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Abstract Dyadic data frequently occur in social sciences and numerous techniques
have been developed for their analysis. The most prominent methods involve using
regression, path, and structural equation models. The present contribution extends
these approaches by considering Item Response Theory (IRT) Models. Two pivotal
dyadic data analysis models, the Actor-Partner Interdependence Model (APIM) and
the Common Fate Model (CFM), are built using the Multidimensional Random
Coefficients Multinomial Logit Model (MRCMLM). This approach combines the
advantages of dyadic data analysis with a model for discrete data, thus allowing for
categorical items while drawing inferences based on the estimated true scores on an
interval scale.

Aims of This Contribution

This contribution presents a new approach to dyadic data analysis. It is organized
as follows: After giving a short introduction to the basics of dyadic data (section
“Dyadic Data”) and the core principles of their statistical analysis (section “Model-
ing Dyadic Data”), the fundamentals of a new approach based on multidimensional
Item Response Models (mIRT; e.g. Reckase 2009) are worked out. This approach
combines the specific requirements of dyadic data analysis (i.e., taking into account
the dependencies within a dyad) with the advantages and flexibility of discrete
probability models for categorical data. The principles of mIRT will be introduced
in section “Item Response Models” and exemplified for two important dyadic data
models, including computational details, in section “Worked Examples”.
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Dyadic Data

Dyadic data originate from responses of individuals sharing a common context, like
partner or parent-child relationships. Apart from such natural (or voluntary) linkage,
a dyad can also be established by membership to a common context, like in an
experimental design, where two previously unacquainted individuals are assigned
to each other to work on a common task. We cannot assume the responses of
linked observations (e.g., parent and child) to be mutually independent. We have
to act on the assumption that systematic variation arises due to both, individual
and relational characteristics. Four kinds of nonindependence may be discerned:
compositional nonindependence (the dyad members are linked due to preexisting
common characteristics), partner effects (characteristics or behaviors of one partner
necessarily affects those of the other partner, e.g. when resources have to be shared),
mutual influence (due to some sort of feedback loop), and common fate (both dyad
members are affected by common circumstances, like sharing the household or
consanguinity, for example).

Another crucial distinction has to be made with regard to the identifiability of
the members of a dyad (pair) under consideration: While, for example, the roles of
parent and child allow for a clear distinction of individuals, monozygotic twins may
not be uniquely allocated unless auxiliary variables are taken into account (e.g., the
elder vs. the younger sibling). Hence, we have to differentiate between dyadic data
models for distinguishable and indistinguishable members.

Further, we have to consider whether information is gained at the individual or
at the dyad level: A dyad member’s gender is usually a descriptor of the individual
(except for studies deliberately focussing on same sex pairs, etc.), but the household
income of a couple is identical for both members and therefore constitutes a dyad
level variable. As a third category, we have to consider mixed variables, exhibiting
variation on both the individual and the dyad level, like the respondents’ age.

A comprehensive overview of dyadic data, models, analyses, and numerous
references to original sources can be found in Kenny, Kashy, and Cook (2006).

Modeling Dyadic Data

The term “model” refers in the context of dyadic data to a substantive perspective,
i.e. how measurements from dyad members are hypothesized to relate to each other,
and will not necessarily determine the statistical model to be used for parameter
estimation. It might, therefore, be helpful to differentiate between “dyadic models,”
focussing on substantive theory, and “statistical models.” This distinction is not
always clear-cut, because some dyadic models may correspond closely to a certain
statistical model.
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Several models for dyadic data have been proposed so far, two of which are
outlined in this section, as they are common in the literature, and they are further
pursued in the analyses presented here. These are the Actor-Partner Interdependence
Model (APIM) and the Common Fate Model (CFM).

The Actor-Partner Interdependence Model

Basically, the APIM (Kenny et al. 2006, ch. 7) constitutes a regression model
involving an independent variable X and a dependent variable Y , both available
for both members of a dyad (A and B). Hence, we deal with four variables (or
constructs, if more than one item is involved), XA, XB, YA, and YB. The regressions
of the Y-variables on the X-variables are separately modeled for each dyad member
(called actor effects in the dyadic context, aYX and a0

YX in Fig. 1, top). In addition,
each member’s X may affect the other member’s Y (called partner effects, pYX and
p0

YX). The magnitude of the partner effects relative to the actor effects expresses
the extent of interdependence of dyad members. Furthermore, the two independent
variables or constructs as well as the two dependent ones may exhibit a mutual
relation (rX and rY in Fig. 1, top).

If each of the four constructs involved (XA, XB, YA, and YB) is a single random
variable fulfilling certain scale and distributional assumptions, the coefficients
could be determined by means of Ordinary Least Squares (OLS) regression or
path analysis (a comprehensive instruction can be found in Kenny et al. (2006),
for example). However, such an approach ignores the measurement errors of the
observed variables and becomes increasingly cumbersome for dyadic models that
are more complex than those considered here.

The nesting of individuals within dyads constitutes a hierarchical data structure,
which facilitates the application of multilevel models (cf. Hox 2010; for their spe-
cific application to dyadic data, see Campbell & Kashy 2002 or Kenny et al. 2006,
ch. 4). Alternatively, the coefficients could be estimated by means of Structural
Equation Models (SEM; e.g., Bollen 1989). In particular the SEM-approach allows
for a sophisticated and flexible modeling of the hypothesized relationships and
provides a highly differentiated assessment of model fit.

The Common Fate Model

The CFM (Campbell 1958; Kenny et al. 2006, pp. 409–412) also considers the
relationship of two variables (X and Y) recorded for both members of a dyad (A and
B). But instead of looking for mutual dyad members’ influence (the partner effects
in the APIM), we focus on the correlation of X and Y , assuming that they constitute
a common background (“fate,” hence the naming) for the individual expressions
(XA, XB and YA, YB, respectively; cf. Fig. 1, bottom). As a special case, the CFM is
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Fig. 1 Top: The Actor-Partner Interdependence Model (APIM). Bottom: The Common Fate
Model (CFM). Notes: X: independent variable; Y: dependent variable; A, B: dyad members (e.g.,
actor/partner); aYX , a0

YX : actor effects; pYX , p0

YX : partner effects; rX , rY : correlation of independent
and dependent variables; rA, rB: correlation of X and Y for individuals A and B, respectively

particularly appropriate for designs, in which A and B express their assessment of
a third person. This may be the case, for example, when both parents rate X and
Y of their child, or a couple is asked to assess two characteristics X and Y of their
marriage counselor.

The core principle of a CFM is that both XA and XB are affected by a latent
variable X and, likewise, YA and YB can be traced back to a common latent variable
Y . The latent correlation of X and Y reflects the substantial question of interest on
the dyad-level. However, the two common fate constructs (X and Y) may not account
for the entire observed covariance of the manifest variables XA, XB, YA, and YB, as
individual characteristics could have an impact as well. Such individual level effects
are expressed by the correlation coefficients rA and rB as indicated at the bottom of
Fig. 1.

