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As methodologists have increasingly noted, the role of psychometrics in oper-
ationalizing a construct is often overlooked when evaluating research claims
(Borsboom 2006). In a related vein, others have noted that psychological research
appears to move away from assessment and interpretation of a single a priori
statistical model to a more nuanced comparison of models which assess the trade-off
between a model’s parsimony and complexity in explaining behavior (e.g., Rodgers
2010). The genetic factor model is one such statistical model often used to estimate
the relative contributions of genetic and environmental components of observed
behavior in genetically informative designs (Heath, Neale, Hewitt, Eaves, & Fulker
1989; Martin & Eaves 1977; Neale & Cardon 1992). Mathematically, the genetic
factor model decomposes observed phenotypic variability into additive genetic (A),
common (C), and unique (E) environmental components and is, for that reason,
often referred to as the ACE model.

Recently, Franić et al. (2013) discussed how the genetic factor model can be used
in the service of psychometrics by informing researchers about the different patterns
of dimensionality and factor structure associated with genetic and environmental
components of the ACE model. They note that adjudication of dimensionality
is obviously not possible based on phenotypic factor analysis which does not
take into account the genetically informative nature of the data. In their paper,
Franić et al. propose conducting a Cholesky decomposition for the genetic and
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environmental components of the ACE model and decide on dimensionality of each
of the environmental and genetic components of the model. They then rotate this
solution to a more substantively meaningful form using Promax rotation.

Absent a strong a priori rationale for the factor structure of the environmental
and genetic components of the ACE model, this approach appears reasonable and
reflects the general practice of behavior genetic models which involve several
items (e.g., Heath, Eaves, & Martin 1989; Heath, Jardin, Eaves, & Martin 1989),
repeated measurements across successive occasions (e.g., Chang, Lichtenstein,
Asherson, & Larsson 2013; Roberson-Nay et al. 2013), and multivariate studies
of simultaneously measured variables in which some rationally defined order or
priority exists across the manifest variables (e.g., Ludeke, Johnson, & Bouchard
2013). It is well appreciated that such Cholesky decompositions are not unique and
that models consisting of other triangular orderings, models with common factors
and residual subfactors, or autoregressive factors may fit such data equally well
(Loehlin 1996). Rotation of initial Cholesky factorization to more conceptually
meaningful form such as simple structure is also a reasonable procedure (e.g., Carey
& DiLalla 1994).

Although the strategy outlined by Franić et al. is quite promising, the present
paper proposes four reasons why a more fine-grained Bayesian psychometric
approach may prove useful. First, for reasons discussed below, multifactor ACE
models sometimes encounter empirical under-identification problems. Second, in
some research contexts (such as, for example, the genetic analysis of body mass
index data considered below where a variety of ages are considered but for which
any one individual is assessed at multiple, but not all, measurement occasions),
Cholesky factorization across all measurement occasions is not mathematically
possible. Third, rotation of the identified solution to simple structure and the
original Cholesky decomposition may obscure the psychometric measurement
model underlying the construct of interest. Finally, there is reason to believe that
Bayesian estimation may be preferable to ML or eigenvalue decomposition. This is
particularly the case when sample sizes are small (Boomsma 1982; Chou, Bentler, &
Satorra 1991; Hoogland & Boomsma 1998; Hu, Bentler, & Kano 1992; Lee & Song
2004). Additionally, Carey, Goldsmith, Tellegen, and Gottesman (1978) speculate
that discrepant estimates of genetic and environmental effects in personality and
psychiatric traits may be due to over-extraction of factors or to factors which
describe weak effects which limit the generalizability of exploratory factor loadings
in the ACE model. Again, these concerns are not meant to criticize the general
approach outlined by Franić et al., but instead to highlight that refining the set of can-
didate psychometric measurement models provide researchers with models which
may not be immediately obvious in some situations or estimable in other contexts.
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Empirical Under-Identification

The issue of empirical under-identification is not unique to the estimation of genetic
models and can occur when researchers attempt to fit a factor model which is more
complex than the true model which generated the data, when small sample sizes
are examined, and when the factor loadings of the model describe weak or non-
existent effects (Kenny, Kashy, & Bolger 1998; Kenny & Milan 2013). Within
genetic factor models, the problem of empirical under-identification manifests itself
in convergence failures or improper solutions (such as negative variance estimates
or estimation correlations which exceed one; see e.g., Phillips & Matheny 1997).
Rietveld, Posthuma, Dolan, and Boomsma (2003) discuss the identification issue as
it bears on the statistical power of a given genetic model, noting that a given behavior
genetic model is mathematically identified if and only if the null space of the Jaco-
bian is zero (i.e., has full column rank). This is, however, only a necessary but not
sufficient condition for a specific model within the context of a particular data set.

As Kenny and Milan (2013) note, researchers who encounter empirical under-
identification problems usually make post-hoc changes to the model such as
redacting individual parameters thought superfluous or adding indicator variables
to improve the resolution of the factor structure or instrumental variables which
help resolve erroneously specified directions of causality in the model. Researchers
using genetic models often constrain parameters of the model to equality or set
other parameters to zero (Henderson 1982). Other strategies have included reducing
the number of factors considered due to the presumed lack of statistical power
associated with the sample (e.g., Martin, Scourfield, & McGuffin 2002). Rietveld
et al. (2003) have noted that this state of affairs can be somewhat confusing
given that at times researchers have claimed particular genetic models are over-
parameterized and not identified while others have investigated the model and found
this not to be the case.

Measurement Models

That notions of strictly parallel, tau-equivalent, and congeneric measurement
models can be expressed as structural equation models has been noted since
Lord, Novick, and Birnbaum’s (1968) classical test theory text. In the case
of measurement equivalence across a set of manifest variables, strictly parallel
measurement requires that both error variances and factor loadings are identical
for all variables. Tau equivalence, by contrast, assumes only that the loadings
are identical and congeneric measurement permits the factor loadings and error
variances across items to be different. Mathematically identified exploratory factor
models correspond to a congeneric measurement model, while the tau equivalent
model constitutes a more parsimonious model because the loadings across manifest
variables are constrained to equality.



