk C 1


.m2 C n2
2 C F
2/

X

k1;k22Z2

�
m2
1 C n21


2
�

� .m1n2 � n1m2/ vk1vk2 ı
12
k � 	kvk C 
bk P̌

k ;

(2.31)

3Note that, due to the fact that the function  is real, vk D v�
�k.



2 The Effective Equation Method 29

where k1 D .m1; n1/, k2 D .m2; n2/ and the dispersion function has the form

!C
k D � m


m2 C n2
2 C F
2
; k D .m; n/ 2 Z

2 : (2.32)

The effective equations for Eqs. (2.27) and (2.31) can be easily obtained on
account of the general formula given by Eq. (2.20). Using it, for the NLS equation
we get the effective equation

PQak D iı
X

k1;k2;k32Zd

Qak1 Qak2 Qa�k3ı123kı.!
N12
3k/� 	k Qak C 
bk P̌

k ; k 2 Z
d ; (2.33)

while for CHM the effective equation is the system

PQak D 1


.m2 C n2
2 C F
2/

X

k1;k22Z2

�
m2
1 C n21


2
�
.m1n2 � n1m2/

� Qak1 Qak2ı
12
k ı.!

C12
k / � 	k Qak C 
bk P̌

k ; k 2 Z
2 :

(2.34)

It is clear that the behavior of solutions for Eqs. (2.33)–(2.34) is dictated by the
structure of resonances since they determine the surviving terms of the nonlinearity.
The geometric properties of the resonant set for the higher dimensional NLS
equations are described in the following section, whereas the resonances for CHM
are discussed in Sect. 2.3.3.

2.3.2 Structure of Resonances for the NLS Equation

In the case of 2d NLS equation each resonance is formed by four points of Z2 which
have a simple geometrical characterization: they form the vertices of a rectangle.
Indeed, if a quadruple fk;k1;k3;k2g satisfies Eqs. (2.15) with q D 3, then on
account of the second relation we have k1 � k D k3 � k2. So the polygonal
fk;k1;k3;k2g is a parallelogram. Substituting k D k1 C k2 � k3 in the first relation
and using Eq. (2.28) we get

2.k3 �k3Ck1 �k2�k2 �k3�k1 �k3/ D 0 ) .k3 � k2/�.k3 � k1/ D 0 : (2.35)

That is, k3 � k2 is orthogonal to k3 � k1. So fk;k1;k3;k2g is a rectangle in Z
2.

It is easy to see that for any vectors k;k1 2 Z
2 there is an integer rectangle of

the form fk;k1;k2;k3g. So the equivalence, defined by the clusters of the 2d NLS
equation makes Z2 a single cluster, and the equation falls in the case (2). A graphical
illustration of some resonant quadruples and their connections in Z

2 is displayed in
Fig. 2.1.

Similar all higher-dimensional NLS equations fall in case (2).
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Fig. 2.1 Examples of
connected resonant
quadruples for the NLS
equation in the Z

2 lattice.
Each point is the vertex of at
least one rectangle

n

m

2.3.3 Structure of Resonances for CHM

The structure of resonances for the CHM equation depends on the shape-factor 
.
Below we discuss it, supposing for simplicity that the Froude number F is kept fixed
(see [13] for the general case). We start with explicitly rewriting for the present case
the resonance condition given be Eq. (2.15) (recall that k1 D .m1; n1/, k2 D .m2; n2/
and k D .m; n/):

m1 C m2 D m ; n1 C n2 D n ;

m1

m2
1 C n21


2 C F
2
C m2

m2
2 C n22


2 C F
2
D m

m2 C n2
2 C F
2
: (2.36)

Solutions .k1;k2;k/ to these equations can be divided to different classes, according
to how many numbers among m1;m2 and m are non-zero:

(i) If all three are zero, then any triad k1 D .0; n1/, k2 D .0; n2/, k D .0; n1 C n2/
constitutes a solution. As ck1;k2;k vanish in this case (see Eq. (2.34)), such triads
do not form a resonance.

(ii) If only one number is different from zero, then Eq. (2.36) admits no solution.
(iii) If only one among m1;m2 and m3 vanishes, two subcases arise (as k1 and k2

play an exchangeable role):

(a) if m1 D 0 (which implies m2 D m), then n22 D n2 and there are two
solutions, one for n1 D 0, n2 D n, and another for n2 D �n1=2 D �n;

(b) if m D 0 (which implies m1 D �m2), then n21 D n22 and again there are
two solutions, one for n D 0, n1 D �n2, and another for n1 D n2 D n=2.
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(iv) All three are different from zero. This is the only case when the solutions
depend on 
. Indeed, let us fix a triad .k1;k2;k/ and look for which values of

 it constitutes a resonance. The second line of Eq. (2.36) may be re-written as

a0.k1;k2;k/C a1.k1;k2;k;F/
2 C a2.k1;k2;k;F/
4 D 0 ; (2.37)

where a0; a1 and a2 are polynomials. In particular,

a0 D m1m2m .m2m C m1m � m1m2/ : (2.38)

In view of the inequality .x2 C y2 C xy/ > 0, valid for non-vanishing x and y,

a0 D m1m2m
�
m2
1 C m2

2 C m1m2

� ¤ 0 ; (2.39)

where the use is made of the first line of Eq. (2.36). This shows that the second
order polynomial in 
2 at the l.h.s. of Eq. (2.37) is nontrivial. So for any fixed
triad .k1;k2;k/, where m1, m2 and m are nonzero, relation given be Eq. (2.37)
holds for at most two nonnegative values of 
.

The different types of resonances are represented in Fig. 2.2, where only the
points above the horizontal axis are displayed (cf. footnote 3). There the resonances
of type (iii) (which we will call standard resonances) are connected by solid lines:
they form triangles symmetric with respect to the vertical axis m D 0, in which
each point .2m; 0/ is connected with .m; n/ and .m;�n/, for any n. The resonances
of type (iv) (which we will call non-standard) are displayed as dashed lines: they
constitute triangles in which none of the vertices lies on the vertical axis.

Since each non-standard resonance appears only for at most two values of 
,
then by removing (at most) a countable set of 
s we kill all of them. Let us denote
this removed set Z 	 RC. The set RCnZ of remaining values of 
, for which
no non-standard resonance appear, can be regarded as “typical”. Accordingly

Fig. 2.2 Example of
connected resonant triads for
the CHM equation in the Z

2

lattice. Points belonging to
different clusters of standard
resonances are marked with
different symbols, solid lines
connect standard resonances,
dashed lines non-standard
ones

n

m
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we will refer to 
 2 R
CnZ as typical values of 
 (or as to the typical case).

Below in Sect. 2.5 we show that in the typical case all resonances are divided to
non-intersecting clusters of size at most 3, thus fitting the third option, considered
in Sect. 2.3.

2.4 NLS: The Power-Law Energy Spectrum

Effective equation (2.33) for NLS (which, as we have seen, determines the energy
spectrum) is not easy to handle since its completely connected resonance structure
(see Sect. 2.3.2) makes impossible to split it to simpler subsystems (on contrary to
the CHM equation, see Sect. 2.5). We present here a way to investigate the behavior
of solutions of Eq. (2.33) when the size L of the box goes to infinity, based on certain
traditional for the wave turbulence heuristic approximation (see [16–18]), following
our work [14]. This will lead us to a wave kinetic (WK) equation of the form, usually
encountered in the wave turbulence. The treatment follows closely the paper [14],
to which the reader can refer for further details.

2.4.1 The Limit L ! 1

From the point of view of mathematics, the limit when the size L of the torus T
d
L

tends to infinity in Eq. (2.33) presents a serious problem. In particular, for what
concerns the definition of a possible limiting stochastic equation. Instead of trying
to resolve this difficulty, for any finite L we will study the expectations E.QIk/ of
the actions QIk D 1

2
jQakj2 of solutions for the corresponding equation (the function

k 7! E.QIk/ is called called the wave-action spectrum), and then pass to the limit as
L ! 1 only for these quantities. 4

We fix L and, by making use of Ito’s formula for QIk, get from Eq. (2.33) that

d

d�
QIk D iı

2

X

k1;k2;k32Zd

�Qak1 Qak2 Qa�k3 Qa�k � Qa�k1 Qa�k2 Qak3 Qak
�
ı123kı

�
!N12

3k

�

� 	kQIk C 


2
bk

�
Qa�k P̌

k C Qak P̌ �
k

�
C b2k ; k 2 Z

2 :

(2.40)

4In the case of the non-forced equation the expectations should be taken with respect to the
distribution of the initial data, while for the forced equation—with respect to the distribution of
the forcing (and, possibly, of the initial data).
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Now we pass to the expected values, and define the moment M
k1:::kn1
kn1C1:::kn1Cn2

.�/ of
Qa.�/ of order n1 C n2 as

M
k1:::kn1
kn1C1:::kn1Cn2

.�/ D
D
Qak1 � � � Qakn1

Qa�kn1C1
� � � Qa�kn1Cn2

E

�
; (2.41)

where h�i� stands for the expected value at time � , i.e., hf .Qa/i� D E
�
f .Qa.�//� for any

measurable function f .Qa/. Then from the system of Eqs. (2.40) we get

PMk
k D �2	kMk

k C 2b2k C 2ı
X

k1;k2;k3

Im Mk1k2
kk3

ı
k1k2
kk3

ı.!Nk1k2
kk3 / ; k 2 Z

d : (2.42)

This system is not closed since it involves the moments of order 4. By applying
again Ito’s formula, we can express the time derivative of moments of any order
n1 C n2 as a function of the moments of order n1 C n2 � 2 and those of order
n1 C n2 C 2. The coupled system, containing the equations for all moments, is
called the chain of moments equation (see [15]).5 Systems of this kind are usually
treated by approximating moments of high order by suitable functions of lower order
moments in order to get a closed system of equations. We will show that if the quasi-
stationary and quasi-Gaussian approximations (see below) are chosen to close the
system of moment equations, then under the limit L ! 1 we recover a modified
version of the WK equation.

To study the sum in the r.h.s. of Eq. (2.42), we notice that if the Krönecker deltas
are different from zero because k equals to one vector among k1;k2 and k3 is equal
to another, then the moment is real and does not contribute to the sum. So we may
assume that k ¤ k1;k2, k3 ¤ k1;k2. In this case we calculate the fourth order
moments in the r.h.s. of Eq. (2.42) through Ito’s formula (see [14]) and get

PMk1k2
kk3

D � .	k C 	k1 C 	k2 C 	k3 /M
k1k2
kk3

C iı
X

k4;k5;k6

�
Mk1k2k4

k3k5k6
ı

kk4
k5k6

ı.!Nkk4
k5k6 /CMk1k2k4

kk5k6
ı

k3k4
k5k6

ı.!Nk3k4
k5k6 /

� Mk2k5k6
kk3k4

ı
k5k6
k1k4

ı.!Nk5k6
k1k4 / � Mk1k5k6

kk3k4
ı

k5k6
k2k4

ı.!Nk5k6
k2k4 /

�
:

(2.43)

We make now the first approximation by neglecting the term containing the time
derivative at the l.h.s. of Eq. (2.43). This can be justified, if � is large enough, by
the quasi-stationary approximation (cf. Sect. 2.1.3 in [18]). Namely, let us write

5Notice that, since the equation which we consider has a cubic nonlinearity, equations for moments
of even order are decoupled from those for moments of odd order.
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Eq. (2.43) as

�
d

d�
C .	k C 	k1 C 	k2 C 	k3 /

�
Mk1k2

kk3
D f : (2.44)

Notice that since all 	ks are positive, then the linear differential equation in the l.h.s.
is exponentially stable. Assume that f as a function of � is almost constant during
time-intervals, sufficient for relaxation of the differential equation. Then

Mk1k2
kk3


 f

	k C 	k1 C 	k2 C 	k3
: (2.45)

We insert this in Eq. (2.42) and get

PMk
k 
 �2	kMk

k C 2b2k C 2ı2
X

k1;k2;k3

1

	k C 	k1 C 	k2 C 	k3
ı

k1k2
kk3

ı.!Nk1k2
kk3 /

� <
0

@
X

k4;k5;k6

�
Mk1k2k4

k3k5k6
ı

kk4
k5k6

ı.!Nkk4
k5k6 /C Mk1k2k4

kk5k6
ı

k3k4
k5k6

ı.!Nk3k4
k5k6 /

�Mk2k5k6
kk3k4

ı
k5k6
k1k4

ı.!Nk5k6
k1k4 / � Mk1k5k6

kk3k4
ı

k5k6
k2k4

ı.!Nk5k6
k2k4 /

�
1

A : (2.46)

We then apply the second approximation, generally accepted in the WT (see
[2, 16–18]) which enables us to transform the previous relation to a closed equation
for the second order moments. This consists in the quasi-Gaussian approximation,
i.e., in the assumption that the higher-order moments given by Eq. (2.41) can
be approximated by polynomials of the second-order moments, as if the random
variables vk were independent complex Gaussian variables. In particular,

Ml1l2 l3
l4l5l6


 Ml1
l1

Ml2
l2

Ml3
l3

�
�
ı

l1
l4
.ı

l2
l5
ı

l3
l6

C ı
l2
l6
ı

l3
l5
/ Cıl1

l5
.ı

l2
l4
ı

l3
l6

C ı
l2
l6
ı

l3
l4
/C ı

l1
l6
.ı

l2
l4
ı

l3
l5

C ı
l2
l5
ı

l3
l4
/
�
:

(2.47)
At this point we pass in Eq. (2.46), closed using the relation given by Eq. (2.47),

to the limit L ! 1. This can be done by approximating sums with integrals if,
instead of parameterizing the modes by integer vectors k 2 Z

d, we parameterize
them by vectors Qk D k=L from the shrunk lattice Z

d
L D L�1Zd. Accordingly we

define

QMQk1:::Qkn1
Qkn1C1:::Qkn1Cn2

WD M
k1:::kn1
kn1C1:::kn1Cn2

; Q	Qk WD 	k ; QbQk WD bk ; (2.48)
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and note that since the restriction, imposed by the Krönecker deltas, is homoge-
neous, then it does not change under this re-parametrization. Abusing notation, we
will drop the tildes in the rest of the Section, but will use the parametrization by
points of Zd

L.
We denote by Sk the sum, given by the second and third lines of Eq. (2.46),

written in the new parametrization, and note that it splits into a finite number of
sums like

Sj
k D

X

.k1;k2;k3;k4;k5;k6/2Z6d
L \˙ j

k

Fj
k.k1;k2;k3;k4;k5;k6/ : (2.49)

Here ˙ j
k is a manifold in R

6d, defined as

˙
j
k D ˚

.x1; x2; x3; x4; x5; x6/ W x1 C x2 D k C x3; jx1j2 C jx2j2 D jkj2 C jx3j2

xj C x4 D x5 C x6; jxjj2 C jx4j2 D jx5j2 C jx6j2; xj
1 D xj

2;

xj
3 D xj

4; x
j
5 D xj

6

o
;

(2.50)
where xj stands for one among the vectors k; x1; x2; x3, and fxj

1; : : : ; x
j
6g—for a

permutation of the set fk; x1; : : : ; x6gnfxjg.6 It is easy to see that since every Fj

is a regular function, then when passing from the sums to integrals in the limit
L ! 1, each term Sj

k as a function of L becomes proportional to Lm, where m is the
dimension of the manifold˙ j

k. A detailed analysis of all cases shows that the terms
of the highest order in L in the integral correspond to terms of the form

Sj
k D

X

k1;k2;k3

Fk.k1;k2;k3/ı
k1k2
kk3

ı.!Nk1k2
kk3 /

in the sum Sk, where k WD .k1;k2;k3/ 2 Z
3d
L . Denote

˙k D ˚
x D .x1; x2; x3/ 2 R

3d W x1 C x2 D k C x3; jx1j2 C jx2j2 D jkj2 C jx3j2
	
:

(2.51)
This is a manifold of dimension 3d � d � 1 D 2d � 1, smooth outside the origin.
The latter lies outside ˙k if k ¤ 0, and is a singular point of ˙k if k D 0.

As shown in [14], in the limit L ! 1 the sum Sk can be approximated by the
integral

Sk 
 L2d�1
ˆ
˙nf0g

Fk.x/
'k.x/

dx ; (2.52)

6Note that the relations, defining ˙ j
k are not independent.
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where 'k.x/ is a certain function on˙k, smooth outside zero, such that

V1 � 'k.x/ � V1.3d/d�1=2 ; 'k.x/ WD 'mk.mx/ ;

'k.x1; x2; x3/ D 'k.x2; x1; x3/ ; 'k.x1; x2; x3/ D 'x3 .x1; x2;k/ ;
(2.53)

where V1 is the volume of the 1-ball in R
2d�1.

By substituting Eq. (2.47) in Eq. (2.46) and using Eq. (2.52) we get the limiting
(as L ! 1) equation in the form

PMk
k 
 �2	kMk

k C 2b2k C 4ı2L2d�1
ˆ
R3dnf0g

dk1dk2dk3
'�1k .k1;k2;k3/

	k C 	k1 C 	k2 C 	k3
ı

k1k2
kk3

�ı.!Nk1k2
kk3 /

�
Mk1

k1
Mk2

k2
Mk3

k3
C Mk

kMk1
k1

Mk2
k2

� Mk
kMk2

k2
Mk3

k3
� Mk

kMk1
k1

Mk3
k3

�
:

(2.54)
Finally, we define

nk D LdMk
k=2 ; bk D Ld=2bk ; (2.55)

(so that
P

k Mk
k=2 ! ´

nk and
P

k b2k ! ´
b2k as L goes to infinity), choose

ı.L/ D Q"2L1=2 D "2q�

�
Q"2L1=2 ; (2.56)

for some Q" > 0, and get the kinetic equation

Pnk D �2	knk C b2k C 16 Q"4
ˆ
R3dnf0g

dk1 dk2 dk3ı
k1k2
kk3

ı.!Nk1k2
kk3 /

� '�1k .k1;k2;k3/
	kC	k1C	k2C	k3

�
nk1nk2nk3 C nknk1nk2 � nknk2nk3 � nknk1nk3

�
:

(2.57)
We have thus shown that, with the proper scaling of ı and b given by Eqs. (2.55)–
(2.56), the function nk satisfies a kinetic equation, similar to the WK equation
for NLS in the classical wave turbulence theory (see, for instance, formula
(6.81) of [16], where d D 2). The differences are two: obviously in our case
there are forcing and dissipation, absent in the traditional WK equations. More
interesting is the nonvanishing denominator 	k C 	k1 C 	k2 C 	k3 which regu-
larizes the integral since it growths to infinity with k, and which modifies the
spectra.
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2.4.2 Power Law Spectra

Now, under some additional approximation and using the well known Zakharov’s
argument (see [16–18]) we will get stationary solutions of Eq. (2.57) with power
law energy spectra (more properly, wave-action spectra) fnkg.

To do this we have to restrain our analysis to the inertial interval, i.e., to the
spectral interval, where the damping and forcing are negligible. That is, we should
consider Eq. (2.57), supposing that the wave-vector k belongs to a sufficiently large
spectral region, where the first two terms at the r.h.s. of Eq. (2.57) can be neglected,
compared with the third. This happens, e.g., if there the solution fnkg is of order
one, while bk � 1 and 	k � 1 (i.e., the damping and the dissipation are small at
that spectral region). In the inertial interval we end up with the equation

Pnk 
 16 Q"4
ˆ
R3dnf0g

dk1 dk2 dk3ı
k1k2
kk3

ı.!Nk1k2
kk3 /

'�1k .k1;k2;k3/
	k C 	k1 C 	k2 C 	k3

�
�

nk1nk2nk3 C nknk1nk2 � nknk2nk3 � nknk1nk3

�
:

(2.58)

Notice that, while in the inertial interval we can simply approximate bk with zero,
this cannot be done to 	k since these numbers appear in the denominator of the
integral at the r.h.s. of Eq. (2.57) (their sum makes the denominator of the so-called
collision term), and play an essential role in determining of the spectrum.

The previous equation has the form of the four-wave kinetic equation (see, for
instance, formula 2.1.29 of [18]). It is well known (see [16, 18]) how to solve
such equations for stationary spectra with the aid of the Zakharov transformations,
provided that the terms

T
k;k3
k1;k2

D '�1k .k1;k2;k3/
	k C 	k1 C 	k2 C 	k3

(2.59)

satisfy, for some m 2 R, the following conditions of symmetry and homogeneity:

T
k;k3
k1;k2

D T
k3;k
k1;k2

D T
k;k3
k2;k1

D T
k1;k2
k;k3

; T
�k;�k3
�k1;�k2

D �mT
k;k3
k1;k2

: (2.60)

Since ' is a homogeneous function of degree 0 due to (2.53), the requirements
above are met if on the inertial range the function 	k can be approximated by a
homogeneous function of the form 	k D "0jkjm, where m is a real number and
"0 � 1 is a small parameter to guaranty that the dissipation term indeed is negligible.

We abbreviate jkj D k and look for stationary isotropic, spectra behaving as
power laws of k, i.e. nk D nk / k� for some real �, by searching � such that
the r.h.s. of Eq. (2.58) vanishes. The result (see [14]) is that, in addition to the
equilibrium solutions nk D C and nk D C=k2, which correspond, respectively, to
the equipartition of the wave action and of the quadratic energy (Rayleigh-Jeans
distribution), two nontrivial power law stationary distributions appear. These are the
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solutions:

nk / k�.mC3d�2/=3 ; nk / k�.mC3d/=3 : (2.61)

If m D 0, they coincide with the well known in the wave turbulence power-law
spectra for the free NLS equation (2.23)�D0 (for d � 2, see [16]), but the dissipation
modifies the power law of the decay if m ¤ 0.

2.5 CHM: Resonance Clustering

Let us consider in more detail the effective equation (2.34) for the CHM equation for
typical values of the shape-factor 
. By the definition of a typical 
 (see Sect. 2.3.3),
no resonances corresponding to the case (iv) of Sect. 2.3.3 occur. We can then write
the effective equation explicitly, following [13]. It will only involve resonances of
type (iii).

Let us consider the equations for the variables Qak with k D .m; n/, separating
the cases m D 0 and m ¤ 0. When m D 0, the only terms which survive in the
nonlinearity Rk.Qa/ are those where k1 and k2 satisfy the relation (iii-b) of Sect. 2.3.3,
while for m ¤ 0 only the terms falling in the case (iii-a) give contribution. For
m D 0, the nonlinearity vanishes if n is odd, while if it is even, then

Rk.Qa/ D 1


.m2 C n2
2 C F
2/

�
X

m12Z

�
m2
1 C n2
2

4

�
m1n Qa.m1;n=2/ Qa.�m1;n=2/ ; m D 0 ; (2.62)

which in turn vanishes because the odd symmetry in m1. On the other hand, if m1 ¤
0, then k1 and k2 are completely determined by k. So we get that

Rk.Qa/ D
�

2mn


.m2 C n2
2 C F
2/

�
3n2
2 � m2

� Qa Nk Qa.0;2n/

�
; (2.63)

where we denoted Nk WD .m;�n/. Note that this formula applies for the both case
m D 0 and m ¤ 0.

Expression given by Eq. (2.63) entails the remarkable consequence that the
hamiltonian part of the effective equation, i.e., the system in which forcing and
dissipation are removed,

d

d�
Qak D Rk.Qa/ ; k 2 Z

2 ; (2.64)
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is integrable and decomposes to invariant subsystems of complex dimension at most
three. Indeed, if m or n vanish, then Rk D 0 and Qak.t/ D const. Now let m; n ¤ 0.
If 3
2n2 D m2, then again the equation for Qak trivializes. Suppose that 3L2n2 ¤ m2

and denote

Ak D 2mn

m2 C n2
2 C F
2
�
3n2
2 � m2

� 2 R : (2.65)

Then ANk � �Ak. Equation (2.64) (with any fixed k) belongs to the following
invariant sub-system of (2.64):

d

d�
Qak D Ak Qa.0;2n/ Qa Nk;

d

d�
Qa Nk D �Ak Qa�.0;2n/ Qak;

d

d�
Qa.0;2n/ D 0

(2.66)

(we recall that Qa.0;2n/ D Qa�.0;�2n/ by the reality condition, see footnote 3). This system
is explicitly soluble: if Qa.0;2n/.0/ ¤ 0, then

Qa.0;2n/.t/ D Const ;

Qak.t/ D Qak.0/ cos.jAk Qa.0;2n/jt/C Qa Nk.0/ sgn.Ak Qa.0;2n// sin.jAk Qa.0;2n/jt/ ;
(2.67)

where for a complex number z we denote

sgn.z/ D z=jzj if z ¤ 0, and sgn.0/ D 0 : (2.68)

The formula for Qa Nk.t/ is obtained from that for Qak.t/ by swapping k with Nk and
replacing Qa.0;2n/ by its complex conjugate. All these solutions are periodic, and it is
easy to check that jQakj2 C jQa Nkj2 and jQa.0;2n/j2 are integrals of motion for Eq. (2.66).

We have established that there is no Hamiltonian exchange of energy between
different modes, apart the coupled modes Qak and Qa Nk. The situation does not change
much when we switch in the forcing and the dissipation since the effective equation
given by Eq. (2.34), too, splits to invariant subsystems of complex dimension one
(if mn D 0 or 3n2
2 D m2), or of dimension three (otherwise). These systems either
are independent, or have catalytic interaction through the variables Qa.0;2n/, which
satisfy the Ornstein-Uhlenbeck equation

d

d�
Qa.0;2n/ D �	.0;2n/v.0;2n/ C 
b.0;2n/ P̌

.0;2n/ ; (2.69)

and are independent from other variables.
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Being particularly interested in the exchange of energy, let us consider the
equation for the actions QI. Due to the conservation of jQakj2 C jQa2Nkj2, Ito’s formula
gives (cf. Eq. (2.40))

d

d�

�QIk C QINk
� D �	kQIk � 	NkQINk C 


2
bk

�
Qa�k P̌

k C Qak P̌ �
k

�

C


2
b Nk
�

Qa�Nk P̌ Nk C Qa Nk P̌ �Nk
�

C b2k C b2Nk : (2.70)

By taking the expected value, we see that the second order moments satisfy

PMk
k C PM NkNk D �	kMk

k � 	NkM
NkNk C 2.b2k C b2Nk/ ; PM.0;n/

.0;n/ D �	.0;n/M.0;n/
.0;n/ C b2.0;n/

(2.71)
This equations should be compared with Eq. (2.42): they show that the amount of
energy contained in a given cluster is not transferred to other clusters and depends
only on the forcing and the dissipation, acting in its interior. Thus the energy
cascades cannot occur for typical values of 
.

2.6 Concluding Remarks

In this chapter we presented a method to study a weakly nonlinear PDE by
investigating properties of the corresponding effective equation, written in terms
of the nonlinearity and the resonances in the spectrum of the linear part of the
equation.

We have considered two examples of equations, where the structures of reso-
nances are completely different. Namely, for the NLS equation all resonances are
connected and we can use (in addition to the rigorous mathematical theory) some
heuristic approximation from the arsenal of wave turbulence to show that under the
iterated limit “the volume goes to infinity”, taken after the limit “the amplitude of
oscillations goes to zero”, the energy spectrum of solutions for the effective equation
is described by a Zakharov-type kinetic equation. Evoking the Zakharov’s Ansatz
we show that stationary in time and homogeneous in space solutions for the latter
equation have a power law form.

On the other hand, for the Charney-Hasegawa-Mima equation the resonances
form finite clusters, and for this equation we have shown (completely rigorously)
that, in the typical case, no exchange of energy between different oscillating modes
occurs.
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Chapter 3
On the Discovery of the Steady-State Resonant
Water Waves

Shijun Liao, Dali Xu, and Zeng Liu

Abstract In 1960 Phillips gave the criterion of wave resonance and showed that
the amplitude of a resonant wave component, if it is zero initially, grows linearly
with time. In 1962 Benney derived evolution equations of wave-mode amplitudes
and demonstrated periodic exchange of wave energy for resonant waves. However,
in the past half century, the so-called steady-state resonant waves with time-
independent spectrum have never been found for order higher than three, because
perturbation results contain secular terms when Phillips’ criterion is satisfied so that
“the perturbation theory breaks down due to singularities in the transfer functions”,
as pointed out by Madsen and Fuhrman in 2012.

Recently, by means of the homotopy analysis method (HAM), an analytic
approximation method for highly nonlinear problems, steady-state resonant waves
have been obtained not only in deep water but also for constant water depth and
even over a bottom with an infinite number of periodic ripples. In addition, steady-
state resonant waves were observed experimentally in a basin at the State Key
Laboratory of Ocean Engineering, Shanghai, China, showing excellent agreement
with theoretical predictions.

In this chapter we briefly describe the history of research of steady-state resonant
water waves, from theoretical predictions to their experimental verification. All of
these illustrate that the HAM is a novel method which indeed renders something
new and different.
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3.1 Introduction

The study of resonance mechanism among water waves is of fundamental impor-
tance, as nonlinear interactions between different wave components may result in
energy transfers in the spectrum. In 1960 Phillips [31] found the resonance criterion
of a quartet of progressive waves in deep water

k1 ˙ k2 ˙ k3 ˙ k4 D 0; !1 ˙ !2 ˙ !3 ˙ !4 D 0; (3.1)

where ki denotes the wave number, !i D p
gki with ki D jkij being the angular

frequency given by the linear wave theory in deep water and g is the gravity
acceleration, respectively. Phillips [31] revealed that the amplitude of the resonant
wave component, if it is zero initially, grows linearly with time. Obviously, this
result is valid only for a short time. In 1962 Benney [4] derived evolution equations
of wave-mode amplitudes, and demonstrated periodic exchange of wave energy
when Phillips resonance criterion is fully or nearly satisfied. This is a more
general result about resonant waves than Phillips’ linearly growing amplitude.
Thereafter, the resonant interaction theory became one of the principle catalysts
in the understanding of nonlinear wave phenomena [7].

According to Benney [4], when Phillips’ resonance criterion is satisfied, the
amplitudes of wave components change periodically, if their initial values are given
arbitrarily, i.e. randomly. In other words, for a resonant wave system, spectrum of
wave energy changes periodically in general, and thus is dependent upon time in
most cases.

Are there the so-called “steady-state” resonant waves whose spectrums are
independent of time? Such kind of steady-state resonant waves should be in such
an equilibrium that wave amplitudes, wave numbers and phase speeds of all wave
components are constant.

Unfortunately, in the context of perturbation techniques, such kind of equilibrium
states have never been found at order higher than three, because perturbation results
(mostly at the third-order approximation) contain secular terms when Phillips’
criterion is satisfied so that “the perturbation theory breaks down due to singularities
in the transfer functions”, as pointed out by Madsen and Fuhrman [25] in 2012.

Without doubt, perturbation technique [9, 29, 30, 32] is one of most famous
analytic tools to gain analytic approximations of nonlinear differential equations.
However, perturbation techniques have some restrictions. First of all, it is based
on the existence of small physical parameters, called perturbation quantities—
but not all problems contain such kind of small physical parameters. Especially,
perturbation results often break down when such a perturbation quantity becomes
large. In other words, perturbation techniques can not guarantee the convergence of
perturbation results. Therefore, perturbation techniques are often valid for weakly
nonlinear problems. All of these greatly restrict the applicability of perturbation
techniques.
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In 1992 Liao [10] proposed a new analytic approximation technique for nonlinear
problems in his Ph.D. dissertation, namely the homotopy analysis method (HAM)
[11–15, 18]. Based on homotopy, a fundamental concept in topology, the HAM
works even if there exist no small/large physical parameters at all: one can
always reduce a nonlinear problem into an infinite number of linear sub-problems,
without small/large physical parameters. Liao [11] introduced, for the first time,
the so-called “convergence-control parameter”, which has no physical meaning
but provides us a simple way to adjust and control the convergence of solution
series. Thus, unlike perturbation techniques and other traditional (non-perturbation)
methods such as Adomian Decomposition Method [1–3], “Lyapunov artificial small
parameter method” [23] and so on, this method can guarantee convergence of
solution series. Moreover, we may choose a simple and adequate equation-type
of linear sub-problems so that high-order approximations can be obtained easily,
especially by means of computer algebra software like Mathematica, Maple and
so on. So this method is valid for various types of highly nonlinear problems in
science and engineering, as illustrated in Liao’s book [12, 18] and hundreds of
related publications.

In 2011 Liao [17] successfully applied the HAM to solve the exact wave equation
and obtained for the first time (to the best of our knowledge), a quartet of steady-
state resonant progressive waves in deep water. He revealed that there exist multiple
resonant waves in deep water and that the resonant wave component may contain
much less wave energy than the two primary ones [17]. Furthermore, the wave
resonance criterion for an arbitrary number of progressive waves is given by Liao
[17], which logically contains Phillips’ four-wave resonance criterion (3.1). In 2012
Xu et al. [33] further applied the HAM to solve exact wave equations and obtained
a quartet of steady-state resonant progressive waves in finite-depth water through
qualitatively similar conclusions. Besides, Xu et al. [33] confirmed the existence
of these multiple steady-state resonant waves by numerically solving Zakharov
equation with the given initial conditions that had been obtained analytically in a
similar way. In 2014 Liu and Liao [20] reconsidered the steady-state resonance of
multiple surface gravity waves in deep water so as to extend the existing results of
Liao [17] and Xu et al. [33] from a special quartet to more general and coupled
resonant quartets, and even to a sextet with higher-order resonant interactions.
Multiple steady-state resonant waves have been obtained for all the considered
cases, and it is found that the number of multiple solutions tends to increase when
more wave components participate in resonance sets [20]. Significance of near-
resonance and nonlinearity has been also demonstrated [20]. It has been found [20]
that all near-resonant components as a whole contain more and more wave energy, as
the wave patterns tend from two dimensions to one dimension, or as the nonlinearity
of wave system increases. In addition, linear stability of the steady-state resonant
waves has been analyzed. It has been demonstrated [20] that steady-state resonant
waves are stable if the disturbance does not resonate with any components of the
basic wave. All of these theoretical works [17, 20, 33] indicate that steady-state
resonant waves exist not only in deep water but also in finite-depth water.
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Note that these theoretical results for steady-state resonant waves have never been
reported in experimental studies. Can we observe such kind of steady-state resonant
waves in laboratory?

In 2014 Liu et al. [22] did some experiments to confirm the existence of the
steady-state resonant progressive waves in a basin at the State Key Laboratory of
Ocean Engineering, Shanghai, China. These steady-state resonant waves have been
first calculated theoretically under the exact resonance criterion with high enough
nonlinearity, and then generated in the basin by means of the main wave components
containing more than 95 % wave energy. The steady-state wave spectra have been
quantitatively observed within the inherent system error of the basin, and identified
by means of a contrast experiment. Multiple steady-state resonant waves have
been observed, with excellent agreement between the experimental and theoretical
results. These results offer the first experimental evidence of the existence of steady-
state resonant progressive waves with multiple solutions.

In 2014 Xu et al. [34] investigated the class-I Bragg resonant waves [21] in the
case that a primary surface wave propagates obliquely over a bottom with an infinite
number of ripples. Two kinds of steady-state resonant wave systems are obtained.
For the first kind, the primary and resonant wave components have the same wave
amplitude and thus contain the same wave energy. However, for the second kind,
they contain different wave energy. Especially, the bifurcations of the steady-state
resonant waves with respect to the wave propagation angle, the water depth, the
bottom slope and the nonlinearity of free surface were found, for the first time [34].
To the best of our knowledge, the second kind of the steady-state class-I Bragg
resonant waves and especially the bifurcations have never been reported.

Therefore, the above-mentioned theoretical and experimental investigations
show that the so-called steady-state resonant waves exist not only in deep water
but also in a constant-depth water and over a bottom with an infinite number of
ripples. All of these theoretical and experimental findings are helpful to deepen our
understanding and enrich our knowledge about resonant water waves as a whole.

In this chapter we briefly describe these theoretical and experimental works about
the steady-state resonant waves. For simplicity, we mainly focus on the importance
and physical meaning of the main results but neglect most of mathematical formulas
and detailed experimental data, since they can be found in related journal articles
[17, 20, 22, 33, 34].

3.2 Basic Ideas of Homotopy Analysis Method

The homotopy analysis method (HAM) [11–16, 18] is used as an analytic tool in the
discovery of steady-state resonant waves [17, 20, 22, 33, 34]. So it is helpful to give
a simple description of the basic ideas of the HAM at first.
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Homotopy is a basic concept in topology, which can describe a continuous
variation between two functions. For example, a continuous variation between sin x
and cos x can be constructed via the homotopy

H.xI q/ D .1 � q/ sin x C q cos x; (3.2)

where q 2 Œ0; 1� is called the embedding parameter, which has no physical
meaning. Obviously, as q increases from 0 to 1, H.xI q/ varies from sin x to cos x,
continuously. Here, sin x and cos x are regarded as homotopic, denoted as

H.xI q/ W sin x � cos x: (3.3)

This concept is widely used by pure mathematicians to prove solution existence
and uniqueness of differential equations, and by applied mathematicians to develop
numerical methods, such as the homotopy continuation method and so on. Unlike
them, the HAM is an analytic approximation technique based on the homotopy for
highly nonlinear problems.

For the sake of simplicity, let us consider the following simple equation

u0 C u2 D 0; u.0/ D 1; 0 � t < C1: (3.4)

The above equation has the close-form solution u.t/ D 1=.1C t/. Regarding t as a
small physical variable, it is straightforward to obtain its perturbation series

u D 1 � t C t2 � t3 C t4 � t5 C � � � (3.5)

which is however divergent for t � 1.
To solve Eq. (3.4) in the frame of the HAM, we first of all construct such a family

of equations in parameter q 2 Œ0; 1�, called the “zeroth-order deformation equation”,

.1�q/L Œ�.tI q/� u0.t/� D c0 q

�
@�.tI q/

@t
C �2.tI q/



; �.0I q/ D 1; (3.6)

where L is an auxiliary linear operator with the property LŒ0� D 0, u0.t/ is an
initial guess satisfying the initial condition u0.0/ D 1, c0 ¤ 0 is a constant to be
chosen, called the “convergence-control parameter”, and q 2 Œ0; 1� is the homotopy
parameter (i.e. embedding parameter), respectively.

The equation above seems more complicated than the original one given by
Eq. (3.4). However, it brings us something new and different: we have now great
freedom to choose the auxiliary linear operator L, the initial guess u0.t/ and the
convergence-control parameter c0. Especially, the convergence-control parameter
c0 provides us a simple way to guarantee the convergence of solution series.

Obviously, when q D 0, we have

�.tI 0/ D u0.t/; (3.7)
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since LŒ0� D 0 and u0.t/ satisfies the initial condition u0.0/ D 1. Besides, when
q D 1, the zeroth-order deformation equation (3.6) is equivalent to the original
equation (3.4), since c0 ¤ 0, so that it holds

�.tI 1/ D u.t/: (3.8)

Thus, as q 2 Œ0; 1� increases from 0 to 1, the solution �.tI q/ varies from the initial
guess u0.t/ to the unknown solution u.t/ of the original equation (3.4). Thus, u0.t/
and u.t/ are homotopic, i.e.

�.tI q/ W u0.t/ � u.t/: (3.9)

Note that we have great freedom to choose the auxiliary linear operator L, the
initial guess u0.t/ and the convergence-controlparameter c0. Assume that all of them
are so properly chosen that the solution �.tI q/ of Eq. (3.6) exists for all q 2 Œ0; 1�,
and that �.tI q/ is analytic on q 2 Œ0; 1�, and besides that its Maclaurin series on the
homotopy-parameter q, i.e.

�.tI q/ D u0.t/C
C1X

mD1
um.t/ qm; (3.10)

is convergent at q D 1. Then, setting q D 1 in the above expression and using
�.tI 1/ D u.t/, we have the homotopy-series solution

u.t/ D u0.t/C
C1X

mD1
um.t/; (3.11)

where the unknown um.t/ can be determined, step by step, by the following higher-
order deformation equations.

Substituting the series (3.10) into the zeroth-order deformation equation (3.6)
and equating equal powers of the homotopy-parameter q, we have the high-order
deformation equation

L Œum.t/ � �m um�1.t/� D c0 ım�1.t/; um.0/ D 0; (3.12)

where �1 D 0, �m D 1 for m > 1, and

ın.t/ D Dn

�
@�.tI q/

@t
C �2.tI q/



D u0n.t/C

nX

kD0
uk.t/ un�k.t/; (3.13)

with the definition of the so-called nth-order homotopy-derivative

DnF D 1

nŠ

@nF

@qn

ˇ̌
ˇ̌
qD0

: (3.14)
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The right-hand side term ım�1 is dependent upon the previous approximations
u0; u1; � � � ; um�1 and thus is known. Besides, according to the properties of Dn

proved by Liao [14], it is straightforward to gain ım�1 for a given equation. For
more general types of zeroth-order deformation equations and the properties of the
homotopy-derivativeDn, please refer to [14] and Sect. 4 of Liao’s book [18].

For simplicity, let us choose the auxiliary linear operator Lu D u0 and the initial
guess u0.t/ D 1. Then it is very easy to solve the higher-order deformation equation
(3.12) step by step, starting from m D 1, say,

u1.t/ D c0 t; (3.15)

u2.t/ D c0.1C c0/t C c20 t2; (3.16)

:::

It is found that the mth-order approximation of u.t/ reads

u.t/ 

mX

nD0
un.t/ D

mX

nD0



m;n
0 .c0/.�t/n; (3.17)

where



m;n
0 .c0/ D .�c0/

n
m�nX

kD0

�
n � 1C k

k

�
.1C c0/

k: (3.18)

It should be emphasized that, unlike the perturbation series given by Eq. (3.5), the
convergence of the homotopy-series

u.t/ D lim
m!C1

mX

nD0

m;n
0 .c0/.�t/n (3.19)

is dependent upon the so-called “convergence-control parameter c0”. It is exactly
the same as the perturbation series (3.5) when c0 D �1, but its convergence domain
increases as c0 varies from �1 to 0, as shown in Fig. 3.1. In fact, it can be strictly
proved (see Sect. 2.3.4 and Theorem 2.3 on page 82 of Liao’s book [18]) that the
homotopy-series (3.19) converges in the interval

� 1 < t <
2

jc0j � 1; when c0 < 0; (3.20)

� 2

jc0j � 1 < t < �1; when c0 > 0: (3.21)

Therefore, unlike the perturbation series (3.5) that diverges for t > 1, the
homotopy-series (3.19) can converge (as c0 ! 0) to the exact solution
.1 C t/�1 on the whole axis �1 < t < C1, only except the singular point
t D �1 that has no physical meaning for the considered equation (3.4).
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Fig. 3.1 Comparison of exact solution u D 1=.1C t/ with the 30th-order HAM approximation.
Symbol: exact solution; dashed line: perturbation series; dash-dotted line: c0 D �1=2; dash-dot-
dotted line: c0 D �1=5; solid line: c0 D �1=10

The HAM has some advantages, compared to other analytic approximations.
First of all, note that all of the higher-order deformation equations (3.12) for
an unknown um.t/ are governed by the same auxiliary linear operator L with
known right-hand side term ım�1 that depends on the initial guess u0.t/ and the
known previous solutions u1.t/; u2.t/; � � � ; um�1.t/. Thus, according to Eq. (3.11),
we transform the original nonlinear problem (3.4) into an infinite number of linear
sub-problems governed by Eq. (3.12). However, it should be emphasized that, in
the frame of the HAM, such kind of transform does not need any small physical
parameters at all. This is quite different from perturbation techniques that use
small/large physical parameters to realize such a kind of transformation.

Secondly, unlike perturbation methods, the HAM provides us great freedom and
flexibility to choose the auxiliary linear operator L. In other words, we can choose
the equation-type of the high-order deformation equations, and the base-functions
of their solutions. Note that, for the illustrative Eq. (3.4), we choose the auxiliary
linear operator Lu D u0 that is the same as the linear term of Eq. (3.4). However,
this is not generally necessary. For example, using the auxiliary linear operator

Lu D e˛t
�
u0 C ˛u

�
(3.22)

and the initial guess

u0.t/ D e�˛t (3.23)
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in the high-order deformation equation (3.12), we can get convergent series solution
in the interval t 2 Œ0; 20� of Eq. (3.4) by means of c0 D �1=3 and ˛ D 1=10. Such
kind of freedom and flexibility is so large that for a 2nd-order nonlinear differential
equation, one can even choose L as a 4th-order or 6th-order differential operator in
some cases, as illustrated by Liao and Tan [19]. As a result, one can easily obtain
high-order approximations in the frame of the HAM by choosing a simple but good
enough auxiliary linear operator L.

Especially, the high-order deformation equation contains the convergence-
control parameter c0, which has no physical meaning but can provide us a simple
way to guarantee the convergence of homotopy-series solution. As illustrated above,
the convergence-control parameter can fantastically improve the convergence of
series solution. This is completely different from all other analytic approximation
methods. In general, the residual error square at the mth-order approximation reads

Em.c0/ D
ˆ b

a

(
N

"
mX

kD0
uk.t/

#) 2
dt (3.24)

for a nonlinear differential equation N Œu� D 0, where N is a nonlinear operator. In
most cases, if the initial guess u0 and the auxiliary linear operator L are properly
chosen, there often exists such a domain˝c that for all c0 2 ˝c it holds

lim
m!C1Em.c0/ ! 0: (3.25)

Mathematically speaking,

˝c D
�

c0 W lim
m!C1Em.c0/ ! 0



: (3.26)

In general, the optimal value of the convergence-control parameter c0 is determined
by the minimum of the residual error square Em.c0/, as suggested by Liao [15].
In this way, unlike all other analytic approximations, the HAM provides us a
simple way to guarantee the convergence of series solution. In fact, it is the so-
called “convergence-control parameter” that differs the HAM from all other analytic
approximation methods.

In addition, traditional non-perturbation methods, such as the Adomian Decom-
position Method, Lyapunov’s artificial small parameter method and so on, are only
special cases of the HAM for some specially chosen auxiliary linear operator L and
convergence-control parameter c0, as pointed out by Liao [12]. Besides, in the frame
of the HAM, one can derive the generalized Newton’s iteration formulas (on pages
24–25 in [18]) and the so-called homotopy-transform (Sect. 5.3 in [18]): the former
contains the famous Newton’s iteration formula as a special case, and the latter
contains the famous Euler transformation as a special case. These proofs make a
mathematical cornerstone of the HAM, and well explain why the HAM is generally
valid for so many nonlinear problems in science and engineering.
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For details about the HAM, please refer to the articles [11, 13–16, 19] and Liao’s
books [12, 18].

3.3 Steady-State Resonant Waves in Constant-Depth Water

3.3.1 Mathematical Formulation

Let us consider nonlinear interactions of two trains of progressive gravity waves
with small amplitudes, propagating in deep water.1 We assume that the fluid
is inviscid and incompressible, the flow is irrotational and the surface tension
is neglected. The coordinate system .x; y; z/ is set on the free surface, with z-
axis positive vertically upwards. The velocity potential '.x; y; z; t/ is governed by
Laplace equation

r2' D 0; �1 < z < �.x; y; t/; (3.27)

and obeys kinematic and dynamic conditions on the unknown free surface z D
�.x; y; t/:

@2'

@t2
C g

@'

@z
C @jr'j2

@t
C r' � r

�
1

2
jr'j2

�
D 0; (3.28)

g�C @'

@t
C 1

2
jr'j2 D 0; (3.29)

respectively, and the impermeability condition at the bottom:

lim
z!�1

@'

@z
D 0; (3.30)

where �.x; y; t/ denotes wave elevation, g is the gravity acceleration, t denotes the
time, and

r D i
@

@x
C j

@

@y
C k

@

@z
(3.31)

is a differential operator with i; j;k denoting the unit vector in the x; y; z direction,
respectively.

Consider nonlinear interaction of a wave system of � primary progressive waves
with kn denoting the wavenumber and �n the actual frequency, respectively. For

1The same problem in finite-depth water can be solved in a rather similar way. For simplicity, let
us first consider the problem in deep water.
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steady-state wave systems, all wave amplitudes ai, wave numbers ki and actual
wave frequencies �i are constant, i.e. independent of time. Therefore, the original
initial/boundary-value problem given by Eqs. (3.27)–(3.30) can be transformed into
a boundary-value one by defining the new variables

�i D ki � r � �i t; i D 1; 2; � � � ; �; (3.32)

where r D x i C y j. In the new coordinate system (�1; �2; � � � ; ��; z), the Laplace
equation (3.27) becomes

�X

iD1

�X

jD1
ki � kj

@2'

@�i@�j
C @2'

@z2
D 0; (3.33)

obeying two boundary conditions on the free surface z D �.�1; �2; � � � ; ��/:

N1Œ'� D
�X

iD1

�X

jD1
�i�j

@2'

@�i@�j
C g

@'

@z
� 2

�X

iD1
�i
@f

@�i

C
�X

iD1

�X

jD1
ki � kj

@'

@�i

@f

@�j
C @'

@z

@f

@z
D 0; (3.34)

N2Œ'; �� D � � 1

g

 
�X

iD1
�i
@'

@�i
� f

!
D 0; (3.35)

and also the impermeability condition at the bottom

lim
z!�1

@'

@z
D 0; (3.36)

where N1 and N2 are two nonlinear operators defined above, and

f D 1

2

2

4
�X

iD1

�X

jD1
ki � kj

@'

@�i

@'

@�j
C
�
@'

@z

�2
3

5 : (3.37)

Since a steady-state solution means that no exchange of wave energy among
wave components (in other words, all the physical quantities related to the wave
system are constant), the steady-state wave elevation � can be expressed by

�.�/ D
C1X

m1D0

C1X

m2D�1
� � �

C1X

m�D�1
C�

m1;m2;��� ;m�

� cos.m1�1 C m2�2 C � � � C m���/; (3.38)
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where C�
m1;m2;��� ;m� is a constant to be determined later, and

� D f�1; �2; � � � ; ��g : (3.39)

To satisfy the linear governing Eq. (3.33) and the bottom boundary condition (3.36),
the velocity potential '.�; z/ should have the form

'.�; z/ D
C1X

m1D0

C1X

m2D�1
� � �

C1X

m�D�1
C'

m1;m2;��� ;m��m1;m2;��� ;m� .�; z/; (3.40)

where

�m1;m2;��� ;m� .�; z/ D sin

 
�X

iD1
mi �i

!
exp

 ˇ̌
ˇ̌
ˇ

�X

iD1
mi ki

ˇ̌
ˇ̌
ˇ z
!
; (3.41)

and C'
m1;m2;��� ;m� is a constant to be determined later. Since the linear governing

Eq. (3.33) and the bottom condition (3.36) are automatically satisfied by (3.40),
the unknown coefficients C�

m1;m2;��� ;m� and C'
m1;m2;��� ;m� are determined only by the

two nonlinear boundary conditions (3.34) and (3.35) on the unknown free surface
z D �.�/.

The above nonlinear partial differential equations are solved in the following way
[17]. Let '0.�; z/ and �0.�/ denote the initial guesses of '.�; z/ and �.�; z/. First of
all, we construct such two continuous transformations with respect to the embedding
parameter q 2 Œ0; 1�:

˚.�; zI q/ W '0.�; z/ � '.�; z/; Z.�I q/ W �0.�/ � �.�/ (3.42)

via the zeroth-order deformation equation

�X

iD1

�X

jD1
ki � kj

@2˚.�; zI q/

@�i@�j
C @2˚.�; zI q/

@z2
D 0; (3.43)

satisfying two boundary conditions on the unknown free surface z D Z.�I q/:

.1 � q/L Œ˚.�; zI q/� '0.�; z/� D c0 q N1 Œ˚.�; zI q/� ; (3.44)

.1 � q/ ŒZ.�I q/� �0.�/� D c0 q N2 Œ˚.�; zI q/;Z.�I q/� ; (3.45)

and the bottom condition

lim
z!�1

@˚.�; zI q/

@z
D 0; (3.46)
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where c0 is a convergence-control parameter and L is an auxiliary linear operator
with the property LŒ0� D 0 (which will be chosen later), respectively. Note that the
free surface z D Z.�I q/ changes as q increases from 0 to 1.

Obviously, the initial guess '0.�; z/ must be chosen according to Eq. (3.40) so
that the governing Eq. (3.33) and the bottom condition (3.36) are automatically
satisfied. Thus, when q D 0, the zeroth-order deformation equations (3.43)–(3.46)
have the solution

˚.�; zI 0/ D '0.�; z/; Z.�I 0/ D �0.�/; (3.47)

since LŒ0� D 0. When q D 1, since c0 ¤ 0, the zeroth-order deformation equations
(3.43)–(3.46) are equivalent to the original ones given by Eqs. (3.33)–(3.36), so that
we have the solution

˚.�; zI 1/ D '.�; z/; Z.�I 1/ D �.�/: (3.48)

Therefore, as q increases from 0 to 1, ˚.�; zI q/ and Z.�I q/ indeed vary contin-
uously from the initial guess '0.�; z/, �0.�/ to the solution '.�; z/, �.�/ of the
considered problem.

Assuming that the auxiliary linear operator L, the initial guesses '0 and �0,
and especially the convergence-control parameter c0 are chosen so well that the
Maclaurin series

˚.�; zI q/ D '0.�; z/C
C1X

nD1
'n.�; z/ qn; (3.49)

Z.�I q/ D �0.�/C
C1X

nD1
�n.�/ qn; (3.50)

converge at q D 1, we have the homotopy-series solution

'.�; z/ D '0.�; z/C
C1X

nD1
'n.�; z/; (3.51)

�.�/ D �0.�/C
C1X

nD1
�n.�/: (3.52)

Substituting the series given by Eqs. (3.49) and (3.50) into the zeroth-order defor-
mation equations (3.43)–(3.46), and equating the coefficients of the same powers of
q, we obtain the high-order deformation equation

�X

iD1

�X

jD1
ki � kj

@2'm.�; z/

@�i@�j
C @2'm.�; z/

@z2
D 0; (3.53)
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obeying linear boundary conditions

LŒ'm.�; z/� D R'm.�; �0; c0/; on z D �0.�/; (3.54)

�m.�/ D �m �m�1.�/C R�m.�; �0; c0/; on z D �0.�/; (3.55)

and boundary condition at bottom

lim
z!�1

@'m.�; z/

@z
D 0; (3.56)

where the right-hand side terms R'm.�; �0; c0/ and R�m.�; �0; c0/ depends on the
previous results 'n and �n (0 � n � m � 1), and the convergence-control parameter
c0. (For detailed expressions of R'm.�; �0; c0/ and R�m.�; �0; c0/ in case of �0 D 0

please refer to Liao [17] and Liu & Liao [20] for resonant waves in deep water and
Xu et al. [33] in finite-depth water.)

For simplicity, below we choose �0 D 0, although this is not absolutely
necessary. Considering the linear part of the boundary condition (3.34), we directly
choose the auxiliary linear operator

LŒ'� D
�X

iD1

�X

jD1
!i!j

@2'

@�i@�j
C g

@'

@z
; (3.57)

where

!n D
p

gjknj; n D 1; 2; � � � ; � (3.58)

is the linear frequency of nth primary wave, which is slightly different from the
actual frequency �n in (3.34). On z D 0, its inverse operator has the property

L�1Œsin.m1�1 C m2�2 C � � � C m���/� D �m1;m2;��� ;m�
�m1;m2;��� ;m�

; �m1;m2;��� ;m� ¤ 0; (3.59)

when the eigenvalue

�m1;m2;��� ;m� D g

ˇ̌
ˇ̌
ˇ

�X

iD1
mi ki

ˇ̌
ˇ̌
ˇ�

 
�X

iD1
mi !i

!2
(3.60)

of the eigenfunction � m1;m2;��� ;m� is non-zero. Since !2n D gjknj, we have at least �
zero eigenvalues

�1;0;0;��� ;0 D �0;1;0;��� ;0 D � � � D �0;0;0;��� ;1 D 0: (3.61)
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Except these, �m1;m2;��� ;m� D 0 in case of
P�

iD1 m2
i > 1 for integers mi leads to a

singularity, corresponding to the so-called generalized resonance criterion [17]:

g

ˇ̌
ˇ̌
ˇ

�X

iD1
mi ki

ˇ̌
ˇ̌
ˇ D

 
�X

iD1
mi !i

!2
; when

�X

iD1
m2

i > 1; (3.62)

for integers mi. Note that Phillips’ resonance criterion given by Eq. (3.1) is a special
case of it.

Therefore, when there exist l resonant waves and � primary waves, we have
.� C l/ eigenvalues �m1;m2;��� ;m� whose values are zero. In this case the common
solution of the high-order deformation equations for 'm reads

'm D '�m C Am;1 � 1;0;��� ;0 C Am;2 � 0;1;��� ;0 C � � �

CAm;� � 0;0;��� ;1 C
lX

iD1
Am;�Ci �

�
i ; (3.63)

where '�m is the special solution of 'm,

� 1;0;��� ;0 D sin.�1/ exp.jk1jz/;
� 0;1;��� ;0 D sin.�2/ exp.jk2jz/;

:::

� 0;0;��� ;1 D sin.��/ exp.jk� jz/;

corresponding to the primary wave components, ��i is the eigenfunction corre-
sponding to resonant wave components, and Am;i is a constant to be determined.
The expression above also indicates that we should choose such initial guess

'0 D A0;1 � 1;0;��� ;0 C A0;2 � 0;1;��� ;0 C � � � C A 0;� � 0;0;��� ;1 C
lX

iD1
A0;�Ci �

�
i ; (3.64)

that contains .� C l/ unknown coefficients A0;n, where n D 1; 2; 3; � � � ; � C l.
Thereupon, the right-hand side term R'm.�; �0; c0/ in Eq. (3.54) always contains
.� C l/ unknown coefficients Am�1;n, where 1 � n � � C l.

According to the definition (3.59), all the terms of sin.m1�1Cm2�2C� � �Cm���/

corresponding to �m1;m2;��� ;m� D 0 may not appear on the right-hand side of
Eq. (3.54), otherwise secular terms are generated. This gives us a set of algebraic
equations for the .�C l/ unknown coefficients Am�1;n, where n D 1; 2; 3; � � � ; �C l.
It is a set of algebraic equations which are nonlinear for the 1st-order deformation
equation, but linear for others. Since nonlinear algebraic equations often have
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multiple solutions, we can find multiple steady-state resonant waves in many cases,
as illustrated in [17, 20, 33].

Thereafter, we straightforwardly obtain the special solution

'�m D L�1R'm.�; �0; c0/ (3.65)

by means of the inverse linear operator L�1 defined by Eq. (3.59). And �m is
directly given by Eq. (3.55). In this way, we calculate '0, �1, then '1, �2, and so
on. Using a computer algebra software like Mathematica, one can easily gain high-
order approximations of ' and �.

It should be emphasized that the right-hand terms R'm.�; �0; c0/ in Eq. (3.54) and
R�m.�; �0; c0/ in Eq. (3.55) contain the convergence-control parameter c0 that has no
physical meaning. Thus, both of 'm.�; z/ and �m.�/ contain c0, which provides us a
simple way to guarantee the convergence of the series solution given by Eqs. (3.51)
and (3.52). Let

E'm.c0/ D 1

�2

ˆ �

0

ˆ �

0

(
N1

"
mX

nD0
'n

#) 2
d�1 d�2; on z D

mX

nD0
�n; (3.66)

E�m.c0/ D 1

�2

ˆ �

0

ˆ �

0

(
N2

"
mX

nD0
'n;

mX

nD0
�n

#) 2
d�1 d�2; on z D

mX

nD0
�n;

(3.67)

denote the residual error squares of the two boundary conditions on the free surface
(at the mth order of approximation) respectively. There exists such an interval ˝c

that for an arbitrary c0 2 ˝c the solution series given by Eqs. (3.51) and (3.52)
converge, say,

˝c D ˚
c0 W E'm.c0/ ! 0;E�m.c0/ ! 0; as m ! C1	

: (3.68)

As suggested by Liao [15], the optimal value of the convergence-control parameter
c0 is determined by the minimum of the sum of residual error squares E

'
m.c0/

and E
�
m.c0/ of the two boundary conditions on the free surface. In this way, it is

guaranteed that one can always obtain a convergent analytic approximation if it
exists. Such kind of guarantee is very important for us, especially when very little is
known about a new problem.

For more detailed mathematical formulae, please refer to Liao [17] and Liu and
Liao [20] for steady-state resonant waves in deep water, or to Xu et al. [33] in finite
water depth, respectively.
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3.3.2 Steady-State Resonant Waves in Deep Water

Due to nonlinear effects, the actual wave frequencies, �i, are often slightly different
from the linear one !i D p

gjkij. The amplitude dispersion, as emphasized by
Madsen and Fuhrman [24], is generally necessary to include to fully satisfy the
nonlinear resonance condition

k1 ˙ k2 ˙ k3 ˙ k4 D 0; �1 ˙ �2 ˙ �3 ˙ �4 D 0: (3.69)

Note that each actual frequency �i in Eq. (3.69) depends on all of the amplitudes in
the wave system, therefore a combination of constant amplitudes ai is required so as
to keep the actual frequencies �i not only constant but also satisfying the nonlinear
resonance condition given by Eq. (3.69) all the time. To consider the nonlinear
effects on the steady-state resonance waves, we assume2

�n

!n
D "; (3.70)

where " is a constant larger than 1 and !n D p
g jknj is the linear frequency, so that

both the linear resonance criterion given by Eq. (3.1) and the nonlinear ones given
by Eq. (3.69) are satisfied at the same time.