Because of the assumption of latent factors that underlie the manifest variables,
the SEM approach is the most suitable technique for CFMs. Besides, there are also
methods available not involving latent constructs, but based on simple regression



Analyzing Dyadic Data with IRT Models 177

analysis (for an introduction, see Kenny et al. 2006, pp. 409–412). However, these
should be considered outdated for the same reasons as in the APIM context.

Problem

SEM and Multi-Level Models prevail in current modeling approaches to dyadic
data analysis. Either of these models requires certain scale and distributional
prerequisites to be fulfilled—most prominently, in the standard case, interval scaled
variables and (multivariate) normal distribution. Such assumptions are frequently
made without hesitation. For example, Kenny et al. (2006) argue “Most scales
developed and used in social science research are assumed to be measured on an
interval scale” (p. 9), and “Throughout this book, we generally assume that outcome
variables are measured at the interval level.” (Kenny et al. 2006, p. 10).

In many cases, constructs are captured with scales comprising a reasonable
number of items to be endorsed through ordered categories or by responding in
a simple yes/no style. If such a set of items has undergone thorough statistical
analysis, a (possibly weighted) sum of scores might fulfill the aforementioned
scale assumptions—at the price of restricting the number of applicable instruments
to those having been scrutinized accordingly. Sometimes, a sum score is even
computed without bothering about properties of the involved items—dimensionality
and scale assumptions remain conjectures then.

Loeys and Molenberghs (2013) have proposed Generalized Linear Mixed Models
for dyadic data analysis with categorical data and Loeys, Cook, De Smet, Wietzker,
and Buysse (2014) used Generalized Estimating Equations. McMahon, Puget, and
Tortu (2006) have shown how to model binary data employing a Multi-Level
approach. Furthermore, Log-Linear Models may be applied as well (e.g., von Eye
& Mun 2013; see Kenny et al. 2006, pp. 131–135 for their specific application to
dyadic designs). Log-Linear Models also allow for testing interaction effects and
the assessment of model fit. However, we will take a slightly different approach to
categorical data here, using Item Response Theory (IRT; de Ayala 2009; van der
Linden & Hambleton 1997; Lord 1980).

Item Response Models

Before delving into the details of how dyadic data models may be expressed through
IRT models, a brief introduction to IRT reviews some basic characteristics. Gener-
ally, Item Response Models link manifest responses to latent response probabilities,
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expressed by model parameters, using a deliberately selected link function. Usually,
the manifest responses are categorical, hence we deal with discrete probability
models (an extension to quantitative responses has been developed by Müller 1987
but will not be further pursued here, as our intention is to model discrete data).

The Rasch Model and Some of Its Extensions

The most basic IRT model is the Rasch Model for dichotomous data (RM; Rasch
1960). It models the probability of a response xvi 2 f0; 1g of individual v (v D
1 : : : n) to item i (i D 1 : : : k) with two parameters, �v , quantifying the ability of
person v, and ıi, quantifying the difficulty of item i. The link function is the logistic
one. It yields the model equation

P.xvij�v; ıi/ D exvi.�v�ıi/

1C e�v�ıi
: (1)

Note that a “positive” manifest response xvi D 1 may represent the solution of an
item during an ability test or the endorsement of a statement during a personality
assessment. Hence the traditional term “ability” may also be understood as “prone-
ness” (in the sense of “disposedness”) to endorse a statement and “difficulty” as the
“severity” or “particularity” of that statement.

The trace lines (or Item Characteristic Curves, ICC) of function (1) for selected ıi

across an arbitrary range of �v are parallel, which constitutes a distinct feature of the
RM. The unweighted sum of scores xvi per row v and per column i are the sufficient
statistics for the person ability parameters �v and item difficulty parameters ıi,
respectively. Either parameter vector, � and ı, can be estimated independently
of the distribution of the other one, which caused Georg Rasch to develop his
infamous principle of Specific Objectivity (SO; Rasch 1961 1966, 1977). One
decisive advantage of SO is that it allows for a rigorous assessment of model fit
(for an overview, see Glas & Verhelst 1995, for example). If the model holds, all
items measure the same latent trait (unidimensionality assumption).

Numerous extensions have been developed. For ordered polytomous data, the
Eq. (1) is adopted to model the thresholds between adjacent categories while retain-
ing all advantageous features inherited from the RM. Applying various restrictions,
this yields the Partial Credit Model (PCM; Masters 1982; Wright & Stone 1979)
or the Rating Scale Model (RSM; Andrich 1978 1982; Wright and Masters 1982).
If, on the other hand, substantial considerations allow for decomposing the items
into a well-defined set of p basic (cognitive) operations or technical features, their
difficulty can be quantified by means of the Linear Logistic Test Model (LLTM;
Fischer 1973 1995). For that purpose, a k � p weight (or design) matrix A is set up
based on substantial theory, linking each item parameter ıi to a hypothesized set of
basic parameters �j (j D 1 : : : p; p � k), which represent cognitive operations or
technical features.
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Furthermore, additional item-specific parameters have been introduced (at the
expense of losing SO). These parameters relax the rather restrictive assumption of
parallel trace lines, which may be difficult to attain, especially when analyzing large
item pools. A discrimination parameter ˛i for each item (Birnbaum 1968) expresses
the slope of an item’s ICC at its inflection point along the � -scale. It serves, roughly
speaking, as a measure, of the degree to which the distinction (or “discrimination,”
hence the naming) between two individuals is clear-cut by this item. Thus, the trace
lines’ slopes are explicitly modelled rather than assumed parallel. In addition, an
item specific guessing parameter may be employed, quantifying the probability
of a positive response for arbitrary small values of the person ability parameters
(technically, it defines the lower asymptote of an item’s ICC; Birnbaum 1968).

A third line of development introduced a third kind of parameter for designs,
where individuals (represented by the person ability parameter �v) respond to items
(represented by the item difficulty parameters ıi), and their responses are evaluated
by raters. A rater’s (r) leniency may be quantified by means of a rater parameter  r

(for details, see Linacre 1989).
Another important extension, crucial for modeling dyadic data, is introduced in

the following section.

Multidimensional IRT Models

All IRT models sketched in section “The Rasch Model and Some of Its Extensions”
share the assumption of unidimensionality, i.e. one single common latent trait
being required for solving all items (or endorsing the respective statements) under
consideration. In contrast, a set of items may also depend on several distinct
latent traits, in fact in two ways: Either an item involves more than one trait
(e.g., a math item embedded in a very complex instruction might require a certain
amount of both language and math skills); such a case is referred to as within item
multidimensionality. Or, one subset of items goes together with a latent trait �1 and
a different subset of items with another latent trait �2; this case is called between
item multidimensionality. In our application, we will refer to the latter case. The
allocation of the i D 1 : : : k items to ` D 1 : : :m latent traits is specified in scoring
matrix B D .bi`), which is—as A before—set up based on theoretical reasoning
prior to parameter estimation. As a consequence, each individual’s ability profile
(i.e., his or her location on each latent trait) is expressed through an individual’s
ability vector �v D .�v`/ of length m.