234 T. Wang et al.

In other cases, however, a behavioral or genetic component may be poorly
represented by a single congeneric factor, requiring more complex measurement
alternatives. Although in many situations multiple oblique or orthogonal factors
may be appropriate, measurement models which are intermediary between the one-
and two-factor models may be appropriate in other situations. The random intercept
model (Maydeu-Olivares & Coffman 2006) is one such model, consisting of both
a freely estimated factor and an orthogonal general random intercept factor. The
interpretational status of the random intercept factor depends on the particular con-
structs under investigation: Maydeu-Olivares and Coffman, for example, interpreted
the random intercept factor they found in questionnaire data as a general response
bias method factor and interpreted the remaining congeneric factor as the construct
of interest. When the manifest variables under consideration consist of repeated
measurements of the same variable, the factor pattern of the random intercept factor
model corresponds to those which would be observed under the free basis growth
curve model of Meredith and Tisak (1990). The random intercept factor model
differs from the free basis model only in that the random intercept model estimates
separate intercepts for each manifest variable and assumes that the latent variables
of interest have a zero mean, while the growth curve model assumes that such
intercepts are constrained to zero and mean levels of the manifest variables are
explained by estimated latent variable means. Taken together, the tau equivalent,
congeneric, and random intercept factor models constitute a more fine-grained set
of measurement models which are simpler (in the case of the tau-equivalent model)
or intermediate models between the dimensions considered under traditional factor
analytic models. It is hoped that such a process will result in a “right-sizing” of the
statistical model which will result in models which are easier to fit and may well be
more generalizable across replications.

Specifically, we speculate that the standard single-factor model may be an
over-complex measurement model when effects are relatively week. Specifically,
estimation of the distinct individual loadings of the common factor model assumes a
congeneric measurement model for a particular genetic or environmental component
while the tau-equivalent measurement model which constrains loadings to be equal
across variables may be more appropriate. Mathematical derivations (Davis-Stober
2011) also support the idea that predictor weights in the general linear model fail to
replicate across samples because of just such over-complexity. This effect is found
to be especially true when the sample size is small (N < 150) and the effect size of
interest is moderate or small (R2 is smaller than 0.6). Since the measurement model
of factor analysis is a type of regression as well (although admittedly one in which
the predictor variable for all observed variables is missing), it seems reasonable that
similar difficulties in generalizability would be found. Although the sample sizes
for behavior genetic studies are frequently quite large, in some contexts (such as the
assessment of multiple cohorts of twins measured prospectively), the sample sizes
associated with the data in some contexts may be rather small and comparable to
the values considered by Davis-Stober. Because phenotypical behavior is frequently
thought to entail expression of multiple genes, with each gene exhibiting only a
small unique effect (Joseph & Ratner 2013; Turkheimer 2000), the effect sizes of
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interest may well fall into the “moderate to small” criterion considered by Davis-
Stober. In any event, exploration of genetic and environmental components under
a tau equivalent model may provide a useful parsimonious comparison to the
estimates from the congeneric factor model.

Robustness to Small Sample Size and/or Small
Experimental Effects

Finally, as reviewed above, there is some reason to believe that exploration
of more parsimonious measurement models using Bayesian estimation may be
preferable to congeneric ML estimates when the effect of interest is small or when
measurement is based on relatively few observations. If, for example, the additive
genetic components of a model consist of a random intercept factor model, but the
remaining environmental components are congeneric factor models, a researcher
who fits a random intercept or congeneric factor model to all components will
likely find that the resulting model is not empirically identified under maximum
likelihood (ML) estimation. Even assuming congeneric measurement across all
components, this predicament would also occur under triangular factorization if
some components consist of multiple factors while others are well-represented by
single factors. As another example, assuming a tau equivalent factor model may
be appropriately parsimonious when summarizing effects which appear to be small
across all manifest variables. As described below, we propose that Bayesian models
which compare measurement models for the individual components of the genetic
factor model may inform researchers of the relative explanatory power of different
measurement models across genetic and environmental components (Lee 2007;
Lindley 1977).

We will now present the formal definitions of the three measurement models
we wish to consider in the genetic factor model, the tau equivalent, congeneric
(i.e., standard factor), and random intercept factor models. We will then describe
how such measurement models can be estimated and compared using a Bayesian
conjugate approach. This approach will then be illustrated using simulated and real-
world data.

Psychometric Models: Tau-Equivalent and Congeneric
Factor Models

The standard factor model for N individuals measured across k variables in which j
latent variables are assessed can be represented in matrix notation as follows (using
Sörbom’s 1974 notation but with the small adaptation that models are presented so
that rows of observed scores correspond to individuals and columns correspond to
variables):
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Y D ˛ C �ƒ C "

The matrix Y contains N rows of individuals, and k variables (which can consist
of repeated measurements of a single variable or different manifest variables at a
single occasion). ’ represents an N by k column scalar matrix of intercepts. ˜ is
an N by j matrix of values on the latent variable(s) of the model, and ƒ is a j by k
matrix of factor loadings. " is an N by k matrix of errors under the assumption that
each column of " is i.i.d. across the N rows. When only one factor is present, the
variance/covariance matrix is constrained to unity to mathematically identify the
model. Identification of multiple orthogonal factors via triangular decomposition
was discussed above. The variance/covariance matrix associated with the matrix of
errors of predictions, ", is usually referred to as ‰ and is most often specified as
a diagonal, freely estimated matrix. When all possible factor loadings are freely
estimated the resulting measurement model is referred to as a congeneric factor
model and is the standard measurement model used in the ACE model.

As noted above, the tau-equivalent factor model (Lord et al. 1968, pp. 47–50)
assumes that factor loadings in œ are equal. Mathematically, this model is equivalent
to the random intercept component employed in some hierarchical linear models,
except that in these models, the variance of the factor is assumed to be freely
estimated and the factor loadings in ƒ are fixed to 1.

Complex Alternative Models: Random Intercept Model

In the random intercept model (RI) (Maydeu-Olivares & Coffman 2006), two
orthogonal factors are estimated, with one factor consisting of freely estimated
parameters as in the single-factor congeneric model, and the remaining factor’s
loadings constrained to equality (or equivalently, to unity with a freely estimated
factor variance). As noted earlier, in terms of the number of estimated parameters,
the RI model is more complex than the single-factor congeneric model (by
estimating a single loading across all manifest variables on the second factor),
but more parsimonious than the orthogonal two-factor model (which has k-2 more
degrees of freedom than the RI model due to the k-1 freely estimated loadings on
the second factor). The RI model also differs from the usual multifactor orthogonal
models (such as Cholesky or other triangular decomposition) in that each manifest
variable is assumed to load on both factors.

Specifically, using the factor model notation defined above each row vector of
ƒ can now be written as ƒ0, ƒ1, ƒ2, : : : , ƒk. ƒ0 represents the random intercept
factor and all ƒ0 are constrained to 1 with the variance associated with the intercept
factor freely estimated or, equivalently, with all ƒ0 constrained to equality and the
intercept variance constrained to unity. ƒ1 through ƒk are defined as before for
the multifactor congeneric measurement model. For those more accustomed to path
diagram representations, Fig. 1 shows the random intercept model for the case of
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Fig. 1 RI model path diagram

five time measurements. In this Figure œ1–œ5 indicate loadings in ƒ1. The random
intercept’s loadings are represented by the œRI which are fixed to equality over
the measurement occasions. Given that the ACE model frequently assumes unit
variances, we chose this strategy to identify the random intercept factor.