3.3.2.1 A Special Resonant Quartet

Using our method [11–15, 18], Liao [17] has investigated steady-state resonances
in deep water and found that multiple steady-state resonant waves exist for such a
special quartet:

2k1 � k2 D k3; 2!1 � !2 D !3; 2�1 � �2 D �3; (3.71)

which is a special case of the resonance criterion given by Eq. (3.1) when k1 D k4.
For example, in case of

kn D kn .cos˛n i C sin ˛n j/ ; n D 1; 2; (3.72)

2As pointed out by Liu and Liao [20], such an assumption is not absolutely necessary: only the
nonlinear resonance criterion given by Eq. (3.69) must be satisfied, but the linear ones given by
Eq. (3.1) are unnecessary. In other words, most of the conclusions reported in this chapter about
the steady-state resonant waves qualitatively stand up as long as the nonlinear resonance criterion
given by Eq. (3.69) is satisfied, even if the linear resonance criterion given by Eq. (3.1) is violated.
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with

˛1 D 0; ˛2 D �

36
; k1 D 0:703998; k2 D �

5
; (3.73)

both linear resonance criteria given by Eq. (3.1) and the nonlinear resonance criteria
given by Eq. (3.69) are exactly satisfied with the corresponding resonant wave
component

k3 D 2k1 � k2 D .0:782068;�0:0547616/: (3.74)

The corresponding actual frequencies �1 and �2 are obtained by (3.70) for a given
value of �. In this case, we have the initial guess �0 D 0 and

'0 D A0;1 sin.�1/ ek1z C A0;2 sin.�2/ ek2z C A0;3 sin.2�1 � �2/ ej2k1�k2jz; (3.75)

where A0;1;A0;2 and A0;3 are constants to be determined. So, we have three
eigenfunctions

� 1;0 D sin.�1/ ek1z; � 0;1 D sin.�2/ ek2z; � 2;�1 D sin.2�1 � �2/ ej2k1�k2jz;
(3.76)

whose eigenvalues are zero, i.e. �1;0 D 0, �0;1 D 0 and �2;�1 D 0. According
to (3.59), in order to avoid the secular terms, sin �1; sin �2 and sin.2�1 � �2/ must
disappear in the right-hand side term R'm of the boundary condition (3.54). This
provides a set of three nonlinear algebraic equations on A0;1;A0;2 and A0;3, having
three types of real-valued solutions corresponding to the three different groups of
steady-state resonant waves (Liao [17]).

These three groups of steady-state resonant waves have different wave spectra.
The corresponding wave energy distribution of primary and resonant wave com-
ponents are listed in Table 3.1. It is interesting that the steady-state resonant wave
component of Group-I contains rather small portion of the total wave energy, as
illustrated in Table 3.1. In fact, the resonant wave component may contain the
largest (Group-III), the middle (Group-II) and the smallest (Group-I) portion of
wave energy among them. It should be emphasized that Liao’s work [17] revealed
for the first time (to the best of our knowledge) the existence of steady-state resonant
waves in deep water with multiple solutions.

Table 3.1 Wave energy distribution of primary and resonant wave components of a special quartet
of a steady-state resonant wave system (3.71) in case given by Eq. (3.73) when � D 1:0003

1st primary wave (%) 2nd primary wave (%) Resonant wave (%)

Group-I 39:97 51:19 7:65

Group-II 40:17 18:54 39:56

Group-III 10:88 12:29 76:58
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Fig. 3.2 Wave energy distribution of steady-state resonant wave component in case given by
Eq. (3.73) for different values of � D �1=

p
gjk1j D �2=

p
gjk2j. Solid line: Group-I; dashed line:

Group-II; dash-dotted line: Group-III

Similarly, in case given by Eq. (3.73) for different values of �, three groups
of steady-state resonant waves were obtained by Liao [17] using the above-
mentioned approach. It has been found that the Group-I steady-state resonant wave
component always contains the smallest portion of wave energy, and the Group-III
component—the largest portion of wave energy, respectively, as shown in Fig. 3.2.
This work illustrates that steady-state resonant waves are abundant in deep water,
and besides there often exist multiple solutions for a given �.

3.3.2.2 General Resonant Quartets

Note that the resonance criterion given by Eq. (3.71) considered by Liao [17] is just
a special case of Eq. (3.69) when k1 D k4. Do the so-called steady-state resonant
waves exist in the general case? The answer is positive, as shown below.

Without loss of generality, let us consider such a resonant quartet in a more
general case:

�
k1 C k2 D k3 C k0 D .2; 0/

!1 C !2 D !3 C !0 D C
p

g;
(3.77)

where ki (i D 1; 2; 3) denotes the primary wave component, k0 the resonant one,
!i D p

gjkij is the linear frequency, g denotes the gravity acceleration and C is a
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constant to be chosen later, respectively. According to Eq. (3.77), we obtain wave
vectors

k1 D .k1x; k1y/; k2 D .2 � k1x;�k1y/; (3.78)

k3 D .k3x; k3y/; k0 D .2 � k3x;�k3y/: (3.79)

Given C, curves for k1 and k3 can be found in the .kx; ky/ wavenumber plane by the
resonance criterion given by Eq. (3.77).

Let’s first consider the case C D 2, corresponding to the famous “figure of eight”
given by Phillips [31]. Note that the special quartet case of k1 D k2 in Eq. (3.77)
was investigated by Liao [17]. So, unlike Liao [17], let us consider here k1x D 1:10

and k3x D 1:05, as an extension of the general case k1 ¤ k2 when C D 2. The
corresponding values of k1;y and k3;y are determined by the resonant criterion given
by Eq. (3.77). The corresponding resonance curve and wavevector configuration are
shown in Fig. 3.3.

Compared to the case described by Eq. (3.71) of the special resonant quartet, we
have now one more primary wave. Thus, there are one more term in the initial guess
of potential function

'0 D A0;1� 1;0;0 C A0;2� 0;1;0 C A0;3� 0;0;1 C A0;4� 1;1;�1; (3.80)

where A0;i (1 � i � 4) is an unknown constant to be determined, � 1;0;0; � 0;1;0 and
� 0;0;1 correspond to the primary waves, and � 1;1;�1 the resonant one, respectively.
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Fig. 3.3 Wavevector configuration of a resonant quartet in case given by Eq. (3.77) when C D 2,
k1 D .1:10; 0:070227/ and k3 D .1:05;�0:0352947/
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Table 3.2 Wave energy distribution for different groups of steady-state resonant wave systems in
the case given by Eq. (3.77) when C D 2, k1 D .1:10; 0:070227/, k3 D .1:05;�0:0352947/ and
" D 1:00003

1st primary 2nd primary 3rd primary Resonant
wave (%) wave (%) wave (%) wave (%)

Group-I 30:38 19:08 28:47 22:07

Group-II 71:30 13:90 5:59 9:21

Group-III 6:33 17:67 65:96 10:04

Group-IV 10:98 25:54 11:91 51:56

Similarly, these four unknown constants are determined by avoiding the four secular
terms

sin �1; sin �2; sin �3; sin.�1 C �2 � �3/: (3.81)

When " D 1:0003 in the case given by Eq. (3.77) with C D 2, four groups of steady-
state resonant waves have been obtained [20]. The corresponding wave energy
distributions are listed in Table 3.2. Note that the resonant wave components may
contain the most part (51:56%) of the total wave energy, the same amount (22:07%)
as that of the primary wave component, or only a small amount (9:21%, 10:04%),
as shown in Table 3.2 for Group-IV, Group-I, and Groups-II and III, respectively.

When C < 2, the resonance curve splits from the “figure of eight” into two
symmetrical curves, as shown in Fig. 3.4 (the top panel) for the case C D 1:997,
k1x D 1:20 and k3x D 0:88. Similarly, when " D 1:00003, it is found that there exist
three steady-state resonant waves, and besides the resonant wave component may
contain the most part (78:15%) of the total wave energy, the same amount (34:84%)
as that of the primary wave component, or only quite a small amount (0:03%), as
shown in Table 3.3 for Group-III, Group-II and Group-I, respectively.

When C > 2, the resonance curves merge into a single one, as shown in Fig. 3.4
(the bottom panel) for the case C D 2:003, k1x D 1:15 and k3x D 0:95. It has
been found [20] that there exist four steady-state resonant waves, and besides the
resonant wave component may contain the greater part (67:39%) of the total wave
energy, the same amount (28:69%) as that of the primary wave component, or only
a small amount (2:31%, 8:60%), as shown in Table 3.4 for Group-IV, Group-I, and
Group-II and III, respectively.

Note that Liao [17] only considered the case described by Eq. (3.71) of a special
resonant quartet, corresponding to k1 D k4 and C D 2 of the resonance criterion
given by Eq. (3.77). So, Liu and Liao’s work [20] extended Liao’s conclusions to
more general cases represented by Eq. (3.77) for a general resonant quartet when
C < 2, C D 2 and C > 2. The similar conclusions can be further extended to
multiple and coupled resonant quartets, as mentioned in Sect. 3.3.2.3, and even to a
resonant sextet, as mentioned in Sect. 3.3.2.4.
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Fig. 3.4 Wavevector configuration of a general resonant quartet for the case of (3.77) when C ¤ 2.
Top panel: when C D 1:997, k1 D .1:20; 0:115293/ and k3 D .0:88; 0:0346442/. Bottom panel:
when C D 2:003, k1 D .1:15; 0:12933/ and k3 D .0:95;�0:0850699/
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Table 3.3 Wave energy distribution for different groups of steady-state resonant waves for the
case given by Eq. (3.77) when C D 1:997, k1 D .1:20; 0:115293/, k3 D .0:88; 0:0346442/ and
" D 1:00003

1st primary 2nd primary wave (%) 3rd primary wave (%) Resonant wave (%)

wave (%) wave (%) wave (%) wave (%)

Group-I 86:93 12:98 0:06 0:03

Group-II 39:65 11:08 14:43 34:84

Group-III 0:94 17:88 3:03 78:15

Table 3.4 Wave energy distribution for different groups of steady-state resonant waves in the
case given by Eq. (3.77) when C D 2:003, k1 D .1:15; 0:12933/, k3 D .0:95;�0:0850699/ and
" D 1:00003

1st primary 2nd primary 3rd primary Resonant

wave (%) wave (%) wave (%) wave (%)

Group-I 33:33 15:97 22:00 28:69

Group-II 78:04 15:91 3:74 2:31

Group-III 7:41 27:39 56:59 8:60

Group-IV 4:04 21:56 7:01 67:39

3.3.2.3 Multiple and Coupled Resonant Quartets

To further investigate whether or not steady-state resonant waves exist for more
general and complicated cases, let us consider a wave system combined of three
coupled resonant quartets:

�
k1 C k2 D k3 C k0;1 D k4 C k0;2 D .2; 0/;

!1 C !2 D !3 C !0;1 D !4 C !0;2 D 2
p

g;
(3.82)

where ki denote primary wave components, k0;i represents resonant ones and
!i D p

gjkij is the linear frequency, respectively. Without loss of generality, let
us consider the case

k1 D .1:10; 0:070227/; k3 D .1:05;�0:0352947/; k4 D .1:03; 0:0212001/:

The corresponding resonant wavenumbers k0;1, k0;2 and k2 are determined by the
resonance criterion given by Eq. (3.82). The resonant wavevector configuration is
shown in Fig. 3.5. The geometrical structure is more complicated than in the case of
a single resonant quartet, although their external configurations are the same.

Compared to the case of a single resonant quartet, we have now one more primary
wave and one more resonant one. Thus, there are two more terms in the initial guess
of potential function

'0 D A0;1� 1;0;0;0 C A0;2� 0;1;0;0 C A0;3� 0;0;1;0 C A0;4� 0;0;0;1

CA0;5� 1;1;�1;0 C A0;6� 1;1;0;�1; (3.83)
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Fig. 3.5 Wavevector configuration of three coupled resonant quartets given by Eq. (3.82) when
k1 D .1:10; 0:070227/, k3 D .1:05;�0:0352947/ and k4 D .1:03; 0:0212001/. The correspond-
ing resonant wavenumbers k0;1, k0;2 and k2 are determined by Eq. (3.82)

Table 3.5 Wave energy distribution for different groups of steady-state resonant wave systems of
three coupled resonant quartets in the case represented by Eq. (3.82) when k1 D .1:10; 0:070227/,
k3 D .1:05;�0:0352947/, k4 D .1:03; 0:0212001/ and " D 1:00003. The corresponding resonant
wave numbers k0;1, k0;2 and k2 are determined by Eq. (3.82)

1st primary 2nd primary 3rd primary 4th primary 1st resonant 2nd resonant

wave (%) wave (%) wave (%) wave (%) wave (%) wave (%)

Group-I 45:28 0:51 39:91 3:37 0:87 10:02

Group-II 3:96 7:37 5:52 57:78 8:48 16:89

Group-III 19:57 12:50 18:80 18:80 14:82 15:34

Group-IV 47:49 0:21 3:84 2:06 16:83 29:57

Group-V 46:06 0:08 0:49 40:78 12:48 0:11

Group-VI 0:001 34:48 9:51 9:07 21:59 25:12

where A0;i (1 � i � 6) are unknown constants to be determined. Similarly to the
previous case, these six unknown constants are determined by means of avoiding
the secular terms. In the considered case, six groups of steady-state resonant waves
were found [20]. Note that the corresponding wave energy distribution changes
dramatically from group to group, as shown in Table 3.5. Especially, the two
resonant components of Group-I may contain quite a small amount (both together
10:89%) of the total wave energy.
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3.3.2.4 Resonant Sextet

To show existence of steady-state resonant waves in even more complicated wave
systems, let us consider resonant sextet

�
3k1 D 2k2 C k0 D .2; 0/;

3!1 D 2!2 C !0 D p
6 g;

(3.84)

where k1 and k2 denote primary wave components, k0 the resonant ones, and !i Dp
gjkij is the linear frequency, respectively. The corresponding resonance curve is

still a kind of “figure of eight”, but symmetry along the vertical line is broken,
as shown in Fig. 3.6. Note that k1 D .2=3; 0/ is determined automatically by the
resonance criterion given by Eq. (3.84). For the second primary wavevector, let us
consider k2 D .0:625; 0:030217/, then the corresponding resonant wavenumber k0
is determined by Eq. (3.84).

Multiple steady-state resonant waves exist due to cubic nonlinear terms of poten-
tial functions. However, it was found that higher-order harmonic term cos.m�1 C
n�2/ .jmj C jnj > 3/ can not be directly affected by the first-order harmonics
terms cos.�1/ and cos.�2/ within the triad interactions, thus no multiple solutions
can be gained if the same kind of initial guess is used as for a resonant quartet.
Formally, one can add such a tertiary component in the initial guess that the primary
and resonant components can be affected through the triad interaction. In the case
described by Eq. (3.84), the possible candidates for the tertiary component are
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Fig. 3.6 Wavevector configuration of a resonant sextet in the case of (3.84) when k1 D .0:667; 0/

and k2 D .0:625; 0:0302171/. The corresponding resonant wavenumber k0 is determined by (3.84)
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sin.�1 � 2�2/, sin.2�1 � �2/ and sin.3�1/. Taking sin.�1 � 2�2/ as an example, the
initial guess of the potential function now reads

'0 D A0;1� 1;0 C A0;2� 0;1 C A0;3� 3;�2 C A0;4� 1;�2; (3.85)

where A0;1;A0;2;A0;3 and A0;4 are unknown constants to be determined, � 1;0 and
� 0;1 are eigenfunctions for the primary waves, � 3;�2 is the eigenfunction for
the resonant wave component, and � 1;�2 is the tertiary component, respectively.
Similarly, avoiding secular terms gives us three nonlinear algebraic equations, which
however are not enough, since we have now four unknown constants at the first-
order of approximation. Because the additional tertiary component is a trivial one,
we can enforce the coefficient of sin.�1 � 2�2/ on the right-hand side of Eq. (3.54)
to be zero only at the first-order of approximation. In this way, we have a set of four
coupled nonlinear algebraic equations, which leads to three groups of real solutions,
as reported by Liu and Liao [20]. Note that, without the tertiary component added
in the initial guess, only one solution can be found.

It was found [20] that there exist three groups of the steady-state resonant waves
in the considered case given by Eq. (3.84), and the resonant wave component may
contain the greater part (52:25%) of the total wave energy, or only a rather small
amount (0:44%), as shown in Table 3.6 for Group-III and Group-I, respectively.

Similarly, when the tertiary component sin.2�1 � �2/ is considered in the initial
guess, the same three groups of the steady-state resonant waves were found [20]
for the resonant sextet given by Eq. (3.84). In addition, when both sin.�1 � 2�2/

and sin.2�1 � �2/ are considered in the initial guess, the same three groups of the
steady-state resonant waves were found, too [20].

It should be emphasized that, not only the primary and resonant wave com-
ponents but also the trivial ones are considered here in the initial guess, so that
the primary and resonant wave components can affect each other through triad
interactions. In the considered case described by Eq. (3.84) for a resonant sextet,
it was found that the amplitudes of primary and resonant components are much
greater than that of the trivial tertiary ones [20]. However, the order of the resonant
component is not always the same as that of the primary ones. Even so, our
HAM-based approach works quite well, no matter whether the amplitudes of
wave components are of the same order or not. This is mainly because the HAM
is independent of small physical parameters at all. This relies strongly on the

Table 3.6 Wave energy distribution of a resonant sextet in the case given by Eq. (3.84) when k1 D
.0:667; 0/, k2 D .0:625; 0:0302171/ and " D 1:00001. The corresponding resonant wavenumber
k0 is determined by Eq. (3.84)

1st primary wave (%) 2nd primary wave (%) Resonant wave (%)

Group-I 51:61 47:7 0:44

Group-II 34:27 19:36 46:31

Group-III 34:4 13:18 52:25
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advantage of HAM: unlike perturbation methods, it does not need any assumptions
about the small amplitudes of wave components.

In all of the above-mentioned cases, both the linear resonance criterion given
by Eq. (3.1) and the nonlinear resonance criterion given by Eq. (3.69) are satisfied.
However, as pointed out by Liu and Liao [20], this is not absolutely necessary: only
the nonlinear resonance criterion (3.69) must be satisfied.

In summary, multiple steady-state resonant wave sets exist in deep water, not only
for a special quartet [17] but also for a general quartet and some complicated wave
systems such as three coupled quartets and even a high-order sextet [20]. Besides,
the resonant wave components may contain the greater part of the total wave energy,
or approximately the same amount as that of the primary wave components, or only
a rather small portion. In addition, the number of multiple solutions may increase as
more wave components are involved in resonant sets [20].

3.3.3 Steady-State Resonant Waves in Finite Depth Water

Steady-state resonant waves exist not only in deep water but also in finite water
depth, as reported by Xu et al. [33], who considered a special quartet of resonant
waves in a constant water depth d:

k3 D 2k1 � k2; !3 D 2!1 � !2; (3.86)

where k1 and k2 denote the wavenumbers of the primary waves, k3 is the wavenum-
ber of the resonant one, and

!i D
p

gjkij tanh.jkijd/ (3.87)

is the linear frequency, �i is the actual frequency, respectively.
Nearly all mathematical formulations are the same as those in deep water [17],

except that the base function of the velocity potential now reads

�m;n D sin.m�1 C n�2/
cosh Œjm k1 C n k2j.z C d/�

cosh Œjm k1 C n k2jd� (3.88)

and that the bottom boundary @'=@z D 0 must be satisfied on z D �d. For detailed
mathematical formulations, please refer to Xu et al. [33] and Liao [17].

Write

k1 D k1 i; k2 D k2 .cos˛ i C sin ˛ j/ ; (3.89)

where ki D jkij, i and j are unit vectors for the x and y axis, ˛ is a constant,
respectively. Without loss of generality, Xu et al. [33] considered the case

˛ D �

36
; k2 d D 3�

5
; � D �i

!i
D 1:0003: (3.90)
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Table 3.7 Wave energy distribution of a quartet of steady-state resonant waves in finite water
depth in case represented by Eq. (3.86) when ˛ D �=36, k2d D 3�=5, � D 1:0003 and k2=k1 D
0:913835

1st primary wave (%) 2nd primary wave (%) Resonant wave (%)

Group-I 13:72 10:48 75:64

Group-II 40:43 20:38 37:93

Group-III 37:80 53:54 8:03

Table 3.8 Wave energy distribution of a quartet of steady-state resonant waves in finite water
depth in case represented by Eq. (3.86) when ˛ D �=36, k2d D 3�=5, � D 1:0003 and k2=k1 D
1:11165

1st primary wave (%) 2nd primary wave (%) Resonant wave (%)

Group-I 37:37 9:07 53:45

Group-II 41:67 36:53 21:51

Group-III 13:51 76:05 10:40

In this case, the resonance criterion given by Eq. (3.86) gives three solutions k1d D
2:06269, 1:69564 and 0:867072, respectively, corresponding to the three resonance-
states with k2=k1 D 0:913835, 1:11165 and 2:173797.

It was found [33] that, when k2=k1 D 0:913835, there exist three groups of
steady-state resonant waves, whose wave energy distribution is listed in Table 3.7.
Besides, the resonant wave component may contain the greater, or almost the same,
or rather a small portion of the total wave energy. These conclusions are exactly the
same as those [17, 20] in deep water.

Similarly, when k2=k1 D 1:11165, there also exist three groups of steady-state
resonant waves, as pointed out by Xu et al. [33]. Again, exactly the same conclusions
were obtained: the resonant wave component may contain the greater, or almost the
same, or rather a small portion of the total wave energy, as shown in Table 3.8.

Xu et al. [33] investigated influence of water depth d and found that, in the cases
of k2=k1 D 0:913835 and k2=k1 D 1:11165, there always exist three groups of the
steady-state resonant waves as d varies from a finite water depth (k2d D 3�=5) to
deep water (k2d ! 1).

However, when k2=k1 D 2:173797, the steady-state resonant waves were not
found, as mentioned by Xu et al. [33]. This illustrates that the steady-state resonant
waves do not exist unconditionally.

In addition, Xu et al. [33] investigated some different cases and always came to
the same conclusions. For example, in the case

˛ D �

60
; k2d D 3�

5
; � D 1:0003; (3.91)

the criterion described by Eq. (3.86) gives three steady-state resonance solutions
k2=k1 = 0.946172, 1.06268 and 2.205672, respectively. Similarly, it was found [33]
that, in the cases of k2=k1 = 0.946172 and k2=k1=1.06268, there exist three groups of
steady-state resonant waves, and besides the resonant wave component can contain
only a small portion of wave energy. However, no steady-state fully-resonant waves
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were found when k2=k1 D 2:205672. Furthermore, in the case

˛ D 2�

45
; k2d D 3�

5
; � D 1:0003; (3.92)

the criterion represented by Eq. (3.86) gives three steady-state resonance solutions
k2=k1 = 0.869372, 1.20261 and 2.090427, respectively. Similarly, in case of k2=k1 D
0:869372 and k2=k1 D 1:20261, it was found that there also exist three groups of
steady-state resonant waves and that the resonant wave component may contain
only a small portion of wave energy. Especially, in the case of k2=k1 D 1:20261,
the resonant wave component never contains the greater portion of wave energy,
namely, the amplitude of the resonant wave component is always less than that of
primary ones: this is an extreme example to verify our conclusion that the resonant
wave component may contain only a small portion of wave energy. However, no
steady-state resonant waves were found in the case of k2=k1 D 2:090427.

Note that Xu et al. [33] obtained the above-mentioned conclusions by means of
fully nonlinear wave equations. To further confirm these results, they also solved the
famous Zakharov equation, a simplified wave model, and came to qualitatively the
same conclusions in a similar way [33].

3.4 Steady-State Class-I Bragg Resonant Waves

Do multiple steady-states resonant waves exist in more complicated cases? The
answer is positive, as revealed by Xu et al. [34] and described below briefly.

Resonance occurs for nonlinear wave-bottom interaction, too. The simplest
case is the class-I Bragg resonance, which occurs when a primary surface wave
propagates over an undulated bed that contains ripples with a wavenumber kb,
as shown in Fig. 3.7. Without loss of generality, let ka denote the wavenumber
of the primary surface wave and kc that of the resonant one at free surface,
respectively. Note that the names of the so-called primary and resonant waves can
be interchanged, since there exists a kind of symmetry on the perpendicular bisector
of the bottom wavenumber kb, as shown in Fig. 3.7. So, without loss of generality,
we can simply call them wave A and wave C, respectively.

The corresponding class-I Bragg resonance criterion is

ka � kb D kc; !a D !c; (3.93)

where

!a D
p

gjkaj tanh .jkajd/; !c D
p

gjkcj tanh .jkcjd/

denote the linear wave frequency in the mean water depth d. This criterion comes
from Phillips’ resonance criterion given by Eq. (3.1) at a low order for a fixed
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Fig. 3.7 Top panel: physical model. Bottom panel: sketch map of class-I Bragg resonant waves

bottom, i.e. !b D 0. The resonance criterion given by Eq. (3.93) leads to

jkaj D jkcj D k:

In addition, the relationship holds

jkbj D 2jkaj cos˛ D 2 k cos˛; (3.94)

as shown by Fig. 3.7, where ˛ is the angle between the wavenumber ka and the
x-axis.

The class-I Bragg resonance was studied a lot in the past decades. Heathershaw
[8] did an experiment when an incidental wave normally propagates over a patch of
fixed sinusoidal ripples and the class-I Bragg resonance occurs. In this experiment,
the amplitude of the resonant wave component was zero initially beyond the rippled
patch, and grew linearly with the propagation distance over the ripples.

Using the multiple-scale perturbation method, Mei [26] solved the linearized
governing equations when an incident wave over a bottom with finite ripples
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was slightly detuned from the Bragg resonance. In the so-called “perfect tuning”
case, the two theoretical results of Mei [26] agree well with the experiment of
Heathershaw [8]. According to Mei [26], the transmission coefficient T.x/ and the
reflection coefficient R.x/ are given by

T.x/ D A

A0
D

cosh ˝0
Cg
.L � x/

cosh ˝0L
Cg

; R.x/ D B

A0
D

�i sinh ˝0
Cg
.L � x/

cosh ˝0L
Cg

; 0 < x < L;

(3.95)

respectively, where A0 is the wave amplitude of the incidental wave beyond the
rippled patch (x < 0), A and B are the wave amplitudes of the transmission and
reflection wave modes over the ripples in a finite interval 0 < x < L. Thus, as the
interval of ripples tends to infinity, i.e. L ! C1, the ratio of amplitudes of these
two components reads

lim
L!1

ˇ̌
ˇ̌B
A

ˇ̌
ˇ̌ D lim

L!1

ˇ̌
ˇ̌�i tanh

˝0

Cg
.L � x/

ˇ̌
ˇ̌ D 1; (3.96)

which reveals that the reflection and transmission wave components have the
same amplitude. In addition, Mei [26] considered the oblique incidence of slightly
detuned wave propagating over the infinite ripples as well, and obtained the ratio of
amplitudes of these two components

R D B

A
D cos2 ˛

cos 2˛

8
<

:
˝

˝0

�
"�

˝

˝0

�2
�
�

cos 2˛

cos2 ˛

�2# 1
2

9
=

; ; (3.97)

which leads to

jRj D 1 when ˝ D 0; (3.98)

i.e. the reflection and transmission wave components have the same wave amplitude
and thus share the same wave energy, where ˛ is the angle between the x-axis and the
reflection/transmission wave component. Note that multiple resonant waves were
not reported in this case [26], mainly because the linearized governing equations
were solved. Note that the so-called reflection and transmission wave components
in the paper of Mei [26] correspond to the resonant and primary components of the
steady-state class-I Bragg resonant waves, respectively.

Let us consider here the class-I Bragg resonance, i.e. nonlinear interaction
between an oblique surface wave and a bottom with an infinite number of ripples.
Mitra and Greenberg [28] solved the same problem by regarding it as an initial value
problem, and found slowly periodic energy exchanges between the primary and
resonant waves. However, they did not report any multiple resonant waves, since
an initial value problem has only one solution. Davies [5, 6] applied perturbation
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method to search for steady-states of the class-I Bragg resonant waves, but failed,
mainly because “the perturbation theory breaks down due to singularities in
the transfer functions”, as currently pointed out by Madsen and Fuhrman[25].
Especially, bifurcations have never been reported in this case, to the best of our
knowledge.

In 2014, two steady-state class-I Bragg resonant waves were obtained by Xu et al.
[34]. One of them is similar to that reported by Mei [26], whose primary wave has
the same wave energy as the resonant wave. However, the other does not possess
such kind of equality and had never been reported, say, the primary and resonant
waves have different wave amplitudes. In addition, the effects of propagation angle,
water depth, bottom slope and nonlinearity on the steady-states of the class-I Bragg
resonant waves were investigated in detail, and bifurcations of steady-states resonant
waves with respect to these physical parameters were found [34] for the first time,
to the best of our knowledge.

3.4.1 Mathematical Formulations

Consider the propagation of progressive waves in water of a constant mean depth
d over a fixed bed with an infinite number of ripples in a sinusoidal form, as
depicted by Fig. 3.7. Assume that the fluid is inviscid and incompressible, the
flow is irrotational, and the surface tension is negligible. Let .x; y/ and z denote
the horizontal and vertical coordinates, with the x-axis in the direction of the
wavenumber kb of the bottom ripples and the z-axis upward, t denote the time,
�.x; y; t/ the unknown wave elevation moving around the mean free surface z D 0,
and z D �d C �.x/ denote the bottom elevation with a constant mean depth d,
respectively. The velocity potential '.x; y; z; t/ is governed by the Laplace equation

r2' D 0; �d C �.x/ < z < �.x; y; t/; (3.99)

subject to the boundary conditions at the unknown free surface z D �.x; y; t/:

@2'

@t2
C g

@'

@z
C @jr'j2

@t
C r' � r

�
1

2
jr'j2

�
D 0; (3.100)

and the dynamical condition

g�C @'

@t
C 1

2
jr'j2 D 0; on z D �.x; y; t/: (3.101)

The bottom kinematical condition reads

'z � �x'x D 0; on z D �d C �.x/; (3.102)
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where the bottom profile

�.x/ D b cos .kbx/; kb D jkbj; (3.103)

is given, kb denotes the wavenumber of the periodic ripples in sinusoidal form on
the bottom, b is the amplitude of bottom undulation, respectively.

Note that, for resonant wave systems, the resonance criterion given by Eq. (3.93)
must be satisfied, too. The above fully nonlinear wave equations can be found in
textbooks. For details, please refer to Mei et al. [27].

Define

�1 D ka � r � �a t; �2 D kb � r; (3.104)

where r D x i C y j. According to the resonance criterion given by Eq. (3.93), it
holds

kc � r � �c t D �1 � �2: (3.105)

Then, the original initial/boundary-value problem becomes a nonlinear boundary
value problem with unknown velocity potential '.�1; �2/ and wave elevation
�.�1; �2/. It can be solved similarly [17, 20, 33], since only the linear bottom
condition given by Eq. (3.102) is different, which is much easier to handle than
the two nonlinear boundary conditions at free surface. For the sake of simplicity, all
related mathematical formulations are neglected here. For details, please refer to Xu
et al. [34].

3.4.2 Brief Results

Without loss of generality, let us consider such a case

˛ D 70ı; kb=k D 0:68404; k d D 2:5; b kb D 0:005; � D �a

!a
D 1:0003:

(3.106)

Four groups of steady-state class-I Bragg resonant waves were found [34]. Note that
Group-I and Group-IV have anti-symmetric wave energy distribution, as shown in
Table 3.9. So do Group-II and Group III. This is reasonable, since the wavenumbers
ka and kc are symmetric, as shown in Fig. 3.7. Thus, due to the antisymmetry, there
exist essentially only two kinds of steady-state class-I Bragg resonant waves. For
the first kind (corresponding to Group-II and III in Table 3.9), the primary and
resonant wave components contain the same wave energy. This is the same as
the multiple-scale perturbation approximation given by Mei [26] in the case of an
infinite number of ripples. However, for the second kind (corresponding to Group-I
and IV in Table 3.9), the primary and resonant wave components contain different
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Table 3.9 Wave energy distribution for different steady-states of the class-I Bragg resonant waves
in the case of ˛ D 70ı, kb=k D 0:68404, k d D 2:5, bkb D 0:005 and � D 1:0003

Wave A (%) Wave C (%)

Group-I 86:20 13:78

Group-II 49:99 49:99

Group-III 49:99 49:99

Group-IV 13:78 86:20

Table 3.10 Wave energy distribution of the second kind of steady-state class-I Bragg resonant
waves with different propagation angle ˛ in the case of kd D 2:5, bkb D 0:005 and � D 1:0003

˛ (degree) Wave A (C) (%) Wave C (A) (%)

66:9 49:00 50:99

67 53:84 46:15

67:2 63:17 36:82

67:5 70:29 29:70

68 76:67 23:32

68:5 80:47 19:52

69 83:03 16:96

69:5 84:85 15:13

70 86:20 13:78

72 89:03 10:96

73:5 89:72 10:26

75 89:70 10:28

wave energy. To the best of our knowledge, this kind of steady-state class-I Bragg
resonant waves have never been reported before.

Xu et al. [34] investigated in details the effect of the physical parameters such as
wave propagation angle ˛, water depth (kd), bottom slope (bkb) and nonlinearity (�)
on the steady-states of the class-I Bragg resonant waves, and found that steady-state
class-I Bragg resonant waves exist in general. For example, in the case

k d D 2:5; b kb D 0:005; � D �a

!a
D 1:0003; (3.107)

they gained two kinds of steady-state class-I Bragg resonant waves for different
values of wave propagation angle ˛. For the first kind (0 � ˛ � 90ı), the primary
and resonant waves contain the same wave energy. This agrees well with Mei’s result
[26]. For the second kind (66:9ı � ˛ � 90ı), they have different wave energy, and
such kind of difference of wave energy decreases as ˛ decreases from 90ı to 66:9ı,
as shown in Table 3.10. Thus, there exists a bifurcation of the steady-state class-I
Bragg resonant waves with respect to the wave propagation angle ˛, as shown in
Fig. 3.8 (top-left). To the best of our knowledge, such kind of bifurcation has never
been reported.

From physical viewpoint, when ˛ D 90ı, there exist no resonant wave and
reflection wave, so that the primary wave has the total wave energy. Then, as
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Fig. 3.8 Wave energy distributions of the two kinds of steady-state class-I Bragg resonant wave
with respect to the wave propagation angle ˛ (top-left), the water depth k d (top-right), the
bottom slope bkb (bottom-left) and the nonlinearity � (bottom-right). Solid or dashed line: the first
kind; dash-dotted line: the second kind; dashed line: mathematically unstable or without physical
meaning; symbols: first-order multiple-scale perturbation results given by Mei [26]

˛ decreases from 90ı, the resonant wave component has larger and larger wave
amplitude and thus contains more and more wave energy, until ˛ 
 66:9ı when the
resonant and primary waves have the same wave energy and the bifurcation occurs.
Thus, when ˛ D 90ı, the first kind solution, whose resonant wave component has
the same wave energy as the primary one, is physically incorrect. This conclusion
should stand for large ˛, since it is quite possible that the first kind of solution might
be mathematically unstable for large wave propagation angle ˛.

The influence of the mean water depth kd on the existence of the steady-state
class-I Bragg resonant waves was also investigated in details by Xu et al. [34] in the
case

˛ D 70ı; bkb D 0:005;
kb

k
D 0:68404; � D 1:0003: (3.108)
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Two kinds of steady-state class-I Bragg resonant waves were found, with a
bifurcation with respect to the dimensionless mean water depth kd, as shown in
Fig. 3.8 (top-right). The primary and resonant waves have the same wave energy for
the first kind (1 < kd < C1), but different for the second (2:3 < kd < C1),
respectively. From physical point of view, there exist no resonant waves (caused by
ripples at bottom) in deep water, i.e. kd ! 1, since the bottom can not influence
the free surface in this case, so that the primary wave contains the total wave energy.
Thus, the first kind of resonant wave is physically incorrect in deep water. Possibly,
it is mathematically unstable for large enough kd. Then, as the mean water depth kd
decreases, the bottom influence becomes larger and larger so that the resonant wave
component has more and more wave energy, until kd 
 2:3 when the resonant and
primary waves have the same wave energy and the bifurcation occurs. So, such kind
of bifurcation with respect to the mean water depth kd has a physical meaning.

The influence of the bottom slope bkb on the existence of a steady-state class-I
Bragg resonant waves was studied in detail by Xu et al. [34] in the case

˛ D 70ı; kd D 2:5;
kb

k
D 0:68404; � D 1:0003: (3.109)

Two kinds of steady-state class-I Bragg resonant waves were found, with a
bifurcation with respect to the bottom slope bkb, as shown in Fig. 3.8 (bottom-left).
For the first kind, the primary and resonant waves have the same wave energy.
For the second kind, they have different wave energy. However, from physical
viewpoint, as the bottom slope bkb ! 0, i.e. the bottom is flat, there should be
no resonance caused by the bottom ripples, say, the class-I Brag resonance should
not exist at all. Thus, the first kind of steady-state class-I Bragg resonant waves
should have no physical meanings for the flat bottom, say, as bkb ! 0. Possibly, it
is mathematically unstable for small bkb. Then, as bkb becomes larger and larger, the
resonant wave contains more and more wave energy, until bkb 
 0:0074 when both
the primary and resonant waves have the same wave amplitude and a bifurcation
occurs. Thus, such kind of bifurcation with respect to the bottom slope is reasonable
from the physical viewpoint.

The influence of the nonlinearity (� D �i=!i) of the surface waves on existence
of steady-state class-I Bragg resonant waves was investigated [34] in detail in the
case

˛ D 70ı; kd D 2:5; kb=k D 0:68404; bkb D 0:005: (3.110)

Two kinds of steady-state resonant waves were found with a bifurcation at � 

1:0002, as shown in Fig. 3.8 (bottom-right). The primary and resonant waves contain
the same wave energy for the first kind, but different for the second. As the
nonlinearity increases to � 
 1:0002, the bifurcation occurs. This is reasonable,
since bifurcation is often due to nonlinearity.

Therefore, there exist two kinds of steady-state class-I Bragg resonant waves. It
should be emphasized that the second kind of steady-state class-I Bragg resonant
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waves, and especially the above-mentioned bifurcations with respect to wave
propagation angle, mean water depth, bottom slope and nonlinearity of free surface,
have never been reported before, to the best of our knowledge.

3.5 Experimental Observation

Steady-state resonant waves were found theoretically not only in deep water [17, 20]
but also either in constant water depth [33] or over a bottom with periodic ripples
(Bragg resonance) [34]. To the best of our knowledge, these steady-state resonant
waves have never been found before either in theory or in experiments.

Do these steady-state resonant waves indeed exist in practice? Can we observe
them in experiments?

In 2014 such kind of experiment was done by Liu et al. [22] in a basin
of State Key Laboratory of Ocean Engineering (SKLOE) at Shanghai, China.
Several co-propagated short-crested wave trains were generated in the basin, and
wave fields were measured and analyzed both along and normal to the wave
propagation. The steady-state resonant waves were first calculated theoretically
under the exact resonance criterion with high enough nonlinearity and then were
generated experimentally in the basin by means of the main wave components that
contain at least more than 95 % wave energy. The steady-state wave spectra were
quantitatively observed within the inherent system error of the basin, and identified
by means of a contrast experiment. Both symmetrical and anti-symmetrical steady-
state resonant waves were observed, with excellent agreement with theoretical
results, as shown in Fig. 3.9. These results offer the first experimental evidence of
existence of steady-state resonant waves with multiple solutions. For details, please
refer to Liu et al. [22].

3.6 Concluding Remarks

In his pioneering work, Phillips [31] revealed the resonance criterion for water
waves and reported that the amplitude of a resonant wave component, if it is zero
initially, grows linearly with time. Benney [4] established the evolution equations of
wave-mode amplitudes and demonstrated the well-known time-dependent periodic
exchange of wave energy for resonant waves. However, the steady-state resonant
waves, whose wave spectrum is independent of time, had never been found at a
order higher than three, because perturbation results contain secular terms when
Phillips’ criterion is satisfied so that “the perturbation theory breaks down due to
singularities in the transfer functions”, as pointed out by Madsen and Fuhrman [25]
in 2012.

By means of the HAM [11–15, 18], a new analytic approximation technique
for highly nonlinear problems, the steady-state resonant waves were successfully
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Fig. 3.9 Comparison of steady-state resonant waves in deep water between theoretical and
experimental results. Top-left: experimental result of the symmetrical wave system. Top-right:
theoretical result of a kind of symmetrical wave system. Bottom-left: experimental result of the
antisymmetrical wave system. Bottom-right: theoretical result of a kind of antisymmetrical wave
system

obtained in theory, for the first time, not only in deep water for a general resonant
quartet, three coupled resonant quartets and even a resonant sextet [17, 20], but also
in a constant water depth [33] and over a bottom with an infinite number of periodic
ripples (Bragg resonance) [34]. In addition, the steady-state resonant waves were
further verified experimentally [22] in a basin of State Key Laboratory of Ocean
Engineering (SKLOE) at Shanghai, China.

Therefore, the “discovery” of such kind of steady-state resonant waves is a
good example illustrating the great potential and general validity of the HAM as
a useful tool to investigate some complicated nonlinear problems. Compared to
perturbation methods and most of other analytic approximation methods, the HAM
has some obvious advantages, as mentioned in Sect. 3.2, and thus could be applied
to attack some challenging problems in science and engineering. More importantly,
as described in this chapter, the HAM as a powerful novel method could provide
us something new and different, since any a truly new method must provide us
something new.
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Chapter 4
Modulational Instability in Equations of KdV
Type

Jared C. Bronski, Vera Mikyoung Hur, and Mathew A. Johnson

Abstract It is a matter of experience that nonlinear waves in a dispersive medium,
propagating primarily in one direction, may appear periodic in small space and
time scales, but their characteristics—the amplitude, the phase, the wave number,
etc.—slowly vary in large space and time scales. In the 1960s, Whitham developed
an asymptotic (WKB) method to study the effects of small “modulations” on
nonlinear dispersive waves. Since then, there has been a great deal of work aiming
at rigorously justifying the predictions from Whitham’s formal theory. We discuss
some recent advances in the mathematical understanding of the dynamics, in
particular, the instability, of slowly modulated waves for equations of KdV type.

4.1 Introduction

The modulational instability, at the core, is the observation that nonlinear wave
trains in a dispersive medium may be unstable to self modulation, developing
nontrivial large-scale structures, which continue to evolve as they propagate. The
phenomenon is familiar to researchers in many branches of science. Moreover, it is
a fundamental issue in the theory of wave motion. The history of the modulational
instability of nonlinear dispersive waves is long and fascinating. We do not have
space here for a complete account of it, and we will discuss only selected high
points. For more details, the interested reader is encouraged to read the excellent
review article by Zakharov and Ostrovsky [77].
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The first understanding of the importance of the modulational instability arose
in hydrodynamics in the 1960s. Benjamin and Feir [7], motivated by laboratory
experiments [28], showed that Stokes’ periodic waves in deep water are unstable.
About the same time, Whitham [73] applied his newly developed theory of nonlinear
dispersion to Stokes waves, associating the hyperbolic (or elliptic) nature of the
resulting modulation equations with the stability (or instability, respectively) of the
underlying wave; he showed that a Stokes wave is unstable if kh0 > 1:363 : : : ,
where k is the wave number of the underlying wave and h0 is the undisturbed
fluid depth. Benjamin and Feir, additionally, discovered the sideband nature of the
instability—the marginal stability of the wave number, with a band of unstable
wave numbers to either side. Corroborating results arrived nearly simultaneously,
but independently, by Lighthill [59], Ostrovsky [62], Benney and Newell [8], and
Zakharov [75, 76].

The modulational instability has been experimentally observed, either directly or
indirectly, in many physical systems. For example, pulses in nonlinear optical fibers
with so-called anomalous dispersion are (approximately) governed by the focusing,
cubic nonlinear Schrödinger equation, which exhibits the modulational instability.
The importance of the effect was noted in early papers by Anderson and Lisak [2]
and Hasegawa [39], where it was proposed as a method for generating short optical
pulses; it was later observed experimentally by Tai et al. [69]. Since then, there have
been a great deal of work observing the phenomenon in a number of optical settings;
see [14, 32, 57, 67, 70], for instance.

The modulational instability and associated Whitham equations for integrable
systems, such as the KdV and nonlinear Schrödinger equations, were studied by
Flashka et al. [30] and by Lax and Levermore [58], and it has grown into a large and
active field of research; see [23, 27, 35, 56, 71], for instance. Moreover, there has
been a great deal of recent work aiming at making connections between the elliptic
nature of the modulation equations and the instability of the underlying wave. To
single out a few in the vein, we mention [10, 11, 20, 21, 24, 54]. Here we will mainly
be concerned with the latter program, how Whitham’s formal theory translates into
rigorous stability results. This has led to many applications in nonlinear dispersive
equations; see [5, 6, 13, 33, 34, 37, 38, 43, 44, 46–50], for instance.

We begin Sect. 4.2 by constructing periodic traveling waves to the generalized
KdV equations. In Sect. 4.3 we will review Whitham’s modulation theory and
discuss implications for the modulational instability. Section 4.4 contains the main
analytical contributions, providing a rigorous mathematical program to determine
the modulational instability of periodic traveling waves of KdV type equations. For
illustrative purposes, in Sect. 4.5, we will discuss applications to the KdV, modified
KdV and Schamel equations. We will then extend the theory to equations admitting
nonlocal dispersion and discuss applications to the Benjamin-Ono equation, as well
as small amplitude waves of the fractional KdV, intermediate long-wave equations
and Whitham’s equation for water waves.
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4.2 Periodic Traveling Waves of Generalized KdV Equations

Much of the chapter is devoted to the modulational instability of periodic traveling
waves of the generalized KdV equation

ut D uxxx C f .u/x: (4.1)

Here, t 2 R is typically proportional to elapsed time and x 2 R is related to the
spatial variable in the predominant direction of wave propagation; u D u.x; t/ is real
valued, representing the wave profile or a velocity, and f is a suitable nonlinearity.
In many examples of interest, f obeys a power law. Throughout we express partial
differentiation either by a subscript or using the symbol @.

Perhaps the best known among equations of the form given by Eq. (4.1) is the
KdV equation

ut D uxxx C .u2/x; (4.2)

which was put forward in [17, 55] to model the unidirectional propagation of surface
water waves with small amplitudes and long wavelengths in a channel. It has since
found relevances in other situations such as Fermi-Pasta-Ulam lattices; see [29], for
instance. In the case of f .u/ D au3 C bu2, a; b constants, Eq. (4.1) is called the
modified KdV or Gardner equation, which models internal waves propagating in a
density stratified fluid; see [36], for instance. In the case of f .u/ D juj3=2, moreover,
Eq. (4.1) is called the Schamel equation; see [66], for instance.

By a traveling wave, we mean a solution which propagates at a constant speed
without changing the shape. It takes the form u.x; t/ D u.z/, z D x�ct, where c 2 R

is the wave speed and u is a stationary solution of

ut D uzzz C cuz C f .u/z: (4.3)

It then reduces by quadrature to

uzz C cu C f .u/ D a (4.4)

for some constant a 2 R. It further reduces by quadrature to

1

2
u2z D E C au � 1

2
cu2 � F.u/ (4.5)

for some constant E 2 R, where F0 D f , F.0/ D 0. We refer to Eq. (4.5) as the
profile ODE associated with Eq. (4.1). One may employ elementary phase plane
analysis to infer the existence of periodic, homoclinic (pulses) and heteroclinic
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(fronts) orbits of Eq. (4.5). Note that their existence and non-existence depend on
properties of the effective potential

V.uI a; c/ WD F.u/C 1

2
cu2 � au: (4.6)

4.2.1 Some Explicit Solutions

In some special cases, Eq. (4.5) may be integrated to yield classes of explicit
solutions. In the case of f � 0 in Eq. (4.1), namely the (linear) Airy equation, for
instance, Eq. (4.1) admits plane wave solutions u.x; t/ D eik.x�ct/, where k represents
the wave number and c is the wave speed, provided that the temporal frequency
! D kc is related to k through the dispersion relation ! D k3. We will return to
these linear waves in Sect. 4.3.1 when we discuss Whitham’s modulation theory.
Their modulational stability, it turns out, is trivial and follows directly from the
dispersion relation. As a matter of fact, all these waves are modulationally stable.
Therefore we will be concerned with a genuine nonlinearity, typically of the form
f .u/ D �upC1 for some p > 0 and � ¤ 0 real. Thanks to the scaling invariance
of Eq. (4.1), by the way, j� j may be taken to be arbitrary. As a matter of fact, the
stability of periodic traveling waves of Eq. (4.1) is independent of the choice of j� j.
Further, the sign of � is inconsequential if p is odd.

In the case of f .u/ D 1
2
u2 in Eq. (4.1), namely the KdV equation, to proceed,

simple phase plane analysis implies that periodic solutions of Eq. (4.5) exist,
depending on a, E and c, provided that the cubic polynomial E�V.� I a; c/ possesses
three distinct real roots, which we label as 	 < ˇ < ˛. Periodic solutions then
correspond to oscillation between in the interval Œ˛; ˇ�, and a, E and c are related to
˛, ˇ and 	 as

E D ˛ˇ	

6
; a D �˛ˇ C ˇ	 C ˛	

6
; c D ˛ C ˇ C 	

3
: (4.7)

In particular, Eq. (4.5) may be written as u2z D .˛ � u/.u � ˇ/.u � 	/=3 and hence
u may be defined implicitly as

z C z0p
3

D
ˆ ˛

u

dwp
.˛ � w/.w � ˇ/.w � 	/ ; (4.8)

where z0 is a constant of integration associated with translational invariance and can
be chosen to satisfy u.0/ D ˛. We then make the change of variables

w D ˛ � .˛ � ˇ/ sin2 �; sin � D
r
˛ � w

w � ˇ ; (4.9)
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and we solve Eq. (4.8) for u explicitly as

u.zI˛; ˇ; 	; z0/ D ˇC .˛�ˇ/cn2
�r˛ � 	

12
.zCz0/I m

�
; m D ˛ � ˇ

˛ � 	
; (4.10)

where cn.� I m/ denotes the Jacobi cnoidal function with elliptic modulus m 2 Œ0; 1/.
These cnoidal waves form a four-parameter family of periodic traveling waves of
the KdV equation. Note that the period is T D 4

p
3K.m/=

p
˛ � ˇ, where K is

the complete elliptic integral of the first kind. Incidentally cn.zI m/ ! sech.z/ and
K.m/ ! 1 as m ! 1�, and therefore Eq. (4.10) reduces to the well-known formula
for the KdV soliton in the long wave limit.

Another example of explicit solutions is when f .u/ D ˙ 1
3
u3 in (4.1), which we

call the focusing (C) and defocusing (�) modified KdV equations. In the focusing
case, V.� I a; c/ represents a bistable double-well potential and simple phase plane
analysis implies that non-constant periodic solutions of Eq. (4.5) exist, depending on
a, E and c, provided that the quartic polynomial E �V.� I a; c/ has four distinct roots
(i.e. its discriminant is not zero), ˛, ˇ, 	 and ı, say, with at least two of them being
real; see Fig. 4.1. The general solution is rather tedious with a number of cases to
consider, but it amounts to reducing the elliptic integral to the standard form. Indeed,
if we write the solution in the form

ˆ
dup

.u � ˛/.u � ˇ/.u � 	/.u � ı/ D !t (4.11)

for some appropriate constant ! 2 R and if we make the Möbius transformation

v D au C b

u � ˛ (4.12)

for some constants a; b, which maps one of the roots of the quartic to 1, then
Eq. (4.11) becomes

ˆ
dvp
P3.v/

D !t (4.13)

for some cubic polynomial P3, which may be studied similarly to the KdV equation.
Of course, ˛ must not be an end point of the interval over which solutions oscillate.

In the case of a D 0, furthermore, the effective potential V.� I 0; c/ is symmetric
(even) and the expressions for explicit solutions simplify greatly. Specifically, there
are two families of solutions, one in terms of the Jacobi elliptic cnoidal function and
the other in terms of the Jacobi dnoidal function. The cnoidal waves correspond to
solutions for E > 0 and their orbits in the phase plane lie outside the separatrix;
see Fig. 4.1a. The dnoidal waves correspond to solutions for E < 0 and their orbits
in the phase plane are bounded by a homoclinic orbit (corresponding to a solitary
wave). In the case of c < 0 and E < 0, for instance, the quartic on the right side of
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(a)

(b)

Fig. 4.1 Representative graphics of the effective potential V.� I a; c/ in the case of the (a) focusing
and (b) defocusing modified KdV equations. In the focusing case, periodic traveling waves exist
only for E > E2.a; c/. There are two families of solutions when E 2 .E2;E1/ while there is
only one family when E > E1. In the defocusing case, periodic traveling waves exist only for
E 2 .E2;E1/ and there is only one family of solutions

the profile ODE

u2z D 2E � cu2 � u4

6
(4.14)

has four real roots, u D ˙k1;˙k2, where k1 D �3
�

c C
q

c2 C 4E
3

�
and k2 D

�3
�

c �
q

c2 C 4E
3

�
. We then make the change of variables u D k2v and Eq. (4.14)

becomes

v2z D k22
6
.v2 � 1/

�k22
k21

� v2
�
: (4.15)
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Note that the Jacobi dnoidal function y.z/ D dn.zI k/ solves

y2z D .y2 � 1/.1� k2 � y2/: (4.16)

Therefore v D dn.k2z=
p
6I k/, k2 D 1 � k21=k22. The other case when c < 0 and

E > 0, which is solvable in terms of the Jacobi cnoidal function, may be treated
similarly.

In the defocusing case, non-constant periodic solutions of Eq. (4.5) exist, depend-
ing on a, E and c, only when the quartic polynomial E � V.� I a; c/ has four distinct
real roots; see Fig. 4.1b. In the case of a D 0, the effective potential is symmetric
likewise and one may find explicit solutions in terms of the Jacobi snoidal function.

4.2.2 General Existence Theory

While an extensive amount of literature is devoted to studying properties of explicit
periodic traveling waves of Eq. (4.1), e.g. the elliptic function solutions of the KdV
and modified KdV equations discussed in the previous subsection, our modulational
instability theory does not make use of such formulae. (Nevertheless, we will strive
to state our results in the context of explicit solutions when possible.) Rather, of
importance to us are properties of the parametrization of periodic traveling waves
with respect to various coordinate systems and the Jacobians between them. As a
first step in the direction, we remark that the Jacobian of the map given by Eq. (4.7)
fromR

3 to itself is not singular, provided that the cubic polynomial E�V.� I a; c/ has
three distinct roots, a property fundamentally related to the sign of its discriminant.
As a matter of fact, in the set where the discriminant of the polynomial is positive
and it has three distinct real roots, the transformation Eq. (4.7) is smoothly invertible.
Consequently, the cnoidal wave solutions in Eq. (4.10) of the KdV equation may be
considered as a four-parameter family of periodic traveling waves, parameterized
by a, E, c and z0, whose profile and fundamental period depend smoothly on the
parameters. Analogous results hold for elliptic function solutions of the focusing
and defocusing modified KdV equations: within the domain of existence they may
be smoothly parameterized in terms of E, c and z0 (recalling that a D 0 in these
explicit solutions).

With the above in mind, we note that if f in Eq. (4.1) is a polynomial nonlinearity
then the zero set of the discriminant of E � V.� I a; c/, given by

� D
n
.a;E; c/ 2 R

3 W disc
�

E C au � 1

2
cu2 � F.u/

�
D 0

o
; (4.17)



90 J.C. Bronski et al.

Fig. 4.2 Schematic drawing showing the locations of the roots uC and u� of E � V.� I a; c/

defines a variety dividing the parameter space into open sets with a constant number
of periodic traveling waves. Moreover solutions of Eq. (4.5) with .a;E; c/ 2 �

make either equilibria or homoclinic orbits, which correspond to constant solutions
or solitary waves of Eq. (4.1), respectively. In particular, .0; 0; c/ 2 � represents
solitary waves homoclinic to zero.

In order to ensure the existence of periodic orbits of Eq. (4.5), we therefore take
.a;E; c/ 2 R

3 n � so that there exist simple and distinct roots of E � V.� I a; c/
and that there are real roots u˙ satisfying u� < uC such that V.uI a; c/ < E for
u 2 .u�; uC/; see Fig. 4.2. It follows that u˙ are smooth functions of the traveling
wave parameters a, E, c and, without loss of generality, we may assume u.0/ D u�.
The corresponding periodic solution of Eq. (4.5) is an even function of z D x � ct
and its period can be expressed by quadrature as

T D T.a;E; c/ D p
2

ˆ uC

u�

dup
E � V.uI a; c/

D
p
2

2

˛
	

dup
E � V.uI a; c/

; (4.18)

where integration over 	 represents a complete integration from u� to uC and then
back to u� again. Note however that the branch of the square root must be chosen
appropriately in each direction. Alternatively, the contour 	 can be interpreted as
a closed loop (Jordan curve) in the complex plane that encloses a bounded set
containing u˙. By a standard procedure, the above integral can be regularized at
the square root branch points, and hence it represents a C1 function of a, E and c.
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In general, Eq. (4.1) admits three conserved quantities, physically corresponding
to the Hamiltonian, the mass and the momentum. For a T-periodic traveling wave
u D u.� I a;E; c/, they are defined by

H.a;E; c/ D
ˆ T

0

�u2x
2

� F.u/
�

dx D
p
2

2

˛
	

E � V.uI a; c/� F.u/p
E � V.uI a; c/

du;

M.a;E; c/ D
ˆ T

0

u dx D
p
2

2

˛
	

u
p

E � V.uI a; c/
du;

P.a;E; c/ D
ˆ T

0

u2 dx D
p
2

2

˛
	

u2
p

E � V.uI a; c/
du;

(4.19)

respectively, where the integral over 	 is defined as before. These integrals can be
regularized at their square root branch points and hence they represent C1 functions
of the traveling wave parameters. As we will see, the gradients of the period and
these conserved quantities play a crucial role in the stability of periodic traveling
waves in Eq. (4.1). To help with calculations involving gradients of these conserved
quantities, we point out a useful identity. The classical action (in the sense of action-
angle variables) for Eq. (4.5) is given by

K.a;E; c/ D p
2

˛
	

p
E � V.uI a; c/ du (4.20)

and it serves as a generating function for the conserved quantities of Eq. (4.1)
evaluated at the traveling wave. Specifically,

T D @K

@E
; M D @K

@a
; P D 2

@K

@c
; (4.21)

so that, in particular, the Jacobian @.T;M;P/
@.a;E;c/ agrees (up to a constant factor) with the

Hessian of the map

R
3 3 .a;E; c/ 7! K.a;E; c/ 2 R: (4.22)

In summary, Eq. (4.1) in the case of polynomial nonlinearity admits a four-
parameter family of periodic traveling waves, smoothly parameterized by a, E and c
in Eq. (4.5) and an auxiliary parameter z0 associated with the translational invariance
of the equation. Solitary waves, whose profile asymptotically vanishes, correspond
to a D E D 0, and hence they form a co-dimension two subset of the full set of
traveling waves.
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4.3 Formal Asymptotics and Whitham’s Modulation Theory

We are interested in the stability to slow modulations of periodic traveling waves
of nonlinear dispersive equations. That means, we wish to understand the long time
dynamics of “slightly” modulated, periodic traveling waves. In particular, we wish
to determine whether the long time dynamics will be appropriately described by
small modulations of the carrier wave. In this section, we illustrate some asymptotic
calculations that shed light on this and hence on the modulational stability. Mainly,
we will utilize a formal multiple scale expansion to derive a first order system of
equations governing the slow dynamics of averaged quantities of the modulated
wave over the fast scale. Such an approach was pioneered by Whitham in the 1960s
and early 1970s (see [72–74], for instance), and it has since been widely applied
in both the physics and mathematics communities. As such, it has been termed
Whitham’s modulation theory.

To illustrate the key ideas, we begin by considering slow modulations of linear
wave packets, for which the modulational dynamics is simplified thanks to the direct
coupling of spatial and temporal frequencies through the dispersion relation. We will
then extend the calculation to nonlinear wave packets, for which one must make use
of a nonlinear dispersion relation to close the modulation system. In Sect. 4.4.3, we
will discuss rigorously validating the predictions from these calculations.