Now, combining such a person parameter decomposition with the item parameter
decomposition sensu LLTM, as introduced in section “Item Response Models”,
leads to the Multidimensional Random Coefficients Multinomial Logit Model
(MRCMLM; Adams, Wilson, & Wang 1997; Adams & Wu 2007). It follows the
logistic structure of Model (1), in which both parameters are replaced by a product
of a weight matrix (i.e., the scoring matrix B for person parameters and the design
matrix A for item parameters), and the respective item and person parameter vector.
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The model equation for an individual’s response vector xvi is

P.xvjA;B;�v; � i/ D exp
�
x0
v.B�v C A� i/

�

P
z2� exp

�
z0.B�v C A� i/

� ; (2)

where

xv : : : response vector of individual v

� : : : set of all possible response vectors

�v : : : vector of individuals0 parameters .ability profile/

� i : : : vector of items0 basic parameters

B : : : scoring matrix

A : : : design matrix:

Parameter estimation is usually accomplished with the Marginal Maximum Like-
lihood technique (cf. Baker & Kim 2004). This technique requires a distributional
assumption regarding the person parameters. It is common practice to choose the
normal, yielding for the unidimensional case

f .� j�; �2/ D 1p
2��2

e� 1
2

�
���
�

�2
: (3)

Moreover, the MRCMLM allows for defining a correlational structure among
the latent variables or regressing the latent variables onto each other and on a set of
background variables Y , e.g., income or educational information. The latter leads to
the so-called background model, which, in multivariate notation, shows as

� D Z0� C �; (4)

with � expressing the regression weights of � on Z and assuming � � N.0I �2� /.
Incorporating the background model (4) in the multivariate extension of (3) yields

f .�jZ;� ;†/ D .2�/� m
2 j†j� 1

2 e� 1
2
.���Z/0†�1.���Z/ (5)

with covariance matrix
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This covariance matrix (more precisely, its estimates) will prove eminently useful
for the task of expressing dyadic models in terms of item response models. These
coefficients allow for expressing correlations among the latent constructs. Moreover,
we may also estimate directed relationships among the latent constructs, allowing
for a SEM-like modeling approach, yet on a solid Rasch foundation. The core
idea is to obtain the correct SSCP matrix of all exogenous (“independend”) and
endogenous (“dependent”) variables and to find the desired regression coefficients
by means of the Two-Stage Least Squares (TSLS) estimation approach (Gebhardt,
in prep; for a delightful description of the TSLS history see Stock & Trebbi,
2003).

Expressing Dyadic Data Models in Terms of Item
Response Models

This section outlines the central principle of how dyadic data models may be
formulated in terms of IRT Models. We will consider two important dyadic
models, the APIM and the CFM. In the graphical representations, boxes represent
manifest variables (which are, in our case, categorical) and ellipses represent latent
constructs. The core principles of all models to be introduced are to (1) assume a
separate latent trait for each of the “dyadic variables” (i.e., the XA, etc. in Fig. 1) and
(2) model the postulated dyadic relationships in the latent domain, thus requiring a
multidimensional model like the MRCMLM.

The APIM in Terms of an MRCMLM

Dyadic models as depicted in Fig. 1 assume relations among the X- and Y-measures
of the dyad members A and B. While regression or path analysis assumes these
constructs (i.e., XA, YA, XB, and YB) to be manifest, we may also model each of
them as a separate latent construct. Of course, this could be achieved with a SEM
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as well, but while the SEM (in its standard case) assumes the items’ responses
to lie on an interval scale, we want to model truly categorical responses (like
“agree”—“partially agree”—“disagree”) with a discrete probability model, such
as the MRCMLM. Further, standard SEM applications use a linear link function
of items and latent variables (although modifications for categorical variables have
been developed as well, cf. Muthén 1984).

Each dyad (i.e., the pair A and B) forms a unit of observation v (usually a
row in the data set). Hence the measures XA, YA, XB, and YB may be conceived
as four latent dimensions of the dyad v and comply to one �` of the MRCMLM as
expressed in Eq. (2). We thus assert four latent constructs �1 to �4, constituting the
four measures of interest (i.e., �1 D XA, and so on). Such a structure can be depicted
as shown in Fig. 2. The double-headed arrows are based on the latent covariances
[i.e., the elements of Matrix (6)] between the four constructs. Furthermore, the
MRCMLM also allows for estimating a regression model of the latent constructs
on the background variables [Eq. (4)] and on each other. The latter will be used to
model the directed relationships as postulated in the APIM (and depicted by single-
headed arrows in Fig. 1, top).

The CFM in Terms of an MRCMLM

Defining the CFM in terms of an MRCMLM is straightforward, as it already
involves two latent constructs, �X and �Y , representing the variables of interest
(cf. Fig. 3). The latent factor �X (representing X in Fig. 1, bottom) affects both
dyad members’ observed values, XA and XB, and, therefore, represents the common
background (fate) of A and B. The same applies to the other latent variable
of interest, �Y . The latent correlation r�X�Y is the central measure of interest. It

Fig. 2 The basic structure of an APIM expressed as an MRCMLM
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Fig. 3 The basic structure of a CFM expressed as an MRCMLM

expresses the association between �X (the latent representation of X) and �Y (the
latent representation of Y) after taking the relationship between the actors into
account. It is indicated with a double headed solid arrow in Fig. 3.

Not all covariation of X and Y variables may be explained by the dyad level
correlation r�X�Y , hence we further explore individual level correlations (termed rA

and rB, respectively, indicated with dotted double headed arrows in Fig. 1). The
calculation of these two coefficients requires additional reasoning. The latent factor
�X reflects the common self-perception regarding the trait under consideration.
Analoguously, the latent factor �Y reflects what is common in the other’s perception.
However, these two latent factors could miss certain aspects of one’s self- or other’s
perception. Such omitted information is collected in the residuals, which will be
used to determine the individual correlation coefficients rA and rB (see section “The
CFM Approach”).
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Worked Examples

The proposed modeling approach shall be demonstrated in a psychological study
focussing on selected personality traits of dyads of students and a parent. The
question was whether the assessment of the respective other is influenced by the
respective member’s self-assessment.

The Study Framework

The theoretical scope of the study allows for different questions to be addressed. We
will apply both the APIM and the CFM approaches with one data set, the design of
which is outlined below. The respective research questions will be explained in the
specific context of the model.

Instrument

The Gießen-Test (GT; Beckmann, Bräahler, & Richter 1990) is a self-assessment
consisting of the following six scales (German original terms in brackets):

• social resonance (soziale Resonanz),
• dominance (Dominanz),
• control (Kontrolle),
• prevailing mood (Grundstimmung),
• responsiveness (Durchlässigkeit), and
• social power (soziale Potenz).

