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Abstract. We present a short survey of the literature on indexing and
retrieval of mathematical knowledge, with pointers to 72 papers and
tentative taxonomies of both retrieval problems and recurring techniques.

1 Purpose Driven Taxonomy of Retrieval Problems

Retrieval of mathematical knowledge is always presented as the low hanging
fruit of Mathematical Knowledge Management, and it has been addressed in
several papers by people coming either from the formal methods or from the
information retrieval community. The problem being resistant to classical content
search techniques [LRG13], it is usually addressed combining a small set of new
ideas and techniques that are recurrent in the literature. Despite the amount of
work, however, there is not a single solution that is the clearly winning on the
others, nor convincing unbiased benchmarks to compare solutions. Some authors
like [KK07] also suggest that the community should first better understand the
actual needs of mathematicians from an unbiased perspective to improve the
MKM technology as a whole. In this paper we collect a hopefully comprehensive
bibliography, and we roughly classify the papers according to novel taxonomies
both for the problems and the techniques employed. The only other surveys
on the same topic are [AZ04], now outdated and focused mostly on (European)
research projects that contributed to the topic in the 6th Framework Programme,
[ZB12], which covers less literature in much greater detail without attempting
a classification, [L13], which is focused on evaluation of mathematics retrieval,
and [L10], which is written in Slovak.

We begin our discussion with a purpose driven taxonomy made of three dif-
ferent retrieval problems that deal with mathematical knowledge. Each problem
is characterised by its own set of expectations and constraints, and adopting a
solution to another problem may be infeasible or yield poor results. In the next
sections we classify the papers according to an encoding based taxonomy (pre-
sentation vs. content vs. semantics) and to a taxonomy of techniques employed.
Finally we point to the rich literature relative to the problem of ranking, and
we touch the problem of evaluation of systems. We conclude with some notes on
the availability of math retrieval systems.
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1.1 Problem 1: Document Retrieval

Objective: A human is interested in recalling a set of mathematical documents
(or fragments) that are related to a particular mathematical topic. Typically it
is not the case that only one document provides the correct answer; on the con-
trary the user may be interested in a corpora of different documents that yield
different, only partially overlapping information. In [Koh14] and other papers
there are attempts at a classification of the information needs of users. However,
at the moment only the system described in [ZKT08] tries to use the classifica-
tion to improve the user experience.

Input: The human composes a query combining keywords (e.g. for topics
[ACK08]), free text and mathematical formulae. Often the mathematical for-
mulae are intended as examples of expressions related to the topic of interest.
For example, a user interested in trigonometric identities can just enter one iden-
tity to retrieve them all. Or a formula showing a particular property of a special
function can be used to disambiguate the special function among the ones with
similar names.

The query can be composed using a very simple, Google-inspired, single
line interface, or written using an ad-hoc query language (see [AY07b,AY08b,
YA07] for some proposals), or by filling in some form. The first solution is the
one preferred in the literature. In [Koh14] a comparison of the behaviour of
mathematicians vs. other users highlighted that the professional mathematician
is more interested in the precision of the output than the effort put into the input.
Therefore mathematicians may use and appreciate more complex interfaces. On
the contrary, other users are likely to prefer a simple, modern search interface.

Formulae can be entered in some textual syntax (e.g. LATEX, MathML),
maybe with the help of on-the-fly formulae rendering [LSR14], or using graphical
editors [MM06], or they can be acquired from hand-written snippets [AY08a].
The formula is likely to contain errors and ambiguities, for example if it is
encoded at the presentational level (e.g. in Presentation MathML or LATEX), if it
is acquired from hand-written text, or if the user only remembers it partially or
in a wrong way. Errors and ambiguities are not a critical problem because for-
mulae are just used to retrieve documents that contain similar formulae accord-
ing to some similarity criterion. In [AY08a] the authors address the problem of
combining and ranking results from different queries generated from ambiguous
formulae due to errors in the recognition process. See also [ZB12] for a survey on
the interaction between mathematical information retrieval and mathematical
document recognition. Some authors [KT09] suggest that the visual presenta-
tion of the formula may sometimes be important in the definition of similarity,
whereas in other situations it is the mathematical content of the formula that
matters. Logically equivalent formulae whose content encoding is highly different
are better considered less similar.

