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Abstract It is well known that longitudinal data can deal with different concepts
than cross-sectional data (see Baltes & Nesselroade, 1979; McArdle & Nesselroade,
2014). The key is in the observed dependency—that allows us to examine individual
changes. Thus, all of the individual changes that can be examined are due to
the longitudinal models (see McArdle, 2008) allowing dependencies among the
observed scores at various time points. It is demonstrated here that the statistical
power to detect changes is an explicit function of the positive dependencies and the
timing of the observations. A lot of time is spent on the move to the latent curve
model (LCM) from the basic regression structural model and the repeated measures
model (RANOVA) because the latter seems standard in the field now. This LCM is
introduced in this chapter as a principle that does have power to detect many more
changes than the usual regression analysis but it comes along with several (to be
discussed) assumptions.

The four articles to follow in this volume are reviewed with longitudinal
dependency in mind, and the highlights of each chapter are brought out. The chapter
“Nonlinear Growth Curve Models” extends the LCM to handle serious forms
of nonlinearity, and this is clearly prevalent in Psychology. The chapter “Stage-
Sequential Growth Mixture Modeling” extends this work to include multistage
models, Poisson relations, all in the context of a multiple mixture model. This is
a fairly complex example. The chapter “General Growth Mixture Modeling: The
Study of Developmental Pathways of Externalizing Behavior from Preschool Age to
Adolescence” is a real-life example that includes LCMs for five mixture groups. The
chapter “A Generalization of Nagin’s Finite Mixture Model” extends the mixture
models further, mainly by adding a slope component.

But what is also important in this regard is “measurement invariance” and how
this can be crucial to understanding changes. Some elaboration of the early work
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on scales is further developed for selected items. The data to be considered here
for LCM are a subset of the full set of data collected in the Cognition in the USA
(CogUSA survey; McArdle & Fisher, 2015). These scales were chosen in a way
that would be consistent with the principles of multiple factorial invariance over
time (MFIT) but the result of the age-related changes over two waves was largely
unknown and in need of establishment. Basically, we first try to establish MFIT over
the two waves and then look for latent changes in these scales over age. Thus there
are only eight scales to consider here (four cross-sectional scales by two longitudinal
occasions), so there is still a lot of work to do!

It is well known that longitudinal data can deal with different concepts than cross-
sectional data (see Baltes & Nesselroade 1979; McArdle & Nesselroade 2014).
That is, cross-sectional data has many good opportunities for “between person
differences” but it cannot deal with “within a person changes.” The first dependency
that is created and observed is that the same person is used at multiple occasions.
This dependency has been used in multivariate modeling a great deal. Because the
same person has multiple inputs and outcomes we can deal with this in different
ways. All of the individual changes that can be examined are due to the longitudinal
models (see McArdle 2008) allowing dependencies among the observed scores at
various time points. This dependency is also responsible for the popularity of multi-
level modeling (see Bryk & Raudenbush, 1987, 1992). It is demonstrated here
that the statistical power to detect changes is an explicit function of the positive
dependencies and the timing of the observations.

The typical lack of dependency is monitored in statistics by a careful assessment
of the original scores, typically using linear regression with an outcome score (Yn)
and a predictor (Xn) score and usually written as

Yn D “0 C “1Xn C en; (1)

where the regression terms “0 and “1 are thought to apply to everyone, and the
residual term (en) is an individual characteristic that is unmeasured and supposedly
follows a normal distribution. This is an effort to find the relationships between some
outcome Y and the input variable X. If X is a group then this model provides a way to
determine group differences on the outcome (the usual ANOVA as a between groups
t-test). But this is not an effort to deal with observed dependency in traditional
regression analysis (see Fox 1999).

But some people noticed that having an individual measured more than once
created a statistical virtue. Indeed this was the stimulus for progressively repeated
measures. One classical representation of longitudinal data can be found in the
repeated measures model for the analysis of variance (RANOVA; see Fisher 1925).
In this first model the individual score at any time point (Y[t]n) is assumed to be
decomposed as
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YŒt�n D “0n C “1Xn C eŒt�n (2)

where the individual (n D 1 to N) is allowed to differ at all throughout the time
series (t D 1 to T) in two ways: (1) Individuals are different from one another at
all times, and (2) there are random normal fluctuations at each time point (e[t]n).
The use of the X weighted function is an adjustment in the mean of the scores for
group differences in the trends over time. This model can give correct statistics for
the mean of the individuals and the effect of X (assuming it is the same over all
occasions) as long as the contrast questions are “spherical” in shape (among others,
see Davidson 1972; Huynh & Feldt 1976).

The repeated measures model permits the power to detect differences between
treatment groups in means (or over time) as a function of the standard deviations
of the scores (as usual, with the sample size included as the square root of N at the
end). But in repeated measures, the variance at the second occasion is also based on
the correlation of the observed scores over time:

�d D .m Œ1� � m Œ2�/ =
�

sŒ1�2 C sŒ2�2
�

� 2 ..s Œ1� C s Œ2�/ r Œ1; 2�/ (3)

where we have symbolized the estimated mean difference as �d, using the two
observed means as m[1] and m[2], the two observed variances as s[1]2 and s[2]2,
and the observed correlation over time as r[1,2]. This is nothing more than the mean
difference over the standard deviation, but the correlation is for the same measure at
two occasions. So for the same mean difference (m[1] � m[2]) as found in a cross
section we can say we have found a significant different from zero if the correlation
of the two measures is positive (which it typically is; see Bonate 2000; Cribbie &
Jamieson 2004). For this reason, it is typically far better (depending on the sign
of the correlation) to measure a person twice than to measure twice as many people
just once. That is, the longitudinal case is far more powerful than the cross-sectional
case. This is not the only issue of statistical power (see Tu et al. 2005) that could be
considered, but it is relevant here. Of course, there are more than two time points
over which change is to be measured, and this typically increases our power.

The Move to a Latent Curve Model

A straightforward generalization of this RANOVA model allows the move to a latent
curve model (LCM) and makes it not very hard to understand. This LCM was
first used by Tucker (1958, 1960 1966) and Rao (1958), and later Meredith and
Tisak (1990) gave it a structural equation model (SEM) interpretation (also see
McArdle 1986 and McArdle & Epstein 1987) to determine the best fitting curve to
the observed data. Basically, the slope can vary along with any way the individual
changes. Each individual is assumed to have three latent variables, defined as
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YŒt�n D Ln C Sn� Œt� C uŒt�n (4)

so the three sources of variation in any response are: (1) A constant change for the
individual over all times (the latent level D L), (2) a systematic change (based on a
slope score D S, which is systematic with the set of basis coefficients D �[t]), and
(3) a unique change D u[t], which is essentially random with respect to the other
changes. We can examine that the set of basis coefficients (�[t] is not necessarily
linear) to determine the slope of the best fitting line or trajectory of the data, but this
line supposedly has the same coefficients for everyone.

All sources of individual differences are indexed by variance (¥L
2, ¥S

2, and §2).
In addition, the constant change is allowed to have covariance (¥LS) or be correlated
(¡LS) with the systematic changes. The variance that remains (the uniquenesses,
§2) is assumed to be uncorrelated with the changes or the starting point and is
furthermore assumed to be equal over time.

We can also have the observed group effects on these individual coefficients,
and we can do what we want with them. What is usually done follows the usual
regression logic with two of the latent variables as new outcomes:

Ln D ’0 C ’1Xn C eLn and Sn D “0 C “1Xn C eSn (5)

in which case the eL and eS account for the residual variance and covariance. This
kind of mixed model function, including both fixed (’0, ’1, “0, “1, and �[t]) and
random (¥L

2, ¥S
2, §2, and ¥LS) effects, can be evaluated for goodness of fit using

the standard SEM statistical logic (see Meredith & Tisak 1990; McArdle 1986). If
the model fits the data of means and covariances we assume that the score model (of
[4] and [5]) is reasonable.

The kind of change we will test is dependent largely on the set of basis
coefficients we employ. We can force the systematic change to be linear with the
time simply by fixing the coefficients �[t] D [0,1,2,3 : : : T]. This is often done, but
it is only one option, and there are many others. We can even estimate some of the
coefficients (T-2 in the one factor case) so that they form an optimal curve for the
data. This is basically what the earliest pioneers (Tucker, Rao, Meredith, etc.) did.
But there are many more ways to examine the curves and a lot can be done here.
Using the basic logic, we can also consider more than one curve for these data (as
done in later chapters).