4.3.1 Linear Dispersive Waves

Notice that any constant function u.x; t/ D u0 is a solution of Eq. (4.1). Seeking
nearby solutions of the form

u.x; t/ D u0 C "v.x; t/; j"j � 1; v D O.1/; (4.23)

we arrive at that

vt D vxxx C f 0.u0/vx C O."/: (4.24)

Ignoring all O."/ terms, we find that as long as v remains O.1/we may approximate
it by a solution of

vt D vxxx C f 0.u0/vx: (4.25)

Notice that it admits plane wave solutions of the form

v.x; t/ D Aei.kx�!t/ C c:c:; (4.26)
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where A is the (real) amplitude, k is the wave number and the temporal frequency !
is related to u0 and k through the dispersion relation

! D k3 � f 0.u0/k: (4.27)

Here and elsewhere c:c: means the complex conjugate.
We wish to describe the modulation of the linear wave packet. That is, we

consider solutions of Eq. (4.25) of the form given by Eq. (4.26), where A, k and
! are allowed to depend on space and time. Note that if A, k and ! are allowed
to vary significantly over one wavelength of the carrier wave, taken with A, k and
! constant, then there is no reason to expect that the evolving wave packet must
be described as a modulated periodic wave. Hence, we only consider modulations
where A, k and ! vary slowly over space and time. This naturally leads one to
consider two separate space and time scales—the “fast” oscillations of the carrier
wave and the slow evolution of A, k and !.

Utilizing a multiple scale approach, we therefore seek a solution of Eq. (4.25) of
the form

v.x; t;X; S/ D A.X; S/ei.k.X;S/x�!.X;S/t/ C c:c:; (4.28)

where x, t denote the “fast” variables and X D "x, S D "t denote the “slow” vari-
ables. Here and elsewhere, " indicates a small, but non-zero, quantity. Substituting
Eq. (4.28) into Eq. (4.25) and collecting terms of order up to O."/, we arrive at that

.�i! C ik3 � ikf 0.u0//C i"A
��@k

@S
C .f 0.u0/ � 3k2/

@k

@X

�
.x � .u0 � 3k2t//

�

C"
�@A

@S
C . f 0.u0/ � 3k2/

@A

@X
C 6kA

@k

@X

�
D 0: (4.29)

At the order of O.1/, this merely requires that the slowly evolving temporal and
spatial frequencies satisfy the dispersion relation, i.e. [see Eq. (4.27)]

!.k/ D k3 � f 0.u0/k; k D k.X; S/; (4.30)

for all X; S 2 R. Since it forces ! to be real valued regardless of the slow evolution
of the wave number k, the modulated solutions given by Eq. (4.28) are bounded for
all times, implying that the constant solution is modulationally stable.

At the order of O."/, to describe the slow evolution more precisely, (4.29) yields
two equations for k and A:

@k

@S
C !0.k/

@k

@X
D 0 and

@A

@S
C .!0.k/A/X D 0; (4.31)

where !0.k/ D 3k2 � f 0.u0/ depends on X and S through the evolution of k. The
system (4.31), together with the dispersion relation, describes to leading order the
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evolution of slowly modulated wave packets in Eq. (4.25). Since !.k/ is real valued
for all k 2 R, the linearization of the system about .k;A/ D .k0;A0/, corresponding
to a linear wave train of the form given by Eq. (4.26) with k D k0 and A D A0
constant, is hyperbolic, and hence both k and A will remain bounded for all times.
This again implies the modulational stability of the constant solution.

Note that the Whitham modulation equations given by Eq. (4.31) for slow
modulations of a constant state prescribe the evolution of only two quantities,
namely the wave number and the amplitude. Moreover, the evolution equation for
k is independent of the evolution of the amplitude. These observations are due to
the fact that the dispersion relation [see Eq. (4.27)] directly relates the temporal and
spatial frequencies.

4.3.2 Nonlinear Dispersive Waves

We now wish to understand the long time dynamics of arbitrary amplitude and
slowly modulated, periodic traveling waves of Eq. (4.1). The main technical dif-
ference is that the spatial and temporal frequencies are no longer coupled through
the dispersion relation, and hence we need to find modulation equations describing
the slow evolution of three wave characteristics parameters.

Recall from Sect. 4.2 that periodic traveling waves of Eq. (4.1) are parameterized
(up to translations) by a, E and c and that the period depends on the parameters.
While this parametrization is natural from the existence standpoint, we will see
below that it is not well-suited to the formal asymptotic description of Whitham’s
modulation theory. (We utilize this in the rigorous theory in the following sections,
however.) Rather, the modulation equations are most naturally described in terms
of the slow evolutions of the period and conserved quantities associated with the
modulated solution. The Jacobian between these parameterizations will play a vital
role in our theory.

We seek an asymptotic description of modulated, periodic traveling waves of
Eq. (4.1). To account for the separate fast and slow scales of space and time involved,
we utilize a multiple scale expansion. Specifically we introduce “slow” variables
.X; S/ D ."x; "t/ and note that in the slow coordinates given by Eq. (4.1) becomes

uS D "2uXXX C f .u/X: (4.32)

Following [72, 74], we seek a solution of Eq. (4.32) of the form

u.X; S/ D u.0/
��.X; S/

"
;X; S

�
C "u.1/

��.X; S/
"

;X; S
�

C O."2/; (4.33)

where the phase � is chosen to ensure that u.j/, j D 0; 1, are 1-periodic functions
in the variable y D �.X; S/=". Note that the local period of oscillation of the
modulated wave train is "=@X�, where we assume that the unknown phase a priori
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satisfies @X� ¤ 0. Note that periodic traveling waves of Eq. (4.1) fit this asymptotic
description if one takes u D u.0/ constant in the slow variables and chooses
�.X; S/ D k.X � cS/. That is, periodic traveling waves of Eq. (4.1) correspond to
constant solutions in the slow coordinates.

We then substitute Eq. (4.33) into Eq. (4.32) and collect like powers of ", resulting
in a hierarchy of equations that must be satisfied at each order. At the order of
O."�1/, we find that

�S@yu.0/ D .�X@y/
3u.0/ C .�X@y/f .u

.0//; (4.34)

which is merely Eq. (4.4) for u.0/ differentiated in the variable y, under the
identification k D �X as the spatial frequency and c D !=k as the wave speed,
where ! D �S is the temporal frequency of the modulation, and all of which are
considered as functions of the slow variables X and S. For X and S fixed, we may
thus choose u.0/ to be a periodic traveling wave of Eq. (4.1), and hence of the form

u.0/.y;X; S/ D u.yI a.X; S/;E.X; S/; c.X; S// (4.35)

for some solution u of Eq. (4.5), where a, E and c are independent of y. In particular,
the compatibility condition �SX D �XS implies that

kS C !X D 0; (4.36)

which serves as a nonlinear dispersion relation. It effectively replaces the dispersion
relation in the case of linear waves. Linear waves satisfy Eq. (4.36) thanks to the
dispersion relation and the first equation in Eq. (4.31). In the literature, Eq. (4.36) is
sometimes referred to as the equation of conservation of waves.

At the order of O.1/, continuing,

@zLŒu
.0/�u.1/ D @Su.0/ � @Xf .u.0//� @X.�

2
X@

2
y/u

.0/ (4.37)

supplemented with the 2�-periodic boundary conditions, where

LŒu.0/� D @2z � su.0/ C f 0.u.0//; z D ky; (4.38)

is recognized as the linear operator obtained from linearizing Eq. (4.1) about the
carrier wave u.0/. The Fredholm alternative implies that Eq. (4.37) has a solution,
provided that the right hand side is orthogonal to the kernel of the adjoint operator
.@yLŒu.0/�/� D �LŒu.0/�@y in L2.0; 2�/. Here and elsewhere, the dagger means the
adjoint. Since u.0/ is not constant, upon differentiation of Eq. (4.5), it is readily seen
that

ker.LŒu.0/�@y/ D spanf1; u.0/g: (4.39)
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Hence Eq. (4.37) has a solution, provided that the orthogonality conditions

(
MS C @XG.u.0// D 0;

PS C @XQ.u.0// D 0
(4.40)

hold, where

M.X; S/ D
ˆ 1

0

u.0/.y;X; S/ dy and P.X; S/ D
ˆ 1

0

.u.0//2.y;X; S/ dy (4.41)

are functions of the slow variables X and S, and the fluxes G and Q are the
inner products of the right hand side of Eq. (4.37) with 1 and u.0/, respectively;
in particular, they are y-independent functions of X and S that may be written out
explicitly, if desired; see [46], for instance.

Together, three equations in Eqs. (4.36) and (4.40) form the Whitham averaged
system for Eq. (4.1), describing the mean behavior of the slowly varying functions
a, E and c in Eq. (4.35) implicitly in terms of the slow evolutions of the functions k,
M and P. In particular, formally, Eq. (4.1) admits a modulated wave train solution
that, to leading order, can be described as

u.x; t/ D u
��.X; S/

"
I a.X; S/;E.X; S/; c.X; S/

�
C O."/; (4.42)

where a, E and c evolve in the slow variables in such a way that k, M and P evolve
according to the (nonlinear) first order system, Eqs. (4.36) and (4.40).

To ascertain the modulational stability of the periodic traveling wave u.a0;E0; c0/
of Eq. (4.1), say, we seek to understand whether the functions a, E and c in Eq. (4.35)
evolve away from a0, E0 and c0 in the slow scale or not. The modulation equations,
Eqs. (4.36) and (4.40), however, describe the evolution of a, E and c implicitly
through the evolution of k, M and P. As such, if we want to measure deviation
of a, E, c from a0, E0, c0 in terms of the evolution of k, M, P, we must require
that, at least in the vicinity of the carrier wave u, nearby periodic traveling waves of
Eq. (4.1) can be re-parameterized by k, M and P. By the implicit function theorem,
such a (local) re-parametrization is possible, provided that the Jacobian matrix

@.k;M;P/

@.a;E; c/
(4.43)

is not singular at .a0;E0; c0/.
Under the assumption that Eq. (4.43) is not singular, the modulational stability

can be analyzed by linearizing the modulation equations, Eqs. (4.36) and (4.40),
about the constant solution .a0;E0; c0/. We seek solutions of Eqs. (4.36) and (4.40)
of the form

.a.X; S/;E.X; S/; c.X; S//D .a0;E0; c0/C ".Qa.X; S/; QE.X; S/; Qc.X; S//; (4.44)
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which, upon substitution into Eqs. (4.36) and (4.40) and dropping of all O."2/

terms,1 satisfy that

�@.k0;M0;P0/

@.a;E; c/
@S.Qa; QE; Qc/C @.!0;G0;Q0/

@.a;E; c/
@X.Qa; QE; Qc/

�
D 0; (4.45)

where the 0 subscript denotes evaluation at .a0;E0; c0/. This is a constant-
coefficient, linear system of PDEs, and we may seek solutions of the form

.Qa; QE; Qc/.X; S/ D e�S�ikX.Qa0; QE0; Qc0/; � 2 C and k 2 R (4.46)

for some .Qa0; QE0; Qc0/ 2 R
3, where the temporal and spatial frequencies of the

perturbation can be determined from the dispersion relation

DW.�; k/ WD det

�
�
@.k0;M0;P0/

@.a;E; c/
� ik

@.!0;G0;Q0/

@.a;E; c/

�
D 0; (4.47)

a homogeneous cubic polynomial in the variables � and k. In particular,DW.�; k/ D
�3DW.1; k=�/ and hence if zj’s, j D 1; 2; 3 are roots of

bDW.z/ WD DW.1; z/ (4.48)

then the dispersion relation defines three spectral curves

�j.k/ D izjk; j D 1; 2; 3: (4.49)

Therefore, u.a0;E0; c0/ must be modulationally stable, provided that the reduced
dispersion relation ODW has three real roots, while it must be modulationally unstable
if the dispersion relation admits at least one complex root with non-zero imaginary
part.

The above suggests that a necessary condition for the modulational stability of a
periodic traveling wave of Eq. (4.1) is that the linearized Whitham system given by
Eq. (4.45) be hyperbolic, i.e. eigenvalues of

@.k0;M0;P0/

@.!0;G0;Q0/
D
�
@.k0;M0;P0/

@.a;E; c/

��
@.!0;G0;Q0/

@.a;E; c/

��1
(4.50)

be all real. Note that while Eq. (4.21) implies that @.k0;M0;P0/
@.a;E;c/ is symmetric, and hence

its eigenvalues are all real, the hyperbolicity of @.k0;M0;P0/
@.!0;G0;Q0/

naturally depends on the
fluxes, and hence on the specific nonlinearity and waves involved. In the following

1Note that O.1/ terms cancel out thanks to the definition of .a0;E0; c0/, and hence the leading order
term is O."/.
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section, we will derive a rigorous, modulational stability theory whose main result,
Theorem 4.1, relates the stability of a periodic traveling wave of Eq. (4.1) to slow
modulations of eigenvalues of some 3 � 3 matrix. The eigenvalues end up agreeing
precisely with the roots of ODW , providing a rigorous justification of the above formal
calculations; see Theorem 4.2 below.

4.4 Rigorous Theory of Modulational Instability

We discuss how to make rigorous the formal argument sketched in the previous
section in various settings. In the process we provide a general methodology of
determining the modulational instability for a large class of nonlinear dispersive
equations.

4.4.1 Analytic Setup

Let u0 D u0.� I a;E; c/ denote a T D T.a;E; c/-periodic traveling wave of Eq. (4.1).
The idea of “stability” can formally be stated as requiring that if a solution to
Eq. (4.1) starts close to the solution u0 then it stays close to u0 for all times. To
understand the evolution of solutions that start near u0, one typically linearizes the
governing equation about the solution u0, a process we now describe.

Notice that u0 is a stationary T-periodic solution of

ut D cuz C uzzz C f .u/z; (4.51)

which is merely Eq. (4.1) written in the spatially traveling frame z D x�ct. We seek
a solution of Eq. (4.51) with the initial datum u.0/ D u0 C v0 for some v0 2 H3.R/

with kv0kH3.R/ sufficiently small.2 Writing u.t/ D u0Cv.t/ for t > 0 for which u.t/
is defined,3 we see that v satisfies

vt D Lv C NŒu0; v�; (4.52)

2The requirement that the perturbation be integrable is not the only choice possible. Other natural
candidates of classes of perturbations include periodic perturbations with fundamental period nT
for some n D 1; 2; 3; : : :. While such periodic classes of perturbations are natural from a variational
viewpoint, they may impose artificial constraints on the physical problem. As we will see below,
the class of localized, i.e. integrable on the line, perturbations includes information about all quasi-
periodic perturbations.
3Here we ignore issues of well-posedness of Eq. (4.1) to such initial data.
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where L D @uF.u0/ W H3.R/ 	 L2.R/ ! L2.R/ is the linear operator, given as

L D @z.@
2
z C c C f 0.u0//; (4.53)

and NŒu0; v� D @z.f .u0Cv/� f .u0/� f 0.u0/v/ is a nonlinear operator satisfying the
quadratic estimate

kNŒu0; v�kL2.R/ � Ckvk2H1.R/
(4.54)

for some constant C D C.ku0kH1.R// > 0 independent of v. We expect that as
long as v0 is sufficiently small in L2.R/, say, the solution v.t/ must be small
in L2.R/ at least for short times. Moreover, so long as v.t/ remains sufficiently
small, it is reasonable to expect that the nonlinear evolution Eq. (4.52) may well be
approximated by the linear evolution equation

vt D Lv; (4.55)

posed on H3.R/ 	 L2.R/. Thanks to linearity, we may relax the smallness
assumption.

The underlying wave u0 is said to be linearly stable (to L2.R/-perturbations),
provided that all solutions of Eq. (4.55) remain bounded in time, whereas it is
linearly unstable (to L2.R/-perturbations) if there exists some initial datum v0 2
H3.R/ such that the associated solution of Eq. (4.55) grows in time.

The linear stability may further be reduced to a problem in spectral analysis as
follows. Since the linear evolution given by Eq. (4.55) is autonomous in time, we
may take the Laplace transform in time, arriving at

�v D Lv; (4.56)

where v.z/ D v.zI�/ denotes the Laplace transform of the function v.z; t/ in
Eq. (4.55) and � 2 C is the Laplace (temporal) frequency. The spectral problem
given by Eq. (4.56) is posed on L2.R/, and as such the stability of u0 may be studied
by analyzing the spectrum of L considered as a densely defined operator on L2.R/.
Indeed, if the L2.R/-spectrum of L intersects the open right half plane in C, then
one expects the solution of Eq. (4.56) to grow in time and hence the underlying
wave be unstable. With this in mind, we say that u0 is spectrally unstable (to
L2.R/-perturbations) if there exists � in the L2.R/-spectrum of L with Re.�/ > 0.
Otherwise, we say it is spectrally stable (to L2.R/-perturbations).4 Since Eq. (4.56)
is left invariant under the transformations

v 7! Nv and � 7! N�; (4.57)

4In general, spectral stability does not imply linear stability, as is familiar from the ODE theory.
Nevertheless, spectral instability often does imply linear (and nonlinear) instability.
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where the bar denotes complex conjugation, and

z 7! �z and � 7! ��; (4.58)

the spectrum of L is symmetric with respect to reflections about both the real and
imaginary axes. Consequently, u0 is spectrally stable if and only if the L2.R/-
spectrum of L is contained in the imaginary axis.

Since Eq. (4.56) is a spectral problem for a linear operator with periodic coef-
ficients, its spectrum is most conveniently characterized by Floquet-Bloch theory.
A standard theory (see [19, 64], for instance) dictates that non-trivial solutions of
Eq. (4.56) cannot be integrable over R, i.e. they cannot have a finite Lp.R/-norm for
any 1 � p < 1, and that they can at best be bounded functions over R. Moreover,
any bounded solution of Eq. (4.56) must be of the form

v.x/ D ei�xw.x/ (4.59)

for some w 2 L2per.Œ0;T�/ and � 2 Œ��=T; �=T/. In particular, � 2 C belongs to the
L2.R/-spectrum of L if and only if there is a non-trivial solution of the quasi-periodic
spectral problem

(
�v D Lv;

v.x C T/ D ei�Tv.x/
(4.60)

for some � 2 Œ��=T; �=T/. Alternatively, � 2 specL2.R/.L/ if and only if for some
� 2 Œ��=T; �=T/ there exists a non-trivial T-periodic solution of

�w D L�w; where L� D e�i�xLei�x: (4.61)

We remark that for each � 2 Œ��=T; �=T/, the spectrum of the operator L� ,
considered as a densely defined operator on L2per.Œ0;T�/, is comprised merely of
discrete eigenvalues with finite multiplicities and, furthermore,

specL2.R/.L/ D
[

�2Œ��=T;�=T/

specL2per.Œ0;T�/
.L�/: (4.62)

The parameter � is referred to as the Bloch frequency and the operators L� are called
the Bloch operators associated with L.

Rather than analyzing the essential spectrum of the operator L directly, the above
discussion indicates that we may choose to study the T-periodic discrete spectra of
the Bloch operators L� for � 2 Œ��=T; �=T/. In practice, one does not expect to
be able to explicitly compute the eigenvalues of L� for an arbitrary Bloch frequency
�, except for few very special cases, e.g. completely integrable systems (see [16],
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for instance). Thankfully, however, for the purposes of the modulational stability
analysis, we only need to consider the spectra of the operators L� in a neighborhood
of the origin in the spectral plane and only for � sufficiently small. Indeed, notice
that if the eigenvalues of L0 are confined to the imaginary axis, then the underlying
wave is spectrally stable to perturbations which themselves are T-periodic. When
0 < j�j � 1 small, the period of the perturbation is nearly that of the underlying
wave, and hence the effect of the perturbation is seen only on very large space
and time scales. That means, the spectrum of the operators L� with 0 < j�j � 1

describes the stability to long wavelength perturbations.
Modulational perturbations fall into the class of long wavelength perturbations,

but they form a special subclass where the effect of the perturbation is simply to
modulate the wave characteristics, which presently are given by the parameters a,
E, c, and the translational mode z0. The point is that variations in these parameters
provide spectral information of L0 at the origin in the spectral plane. Formally, this
can be seen upon differentiating Eq. (4.4) with respect to a, E, c and z and noting
that

L0spanf@zu0; @au0; @Eu0g D 0; L0@cu0 D �@zu0; (4.63)

where the T-periodic boundary conditions have not yet been enforced; see
Lemma 4.1 below for a precise description of the generalized kernel of L0.

It is natural from the above remarks that the spectral stability of the underlying
wave to slow modulations corresponds to ensuring the spectra of the Bloch operators
L� near the origin is confined in the imaginary axis for all 0 � j�j � 1 sufficiently
small. Our program is in two steps. First we study the structure of the generalized
kernel of the unmodulated operator L0. We then use perturbation theory to examine
how the spectrum near the origin of the modulated operator L� bifurcates from the
origin for 0 < j�j � 1. This program is carried out in the next section.

4.4.2 Modulational Instability in Generalized KdV Equations

We begin our program by demonstrating that, under a generic nondegeneracy con-
dition, the unmodulated operator L0 has a two dimensional, generalized T-periodic
kernel with a Jordan chain of length one. Henceforth we employ the notation

ff ; ggx;y WD det

�
@.f ; g/

@.x; y/

�
and ff ; g; hgx;y;z WD det

�
@.f ; g; h/

@.x; y; z/

�
(4.64)

for determinants of 2 � 2 and 3 � 3 Jacobians, respectively.
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Lemma 4.1 ([13, 15]) Suppose that u D u.� I a0;E0; c0/ is a T-periodic solution of
Eq. (4.5) and that the Jacobian determinants TE, fT;Mga;E and fT;M;Pga;E;c are
not zero at .a0;E;c0/. Then

�0 WD fT; uga;E;  0 WD 1;

�1 WD fT;Mga;Eux;  1 WD ´ x
0
�2.s/ ds;

�2 WD fu;T;Mga;E;c;  2 WD fT;Mga;E C fT;Mga;Eu
(4.65)

are all T-periodic and satisfy

L0�0 D L0�1 D 0; L�0 0 D L�0 2 D 0;

L0�2 D ��1; L�0 1 D  2:
(4.66)

In particular, �j’s, j D 0; 1; 2, form a basis for the generalized null space of L0
and  j’s, j D 0; 1; 2, form a basis for the generalized null space of the adjoint L�0.
Moreover

˝
 j; �i

˛
L2per.Œ0;T�/

D 0 if i ¤ j.

The proof follows from a straightforward application of the Fredholm alternative;
see [13, 15], for details. The main observation is that while ux is T-periodic, the
derivatives ua, uE and uc are generally not T-periodic because of the dependence of
the period on the parameters a;E; c. Instead, the change in these functions across a
period is proportional to derivatives of the period; for instance,

0

BB@

uE.T/
uEx.T/
uExx.T/

� � �

1

CCA �

0

BB@

uE.0/

uEx.0/

uExx.0/

� � �

1

CCA D TE

0

BB@

uE.0/

uEx.0/

uExx.0/

� � �

1

CCA (4.67)

and similarly for the change in ua and uc across a period. It is then easy to check that
the functions �j’s, j D 0; 1; 2, are T-periodic and, thanks to Eq. (4.63), satisfy the
desired relations under the action of L0. Since �2 clearly has mean zero, moreover,
the functions  j’s, j D 0; 1; 2 are T-periodic and, again seen upon differentiating

the profile equation, satisfy the desired relations under the action of L�0. Note that
u can be chosen, through appropriate translation, to be an even function, and that
L0 sends odd functions to even functions and even functions to odd functions, all
while preserving periodicity, namely L0 is parity reversing. We may then verify that˝
 j;L0�k

˛
L2per.Œ0;T�/

D 0 for all j; k D 0; 1; 2 which, by the Fredholm alternative,

implies the desired structure of the generalized kernels of L0 and L�0.
Henceforth, we assume that the quantities TE, fT;Mga;E and fT;M;Pga;E;c are not

zero at the underlying T-periodic traveling wave. Recalling Eq. (4.21), we point out
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that the key Jacobian determinants in our theory correspond to the three principle
minor determinants of the Hessian of K, namely

KEE D TE; fKE;KagE;a D fT;MgE;a; (4.68)

fKE;Ka;KcgE;a;c D fT;M;PgE;a;c: (4.69)

Each of the above are determinants of symmetric matrices given by Eq. (4.21), and
hence their eigenvalues are real and assumed to be non zero. Lemma 4.1 then implies
that the elements of the T-periodic kernel of the unmodulated operator L0 are given
by the elements of the tangent space to the (two dimensional) manifold of solutions
of fixed period and fixed wave speed at the underlying wave, while the generalized
T-periodic kernel of L0 consists also of a vector in the tangent space to the (three
dimensional) manifold of solutions of fixed period at the underlying wave with no
restrictions on the wave speed. It immediately follows that the origin is a T-periodic
eigenvalue of L0 with algebraic multiplicity three and geometric multiplicity two.

To proceed, we turn to how these triple eigenvalues bifurcate from the state of
� D 0 and � D 0. A Baker-Campbell-Hausdorff expansion reveals that

L� D L0 C i�L1 C 1

2
.i�/2L2 C O.�3/; (4.70)

where

L0 D @xL and L1 WD ŒL0; x� D L � 2@2x ; L2 WD ŒL1; x� D �3@x: (4.71)

Here and throughout, ŒA;B� D AB � BA denotes the commutator. Note that these
operators are well-defined on L2per.Œ0;T�/ even though the function x is not. A useful
observation is that

˝
 j;Lk�`

˛
L2per.Œ0;T�/

D 0 (4.72)

whenever j C k C ` D 0 mod.2/, which can readily be verified by using Lemma 4.1
and noting that L0 and L2 reverse parity while L1 preserves parity. That is, L0 and
L2 send even (or odd) functions to odd (or even, respectively) functions, while L1
sends even (or odd) functions to even (or odd, respectively) functions.

Since L� is a relatively compact perturbation of L0 depending analytically on
the Bloch frequency �, it follows that the operator L� will have three eigenvalues
�j.�/’s, j D 1; 2; 3, defined for j�j � 1, bifurcating from � D 0 for 0 < j�j � 1. To
determine whether the underlying wave is modulationally stable or not, it remains to
track these eigenvalues as functions of � and, in particular, determine whether these
eigenvalues are confined to the imaginary axis for all 0 < j�j � 1 or not.



104 J.C. Bronski et al.

Notice from Lemma 4.1 that we may use the functions �j’s and  j’s, j D 0; 1; 2,
to construct explicit rank 3 eigenprojections

˘0 W L2per.Œ0;T�/ ! gker.L0/ and Q̆
0 W L2per.Œ0;T�/ ! gker.L�0/ (4.73)

onto the total eigenspace of the operators L0 and L�0. Note in passing that gker.L0/ D
ker.L20/ and gker.L�0/ D range.L20/. We can thus represent the action of the operator
L0 on its generalized kernel as the 3 � 3 matrix operator

M0 D Q̆
0L0˘0 D

0

@
0 0 0

0 0 h 1;L0�2i
0 0 0

1

A : (4.74)

Specifically, M0 D .h j;L0�kiL2per.Œ0;T�/
/j;kD1;2;3 and similarly for the projection of

the identity; see below. In Sect. 4.5.4 when we discuss small amplitude waves of
nonlocal equations, we will utilize a slightly different re-scaling of these matrix
operators.

Note that h 1;L0�2i D 1
2
fT;Mga;EfT;M;Pga;E;c ¤ 0 by assumption, reflecting

the Jordan structure of the unmodulated operator L0. Note moreover that the above
projections are nondegenerate in the sense that the action of the identity operator

Q̆
0˘0 D

0

@
h 0; �0i 0 0

0 h 1; �1i 0

0 0 h 2; �2i

1

A (4.75)

is not singular with its determinant �fT;Mg3a;EfT;M;Pga;E;c.
Since � D 0 is an isolated eigenvalue of L0, it follows from the standard theory of

spectral perturbation that the above eigenprojections can be continued for j�j � 1

into analytically varying, rank 3 projections

˘� W L2per.Œ0;T�/ !
3M

jD1
ker.L� � �j.�/I/; (4.76)

Q̆
� W L2per.Œ0;T�/ !

3M

jD1
ker.L�� � �j.�/I/ (4.77)

whose ranges coincide with the total left and right eigenspaces associated with the
eigenvalues �j.�/’s, j D 1; 2; 3, of L� ; see [53], for instance. In particular, we may
find analytically varying bases vj.�/’s and Qvj.�/’s, j D 0; 1; 2, of the total right and
left eigenspaces for the eigenvalues�j.�/’s, j D 1; 2; 3, in such a way that vj.0/ D �j

and Qvj.0/ D  j. Note in particular that we need not require that vj’s and Qvj’s, j D
0; 1; 2, be eigen-bases for the total eigenspace, a degree of flexibility that is helpful
in the course of explicit calculations. Using these �-dependent projections, for each
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j�j � 1 fixed, we can project the infinite dimensional spectral problem (4.56) onto
the three dimensional total eigenspace associated with �j.�/’s, j D 1; 2; 3, and, in
particular, the action of the operators L� on this subspace can be represented by the
3 � 3 matrix operator

M� D Q̆
�L�˘�: (4.78)

Specifically, M� D .h Qvj.�/;L�vk.�/iL2per.Œ0;T�/
/j;kD1;2;3 and similarly with the projec-

tion of the identity. The key observations are that M� is a constant matrix for each
� fixed and, moreover, that eigenvalues of the matrix M� coincide precisely with
eigenvalues �j.�/’s, j D 1; 2; 3, for the modulated operators L� . In particular, for
each j�j � 1 eigenvalues �j.�/’s, j D 1; 2; 3, are roots of the cubic characteristic
equation

det.M� � � Q̆
�˘�/ D 0: (4.79)

Note that since Q̆
0˘0 is invertible, it follows by continuity that Q̆

�˘� is not singular
for all j�j � 1 . Therefore three eigenvalues bifurcating from the triple eigenvalue
at the origin of L0 for j�j � 1 can be studied by analyzing the eigenvalues of the
3 � 3 matrix M� , which is seemingly a much easier task.

The eigenvalues of the matrix M� may now be studied using standard techniques
in matrix perturbation theory. Note that M� depends analytically on � for j�j � 1,
thanks to the analyticity of the associated eigenprojections ˘� and Q̆

� and the
analytic dependence of the operators L� on �. Hence it can be expanded for
j�j � 1 as

M� D M0 C .i�/M.1/ C 1

2
.i�/2M.2/ C O.j�j3/ (4.80)

for some 3 � 3 matrices M.1/ and M.2/ whose coefficients are independent of �. It
is well known that the eigenvalues of M� in general bifurcate merely continuously
in the perturbation parameter �, but not in a C1 manner. Rather, due to the Jordan
block at � D 0, these eigenvalues are generically expected to admit a Puiseaux series
expansion in fractional powers of �. In order to guarantee that the eigenvalues are
at least C1 in � near � D 0, it is sufficient to verify that the .1; 2/ and .3; 2/ entries
on the matrix M.1/ both vanish. A straightforward calculation, in the present setting,
reveals that

.M.1//1;2 D h 0;L1�1iL2per.Œ0;T�/
and .M.1//3;2 D h 2;L1�1iL2per.Œ0;T�/

; (4.81)

both of which vanish by virtue of Eq. (4.72). Consequently, the eigenvalues �j.�/’s,
j D 1; 2; 3, are C1 functions of � and they each admits an expansion of the form

�j.�/ D i�
j.�/ D i�
j.0/C o.�/; j�j � 1 (4.82)
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for some C1 function 
j.�/ determined by the roots of the characteristic equation

det
� 1

i�
M� � 
 Q̆

�˘�

�
D 0: (4.83)

The modulational stability of the underlying wave may therefore be inferred from
determining to leading order the values of 
j.0/ 2 C in Eq. (4.82). Note that if
we further assume that 
j.0/’s are distinct (which generically holds in the present
setting) then the eigenvalues �j.�/’s, j D 1; 2; 3, depend analytically on � for
j�j � 1.

To determine the values 
j.0/ in Eq. (4.82), we appeal to Dunford integral
calculus to find that the bases elements vj.�/’s and Qvj.�/’s, j D 0; 1; 2, have the same
regularity in � as the eigenvalues
j’s, j D 1; 2; 3. Hence they may be expanded near
� D 0 as

vj.�/ D �j C .i�/v.1/j C o.�/; Qvj.�/ D  j C .i�/ Qv.1/j C o.�/ (4.84)

for some functions v.1/j and Qv.1/j independent of �. We wish to use these expansions to

compute asymptotic expansions of the projections˘� and Q̆
� valid near � D 0. Note

however that the non-trivial Jordan structure of M0 indicates an inherent degeneracy
in the limit � ! 0. Indeed, while the kernel of M0 is two dimensional, there are
three eigenvalues of M� defined near the origin for � D 0. Moreover, the three
eigenvectors of M� tend to the same limit as � ! 0. (This is a consequence of the
fact that all three of the eigenfunctions for L� associated with the eigenvalues �j.�/,
j D 1; 2; 3 tend to �1 as � ! 0, a fact seen both analytically and numerically.) An
efficient way of unfolding this degeneracy is to re-scale the matrices .i�/�1M� and
Q̆
�˘� as

OM� WD 1

i�
˙.�/�1M�˙.�/ and OI� WD ˙.�/�1 Q̆

�˘�˙.�/; (4.85)

where

˙.�/ D
0

@
i� 0 0
0 1 0

0 0 i�

1

A : (4.86)

It then follows from a straightforward calculation that for j�j � 1

OM� D

0

B@
h 0;L1�0i m1;2 h 0;L1�2i C h Qv.1/0 ;L0�2i

0 h 1;L1�1 C L0v
.1/
1 i h 1;L0�2i

h 2;L1�0i m3;2 h 2;L1�2i C h Qv.1/2 ;L0�2i

1

CAC o.1/;

(4.87)
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where

mj;2 D h j;L2�1 C L1v
.1/
1 i C h Qv.1/j ;L1�1 C L0v

.1/
1 i; j D 1; 3; (4.88)

and, similarly,

OI� D

0

B@
h 0; �0i h 0; v.1/1 i C h Qv.1/0 ; �1i 0

0 h 1; �1i 0

0 h 2; v.1/1 i C h Qv.1/2 ; �1i h 2; �2i

1

CAC o.1/: (4.89)

Therefore, it follows that 
j.0/ are determined as the roots of the (cubic) effective
dispersion relation

D.
/ WD det. OM0 � 
OI0/ D 0 (4.90)

Theorem 4.1 ([47]) Let u D u.� I a0;E0; c0/ be a T D T.a0;E0; c0/-periodic
traveling wave of Eq. (4.1). Suppose that TE, fT;Mga;E and fT;M;Pga;E;c are not
zero at a0, E0 and c0. Then for j�j � 1 the triple eigenvalue at the origin of L0
bifurcates into three eigenvalues �j.�/, j D 1; 2; 3, that are C1 in � near � D 0 and
satisfy

�j.�/ D i
j� C o.�/; j D 1; 2; 3; (4.91)

where 
j 2 C are eigenvalues of the effective dispersion matrix

D.a;E; c/ WD ..OI0/�1 OM0/.a;E; c/ (4.92)

at .a;E; c/ D .a0;E0; c0/. In particular, a necessary condition for u to be
modulationally stable is that the dispersion matrix be weakly hyperbolic, i.e. its
eigenvalues are all real.

To utilize Theorem 4.1 in practice, one must determine the first-order correctors
Qv.1/0 , Qv.1/2 and v.1/1 in Eq. (4.84). Note however that in the small amplitude limit,
these correctors do not contribute to leading order and hence are not necessary in
computing the roots of D; see Sect. 4.5.4 below. Outside of this asymptotic regime,
of course, these correctors play an important role. First, notice that the functions
vj.�/’s and Qvj.�/’s, j D 0; 1; 2, satisfy the relations

˘�.L�vj.�// D L�vj.�/ and Q̆
�.L

�

� Qvj.�// D L�� Qvj.�/; (4.93)

respectively, for all j�j � 1. Moreover, we expand in � to find that

L0v
.1/
j C .L1 C˘1L0/�j 2 range.˘.0// (4.94)
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and

L�0 Qv.1/j C .L�1 C Q̆
1L
�
0/ j 2 range. Q̆ .0//: (4.95)

In particular, since L0�j D 0 we may choose v.1/1 so that L0v
.1/
1 D �L1�1. An

explicit formula for v.1/1 can then be found by noting that

L1ux D ŒL0; x�ux D L0.xux/; (4.96)

by definition, and that TExux C TuE is T-periodic. Since ker.L�0/ D spanf 0; 2g,

similarly, we may choose Qv.1/0 and Qv.1/2 such that L�0 Qv.1/j D �L�1 j for j D 0; 2. Unlike

v
.1/
1 , explicit forms of Qv.1/j , j D 0; 2, are not needed; their defining relations are

sufficient for calculation purposes. With these choices one can, through tedious but
straightforward calculations, compute the effective dispersion relation explicitly as

D.
/ D C
�

� 
3 C 


2
.fT;PgE;c C 2fM;Pga;E/� 1

2
fT;M;Pga;E;c

�
(4.97)

for some non-zero constant C D C.a;E; c/. The nature of the roots of D follows
from the sign of its discriminant, given as

�MI D 1

2
.fT;PgE;c C 2fM;Pga;E/

3 � 27

4
fT;M;Pg2a;E;c: (4.98)

In particular, the polynomial D has three distinct real roots provided that �MI >

0, while it has one real and two (non-real) complex conjugate roots if �MI < 0.
Moreover it follows that if �MI < 0 then u is modulationally unstable with one
branch of spectrum bifurcating from the origin along the imaginary axis and two
branches bifurcating in complex directions. It follows that a necessary condition for
modulational stability is �MI � 0. Furthermore, when �MI > 0 a simple symmetry
argument implies that the three spectral branches bifurcating from the origin are
confined (locally) to the imaginary axis, corresponding to a triple covering, implying
modulational stability.

Corollary 4.1 ([13]) Under the hypotheses of Theorem 4.1, a necessary condition
for the modulational stability of the underlying wave u is �MI � 0. Furthermore, a
sufficient condition for u to be modulationally stable is that �MI > 0.

4.4.3 Connection to Whitham Modulation Theory

In Sect. 4.3 we employed a formal asymptotics method to determine a dispersion
relation ODW in Eq. (4.48) with the property that the linearized Whitham system
given by Eq. (4.45) has eigenvalues of the form � D ik
 whenever 
 2 C satisfies
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ODW.z/ D 0. In the previous subsection, on the other hand, we demonstrated that
the eigenvalues for the Bloch operators L� expand as � D i
� C o.�/, where

 2 C is one of the three (distinct by assumption) eigenvalues of the effective
dispersion matrix D.a;E; c/ in (4.92). These two approaches are in fact equivalent
for generalized KdV equations.

Theorem 4.2 ([46, 47]) Under the hypotheses of Theorem 4.1, the eigenvalues of
the effective dispersion matrix in Eq. (4.92) agree with the roots of the reduced
Whitham dispersion relation ODW.z/ D 0 in Eq. (4.48). In particular, a necessary
condition for the modulational stability of the underlying periodic wave is that the
linearized Whitham system given by Eq. (4.45) be weakly hyperbolic, or equiva-
lently, that ODW.z/ D 0 has three real roots. Furthermore, a sufficient condition for
modulational stability is for Eq. (4.45) to be strictly hyperbolic, or equivalently, for
ODW.z/ D 0 to have three distinct real roots.

Theorem 4.2 rigorously justifies predictions from Whitham’s formal modulation
theory in the context of generalized KdV equations. It implies that a sufficient
condition for the modulational instability of the underlying wave is the ellipticity of
the associated linearized Whitham system. The proof follows by a long and tedious
calculation demonstrating that there exists a constant C ¤ 0 such that

det.D.a;E; c/� 
I/ D C ODW.
/ (4.99)

for all 
 2 C: see [46, 47] for details. We merely pause to note that, in a sense,
Theorem 4.2 implies that the processes of averaging and linearizing commute:
the linearized Whitham system in Sect. 4.3 is obtained from an averaging process
(the Fredholm alternative) and then linearization, while the rigorous theory in the
previous subsection is obtained from linearizing the governing equation and then
applying the Fredholm alternative (averaging). This observation suggests that the
above program may readily be extended to equations outside of KdV type.

A class of equations for which the above program has been particularly success-
ful is in the dissipative PDEs of the form

ut C f .u/x C g.u/ D .B.u/ux/x ; x 2 R; u 2 R
n: (4.100)

In the case of f D 0, it corresponds to systems of reaction diffusion equations, and
in the case of g D 0, systems of conservation laws. Not only Whitham’s modulation
theory has been rigorously validated in Eq. (4.100) at the level of spectral stability,
but it has also provided key insights into the nonlinear dynamics of modulated
waves, as well as the stability and dynamics to nonlocalized perturbations, con-
sisting of a localized part plus an asymptotic phase shift at the spatial infinities;
see [3, 48–51], for instance. These additional insights come from continuing the
asymptotic expansion in Sect. 4.3 to the next order in ", obtaining a diffusive
correction to the Whitham modulation system. The details of this program are
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beyond the scope of the current manuscript, and the reader is referred to the above
references for details.

4.4.4 Evaluation of �MI

In Sect. 4.4.2, we derived a modulational instability index �MI , the sign of which
determines the modulational stability and instability of a periodic traveling wave of
Eq. (4.1). To compute �MI , in practice, we must compute derivatives of T, M and
P with respect to the traveling wave parameters a, E and c, a task that in general
is formidable. When f is a polynomial nonlinearity, nevertheless, these derivatives
may be computed explicitly in terms of the underlying wave. Indeed, note that if f
is a polynomial then T, M and P may be expressed in terms of the moments

�k WD
ˆ T

0

uk.x/ dx D
˛
	

uk

p
E � V.uI a; c/

du; (4.101)

where E � V.uI a; c/ is a polynomial of one degree higher than f . Indeed, T D �0,
M D �1 and P D �2. Moreover, derivatives of T, M and P may be expressed in terms
of the moments

Ik WD
˛
	

uk

p
E � V.uI a; c/

3
du: (4.102)

For example, TE D I0 and Pc D 1
2
I2. The amazing fact is that if f is a polynomial of

degree n then Ik, k D 0; 1; : : : ; 2n�2, can be expressed as linear combinations of the
n � 1 moments �k’s, k D 0; 1; : : : ; n � 2, a fact known as the Picard-Fuchs relation.
Therefore the modulational instability index �MI can be explicitly computed in
terms of moments of the underlying wave u; see [15] for more details.

To illustrate how this process works, suppose that f is a polynomial of degree
n � 1 and set P.u/ D E � V.uI a; c/. We may then write P.u/ D a0 C a1u C a2u2 C
� � � C anun for some constants aj’s, j D 0; 1; : : : ; n. Defining the moments �k and Ik

by Eqs. (4.101) and (4.102), it follows that

d�k

daj
D d�j

dak
D �1

2
IkCj; j; k D 0; 1; : : : ; n: (4.103)

Observing that

�k D
˛
	

ukP.u/

P.u/3=2
du D

nX

jD0
ajIjCk; k D 0; 1; 2; : : : ; n � 1 (4.104)
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and that5

2k�k�1 D 2k
˛
	

uk�1
p

P.u/
du D

˛
	

ukP0.u/
P.u/3=2

du

D
nX

jD0
jajIjCk�1; k D 0; : : : ; n � 1; (4.105)

we arrive at the linear system of 2n � 1 equations in the unknowns Ik’s, k D
0; 1; : : : ; 2n � 2:

0

BBBBBBBBBBBBB@

a0 a1 � � � an 0 0 � � �
0 a0 a1 � � � an 0 � � �
:::
: : :

: : :
: : :

: : :
: : :

: : :

0 � � � 0 a0 a1 � � � an

a1 2a2 � � � nan 0 0 � � �
0 a1 2a2 � � � nan 0 � � �
:::
: : :

: : :
: : :

: : :
: : :

: : :

0 � � � 0 a1 2a2 � � � nan

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

I0
I1
I2
I3
:::
:::

I2n�3
I2n�2

1

CCCCCCCCCCCCCA

D

0

BBBBBBBBBBBBB@

�0
�1
:::

�n�2
0

2�0
:::

2.n � 1/�n�2

1

CCCCCCCCCCCCCA

; (4.106)

which we refer to as the Picard-Fuchs system. The matrix that arises in Eq. (4.106)
may be recognized as the Sylvester matrix of the polynomials P.u/ and P0.u/.
A standard result in commutative algebra states that the Sylvester matrix of two
polynomials is not singular if and only if they have no common roots. The matrix in
Eq. (4.106) is therefore invertible, provided that the polynomial P has only simple
roots, in which case the moments Ik’s, k D 0; 1; : : : ; 2n � 2, can explicitly be
expressed as a linear combination of �k’s, k D 0; 1; : : : ; n � 2, with coefficients
explicitly determined by the coefficients of P.

For a given polynomial P with simple roots, Eq. (4.106) can be easily solved
with the aid of a computer algebra system. In the following section, we discuss
applications of the above procedure in the case when P.u/ D E � V.uI a; c/ and V
is the effective potential associated with Eq. (4.1) for various nonlinearities f .

4.5 Applications

In the previous section, we derived a modulational instability index �MI , the
sign of which determines the modulational stability and instability of a periodic
traveling wave of Eq. (4.1). Here we discuss a few examples, where one can use

5Here, we take the convention that the left hand side is zero when k D 0.
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the Picard-Fuchs system [see Eq. (4.106)] to explicitly evaluate �MI in terms of the
underlying wave. We note that these examples are not exhaustive but are chosen for
illustrative purposes.

4.5.1 The KdV Equation

Consider the KdV equation

ut D uxxx C .u2/x; (4.107)

for which the effective potential [see Eq. (4.6)] is

V.uI a; c/ D 1

3
u3 C 1

2
cu2 � au: (4.108)

Recall from Sect. 4.2 that a periodic traveling wave u.� I a;E; c/ of Eq. (4.107) exists,
provided that the discriminant

disc.E � V.� I a; c// D 1

12
.16a3 C 3a2c2 � 36Eac � 6Ec3 � 36E2/ (4.109)

is positive so that E � V.uI a; c/ has three real roots in u. Recall moreover that the
only periodic traveling waves along the surface where disc.E � V.� I a; c// D 0 are
constants. It is well known that Eq. (5.2) is completely integrable, although we do
not make use of the fact. Let

�k WD
˛
	

uk dup
2.E � V.uI a; c/

and Ik D
˛
	

uk du
p
2.E � V.uI a; c//

3
; (4.110)

k D 0; 1; 2, and note that .T;M;P/ D .�0; �1; �2/ and

rE;a;c�k D
D

� Ik;�IkC1;�1
2

IkC2
E
: (4.111)

The Picard-Fuchs system given by Eq. (4.106) then becomes

0

BBBBB@

E a c=2 1=3 0

0 E a c=2 1=3
a c �1 0 0

0 a c �1 0

0 0 a c �1

1

CCCCCA

0

BBBBB@

I0
I1
I2
I3
I4

1

CCCCCA
D

0

BBBBB@

T
M
0

2T
4M

1

CCCCCA
(4.112)
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which, after some elementary matrix algebra, implies that

TE D 1

12

.4a C c2/M C .6E C ac/T

disc .E � V.�I a; c//
;

fT;Mga;E D � 1

12

T2V 0.M=TI a; c/

disc .E � V.�I a; c//
;

fT;M;Pga;E;c D 1

12

T3.E � V.M=TI a; c//

disc .E � V.�I a; c//

(4.113)

and

�MI D .˛3;0T3 C ˛2;1T2M C ˛1;2TM2 C ˛0;3M3/2

21137disc.E � V.�I a; c//3
I (4.114)

see [15] for details. Here the coefficients ˛ij are given by

˛3;0 D 36E C 18aEc � 8a3; ˛2;1 D 18Ec2 � 6a2c C 36aE;
˛2;1 D �18cE C 24a2 C 3ac2; ˛0;3 D c3 C 6ac C 12E:

(4.115)

The monotonicity of the period, i.e. TE > 0, holds by a result of Schaaf (see [65],
for instance) and fT;M;Pga;E;c > 0 clearly holds. Moreover, fT;Mga;E is positive
thanks to Jensen’s inequality and the fact that

˛
V 0.uI a; c/p

E � V.uI a; c/
du D 0: (4.116)

The hypotheses of Theorem 4.1 are thus satisfied, and Corollary 4.1 implies that
the sign of �MI in Eq. (4.114) determines the modulational stability of a periodic
traveling wave of Eq. (5.2). Since the numerator of �MI is seen numerically not to
vanish, it follows that �MI > 0. Therefore all periodic traveling waves of the KdV
equation are modulationally stable; see [15] for details.

4.5.2 The Modified KdV Equation

To proceed, consider the focusing and defocusing modified KdV equations

ut D uxxx ˙ .u3/x: (4.117)

Like the KdV equation, Eq. (4.117) is completely integrable and hence its spectrum
can, in principle, be explicitly computed with the aid of algebro-geometric tech-
niques. Of course, our methods are independent of integrability.
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As discussed in Sect. 4.2, the existence of periodic traveling waves of Eq. (4.117)
differs between the focusing and defocusing cases. In each case, however, existence
may be inferred from properties of the associated effective potential

V˙.uI a; c/ D �1

4
u4 C 1

2
cu2 � au: (4.118)

Indeed, in the focusing case, periodic traveling waves exist provided that the quartic
polynomial E � VC.� I a; c/ has at least two real roots and that its discriminant
is not zero. In the defocusing case, periodic traveling waves only exist when the
discriminant of E � V�.� I a; c/ is positive, indicating that the polynomial has four
distinct real roots. See Fig. 4.1 in Sect. 4.2.

The Picard-Fuchs system for Eq. (4.117) reads

0

BBBBBBBBB@

E a c=2 0 �1=4 0 0

0 E a c=2 0 �1=4 0

0 0 E a c=2 0 �1=4
a c 0 �1 0 0 0

0 a c 0 �1 0 0

0 0 a c 0 �1 0

0 0 0 a c 0 �1

1

CCCCCCCCCA

0

BBBBBBBBB@

I0
I1
I2
I3
I4
I5
I6

1

CCCCCCCCCA

D

0

BBBBBBBBB@

T
M
P
0

2T
4M
6P

1

CCCCCCCCCA

; (4.119)

which can be readily solved to provide explicit formulae for TE, fT;Mga;E and
fT;M;Pga;E;c in terms of T, P and the parameters a, E, c. Incidentally one can easily
explain by complex analysis why M does not enter the formulae for the gradients of
T, M, P with respect to a, E, c; see [15] for details. Furthermore, we find

�MI D �mKdV.T;P; a;E; c/2

disc.E � V˙.�I a; c//3
; (4.120)

where �mKdV is a homogeneous polynomial of degree 6 in T and P with coefficients
depending on a, E and c. The sign of this clearly agrees with that of the discriminant
of the quartic polynomial E � V˙.�I a; c/, which in turn is positive if it has four
distinct real roots and negative if it has only two distinct real roots and two distinct
complex conjugate roots. This leads us to the surprisingly simple characterization
of the modulational instability for the modified KdV equation.

Theorem 4.3 ([15]) Periodic traveling waves of the modified KdV equation given
by Eq. (4.117) are modulationally unstable for a given set of parameters a, E, c if
the polynomial

P.uI a;E; c/ D E C au � 1

2
cu2 ˙ 1

4
u4 (4.121)
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has only two distinct real roots and two distinct complex conjugate roots, and it is
modulationally stable if it has four distinct real roots.

The structure of the roots of P.� I a;E; c/, of course, depends greatly on whether
the nonlinearity is focusing or defocusing. In the focusing case, Theorem 4.3 implies
that if the parameter values give rise to only one periodic solution then this solution
is modulationally unstable. Conversely, if the parameters give rise to two periodic
solutions, then both are modulationally stable. While Theorem 4.3 applies to all
periodic traveling wave solutions of the mKdV (focusing or defocusing), it is worth
while to state the result for the explicit solutions described in Sect. 4.2.1.

Corollary 4.2 For the focusing modified KdV equation, all dnoidal wave solutions
constructed in Sect. 4.2.1 are modulationally stable and all cnoidal waves are
modulationally unstable.

In the defocusing case, in contrast, P must have four distinct zeros for periodic
traveling waves to exist. This simple observation leads to the following result.

Corollary 4.3 All periodic traveling waves of the defocusing modified KdV equa-
tion are modulationally stable.

Corollary 4.3 implies the snoidal wave solutions described in Sect. 4.2.1 are
modulationally stable.

4.5.3 The Schamel Equation

Lastly, we consider the Schamel equation [after taking u 7! �u in Eq. (4.107)]

ut C uxxx C 5

2
.juj3=2/x D 0; (4.122)

where u must be taken to be positive. Periodic traveling waves of Eq. (4.122) are
given implicitly as

˛
dur

2
�

E C au C 1
2
cu2 � u5=2

� D x � ct: (4.123)

After the change of variables u D v2, alternatively, the traveling wave solution of
Eq. (4.122) may be found from

v2x
2

D E C av2 C 1

2
cv4 � v5: (4.124)

Therefore the parameter regime physically admissible corresponds to the set of all
.a;E; c/ 2 R

3 for which there exists a bounded interval in .0;1/ such that the
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quintic polynomial E C av2 C c
2
v4 � v5 is non-negative, corresponding to a non-

negative periodic solution.
The Picard-Fuchs system for Eq. (4.122) is the set of nine equations

0

BBBBBBBBBBBBB@

E 0 a 0 c=2 �1=5 0 0 0

0 E 0 a 0 c=2 �1=5 0 0

0 0 E 0 a 0 c=2 �1=5 0

0 0 0 E 0 a 0 c=2 �1=5
0 2a 0 2c �1 0 0 0 0

0 0 2a 0 2c �1 0 0 0

0 0 0 2a 0 2c �1 0 0

0 0 0 0 2a 0 2c �1 0

0 0 0 0 0 2a 0 2c �1

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

I0
I2
I3
I4
I5
I6
I7
I8
I9

1

CCCCCCCCCCCCCA

D

0

BBBBBBBBBBBBB@

�0


1
�2
�3

0

2�0
4�1

6�2
8�3

1

CCCCCCCCCCCCCA

; (4.125)

where

�k WD
˛

2vk dv
r
2
�

E C av2 C 1
2
cv4 � v5

� ; k D 0; 1; 2; 3; (4.126)

and Ik are defined similarly; see [15], for instance. In particular, notice that T D �1,
M D �3 and P D �5. While the expressions are too long to list here, they are easily
handled with the aid of a computer algebra system, in which case one finds that
�MI > 0 in the entire domain of existence. In conclusion, all periodic traveling
waves of Eq. (4.122) are modulationally stable; see [15] for details.

4.5.4 Extensions to Equations with Nonlocal Dispersion

The analysis in the previous sections readily extends to equations allowing for
nonlocal dispersion. We will illustrate this by discussing equations of KdV type

ut D Mux C f .u/x; (4.127)

where M is defined via the Fourier series as

u.x/ D
X

k2Z
Ou.k/eikx ) .Mu/.x/ D

X

k2Z
m.k/Ou.k/eikx; (4.128)

characterizing dispersion in the linear limit. Throughout we assume that the symbol
m is even and real valued.

In the case of m.k/ D �k2, notably, Eq. (4.127) recovers the generalized KdV
equation given by Eq. (4.1). Notice however that Eq. (4.127) is nonlocal unless the
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dispersion symbol m is a polynomial of ik. Examples include the KdV equation with
fractional dispersion

ut D �˛ux C f .u/x; �1 � ˛ � 2; (4.129)

where � D p�@2x is defined via its Fourier multiplier m.k/ D jkj. In the case of
˛ D 2, it recovers the generalized KdV equation, and in the case of ˛ D 1 and
f .u/ D 1

2
u2, it corresponds to the Benjamin-Ono equation, which was proposed

in [4, 61] as a model of the unidirectional propagation of internal waves of small
amplitudes in deep water. Recall that the Fourier multiplier of the Hilbert transform
H is �isgn.k/, and one may write the Benjamin-Ono equation alternatively as

ut D H@2xu C uux: (4.130)

Like the KdV and modified KdV equations, the Benjamin-Ono equation is com-
pletely integrable, although our methods do not rely on this. In the case of ˛ D �1=2
and f .u/ D 1

2
u2, moreover, Eq. (4.127) was argued in [40] to have relevances to

water waves in two dimensions and in the infinite depths. Incidentally fractional
powers of the Laplacian occur in many applications, such as dislocation dynamics
in crystals (see [18], for instance) and financial mathematics (see [22], for instance).
Notice that the dispersion symbol of Eq. (4.129) is homogeneous in the sense that
m.�k/ D �˛m.k/ for all k 2 R and � > 0, which makes the analysis for waves of
all amplitudes tractable by the methods described in the previous sections.

But many applications require non-homogeneous dispersion symbols. Examples
include the intermediate long-wave (ILW) equation

ut C ux C .1=H/ux � NHux C �
u2
�

x
D 0; (4.131)

which describes the interface between density stratified fluids, both with finite depth;
see [52], for instance. Here H > 0 is a parameter and NH is defined via its symbol
m.kI H/ D k coth.kH/. The ILW equation is of the form given by Eq. (4.127), where
M D NH � 1 � 1=H.

Another example with a non-homogeneous dispersion symbol corresponds to

m.k/ D
q

tanh.k/
k and f .u/ D 1

2
u2, which was put forward in [74, p. 477] to model

the unidirectional propagation of surface water waves with small amplitudes, but
not necessarily long wavelengths, in a channel. Note that m.k/ is the phase speed of
plane waves with the wave number k near the quintessential state of water. In fact,
the Whitham equation combines the dispersion relation of surface water waves and
the nonlinearity of shallow water equations. In the long wavelength regime, where
jkj � 1,

r
tanh.k/

k
D 1 � 1

6
k2 C O.jkj4/: (4.132)
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Therefore we may regard the KdV equation given by Eq. (4.107) (after normal-
ization of the parameters) as to approximate up to “second” order the dispersion
relation of the Whitham equation, and hence the water wave problem, in the long
wavelength regime. Unlike the KdV equation, which well explains long wave
phenomena such as solitary waves but loses relevances to short and intermediately
long waves in water, the Whitham equation may capture short wave phenomena. As
a matter of fact, Whitham advocated that it could be used to explain breaking and
peaking, both of which are unobserved in the KdV approximation. In light of the
famous Benjamin-Feir instability of Stokes waves [7], in particular, it is natural to
expect that small-amplitude periodic traveling waves of the Whitham equation be
modulationally unstable if their wavelength is sufficiently short.

A traveling wave solution of Eq. (4.127) takes the form u.x; t/ D u.x�ct/, where
c 2 R and u satisfies by quadrature that

� Mu C cu C f .u/ D a (4.133)

for some constant a 2 R. Unlike the generalized KdV equation given by Eq. (4.1),
the existence of periodic solutions of Eq. (4.133) is not trivial. For a broad range
of dispersion symbols and nonlinearities, nevertheless, a plethora of periodic
traveling waves of Eq. (4.127) may be attained from variational arguments, e.g. the
mountain pass theorem applied to a suitable functional whose critical points satisfy
Eq. (4.133). In examples considered below, a smooth four-parameter (including
translations) family of periodic traveling waves will exist, in agreement with
existence theories for (local) equations of KdV type in the previous sections.

Once existence and an appropriate parametrization of a periodic solution u,
say, of Eq. (4.133) are established, its modulational stability may be studied by
considering the L2.R/-spectrum of the linearized operator

L WD @x.�M C c � f 0.u// (4.134)

near the origin. Since u is T-periodic, as in the case of (local) generalized KdV
equations, the L2.R/-spectrum of L is readily described by Floquet-Bloch theory:

specL2.R/.L/ D
[

�2Œ��=T;�=T/

specL2per.Œ0;T�/
.L�/; (4.135)

where the Bloch operators L� WD e�i�xLei�x act as usual on L2per.Œ0;T�/. The
modulational stability theory developed in Sect. 4.4 can thus be applied directly
to this case, provided that the Jordan structure of the generalized kernel of L is
analogous to that described in Lemma 4.1.
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The Benjamin-Ono Equation

Consider the Benjamin-Ono equation [after the change of variables u 7! �u in
Eq. (4.130)]

ut ��ux C .u2/x D 0: (4.136)

Benjamin in [4] exploited the Poisson summation formula and found that for each
k > 0 there exists a two-parameter (up to translations) family of 2�=k-periodic
traveling waves of (4.136) of the form

u.xI a; k; c/ D
k2p

c2 � 4a � k2s
c2 � 4a

c2 � 4a � k2
� cos.kx/

� 1

2
.
p

c2 � 4a C c/; (4.137)

where a and c are arbitrary constants constrained by the conditions

c < 0 and k2 < c2 � 4a: (4.138)

Therefore Eq. (4.136) admits a three-parameter family (up to translations) of
periodic traveling waves and they can be parameterized by the period and the
parameters a and c. Here the period, or equivalently k, is a parameter that is
independent of a and c so that, in particular, derivatives of the solution with respect
to a and c are automatically T-periodic in x. Since (4.136) obeys Galilean invariance
under

u.xI a � c�C s2; k; c � 2s/ D u.xI a; k; c/C � (4.139)

for all � 2 R, upon an appropriate choice of �, one may assume that a D 0.
To determine the modulational instability of a solution in Eq. (4.137), we turn

our attention to the L2per.Œ0;T�/-spectrum near the origin of the Bloch operators

L� WD e�i�x@x .�C c � 2u/ ei�x (4.140)

for j�j � 1. Although the symbol of � is not smooth near the origin, the symbol of
@x� is C1 at the origin and we can expand the Bloch operators as

L� D L0 C .i�/L1 C 1

2
.i�/2L2 C o.j�j2/; (4.141)

where

L0 WD @x.� � 2u � c/ (4.142)
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and

L1 D ŒL0; x� D 2�� 2u � c; L2 D ŒL1; x� D ��1@x: (4.143)

Following Sect. 4.4, the first step in the modulational stability analysis is to
understand the Jordan structure of the kernel of the unmodulated operator L0. Note
that Eq. (4.136) possesses two conserved quantities, the mass and the momentum,
denoted M and P, respectively, which are defined similarly to those in Sect. 4.2.