Once the search engine returns the result, the user may be given the oppor-
tunity to enhance the query by further filtering.
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Output: The output is a ranked list of matching documents or document frag-
ments (e.g. a chapter of a book, or a section of an article). When the query
involves mathematical formulae, the ranking is determined by the similarity
relation. The user must be given the possibility to quickly determine whether
the matched document is interesting or not. Therefore the problem of how to
present summaries of the selected documents in the result list is of fundamental
importance [LSLM11,LSR14,MG08b,WG10,You05,You06,You07,You08]. Even
highlighting correctly the bits of the summary that matches the query can make a
significant difference in the user experience [LSLM11,LSR14,You05,You06]. The
list of results must be the starting point for further investigations by the user.
At least, all results must contain hyperlinks or other ways to retrieve the original
document the summary points to. A study of user requirements in [ZKT08] sug-
gests that results should be presented after clustering them according to their
resource type (research paper, tutorial, slides, course, book, etc.). For example,
a student may immediately decide to skip research papers, and a researcher may
skip websites and tutorials.

Constraints: A balance must be obtained between precision (the fraction of
retrieved documents that are relevant) and recall (the fraction of relevant doc-
uments that are retrieved). To maximise recall, precision is affected and many
out of topic documents (false positives) are retrieved, penalising performance.
Too many results are overwhelming and the user is likely to give attention only
to the first ones in the list. Therefore, the search engine does not have to rank
and produce summaries of documents with low scores. The ranking function is
ultimately the one responsible for the perceived quality of the search engine.

Since the query is intended to be issued by a human, the performance of
the search engine is not a critical requirement and up to a few seconds (or even
minutes in some particular situations) may be acceptable. Nevertheless, modern
textual search engines like Google are extremely fast, and the user is likely to
expect the queries to be solved in less than a second.

1.2 Problem 2: Formula Retrieval

Objective: A program — more rarely a human — is interested in retrieving
all formulae that are in some relation R with a query formula E. Sometimes
the formula E can actually be a set of formulae. For example, E can be a
goal to be proved automatically, and T RE when T is the conclusion of the
statement of a theorem that can be instantiated to prove E. More precisely, T
contains metavariables to be instantiated and R is one-sided unification up to
some equational theory. The dual query is also used in the literature: E is a
property (a statement containing metavariables), R is unification and the query
finds all operations that satisfy the property E. By using several properties at
once, the query can find all models of a given theory (e.g. all semirings in the
library) [NK07], also up to renaming of constants and properties. An interesting
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application presented in [GK14], that uses techniques similar to [NK07], con-
sists in matching concepts across libraries by first computing properties of an
object in one library (i.e. patterns like commutativity of a binary operator) and
then looking for objects in the other library that satisfy the same properties.
To be more effective, properties are extracted from all libraries and concepts are
matched according to a similarity measure to identify objects that satisfy a simi-
lar set of properties. A third example is obtained by choosing logical implication
for R. The query looks for all formulae that imply E.

Input: One or more formulae E that may or may not contain metavariables to
be instantiated. Rarely, additional constraints can be expressed using keywords,
classifications, free text, authors, etc. Formulae are not supposed to be ambigu-
ous or contain errors. In [AGSC+06] ambiguity is resolved before performing the
query using type checking and interaction with the user.

Some dedicated query languages are proposed to specify the structure of the
formulae E [Ban06,BR03,BU04,GS03,KT10,Rab12]. They are implemented on
top of relational databases or ad-hoc in-memory indexes.

Output: The query is meant to retrieve a set of formulae that satisfy a certain
property. When the search is performed by a program, there is no need to present
summaries of the document the formula occurs in. Even when a human issued
the search, an hyperlink to the document may be sufficient.

In many situations the relation R can be extended to a ternary relation
T Rρ E meaning that T is related to E with score ρ, and the results can be
ranked according to ρ. For example, if R reduces a proof of E to a proof of T ,
then the T ’s may receive a higher score if they are judged easier to prove.

Constraints: Maximisation of the recall is fundamental. The query should
return all formulae that satisfy the query, even if they rank very low. Because
searches are often basic operations of complex algorithms (e.g. automatic provers),
speed is also critical. In several situations, the searches need to be performed in
milliseconds.

To speed up the searches or when the relation R is undecidable, the search
engine may use a second decidable relation R′ such that R⊆R′. Using R′, the
query can return false positives, i.e. formulae T such that T R′ E but not T RE.
For example, when E is a pattern and R is unification, R′ may ignore the struc-
ture of the two formulae E and T and conclude E R′ T when all symbols in E
are also in T . Example: f(xz, y + z)R f(?, ?+?) and f(y + z, xz)R′ f(?, ?+?),
but not f(y + z, xz)R f(?, ?+?).