The LCM is considered useful now because it can describe both, group (i.e.,
fixed) and individual (i.e., random). For this reason it is popular in psychology
where we often are interested in group effects but individual differences from the
same perspective. We should note that it is not widely used in other areas of science
(e.g., Econometrics) where the dominant paradigm uses time as a causal hinge,
so which measure came last in time is regressed on all the prior instances. The
same longitudinal data can be used in this way (see McArdle 2008; McArdle &
Nesselroade 2014).
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We note immediately that the LCM does not try to explain how the prior time
points (if measured) impact the subsequent events. This makes the procedures of
LCM more descriptive than inferential. But all is not lost because there is some
savings in the number of parameters used to define these differences.

Model Fit and Model Selection

A good question can be asked about “Does the model fit the data?” This question
can be answered in a number of ways. But what we want is a model that has easy to
understand parameters and fits as well or better than others of its kind. The approach,
known by the Bayesian Information Criteria (BIC) is used throughout this book so it
is useful to investigate it further now, according to Raftery (1996) and Nagin (2005,
p.64) the formula for BIC can be written as

BIC D log .L/–1=2p log.n/ (6)

where the log is the natural logarithm, and L is the model’s maximum likelihood,
and this is penalized (lowered) by p, the effective number of parameters used, and n,
the sample size of individuals used. “If one is comparing several models we should
prefer the one the lowest BIC values.” (Raftery 1996, p. 145). In this way, the BIC
“counterbalances” a good fitting model by the number of parameters and the sample
size used. So, although it does not seem to be the fit of the model, it can help choose
one model among many others. What we hope to obtain is a model where the BIC
is as negative as possible, although there are several ways to use this information.
Several keen insights into how this BIC behaves are given in Nagin (2005), and
these will not be repeated here, but the use of Bayes factors is illustrated. The use
of the BIC is obviously Nagin’s favored device for model selection with groups, but
he does conclude that:

Such debate is important for advancing the theoretical foundations of model
selection. However, disagreement about the technical merits of alternative criteria
may obscure a fundamental point—there is no correct model. Statistical models are
just approximations. The strengths and weaknesses of alternative model specifica-
tions depend upon the substantive questions being asked and the data available for
addressing these questions. Thus the choice of the best model specification cannot
be reduced to the application of a single test statistic. To be sure, the application of
formal statistical criteria to the model selection process serves to discipline and
constrain subjective judgment with objective measures and standards. However,
there is no escaping the need for judgment; otherwise insight and discovery will
fall victim to the mechanical application of method. In the end the objective of
model selection is not the maximization of some statistic of model fit. Rather it is
to summarize the distinctive features of the data in as parsimonious a fashion as
possible (Nagin 2005, p.77).

I can easily say I am in complete agreement about these model-fitting issues.
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Potential Biases

Thus, the collection of longitudinal data is useful because: (1) They allow the study
of the natural history of the development of problem behavior, such as externalizing
behavior, its onset and termination. (2) They allow the study of trajectories or
pathways. A pathway is defined as “when a group of individuals experience a
behavioral development that is distinct from the behavioral development of another
group of individuals” (Loeber & Farrington, 1994, p. 890). Trajectories or pathways
provide information of processes of continuity and discontinuity and on inter-
individual differences. In addition, Loeber and Farrington (1994) postulate that
the best studies now rely on multiple informants. The chapter by Stemmler and
Lösel (Chapter 4) meets all of these criteria and this chapter should be considered
carefully.

But we need to be clear about the difference between a repeated measures design
and a multivariate design because both allow correlation over time. For both, sample
members are measured on several occasions, or trials. But in the repeated measures
design, each trial represents the measurement of the same characteristic, in the same
way, at a different time. In contrast, for the multivariate design, each trial represents
the measurement of a different characteristic. It is generally inappropriate to test for
mean differences between disparate measurements, so the difference score is useful
(in contrast to what is stated in Cronbach & Furby 1970).

But the longitudinal method is not without some well-reasoned detractors (see
Rogosa 1988). Among many critiques of the longitudinal method: (1) It is hard to
get the representative sample to come back to a second testing, and the people who
do come back have done very well at the first time (see McArdle 2012); (2) if they do
come back, they have seen the measures before, so it is difficult to measure exactly
the same constructs at a second time, without retest or practice effects; and (3) the
construct or thing that we want to measure may have changed, and we will not know
it by simply looking at the variance or taking the difference between measures.
These are some of the many potential confounds of the longitudinal method.

The results of these problems lead us to think that a cross-sectional study had
less potential confounds than a longitudinal study. This is hardly ever true because
these conditions can occur in cross sections as well, and we may not know it.

Assumption 1: In the LCM, the Latent Scores Used Are
Related to Latent Change Scores

It seems that all the prior work has focused on the “change” at the individual and
group levels but very few researchers are willing to say so. Instead, words like
“curve” or “slope” or “trajectory” are used. But there turns out to be an easy way to
represent these basic change ideas and we will usually do so here.

We can define the basic model of change to isolate the functions as

http://dx.doi.org/10.1007/978-3-319-20585-4_4
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YŒt�n D Ln C
X

i D 1; t f�yŒi�ng C uŒt�n (7)

so the changes are just accumulated up to that time (i D 1 to t). This is not intended
to be a controversial statement and it leads to the same fit as the prior linear models,
but it is really another way to consider have the outcome at time t (after McArdle,
2008).

The change as an outcome can be strictly defined at that latent variable level
(after McArdle & Nesselroade 2014) as

�yŒt�n D yŒt � 1�n– yŒt�n or yŒt�n D yŒt � 1�n C �yŒt�n; (8)

so the latent score is the source of all inquiry. This can be useful in a number of
interpretations, especially for the regression of latent changes. For example, we now
can fit

�yŒt�n D “0 C “1Xn C e�n (9)

so the latent change score is modeled directly, and has a residual (e�n). But the
LCS approach is entirely consistent with the LGM approach, as stated by McArdle
(2008) and this is why the same values emerge for various estimates. The LCS
model is largely a clearer change-based re-interpretation of the LCM, and the LCS
model can be programmed and used efficiently (see McArdle 2008; McArdle &
Nesselroade 2014).

Latent changes are apparent in this model. Much more could be said about this
approach, but this is all that will be needed here.

Assumption 2: In the LCM, the Model Parameters Have
the Same Shape for Everyone

This assumption is also true of all regression models (see Eq. (1)) but it is most
clearly not appropriate here. That is, we can control the size and sign of some
parameters of the trajectory with the means and the variances of the latent variables,
but the shape of the latent change is a combination that is beyond the usual reach.

The chapters listed here do distinguish between these shapes using an unobserved
difference between people. That is, this clear difference between individuals is recast
at the main reason they are members of a latent grouping—a mixture of different
distributions. This was evidenced in the brilliant early work of Tucker (1960 1966,
also see Tucker 1992), and the subsequent maximum-likelihood formalizations of
Nagin (1999 2005) and Muthén and Sheddon (1999).

This logic using multiple groups is indeed a good idea, because it is focused on
different kinds of changes within the person. But Tucker (1960 1966 1992) seems
to have found a way to differentiate people with standard methods of factor-cluster
analysis. Perhaps the first time this procedure was used in real questions and stated
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Fig. 1 From McCall,
Applebaum & Hogarty (1973,
p. 48)
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clearly was by McCall, Applebaum, and Hogarty (1973, pp. 44–48) who suggest
that there are five clusters of people based on their changes over age in IQ tests over
age (see Fig. 1).

Now it is clear that Tucker (1958 1960 1966) did not have all the statistical tests
(or MLE) to support these choices, nor did he have or did develop the mixture
model as the possibility of a person belonging to multiple clusters (this allowing
for a much better mixture), but he did distinguish large group of persons on their
trajectory using multiple factors and he resolved multiple clusters, so we will
generally consider Tucker’s (1958 1966) work as pre-dating the more recent work
of Nagin (1999 2005) and Muthén and Sheddon (1999).