Lemma 4.2 ([12]) Suppose that u D u.� I a0; k0; c0/ is a 2�=k-periodic traveling

wave of Eq. (4.136) and that fM;Pga;c WD det
�
@.M;P/
@.a;c/

�
is not zero at .a0; k0; c0/.

Then the generalized L2per.Œ0;T�/-kernel of the linear operator L0 defined in
Eq. (4.142) possesses the following Jordan block structure:

(i) dim.ker.L0// D 2

(ii) dim.ker.L20/=.ker.L0// D 1

(iii) dim.ker.LnC1
0 /=.ker.Ln

0// D 0 for all integers n � 2.

In particular,

v0 WD ua; w0 WD Mcu � Pc

v1 WD ux; w1 WD ´ x
0
.Mauc � Mcua/ dx

v2 WD uc; w2 WD Pa � Mau
(4.144)

form a basis and dual basis for the generalized kernel of L0, respectively:

L0v0 DLv1 D 0; L0v2 D v2;

L�0w0 DL�w2 D 0; L�0w1 D w2:
(4.145)

Moreover, hwj; vki D �fM;Pga;cıjk and hwj;Lkv`i D 0 whenever j C k C ` is even.

The proof follows the same lines as in the proof of Lemma 4.1; see [12]. The
key step to extend the proof to the nonlocal case is to verify that the kernel of L0 is
only two dimensional. This would follow essentially immediately provided that one
could verify that the linearized operator associated with the traveling wave equation
L D �� 2u � c is non-degenerate, i.e.

ker.L/ D spanfuxg: (4.146)

While this is obvious in the (local) generalized KdV equations, by virtue of Sturm-
Liouville theory, it is far from being obvious in general in nonlocal equations. But,
Amick and Toland [1] demonstrated the property by relating via complex analysis
techniques the nonlocal profile equation to a fully nonlinear ODE. Equipped
with this non-degeneracy result, the proof of Lemma 4.2 follows from the same
arguments as Lemma 4.1.
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To verify the hypothesis of Lemma 4.2, owing to the explicit solution formulae
given by Eq. (4.137), a straightforward calculation (see [12] for details) reveals that

M.a; k; c/ WD
ˆ 2�=k

0

u.xI a; k; c/ dx D 2� � �

k
.
p

c2 � 4a C c/ (4.147)

and

P.a; k; c/ WD1

2

ˆ 2�=k

0

u2.xI a; k; c/ dx D �c� C �

4k
.
p

c2 � 4a C c/2 (4.148)

so that, in particular,

fM;Pga;c D 2�2

k
p

c2 � 4a
> 0 (4.149)

for all .a; k; c/ satisfying Eq. (4.138). Lemma 4.2 thus provides an explicit basis
for the generalized kernels of the unmodulated operator L0 and its adjoint, about a
periodic traveling wave of Eq. (4.136).

With Lemma 4.2 in hand, the methodology of Sect. 4.4.2 may be applied without
modification. In particular, the triple eigenvalue at the origin of L0 bifurcates into
three eigenvalues �j.�/’s, j D 1; 2; 3, that are C1 in � near � D 0 and satisfy

�j.�/ D i
j� C o.�/; j D 1; 2; 3; (4.150)

where 
j 2 C are the eigenvalues of, taking into account the parametrization
of solutions in Eq. (4.137), the effective dispersion matrix D.a; k; c/ in Eq. (4.92).
Using Eq. (4.137) this matrix can be calculated explicitly in terms of the traveling
wave parameters a, k, c, provided that an explicit formula for the corrector v.1/1
in Eq. (4.84) can be found: due to the parametrization of solutions of Eq. (4.136) by
their period, the formula from our generalized KdV analysis must be modified. Since
Eq. (4.96) still holds in the present case, v.1/1 may be identified as an appropriate
multiple of the 2�=k periodic function xux C TuT , where T D 2�=k; see [12,
Lemma 9]. With this choice, the matrix D.a; k; c/ can be shown, up to a similarity
transformation,6 to be given (for a D 0) by

D.a D 0; k; c/ D
0

@
��T .�T/2 � .�=c/2 0

1 �T 0

2�2 0 �T

1

A ; (4.151)

6Indeed, this formula for D was derived in [12] using a direct spectral perturbation expansion, a
method equivalent to that described in Sect. 4.4.2.
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where T D 2�=k. A quick calculation shows that the eigenvalues of D.0; k; c/ are
�T and ˙�T

p
2 � .cT/�2. Since periodic traveling waves of (4.136) exist only

when c2 > k D 1=T, it follows that the eigenvalues of D.0; k; c/ are real and distinct.
By the Galilean invariance given by Eq. (4.139) and Theorem 4.1, this yields the
following result.

Theorem 4.4 ([12]) All periodic traveling waves of the Benjamin-Ono equa-
tion (4.136) are modulationally stable.

In fact, the above calculations on the Benjamin-Ono equation (4.136) is merely
a special case of the recent analysis of Bronski and Hur [12], where they considered
the modulational instability of arbitrary amplitude periodic traveling waves to the
fractional KdV equation (4.129) for 1=3 < ˛ < 2. For such ˛, one can show
through calculus of variations that for each T > 0 there exists a two-parameter (up
to translations) family of periodic traveling waves parameterized by the constant
of integration a and the wave speed c and that, furthermore, these waves depend
on a, T and c in a C1 manner. A key difficulty in this more general setting is to
verify the non-degeneracy property given by Eq. (4.146). Although the methods of
Amick and Toland [1], described above, do not apply outside the Benjamin-Ono
equation, i.e. ˛ D 1, it is possible to verify through a periodic adaptation of the
recent, nonlocal Sturm-Liouville theory of Frank and Lenzmann [31] for fractional
Schrödinger operators to verify that the kernel of L0 is indeed two dimensional for
all 1=3 < ˛ � 2; see [12, 42] for details. Equipped with this non-degeneracy result,
the effective dispersion matrix can be numerically computed for all such ˛; see [12]
for details.

The Whitham Equation for Water Waves

In the absence of explicit solution formulae, it is in general difficult to calculate
the effective dispersion matrix given by Eq. (4.92) and one must typically rely on
well-conditioned numerical techniques. One may however avoid this difficulty in
the small amplitude limit. As we will see below, as a matter of fact, small amplitude
wave trains can be expanded (in amplitude) explicitly to arbitrarily high orders, for
a wide class of nonlocal equations of the form given by Eq. (4.127). Equipped with
such an explicit expansion of solutions, one can compute an asymptotic expansion of
the amplitude dependent effective dispersion matrix given by Eq. (4.92) and hence
ascertain the modulational stability of small amplitude waves.

To illustrate this procedure, we consider the Whitham equation for surface water
waves

ut C Mux C .u2/x D 0; (4.152)

where the symbol of the operator M is given by m.k/ D
q

tanh.k/
k . As described

above, Eq. (4.152) combines the dispersion relation of surface water waves with the
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nonlinearity of shallow water equations. Details of the forthcoming analysis can be
found in [41].

Periodic traveling waves of Eq. (4.152) take the form u.x; t/ D u.x � ct/, where
c > 0 and u satisfies

Mu � cu C u2 D .1 � c/2b (4.153)

for some constant b 2 R; the normalizing factor of .1�c/2 is added for convenience.
To describe small amplitude periodic wave trains of Eq. (4.152), we seek solutions
of Eq. (4.153) of the form u.x/ D w.z/, z D kx, where w is required to be 2�-
periodic and k > 0 is interpreted as a wave number. The 2�-periodic function w is
then required to satisfy

Mkw � cw C w2 D .1 � c/2b; (4.154)

where Mk is defined via

Mkeinz D m.kn/einz; n 2 Z: (4.155)

Observe that the symbol here is not homogeneous and hence the wave number may
not be factored out of the symbol.

Since Mk W Hs
2� ! HsC1=2

2� is bounded for all k > 0 and s � 0, a standard
argument verifies that solutions of Eq. (4.154) with kwkL1 < c=2 belong to the
Sobolev space H12� and hence are smooth. As a result, smooth 2�-periodic solutions
of Eq. (4.154) with small amplitudes may be sought as zeros of

F.w; k; c; b/ D Mkw � cw C w2 � .1� c/2b: (4.156)

Note that F W H1
2� � RC � RC � R ! H1

2� by a Sobolev inequality. Clearly
F.0I k; c; 0/ D 0 for every k; c 2 RC and, furthermore,

@wF.0; k; c; 0/ D Mk � c (4.157)

has a trivial kernel in H1
2� , provided that c ¤ m.kn/ for any n 2 Z. By the implicit

function theorem, near any such trivial solution for which @wF has a trivial kernel,
there exist only other trivial solutions. Thus, to construct nontrivial solutions of
Eq. (4.154) we start at a zero solution for which the kernel of @wF is nontrivial.

To this end, notice that if c D m.k/ then

ker .@wF.0; k; c; 0// D spanfe˙izg: (4.158)

Using a straightforward Lyapunov-Schmidt reduction, it follows that for each k > 0
there exists a two-parameter (up to translations) family of nontrivial zeros of F,
corresponding to smooth (even) 2�-periodic solutions of Eq. (4.154). Furthermore,
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their small amplitude asymptotics may be found by seeking solutions of Eq. (4.154)
of the form

w.k;A; b/.z/ D w0.k; b/C A cos.z/C A2w2.z; b/

C A3w3.z; b/C O.jAj4/; (4.159)

c.k;A; b/ D m.k/C A2c2.k; b/C O.jAj4/; (4.160)

where A is a real parameter (a sort of generalized amplitude), wj’s are taken to be
even, and w0.k; b/ is defined for jbj � 1 via F.w0.k; b/; k;m.k/; b/ D 0. Plugging
the above expansions into Eq. (4.154), we find that

w.k;A; b/.z/ D w0.k; b/C A cos.z/

C 1

2
A2
� 1

m.k/� 1/
C cos.2z/

m.k/� m.2k/

�
C O.A.A2 C b2//;

c.k;A; b/ D c0.k; b/

C A2
� 1

m.k/ � 1
C 1

2.m.k/� m.2k//

�
C O.A.A2 C b2//

(4.161)

as jAj; jbj ! 0, where

c0.k; b/ D m.k/C 2b.1� m.k// � 6b2.1 � m.k//C O.b3/;

w0.k; b/ D b.1 � m.k// � b2.1 � m.k//C O.b3/:
(4.162)

Although higher order expressions are obtainable, they are not necessary in our
analysis. Together with translation invariance, this yields a four-parameter family
of small amplitude periodic traveling waves of the Whitham equation given by
Eq. (4.152): see [25, 26, 41] for more details. Throughout the remainder, we take
b D 0 for simplicity.

We now turn to study the spectrum in L22� WD L2per.Œ0; 2��/ near the origin of the
Bloch operators

L� .k;A/ D e�i�zL.k;A/ei�z; (4.163)

where

L.k;A/ WD @z.�Mk C c.k;A; 0/� 2w.k;A; 0// (4.164)

for j.�;A/j � 1. Unlike the case of the Benjamin-Ono equation, the symbol m is
smooth near the origin and hence we may easily expand the Bloch operators as

L� .k;A/ D L0.k;A/C .i�/L1.k;A/C 1

2
.i�/2L2.k;A/C O.j�j3/; (4.165)
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where

L0.k;A/ D @z.�Mk C m.k//� 2a@z.cos.z/�/C O.A2 C b2/;

L1.k;A/ D Œ�@zMk; z�C m.k/ � 2a cos.z/C O.A2 C b2/; (4.166)

L2.k;A/ D ŒŒ�@zMk; z�; z�C O.A2 C b2/

for jAj � 1. As in our previous analysis, the key step in the modulational stability
analysis is to understand the Jordan structure of the kernel of the unmodulated
operator L0.k;A/. To study the spectrum of L� near the origin, we note that

kL�.k;A/ � L� .k; 0/kL22�!L22�
D O.A/ (4.167)

as A ! 0 uniformly in � 2 Œ�1=2; 1=2/, which may be verified by brutal force,
implying that the spectrum of L�.k;A/ is close to that of L�.k; 0/ with constant
coefficients uniformly in the Bloch frequency �. In other words, we may consider
the spectrum of L� .k;A/ as a small perturbation of that of L� .k; 0/. In particular, the
spectral projections ˘� and Q̆

� in Sect. 4.4 are amplitude dependent, described to
leading order by the projections associated to the trivial solution A D 0.

We first concentrate on the right eigenprojection. Since L�.k; 0/ is of constant
coefficients, its spectrum for each k > 0 and � 2 Œ�1=2; 1=2/ can be computed via
Fourier analysis as

spec.L� .k; 0// D fi!n;� .k/ W n 2 Zg 	 iR; (4.168)

where !n;� .k/ WD .n C �/ .m.k/� m.kn C k�// with associated eigenfunctions einz.
In particular,!�1;0 D !0;0 D !1;0 D 0 and hence zero is an eigenvalue of L0.k; 0/ of
algebraic multiplicity three with (real) associated eigenfunctions cos.z/, sin.z/ and
1. Moreover the eigenspaces associated with the three non-zero eigenvalues !˙1;�
and !0;� are independent of �, and the associated right spectral projection ˘�.k; 0/
is independent of �. Furthermore we note that the adjoint operators L�.k; 0/ with
constant coefficients share the same eigenvalues and eigenfunctions, and hence the
left spectral projection Q̆

�.k; 0/ is independent of � as well. In particular, we find7

that

M0.k; 0/ WD .˘�L�˘�/.k; 0/

D
0

@
i
2
.!1;� C !�1;� / 1

2
.!1;� � !�1;� / 0

� 1
2
.!1;� � !�1;� / i

2
.!1;� C !�1;� / 0

0 0 i!0;�

1

A : (4.169)

7Following [41], the projections here are slightly re-scaled from those of Sect. 4.4. Here we use

M� WD
h
h i; L��ji=h i; �jiL2per.Œ0;T�/

i

i;jD1;2;3
and similarly for the projection of the identity.
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For jAj � 1, it follows that the spectral projections can be expanded as

˘�.k;A/ D ˘0.k;A/C O.A2 C �2/; (4.170)

Q̆
�.k;A/ D Q̆

0.k;A/C O.A2 C �2/ (4.171)

so that, to first order, the spectral projections for the left and right eigenspaces of
L�.k;A/ agree with those of the unmodulated operator L0.k;A/. In particular, the
variations in these projections in � do not affect the leading order asymptotics and,
furthermore, the bases used to construct these projections agree to first order. As
such, to construct the projections ˘�.k;A/ and Q̆

� .k;A/ to leading order, we only
need to find a basis for the generalized kernel of L0.k;A/. The origin is an eigenvalue
of L0.k;A; b/ of algebraic multiplicity three and geometric multiplicity two for all
jAj; jbj � 1 and, furthermore,

�1.z/ WD 1

2.1� m.k//
Œ.@bc/@aw � .@ac/@bw� .k;A; b/.z/

D cos.z/C �1=2C cos.2z/

m.k/ � m.2k/
A � 6 cos.z/b C O.A2 C b2/; (4.172)

�2.z/ WD �1
a
@zw.k;A; b/.z/

D sin.z/C sin.2z/

m.k/ � m.2k/
A C O.A2 C b2/; (4.173)

�3.z/ WD 1 (4.174)

form a basis of the generalized eigenspace for L0.k;A; b/ for all jAj; jbj � 1. Indeed,

L0�1 D L0�2 D 0; and L0�3 D �2a�2: (4.175)

Using this basis, therefore, we compute that

M�.k;A/ WD . Q̆
�L�˘�/.k;A/

D
0

@
0 0 0

0 0 2

0 0 0

1

AC i�

0

@
�km0.k/ 0 0

0 �km0.k/ 0

0 0 m.k/ � 1

1

A

� i�A
�
1C m.k/� 1

2.m.k/� m.2k//

�
0

@
0 0 2

0 0 0

1 0 0

1

A

C �2
�

km0.k/C 1

2
k2m00.k/

�
0

@
0 �1 0
1 0 0

0 0 0

1

AC O.j�j3 C jAj3/ (4.176)
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and, similarly, that

. Q̆
�˘�/.k;A/ D I � A

m.k/� m.2k/

0

@
0 0 1

0 0 0

1=2 0 0

1

AC O.A2/: (4.177)

We then turn to study the roots of the characteristic polynomial

P.�; �I k;A/ D det.M�.k;A/� �. Q̆
�˘�/.k;A//

D c3.�I k;A/�3 C ic2.�I k;A/�2

C c1.�I k;A/�C ic0.�I k;A/ (4.178)

for each fixed k > 0 and j.�; �;A/j � 1. The roots of P.�; �I k;A/ correspond
to the eigenvalues of the Bloch operators L�.k;A/ bifurcating from the origin for
j.�;A/j � 1. We first note that the coefficient functions cj’s depend smoothly on �
and A for j.�;A/j � 1 and, moreover, the cj’s are real-valued since the spectrum of
L�.k;A/ is symmetric about the imaginary axis. Furthermore, the spectral symmetry

specL22�
.L� .k;A// D specL22�

.L��.k;A// (4.179)

implies that the functions c3 and c1 are even functions of � while c2 and c0 are odd,
and that the cj’s are all even in A. Since � D 0 is clearly a root of P.�; 0I k;A/ with
multiplicity three and � D 0 is a root of P.0; �I k;A/ with multiplicity three for all
jAj � 1, it follows that

cj.�I k;A/ D dj.�I k;A/�3�j; j D 0; 1; 2; 3; (4.180)

for some real functions dj’s that depend smoothly on A and � and are even in A.
Therefore, the roots of P.� ; �/ may be written as � D �i�X, where X is a root of

.i�/�3P.�i�X; �I k;A/ D det
� 1

i�
M�.k;A/C X. Q̆

�˘�/.k;A/
�

D � d3.�I k;A/X3 C d2.�I k;A/X2

C d1.�I k;A/X � d0.�I k;A/I (4.181)

compare to Eq. (4.83). It follows that the underlying periodic traveling wave is
modulationally unstable if the characteristic polynomial P.�i��; �I k;A/ admits a
pair of complex roots, i.e. if its discriminant

��;k;A WD .18d3d2d1d0 C d22d
2
1 C 4d32d0 C 4d3d

3
1 � 27d23d

2
0/.�; k;A/ < 0 (4.182)
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for j.�;A/j � 1, and it is modulationally stable if the polynomial admits three real
roots, i.e. if ��;k;A > 0.

Since the dj’s are even in A, we may expand

��;k;A D ��;k;0 C�.k/A2 C O.A2.A2 C �2// (4.183)

for j.�;A/j � 1, expressing that, to leading order, the modulational stability is
governed by that of the limiting constant state at A D 0. Using the above explicit
formulae, we find that �0;k;0 D 0 and

��;k;0 D .!0;� � !1;� /2.!0;� � !�1;� /2.!1;� � !�1;� /2

�6
> 0 (4.184)

for all j�j � 1. Therefore, the sign of the discriminant ��;k;A for j.�;A/j � 1

is determined by the sign of the function �.k/. Indeed, from above we see that if
�.k/ > 0 then ��;k;A > 0 for all j.�;A/j � 1, implying modulational stability,
while if �.k/ < 0 then ��;k;A < 0 for jAj � 1 fixed and j�j sufficiently small.
The modulational stability of the underlying small amplitude waves is therefore
determined completely by the wavenumber k.

With the aid of computer algebra software, we find that

�.k/ D .k.m.k/� 1//0.k.m.k/ � 1//00
m.k/ � m.2k/

� .k/; (4.185)

where

� .k/ WD 2.m.k/� m.2k//C .k.m.k/ � 1//0: (4.186)

Recalling that m.k/ WD
q

tanh.k/
k , we see that the function k 7! k.m.k/�1/ is strictly

decreasing and concave down on the interval .0;1/, so that the sign of �.k/ is
determined by the sign of � .k/. Furthermore, a numerical evaluation of � shows
that there exists a unique k� 
 1:146 such that � .k/ > 0 for k 2 .0; k�/ and
� .k/ < 0 for k > k�; see Fig. 4.3.

Theorem 4.5 ([41]) A 2�=k-periodic traveling wave of Eq. (4.152) of sufficiently
small amplitude is modulationally unstable if k > k� 
 1:146 and modulationally
stable if 0 < k < k�.

Theorem 4.5 qualitatively captures the famous Benjamin-Feir instability in [7,
73]: see [41, 68] for more discussion.

Fractional KdV and ILW Equations

The above small amplitude analysis is largely independent of the specific dispersion
symbol. Indeed, the only features of the symbol m that was used in the derivation
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Fig. 4.3 Plot of � .k/ for Whitham equation

of the modulational instability index were: (i) m.0/ D 1 and (ii) m.k/ ¤ m.nk/
for each k > 0 for all n D 2; 3; 4; : : : . While (ii) provides a restriction on k, (i)
can be relaxed via a simple scaling argument. The index formula must be modified
accordingly, however.

Examples for which the analysis can be applied without modifications include
the fractional KdV equation, Eq. (4.129) with f .u/ D u2, and the intermediate long-
wave equation given by Eq. (4.131). For the fractional KdV equation, we find that
for each8 ˛ > 1=2

�fKdV.kI˛/ D 2k4˛˛.1C ˛/4.2˛C1 � 3 � ˛/

2˛ � 1
; (4.187)

which is negative (or positive) for all k > 0, provided that ˛ < 1 (or ˛ > 1,
respectively), indicating modulational instability (or stability, respectively) of the
small amplitude periodic wave trains. Recall that ˛ D 1 corresponds to the
Benjamin-Ono equation, which was discussed before. The result for more general
power-law nonlinearities may be found in [45].

Similarly, for the ILW equation given by Eq. (4.131), we find for each H>0 that

�ILW.kI H/

D .4H2k2 � 1/ cosh.Hk/C cosh.3Hk/� 8Hk sinh.Hk//2

32H4 sinh.Hk/12
�ILW.Hk/;

(4.188)

where �ILW.z/ D 1�2z2� cosh.2z/C2z sinh.2z/; see [41]. A numerical evaluation
indicates that �ILW.z/ > 0 for all z > 0, and hence for each H > 0, small-amplitude
periodic traveling waves of Eq. (4.131) are modulationally stable. This rigorously
justifies a formal “amplitude equation” calculation in [63].

8The condition ˛ > 1=2 is an artifact of the corresponding existence theory. See [45] for details.
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4.6 Concluding Remarks

We have made a detailed survey of some recent techniques analytically studying the
modulational instability of periodic traveling waves for KdV type equations. They
are very general and apply to many other equations, including systems involving
dissipation. They are independent of the integrability of the governing equations.
The theoretical approach in Sect. 4.4 may be used to rigorously validate formal
predictions from Whitham’s modulation theory in a variety of settings; see [9, 60],
for instance, for more examples, other than those listed in Sect. 4.4.3. We applied our
theory to a number of concrete examples in Sect. 4.5. To illustrate the robustness of
our theory, we discussed extensions to nonlocal equations of KdV type and obtained
detailed results for a number of examples.

We have been concerned with the linear (spectral) stability to slow modulations
of periodic traveling waves of KdV type equations. A fundamental open problem is
to understand the nonlinear dynamics associated with modulationally stable waves
and, even more interestingly, induced by a modulational instability. They have been
studied in the context of dissipative systems (see [50], for instance, and references
therein), but it is not clear how such techniques apply to dispersive equations such
as the generalized KdV equations. This is an exciting direction for future work.
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Chapter 5
Modulational Instability and Rogue Waves
in Shallow Water Models

R. Grimshaw, K.W. Chow, and H.N. Chan

Abstract It is now well known that the focussing nonlinear Schrödinger equation
allows plane waves to be modulationally unstable, and at the same time supports
breather solutions which are often invoked as models for rogue waves. This suggests
a direct connection between modulation instability and the existence of rogue waves.
In this chapter we review this connection for a suite of long wave models, such as the
Korteweg-de Vries equation, the extended Korteweg-de Vries (Gardner) equation,
often used to describe surface and internal waves in shallow water, a Boussinesq
equation and, also a coupled set of Korteweg-de Vries equations.

5.1 Introduction

The term rogue wave is commonly identified with an unexpectedly large water wave
in the ocean, which is both temporally and spatially localized, see the monographs
by Kharif et al. [33] and Osborne [38], the review by Dysthe et al. [22] and the
article by Onorato et al. [37] for the occurrence of rogue waves in other physical
disciplines. While several physical mechanisms have been invoked, a currently
popular concept is the nonlinear focusing of energy associated with modulation
instability, based on appropriate solutions of the focussing nonlinear Schrödinger
equation (NLS), see [24] for instance amongst many other articles. In dimensional
coordinates, the NLS equation is given by

i.At C cgAx/C ıAxx C 
jAj2A D 0 ; (5.1)
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where A.x; t/ is the envelope amplitude of a sinusoidal wave with wavenumber k,
frequency ! D !.k/ and group velocity cg D !k. The coefficient ı D !kk=2 but the
coefficient 
 is system-dependent. The plane wave solution A D A0 exp .i
jA0j2t/
is modulationally unstable when ı
 > 0, that is when Eq. (5.1) is focussing.
Because the NLS equation arises in many other physical systems, notably nonlinear
optics and Bose-Einstein condensates, it has been realized that rogue waves can
also occur there, see [3] and the articles which follow. In particular, the various
breather solutions of the focussing NLS equation have been invoked as models
for rogue waves, with a special interest in the Peregrine breather [41], since this
is spatially and temporally localized, see [8, 45] for instance. Indeed recently
[24] demonstrated in the framework of the focussing NLS equation that a generic
outcome of modulation instability was the generation of a family of Peregrine
breathers.

While the focussing NLS equation is usually associated with short waves in deep
water, rogue waves can also potentially arise in shallow water, see [27] for a possible
tsunami context, or [26] for internal waves. Long waves are often modelled by the
Korteweg-de Vries (KdV) equation or the extended KdV (eKdV) equation which
contains both quadratic and cubic nonlinear terms, see [23] for instance. Here it is
especially interesting that the asymptotic reduction of the KdV, or eKdV, equation
to an NLS equation leads to the defocussing case for the KdV equation, or the
eKdV when the cubic nonlinear term and the linear dispersive term have opposite
signs, and hence modulational stability. But for the eKdV equation when the cubic
nonlinear term and the linear dispersive term have the same sign, the asymptotic
reduction leads to the focussing NLS equation and hence modulational instability,
see [25].

In this Chapter we explore the connection between modulational instability and
the possible existence of breathers in the context of this suite of KdV equations
(Sect. 5.2), in a Boussinesq equation (Sect. 5.3) and in the Hirota-Satsuma version
of a coupled KdV system (Sect. 5.4). As all these equations are integrable, the
strategy we employ to find breathers is to first find a 2-soliton solution and
then impose a complex-conjugate wavenumber on this solution. If the resulting
outcome is a non-singular solution, then we have found a breather, but if it is
singular then we infer that a useful breather solution does not exist. This is
not a complete existence proof per se, and so does not rule out the possibility
that there may be non-singular breather solutions which can be found by
other methods, such as using the inverse scattering transform with a complex-
conjugate pair of eigenvalues. Nevertheless it will be seen to be a simple and
robust method to establish a connection between modulation instability and
breathers.
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5.2 Korteweg-de Vries Equations

In canonical form the extended KdV equation is

ut C 6uux C 6ˇu2ux C uxxx D 0 : (5.2)

This is a KdV equation when ˇ D 0, and an extended KdV equation when ˇ D ˙1,
and is integrable in all cases.

5.2.1 Modulational Instability

In order to determine the criterion for modulation instability, we first exhibit the
asymptotic reduction to an NLS equation, as obtained by Grimshaw [25]. Thus, we
get that

u D �A.X;T/ exp .i�/C c.c. C � � � ; (5.3)

� D kx � !t ; X D �.x � cgt/ ; T D �2t : (5.4)

Here ! D !.k/ D �k3 so that the group velocity cg D !k D �3k2, and then the
NLS equation (5.1) is given by

iAT C ıAXX C 
jAj2A D 0 ; (5.5)

ı D !kk

2
D �3k ; 
 D 6k.

1

k2
� ˇ/ : (5.6)

Thus the NLS is focussing .
ı > 0/ when k2ˇ > 1 and defocussing (
ı < 0)
otherwise. Thus it is defocussing and modulationally stable for ˇ D 0;�1, but
focussing and so modulationally unstable for ˇ D 1 and also k2 > 1.

5.2.2 Breathers

5.2.2.1 Korteweg-deVries Equation: ˇ D 0

The 2-soliton solution is well-known. Here we present it using the Hirota bilinear
form, see for instance [31], in terms of the far-field parameters 	1; 	2,

u D 2flog .f /gxx ; (5.7)

f D 1C exp .�/C exp . /C a12 exp .� C  / ; (5.8)

� D 	1.x � 	21 t/ ;  D 	2.x � 	22 t/ ; a12 D .	1 � 	2/
2

.	1 C 	2/2
: (5.9)
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Without loss of generality, take 	2 > 	1. In the far field as t ! ˙1 the soliton
limits are found by either fixing the phase � and letting  ! �1 for the index 1,
or fixing the phase  and letting � ! ˙1 for the index 2. The outcome is

f � 1C exp .�/ ; t ! 1 ; f � 1C a12 exp .�/ t ! �1 ; (5.10)

f � 1C a12 exp . / ; t ! 1 ; f � 1C exp . / t ! �1 : (5.11)

Each of these are easily recognised as the corresponding 1-soliton solutions, but
with a phase shift from t ! �1 to t ! 1, given by

exp .��/; exp .�� / D .	2 � 	1/2
.	2 C 	1/2

: (5.12)

The strategy for finding a breather solution is to put 	1;2 D m ˙ in where m; n are
real-valued. Then (5.8) becomes

f D 1C 2 exp .�/ cos .�/C Qa12 exp .2�/ ; (5.13)

� D m.x � .m2 � 3n2/t/ ; � D n.x � .3m2 � n2/t/ ; Qa12 D � n2

m2
:

(5.14)

Although this does generate a solution, it is singular as now f can pass through zero
and takes negative values as exp .�/ increases. Thus, as expected, this procedure
fails to find a non-singular breather solution.

5.2.2.2 Extended Korteweg-de Vries Equation: ˇ D �1

Curiously, although the Hirota bilinear form for the modified KdV equation, that
is Eq. (5.2) without a quadratic nonlinear term is quite well-known, there seem to
be very few papers for this case, exceptions being [14, 31, 42, 47]. From [14] we
extract the following expression

u D 2flog .
G

F
/gx D 2

FGx � GFx

FG
(5.15)

G D 1C a1 exp .�/C a2 exp . /C a12 exp .� C  / ; (5.16)

F D 1C b1 exp .�/C b2 exp . /C b12 exp .� C  / ; (5.17)

� D 	1.x � 	21 t/ ;  D 	2.x � 	22 t/ ; (5.18)

a1 D 1 � 	1 ; a2 D 1 � 	2 ; a12 D a1a2
.	1 � 	2/

2

.	1 C 	2/2
; (5.19)

b1 D 1C 	1 ; b2 D 1C 	2 ; b12 D b1b2
.	1 � 	2/2
.	1 C 	2/2

; (5.20)
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The far field behaviour can now be found as for the KdV case in the Sect. 5.2.2.1
and describes the interaction of two solitons in a similar way. Detailed descriptions
can be found in [14, 47].

As in the Sect. 5.2.2.1 the strategy for finding a breather solution is to put
	1;2 D m ˙ in where m; n are real-valued. Then Eqs. (5.16) and (5.17) become

G D 1C 2ja1j exp .�/ cos .� C argŒa1�/C a12 exp .2�/ ; (5.21)

F D 1C 2jb1j exp .�/ cos .� C argŒb1�/C b12 exp .2�/ ; (5.22)

� D m.x � .m2 � 3n2/t/ ; � D n.x � .3m2 � n2/t/ ; (5.23)

Qa12 D �ja1j2 n2

m2
; Qb12 D �jb1j2 n2

m2
: (5.24)

Thus, as for the KdV case in the Sect. 5.2.2.1 a solution has been found but it is
singular as both F;G take zero values. This is expected as both the KdV and this
extended KdV equation are modulationally stable.

5.2.2.3 Extended Korteweg-de Vries Equation: ˇ D 1

Here the soliton and breather solutions can be found using a variety of methods,
including the Darboux transformation, see [46], and the Hirota bilinear method, see
[18]. The latter yields

u D 2ftan�1.
g

f
/gx D 2

f 2 C g2
.fgx � gfx/ ; (5.25)

The 2-soliton solution with far-field parameters 	1; 	2 is given by, adapted by
Grimshaw et al. [27] from Chow et al. [18],

g D 1C s1a1 exp .�/C s2a2 exp . /C s1s2a12 exp .� C  / ; (5.26)

f D 1C s1b1 exp .�/C s2b2 exp . /C s1s2b12 exp .� C  / ; (5.27)

� D 	1.x � 	21 t/ ;  D 	2.x � 	22 t/ ; (5.28)

an; bn D 1˙ 	np
1C 	2n

; n D 1; 2 ; (5.29)

a12; b12 D .	1 � 	2/2
.	1 C 	2/2

Œ1˙ .	1 C 	2/ � 	1	2�q
1C 	21

q
1C 	22

: (5.30)

Here s1;2 D ˙1 corresponding to waves of elevation or depression, since for this
case there are two families of 1-soliton solutions, one of elevation waves and one
of depression waves. Again, the far field behavior can now be found as for the KdV
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case in the Sect. 2.1 and describes the interaction of two solitons in a similar way.
A detailed description can be found in [18, 27, 46].

Next breather solutions can be found by formally putting 	1;2 D m˙ in, m; n > 0
in Eqs. (5.26) and (5.27), see Eq. (14) in [46] or Eq. (13) in [18]. The outcome is,
after adjusting the phases appropriately,

g D 1 � n2

m2

1C 2m � .m2 C n2/

1 � 2m C .m2 C n2/
exp .2�/C 2.� cos .�/� � sin .�// exp .�/ ;

(5.31)

f D 1 � n2

m2

1 � 2m � .m2 C n2/

1 � 2m C .m2 C n2/
exp .2�/C 2 cos .�/ exp .�/ ; (5.32)

� D m.x � .m2 � 3n2/t/ ; � D n.x � .3m2 � n2/t/ ; (5.33)

� D 1 � .m2 C n2/

1 � 2m C m2 C n2
; � D 2n

1 � 2m C m2 C n2
: (5.34)

This solution was first found by Pelinovsky and Grimshaw [40] using the inverse
scattering transform, see also [25], and exists for all m; n. The breather has two
phases, � and �. It is localized in the phase � and propagates with a speed
c D m2 � 3 n2, and oscillates in the phase� with a frequency˝;˝D n.3m2 � n2/.
In the reference frame moving with speed c, set y D x � ct and then
� D n.y � 2.m2 C n2/t/ and hence oscillates with a frequency 2 n.m2 C n2/. In
the limit n 
 m there are many crests inside the envelope and it resembles an
envelope wave packet. In the opposite limit when n � m, it resembles a 2-soliton
interaction, see Fig. 5 of [46] or Fig. 4 of [18].

5.3 Boussinesq Model

There are several Boussinesq equations used to describe waves in shallow water,
but most are not integrable, and hence explicit 2-soliton solutions are not available.
An exception is, see [30],

utt � uxx C 3.u2/xx � uxxxx D 0 : (5.35)

Although formally it can describe two-way wave propagation, in fact its asymptotic
derivation from the full water wave equations invokes a one-way hypothesis in the
reduction of the nonlinear term. It also has the disadvantage that its linear dispersion
relation is temporally unstable for high wave numbers. Nevertheless we shall use it
here as an example of the connection between modulational instability and breathers
for a higher-order in time case.
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5.3.1 Modulational Instability

The derivation of the reduction to an NLS equation follows the same lines as that
for the KdV models described in [25]. That is, insert the asymptotic expansion (5.3)
into (5.35). First note that the linear dispersion relation is !2 D k2 � k4 and so we
must choose k2 < 1 to ensure linear stability. Then at the second order we find that
the second harmonic and mean terms are

u2 D �2f
2A2 exp .2i�/C N
2 NA2 exp .�2i�/C 
0jAj2g C � � � ; (5.36)


2 D � 1

k2
; 
0 D 6.1 � k2/

k2.3 � 4k2/
: (5.37)

Note that there is a long-short wave resonance at k2 D 3=4. At the third order we
obtain the required NLS equation (5.1) for A where


 D 3k2

2!
.
2 C 
0/ D 3.3� 2k2/

2!.3 � 4k2/
: (5.38)

!ı D !!kk

2
D �3k2 C 2k4

2.1� k2/
: (5.39)

Over the range of interest when k2 < 1, there is modulation stability when k2 < 3=4
but modulation instability when 3=4 < k2 < 1.

5.3.2 Breathers

Here the Hirota method to exhibit the 2-soliton solution is, see [30],

u D 2flog .f /gxx ; (5.40)

f D 1C exp .�/C exp . /C a12 exp .� C  / ; (5.41)

� D 	1.x � s1v1t/ ;  D 	2.x � s2v2t/ ; (5.42)

v1;2 D .1C 	21;2/
1=2 ; s1;2 D ˙1 ; (5.43)

a12 D .s1v1 � s2v2/2 C 3.	1 � 	2/
2

.s1v1 � s2v2/2 C 3.	1 C 	2/2

D .	1 � 	2/
2

.	1 C 	2/2
.	1 C 	2/

2 C 3.s1v1 C s2v2/2

.	1 � 	2/2 C 3.s1v1 C s2v2/2
: (5.44)
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Making use of the similarity in structure with the KdV case and the expressions
given by Eqs. (5.7) and (5.8), the far field behavior can now be found as for the KdV
case in the Sect. 5.2.2.1. The choice of signs s1;2 determines whether the collision is
overtaking or head-on.

Next seek a breather solution by putting 	1;2 D m ˙ in as before, using first the
case when both s1 D s2 D 1 corresponding to a bifurcation from a collision of two
solitons moving in the same direction. Then we get that

f D 1C 2 exp .�/ cos .�/C Qa12 exp .2�/ ; (5.45)

�; D � ˙ i˚ ; (5.46)

Qa12 D �3n2 � I2

3m2 � I2
D � n2

m2
f m2 C 3R2

�n2 C 3R2
g ; (5.47)

R D ReŒv1� ; I D ImŒv1� ; v1 D .1C m2 � n2 C 2imn/1=2 : (5.48)

It is useful to note here that RI D mn and that R2 � I2 D 1 C m2 � n2, and it then
follows that I2 D �KC.K2Cm2n2/1=2; 2K D 1Cm2�n2. For this expression to be
non-singular for all �;� it is required that Qa12 > 1, and it is readily shown that this
is only possible if I2 > 3m2. This condition can be realized when n2 > 3=4C m2.
Significantly note that if we identify n with the wavenumber k in the modulational
stability calculation, then this can be regarded as a bifurcation as m2 increases from
zero above k2 D 3=4 for modulation instability.

If instead s1 D �s2 D 1 corresponding to a bifurcation from a collision of two
solitons moving in the opposite direction then a similar expression is obtained but
instead

Qa12 D R2 � 3n2

R2 C 3m2
D n2

m2
fm2 � 3I2

n2 C 3I2
g : (5.49)

It can be shown that Qa12 < 1 for all m; n and hence this is a singular breather.

5.4 Hirota-Satsuma Model

A coupled Korteweg-de Vries model

ut � a.uxxx C 6uux/ D 2bvvx ; vt C vxxx C 3uvx D 0 : (5.50)

was proposed in [32] to describe the interaction of two long waves with different
dispersion relations. It is important to note that these equations are coupled only
through the nonlinear terms, and that there is a family of solutions with v � 0

and u satisfying a KdV equation. They are integrable when a D 1=2, see [20, 35].
Essentially u scales with v2 (formally exact for the 1-soliton solution, see below) so
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that the equation for v is analogous to a modified KdV equation, while the equation
for u is analogous to a KdV equation. Also for every solution .u; v/ there is another
solution .u;�v/. Thus in the linearized theory there are two modes. One has v D 0

and a dispersion relation ! D ak3 and the other has u D 0 and a dispersion relation
! D �k3.

5.4.1 Modulational Instability

As for the KdV models presented in the Sect. 5.2.1 we seek asymptotic solutions of
the form

.u; v/ D �.A.X;T/;B.X;T// exp .i�/C c.c. C � � � ; (5.51)

� D kx � !t ; X D �.x � cgt/ ; T D �2t : (5.52)

First we consider the case when the linear dispersion relation is ! D ak3 and then
cg D 3ak2. Then B D 0 to all orders in � and indeed this case reduces to v � 0.
Hence the outcome is the same well-known NLS equation for a KdV alone, that
is (5.5) with ı D 3ak and 
 D �3a=2k. Thus the NLS equation is defocussing and
there is modulational stability.

In the second case the linear dispersion relation is ! D �k3 and then cg D �3k2.
In this case u is order �2 and to leading order consists only of second harmonic and
mean terms,

u D �2f
2B2 exp .2i�/C N
2 NB2 exp .�2i�/C 
0jBj2g C � � � ; (5.53)


2 D b

.1C 4a/k2
; 
0 D 2b

3k2
: (5.54)

Note that 
2 is singular when 4a D �1 indicating a second harmonic resonance.
Then the equation for B, the first harmonic component of v, is

iBT � 3kBXX C 3k
2B
2 NB � 3k
0jBj2B D 0 : (5.55)

Substituting for the coefficients 
2; 
0 leads to the NLS equation

iBT � 3kBXX C 
jBj2B D 0 ; 
 D b.1 � 8a/

k.1C 4a/
: (5.56)

This is modulationally unstable when b.1 � 8a/.1 C 4a/ < 0. The case of main
interest here is when a D 1=2 and then 
 D �b=k and there is modulation
instability when b > 0. In general, there is modulation instability when b > 0

for a > 1=8 and a < �1=4, and when b < 0 for �1=4 < a < 1=8.
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5.4.2 Breathers

The Hirota method applied to the system of Eq. (5.50) can be found in several places,
see [1, 32] for instance,

u D 2flog f gxx ; v D g

f
: (5.57)

The 1-soliton solution is

f D 1C exp .2P/ ; g D 2˛ exp .P/ ; (5.58)

P D 	.x � 	2t/ ; ˛2 D �2	
4.1C 4a/

b
; (5.59)

u D 2	2sech2.P/ ; v D ˛ sech.P/ ; (5.60)

Note that there are two solutions here as ˛ can be either positive or negative, and
that these exist only when b.1C 4a/ < 0 (b < 0 when a D 1=2).

Next, the 2-soliton solution when a D 1=2 can be written in the form

f D 1C exp .2P1/C exp .2P2/C ˛11 exp .P1 C P2/C ˛22 exp .2P1 C 2P2/ ;

(5.61)

g D 2˛1 exp .P1/f1C ˛12 exp .2P2/g C 2˛2 exp .P2/f1C ˛21 exp .2P1/g ;
(5.62)

˛11 D 16	21	
2
2

.	1 C 	2/2.	
2
1 C 	22 /

; ˛22 D .	1 � 	2/4
.	1 C 	2/4

; (5.63)

˛21 D �6	
4
1

b
; ˛22 D �6	

4
2

b
; ˛12 D ˛21 D .	1 � 	2/

2

.	1 C 	2/2
; (5.64)

Like the 1-soliton solution, this exists only when b < 0.
A breather solution can be found by putting 	1;2 D m ˙ in and so

P1;2 D � ˙ i� ; � D m.x � .m2 � 3n2/t/ ; � D n.x � .3m2 � n2/t/ :

(5.65)

f D 1C 2 exp .2�/ cos .2�/C ˛11 exp 2� C ˛22 exp 4� ; (5.66)

g D 2˛1 exp .� C i�/f1C ˛12 exp .2.� � i�//g C c .c ; (5.67)

˛11 D 2.m2 C n2/2

m2.m2 � n2/
; ˛22 D n4

m4
; ˛21 D �6.m C in/4

b
; ˛12 D � n2

m2
:

(5.68)
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Note that unlike the 2-soliton solution, there is now no restriction on the sign of
b. However, in order for f > 0 for all �;�, we require that either m2 > n2 when
˛11 > 1, or that n2 > 3m2 when ˛11 < 0; 2˛22 > 2 � ˛11. Like the breathers
of the extended KdV equation described in the Sect. 5.2.2.3, this breather moves
steadily at a speed m2 � 3 n2 and in that reference frame oscillates with a frequency
2 n.m2 C n2/. Figure 5.1 shows a typical plot of this breather over a half period.

Fig. 5.1 A plot of the breather (5.66) and (5.67) with m D 1:0; n D 0:5; b D �1 as a function of
y D x� ct; cD m2 � 3 n2 over a half period. (a) t D 0:0; (b) t D 0:9; (c) t D 2:1; (d) t D 3:0



146 R. Grimshaw et al.

5.5 Discussion

In this Chapter we have examined the connection between modulational instability
and non-singular breathers in the context of several long-wave models. For the
KdV equations discussed in the Sect. 5.2 we confirm the well-known result that
such breathers only exist when the NLS asymptotic reduction leads to modulational
instability, that is when ˇ D 1 in Eq. (5.2) so that the cubic nonlinear term is non-
zero and has the same sign as the linear dispersive term. In the Sect. 5.3 we discuss
the Boussinesq equation (5.40) which is modulationally unstable and confirm that
then there is indeed a non-singular breather solution. Then in the Sect. 5.4 we
discuss the Hirota-Satsuma version of a coupled KdV system given by Eq. (5.50),
and find the rather surprising outcome that although this system is modulationally
unstable when b > 0, non-singular breathers can exist for both signs of b. This
unexpected result may be related to the rather unusual structure of this coupled
system where a scaling u � v2 (formally exact for the 1-soliton solution) suggests
that the u-equation behaves as a KdV equation which is modulationally stable, but
the v-equation behaves as a modified KdV equation which can support a breather.

Although the focus here has been on a suite of long-wave models it is useful to
review the analogous properties for various NLS equations and some other short
wave models. The literature is voluminous but a few representative examples will
prove to be illuminating in this line of currently very active research. We focus
on those studies where analytical closed form solutions are obtained, rather than
those using perturbation methods, or numerical simulations. For the simplest NLS
model given by Eq. (5.1), the Peregrine breather and the second order rogue wave
solutions were derived using the Darboux transformation by Akhmediev et al. [4].
Similar analysis was performed for the integrable extension of the NLS with third
order dispersion, that is the Hirota equation, by Ankiewicz et al. [5]. The close
connection between the criteria for the occurrence of rogue waves and modulation
instability, when the dispersion and nonlinearity have the same sign in Eq. (5.1)
has been recognized by Zakharov and Gelash [51]. A close relative of the Hirota
equation is the Sasa-Satsuma equation, another integrable wave packet evolution
model with third order dispersion. This apparent similarity is at times deceptive,
as the Sasa-Satsuma equation typically has a much more complicated analytical
structure, and rogue waves can be obtained only in special parameter regimes [6].

For coupled NLS systems obeying the same criteria, attention is usually focused
on the Manakov model where analytical solutions are feasible. Rational solutions
like the Peregrine breather which are localized in both space and time have been
derived using the Darboux transformation by Degasperis and Lombardo [19]and He
et al. [29] and using the Hirota bilinear method by Vishnu et al. [49]. A broader
theoretical perspective is obtained by regarding breathers as almost a superposition
of a periodic array of rogue waves, see [49]. Interestingly, such localized entities
have been generated in a water wave tank for deep water conditions, see [29].
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However, modulational instability can still occur for Manakov systems when the
nonlinearity and dispersion in each component are of opposite signs. One possible
condition is that the coefficient of cross-phase modulation (XPM) must exceed
the coefficient of self-phase modulation (SPM), see [2]. Another alternative is to
implement a group velocity difference between the two wave packets, see [7]. This
feature is equivalent to a scenario where the wavenumbers of the carrier packet
differ from each other. It is relevant to note that these discoveries were made about
twenty years before the current intensive interest in rogue waves. The intimate
connection between modulation instability and rogue waves can indeed be well
illustrated for this parameter regime. For Manakov models (identical SPM and
XPM) with dispersion and nonlinearity of opposite signs, rogue waves do arise
whenever modulation instability occurs [7]. In terms of field measurements, these
modes have been proposed to model “three-sister” rogue wave formation observed
in the Great Lakes region of North America, see [16].

Rogue wave modes for coupled Hirota and Sasa-Satsuma equations have also
been investigated, although the picture there is less complete. Localized modes for
equal and unequal background amplitudes of the two participating waveguides have
been computed for a coupled Hirota system, see [15]. The Sasa-Satsuma equation is
even more intriguing, as exotic wave profiles involving “twisted” and “W-shaped”
structures have been found even for the single component case, see [13, 52]. These
novel structures continue to exist in the coupled case, see [53].

Further, in recent ongoing work, we have found that a difference in the group
velocity components can by itself generate modulational instability. Thus, the
coupled Hirota equations are given by [17, 39]

iAt � iıAx C Axx

2
� �.jAj2 C jBj2/A C i�fAxxx

�3�.jAj2 C jBj2/Ax � 3�.A�Ax C B�Bx/Ag D 0 ; (5.69)

iBt C iıBx C Bxx

2
� �.jAj2 C jBj2/B C i�fBxxx

�3�.jAj2 C jBj2/Bx � 3�.A�Ax C B�Bx/Bg D 0 : (5.70)

If B D 0, (5.69) reduces to the ordinary Hirota equation [5], whereas � D 0 yields
the Manakov equations. From earlier studies [49], we expect � > 0.� < 0/ will
give a regime of modulational stability (instability) respectively. The parameter ı
measures a difference in the group velocities of the wave packets, a “detuning”
parameter. Similar to the situation in the Manakov equations, we expect that the
presence of ı will induce modulation instabilities in parameter ranges which would
otherwise indicate stability. Thus consider the plane wave solutions A D B D

 expf�2i�
2tg. Then imposing small perturbations of the form expfi.rx � st/g, a
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fourth order dispersion relation is obtained. With c D s=r and small r, the dispersion
relation is reduced to

c4 C 36��
2c3 � 2.ı2 � 234�2�2
4 C �
2/c2

�12��
2.3ı2 � 216�2�2
4 C 2�
2/c

C.ı2 � �
2 � 72�2�2
4/2 � �2
4 � 216�2�3
6 D 0: (5.71)

The connection to the existence of breathers is an ongoing study. Here we display a
few examples highlighting the possibility of modulational instability in the regime
with dispersion and nonlinearity of opposite signs (� > 0) in Eqs. (5.69) and (5.70).

For NLS models incorporating the next order nonlinear terms, the most com-
monly studied ones are the derivative NLS equations. Rogue waves of the Kaup-
Newell equation (KN) were obtained using the Darboux transformation [28],
while those of the Chen-Lee-Liu equation (CLL) were obtained using the Hirota
bilinear transform [12]. Note that the KN and CLL models are related by a
gauge transformation. For the CLL model, the criterion for the onset of rogue
waves matches exactly with that for modulation instability, see [12]. For many
other members of this NLS family of evolution equations, the connections among
modulational instability, homoclinic solutions and localized modes have not yet
been fully examined, although rogue waves have been obtained explicitly through
the Darboux and other transformations, see for instance the Kundu-derivative-NLS
equation considered by Shan et al. [43] (Table 5.1).

Several further classes of NLS type-models are also relevant in this context. One
group of such equations involves cubic-quintic nonlinearity, see [37, 54], and even
fourth order linear dispersion, see [50]. Another example is the Maxwell-Bloch
system, where a complex valued envelope is coupled to another complex valued
field (polarization) and a real valued scalar field (population inversion). This system
arises in the femtosecond pulse propagation through an erbium doped fiber, see [34].

A close relative of the Manakov system is a set of coherently coupled NLS
equations, where the phase of each individual component is crucial, in sharp contrast
to those incoherently coupled systems such as the Manakov equations. Here the
analysis is more complicated, see [48]. Finally, most studies in the literature are
for evolution equations in 1 C 1 spatial and temporal dimensions. An important
exception is the Davey-Stewartson system, where the interaction of a wave packet

Table 5.1 Numerical examples of stable and unstable regimes

� 
 � ı

1 1 0:1 0 Stable

1 1 0:1 0:1 Unstable

1 1 0:1 1 Unstable

1 1 0:1 1:5 Stable

1 1 0:5 0:1 Stable
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and the mean flow governs the dynamics of slowly modulated surface water waves
in two mutually perpendicular horizontal dimensions, see [36].

A most remarkable feature about the recent intensive interest in rogue waves is
that these theoretical predications can be verified in both fluid dynamic and optical
experiments. As well as the traditional context, where the classical Benjamin-Feir
instability predicts the growth of sidebands, higher-order N-soliton solutions can
also be observed in carefully controlled hydrodynamic wave groups. Irreversible
spectral broadening has been observed, and was termed a “hydrodynamic super-
continuum”, by analogy with a similar generation of broad range of frequencies
in optics, see [11]. The lowest order rogue wave, the Peregrine breather, has been
measured in an experimental setting by Chabchoub et al. [9] and Shemer and
Alperovich [44], and compared with higher order versions of NLS, such as the
Dysthe equation. Super rogue waves with amplitude up to five times the background
have been observed in a wave tank by Chabchoub et al. [10]. An overview on the
theory of breathers and modulation instability in the optics context has recently been
given [21]. Finally we note that in this article and in most of the works cited here the
connection between modulational instability and breathers is circumstantial, that is
co-existence of each phenomenon. An exception is [24] where it is shown that at
least for the NLS model given by Eq. (5.1) a wide class of initial conditions of a
modulated plane wave generically leads to the formation of a wave train of Peregrine
breathers.
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Chapter 6
Hamiltonian Framework for Short Optical
Pulses

Shalva Amiranashvili

Abstract Physics of short optical pulses is an important and active research area
in nonlinear optics. In this Chapter we theoretically consider the most extreme rep-
resentatives of short pulses that contain only several oscillations of electromagnetic
field. Description of such pulses is traditionally based on envelope equations and
slowly varying envelope approximation, despite the fact that the envelope is not
“slow” and, moreover, there is no clear definition of such a “fast” envelope. This
happens due to another paradoxical feature: the standard (envelope) generalized
nonlinear Schrödinger equation yields very good correspondence to numerical
solutions of full Maxwell equations even for few-cycle pulses, the thing that should
not be.

In what follows we address ultrashort optical pulses using Hamiltonian frame-
work for nonlinear waves. As it appears, the standard optical envelope equation is
just a reformulation of general Hamiltonian equations. In a sense, no approximations
are required, this is why the generalized nonlinear Schrödinger equation is so effec-
tive. Moreover, the Hamiltonian framework contributes greatly to our understanding
of “fast” envelopes, ultrashort solitons, stability and radiation of optical pulses. Even
the inclusion of dissipative terms is possible making the Hamiltonian approach an
universal theoretical tool also in extreme nonlinear optics.

6.1 Introduction

6.1.1 Ultrashort Pulses

Remarkable recent progress in pulse generation with femtosecond [4, 17] and even
sub-femtosecond [20, 33, 57, 65] durations has resulted in rapidly growing interest
to ultrashort or so-called few-cycle optical pulses. These pulses are yielded by
modern mode-locking techniques, e.g., a readily accessible pulse duration of 6 fs
at a near-infrared wavelength of 900 nm corresponds to two optical cycles. On the
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Fig. 6.1 Examples of ultrashort pulses. (a) An exemplary single-cycle pulse resulting from pulse
compression in a ZBLAN fiber (numerical solution of the general pulse propagation equation,
[18]). (b) A family of solitons in a cubic media with the Drude dispersion law (exact solutions of
the simplified propagation equation, [6, 62]). The shortest limiting soliton contains approximately
one and half oscillations at half maximum

other hand, spatially localized field “bursts” with extreme amplitudes and short
durations can self-organize in a variety of nonlinear systems at unexpectedly high
rate [56]. They are referred to as rogue waves. Similar bursts have been observed
in nonlinear fibers and interpreted as optical rogue waves [37, 63]. Here optical
setting provides researches with a non-destructive tool to measure statistics of such
ultrashort extreme events. Two examples of numerically calculated ultrashort pulses
yielded by different pulse propagation models are shown in Fig. 6.1.

Turning to the applications one should stress that few-cycle pulses yield possibil-
ity to excite and follow fast relaxation processes with the spatial resolution of order
of one micron (a single wavelength) and to study light-matter interactions at extreme
intensity levels. For instance, currently available temporal and spatial confinement
results in peak intensities higher than 1015 W=cm2 for pulse energies of the order of
one microjoule [17]. The corresponding field strength is comparable to that inside
atoms. In particular, intense few-cycle optical pulses are used to trigger and trace
chemical reactions, to test high-speed semiconductor devices, and for precision
processing of materials. More sophisticated applications include modeling of event
horizons of white and black holes [58], recent measurements of Hawking radiation
[9, 24], and recent experimental observations of the negative-frequency radiation
[11, 59].

Theory of the ultrashort optical pulses has been developed in several directions.
For small space scales, e.g., propagation lengths of several tenths of a wavelength,
one can address numerical solution of the fundamental Maxwell equations equipped
by a suitable medium response model, e.g., Bloch equations [32, 36, 53, 55, 61]. On
the other hand, if some approximate but simple medium dispersion law applies, it
becomes possible to derive a simplified propagation equation. A typical example
is the so-called short pulse equation [10, 38, 43, 60]. Other settings yield the
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modified Korteweg-de Vries and sine-Gordon equations [8, 46, 48, 49], and more
sophisticated models [47, 51, 52]. However, simple models are not available for
the real-world dispersion laws and especially in the presence of dissipative effects.
An envelope equation is the method of choice for realistic situations, either the
fundamental nonlinear Schrödinger equation or its generalizations [2, 3, 15]. These
envelope equations have an unexpected behavior: (1) they seem to describe few- and
even sub-cycle pulses that should have no envelope [16, 30, 31, 40] and (2) they show
good correspondence to the solutions of more general unidirectional field equations,
which are independent of the envelope concept [34, 39, 41, 42].

In what follows we consider pulse propagation using the Hamiltonian point of
view for systems with infinitely many degrees of freedom [70, 73]. The promoted
approach applies when pulses, otherwise arbitrary, propagate in the transparency
window of optical materials, such that dissipation provides small contribution to
pulse dynamics. As it appears, the generalized envelope equation is just equivalent
to the underlying Maxwell equation [5], and the complex envelope is just a
combination of the corresponding canonical coordinate and momentum. Apart from
explanation of the paradoxical durability of the envelope equations, the Hamiltonian
approach provides a convenient framework for investigation of integrals of motion,
solitons, and numerical solutions.

6.1.2 Envelope Definition

From the mathematical side a correct description of the ultrafast phenomena is a
challenge because the involved time-scales may differ in many orders of magni-
tude making direct numerical solution of the fundamental Maxwell and material
equations impractical. A common approach to such multi-scale optical systems
is based on the slowly varying envelope approximation (SVEA). For instance, let
us consider a scalar electric field E.t/ at some given point in space. The SVEA
postulates possibility of representation

E.t/ D 1

2
�.t/e�i!0 t C c.c. D j� j cos.!0t � arg�/ (6.1)

where !0 is referred to as the carrier frequency and the complex-valued function
�.t/ is the envelope. The SVEA assumes that both j� j and arg� are slow, i.e., �.t/
does not change on the time scale 1=!0.

It is usually sufficient to think about optical pulses in terms of observed quantities
such as instant power. The latter is proportional to j� j2 and independent on arg�
for a “normal” multi-cycle pulse like one in Fig. 6.2a. Also the local frequency

! D !0 � d

dt
arg� (6.2)

takes no notice of a global shift in phase.
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(a) (b) (c) (d)

?

