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Preface

This volume presents contributions on handling data in which the postulate of
independence in the data matrix is violated. When this postulate is violated
and the methods assuming independence are applied nevertheless, the estimated
parameters are likely to be biased, and inference statistical conclusions are very
likely to be incorrect. Cook (2012) describes four contexts in which the postulate of
independence is violated:

1. Repeated measures (longitudinal data)
2. Clustered data (e.g., siblings in schools, children in families, patients in hospitals)
3. Data from individuals who live closely together (e.g., people from the same

neighborhood)
4. People in social networks (e.g., dyads, triads)

Cook elaborates on the significance of the problems with dependent data that
“unlike some assumptions of statistical theory (e.g., normal distribution), which
can sometimes be violated without very serious consequences, violation of the
independence assumption typically has serious consequences” (2012, p. 522). This
problem has been known for some time, which is reflected in the development of
tailored methods for the analysis of dependent data (e.g., methods for the analysis
of repeated measures), in corrections, taking into account the extent of dependence,
adjustments of test statistics (e.g., adjustment of F values in repeated measures
ANOVA), or adjustments of degrees of freedom. Examples of such developments
can be found in various areas of statistics.

Solutions for handling serious violations of assumptions for dependent data
are being developed and created constantly, but they are in many areas not yet
completely satisfying. This volume is an effort to present the status quo of the
progress in various statistical areas in managing dependence. We present modern
up-to-date statistical methods for dealing appropriately with problems related to
dependent data, including real data examples. These methods also reveal the power
of those modern techniques. At the same time, examples are presented that illustrate
problems from not dealing appropriately with assumptions of independence. All
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vi Preface

authors of this volume are leading experts in their field of applying or developing
new statistical methods for dependent data scenarios.

This book consists of five parts: (1) growth curve modeling, (2) directional
dependence in regression models, (3) dyadic data modeling, (4) item response
modeling, and (5) other methods for the analysis of dependent data such as mul-
tidimensional scaling techniques, methods for modeling cross-section dependence
in panel data, and mixed models. In the following paragraphs, we briefly introduce
the content of each part.

Part I: Growth curve modeling. Jack McArdle starts with a discussion of
approaches to modeling change from the Cognition in the USA (CogUSA) survey.
He tests multiple factorial invariance over time by estimating various models of
latent change. Paolo Ghisletta, Eva Cantori, and Nadège Jacot demonstrate how
to handle latent curve models including data with serious forms of nonlinearity.
Jost Reinecke, Maike Meyer, and Klaus Boers apply a stage-sequential growth
mixture model to the data of their study of Crime in the Modern City (CRIMOC), a
criminological panel dataset. Mark Stemmler and Friedrch Lösel present a latent
change model that includes five mixture groups in the real life example of the
Erlangen-Nuremberg Development and Prevention Study (ENDPS). The first part
of this volume concludes with a contribution by Jang Schiltz who extends Nagin’s
mixture models by adding a slope component.

Part II: Directional dependence in regression models. This part discusses issues
related to causality. In the first chapter of this part, Alexander von Eye, Wolfgang
Wiedermann, and Ingrid Koller present the concept of Granger causality. Granger
causation is interesting from a developmental perspective. It allows researchers to
test hypotheses concerning the causal relations between two series of observations
which may develop simultaneously. In the second chapter, Wolfgang Wiedermann
proposes decisions concerning the direction of effects in linear regression models
based on fourth central moments.

Part III: Dyadic data modeling. Numerous techniques have been developed for
the analysis of dyadic data. The most prominent of these involve regression, path,
and structural equation models. Rainer Alexandrowicz extends these approaches
by considering Item Response Theory (IRT) Models. His approach combines the
advantages of metric dyadic data analysis with a model for discrete data, thus
allowing for categorical items while drawing inferences based on the estimated true
scores on an interval scale. In the second chapter of this part, Heather Foran and
Sören Kliem apply models for latent variables in longitudinal analysis of dyads.
Several competing models and their applications are demonstrated. In the final
chapter of this part, Ting Wang, Phillip K. Wood, and Andrew C. Heath discuss
the application of psychometric measurement models (with a focus on Bayesian
estimation of random intercept models) to quantify environmental and genetic
components in behavior genetic models.

Part IV: Item response modeling. More data examples and solutions for problems
dealing with dependent data in Item Response Theory (IRT) are discussed in
the fourth part. Ingrid Koller, Wolfgang Wiedermann, and Judith Glück exhibit
quasi-exact tests for the investigation of pre-conditions for measuring change.
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Steffi Pohl, Kerstin Haberkorn, and Claus Carstensen illustrate how to measure
competencies across the lifespan using IRT models. Ferdinand Keller and Ingrid
Koller demonstrate the use of mixed Rasch models for analyzing the stability of
response styles across time. In their data example, the authors use data of the Beck
Depression Inventory (BDI-II).

Part V: Other methods for the analysis of dependent data. Finally, the last part
introduces various methods for the analyses of dependent data that did not belong
to any of the above four topics. Cody Ding shows a data example from educational
research using Multidimensional Scaling for the analysis of growth patterns. Harry
Haupt and Joachim Schnurbus use a nonparametric approach to modeling cross-
section dependence in panel data. Finally, Christof Schuster and Dirk Lubbe contrast
MANOVA to Mixed Models and discuss the advantages and disadvantages of each
method in terms of handling within-subject dependency.

Cook, W. L. (2012). Foundational issues in nonindependent data analysis. In B.
Laursen, T. D. Little, & N. A. Card (Eds.), Handbook of developmental research
methods (pp. 521–536). New York: The Guilford Press.

Erlangen, Germany Mark Stemmler
East Lansing, MI, USA Alexander von Eye
Columbia, MO, USA Wolfgang Wiedermann
Summer 2015
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Growth Curve Modeling



The Observed Dependency of Longitudinal Data

John J. McArdle

Abstract It is well known that longitudinal data can deal with different concepts
than cross-sectional data (see Baltes & Nesselroade, 1979; McArdle & Nesselroade,
2014). The key is in the observed dependency—that allows us to examine individual
changes. Thus, all of the individual changes that can be examined are due to
the longitudinal models (see McArdle, 2008) allowing dependencies among the
observed scores at various time points. It is demonstrated here that the statistical
power to detect changes is an explicit function of the positive dependencies and the
timing of the observations. A lot of time is spent on the move to the latent curve
model (LCM) from the basic regression structural model and the repeated measures
model (RANOVA) because the latter seems standard in the field now. This LCM is
introduced in this chapter as a principle that does have power to detect many more
changes than the usual regression analysis but it comes along with several (to be
discussed) assumptions.

The four articles to follow in this volume are reviewed with longitudinal
dependency in mind, and the highlights of each chapter are brought out. The chapter
“Nonlinear Growth Curve Models” extends the LCM to handle serious forms
of nonlinearity, and this is clearly prevalent in Psychology. The chapter “Stage-
Sequential Growth Mixture Modeling” extends this work to include multistage
models, Poisson relations, all in the context of a multiple mixture model. This is
a fairly complex example. The chapter “General Growth Mixture Modeling: The
Study of Developmental Pathways of Externalizing Behavior from Preschool Age to
Adolescence” is a real-life example that includes LCMs for five mixture groups. The
chapter “A Generalization of Nagin’s Finite Mixture Model” extends the mixture
models further, mainly by adding a slope component.

But what is also important in this regard is “measurement invariance” and how
this can be crucial to understanding changes. Some elaboration of the early work

A contribution for a book on “Dependent Data in Social Science Research” Edited by M. Stemmler,
A. von Eye and W. Wiedermann.

J.J. McArdle (�)
Department of Psychology, University of Southern California, Los Angeles, CA, USA
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4 J.J. McArdle

on scales is further developed for selected items. The data to be considered here
for LCM are a subset of the full set of data collected in the Cognition in the USA
(CogUSA survey; McArdle & Fisher, 2015). These scales were chosen in a way
that would be consistent with the principles of multiple factorial invariance over
time (MFIT) but the result of the age-related changes over two waves was largely
unknown and in need of establishment. Basically, we first try to establish MFIT over
the two waves and then look for latent changes in these scales over age. Thus there
are only eight scales to consider here (four cross-sectional scales by two longitudinal
occasions), so there is still a lot of work to do!

It is well known that longitudinal data can deal with different concepts than cross-
sectional data (see Baltes & Nesselroade 1979; McArdle & Nesselroade 2014).
That is, cross-sectional data has many good opportunities for “between person
differences” but it cannot deal with “within a person changes.” The first dependency
that is created and observed is that the same person is used at multiple occasions.
This dependency has been used in multivariate modeling a great deal. Because the
same person has multiple inputs and outcomes we can deal with this in different
ways. All of the individual changes that can be examined are due to the longitudinal
models (see McArdle 2008) allowing dependencies among the observed scores at
various time points. This dependency is also responsible for the popularity of multi-
level modeling (see Bryk & Raudenbush, 1987, 1992). It is demonstrated here
that the statistical power to detect changes is an explicit function of the positive
dependencies and the timing of the observations.

The typical lack of dependency is monitored in statistics by a careful assessment
of the original scores, typically using linear regression with an outcome score (Yn)
and a predictor (Xn) score and usually written as

Yn D “0 C “1Xn C en; (1)

where the regression terms “0 and “1 are thought to apply to everyone, and the
residual term (en) is an individual characteristic that is unmeasured and supposedly
follows a normal distribution. This is an effort to find the relationships between some
outcome Y and the input variable X. If X is a group then this model provides a way to
determine group differences on the outcome (the usual ANOVA as a between groups
t-test). But this is not an effort to deal with observed dependency in traditional
regression analysis (see Fox 1999).

