Chapter 29
Scale-Free Network Topologies with Clustering
Similar to Online Social Networks

Imre Varga

Abstract In this paper I propose a novel method to model real online social
networks where the growing scale-free networks have tunable clustering coefficient
independently of the average degree and the exponent of the degree distribution.
Models based on purely preferential attachment are not able to describe high
clustering coefficient of social networks. Beside the attractive popularity my model
is based on the fact that if a person knows somebody, probably knows several
individuals from his/her acquaintanceship as well. The topological properties of
these complex systems were studied and it was found that in my networks the cliques
are relevant independently of the system size as usual in social systems.

29.1 Introduction

While networks are present everywhere in our everyday life, these complex systems
attract considerable scientific interest. Researches showed that social networks are
different from other networks in some sense. The reason of this was studied by
Newman and Park [1]. The biggest difference is in average clustering coefficient.
In social networks there is a high probability that two friends of a given individual
will also be friends of each other thus the clustering coefficient is high. Opposite to
non-social networks, where these triangles are rare.

Many models of networks appeared in the last decades, but most of them are not
able to describe social networks directly. Models based on “small-world” networks
of Watts and Strogatz [2] do not reproduce the power law degree distribution. Most
of growing scale-free network models result low clustering coefficients [3—5]. There
are some trials to create scale-free networks with tunable clustering [6-9], but in
these models the desired value of clustering coefficient determines other properties
of the networks. Avoiding this problem I wanted to create a model for online social
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networks in which I can set the average clustering coefficient without affecting other
properties (e.g. degree distribution exponent, average degree) of the network.

29.2 Basic Model

In order to achieve my goal I generalized the well-known Barabdsi-Albert (BA)
model [3] modifying the linking method. The growing networks start from a small
fully connected network of Ny nodes where each nodes have Ny — 1 links to others.
Then I start to grow the network by adding more and more new nodes to it step by
step. When a new node joins it is attached by m = Ny — 1 links to existing nodes.
These vertices are chosen by two different ways.

(a) Some nodes are chosen based on preferential attachment. The probability of a
node to be chosen is proportional to the number of existing connections of it.
Thus nodes with more neighbors have larger probability to get a new one. The
number of these chosen nodes is denoted by 7.

(b) In the second phase the new node is linked to v number of neighbors of each
previously chosen vertices. The neighbors of popular nodes have the same
probability to be linked to the new node, independently from their degree.

The exact linking algorithm has the following steps:

1. Create a new node, i = 1.

2. If i > 7, then the linking method of this node is over.

3. Link the node to a probably large degree, popular one by preferential attachment.
i=i+landj=1

4. Ifj > v, go to step 2.

5. Link the node to one of the neighbors of ith popular neighbor of this node with
equal probability. j = j + 1.

6. Go to step 4.

These steps are repeated until the number of nodes N reaches a desired value
(N > Ny). The basic idea of this two-phase linking is that to have a popular
friend is advantageous and then one gets to know some acquaintances of the popular
friend. Finally the number of links of a new node can be written as m = 7 (1 + v).
This method is a kind of generalized version of BA model, if v = 0 the networks
generated by these two methods are the same. Now the model has three independent
parameters: N,  and v.



29  Scale-Free Network Topologies with Clustering Similar to Online Social Networks 325

Fig. 29.1 The graphs of the model with the same number of nodes (N = 1000) and links (m = 3)
using the same representation technique. On the left side the graph is a BA network (w = 3,v =
0). On the right side a completely different graph of my model (w = 1, v = 2) is presented

29.2.1 Properties of Generated Networks

This small change in the generation method leads to large differences in the network
properties compared to BA-model. The differences can be seen right at the first sight
even if the average degree and the density is the same (see Fig. 29.1).