Fig. 6.2 Pulse field (red) and its envelope (blue) are shown for a gaussian pulse shape. (a) For a
multi-cycle pulse both j� j is well-defined and the actual value of arg� in Eq. (6.1) is unimportant.
(b–d) On the contrary, to derive the envelope from the field of a single-cycle pulse, one should
revisit the general envelope definition and specify how the (dashed) blue line is calculated from
the red one. Moreover, arg� , the quantity that determines an exact “position” of the pulse field
inside the envelope, noticeably affects the peak electric field calculated from Eq. (6.1)

The situation is different for a few-cycle pulse: arg� significantly affects the
peak electric field that is actually experienced by an atom (Fig. 6.2b–d). It is clear
that an adequate propagation model for such an ultrashort pulse should treat field
phase with a great care.

Another difficulty appears if we consider a standard derivation [1, 12, 54] of the
SVEA propagation equation that includes the following typical step:

d2E

dt2
C!20E D 1

2

�
d2�

dt2
� 2i!0

d�

dt

�
e�i!0t Cc.c. 
 �i!0

d�

dt
e�i!0 t Cc.c.; (6.3)

in which one ignores the second derivative of �.t/ because the latter is “slow”.
This is why all envelope equations are first-order equations, which are simple
and suitable for numerical treatment. For an ultrashort pulse, however, both the
field and the envelope coexist and evolve on the same scale (Fig. 6.2b–d). Strictly
speaking, the envelope may remain stationary for a single stable soliton, but it
is subject to quick changes for, e.g., colliding pulses or higher-order solitons.
Therefore approximation (6.3) becomes invalid and the derivation of the first-order
propagation equation should be reconsidered.

Finally, the very definition (6.1) is ambivalent for short pulses. Namely, if the
SVEA applies one can invert (6.1) and express the complex envelope in terms of the
field

2E.t/ei!0t D �.t/C ��.t/e2i!0t ) �.t/ D 2
˝
E.t/ei!0t

˛
; (6.4)

where hi denotes a sliding average over several oscillations of the carrier field. Here,
the SVEA indicates that h�.t/i remains unaffected and that h��.t/e2i!0 ti vanishes.
Clearly Eq. (6.4) cannot be applied to a short pulse with the fast envelope and
definition of the complex envelope should be reconsidered.
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One possible redefinition of the complex envelope explores the fact that the
operator in Eq. (6.3) can be factorized

d2E

dt2
C !20E D

�
!0 � i

d

dt

��
!0 C i

d

dt

�
E: (6.5)

Using this factorization we define a generalized complex envelope
!
� .t/ directly

from the equation

E C i!�10
dE

dt
D !

� e�i!0t; (6.6)

such that the standard relations of the theory of linear oscillations

E D j!� j cos.!0t � arg
!
� /;

dE

dt
D �!0j

!
� j sin.!0t � arg

!
� /; (6.7)

are just forced by the above definition of
!
� (see [13]).

Equation (6.1) still holds and Eq. (6.3) is replaced with

d2E

dt2
C !20E D !0

�
!0 � i

d

dt

�
!
� e�i!0t D �i!0

d
!
�

dt
e�i!0 t (6.8)

The latter relation is exact, one doesn’t have to neglect the second derivative contrary
to Eq. (6.3). Moreover, the definition (6.6) is very convenient if combined with the
standard sliding average over the fast time. For instance, considering an oscillator
with a small “driving force” f .E; dE=dt/

d2E

dt2
C !20E D f

�
E;

dE

dt

�
(6.9)

one immediately obtains an exact equation

i!0
d
!
�

dt
C ei!0tf

0

@
!
� e�i!0 t C c.c.

2
;

�i!0
!
� e�i!0t C c.c.

2

1

A D 0; (6.10)

where the further averaging of the driving force is trivial for any polynomial or
Taylor expanded f .E; dE=dt/.

On the other hand, if the succeeded averaging of Eq. (6.10) is inappropriate, the
new-defined envelope always contains unphysical quickly oscillating terms. Indeed,
combining (6.1) and (6.6) we obtain

!
� D � C i

2!0

d�

dt
C i

2!0

d��

dt
e2i!0t (6.11)
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where the second-harmonic term on the right-hand-side appears not because of
physical reasons, like quadratic nonlinearities, but simply because of the unlucky
definition (6.6).

Another alternative for envelope definition was suggested by Gabor. The real-
valued E.t/ is replaced by a complex-valued E.t/ following the instruction [28]:

– . . . Suppress the amplitudes belonging to negative frequencies, and multiply the ampli-
tudes of positive frequencies by two.

The complex field E.t/ will be referred to as the complex or analytic signal. In what
follows, we consider e�i!t as harmonic oscillation with (angular) frequency !. A
monochromatic wave with wave vector k and frequency ! is defined by ei.kr�!t/.
Consequently, we write the continuous Fourier transform of E.t/ as

E.!/ D
ˆ 1
�1

E.t/ei!tdt and E.t/ D
ˆ 1
�1

E.!/e�i!t d!

2�
; (6.12)

and the two latter equations become completely symmetric if one switches to the
physical frequency f D !=.2�/. According to Gabor’s rule, the analytic signal is
given by the relation

E.t/ D
ˆ 1
0

E.!/e�i!t d!

�
; (6.13)

where

E.t/ D E.t/C E�.t/
2

; (6.14)

and E�.t/ accumulates contributions of all negative frequencies in E.t/.
Of course, the analytic signal can be defined without any reference to frequencies

E.t/ D E.t/C i

�

 1
�1

E.�/d�

� � t
; (6.15)

where integration in the last term is referred to as the Hilbert transform and is
performed using the principal value. We would like to stress the following key
points.

1. The analytic signal behaves as expected for the envelope in all simple cases.
Taking for instance a carrier cosine oscillation modulated with frequency �

E.t/ D cos.�t/ cos.!0t/ D 1

4
.ei�t C e�i�t/.ei!0t C e�i!0t/; (6.16)



6 Hamiltonian Framework for Short Optical Pulses 159

with !0 > � > 0 we derive

E.t/ D 1

2

�
e�i.!0C�/t C e�i.!0��/t� D cos �te�i!0t: (6.17)

In particular, jE.t/j is a natural envelope for E.t/.
2. Moreover, there is an intrinsic relation between the definitions (6.1) and (6.13).

To show this let us assume that the spectrum of the envelope �.t/ in Eq. (6.1)
completely belongs to the interval Œ�!0; !0�. The assumption is much less
restrictive than the standard SVEA with its narrow spectral lines. This relaxed
assumption still guaranties that �.t/e�i!0 t contains only positive (and �.t/ei!0t

only negative) frequency components. We immediately derive that

E.t/ D �.t/e�i!0 t (6.18)

such that the complex envelope �.t/ is uniquely defined by the analytic signal
E.t/ provided that one has a reasonable definition of the carrier frequency !0.

3. The precise definition of !0 in Eq. (6.18) may differ and is not critical. A
reasonable choice is to avoid fast oscillations of �.t/ as good as possible; argE is
then approximated by a straight line, argE 
 �!0t. The approximation is perfect
for a many-cycle pulse like one in Fig. 6.3a, but not for the few-cycle pulses in
Fig. 6.3b–d. However, deviations of argE from �!0t are localized “outside” the
pulses. The splitting of E.t/ into �.t/ and e�i!0t is then still reasonable [16].

4. The values of jEj2 can be used as weights when approximating argE by �!0t.
The resulting expression [19]

!0 D
´1
0
!jE.!/j2d!´1

0
jE.!/j2d! (6.19)

will be assumed in what follows.

(a) (b) (c) (d)

Fig. 6.3 Use of the analytic signal: jEj (blue lines) and argE (green lines) are shown for pulses
from Fig. 6.2. For a multi-cycle pulse (a) argE is perfectly approximated by �!0t in favor of
Eq. (6.18). Even for the few-cycle pulses (b–d) the regions with “fast” �.t/ are localized outside
the pulses
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(a) (b) (c)

Fig. 6.4 The field E.t/ (red) and its analytic signal jE.t/j (blue) for superposition of two gaussian
pulses. (a) The pulses have similar frequencies, the analytic signal is perfectly shaped to the
corresponding beat oscillations. (b–c) The pulses have considerably different frequencies. The
field (b) and the envelope (c) look very different, the latter is neither smooth nor slow

5. The analytic signal can be formally considered for a complex argument t C it0

E.t C it0/ D
ˆ 1
0

E.!/e�i!te!t0 d!

�
; (6.20)

where the resulting function is holomorphic for t0 < 0 and quickly vanishes for
t0 ! �1. In other words, a real E.t/ is equipped by an imaginary part such that
the resulting complex E.t/ is holomorphic in a half-plane of “complex times”.
The analytic signal can be investigated using all powerful tools provided by
complex analysis. For instance, it is subject to Kramers–Kronig relations having
full similarity to the standard response functions [35, 45].

The above properties of the analytic signal are so attractive that E.t/ is usually
considered as the “correct” envelope [14, 67]. Unfortunately, Gabor’s definition
has its own difficulties. First, the analytic signal is neither smooth nor slow when
the field in question contains considerably different frequency components, like
in Fig. 6.4b–c. This always happens in, e.g., the so-called optical supercontinuum
[22]. Of course, correct description of an optical field with wide spectrum is of
crucial importance for ultrashort pulses as well. Another difficulty appears due to
nonlinearities. Even if E.t/ does contain exclusively positive frequencies, any simple
nonlinear expression (e.g., the standard cubic term jEj2E) always contains a small
negative frequency tail. One has either to get by with such an addition to the complex
signal or cut it off. Both possibilities are not quite appropriate. (a) The negative-
frequency tail may quickly grow due to nonlinear resonant interactions making
definition (6.13) questionable. What is more astonishing, it can lead to observable
physical effects like the negative-frequency radiation [11, 59]. (b) Cutting off
the negative frequencies (i.e., taking only the positive-frequency-part of jEj2E),
makes propagation equations unnecessarily complicated for analytical treatment and
explanation of the effects just mentioned.

Our approach to description of ultrashort pulses explores the fact that pulse
field in optics is not an abstract observable, the field results from well-known
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fundamental equations. Moreover, in the region of frequencies that is of interest for,
e.g., pulse transmission in optical fibers, these equations are, with good precision,
dissipation-free. Ignoring dissipation in the first step, one can (1) find the Poisson
bracket for the fundamental equations and (2) introduce the canonical coordinate
Q.r; t/ and momentum P.r; t/. Both quantities are continuous fields with possibly
more than one component. They are governed by canonical equations in which the
standard derivatives are replaced with functional derivatives

@tQ D ıH

ıP
and @tP D �ıH

ıQ
; (6.21)

the Poisson bracket fP;Qg is proportional to a generalized function. Using
Eq. (6.21) one can treat pulse propagation applying the technique that has been
developed for Hamiltonian systems with infinitely many degrees of freedom
[70, 73–75]. Dissipative terms are included in the final equations as small
perturbations.

In particular, a natural complex-valued field variable for the envelope-type
description is given by a suitable combination of Q.r; t/ and P.r; t/. The combi-
nation is taken in such a way that the Hamiltonian H ŒQ;P� takes some simple
form, the latter is guaranteed by the fact that in the frequency domain the optical
field is described by a set of coupled weakly nonlinear oscillators. The above
definition (6.6) is an example of such a combination of position and momentum,
more generally the variables in question are classical analogies of the creation and
annihilation operators in the second quantization formalism.

Actually there are many competing complex variables that transform the
quadratic part of the Hamiltonian to a standard form, a fundamental feature that
dictates the next step: to make a sequence of canonical transforms to remove quick
oscillations from the complex field. This occurs in quite similar to the classical
Hamiltonian perturbation theory that step by step kills non-resonant nonlinearities
[44, 50].

6.2 Poisson Brackets

In the this section we briefly outline some key facts from the Hamiltonian mechanics
of discrete [7, 44] and continuous [25, 26, 70] systems. The Poisson bracket is
regarded as the cornerstone of the theory.

6.2.1 Discrete Systems

We consider a phase-space manifold with a finite number of local coordinates � D
.�1; �2; : : : �N/. The key mathematical structure on the manifold is given by the
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so-called Poisson bracket between observables, scalar functions on the phase-space.
Namely, having two observables f .�/ and g.�/ one can calculate the third one, ff ; gg,
which is bilinear with respect to its arguments. Moreover, the following three rules
should be respected

ff ; gg C fg; f g D 0; (6.22)

ff ; ghg D ff ; ggh C gff ; hg; (6.23)

ff ; fg; hgg C fh; ff ; ggg C fg; fh; f gg D 0; (6.24)

where, the latter two equations are referred to as the Leibniz and Jacobi identities
respectively. In addition, the Poisson bracket should vanish if one of its arguments
is a constant observable.

To specify such a Poison structure one may first set the brackets between the
coordinates

�˛ˇ.�/ D f�˛; �ˇg; 1 � ˛; ˇ � N; (6.25)

and then define the bracket between two arbitrary observables by setting

ff ; gg D
X

˛;ˇ

�˛ˇ@˛f@ˇg; (6.26)

where @˛ stays for @=@�˛ . Equation (6.22) simply indicates that �˛ˇ is antisymmet-
ric. The Leibniz rule (6.23) is satisfied automatically because ff ; g is a first-order
differential operator, its special case

f�˛; g D
X

ˇ

�˛ˇ@ˇ (6.27)

will play an important role in what follows. The Jacobi identity is first tested for the
coordinates

f�˛; f�ˇ; �	 gg C f�ˇ; f�	 ; �˛gg C f�	 ; f�˛; �ˇgg D 0; (6.28)

where all Greek indices change from 1 to N.
Equation (6.28) in accord with (6.25) and (6.27) is equivalent to the following

nonlinear matrix relation

�˛
@
�
ˇ	 C�ˇ
@
�

	˛ C�	
@
�
˛ˇ D 0; (6.29)

the latter identity should be checked directly. The task is simplified for a non-
degenerate �. One can change to the inverse ��1 and obtain for its components,
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��1˛ˇ .�/, that Eq. (6.29) is equivalent to a linear relation

@˛�
�1
ˇ	 C @ˇ�

�1
	˛ C @	�

�1
˛ˇ D 0 , d

0

@
X

˛;ˇ

��1˛ˇ d�˛ ^ d�ˇ

1

A D 0; (6.30)

such that a non-singular Poisson structure yields a symplectic structure and vice
versa [7]. We prefer the formulation in which the symplectic structure is the
derived one. The Poisson language is promoted because�˛ˇ.�/ may be degenerate,
destroying the symplectic form (6.30) and making a direct test of Eq. (6.29)
more complicated. In any case, after Eq. (6.29) is satisfied, the general Eq. (6.24)
is satisfied as well because all newly appearing terms that do not participate
in (6.29) contain second derivatives and cancel each other due to the antisymmetry
condition (6.22).

In order to define dynamical equations we specify a special observable, the
Hamiltonian H .�/, and consider the following system of equations

d�˛

dt
D fH ; �˛g or

d�˛

dt
D �

X

ˇ

�˛ˇ@ˇH : (6.31)

In particular, one can check that time evolution of any observable f .�/ along the
solutions of the system (6.31) is yielded by the equation

df

dt
D fH ; f g; (6.32)

where for the sake of brevity our observables have no explicit time dependence.
The special relation fH ; f g D 0 implies that f is an integral of motion for the
Hamiltonian system (6.31).

Now we consider a situation where �˛ˇ is degenerate. This, e.g., happens for
any odd N. For instance, if all components �˛ˇ are constants and we have found a
kernel vector nˇ such that

X

ˇ

�˛ˇnˇ � 0; (6.33)

then we have found an integral of motion C D P
˛ n˛�˛ simply because

dC

dt
D d

dt

 
X

˛

n˛�
˛

!
D �

X

˛;ˇ

n˛�
˛ˇ@ˇH D

X

˛;ˇ

�˛ˇnˇ@˛H D 0: (6.34)

The latter integral conserves for any Hamiltonian H due to the degeneracy of
�. The conservation law is of geometric nature and independent of the choice of
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specific system: phase trajectories just cannot leave the hyperplane
P

˛ n˛�˛ D
const on which they started.

This so-called Casimir integral C is defined by the relation fH ;C g D 0 that
should apply to any H . In particular, we will see that pulse area is a geometric
integral of motion. Notice that the degeneracy of the Poisson bracket may be
eliminated. For instance, one can introduce a reduced Hamiltonian system directly
on a fixed hyperplane

P
˛ n˛�˛ D const to get rid of the degenerate degree of

freedom. The trick will be used below.
Dealing with Eq. (6.31), it might be useful to take N independent observables

�˛ D �˛.�1; �2; : : : �N/; 1 � ˛ � N (6.35)

and consider them as the new coordinates. Now one has to calculate the Poisson
bracket between the new coordinates

f�˛;�ˇg D
X


�

�
� @�
˛

@�

@�ˇ

@��
; 1 � 
; � � N; (6.36)

and set

ff ; gg D
X

˛;ˇ

f�˛;�ˇg @f

@�ˇ

@g

@�ˇ
: (6.37)

Indeed, the latter equation is compatible with the definition (6.26) because

X

˛;ˇ

f�˛;�ˇg @f

@�˛

@g

@�ˇ
D

X

˛;ˇ;
;�

�
� @�
˛

@�

@�ˇ

@��
@f

@�˛

@g

@�ˇ

D
X


;�

f�
; ��g @f

@�

@g

@��
; (6.38)

or, in other words, f�
; ��g is a second-order tensor and the Poisson bracket (6.26)
is an invariant convolution [21]. Therefore after switching to the new variables we
still deal with the same set of Hamiltonian equations

d�˛

dt
D fH ; �˛g or

d�˛

dt
D �

X

ˇ

f�˛;�ˇg @H
@�ˇ

; (6.39)

where both H and f�˛;�ˇg are now expressed using the new coordinates.
One natural application of the latter equations is to simplify the Poisson bracket

by choosing the most suitable coordinates. Another possibility is to preserve the
bracket by setting f�˛;�ˇg D f�˛; �ˇg and to simplify H instead. One can even



6 Hamiltonian Framework for Short Optical Pulses 165

first simplify the bracket and then preserve the (simplified) bracket and simplify the
Hamiltonian, as in the canonical perturbation theory [50].

6.2.2 Complex Variables

The most simple nontrivial example of a Hamiltonian system occurs at N D 2 with
�1 D q and �2 D p, where by construction

� D
�fq; qg fq; pg

fp; qg fp; pg
�

D
�
0 �1
1 0

�
) ff ; gg D @f

@p

@g

@q
� @f

@q

@g

@p
: (6.40)

Equation (6.31) indicates that each Hamiltonian H .q; p/ generates a system

dq

dt
D @H

@p
and

dp

dt
D �@H

@q
; (6.41)

which is a standard set of two Hamiltonian equations. They can be transformed into
a single complex equation using the following variable [64], c.f. Eq. (6.6)

z D q C ipp
2
; (6.42)

where

fz; zg D fz�; z�g D 0 and fz; z�g D i: (6.43)

The derivatives with respect to z (Wirtinger derivatives [68]) are defined by the
natural requirement

@H

@q
dq C @H

@p
dp � @H

@z
dz C @H

@z�
dz�; (6.44)

such that

@H

@z
D 1p

2

�
@H

@q
� i
@H

@p

�
and

@H

@z�
D 1p

2

�
@H

@q
C i

@H

@p

�
: (6.45)

One can derive a new expression for the Poisson bracket

ff ; gg D fz; z�g@f

@z

@g

@z�
C fz�; zg @f

@z�
@g

@z
D i

�
@f

@z

@g

@z�
� @f

@z�
@g

@z

�
; (6.46)
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and the following complex equivalent of the Hamiltonian equations (6.41):

i
dz

dt
D @H

@z�
: (6.47)

A continuous analogue of (6.46) and (6.47) will play an important role for optical
systems in what follows.

Here we should stress that the same Eqs. (6.46) and (6.47) can be derived for
many different definitions of the complex variable. The only thing that matters is
the bracket. For instance, one can rescale Eq. (6.42) and set

a D 1p
2

�
Cq C ip

C�

�
with C 2 C; (6.48)

check that

fa; ag D fa�; a�g D 0; fa; a�g D i; (6.49)

and immediately conclude that

ff ; gg D i

�
@f

@a

@g

@a�
� @f

@a�
@g

@a

�
; i

da

dt
D @H

@a�
; (6.50)

where

q D 1p
2

�
a

C
C a�

C�

�
;

p D ip
2
.Ca� � C�a/;

@H

@a�
D 1p

2

�
1

C�
@H

@q
C iC

@H

@p

�
: (6.51)

The freedom in the definition of the complex variable can be used to simplify
H .a; a�/. In our case, the most important Hamiltonian corresponds to nonlinear
oscillator

H D p2

2m
C kq2

2
C Hnonl.q; p/; (6.52)

where one can set C D 4
p

km with

a D 1p
2

�
q 4
p

km C ip
4
p

km

�
; (6.53)
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and obtain that

H D !aa� C Hnonl.a; a
�/; i

da

dt
D !a C @

@a�
Hnonl.a; a

�/; (6.54)

where ! D p
k=m is the linear frequency.

These results are readily extended to any even N. The canonical Poisson bracket
requires special coordinates consisting of N=2 generalized positions qi and N=2
generalized momentums pi, where by construction

fqi; qjg D 0;

fpi; pjg D 0;
fpi; qjg D

(
1 for i D j;

0 for i ¤ j;
1 � i; j � N=2: (6.55)

In other words,

� D
�
0 �I
I 0

�
; ff ; gg D

N=2X

iD1

�
@f

@pi

@g

@qi
� @f

@qi

@g

@pj

�
; (6.56)

where I is the unit matrix N=2 � N=2. Any non-degenerate �˛ˇ can be locally
reduced to the canonical form (6.56) such that one obtains the textbook pair of
Hamiltonian equations [7]

dqi

dt
D @H

@pi
;

dpi

dt
D �@H

@qi
; 1 � i � N=2: (6.57)

For a set of N=2 coupled nonlinear oscillators

H D
N=2X

sD1

�
p2s
2ms

C ksq2s
2

�
C Hnonl; (6.58)

one can introduce

as D 1p
2

�
qs

4
p

ksms C ips
4
p

ksms

�
; !s D

s
ks

ms
; (6.59)

where the new representation of the canonical Poisson structure is defined by the
only non-trivial bracket between the complex coordinates

fas; a
�
s0g D

(
i for s D s0;
0 for s ¤ s0;

) ff ; gg D i
N=2X

sD1

�
@f

@as

@g

@a�s
� @f

@a�s
@g

@as

�
:

(6.60)
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The complex analogue of Eq. (6.57) reads

H D
N=2X

sD1
!sasa

�
s C Hnonl; i

das

dt
D !sas C @Hnonl

@a�s
: (6.61)

The latter equations render the starting point of the perturbation theory that step
by step removes non-resonant terms from Hnonl by consequent changes to new
canonical variables.

6.2.3 One Continuous Field

Now we turn to systems with infinitely many degrees of freedom [25, 26, 70]. First,
we consider one scalar filed u with an infinite number of “coordinates” u.x/ for all
x 2 R. We assume that u.x/ ! 0 for x ! ˙1. The observables are now given by
functionals, such as pulse area

AŒu� D
ˆ 1
�1

u.x/dx: (6.62)

Derivatives are replaced by functional derivatives. Similar to Eq. (6.26), which we
write in the form

ff ; gg D
X

˛;ˇ

f�˛; �ˇg@˛f@ˇg; (6.63)

the Poisson bracket of two observables FŒu� and GŒu� is defined as

fF;Gg D
“ 1

�1
ıF

ıu.x/

ıG

ıu.y/
fu.x/; u.y/gdxdy; (6.64)

where integration replaces summation over all ˛ and ˇ. Moreover, in the next
sections we will deal with multi-component fields, then

fF;Gg D
“ 1

�1

X

i;j

ıF

ıui.x/

ıG

ıuj.y/
fui.x/; uj.y/gdxdy; (6.65)

where summation over all components is assumed.
Here and below we deliberately avoid using ıF=ıu or ıF=ıu.x; t/ and prefer to

use ıF=ıu.x/ even if the field in question evolves with time. This happens because
u.x/ is considered as a direct generalization of � D .�1; �1; � � � �N/. The components
of such a “super-point” in the phase space with infinite number of dimensions are
indexed by x. Therefore the notation ı=ıu.x/ is a direct analog of @=@� i.
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As a specific example of fu.x/; u.y/g we take the so-called Gardner-Zakharov-
Faddeev bracket (GZF bracket, see [25, 70] and references cited therein)

fu.x/; u.y/g D ı0.x � y/: (6.66)

Replacing ı0.x � y/ with � @
@yı.x � y/, integrating (6.64) by parts, and finally

integrating over dx, one calculates that

fF;Gg D
ˆ 1
�1

ıF

ıu.y/

@

@y

ıG

ıu.y/
dy: (6.67)

For instance, considering the pulse area (6.62) we obtain

ıA

ıu.x/
D 1 ) fF;Ag D 0; (6.68)

for any observable FŒu�. The pulse area is then a geometric integral of motion for
any Hamiltonian system generated by the bracket (6.66).

To write down an equation of motion analogous to Eq. (6.31), one should be able
to calculate the bracket fF; u.x/g. To this end we consider u.x/ as a functional that
takes any observable u.y/ and returns its value at some fixed point x

u.x/ D
ˆ 1
�1

u.y/ı.x � y/dy ) ıu.x/

ıu.y/
D ı.x � y/: (6.69)

Therefore Eq. (6.67) indicates that

fF; u.x/g D
ˆ 1
�1



ıF

ıu.y/

@

@y
ı.x � y/

�
dy D � @

@x

ıF

ıu.x/
: (6.70)

System evolution in continuous setting means that all “coordinates” u.x/ become
time-dependent. Therefore one looks for u D u.x; t/. The Hamiltonian equation of
motion for given H Œu� reads

@tu D fH ; u.x/g ) @tu D � @

@x

ıH

ıu.x/
: (6.71)

Equation (6.71) looks provoking, because we have a Hamiltonian system with
one variable. The corresponding canonic pair [69] is determined on an invariant
subspace of pulses u.x/ with the area AŒu� D 0. For each k > 0 we define

q.k/ D 1p
�k

ˆ 1
�1

u.x/ cos.kx/dx; p.k/ D � 1p
�

ˆ 1
�1

u.x/ sin.kx/dx; (6.72)
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and calculate that

fp.k/; q.k0/g D
ˆ 1
�1

ıp.k/

ıu.y/

@

@y

ıq.k0/
ıu.y/

dy D 1

�

ˆ 1
�1

sin.ky/ sin.k0y/dy: (6.73)

Now we take advantage of the identity

ˆ 1
�1

cos.�y/dy D 2�ı.�/; (6.74)

and derive that

fp.k/; q.k0/g D ı.k � k0/� ı.k C k0/ D ı.k � k0/; (6.75)

because k C k0 ¤ 0 by construction. In the same way one can obtain the remaining
brackets

fq.k/; q.k0/g D fp.k/; p.k0/g D 0; fq.k/; p.k0/g D �ı.k � k0/; (6.76)

cf. the discrete Eq. (6.55).
Following Eq. (6.48) the complex field can be introduced as

a.k/ D 1p
2



q.k/

p
k C ip.k/p

k

�
D 1p

2�k

ˆ 1
�1

u.x/e�ikxdx D u.k/p
2�k

; (6.77)

where we recall that k is positive. The already known brackets between the canonical
variables q.k/ and p.k/ indicate that

fa.k/; a.k0/g D 0 and fa.k/; a�.k0/g D iı.k � k0/; (6.78)

cf. Eq. (6.43). The general Poisson bracket between two real-valued observables in
the complex formulation

fF;Gg D
“ 1

�1



ıF

ıa.k/

ıG

ıa�.k0/
fa.k/; a�.k0/g C c.c.

�
dkdk0; (6.79)

takes the form

fF;Gg D i
ˆ 1
�1



ıF

ıa.k/

ıG

ıa�.k/
� ıF

ıa�.k/
ıG

ıa.k/

�
dk; (6.80)

which is a continuous analogue of Eq. (6.46).
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Below, complex representations will be introduced for several continuous sys-
tems. It is important that the fundamental equations (6.78) and (6.80) apply to all of
them. In all such systems the Hamiltonian equations

@ta D fH ; a.k/g D �i
ıH

ıa�.k/
; @ta

� D fH ; a�.k/g D i
ıH

ıa.k/
; (6.81)

are conjugate to each other so that one can deal with a single complex equation for
a.k; t/

i@ta D ıH

ıa�.k/
; (6.82)

cf. Eq. (6.47).
For example, consider the following Hamiltonian

H Œu� D
ˆ 1
�1



.@xu/2

2
C u3

�
dx D H2Œu�C H3Œu�: (6.83)

For the corresponding dynamic system we apply Eq. (6.71) and obtain a nonlinear
wave equation

@tu D @3xu � 6u@xu; (6.84)

which is equivalent to the famous Korteweg-de Vries equation [29]. On the other
hand, according to the Parseval theorem and definition (6.77)

H2 D
ˆ 1
�1

k2ju.k/j2
2

dk

2�
D
ˆ 1
0

k3ja.k/j2dk; (6.85)

such that for a.k; t/ we have

i@ta D !.k/a C ıH3

ıa�.k/
; !.k/ D k3; k > 0; (6.86)

cf. Eq. (6.61). Here all wave-vectors are positive because of unidirectionality.

6.2.4 Canonical Bracket for Two Fields

In this section we deal with a more traditional Hamiltonian that depends on two
scalar fields, H Œu; v�. The multi-component Eq. (6.65) should be used instead of the
single-component Eq. (6.64), and one should specify all possible brackets between
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the fields. A direct generalization of the canonical discrete Poisson bracket (6.55)
with i ! x, qi ! u.x/, and pi ! v.x/ is given by

fu.x/; u.y/g D fv.x/; v.y/g D 0; fu.x/; v.y/g D �ı.x � y/: (6.87)

The derived Poisson bracket between two observables FŒu; v� and GŒu; v� is

fF;Gg D
“ 1

�1



ıF

ıu.x/

ıG

ıv.y/
fu.x/; v.y/g C ıF

ıv.x/

ıG

ıu.y/
fv.x/; u.y/g

�
dxdy;

(6.88)

and reduces to

fF;Gg D
ˆ 1
�1



ıF

ıv.y/

ıG

ıu.y/
� ıF

ıu.y/

ıG

ıv.y/

�
dy; (6.89)

which is a continuous analogue of Eq. (6.56). The corresponding dynamic equations
read

@tu D fH ; u.x/g D
ˆ 1
�1

ıH

ıv.y/

ıu.x/

ıu.y/
dy D ıH

ıv.x/
; (6.90)

and

@tv D fH ; v.x/g D �
ˆ 1
�1

ıH

ıu.y/

ıv.x/

ıv.y/
dy D � ıH

ıu.x/
; (6.91)

cf. Eq. (6.21).
Exactly like in the discrete case (6.42), one can replace u and v with a single

complex field  D .u C iv/=
p
2. The coefficients in the definition of  can be

chosen differently, the only important thing is the bracket that should obey Eq. (6.78)

f .x/;  .y/g D 0; f .x/;  �.y/g D iı.x � y/: (6.92)

The Poisson bracket between two real-valued observables that depend on  .x/ and
 �.x/ is derived like Eq. (6.80)

fF;Gg D i
ˆ 1
�1



ıF

ı .y/

ıG

ı �.y/
� ıF

ı �.y/
ıG

ı .y/

�
dy; (6.93)

and yields the Hamiltonian equation

i@t D ifH ;  .x/g D ıH

ı �.x/
; (6.94)

cf. Eq. (6.82).
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Both the Poisson bracket in the complex representation and the resulting complex
Hamiltonian equation are structurally identical to those from the previous section.
The only difference is that they now apply to the observables in the physical .x; t/
space, as opposed to the observables in Fourier .k > 0; t/ space from the previous
section. The key example in the physical space is given by

H D 1

2

ˆ 1
�1

�j@x j2 � j j4� dx (6.95)

which leads to the (focusing) nonlinear Schrödinger equation

i@t C 1

2
@2x C j j2 D 0: (6.96)

Equation (6.96) is commonly abbreviated as the NLS equation and is of fundamental
importance for nonlinear optics as well as the generalized equation (gNLS) which
in the simplest case is generated by the Hamiltonian

H D �1
2

ˆ 1
�1

h
 �. OL /C  . OL /� C 	 j j4

i
dx: (6.97)

Here 	 D const and operator OL is polynomial with real coefficients and with respect
to i@x. The resulting gNLS equation reads

i@t C OL C 	 j j2 D 0: (6.98)

In more complicated situations 	 is an operator as well, and, moreover, Eq. (6.98)
contains non-Hamiltonian terms describing linear and nonlinear damping. Note that
both Eqs. (6.96) and (6.98) are complex envelope equations. Poisson brackets that
are relevant for non-envelope equations will be discussed in the next section.

6.2.5 GZF Bracket for Two Fields

A more sophisticated example of Poisson bracket with two fields, the one that is
relevant for the field-level description of optical pulses, is given by the Gardner-
Zakharov-Faddeev construction. Non-vanishing brackets are set to

fu.x/; v.y/g D fv.x/; u.y/g D ı0.x � y/; (6.99)

where the bracket (6.99) is antisymmetric because ı0.x/ is an odd function. The
resulting bracket between two observables FŒu; v� and GŒu; v� is calculated from
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Eq. (6.65) by partial integration exactly as in Eq. (6.67)

fF;Gg D
ˆ 1
�1



ıF

ıu.y/

@

@y

ıG

ıv.y/
C ıF

ıv.y/

@

@y

ıG

ıu.y/

�
dy: (6.100)

To derive the corresponding equations of motion we calculate

fF; u.x/g D
ˆ 1
�1



ıF

ıv.y/

@

@y
ı.x � y/

�
dy D � @

@x

ıF

ıv.x/
; (6.101)

and

fF; v.x/g D
ˆ 1
�1



ıF

ıu.y/

@

@y
ı.x � y/

�
dy D � @

@x

ıF

ıu.x/
: (6.102)

Therefore each Hamiltonian H Œu; v� generates the following two equations

@tu D � @

@x

ıH

ıv.x/
and @tv D � @

@x

ıH

ıu.x/
: (6.103)

For instance, choosing

H D
ˆ 1
�1

�
u2

2
C v2

2

�
dx; (6.104)

we derive the common linear wave equation

@tu D �@xv;

@tv D �@xu;
) @2t u � @2xu D 0; (6.105)

with the dispersion law

!.k/ D jkj: (6.106)

More complicated Hamiltonians of the type (6.104) can account for dispersion
and nonlinearity in the wave equation. This situation is important for pulse
propagation in fibers, so it’s worth taking time for complex formulation of the
system (6.103). A possible choice of the canonical variables reads

q.k/ D 1p
2�jkj

ˆ 1
�1



�.k/u.x/C �.k/

�.k/
v.x/

�
cos.kx/dx;

p.k/ D � 1p
2�jkj

ˆ 1
�1



�.k/u.x/C �.k/

�.k/
v.x/

�
sin.kx/dx;

(6.107)
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where we use the sign function

�.k/ D k

jkj ; (6.108)

and the scaling factor �.k/. The latter is a real-valued and even but otherwise
arbitrary function

�.k/ D �.�k/ 2 R: (6.109)

Note that the wave vector k in Eq. (6.107) takes all real values as opposed by only
positive ones in Eq. (6.72).

Let us check the Poisson bracket between the new-defined q.k/ and p.k/. Using
Eq. (6.100) we calculate that

fp.k/; q.k0/g D
ˆ 1
�1



ıp.k/

ıu.y/

@

@y

ıq.k0/
ıv.y/

C ıp.k/

ıv.y/

@

@y

ıq.k0/
ıu.y/

�
dy

D
pjk0=kj
2�



�.k/

�.k0/
C �.k/�.k0/

�.k0/
�.k/

�ˆ 1
�1

sin.ky/ sin.k0y/dy

D 1C �.k/�.k0/
2

Œı.k � k0/� ı.k C k0/� D ı.k � k0/:

Furthermore, it is easy to obtain that both fq.k/; q.k0/g and fp.k/; p.k0/g vanish, so
that q.k/ and p.k/ are proper canonical variables.

Following Eq. (6.48) complex field can be introduced as

a.k/ D q.k/C ip.k/p
2

D 1

2
p
�jkj

ˆ 1
�1



�.k/u.x/C �.k/

�.k/
v.x/

�
e�ikxdx;

(6.110)

where the fundamental relations (6.78) and (6.80) are satisfied automatically. The
original real-valued fields can be reconstructed from the complex-valued one using
the relations

�.k/
u.k/p
�jkj D a.k/C a�.�k/;

�.k/

�.k/

v.k/p
�jkj D a.k/� a�.�k/; (6.111)

where u.k/ and v.k/ are the spectral components

u.k/ D
ˆ 1
�1

u.x/e�ikxdx; v.k/ D
ˆ 1
�1

v.x/e�ikxdx: (6.112)
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For instance, using Parseval’s theorem for the Hamiltonian (6.104) and setting
� D 1, one directly obtains that

H D
ˆ 1
�1


 ju.k/j2
2

C jv.k/j2
2

�
dk

2�
D
ˆ 1
�1

!.k/ja.k/j2dk; (6.113)

in accordance with the dispersion law (6.106). In more complex situations both
ju.k/j2 and jv.k/j2 may come with some weights, the latter can be made equal to
each other via a proper choice of �.k/.

6.3 Pulses in Optical Fibers

The electric field E.r; t/ and the magnetic induction B.r; t/ created by any optical
pulse are, of course, governed by the fundamental microscopic Maxwell equations
[14]

�0rE D 
; r � E D �@tB;

rB D 0;
1


0
r � B D j C �0@tE:

(6.114)

Here the so-called vacuum permittivity �0 and the vacuum permeability 
0 are
physical constants, whereas 
.r; t/ and j.r; t/ are exact microscopic charge and
current densities. On a macroscopic level, however, one can avoid the tremendous
task of solving additional equations for each elementary charge composing 
.r; t/
and j.r; t/. Instead, one deals with an appropriate simplified material model. For
a set of non-destructive electromagnetic waves propagating in a dielectric it is
sufficient to introduce a single macroscopic polarization vector P.r; t/, such that
the inhomogeneous pair of Maxwell equations (6.114) changes to the form

r.�0E C P/ D 0;
1


0
r � B D @t.�0E C P/; (6.115)

where a macroscopic-level relation between P.r; t/ and E.r; t/ is assumed. This so-
called material relation P.E/may be complicated, even given in terms of additional
equations; one that is suitable for optical fibers will be specified in the next section.
Here, we note that the use of polarization is, of course, automatically compatible
with the charge conservation equation

@t
C rj D 0; (6.116)

that is why the four quantities 
.r; t/ and j.r; t/ are safely replaced by the three
components of P.r; t/.
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6.3.1 Problem Setting

Below we shall consider a linearly polarized wave in which all the fields involved
have only one nontrivial component

E D .E; 0; 0/; B D .0;B; 0/; P D .P; 0; 0/: (6.117)

Moreover, all fields depend on time and a single spatial variable, the propagation
coordinate z. In the first place such approximation applies to bulk propagation of
plane electromagnetic pulses in dispersive media. On the other hand, the approxima-
tion applies to a so-called single-mode polarization-preserving fiber [1, 66]. Namely,
a single-mode fiber means that the radial structure of the pulse is approximately
the same for all frequencies in question so that the radial degrees of freedom can
be integrated out leaving us with quantities depending on .z; t/. In addition, the
fiber can be intentionally made slightly asymmetric introducing a small difference
between two possible polarizations of a plane electromagnetic wave. Such a fiber
preserves polarization of the input pulse, that is presumed by Eq. (6.117).

For a plane wave described by Eq. (6.117), the full system (6.114) is reduced to
two scalar equations only:

@zE D �@tB and � 1


0
@zB D @t.�0E C P/: (6.118)

To proceed we need a specific expression for P.E/. The common general expression
is given by the sequence [15, 45]

P D �0
� O�.1/E C O�.2/ŒE;E�C O�.3/ŒE;E;E�C � � � � ; (6.119)

where O�.1/ is a linear operator, O�.2/ is a bilinear one, O�.3/ is trilinear and so on. This
sequence of linear and nonlinear susceptibilities encodes solution of an additional
equation for P.z; t/ induced by E.z; t/.

Below we consider the following reduction of (6.119):

1

�0
P D O�.1/E C �.3/E3: (6.120)

Equation (6.120) assumes that P.�E/ D �P.E/ so that the second-order suscepti-
bility vanishes due to symmetric arguments, which is a typical situation in optical
fibers. Nonlinear susceptibility of the third order O�.3/ is approximated by a constant,
�.3/. The linear part of the medium response is determined by the standard delay
integral [45]

O�.1/E.t/ D
ˆ 1
0

�.1/.�/E.t � �/d�; (6.121)
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with memory function �.1/.�/. It is convenient to introduce the linear dispersion
operator O� D 1 C O�.1/ and combine the system (6.118) into a single propagation
equation

@2z E � 1

c2
@2t
�O�E C �.3/E3

� D 0 (6.122)

which is a self-consistent nonlinear wave equation with c D 1=
p

0�0.

Considering the operator O� in the frequency domain one derives from Eq. (6.121)

O�e�i!t D �.!/e�i!t with �.!/ D 1C
ˆ 1
0

�.1/.�/ei!�d�: (6.123)

The just defined relative permeability �.!/ is a complex-valued function with
property

�.!/ D Œ�.�!/��; (6.124)

and it is subject to the Kramers–Kronig relations [45]. Equation (6.124) together
with the relation

O�E.t/ D O�
ˆ 1
�1

E.!/e�i!t d!

2�
D

ˆ 1
�1

�.!/E.!/e�i!t d!

2�
; (6.125)

guarantees that the operator O� transforms a real-valued field into a real-valued one.
Moreover, Eq. (6.125) indicates that

O� D �.i@t/; (6.126)

if �.!/ is approximated by a polynomial in the frequency range where E.!/ ¤ 0.
In more complex situations �.!/ is approximated by a polynomial in some

interval of positive frequencies only, e.g., by a Taylor expansion of the “true”
�.!/ near the pulse carrier frequency. Such an expansion typically violates the
fundamental Eq. (6.124), and in any case it has a finite convergence radius. To avoid
the difficulty one can split positive and negative frequencies in the electric field
according to Gabor’s rule (6.13) and then apply �.i@t/ only to the positive-frequency
part

E.z; t/ D 1

2
E.z; t/C c.c. ) O�E.z; t/ D 1

2
�.i@t/E.z; t/C c.c.; (6.127)

such a trick is an important step in the derivation of the complex envelope equation.
To conclude this section we stress that Eq. (6.122) is on one hand a nonlinear

wave equation and on the other hand a delay differential equation. Not only the
initial conditions, E.t D 0; z/ and @tE.t D 0; z/, are required to find E.t > 0; z/
but also the prehistory E.t < 0; z/. Moreover, despite the simple 1 C 1 geometry,
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the full numerical solution of Eq. (6.122) may require a great amount of numerical
calculations, e.g., for wavelength of 1#m and fiber length of 1 km. A much more
simple formulation can be obtained for a single wave packet or a dense sequence of
wave packets that propagate in one direction. One can then neglect backward waves
and follow the pulses in the moving frame. This approach leads to the envelope NLS
equation and to the “less-envelope” gNLS equation, as described below.

6.3.2 Forward and Backward Waves

Neglecting for a while the nonlinear term in Eq. (6.122), one can apply the standard
substitution E � ei.kz�!t/ and derive the following dispersion relation:

k2c2 D !2�.!/ (6.128)

for linear waves. A given (positive) frequency yields two wave vectors, k D ˙ˇ.!/,
for the forward and the backward wave respectively. In fiber optics ˇ.!/ is referred
to as the propagation constant. The real-valued field of a monochromatic forward
wave is written as

E.z; t/ D 1

2
Aeiˇ.!/z�i!t C c.c.; (6.129)

where A is the complex amplitude. It is convenient to define the propagation constant
for negative frequencies in such a way that

ˇ.�!/ D �ˇ�.!/; (6.130)

while the latter definition is compatible with the dispersion relation (6.128) and with
the fundamental Eq. (6.124). The complex conjugate of eiˇ.!/z�i!t is then equivalent
to replacement ! ! �!, which is a convenient property of the Fourier coefficients.

In what follows we will use the index of refraction n.!/ D p
�.!/, the

corresponding operator On is defined as in Eq. (6.125). It is also convenient to relate
a suitable operator Ǒ with the propagation constant. The problem is that for a real-
valued E.t/, the expression

´1
�1 ˇ.!/E.!/e

�i!td! is complex-valued. So instead,
we define

Ǒ D 1

c
On@t ) Ǒe�i!t D �iˇ.!/e�i!t: (6.131)
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The key observation is that with the help of Ǒ and On one can split Eq. (6.122) into
two first-order equations

. Ǒ C @z/E!C �.3/

2c
On�1@t

�
E!C E 

�3 D 0; (6.132)

. Ǒ � @z/E C �.3/

2c
On�1@t

�
E!C E 

�3 D 0; (6.133)

where by construction

E.z; t/ D E!.z; t/C E .z; t/: (6.134)

Indeed, after we apply Ǒ � @z to (6.132) and Ǒ C @z to (6.133), we add them
together and return to Eq. (6.122). Moreover, it is easy to see that the linearized
equations (6.132) and (6.133) describe the pure forward and the pure backward
wave respectively. These waves are coupled by nonlinearity.

Now let us consider a sequence of the forward pulses. Assuming that the
nonlinear excitation of the backward wave is non-resonant, one can neglect the
backward field and replace Eq. (6.122) by the so-called forward Maxwell equation

@zE C ǑE C �.3/

2c
On�1@t.E/

3 D 0; (6.135)

where from now on we do not distinguish between the forward field and E. In optical
context Eq. (6.135) was first applied in [34], the splitting technique was discussed
in [27, 39, 41, 42]. Equation (6.135), being of interest on its own, is a good starting
point for derivation of the gNLS equation, because (6.135) already has the first order
with respect to the propagation coordinate.

6.3.3 Envelope Equations

To derive an envelope equation from Eq. (6.135) we consider a typical situation in
which the forward pulse in question has a narrow spectrum localized around the
carrier frequency !0. For ! 
 !0 we approximate the wave vector k D ˇ.!/ by its
Taylor expansion

ˇ.!/ D
MX

mD0

ˇm

mŠ
.! � !0/m; ˇm D ˇ.m/.!0/; (6.136)
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of order M � 2 at least. The carrier wave reads ei.ˇ0z�!0t/, the carrier phase velocity
is !0=ˇ0. The group velocity Vgr D d!=dk; therefore

1

Vgr.!/
D ˇ1 C ˇ2.! � !0/C � � � ; (6.137)

where ˇ2 is referred to as the group velocity dispersion (GVD) [1]. The GVD
parameter describes frequency dependent correction to the group velocity 1=ˇ1 of
the carrier wave.

We now apply the substitution

E.z; t/ D 1

2
�.z; t/ei.ˇ0z�!0t/ C c.c.; (6.138)

to remove fast oscillations of the pulse electric field in (6.135). First, we ignore the
third harmonic in the nonlinear term

E3 
 3

8
j� j2�ei.ˇ0z�!0t/ C c.c.; (6.139)

that is, we assume that medium excitation induced by �3e3i.ˇ0z�!0t/ is non-resonant,
ˇ.3!0/ ¤ 3ˇ.!0/.

Second, we note that Eq. (6.126) applies also to the expansion of ˇ.!/

Ǒ D �i
MX

mD0

ˇm

mŠ
.i@t � !0/

m; (6.140)

and using (6.138) one can derive that

ǑE D � i

2

"
MX

mD0

ˇm

mŠ
.i@t/

m�

#
ei.ˇ0z�!0t/ C c.c.; (6.141)

according to the general principle (6.127).
Third, the operator On�1@t in the nonlinear term in (6.135) corresponds to

�i!=n.!/ and can be treated exactly like Ǒ, namely if

!

n.!/
D

MX

mD0

	m

mŠ
.!�!0/m then On�1@t D �i

MX

mD0

	m

mŠ
.i@t �!0/m; (6.142)

and in accord with (6.139)

On�1@t.E
3/ D �3i

8

"
MX

mD0

	m

mŠ
.i@t/

m.j� j2�/
#

ei.ˇ0z�!0t/ C c.c. (6.143)
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Combining all three steps we see that Eq. (6.135) reduces to the following
propagation equation for �.z; t/

i@z� C
"

MX

mD1

ˇm

mŠ
.i@t/

m

#
� C 3�.3/

8c

"
MX

mD0

	m

mŠ
.i@t/

m

#
j� j2� D 0; (6.144)

in which the ˇ0-term is canceled out. The latter equation is simplified in two
further steps. First, we recall that ˇ1 is the inverse carrier group velocity. It is then
convenient to define the so-called retarded time

� D t � ˇ1z; (6.145)

and introduce  .z; �/ D �.z; t/, i.e., it is convenient to change to a moving frame
that follows the pulse. So the ˇ1-term is canceled out from Eq. (6.144).

Second, coefficients 	m are usually calculated by replacing n.!/ with n.!0/, then

	0 D !0

n.!0/
; 	1 D 1

n.!0/
; 	m�2 D 0: (6.146)

Altogether, Eq. (6.144) reduces to the gNLS equation

i@z C OD C !0

c
n2.1C i!�10 @� /j j2 D 0; (6.147)

where following [1] we use notation n2 D .3=8/�.3/=n.!0/ and introduce the so-
called dispersion operator

OD D
MX

mD2

ˇm

mŠ
.i@� /

m: (6.148)

After  .z; �/ has been calculated, the field is described as

E.z; t/ D 1

2
 .z; t � ˇ1z/ei.ˇ0z�!0t/ C c.c. (6.149)

The standard classical NLS equation, the one that is completely integrable [72],
appears if one approximates both operators in (6.147) by the leading terms

i@z � ˇ2

2
@2� C !0

c
n2j j2 D 0; (6.150)

where in a focusing medium (n2 > 0) and anomalous (ˇ2 < 0) dispersion domain
one can rescale the variables and obtain the normalized Eq. (6.96).

An important observation is that the derived propagation equations should be
solved with respect to z. In fiber optics both the gNLS (6.147) and the NLS (6.150)
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equations require E.z D 0; t/ and yield E.z > 0; t/. Physical consequences of this
feature will be discussed later on. Another important observation is that in typical
settings Eq. (6.147) has an exceptionally good agreement with the solutions of the
full nonlinear wave Eq. (6.122) as reported in [16, 31]. To explain this behavior we
now consider the Hamiltonian framework for optical pulses.

6.4 Hamiltonian Description of Pulses

We now turn to the Hamiltonian structure of Eq. (6.118). It is of interest that to some
extent such a structure can be recognized even without exact knowledge of P.E/.
To this end we introduce standard displacement field D.z; t/ the magnetic intensity
H.z; t/

D D �0E C P; H D B


0
; (6.151)

such that equations (6.118) take the form

@zE D �@tB and � @zH D @tD: (6.152)

The relation between H and B is trivial because most optical materials are not
magnetic [14]. The Hamiltonian is given by a yet unknown functional H ŒE;H�
for which the following variation is required

ıH ŒE;H� D
ˆ 1
�1
.DıE C BıH/dt: (6.153)

Indeed, such a H ŒE;H� implies that the system (6.152) reads

@zE D �@t
ıH

ıH
; @zH D �@t

ıH

ıE
; (6.154)

and has the same mathematical structure as the Hamiltonian equations (6.103),
but one should exchange the time and space variables. For instance, the Poisson
bracket (6.99) now reads

fE.t1/;H.t2/g D fH.t1/;E.t2/g D ı0.t1 � t2/: (6.155)

This simple change of variables results in important physical differences and
changes the physical meaning of H ŒE;H�. We will first discuss these differences
and then return to Eq. (6.154) and apply results that have already been derived for
the GZF bracket (6.155).



184 S. Amiranashvili

6.4.1 z-Propagation

The system (6.154) is solved with respect to z in the context of the so-called z-
propagation picture similar to the gNLS equation (6.147). This problem formulation
naturally applies to many optical settings, where some source-device creates the
input field E.z D 0; t/ which is “known” for all times at the beginning of the fiber
and some detector-device measures the output field E.z D L; t/, or some derived
quantity like power, at the end. Here L is the propagation distance. The reflected
backward wave is neglected, exactly like in the already derived envelope equation.
The pulses are either periodic or localized in time, such that we have a kind of
boundary condition for the time axis.

One consequence of z-propagation is that H is related not to the energy
and system invariance with respect to the time shifts [44]. Instead, H refers to
momentum conservation and to invariance of basic equations with respect to space
shifts. Another consequence is that now all conserved quantities are obtained by
integration of the corresponding flux densities over time. For instance, consider the
conservation law (6.116) for one spatial dimension

@t
.z; t/C @zjz.z; t/ D 0: (6.156)

The latter equation is usually integrated over dz assuming that 
.z; t/ and j.z; t/ are
localized in space. The result

d

dt

ˆ 1
�1


.z; t/dz D 0; (6.157)

is interpreted as charge conservation. In the z-propagation picture, however, we
integrate Eq. (6.156) over dt assuming that for a given z both the charge density

.z; t/ and the current density j.z; t/ are induced by an isolated pulse and disappear
for t ! ˙1. The resulting conservation law

d

dz

ˆ 1
�1

j.z; t/dt D 0; (6.158)

means that the time-averaged current density is the same for all observation points
inside the fiber. Consequently H ŒE;H� must be a time-averaged momentum flux.

Before proceeding with the explicit expression for H ŒE;H� let us revisit the
definition of the complex Hamiltonian variable. In the case of t-propagation the
canonical variables are parameterized by the wave vector. The standard complex
variable was introduced by

a.k/ D q.k/C ip.k/p
2

) i@ta D ıH

ıa�.k/
; (6.159)
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so that

H D
ˆ 1
�1

!.k/ja.k/j2dk yields a.k; t/ � e�i!.k/t: (6.160)

The latter expression agrees with the familiar ei.kz�!t/ representation of monochro-
matic waves.

In the case of z-propagation the canonical variables are parameterized by
frequency and it is convenient to take

A.!/ D q.!/� ip.!/p
2

) i@tA D � ıH

ıA�.k/
; (6.161)

so that, e.g.,

H D
ˆ 1
�1

ˇ.!/jA.!/j2d! yields A.!; z/ � eiˇ.!/t: (6.162)

The actual z-Hamiltonian will be a bit more complicated, as it should describe both
forward and backward waves.

6.4.2 z-Hamiltonian

Momentum conservation for electromagnetic field in vacuum in the one-
dimensional setting (6.118) is given by a well-known relation

@t

�
jP
c2

�
C @z

�
�0E2

2
C B2

2
0

�
D 0; (6.163)

where jP D EB=
0 is the Poynting vector and the second bracket contains the
vacuum momentum flux density. Motivated by this example, we consider the
following functional [71]

H ŒE;H� D
ˆ 1
�1



�0

�
E O�E
2

C �.3/E4

4

�
C 
0H2

2

�
dt: (6.164)

Below we will also use the frequency components of the involved fields

E.!/ D
ˆ 1
�1

E.t/ei!tdt; H.!/ D
ˆ 1
�1

H.t/ei!tdt; (6.165)

and representation of definition (6.164) in the frequency domain.
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Notice that the operator O� in Eq. (6.164) is not self-adjoint. Indeed, defining the
scalar product of two real fields at some fixed point in space by

ˆ 1
�1

E1.t/E2.t/dt D
ˆ 1
�1

E�1 .!/E2.!/
d!

2�
; (6.166)

we obtain
ˆ 1
�1
ŒE1.t/O�E2.t/ � E2.t/O�E1.t/�dt D

ˆ 1
�1
Œ�.!/ � ��.!/�E�1 .!/E2.!/

d!

2�
;

(6.167)

in agreement with (6.124) and (6.125). The imaginary part of �.!/, though always
present, can be extremely small for frequencies of interest, as it happens in the
transparency region of all fiber-relevant materials. If �.!/ can be considered real, the
system (6.118) becomes dissipation-free and O� becomes self-adjoint. The variation
of H ŒE;H� from (6.164) is then given by (6.153), and we have found the required
Hamiltonian. On the physical side, H gives the total amount of momentum that
is transferred per unit area of the fiber cross-section. H is an integral of motion
in the sense that @zH ŒE.z; t/;H.z; t/� D 0 if E.z; t/ and H.z; t/ solve (6.118).
Equation (6.166) indicates that in the frequency domain the quadratic part of the
Hamiltonian (6.164) is given by the relation

H2ŒE;H� D
ˆ 1
�1



�0�.!/

2
E.!/E�.!/C 
0

2
H.!/H�.!/

�
d!

2�
: (6.168)

Now we introduce the canonical variables according to (6.107)

q.!/ D 1p
2�j!j

ˆ 1
�1



�.!/E.t/C �.!/

�.!/
H.t/

�
cos.!t/dx;

p.!/ D � 1p
2�j!j

ˆ 1
�1



�.!/E.t/C �.!/

�.!/
H.t/

�
sin.!t/dx;

(6.169)

where �.!/ D !=j!j and�.!/ D �.�!/ 2 R similar to Eq. (6.109). The complex
variable is introduced according to Eq. (6.161)

A.!/ D q.!/� ip.!/p
2

D 1

2
p
�j!j

ˆ 1
�1



�.!/E.t/C �.!/

�.!/
H.t/

�
ei!tdt;

(6.170)

by construction it obeys the z-propagation equation

i@zA.!; z/C ıH

ıA�.!/
D 0; (6.171)
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which is similar to the t-equation (6.82). The above definition of A.!/ suggests to
switch to the frequency domain where we have

A.!/ D 1

2
p
�j!j



�.!/E.!/C �.!/

�.!/
H.!/

�
; (6.172)

and

�.!/
E.!/
p
�j!j D A.!/C A�.�!/; �.!/

�.!/

H.!/
p
�j!j D A.!/� A�.�!/:

(6.173)

The scaling factor�.!/ is chosen in such a way that

�0�.!/

�2.!/
D 
0�

2.!/ ) �.!/ D 4

s
�0�.!/


0
; (6.174)

then the quadratic part of the Hamiltonian (6.164) is given by

H2 D
ˆ 1
�1

jˇ.!/jA.!/A�.!/d!; (6.175)

this is a z-replacement of the standard t-expression
´1
�1 !.k/ja.k/j2d!: Equa-

tion (6.171) takes the form

i@zA.z; !/C jˇ.!/jA.z; !/C ıHint

ıA�.!/
D 0; (6.176)

which is the pulse propagation equation in the Hamiltonian framework. The linear
part of Eq. (6.176) looks unusual just because (6.176) combines both forward and
backward waves. Indeed, ignoring for a moment Hint we obtain

A.z; !/ D A.0; !/eijˇ.!/jz; (6.177)

so that

E.z; !/e�i!t D
s

�j!j
�0cn.!/

h
A.0; !/eijˇ.!/jz�i!t C A�.0;�!/e�ijˇ.!/jz�i!t

i
:

(6.178)

Taking some ! > 0 we immediately see that A.0; !/ and A�.0;�!/ describe
forward and backward waves with physical frequency !.
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Now we return to the full Eq. (6.176). Before applying it one has to calculate
ıHint=ıA

�.!/ with Hint D 1
4
�0�

.3/
´1
�1 E4dt or

Hint D �0�
.3/

32�3

ˆ 1
�1

E1E2E3E4ı1234dÃ; (6.179)

where

dÃ D d!1d!2d!3d!4; (6.180)

Ei abbreviates E.!i; z/, and the delta function ı.!1 C !2 C!3 C !4/ is abbreviated
by ı1234. Other combinations of frequencies will be denoted by over-bars, e.g.,

ı12N3N4 D ı.!1 C !2 � !3 � !4/: (6.181)

Equation (6.179) can be expressed as

Hint D 1

32�

ˆ 1
�1

T1234.A1 C A��1/.A2 C A��2/.A3 C A��3/.A4 C A��4/ı1234dÃ;
(6.182)

where T1234 denotes

T.!1; !2; !3; !4/ D 
0�
.3/
pj!1!2!3!4jp

n.!1/n.!2/n.!3/n.!4/
; (6.183)

and is completely symmetric with respect to both permutation of indices and
replacement of the sign of any frequency, ! ! �!. In many cases n.!/ is close to
a constant for all relevant frequencies and one can use a very simple expression

T.!1; !2; !3; !4/ D 
0�
.3/

n2.!0/

p
j!1!2!3!4j; (6.184)

where !0 is the carrier frequency. On the other hand, if description of the
nonlinearity in terms of a single �.3/ D const is inappropriate, �.3/ is replaced
with a full third-order susceptibility �.3/.!1; !2; !3; !4/ that enters into Eq. (6.183)
for T1234: In this case we also assume symmetry with respect to permutation of
frequencies, the so-called overall permutation symmetry. The latter applies to the
fiber transparency window, where all involved frequencies considerably differ from
the transition frequencies of the medium [15].