But some people noticed that having an individual measured more than once
created a statistical virtue. Indeed this was the stimulus for progressively repeated
measures. One classical representation of longitudinal data can be found in the
repeated measures model for the analysis of variance (RANOVA; see Fisher 1925).
In this first model the individual score at any time point (Y[t]n) is assumed to be
decomposed as
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YŒt�n D “0n C “1Xn C eŒt�n (2)

where the individual (n D 1 to N) is allowed to differ at all throughout the time
series (t D 1 to T) in two ways: (1) Individuals are different from one another at
all times, and (2) there are random normal fluctuations at each time point (e[t]n).
The use of the X weighted function is an adjustment in the mean of the scores for
group differences in the trends over time. This model can give correct statistics for
the mean of the individuals and the effect of X (assuming it is the same over all
occasions) as long as the contrast questions are “spherical” in shape (among others,
see Davidson 1972; Huynh & Feldt 1976).

The repeated measures model permits the power to detect differences between
treatment groups in means (or over time) as a function of the standard deviations
of the scores (as usual, with the sample size included as the square root of N at the
end). But in repeated measures, the variance at the second occasion is also based on
the correlation of the observed scores over time:

�d D .m Œ1� � m Œ2�/ =
�

sŒ1�2 C sŒ2�2
�

� 2 ..s Œ1�C s Œ2�/ r Œ1; 2�/ (3)

where we have symbolized the estimated mean difference as �d, using the two
observed means as m[1] and m[2], the two observed variances as s[1]2 and s[2]2,
and the observed correlation over time as r[1,2]. This is nothing more than the mean
difference over the standard deviation, but the correlation is for the same measure at
two occasions. So for the same mean difference (m[1] � m[2]) as found in a cross
section we can say we have found a significant different from zero if the correlation
of the two measures is positive (which it typically is; see Bonate 2000; Cribbie &
Jamieson 2004). For this reason, it is typically far better (depending on the sign
of the correlation) to measure a person twice than to measure twice as many people
just once. That is, the longitudinal case is far more powerful than the cross-sectional
case. This is not the only issue of statistical power (see Tu et al. 2005) that could be
considered, but it is relevant here. Of course, there are more than two time points
over which change is to be measured, and this typically increases our power.

The Move to a Latent Curve Model

A straightforward generalization of this RANOVA model allows the move to a latent
curve model (LCM) and makes it not very hard to understand. This LCM was
first used by Tucker (1958, 1960 1966) and Rao (1958), and later Meredith and
Tisak (1990) gave it a structural equation model (SEM) interpretation (also see
McArdle 1986 and McArdle & Epstein 1987) to determine the best fitting curve to
the observed data. Basically, the slope can vary along with any way the individual
changes. Each individual is assumed to have three latent variables, defined as
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YŒt�n D Ln C Sn� Œt�C uŒt�n (4)

so the three sources of variation in any response are: (1) A constant change for the
individual over all times (the latent level D L), (2) a systematic change (based on a
slope score D S, which is systematic with the set of basis coefficients D�[t]), and
(3) a unique change D u[t], which is essentially random with respect to the other
changes. We can examine that the set of basis coefficients (�[t] is not necessarily
linear) to determine the slope of the best fitting line or trajectory of the data, but this
line supposedly has the same coefficients for everyone.

All sources of individual differences are indexed by variance (¥L
2, ¥S

2, and §2).
In addition, the constant change is allowed to have covariance (¥LS) or be correlated
(¡LS) with the systematic changes. The variance that remains (the uniquenesses,
§2) is assumed to be uncorrelated with the changes or the starting point and is
furthermore assumed to be equal over time.

We can also have the observed group effects on these individual coefficients,
and we can do what we want with them. What is usually done follows the usual
regression logic with two of the latent variables as new outcomes:

Ln D ’0 C ’1Xn C eLn and Sn D “0 C “1Xn C eSn (5)

in which case the eL and eS account for the residual variance and covariance. This
kind of mixed model function, including both fixed (’0, ’1, “0, “1, and �[t]) and
random (¥L

2, ¥S
2, §2, and ¥LS) effects, can be evaluated for goodness of fit using

the standard SEM statistical logic (see Meredith & Tisak 1990; McArdle 1986). If
the model fits the data of means and covariances we assume that the score model (of
[4] and [5]) is reasonable.

The kind of change we will test is dependent largely on the set of basis
coefficients we employ. We can force the systematic change to be linear with the
time simply by fixing the coefficients �[t] D [0,1,2,3 : : :T]. This is often done, but
it is only one option, and there are many others. We can even estimate some of the
coefficients (T-2 in the one factor case) so that they form an optimal curve for the
data. This is basically what the earliest pioneers (Tucker, Rao, Meredith, etc.) did.
But there are many more ways to examine the curves and a lot can be done here.
Using the basic logic, we can also consider more than one curve for these data (as
done in later chapters).

The LCM is considered useful now because it can describe both, group (i.e.,
fixed) and individual (i.e., random). For this reason it is popular in psychology
where we often are interested in group effects but individual differences from the
same perspective. We should note that it is not widely used in other areas of science
(e.g., Econometrics) where the dominant paradigm uses time as a causal hinge,
so which measure came last in time is regressed on all the prior instances. The
same longitudinal data can be used in this way (see McArdle 2008; McArdle &
Nesselroade 2014).
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We note immediately that the LCM does not try to explain how the prior time
points (if measured) impact the subsequent events. This makes the procedures of
LCM more descriptive than inferential. But all is not lost because there is some
savings in the number of parameters used to define these differences.

Model Fit and Model Selection

A good question can be asked about “Does the model fit the data?” This question
can be answered in a number of ways. But what we want is a model that has easy to
understand parameters and fits as well or better than others of its kind. The approach,
known by the Bayesian Information Criteria (BIC) is used throughout this book so it
is useful to investigate it further now, according to Raftery (1996) and Nagin (2005,
p.64) the formula for BIC can be written as

BIC D log .L/–1=2p log.n/ (6)

where the log is the natural logarithm, and L is the model’s maximum likelihood,
and this is penalized (lowered) by p, the effective number of parameters used, and n,
the sample size of individuals used. “If one is comparing several models we should
prefer the one the lowest BIC values.” (Raftery 1996, p. 145). In this way, the BIC
“counterbalances” a good fitting model by the number of parameters and the sample
size used. So, although it does not seem to be the fit of the model, it can help choose
one model among many others. What we hope to obtain is a model where the BIC
is as negative as possible, although there are several ways to use this information.
Several keen insights into how this BIC behaves are given in Nagin (2005), and
these will not be repeated here, but the use of Bayes factors is illustrated. The use
of the BIC is obviously Nagin’s favored device for model selection with groups, but
he does conclude that:

Such debate is important for advancing the theoretical foundations of model
selection. However, disagreement about the technical merits of alternative criteria
may obscure a fundamental point—there is no correct model. Statistical models are
just approximations. The strengths and weaknesses of alternative model specifica-
tions depend upon the substantive questions being asked and the data available for
addressing these questions. Thus the choice of the best model specification cannot
be reduced to the application of a single test statistic. To be sure, the application of
formal statistical criteria to the model selection process serves to discipline and
constrain subjective judgment with objective measures and standards. However,
there is no escaping the need for judgment; otherwise insight and discovery will
fall victim to the mechanical application of method. In the end the objective of
model selection is not the maximization of some statistic of model fit. Rather it is
to summarize the distinctive features of the data in as parsimonious a fashion as
possible (Nagin 2005, p.77).

I can easily say I am in complete agreement about these model-fitting issues.
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Potential Biases

Thus, the collection of longitudinal data is useful because: (1) They allow the study
of the natural history of the development of problem behavior, such as externalizing
behavior, its onset and termination. (2) They allow the study of trajectories or
pathways. A pathway is defined as “when a group of individuals experience a
behavioral development that is distinct from the behavioral development of another
group of individuals” (Loeber & Farrington, 1994, p. 890). Trajectories or pathways
provide information of processes of continuity and discontinuity and on inter-
individual differences. In addition, Loeber and Farrington (1994) postulate that
the best studies now rely on multiple informants. The chapter by Stemmler and
Lösel (Chapter 4) meets all of these criteria and this chapter should be considered
carefully.

But we need to be clear about the difference between a repeated measures design
and a multivariate design because both allow correlation over time. For both, sample
members are measured on several occasions, or trials. But in the repeated measures
design, each trial represents the measurement of the same characteristic, in the same
way, at a different time. In contrast, for the multivariate design, each trial represents
the measurement of a different characteristic. It is generally inappropriate to test for
mean differences between disparate measurements, so the difference score is useful
(in contrast to what is stated in Cronbach & Furby 1970).

But the longitudinal method is not without some well-reasoned detractors (see
Rogosa 1988). Among many critiques of the longitudinal method: (1) It is hard to
get the representative sample to come back to a second testing, and the people who
do come back have done very well at the first time (see McArdle 2012); (2) if they do
come back, they have seen the measures before, so it is difficult to measure exactly
the same constructs at a second time, without retest or practice effects; and (3) the
construct or thing that we want to measure may have changed, and we will not know
it by simply looking at the variance or taking the difference between measures.
These are some of the many potential confounds of the longitudinal method.

The results of these problems lead us to think that a cross-sectional study had
less potential confounds than a longitudinal study. This is hardly ever true because
these conditions can occur in cross sections as well, and we may not know it.

Assumption 1: In the LCM, the Latent Scores Used Are
Related to Latent Change Scores

It seems that all the prior work has focused on the “change” at the individual and
group levels but very few researchers are willing to say so. Instead, words like
“curve” or “slope” or “trajectory” are used. But there turns out to be an easy way to
represent these basic change ideas and we will usually do so here.

We can define the basic model of change to isolate the functions as

http://dx.doi.org/10.1007/978-3-319-20585-4_4
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YŒt�n D Ln C
X

i D 1; t f�yŒi�ng C uŒt�n (7)

so the changes are just accumulated up to that time (i D 1 to t). This is not intended
to be a controversial statement and it leads to the same fit as the prior linear models,
but it is really another way to consider have the outcome at time t (after McArdle,
2008).

The change as an outcome can be strictly defined at that latent variable level
(after McArdle & Nesselroade 2014) as

�yŒt�n D yŒt � 1�n– yŒt�n or yŒt�n D yŒt � 1�n C�yŒt�n; (8)

so the latent score is the source of all inquiry. This can be useful in a number of
interpretations, especially for the regression of latent changes. For example, we now
can fit

�yŒt�n D “0 C “1Xn C e�n (9)

so the latent change score is modeled directly, and has a residual (e�n). But the
LCS approach is entirely consistent with the LGM approach, as stated by McArdle
(2008) and this is why the same values emerge for various estimates. The LCS
model is largely a clearer change-based re-interpretation of the LCM, and the LCS
model can be programmed and used efficiently (see McArdle 2008; McArdle &
Nesselroade 2014).