The interpretational status of the random intercept factor depends on the
particular research situation. As Maydeu-Olivares and Coffman (2006) note, one
source of such variability in cross-sectional data may be due to response format,
such as systematic negative (or positive) wording of items or a general method
factor associated with response. In their analysis of optimistic orientation, Maydeu-
Olivares and Coffman found that the random intercept factor resulted in better
fit to the data than the traditional one-factor model and was also a parsimonious
alternative to a two-factor simple structure model. They interpreted the random
intercept factor as a general endorsement or acquiescence factor or, more generally,
as a method factor associated with the Likert assessment format. Within the context
of longitudinal data, however, the RI model is identical in structure to the free
basis growth curve model (Meredith & Tisak 1990) except that, in the growth



238 T. Wang et al.

curve model, mean level information in the manifest variables is used to estimate
factor means for both factors while in the random intercept model, factor means
are assumed to be zero and individual manifest variable intercepts are estimated.
As such, the RI model could represent such a growth process, but the statistical
model relies only on the variance/covariance matrix for the identification of such
change patterns. As such, when a single group of monozygous and dizygous twins
is analyzed (as for the female twin data considered below), the random intercept
factor model loadings are identical to those associated with the reference group
considered in Dolan, Molenaar, and Boomsma’s (1989 1992) multigroup structured
means genetic factor model. An explication of an approach to the structuring of
mean effects models for genetic data involves a survey of several articles by Dolan
and colleagues as well as consideration of additional psychometric models and is
the object of a companion article.

Genetic Factor Model in Factor Analysis Notation

As described in Heath et al. (Heath, Eaves & Martin 1989; Heath, Jardin et al. 1989;
Heath, Neale et al. 1989), the genetic factor model for twin data is an extension of
the factor model described above, except that ˜ is an n*6 matrix, with distinct ˜A,
˜C, and ˜E representing the additive genetic, common environmental and unique
environmental components for each member of the twin pairs under consideration.
Variances across all latent variables are fixed to unity and three additional constraints
are placed across the three factors associated with on the ACE structural model:
For monozygotic twins, the correlation between genetic components across twins is
fixed to 1; for dizygotic twins, this correlation is fixed to 0.5. Finally, the correlation
between common factors across both twins is constrained to 1.

Random Intercept Factor Model Applied to ACE Model

One general model for assessment of the psychometric properties of the ACE model
occurs when all the three components of the ACE model are modeled as random
intercept factors. We therefore differentiate six factors for the resulting genetic
model in which we subscript intercept factors to indicate their status as random
intercept factors. Accordingly, the terms A, AIntercept, C, CIntercept, E, and EIntercept

denote the congeneric and tau-equivalent components of the genetic factor model
for the additive genetic, common environmental, and unique environmental effects
respectively. Matrices of the resulting genetic factor model consist of the observed
scores of Y as an n by 2k matrix for k measurement occasions. The column scalar
matrix of ’ has dimensions n by 2k matrix, ˜ is an n by 12 matrix of factor values,
and œ is a patterned 12 by 2k matrix of factor loadings. This random intercept genetic
factor model is the same as the traditional genetic factor model except that each
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Fig. 2 Proposed model path diagram

genetic and environmental component is represented by two, rather than one latent
variable due to the addition of a random intercept model. Model constraints for
this model are identical to those for the genetic factor model described above, with
the A, AIntercept, C, CIntercept, E, and EIntercept components assumed uncorrelated. The
proposed full model path diagram is shown in Fig. 2.

Bayesian Estimation

Basic Principles and Concepts of Bayesian SEM

As noted above, different measurement models may be appropriate across the
genetic and environmental components of the model. Some components may be
modeled best as tau equivalent, for example, while the congeneric or random
intercept factor models may be most appropriate for other components. If this is
the case, researchers attempting to estimate the full RI measurement model for
all components are “over-factoring” the data (Rindskopf 1984; Sato 1987) and
are likely to find that the model is empirically under-identified due to the non-
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uniqueness of the solution space (Savalei & Kolenikov 2008). Such estimation
difficulties are not present, however, in Bayesian approaches and parameters which
are zero or very close to zero are simply estimated as any other parameters in the
model (e.g., Lee 2007). The methodological benefit of this approach, however, is
that prior distributions may exclude improper values by definition. (For example,
variances estimated in the Bayesian approach using the inverse Gamma distribution
can never take negative values, thereby preventing one type of improper solution.)
In addition, because the matrix of parameter estimates does not need to be inverted,
locally degenerate solutions are not encountered during the process of estimation
(Shi & Lee 1998). This permits researchers to compare the relative fit of models
with different measurement models across components.

Several excellent treatments of Bayesian inference and use of the Gibbs Sampler
are available in both systematic (Gelman, Carlin, Stern, Dunson, & Vehtari 2013)
and didactic presentations. For Winbugs applications of the Gibbs Sampler, Eaves
et al. (2005) present a Bayesian genetic IRT analysis of questionnaire items
and Zhang, Hamagami, Wang, Nesselroade, and Grimm (2007) present Winbugs
specifications of growth models. Muthén (2010) presents a similar discussion of
example analyses and technical aspects using Mplus. In the interests of space, we
will not repeat these presentations, but will limit our discussion to those topics
which deal with the basic logic of Bayesian SEM and those technical aspects of
estimation which proved most important to the estimation of the random intercept
genetic factor model.

Bayes’ Theorem

Let M be an arbitrary structural equation model consisting of both parameter
specifications of the model with a vector of unknown parameters � . For brevity of
presentation, we will take M to represent both the structural equations representing
the model as well as any (possibly informative) prior beliefs of the researcher
about these parameters expressed via an appropriate probability distribution. Let
Y again be the observed data defined as in Equation 1 above. Based on a well-
known identity in probability (Gelman et al. 2013), the posterior probability density
function associated with � given the observed data and structural model may be
defined as:

p h� jY; Mi D p .Y j�; M / p .�/

p(� jY, M) represents the posterior density function of the researcher’s beliefs about
the parameters of the model. p(Yj� , M) can be regarded as the likelihood function.
The posterior density function incorporates the sample information and the prior
density function p(� ) (Lee & Song 2004).
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Gibbs Sampler

The joint analytic form of the posterior distribution poses difficulties to a formal
evaluation of the density (Lee 1980). As a result, data augmentation procedures
involving Markov Chain Monte Carlo (MCMC) methods such as the Gibbs Sampler
are used to obtain the posterior distribution of p(� jY). Such techniques involve a
successive iterative approach to generating estimates of the posterior distributions
of the parameters and also provide some indication of the reasonableness of the
distributional assumptions of the model. Let ˜ be the set of latent variables in the
model. The rationale is that adding latent variables ˜ could turn the conditional
distribution p(� jY, �) and p(�jY, � ) into simpler form. Given a sample f� (t), �(t)g
draws from p(� , �jY), an iteration

�.tC1/p
�
�

ˇ̌
Y; �.t/

�

�.tC1/p
�
�

ˇ̌
ˇY; � .tC1/

�

samples a new state
˚
�.tC1/; �.tC1/

�
. In the end, we could get enough samples in

the chain and observe the posterior distribution of � (Geman & Geman 1984). At
convergence, different chains generated with different starting values are merged
together (after discarding a number of iterations during the beginning phases of
each, which are treated as burn-in iterations). If successive observations are highly
positively correlated (as was frequently found in several of the genetic factor models
we considered) values are taken only from successive intervals (such as every 20th
iteration), a process known as “thinning” (Gelman et al. 2013).