The test consists of 40 bipolar items and respondents have to indicate their
preference on a 7-point scale of the form

I am rather .A/ 3 2 1 0 1 2 3 rather .B/

with (A) and (B) representing opposite characteristics of a person. According to the
manual, the construction of the GT involved exploratory factor analyses, resulting
in six items per scale. The GT is capable of dyadic assessment because it can be
employed for both self and partner assessment. For that purpose, three different
forms of the questionnaire are available. For the self-assessment, the questions are
formulated as

I think; I am rather patient 3 2 1 0 1 2 3 rather impatient:

The male/female partner assessment versions are worded
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I think; he=she is rather patient 3 2 1 0 1 2 3rather impatient:

That way, four different versions exist and partnership assessment becomes feasible.
Actor-self, Partner-self, Actor with respect to Partner, and Partner w.r.t Actor. Score
sheets allow for comparing the four profiles. Note that there is also a dedicated
partnership assessment version of the GT available, which uses only 5 out of the 6
scales. This version was not applied here, because it involves some indistinct scoring
constants, not necessary for the present analysis.

Sample

The data set used for the present study has been simulated in a way that it reflects
the characteristics of a smaller data set of psychology students. Hence, we will not
draw substantial conclusions from the results obtained here. The students (first and
third semester) were asked to fill out the questionnaire with respect to themselves
and to a parent (preferably the mother). A total of 600 pairs has been simulated.

Method

Parameter estimation of the MRCMLM has been performed with the ConQuest
3.0 software package (Adams, Wu, & Wilson 2012). To avoid estimation problems,
the responses were dichotomized at the midpoint of the response scale (left vs.
right direction). The online version of the instrument used in the present study
comprised only six response categories per item (leaving out the middle category),
thus fostering dichotomization.

The APIM Approach

Regarding the six personality traits of the GT, one could conceive of the following
situation: A student’s rating of the respective parent (�2) depends on the parent’s
status regarding that trait, reflected in their self ratings (�3). Therefore, we expect
a strong coefficient p0

YX (see Fig. 4). In addition, the student’s assessment might as
well be influenced by his or her own Selbstbild, i.e. the way he or she perceives
him- or herself with regard to the respective trait. For example, Sigmund Freud
has keyed the term Projektion (projection), which describes, simply put, one’s
proneness to perceive one’s own conflict-ridden, denied, or repressed emotions in
others rather than in oneself (cf. Freud 1976; for more recent approaches see, for
example, Baumeister, Dale, & Sommer 1998). Such a tendency would, if common,
show in the regression coefficient aYX , i.e. the actor effect in APIM terminology:
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Fig. 4 Theoretical vs. empirical item characteristic curve (example plot for item 24). The dashed
line represents the empirical ICC and the solid line the model derived ICC. Closeness of the two
curves indicates a good model fit

The lower the student’s self-rating, the higher his or her parent’s rating on that
scale, hence a substantial negative regression coefficient would arise. Analoguously,
such an effect might as well appear in the parent’s rating: His or her perception
of the student (�4) would primarily depend on the student’s trait, which should be
expressed in the student’s self-rating (�1), hence we expect a strong path pYX . But
the parent’s Selbstbild might also influence this assessment—for example, because
a parent might feel responsible for the offspring’s development. Hence, a non-zero
path a0

YX might appear as well. Finally, we have to consider that parents and children
are prone to be similar with respect to personality traits as measured by the GT,
reflected by the correlation r�1�3 and which has to be corrected for.

We might therefore expect two strong (in terms of APIM) partner effects (p
and p0) as well as possible (but presumably weaker) actor effects (a and a0),
reflecting the raters’ involvement, like Projektion, for example. Moreover, a non-
zero correlation of the two independent variables or the two dependent variables
might occur as well. For each of the six GT scales, a separate APIM was estimated.
For reasons of saving space, we will present only the results of the Social Resonance
subscale.
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Model Setup

The ConQuest 3.0 software accepts input via a command file. The ASCII-
data file was named gt_res.dat. It comprised 25 columns (one ID and six
items per subscale times four versions in the dyadic framework) with the responses
coded numerically (1 to 6); missing data were coded with 9. Listing 1 shows
the ConQuest command file for the APIM (a line by line explanation of these
commands is given in Table 1 in Appendix “APIM Commands”).

Listing 1 ConQuest Command Script for the APIM (Note that each command has to be
terminated with a semicolon)� �

1 datafile gt_res.dat;
2 format responses 1-24;
3 codes 0,1;
4 recode (1 2 3 4 5 6) (0 0 0 1 1 1);
5 score (0,1) (0,1) () () () !items (1-6);
6 score (0,1) () (0,1) () () !items (7-12);
7 score (0,1) () () (0,1) () !items (13-18);
8 score (0,1) () () () (0,1) !items (19-24);
9 model item;

10 estimate ! storage=RAM, nodes=5, stderr=quick;
11 show parameters!table=3;
12 show parameters!table=2;
13 show ! estimate=mle;
14

15 structural /Dimension_2 on Dimension_1 Dimension_3;
16 structural /Dimension_4 on Dimension_1 Dimension_3;

� �

These commands are stored in a file (named gt_res.cqc) and executed with
the Run > Run all command from the menu bar (GUI version) or via submit
gt_res.cqc; in the command line version.

Results

After submitting the command script to the program, a detailed output listing is
available. The portions of this output relevant for building the APIM and assessing
model fit will be described here.

Building the APIM from the Output One central part of the ConQuest output
concerning the APIM is given in Listing 2. This section is produced by the
structural commands in lines 15 and 16 of the command script.

In this output section we find the regression coefficients for the APIM, i.e.,
the single-headed arrows pYX , aYX , p0

YX , and a0
YX according to Fig. 1, top. These

coefficients can be found in the columns headed Gamma (lines 25–27 and 45–
47 in Listing 2). Another essential part of the APIM, the correlation of the two
independent variables, (rX in Fig. 1, top) can be found in the output section headed
CONDITIONAL COVARIANCE/CORRELATION MATRIX (Listing 3).
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Listing 2 Essential ConQuest Output for the APIM (Part 1a: Regression Coefficients)� �

1

2 STRUCTURAL MODEL
3 ==============================================================================
4

5 MODEL: dimension_2 on dimension_1 dimension_3
6

7 ENDOGENOUS VARIABLES:
8 dimension_2 (latent)
9

10 EXOGENOUS VARIABLES:
11 dimension_1 (observed)
12 dimension_3 (observed)
13

14

15 EQUATION 1
16 --------------------
17 EQ1 N= 600 df=597
18 EQ1 R Squared = 0.23744
19 EQ1 Multiple R = 0.48728
20

21 EQ1 Dependent Variable: dimension_2
22 EQ1 Independent Variable(s):
23 EQ1 Gamma Beta SE
24 ------------------------------------------------------------------------------
25 EQ1 exogenous Constant -0.80118 0.134
26 EQ1 exogenous dimension_1 -0.13523 0.051
27 EQ1 exogenous dimension_3 0.87219 0.064
28 ==============================================================================
29

30 STRUCTURAL MODEL
31 ==============================================================================
32

33 (...lines skipped...)
34

35 EQUATION 1
36 --------------------
37 EQ1 N= 600 df=597
38 EQ1 R Squared = 0.50025
39 EQ1 Multiple R = 0.70728
40

41 EQ1 Dependent Variable: dimension_4
42 EQ1 Independent Variable(s):
43 EQ1 Gamma Beta SE
44 ------------------------------------------------------------------------------
45 EQ1 exogenous Constant -0.54384 0.066
46 EQ1 exogenous dimension_1 0.36862 0.025
47 EQ1 exogenous dimension_3 0.49398 0.031
48 ==============================================================================

� �

Listing 3 Essential ConQuest Output for the APIM (Part 1b: Correlation Coefficients)� �

1 CONDITIONAL COVARIANCE/CORRELATION MATRIX
2

3 Dimension
4 ---------------------------------------------
5 Dimension 1 2 3 4
6

7 Dimension_1 0.053 0.332 0.808
8 Dimension_2 0.022 0.948 0.449
9 Dimension_3 0.235 0.478 0.685

10 Dimension_4 0.542 0.214 0.569
11 -----------------------------------------------------------

� �
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Fig. 5 The APIM approach of modeling other’s assessment taking the Selbstbild into account

In this cut-out we find the estimated covariances (upper triangular matrix) and
the correlations (lower triangular matrix) of the latent factors, i.e. the O�2�`�`0 and the
Or�`�`0 for each pair �` and �`0 . Hence, we may now draw the final diagram of the
APIM (Fig. 5).