Latent changes are apparent in this model. Much more could be said about this
approach, but this is all that will be needed here.

Assumption 2: In the LCM, the Model Parameters Have
the Same Shape for Everyone

This assumption is also true of all regression models (see Eq. (1)) but it is most
clearly not appropriate here. That is, we can control the size and sign of some
parameters of the trajectory with the means and the variances of the latent variables,
but the shape of the latent change is a combination that is beyond the usual reach.

The chapters listed here do distinguish between these shapes using an unobserved
difference between people. That is, this clear difference between individuals is recast
at the main reason they are members of a latent grouping—a mixture of different
distributions. This was evidenced in the brilliant early work of Tucker (1960 1966,
also see Tucker 1992), and the subsequent maximum-likelihood formalizations of
Nagin (1999 2005) and Muthén and Sheddon (1999).

This logic using multiple groups is indeed a good idea, because it is focused on
different kinds of changes within the person. But Tucker (1960 1966 1992) seems
to have found a way to differentiate people with standard methods of factor-cluster
analysis. Perhaps the first time this procedure was used in real questions and stated
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Fig. 1 From McCall,
Applebaum & Hogarty (1973,
p. 48)
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clearly was by McCall, Applebaum, and Hogarty (1973, pp. 44–48) who suggest
that there are five clusters of people based on their changes over age in IQ tests over
age (see Fig. 1).

Now it is clear that Tucker (1958 1960 1966) did not have all the statistical tests
(or MLE) to support these choices, nor did he have or did develop the mixture
model as the possibility of a person belonging to multiple clusters (this allowing
for a much better mixture), but he did distinguish large group of persons on their
trajectory using multiple factors and he resolved multiple clusters, so we will
generally consider Tucker’s (1958 1966) work as pre-dating the more recent work
of Nagin (1999 2005) and Muthén and Sheddon (1999).

Assumption 3: In the LCM, the Residuals Are Equal
and Uncorrelated, and the Model Fits

There is much more that could be said about the equality of the unique variance (for
details, see Grimm & Widaman 2010) but the basic idea is on must have an a priori
theory about why these kind of unique but uncorrelated changes are needed. If we
do have such ideas we can remove the variance terms at each time and achieve a
much better fit to the data. We will not deal with these issues too much here. In this
regard this is an unchallenged assumption that deserves much more scrutiny.
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The simple fact that “everything else” is supposedly uncorrelated is actually
never met and yet this is what is tested by the model fit. The test of goodness of
fit is supposed to test whether or not the LCM can be considered viable. But the
way we typically test any hypothesis is to remove all other features until all that
are left are random variables. This is primarily because we do know how to test for
random events (usually with the �2 goodness-of-fit test; but see Raftery 1996).

Assumption 4: In the LCM, the Model Has the Properties
of Invariant Measurement

In all cases, it is also necessary to illustrate the loss of fit due to “multiple
factorial invariance over time,” (MFIT) and how this invariance can be crucial to
understanding changes. That is, some things may not change while others will. Here
we will only use common factor analysis in a simple example. This is a second
dependency because the measures are somewhat the same within a time. Some
elaboration of the early work on any scale is further developed for items. This is
related to both “test bias” and “harmony.” That is, if we assume that a test is a good
measurement of a construct, it should behave the same way at all waves.

I do not view MFIT as a “testable hypothesis” as many others do (e.g., Meredith
1993) but I view this as a necessary feature of longitudinal data. That is, in the
absence of MFIT it is not clear that we can take differences between successive
occasions, and this is critical to most any accumulation model. Thus, this test would
be a useful foil against a measure, and we can use it to evaluate an existing measure.
But to create one, we must be accumulating something, and that something is strictly
defined as the object of our MFIT. Perhaps it is best to say we can evaluate the part
of the MFIT that works the way we intended. At least our intentions for MFIT are
clarified in this way.

Assumption 5: In the LCM, the Model Variables All Have
Normal Properties

Another kind of dependency is that due to items that are miscalculated as normal.
That is, we typically assume all variables are normally distributed, even when they
are highly skewed. This is also the case of a variable that can reach an upper or
lower limit and should be considered censored (see Wang et al. 2008). As we do not
illustrate here, but could have, this can pose a major problem for our understanding
of the changes (but for an example, see Hishinuma et al. 2012; McArdle et al. 2014).
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Assumption 6: In the LCM, the Individuals Have All Been
Measured at Exactly the Same Developmental Time Periods

This is also probably never true in epidemiological and psychological studies. The
problem comes only because the model assumes this is true. In fact, the age-at-
measurement is usually not told to the analyst. This means people can be “measured
on their birthdays” or at approximate yearly intervals of time, but we just never
know. The word “approximate” is used here frequently, and many see this as a
natural feature of longitudinal data. But it is not. The big problem that this creates is
that the correlations over time, if they are not in a sequential proper timing, can yield
some haphazard results. The timing is important to future studies and not enough is
done about this issue yet.

The further assumption that we know the true developmental timing is quite
absurd. We do not know this and we do not track it very well either. It could be
age or it could be something else like puberty (see McArdle 2011), but we need to
know it to state how the individuals form groups of people (see Nagin 2005). We
often just use whatever longitudinal data we are given, because we are very happy
to get some, and we assume we can do something with it, as is. But we cannot.

The Studies of the First Section of This Book

The studies of the first section of this book seem to criticize some of the basic
assumptions of the standard LCM. This should be considered fair as a target because
it is loaded with assumptions and the linear LCM was designed to be just a starting
point for future work. The concepts of simultaneous estimation are also critical here
to distinguish what is being done.

The first study by Paolo Ghisletta, Eva Cantoni, and Nadège Jacot as presented
here is an examination of more than linear relationships in psychological research,
which they term an NGCM (for nonlinear growth curve model). That is, they do
not stop at the quadratic form of the prior LCM, and they do not consider the linear
model to capture all the relevant variation in their outcomes (in their example, four
blocks of 20 trials of time on task in a pursuit rotor task). Instead, they consider
other terms (see their Eq. (6)) that are not a usual part of this basic model (our Eq.
(4)).

These author(s) do fit a wide variety of nonlinear models to these data, and this is
notable, and they compare each, and this is also notable. But they do drop linearity
quickly as a possibility and I think this is a mistake. That is, before we deal with
how nonlinear a model can be I think we ought to first see how linearity works, in
terms of explained variance at each time point (˜2[t]) at least.

So I also think these claims can be made from a different perspective. That is,
the LCM with a different curve may capture some of these individual changes. The
curve could obviously be defined using the last 18 measurements, but an exponential
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curve could be fitted with less parameters. Nevertheless, the model with the best fit
for least parameters is an obvious choice. This, at least, is how I could deal with
all the nonlinearity that seems to be present here. I would like to see LCM and the
quadratic model as a comparison in their tables.

The second application titled “Stage-sequential growth mixture modeling with
criminological panel data” is by Jost Reinecke, Maike Meyer, and Klaus Boers
does exactly what this title suggests. However, it uses General Growth Mixture
Modeling (GMM, from Muthén & Sheddon 1999) within a LCM framework to
empirically distinguish between people. Expanding upon the prior work of Kim
and Kim (2012) they consider three distinctive types of stage sequences: (1) stage-
sequential (and linear) growth mixture models, (2) traditional piecewise GMM,
and (3) discontinuous piecewise GMM and sequential process GMM. These three
models are applied to a range of adolescence and young adulthood using data from
the German panel study termed, Crime in the modern City (CrimoC, Boers et al.,
2014). In the case of count variables a Poisson or negative binomial distributions
(following the work of Hilbe, 2011, not Nagin 2005) can be considered which give a
better model representation of the data. With the count data that criminologists seem
to have, the Poisson model for measurement is used because it is more appropriate.
That is, a regular regression model (but not evaluated) may still work, but the
Poisson model that is used here as a measurement device because is sensitive to
the use of a probability of an event. The zero-inflated Poisson (or ZIP; see Nagin
2005) model may even be a better choice because it essentially proposes that the
reason for the zero counts (no criminal acts) is possibly different than the reasons
for the rest of the counts (one, and so on). This can always be compared to the
assumption of a continuous distribution of the LCM. And this all can be combined
sequentially in a program like Mplus (Muthén & Muthén 2012).

This chapter is notable in a number of ways. First the author(s) use a three-
part curve model, with knot points that are notable in terms of substance. This is a
distinction that is worthwhile to make and it could be pursued further. I do not see
this as quite as different as the typical LCM, so I would compare the fit of both of
them. Second, they simultaneously use a measurement model based on a Poisson
distribution for the scores. This is decidedly different and is most appropriate for
data that comes in the form of counts. But their justification for the use in real data
is not presented clearly. Third, they simultaneously use a mixture model to examine
for the German Crime data. This use of multiple groups is based on the trajectory
differences and they assume these cannot be accounted for otherwise. I would very
much like to hear what Nagin (2005, p. 54) says about this part of the analysis. But
in any case, any one of these three concerns would be a challenge to fit but they
proceed as if this is all standard. This is not standard, and what they do here is quite
amazing, partly because it can be done at all.

The differences between the current versions of Mplus (Muthén & Muthén 2012)
and SAS PROC TRAJ (Nagin 2005) are important here. Currently, in Mplus, we
can ask if any parameter is invariant over groups, and we do not need to define the
group membership in advance. This can be in terms of any mean, regression, or
covariance component. But in this same sense the analysis is entirely exploratory.
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If we further assume that the factor loadings �[t], for at least t D 3, T, are different
we can have different curves. This can be written with different means and variance
terms so the entire placement within groups can differ. This is somewhat different
than assuming different linear or polynomial coefficients for the same data. Much
more could be said here (see Nagin 2005, p. 54) but Mplus 7 (now used by almost
everyone here) seems much more flexible to me now. But I fully expect the debate
about “groupings” will go on, and this is productive.