Data from the MCMC iterations used in estimation can also be plotted as a
diagnostic of whether the parameter of interest appears to take the form assumed by
the distributions chosen by the researcher to represent beliefs about the parameter,
a method known as Posterior Predictive Checking (PPC, Gelman et al. 2013). As
described below, in the data sets considered in this paper, PPC of the estimated
posterior distributions alerted us to the fact that the Gibbs Sampler was prone
to produce multi-modal posterior distributions symmetric about zero for random
intercept factor loadings, particularly if the size of the effect was modest. We discuss
this issue and solutions below.

Model Fit

In addition to providing posterior distributions about the parameters of interest, the
Bayesian approach also permits the researcher to evaluate the fit of the structural
model based on its likelihood. Although several approaches to assessing model
fit can be taken (Gelman et al. 2013; Lee 2007) we will discuss three here. The
BIC (Schwarz 1978) is popular within structural modeling because it penalizes
models for their complexity (expressed as the number of parameters in the model).
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The Deviance Information Criterion (DIC, Spiegelhalter, Best, Carlin, & van der
Linde 2002) is a Bayesian generalization of information criteria such as the AIC
and BIC which penalizes models based on the effective number of parameters in
the model. For both the DIC and BIC, smaller values are considered better-fitting.
Posterior predictive checking of the likelihood of the model as a whole also permits
the researcher to estimate the Posterior Predictive p-value, an estimate based on
the PPC of the likelihood ratio chi-square statistic for the model (Meng 1994).
This represents a rough estimate of the probability that the data could have been
generated under the candidate model. The proposed model may be considered as
plausible if the PP p-value estimate is not far from 0.5 (acceptable range 0.3–0.7).
Meng (1994) notes that the PP p-value is not suitable for comparing different models
but is a reliable index of stand-alone model fit.

Model Comparison: Bayes Factors

In addition to providing stand-alone measures of model fit, it is also possible
to assess the relative fit of candidate structural models for the data. In addition
to simply comparing the incremental fit, the Bayesian approach also permits the
researcher to assess the relative informative power associated with increases in
model complexity. Most generally, this comparison is made using the Bayes factor,
which we now introduce in some greater detail given the need to understand its basic
logic and the fact that its estimation is the object of ongoing study. From the Bayes
theorem comparing the odds ratio associated with the comparison of a base model,
M0 with a more complex model, M1, we can obtain:

p .M1 jY /

p .M0 jY /
D p .Y jM1 / p .M1/

p .Y jM0 / p .M0/

which permits us to define the Bayes factor as

B10 D p .Y jM1 /

p .Y jM0 /

Thus we see that posterior odds D Bayes factor*prior odds (Lee 2007). Larger Bayes
factors mean stronger evidence for M1 relative to M0. phYj M1i, phYj M0i is obtained
by integrating phYj � , M1i, phYj � , M0i over the parameter space, respectively. It is,
however, often difficult to obtain Bayes factor analytically using a path sampling
approach (Gelman & Meng 1998) and, for that reason, another easy and quick way
to calculate Bayes factor is by using BIC (Muthén & Asparouhov 2011):

BF D p .M1/

p .M0/
D exp .�0:5BICM1 /

exp .�0:5BICM0 /
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Although there is some dispute about the validity of calculating Bayes factor by
using BIC (Gelman et al. 2013), in the simulation study presented below, we found
that this criterion worked well in practice. Generally speaking, Bayes factors less
than 3 represent minimal support for the alternative model, values between 3 and
20 positive support for the alternative model, values between 20 and 150 strong
support, and values larger than 150 decisive support.

Simulated Data Example

We will now illustrate our general approach of fitting a general random intercept
genetic factor model and assessing the relative fit of more parsimonious measure-
ment models for the genetic and environmental components using simulated data
(generated from SAS). We generated simulated twin data for 1000 hypothetical twin
pairs using the following factor loadings: Across all variables, AIntercept, CIntercept,
and EIntercept D 0.4, 0.4, and 0.3, respectively. A factor loadings were zero. C factor
loadings were chosen as 0.4, �0.4, 0.3, �0.3 and 0.2 across the five variables. E
factor loadings were chosen as �0.3, �0.3, 0.3, 0.3, and 0.3.

To demonstrate the ability of the procedure to correctly arrive at a more parsi-
monious model and to highlight the empirical under-identification issues associated
with more parsimonious models under ML estimation, we chose to simulate data
in which an intercept model was appropriate for the additive genetic component,
but for which RI models were appropriate for the shared and unique environmental
components. 1000 replication data sets were generated to investigate the sampling
behavior of the approach using SAS. Models were estimated using Mplus (Muthén
and Muthén 1998–2010). The Gibbs Sampler iteration number was set at 5000
to allow a generous amount of iterations for the MCMC chains in the Bayesian
analyses. By default, the first half of these iterations was used as a burned-in phase.
Initial inspection of the MCMC chains revealed marked auto-correlation across
iterations of the Gibbs Sampler, and so a thinning value of 50 was chosen for the
analyses which appeared to remedy the auto-correlation problem (Albert & Chib
1993). All 1000 replications met the convergence criteria by Bayesian estimation
(PSR close to 1 for each parameter) (Muthén & Asparouhov 2011). The PP-p value
associated with the general RI model had a mean of 0.53, standard deviation 0.25
across replications, indicating good fit. In addition, the genetic slope factor loadings
are all non-significant. Under ML estimation, however, all 1000 samples failed to
converge which we take as evidence that they were not empirically identified. When
the correct model is fit to the data, however, ML models did converge. There was
little difference between the Bayesian and ML estimates under the correct model,
with bias estimates not exceeding 2 % across the estimated loadings (See Table S1
in supplemental materials accompanying the manuscript.)
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Table 1 Percentages of replications with Bayes factors > 20 favoring column
model over row model across 1000 simulated samples

Model Two-factor model RI model ACE model True model

Two-factor model NA 91.6 % 47.4 % 99.8 %
RI model 7.70 % NA 10.4 % 99.4 %
ACE model 52.0 % 89.3 % NA 96.3 %
True model 0.20 % 0.60 % 3.50 % NA

Table 2 Summary of
parameter bias in traditional
ACE genetic factor model

Bayesian estimation ML estimation
Parameter Bias Mean (S.D.) Bias Mean (S.D.)