1.3 Problem 3: Document Synthesis

Objective: Composing a new mathematical document assembling fragments to
be retrieved from a library. The most common occurrence is in educational soft-
ware where a learning object must be assembled according to the expertise of
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the user, the topic of interest, etc. [BF03,LDM+08,LM06]. An unrelated exam-
ple is the automatic generation of summaries and statistics for a mathematical
library [BR03]. A final example is mining of formalised libraries, for example
to build visual representations of the graph of dependencies over an axiom (to
understand its implications) or a definition/statement (to understand the prop-
agation of changes).

A variant is to solve a mathematical problem by composing mathemati-
cal (Web) services [CDT04]. Each service exposes metadata about the problem
solved, the algorithm implemented, and its preconditions and postconditions.

Input: The query is not likely to involve mathematical formulae, and it is usu-
ally expressed using a query language over ontologies. A high level interface may
hide the underlying query language. Sometimes the query is fixed once and for
all, and needs to be run at regular periods.

Output: The expected output depends on the particular use case and it is usu-
ally made of a single result in place of a ranked list. The result may consist of a
graph of objects and relations between them, or it may consist of the minimal
information to build the expected document or solve the algorithmic problem.

Constraints: The constraints depend on the particular use case.

After an initial screening of the literature, we decided to analyse only papers
about the first two problems, where formulae play a central role. Indeed, at a first
glance most solutions to Document Synthesis employ standard query languages
for ontologies, and only the ontologies themselves are math-specific (e.g. [CDT04,
LDM+08]). Logic programming languages are also employed to represent what
the user knows/ignores and the inference rules to assemble documents [BF03].

Moreover, we did not find in the literature convincing examples for the need
of very expressive query languages to solve the Document Retrieval and the
Formula Retrieval problems, where the kinds of queries are essentially fixed a
priori. Moreover, evaluation of queries expressed in these languages are reported
to be too slow to be used for Formula Retrieval. Sometimes additional techniques
are employed for Document Synthesis, like semantical query reduction to relax
the user provided query by allowing additional topics close to the one specified
by the user [Lib13]. These techniques too seem to be very general and applicable
to domains very different from that of mathematics.

Despite the strong interest of the community in the use of formulae in queries,
studies on the behaviour of users [KK07,ZKT08] conclude that the added value
may be low, and the finding is confirmed in [LM06,Mil13] where the logs of
the DLMF and of ActiveMath search engines are analysed concluding that only
few queries contain mathematical formulae, most are very simple ones, and such
queries do not yield satisfactory results.
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2 Encoding Based Taxonomy

Mathematical information can be encoded in a library at three different lev-
els. The most shallow one is presentation. Presentation markup uses a finitary
language to express the bi-dimensional layout of a formula, useful to present
it to the reader. The standard XML language for presentation is Presentation
MathML, and several tools can generate Presentation MathML from LATEX (e.g.
LaTeXML, Tralics), PDF files (e.g. Maxtract), handwritten text (e.g. InfTy
Reader), digitised documents (e.g. InfTy Reader) or content markup (e.g. via
XSLT stylesheets). We can therefore assume that the totality of the documents
to be indexed are available in Presentation MathML.

The next level is content. At the content level, the structure of the for-
mula is described, and symbols and operators appearing in it are linked to their
entry in an ontology, called content dictionary in OpenMath terminology. The
markup language is finitary, but the ontology is not since new mathematical
entities can always be defined. The relation between content and presentation
is one-to-many: the same presentation markup may represent different content
expressions (ambiguity), and a content expression can be given different presen-
tations according to the conventions of the community of readers, the language
of the reader, but also for purely aesthetic reasons like constraints on the size
of the formula. OpenMath and Content MathML are the two standard XML
language for formulae at the content level. OMDoc is an attempt at standar-
dising at the content level whole mathematical documents, comprising proofs.
Content markup is currently mostly used for the exchange of formulae between
systems, in particular CAS. There are no significant examples of large libraries of
documents natively written using content markup. Nevertheless, there are tools
like SnuggleTeX based on heuristics to semantically enrich (annotated) LATEX
documents or even MathML Presentation documents to content.

The last level is semantics and it is specific to libraries of formalised math-
ematical knowledge. The semantics level refines the content level by picking for
every content level object one particular definition in a given logic. The defin-
ition chosen embeds the object with additional properties, e.g. computational
properties. For example, addition over natural numbers can be defined in the
Calculus of Inductive Constructions as a non-computable ternary predicate in
logic programming style, or as a recursive function on the first argument — such
that 0+x and x become logically indistinguishable — or as a recursive function
on the second argument — so that 0 + x and x are not indistinguishable, but
only provably equal. Interactive theorem provers often provides an XML dump
of their internal semantics representation.