Each parameter estimate is of course accompanied by its respective standard
error, facilitating the application of the Wald statistic. Listing 4 presents the example
output for the regression models of our example.

Listing 4 Essential ConQuest Output for the APIM (Part 1c: Regression Coefficients)� �

1 EQUATION 1
2 --------------------
3 EQ1 N= 600 df=597
4 EQ1 R Squared = 0.23744
5 EQ1 Multiple R = 0.48728
6

7 EQ1 Dependent Variable: dimension_2
8 EQ1 Independent Variable(s):
9 EQ1 Gamma Beta SE

10 ------------------------------------------------------------------------------
11 EQ1 exogenous Constant -0.80118 0.134
12 EQ1 exogenous dimension_1 -0.13523 0.051
13 EQ1 exogenous dimension_3 0.87219 0.064
14 ==============================================================================
15

16 EQUATION 2
17 --------------------
18 EQ2 N= 600 df=597
19 EQ2 R Squared = 0.50025
20 EQ2 Multiple R = 0.70728
21

22 EQ2 Dependent Variable: dimension_4
23 EQ2 Independent Variable(s):
24 EQ2 Gamma Beta SE
25 ------------------------------------------------------------------------------
26 EQ2 exogenous Constant -0.54384 0.066
27 EQ2 exogenous dimension_1 0.36862 0.025
28 EQ2 exogenous dimension_3 0.49398 0.031
29 ==============================================================================

� �

In order to obtain a test statistic for evaluating the null hypothesis that the
parameter is zero, we have to divide the estimate by its standard error, yielding
a standard normal variate. For example, to test the regression coefficient 	�2�1 for
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significance, we compute �0:135=0:051 D �2:647, the absolute value of which
is larger than the 95 % quantile of the standard normal. Hence the coefficient is
significantly different from zero (as are all coefficients of this model). However,
because the sample size of the present data set has been fixed arbitrarily to 600,
such a test is not informative in our case.

Interpretation We find two distinct partner effects (pYX D 0:463 and p0
YX D

0:833). These results suggest effects of the personality of the target person (reflected
in the students’ and parents’ self-description, �1 and �3) on the respective other’s
assessment. In contrast, the students’ actor effect is close to zero (aYX D 0:031),
hence there is no evidence for the assumption of Projektion (as regards students)
as has been hypothesized. However, the parents’ actor effect is comparably large
(aYX D 0:602), which might be taken as an indicator for parental feelings of
responsibility. The parameter r�2�4 D 0:2 shows that the ratings of the respective
other are nearly uncorrelated, when taking the actor and partner effects into
consideration.

Assessment of Model Fit As was noted above, the MRCMLM also allows for
a multifaceted assessment of model fit. First of all, ConQuest supports the
item mean square statistics Outfit (Unweighted Mean Square Statistic) and Infit
(Weighted Mean Square Statistic). Basically, these are measures of discrepancy
between observed and expected responses. Model fit is indicated by values close
to one for either statistic (for details see Wright & Stone 1979). Listing 8 in
Appendix “APIM Item Fit Indices” presents the model fit segment of the output.
Generally, item fit is not convincing in our case, as many of the indexes lie outside
the given confidence intervals (and, correspondingly, have t-values larger than 2).

Furthermore, the parameter estimates allow for expressing a reliability coefficient
comparable to the one from classical test theory (cf. ConQuest manual, Wu,
Adams, Wilson, & Haldane, 2007, p. 160). Listing 5 shows the original program
output regarding this “Andrich-Reliability.” It seems that all four latent constructs
have low reliability, possibly a consequence of data dichotomization. Due to the
artificial nature of the data, we will refrain from further interpretating this result.

Listing 5 Essential ConQuest Output for the APIM (Part 3: Scale Reliability)� �

1 RELIABILITY COEFFICIENTS
2 ------------------------
3

4 Dimension: (Dimension_1)
5 MLE Person separation RELIABILITY: 0.346
6 ------------------------
7

8 Dimension: (Dimension_2)
9 MLE Person separation RELIABILITY: 0.456

10 ------------------------
11

12 Dimension: (Dimension_3)
13 MLE Person separation RELIABILITY: 0.393
14 ------------------------
15

16 Dimension: (Dimension_4)
17 MLE Person separation RELIABILITY: 0.394
18 ------------------------

� �
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Fig. 6 The final APIM based on the MRCMLM

A measure of item fit is based on the comparison of observed and model derived
ICC. The program delivers one such plot per item, one of which is shown in Fig. 6.

The horizontal axis shows the latent trait (� ) in the interval Œ�4;C4
 (covering
the most frequently obtained values). The solid line is the expected probability of a
positive response to item i, i.e. P.Xvi D 1/ according to Eq. (2) for �v 2 Œ�4;C4
,
and the dotted line is the relative frequency of Xvi D 1 for all observed score groups
(also called the empirical ICC). The closeness of the two lines is an expression of
model fit.

The CFM Approach

We now discuss the correlation of the self-descriptions and the descriptions of
the respective other more generally. We could assume that the complex processes
within the family (here considering the dyad of two family members only) form the
common background for developing a personality (�1 and �3) on the one hand and
also establishing a common background for the perception of the family member
(�2 and �4), on the other hand. Of course, individual components not captured by
the correlation on the dyadic level may play an important role as well. These are
expressed by the correlation coefficients of the residuals as described in section “The
CFM in Terms of an MRCMLM”. The MRCMLM directly delivers an estimation of
the dyadic correlation coefficient with the (standardized) entries of the covariance
matrix (6), while the individual level correlation coefficients require a little bit of
craftsmanship.

Model Setup

The command script for the MRCMLM formulation of the CFM is similar to the
previous script. However, the assignment of items to latent factors differs as we now
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just use two latent factors for all self-description items on the one hand and the items
expressing the partners’ assessments, on the other hand (lines 5–8 in Listing 6).