A loadings 45.8 % (0.106) 45.5 % (0.110)
C loadings �39.7 % (0.071) �39.1 % (0.073)
E loadings �27.7 % (0.379) �27.7 % (0.377)

Model Comparison

Table 1 presents proportions of model comparisons across replications in the
simulated data which exceed criteria for strong support in comparisons of the true
model, the traditional ACE model, and a freely estimated two-factor solution across
all genetic and environmental components. As can be seen from the fifth column
of the table, the true model is preferred over the competing two-factor, random
intercept, and traditional ACE models in 96.3–99.8 % of the cases. The two-factor
model is preferred over the traditional ACE model in only 52 % of the cases, and the
random intercept model is preferred over the traditional ACE model in 89.3 % of
the cases. This high latter percentage is unsurprising, given that the random intercept
model differs from the true model only in that the A factor is redacted from the RI
model to produce the true model. Taken together, model comparisons based on the
simulated data reveal that Bayesian estimation appears able to correctly identify
the correct model and, even when the model under consideration is slightly over-
complex, the factorial complexity of the genetic and environmental components in
these data is detected.

Genetic Factor Model

When these data were analyzed with the (mis-specified) traditional genetic factor
model in which all three components are assumed to have a congeneric measure-
ment model (i.e., have only A, C, and E factors), all 1000 replication yielded a
zero PP-p value, indicating poor model fit. The bias summary associated with the
ACE model is presented in Table 2. Results suggest that, for the simulated data
considered here, failure to correctly include intercept components for the common
unique environmental effects introduces substantial bias in the estimated additive
effects of the model.
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Two-Factor Model

As noted above, the RI measurement model is a two-factor model, but one with
considerably more parsimony than the traditional two-factor congeneric model. The
question therefore remains as to whether the Bayes factor can also correctly reward
the greater parsimony of the RI model relative to the more complex traditional two-
factor model. When the traditional two-factor model is estimated from the data,
the PP-p value has mean of 0.50, with standard deviation 0.23, indicating the high
degree of model fit found for the (true) RI model. To secure a mathematically
identified solution for the two-factor model, the first loading associated with each of
the A2, C2, and E2 factors was set to zero. Bias estimates for the two-factor model
are of necessity quite pronounced, given that the Cholesky form of the two-factor
model represents an affine rotation of the true structure of the data. If calculated as
a percent bias relative to the true model, bias estimates of the two-factor Cholesky
model averaged 37.2 %, with bias across the particular types of loading ranging
from 12.5 to 97.5 % (See Table S2 in the supplemental materials accompanying the
manuscript.)

Alternatively, if the approach outlined by Franić et al. (2013) is followed, the
correct dimensionality of the genetic and environmental components is identified
as a two-factor solution. However, the structure of the random intercept model is
not correctly specified due to the fact that the resulting decomposition is triangular
in nature. Even if the two-dimensional factor structure is rotated via an affine
transformation to a form most closely resembling the true factor structure, two of
the recovered loadings still deviate by approximately .05 due to sampling variability.
Since it is difficult to judge empirically in real-world applications whether such
variation represents sampling variability or a true multifactor structure in which
factor loadings of one factor are unequal to each other, we believe it reasonable to
directly compare the two-factor and random intercept models as outlined here.

Other Alternative Models: Bayesian Estimation

In addition to these selected model comparisons, we also compared the true
model with all other combinations of the three possible measurement models (tau,
congeneric, and random intercept) for each component of the genetic factor model.
Model fit indices for the models are shown in Table 3 as well as the Bayes factor
comparing the true model to each candidate. Although it would be possible to
compare all of these candidate models using Bayes factors, the evaluation of such
a matrix of pairwise comparisons would be both tedious and liable to substantial
experiment-wise error given the number of contrasts. If, however, researchers com-
pare the relative fit of the random intercept model to models which redact intercept
or factor models from the genetic model, a relatively proscribed set of model
comparisons results. Well-fitting parsimonious models can then be compared to the
random intercept model in an attempt to identify a more parsimonious model. As can
be seen in Table 3, when Bayes factors are calculated relative to the random intercept
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Table 3 Candidate models’ PP-p value and percent of Bayes factors strongly preferring the
RI and true models

BF Perc. BF Perc.
Over 20 Over 20

Model PP-p value (S.D.) BIC (S.D.) (RI) (%) (True) (%)

RI model 0.53 (0.25) 49,327.21 (234.73) NA 99.4
True model 0.52 (0.26) 49,249.37 (215.04) 0.06 NA
RI without AIntercept model 0.52 (0.25) 49,279.5 (215.83) 4.00 99.3
RI without CIntercept model 0.07 (0.11) 51,798.18 (2371.75) 95.3 99.8
RI without EIntercept model 0.00 (0.00) 49,892.57 (712.31) 96.0 99.3
ACEEIntercept model 0.07 (0.11) 50,167.56 (1492.76) 79.6 100
ACCInterceptE model 0.00 (0.00) 49,515.99 (220.87) 92.8 100
AAInterceptCE model 0.00 (0.00) 50,304.43 (1602.06) 96.3 100

model, only the true model and the random intercept model without the AIntercept

factor were not significantly worse fitting than the RI model, as shown in the fourth
column. When the true model is considered as a base model, the evidence strongly
supporting the true model is found between 99.3 and 100 % of the replications.

Summary Remarks for Simulation Study

Under ML estimation, estimating an over-complex RI measurement model for
all three components results in empirical under-identification. When the random
intercept is present for the genetic component but the data are analyzed using
the traditional ACE model, estimates of heritability of the genetic component are
over-estimated under both ML and Bayesian estimation. When the true model is
known, however, ML and Bayesian parameter estimates appeared similar. Because
of the empirical under-identification problems in ML estimation, comparison of
candidate measurement models was only possible under the Bayesian approach. For
these data, the correct model was identified using the Bayes factor. Significantly,
the random intercept measurement model was also found to be a parsimonious
alternative to the traditional two-factor model.