The third application by Mark Stemmler and Fredrich Lösel is titled, “Devel-
opmental pathways of externalizing behavior from preschool age to adolescence,”
and also uses general growth mixture modeling (GMM) with BIC this time to
separate five categories of persons among their total sample size of n D 541. The
goal of this study is to analyze the data of the Erlangen-Nuremberg Development
and Prevention Study (ENDPS; Lösel et al., 2009) for the first time with regard
to different trajectories for externalizing behavior. ENDPS is a normative sample
and is a combined experimental and longitudinal study on antisocial child behavior
covering a time period of nearly ten years. Social behavior was rated by multiple
informants such as self, mothers, kindergarten educators, and school teachers. Using
this longitudinal data, they seem to have found (1) the “high chronics” (2.4 %;
n D 13), who are receiving the highest values for externalizing behavior from
childhood on up to adolescence; (2) the “low-chronics” (58.8 %; n D 317) who are
low on externalizing behavior throughout the years; (3) the “high-reducers” (7.9 %;
n D 43) who start out high in childhood, but who reduce their externalizing behavior
monotonically over time; the (4) “late-starters-medium” (8.7 %; n D 47); and the (5)
“medium-reducers” (22.4 %; n D 121). The results stress the idea of a life course
perspective, which enable the study of the natural history of the development of
externalizing behavior, its onset, and termination.

In all, these authors give an excellent history of the GMM, and demonstrate how
it has been used before in many criminological samples. They seem to show that
most studies report between three and five groups (with a total range of two to seven
groups), and they use the BIC. Most studies show the group of life-course persistent
or chronic offenders, and one group that does not exhibit violent, aggressive, or
delinquent behavior; in addition, there are existing groups of late onset or desisting.
Jennings and Reingle (2012) claim that the number and shape of the groups depend
on the nature of the sample (high risk versus normative sample), the life course
captured, the length of the observation, and the geographical context. Among
the author(s) conclusions, they postulate that further research should be based on
multiple observations and across multi-informants (e.g., child/youth reports, parents
and teacher report) to ensure the best results. Since this result requires expertise in
criminology, we must leave it up to the reader to make sense of these trajectories.

The fourth application by Jang Schiltz is proposal for the potential extension
of “the Nagin model” of multiple groups. This can be a quite useful technology
because in this representation we do not have to think everyone has the same general
nonlinear slope of their trajectory. The problem with Nagin’s original formulation is
that he only determined trajectories for the mean level and a quadratic slope, and less
effort was put into the variance terms or other forms of the slope (see Nagin 2005,
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p. 54). These changes are made and the basic model is extended here to include
group differences in the slopes and the error terms.

Since we all believe that there will be substantial heterogeneity in real data—
different change patterns for different groups—and the LCM will not be capable of
dealing with these based on two means and covariances alone, it is clear that this
model is more correct. This and other examples on the use of the mixture model
is certainly a powerful latent variable modeling approach. But this latent variable
model is not the only way to explore the groups—they can even be formed out of
measured variables too (see Brandmaier et al. 2013).

The exploratory use of measured rather than latent variables is attractive on a
number of counts. First, there are usually many extra ancillary variables that are
measured and used as covariates for no particular reason other than they exist. As
we will demonstrate, this typical usage can tell us something about their impact on
mean differences or between group effects. But what we are interested in is putting
them into the analysis is to see if they impact the variances and covariances also.
Second, there are always extra ancillary variables that are measured and these could
be selected for this exploration. That this is any mixture model is an exploration that
is obvious to anyone who uses them and the selection of a group is complicated. So
we do not try to handle all these assumptions at once but instead we refer to Nagin
(2005) for details on this issue.

Our Cognition in the USA (CogUSA) Study

Our CogUSA study (see McArdle & Fisher 2015) was designed to do something
different than those in this section—that is, the most notable feature of the design
of this particular longitudinal study is the variation of age at the initial time, and
the variation between time intervals for different waves of testing. As stated earlier
in our last Assumption 6, this is a feature of many psychological measurements
although it is hardly ever dealt with on a formal basis.

Our ability to measure similar constructs in an in-person face-to-face (FTF)
interview and over the telephone (TEL) is not the key issue here, but it is important.
In prior surveys (including the HRS; see Juster & Suzman, 1995; Heeringa,
Berglund, & Khan 2011) the only human abilities measured over the phone (say,
using the Telephone Interview of Cognitive Status; TICS; Fisher et al. 2013) were
the very simplest ones (Episodic Memory and Mental Status; see McArdle, Fisher, &
Kadlec 2007). It is not too surprising that these simple variables could be measured
in the same way in either modality (FTF or TEL) and still retain MFIT (see McArdle
2010; McArdle & Nesselroade 2014).

But when we consider measuring something as important in aging research as
fluid intelligence (Gf ) in a survey, we remain perplexed (see Lachman & Spiro
2002). This variable needs to measure “reasoning in novel situations” and this is
fairly hard to do. One of the ways this can be done in surveys is with indices that
supposedly measure numerical reasoning (NR), a decided subset of all reasoning
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and thinking, and the measure of numerosity (NU) from the HRS is a good indicator
of this. Another way to consider NR this is to measure Serial Seven’s (S7) from the
HRS, because this takes some NR as well as holding specific but complex ideas in
memory (see Blair 2006). Still another way to indicate NR is to measure something
like Number Series (NS) because these are intended to be small puzzles in numerical
form.

One adaptation is that we initially reasoned that people, especially older people,
would not take all test items necessary for a reliable score on anything, so the items
administered had to be cut down. In the case of both Immediate Recall (IR) and
Delayed Recall (DR) and Numeracy (NU) and Serial 7’s (S7) the work had already
been done by the HRS staff. These were properly considered as short forms due to
the required telephone constraints on time.

The final telephone definitions follow on Table 1. They were all administered
over the telephone and this is a limitation because we do not really know what the
respondent is doing. These include definitions of IR, and DR to measure a general
memory or general retrieval (Gr) factor, and NU, and NS to measure a general
fluid (Gf ) factor at each time ([1] or [3]). We will see if the fit of this specific two
factor model is different than a one general intelligence (G) factor, but we will
examine the factor loadings. Clearly, McArdle et al., (2007) found the first two
scales (IR and DR) to be highly correlated (r 0.80) and suggested they be added
up and calculated as a single score termed episodic memory (EM) to distinguish it
from another scale of cognitive measurement from the TICS, mental status (MS;
fBC C S7 C NA C DAg / 4), but the second factor here is much different. And we
hope it is clear that several other cognitive measures obtained in CogUSA were not
yet used here (see McArdle & Fisher 2015).

For common factors to retain their meaning over time, we required them to have
“strict” invariance (Meredith 1993). In this case, this implies the factor loadings (ƒ),
unique variable intercepts (I), and unique variable variances (‰2) are all assumed to
be invariant over time (for each measure). We also brought all means differences to
the factor score level. This is typically tested but it is clear that any differences or
changes over time must go through the common factors or they are not worth using
and summarizing at this level. This is basic or, indeed, fundamental to our definition
of the latent variables. This does imply that the way we measure the common factors
can change from time to time, but for now we assume they are identical at both
occasions of measurement.

Many other researchers search for different forms of invariance (e.g., see Byrne,
Shavelson, & Muthén 1989; Reise, Widaman, & Pugh, 1993; McArdle, Petway, &
Hishinuma 2014), and now this is an evaluation of configural, metric, strong, or
strict invariance constraints. We will not partake in this quest again here. This is
primarily because we only want the number of factors (K) to be determined by what
is comparable over time in measurement (as in McArdle & Cattell 1994; McArdle
2007) not by a lack of invariance. There is a prominent thought that the search for
the type of invariance of a measure is crucial (see Byrne et al. 1989), but if this is
not met then the number (or type) of common factors (can be) needs to be altered to
meet this criterion. That is, the criterion of invariance should always be met before
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Table 1 Selected Telephone Measures used in CogUSA (McArdle & Fisher, 2015)

All HRS/AHEAD cognitive measures were selected to satisfy the following considerations: (a)
provide descriptive information on a comprehensive range of cognitive functions; (b) span all
difficulty levels from competent cognitive functioning to cognitive impairment; (c) be sensitive
to change over time; (d) be administrable in a survey environment with lay interviewers, over the
telephone, in a short time; and (e) be valid and reliable (from the HRS documentation Report by
Ofstedal, Fisher and Herzog. 2005; DR-006). As always, the IWER is asked a series of questions
about the incorrect responses. In addition, several other clearly cognitive measures (BC, S7, RF,
CESD) are obtained at both waves were not used in these analyses
IR D or immediate recall (IR)—One set of 20 stimulus word (from four lists) are read aloud, and
the respondent (R) needs to restate these words (no credit is given for errors of any kind). The
observed score is from 0 to 10. At W3 they are administered a different list of ten words (from the
four lists)
DR D or delayed recall (DR)—after about 5 min (depending upon how long it took to do the eight
CESD items), the R is asked if they recall any of the words from the IR. They are then asked to
restate these words (no credit is given for errors of any kind). The observed score is from 0 to 10
NU D “Numeracy”—Since HS 2002, the R is asked to answer up to three numerical questions: (1)
“Next I would like to ask you some questions which assess how people use numbers in everyday
life. If the chance of getting a disease is 10 %, how many people out of 1,000 would be expected
to get the disease?”(2) “If 5 people all have the winning numbers in the lottery and the prize is
two million dollars, how much will each of them get?” (3) “Let’s say you have $200 in a savings
account. The account earns ten percent interest per year. How much would you have in the account
at the end of two years?” The observed score is from 1 to 3
NS D Even though we wanted to, the Woodcock-Johnson “Number Series” items was far too long
to be included in CogUSA so we cut it down from about 42 items to about 6 adaptive items. A
modification of “which six” items was tried in each of the two occasions, Wave 1 (W1) and Wave
3 (W), but both testings supposedly yielded a W-ability estimate of NS. In the W1 testing the plan
was to administer a first item of medium difficulty (for their level) and (0) if they got it incorrect
an easier item about half way down the scale (based on the known difficulty of the WJ item) was
presented, but (1) if the R got the item correct a harder item, about half way up the W-scale,
was presented. All testing ending at six items and a WJ score was estimated from this pattern of
responses. In the W3 testing s similar items were administered in a block adaptive fashion. The
key idea here is to only administer six items, but the same three items are given first, spread out
in difficulty, and the second set of three items are supposedly centered around the persons’ ability
level. In this case a W-score can be formed. Thus we assume, but do not test, MFIT

we evaluate the latent changes (as in McArdle & Cattell 1994). This is only our
belief system, and we use this belief at all occasions, but we should point out that it
is not one used by many others.