Formula Retrieval is always formulated either on semantics markup or on
content markup. Even when the semantic markup is available, it may be conve-
nient to convert the library to content level by identifying alternative definitions
of the same mathematical notion. In this way, it becomes possible to retrieve
useful theorems on mathematically equivalent definitions, in the hope to reuse
them after conversion to the definitions in use. One application of this technique
is reuse of libraries across different systems based on the same logic.
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The Document Retrieval problem is formulated in a way that is agnostic
of the encoding. However, the user is likely to enter formulae in the query
using a presentation language (mostly LATEX, even if MathML starts to be used
[LSLM11,LSR14,MG08b]). Some authors have provided evidence that precision
is improved when exploiting parallel markup, even when the content part is
automatically generated from the presentation part [NKTA14]. See [MY08] for
motivations against content/parallel markup and in favour of a more lightweight
encoding of content information in Presentation MathML. Other authors claim
that precision can be lost by embracing content because sometimes the actual
layout used in a presentation or the name used for variables are significant.
Reference [GPBB14] in retrospect also described the choice of using Content
MathML as a bad decision. Other authors dismiss indexing of Content MathML
because of the non-availability of libraries or because of conversion from presen-
tation to content being approximative and unreliable. Finally, [NKTA14] reports
that automatic conversion of large formulae from Presentation to Content may
be computationally unfeasible, and propose to limit the conversion to small ones.

Recently, the debate on presentation only vs. parallel markup seems to be
solved in favour of the latter. For example, the system that scored better at the
last NTCIR task reports better scores when applied to content markup generated
from LATEX w.r.t. presentation only markup [RSL14]. The authors second this
observation already in [LSR13].

Moreover, several works in the literature that deal with presentation markup
enrich it — in the document itself or in the indexes — with additional annota-
tions to make explicit additional semantics that is latent in the library [Cai04]
or in the text surrounding the formulae [GPBB14,KTHA14]. For example, in
[KTHA14] artificial intelligence is applied to the whole document to recover from
the text surrounding the formulae the name associated to the mathematical enti-
ties in the formula (e.g. “posterior probability”, “derivative of f”). Reference
[GPBB14] uses a cheaper approach by considering only one sentence around
a formula, but it later observes that one sentence is often not sufficient and
many relevant results are therefore missed. Another example is an analysis of
co-occurrence of symbols in the corpus to identify related ones. It is shown that
these techniques are important to augment recall or, sometimes, precision. In
our view, like the heuristic based presentation-to-content translation, these are
attempts to infer and store partial semantics of mathematical expressions. It may
be questioned (see for example [MY08]) if the current content markups (Open-
Math and Content MathML) are the right instruments to augment presentation
markup with partial, approximate semantics, and if such additional semantics
makes only sense in the indexes of search systems, or it may be serialised to an
XML format for being reused by third parties.

Systems based on Content MathML, parallel markup or semantics
appear in [Ban06,BR03,BU04,GK14,HS13,HKP14,KP13,L13,LSLM11,LSR13,
LSR14,MG08a,MG08b,MM06,NCH12,NK07,Rab12,SLM13,YA09,ZY14].
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3 Taxonomy of Techniques for Mathematical Retrieval

Implementations of solutions to mathematical search problems can be obtained
combining one of the main techniques that will be presented in Sect. 3.2 with
a choice of modular enhancement techniques from Sect. 3.1 used to improve
precision, recall or both.

3.1 Modular Enhancement Techniques

The following techniques are general enough to be applied to solve both the
Document and the Formula Retrieval problems, and by analysing the literature
it seems that every system eventually applies all of them.

Segmentation. A preliminary step to indexing is segmentation of documents
into chunks. Chunks are the unit of information to be returned to the user, with
pointers to the parent document. Segmentation is trivial on formal mathematical
documents, hard on web-pages, and intermediate on other resources like books
or papers. See, for example, [ZKT08] for a discussion. Several systems imple-
ment segmentation; however, the last NTCIR competition has provided a data
set of already segmented documents [AKO14] and that may hinder the study of
segmentation techniques in the future.

Normalisation. To improve recall, both formulae in the query and the formulae
in the library are put in normal form before indexing them. Having the same
normal form is an equivalence relation ≡, and the query retrieves formulae up to
≡. For Formula Retrieval it is necessary that ≡R≡⊆ R. For Document Retrieval
the ≡ relation must be compatible with the similarity and ranking functions.
When this is not the case, precision can be critically lowered.