Care must be taken in conducting Bayesian analyses, however. Even with the
simulated data under consideration, large thinning values were necessary to reduce
autocorrelation across iterations of the Gibbs Sampler and bimodality was observed
in some of the PPC plots which indicated possibly misleading estimates and
confidence intervals for the Bayesian approach. Once identified, however, these
bimodality issues were successfully addressed. In the next section, the general RI
genetic factor model and its more parsimonious alternatives are considered in an
empirical data example. In addition to the didactic value of a real-world example,
use of a real-world example also permits exploration of the effects of the non-
normality and unmodeled causal effects on model fit, comparison, and parameter
estimation.
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Empirical Study

The genetic and environmental effects on body mass index (BMI) have been
investigated across several studies. Allison et al. (1996), in a study of Japanese,
Finnish, and American twins, reported that additive genetic effects appeared more
pronounced at early ages, that the genetic effects did not appear due to shared
environmental effects during this time, and that heritability coefficients ranged
between .5 and .7 for the data sets considered. Elks et al. (2012), in a review of 88
estimates of the heritability of BMI across twin studies, found heritability estimates
ranging from .47 to .90. It is worth noting that most of these estimates (61) were
based on AE models (i.e., a model with no common environmental effects), while
15 were based on the traditional ACE model. (The remainder were based on direct
comparisons of within and between twin correlations or the non-additive genetic
model.) Estimates of the genetic heritability of BMI using the ACE model were
generally .12 higher than estimates from the AE model. Readers are referred to
Elkes et al. for a discussion of the genome-wide association studies investigating
the loci associated with BMI.

The BMI data we wish to analyze are taken from the Missouri Adolescent Female
Twin Study (MOAFTS), a genetic-epidemiological, prospective twin-family study
of alcohol use in young females. (For full details, including response rates, see
Waldron, Bucholz, Lynskey, Madden, & Heath 2013.) Using a cohort sequential
design, twins were aged 13, 15, 17, and 19 when first enrolled in the study. In
analyses presented here, we exclude African-American twins, because of small
numbers but significant mean differences in BMI distribution. A total of 3416
Missouri female adolescent twins (85 % participation rate, approximately 55 % MZ
and 45 % DZ) were interviewed from 1995 to 2012 with a telephone version of the
Child Semi-Structured Assessment for the Genetics of Alcoholism. In this study, we
only concentrated on the body mass index (BMI) variable. Observations from twin
pairs with at least five measurement occasions were selected for this longitudinal
analysis. Descriptive statistics by age groups are listed in Table 4. Since all observed
variables are positively skewed, even after fitting the model, we transformed the
data by taking the log of the original data. The following analyses were based on
the transformed data.

Bayesian Model Comparison

As in the simulation study, two-factor, RI, and simpler alternatives were considered
for the BMI data. Table 5 presents the Bayes factor (relative to the final model),
PP-p value, and DIC for each reduced model as well as the two-factor model.
A model consisting of a RI model for the additive genetic effect, a tau equivalent
model for the unique environmental effect, and no common environmental effect
was chosen as the final model based on its Bayes factor relative to the RI model
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Table 4 Descriptive statistics of body mass index by age group

N Twin 1 Twin 2
Age Twin pairs Mean S.D. Skewness Mean S.D. Skewness

13 58 19.9 2.684 0.82 20.26 3.244 1.323
14 71 20.75 3.109 1.061 20.1 3.019 1.465
15 150 21.1 3.222 1.542 21 3.188 1.819
16 110 21.05 3.04 1.437 21.16 3.419 1.842
17 188 21.74 3.113 1.222 21.58 3.731 2.199
18 160 21.97 3.359 1.156 22 3.646 1.434
19 89 23.09 4.443 1.81 22.7 3.523 1.351
20 117 23.07 4.334 1.458 22.53 3.653 1.315
21 31 23.28 4.925 1.763 23.22 5.379 2.387
22 80 23.6 4.833 2.298 23.38 4.736 1.793
23 86 24.84 5.068 1.059 24.23 4.587 1.372
24 68 23.89 4.782 1.221 23.83 4.705 0.997
25 65 24.95 5.538 1.777 24.84 5.35 1.437
>25 113 26.54 5.804 1.125 25.88 6.08 1.152

(1.84*1019). Although such a choice of models may seem somewhat unusual, it is
a choice consonant with other research on BMI during young adulthood; Elks et al.
(2012) report 26 studies of BMI spanning both young and older samples compared
to nine studies reporting the traditional ACE model. Although such a contrast does
not ensure correctness via democratic vote, it does speak to the fact that a decision
to redact the common environmental component is not without precedent.

ML Model Comparison

The model comparison results using ML estimation were similar to their Bayesian
counterparts and are shown in Table S3 in the supplemental materials for the
manuscript. Model fit index such as RMSEA and CFI were very similar across
the different models. Moreover, chi-square test cannot be used to compare all
models given that they are not nested models. However, based on examination
of the BIC values, the AAInterceptCInterceptEEIntercept model demonstrated the best
fit (BIC D �5335.9), with the AAInterceptCInterceptEIntercept model showing a value
only slightly larger than this (BIC D �5304.5). The model chosen under Bayesian
estimation, AAInterceptEIntercept (BIC D 5165.7) was larger than these other two
models but still lower than the other models considered. On examination of the

It should be noted that when all Bayesian models which included a common environmental effect
failed to find environmental effects greater than zero, regardless of whether a tau equivalent,
congeneric or random intercept model was used to model the component.
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Table 5 PP-p and BIC values for candidate models and Bayes factor of body mass index
data

Model PP-p BIC Bayes factor
Bayes factor vs.
AAIntercept,EIntercept

AAIntercept,EIntercept 0.291 �5157.05 1.84E C 19 1
Two-factor 0.401 �4729.84 3.14E�74 1.71E�93
RI full model 0.301 �5068.33 1.00E C 00 5.43E�20
A,C,CIntercept,E,EIntercept 0.309 �5075.19 3.09E C 01 1.67E�18
A,AIntercept,C,E,EIntercept 0.317 �4864.42 5.27E�45 2.86E�64
A,AIntercept,C,CIntercept,E 0.333 �4840.35 3.12E�50 1.70E�69
A,AIntercept,CIntercept,EIntercept 0.299 �4918.28 2.61E�33 1.42E�52
A,C,CIntercept,E 0.289 �5055.06 1.31E�03 7.13E�23
A,AIntercept,C,E 0.293 �4910.09 4.34E�35 2.36E�54
A, C, E (Genetic Factor Model) 0.285 �5042.8 2.85E�06 1.55E�25
AIntercept,C,CIntercept,E,EIntercept 0.289 �5130.3 2.85E C 13 1.55E�06
A,AIntercept, CIntercept,E,EIntercept 0.323 �5131.53 5.28E C 13 2.87E�06
A,AIntercept,C,CIntercept, EIntercept 0.285 �5067.28 5.90E�01 3.21E�20
AIntercept, CIntercept,E,EIntercept 0.133 �5130.5 3.16E C 13 1.72E�06
AIntercept,C,CIntercept, EIntercept 0.275 �5136.93 7.87E C 14 4.28E�05
AInterceptCInterceptEIntercept 0.122 �5000.67 2.03E�15 1.10E�34
AE 0.124 �4963.992 2.03E�15 1.19E�42

ML estimates, the CIntercept and E factor loadings were, although significant, modest
in magnitude (all œ’s < .05). Because of the advantages of the Bayesian estimation
approach to model comparison and because the additional factors, if present,
appeared to represent modest effects, we chose to report ML and Bayesian estimates
for this model.