Assumption 3: In the LCM, the Residuals Are Equal
and Uncorrelated, and the Model Fits

There is much more that could be said about the equality of the unique variance (for
details, see Grimm & Widaman 2010) but the basic idea is on must have an a priori
theory about why these kind of unique but uncorrelated changes are needed. If we
do have such ideas we can remove the variance terms at each time and achieve a
much better fit to the data. We will not deal with these issues too much here. In this
regard this is an unchallenged assumption that deserves much more scrutiny.
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The simple fact that “everything else” is supposedly uncorrelated is actually
never met and yet this is what is tested by the model fit. The test of goodness of
fit is supposed to test whether or not the LCM can be considered viable. But the
way we typically test any hypothesis is to remove all other features until all that
are left are random variables. This is primarily because we do know how to test for
random events (usually with the �2 goodness-of-fit test; but see Raftery 1996).

Assumption 4: In the LCM, the Model Has the Properties
of Invariant Measurement

In all cases, it is also necessary to illustrate the loss of fit due to “multiple
factorial invariance over time,” (MFIT) and how this invariance can be crucial to
understanding changes. That is, some things may not change while others will. Here
we will only use common factor analysis in a simple example. This is a second
dependency because the measures are somewhat the same within a time. Some
elaboration of the early work on any scale is further developed for items. This is
related to both “test bias” and “harmony.” That is, if we assume that a test is a good
measurement of a construct, it should behave the same way at all waves.

I do not view MFIT as a “testable hypothesis” as many others do (e.g., Meredith
1993) but I view this as a necessary feature of longitudinal data. That is, in the
absence of MFIT it is not clear that we can take differences between successive
occasions, and this is critical to most any accumulation model. Thus, this test would
be a useful foil against a measure, and we can use it to evaluate an existing measure.
But to create one, we must be accumulating something, and that something is strictly
defined as the object of our MFIT. Perhaps it is best to say we can evaluate the part
of the MFIT that works the way we intended. At least our intentions for MFIT are
clarified in this way.

Assumption 5: In the LCM, the Model Variables All Have
Normal Properties

Another kind of dependency is that due to items that are miscalculated as normal.
That is, we typically assume all variables are normally distributed, even when they
are highly skewed. This is also the case of a variable that can reach an upper or
lower limit and should be considered censored (see Wang et al. 2008). As we do not
illustrate here, but could have, this can pose a major problem for our understanding
of the changes (but for an example, see Hishinuma et al. 2012; McArdle et al. 2014).
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Assumption 6: In the LCM, the Individuals Have All Been
Measured at Exactly the Same Developmental Time Periods

This is also probably never true in epidemiological and psychological studies. The
problem comes only because the model assumes this is true. In fact, the age-at-
measurement is usually not told to the analyst. This means people can be “measured
on their birthdays” or at approximate yearly intervals of time, but we just never
know. The word “approximate” is used here frequently, and many see this as a
natural feature of longitudinal data. But it is not. The big problem that this creates is
that the correlations over time, if they are not in a sequential proper timing, can yield
some haphazard results. The timing is important to future studies and not enough is
done about this issue yet.

The further assumption that we know the true developmental timing is quite
absurd. We do not know this and we do not track it very well either. It could be
age or it could be something else like puberty (see McArdle 2011), but we need to
know it to state how the individuals form groups of people (see Nagin 2005). We
often just use whatever longitudinal data we are given, because we are very happy
to get some, and we assume we can do something with it, as is. But we cannot.

The Studies of the First Section of This Book

The studies of the first section of this book seem to criticize some of the basic
assumptions of the standard LCM. This should be considered fair as a target because
it is loaded with assumptions and the linear LCM was designed to be just a starting
point for future work. The concepts of simultaneous estimation are also critical here
to distinguish what is being done.

The first study by Paolo Ghisletta, Eva Cantoni, and Nadège Jacot as presented
here is an examination of more than linear relationships in psychological research,
which they term an NGCM (for nonlinear growth curve model). That is, they do
not stop at the quadratic form of the prior LCM, and they do not consider the linear
model to capture all the relevant variation in their outcomes (in their example, four
blocks of 20 trials of time on task in a pursuit rotor task). Instead, they consider
other terms (see their Eq. (6)) that are not a usual part of this basic model (our Eq.
(4)).

These author(s) do fit a wide variety of nonlinear models to these data, and this is
notable, and they compare each, and this is also notable. But they do drop linearity
quickly as a possibility and I think this is a mistake. That is, before we deal with
how nonlinear a model can be I think we ought to first see how linearity works, in
terms of explained variance at each time point (˜2[t]) at least.

So I also think these claims can be made from a different perspective. That is,
the LCM with a different curve may capture some of these individual changes. The
curve could obviously be defined using the last 18 measurements, but an exponential
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curve could be fitted with less parameters. Nevertheless, the model with the best fit
for least parameters is an obvious choice. This, at least, is how I could deal with
all the nonlinearity that seems to be present here. I would like to see LCM and the
quadratic model as a comparison in their tables.

The second application titled “Stage-sequential growth mixture modeling with
criminological panel data” is by Jost Reinecke, Maike Meyer, and Klaus Boers
does exactly what this title suggests. However, it uses General Growth Mixture
Modeling (GMM, from Muthén & Sheddon 1999) within a LCM framework to
empirically distinguish between people. Expanding upon the prior work of Kim
and Kim (2012) they consider three distinctive types of stage sequences: (1) stage-
sequential (and linear) growth mixture models, (2) traditional piecewise GMM,
and (3) discontinuous piecewise GMM and sequential process GMM. These three
models are applied to a range of adolescence and young adulthood using data from
the German panel study termed, Crime in the modern City (CrimoC, Boers et al.,
2014). In the case of count variables a Poisson or negative binomial distributions
(following the work of Hilbe, 2011, not Nagin 2005) can be considered which give a
better model representation of the data. With the count data that criminologists seem
to have, the Poisson model for measurement is used because it is more appropriate.
That is, a regular regression model (but not evaluated) may still work, but the
Poisson model that is used here as a measurement device because is sensitive to
the use of a probability of an event. The zero-inflated Poisson (or ZIP; see Nagin
2005) model may even be a better choice because it essentially proposes that the
reason for the zero counts (no criminal acts) is possibly different than the reasons
for the rest of the counts (one, and so on). This can always be compared to the
assumption of a continuous distribution of the LCM. And this all can be combined
sequentially in a program like Mplus (Muthén & Muthén 2012).

This chapter is notable in a number of ways. First the author(s) use a three-
part curve model, with knot points that are notable in terms of substance. This is a
distinction that is worthwhile to make and it could be pursued further. I do not see
this as quite as different as the typical LCM, so I would compare the fit of both of
them. Second, they simultaneously use a measurement model based on a Poisson
distribution for the scores. This is decidedly different and is most appropriate for
data that comes in the form of counts. But their justification for the use in real data
is not presented clearly. Third, they simultaneously use a mixture model to examine
for the German Crime data. This use of multiple groups is based on the trajectory
differences and they assume these cannot be accounted for otherwise. I would very
much like to hear what Nagin (2005, p. 54) says about this part of the analysis. But
in any case, any one of these three concerns would be a challenge to fit but they
proceed as if this is all standard. This is not standard, and what they do here is quite
amazing, partly because it can be done at all.

The differences between the current versions of Mplus (Muthén & Muthén 2012)
and SAS PROC TRAJ (Nagin 2005) are important here. Currently, in Mplus, we
can ask if any parameter is invariant over groups, and we do not need to define the
group membership in advance. This can be in terms of any mean, regression, or
covariance component. But in this same sense the analysis is entirely exploratory.
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If we further assume that the factor loadings �[t], for at least t D 3, T, are different
we can have different curves. This can be written with different means and variance
terms so the entire placement within groups can differ. This is somewhat different
than assuming different linear or polynomial coefficients for the same data. Much
more could be said here (see Nagin 2005, p. 54) but Mplus 7 (now used by almost
everyone here) seems much more flexible to me now. But I fully expect the debate
about “groupings” will go on, and this is productive.