Listing 6 ConQuest Command Script for the CFM� �

1 datafile gt_res.dat;
2 format responses 1-24;
3 codes 0,1;
4 recode (1 2 3 4 5 6) (0 0 0 1 1 1);
5 score (0,1) (0,1) () !items (1-6);
6 score (0,1) () (0,1) !items (7-12);
7 score (0,1) (0,1) () !items (13-18);
8 score (0,1) () (0,1) !items (19-24);
9 model item;

10 estimate ! storage=RAM, nodes=5, stderr=quick;
11 show parameters!table=3;
12 show parameters!table=2;
13 show ! estimate=mle;
14 show residuals ! estimates=wle >> resid.txt;

� �

In line 14 of Command Script 6 the residuals are written into a file named
resid.txt. These residuals are used to compute the individual level correlation
coefficients rA and rB. In the present example, students and parents have responded
to the same items. In order to take this mapping into account, we compute the
correlation coefficients of the associated residuals (i.e., item 1 of student/self with
item 1 of student ! parent, etc.). The items within one block (e.g., all items
regarding the self-rating of the student) are assumed to measure unidimensional.
As a consequence, the residuals of each block represent the individual information
not covered by the latent scales �X and �Y . We therefore compute the average
of the correlation coefficients (cf. Monin & Oppenheimer 2005) across items per
individual in order to obtain the desired coefficients rA and rB (cf. ellipses in Fig. 7;
for technical details see Appendix “Extracting the Individual Level Correlation
Coefficients”).

Results

The essential output providing the CFM coefficients is given in Listing 7, where
we find the estimated covariance (upper triangular matrix) and the correlation
coefficient (lower triangular matrix) of the latent factors, i.e. the O�2�`�`0 and the Or�`�`0
for each pair �` and �`0 . The bottom line contains the estimated variances of each
latent variable, O�2�` , with the corresponding standard errors in brackets.

In this output we find that Or�1�2 D 0:501, indicating a medium sized correlation
of the two latent constructs. Again, we may apply the Wald statistic to test whether
this coefficient differs significantly from zero.
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Fig. 7 Structure of the correlation matrix of the residuals

Listing 7 Essential ConQuest Output for the CFM (Part 1: Latent Correlation)� �

1 CONDITIONAL COVARIANCE/CORRELATION MATRIX
2

3 Dimension
4 ------------------------------------
5 Dimension 1 2
6

7 Dimension_1 0.489
8 Dimension_2 0.501
9 -------------------------------------------------------------

10 Variance 0.799 ( 0.046) 1.196 ( 0.069)
11 -------------------------------------------------------------
12 An asterisk next to a parameter estimate indicates that it is constrained
13 Values below the diagonal are correlations and values above are covariances
14 =============================================================

� �

Next, we have to extract the residual correlations within individuals (student and
parent, indicated by dashed double headed arrows in Fig. 7). For that purpose we
have to evaluate the residuals stored in the external file, as has been done in line 14
of Listing 6. The necessary steps are explained in Listing 9 in Appendix “Extracting
the Individual Level Correlation Coefficients”, resulting in r.Student/

XY D �0:017 and

r.Parent/
XY D �0:010.
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Interpretation Interestingly, we find for Social Resonance only a dyadic correla-
tion, while the two individual level correlation coefficients are in fact zero. From
this, we could conclude that the common factors reflecting familial bonds seem
to predominantly explain the agreement of self-description and other’s assessment.
Because of the nature of the data used for this analysis, we will again refrain from
an in-depth interpretation of this evidence.

Assessment of Model Fit Model fit may be assessed in the same way as in the
APIM. The item fit indices (Listing 10 in the Appendix) indicate that a few items
do not fit and thus require further investigation. The Scale Reliability Coefficient for
the self-rating latent scale was 0:401 and the value for the other’s rating was 0:512.
Both indicate slightly better fit than the scales constructed in the APIM. This could
be an effect of scale length, as each latent factor comprises 12 items in the CFM,
while there were only six items per scale in the APIM.

The ICC analysis would involve inspection of one plot per item, which is omitted
here. Over all, acceptable model fit seems within range.

Discussion

The present contribution has demonstrated how two models of dyadic data analysis,
the APIM and the CFM, can be cast in terms of a multidimensional Rasch Model,
the MRCMLM. These two approaches have been conducted, yet many more could
be conceived of. The common denominator is that the constructs of interest are not
measured directly but rather with a set of variables each. These manifest variables
are—as is often the case in social research—dichotomous or ordered categorical.
Using the MRCMLM, a discrete probability model, we estimate a latent factor for
each such construct. The relationships of these latent factors are then modeled in the
latent domain.

Of course, one could argue that the SEM approach is readily applicable to
ordinal or (ordered) categorical data as well by setting up an appropriate covariance
matrix, using tetra- or polychorical correlation coefficient estimates. This argument
definitely applies, but we must bear in mind that this extra step requires larger
samples than the standard product-moment correlation coefficient for interval scaled
variables (at least if standard maximum likelihood estimation is applied, which is
usually the case; cf. Choi, Peters, & Mueller 2010). Alternatively, one may regard
the category codings as valid quantifications of response categories assumed to be
evenly spaced, hence assuming to work with coarsely categorized interval scaled
variables in the sense of Bollen and Barb (1981). However, distributional issues
may still arise then. If so, a Weighted ML Estimation Method is available, involving
the estimation of the fourth moments. These require, for k items, the computation of
a covariance matrix consisting of .k4 C 2k3 C k2/=4 elements. Such a matrix would
require a large number of observations to attain estimates with sufficient precision.
Note that this argument also applies to data measured on an interval scale, when the
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distributional assumptions are unclear. Hence, we may apply SEM by all means to
(ordered) categorical data. However, the approach presented here treats such data in
a much more natural manner, as it deliberately models the way, a latent response
propensity � is transformed into a response probability P .xvij.�//. One advantage of
this approach is that departures from the postulated link function can be detected, as
has been exemplified in Fig. 6.

The MRCMLM applies the marginal maximum likelihood parameter estimation
method, which assumes the person parameters to follow a certain distribution,
usually the normal [cf. Eq. (5)]. Such an assumption may not necessarily hold (cf.
Blanca, Arnau, López-Montiel, Bono, & Bendayan 2013; Micceri 1989), which
might introduce an estimation bias. However, this assumption is a consequence of
the applied estimation method, not of the model itself. Rasch Models not including
a background structure as introduced in Eq. (4) support the conditional parameter
estimation technique (Andersen 1970 1980), even in the multidimensional case
(Andersen 1977). The CML estimation method conditions on the sufficient statistics
of the incidental (in the sense of Neyman & Scott 1948) parameters and thus makes
no distributional assumptions at all (for a comparison of MML and CML, see Adams
& Wu, 2007, pp. 68–69). Moreover, the CML approach facilitates a model test
(Andersen 1973), allowing for a rigid assessment of model fit.

When applying the APIM, researchers may be particularly interested in esti-
mating two ratio parameters k D p=a and k0 D p0=a0 with p/p0 representing
the respective partner effects and a/a0 representing the according actor effects (cf.
Fig. 4). The ratios k and k0 can be used to describe specific patterns in the APIM
(e.g., k D 1 refers to a couple pattern, k D �1 refers to a contrast pattern, and k D 0

refers to an actor-only pattern). Kenny and Ledermann (2010) proposed a phantom
variable approach to estimate k along with its standard error in the SEM context, thus
allowing for a significance test of k as well. A merely descriptive value of k may be
obtained with the estimated coefficients 	 from the standard MRCMLM output.