In order to characterize the differences quantitatively I studied different prop-
erties first of all the average shortest path length (L) in the generated networks.
It is small compared to the number of nodes and links. I found that (L) grows
proportionally to the logarithm of N, so the networks have small-world property
as expected. The coefficient of this proportionality depends on the parameters
and v. BA-like networks have smaller average shortest path length than networks
with high value of v. The reason of this is the fact that in the latter case the graphs
contain networks of small strongly connected groups of nodes due to the linking
method. So increasing v (at the same value of m) results networks where cliques
are more important. Naturally larger number of links leads to smaller networks,
where (L) obeys power law decay with parameter dependent exponent. Based on
my simulation results curve fitting showed (see Fig. 29.2a) that the average shortest
path length has the following functional form

(L) o (m(v + 1) TV N, (29.1)

However initially nodes have the same amount of neighbors finally their degree
varies in a wide range. Based on the growing algorithm one can analytically
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Fig. 29.2 (a) The average shortest path length (L) as a function of m = (v + 1). Straight lines
indicate power law dependency on log-log scale. Inset: the average shortest path length (L) as a
function of system size N on lin-log plot. In case of same density the BA-like graphs are smaller
than generalized graphs. Straight lines indicate fits with Eq. (29.1). (b) All the graphs generated
by this method have power law degree distribution. Rescaling the degree distribution data collapse
occurs independently of 7 and v. The exponent of the solid line is 2.9 as in BA model

determine the average degree of nodes
(k) =2m =2n(1 +v). (29.2)

The degree distribution can be well fitted by a straight line on log-log scale
indicating scale-free networks with power law degree distribution with form P(k) o
k7. The curves with different values of 7 and v can be rescaled by 2m to get data
collapse as it is shown in Fig. 29.2b. This means that the exponent is independent
from m in all cases not only for BA networks. The exponent y of the degree
distribution is independent of the number of nodes connected in the first step = and
in each secondary step v as well, its value is y = 2.895 &£ 0.038 as expected. The
value of the exponent is obtained by averaging the exponents of systems at different
input parameter combinations. This independence needs some explanations. Let’s
see for example the 7 = 1 and v = 9 system. Only 10 % of the links based on
purely preferential attachment and 90 % just randomly connected to the neighbors
of popular nodes. How can this network be scale-free? As a matter of fact the 90 %
also preferred, because sooner or later these neighbors also become popular as they
popular neighbor gets more and more links.

To characterize the networks from the point of view of the cliques I calculated the
clustering coefficient of nodes in my undirected graphs. Local clustering coefficient
C of a node is the ratio of the number of existing links between neighbors of this
node and the number of possible connection between them. In a general case C is
proportional to the reciprocal of the degree of node, which indicates small degree
nodes are mainly members of cliques while hubs of the networks connect them
together.
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Fig. 29.3 (a) The average clustering coefficient (C) is decreasing with the increasing number of
nodes N in the system, but it tends to zero only in BA networks (inset). When parameter v > 0 in
a large network the value of (C) is constant. Values of Co (obtained by curve fitting) which are
determined by 7 and v are indicated by dashed lines. (b) Co as a function of v on log-lin plot and
Coo as a function of 7 on log-log plot fitted by Eq. (29.4)

The most interesting feature of my graphs can be seen if we analyze their average
clustering coefficient (C). When a network is growing, (C) is decreasing. I found
this can be written in the following functional form

(C) x N™3/* + Coo, (29.3)

where N is the number of nodes and C is a constant at given parameter set. In case
of BA network (v = 0) the value of C, = 0, so we get back the well-known power
law form. In this systems the formation of neighbor-triangles is random. Increasing
the system size the degree of nodes is increasing as well so the chance of a node to
belong mainly link-triangles is continually decreasing. This leads to small clustering
coefficient. In generalized cases Eq. (29.3) means that (C) tends to finite values, not
to zero. If v > 0, new nodes mainly compose triangles (independently from system
size) due to the linking algorithm, so a given part of the system always have large
clustering coefficient. One can see it on Fig. 29.3a. It indicates that when v = 0
in a large network cliques are negligible, while in the generalized networks they
remains important at any system sizes. Large number of simulations were performed
to discover how the constant value in (C) depends on the input parameters. I found
that

Coo X T 4B, (29.4)

if 7 > 1 and v > 0, where A and B are constants. More links lead to smaller average
clustering coefficient, where both types of linking methods (7 and v) have influence
on C, but they act in different ways. (See Fig. 29.3b.) Generally preferential links
do not compose new triangles, so increasing r results just larger degree, but not
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more triangles. That is the reason why larger 7 leads to smaller (C). Larger value
of v creates more triangles, however these are independent, so they do not form
tetrahedron-like structure. (C) is also decreasing. Practically speaking my linking
method makes us able to generate large scale-free networks with different discrete
values of average clustering coefficient in a wide range between 0 (BA) and the
maximum at 7 = 1,v = 1 namely 0.739, however smaller values are more
common. If we have maximum 15 edges to each new node (m < 15) we can create
networks with 45 different values of Cyo.