The third application by Mark Stemmler and Fredrich Lösel is titled, “Devel-
opmental pathways of externalizing behavior from preschool age to adolescence,”
and also uses general growth mixture modeling (GMM) with BIC this time to
separate five categories of persons among their total sample size of n D 541. The
goal of this study is to analyze the data of the Erlangen-Nuremberg Development
and Prevention Study (ENDPS; Lösel et al., 2009) for the first time with regard
to different trajectories for externalizing behavior. ENDPS is a normative sample
and is a combined experimental and longitudinal study on antisocial child behavior
covering a time period of nearly ten years. Social behavior was rated by multiple
informants such as self, mothers, kindergarten educators, and school teachers. Using
this longitudinal data, they seem to have found (1) the “high chronics” (2.4 %;
n D 13), who are receiving the highest values for externalizing behavior from
childhood on up to adolescence; (2) the “low-chronics” (58.8 %; n D 317) who are
low on externalizing behavior throughout the years; (3) the “high-reducers” (7.9 %;
n D 43) who start out high in childhood, but who reduce their externalizing behavior
monotonically over time; the (4) “late-starters-medium” (8.7 %; n D 47); and the (5)
“medium-reducers” (22.4 %; n D 121). The results stress the idea of a life course
perspective, which enable the study of the natural history of the development of
externalizing behavior, its onset, and termination.

In all, these authors give an excellent history of the GMM, and demonstrate how
it has been used before in many criminological samples. They seem to show that
most studies report between three and five groups (with a total range of two to seven
groups), and they use the BIC. Most studies show the group of life-course persistent
or chronic offenders, and one group that does not exhibit violent, aggressive, or
delinquent behavior; in addition, there are existing groups of late onset or desisting.
Jennings and Reingle (2012) claim that the number and shape of the groups depend
on the nature of the sample (high risk versus normative sample), the life course
captured, the length of the observation, and the geographical context. Among
the author(s) conclusions, they postulate that further research should be based on
multiple observations and across multi-informants (e.g., child/youth reports, parents
and teacher report) to ensure the best results. Since this result requires expertise in
criminology, we must leave it up to the reader to make sense of these trajectories.

The fourth application by Jang Schiltz is proposal for the potential extension
of “the Nagin model” of multiple groups. This can be a quite useful technology
because in this representation we do not have to think everyone has the same general
nonlinear slope of their trajectory. The problem with Nagin’s original formulation is
that he only determined trajectories for the mean level and a quadratic slope, and less
effort was put into the variance terms or other forms of the slope (see Nagin 2005,
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p. 54). These changes are made and the basic model is extended here to include
group differences in the slopes and the error terms.

Since we all believe that there will be substantial heterogeneity in real data—
different change patterns for different groups—and the LCM will not be capable of
dealing with these based on two means and covariances alone, it is clear that this
model is more correct. This and other examples on the use of the mixture model
is certainly a powerful latent variable modeling approach. But this latent variable
model is not the only way to explore the groups—they can even be formed out of
measured variables too (see Brandmaier et al. 2013).

The exploratory use of measured rather than latent variables is attractive on a
number of counts. First, there are usually many extra ancillary variables that are
measured and used as covariates for no particular reason other than they exist. As
we will demonstrate, this typical usage can tell us something about their impact on
mean differences or between group effects. But what we are interested in is putting
them into the analysis is to see if they impact the variances and covariances also.
Second, there are always extra ancillary variables that are measured and these could
be selected for this exploration. That this is any mixture model is an exploration that
is obvious to anyone who uses them and the selection of a group is complicated. So
we do not try to handle all these assumptions at once but instead we refer to Nagin
(2005) for details on this issue.

Our Cognition in the USA (CogUSA) Study

Our CogUSA study (see McArdle & Fisher 2015) was designed to do something
different than those in this section—that is, the most notable feature of the design
of this particular longitudinal study is the variation of age at the initial time, and
the variation between time intervals for different waves of testing. As stated earlier
in our last Assumption 6, this is a feature of many psychological measurements
although it is hardly ever dealt with on a formal basis.

Our ability to measure similar constructs in an in-person face-to-face (FTF)
interview and over the telephone (TEL) is not the key issue here, but it is important.
In prior surveys (including the HRS; see Juster & Suzman, 1995; Heeringa,
Berglund, & Khan 2011) the only human abilities measured over the phone (say,
using the Telephone Interview of Cognitive Status; TICS; Fisher et al. 2013) were
the very simplest ones (Episodic Memory and Mental Status; see McArdle, Fisher, &
Kadlec 2007). It is not too surprising that these simple variables could be measured
in the same way in either modality (FTF or TEL) and still retain MFIT (see McArdle
2010; McArdle & Nesselroade 2014).

But when we consider measuring something as important in aging research as
fluid intelligence (Gf ) in a survey, we remain perplexed (see Lachman & Spiro
2002). This variable needs to measure “reasoning in novel situations” and this is
fairly hard to do. One of the ways this can be done in surveys is with indices that
supposedly measure numerical reasoning (NR), a decided subset of all reasoning
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and thinking, and the measure of numerosity (NU) from the HRS is a good indicator
of this. Another way to consider NR this is to measure Serial Seven’s (S7) from the
HRS, because this takes some NR as well as holding specific but complex ideas in
memory (see Blair 2006). Still another way to indicate NR is to measure something
like Number Series (NS) because these are intended to be small puzzles in numerical
form.

One adaptation is that we initially reasoned that people, especially older people,
would not take all test items necessary for a reliable score on anything, so the items
administered had to be cut down. In the case of both Immediate Recall (IR) and
Delayed Recall (DR) and Numeracy (NU) and Serial 7’s (S7) the work had already
been done by the HRS staff. These were properly considered as short forms due to
the required telephone constraints on time.

The final telephone definitions follow on Table 1. They were all administered
over the telephone and this is a limitation because we do not really know what the
respondent is doing. These include definitions of IR, and DR to measure a general
memory or general retrieval (Gr) factor, and NU, and NS to measure a general
fluid (Gf ) factor at each time ([1] or [3]). We will see if the fit of this specific two
factor model is different than a one general intelligence (G) factor, but we will
examine the factor loadings. Clearly, McArdle et al., (2007) found the first two
scales (IR and DR) to be highly correlated (r 0.80) and suggested they be added
up and calculated as a single score termed episodic memory (EM) to distinguish it
from another scale of cognitive measurement from the TICS, mental status (MS;
fBC C S7 C NA C DAg / 4), but the second factor here is much different. And we
hope it is clear that several other cognitive measures obtained in CogUSA were not
yet used here (see McArdle & Fisher 2015).

For common factors to retain their meaning over time, we required them to have
“strict” invariance (Meredith 1993). In this case, this implies the factor loadings (ƒ),
unique variable intercepts (I), and unique variable variances (‰2) are all assumed to
be invariant over time (for each measure). We also brought all means differences to
the factor score level. This is typically tested but it is clear that any differences or
changes over time must go through the common factors or they are not worth using
and summarizing at this level. This is basic or, indeed, fundamental to our definition
of the latent variables. This does imply that the way we measure the common factors
can change from time to time, but for now we assume they are identical at both
occasions of measurement.

Many other researchers search for different forms of invariance (e.g., see Byrne,
Shavelson, & Muthén 1989; Reise, Widaman, & Pugh, 1993; McArdle, Petway, &
Hishinuma 2014), and now this is an evaluation of configural, metric, strong, or
strict invariance constraints. We will not partake in this quest again here. This is
primarily because we only want the number of factors (K) to be determined by what
is comparable over time in measurement (as in McArdle & Cattell 1994; McArdle
2007) not by a lack of invariance. There is a prominent thought that the search for
the type of invariance of a measure is crucial (see Byrne et al. 1989), but if this is
not met then the number (or type) of common factors (can be) needs to be altered to
meet this criterion. That is, the criterion of invariance should always be met before
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Table 1 Selected Telephone Measures used in CogUSA (McArdle & Fisher, 2015)