The above derived representation of Hint.A1;A2;A3;A4/ is immediately split
into three terms

Hint D H40 C H31 C H22; (6.185)



6 Hamiltonian Framework for Short Optical Pulses 189

with simple physical interpretations: each term is responsible for a separate 4-wave
process, namely

H40 D 1

32�

ˆ 1
�1

T1234A1A2A3A4ı1234dÃ C c.c.;

H31 D 1

8�

ˆ 1
�1

T1234A1A2A3A
�
4 ı123N4dÃ C c.c.;

H22 D 3

16�

ˆ 1
�1

T1234A1A2A
�
3A
�
4 ı12N3N4dÃ;

where, e.g., the last expression is a classical analogue of the quantum-mechanical
process in which two photons disappear and two new photons are born.

Although all three constituents of Hint have amplitudes of the same order, they
are of different importance for Eq. (6.176). For instance, using Eq. (6.177) one can
estimate that H40 is a weighted average of the quickly oscillating factor

ei.jˇ.!1/jCjˇ.!2/jCjˇ.!3/jCjˇ.!4/j/z (6.186)

over the hyperplane !1 C !2 C !3 C !4 D 0 in the frequency space. Therefore
H40 can be just neglected, or more precisely eliminated using the corresponding
canonical transform as described in [73, 75]. In a similar way, H31 can essentially
contribute to the dynamic if the following conditions are satisfied:

jˇ.!1/j C jˇ.!2/j C jˇ.!3/j D jˇ.!4/j; !1 C !2 C !3 D !4: (6.187)

Recall that A.z; !/ is related to the forward wave for ! > 0 and to the backward
wave for ! < 0. Considering, e.g., only forward waves one can replace jˇ.!/j with
ˇ.!/ and Eq. (6.187) reduces to the standard resonance conditions [73, 75]. Below
we neglect both H40 and H31 so that the propagation Eq. (6.176) finally reads

h
i@z Cjˇ.!/j

i
A.z; !/C 3

8�

ˆ 1
�1

T123!A1A2A
�
3 ı12N3 N!d!1d!2d!3 D 0: (6.188)

Equation (6.188) has the same mathematical structure as the gNLS equation (6.147)
and can be solved using the same numerical methods. Several examples are given
in [5]. On the other hand, Eq. (6.188) is just a reformulation of the original
Maxwell equations (recall that one doesn’t have to neglect non-resonant terms
in the Hamiltonian, they can be removed by a suitable canonical transformation)
without loss of generality. Beside numerics, the presented Hamiltonian framework
has important applications with respect to integrals of motion and an intrinsic
relation to the gNLS equation. These topics are described in the rest of the chapter.
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6.4.3 Energy Transport

In this section we address the problem of energy transport. The value of the instant
power is an important characteristic of optical pulses, in practical applications of the
gNLS equation (6.147) it is convenient to renormalize the envelope  .z; �/ so that
j .z; �/j2 gives the instant power [23]. The renormalization, however, depends on
the chosen carrier frequency and may be inappropriate for optical supercontinuum
in which very different frequencies can provide comparable contributions to the total
power.

Hamiltonian language gives a simple representation for the instant power, a
representation that correctly accounts for all frequencies. Energy conservation for
the electromagnetic field in vacuum in the one-dimensional setting (6.118) is given
by the well-known relation

@t

�
�0E2

2
C B2

2
0

�
C @zjP D 0; (6.189)

where, like in the previous section, jP D EB=
0 is the Poynting vector. For the z-
propagation picture the quantity

´1
�1 jP.z; t/dt should be constant, the latter yields

the total amount of energy transferred by a pulse per unit area that is transversal
to the direction of propagation. If we now account for both fiber dispersion and
nonlinearity, the expression for the energy density becomes complicated, however
the expression for jP should be identical to those in the free space [45]. Therefore
we consider the following quantity:

E ŒE;H� D
ˆ 1
�1

E.z; t/H.z; t/dt D
ˆ 1
�1

E.z; !/H�.z; !/
d!

2�
: (6.190)

z-conservation of E can be established directly from Eq. (6.118) because

d

dz

ˆ 1
�1

EHdt D
ˆ 1
�1
.�H@tB � E@tD/dt D

ˆ 1
�1

D.E/@tEdt (6.191)

and therefore any possible z-dependence of E is related only with the non-
instantaneous part of D.E/

dE

dz
D �0

ˆ 1
�1
.O�E/.@tE/dt D i�0

ˆ 1
�1

!�.!/E.!/E�.!/
d!

2�
: (6.192)

Equation (6.124) indicates that real and imaginary parts of �.!/ are even and odd
functions of frequency correspondingly. Therefore the last integral is determined
only by the imaginary part of �.!/. If the imaginary part can be neglected, the last
integral vanishes and E ŒE;H� becomes an integral of motion.
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Now we express the energy flux in terms of the normal variables A.z; t/ and
A�.z; t/ using (6.173). After simple transformations we obtain

E ŒE;H� D
ˆ 1
�1

!A.z; !/A�.z; !/d!: (6.193)

The latter expression is, of course, of universal nature and gives the desired
expression of total energy transferred by the pulse per unit area of the fiber cross-
section.

6.4.4 Photon Number

In this section we consider the following functional

NŒA;A�� D 2�k0

ˆ 1
�1

A.z; t/A�.z; t/dt D k0

ˆ 1
�1

A.z; !/A�.z; !/d!;
(6.194)

where k0 is an arbitrary constant wave vector. NŒA;A�� is a valid Hamiltonian and
the corresponding equation of motion yields

i@zA.z; !/C ıN

ıA�.!/
D 0 ) A.z; !/ D A.0; !/eik0z: (6.195)

Now, we apply the well known theorem from the classical Hamiltonian mechanics
[7]. Namely, if some Hamiltonian H ŒA;A�� is invariant with respect to one-
parametric family of phase shifts (6.195), the quantity NŒA;A�� is an integral of
motion for the dynamic system generated by H ŒA;A��. This, e.g., applies to the
Hamiltonians H2 and H22, and therefore to the propagation equation generated by

H D
ˆ 1
�1

jˇ.!/jA.!/A�.!/d! C 3

16�

ˆ 1
�1

T1234A1A2A
�
3A
�
4 ı12N3N4dÃ:

(6.196)

The quantity N can be interpreted as the classical expression for the photon number.
The arbitrary factor k0 remains undetermined because the photon number cannot be
defined completely self-consistently in the framework of classical fields.

6.4.5 Analytic Signal

In this section we establish a relation between the Hamiltonian (6.176) and the
gNLS (6.147) equations. In particular, we shall demonstrate that the analytic signal
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naturally appears in the Hamiltonian framework also. To this end we split the
definition (6.172). First a complex field E.z; t/ is derived from E.z; t/ and H.z; t/
so that

E.z; !/ D E.z; !/C �.!/

�0cn.!/
H.z; !/ D E.z; !/� i@zE.z; !/

jˇ.!/j ; (6.197)

then the normal variable A.z; t/ is obtained by a simple rescaling in the frequency
domain

A.z; !/ D 1

2

s
�0cn.!/

�j!j E.z; !/: (6.198)

These new definitions (6.197) and (6.198) are compatible with the older one (6.172).
Let us show that the gNLS equation just stops at the E.z; t/ level, without explicit
use of the canonical variable A.z; t/. Indeed Eq. (6.197) indicates that

E.!/ D E.!/C E�.�!/
2

(6.199)

so that in the physical space E.z; t/ D 1
2
E.z; t/Cc.c.; as is should be for the complex

amplitude. Moreover, applying Eq. (6.197) to a forward wave with E.z; !/ � eiˇ.!/z

we see that E.z; !/ vanishes for ! < 0. In a similar way, for a backward wave with
E.z; !/ � e�iˇ.!/z we see that E.z; !/ vanishes for ! > 0: In other words, if only
forward waves are present, E.z; t/ is just an analytic signal and an envelope for the
electric field. Moreover, the propagation equation for E.z; t/ appears to be identical
to the gNLS equation [5].

6.5 Concluding Remarks

Let us summarize the most important results discussed above. We deal with pulses
propagating in optical fibers and use approach originally developed by Zakharov and
his coworkers for continuous Hamiltonian systems. The most important peculiarity
is that optical equations are solved with respect to the propagation coordinate,
not time. Notice that waves in a fiber can propagate in both directions, unlike
the standard dynamical systems, which evolve forward in time. This difference
leads to some changes in the general formalism, e.g., the quadratic part of
the Hamiltonian looses its standard form

´1
�1 !.k/a.k/a

�.k/dk and appears as´1
�1 jˇ.!/jA.!/A�.!/d!: One has an unusual representation of the resonant

conditions and, moreover, all integrals of motion get an unusual meaning. The
new integrals are determined by the time-averaged fluxes of the relevant physical
quantities. However, all core features of the Hamiltonian approach are identical
for both systems. This makes possible to develop a new framework for pulse
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propagation. In particular, one can recognize that the generalized envelope equation,
a model of choice in optics, is just a reformulation of the general Hamiltonian
equation. In other words, envelope equations can be derived without use of the
slowly varying envelope equation and the envelope as such. This explains why the
gNLS equation works better than expected.
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Chapter 7
Modeling Water Waves Beyond Perturbations

Didier Clamond and Denys Dutykh

Abstract In this chapter, we illustrate the advantage of variational principles for
modeling water waves from an elementary practical viewpoint. The method is based
on a ‘relaxed’ variational principle, i.e., on a Lagrangian involving as many variables
as possible, and imposing some suitable subordinate constraints. This approach
allows the construction of approximations without necessarily relying on a small
parameter. This is illustrated via simple examples, namely the Serre equations in
shallow water, a generalization of the Klein–Gordon equation in deep water and
how to unify these equations in arbitrary depth. The chapter ends with a discussion
and caution on how this approach should be used in practice.

7.1 Introduction

Surface water waves are a very rich physical phenomenon with a long research
history [5, 35]. In addition to their fundamental physical importance, understanding
water waves is also important for many applications related to human safety
and economy such as tsunamis, freak waves, harbor protections, beach nourish-
ment/erosion, just to mention a few examples. Water waves are a paradigm for many
nonlinear wave phenomena in various physical media. The prominent physicist
Richard P. Feynman wrote in his cerebrated lectures [10]: “Water waves that are
easily seen by everyone, and which are usually used as an example of waves in
elementary courses, are the worst possible example; they have all the complications
that waves can have.” This is precisely these complications that make the richness
and interest of water waves. Indeed, despite numerous studies, new waves and new
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wave behaviors are still discovered (e.g., [26, 27]) and wave dynamics is still far
from being fully understood.

Mathematical and numerical models are unavoidable for understanding water
waves. Although the primitive equations governing these waves are rather simple to
write, their mathematical analysis is highly non trivial and even their numerical
resolution is very demanding. Therefore, simplified models are crucial to gain
insight and to derive operational numerical models. Most of the time, simplified
models are derived via some asymptotic expansions, exploiting a small parameter
in the problem at hands. This approach is very effective leading to well-known
equations, such as the Saint-Venant [31, 35], Boussinesq [1], Serre–Green–Naghdi
[12, 29], Korteweg-deVries [17] equations in shallow water and the nonlinear
Schrödinger [22], Dysthe [9] equations in deep water. These equations being
most often derived via some perturbation techniques, they are valid for waves of
small amplitude or/and small wavelength/water depth ratio. However, for many
applications it is necessary to use models uniformly valid for all depths and that are
accurate for large amplitudes. Moreover, some phenomena [26, 27] do not involve
any small parameter and do not bifurcate from rest. The problem is then to derive
models without relying on a small parameter.

It is well-known in theoretical physics that variational formulations are tools of
choice to derive approximations when small parameter expansions are inefficient.
Fortunately, a variational principle is available for water waves that can be exploited
to derive approximations. There are mainly two variational formulations for irro-
tational surface waves that are commonly used, namely the Lagrangian of Luke
[21] and the Hamiltonian of Broer, Petrov and Zakharov [2, 24, 38]. Details on
the variational formulations for surface waves can be found in review papers, e.g.,
[25, 28, 39].

In water wave theory, variational formulations are generally used together with
a small parameter expansion. This is not necessary, however, because variational
methods can also be fruitfully used without small parameter, as it is well-known
in Quantum Mechanics, for example. This was demonstrated in [4], the present
chapter being a simpler illustration of this idea, with some complementary remarks.
A companion presentation with further comments can be found in [3]. Here, only
elementary knowledge in vector calculus is assumed, as well as some familiarity
with the Euler–Lagrange equations and variational principles in Mechanics [11, 18].

The chapter is organized as follows. In Sect. 7.2, the physical hypothesis,
notations and equations are given for the classical problem of irrotational surface
gravity waves. In Sect. 7.3, Luke’s Lagrangian is relaxed to incorporate explicitly
more degrees of freedom. This modification yields the Hamilton principle in its
most general form. The advantage of this formulation is subsequently illustrated
Sect. 7.4 with examples over a fixed horizontal bottom, for the sake of simplicity.
We begin with a shallow water model, followed by a deep water one and ending
with an arbitrary depth generalization. Further generalizations, shortcomings and
perspectives are discussed in Sect. 7.5.
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Fig. 7.1 Definition sketch

7.2 Preliminaries

Consider an ideal incompressible fluid of constant density 
. The horizontal
independent variables are denoted by x D .x1; x2/ and the upward vertical one by y.
The origin of the Cartesian coordinate system is chosen such that the surface y D 0

corresponds to the still water level. The fluid is bounded below by the bottom at
y D �d.x; t/ and above by the free surface at y D �.x; t/. Usually, we assume that
the total depth h.x; t/ � d.x; t/ C �.x; t/ remains positive h.x; t/ > h0 > 0 at all
times t for some constant h0. A sketch of the physical domain is shown on Fig. 7.1.

We denote u D .u1; u2/ the horizontal velocity and v vertical one. The fluid
density being constant, the mass conservation implies an isochoric motion yielding
the continuity equation valid everywhere in the fluid domain

r � u C @yv D 0; (7.1)

where r denotes the horizontal gradient and � denotes the scalar (inner) product of
vectors.

Denoting with over ‘tildes’ and ‘breves’ the quantities computed, respectively, at
the free surface y D �.x; t/ and at the bottom y D �d.x; t/,1 the impermeabilities of
these boundaries give the relations

@t� C Qu � r� D Qv; @td C Mu � rd D �Mv: (7.2)

Traditionally in water wave modeling, the assumption of flow irrotationality is
also adopted because it is relevant in many situations and it brings considerable
simplifications. The zero-curl velocity field condition can be written

rv D @yu; r � u D 0; (7.3)

1For example Qu D u.y D �/, Mv D v.y D �d/.
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where � is a two dimensional analog of the cross product.2 The irrotationality
conditions (7.3) are satisfied identically introducing a (scalar) velocity potential �
such that

u D r�; v D @y�: (7.4)

For irrotational motions of incompressible fluids, the Euler momentum equations
can be integrated into the scalar Lagrange–Cauchy equation

p C @t� C gy C 1
2
jr�j2 C 1

2
.@y�/

2 D 0; (7.5)

where p is the pressure divided by the density 
 and g > 0 is the acceleration due to
gravity. At the free surface the pressure is zero—i.e., Qp D 0—but surface tensions
or other effects could be taken into account. Note that for steady flows, i.e. when
the velocity field is independent of time, @t� D constant D �B and the Lagrange–
Cauchy equation becomes the Bernoulli equation, B being a Bernoulli constant.

In summary, with the hypotheses above, the governing equations of the classical
(non overturning) surface water waves are [16, 32, 36]:

r2� C @2y � D 0; �d.x; t/ 6 y 6 �.x; t/; (7.6)

@t� C .r�/ � .r�/ � @y� D 0; y D �.x; t/; (7.7)

@t� C 1
2
jr�j2 C 1

2
.@y�/

2 C g� D 0; y D �.x; t/; (7.8)

@td C .rd/ � .r�/ C @y� D 0; y D �d.x; t/: (7.9)

The assumptions of fluid incompressibility and flow irrotationality lead to the
Laplace equation (7.6) for the velocity potential �.x; y; t/. The main difficulty
of the water wave problem lies on the boundary conditions. Equations (7.7)
and (7.9) express the free-surface kinematic condition and bottom impermeability,
respectively, while the dynamic condition (7.8) expresses the free surface isobarity.

7.3 Variational Formulations

Equations (7.6)–(7.9) can be derived from the “stationary point” (point where the
variation is zero) of the following functional

L D
ˆ t2

t1

ˆ
˝

L 
 d2 x dt

2For two-dimensional vectors a D .a1; a2/ and b D .b1; b2/, a � b D a1b2 � a2b1 is a scalar.
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(˝ the horizontal domain) where the Lagrangian density L is [21]

L D �
ˆ �

�d

�
gy C @t� C 1

2
jr�j2 C 1

2
.@y�/

2
�

dy: (7.10)

One can check that the Euler–Lagrange equations for this functional yield directly
the water wave equations. (Detailed algebra can be found in [21], but also on
Wikipedia.3) If the fluid incompressibility and the bottom impermeability are
satisfied identically, Luke’s Lagrangian is reduced to a form leading directly to
the Hamiltonian of Zakharov [38]. However, for many practical applications, it
is advantageous not to fulfil a maximum of relations, as advocated in [4], further
explained in [3] and here.

Integrating by parts and neglecting the terms at the horizontal and temporal
boundaries because they do not contribute to the functional variations (this will
be done repeatedly below without explicit mention), Luke’s variational formula-
tion (7.10) can be rewritten with the following Lagrangian density:

L D Q� �t C M� dt � g �2

2
C g d2

2
�

ˆ �

�d

"
jr�j2
2

C � 2y

2

#
dy: (7.11)

The alternative form (7.11) is somehow more convenient. Note that:

(a) the term Q��t, for example, can be replaced by �� Q�t after integration by parts;
(b) the term gd2=2 can be omitted because, d being prescribed, it does not

contribute to the variational principle;
(c) the term g�2=2 can be replaced by gh2=2 via a change of definition of �.

Luke’s Lagrangian involves a velocity potential but not explicitly the velocity
field. Thus, any approximation derived from (7.10) has an irrotational velocity
field because the latter is calculated from the relations (7.4). The water wave
problem involving several equations, there are a priori no reasons to enforce the
irrotationality and not, for example, the incompressibility or the surface isobarity or
even any combination of these relations. As it is well known in numerical methods,
enforcing an exact resolution of as many equations as possible is not always a good
idea. Indeed, numerical analysis and scientific computing know many examples
when efficient and most used algorithms do exactly the opposite. These so-called
relaxation methods have proven to be very efficient for stiff problems. When solving
numerically a system of equations, the exact resolution of a few equations does not
necessarily ensure that the overall error is reduced: What really matters is that the
global error is minimized. A similar idea of relaxation may also apply to analytical
approximations, as advocated in [4].

In order to give us more freedom for building approximations, while keeping
an exact formulation, the variational principle is modified (relaxed) by introducing

3http://en.wikipedia.org/wiki/Luke’s_variational_principle.

http://en.wikipedia.org/wiki/Luke's_variational_principle
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explicitly the horizontal velocity u D r� and the vertical one v D �y. The
variational formulation can thus be reformulated with the Lagrangian density

L D Q� �t C M� dt � g �2

2
�

ˆ �

�d



u2 C v2

2
C ��.r� � u/ C �.�y � v/

�
dy;

(7.12)

where the Lagrange multipliers � and � have to be determined. By variations with
respect of u and v, one finds at once the definition of the Lagrange multipliers:

� D u; � D v; (7.13)

so .�; �/ is another representation of the velocity field, in addition to .u; v/ and
.r�; �y/. These relations can be substituted into (7.12), but it is advantageous
to keep the most general form of the Lagrangian. Indeed, it allows to choose
ansatz for the Lagrange multipliers � and � that can be different from the velocity
field u and v. The Lagrangian density (7.12) involving six dependent variables
{�; �;u; v;�; �}—while the original Lagrangian (7.11) only two (� and �)—it
allows more and different subordinate relations to be fulfilled.

The connection of (7.12) with the variational formulation of the classical
mechanics can be seen applying Green’s theorem to (7.12) that yields another
equivalent variational formulation involving the Lagrangian density

L D .@t� C Q� � r� � Q�/ Q� C .@td C M� � rd C M�/ M� � 1
2

g �2

C
ˆ �

�d

�
� � u � 1

2
u2 C �v � 1

2
v2 C .r � � C @y�/ �

�
dy; (7.14)

and if the relations (7.13) are used, this Lagrangian density is reduced to

L D .@t� C Qu � r� � Qv/ Q� C .@td C Mu � rd C Mv/ M� � 1
2

g �2

C
ˆ �

�d

�
1
2
u2 C 1

2
v2 C .r � u C @yv/ �

�
dy: (7.15)

Thus, the classical Hamilton principle is recovered, i.e., the Lagrangian is the kinetic
energy minus the potential energy plus constraints for the incompressibility and the
boundary impermeabilities.

The Lagrangians (7.10), (7.11), (7.12), (7.14) and (7.15) yield the same exact
relations. However, (7.12), (7.14) and (7.15) allow the constructions of approxima-
tions that are not exactly irrotational, that is not the case (7.10) and (7.11). This
advantage is illustrated below via some simple examples. Further examples can be
found in [4, 6].
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7.4 Examples

Here, we illustrate the use of the variational principle via some simple examples. For
the sake of simplicity, we always consider the pseudo velocities equal to the velocity,
i.e., we take � D u and � D v. We also focus on two-dimensional problems in
constant depth, i.e., one horizontal dimension (denoted x) with d > 0 independent
of t and x. For brevity, the horizontal velocity is denoted u.

7.4.1 Shallow Water: Serre’s Equations

For surface waves propagating in shallow water, it is well known that the velocity
fields varies little along the vertical. A reasonable ansatz for the horizontal velocity
is thus one such that u is independent of y, i.e., one can consider the approximation

u.x; y; t/ 
 Nu.x; t/; (7.16)

meaning that u is assumed close to its depth-averaged value.4 In order to introduce
a suitable ansatz for the vertical velocity, one can assume, for example, that the
fluid incompressibility (7.1) and the bottom impermeability (7.2) are fulfilled. These
choices lead thus to the ansatz

v.x; y; t/ 
 � .y C d/ Nux: (7.17)

Notice that, with this ansatz, the velocity field is not exactly irrotational, i.e.

vx � uy 
 � .y C d/ Nuxx: (7.18)

This does not mean that we are modeling a vortical motion but, instead, that we
are modeling a potential flow via a velocity field that is not exactly irrotational.
This should not be more surprising than, e.g., using an approximation such that the
pressure at the free surface is not exactly zero.

With the ansatz (7.16)–(7.17), the vertical acceleration (with D=Dt being the
temporal derivative following the motion) is

D v

Dt
D @ v

@t
C u

@ v

@x
C v

@ v

@y

 � v Nux � .y C d/

D Nux

Dt
D 	

y C d

h
;

(7.19)

4 Nu D 1
h

´ �
�d u dy.
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where 	 is the vertical acceleration at the free surface:

	 � D v

Dt

ˇ̌
ˇ̌
yD�


 h
� Nu 2x � Nuxt � Nu Nuxx

�
: (7.20)

The kinetic energy per water column K is similarly easily derived

K



D

ˆ �

�d

u2 C v2

2
dy 
 h Nu2

2
C h3 Nu 2x

6
: (7.21)

The Hamilton principle (7.15)—i.e., kinetic minus potential energies plus con-
straints for incompressibility and boundary impermeabilities—yields, for this ansatz
and after some elementary algebra, the Lagrangian density

L D 1
2

h Nu2 C 1
6

h3 Nu 2x � 1
2

g h2 C f ht C Œ h Nu �x g Q�: (7.22)

The Euler–Lagrange equations for this functional are

ı Q� W 0 D ht C Œ h Nu �x ; (7.23)

ı Nu W 0 D Q� hx � Œ h Q� �x � 1
3
Œ h3 Nux �x C h Nu; (7.24)

ıh W 0 D 1
2

Nu2 � g h C 1
2

h2 Nu 2x � Q�t C Q� Nux � Œ Nu Q� �x; (7.25)

thence

Q�x D Nu � 1
3

h�1 Œ h3 Nux �x; (7.26)

Q�t D 1
2

h2 Nu 2x � 1
2

Nu2 � g h C 1
3

Nu h�1 Œ h3 Nux �x: (7.27)

Differentiation of (7.27) with respect of x yields, after some algebra, the equation

� Nu � 1
3

h�1.h3 Nux/x
�

t
C �

1
2

Nu2 C g h � 1
2

h2 Nu 2x � 1
3

Nu h�1.h3 Nux/x
�

x
D 0;

(7.28)

that can rewritten in the non-conservative form

Nut C Nu Nux C g hx C 1
3

h�1 @x
�

h2 	
� D 0: (7.29)

After multiplication by h and exploiting (7.23), we also derive the conservative
equations

Œ h Nu �t C �
h Nu2 C 1

2
g h2 C 1

3
h2 	

�
x

D 0: (7.30)
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In summary, we have derived the system of equations

ht C @xŒ h Nu � D 0; (7.31)

@tŒ h Nu � C @x
�

h Nu2 C 1
2

g h2 C 1
3

h2 	
� D 0; (7.32)

h Nu 2x � h Nuxt � h Nu Nuxx D 	; (7.33)

that are the Serre equations. With the Serre equations, the irrotationality is not
exactly satisfied, and thus these equations cannot be derived from Luke’s variational
principle.

Assuming small derivatives (i.e., long waves) but not small amplitudes, these
equations were first derived by Serre [30] via a different route. They were
independently rediscovered by Su and Gardner [33], and again by Green et al.
[13]. These approximations being valid in shallow water without assuming small
amplitude waves, they are therefore sometimes called weakly-dispersive fully-
nonlinear approximation [37] and are a generalization of the Saint-Venant [31, 35]
and of the Boussinesq equations. The variational derivation above is obvious and
straightforward. Further details on the Serre equations concerning their properties
and numerical resolutions can be easily found in the literature, e.g., [8, 20, 34].

7.4.2 Deep Water: Generalized Klein–Gordon Equations

For waves in deep water, measurements show that the velocity field varies nearly
exponentially along the vertical [14, 15], even for very large unsteady waves
(including breaking waves). Thus, this property is exploited here to derive simple
approximations for gravity waves in deep water.

Let � > 0 be a characteristic wavenumber corresponding, e.g., to the carrier
wave of a modulated wave group or to the peak frequency of a JONSWAP spectrum.
Following the discussion above, it is natural to seek approximations in the form

f � I u I v g 
 f Q� I Qu I Qv g e�.y��/; (7.34)

where Q�, Qu and Qv are functions of x and t that can be determined using the variational
principle (with or without additional constraints). The ansatz (7.34) is certainly the
simplest possible that is consistent with experimental evidences.

The ansatz (7.34) substituted into the Lagrangian density (7.15) yields

2 �L D 2� Q� �t � g � �2 C 1
2

Qu2 C 1
2

Qv2 � . Q�x � � Q� �/ Qu � � Qv Q�: (7.35)



206 D. Clamond and D. Dutykh

With (or without) subordinate relations, this Lagrangian gives various equations.
We present here only the case without further constraints, thus the Euler–Lagrange
equations yield

• Qu W 0 D Qu � Q�x C � Q� �x;

• Qv W 0 D Qv � � Q�;
• Q� W 0 D 2� �t C Qux � � Qv C � Qu �x;

• � W 0 D 2 g � � C 2 � Q�t C � Œ Q� Qu �x:

The two first relations imply that this approximation is exactly irrotational and their
use in the last two equations gives

�t C 1
2
��1 Q�xx � 1

2
� Q� D 1

2
Q� � �xx C � �2x

�
; (7.36)

Q�t C g � D � 1
2

� Q� Q�x � � Q�2 �x
�

x
: (7.37)

Since Eqs. (7.36)–(7.37) derive from an irrotational motion, they can also be
obtained from Luke’s Lagrangian (7.10) under the ansatz (7.34). That would not
be the case if, for example, we had enforced the incompressibility in the ansatz
because, here, that leads to a rotational ansatz (see [4], § 2784.3).

To the linear approximation, after elimination of Q�, Eqs. (7.36)–(7.37) yield

�tt � .g=2�/ �xx C .g�=2/ � D 0; (7.38)

that is a Klein–Gordon equation. For this reason, Eqs. (7.36) and (7.37) are named
here generalized Klein–Gordon (gKG). The Klein–Gordon equation is prominent
in mathematical physics and appears, e.g., as a relativistic generalization of the
Schrödinger equation. The Klein–Gordon equation (7.38) admits a special (2�=k)-
periodic traveling wave solution

� D a cos k.x � ct/; c2 D g
�

k2 C �2
� ı�

2 � k2
�
:

Therefore, if k D � the exact dispersion relation of linear waves (i.e., c2 D g=k) is
recovered, as it should be. This means, in particular, that the gKG model is valid for
spectra narrow-banded around the wavenumber �. Further details and properties of
the gKG are given in [4] (Sect. 4.2) and in [7].
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7.4.3 Arbitrary Depth

A general ansatz, for waves in finite constant depth and satisfying identically the
bottom impermeability, is suggested by the linear theory of water waves:

� 
 cosh �Y

cosh �h
Q�.x; t/; u 
 cosh �Y

cosh �h
Qu.x; t/; v 
 sinh �Y

sinh �h
Qv.x; t/;

(7.39)

where Y D y C d. The parameter � > 0 is a characteristic wave number to be made
precise a posteriori. This ansatz is uniformly valid for all depths because it yields
the shallow water one (7.16) as � ! 0, and the deep water one (7.34) as d ! 1.
Obviously, the ansatz (7.39) should be valid for wave fields with wavenumber
spectra that are narrow-banded around �.

Substituting the ansatz (7.39) into (7.15), one obtains

L D Œ �t C Qu �x � Q� � g �2

2
C Qv2

2

sinh.2�h/ � 2�h

2� cosh.2�h/ � 2�
C

Q� Qv
2



2�h

sinh.2�h/
� 1

�

C

 Qu2
2

C Q� Qux � � tanh.�h/ Q� Qu �x

�
sinh.2�h/C 2�h

2� cosh.2�h/C 2�
: (7.40)

Applying various constraints, one obtains generalized equations including the ones
derived in Sects. 7.4.1 and 7.4.2 as limiting cases. In particular, one can derive
arbitrary depth generalizations of the Serre and Klein–Gordon equations; these
derivations are left to the reader. The main purpose of this section is to illustrate
the easiness of deriving approximations uniformly valid for all depths, contrary to
perturbation methods with which the two main theories (i.e., Stokes-like and shallow
water expansions) have separated validity domains.

Indeed, the Serre equations of Sect. 7.4.1 can also be derived from an asymptotic
expansion (with the depth over wavelength ratio as small parameter). This is not the
case for all approximations obtainable from the variational principle (see examples
in [4, 6]). However, this does not mean that approximations obtained this way do
not have restricted validity domains, as further discussed below.

7.5 Discussion

Via simple examples, we have illustrated above the advantage of using a relaxed
variational principle. Further examples can be found in [4]. The advantages of
this approach is greater on variable depth where it is easy to derive simple
approximations not derivable from asymptotic expansions [6].

Here, we have used the isochoric velocity field (u; v) as subordinate condition,
but other conditions can be imposed, as well as imposing different conditions on
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(u; v) and (�; �). Indeed, the velocity field (u; v) being not more (nor less) physical
than the pseudo-velocity field (�; �) and the potential velocity field (r�; �y), the
constraints can be imposed by combinations of these three fields.

The relaxed variational principle provides a common platform for deriving sev-
eral approximate equations from the same ansatz in changing only the constraints.
Beside the ansatz and the subordinate conditions, no further approximations are
needed to derive the equations. Using more general ansatze (i.e., involving more
free functions and parameters) and well chosen constraints, one can hopefully derive
more accurate approximations.

Although the possibility of using the variational methods without a small-
parameter expansion has been overlooked in the context of water waves, it has
long been recognized as a powerful tool in Theoretical Physics, in particular in
Quantum Mechanics. This approach is even thought in some undergraduate lectures.
For instance, from Berkeley’s course on Quantum Mechanics [23]:

– The perturbation theory is useful when there is a small dimensionless parameter in the
problem, and the system is exactly solvable when the small parameter is sent to zero.

– . . . it is not required that the system has a small parameter, nor that the system is exactly
solvable in a certain limit. Therefore it has been useful in studying strongly correlated
systems, such as the fractional Quantum Hall effect.

However, in order to be successful, the great power of the variational method
needs to be harnessed with skill and care, as it is well-known in Theoretical Physics.
Indeed, as quoted in the same lecture on Quantum Mechanics:

– . . . there is no way to judge how close your result is to the true result. The only thing you
can do is to try out many Ansätze and compare them.

– . . . the success of the variational method depends on the initial “guess” . . . and an
excellent physical intuition is required for a successful application.

But it is also well-known that this approach can be very rewarding:

– For example, R. B. Laughlin [19] proposed a trial wave function that beat other wave
functions that had been proposed earlier, such as “Wigner crystal”.

– Once your wave function gives a lower energy than your rival’s, you won the race.5

Thus, despite its “dangers”, the variational approach is a tool of choice for
modeling water waves, specially for problems when there are no obvious small
parameters or if approximations valid for a broad range are needed. We have
illustrated these claims in this chapter.
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Chapter 8
Quantitative Analysis of Nonlinear
Water-Waves: A Perspective
of an Experimentalist

Lev Shemer

Abstract In the present review the emphasis is put on laboratory studies of
propagating water waves where experiments were designed with the purpose to
enable juxtaposing the measurement results with the theoretical predictions, thus
providing a basis for evaluation of the domain of validity of various nonlinear
theoretical model of different complexity. In particular, evolution of deterministic
wave groups of different shapes and several values of characteristic nonlinearity is
studied in deep and intermediate-depth water. Experiments attempting to generate
extremely steep (rogue) waves are reviewed in greater detail. Relation between
the kinematics of steep nonlinear waves and incipient breaking is considered.
Discussion of deterministic wave systems is followed by review of laboratory
experiments on propagation of numerous realizations of random wave groups
with different initial spectra. The experimental results are compared with the
corresponding Monte-Carlo numerical simulations based on different models.

8.1 Introduction

Ocean wave forecasting is indispensable for navigation and coastal activities,
however accurate predictions critically depend on detailed understanding of the
processes that govern dynamics of water waves. Gaining such an understanding
represents a non-trivial intellectual challenge since waves are both nonlinear and
stochastic in nature. In recent years the extremely steep (rogue, or freak) waves
attract particular attention [23] due to their potential to cause significant damage
to marine traffic as well as to off-shore and coastal structures. The complexity
of ocean water-waves in general, and of rogue waves in particular, makes it
imperative to investigate much simpler nonlinear gravity wave fields in order to
identify the dominant mechanisms that govern their behavior. For example, wave
energy dissipation by various mechanisms, or energy input due to wind, may
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play an important role in wave evolution. These effects are sometimes accounted
for in the numerical solutions by invoking phenomenological models [24]. Of
particular interest, however, is wave train transformation as a result of the action of
energy-conserving factors, like nonlinear interactions and dispersion. In laboratory
experiments there is no energy input by wind; moreover, for sufficiently long waves
in absence of breaking dissipation may play only a minor role and can thus can often
be neglected. This leaves the nonlinearity and dispersion as factors that dominate the
evolution process in wave tank experiments.

The theoretical analysis of the effect of nonlinearity on water-waves utilizes
the fact that the most important non-trivial interactions in deep-water waves occur
among four waves (wave quartets) [51, 52], and consequently are limited to the
third order in the wave steepness [86]. In nature, these nonlinear interactions are
usually stochastic in nature. Hasselmann [17] was the first to apply statistical
approach and the kinetic theory to describe random ocean waves. As a result of
nonlinearity, a large number of harmonics with various frequencies exchange energy
and transfer it to shorter scales where the wave energy is dissipated by breaking or
otherwise. The so-called resonance interactions among four waves are considered.
The resonance wave quartets satisfy the following conditions on their wave vectors
ki and frequencies !i, i being the number of the wave:

k0 C k1 D k2 C k3I !0 C !1 D !2 C !3 (8.1)

This phenomenon is sometimes called wave, or weak, turbulence, to acknowledge
similarity to Kolmogorov energy cascade in fluid turbulence. Recently water wave
turbulence theory was advanced considerably by Zakharov and his colleagues (see,
e.g. Zakharov [87], Nazarenko [42] and references therein). The kinetic wave
theory that serves as a basis for modern wave climate prediction is based on two
fundamental assumptions: that the wave nonlinearity is weak, and that and the
phases of different harmonics are random. The random phase approximation is an
essential assumption used for turbulent closures for all stochastic wave systems and
even for a much broader range of turbulent systems.

One major simplification in water waves studies is decoupling of randomness
and nonlinearity. One can thus concentrate first on deterministic, as opposed to
stochastic, wave fields. The problem of evolution of a deterministic nonlinear wave
system still remains extremely complex, and additional simplifications are required.
Ocean waves exhibit considerable directional spreading; yet accounting for the
angular distribution of the wave propagation directions complicates significantly
the theoretical analysis. While measurements of evolution of short-crested 2D wave
fields are possible in laboratory wave basins, see i.e. [22, 48], most experiments
on nonlinear wave propagation were performed in long wave flumes where only
unidirectional (1D) waves can be generated.

Numerous attempts have been made to explore the possibility to use deterministic
nonlinear wave theories to forecast the evolution of a random wave field, as an
alternative to application of the kinetic equation [2, 3, 47, 75]. These studies reveal
the crucial role of non-resonant interactions (among wave quartets for which the
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second condition in Eq. (8.1) is not satisfied exactly) in evolution of nonlinear
random water waves. Shemer [55] demonstrated that nonlinear interactions can
be quite significant for non-resonating deterministic wave quartets as well. For
unidirectional waves, no exact resonances exist among wave quartets that contain
three or four different waves and only near-resonant interactions between such wave
quartets are possible. The crucial role of near resonant interactions for wave field
evolution make experiments in a wave tank a very convenient vehicle to study non-
linear random waves in laboratory conditions. Some experiments in a long wave
tank have been performed on deep narrow-banded waves with random phases (see
[41] and references therein). Results of these experiments indicate that in spite of
lack of exact resonances in a unidirectional wave field, nonlinear effects are essential
and they strongly affect the statistical properties of the wave field.

A number of fully nonlinear solvers for studying the evolution of unidirec-
tional nonlinear waves were developed in recent decades. Nevertheless, simplified
theoretical models often offer significant advantages and are widely used. The
simplifications in the models may also include assumptions of either vanishing
or very narrow spectral width. The effects of wave energy dissipation by various
mechanisms, or energy input due to wind, are sometimes accounted for in the
numerical solutions by invoking phenomenological models.

It should be stressed that linear water-wave theory is well developed; it accounts
for dispersion and in many occasions provides satisfactory solutions, in particular
for deep and intermediate-depth water. Involving nonlinearity may be justified in
occasions when it modifies the linear solutions considerably. Different nonlinear
theoretical models, as well as fully nonlinear computations contain numerous
simplifying assumptions. To justify application of these advanced methods of
solution of water-waves problems, the validity of the results has to be verified
by carrying out controlled experiments that allow estimate of the importance
of essentially nonlinear mechanisms and enable quantitative comparison of the
theoretical predictions with the measurements.

The structure of this chapter is as following. The description of experimental
facilities used is presented first in Sect. 8.2. Comparison between theoretical results
and measurements is then carried out for nonlinear wave models with increasing
complexity. Deterministic water wave groups are considered first. The limited
validity of the results based on the nonlinear Schrödinger (NLS) equation is
demonstrated in Sect. 8.3. In order to improve the accuracy of the theoretical results,
the modified nonlinear Schrödinger (mNLS, or Dysthe) equation, is employed in
Sect. 8.4. Part of this section is devoted to presentation of the essential differences
between the analysis of the wave field evolution in time that is customarily carried
out in theoretical studies, and the spatial variation observed in wave tanks. Different
aspects of application of the spatial version of the Zakharov equation that is the most
general third order theoretical model, to the analysis of evolution of unidirectional
wave trains are examined in Sect. 8.5. Experiments on random unidirectional waves
with different spectra and comparison with Monte-Carlo simulations based on
different models are described in Sect. 8.6. In analysis of both deterministic and
random waves an emphasis is put on possible mechanisms leading to generation



214 L. Shemer

of extremely large (the so-called freak, or rogue) waves. Such waves, often dubbed
killer-waves, appear and disappear fast and unexpectedly, and have the potential of
causing substantial damage to marine traffic. Finally, the presented results will be
discussed and the conclusions presented in Sect. 8.7.

8.2 The Experimental Facilities

The majority of the experiments discussed here in detail were carried out in the Tel-
Aviv University (TAU) wave tank which is 18 m long, 1.2 m wide and has a constant
depth of 0.6 m. A paddle-type wavemaker hinged near the floor is located at one end
of the tank. The wavemaker consists of four modules, which in all experiments
discussed here were adjusted to move in phase with identical amplitudes and
frequencies. The wavemaker is driven by a computer-generated signal. At the far end
of the tank a wave energy-absorbing sloping beach is installed. The beach starts at
the distance of about 14 m from the wavemaker; no measurements were performed
in the beach region. The instantaneous surface elevation is measured simultaneously
by resistance-type wave gauges. The probes are mounted on a bar parallel to the side
walls of the tank and fixed to a carriage which can be moved along the tank. In most
experiments the carriage was placed manually at the desired measuring location.
More recently, the capability to control the location of the carriage by computer was
added. Measurements of the surface elevation are performed at numerous carriage
locations along the center line of the tank. The distance between the adjacent gauges
on the bar is adjustable, in most cases four wave gauges with a constant spacing
not exceeding 0.4 m between the adjacent probes was used. Probes are calibrated
using a stepping motor and a computerized static calibration procedure described
in detail in Shemer et al. [63]. The calibration is performed at the beginning of
each experimental run. The probe response is essentially linear for the range of
surface elevations under consideration. The voltages of the four wave gauges, the
wavemaker-driving signal and the outputs of position potentiometers of the four
wavemaker paddles are sampled using an A/D converter and stored at the computer
hard disk for further processing. The sampling frequency is adjusted in each
experiment to be by two orders of magnitude higher that the carrier wave frequency.
To enable measurements for various water depths, a false bottom made of a number
of 1.18 m by 1.25 m marine plywood plates 1.8 cm thick can be installed in the tank.
Each plywood plate is independently suspended on stainless steel rods from the steel
frame of the tank, so that any desirable effective water depth can be attained.

Some experiments reported here were carried out in the Large Wave Channel
(GWK) in Hanover, Germany. The tank has a length of 300 m, width of 5 m and
depth of 7 m. Water depth in all experiments was set to be 5 m. At the end of the
wave tank, there is a sand beach starting at the distance of 270 m with slope of
30ı. The computer-controlled piston-type wavemaker is equipped with the reflected
wave energy absorption system. The instantaneous water height is measured using
25 wave gauges of resistance type placed along the tank wall; the distribution of
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the wave gauges along the tank was adjusted to the goal of each experiment. The
static probe calibration was performed by filling the tank first to the maximum
possible depth and then reducing the depth in steps adjusted to the range of surface
elevations relative to the undisturbed value. The calibration curve for each wave
gauge was obtained by best fit to linear dependence. Due to the size of the facility,
the calibration procedure usually takes a whole working day. The wave gauges were
therefore calibrated only once in a week. It is estimated that the absolute error in the
measured instantaneous surface elevation in most cases did not exceed about 1 cm.

In all experiments the wave train of finite duration was generated by a wave-
maker. In the GWK experiments, a single wave group was excited in each
experimental run, while in a smaller TAU facility the number of groups in each
wave train did not exceed four. In both wave tanks each experimental run started
only after a sufficient interval from the previous experiment when the water
surface was quiescent and all remaining disturbances decayed totally. In the GWK
measurements the reflected wave energy absorption system effectively eliminated
the existence of very long waves in the tank and enabled relatively short (about
15 min) intervals between consecutive experimental runs. The output voltages of all
wave gauges, as well as of the wavemaker driving signal and of the output of the
wavemaker position potentiometer that provides information on the instantaneous
wavemaker displacement, were sampled at sufficiently high rate adjusted to the
dominant frequency with the total sampling duration of 350 s.

8.3 The Nonlinear Schrödinger Equation

Sea waves can be described quite faithfully by JONSWAP spectrum [18]. One of the
important features of this spectrum is its relatively narrow frequency band, which
results in a notable wave groupiness. The simplest nonlinear theoretical model
which is capable of describing the evolution of propagating wave packet with a
sufficiently narrow spectrum in the range of water depths from deep to intermediate
is the nonlinear Schrödinger (NLS) equation (see, e.g. Mei [39]). This equation was
derived by Zakharov [86] and Hasimoto and Ono [16] and has been extensively
applied for description of wave group evolution in deep water. An agreement
between the experimentally found growth rates of the unstable sidebands with the
theoretical predictions based on the NLS equations was obtained [31]. Zakharov
and Shabat [88] demonstrated analytically using the NLS equation that an arbitrarily
shaped envelope disintegrates eventually into a finite number of envelope solitons.
Wave train disintegration was indeed observed in deep water by Yuen and Lake
[84, 85], and by Su [76].

In an attempt to determine the domain of applicability of the NLS equation,
Shemer et al. [64] investigated transformation of deterministic wave groups in
intermediate water depth in a laboratory wave tank. The measurements were
compared with the results of numerical solution based on the NLS equation. Wave
group propagation was studied for a number of values of constant water depth
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h with q D k0h D O.1/, k0 D 2�=�0 being the carrier wave number and �0
the carrier wave length, covering the range from a nearly shallow water to the
values of q approaching deep water conditions. Simplest possible initial shapes of
the wavemaker driving signal which satisfy the narrow spectrum condition were
selected:

s.t/ D s0cos.˝t/cos.!0t/I ˝ D !0=20I (8.2)

s.t/ D s0jcos.˝t/jcos.!0t/I ˝ D !0=20I (8.3)

s.t/ D s0exp.�.t=mT0/
2/cos.!0t/I 16T0 < t < 16T0: (8.4)

Here s0 is the forcing wavemaker amplitude, !0 D 2�=T0 is the radian carrier wave
frequency and ˝ is the modulation frequency. The spectrum given by Eq. (8.2) is
bimodal, with two distinct peaks of identical height at !0 ˙˝ . The envelope given
by Eq. (8.3) is identical to that given by Eq. (8.2), but the symmetric spectrum of this
signal with the period of 2�=˝ is considerably more complicated; it has a maximum
at the carrier frequency !0 and consists of a set of discrete frequencies spaced by
!0=10. The Gaussian driving signal given by Eq. (8.4) generates widely separated
wave groups. The parameter m determines the width of the envelope; the larger is the
value of m, the wider is the group. The discrete frequency spectrum of the surface
elevation in the wave group defined by Eq. (8.4) also has a Gaussian shape with the
maximum at !0 and resolution of !0=32; the value of m D 5 was selected in those
experiments, so that the initial spectrum was quite narrow.

Three values of the maximum driving amplitude s0 were used for each shape
of the forcing signal. The maximum driving amplitudes were selected so that close
to the wavemaker, the resulting carrier wave had the maximum wave amplitudes
a0 corresponding to the steepness � D k0a0 of about � D 0:07 (low amplitude),
� D 0:14 (intermediate amplitude), and � D 0:21 (high amplitude). Two values of
the carrier wave periods, T0 D 0:7 s and T0 D 0:9 s, were employed. Experiments
were carried out for two positions of the false bottom in the tank, corresponding
to the water depths of h D 11:8 cm and h D 17:0 cm, as well as with the false
bottom removed, thus yielding the maximum possible in the facility water depth
h D 60 cm. The surface elevation for a modulated unidirectional narrow-banded
wave can be presented at the leading order as

� D Re
�
a.x; t/ei.k0x�!0t/

�
; (8.5)

where a.x; t/ is the slowly varying in time and space complex amplitude of the
carrier wave with the frequency !0 and the wave number k0. The dispersion relation
for intermediate water depth is

!20 D kg � tanh.q/; (8.6)

where g is the acceleration due to gravity.
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In order to perform the comparison of the model results with the experiment,
the NLS equation has to be written in a form describing the evolution of the wave
group along the tank (i.e. in space); thus the enabling determination of the surface
elevation variation in time, as measured by wave gauges at fixed measuring stations,
�.t/. Following Mei [39], the dimensionless scaled variables were introduced as

a D a0A; � D �!0.x=cg � t/; X D �2k0x (8.7)

where A is the complex dimensionless wave group envelope, a0 is the characteristic
wave amplitude, x is the coordinate along the tank and t is the time. The group
velocity cg D @!=@k. The NLS equation can be written as

� i
@A

@X
C ˛

@2A

@�2
C ˇjAj2A D 0: (8.8)

The coefficients in the NLS are defined in the dimensionless form by

˛ D � !0
2

2k0cg
3

@cg

@k
(8.9)

ˇ D 1

n

"
cosh.4q/C 8 � 2tanh2.q/

16sinh4.q/
� 1

2sinh2.2q/

.2cosh2.q/C n
2
/

q
tanh.q/ � n2

#
; (8.10)

where the parameter n D cg=cp represents the ratio of group and phase velocities
and is given by

n D 1

2

�
1C 2q

sinh.2q/



: (8.11)

Equation (8.8) was solved numerically using an implicit finite difference scheme
with periodic in � boundary conditions. Initial conditions at X D 0 are in accordance
with the shapes defined by Eqs. (8.2)–(8.4). The variation of the surface elevation �
is obtained from the solution of Eq. (8.8) using the computed complex amplitudes
A.X; �/ and the relations between the scaled dimensionless .X; �/ and the physical
.x; t/ variables, given by Eq. (8.7).

As long as characteristic wave lengths are relatively short compared to the water
depth, the deep water dispersion relation holds and waves are strongly dispersive.
For shallower water, wave dispersion becomes weaker and depth-dependent. Wave
propagation in coastal region and in shallow water thus constitutes a separate
problem and is not considered in detail here.

Measurements of instantaneous surface elevation at multiple locations along
the tank were performed by Shemer et al. [64] for three shapes of wave groups,
three values of the dimensional water depth h and for three maximum wave
amplitudes a0. For each condition, wave groups with two carrier wave periods T0
were investigated. The total number of experimental conditions in this study is thus



218 L. Shemer

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

k0h

β

Fig. 8.1 Variation of the nonlinear term coefficient in the NLS equation ˇ with the dimensionless
depth k0h. Symbols denote the experimental conditions

was 54. For the sake of brevity, the following discussion is limited to three values of
ˇ corresponding to the defocusing regime at h D 0:118m; T0 D 0:9 s (ˇ D �1:17),
approximately linear regime (h D 0:17m, T0 D 0:7 s, ˇ D 0:19 � 1), and nearly
deep-water case with h D 0:60m, T0 D 0:7 s, ˇ D 0:79. The coefficients ˛ and ˇ in
the NLS equation (8.8), as well as the parameter n are functions of the dimensionless
water depth q. Note that for q ! 1, ˛ ! 1, ˇ ! 1, and n ! 0:5. The variation of
the coefficient of the nonlinear term ˇ with the dimensionless depth k0h is plotted
in Fig. 8.1. The conditions at which the experiments are performed are marked in
the figure. In view of the dispersion relation (9), the range of intermediate water
depth is usually defined as �=10 < q < � . The ratio of group to phase velocity n
at q > � indeed is very close to 0.5. The coefficient of the nonlinear term in the
NLS equation, ˇ, though, still differs notably from their asymptotic values for deep
water even for q D 10. The NLS thus allows to redefine the effective limits of the
intermediate water depth range for studying evolution of nonlinear wave groups.

It follows from Fig. 8.1 that as far as the nonlinear effects are concerned, the wave
groups with the selected carrier wave periods and water depths in the experiments
propagate in water of intermediate depth. For the sake of brevity, only characteristic
selected results are presented in the following figures. Additional results can be
found in [64] and in [21]. Each one of the following figures in this section consists
of six panels, marked (a)–(f). The measured variations of the surface elevation with
time in the vicinity of the wavemaker (at x D 0:24m) are presented in the panel
(a), while the corresponding amplitude spectra are given in panel (b). Similarly, the
results of the measurements performed away from the wavemaker, typically around
x D 9m, are presented in panels (c) and (d). Note that only a fraction of the duration
of actual records is shown in these frames. The directly measured surface elevation
is given in the bottom curves in panels (a) and (c). These records, however, can not
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be immediately compared with the computations based on the NLS equation. The
model equation describes the variation of the envelope of the carrier wave at the
leading order. The second order (�2) bound second and low frequency harmonics
may be deduced from carrier wave amplitude using expressions given for finite
water depth in [6]. The experimentally obtained spectra presented in some of the
panels (b) and (d) clearly demonstrate the presence of higher order harmonics. The
presence of these harmonics in the spectrum is a manifestation of non-negligible
contribution of bound waves to the surface elevation. The bound waves are most
prominent at the second order, but can be identified at higher orders as well.
The second order bound waves cause significant asymmetry of surface elevation
� relative to the mean water level, with crests heights exceeding the troughs.

In order to provide a basis for comparison of the experimental results with the
model predictions, the raw signals were band-pass filtered in the range 0:4f0 <
f < 1:6f0, where f0 D 1=T0 D !0=2� is the carrier frequency, thus leaving
free waves only. The envelope of the filtered signal is then computed using the
Hilbert transform, as applied for water wave analysis by Melville [40] (for extensive
introduction to the Hilbert transform see, e.g. Hahn [15]). Both the band-pass filtered
surface elevation and the absolute value of the envelope are also presented (a vertical
shift is introduced for convenience) in panels (a) and (c). The computed using
Eq. (8.8) shapes of the envelope at the identical locations along the tank are depicted
in panel (e) for qualitative comparison with the experiments.

To eliminate the contribution of the second order bound waves, the maximum
amplitudes of the waves in the group for each set of experimental conditions and for
all distances from the wavemaker can be calculated either as a half of the maximum
wave height obtained in the raw signal Amax D 1

2
Hmax D 1

2
.�max � �min), where

�max and �min are the maximum and the minimum surface elevations measured in
each group and averaged over all groups in the record. Alternatively, the amplitude
Amax may be calculated as the maximum value of the filtered group envelope,
averaged overall groups in the record. As demonstrated in [64], both methods lead to
similar results. The variation of the maximum wave group amplitudes along the tank
calculated as half difference between crests and troughs is presented in panel (f). The
maximum wave amplitudes in these figures are normalized by their corresponding
values in the vicinity of the wavemaker. The experimentally determined values of
Amax are compared in panel (f) with computations based on the NLS equation.

The nearly shallow water case (h D 11:8 cm; T0 D 0:9 s, k0h D 0:847; ˇ D
�1:17) is described first. The results for the bichromatic forcing by the wavemaker
given by Eq. (8.2) are presented in Fig. 8.2 for the low forcing amplitude, � D 0:07,
and in Fig. 8.3 for the high forcing amplitude, � D 0:21. Close to the wavemaker
(x D 0:24m, x=�0 D 0:28), the measured wave group envelopes in Figs. 8.2a and
8.3a are quite similar to the shape of the driving signal. At high amplitude, however,
some distortion of the shape of the carrier wave in Fig. 8.3a can be noticed even at
this close proximity to the wavemaker. The reason for this distortion is clearly seen
from comparison of the corresponding amplitude spectra in Figs. 8.2b and 8.3b. In
contrast to Fig. 8.2b with a nearly bimodal spectrum, at high amplitude in Fig. 8.3b
the spectrum is characterized by prominent peaks related to the second harmonic
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Fig. 8.2 Bichromatic wave group: driving signal is given by Eq. (8.2), T0 D 0:9 s; k0 D 7:18m�1;
h D 0:0118m; � D 0:07: (a) and (c) recorded surface elevation and its the module of the envelope
computed using the Hilbert transform; (b) and (d) amplitude spectra of the measured surface
elevation; (e) envelope shape at two locations along the tank computed using Eq. (8.8); (f) variation
of the maximum wave height along the tank

of the carrier wave. Far from the wavemaker, the generation of free waves at the
second harmonics of the carrier may be identified, in particular between the wave
groups, in the unfiltered signals of Fig. 8.2c (x D 7:62m, x=�0 D 8:71) and Fig. 8.3c
(x D 9:47m, x=�0 D 9:63). The low frequency peaks are also clearly visible in
these spectra. The generation of free second order harmonics that is more prominent
for wavemaker-excited wave fields in shallower water was discussed in detail by
Kit et al. [28]. Only relatively minor changes occur in the spectrum around the
dominant frequency at the remote location in Fig. 8.2d as compared to the initial
spectrum at this relatively weak forcing amplitude. At stronger forcing, widening
of the spectrum with the distance becomes essential, and the spectrum becomes
more complicated with numerous harmonics both in the vicinity of the carrier wave
frequency and its second harmonic, see Fig. 8.3b, d. The shape of the envelope in
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Fig. 8.3 Bichromatic wave group: driving signal is given by Eq. (8.2), T0 D 0:9 s; k0 D 7:18m�1;
h D 0:0118m; � D 0:21: (a) and (c) recorded surface elevation and its the module of the envelope
computed using the Hilbert transform; (b) and (d) amplitude spectra of the measured surface
elevation; (e) envelope shape at two locations along the tank computed using Eq. (8.8); (f) variation
of the maximum wave height along the tank

Fig. 8.2c is only slightly distorted, while at the high amplitude, Fig. 8.3c, this shape
changes drastically and becomes notably asymmetric.

The model computations presented in Figs. 8.2e and 8.3e are only in a qualitative
agreement with the experimental observations. At low forcing amplitudes, the
calculated shape of the group in Fig. 8.2e remains virtually unchanged, while at high
amplitude, Fig. 8.3e, notable distortion of the group shape accompanied by decrease
in the maximum amplitude is obtained. In the simulations, however, the envelope
retains symmetric shape in the process of evolution along the tank, contrary to the
experimental results. For both forcing amplitudes, the decay of the maximum wave
amplitude along the tank is observed experimentally, although the slope in Fig. 8.2f
is more moderate than that in Fig. 8.3f. The model computations indicate the same
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Fig. 8.4 Bichromatic wave group: driving signal is given by Eq. (8.3), T0 D 0:9 s; k0 D 7:18m�1;
h D 0:17m; � D 0:21: (a) and (c) recorded surface elevation and its the module of the envelope
computed using the Hilbert transform; (b) and (d) amplitude spectra of the measured surface
elevation; (e) envelope shape at two locations along the tank computed using Eq. (8.8); (f) variation
of the maximum wave height along the tank

trend, with the decrease in the maximum amplitude much more pronounced for the
high amplitude case.

The wave group excited by the driving signal given by Eq. (8.3) for the interme-
diate depth h D 0:17m that corresponds to very small nonlinearity coefficient ˇ D
0:19 is presented in Fig. 8.4 for high forcing amplitude � D 0:21. In the vicinity of
the wavemaker, x D 0:24m, x=�0 D 0:39, the shape of the wave group in Fig. 8.4a
resembles that of the driving signal and does not look very different from that in
Fig. 8.3a. The spectrum in Fig. 8.4b, however, is very different from that in Fig. 8.3b;
it exhibits a dominant peak at the carrier frequency and is not bimodal. The higher
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harmonics are quite visible, similarly to the cases presented above. At the remote
location, x D 8:67m, x=�0 D 13:73, Fig. 8.4c, the waves are distributed somewhat
more uniformly along the group. Since in this case the wave field is essentially linear
when analyzed in the framework of the NLS equation, the frequency spectrum od
the surface elevation is supposed to remain practically unchanged along the tank.
The spectrum plotted in Fig. 8.4d is however, somewhat different from that at the
wavemaker. The theoretically computed wave group shapes in Fig. 8.4e resemble
closely those obtained in the experiments. In contrast to the results obtained for
the shallower water case, the measured maximum wave amplitude in Fig. 8.4e does
not change notably along the tank. This experimental result is confirmed by the
numerical solution of the model equation for a considerable part of the tank, up to x
of about 8 m.

Comparison of Figs. 8.3 and 8.4 reveals that wave groups having identical initial
envelope shapes but different spectral contents may undergo completely different
evolution processes. Specifically, in Fig. 8.3 groups having a bimodal spectrum
retain their clear identity in the process of propagation, and their envelope peri-
odically attains zero. For wave groups with the same shape and more complicated
spectra, Fig. 8.4, the wave energy tends to become more uniformly distributed along
the group, so that the clear distinction between the groups vanishes.