29.3 Extended Model

At this point we are able to adjust the average clustering coefficient by the input
parameters. However the values of 7 and v determine the average degree of nodes
as well. In order to model different real world networks we must tune (C) and (k)
independently. That is the reason why my model has been extended. To change
the number of links a reduction process is applied. After the growing period the
system undergoes a destroying procedure where independently chosen nodes and
their connections are removed. I used the so called general attack process [5] which
means that all the nodes has the same probability to be removed. The strength n of
this reduction process can be characterized by the ratio of number of removed nodes
AN and the original number of nodes at the end of growing phase, so n = AN/N.
Thus finally the extended model has four parameters: N, &, v and n. This reduction
process has significant influence to the topological properties of the network.

29.3.1 Properties of the Reduced Networks

Remaining nodes loose connections by removing their neighbors. The final average
degree in the system is determined by three things which can be expressed as

_ Ziki_ij,i_Zlkl
B N — AN

(k) , (29.5)
where i = 1,2,...,N, j runs over removed nodes and / runs over the remained
neighbors of removed vertices. The first term in the numerator is the sum of original
degree of nodes before reduction. The second one is the loss of degree of the
removed nodes. The third term describes the loss of degree due to the fact that
remained nodes lose the links to removed neighbors. While removed nodes can
have links to other removed nodes as well, the last two terms are not equal, their
ratio is (1 — n). In this way the Eq. (29.5) can be written as follow using mean field
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Fig. 29.4 (a) The average degree (k) is decreasing linearly with the reduction strength 7. (Fitted by
Eq. (29.7).) (b) The average clustering coefficient is decreasing very slowly during the reduction
process. For small reduction it remains almost constant. In case of BA network (v = 0) (C) is
always close to zero. Dotted lines denote Coo, and grey fitted curves represent Eq. (29.9), where R?
coefficient is above 0.96 for all v > 0 data sets

approximation
2mN — 2mAN — 2mAN(1 — n)
ky = . 29.6
(8 T (296)
Using Eq. (29.2) and the definition of 1 the Eq. (29.6) can be simplified to
2m(1 —n—n(l -
dy = A==l =m) o a4y — ), (29.7)

l—n

In my simulations the average number of links of nodes decreases linearly with
increasing reduction strength as predicted analytically. The effect of the reduction
process on (k) is illustrated in Fig. 29.4a.

The reduction has only minor influence on average clustering coefficient, which
is negligible even if half of nodes are removed. Stronger reduction leads to a bit
smaller value of (C). I determined the functional form of this dependency which
can describe as

Coo — (C) o (29.8)

for large networks, where exponent D determines how fast the average clustering
coefficient decreasing. (See Fig. 29.4b.) Using Eqgs. (29.3), (29.4), and (29.8) finally
we can write the average clustering coefficient as a function of input parameters of
the modelif # > l andv > 0

(C) o KNT/* 4 K'm™Ae™ B — K"P, (29.9)

where K, K’, K", A, B and D are coefficients and exponents of the model.
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Fig. 29.5 (a) Number of clusters N, as a function of reduction strength 7 on log-log scale. Straight
lines indicate power law behavior, where the exponent depends only m, but independent from
and v. (b) Strong reduction destroys giant component, it disappears faster in generalized networks.
The decay can be described by Eq. (29.11) illustrated by grey curves

The values of (k) and (C) in my network are independently tunable with the
reduction process, which has other side effects. The originally connected networks
fall into pieces. Separate clusters appear, which are smaller networks without
connections to other parts of the system. Increasing the reduction strength 1 the
number of clusters N, is increasing according to power law, where the exponent
depends on the number of links only, independently from their role in the growing
process (Fig. 29.5a). Large number of clusters can occur depending on n and the
system size N. Based on the simulation results the value of N, can be characterized
by the following form

N
N, x m?]n<v+l), (2910)

if the reduction is not negligible. When the reduction is very strong the number of
clusters N, saturates.