All HRS/AHEAD cognitive measures were selected to satisfy the following considerations: (a)
provide descriptive information on a comprehensive range of cognitive functions; (b) span all
difficulty levels from competent cognitive functioning to cognitive impairment; (c) be sensitive
to change over time; (d) be administrable in a survey environment with lay interviewers, over the
telephone, in a short time; and (e) be valid and reliable (from the HRS documentation Report by
Ofstedal, Fisher and Herzog. 2005; DR-006). As always, the IWER is asked a series of questions
about the incorrect responses. In addition, several other clearly cognitive measures (BC, S7, RF,
CESD) are obtained at both waves were not used in these analyses
IR D or immediate recall (IR)—One set of 20 stimulus word (from four lists) are read aloud, and
the respondent (R) needs to restate these words (no credit is given for errors of any kind). The
observed score is from 0 to 10. At W3 they are administered a different list of ten words (from the
four lists)
DR D or delayed recall (DR)—after about 5 min (depending upon how long it took to do the eight
CESD items), the R is asked if they recall any of the words from the IR. They are then asked to
restate these words (no credit is given for errors of any kind). The observed score is from 0 to 10
NU D “Numeracy”—Since HS 2002, the R is asked to answer up to three numerical questions: (1)
“Next I would like to ask you some questions which assess how people use numbers in everyday
life. If the chance of getting a disease is 10 %, how many people out of 1,000 would be expected
to get the disease?”(2) “If 5 people all have the winning numbers in the lottery and the prize is
two million dollars, how much will each of them get?” (3) “Let’s say you have $200 in a savings
account. The account earns ten percent interest per year. How much would you have in the account
at the end of two years?” The observed score is from 1 to 3
NS D Even though we wanted to, the Woodcock-Johnson “Number Series” items was far too long
to be included in CogUSA so we cut it down from about 42 items to about 6 adaptive items. A
modification of “which six” items was tried in each of the two occasions, Wave 1 (W1) and Wave
3 (W), but both testings supposedly yielded a W-ability estimate of NS. In the W1 testing the plan
was to administer a first item of medium difficulty (for their level) and (0) if they got it incorrect
an easier item about half way down the scale (based on the known difficulty of the WJ item) was
presented, but (1) if the R got the item correct a harder item, about half way up the W-scale,
was presented. All testing ending at six items and a WJ score was estimated from this pattern of
responses. In the W3 testing s similar items were administered in a block adaptive fashion. The
key idea here is to only administer six items, but the same three items are given first, spread out
in difficulty, and the second set of three items are supposedly centered around the persons’ ability
level. In this case a W-score can be formed. Thus we assume, but do not test, MFIT

we evaluate the latent changes (as in McArdle & Cattell 1994). This is only our
belief system, and we use this belief at all occasions, but we should point out that it
is not one used by many others.

Methods

Available Data

The data to be analyzed are a small subset (4) of scales from recent tests of Cognition
in the USA (CogUSA; see McArdle & Fisher 2015). These scales were chosen in
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a way that would be consistent with the principles of MFIT but the result of the
changes over two time points (W1 and W3 here) is unknown. Basically, we first
try to establish MFIT over all ages and then look for changes in these scales over
ages. We now only present eight scales in all to consider (four cross sections at two
longitudinal occasions).

At each occasion, the people who took the HRS (for details, see Fisher et al.
2013) were asked to fill out the forms for all scales. Most specifically, they were
asked each time to fill out a questionnaire about their own health and well-being
and the full CES-D was included. We did not use sessions at Wave 2, we only
use Sessions 1 and 3 primarily because this time-lag did not offer enough Age
differences for Age changes to be picked up. We also do not include all items in
analyses here, but we will only include eight scales from the full set (of many). We
will state that 13/20 items (from the Center for Epidemiological Studies-Depression
scale; CES-D) were previously analyzed by McArdle et al. (2014) who seemed to
find MFIT in 13 items from the full set (of 20 items). But here there are several
differences: (1) We deal with scales not items; (2) the confusion of the usual testing
of MFIT was emphasized in McArdle et al. (2014); (3) in CogUSA the ages-at-
testing at each occasion are substantially different.

The plots of Figs. 2a–d illustrate what we are trying to examine in the model.
These are plots of the four manifest variables (IR, DR, and NS, NU) against the ages-
at-testing for each person separately (i.e., joined by a line), and these illustrate lots of
variability and only one kind of dependency among persons (that is, the people are
largely the same ages when they are measured but the scores do change over age).
They could change for a number of other reasons (such as errors of measurement or
practice effects; see McArdle & Woodcock, 1997).

Models

Figure 3a is an elaboration of a latent curve model with Age differences as a double
cross-sectional variable. The only variable used here is the NS measured at two
occasions (1 and 3 for comparability) and the age-at-testing is also measured at each
of these waves. The model here uses the two occasions in a double cross-sectional
mode in an effort to capture the means and covariation of the NS-age relationship.
That is

NSŒ1�n D “01 C “11 .D funfAge Œ1�gn/ C e1n

and
NSŒ3�n D “03 C “13 .D funfAge Œ3�gn/ C e3n

(10)

where some fixed function of age is used as a linear predictor (e.g., such as
funfAGE[t]g D (Age[t] � 65)/10—so the intercept is at age 65 and the difference
in score is for each 10 years of Age). But using SEM we can also test whether the
equations (“01 D “03, “11 D “13, and the respective residual variances, §1 D §3) are
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Fig. 3 (a) A path diagram of a one-variable model for multiple waves of measurement (W1 and
W3) but as usual treated as a dual cross-section. (b) A path diagram of a one-variable LCM model
for multiple waves of measurement (W1 and W3). (c) A path diagram of a one-variable LCM
model for multiple waves of measurement (W1 and W3) with different ages of measurement
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supposedly the same at each time of measurement. This could be useful because we
may find it does not work the same way at Wave 1 and Wave 3, primarily because of
the exposure at Wave 1. At very least, the prespecified funfAgeg becomes a testable
hypothesis.

Figure 3b is a path diagram of a LCM in cases of only one change. The variable
here is the NS measured at two occasions ([1] and [3] for comparability). But the
model here is an effort to capture the mean and covariation of the NS test. We
notice that this uses the leftover variation as the difference (or slope) and this simple
representation can b credited to Joreskog (1974).

Figure 3c answers a different question about where we would add age variation
to this model. Recall in CogUSA (Figs. 2, 3, 4, and 5) there is a lot of age variation
at the beginning (Wave 1) and they are not measured over the same age interval over
time. This variation in age was considered a random source of variation (and it was
done on purpose) because we did not really know how to break up ages into groups.
This is an expression of the work of the primary author of this paper (see McArdle &
Woodcock, 1998). For these model to work, some predefined fixed function of age
(e.g., D f (Age); it does not need to be linear, but it must be pre-specified) needs to be
designated as a regression (or as a factor loading) that must be able to change over
the individual case (because of the different ages-of-measurement). This precise
feature of varying factor loadings can be used in many current computer programs
(see Appendices 1 and 2 here for Mplus code). The concept of the individual loading
was used by McArdle (1998, pp. 390–406) fitted together with the concept of
individual likelihoods (primarily to check on individual fit). This examination of
age-variation is an important concept here, but we would use this representation for
any departure from the average timing that is measured (see LCM Assumption 6).
This is the same concept that was subsequently used by Mehta and West (2000) and
Mehta and Neale (2005) in their description of “definition” variables.

Adding a Latent Variable Measurement Model

Needless to say, these are common factor models where we assume a factor score for
each person (fn) is indicative of multiple measures at multiple occasions. This is an
important addition and it can be done with SEM. Following McArdle (2007), every
variable (m D 1 to M) we measure at each time (t D 1 to T) can be decomposed as

YŒt�m;n D œmf Œt�n C um (11)

into a common part (the time related common factor score fn multiplied by a time
invariant factor loading œm) and a unique part (the random or unique factor score
um). We can think of the variable having an intercept of mean (šm) too, but this could
just as well be a property of the unique factor score. This leads to a common factor
model hypothesized for each time point.
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Fig. 4 (a) A latent variable path diagram of the one-factor model at Wave 1. (b) A latent variable
path diagram of the two-factor model at Wave 1

The specific models fitted to the one time point data are equivalent to many
others, so we will not belabor the process. Needless to say, these are factor models
where we assume a factor score for each person (fn) is indicative of multiple
measures at each occasions (t D 1 to T). This is presented in Fig. 4a, b for both
one and two factors at one wave. We do notice that the one factor (G) also has
several demographic influences, including scaled versions of age (and education,
sex, and race). That is, in addition to the requirement that this factor account for
the covariation of all the internal variables, this G must also account for all the
covariation of all demographic influences with these measured variables. In our
Fig. 4b, two common factors (of Gf and Gr) are expected, and these two factors are
allowed to be correlated above and beyond the external (demographic) influences.
This relaxation of the factor pattern is not the only way two common factors could
be fit here, but it should fit better (see McArdle & Prescott, 1992).