Uses of normalisation include: repairing of broken XML/MathML gener-
ated by automatic conversion tools [MM07] (e.g. when the structure imposed
by < mrows > is not compatible with the mathematical structure); removal of
information that does not contribute to the semantics like comments, layout
elements (spaces, phantoms and linebreaks), XML/MathML attributes (color,
font, elements in other namespaces) [FLRS12,HHN08,MM07]; picking canonical
representations of the same presentation/content when different MathML encod-
ings are possible (e.g. msubsup vs. msup and msub, mfenced vs. use of two paren-
theses, applications of trigonometric functions with/without using parentheses,
etc.) [AY07a,FLRS12,MM07]; replacing names of bound variables with unique
numerical indexes (e.g. De Brujin indexes) to search up to α-conversion [MM07,
NK07]; ignoring parentheses and ordering of arguments of associative/commu-
tative operators [AY07a,MG08a,MG08b,NK07,SY07,SL11,YS06]; expressing
derived notions exposing the derivation (e.g. replacing x ≥ y with y ≤ x, x �≤ y
with ¬(x ≤ y), arcsin with sin−1, etc.) [AY07a,MM07]; capturing logical equiv-
alence/type isomorphisms (e.g. writing formulae in prenex normal form, currifi-
cation of functions) [Del00,GK14,NK07].

A normalised formula can be quite different from the original one, and that
can be a symptom that the formula is not significant. Therefore in [RSL14]
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normalised formulae are weighted according to their similarity to the initial one,
and weights are considered during the ranking phase with great results.

Approximation. Normalisation does not lose information, converting a docu-
ment to an equivalent one. Many papers call “normalisation” an approximation
phase where subformulae are replaced with constrained placeholders to allow
the formula to be matched by similarity. For example: names of variables or
constants can be replaced by a single name [GWHT14]; all numeric constants
by a single identifier [GWHT14,MM07,SL11]; subformulae may be replaced by
their type. For example, in [HKP14] type information is used to retrieve formu-
lae by sorted unification, i.e. by constraints with type placeholders in patterns.
Approximation improves recall. To limit the loss of precision, systems that
approximate index both the original and the approximated formula (or even
several instances at different levels of approximation). The effects of approxima-
tion are similar to those of query reduction, but approximation is more efficient
because it works at indexing time.

Enrichment. Enrichment works on the library or on the query to augment the
information stored/looked for in the index by inferring new knowledge from exist-
ing one. It can contribute to the solution of both the Document Retrieval and the
Formula Retrieval problems. Typical examples of enrichment are: heuristically
generating and storing content metadata from Presentation MathML [MY08];
automatic/interactive disambiguation of formulae in the queries to perform a
precise query at the content or semantics level [AGSC+06,Ban06,BR03,BU04];
automatic inference of metadata from context analysis or usage analysis (latent
semantics) [Cai04,KTHA14,WG10].

The most impressive application of enrichment is presented in [HQ14]. The
aim is to search for geometrical constructions that are described using a proce-
dural language (e.g. draw the segments connecting A with B, B with C, and
A with C). Enrichment consists in replacing the procedural with a declarative
description (e.g. ABC is a triangle). The same declarative description can be
obtained by multiple procedural ones, and thus recall is greatly improved. The
technique can also be seen as a form of normalisation (see Sect. 3.1) where the
normal form is not unique (e.g. it may be the case that by analysing the hypoth-
esis one could deduce that ABC is also an equilateral triangle even if that is not
stated in the procedural description).

Query Reduction. Query reduction trades precision for recall by selectively
dropping or weakening some of the constraints present in the query. Results
obtained from reduced queries can be ranked after results from precise queries. In
the literature it occurs in many forms in solutions to both the Formula Retrieval
and the Document Retrieval problems: a constant can be weakened to other
constants that co-occur frequently with the given one; constants that occur too
frequently can be dropped from the queries; a formula may be required to match
only the toplevel structure of the formula given as a query.
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3.2 Main Techniques

The following techniques are mutually exclusive. Moreover, each technique per-
forms better on only one of the two problems.

Reduction to Full-text Searches.The technology to perform full-text searches
is very advanced and there are popular open software implementations with good
performance like Apache Lucene/Solr and ElasticSearch. The benefits of reduc-
ing search for formulae to full-text searches are speed of execution of the queries
and the combination of formula based and textual searches almost for free. The
main drawback is that the precise structure of a formula is partially lost in the
translations proposed in the literature, and that it is impossible or very hard to
capture precisely the kind of relations R used for Formula Retrieval, unless R is
approximated by a much coarser relation R′. Therefore the technique has been suc-
cessfully applied so far only to Document Retrieval [ACK08,GWHT14,GPBB14,
HHN08,KTHA14,LM06,LSLM11,LSR14,Mil13,MY03,MM07,MG08a,MG08b,
PZ14,MM06,SL11,You05,You07,You08].