The behavior of wave groups generated using the Gaussian driving signal given
by Eq. (8.4) is presented in Fig. 8.5 for nearly deep water with h D 0:60m,
T0 D 0:7 s, k0h D 4:93, ˇ D 0:78 and high amplitude of forcing, � D 0:21. The
frequency spectrum of the driving signal in this case also has a Gaussian shape. As
in previous figures for strongly nonlinear cases, the higher harmonics are clearly
visible already in the spectrum of the signal measured close to the wavemaker
(Fig. 8.5b, x D 0:24m, x=� D 0:32). The unfiltered signal therefore exhibits a
clear asymmetry with respect to the mean value. As the wave group propagates
along the tank, the shape of the wave group envelope changes notably, it becomes
quite complicated and strongly asymmetric with respect to its maximum Fig. 8.5c.
Correspondingly, the surface elevation frequency spectrum at the remote location
Fig. 8.5d now deviates strongly from its initial nearly Gaussian shape and exhibits
considerable spreading over a wide frequency range. The substantial distortion of
the initial group shape along the tank in this case is also obtained in the numerical
simulations, Fig. 8.5e, but the calculated shape is symmetric and has only a weak
resemblance to that measured in the tank, Fig. 8.5c. Probably the most striking
difference between this case and the previously considered sets of parameters is in
the variation of the maximum wave amplitude in the group along the tank, Fig. 8.5f.
In contrast to the results of Figs. 8.2f–8.4f, the maximum amplitude in Fig. 8.5f
increases notably with the distance from the wavemaker. This result obtained in
the numerical solutions of the NLS equation is confirmed by experiments. Similar
results were observed for this water depth when the driving signals given by
Eq. (8.2) or Eq. (8.3) were applied.

The following discussion is based on Figs. 8.2, 8.3, 8.4, and 8.5, as well as
on additional results of measurements and simulations presented in [21, 64]. For
all wave group shapes and for all effective water depths, variation of the wave
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Fig. 8.5 Bichromatic wave group: driving signal is given by Eq. (8.4), T0 D 0:9 s; k0 D 7:18m�1;
h D 0:60m; � D 0:21: (a) and (c) recorded surface elevation and its the module of the envelope
computed using the Hilbert transform; (b) and (d) amplitude spectra of the measured surface
elevation; (e) envelope shape at two locations along the tank computed using Eq. (8.8); (f) variation
of the maximum wave height along the tank

group envelopes and of the frequency spectra along the tank became much more
pronounced as the forcing amplitude increased. The evolution of all wave groups
studied thus exhibited an essentially nonlinear behavior. The important details of
wave field variation with the distance, however, depend strongly on the values of
the coefficient of the nonlinear term ˇ in the NLS equation (8.8). For the deep water
case (k0h D 4:93), this coefficient is positive, see Fig. 8.1, resulting in focusing of
the wave energy of the selected group envelope shapes that becomes more evident
for high values of the wave steepness �. For low values �, the focusing effect is
barely noticeable for the dimensional time and length scales considered in this study.
Note that all shapes of the driving signal employed in this study are different from
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that of an equilibrium envelope soliton (cf. [39]), thus resulting in wave energy
focusing for ˇ > 0. For the experimental conditions of point Fig. 8.4, which are
close to the critical water depth q D 1:36, both the experiments and the numerical
simulations indicate that the maximum amplitude does not change notably along the
tank.

At the conditions of Figs. 8.2 and 8.3, the coefficient of the nonlinear term is
negative, resulting in defocusing and a more uniform wave energy distribution
along the group. Thus both the experimental and the numerical results seem to
support the conjecture that strongly nonlinear wave groups undergo a demodulation
process while propagating over shallow water. Barnes and Peregrine [5] computed
numerically evolution of a deterministic wave group envelope over a sloping bottom
using a full irrotational flow solver. They, too, report on a somewhat surprising
result that the maximum wave height in the group becomes decreases relative to
its initial value. Kit et al. [27] studied a similar problem of wave group shape
modification in shallow water when approaching a beach using the Korteweg-
deVries (KdV) equation. They have also observed certain demodulation effects in
their numerical solutions. The tendency of the ratio of the maximum possible wave
height and the significant wave height to decrease with approaching the coastal
zone was also observed in field measurements, see [44, 54]. This process can be
seen as nonlinear wave amplitude demodulation in the group with decrease in
water depth. Comparison of the experimental results on wave group propagation
in shallow water with model predictions based on the KdV equation was performed
in [28].

While the theoretical model employed here is non-dissipative, dissipation is
apparently present in all experiments. The net effect of dissipation is the gradual
decrease of wave height along the tank. The experimentally observed increase
of the maximum wave amplitude in deep water at high initial wave steepness
indicates that the nonlinear effects in this case dominate over those due to dissipation
as well as dispersion. On the other hand, in more shallow water, the relative
contribution of dissipation is more pronounced, and the measured wave amplitude
decay along the tank may exceed significantly the prediction based on a non-
dissipative theoretical model. Detailed analysis of the relative importance of various
dissipation mechanisms in a laboratory wave tank was carried out by Kit and Shemer
[25].

The free waves frequency spectrum in the initially symmetric wave groups
is initially symmetric around the carrier frequency. The NLS equation conserves
the symmetry of the initial conditions. The wave envelopes and the spectra in
intermediate and in particular in deep water conditions, however, develop significant
asymmetry, in clear contradiction to the experimental findings. The reason for this
discrepancy between the model and the experiment is related to the finite width of
the wave amplitude spectrum in the vicinity of the carrier, which is supposed to be
vanishing in the derivation of the NLS equation.
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8.4 The Modified Nonlinear Schrödinger (Dysthe) Equation

8.4.1 Formulation of Temporal and Spatial Evolution
Problems

The results of Sect. 8.3 demonstrate that the NLS equation is adequate for qualitative
description of the global properties of the envelope evolution of unidirectional
nonlinear wave groups, such as focusing of water waves in sufficiently deep water.
This model, however, is incapable of capturing more subtle features, for example
the emerging front-tail asymmetry observed in experiments due to the asymmetric
spectral widening. Such widening of the initially narrow spectrum can occur due
to nonlinear interactions, violating the spectrum width assumptions of the NLS
equation. More advanced models that account for non-negligible width of spectra
evolving from an initially narrow spectrum are therefore required for accurate
description of nonlinear wave group evolution. The mNLS equation derived by
Dysthe [11] is a higher (fourth) order extension of the NLS equation, where the
higher order terms account for finite spectrum width, see [73]. Further modification
of the NLS equation appropriate for wider wave spectra was presented by Trulsen
and Dysthe [80] and Trulsen et al. [82]. Kit and Shemer [26] have demonstrated
that this modification can be easily derived by expanding the dispersion term in the
Zakharov equation into the Taylor series.

The theoretical model derived by Dysthe [11] describes the evolution of the
wave field in time. Complete information on the wave field along the tank at a
prescribed instant constitutes the initial condition required for the solution of the
problem. In laboratory experiments, however, waves are generated by a wavemaker
usually placed at one end of the experimental facility. The experimental data are
commonly accumulated using sensors placed at fixed locations within the tank.
Hence, to perform quantitative comparison of model predictions with results gained
in those experiments, the governing equations have to be modified to a spatial form,
to describe the evolution of the temporally varying wave field along the experimental
facility. Such a modification of the Dysthe model was carried out by Lo and Mei
[32] who obtained a version of the equation that describes the spatial evolution of
the group envelope. Gramstad and Trulsen [14] modified the version of the Dysthe
equation for finite depth originally derived by Brinch-Nielsen and Jonsson [6],
starting from the version of the Hamiltonian-conserving version of the Zakharov
[86] equation offered by Krasitskii [29].

Numerical computations based on the Dysthe model for unidirectional wave
groups propagating in a long wave tank indeed provided good agreement with
experiments and exhibit front-tail asymmetry, see Shemer et al. [66]. The spatial
version of the Dysthe equation was also derived by Kit and Shemer [26] from the
spatial form of the Zakharov equation [65, 67] that is free of any restrictions on the
spectrum width.

For a narrow-banded unidirectional deep-water wave group with the dominant
frequency !0and wave number k0 that are related by the deep-water dispersion
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relation for gravity waves !20 D k0g. In the Dysthe equation, in addition to variation
in time and space of the surface elevation �.x; t/, the velocity potential � at the
free surface,  .x; t/ D �.x; z D �; t/ is also considered. For a narrow-banded wave
group it is convenient to express the variation of � and  at the leading order in
terms of their complex envelope amplitudes:

�.x; t/ D Re
�
a�.x; t/e

i.k0x�!0t/
�
; (8.12)

 .x; t/ D Re
�
a .x; t/e

i.k0x�!0 t/
�
: (8.13)

The mNLS coupled system of equations, which describes the evolution of the
complex envelope a.x; t/ and of the potential of the induced mean current �.x; z; t/
was in fact derived by Dysthe for the surface velocity potential amplitude, a . It
was demonstrated by Hogan [19], see also [26], that while at the third order the
governing equation for both amplitudes, that of the surface elevation, a� , and of the
free surface velocity potential, a , are identical, and thus there is no difference in
the NLS equation for either of those amplitudes, at the fourth order the governing
equations differ somewhat. For quantitative comparison of the model predictions
with the experiment that directly provides data on the surface elevation variation,
the equation describing the variation of a� is applied in sequel, with the index �
omitted. In fixed coordinates, the governing system of equations has the following
form:
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These equations are subject to the boundary conditions at the free surface
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and at the bottom

@�

@z
D 0I .z ! �1/ (8.17)

The first four terms in Eq. (8.14) constitute the cubic Schrödinger equation for
deep water in the fixed frame of reference. The Dysthe model is of the third order in
the wave steepness � and can be derived from the third order Zakharov integral
equation by adding the narrow-band assumption with spectral width O.�/ [73].
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Incorporation of the narrow-band assumption results in the overall fourth order of
the Dysthe equation.

The sign of the term !0k0
4

a2 @a�

@x in Eq. (8.14) is positive, while in the velocity
potential version used in Dysthe [11] and Lo and Mei [32] it is negative. The
opposite signs of this term constitute the only difference between the two versions
of the fourth order envelope evolution equation.

Two different formulations of the problem of wave field evolution in a tank were
considered in Shemer and Dorfman [59]. In the so-called temporal formulation,
the spatial distribution of the complex envelope a.x/ is presumed to be known at
a prescribed instant t0, and its variation in time is obtained by numerical solution
of the model equation. Alternatively, the variation of the complex envelope in time,
a.t/, can be specified at a prescribed location x D x0, and the variation of a.t/ along
the tank is then studied in the spatial formulation using the appropriately modified
model equations. It should be stressed that the spatial formulation is routinely
applied in the experiment-related studies [32, 66], since the wave gauges provide
information on the temporal variation of the surface elevation at fixed locations.
The experimental approach in [59] made it possible to measure the variation with
time of the instantaneous complex group envelope along the tank, as well as the
variation of the surface elevation with time at any location within the tank. Both
temporal and spatial formulations of the Dysthe equation were therefore employed.

Consider first the temporal model. In analogy to Lo and Mei [32], in a coordinate
system moving at the group velocity cg D !0=2k0 , the following dimensionless
scaled variables are introduced:

� D �2!0tI � D �k0.x � cgt/I A D a=a0I ˚ D !0a
2
0�I Z D �k0z: (8.18)

In these variables, the equations for A and ˚ are:
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with ˚ satisfying the following boundary conditions:

@˚

@Z
D 1

2

@jAj2
@�

; Z D 0;
@˚

@Z
D 0; Z ! �1: (8.21)

Equations (8.18)–(8.21) and the appropriate initial conditions constitute the tempo-
ral version of the Dysthe model.
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The corresponding spatial version can be obtained either from Eq. (8.14) as in
Lo and Mei [32], or from the spatial version of the Zakharov equation [66]. Instead
of Eq. (8.18), the scaled dimensionless space and time variables now are identical
to those in the spatial NLS equation given by Eq. (8.7). The governing equations
assume the following form
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The formulation of the spatial model given by Eq. (8.18) and Eqs. (8.22)–(8.25) is
completed by specifying the temporal variation of the envelope at the prescribed
location A.X0; �/. In both temporal and spatial formulations, the normalized enve-
lope shape A.X; �/ determines the surface elevation at the leading order. With
A.X; �/ known, application of Eq. (8.12) yields free waves only. The second order
bound, or locked, waves can be determined using:

B.A/ D 1

2
�A2 � ik0

!0
A
@A

@�
; (8.25)

see [68]. The surface elevation that contains the second order bound waves with
frequencies and wave numbers that are respectively twice higher than those of the
free waves are thus obtained for both temporal and spatial formulation as

�.x; t/=a0 D Re
�
Aei.k0x�!0t/ C B.A/e2i.k0x�!0t/

�
: (8.26)

The effect of each one of the fourth order terms in the Dysthe model was
studied in Shemer et al. [66]. The spatial version of the Dysthe model is given by
Eqs. (8.22)–(8.24); they were solved using pseudo-spectral method and split-step
Fourier method as described in [32]. The numerical results obtained for the strongly
nonlinear case with � D 0:24 and the initial condition given by Eq. (8.4) with m D 4,
are presented in Fig. 8.6. The numerical solution of the deep-water NLS equation
[the first 3 terms in Eq. (8.22)] is plotted in Fig. 8.6a. At this high forcing amplitude,
the model yields considerable energy focusing along the tank, while retaining the
symmetric shape of the envelope. At the next stage, the effect of the induced current
only is considered in Fig. 8.6b by adding to the NLS equation the last term in (8.22).
In this case, the simultaneous solution of the coupled Eqs. (8.22)–(8.24) is required.
This modification retains the symmetry of the NLS solution, but leads to an essential
modification of the envelope shape as compared to the NLS solution in Fig. 8.6a.
Further, in Fig. 8.6c all fourth order terms expect for the last one in Eq. (8.22)
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Fig. 8.6 Effect of various terms in the Dysthe model for T0 D 0:7 s, � = 0.24 and the Gaussian
initial shape given by Eq. (8.4) with m = 4: (a) NLS equation; (b) NLS + the last fourth order term
in Eq. (8.22); (c) Dysthe equation without the last term; (d) the full Eq. (8.4)

are considered, while the term which represents effect of the current potential is
disregarded. As expected, addition of terms that contain first derivatives of the
envelope cause the dramatic change in the initially symmetric envelope shape as
observed in the experiments. Comparison of Fig. 8.6c with the solution of the full
Dysthe model presented in Fig. 8.6d reveals that contribution of the induced current-
related term is non-negligible. It thus appears that all fourth order terms in Eq. (8.22)
are of comparable importance to the accuracy of the solution and neither of them
can be neglected.

8.4.2 Experiments on Spatial and Temporal Evolution of Wave
Groups Based on Digital Video Image Processing

Shemer and Dorfman [59] studied the evolution along the tank of narrow-spectra
unidirectional nonlinear wave groups excited by a wavemaker using digital process-
ing of video-recorded sequences of images of the contact line movement at the tank
side wall. The technique allows accurate measurements of the spatial variation of
the instantaneous surface elevation along the whole tank, as well as of the temporal
variation of the surface elevation at any prescribed location within the tank. More
details of the experimental approach are given [10]. The experimentally obtained
data thus can be compared with the solutions of the model equations presented in
either temporal or spatial form.
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The wave gauges in this study were applied mainly for validation of the accuracy
of surface elevation measurements by digital processing of video clips that record
the contact line movement at the tank’s wall. The instantaneous contact line shapes
were recorded by a single monochrome CCD video camera at a rate of 30 fps. The
field of view of the camera spanned 50 cm along the tank. The spatial resolution
was about 0.8 mm/pixel. Advantage was taken of extremely high repeatability of
the wave field emanating from the prescribed wavemaker driving signal. The camera
was placed on the instrument carriage to enable imaging of different regions of the
tank. Each camera recording session was synchronized with the wavemaker driving
signal using a common reference signal. A single wave group was generated for
each recording session. For consecutive recording session, the carriage was shifted
along the tank, so that slightly overlapping images of the contact line movement
along the whole experimental facility were obtained. Every frame of the recorded
video clip at each camera location was processed separately.

Experiments were performed for a wave group with Gaussian envelope given
by Eq. (8.4) generated by the wavemaker. The selected dominant wave period
T0 D 0:7 s corresponds to the wave length �0 D 0:76m. The value of m D 3:5

in Eq. (8.4) corresponds to the spectral width that is sufficient to satisfy the narrow
spectrum constraint for the applicability of the Dysthe equation. On the other hand,
the spatial extent of the group is short enough to enable studying of the temporal
evolution of the group within the tank. To determine the instantaneous spatial
envelope shape of the wave group and to study its nonlinear temporal evolution, the
entire group has to be present in the tank. Hence, on one hand, the group generation
by the wavemaker has to be completed before initiation of the study of the temporal
variation of the envelope shape, and on the other hand, measurements of spatial
wave group structure remain meaningful as long as the front of the group does
not reach the beach. The group propagates along the tank with the group velocity
cg D 0:54m=s. The length of the group for the adopted parameters does not exceed
6–7 m. When the generation of the group by the wavemaker is completed, the group
front is about 5 m from the beach, leaving the duration that does not exceed 10 s
to study the wave group evolution before its front reaches the far end of the tank.
According to Eq. (8.7), the time scale of the nonlinear effects is O.�2/. Hence, for the
duration of the process prescribed by the group shape, the dominant frequency and
the length of the tank, higher wave steepness increases the effective evolution time
at the slow scale � . To eliminate breaking not accounted for by the Dysthe model,
the wave steepness must not exceed the value that can lead to wave breaking. The
maximum adopted initial wave steepness of � D 0:18 (a0 D 22mm) was selected
on the basis of visual observations of wave group propagation along the tank with
different values of a0. For this value of �; � D1 corresponds to dimensional duration
t D 3:44 s, or 4.9 dominant wave periods. This is well below the experiment duration
limit of about 7 s imposed by the effective length of the tank.

In the spatial evolution formulation the initial condition emerges naturally from
the water surface elevation variation in time excited by a wavemaker located at
x D 0. In the temporal evolution case the initial conditions defining the wave field in
the whole tank are to be prescribed at a certain instant. One possibility to define the
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initial conditions for the temporal formulation of the problem is to use the actually
measured instantaneous wave field when the whole group emerges in the tank. For
a relatively short wave tank used in the present study this option, however, severely
restricts the duration of the wave group evolution and thus the role of nonlinearity
that is in the center of the study. An alternative approach was therefore employed.
Since nonlinear effects become prominent at slow scales, it can be assumed that
the initial evolution of the wave group is mainly governed by linear dispersion
effects, while nonlinearity can be neglected. This assumption enables linearization
of Eq. (8.12), yielding
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@X
C i

@2A

@�2
D 0: (8.27)

Following [49], the solution of Eq. (8.27) for a Gaussian envelope at the wavemaker
given by Eq. (8.4) can be written in the physical variables .x; t/ as

A.x; t/ D jA.x; t/jexp.i�/I (8.28)

where the amplitude jA.x; t/j and the phase � of the envelope are given by
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While Eqs. (8.28)–(8.30) represent the solution of the spatial evolution problem;
they describe the complex group envelope variation in time and space, and thus can
be used to define the initial conditions for the solution of the temporal evolution
problem. The calculated according to Eq. (8.29) envelope shape is presented in
Fig. 8.7 at two instants. The broken line corresponds to the instant when the
maximum of the envelope is at the wavemaker located at x D 0. The solid line
represents the spatial distribution of the group envelope immediately before the
entrance of the group to the tank and corresponds to the instant when the wave group
excitation by the wavemaker is initiated in the experiments. This wave envelope
is somewhat wider than the first one, with the maximum value below unity. This
complex envelope shape prior to the group’s entrance to the tank served as the
initial condition. Time in the present study is thus measured relative to that instant
of initiation of the wavemaker movement. The wavenumber spectrum of the surface
elevation presented in Fig. 8.7b apparently does not vary in time for the linearized
problem and therefore can be seen as the initial spectrum for the nonlinear evolution
problem.

The computed according to Eqs. (8.22)–(8.24) temporal variation of the surface
elevation at a number of locations along the tank is compared in Fig. 8.8 with the
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Fig. 8.8 Variation of the surface elevation within the group with time at different distances x from
the wavemaker: solid line—simulations; broken line—experiments

results of video image processing. The shift in the horizontal scale in the consecutive
frames of Fig. 8.8 reflects the time elapsed while the group traveled between the
measuring stations. Excellent agreement is obtained between the experimental
results and the computations based on the spatial Dysthe model. The sequence
of frames in Fig. 8.8 clearly demonstrates that the duration of the group extends
with x and that the initially symmetric Gaussian envelope shape, Fig. 8.7a, gradually
exhibits stronger left-right asymmetry, with increasingly steep front and elongated
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tail. This behavior is consistent with that plotted in Fig. 8.5. The maximum surface
elevation within the group may exceed significantly the nominal value of a0. This
increase of the maximum amplitude is associated in part with the focusing properties
of the NLS equation as discussed in Sect. 8.3. An apparent additional reason for
higher maximum values of the surface elevation in Fig. 8.8, as well as for the crest-
trough asymmetry, is the contribution of the second order bound (locked) waves.

The variation of the group shape along the tank in Fig. 8.8 is due to both linear
dispersion and nonlinear effects. To separate linear and nonlinear contributions,
frequency spectra of surface elevation variation in time that vary only due to
nonlinear effects, are presented in Fig. 8.9. The frequency spectra of Fig. 8.9 are
plotted for the same locations along the tank as in Fig. 8.8. The spectra are computed
for those parts of the surface elevation records that contain the whole group with
duration of about 13 s (about 20T0). The spectra are thus discrete with the frequency
increment of about 0.077 Hz. For demonstration purposes only, the amplitude
spectra obtained for the computed temporal variation of the surface elevation that
naturally are smoother than the results derived from the experimental data, are drawn
as a solid line.

The agreement between experiments and computations in Fig. 8.9 is quite good.
While the initial amplitude spectrum corresponding to the envelope given by
Eq. (8.4) is also symmetric and Gaussian, the spectra of Fig. 8.9 are asymmetric and
deviate from the Gaussian shape. Note the existence of a kink in the spectral shape
at the frequency slightly exceeding the dominant one, f0 D 1=T0 D 1:43Hz, that is
visible at x D 5:75m and becomes stronger at x D 6:85m. The kink is observable
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both in the measured and in the computed spectra. Even for a relatively short extent
of the spatial evolution, widening of the spectrum is visible in Fig. 8.9. This spectral
widening and non-Gaussian spectral shape indicate that nonlinearity is essential in
the wave group evolution along the tank.

The contribution of the second order bound waves to the amplitude spectrum is
quite significant at all locations. The measured using the digital processing of the
video images spectrum of bound waves around the second harmonic of the dominant
frequency f0 is in excellent agreement with the model predictions. The bound waves’
spectrum also becomes wider with the distance from the wavemaker, in agreement
with the variation of the free wave spectrum around the dominant frequency f0.

As stressed above, the main motivation for developing the data acquisition
method based on the processing of sequences of video images is in its capability
to measure instantaneous spatial distribution of the surface elevation. Application
of this method enables following the temporal evolution of the whole wave group as
well. This information can be compared with the numerical solution of the system
of Eqs. (8.18)–(8.21) that constitute the Dysthe model in its temporal formulation.
The initial conditions for the temporal evolution case A.x; 0/ are obtained using
Eqs.(8.28)–(8.30), as presented in Fig. 8.7.

It should be stressed that direct juxtaposing of the theoretical and the experimen-
tal results on the temporal evolution of a wave field is quite challenging since it is
limited to the time interval when the whole group is physically present within the
wave tank boundaries. The numerical solution of Eqs. (8.18)–(8.21) indicates that
at the dimensional time t D 12 s (relative to the instant depicted in Fig. 8.7) the
advancement of the group along the tank is sufficient for the tail of the computed
instantaneous spatial envelope distribution to emerge within the tank, thus enabling
comparison with the experiment. Similarity of the numerical and the experimental
results is examined also at three additional instants: t D 14 s; 16 s and 18 s.
Equations (8.25), (8.26) are used again to account for the contribution of the second
order bound waves.

The spatial variation of the surface elevation as a result of the temporal evolution
of the complex wave envelope is presented at the selected instances in Fig. 8.10.
As in the spatial evolution case, good agreement is obtained between the numerical
simulations and the experimental observations. At the earliest instant presented in
Fig. 8.10, t D 12 s, the formation of the group has just been completed and the group
in its entirety emerges in the tank, while at the last instant, t D 18 s, the front of the
group approaches the far end of the wave tank.

Deviation of the group shape in Fig. 8.10 from the initial envelope presented
in Fig. 8.7a is obvious. Both left-right and trough-crest asymmetries observed in
the temporal records presented in Fig. 8.8, as well as significant variations in the
extreme values of the surface elevation within the group, are visible in Fig. 8.10 as
well. Note, however, that the left-right asymmetry in Fig. 8.10 is opposite to that of
Fig. 8.8, where the steeper part of the group appears at earlier sampling times. The
experimental results are in agreement with the numerical solutions of the temporal
Dysthe model.
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Comparison of Figs. 8.8 and 8.10 also illustrates the well known fact that since
the group velocity of deep water waves is a half of their phase velocity, the number
of waves within the group in the temporal surface elevation variation records of
Fig. 8.8 is twice larger than in the instantaneous spatial snapshots of the same group
plotted in Fig. 8.10.

The wave-number amplitude spectra corresponding to Fig. 8.10 are presented in
Fig. 8.11. The spectra based both on the experimental data and on the numerical
simulations were computed for instantaneous surface elevation distributions along
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12 m of the tank and contain the whole group. This longitudinal extent of the
synthesized from the numerous images ‘snapshot’ determines the wave number
resolution of the resulting discrete spectra. As in Fig. 8.9, the spectra derived from
the numerical solutions of the Dysthe model are plotted as solid lines. All spectra
in Fig. 8.11 exhibit essential differences from the initial wavenumber spectrum
presented in Fig. 8.7b. The agreement between the simulated and the experimental
results in Fig. 8.11 is quite good at all instances presented; the differences can be
attributed in part to inaccuracy associated with choosing the initial condition. There
are similarities but also essential differences between the frequency spectra given
in Fig. 8.9, and the wave number spectra of Fig. 8.11. In both figures the spectra
become wider in the course of the wave group evolution. The wave number spectra
in all frames of Fig. 8.11 are however much wider than the frequency spectra in
Fig. 8.9.

The larger width of the wave number spectra relative to the frequency spectra
follows from the dispersion relation for deep water !2 D kg that is appropriate for
the present experiments. In the narrow spectrum approximation the relative widths
of those spectra are related by

�k

k0
D 2

�!

!0
(8.31)

As a result, in all frequency spectra of the temporal variation of the surface elevation
for a narrow-band wave group moving along the tank, Fig. 8.9, the free waves
and the bound waves are totally separated. For the initial condition presented in
Fig. 8.7b, the separation of free and bound waves spectral domains still exists.
The spectral widening in course of group propagation along the tank, however,
leads to overlapping domains of the free and of the second harmonic bound waves
in the wave number spectra of Fig. 8.11. Each measured spectrum apparently
contains free as well as bound waves. In numerical simulations, complex group
envelope that corresponds to free waves only is computed first. Bound waves
are then obtained from the free wave field. The computed wave number spectra
of free and bound waves are also plotted in Fig. 8.11. The overlapping of free
and bound waves domains in the wave number spectra precludes straightforward
filtering out of the free wave spectrum from the experimental results. This difficulty
complicates significantly the determination of the spatial group envelope’s shape
that contains the free-wave part only, from the experimental data. The initial
conditions for solving the temporal evolution problem could not therefore be
determined from experiment. This difficulty forced to apply the linearized approach
presented by Eqs. (8.28)–(8.30) in order to translate the temporal variation of
the surface elevation at the wavemaker into the spatial form. Accounting for
the second harmonic bound waves is essential to get a better agreement with
the measured spectra at high wave numbers. The disagreements between com-
putations and measurements in the low wave number region of the spectrum in
Fig. 8.11 may partially stem from the fact that the depth of the experimental
facility of 0.6 m is not large enough for those longer wave components to be



238 L. Shemer

considered deep. The low wave number bound waves may become significant
and can constitute a important contribution to the spectral shape. The validity
of Dysthe equation that served as the theoretical model in the present study,
however, is restricted to deep waves. The long bound waves were therefore not
considered.

Theoretical studies of nonlinear water-waves are often performed by solving
temporal evolution models, while in laboratory as well as in field experiments sur-
face elevation variation with time at fixed locations is usually recorded; sometimes
these data also contain information on the wave propagation directions. Attempts
are sometimes made to translate the measured by point sensors frequency spectrum
into the corresponding wave number (or wave vector in the two-dimensional case)
spectrum. However, direct quantitative comparison of the frequency and the wave
number spectra can not be carried out in a consistent way. Instantaneous snapshot
of the whole wave field taken to get the wave number spectrum, on one hand, and
measurements of the temporal variation of the surface elevation variation with time
at a fixed location to get the wave frequency spectrum, on the other hand, constitute
essentially different ways of studying an evolving in space and in time water-wave
field.

Moreover, as demonstrated in this section, direct computation of the wave
number spectrum from the measured frequency spectrum can not be carried out
even assuming that the evolution is slow as compared to the relevant temporal
scale (represented by the duration of continuous sampling that determines the
frequency resolution of the spectrum) and the spatial scale (the extent of the
imaged wave field that determines the wave number spatial resolution) of the data
acquisition process. The linear dispersion relation between wave frequencies and
wave numbers only holds for the free wave components. Therefore, it is possible
in principle to relate quantitatively frequency and wave number spectra for the
free wave domain only. Comparison of the frequencies and wave numbers that
correspond to the spectrum peaks and clearly represent free waves in Figs. 8.9 and
8.11, respectively, indeed reveals that they are related by the deep water dispersion
relation. The present results, however, demonstrate that in general separation of
the wave number spectra into free and bound waves is not always possible. For
a relatively narrow initial free-wave spectrum, the high frequency/wave number
part of the spectrum consists almost exclusively of bound components. The
calculation of spectral bound components from the free wave spectrum is often
not straightforward and requires information on the phases of each free wave
component. Such information is usually not readily available in reported data on
the experimentally measured frequency spectra. It thus appears virtually impossible
to evaluate quantitatively the shape of the high end of the wave number spectrum
from the measured surface elevation variation in time at a fixed location and the
corresponding frequency spectrum the shape of the high end of the wave number
spectrum.
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8.4.3 Experimental Studies of Evolution of Peregrine Breather

Shemer and Alperovich [57] applied both NLS and Dysthe models to the problem of
extremely steep freak (or rogue) waves. A possibility to generate deterministic steep
waves is of special interest. The NLS equation attracts considerable interest in this
respect since it admits breather type soliton solutions. The so-called Kuznetsov-Ma
breathing solitons present spatially localized patterns that oscillate in time [30, 36].
Akhmediev breather [1] is a related type of solitons that is periodic in space. When
the periodicity in time and space tends to infinity, both these types of solution tend
to a simple Peregrine soliton [50] that is localized in time and space and breathes
only once. In scaled variables, Eq. (8.7), the complex envelope of Peregrine breather
(PB) is written as

A.X; �/ D �p
2



1 � 4.1� 4iX/

1C 4�2 C 16X2

�
e�2iX : (8.32)

At the origin of the scaled coordinate system A.0; 0/ D 3
p
2 , and A.X !

˙1; � ! ˙1/ D p
2 , so the maximum wave amplitude at the origin exceeds the

background amplitude by a factor of 3.
Experimental observations of PB for water waves were recently presented in

several publications, see, e.g. [8]. These observations show that an initially small
“hump” in a nearly monochromatic wave train may indeed evolve along the tank
in a qualitative agreement with Eq. (8.32). Nevertheless, some marked quantitative
differences between experiments and calculations could not be attributed solely to
experimental inaccuracy. The Peregrine breather was suggested as a major route
to deterministic freak waves’ generation [70]. The importance of PB for freak
water waves prompted a closer experimental investigation of its qualitative and
quantitative characteristics.

Measurements of wave group evolution along the TAU tank were performed at 72
locations along the tank, up to the distance of 13.3 m from the wavemaker. At every
carriage location, three realizations of the prescribed wave field were recorded,
with the sufficient time delay between the consecutive events to ensure decay of
any disturbances left in the tank from the previous run. Each measurement session,
including probe calibration, wave generation, data recording and carriage movement
was performed automatically utilizing a LabView program.

Selection of wave parameters in any given experimental facility is largely
prescribed by the scaling relations given by Eq. (8.7). To enable investigation of
the wave form evolution up to the maximum amplification and beyond, as well as
in order to mitigate the effect of contamination by reflected waves that cannot be
fully eliminated, the maximum amplification location x0 should be sufficiently far
from the end of the tank. For the TAU facility, this means that X0 should not exceed
about 10 m. The values of A.X; �/ defined by Eq. (8.32) differ notably from the
background envelope only for X < 1. Noticeable variation of the breather maximum
between the wavemaker at x D 0 and X0 can be expected if X.x0/ D �2k0x0 D O.1/,
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thus the background wave steepness � should be as large as possible. Waves
with �0k0 > 0:3 may break, rendering both the NLS and the Dysthe equations
inapplicable. The expected PB amplification factor of 3 thus limits the maximum
steepness �0k0 to about 0.1. These considerations limit the carrier wave lengths
�0 to values below 0.65 m. Experiments performed for a few sets of parameters
within those restrictions provided consistent results. Thus the results for parameters
identical to those in [8] only are discussed here: carrier wave amplitude �0 D 0:01m,
period T0 D 0:587 s, corresponding to k0 D 11:67m�1; �0 D 0:538m, and
� D 0:0825.�0k0 D 0:117/. This relatively high wave steepness indeed results
in waves on verge of breaking, however, no actual breaking or significant decay
of wave energy along the tank was observed. The wavemaker driving signal was
calculated using Eqs. (8.5), (8.7) and (8.32), the maximum amplitude of PB was set
at x0 D 9m (X.x0/ D 0:715). The total duration of the group was selected to be
70T0, with tapering windows over 2 end periods. The data processing was based
on segments with the duration of 64T0 or 32T0 around the instant of the peak; the
sampling rate corresponded to 128 data points recorded during each period for every
sensor, thus facilitating Fourier analysis.

The recorded variation of the surface elevation �.t/ is presented in Fig. 8.12
at four locations along the tank in the frame of reference moving with the wave
packet. No results in close vicinity of the wavemaker are shown as they are affected
by evanescent modes [9]. The records of �.t/ are in general agreement with [8]
and demonstrate notable amplification of the peak elevation, from 14.2 mm at
x D 2:25m to 25.2 mm at the prescribed maximum location x0 D 9m. Several
important features of Fig. 8.12, however, suggest a need for a closer look at the
results. First, the maximum crest height at x D 11:6m, well beyond x0, is 31.7 mm,
significantly exceeding that at x0 and very different from the maximum crest height
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Fig. 8.13 The wave amplitude spectra at various locations along the tank

of 20.1 mm at x D 6:25m, while the solution of Eq. (8.32) is symmetric about
x0. The recorded wave forms also exhibit vertical asymmetry, with crests heights
consistently larger than troughs.

The nonlinear wave train evolution is characterized by variations of the amplitude
spectra along the tank, see Fig. 8.13. These spectra present an average of three
realizations recorded at each location. Close to the wavemaker, at x D 2:25m,
the amplitude spectrum still retains the characteristic BP shape, with a sharp peak
at the carrier frequency and an isosceles triangle-shaped pedestal. The pedestal
widens along the tank and retains its triangular shape around the carrier frequency
f0 D 1=T0, however, while the spectral shape for f < f0 does not vary notably,
the contribution of higher frequencies increases with x, so that the spectra become
strongly asymmetric. The second and even the third harmonics can be identified and
become increasingly essential in the process of spatial evolution.

The Peregrine Breather is a solution of the NLS equation that provides at best
qualitative agreement with the experiment for wave groups with wider spectra, as
demonstrated in Sect. 8.3. This suggests application of the spatial Dysthe model
Eqs. (8.22)–(8.25) to examine the evolution of the initially narrow-banded PB wave
train that undergoes significant spectral widening. Since the dramatic increase in the
maximum amplitude constitutes the major feature of PB, the dimensional maximum
envelope moduli provided by the Dysthe and the NLS equations are compared in
Fig. 8.14 with the experimental results. As in Figs. 8.2, 8.3, 8.4, and 8.5, in order
to eliminate contribution of higher order low- and high-frequency bound waves,
the recorded signals were band-pass filtered in the range 1 Hz < f < 3 Hz, see
Fig. 8.13. The envelopes of the band-passed filtered records were then computed
using the Hilbert transform. The variation along the tank of the resulting envelopes
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moduli maxima averaged over the three realizations is presented in Fig. 8.14. For
comparison, the averaged highest crests and the deepest troughs recorded in every
wave train at each location are also plotted.

The salient feature of Fig. 8.14 is the difference in the maximum envelope growth
rate between the PB soliton given by Eq. (8.32) and the solution of the Dysthe
equation. For identical initial conditions, the equation yields significantly more
moderate increase rate of the envelope maxima than that predicted by Eq. (8.32);
the maximum amplification by a factor of 2.8 only (instead of 3.0 for PB) is attained
at x D 11:6m, far away from x0 D 9m, and maximum region is flatter than that
for PB. The experimental results are in a very good agreement with the MNLS
solution up to the distance of about 8 m from the wavemaker. At larger distances, the
maximum envelope amplification in the experiments is slightly below that predicted
by the Dysthe model; the largest amplification factor of 2.5 in the experiment
is attained at distances comparable with the theoretical prediction. Decay in the
experimentally determined maximum following x 
 11:5m may be identified, in
agreement with the numerical solution. During the initial stages of evolution, up to
about x D 5m, the differences between the extreme crests, troughs and envelopes
are relatively minor. At larger distances characterized by stronger amplification and
wider spectra (cf. Fig. 8.13), the contribution of higher order components cannot be
neglected. The exact ratio between the maximum crest height, the deepest trough
and the maximum envelope module apparently depends also on the local phases of
the complex envelope and of the carrier wave, see Eq. (8.5). These varying along
the tank phase relations contribute to the observed scatter in the extreme crest and
trough values. The absolute measured crest height maximum is close to 32 mm,
exceeding the PB amplification.
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A more detailed comparison of simulations with measurements is carried out
in Figs. 8.15 and 8.16. The temporal variations of the absolute values of the
complex envelope are presented in Fig. 8.15 at five locations. The PB envelopes
computed using Eq. (8.32) retain symmetry around the peak along the test section
and for x < 13m over predict the maximum values; the peaks are attained
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somewhat later as compared to the Dysthe model. Good quantitative agreement
exists between experiments and computations based on Eqs. (8.22)–(8.25) up to
x D 9:25m. The mNLS model correctly describes the wave group asymme-
try around the peak value, with the front being much steeper than the back.
The discrepancies between the experimental and numerical results then increase
with x.

The evolution of the computed and the measured spectra with the distance from
the wavemaker is demonstrated in Fig. 8.16. Only the leading order part of the
spectrum around the carrier wave frequency directly computed from the numerical
simulations is plotted. The results of simulations are in excellent agreement
with experiments at all locations. The higher frequency part of the PB NLS
spectrum agrees with experiment and with the Dysthe computations up to the
prescribed maximum at x0 D 9m. Beyond this point, the higher frequency part
of the NLS-derived spectrum starts to shrink, no such decrease is observed in
Fig. 8.16 in the measured spectral amplitudes and in MNLS results. Up to x0,
the lower frequency part of the spectrum is significantly below the NLS-derived
prediction. After the maximum wave train height is attained, the bottom plate
indicates that the spectral widening becomes more prominent at lower frequen-
cies.

These results thus demonstrate significant quantitative and qualitative differences
between the spatial evolution of the NLS Peregrine soliton and the experiments.
The measurements confirm that due to the focusing properties of the NLS
equation, a small hump in a nearly monochromatic wave train can indeed
be amplified as suggested by the PB solution. The amplification, however, is
slower and weaker than predicted, so that the maximum gain of less than 3 is
attained farther away than the PB maximum. The growth in the wave height is
accompanied by a significant spectral widening, initially at frequencies exceeding
f0 and then at lower frequencies. As was the case with other initially narrow-
banded wave group shapes considered in Sect. 8.3, this widening violates the
basic assumptions in the derivation of the NLS equation for water gravity waves.
As the wave spectrum widens and becomes increasingly asymmetric with the
distance, the deviation of the PB NLS-derived wave and spectral shapes from
those observed in the experiments and in the solutions of Dysthe equation
enhances.

The relatively simple Dysthe model thus captures accurately fine details of
the observed wave field evolution even for peak steepness approaching breaking
conditions. The remarkable feature of the NLS Peregrine soliton is its reversibility.
The results presented above suggest, however, that the wave height growth is not
reversible. Both the available experimental data and Dysthe simulations show that
the decrease in the maximum wave height following the maximum is only partial.
The soliton observed in the experiments and described fairly well by the Dysthe
model in fact does not ‘breathe’.
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8.5 The Spatial Zakharov Equation

8.5.1 The Model Equations

As mentioned above, both the NLS and the mNLS (in Dysthe form) equations can be
derived from the Zakharov equation by applying appropriate limits on the spectral
width [73, 86]. For this reason one can expect that the numerical calculations based
on the Zakharov equation, which is free of any constraints on the spectral width,
can be advantageous for predictions of the evolution of nonlinear wave fields. This
conjecture was suggested by several authors (Yuen and Lake [85], Lo and Mei [32],
and Trulsen and Dysthe, [81]). The Zakharov equation is indeed the most general
nonlinear wave model, which describes temporal evolution of deep nonlinear waves
in Fourier space and has no restrictions on spectral bandwidth. The modulation
of each wave component is due to nonlinear near resonant interaction of four
waves (the so-called Class I interactions). Stiassnie and Shemer [74] extended the
derivation to intermediate depth and to the next order, to account for the so-called
Class II (five waves) near-resonant interactions. Although the approach applied in
[86] is based on the Hamiltonian formalism, the Hamiltonian is not fully conserved
in those formulations. Krasitskii [29] modified the original derivation of Zakharov
conserving the Hamiltonian structure of the water-wave problem. The accuracy in
predicting the domains of the Benjamin-Feir instability of nonlinear Stokes waves
was demonstrated in [74] where the results based on the Zakharov equation were
compared with the exact potential flow computations by Longuet-Higgins [35] and
McLean et al. [37, 38]. Quantitative agreement between these two computations
was obtained up to Stokes wave steepness exceeding 0.3. Results on the instability
domains of gravity-capillary waves obtained using an appropriate modification of
the Zakharov equation were supported by experiments in a laboratory wave tank
experiments by Shemer and Chamesse [58].

As discussed in Sect. 8.4.1, in order to perform quantitative comparison of the
predictions based on the Zakharov equation with the measurements of wave train
evolution in a wave tank, a modification of the governing equation is required to
describe the spatial (as opposed to temporal) evolution of the wave field. Shemer et
al. [65] suggested a spatial version of the Zakharov equation. A somewhat modified
version of the equation was presented in [67]. The unidirectional discretized spatial
Zakharov equation has the following form:

i
dBj.x/

dx
D

X

!jC!lD!mC!n

˛j;l;m;nB�l BmBne�i.kjCkl�km�kn/xI (8.33)

where � denotes complex conjugate and the spatial interaction coefficient ˛j;l;m;n in
its general form is given by

˛j;l;m;n D V.�; k.!l/; k.!m/; k.!n/
k.!l/� �

� � !.�/
: (8.34)
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Here � D k.!m/ C k.!n/ � k.!l/ and � D !m C !n � !l: In Eq. (8.34), the
values of V represent the quartet interaction coefficient in the temporal Zakharov
equation as given by Krasitskii [29]. Equations (8.33), (8.34) accurately describe
the slow evolution along the tank of each free spectral component Bj D B.!j/ of the
surface elevation spectrum in inviscid fluid of constant (infinite or finite) depth. The
dependent variables B.!j; x/ are related to the generalized complex “amplitudes”
a.!j; x/ composed of the Fourier transforms of the surface elevation O�.!j; x/ and of
the velocity potential at the free surface O .!j; x/:

a.!; x/ D .
g

2!
/1=2 O�.!; x/C i.

!

2g
/1=2 O .!; x/ (8.35)

The amplitudes a.!j/ can be seen as consisting of a sum of free and the bound
waves. The appropriate modification of Eq. (8.26) is

a.!j; x/ D �
�B.!j; x/C �2B0.!j; x/C �3B00.!j; x/

�
eikx (8.36)

The higher order bound components B0 and B00 can be computed at each location
once the free wave solution Bj.x/ is known. Only bound waves of the second order
resulting from interactions of all possible wave pairs i and j; i; j D 1; : : :N, are
considered here. Those waves have frequencies !i C !j and !i � !j . The phase
velocity of these components depends on the parent free waves and can not be
determined using Eq. (8.6). The corresponding formulae, as well as the kernels
necessary for their computations are given in [29, 74]. Expressions given in the
Appendix of [74] are used for computation of the second order bound waves.
Inversion of Eq. (8.35) allows computing the Fourier components of the surface
elevation. Inverse Fourier transform then yields the temporal variation for the
surface elevation �.

The spatial Zakharov equation given by Eqs. (8.33)–(8.35) was verified experi-
mentally by Shemer et al. [65]. As in Sect. 8.3, the simplest possible initial wave
trains were considered given by Eqs. (8.2)–(8.4). The experiments were performed
in the TAU wave tank described in Sect. 8.2. Similarly to [64], two carrier wave
periods, T0 D 0:7 s and T0 D 0:9 s were employed in the experiments.

The wave train excited by a bi-chromatic driving signal given by Eq. (8.2) with
carrier wave period T0 D 0:9 applied at the water depth h D 0:6m for the high
amplitude case, � D 0:21, is studied in Fig. 8.17. Note that the dimensionless depth
k0h D 3:0 in this case corresponds to intermediate water depth (cf. Sect. 8.3),
thus the deep-water Dysthe equation is inapplicable. Due to imperfections, the
spectral contents of surface elevation variation in the vicinity of the wavemaker
is somewhat different from that of the driving signal and varies slightly from
one experimental run to another. An example of the surface elevation spectrum
measured in the tank in a close vicinity of the wavemaker (x D 0:24m) is
plotted in Fig. 8.17a. The corresponding spectrum measured at a remote location
(x D 9:47m) is presented in Fig. 8.17c. The spectrum presented in Fig. 8.17a
is characterized by two dominant peaks of slightly unequal amplitudes of about
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Fig. 8.17 Left column: frequency spectra of the surface elevation, right column: surface elevation
for bi-chromatic driving signal (8.2), T0 D 0:9 s, � D 0:21. Panels (a, b, e, f): x D 0:24m; panels
(c, d, g, h): x D 9:47m. Panels (a, c, e, g)—measurements; panels (b, d, f, h)—simulations based
on 12 free modes. The open circles in panels (b) and (d) denote bound waves

2 cm each at frequencies f1 D .!0 �˝/=2� and f1 D .!0 C ˝/=2� and several
lesser peaks with amplitudes smaller than 0.25 cm. The frequency resolution of
the experimentally obtained spectra is �f D .f2 � f1/=2, in agreement with the
period of the driving signal (8.2). Minor peaks are observed in Fig. 8.17a, c at the
carrier wave frequency f0 D !0=2� , as well as at frequencies separated from f0 by
integer multiples of 2�f . Comparison of panels (a) and (c) on Fig. 8.17 indicates
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that those peaks remain of minor importance along the tank. Introduction of these
harmonics into the initial condition in a number of numerical simulations resulted
in a similar behavior, and those peaks remained small throughout the whole process
of the spatial evolution. These experimental and numerical results therefore provide
justification for reducing the spectral resolution of computations with the driving
signal given the Eq. (8.2) by disregarding those harmonics. The initial spectral
shape corresponding to the dominant peaks measured in the tank is selected in
computations, see Fig. 8.17c. The bound components are also plotted in Fig. 8.17b,
d. It should be noted that in contrast to the model simulations, the free and bound
components could not be separated in experimental observations. The simulated
bound components are plotted as open symbols, while the free waves in those panels
are plotted as filled symbols. The comparison of the simulated and measured spectra
at a remote location, Fig. 8.17c, d shows very good agreement.

The temporal variation of the surface elevation demonstrates that the simulations
reflect properly the evolution of the group shape as well. The envelope shape
develops both left-right and trough-crest asymmetries, as can be clearly seen in the
experimental results as well as in the simulations, Fig. 8.17g, h. Similar left-right
asymmetry, which is manifested in the forward leaning of the wave group front, was
reported in [32] and in [64] for an initial bimodal spectrum.

The results for the same conditions and at the same locations as in Fig. 8.17
but for the driving signal given by Eq. (8.3) are presented in Fig. 8.18. Both the
simulated results and the experimental observations demonstrate similar energy
spreading in the course of the propagation of waves away from the wavemaker.
This spreading can be observed both in the amplitude spectra and in the surface
elevation.

These and additional results presented in [21, 65] demonstrate that simulations
based on the set of the discrete Eqs. (8.33)–(8.35) that constitutes the spatial
unidirectional version of the Zakharov equation compared favorably with the
experimental results in deep and intermediate depth water. However, in order to
attain these results, in some occasions the wave frequency spectrum considered
included quite a large number of free modes N. The number of equations in the
set is equal to N, while the number of nonlinear terms in the resulting set of ODEs
is growing roughly proportionally to N3 [21].

8.5.2 The Spatial Zakharov Equation vs. the Dysthe Model

The considerable numerical effort required to solve the set of ordinary differential
equations resulting from the spatial Zakharov model prompted Shemer et al.
[66] to examine the limits of applicability of the Dysthe equation that requires
essentially lesser computer resources, by direct comparison of the simulations
results obtained for wave groups with spectra of varying width using both models
with measurements carried out in the TAU wave tank. Note that in the derivation of
the Dysthe equation it is assumed that �!=!0 D O.�/.
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Fig. 8.18 Left column: frequency spectra of the surface elevation, right column: surface elevation
for bi-chromatic driving signal (8.3), T0 D 0:9 s, � D 0:21. Panels (a, b, e, f): x D 0:24m; panels
(c, d, g, h): x D 9:47m. Panels (a, c, e, g) - measurements; panels (b, d, f, h) - simulations based
on 12 free modes. The open circles in panels (b) and (d) denote bound waves

The Gaussian-shaped driving signal given by Eq. (8.4) is particularly suited for
that purpose. Its energy spectrum also has a Gaussian shape with the relative width
at the energy level of 1/2 of the spectrum maximum given by

�!

!0
D 1

m�

r
1

2
ln2: (8.37)
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Fig. 8.19 Measured and computed variation of the instantaneous surface elevation at three
locations along the tank for T0 D 0:7 s; � D 0:24 and the Gaussian forcing signal with m D 4:0.
Upper row—experiment, middle row—Zakharov equation, bottom row—Dysthe model

The value of the parameter m thus determines the spectral width.
Carrier wave period T0 D 0:7 s was selected, corresponding to the wave number

k0 D 8:22 1/m, so that k0h 
 5, and the deep-water dispersion relation is satisfied.
The forcing amplitude a0 was chosen so that the maximum wave amplitude in the
group a0 D 2:92 cm, corresponding to the maximum wave steepness k0a0 D � D
0:24. For the value of m D 4:0 selected in the experiments, the relative spectrum
width �!=!0 D 0:047 < �, thus satisfying the narrow spectrum assumption of the
Dysthe model.

Comparison of the numerical simulations of the temporal and spatial variation
of the surface elevation performed according to both models with the experiments
is carried out in Fig. 8.19. The spatial Zakharov equation is solved by using the
modified Runge-Kutta method following the procedure described in [65]. The
results are shown at three locations: close to the wavemaker, in the middle of
the tank and far away from the wavemaker. The experimental results are band-
pass filtered to eliminate the contribution of bound waves. The total number of
free modes considered in the solution of the Zakharov equation (8.33), N D 60,
although much less modes are actually required to obtain satisfactory results.
Close to the wavemaker, the group envelope still retains its Gaussian shape, but
farther away strong distortion of the initially symmetric shape appears, and the
characteristic triangular shape of the envelope emerges. Both theoretical models
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faithfully describe the experimental oscillations, including the fine features of the
observed wave shapes.

The agreement between the numerical results of the Dysthe and the Zakharov
models is observed in Fig. 8.19. These results, together with extensive comparison
of the numerical simulations based on the Zakharov equation with wave tank experi-
ments carried out in [65] that were presented in part in Sect. 8.5.1 demonstrated that
the spatial Zakharov equation represents an adequate model to describe evolution
of a nonlinear wave field along the tank. In the narrow spectrum case, results
of Fig. 8.19 clearly demonstrate that the Dysthe model is sufficient to emulate
appropriately the details of the wave field evolution.

Generation of narrow initial wave group envelopes (with correspondingly wide
initial spectrum) represents not an easy task in a relatively short experimental wave
tank, in part due to the presence of long waves in the spectrum. On the other
hand, the validity of the spatial Zakharov model for wave groups with narrow
initial spectra was confirmed by extensive experiments. Since this model is free
of any restrictions on the spectral width, the numerical solutions based on the
Zakharov equation can serve as a basis to determine the domain of applicability
of the Dysthe model. Computations based on both those models were carried out
for the initial conditions that violate the formal limitations on the spectral width
inherent to the Dysthe model. Simulations were carried out for the carrier wave
period and steepness as in Fig. 8.19 and three values of the coefficient m in Eq. (8.4),
m D 1:0; 0:6 and 0.4. For m D 1:0, the effective relative spectral width given
by Eq. (8.37) is 0.19, just below the value of �. For m D 0:6, �!=!0 D 0:31,
somewhat higher that the maximum wave steepness. Finally, for m D 0:4, the
relative initial spectrum width attains an extremely high value of 0.47, exceeding
the maximum possible steepness of propagating deep gravity waves. Variation of
the surface elevation with time and the amplitude spectra are presented at three
distances from the location of wave generation, at x D 5m; x D 10m and x D 20m.

Results for the surface elevation variation with the distance for m D 1:0 are
presented in Fig. 8.20. Strong dispersion leads to dramatic variation of the group
shape, which is obvious in both computations. The resemblance between the results
of both models seems to indicate that the Dysthe model remains adequate for these
parameters even at relatively large distances [x D 20m corresponds to more than 26
carrier wave lengths and to the dimensionless distance X D 9:47, see Eq. (8.7)].
Additional insight into the nonlinear physics of the wave group transformation
along the tank is obtained by analyzing the amplitude spectra of the surface
elevation. The spectra at the three selected locations are compared with the initial
spectral Gaussian shape in Fig. 8.21. The similarity between the two simulations
is impressive, excluding the low frequency range. The Dysthe model correctly
represents the gradual narrowing of the high-frequency part of the spectrum with
the distance, with the corresponding growth of the peak value.

For m D 0:6, the Dysthe-based simulated temporal variation of the surface
elevation at different locations along the tank plotted in Fig. 8.22 still compare
favorably with the Zakharov computations, although in this case the agreement
becomes less impressive at a larger distance of 20 m. The groups retain their identity
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Fig. 8.20 Wave field evolution along the tank for carrier wave parameters as in Fig. 8.19 and
mD 1:0

up to the distance of about x D 10m; farther away the faster moving longer waves
penetrate the slower moving shorter waves of the previous group.

The corresponding Dysthe-derived amplitude spectra, Fig. 8.23, retain definite
similarity to those obtained using the Zakharov equation, especially at higher
frequencies. As in Fig. 8.21, in both simulations the spectrum becomes narrower
with the distance, although for m D 0:6 this effect is less pronounced than for m D
1:0. The rate of variation of the spectrum in Fig. 8.23 is quite fast at the first stages
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Fig. 8.21 Amplitude spectra of the surface elevation for carrier wave parameters as in Fig. 8.20;
(a)—computed according to the Zakharov equation; (b) according to the Dysthe model

of evolution, but at larger distances the spectral shape remains nearly constant. This
can be attributed to the spreading of the wave energy over the computational domain
visible in Fig. 8.22, which results in gradual effective linearization of the problem
with distance. At the lower end of the spectrum, however, the Dysthe model exhibits
notable noise, in contrast to the smooth behavior of the spectrum obtained from the
Zakharov equation at those frequencies.

When an even wider spectrum is considered, m D 0:4, the wave energy spreads
quite fast, so that already at x D 10m the consecutive groups become indistinguish-
able, Fig. 8.24. In this case, 70 free modes were considered in the solution of the
Zakharov equation. Although the initial spectrum can by no means be considered
as narrow, the temporal variation of the simulated using the Dysthe model surface
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Fig. 8.22 As in Fig. 8.20 for mD 0:6

elevation up to the distance of about 10 m is similar to the results of the Zakharov
equation. At larger distance, x D 20m, quite a chaotic temporal variation of �.t/
is obtained by the Dysthe model, qualitatively (but not quantitatively) similar to the
solution at this location of the Zakharov equation.

Comparison of the corresponding amplitude spectra in Fig. 8.25 sheds additional
light on the nonlinear wave transformation process. The solution of the Zakharov
equation indicates that the energy spreading along the group is in this case even
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Fig. 8.23 As in Fig. 8.21 for mD 0:6

faster than that for m D 0:6, so that already at x D 5m the wave spectrum
attain its finite shape and no energy transfer occurs anymore among various wave
components. This final spectrum shape, however, for !=!0 > 0:8 is notably
different from the initial Gaussian spectrum; it is narrower and exhibits a wider
peak. The performance of the Dysthe model cannot be considered as adequate. It
still reflects relatively well the behavior of the higher-frequency part of the spectrum,
but the shape of the spectrum at energy-containing frequencies is notably different
from that obtained from the Zakharov equation. Moreover, the oscillations in the
spectral amplitudes at the low-frequency end of the spectrum, which were already
clearly visible in Fig. 8.23, become now much stronger, indicating that the Dysthe
model fails for this wider initial spectrum.

Figures 8.19, 8.20, 8.21, 8.22, 8.23, 8.24, and 8.25 demonstrate that a better
understanding of the complex problem of the nonlinear wave evolution can be
achieved by analyzing both surface elevation history and amplitude spectra at
various locations. The surface elevation plots make apparent the effects of dis-
persion, while the spectra clearly show the contribution of nonlinearity. For wider
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Fig. 8.24 As in Fig. 8.22 for mD 0:4

initial spectra the presented results demonstrate that in the course of the evolution
process, the wave energy from the high-frequency part of the spectrum is shifted
towards lower frequencies, changing substantially the spectral shape. The frequency
of the peak in an initially wide spectrum, though, shows a trend towards higher
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Fig. 8.25 As in Fig. 8.21 for mD 0:4

frequencies. No significant energy exchange is observed in the low-frequency range
of the spectrum.

8.5.3 Nonlinear Focusing Based on the Spatial Zakharov
Equation

Beyond the general interest in rogue waves, excitation of very steep waves in wave
tanks enables experimental study of the wave damage potential and is thus of
great importance. Generation of a single steep wave at a prescribed location in a
laboratory wave tank of constant depth is also often required for model testing in
coastal and ocean engineering. It is well known that such waves can be generated
by focusing a large number of waves at a given location and instant. Dispersive
properties of deep or intermediate-depth surface gravity waves can be utilized for
this purpose. Since longer gravity waves propagate faster, a wave group generated at
the wave maker in which wave length increases from front to tail may be designed
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to focus the wave energy at a desired location. Such wave sequence can be seen as a
group that is modulated both in amplitude and in frequency. In the frequency space, a
single steep wave constitutes a superposition of a number of harmonics, each having
a moderate steepness that can easily be generated by a wavemaker; these harmonics
reach the prescribed location with identical phases, so that the amplitude of the
resulting wave is a sum of amplitudes of all frequency components. Focusing is
therefore more effective when the number of free wave harmonics initially generated
at the wavemaker is large. Excitation of a single wave with extreme amplitude
thus requires wide spectrum of the initial wave group generated at the wavemaker.
Very steep (freak) wave therefore can be seen as a wave group with a very narrow
envelope and correspondingly wide spectrum. Results of Sect. 8.5.2 demonstrate
that the narrow-banded Dysthe model is not suitable for wider spectra. It is thus
natural to apply the spatial Zakharov equation given by Eqs. (8.33)–(8.35) for this
problem.

The goal of the study carried out by Shemer et al. [67] was to generate a single
steep wave at a prescribed focusing location xf in the tank. The wave is presented by
a wave group given by (8.4) with the width parameter m D 0:6, see the upper panel
in Fig. 8.22. In order to compute the wavemaker driving signal required to obtain
the desired wave group shape at the distance xf from the wavemaker, the spectrum
corresponding to Eq. (8.4) plotted in Fig. 8.23 is integrated from xf backwards up to
the wavemaker at x D 0. Due to an essentially nonlinear character of the steep waves
studied, see also [7], the resulting spectrum at the wavemaker is notably different
from the Gaussian shape at the focusing location xf . Experiments on nonlinear
focusing were carried out in both facilities described in Sect. 8.2: in the large wave
tank in Hanover, GWK, and in TAU. These experimental facilities differ in size by
an order of magnitude.