In the next model we consider a single latent variable, perhaps termed a G factor
for general intelligence. This is a very popular model for a number of good reasons
(see McArdle 2012) and it can be fitted here to the four variables. In this context, the
model makes the additional assumption that all four variables have a common part
and a unique part. The common part is not necessarily the same for each score, and
this size is as indexed by a factor loading (œm) or by the size of its’ unique variance
(§m

2). The size is only relative here and this is made clear by the requirement that
one of the factor loadings (or the common variance) needs to be fixed at some
positive value (usually œ1 D 1).



24 J.J. McArdle

IR[1]

a

b

DR[1] NS[1] NU[1]

g[1]

IR[3] DR[3] NS[3] NU[3]

g[3]

ρΔ3,L1

ρΔ3,L1

μΔg[3]

λIR=1

λIR=1

νIR νIRνDR νDRνNS νNSνNU νNU

λIR=1

λIR=1λDR λDRλNS λNSλNU

λDR λDRλNS λNSλNU λNU

λNU

Δg[3]

=1=1

Lg[3]

=f(Age[3])
=f(Age[1])

IR[1] DR[1] NS[1] NU[1]

g[1]

IR[3] DR[3] NS[3] NU[3]

g[3]

1

=1

=1=1

Lg[3]

=f(Age[1])

=f(Age[3])

Δg[3]

Fig. 5 (a) A latent variable path diagram of the invariant one-factor model for multiple waves of
measurement (W1 and W3). (b) A full (means and covariances) latent variable path diagram of the
invariant one-factor model for Wave 1 and Wave 3



The Observed Dependency of Longitudinal Data 25

As an alternative, in the next model we consider multiple latent variables termed
Gf, for general fluid reasoning, and Gr, for a general memory or general retrieval
function of memory. This multiple factor model is a very popular model for a
number of good reasons (see McArdle 2012) and it can be tested (fitted) here to
the four variables. This is not necessarily the best fitting model to these data (that
is, other factor loadings can be estimated instead). The model requires that each
factor loading have a fixed positive value (usually œ1 D 1, and œ3 D 1) but this is
an arbitrary choice that can be altered but must be made by the investigator. Most
critically, this is the same as the prior model if the correlation among the two
separate factors is unity.

In this context, the model makes the additional assumption that all four variables
have a common part and a unique part. The common part is not necessarily the same
for each score, and this size is as indexed by a factor loading (œm) or by the size of
its unique variance (§m

2). The size is only relative here and this is made clear by
the requirement that one of the factor loadings (or the common variance) needs to
be fixed at some positive value (usually œ1 D 1, and for the second factor, œ3 D 1).

The same comparison of these two models can be examined over time and models
for this type of data are drawn in Fig. 5a, b. Here the factor or factors have to do
two related things: (1) Define the internal features of the covariation of the measures
within a time point, and (2) account for the changes over time in the measures. Since
we want the same factor at time 1 and time 2 (or W3 here), and since we define
the factors by their factor loadings, we do force the factor loadings to be exactly
the same over time. Although it is not necessary for this problem, to simplify our
presentation here, we assign the unique variances to be the same over time as well.

Of most importance here is change over age, and the common factor part can
further be decomposed as

f Œt�n D f0n C f1n�Œt�n C en (12)

where f0n is the unobserved level or intercept of the factor score, f1n is the
unobserved slope of the changes due to a one-unit shift in the �[t]n, and en is
the random noise or disturbance that is thought to be randomly distributed around
the predicted value of the first two parts. In this way, the factor score can change
and this creates change in the observed variable even with an invariant measurement
model.

The differences between this and other formulations of the more standard LCM
(Meredith & Tisak 1990; McArdle 1986) are that (1) this is a curve of factors model
(CUFFS; after McArdle, 1988) and (2) here we explicitly assume the assignment
of a factor loading that varies across the individual (McArdle & Hamagami 1996,
pp. 106–112; especially p. 108). Of course, individual fitting of likelihoods is
a common feature of many fitting functions now (but see McArdle 1998, pp.
390–406), so we use the program MC here. The consistency assumption for the
individual to look like the group is used to form the basic test statistics—this use
of an individually measured score as a model parameter is sometimes call “adding
definition variables” (from Mx manual; Neale et al., 1993). Indeed, this kind of
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raw data procedure was only available in Mx in the past, and it was based on the
statistical concepts of unbalanced pedigree analysis (from Lange et al. 1976).

If aging impacts the latent score alone we would think that it impacts both the
levels and slopes in some consistent fashion. To this we add that there can be age
differences at Wave 1 and Wave 3, and these are summarized for each person as

f0n D “01 C “11 .D funfAge Œ1�gn/ C e0n

and
f1n D “03 C “13 .D funfAge Œ3�gn/ C e1n

(13)

so the f0 is a level over both occasions, and f1 is a slope that is at two particular time
points determined by the age of measurement. The terms are indicative of a level
(or when the funfAgeg D 0; so at 65 here) and a slope (for each unit—or decade of
age—of funfAgeg) of the prespecified age function. That at is, each person’s unique
contribution to the two ages is built up in this way. Each person has a level and
a slope score and under the assumption that it is the same information about age
changes is present in each variable. We can look further at this function. In other
words, we have essentially taken the Age model to the latent variable level.

Figure 5a is a path diagram of this one common factor model and Fig. 5b is a
more compete version (including means and unique covariances). We fit the latter
one here.

Figure 6a extends this logic to having two common factors at each measurement
occasion, and Fig. 6b is a full mean and covariance path diagram of this extension.
Here the variable slopes and levels are all correlated, and the factor of levels does
not assume a mean difference, due to lack of identification, so we do not add one.

In the final model (Fig. 6b) we use a two factor solution, but we also include:
(1) the means in the diagram (as the regression from a constant triangle), and (2)
the covariance of any unique features of the data (§2[1,3]). This is simply a more
complete picture of the model we will fit.

The same principles hold when we move to multiple occasions of data. The
common factors are supposedly the same, but the age changes in the factor scores is
examined. Here the models of 5a and 6a will be compared.

The key thing we will note about CogUSA is the staggered time lag of this
longitudinal study. This is unusual for a longitudinal study (see McArdle &
Woodcock, 1997), but we put in time lag as a variable because we wanted to study.
That, in most cases of experimental design we vary all the things that are important
to us and leave the rest as fixed quantities.

Results

The summary statistics appear in Table 2 for n D 1,125 people who supposedly took
all four scales at both Wave 1 and Wave 3. These are full information maximum
likelihood (FIML) estimates because only about 98 % participated at all times. In
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for Wave 1 and Wave 3
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Table 2 Summary statistics for n D 1125 participants who were all considered on four scores at
both Waves 1 and 3 (and using FIML)

Notes: W1_NS and W3_NS are scaled by mean D 500 and SD D 10
W1_Age and W3_Age are scaled by mean D 65 and SD D 10
To get back to the original scaling of each score we can simply multiply by the SD and add the
mean

using FIML we basically assume that there is nothing special about those who did
not participate again, and we use their time 1 data assuming they also follow the
same general pattern as we observe in those that did come back. But, for example,
NS is listed with a mean of 2.38 and a variance of 7.79 at Wave 1, and this
can be recast (by the usual W Rasch-scale transformation, following McArdle &
Woodcock, 1997; Here this is a transformation that basically raises the score to a
power of about 9, and then adds 500) into a raw W-scale score of 524, while the
same (or similar) test is listed at a mean of 2.83 with a variance of 9.46 at Wave 3,
and this is a raw W-score of 528. It is thought (by many others) that the W-score will
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have a linear relation with other scales while the raw score will not. The correlation
(in Table 2b) is r�0.520. Thus, the W-scores go up over time in a pattern that is
related to time 1 (those that are high to begin with seem to get high scores here).
The high scores can be accounted for by the ceiling of 600 on both test forms (this
is the highest we would go) and it appears (as we can see in Fig. 2a) people seemed
to get this score with unusually high frequency.

The resulting age-based model #1 is based on n D 1,125 who answered both
scales, starting ages with a mean of 68.83 (with a variance of 106.91) and a time
lag of 1.21 years (with variance 0.23). These are first fitted to Number Series (NS)
at two waves (Wave 1 and Wave 3) although any one of the four scales could be
used. The results are highlighted in the first column of Table 3 and all of Table 4. In
addition the computer script used to assess these variables is in Appendix 1.