One valuable option has not been incorporated in the presented examples: Each
model could be enhanced with a background population model, thus controlling the
latent variables for background variables (like age or socio-economic information,
for example). Further extensions would consider non-distinguishable dyads or more
complex designs (like the One-with-Many Design, taking more than two individuals
into account).

While our examples have only dealt with dichotomous data, the full bandwith
of IRT models for polytomous categorical data is readily available. Furthermore,
one could drop the assumption of parallel trace lines and include a discrimination
parameter in the model equation, thus explicitly capturing differing item character-
istics within the items of a scale as well. Such extensions would allow for a wider
range of items to be used.

Altogether, the presented approach provides a powerful framework for the
complex requirements of dyadic data modeling, taking both scale and distributional
requirements into account.

Acknowledgements I am indebted to Paul Czech for his assistance during data acquisition of the
students’ sample.
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Technical Appendix

APIM Commands

Table 1 Description of ConQuest commands regarding the APIM

Line Command

1 Where to read the data

2 Which columns contain the item response data

3 Valid codes for estimation (entries other than those listed here are treated as missing
values)

4 Dichotomize codings: 1, 2, 3 = 0; 4, 5, 6 = 1

5 Matrix B: assign items 1–6 to first latent factor (A self)

6 Matrix B: assign items 7–12 to second latent factor (A w.r.t. B)

7 Matrix B: assign items 13–18 to third latent factor (B self)

8 Matrix B: assign items 19–24 to fourth latent factor (B w.r.t. A)

9 Estimate one item parameter (i.e. no thresholds required after dichotomization).
A PCM would require model item + item*step; and the RSM model
item + step;.

10 Estimation details

11–13 Output details

15–16 Regression coefficients as indicated by the APIM
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APIM Item Fit Indices

Listing 8 Item Fit Indices for the APIM� �

1 ----------------------------------------------------------------------------------
2 VARIABLES UNWEIGHTED FIT WEIGHTED FIT
3 ------------ ----------------------- -----------------------
4 item ESTIMATE ERROR^ MNSQ CI T MNSQ CI T
5 ----------------------------------------------------------------------------------
6 1 1 -1.452 0.083 1.23 ( 0.89, 1.11) 3.8 1.08 ( 0.79, 1.21) 0.8
7 2 2 0.688 0.070 0.83 ( 0.89, 1.11) -3.1 0.87 ( 0.92, 1.08) -3.1
8 3 3 0.137 0.072 1.08 ( 0.89, 1.11) 1.4 1.14 ( 0.90, 1.10) 2.6
9 4 4 0.147 0.072 1.23 ( 0.89, 1.11) 3.7 1.23 ( 0.90, 1.10) 4.1

10 5 5 -0.124 0.074 1.04 ( 0.89, 1.11) 0.7 1.08 ( 0.88, 1.12) 1.2
11 6 6 0.604* 0.167 0.81 ( 0.89, 1.11) -3.5 0.84 ( 0.91, 1.09) -3.7
12

13 7 7 5.097 0.112 4.68 ( 0.88, 1.12) 33.7 1.25 ( 0.63, 1.37) 1.3
14 8 8 -2.283 0.095 0.51 ( 0.88, 1.12)-10.2 0.75 ( 0.83, 1.17) -3.1
15 9 9 -0.872 0.086 1.19 ( 0.88, 1.12) 2.9 1.15 ( 0.88, 1.12) 2.2
16 10 10 -0.407 0.084 0.96 ( 0.88, 1.12) -0.7 0.97 ( 0.89, 1.11) -0.4
17 11 11 -0.243 0.084 1.05 ( 0.88, 1.12) 0.8 1.06 ( 0.89, 1.11) 1.1
18 12 12 -1.291* 0.208 0.72 ( 0.88, 1.12) -5.2 0.91 ( 0.87, 1.13) -1.4
19

20 13 13 -2.731 0.121 0.20 ( 0.87, 1.13)-18.4 0.70 ( 0.35, 1.65) -0.9
21 14 14 0.965 0.085 1.03 ( 0.87, 1.13) 0.4 1.03 ( 0.91, 1.09) 0.6
22 15 15 -0.776 0.103 0.53 ( 0.86, 1.14) -8.3 0.83 ( 0.76, 1.24) -1.4
23 16 16 1.097 0.084 0.96 ( 0.87, 1.13) -0.6 0.96 ( 0.91, 1.09) -1.0
24 17 17 1.189 0.084 1.18 ( 0.87, 1.13) 2.5 1.10 ( 0.91, 1.09) 2.1
25 18 18 0.257* 0.216 1.09 ( 0.87, 1.13) 1.4 1.05 ( 0.87, 1.13) 0.7
26

27 19 19 3.173 0.116 3.72 ( 0.87, 1.13) 24.2 1.25 ( 0.80, 1.20) 2.3
28 20 20 -0.171 0.096 1.03 ( 0.87, 1.13) 0.4 0.97 ( 0.89, 1.11) -0.5
29 21 21 -0.469 0.099 0.99 ( 0.87, 1.13) -0.1 1.02 ( 0.87, 1.13) 0.3
30 22 22 -0.484 0.099 0.84 ( 0.87, 1.13) -2.5 0.91 ( 0.87, 1.13) -1.5
31 23 23 -0.116 0.096 0.95 ( 0.87, 1.13) -0.7 1.00 ( 0.89, 1.11) 0.0
32 24 24 -1.934* 0.227 0.59 ( 0.87, 1.13) -7.0 0.86 ( 0.75, 1.25) -1.1
33 ----------------------------------------------------------------------------------
34 An asterisk next to a parameter estimate indicates that it is constrained
35 Separation Reliability = 0.997
36 Chi-square test of parameter equality = 5051.19, df = 20, Sig Level = 0.000
37 ^ Quick standard errors have been used
38 ==================================================================================

� �

item: Item number and label; as no label has been provided, the item number is
repeated.

ESTIMATE: Item parameter estimate; in the dichotomous case, this is the item
difficulty parameter [ıi according to Eq. (1)]. To identify a latent scale, one item
per latent dimension is fixed (indicated by an asterisk). By default, ConQuest
sets the sum of the item parameters per latent dimension to zero (e.g.: �1:452C
0:688 C 0:137 C 0:147 C .�0:124/ C 0:604 D 0). This could be overridden
with the command set constraint=cases, causing the mean of the latent
variable to be fixed at zero.

ERROR: Standard error of item difficulty parameter.
MNSQ: Outfit (UNWEIGHTED FIT) and Infit (WEIGHTED FIT) Index.
CI: The 95 % confidence interval for the expected value (i.e., 1) of Infit and

Outfit.
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T: The t-statistic for the null hypothesis that the Outfit and Infit Index is 1. Values
larger than 2 may be considered significant at the 95 % level (corresponds to
MNSQ outside the CI).