Methods

Available Data

The data to be analyzed are a small subset (4) of scales from recent tests of Cognition
in the USA (CogUSA; see McArdle & Fisher 2015). These scales were chosen in
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a way that would be consistent with the principles of MFIT but the result of the
changes over two time points (W1 and W3 here) is unknown. Basically, we first
try to establish MFIT over all ages and then look for changes in these scales over
ages. We now only present eight scales in all to consider (four cross sections at two
longitudinal occasions).

At each occasion, the people who took the HRS (for details, see Fisher et al.
2013) were asked to fill out the forms for all scales. Most specifically, they were
asked each time to fill out a questionnaire about their own health and well-being
and the full CES-D was included. We did not use sessions at Wave 2, we only
use Sessions 1 and 3 primarily because this time-lag did not offer enough Age
differences for Age changes to be picked up. We also do not include all items in
analyses here, but we will only include eight scales from the full set (of many). We
will state that 13/20 items (from the Center for Epidemiological Studies-Depression
scale; CES-D) were previously analyzed by McArdle et al. (2014) who seemed to
find MFIT in 13 items from the full set (of 20 items). But here there are several
differences: (1) We deal with scales not items; (2) the confusion of the usual testing
of MFIT was emphasized in McArdle et al. (2014); (3) in CogUSA the ages-at-
testing at each occasion are substantially different.

The plots of Figs. 2a–d illustrate what we are trying to examine in the model.
These are plots of the four manifest variables (IR, DR, and NS, NU) against the ages-
at-testing for each person separately (i.e., joined by a line), and these illustrate lots of
variability and only one kind of dependency among persons (that is, the people are
largely the same ages when they are measured but the scores do change over age).
They could change for a number of other reasons (such as errors of measurement or
practice effects; see McArdle & Woodcock, 1997).

Models

Figure 3a is an elaboration of a latent curve model with Age differences as a double
cross-sectional variable. The only variable used here is the NS measured at two
occasions (1 and 3 for comparability) and the age-at-testing is also measured at each
of these waves. The model here uses the two occasions in a double cross-sectional
mode in an effort to capture the means and covariation of the NS-age relationship.
That is

NSŒ1�n D “01 C “11 .D funfAge Œ1�gn/C e1n

and
NSŒ3�n D “03 C “13 .D funfAge Œ3�gn/C e3n

(10)

where some fixed function of age is used as a linear predictor (e.g., such as
funfAGE[t]gD (Age[t] � 65)/10—so the intercept is at age 65 and the difference
in score is for each 10 years of Age). But using SEM we can also test whether the
equations (“01 D “03, “11 D “13, and the respective residual variances, §1 D§3) are
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Fig. 3 (a) A path diagram of a one-variable model for multiple waves of measurement (W1 and
W3) but as usual treated as a dual cross-section. (b) A path diagram of a one-variable LCM model
for multiple waves of measurement (W1 and W3). (c) A path diagram of a one-variable LCM
model for multiple waves of measurement (W1 and W3) with different ages of measurement
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supposedly the same at each time of measurement. This could be useful because we
may find it does not work the same way at Wave 1 and Wave 3, primarily because of
the exposure at Wave 1. At very least, the prespecified funfAgeg becomes a testable
hypothesis.

Figure 3b is a path diagram of a LCM in cases of only one change. The variable
here is the NS measured at two occasions ([1] and [3] for comparability). But the
model here is an effort to capture the mean and covariation of the NS test. We
notice that this uses the leftover variation as the difference (or slope) and this simple
representation can b credited to Joreskog (1974).

Figure 3c answers a different question about where we would add age variation
to this model. Recall in CogUSA (Figs. 2, 3, 4, and 5) there is a lot of age variation
at the beginning (Wave 1) and they are not measured over the same age interval over
time. This variation in age was considered a random source of variation (and it was
done on purpose) because we did not really know how to break up ages into groups.
This is an expression of the work of the primary author of this paper (see McArdle &
Woodcock, 1998). For these model to work, some predefined fixed function of age
(e.g., D f (Age); it does not need to be linear, but it must be pre-specified) needs to be
designated as a regression (or as a factor loading) that must be able to change over
the individual case (because of the different ages-of-measurement). This precise
feature of varying factor loadings can be used in many current computer programs
(see Appendices 1 and 2 here for Mplus code). The concept of the individual loading
was used by McArdle (1998, pp. 390–406) fitted together with the concept of
individual likelihoods (primarily to check on individual fit). This examination of
age-variation is an important concept here, but we would use this representation for
any departure from the average timing that is measured (see LCM Assumption 6).
This is the same concept that was subsequently used by Mehta and West (2000) and
Mehta and Neale (2005) in their description of “definition” variables.

Adding a Latent Variable Measurement Model

Needless to say, these are common factor models where we assume a factor score for
each person (fn) is indicative of multiple measures at multiple occasions. This is an
important addition and it can be done with SEM. Following McArdle (2007), every
variable (m D 1 to M) we measure at each time (t D 1 to T) can be decomposed as

YŒt�m;n D œmf Œt�n C um (11)

into a common part (the time related common factor score fn multiplied by a time
invariant factor loading œm) and a unique part (the random or unique factor score
um). We can think of the variable having an intercept of mean (šm) too, but this could
just as well be a property of the unique factor score. This leads to a common factor
model hypothesized for each time point.
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Using only Time 1 latent variables
G [1], and Time 1 observed variables
IR[1], DR[1], NS[1], NU[1]; 

Note: 
Using only Time 1 latent variables
Gm [1], Gf [1] and Time 1 observed variables
IR[1], DR[1], NS[1], NU[1];

Fig. 4 (a) A latent variable path diagram of the one-factor model at Wave 1. (b) A latent variable
path diagram of the two-factor model at Wave 1

The specific models fitted to the one time point data are equivalent to many
others, so we will not belabor the process. Needless to say, these are factor models
where we assume a factor score for each person (fn) is indicative of multiple
measures at each occasions (t D 1 to T). This is presented in Fig. 4a, b for both
one and two factors at one wave. We do notice that the one factor (G) also has
several demographic influences, including scaled versions of age (and education,
sex, and race). That is, in addition to the requirement that this factor account for
the covariation of all the internal variables, this G must also account for all the
covariation of all demographic influences with these measured variables. In our
Fig. 4b, two common factors (of Gf and Gr) are expected, and these two factors are
allowed to be correlated above and beyond the external (demographic) influences.
This relaxation of the factor pattern is not the only way two common factors could
be fit here, but it should fit better (see McArdle & Prescott, 1992).

In the next model we consider a single latent variable, perhaps termed a G factor
for general intelligence. This is a very popular model for a number of good reasons
(see McArdle 2012) and it can be fitted here to the four variables. In this context, the
model makes the additional assumption that all four variables have a common part
and a unique part. The common part is not necessarily the same for each score, and
this size is as indexed by a factor loading (œm) or by the size of its’ unique variance
(§m

2). The size is only relative here and this is made clear by the requirement that
one of the factor loadings (or the common variance) needs to be fixed at some
positive value (usually œ1 D 1).
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Fig. 5 (a) A latent variable path diagram of the invariant one-factor model for multiple waves of
measurement (W1 and W3). (b) A full (means and covariances) latent variable path diagram of the
invariant one-factor model for Wave 1 and Wave 3
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As an alternative, in the next model we consider multiple latent variables termed
Gf, for general fluid reasoning, and Gr, for a general memory or general retrieval
function of memory. This multiple factor model is a very popular model for a
number of good reasons (see McArdle 2012) and it can be tested (fitted) here to
the four variables. This is not necessarily the best fitting model to these data (that
is, other factor loadings can be estimated instead). The model requires that each
factor loading have a fixed positive value (usually œ1 D 1, and œ3 D 1) but this is
an arbitrary choice that can be altered but must be made by the investigator. Most
critically, this is the same as the prior model if the correlation among the two
separate factors is unity.

In this context, the model makes the additional assumption that all four variables
have a common part and a unique part. The common part is not necessarily the same
for each score, and this size is as indexed by a factor loading (œm) or by the size of
its unique variance (§m

2). The size is only relative here and this is made clear by
the requirement that one of the factor loadings (or the common variance) needs to
be fixed at some positive value (usually œ1 D 1, and for the second factor, œ3 D 1).

The same comparison of these two models can be examined over time and models
for this type of data are drawn in Fig. 5a, b. Here the factor or factors have to do
two related things: (1) Define the internal features of the covariation of the measures
within a time point, and (2) account for the changes over time in the measures. Since
we want the same factor at time 1 and time 2 (or W3 here), and since we define
the factors by their factor loadings, we do force the factor loadings to be exactly
the same over time. Although it is not necessary for this problem, to simplify our
presentation here, we assign the unique variances to be the same over time as well.

Of most importance here is change over age, and the common factor part can
further be decomposed as

f Œt�n D f0n C f1n�Œt�n C en (12)

where f0n is the unobserved level or intercept of the factor score, f1n is the
unobserved slope of the changes due to a one-unit shift in the �[t]n, and en is
the random noise or disturbance that is thought to be randomly distributed around
the predicted value of the first two parts. In this way, the factor score can change
and this creates change in the observed variable even with an invariant measurement
model.