All the proposals employ vectors to represent features, and compare features
with weighted cosine distance. The usual approach consist in turning an expres-
sion into a (large) set of “sentences” that partially describe the formula. For
example, in [KTHA14,TKNA13] a sentence is the set (ordered or not) of sym-
bols found in either a path from the root of the formula to a leaf, or as children
of the same node. Matching is then performed by a disjunctive query and results
are ranked using TF-IDF and length normalisation. As the authors claim, the
system “is too flexible: it is difficult to say where the relevant results stop and
random matches begin; thus we predict higher recall but lower precision rates
than exact match systems”. Other authors extract sentences or n-grams that
capture the formula more precisely. As a general remark, the clear impression
we got from the literature is that the fewer features extracted, the lower the
precision. All kinds of techniques can be used to extract the features, comprising
regular expressions [ACK08] and finite state automata [NCH12].

Some systems cluster documents at indexing time (e.g. [ACK08]), and
retrieve documents comparing the feature vector of the query with the centroid
of the cluster. For example, documents about trigonometric functions are likely
to be automatically clustered together. However most systems do not seem to
cluster in advance, and prefer the flexibility of weights to capture similarity of
features (e.g. similarity of occurrences of trigonometric functions).

According to the set of features extracted, the weighting function used, and
the other modular techniques used in combination, the accuracy achieved by
systems based on this technique range from extremely low to extremely high
(see, for example, [AKO14]).

Structure-Based Indexing via Tries/Substitution Trees. Formula Retrie-
val can be solved with the data structures developed for automatic theorem
proving to store libraries of lemmas and quickly retrieve formulae up to instan-
tiation/generalisation. Pointers to all the statements are stored in the leaves of
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a tree that precisely encodes in its paths the statements. To match a formula,
the tree is recursively traversed using the formula to drive the descent. The rela-
tions R that can be captured are only instantiation and generalisation of whole
formulae. MathWebSearch [HKP14,KP13,KT10] are based on this approach.
Retrieval of formulae is very fast, assuming that the index can be entirely stored
in main memory.

This approach consistently maximises precision but presents poor recall. To
accept larger relations, or to be applied to Document Retrieval, or to cope with
too rigid queries, the technique needs to be integrated with other ideas. For
example: to match subtrees of formulae in the library, every subtree of a lemma
needs to be stored as well in the index; to solve unification problems up to
an equational theory that admits normal forms, all formulae are normalised;
to allow queries that use keywords or free text, a free-text search engine must
be run in parallel and the results need to be combined in the ranking phase
[HKP14,LDM+08].

Reduction to SQL or ad-hoc Queries. The third approach consists in
approximating formulae via relations to be stored in a relational DB [AS04,
GS03]. An alternative consists in storing the relations in ad-hoc indexes in mem-
ory, and it is employed when the indexes already exists for other purposes (typi-
cally in libraries of formalised knowledge) [Ban06,BR03,BU04]. The technique is
applied to Formula Retrieval and the database can be reused for Document Syn-
thesis without modifications. Approximated queries up to generalisation/instan-
tiation can be made efficient [AS04] without requiring an index stored in main
memory for Structure-Based Indexing (see page 10). Recall can be maximised
by relaxing the representation of formulae as relations or by employing normal-
isation. Ad-hoc inverted indices for paths and to map each Content MathML
node to its parent have also been used in [HS13]: the search engine is very fast,
but the precision obtained is low.

Reduction to XML-based Searches. Some systems [AY07b,AY08b,YA07]
that index MathML documents at the content level, base their searching capa-
bilities on the existing XPath/XQuery technology. The system described in
[SLM13], which is based on Stratosphere, is batch oriented, trades flexibility
with performance, and it is essentially math-unaware (for example, it does not
normalise the input in any way). Other systems [CDT04,LDM+08], that deal
with ontologies indexed in the Ontology Web Language, rely on third-party OWL
search engines implementing graph matching.

4 Ranking

Because users only inspect the first results returned by a query, precision when
solving Document Retrieval is strongly determined by the ranking function.
Ranking is also of paramount importance for Formula Retrieval: when the search
retrieves the candidates for progressing in a proof, correctly ranking the results
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may dramatically cut the number of wrong proof attempts and backtracks. The
ranking criterion for the two Problems is, however, very different: for the first
problem similarity of formulae in the query and in the results should contribute
significantly to the score; for the second problem the score should be determined
by the intended use of the results. For example, a lemma L1 that exactly matches
the goal to prove and has no premise should always score better than a lemma L2

that also exactly matches the goal, but that has hypotheses to be proved later.
Ranking according to the intended use for Formula Retrieval has received

very little interest in the literature we examined. On the other hand, several
papers explicitly address ranking for Document Retrieval. The consensus seem
to be that a good ranking function needs to be sophisticated and that the usual
metrics induced by reduction to textual searches are completely inadequate (see,
for example, [You07]). All the proposed ranking techniques are strongly based
on heuristics and, unfortunately, most of them are incomparable and hard to
combine.