The experiments in GWK were carried out for two carrier wave periods, T0 D
2:8 s (carrier wave length �0 D 12:1m) and T0 D 4:34 s (carrier wave length
�0 D 25:0m), corresponding to dimensionless depths of k0h D 2:59 and k0h D
1:26, respectively. For the shorter carrier wave length, the deep-water dispersion
relation is satisfied approximately, whereas for the longer carrier wave, water at
wave number corresponding to �0 D 25m cannot be considered deep. Even for
�0 D 12:1m, since wide-spectrum wave groups were considered, intermediate-
depth waves were present. Therefore, in all expressions finite-depth version of
the interaction coefficients were used. The focusing location, xf , in the GWK
experiments was located at the dimensionless distance xf=�0 of about 10 carrier
wave lengths from the wavemaker for �0 D 12:1m, and at half that distance in
terms of the wave lengths for �0 D 25:0m.

The designed temporal variation of the surface elevation at the wavemaker �des D
�.x; t/ was computed by backward integration of (8.33) from the focusing location
to x D 0. For each carrier wave period T0 and focusing location xf , the solution of
the system of N ODEs, N being the total number of wave harmonics considered,
was obtained for distances ranging from the wavemaker location at x D 0 up
to xf and beyond. The number of free wave harmonics N considered in those
computations was in the range from 56 to 76. The wavemaker driving signal was
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then calculated from �des employing the wavemaker transfer function. This function
relates the amplitudes and phases of the harmonic wavemaker displacement at a
given frequency to the corresponding parameters of the propagating monochromatic
wave. For a given wavemaker shape, i.e. piston or paddle, this function can be found
using the linear wavemaker theory (see, e.g. [9]). It is well known, however, that for
finite amplitude waves significant nonlinear effects may become important (see, e.g.
[12]). The complex wavemaker transfer function for a given experimental facility is
therefore found empirically by performing a series of experiments on excitation
of monochromatic waves. Generation of water gravity waves by a wavemaker is,
however, an essentially nonlinear process [53]. To account for the nonlinearity of
wave generation, an experimental procedure was applied, in which the wavemaker
driving signal was adjusted iteratively to obtain the desired wave train shape at a
prescribed location away from the wavemaker, thus eliminating effect of evanescent
modes. The details of this iterative procedure were presented in [67]. In GWK,
adjustment was carried out at x D 52:2m.

Evolution of the wave group shape along the tank is illustrated in Fig. 8.26.
The solid line shows the variation of the surface elevation computed by backward
integration of Eq. (8.33) starting from the prescribed Gaussian shape given by
Eq. (8.4) at the focusing location, with the carrier wave period T0 D 2:8 s (frequency
f0 D 0:357Hz) and steepness �0k0 D 0:3. Computations are carried out for N D 76

harmonics, corresponding to frequencies in the range 0.039 Hz � f � 0.76 Hz. The
system of 76 ODEs was solved using the Runge-Kutta procedure with integration
step of 5 cm. Test of the integration procedure with the halved integration step of
2.5 cm demonstrated that the solution remains insensitive to step size variation.
Surface elevation variation is shown at this figure also for the wavemaker location
(actually, the wave gauge is attached at the distance of 5 cm from the piston surface),
and for the location of the wavemaker driving signal adjustment x D 52:2m. The
results of measurements by the corresponding wave gauges are plotted as well.
Note that as the time reference from here on in this subsection is the instant of
the initiation of the wavemaker motion.

The agreement between the water elevation measurements and the corresponding
computations in Fig. 8.26a is quite good even though only free wave components
are accounted for in the computations. The selected value of m D 0:6 in (8.4) yields
indeed a narrow wave group with a single steep wave at the focusing location. The
period of waves within the group at the wavemaker gradually increases, resulting in
a quite complicated envelope shape, in contrast to the symmetric Gaussian shape at
the focusing. This group envelope shape is also reproduced well in the numerical
simulations. This agreement is particularly good at the adjustment location x D
52:2m. The maximum wave crest height above the mean water level that is about
0.2 m at the wavemaker increases to more than 0.6 m at the focusing location. The
agreement of experiments and computations is less impressive at the wavemaker,
most probably due to effect of the evanescent modes. The measured crest height
at the focusing location is notably higher than the computed value. Disagreement
between experiments and computations also manifests itself in some asymmetry of
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Fig. 8.26 Evolution of the wave group along the GWK for T0 D 2:8 s and � D 0:3: (a)
temporal variation of the surface elevation at various locations along the tank; (b) the corresponding
amplitude spectra and the peak frequencies. Solid lines—experiment; broken lines—computations.
Records have been shifted vertically for better visibility

troughs at x D 120m, as well as in the presence of long waves that are clearly seen
in the wave gauge output.

Focusing is sometimes attempted by constructive interference of linear propagat-
ing dispersive waves. To asses the accuracy of this approach in view of the effects
of nonlinearity, comparison of the computed and the measured amplitude spectra of
the surface elevation at the same locations is carried out in Fig. 8.26b. As in previous
sections, the discrete spectra are plotted by continuous lines for convenience due to
the large number of frequency harmonics fi considered. The frequency resolution is
determined by the decrement �f D 1=� , where � is the measurement duration of
experiments or computations. The dimensional discrete amplitudes ai D a.fi/ are
normalized by the maximum designed amplitude at the focusing location, �0. The
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essential nonlinearity of the evolution process manifests itself in significant change
of shape along the tank of both measured and computed spectra. The peak frequency
is shifted to a lower value, and the whole spectrum widens as the group moves
along the tank. Note that the modification of the spectrum between x D 0:05m and
x D 52:2m is relatively minor, indicating that as long as the maximum wave height
within the group remains small, the nonlinear interactions are weak and the variation
of the group shape results mainly from the linear dispersion. Nonlinearity becomes
dominant as the maximum wave height increases with approach to the focusing
location, and the spectrum at x D 120m is very different from those measured for a
wider group closer to the wavemaker.

As in Fig. 8.26a, the agreement between the computed and the measured spectra
is the best, although not perfect, for the adjustment location of x D 52:2m.
The measured amplitudes at the wavemaker are considerably higher than the
computed ones, especially in the vicinity of the peak frequency. This disagreement
can be attributed to the appearance of evanescent modes, as well as to local
nonlinear effects related to finite wavemaker stroke. Most interesting, however, is
the difference between experiments and computations at the focusing location that
is visible practically at all frequencies. The ratio between the measured spectral
amplitudes and the numerically obtained ones is particularly large at frequencies
exceeding about 0.6 Hz. To account for this discrepancy, the contribution of the
second order bound waves as defined by Eq. (8.36) was computed. The detailed
analysis of the bound wave contribution carried out in [67] demonstrates that
their relative contribution increases as the focusing location is approached and
that accounting for their contribution significantly decreases the deviation of the
computational results from the measurements.

The difference between computations and measurements gradually grows as the
wave group propagates along the tank. Moreover, this difference appears to increase
with frequency. These results suggest that dissipation, albeit weak, cannot be totally
neglected in the numerical simulations. Since the dissipation in the boundary layers
at the tank walls and bottom is relatively weak, it is sufficient to account for the wave
energy loss along the tank by adding an additional linear term to the governing
equation, as suggested for gravity-capillary waves in [58]. The spatial Zakharov
equation (8.33) that accounts for dissipation along the tank can thus be written as

i
dBj.x/

dx
D

X

!jC!lD!mC!n

˛j;l;m;nB�l BmBne�i.kjCkl�km�kn/x � i	Bj.x/: (8.38)

The complex spatial dissipation rate coefficient 	 for a wave of an arbitrary
frequency ! in a channel of width w and depth h that accounts for the Stokes layer
at the side walls and the bottom of the tank was given in [25]:
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Application of Eq. (8.39) yields for the present experimental conditions the follow-
ing values of the viscous dissipation coefficient: 	 D 1:34 � 10�4e�i�=4 1/m for
the carrier wave period T0 D 2:8 s, and 1:50 � 10�5e�i�=4 1/m for T0 D 4:34 s.
The expected decay of amplitude at the carrier wave period T0 for the distance of
120 m is about 1.6 % for the shorter wave and about 0.9 % for the longer wave.
Viscous dissipation becomes thus noticeable only for the high frequency part of the
spectrum.

The results presented in Fig. 8.26, as well as additional extensive results obtained
in the GWK experiments and reported in [67] demonstrate that computations of
the wave field evolution with wide spectrum based on the adopted version of the
spatial Zakharov equation provide good agreement with the measurement results,
although some quantitative differences between experiments and computations
exist. These differences were attributed mainly to the limited ability to reproduce by
a wavemaker the required wave train shape in a large facility. Based on the extensive
experience gained in running experiments in the GWK and processing the results,
additional series of measurements was carried out in a much smaller TAU wave
tank, where many drawbacks of the GWK experiments could be eliminated.

The designed wave group shape at the focusing location in TAU facility was
identical to that in the Hanover experiments. The maximum wave steepness in the
experiments ranged from 0.1 to 0.4, most runs were performed for �0k0 D 0:3.
A number of carrier wave periods T0 was employed. Some experiments were
performed for identical dimensionless water depth k0h in both facilities. The values
of k0h of 2.6 and 1.26 used in Hanover yield for the TAU tank depth of 0.6 m
carrier wave lengths of 1.45 m and 2.99 m, respectively. The shortest carrier wave
period employed in these experiments was T0 D 0:6 s (�0 D 0:56m, koh D 6:71),
so that the deep water conditions were approximately satisfied even for the low
frequency part of the spectrum. Experiments with shorter waves in a tank of a
given length allow longer dimensionless (in carrier wave lengths �0) evolution
distances, resulting in a considerable modification of the wave group shape and
of the spectrum. These conditions, though, make it difficult to reproduce by the
wavemaker motion the computed complex waveform that is supposed to serve as
the initial condition due to small wave heights at the wavemaker.

Viscous dissipation along the tank was accounted for in computations of the
required surface elevation at the TAU tank wavemaker, see Eq. (8.38). The iterative
driving signal adjustment was performed by comparing the computed and the
measured signal at the distance of 1 m from the wavemaker.

Representative experimental results are given in Figs. 8.27 and 8.28 and com-
pared with those obtained numerically. The computational results presented in those
figures include also the contribution of the second order bound waves. In each figure,
the variations of the surface elevation and of the amplitude spectra along the wave
tank are plotted at four locations. The selected locations include the adjustment point
at the distance of x D 1m from the wavemaker, the focusing location, as well as
two additional positions, one before and one after the focusing. Results are given for
two extreme values of the carrier wave period used in TAU experiments: in Fig. 8.27
T0 D 0:6 s (carrier wave length 0.562 m, corresponding to dimensionless depth
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Fig. 8.27 Evolution of the wave group along the GWK for T0 D 0:6 s and � D 0:35.
(a) temporal variation of the surface elevation at various locations along the tank; (b) the
corresponding amplitude spectra and the peak frequencies. Solid lines - experiment; broken lines -
computations. Records have been shifted vertically for better visibility. Computations account for
the second order bound waves

k0h D 6:71), and in Fig. 8.28 T0 D 0:97 s (carrier wave length 1.45 m, k0h D 2:60,
identical to that in the GWK experiments for T0 D 2:8 s). In both figures the driving
amplitudes considered are selected so that at the focusing location, the resulting
wave is quite steep, with the maximum wave amplitudes �0 corresponding to the
steepness � D k0�0 D 0:35 in Fig. 8.27 and to � D k0�0 D 0:3 in Fig. 8.28.
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Fig. 8.28 Evolution of the wave group along the GWK for T0 D 0:97s and � D 0: (a) temporal
variation of the surface elevation at various locations along the tank; (b) the corresponding
amplitude spectra and the peak frequencies. Solid lines - experiment; broken lines - computations.
Records have been shifted vertically for better visibility. Computations account for the second
order bound waves

Focusing location as far as possible from the wavemaker ensures longer evolution
domain but requires lower wave heights at the wavemaker. In view of difficulties
in faithful reproduction of group shapes with very low wave heights, the focusing
distance of 6 m was selected in Fig. 8.27, relatively short compared to the tank
length, and constitutes about 10.7 carrier wave lengths �0. To improve the accuracy
of results, the maximum wave steepness in this case is also chosen to be somewhat
higher than that for longer carrier waves. In computations, 131 frequency harmonics
were considered, covering free wave frequency range of 0.125 Hz� f � 3:375Hz.
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For a longer wave in Fig. 8.28 with T0 D 0:97 s (106 free harmonics, 0.1 Hz � f �
2.2 Hz), focusing is designed to occur at a larger distance from the wavemaker,
x D 10m. Note, however, that in terms of the carrier wave lengths those focusing
distances of 6:9�0 is shorter than in Fig. 8.27.

A very good agreement between the computed superposition of the free and the
second order bound waves and the measurements is obtained for the variation of
the wave group shape along the tank. Similarly good agreement is observed in all
amplitude spectra in Figs. 8.27b and 8.28b for each one of the spectral harmonic.
Modulation of the amplitude and of the frequency within the group is clearly seen
in Figs. 8.27a and 8.28a at x D 1m; the maximum wave amplitude within the
group then increases towards the focusing location. At the focusing, a single steep
wave with height very close to the designed value is obtained in all cases. Close
to the wavemaker, the envelope of the wave group with the shortest carrier wave
in Fig. 8.27a is more asymmetric than in the other case. The amplitude spectra
allow estimation of variation of contribution of each harmonic in the course of the
evolution. The spectral shape variation in both Figs. 8.27b and 8.28b is quite similar,
indicating that the variation of dimensionless depth does not affect the evolution
pattern strongly. The spectrum has the maximum width at the focusing location,
while close to the wavemaker it is somewhat narrower. The peak frequency drifts
in the course of the evolution process. The minimum value of the peak frequency,
corresponding to that of the carrier wave, is obtained at the focusing location. The
upward shift of the peak frequency from the carrier wave value increases with the
distance from the focusing location. The full symmetry of the spectral shapes at
equal distances from the focusing is violated by the viscous dissipation; this effect
is more visible for free harmonics at higher frequencies.

Results on evolution of wave groups with wide spectra presented above were
obtained in two wave tanks that differ in size considerably. In spite of that, the
evolution patterns observed in the experiments and obtained in the numerical
simulations are quite similar in both facilities. Those patterns are determined by
combination of linear and nonlinear contributions. The effects of nonlinearity are
governed by the maximum wave steepness at the focusing location, � D �0k0. The
values of � in experiments and computations in both facilities were very close, and
the results presented above are mostly for high values of the maximum steepness
of about � D 0:3. Nonlinear effects are readily identified in the variation of the
spectral shapes that would remain constant if nonlinearity were negligible. Results
of Figs. 8.26b–8.28b demonstrate that the variations of the spectral shape with the
distance from the wavemaker obtained in both facilities were essential.

Evolution of the wave group shape along the tank, while being dependent on
nonlinearity, is strongly affected by linear effects. The dominant linear effect in
the evolution process is the dispersion that for gravity waves depends on the
dimensionless water depth, k0h. The dimensionless water depth was in the range of
2:6 � kh � 6:7 for the TAU tank, and had the values of k0h D 2:6 and k0h D 1:26

in the GWK experiments. For the majority of cases carrier waves can be seen thus
as propagating over deep water. It should be reiterated, however, that since wave
groups with wide spectra were considered, the free wave spectrum always contained
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Fig. 8.29 Extreme values of crest and trough deviations from the undisturbed water level in the
TAU tank: experiments vs. computations for � D 0:3. Diamonds—T0 D 0:6 s; triangles—T0 D
0:85 s; circles—T0 D 0:97 s

also harmonics corresponding to quite long and thus weakly dispersive waves. Good
agreement between experiments and computations in all cases demonstrated in the
previous sections indicates that the spatial evolution model based on the Zakharov
equation performs adequately for intermediate-depth wave as well.

The focusing process along the tank can be followed in greater detail if the
highest wave crest attained at a given location during the passage of the group
is plotted against the distance from the wavemaker. The resulting curve can be
seen as the boundary of the wetted surface left by the propagating wave group at
the tank side wall. Similarly, the variation along the tank of the deepest trough
can also be plotted. In order to compare quantitatively the focusing processes for
different experimental conditions and in the two facilities, appropriate normalization
is required. The propagation distance in each experiment is thus measured relative
to the designed focusing location and normalized by the corresponding carrier
wave length �0. The maximum wave crest height above the undisturbed level at
the focusing location serves as the normalizing factor for both crest and trough
elevations. The computed values that include the contribution of the second order
bound waves are used for normalization.

The normalized extreme values of wave crest and trough obtained experimentally
in the TAU tank at the maximum designed wave steepness of � D 0:3 for three
values of the carrier wave period, T0 D 0:6 s, T0 D 0:85 s and T0 D 0:97 s, are
presented in Fig. 8.29. The corresponding computed quantities are also shown. Good
agreement between computations and experiments is obtained for all frequencies.
For all cases, the maximum elevation at the focusing is increased by a factor of
about 3 relative to that at the wavemaker, whereas the increase in the through depth
is smaller. The rate of decrease of the maximum elevation declines with the distance
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Fig. 8.30 Comparison of evolution of normalized extreme elevations along both tanks for k0h D
2:6 and � D 0:2. Solid line and diamonds—free and bound waves computations for T0 D 0:6 in
TAU tank; broken line and triangles—the same for T0 D 2:8 s in GWK

from the focusing location. For identical nonlinear parameters and the scaled by
f0 free wave spectra at the focusing location, the shapes of all curves relative
to focusing should also be identical, provided effects related to water depth are
negligible. At distances exceeding about 5�0 from the focusing, the rate of decrease
of the maximum surface elevation becomes quite slow. All curves in Fig. 8.29 have
common salient feature: the variation of the extreme surface elevation with x in the
vicinity of the focusing location is quite complicated, as a result of interplay of
the phases of various harmonics as they approach the same value at the focusing.
Note also that at focusing, the maximum trough depth has a local minimum. Hence,
the maximum wave height, defined as the difference between the extreme values
of the surface elevation at crest and trough, does not attain its maximum value at
the focusing location, but rather is shifted and exhibits two maxima at both sides of
the focusing. The slight dissimilarity in shapes of curves may be attributed to depth
effects.

Closer investigation of the similarity between the shapes is carried out in
Fig. 8.30, where comparison is carried out between evolution of normalized extreme
elevation along both tanks at identical values of dimensionless depth k0h D 2:6.
Computations corresponding to the GWK experiments are performed using the
measured complex wave spectrum at the wavemaker adjustment location as the
initial condition. To demonstrate that the wave group evolution pattern does not
vary notably with forcing amplitude, the results in this figure are presented for
a somewhat weaker forcing with � D 0:2. To enable comparison, the numerical
solution corresponding to TAU conditions was extended beyond the actual wave-
maker location to the dimensional distance of .x � xf /=�0 D �9:91, as in the GWK
experiments. The dependencies of both maximum and minimum elevation for both
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Fig. 8.31 The effect of nonlinearity on the variation along the tank of the maximum wave height
normalized by its value at the wavemaker in TAU for T0 D 0:85 s. Thick solid line—linear solution
of Eqs. (8.28)–(8.30); circles (experiments) and broken line (computation)—� D 0:2; thin solid
line and triangles—� D 0:3

facilities in Fig. 8.30 collapse on the same curves. The minor differences can be
attributed to several factors. First, the effect of dissipation is more pronounced in
the TAU tank, as discussed in greater detail in [67]. Dissipation affects not just the
amplitudes but also the phases of each harmonic. In addition, the adjustment of the
wavemaker driving signal in the GWK experiments was less accurate as specified
in above. Figure 8.30 also confirms the conclusion from Fig. 8.29 that the effect of
focusing is mainly restricted to the last five carrier wave lengths before the focusing
point. At larger distances, the extreme values of the surface elevation do not change
significantly.

The effect of nonlinearity on the focusing process in both facilities is studied in
Fig. 8.31 for two values of the nonlinearity parameter, � D 0:2 and � D 0:3. As
a reference condition for the assessment of the role of finite wave height on the
focusing process, the solution of the linearized NLS equation for the evolution of
wave group with the shape given by (8.4) can be invoked, see Eqs. (8.28)–(8.30).
The variation of the maximum wave heights within the group normalized by the
maximum computed wave height at the wavemaker, with the normalized by �0
distance from the focusing location, is shown in Fig. 8.31 for the carrier wave period
T0 D 0:85 s in the TAU tank. The effectiveness of focusing apparently decreases
with increase in wave steepness. For the dimensionless focusing distance of about
eight carrier wave lengths, the relative increase in the maximum wave height is still
close to the linear value of 3 for � D 0:2, and remains below 2.5 for � D 0:3. These
values were obtained when contribution of the second order bound waves were
accounted for in the finite amplitude cases. In spite of the significant contribution of
the bound waves to the maximum crest height for finite wave amplitudes, the relative
effectiveness of focusing is higher in the linear case. Note also that the spatial
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variation of the maximum wave height obtained from the linear solution is smooth
also around the focusing location, in contrast to the behavior of the computed and
experimental results for finite amplitudes.

8.6 Statistics of Nonlinear Unidirectional Water Waves

Sections 8.3–8.5 describe evolution of unidirectional deterministic waves along
wave tanks. As stressed in the Introduction, nonlinear ocean waves, however, are
stochastic in nature. Theoretical investigations aimed at describing the statistical
properties of nonlinear wave fields were originated by Longuet-Higgins [33] who
showed that for a narrow-banded wave field with random phases, wave heights
satisfy the Rayleigh distribution. An improved model that takes into account
nonlinear effects has been suggested later [34]. More recently, numerous models
appropriate to unidirectional wave fields were proposed, see [43, 77–79] and
additional references therein. The probability of appearance of very high rogue
waves attracts particular attention. The relatively high occurrence of those waves
that may exceed the predictions based on the Rayleigh distribution suggests that the
occurrence of freak waves is related to nonlinearity of the wave field. Determination
of freak waves’ probability for a given sea state is important practically and requires
in depth study using the most advanced theoretical approaches and laboratory
experiments.

The effect of directional spreading on the statistics of random waves was
also considered in a number of numerical and experimental studies [48, 72, 83].
Measurements of the evolution of unidirectional random wave fields have been
performed in very large experimental installations [45, 46, 48, 72]. The present
section summarizes the results of experimental and numerical investigations of the
evolution of a random wave field in a large wave tank presented in [62, 68, 69].
In these studies variation along the tank of various statistical properties of the
wave field is investigated for a range of parameters in view of their relevance to
appearance of freak waves. The effects of nonlinearity and of spectral shape were
investigated. The experiments were carried out in the Large Wave Channel (GWK)
in Hanover. Spatial evolution of numerous realizations of a wave field that have
identical initial frequency power spectra for the free wave components and random
phases in each realization was studied.

The dimensionless spectral width � is of a random wave field is defined as

� D
q
.m0m2=m2

1/� 1; (8.40)

where the jth spectral moment of the power spectrum S.!/ is

mj D
ˆ !max

!min

!jS.!/d!: (8.41)
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Fig. 8.32 Initial spectral shapes of the surface elevation

In (8.41), the integration is carried out over the free waves’ frequency domain
only. The following initial free wave spectral shapes were considered: (a) a narrow
Gaussian spectrum corresponding to (8.4) as in Sects. 8.3–8.5, with m D 3:5

resulting in � D 0:045; (b) rectangular spectrum with fmax;min D f0 ˙ 0:047Hz;
� D 0:045; (c) an intermediate width Gaussian spectrum with � D 0:09; (d) a
wide Gaussian spectrum with � D 0:16; (e) JONSWAP spectrum, see e.g. Goda
[13]:

S.f / D Af�5exp
��1:25.T0f /�4

�
	 expŒ�.T0f�1/2=2
2�: (8.42)

In (8.42), A is an adjustable amplitude parameter, the peak enhancement parameter
	 D 7; 
 D 0:07 for f � f0; 
 D 0:09 for f > f0. These parameters yield the
dimensionless width � D 0:20. The initial spectral shapes are plotted in Fig. 8.32.

To follow variation of the wave field over distances containing as many dominant
wave lengths �0 as possible, the shortest possible carrier wave period T0 D 1:5 s
was selected based on the frequency response of the hydraulically-driven GWK
wavemaker. The corresponding wave length �0 D 3:51m and the dimensionless
water depth k0h D 8:95 
 1. For each initial shape of the spectrum, the
selected duration of the basic unit of the wavemaker driving signal was 81.92 s,
corresponding to 4096 data points at the wavemaker driver frequency of 50 Hz
and the spectral resolution of the driving signal of 1/81.92 Hz. In every realization
of a given spectrum this basic unit was repeated twice. The measured in the
vicinity of the wavemaker spectral amplitudes of each harmonic do not remain
fully deterministic due to nonlinear response of the water-wave field to the non-
monochromatic wavemaker motion; each of them varies in different realizations
of the spectrum around the prescribed value. For random waves, the nonlinearity
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parameter � can be defined as � D k0� , where the � D m1=2
0 is the r.m.s. value

of the surface elevation. It is customary to characterize waves by the significant
wave heights H1=3 representing the average trough-to-crest height of 1/3 highest
waves in each record [13]. For linear narrow-band waves with Rayleigh-distributed
amplitudes, the values of H1=3 and � are related by H1=3 D 4=004� .

Higher values of � result in more prominent manifestation of the nonlinear effects
along the tank. In visual observation of the wave field during initial runs performed
with � D 0:065 [62] for the narrow Gaussian spectral shape, � D 0:045, occasional
wave breaking within the tank was observed. Since wave breaking is not accounted
for in the deterministic models of wave field evolution, it was decided to run most
experiments for � D 0.054. The effect of nonlinearity on the wave field evolution
for the narrow spectrum was studied in [62] by carrying out some experimental runs
for � D 0:043 and � D 0:065. Additional details of the experimental procedure can
be found in [62, 69].

The spatial evolution of the initially narrow Gaussian spectrum with � D 0:054

is shown in Fig. 8.33. In the initial stages of evolution shown in the top panel, the
spectral density widens around the carrier wave frequency f0 D 0:67Hz up to the
distance x of about 100 m, or 30�0. This spectrum widening is more pronounced at
the high-frequency side. At the subsequent stages of the spatial evolution, presented
in the bottom panel, the spectrum tends to its initial shape at a distance of about
200 m or 60�0 from the wavemaker. The patterns of spatial evolution of the spectra
at both lower, � D 0:043 and higher, � D 0:065, initial forcing amplitudes are
similar, and also exhibit the effect of quasi-recurrence.

The measured evolution along the tank of the wave spectra with different initial
spectral shapes is studied in Fig. 8.34. For all initial spectra considered, the results
are shown at four locations along the tank, up to x D 240m where the most
distant wave gauge was located. For all cases presented, the peak frequency does
not change notably along the tank. Considerable variation of the spectral shape with
the distance x from the wavemaker is obtained mainly for the initially rectangular
narrow spectrum in Fig. 8.34a. This spectrum does not retain its rectangular shape;
similarly to the pattern observed in Fig. 8.33, the spectrum becomes substantially
wider at x D 80m; it then becomes narrower again. Note that at x D 80m only
the part of the spectrum at frequencies exceeding the peak value differs notably
from that at more distant locations, whereas the low frequency part of the spectrum
does not change significantly after few tens of dominant wave lengths �0. The
effect of widening of the higher frequency part of the spectrum at x D 80m can
be distinguished also in Fig. 8.34b. For even wider initial spectral shapes in panels
(c) and (d), no such widening is obtained. The results of Fig. 8.34a–d demonstrate
that equilibrium spectral shapes are attained in those cases at distances exceeding
about 40�0. Those equilibrium shapes, however, are not universal and are strongly
dependent on the initial spectrum. For the initial JONSWAP spectral shape, panel
(d), the high frequency part of the spectrum seems to decay monotonically, and the
total power decreases along the tank. Certain wave energy decay in Fig. 8.34d may
be attributed to sporadic wave breaking that was observed only for the JONSWAP
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Fig. 8.33 Evolution of the frequency spectrum for the initially Gaussian spectrum with � D 0:045

and � D 0:054: (a) spectrum broadening during the initial stages of the evolution; (b) partial
relaxation to a narrower spectrum farther away from the wavemaker

spectrum. The characteristic wave frequency !m remains nearly constant along the
tank with the average value of about 4.22 rad/s for all forcing amplitudes.

The variation of H1=3 with the fetch presented in the top panel of Fig. 8.35
indicates that for each forcing amplitude, the significant wave height remains
approximately constant. The frequency limits in the Eq. (8.41) are defined by the
first minima of S.f / in Fig. 8.33 on both sides of the characteristic frequency
f0 D !0=2� . As shown in the bottom panel of Fig. 8.35, the spectral width �
varies notably along the tank and does not recover its initial value fully. The
widening of the free-wave spectrum around 100 m from the wavemaker causes even
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Fig. 8.34 Evolution of the ensemble-averaged wave spectra along the tank, � D 0:054 : (a) initial
rectangular spectrum � D 0.045; (b) initial Gaussian spectrum, � D 0.09; (c) initial Gaussian
spectrum, � D 0.16; (d) initial JONSWAP spectrum, � D 0.20

stronger widening of the bound-wave spectrum complicating the determination of
the boundary between the two domains.

It can be clearly seen in Figs. 8.34a–d that the separation of domains of free and
second order bound waves changes significantly with the initial spectral width. For
narrow spectra the frequency domains corresponding to free and bound waves are
clearly separated (Figs. 8.33 and 8.34a) thus making the distinction between those
waves relatively simple. The domains around the dominant frequency and its second
bound harmonic are still somewhat separated in the case of a wider spectrum in
Fig. 8.34b. For even wider spectra, however, the free and the bound waves may have
overlapping frequency domains, and the separation between them requires more
attention. To extract free wave field from the wave records that apparently contain
bound as well as free waves, iterative procedure that was originally implemented
for deterministic wave fields with a wide spectrum in Shemer et al. [67] was applied
(see also Sect. 8.5.3). For each realization of the prescribed initial spectrum and for
each wave gauge, the wave-containing part of the record was divided into 20 s long
segments (with 50% overlap between the consecutive segments), and the separation
of free and bound waves was performed for each such segment. Following [67], the
measured temporal variation of the surface elevation is taken as the initial guess
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Fig. 8.35 Variation along the tank of the measured significant wave height H1=3 (top panel) and
of the spectral width � (bottom panel). Wave conditions as in Fig. 8.33

of the free wave field. The computed second order bound waves corresponding to
this free wave field are then subtracted from the full record, and the result serves
as the next approximation of the free waves field. The process converges after few
iterations. The wave spectra corresponding to the free and the second order bound
waves were calculated for each segment, and then averaged over all segments of all
realizations for each gauge separately.

To examine the efficiency of separation of free and bound-wave parts, the third
order moment of the surface elevation, the skewness coefficient defined as

�3 D h�3i=�3 (8.43)

was calculated. The values of �3 are plotted in Fig. 8.36 for two cases with the
initially Gaussian spectral shape and different widths, � D 0:09 and � D 0:16.
In both cases, the skewness for the free wave field remains very small along the
whole tank, as expected. The vanishingly small values of �3 corresponding to the
computed free wave field serve as an indication that the separation between free and
bound waves is performed properly. Contrary to the free wave field, the full wave
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Fig. 8.36 The variation along the tank of the skewness �3 for the initial spectra with the Gaussian
shape: � D 0:09—top panel; � D 0:16—bottom panel

field exhibits significant positive values of �3 that are quite similar for both initial
spectral widths along the whole tank, being mostly somewhat below �3 D 0:2.
These positive values of �3 result from the crest-trough asymmetry of nonlinear
waves that apparently is sensitive primarily to the nonlinearity, which is very similar
in both panels of Fig. 8.36. The only significant differences between the two panels
occurs for an initially narrower spectrum where at about x D 70m the values of �3
grow notably to attain maximum that exceeds 0.2. This variation of the skewness
coefficient with the distance in the top panel is qualitatively similar to that reported
in Shemer and Sergeeva [62] for initially narrower Gaussian spectrum.

The variation along the tank of the spectral width � computed according to
Eqs. (8.40), (8.41), with integration in Eq. (8.41) carried out for the free wave
field only, is presented in Fig. 8.37. The variation of � with the distance x from
the wavemaker is virtually identical for both Gaussian and rectangular spectra
with identical initial value of � = 0.045. For this initially very narrow spectrum,
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the number of discrete free harmonics in the wavemaker driving signal is less
than 10 in both cases. The actual difference the initial spectra is thus not very
significant, and in fact after about 50 m, the ensemble averaged spectra become
essentially identical. The results of Fig. 8.37 are presented for all wave gauges
employed and corroborate the qualitative conclusion obtained from observing the
spectra in Fig. 8.34 that the evolution of the spectral width along the tank is strongly
dependent on the initial values of �. For all Gaussian shapes considered, as well as
for the initially rectangular free wave spectrum, the spectral width seems to attain a
quasi-equilibrium value at distances exceeding about 170 m (about 50�0) from the
wavemaker. Those quasi-equilibrium spectral widths are different for all spectral
shapes considered. For initially very narrow spectra with � D 0:045, the quasi-
equilibrium width corresponds to � 
 0:08, while for the initially widest Gaussian
spectral shape employed in the present experiments, as well as for the JONSWAP
spectrum, the far-field value of � is nearly twice larger, attaining � 
 0.15. The
evolution of the spectral width of random wave field with the initial spectral shape
given by (8.42) (JONSWAP spectrum) is somewhat different from that observed
for other initial conditions. The initial width of this spectrum exceeds that of other
spectral shapes considered. The values of � in Fig. 8.37 tend to decrease along the
tank, so that at x > 200m the spectral width in this series of experiments falls
below values of � that correspond to the initially narrower Gaussian spectrum. The
decrease in the spectral width with the distance seems to be closely related to decay
to the level of nonlinearity along the tank as discussed with relation to Fig. 8.34d.

The deviation of the wave field statistics from Gaussianity can be characterized
by the fourth momentum, the kurtosis �4:

�4 D h�4i=�4: (8.44)
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For a Gaussian wave field, �4 D 3. The variation of �4 with the distance x is plotted
in Fig. 8.38 for a Gaussian-shaped initial spectrum. The kurtosis values calculated
for the random wave field that contains free waves only do not differ significantly
from �4.x/ based on the full wave records. The contribution of second order bound
waves to �4, although apparently always positive, appears to be insignificant. These
observations differ somewhat from the numerical results of Annenkov and Shrira
[4] who carried out Monte Carlo simulations of temporal evolution of initially
unidirectional wave field using the Zakharov [86] equation. The simulations in [4]
were performed for the spectral width similar to that of Fig. 8.38, but for higher
nonlinearity of the wave field. Their numerical results indicate that while the part
of kurtosis due to free waves only (dubbed in this study the “dynamic” kurtosis
following Janssen [20]) is indeed dominant in the determination of the total value of
�4, the contribution of bound waves nevertheless remains important. The variation
of kurtosis along the tank presented in Fig. 8.38 exhibits both similarities and
differences with the results of previous studies. In agreement with both [4, 62],
during the initial stages of evolution, up to about 70 m (or 20�0) the values of
kurtosis increase sharply, and decrease farther away from the wavemaker, exhibiting
some oscillations. It should be stressed, however, that the deviations of �4 from the
value of 3 that corresponds to the Gaussian distribution are relatively modest and in
most cases do not exceed 0.5. This is in contrast with the results of [4, 62], where the
excursions of �4 from the value that corresponds to the Gaussian distribution were
much more significant. It is also worth noting that starting from about x D 120m,
the kurtosis assumes values that are mostly below �4 D 3, thus indicating that
deviations from Gaussianity for wider spectra are qualitatively different from those
observed for the narrow initial spectrum.

The experimentally determined wave height distributions F.H/, normalized by
the r.m.s. values of the surface elevation � , are presented in Fig. 8.39 for the



278 L. Shemer

0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

Relative Wave Height

 Experiment x=20 m
 Experiment x=55.2 m
 TF x=20 m
 TF x=55.2 m
 Rayleigh

F(h)

0 1 2 3 4 5 6 7 8 9 10
10−4

10−3

10−2

10−1

100

Relative Wave Height

 Experiment x=80 m
 Experiment x=110 m
 TF x=80 m
 TF x=110 m
 Rayleigh

F(h)

0 1 2 3 4 5 6 7 8 9 10
10−4

10−3

10−2

10−1

100

Relative Wave Height

 Experiment x=150 m
 Experiment x=220 m
 TF x=150 m
 TF x=220 m
 Rayleigh

F(h)

Fig. 8.39 Comparison of the normalized by � experimentally determined wave height probability
distributions with the Rayleigh and the third order Tayfun-Fedele distributions at various locations
along the tank for the initially Gaussian spectrum with � D 0:16



8 Analysis of Nonlinear Water-Waves 279

initially Gaussian spectrum with � D 0:16 at 6 distances from the wavemaker.
The experimental results are compared with the Rayleigh distribution, as well as
with the distribution developed by Tayfun and Fedele [79] that accounts for the
nonlinearities of the third order. The experimental curves do not differ significantly
from the Rayleigh distribution, as long as the wave heights do not exceed about 4� ,
although some deviations are observed, most prominently at x = 80, 150 and 220 m.
For higher values of H=� , deviations of the wave height probability distributions
from the Rayleigh shape in both directions seem to be closely related to the local
value of �4. The measured probability distributions exceed the Rayleigh values
when the local kurtosis is above 3, and fall below the corresponding Rayleigh
values for �3 < 3. The oscillations of the distribution tails are predicted reasonably
well by the Tayfun and Fedele distribution. It should be stressed, however, that
the theoretical distribution in most cases seems to over predict the probability of
appearance of the steepest waves in the ensemble. A prominent feature of the
distributions plotted in Fig. 8.39 is the virtual absence in the accumulated ensemble
of waves with heights exceeding 8� that can be considered as “freak”İ waves. This
result is quite different from the distributions presented in Shemer and Sergeeva [62]
for a narrow Gaussian-shaped initial spectrum (� D 0:045), where the probability
of extremely high waves was significantly larger than that corresponding to the
Rayleigh distribution. Moreover, in the measured distributions plotted in Fig. 8.39
the tail of the distribution that corresponds to the steepest waves in the ensemble
turns sharply down. This part of the distribution is in most cases not presented
adequately by the Tayfun-Fedele curves. The corresponding distributions for wave
crests and troughs are presented in Shemer et al. [69]. Due to the wave asymmetry
the crest heights attain higher values that the troughs.

In [68] the advantage was taken of the accumulated in [62, 69] experimental
results to examine the accuracy of simulating the spatial evolution of a random
unidirectional wave field by nonlinear envelope models. Monte Carlo-type simu-
lations were performed over large scales unique to the GWK. The experimentally
determined temporal variation of the surface elevation in the vicinity of the
wavemaker in each random-phased realization of the given spectrum was used to
derive the corresponding initial condition for numerical simulations. The emphasis
is put on the narrow-banded initial Gaussian spectrum with the spectral width of
� D 0:045 and steepness � D 0:054 in order not to deviate too far from the domain
of validity of the envelope models.

The accuracy of the envelope model equations for prediction of the spatial
evolution of individual wave groups is examined first. As demonstrated in Sects. 8.3
and 8.4, the NLS equation is inadequate to describe evolution of narrow-banded
nonlinear deterministic wave groups with symmetric envelopes even for relatively
short propagation distances, while the application of the modified NLS, or Dysthe,
equation yields considerably better agreement with experiments. In Fig. 8.40 the
accuracy of simulations based on these two models is examined on an example
of a single realization in the GWK experiments. The contribution of bound waves
is accounted for in the numerical simulations. Due to random phases of free
harmonics, the group envelope in each realization has an irregular shape. For the
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Fig. 8.40 Comparison of the NLS and Dysthe simulations of spatial evolution of a single
realization with experiments at various distances from the wavemaker: broken lines—experiments;
solid lines—simulation

NLS simulations, the measured and the computed surface elevations are presented
at two distances x from the wavemaker. The results at x D 52:2m show that already
at a relatively short distance corresponding to about 15�0, notable differences appear
between computations and measurements. At a larger distance corresponding to
about 33�0, any quantitative agreement between the simulated and the measured
wave fields practically ceases to exist. Nevertheless, some qualitative features of
the group shapes, such as focusing of wave energy visible in the first group at
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x D 116m, as well the distribution of waves within individual groups, are retained
to some extent in the NLS simulations. At even larger distances, any resemblance
between the computations and the measurements fades away. The three bottom
panels of Fig. 8.40 convincingly demonstrates that the performance of the Dysthe
model is far superior to that of the NLS equation. The measured and the computed
temporal variation of the surface elevation is presented at 3 distances from the
wavemaker, all exceeding the values of x in the two top panels of Fig. 8.40.
Excellent qualitative agreement between the simulations and the experiments is
obtained for the whole extent of the measurements domain. The results at x D
120m (
 35�0) exhibit good quantitative agreement between computations and
measurements, although some deviations are visible. The quantitative agreement
seems to deteriorate somewhat with the distance.

The statistical quantitative analysis of the deviation of the Dysthe simulations
from the experiment carried out in Shemer et al. [68] suggests that the modified NLS
model provides a quantitatively accurate description of the deterministic nonlinear
wave field up to distances of the order of O.102�0). The results of Fig. 8.40 thus
indicate that evolution of an individual realization of a random wave field can
be described adequately over large distances by the Dysthe model, whereas the
NLS equation is at best appropriate for revealing some qualitative properties of the
evolution process.

The relevance of those nonlinear envelope evolution equations to prediction of
the statistical properties of the unidirectional random wave field is now considered.
The experimental results on variation along the tank of the power spectrum of
the surface elevation, which is one of the most important statistical parameters
describing random wave field, are compared in Fig. 8.41 with simulations based
on both models. The initial spectrum, as measured at x D 3:59m, is also plotted
as a reference. The free wave part of this spectrum, which is based on the initial
group shape given by Eq. (8.4), is also symmetric relative to the carrier wave
frequency and has a shape close to Gaussian, as expected. Since the initial spectrum
is quite narrow for the value of m D 3:5 in Eq. (8.4), the frequency domains
of the second and the third order bound waves are clearly separated. The initial
spectral shape undergoes fast variations and already at x D 52:2m (x 
 15�0)
the free wave spectrum changes notably. The spectrum becomes wider and develops
visible asymmetry. The Dysthe model faithfully describes both these effects, and the
agreement between the computed and the measured surface elevation spectrum in
the free wave frequency domain remains good at all distances from the wavemaker.
In simulations based on the NLS equation the widening of the free waves spectrum
is obtained as well. However, the NLS model is incapable to reflect the asymmetry of
the developing spectral shape. As noticed in Sect. 8.3, the initially symmetric shape
of the group envelope is retained by the NLS equation in the process of evolution.
In the experiments described in this section, the symmetry of the envelope of the
generating group as given by Eq. (8.4) is lost once random phases are prescribed
to the various harmonics. The power spectrum of Eq. (8.4), however, remains
symmetric relative to the carrier wave frequency. Since the experiments clearly
show that the frequency spectrum loses its symmetry quite fast, the agreement of
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Fig. 8.41 Ensemble averaged spectra: measurements vs. computations using the cubic NLS
equation and the Dysthe model

the spectra computed using the NLS equation with the experiments is imperfect,
and the NLS-based free wave frequency spectra are significantly wider than either
those derived from the Dysthe simulations or the measured ones. The width of the
free waves’ spectrum seems to attain maximum at distances about 100 m, and then
decreases somewhat.

The agreement between the second order bound waves as measured in the
experiment and as computed using the Dysthe model is reasonable at all distances
from the wavemaker. Those waves have amplitudes that are comparable with the
sensitivity of the wave gauges. The simulations based on both models agree quite
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well with the measurements around the peak of the second order bound waves
(close to 1.3 Hz); away from the peak the Dysthe simulations yield a much better
agreement with the experiments than the NLS equation. The dip in the spectrum
between the domains of free and second order bound waves is much deeper in
simulations than in experiments. This can be attributed to the limited accuracy of
the wave gauges.

The results of Figs. 8.40 and 8.41 clearly demonstrate good quantitative and
qualitative agreement of the Dysthe model simulations with the experiments for all
distances from the wavemaker covered in the GWK experiments, with deviations
that can be plausibly attributed to experimental inaccuracies. Such an agreement
seems to justify the extension of simulations to distances beyond the domain of
experiments in order to gain some insight on the wave field evolution pattern
at longer scales. In sequel, the results of simulations are presented for distances
exceeding the actual length of the GWK by a factor of 2, whereas the experimental
results apparently are only shown where available.

The computed and the derived from the experiments variations with x of the
spectral width of the free wave part of the spectrum, �, as well as of the skewness �3
and of kurtosis �4 are plotted in Fig. 8.42. The computed values of �, Fig. 8.42a for
both model equations are in a reasonable agreement with the experimental results.
Both models correctly predict the experimentally observed spectral widening, with
� increasing nearly twice from its initial value � 
 0.45 during the first 100 m
of the evolution. The spectral width then decreases somewhat. The simulations
farther away from the wavemaker exhibit irregular, relatively weak oscillations of
the spectral width (around the mean value of � 
 0.65 for the Dysthe model and of
� 
 0.75 for the NLS model); the characteristic length scale of these oscillations
exceeds 100 m, or about 30�0.

The variation of the skewness �3 along the tank, as measured in the experiment,
is compared in Fig. 8.42b with the results of simulations based on both models. The
models yield values of �3 that are quite close to the measurements. The dependence
of �3 on the distance x in Fig. 8.42b bears some similarity to the behavior of �.x/ in
the panel (a) of this figure. The skewness coefficient increases quite sharply initially,
up to about x D 100m, and then decreases somewhat, exhibiting relatively weak
variability at length scales similar to those of Fig. 8.42a. The values of �3 were
also calculated for the surface elevation records that were band-pass filtered for the
free waves’ domain, fmin � f � fmax. The variation of the skewness coefficient �3
that represent free waves only is also plotted in Fig. 8.42b. The values of �3 due
to free waves are virtually zero at all locations, both in the experiments and in the
simulations based on the Dysthe model (similar results obtained within NLS model
are not presented). The results of Fig. 8.42b thus demonstrate that skewness, which
is determined nearly solely by the contribution of the bound waves, is adequately
described by both envelope equations.

Variation of the kurtosis coefficient �4 along the tank is presented in Fig. 8.42c.
Again, the Dysthe model yields good agreement with the experiments, while the
NLS equation significantly overestimates the maximum values of the kurtosis in the
transitional domain at about 50 m < x < 120 m. At larger distances the predictions



284 L. Shemer

0 100 200 300 400 500
0.04

0.05

0.06

0.07

0.08

0.09

0.1

x, m

Experiment NLS Dysthe

ν

0 100 200 300 400 500
−0.1

0

0.1

0.2

0.3

0.4

x, m

Experiment
NLS
Dysthe
Experiment: free waves
Dysthe: free waves

λ3

0 100 200 300 400 500
2

3

4

5

6

7

x, m

λ4

Fig. 8.42 Computed and measured variations along the tank of the spectral width � (a), skewness
�3 (b) and kurtosis �4 (c)



8 Analysis of Nonlinear Water-Waves 285

0 2 4 6 8 10
10−4

10−3

10−2

10−1

100

Experiment
NLS
Dysthe
Rayleigh

0 2 4 6 8 10
10−4

10−3

10−2

10−1

100

F(h)

x = 126 mx = 100 m

0 2 4 6 8 10
10−4

10−3

10−2

10−1

100

Wave Height
0 2 4 6 8 10

10−4

10−3

10−2

10−1

100

Wave Height

F(h)

x = 176 m x = 400 m

Fig. 8.43 Computed and measured wave height distributions at several distances from the
wavemaker for the Gaussian driving signal given by Eq. (8.4) with mD 3:5 and � = 0.054

based on both those models seem to be closer, and the computed values of �4 vary
somewhat (at the characteristic length scale of about 30 carrier wave lengths, similar
to other statistical parameters), but remains in the vicinity of �4 
 4, indicating that
the wave field departs significantly from the Gaussian distribution. As in Fig. 8.38,
an attempt is made to separate the “dynamic” kurtosis �4d based on free waves only.
The results at large distances from the wavemaker differ somewhat from those of [4]
and do show any substantial difference between �4d and the full kurtosis �4. This
discrepancy may be attributed in part to the total lack of 2D effects in the simulations
based on the Dysthe model.

Measured and computed from Dysthe and NLS simulations wave height
exceedance distributions for different locations along the tank are plotted in
Fig. 8.43. The exceedance distributions are normalized by the standard deviation
� of the surface elevation variation. The Rayleigh distribution for the scaled wave
height is plotted as well. The wave height exceedance distributions derived from
both models agree well with the measured probabilities. In simulations as well as
in experiments, the Rayleigh distribution overestimates the exceedance probability
for H < 4� and underestimates it for higher values of wave heights. Moreover, the
models are capable of providing adequate prediction of probability of appearance of
waves with heights below 8� . Both simulation and the experiment clearly indicate
that the probability of those extremely high waves exceeds that corresponding to
the Rayleigh distribution by an order of magnitude. Still, since the probability of
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such high waves is quite low, spread of data in Fig. 8.43 for H > 8� is evident
both for the distributions based on the laboratory data and those obtained from the
numerical simulations. This spread seems to be a result of insufficient size of the
ensemble. The behavior of the distribution tail in Fig. 8.43 is qualitatively different
from the wider spectrum case plotted in Fig. 8.39 where no extremely high waves
with H > 8� that may be considered ‘rogue’ waves were detected. As demonstrated
in [69], rogue wave were not recorded ion experiments with even wider JONSWAP
spectrum. The correlation between the probability appearance of extremely high
waves and kurtosis was demonstrated in that study as well.

8.7 Discussion and Conclusions

The total body of presented experimental and numerical results allows drawing
some conclusions regarding mechanisms leading to appearance of extremely steep
(rogue) waves. As mentioned in the Introduction, in recent years, the problem of
appearance of those waves in the ocean is often related in the literature to specific
properties of the NLS equation that admits breather type soliton solutions. As
stressed in Sect. 8.3, the NLS equation is the simplest theoretical model describing
evolution of unidirectional gravity waves that is valid only for narrow-banded wave
groups. The breathing solitons represent spatially, temporally, or both, localized
patterns in which an initially small “hump” in a nearly monochromatic wave train
is amplified attaining wave heights that exceed significantly the initial level. The
wave evolution patterns that are characteristic for the NLS breathers in deep water
bear resemblance to appearance of freak waves in the ocean and for that reason
attract considerable attention. It was asserted in some studies that different types
of breathers were indeed observed in laboratory experiments. On the other hand,
Shemer and Alperovich [57] demonstrated that for a Peregrine Breather (PB), the
agreement between the experiments and measurements is only obtained at the
initial stages of the wave train evolution, (see Sect. 8.4.3). Similar conclusions
were obtained in fully nonlinear simulations by Slunyaev and Shrira [71] and by
Shemer and Ee [60]. The velocity of propagation of the ‘hump’ in the PB envelope
differs from the linear group velocity cg as assumed in the NLS equation. Similarly,
envelope maxima of other narrow-banded wave groups of different shapes studied
in Sects. 8.3–8.5 also propagate with velocity exceeding cg. The faster movement of
the highest crest in the group is correctly described by the modified NLS (Dysthe)
equation. The failure of the NLS model to describe adequately the propagation
of breathers beyond the initial stages was attributed in Sect. 8.4 to considerable
spectral widening associated with amplification of the steepest wave that violates
the basic assumptions adopted in the derivation of the NLS equation. The NLS
equation results in symmetric shapes, whereas in experiments as well as in the
Dysthe simulations essentially asymmetric wave shapes were observed. It should
be noted that the fully nonlinear simulations [71] did not show the left-right
asymmetry. As demonstrated by Shemer and Dorfman [59], the symmetry of the
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spatial distribution may differ from that in the temporal presentation, cf. Figs. 8.8
and 8.10. The numerical simulations carried out in [60] indeed demonstrated that
the asymmetry in the spatial ‘snapshot’ of PB is barely noticeable, whereas in the
temporal variation �.t/ is becomes more prominent.

The limited validity of the NLS equation thus leads to significant deviation of
the PB shape from the NLS solution given by Eq. (8.32) in measurements as well
as in more advanced computations based on either Dysthe equation or on the fully
nonlinear approach. The question therefore arises whether different solitons indeed
represent a special class of wave shapes that differ essentially from non-soliton
wave envelopes and constitute prototype of rogue waves as often suggested, see e.g.
[70]. In fact, notable amplification of both the maximum wave crests and maximum
envelope values occurs in the course of evolution in deep water of initially narrow-
banded deterministic wave groups with different initial shapes, see Fig. 8.5 and
additional results presented in [21, 64–66]. All characteristic features that often are
specifically attributed to the evolution of NLS breathers were in fact observed for a
variety of arbitrarily selected initial wave group shapes. The increase of maximum
crest height may be seen as manifestation of the focusing properties of the NLS
equation. Indeed, no such focusing was observed for experiments conducted in
shallower water, when the coefficient of the nonlinear term in the NLS equation
nearly vanishes or becomes negative, see Sect. 8.3. Moreover, as demonstrated in
[62, 69], initially narrow-banded random-phased wave groups with no characteristic
envelope shape also exhibit strong wave height amplification accompanied by
significant spectral widening in the process of their evolution along the tank, see
Sect. 8.6.

It thus appears that NLS breathers do not possess any special qualities distinct
from those of any initially narrow banded wave groups. They seem to be essentially
irrelevant to rogue wave formation even in unidirectional and controlled setting of
laboratory wave tank experiments. As stressed in [56], all types of breathers, as
well as rogue waves that were actually recorded in the ocean, exhibit fast variation
of the wave train envelope (on scales comparable with the dominant wave period)
and are essentially wide-banded. The emergence of a single high wave can be seen
as resulting from a positive interference of numerous harmonics. In this sense,
both breathers and rogues waves in the ocean (such as the well-known New Year
wave, see e.g [23]) are not different from those observed by focusing of an initially
wide-banded unidirectional wave train [67] as presented in Sect. 8.5.3. The relation
between the height of the steepest wave in the train of finite duration and the shape
of its discrete spectrum can be examined on the basis of simple considerations. For
a given complex amplitude spectrum of the surface elevation ai D a.!i/, the crest
height cannot exceed the value attained when the phases of all harmonics coincide:
�max D P jaij (perfect coherence). For an initially nearly monochromatic wave
with a narrow spectrum, like PB away from the focusing location, the energy is
concentrated at the carrier wave frequency, so that the ‘hump’ does not exceed
significantly the background carrier wave and �max 
 jacarrierj. In the initially
narrow spectrum, nonlinear interactions among neighboring harmonics are strong
leading to fast widening of the spectrum [55]. The energy conservation at the leading
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order requires that at any instant
P

ai
2.t/ 
 jacarrier.t D 0/j2. The maximum

possible wave corresponding to the sum of the amplitudes of all harmonics in the
spectrum thus can be obtained when the wave energy is distributed uniformly among
numerous harmonics. In this respect it can be noted that the Dirac ı-functions that
can be seen as an ultimate model of a rogue wave, has uniform white spectrum.
Therefore in order to obtain a single extremely steep wave in the evolution process,
significant spectral widening needs to occur. The rogue wave in deterministic as
well as in a random wave field then can be seen a result of an essentially linear
constructive interference of numerous harmonics [62, 67, 69]. Note that the relative
to the background amplification of the maximum wave crest due to nonlinear
focusing as a result of constructive interference may exceed the threefold gain of the
Peregrine breather, see Fig. 8.30. The role of nonlinearity in this process is limited to
modification of the initial spectrum to the prescribed shape at the focusing locations
identical phases of all harmonics.

An even stronger amplification of the steepest wave was recorded in experiments
on initially narrow-banded random wave groups by Shemer and Sergeeva [62].The
mechanism leading to appearance of rogue waves in that case seems to be
similar to that suggested for focusing of deterministic waves. For narrow initial
spectrum, a relatively small number of harmonics with close frequencies interact
strongly generating new sideband harmonics [55]. The complex amplitudes in
the initial spectrum have random phases, however, in each realization the newly
generated sideband harmonics have phases related to those of their ‘parents’. Once
those harmonics grow to be sufficiently strong, the probability of appearance of
extreme waves increases due to their intrinsic coherence. Increase in the number of
harmonics in the initial spectrum, either by widening or by directional spreading,
effectively eliminates this mechanism, resulting in virtual absence of freak waves in
those cases, in agreement with experimental observations. Note also that contrary to
the instantaneous surface shape that can vary fast due to the change of phases of the
harmonics at fast time and space scales, the spectral modifications are essentially
nonlinear and thus occur on slow scales. It thus appears that rogue waves constitute
an inherently wide-banded phenomenon where separation of slow/fast scales is not
applicable. This renders the intrinsically narrow-banded NLS equation inadequate
for quantitatively accurate modeling.

In summary, a thorough examination of performance of different unidirectional
nonlinear wave models, based on a detailed quantitative comparison of model
predictions with extensive experimental results is presented. Deterministic wave
groups as well as random wave fields in deep and intermediate-depth water were
investigated. Experiments were carried out in two facilities that differ significantly
in size and for a wide range of characteristic wave parameters, i.e nonlinearity,
spectral width and envelope or spectral shape. The consistent approach was adopted
in the experiments in both facilities to make it possible to identify the effect of
scaling. Advantages and disadvantages of larger size of the experimental facility
are discussed. The dimensionless parameters that determine the effective size
of the facility are introduced; under certain conditions, a smaller tank that has
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greater flexibility in running experiments can be advantageous for studies of spatial
evolution problems due to higher accuracy of results and possibility to carry out
large number of experimental runs at a reasonable price. On the other hand, for
many applications the absolute (dimensional) wave height is important. In those
cases, bigger facilities offer substantial benefits.

An effective method developed for identification of the instantaneous contact line
shapes in a sequence of recorded video images allows studying temporal evolution
of the instantaneous wave field in the whole tank and thus determination of the
wavenumber spectra and of their variation in time. This ability is important for
carrying out quantitative comparison of prediction of nonlinear evolution models
with the experimental results. The suggested in [59] experimental approach enables
studying both the spatial and the temporal evolution of narrow-banded unidirec-
tional wave groups. The essential differences between the temporal and the spatial
formulation of the evolution problem are specified in Sect. 8.4.2. The temporal
evolution is routinely considered in theoretical studies of water waves based on the
Zakharov equation and on fully nonlinear simulations. In laboratory tanks waves
evolve in space rather than in time. The shapes of the spectra are apparently quite
different in the spatial and temporal formulations; the wave number spectra are
twice wider than the corresponding frequency spectra. As specified in [59, 60],
direct quantitative comparison of theoretical results based on the temporal evolution
approach with experiments is far from being straightforward. For a narrow-bounded
spectrum, the group velocity cg enables simple transition between the spatial and the
spatial formulations, as demonstrated by Lo and Mei [32] for the NLS and Dysthe
equations. The benefit offered by the NLS equation, however, is limited, as this
model is incapable of describing the finer features of the propagating wave group,
and may provide quantitative results with reasonable accuracy only as long as the
spectrum remains very narrow, Sect. 8.3, or for some statistical parameters, Sect. 8.6.
Nevertheless, the applicability of the analytic solution of NLS equation for the
Peregrine breather given by Eq. (8.32) to the early stages of wave group evolution
was recently utilized by Shemer and Liberzon [61] to study experimentally the
inception of a spilling breaker. The modified Dysthe equation that is formally valid
as long as the spectral width does not exceed nonlinearity, proved to be a an accurate
model for description of the spatial evolution of both deterministic and random
deep-water wave groups with moderate spectrum width. However, for an even wider
spectrum, the Dysthe equation ceases to be valid.

The Zakharov equation that is free of any restriction on the spectral width is
thus the most appropriate third order model for wide-banded wave groups. The
modification of the standard temporal version of the Zakharov equation to the
form that describes evolution in space is required for quantitative comparison of
the theoretical and experimental results. For a wide spectrum, the group velocity
is not defined, thus the straightforward transformation used for transition from
temporal to spatial evolution formulation for the NLS and Dysthe equations is not
applicable. Generalization of the notion of the group velocity for a wide spectrum
was suggested in [67] resulting the spatial version of the Zakharov equation given
by Eqs. (8.33) and (8.34). The validity of this equation for description of evolution
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along an experimental wave tank of nonlinear wave fields with wide spectrum is
verified in Sect. 8.5. Experiments were carried out in two very different experimental
facilities for deep and intermediate depth water-waves. In particular, the ability to
excite focused steep waves at any desired location along the tank was demonstrated.
It is shown that the focusing process is accompanied by a notable change of the
spectral shape and is thus essentially nonlinear. The modified unidirectional spatial
discrete version of the Zakharov equation given by Eq. (8.38) takes into account
all quartet interactions among numerous spectral harmonics of the wave field and
accounts for viscous dissipation at the tank walls. This equations was proved to be an
accurate and effective computational model for description of essentially nonlinear
wave fields with no limits on their spectral width in the course propagation along
experimental wave tanks.
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