The differences between this and other formulations of the more standard LCM
(Meredith & Tisak 1990; McArdle 1986) are that (1) this is a curve of factors model
(CUFFS; after McArdle, 1988) and (2) here we explicitly assume the assignment
of a factor loading that varies across the individual (McArdle & Hamagami 1996,
pp. 106–112; especially p. 108). Of course, individual fitting of likelihoods is
a common feature of many fitting functions now (but see McArdle 1998, pp.
390–406), so we use the program MC here. The consistency assumption for the
individual to look like the group is used to form the basic test statistics—this use
of an individually measured score as a model parameter is sometimes call “adding
definition variables” (from Mx manual; Neale et al., 1993). Indeed, this kind of
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raw data procedure was only available in Mx in the past, and it was based on the
statistical concepts of unbalanced pedigree analysis (from Lange et al. 1976).

If aging impacts the latent score alone we would think that it impacts both the
levels and slopes in some consistent fashion. To this we add that there can be age
differences at Wave 1 and Wave 3, and these are summarized for each person as

f0n D “01 C “11 .D funfAge Œ1�gn/C e0n

and
f1n D “03 C “13 .D funfAge Œ3�gn/C e1n

(13)

so the f0 is a level over both occasions, and f1 is a slope that is at two particular time
points determined by the age of measurement. The terms are indicative of a level
(or when the funfAgegD 0; so at 65 here) and a slope (for each unit—or decade of
age—of funfAgeg) of the prespecified age function. That at is, each person’s unique
contribution to the two ages is built up in this way. Each person has a level and
a slope score and under the assumption that it is the same information about age
changes is present in each variable. We can look further at this function. In other
words, we have essentially taken the Age model to the latent variable level.

Figure 5a is a path diagram of this one common factor model and Fig. 5b is a
more compete version (including means and unique covariances). We fit the latter
one here.

Figure 6a extends this logic to having two common factors at each measurement
occasion, and Fig. 6b is a full mean and covariance path diagram of this extension.
Here the variable slopes and levels are all correlated, and the factor of levels does
not assume a mean difference, due to lack of identification, so we do not add one.

In the final model (Fig. 6b) we use a two factor solution, but we also include:
(1) the means in the diagram (as the regression from a constant triangle), and (2)
the covariance of any unique features of the data (§2[1,3]). This is simply a more
complete picture of the model we will fit.

The same principles hold when we move to multiple occasions of data. The
common factors are supposedly the same, but the age changes in the factor scores is
examined. Here the models of 5a and 6a will be compared.

The key thing we will note about CogUSA is the staggered time lag of this
longitudinal study. This is unusual for a longitudinal study (see McArdle &
Woodcock, 1997), but we put in time lag as a variable because we wanted to study.
That, in most cases of experimental design we vary all the things that are important
to us and leave the rest as fixed quantities.

Results

The summary statistics appear in Table 2 for n D 1,125 people who supposedly took
all four scales at both Wave 1 and Wave 3. These are full information maximum
likelihood (FIML) estimates because only about 98 % participated at all times. In
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Fig. 6 (a) A latent variable path diagram of the two-factor invariant model for Wave 1 and Wave
3. (b) A full (means and covariances) latent variable path diagram of the two-factor invariant model
for Wave 1 and Wave 3
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Table 2 Summary statistics for n D 1125 participants who were all considered on four scores at
both Waves 1 and 3 (and using FIML)

Notes: W1_NS and W3_NS are scaled by mean D 500 and SD D 10
W1_Age and W3_Age are scaled by mean D 65 and SD D 10
To get back to the original scaling of each score we can simply multiply by the SD and add the
mean

using FIML we basically assume that there is nothing special about those who did
not participate again, and we use their time 1 data assuming they also follow the
same general pattern as we observe in those that did come back. But, for example,
NS is listed with a mean of 2.38 and a variance of 7.79 at Wave 1, and this
can be recast (by the usual W Rasch-scale transformation, following McArdle &
Woodcock, 1997; Here this is a transformation that basically raises the score to a
power of about 9, and then adds 500) into a raw W-scale score of 524, while the
same (or similar) test is listed at a mean of 2.83 with a variance of 9.46 at Wave 3,
and this is a raw W-score of 528. It is thought (by many others) that the W-score will
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have a linear relation with other scales while the raw score will not. The correlation
(in Table 2b) is r�0.520. Thus, the W-scores go up over time in a pattern that is
related to time 1 (those that are high to begin with seem to get high scores here).
The high scores can be accounted for by the ceiling of 600 on both test forms (this
is the highest we would go) and it appears (as we can see in Fig. 2a) people seemed
to get this score with unusually high frequency.

The resulting age-based model #1 is based on n D 1,125 who answered both
scales, starting ages with a mean of 68.83 (with a variance of 106.91) and a time
lag of 1.21 years (with variance 0.23). These are first fitted to Number Series (NS)
at two waves (Wave 1 and Wave 3) although any one of the four scales could be
used. The results are highlighted in the first column of Table 3 and all of Table 4. In
addition the computer script used to assess these variables is in Appendix 1.

The numerical results of model #1 shows NS has a mean at age 65 of �1.36 and
a slope per decade of age of 3.79. These are both significantly different from zero
given their respective z-values, so we can talk about the W-scores of 484 at age 65
and with a positive increase of C3.87 (or C38.7 in W units) points per decade from
that point onwards (and backwards). This should usually be contrasted with model
#0 where no slope is assumed, but the equal variance assumption of the residual
was assumed (in fact an equal and fixed variance assumption had to be used, so this
model has only two estimated parameters; the mean and variance of the level; see
McArdle, 1998). The extra parameters estimated (from the 2 in #0) are the slope
mean, the slope variance, and the covariance of levels and slopes. The fact that all
variables have such large variance estimates (in #1) and that increasing scores go
with increasing ages (this is positive) is a surprise. The fact that model #0 has a
much larger BIC is also a question that requires an answer. Perhaps the age changes
are too small to count here, but the fact that they are positive is a definite difference
from prior results (see McArdle et al. 2007).

The results for the one factor G model of behavior is listed in the next two models
of Table 3 (#2 and #3). In model #3 we fit a level and slope model with one common
factor (as in Fig. 4b). In model #2 we fix this changing score assumption and did not
fit a slope to the G factor and lost substantially in fit (on df D 4). The single factor
with factor loadings set œD 1 for NS, but the factor loading is estimated as 0.77 for
NU, 2.25 for IR, and 1.91 for DR seem to fit these data very well (with df D 3). The
three extra parameters estimated (from the 10 in #2) are the slope mean, the slope
variance, and the covariance of levels and slopes. The invariant loadings do not add
anything to the misfit here. But the mean intercept of this age slope factor is 2.68
(indicating a raw W-score of 527 at age 65), and the mean of this slope factor is
�0.24, and it is significant, indicating a �0.24 downhill slide in this factor for every
decade of age that is increased.

This is a decidedly different result. It is not at all what the observed data seem to
show (for any subscale) but this does not take the age-of-measurement into account,
it uses only the common (not unique) variance, and it is a closer to what we expected.
In fact, it suggests that (1) the common factor is episodic memory (because the
loadings of 2.25 for IR dominates the factor), and (2) there is some decline over age.
This one factor model is listed as #3 and this is given more completely in Table 5
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Table 5 Parameter estimates for the single-variable (number series) model with age changes

Note: See text for details. The use of 999.000 is used for empty locations and when the individual
varies. This is Mplus 7.11 output from the Appendix 2 program
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and the Mplus computer script that was used is in Appendix 2. We can see the BIC
is a lot larger for the no-changes model (#2), but we do not assume that Age changes
modeled in this way are important. This is only one latent variable after all.

A specially selected (and highly restricted) two-factor model alternative is listed
as #4. This is a more complex two-factor model that allows for more covariation
among the measures but also requires “strict” invariance of the loadings and unique
variances over time. Similarly, all variable intercepts are set to zero here, so the
mean changes have to go through the common factors (as in McArdle & Nesselroade
2014). In this approach the model has two common factors with œD 1 the required
fixed loading for NS and IR and estimated loadings of 0.74 (for NU) and 0.84
(for DR). This model has 22 parameters, largely due to the extra common factor
covariances, and these extra parameters are penalized heavily by the BIC, including
the level intercepts of 2.82 (or W D 528) and 6.04 (for IR). This still seems to have
the smallest BIC value, so it could be chosen on this basis.

It appears that Gr as measured by IR and DR declines the most over age, with
�0.49 per age decade. The function termed Gf, indicated by NS and NU, decline
significantly but only at �0.27 per decade. In contrast to the one-factor version, the
BIC for this model is smaller, and needless to say, this is far less decline than we
initially expected from a normal aging population, so maybe we do not have the right
factor yet. This has the smallest BIC of all used, so it could be chosen as the best
model for the data. But this BIC (about 31,275) is not much smaller than the prior
BIC (about 32,038), and the two-factor model has a lot of extra parameters so this
substantive model is not yet considered a large improvement.

Discussion

The final model chosen did not have the smallest BIC but it seemed to fit the data
the best. So there is much more to be done here. We fully realize the two-factor
model did not fit as well as we would have liked. We would have liked to separate
apart the aspects of GF and GR but this proved difficult with only 4 measures. But
this is a complicated choice (made here only by BIC) and because the number of
measurements is small and we want to say a lot about aging. That is, we had a
difficult distinction because we were only working with four variables. But this
SEM is a useful starting point even if it only deals with LCM Assumption 6.

We tried to use the standard HRS procedures (e.g., Genesys surveys) to contact
households with some persons in the HRS age range (over 50). We succeeded in
reaching over 3,000 people, but not everyone agreed to test further. We can only
suggest the reader look carefully at Heeringa et al. (2011) and McArdle and Fisher
(2015) for details. At Wave 1 we actually had measured over 1,500 people we have
measured age and other demographics (like respondent education, sex, minority
status, health, dyad, nursing home, currently employed), as well as administration
of a telephone versions of standard cognitive tests (the TICS; defined here as BC,
S7, IR, DR), as well as some additional tests HRS (NU) and some new telephone
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Table 6 Parameter estimates for the current invariant measurement model with two common
factor of changes

(continued)



The Observed Dependency of Longitudinal Data 35

(continued)

Note: This is Mplus 7.11 program output for the input in Appendix 4

administered WJ-based adaptive tests (NS, RF) and the depression scale (CES-D).
Our main goal here was to see if we could measure the same constructs as before,
but the time over the telephone, and we basically found we could. But we are also
involved in a number of selection issues (see McArdle 2013; Heeringa et al. 2011),
and a small sample of 200 HRS respondents who were at the top and the bottom of
the HRS Cognition scores (in 2008) were also re-measured on our instruments.