One class of metrics takes into consideration also the structure of the formu-
lae involved and the enriched semantics, when available. For example, [ZY14]
heavily exploits Content MathML to rank results by considering the taxonomic
distance of constants (where close is approximated to being defined in the same
content dictionary), the data type hierarchical level (matching a function is
more significant than matching a numerical constant), matching depth (par-
tially matching the formula at the top level is more significant than matching
a deeply nested subformula), coverage (percentage of formula matched), kind of
matched expression (formula vs. term). All this information needs to be com-
puted and amalgamated employing some kind of heuristic algorithm. A second
paper [SYM+14] confirmed that each one of the listed similarity feature factors
significantly improves the ranking, but the last one, that still contributes, has
lower relevance.

In [SL11] ranking is determined by the weights used during matching, and
the authors claim that each document base and scientific field should have its
own weighting function. Nevertheless, they “tried to create a complex and robust
weighting function that would be appropriate to many fields”.

In [You07] the author proposes a parameterised ranking function that works
on mathematical documents (not only formulae), that seems applicable to
enriched presentation and that weights a lot of additional information includ-
ing keywords, the number of cross-references and their kind (e.g. definitional vs.
propositional). Ranking employs a hybrid of scalarisation and vectorisation.

In [KT13] the authors propose to adopt tree edit distance to measure similar-
ity of formulae. Most of the paper is about optimisations to improve efficiency
of ranking because tree edit distance is hard to compute. The final proposal
combines some clever memoisation and a procedure to quickly prune documents
bounding their similarity scores with a lightweight computation. The paper also
shows benchmarks comparing the processing time and success rate of most search
and ranking algorithm in the literature, reimplemented by the authors and run
on the same dataset. From the benchmarks the method proposed seems to be



308 F. Guidi and C.S. Coen

superior, but the implementations do not exploit relevant enriched information
like cross-references, semantic proximity of definitions, etc. The benchmarks are
therefore non conclusive.

In [NCH12] the authors employ a continuous learning ranking model after
having extracted features from Content MathML mathematical formulae using
a finite state automata. Benchmarks show their ranking to be superior than
the ones used in classical ranking of textual documents. However, they do not
compare with [KT13] or [You07] (that work on Presentation MathML).

Simpler approaches to ranking can be found in [YA09] (based on Subpath
Set, reported to work well only on “simplified” Content MathML) and [KT09]
that works on Presentation MathML and measures similarity as a function
of the size of subtrees in common. The ranking metric used in [ACK08] is a
TF-IDF modified with weights to assign more importance to some operators,
but the details given to determine the weights are insufficient.

Ranking algorithms can be too complex to be incorporated in the search
phase, for example when using Lucene technology. Moreover, they are typically
slower than the search phase. Therefore several authors suggest to re-rank only
the first results of the query, that employs a simpler ranking measure to deter-
mine the interesting candidates to be ranked more accurately [KT13,You07].

An algorithm to automatically categorise documents is presented in [ZKT08],
where it is argued that clustering documents according to their category greatly
improves the usefulness of the tool for the user.

5 Evaluation of Math Information Retrieval

Several papers present benchmarks on the systems proposed, and rarely com-
pare them with reimplementations of the algorithms found in the literature (e.g.
[KT13]). The significance of most of these benchmarks is unclear, because con-
flicting results are found in the literature, most techniques are not presented in
sufficient details in the papers to be exactly reproduced, and systems are very
sensitive to the kind of queries examined. The only alternative is to compare
different tools on unbiased, standard benchmarks that are currently lacking.

The main issue is not to come up with large corpora of documents: at
least for Document Retrieval on enriched Presentation MathML documents, a
large corpus can be easily obtained converting documents from ArXiV, DLMF,
PlanetMath, Wikipedia, etc. For Formula Retrieval, the existing libraries of
interactive theorem provers, like Mizar and Coq, can be directly used after con-
version. The problem is to determine large sets of real world, interesting queries,
and to evaluate the results. Automatic evaluation is particularly hard in the
domain of mathematics, whereas manual evaluation is limited to a tiny number
of queries and runs. Formulating good sets of queries is also complex, because
users with different mathematical background and motivations are likely to issue
different queries. Moreover, what makes a query hard can just be the use of non
standard mathematical notations, errors in the encoding of formulae, or formu-
lation at the wrong level of abstraction. Reference [L13] discusses the problem
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at length and reviews the state of the art of evaluation of Math Information
Retrieval before 2013, including the experience of the MIR workshop at CICM
2012 were two systems were compared on about ten hard queries proposed by
the judges, and the conclusion was that the systems were too sensitive to the
formulation of the query.