Extracting the Individual Level Correlation Coefficients

To obtain the individual level correlation coefficients, we use the residuals stored
in resid.txt. This file contains 600 lines and 25 columns. The first column
is a numerical dyad identifier, followed by four groups of six columns each,
comprising the residuals to the respective six items of student/self, student w.r.t
parent, parent/self and parent w.r.t student. Any multi-purpose statistics software
can be used to obtain the individual level correlation coefficients. We will resort to
the R software (R Core Team 2014) for it is freely available (open source) and easy
to use. The following script will perform the required steps:

Listing 9 R Script for Computing the CFM Individual Level Correlation Coefficients� �

1 d0 = read.table(file="resid.txt")
2 d0[d0==-99] = NA
3 colnames(d0) = c("id",paste("stud" ,1:6,sep="")
4 ,paste("studpar",1:6,sep="")
5 ,paste("par" ,1:6,sep="")
6 ,paste("parstud",1:6,sep=""))
7

8 r0 = cor(d0[,-1],use="pair")
9

10 ra = r0[1:6,7:12]
11 rb = r0[13:18,19:24]
12

13 r2z = function(r) 0.5 * log( (1+r)/(1-r) )
14 z2r = function(z) (exp(2*z)-1) / (exp(2*z)+1)
15

16 z2r( mean(r2z(ra)) )
17 z2r( mean(r2z(rb)) )

� �

The ten statements of Listing 9 perform the following operations:

• In line 1 of the script, we read the content of the file resid.txt and store it in
a data.frame named d0.

• Then (line 2) we transform the missing values (ConQuest codes them with -99
by default) to the R missing indicator NA.

• In lines 3–6, the columns obtain more informative variable names (the output file
contains no header, therefore, R uses the generic names V1 to V25 by default).
This step is merely cosmetic and may as well be omitted.

• Next (line 8), we compute the 25�25 correlation matrix of all residuals (omitting
the id variable stored in column 1). A schematic view of this matrix is given in
Fig. 8.
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Fig. 8 The final CFM

• In line 10, we cut out blocks of correlation coefficients of the residuals of the
students’ self-description items with the columns covering the residuals of the
students’ assessments of the respective parents (rows 1–6/columns 7–12; grey
shaded area termed rA in Fig. 8).

• Analoguously, in line 11, we cut out the correlation coefficients of the residuals
of the parents’ self-assessment items with the residuals of the items covering
the parents’ assessments of the respective students (rows 13–18/columns 19–24;
grey shaded area termed rB in Fig. 8).

• In lines 13 and 14 we prepare two functions, transforming a correlation coef-
ficient to a Fisher’s Z-value (r2z) and backtransforming the latter into a
correlation coefficient again (z2r). These functions could easily be enhanced
to detect invalid input and issue a corresponding message.

• Finally (lines 16 and 17), we apply the Z-transformation to the two matrix parts,
compute the mean and backtransform it to a valid correlation coefficient.

With these steps, we dispose of all required information to draw the complete
CFM, depicted in Fig. 7.
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CFM Item Fit Indices

Listing 10 Item Fit Indices for the CFM� �

1 ----------------------------------------------------------------------------------
2 VARIABLES UNWEIGHTED FIT WEIGHTED FIT
3 ------------ ----------------------- ------------------------
4 item ESTIMATE ERROR^ MNSQ CI T MNSQ CI T
5 ----------------------------------------------------------------------------------
6 1 1 -1.036 0.093 1.08 ( 0.89, 1.11) 1.3 1.02 ( 0.80, 1.20) 0.2
7 2 2 0.873 0.073 0.85 ( 0.89, 1.11) -2.7 0.89 ( 0.93, 1.07) -3.2
8 3 3 0.389 0.076 1.12 ( 0.89, 1.11) 2.1 1.10 ( 0.91, 1.09) 2.1
9 4 4 0.394 0.076 1.06 ( 0.89, 1.11) 1.0 1.08 ( 0.91, 1.09) 1.8

10 5 5 0.139 0.079 0.97 ( 0.89, 1.11) -0.5 0.99 ( 0.89, 1.11) -0.2
11 6 6 0.773 0.074 0.89 ( 0.89, 1.11) -2.0 0.90 ( 0.92, 1.08) -2.7
12 7 7 4.485 0.140 1.64 ( 0.88, 1.12) 9.0 1.19 ( 0.57, 1.43) 0.9
13 8 8 -1.587 0.103 0.63 ( 0.88, 1.12) -7.1 0.88 ( 0.84, 1.16) -1.5
14 9 9 -0.503 0.088 0.98 ( 0.88, 1.12) -0.3 1.03 ( 0.90, 1.10) 0.5
15 10 10 -0.148 0.085 0.90 ( 0.88, 1.12) -1.7 0.92 ( 0.91, 1.09) -1.9
16 11 11 -0.023 0.084 1.07 ( 0.88, 1.12) 1.1 1.08 ( 0.92, 1.08) 1.8
17 12 12 -0.823 0.091 0.70 ( 0.88, 1.12) -5.7 0.80 ( 0.89, 1.11) -3.7
18 13 13 -3.056 0.116 0.39 ( 0.87, 1.13)-11.8 0.86 ( 0.28, 1.72) -0.3
19 14 14 0.693 0.081 1.07 ( 0.87, 1.13) 1.0 1.04 ( 0.91, 1.09) 0.8
20 15 15 -0.968 0.099 0.74 ( 0.86, 1.14) -4.1 0.92 ( 0.76, 1.24) -0.6
21 16 16 0.830 0.081 1.11 ( 0.87, 1.13) 1.5 1.06 ( 0.92, 1.08) 1.4
22 17 17 0.924 0.080 1.07 ( 0.87, 1.13) 1.0 1.05 ( 0.92, 1.08) 1.3
23 18 18 0.046* 0.283 1.04 ( 0.87, 1.13) 0.5 1.05 ( 0.87, 1.13) 0.8
24 19 19 2.933 0.116 3.88 ( 0.87, 1.13) 25.2 1.36 ( 0.79, 1.21) 3.1
25 20 20 -0.423 0.095 0.95 ( 0.87, 1.13) -0.8 0.93 ( 0.90, 1.10) -1.4
26 21 21 -0.712 0.098 1.09 ( 0.87, 1.13) 1.3 1.08 ( 0.88, 1.12) 1.3
27 22 22 -0.727 0.098 1.02 ( 0.87, 1.13) 0.4 1.01 ( 0.88, 1.12) 0.2
28 23 23 -0.371 0.095 0.99 ( 0.87, 1.13) -0.1 1.00 ( 0.90, 1.10) 0.1
29 24 24 -2.100* 0.333 0.80 ( 0.87, 1.13) -3.2 0.99 ( 0.76, 1.24) -0.1
30 ----------------------------------------------------------------------------------
31 An asterisk next to a parameter estimate indicates that it is constrained
32 Separation Reliability = 0.996
33 Chi-square test of parameter equality = 3697.27, df = 22, Sig Level = 0.000
34 ^ Quick standard errors have been used
35 =================================================================================

� �

For an explanation of the column headings see Appendix “APIM Item Fit
Indices”.
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