If the reduction strength is smaller than approximately 0.4 clusters are negligible
except one which gives almost 100 % of the system. It is called giant component
in the literature. It can be still dominant even if more than 75 % of the nodes are
removed. After this the dominancy of giant component disappears fast in case of
strong reduction. The speed of this process depends on the growing period. Not
only the number of links of a new node m are important, but also the parameters 7
and v separately. The size of giant component S, can be written by the form

Sg 0 No(1 =) = N(1 = ) (1 — 11", (29.11)

where N, = N— AN is the number of nodes in the reduced system. (See Fig. 29.5b.)
The exponent E depends not only on the value of m, but also 7 and v, however
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larger m results smaller exponent, so larger giant component. In BA networks (v =
0) the giant component is always larger than in generalized networks at a given
link number. This shows that BA networks are strongly connected while if v > 0
the system is a weakly connected set of densely linked groups of nodes. Since the
number of clusters is independent from 7 and v at a given value of m, but the size
of giant component is smaller for larger v, clusters (excluding the giant component)
are larger. The average cluster size is much smaller in BA networks then in the
generalized case. These are also proofs of presence and importance of cliques. These
clusters have a power law size distribution with a parameter dependent exponent.
Number of clusters n(S) of size S can be expressed as

n(S) oc STV, (29.12)

29.4 Model of Real Online Social Network

Due to the discussed topological properties my networks are appropriate candidates
for modeling real world online social networks. I managed to get a set of data of
almost 60 million Facebook users [10]. This network has small world property, its
degree distribution can be characterized by two power law regimes (see Table 29.1),
so it is a kind of scale-free network. The quite high average clustering coefficient
indicates the presence of cliques of users.

Based on my presented results I found a set of input parameters which leads
to a very similar network. The values of input parameters in my Facebook model
are: r = 3,v = 1and n = 0.72 (N = 10,750,000). This final sample contains
more than three million nodes. In this size scale N has not got influence to the
network properties, so not necessary to create larger system. The properties of the
real social network and my model network are summarized in Table 29.1. As one
can see the values of the main quantities (C) and (k) well describe the real case and
other properties give quite good qualitative description (e.g. presence of separate
clusters or power law degree distribution) as well.

Table 29.1 Comparison of my extended model network and the Facebook data set

Facebook Extended model

Average shortest path length (L)(N) Logarithmic Logarithmic
Degree distribution P(k) Power law Power law
Degree distribution exponent y 1.32,3.38 2.96

Average degree (k) 3.13 3.24
Dominance of giant component S,/Na 0.99 0.90

Cluster size distribution N(S) Power law Power law
Average clustering coefficient (C) 0.16 0.15

The features of the two networks are in good agreement
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29.5 Conclusion

In summary, I proposed a simple method for generating scale-free networks where
the average clustering coefficient is tunable in a broad range and determined by the
input parameters r and v. The method is a kind of generalized version of growing
Barabasi-Albert model where the links of a new node play different roles. Beside
the preferential attachment some links obey the so called “friend of my friend is
my friend” philosophy. After the growing process a reduction process was used in
order to create large variety of networks changing (k) and (C) independently. This
reduction process means random removal of nodes. The strength of reduction is
characterized by parameter 7. A detailed study of the model was presented proofing
that in these scale-free networks the cliques have very important role which cannot
be described by the original BA model. Comparing a real online social network and
the graphs generated by the proposed algorithm I found very good agreement. For
clarity my model does not describe the time evolution of real social networks just
generate graphs topologically similar to a given state of real online social networks.
In the near future the model networks are being subjected to agent-based simulation
of information spreading using the model of Kocsis and Kun [11]. This model can be
a good base of later study of effectiveness of advertising in online social networks.
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