The situation is improving since 2013 with the creation of a math oriented task
in the NTCIR initiative [AKO13,AKO14] that is attracting a small, but increas-
ing number of participants [GWHT14,GPBB14,HS13,HKP14,KP13,KTHA14,
LRG13,LAP+14,LSR13,PZ14,RSL14,SLM13,SYM+14,TKNA13]. The initia-
tive is too young to come to definite conclusions and the current choice of tasks
and queries is not granted yet to have significant coverage and to be unbiased. For
example, in [KTHA14] the authors report that despite several improvements to
the tool (quantified via NTCIR-11 runs), their tool scored lower than in NTCIR-
10. They justify the phenomenon by noticing that “in NTCIR-11, query variables
get much bigger emphasis, most topics feature complete and very particular for-
mulae, and sub-formulae matching is not nearly as useful as before”. Indeed, as
reported in [AKO14] “the design decision . . . to exclusively concentrate on for-
mula/keyword queries and use paragraphs as retrieval units . . . has also focused
research away from questions like result presentation and user interaction. . . . few
of the systems has invested into further semantics extraction from the data set.
. . . We feel that this direction should be addressed more in future challenges”. An
effect of the bias towards search up to unification w.r.t. search up to similarity is
observable in [PZ14] too: the system proposed works very well even if it works on
Presentation MathML only and the set of features extracted is very simple (bag-
of-symbol-pairs model, where a pair is made of two symbols in a father-son rela-
tion). The reason why it works well is that the authors also index approximated
pairs where the child is a wildcard, and in the future works they are thinking at
improving even more the handling of wildcards to score better. In comparison,
most other systems based on feature vectors just replace wildcards in the query
with < m : ci > identifiers. The emphasis on formula queries is also to be evalu-
ated considering the already cited works that conclude that users do not see (yet?)
much value in them [KK07,ZKT08].

Finally, the NTCIR task does not cover distinctly the Document Retrieval
and the Formula Retrieval problems, but only Document Retrieval with an
emphasis on exact pattern matching of formulae that should be more distinctive
of Formula Retrieval.

6 Availability of Math Retrieval Systems

Most of the systems described in the literature are research prototypes, and the
majority of them are no longer working or no longer accessible. At the time this
paper was written, the only ones for Document Retrieval with a running Web
interface or code that can be downloaded are: (1) Design Science’s MathDex
(formerly MathFind) (2) NIST DMLF (3) MathWebSearch (4) MiAS (Math
Indexer and Searcher), also used to search the EuDML (5) the system described
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in [PZ14]. In addition to those, the following commercial systems are also acces-
sible: (a) Springer LaTeXSearch (b) Wolfram Alpha. Systems (a), (1), (2) and
(5) are based on Presentation MathML; systems (3) and (4) can use either Pre-
sentation MathML or Content MathML/parallel markup, but work better on
the latter; finally system (b) actually generates on the fly most of the result of
the query, for example by plotting functions, computing their Taylor expansion,
etc. It does not really qualify then as a search engine.

Most interactive theorem provers also have their own implementation of a
search engine to solve Formula Retrieval. Most of the time, the implementation
is embedded in the system and does not work on the whole library at once, with
the exception of MML Query for Mizar.

7 Conclusions

Mathematical knowledge retrieval, the low hanging fruit of Mathematical Knowl-
edge Management, is still far from being grasped. Despite the significant amount
of work dedicated to the topic in the last 12 years, only a few systems are still
available, and their precision and recall scores compared to other knowledge
retrieval fields are low. Moreover, usability and user requirement studies suggest
that queries containing formulae — the main focus of the majority of papers —
are perceived by users as not very useful (yet?).

The main contributions of this paper have been providing an hopefully com-
prehensive bibliography on the subject, and presenting taxonomies for both
mathematical retrieval problems and techniques. We believe that our purpose
driven taxonomy can be useful in classifying papers, in clarifying the scope
of application of techniques and in the much needed development of unbiased
benchmarks for mathematical retrieval.
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LSLM11. Ĺı̌ska, M., Sojka, P., Ĺı̌ska, M., Mravec, P.: Web interface and collection for
mathematical retrieval: WebMIaS and MREC. In: Proceedings of Towards
Digital Mathematics Library, DML 2011, Bertinoro, Italy, 20–21 July, pp.
77–84. Masaryk University, Brno (2011)
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