Parameter Estimation

Bayesian parameter estimates based on the final model are shown in Table 6.
(Corresponding ML parameter estimates for this model were almost identical in
value.) Consistent with Allison et al.’s (1996) finding, the genetic intercept appears
to explain more variability than the genetic factor in early years, especially from
ages 13 through 18. During later years (from ages 21 through 26 and later), the
genetic factor appears to explain roughly the same proportion of variability as
the intercept. The pattern of loadings for the genetic factor appears to be roughly
nonlinear and suggests systematic differences in the genetic component associated
with BMI during the adolescent, young adult, and adult years.

Also consistent with the majority of the twin studies reviewed by Elks et al.
(2012), common environmental effect was either not statistically significant (based
on Bayesian estimates). Given that dropping CI gave a similar model fit index
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Table 6 Bayesian parameter estimates for body mass index data

Age œa Std. Dev.a pjH0 D 0 Intercept Std. Dev. pjH0 D 0

A
13 �3.40 1.70 0.023 3.00 0.01 0.00
14 �0.30 1.10 0.408 3.02 0.01 0.00
15 1.60 1.00 0.063 3.04 0.01 0.00
16 0.50 1.00 0.285 3.05 0.01 0.00
17 1.80 1.00 0.034 3.07 0.01 0.00
18 3.40 1.00 0 3.08 0.01 0.00
19 5.50 1.30 0 3.11 0.01 0.00
20 5.10 1.10 0 3.12 0.01 0.00
21 8.70 1.80 0 3.14 0.01 0.00
22 8.10 1.20 0 3.14 0.01 0.00
23 10.20 1.30 0 3.17 0.01 0.00
24 9.40 1.50 0 3.18 0.01 0.00
25 9.90 1.40 0 3.18 0.01 0.00
>26 13.00 1.40 0 3.22 0.01 0.00

Aintercept

All Ages 12.90 0.50 0
Eintercept

All Ages 4.10 0.30 0
aValues in columns multiplied by 100 for ease of presentation

(PP-p value is 0.293) and the Bayes factor is 2.81 favoring the model without CI, we
conclude that dropping the CI factor from the model seems reasonable and we note
that inclusion of the effect does not seem to affect other parameters and explains at
most a minimal amount of variability.

The proportion of variability explained by genetic and environmental effects by
age is shown in Table 7. For these data, heritability estimates for the final model
(shown in the column labeled “Additive” under the Heading “Final Model”) ranged
from 0.72 to 0.82 with an average of 0.77 across years, which compares favorably
with the 0.75 median estimate from Elks et al.’s (2012) meta-analysis. In contrast
to the heritability estimates based on the traditional ACE model and models used in
Elks et al.’s study, heritability does not appear to be more pronounced in younger
ages than in older ages. Heritability estimates from the traditional ACE model
(shown in the same column under the heading “ACE”) for these data are somewhat
lower (mean D .68, range 0.49–0.82 across years) and appear to be slightly lower
for twins older than 21. The difference in average heritability between the final and
traditional ACE model of .09 is similar to the 0.12 increase noted by Elks et al.
when models are fit which do not include an environmental effect. It is also worth
noting that statistically significant common environmental effects using the single-
factor ACE model were only found for ages 21 through 25 and, even for these, the
proportion of variability in BMI explained was on average 7 %. The discrepancy
between the final model and the traditional one-factor ACE model does not appear
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to be due entirely, however, to the estimation of a common environmental effect,
because when a two-factor ACE model is estimated from these data, the average
heritability across ages is 0.59, and none of the factor loadings associated with the
common environmental effects is statistically significant.

A comparison of unique environmental effects of the final model with the one-
and two-factor traditional ACE models reveal that the average unique environmental
effect was slightly smaller for the final model (0.06) than for either the one- or two-
factor ACE models (.09 and .12, respectively).

Summary Remarks of Empirical Study

Taken together, estimates from the final model under Bayesian estimation produce
estimates of heritability consonant with the Elks et al. (2012) review and replicate
the conclusion made by many researchers that common environmental effects in
BMI appear to be negligible. The pattern of differential common environmental
effects found under a one-factor ACE model is not replicated by either the random
intercept model selected as most reasonable or by a freely estimated two-factor
model. Although, as Visscher, Gordon, and Neale (2008) note, small sample studies
may be underpowered to detect a statistically significant common environmental
effect, the existence of such differential effects were not found using the Bayesian
model comparison procedure outlined here and, even if thought to exist, their
magnitude appears to be confined to older ages and to be minimal in comparison
to the magnitude of heritability coefficients during these ages. For these data, the
proposed model comparison approach appears to yield a model which is both
parsimonious and reasonably similar to the larger literature on the magnitude of
environmental and genetic effects.

Discussion

The measurement model which researchers choose to operationalize environmental
and genetic components of behavior genetic models has important implications for
the estimation and interpretations of such models. When psychometric alternatives
to the traditional factor model such as the tau equivalent and random intercept
models are considered, substantially different estimates of the relative salience of
genetic and environmental contributions are obtained. Comparison of candidate
measurement models seems warranted given that the psychometric complexity of
the true model is largely unknown to the researcher prior to analysis and, even if it
were, such exploration can inform the researcher about possible alternate estimates
for genetic and environmental components that a reasonable skeptic might raise.
Consideration of overly complex genetic models, however, is often prevented in
maximum likelihood estimation because such models are not empirically identified,
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which leaves open the question of whether complex alternatives were simply not
numerically obtained given the software or whether they are empirically unidentified
due to being over-complex. Such model estimation was, however, possible under
Bayesian estimation and estimated parameters for the final model appeared largely
similar to corresponding estimates from ML estimation for both the simulated and
real-world data.

Given that traditional behavior genetic models often involve the assessment of
only different numbers of freely estimated latent variables, this paper seeks to
highlight the fact that a greater number of models are possible, given parsimonious
patterning of the factor loadings involved. The extension of such models to convey
mean effects makes it possible for the researcher to specify the patterning of such
variance components as growth curve models. As noted above, a great variety of
models are possible under the model comparison procedure described above, which
may prompt some researchers to wonder how best to limit the specification and
search of models to a more tractable number in practice. In the fortunate cases where
the researcher is in the position of having some knowledge concerning the functional
form of growth over time, it would be possible to specify nonlinear constraints on
the estimated factor loadings so that the underlying estimated curve corresponds
to a parametric growth model such as the logistic or Gompertz curve (Grimm &
Ram 2009). Increasingly, however, it appears that the patterns of growth observed
over time in empirical data do not follow such tidy mathematical specifications,
leading some to adopt the nonparametric growth curve as a reference curve for
characterizing the form of growth over time. For example, Ram and Grimm (2009),
in a study of longitudinal finite mixture models, advocate for initial specification
of a free curve growth model as a model of functional change over time which can
then serve as a reference form for the identification of finite mixtures. In general,
however, adoption of such a “nonparametric” growth curve model raises questions
concerning the interpretability of the identified curves.