Perhaps with more measured variables we can also make finer distinctions among
multiple factors. Or perhaps we can take into account the non-normality of the data
(see Fig. 2a–d). In this same sense, we were evaluating only part of the measured
scale and not all of it. For another example, take our previous analytic work in
McArdle et al. (2015). In this research we evaluated 13 items from the CES-D. If we
had been evaluating the CES-D for use in these grades (9th and 10th) we would use
20 items as listed in the typical CES-D. But we were most interested in evaluation
the concept of depression, the latent factor that it represented, and we thought we
could test this idea with only four items. But we looked at 13 items in this chapter
only, mainly because we were trying to indicate one factor only.

Indeed an expansion or delineation of the purported common factors can be
achieved with measured variables such as S7 (a telephone administration of HRS
Serial Sevens) and RF (a telephone administration of WJ-Retrieval Fluency). Each
of these could expand the factor space in important ways and may lead to some
stability. We can also add several occasions of measurement, before and after
Wave 3. This use of Wave 2 was a few weeks later than Wave 1 but we gave
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them a full battery of tests, about 1,200 people for 3 h in the home, including
the WJ-R, and the WASI, plus some personality scales (e.g., BFI, NCS) and some
dispositional measures (RISK). This was mainly included so we could verify the
telephone measures against telephone adapted tests and several were administered
here. There are many measures here and they can be useful too.

At Wave 3 we went back to the original telephone forms after an average of
about 1.21 years (with 0.21 as a standard deviation). This was supposedly different
for people of different ages in some time lag but other conditions need to be stated
up-front as well. For example, Rodgers et al. (2003) and McArdle and Fisher (2015)
make it very clear that there we naturally had eight groups of respondents by time-
lag (this was not designed) and it was hard to do a second telephone test in a short
time if the people had not completed the FTF of Wave 2. This confound does not
apply to any people selected but it is there. We started this testing by verifying the
Birth Date of the person being tested (the interviewee, or IV). We repeatedly tested
the original people again on the same battery used in Wave 1 with, as stated, about
a year and a half delay (e.g., Wave 3).

During the last 5 years we have measured the same people again as part of a
second 5-year study. During these times (2009–2014) we were mainly interested in
the difference (if there are any) between Telephone testing and Internet testing. This
issue will not be raised or resolved here. There are currently (as of 2015) no plans
by us to re-measure these same people again but we have let the CogECON and
HRS teams at the University of Michigan contact them. In any case, our experiment
is complex, as are our multiple assumptions, but this is the basic model of aging
and invariance we will use in further analyses of these data, so comments are
welcome.

Appendix 1: An example of an MC 7.11 Computer Program
for Two Time Point Data with Age Changes

TITLE: EX_MOD1 -- Dynamic Impact of constraints NS at
Two Times

Using Age at Testing as a cross-section

Run of NS with No Slope ALL CogUSA scores (McArdle,
2014)

DATA: FILE D CogUSA_Repeated3.dat;

!LISTWISEDON;

VARIABLE: NAMES D
id

w1_age w2_age w3_age

educ female black

ldays12 ldays23 ldays13
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W1_IR W2_IR W3_IR

W1_DR W2_DR W3_DR

W1_BC W2_BC W3_BC

W1_S7 W2_S7 W3_S7

W1CESDp W2CESDp W3CESDp

W1_NU W2_NU W3_NU

W1_NS W2_NS W3_NS

W1_RF W2_RF W3_RF

;

USEVAR D W1_Age W3_Age W1_NS W3_NS;

MISSINGD.;

DEFINE: W1_NS D (W1_NS - 500)/10;

W3_NS D (W3_NS - 500)/10;

W1_age D (W1_age - 50)/10;

W3_age D (W3_age - 50)/10;

ANALYSIS: TYPEDMEANSTRUCTURE;

MODEL:

W1_NS on W1_age (B1);

W3_NS On W3_age (B3);

!equating error variances

! W1_NS W3_NS (V_U);

OUTPUT: SAMPSTAT STANDARDIZED;

Appendix 2: An example of an MC 7.11 Computer Program
for Two Time Point Data with Age Changes as a Loading
Constraint

TITLE: EX_Mod: Table 3.2 -- Dynamic Impact of
constraints NS by Two Times

Run of All TEL Time CogUSA scores (McArdle, 2014)

DATA: FILE D CogUSA_Repeated3.dat;

!LISTWISEDON;

VARIABLE: NAMES D
id

w1_age w2_age w3_age

educ female black

ldays12 ldays23 ldays13

W1_IR W2_IR W3_IR
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W1_DR W2_DR W3_DR

W1_BC W2_BC W3_BC

W1_S7 W2_S7 W3_S7

W1CESDp W2CESDp W3CESDp

W1_NU W2_NU W3_NU

W1_NS W2_NS W3_NS

W1_RF W2_RF W3_RF;

CONSTRAINT D W1_Age W3_Age;

USEVAR D W1_NS W3_NS;

MISSINGD.;

DEFINE: W1_NS D (W1_NS - 500)/10;

W3_NS D (W3_NS - 500)/10;

ANALYSIS: TYPEDMEANSTRUCTURE;

MODEL:

!frst get a level and a slope for NS;

l BY W1_NS@1 W3_NS@1;

s BY W1_NS * (LNS1)

W3_NS * (LNS3);

[l s];

l s;

l WITH s;

!eliminating original variables

[W1_NS@0 W3_NS@0];

W1_NS@0 W3_NS@0;

!equating error variances

! W1_NS W3_NS (V_U);

MODEL CONSTRAINT: ! To get at individual loadings;

LNS1 D (W1_age - 50)/10;

LNS3 D (W3_age - 50)/10;

OUTPUT: SAMPSTAT STANDARDIZED;

Appendix 3: MC 7.11 Computer Program for Four Variables
at Two Time Points of Data based on a Model of One Common
Factor with Age Changes

EX_MOD: Table 4.2 -- Multivariate Dynamic Impact of
Equal Age
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For four variables NS, NU, IR,DR, with and MFIT for G
(McArdle, 2015)

DATA: FILE D CogUSA_Repeated3.dat; !LISTWISEDON;

VARIABLE: NAMES D id

w1_age w2_age w3_age

educ female black

ldays12 ldays23 ldays13

W1_IR W2_IR W3_IR W1_DR W2_DR W3_DR

W1_BC W2_BC W3_BC W1_S7 W2_S7 W3_S7

W1CESDp W2CESDp W3CESDp

W1_NU W2_NU W3_NU W1_NS W2_NS W3_NS

W1_RF W2_RF W3_RF

;

USEVAR D W1_Age W3_Age

W1_NS W3_NS W1_NU W3_NU

W1_IR W3_IR W1_DR W3_DR

;

MISSINGD.;

DEFINE:

W1_NS D (W1_NS - 500)/10;

W3_NS D (W3_NS - 500)/10;

W1_age D (W1_age - 65)/10;

W3_age D (W3_age - 65)/10;

ANALYSIS: TYPEDMEANSTRUCTURE;

MODEL:

W1_G BY W1_NS (L_NS);

W1_G BY W1_NU (L_NU);

W1_G BY W1_IR (L_IR);

w1_G BY W1_DR (L_DR);

W3_G BY W3_NS (L_NS);

W3_G BY W3_NU (L_NU);

W3_G BY W3_IR (L_IR);

W3_G BY W3_DR (L_DR);

W1_G On W1_Age (b11); [W1_G] (b01);

W3_G ON W3_Age (b13); [W3_G] (b03);

!Equal uniquenesses at the factor level

W1_G W3_G (U2_G);

!Equal Uniqueness at the Variable Level

W1_NS W3_NS (U_NS); W1_NU W3_NU (U_NU):
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W1_IR W3_IR (U_IR); W1_DR W3_DR (U_DR);

!original means of variables not used

[W1_NS@0 W3_NS@0 W1_NU@0 W3_NU@0 W1_IR@0 W3_IR@0
W1_DR@0 W3_DR@0];

OUTPUT: SAMPSTAT STANDARDIZED;

Appendix 4: MC 7.11 Computer Program for Four Variables
at Two Time Points of Data Based on a Model of Two
Common Factors with Age Changes as a Loading Constraint

TITLE: EX_MOD: TABLE 4.4 -- Dynamic Impact of
constraints on

four variables NS,NU, IR,DR, with am MFIT-G

Run of 4 TEL Time CogUSA scores (McArdle, 2015)

DATA: FILE D CogUSA_Repeated3.dat;

!LISTWISEDON;

VARIABLE: NAMES D
id

w1_age w2_age w3_age

educ female black

ldays12 ldays23 ldays13

W1_IR W2_IR W3_IR

W1_DR W2_DR W3_DR

W1_BC W2_BC W3_BC

W1_S7 W2_S7 W3_S7

W1CESDp W2CESDp W3CESDp

W1_NU W2_NU W3_NU

W1_NS W2_NS W3_NS

W1_RF W2_RF W3_RF

;

CONSTRAINT D W1_Age W3_Age;

USEVAR D W1_NS W3_NS W1_NU W3_NU W1_IR W3_IR W1_DR
W3_DR;

MISSINGD.;

DEFINE:

!Imputation just to keep the time 1 people in at all
occasions : : :

IF (W3_age LT 0) THEN W3_ageD999;
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W1_NS D (W1_NS - 500)/10;

W3_NS D (W3_NS - 500)/10;

ANALYSIS: TYPEDMEANSTRUCTURE;

MODEL:

W1_G BY W1_NS (L_NS);

W1_G BY W1_NU (L_NU);

W1_G BY W1_IR (L_IR);

W1_G BY W1_DR (L_DR);

W3_G BY W3_NS (L_NS);