The numerical results of model #1 shows NS has a mean at age 65 of �1.36 and
a slope per decade of age of 3.79. These are both significantly different from zero
given their respective z-values, so we can talk about the W-scores of 484 at age 65
and with a positive increase of C3.87 (or C38.7 in W units) points per decade from
that point onwards (and backwards). This should usually be contrasted with model
#0 where no slope is assumed, but the equal variance assumption of the residual
was assumed (in fact an equal and fixed variance assumption had to be used, so this
model has only two estimated parameters; the mean and variance of the level; see
McArdle, 1998). The extra parameters estimated (from the 2 in #0) are the slope
mean, the slope variance, and the covariance of levels and slopes. The fact that all
variables have such large variance estimates (in #1) and that increasing scores go
with increasing ages (this is positive) is a surprise. The fact that model #0 has a
much larger BIC is also a question that requires an answer. Perhaps the age changes
are too small to count here, but the fact that they are positive is a definite difference
from prior results (see McArdle et al. 2007).

The results for the one factor G model of behavior is listed in the next two models
of Table 3 (#2 and #3). In model #3 we fit a level and slope model with one common
factor (as in Fig. 4b). In model #2 we fix this changing score assumption and did not
fit a slope to the G factor and lost substantially in fit (on df D 4). The single factor
with factor loadings set œ D 1 for NS, but the factor loading is estimated as 0.77 for
NU, 2.25 for IR, and 1.91 for DR seem to fit these data very well (with df D 3). The
three extra parameters estimated (from the 10 in #2) are the slope mean, the slope
variance, and the covariance of levels and slopes. The invariant loadings do not add
anything to the misfit here. But the mean intercept of this age slope factor is 2.68
(indicating a raw W-score of 527 at age 65), and the mean of this slope factor is
�0.24, and it is significant, indicating a �0.24 downhill slide in this factor for every
decade of age that is increased.

This is a decidedly different result. It is not at all what the observed data seem to
show (for any subscale) but this does not take the age-of-measurement into account,
it uses only the common (not unique) variance, and it is a closer to what we expected.
In fact, it suggests that (1) the common factor is episodic memory (because the
loadings of 2.25 for IR dominates the factor), and (2) there is some decline over age.
This one factor model is listed as #3 and this is given more completely in Table 5
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Table 5 Parameter estimates for the single-variable (number series) model with age changes

Note: See text for details. The use of 999.000 is used for empty locations and when the individual
varies. This is Mplus 7.11 output from the Appendix 2 program
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and the Mplus computer script that was used is in Appendix 2. We can see the BIC
is a lot larger for the no-changes model (#2), but we do not assume that Age changes
modeled in this way are important. This is only one latent variable after all.

A specially selected (and highly restricted) two-factor model alternative is listed
as #4. This is a more complex two-factor model that allows for more covariation
among the measures but also requires “strict” invariance of the loadings and unique
variances over time. Similarly, all variable intercepts are set to zero here, so the
mean changes have to go through the common factors (as in McArdle & Nesselroade
2014). In this approach the model has two common factors with œ D 1 the required
fixed loading for NS and IR and estimated loadings of 0.74 (for NU) and 0.84
(for DR). This model has 22 parameters, largely due to the extra common factor
covariances, and these extra parameters are penalized heavily by the BIC, including
the level intercepts of 2.82 (or W D 528) and 6.04 (for IR). This still seems to have
the smallest BIC value, so it could be chosen on this basis.

It appears that Gr as measured by IR and DR declines the most over age, with
�0.49 per age decade. The function termed Gf, indicated by NS and NU, decline
significantly but only at �0.27 per decade. In contrast to the one-factor version, the
BIC for this model is smaller, and needless to say, this is far less decline than we
initially expected from a normal aging population, so maybe we do not have the right
factor yet. This has the smallest BIC of all used, so it could be chosen as the best
model for the data. But this BIC (about 31,275) is not much smaller than the prior
BIC (about 32,038), and the two-factor model has a lot of extra parameters so this
substantive model is not yet considered a large improvement.

Discussion

The final model chosen did not have the smallest BIC but it seemed to fit the data
the best. So there is much more to be done here. We fully realize the two-factor
model did not fit as well as we would have liked. We would have liked to separate
apart the aspects of GF and GR but this proved difficult with only 4 measures. But
this is a complicated choice (made here only by BIC) and because the number of
measurements is small and we want to say a lot about aging. That is, we had a
difficult distinction because we were only working with four variables. But this
SEM is a useful starting point even if it only deals with LCM Assumption 6.

We tried to use the standard HRS procedures (e.g., Genesys surveys) to contact
households with some persons in the HRS age range (over 50). We succeeded in
reaching over 3,000 people, but not everyone agreed to test further. We can only
suggest the reader look carefully at Heeringa et al. (2011) and McArdle and Fisher
(2015) for details. At Wave 1 we actually had measured over 1,500 people we have
measured age and other demographics (like respondent education, sex, minority
status, health, dyad, nursing home, currently employed), as well as administration
of a telephone versions of standard cognitive tests (the TICS; defined here as BC,
S7, IR, DR), as well as some additional tests HRS (NU) and some new telephone
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Table 6 Parameter estimates for the current invariant measurement model with two common
factor of changes

(continued)
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(continued)

Note: This is Mplus 7.11 program output for the input in Appendix 4

administered WJ-based adaptive tests (NS, RF) and the depression scale (CES-D).
Our main goal here was to see if we could measure the same constructs as before,
but the time over the telephone, and we basically found we could. But we are also
involved in a number of selection issues (see McArdle 2013; Heeringa et al. 2011),
and a small sample of 200 HRS respondents who were at the top and the bottom of
the HRS Cognition scores (in 2008) were also re-measured on our instruments.

Perhaps with more measured variables we can also make finer distinctions among
multiple factors. Or perhaps we can take into account the non-normality of the data
(see Fig. 2a–d). In this same sense, we were evaluating only part of the measured
scale and not all of it. For another example, take our previous analytic work in
McArdle et al. (2015). In this research we evaluated 13 items from the CES-D. If we
had been evaluating the CES-D for use in these grades (9th and 10th) we would use
20 items as listed in the typical CES-D. But we were most interested in evaluation
the concept of depression, the latent factor that it represented, and we thought we
could test this idea with only four items. But we looked at 13 items in this chapter
only, mainly because we were trying to indicate one factor only.

Indeed an expansion or delineation of the purported common factors can be
achieved with measured variables such as S7 (a telephone administration of HRS
Serial Sevens) and RF (a telephone administration of WJ-Retrieval Fluency). Each
of these could expand the factor space in important ways and may lead to some
stability. We can also add several occasions of measurement, before and after
Wave 3. This use of Wave 2 was a few weeks later than Wave 1 but we gave



36 J.J. McArdle

them a full battery of tests, about 1,200 people for 3 h in the home, including
the WJ-R, and the WASI, plus some personality scales (e.g., BFI, NCS) and some
dispositional measures (RISK). This was mainly included so we could verify the
telephone measures against telephone adapted tests and several were administered
here. There are many measures here and they can be useful too.

At Wave 3 we went back to the original telephone forms after an average of
about 1.21 years (with 0.21 as a standard deviation). This was supposedly different
for people of different ages in some time lag but other conditions need to be stated
up-front as well. For example, Rodgers et al. (2003) and McArdle and Fisher (2015)
make it very clear that there we naturally had eight groups of respondents by time-
lag (this was not designed) and it was hard to do a second telephone test in a short
time if the people had not completed the FTF of Wave 2. This confound does not
apply to any people selected but it is there. We started this testing by verifying the
Birth Date of the person being tested (the interviewee, or IV). We repeatedly tested
the original people again on the same battery used in Wave 1 with, as stated, about
a year and a half delay (e.g., Wave 3).

During the last 5 years we have measured the same people again as part of a
second 5-year study. During these times (2009–2014) we were mainly interested in
the difference (if there are any) between Telephone testing and Internet testing. This
issue will not be raised or resolved here. There are currently (as of 2015) no plans
by us to re-measure these same people again but we have let the CogECON and
HRS teams at the University of Michigan contact them. In any case, our experiment
is complex, as are our multiple assumptions, but this is the basic model of aging
and invariance we will use in further analyses of these data, so comments are
welcome.