It is quite possible that one reason for the failure of identified patterns of growth
over time to follow a parametric form is due to the fact that Alessandri, Caprara,
and Tisak (2012) point out that the presence of a single, but nonparametric pattern
of loadings for growth data may indicate the presence of several, rather than one
source of stability of time which may include environmental effects, age-related
effects or turning points. Given that the genetic and environmental effects identified
through behavior genetic models are genetically multi-determined, it is probably
more reasonable to expect that identified effects should probably exhibit such
composite patterns over the lifespan.

As such, it is important to recall that the proposed model comparison approach
to fitting genetic and environmental effects is no panacea and that behavior genetic
growth curve models, as with any latent variable model, are subject to the “naming
problem” in that the latent variables identified may not represent the constructs
initially intended. Although it is possible to attempt a remedy of this by modeling
one of the factors of the model according to some agreed upon parametric form
and to identify “residual factors” which would model additional covariation due to
the extraneous effects, the fact that there is at least in the context of much behavior
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genetic models, little agreement as to the functional form of growth over time makes
such an approach untenable. In the end analysis, probably the best remedy for this
ambiguity lies in the identification of such possible confounding effects and data
collection strategies designed to provide a less ambiguous portrait of change over
time.

Model Support

Rather than basing model comparisons in terms of probability statements common
under the frequentist approach, the Bayesian approach permitted adjudication
between candidate models based on a quantification of the relative support for a
particular model relative to other candidate measurement models. Operationally,
measurement models which include random intercept components permit the
researcher to consider the model of tau equivalence as a parsimonious alter-
native to the single-factor model usually considered in genetic factor models.
The possibility that the manifest variables of the study constitute equivalently
scaled measures would seem an attractive one to researchers, especially if the
manifest variables in the model constitute longitudinal assessments. More generally,
inclusion of a random intercept model makes more fine-grained comparisons of
models intermediary between those usually considered by researchers which are
based on factor dimensionality. For example, in both simulated and real-world
data, factor models with random intercept components were estimated and selected
which were more complex than the single-factor model but yet more parsimonious
than the freely estimated two-factor model. The question of whether the random
intercept model or multi-factor measurement model better describe the data also
has important implications for the investigation of multigroup invariance. Equality
constraints have sometimes been used across Cholesky factors to test for invariance
across groups (e.g., Loehlin & Martin 2013). Different hypotheses about equality
constraints of factor loadings and component variability are implied under the RI
model, however, suggesting that different conclusions about partial invariance may
be made under the RI and Cholesky factor models.

Model Support Varies as a Function of Study Design

When such comparisons are considered across studies in an area, such model
comparisons provide statements of what measurement models seem reasonable
based on characteristics of the study. When the statistical power of the data is
low (i.e., when effect size is small or small sample sizes are analyzed), researchers
are more likely to find the tau equivalent measurement and its associated standard
error are a parsimonious summary. In the body mass data, such intercept factors
seemed sufficient to explain variability due to common and unique environmental
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effects. Congeneric measurement models, by contrast, provide information that
markedly different effect sizes across manifest variables have been found. Similarly,
multivariate studies of relatively few manifest variables are similarly less likely
than studies with several manifest variables to recover random intercept models
or multiple factors due to the lower power associated with smaller samples of the
multivariate space. Accordingly, the ability to identify method variability, response
set, or a complex measurement model such as that underlying a growth process
varies as a function of study design.

Limitations

Although use of Bayesian estimation for genetic modeling has promise, it is
not without its difficulties. The bimodality of estimated factor loadings across
MCMC replications was one difficulty most often encountered when estimated
factor loadings were modest and successive MCMC iterations varied between small
positive and equally well-fitting small negative values. This problem is equivalent
to the reflection problem in factor analysis in general (i.e., that a factor model with
loadings multiplied by �1 fits the data as well as the original factor loadings). In
Bayesian analysis, researchers can detect the resulting bimodal posterior distribution
using different starting values across chains. If the estimated loading is not far
away from zero, the convergence criteria or K–S test are unlikely to detect such
bimodality. Such bimodality can, however, be remedied by constraining one or
more such marginal loadings to be positive across those parameters which appear
to exhibit bimodality (Congdon & Congdon 2003). Although such a remedy is
appropriate in many situations (Erosheva & Curtis 2013), it should be noted that
it is not a universal solution and requires further research (Chan & Jeliazkov 2009).

Future Directions

Use of the model comparison approach outlined here can be readily extended to
a greater variety of genetic models for twin and family data. Although the models
considered here assumed that the manifest variables were continuously measured
variables, extensions of the models presented here to genetic factor models using
categorical data (Cho, Wood, & Heath 2009) would appear straightforward, subject
to additional identification requirements of the latent response variable approach
required for categorical data. Developments in both behavior genetic modeling and
Bayesian statistics have also extended structural models using generalized linear
mixed models, enabling researchers to specify random effects for variables with
other known distributions such as Poisson or other exponential link functions (e.g.,
Bolker et al. 2009). Additionally, given that multilevel behavior genetic models
have also been proposed for genetic data (e.g., Guo & Wang 2002), modeling
a random intercept term within a factor model provides the researcher with the
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ability to assess the relative fit of such models within a factor analytic framework,
with the added benefit that the multilevel models can be modeled as special cases
of the general genetic models considered here, as they result when factor loadings
are constrained to fixed values. Finally, as mentioned above, the random intercept
model can also be extended to the case of estimation of growth curve models,
although the psychometric measurement alternatives are slightly more complex in
those situations.

Conclusion

The exploration of more fine-grained model comparisons motivated by psycho-
metric models for the environmental and genetic components of behavior genetic
models appears promising when Bayesian estimation is considered. Bayesian mod-
els appear less susceptible to problems of empirical under-identification frequently
encountered under ML estimation. The tau equivalent and random intercept models
in particular appear to be two parsimonious alternatives to the factor components
usually considered under a Cholesky decomposition or other exploratory factor
approaches. Although care must be taken to assure that estimation difficulties
related to multi-modality and serial correlation in the MCMC estimation procedure
are identified and remedied, use of the Bayes factor appears to be a promising
means for assessing the relative support of candidate psychometric behavior genetic
models.

Electronic supplementary material

Below is the link to the electronic supplementary material.Mplus Program for
Fitting Bayesian One-Factor ACE model (DOCX 21 kb)Mplus Program for Fitting
Final Bayesian Random Intercept Model for Simulated Data (DOCX 25 kb)
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