Appendix 1: An example of an MC 7.11 Computer Program
for Two Time Point Data with Age Changes

TITLE: EX_MOD1 -- Dynamic Impact of constraints NS at
Two Times

Using Age at Testing as a cross-section

Run of NS with No Slope ALL CogUSA scores (McArdle,
2014)

DATA: FILE D CogUSA_Repeated3.dat;

!LISTWISEDON;

VARIABLE: NAMES D
id

w1_age w2_age w3_age

educ female black

ldays12 ldays23 ldays13
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W1_IR W2_IR W3_IR

W1_DR W2_DR W3_DR

W1_BC W2_BC W3_BC

W1_S7 W2_S7 W3_S7

W1CESDp W2CESDp W3CESDp

W1_NU W2_NU W3_NU

W1_NS W2_NS W3_NS

W1_RF W2_RF W3_RF

;

USEVAR D W1_Age W3_Age W1_NS W3_NS;

MISSINGD.;

DEFINE: W1_NS D (W1_NS - 500)/10;

W3_NS D (W3_NS - 500)/10;

W1_age D (W1_age - 50)/10;

W3_age D (W3_age - 50)/10;

ANALYSIS: TYPEDMEANSTRUCTURE;

MODEL:

W1_NS on W1_age (B1);

W3_NS On W3_age (B3);

!equating error variances

! W1_NS W3_NS (V_U);

OUTPUT: SAMPSTAT STANDARDIZED;

Appendix 2: An example of an MC 7.11 Computer Program
for Two Time Point Data with Age Changes as a Loading
Constraint

TITLE: EX_Mod: Table 3.2 -- Dynamic Impact of
constraints NS by Two Times

Run of All TEL Time CogUSA scores (McArdle, 2014)

DATA: FILE D CogUSA_Repeated3.dat;

!LISTWISEDON;

VARIABLE: NAMES D
id

w1_age w2_age w3_age

educ female black

ldays12 ldays23 ldays13

W1_IR W2_IR W3_IR
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W1_DR W2_DR W3_DR

W1_BC W2_BC W3_BC

W1_S7 W2_S7 W3_S7

W1CESDp W2CESDp W3CESDp

W1_NU W2_NU W3_NU

W1_NS W2_NS W3_NS

W1_RF W2_RF W3_RF;

CONSTRAINT D W1_Age W3_Age;

USEVAR D W1_NS W3_NS;

MISSINGD.;

DEFINE: W1_NS D (W1_NS - 500)/10;

W3_NS D (W3_NS - 500)/10;

ANALYSIS: TYPEDMEANSTRUCTURE;

MODEL:

!frst get a level and a slope for NS;

l BY W1_NS@1 W3_NS@1;

s BY W1_NS * (LNS1)

W3_NS * (LNS3);

[l s];

l s;

l WITH s;

!eliminating original variables

[W1_NS@0 W3_NS@0];

W1_NS@0 W3_NS@0;

!equating error variances

! W1_NS W3_NS (V_U);

MODEL CONSTRAINT: ! To get at individual loadings;

LNS1 D (W1_age - 50)/10;

LNS3 D (W3_age - 50)/10;

OUTPUT: SAMPSTAT STANDARDIZED;

Appendix 3: MC 7.11 Computer Program for Four Variables
at Two Time Points of Data based on a Model of One Common
Factor with Age Changes

EX_MOD: Table 4.2 -- Multivariate Dynamic Impact of
Equal Age
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For four variables NS, NU, IR,DR, with and MFIT for G
(McArdle, 2015)

DATA: FILE D CogUSA_Repeated3.dat; !LISTWISEDON;

VARIABLE: NAMES D id

w1_age w2_age w3_age

educ female black

ldays12 ldays23 ldays13

W1_IR W2_IR W3_IR W1_DR W2_DR W3_DR

W1_BC W2_BC W3_BC W1_S7 W2_S7 W3_S7

W1CESDp W2CESDp W3CESDp

W1_NU W2_NU W3_NU W1_NS W2_NS W3_NS

W1_RF W2_RF W3_RF

;

USEVAR D W1_Age W3_Age

W1_NS W3_NS W1_NU W3_NU

W1_IR W3_IR W1_DR W3_DR

;

MISSINGD.;

DEFINE:

W1_NS D (W1_NS - 500)/10;

W3_NS D (W3_NS - 500)/10;

W1_age D (W1_age - 65)/10;

W3_age D (W3_age - 65)/10;

ANALYSIS: TYPEDMEANSTRUCTURE;

MODEL:

W1_G BY W1_NS (L_NS);

W1_G BY W1_NU (L_NU);

W1_G BY W1_IR (L_IR);

w1_G BY W1_DR (L_DR);

W3_G BY W3_NS (L_NS);

W3_G BY W3_NU (L_NU);

W3_G BY W3_IR (L_IR);

W3_G BY W3_DR (L_DR);

W1_G On W1_Age (b11); [W1_G] (b01);

W3_G ON W3_Age (b13); [W3_G] (b03);

!Equal uniquenesses at the factor level

W1_G W3_G (U2_G);

!Equal Uniqueness at the Variable Level

W1_NS W3_NS (U_NS); W1_NU W3_NU (U_NU):
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W1_IR W3_IR (U_IR); W1_DR W3_DR (U_DR);

!original means of variables not used

[W1_NS@0 W3_NS@0 W1_NU@0 W3_NU@0 W1_IR@0 W3_IR@0
W1_DR@0 W3_DR@0];

OUTPUT: SAMPSTAT STANDARDIZED;

Appendix 4: MC 7.11 Computer Program for Four Variables
at Two Time Points of Data Based on a Model of Two
Common Factors with Age Changes as a Loading Constraint

TITLE: EX_MOD: TABLE 4.4 -- Dynamic Impact of
constraints on

four variables NS,NU, IR,DR, with am MFIT-G

Run of 4 TEL Time CogUSA scores (McArdle, 2015)

DATA: FILE D CogUSA_Repeated3.dat;

!LISTWISEDON;

VARIABLE: NAMES D
id

w1_age w2_age w3_age

educ female black

ldays12 ldays23 ldays13

W1_IR W2_IR W3_IR

W1_DR W2_DR W3_DR

W1_BC W2_BC W3_BC

W1_S7 W2_S7 W3_S7

W1CESDp W2CESDp W3CESDp

W1_NU W2_NU W3_NU

W1_NS W2_NS W3_NS

W1_RF W2_RF W3_RF

;

CONSTRAINT D W1_Age W3_Age;

USEVAR D W1_NS W3_NS W1_NU W3_NU W1_IR W3_IR W1_DR
W3_DR;

MISSINGD.;

DEFINE:

!Imputation just to keep the time 1 people in at all
occasions : : :

IF (W3_age LT 0) THEN W3_ageD999;
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W1_NS D (W1_NS - 500)/10;

W3_NS D (W3_NS - 500)/10;

ANALYSIS: TYPEDMEANSTRUCTURE;

MODEL:

W1_G BY W1_NS (L_NS);

W1_G BY W1_NU (L_NU);

W1_G BY W1_IR (L_IR);

W1_G BY W1_DR (L_DR);

W3_G BY W3_NS (L_NS);

W3_G BY W3_NU (L_NU);

W3_G BY W3_IR (L_IR);

W3_G BY W3_DR (L_DR);

!get a level and a slope for G;

l_G BY W1_G@1 W3_G@1;

s_G BY W1_G * (L1);

s_G BY W3_G * (L3);

[l_G s_G]; l_G s_G; l_G WITH s_G;

!But with equal error variances

W1_G W3_G (U_G);

!original variables not used

[W1_NS@0 W3_NS@0];

W1_NS@0 W3_NS@0;

!Except equal error variances

W1_NS W3_NS (U_NS);

!original variables not used

[W1_NU@0 W3_NU@0];

W1_NU@0 W3_NU@0;

!Except equal error variances

W1_NU W3_NU (U_NU);

!original variables not used

[W1_IR@0 W3_IR@0];

W1_IR@0 W3_IR@0;

!Except Equal error variances

W1_IR W3_IR (U_IR):

!original variables not used

[W1_DR@0 W3_DR@0];

W1_DR@0 W3_DR@0;

!Except equal error variances

W1_DR W3_DR (U_DR);
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MODEL CONSTRAINT: ! To get at individual loadings;

L1 D (W1_age - 65)/10;

L3 D (W3_age - 65)/10;

OUTPUT: SAMPSTAT STANDARDIZED;
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