W3_G BY W3_NU (L_NU);

W3_G BY W3_IR (L_IR);

W3_G BY W3_DR (L_DR);

!get a level and a slope for G;

l_G BY W1_G@1 W3_G@1;

s_G BY W1_G * (L1);

s_G BY W3_G * (L3);

[l_G s_G]; l_G s_G; l_G WITH s_G;

!But with equal error variances

W1_G W3_G (U_G);

!original variables not used

[W1_NS@0 W3_NS@0];

W1_NS@0 W3_NS@0;

!Except equal error variances

W1_NS W3_NS (U_NS);

!original variables not used

[W1_NU@0 W3_NU@0];

W1_NU@0 W3_NU@0;

!Except equal error variances

W1_NU W3_NU (U_NU);

!original variables not used

[W1_IR@0 W3_IR@0];

W1_IR@0 W3_IR@0;

!Except Equal error variances

W1_IR W3_IR (U_IR):

!original variables not used

[W1_DR@0 W3_DR@0];

W1_DR@0 W3_DR@0;

!Except equal error variances

W1_DR W3_DR (U_DR);
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MODEL CONSTRAINT: ! To get at individual loadings;

L1 D (W1_age - 65)/10;

L3 D (W3_age - 65)/10;

OUTPUT: SAMPSTAT STANDARDIZED;
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Nonlinear Growth Curve Models

Paolo Ghisletta, Eva Cantoni, and Nadège Jacot

Abstract In the past three decades, the growth curve model (also known as latent
curve model) has become a popular statistical methodology for the analysis of longi-
tudinal or, more generally, repeated-measures data. Developed primarily within the
latent variable modeling framework, the equivalent model emerged from other fields
under the names of linear mixed-effects model, random-effects model, hierarchical
linear model, and linear multilevel model. This methodology estimates the so-called
growth parameters that describe individuals’ change trajectories across time and
are related via linear combinations to the dependent variable. While satisfying in
many research settings, oftentimes a linear relation between dependent variable
and growth parameters cannot allow for meaningful interpretation of the growth
parameters, parsimonious descriptions of the change phenomenon, good adjustment
to the data across all values of the time predictor, and realistic extrapolations outside
the empirical range of the time predictor. Consequently, nonlinear alternatives have
been proposed, for which the growth parameters can be related to the dependent
variable via any mathematical function (not just linear combinations). We discuss
the theoretical foundations as well as practical implications of estimating nonlinear
growth curve models. We also illustrate the methodology with an example from the
psychological literature.
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The (Linear) Growth Curve Model

The growth curve model (GCM), also called latent curve model, has become a
familiar model for repeated-measures data in many scientific disciplines. This model
formally addresses ideas that were formulated a long time ago by several scientists,
in several disciplines, all concerned with describing and understanding change in
entities assessed repeatedly on the same outcome. In particular, in social sciences
and humanities, entities were observed on outcomes as varied as children’s stature,
adolescents’ learning abilities, and adults’ memory capacities (McArdle 2001).

Relying on previous work on individual curve fitting via principal component
analysis (Rao 1958; Tucker 1958), Meredith and Tisak (1985) showed how GCMs
could be represented via confirmatory factor analysis and structural equation
modeling (SEM). The GCM is related to other models commonly used with
repeated-measures data, such as Wiener and Markov simplex models (Jöreskog
1970) or the repeated-measures analysis of variance, but can also be expanded to
more complicated growth specifications (Meredith & Tisak 1985, 1990). McArdle
and colleagues (McArdle 1986; McArdle & Epstein 1987) later showed how the
GCM can be implemented and tested with commonly available SEM software, and
how the model can further be expanded to specify known and unknown growth
functions, which can be empirically compared to each other and tested on the same
data.

Somewhat in parallel, stemming from different disciplines such as biostatistics
and education, the linear mixed-effects models (LMMs) emerged. This model can be
represented as the extension of the linear regression model to cases where multiple
sources of variance are present. In particular, with respect to repeated-measures data,
variations in the outcome are due to variations within an individual, but across the
repeated measures (hence across time), and variations across individuals (Bryk &
Raudenbush 1987; Laird & Ware 1982). This model is also known under the name
of random-effects model, linear multilevel model, and hierarchical linear model, and
is fully equivalent, under certain conditions, to the GCM (Ghisletta & Lindenberger
2004; Rovine & Molenaar 2000). We will use the LMM nomenclature only for
simplicity.

The GCM can be represented as follows (Laird & Ware 1982):

yi D Xiˇ C Zibi C ei; (1)

where for a total of N D Pm
iD1 ni observations, yi is the (ni � 1) data vector for

the ith individual (meaning that the number of repeated measurements may vary
across individuals), ˇ represents a (p � 1) vector of fixed effects, which are constant
across all individuals, Xi is an (ni � p) design matrix that can be specific to the ith
individual, bi is a (k � 1) vector of random effects, which varies across individuals,
Zi is a (ni�k) design matrix linking yi to the random effects, and ei is a (ni�1) vector
of within-individual errors. We assume that ei � N .0;Ri), where Ri is the (ni � ni)
within-individual covariance matrix (typically Ri is specified by a small number of
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parameters, the simplest case being Ri D �2Ini , where Ini is the (ni � ni) identity
matrix). This implies that E(yijbi/ D Xiˇ C Zibi and Cov(yijbi) D Ri. However,
this specification of the errors ei can and should be tested (e.g., Grimm & Widaman
2010). Indeed, if the investigated change process is partially driven by a stochastic
trend (such as a simple random walk process), the errors are no longer random, and
failure to account for this dependency may result in spurious results and increase of
Type-I errors (Braun, Kuljanin, & DeShon 2013; Kuljanin, Braun, & DeShon 2011).

To specify the interindividual variations we assume bi � N .0;D/ (where D
is a (k � k) dispersion matrix; bi are independent of each other and of ei). If bi

and ei are normally distributed and independent, then yi are normally distributed
with mean Xiˇ and covariance matrix ZiDZ0

i C Ri (Davidian & Giltinan 1995). The
fact that it is possible to specify in closed form the marginal distribution is due to
both the Gaussianity of all random terms and the linear, additive dependence of the
dependent variable yi on the fixed effects ˇ through the design matrix Xi and on
the random effects bi through the design matrix Zi. The linear dependence of the
response on the covariates and the regression parameters (i.e., the fact the model is
linear in its parameters) and the assumption of Gaussianity greatly facilitates both
estimation and statistical inference (likelihood based inference can easily be carried
out).

The GCM is a linear model because the response variable is a linear function
of the parameters of the model. For instance, in the simple linear regression model
we assume that the dependent variable y of individual i is expressed as yi D ˇ0 C
ˇ1xi C ei. Accordingly, the model assumes that for each individual i the value of y
is obtained by a linear combination of ˇ0 and ˇ1, where the parameters ˇ0 and ˇ1
are at most multiplied by a fixed value (e.g., 1 and xi) and then added. Note that
if xi is a nonlinear function of time ti, such as xi D t2i the model is still linear in

its parameters. By contrast, a model where yi D ˇ0x
ˇ1
i C ei is said nonlinear in its

parameters because ˇ1 is the exponent of xi.
Probably the most common GCM is the one implementing a growth function

with a linear shape:

yij D ˇ0i C ˇ1itij C eij; (2)

where the outcome yij for individual i at time j is specified as the sum of
the individual-specific intercept ˇ0i and the individual-specific linear slope ˇ1i

multiplied by the time of assessment, and a time- and individual-specific residual
eij. The intercept is the predicted score for subject i at time tij D 0 and the linear
slope is the constant amount of linear change for subject i across each unit of time.

While this model is easy to implement in existing SEM or LMM software and can
easily be estimated, it is rarely satisfying from a theoretical perspective (Davidian
& Giltinan 1995; Grimm, Ram, & Hamagami 2011; Pinheiro & Bates 2000).
It is indeed hard to imagine that phenomena of scientific interest are truly linear,
because this time relation implies constant rate of change, hence null acceleration
or deceleration in change, and lack of asymptotes. In other words, any outcome
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is predicted, at least in the long run, to attain levels outside of any empirically
imaginable range, thereby ranging from minus infinity to plus infinity (unless
ˇ1i D 0 8i).

Another common specification of the GCM consists in expanding the polynomial
relating time tij to the outcome. Most often the quadratic expansion is applied:

yij D ˇ0i C ˇ1itij C ˇ2it
2
ij C eij; (3)

but examples include applications to cubic or even higher-order polynomials. The
polynomial approach however presents several limitations (Davidian & Giltinan
1995; Pinheiro & Bates 2000). First, to increase the accuracy of the model usually
several terms are added (e.g., quadratic, cubic). In general, for each curvature in
the observed trajectory an additional polynomial degree is needed for a reasonable
adjustment. This inevitably reduces the statistical parsimony of the model in
terms of number of necessary parameters. Second, adding terms of higher degrees
to the polynomial will likely increase multicollinearity among these terms and
existing terms of lower degrees. For instance, if the trajectory is to be described
as a function of the participants’ age with a quadratic polynomial, both age and
age squared will be predictors in the model. However, given that only positive
values are admissible for age, the two predictors will inevitably correlate very
highly. This multicollinearity presents problems that are well known in ordinary
least squares regression and that are transposed to the multilevel extension (esti-
mation issues, high standard errors of the parameter estimates, and problematic
substantive interpretation). Analytical solutions are hence required. Very often
the linear predictor is centered around its mean before it is squared to obtain
the quadratic term. This transformation inevitably requires additional care during
parameter interpretation, especially in the presence of orders greater than 2 or in the
presence of interaction terms. Residual centering is also a possibility that reduces
multicollinearity, but this option is not very popular in GCM applications, given
it is more complicated than predictor centering (Lance 1988). Also, orthogonal
polynomials (e.g., Chebyshev’s, Gegenbauer’s, Hermite’s, Jacobi’s, Laguerre’s)
may be specified, which, by definition, are not composed of multicollinear terms
and hence avoid this issue altogether (Chihara 1978). Third, and perhaps most
important from a statistical viewpoint, a polynomial function (including of order
one, the linear) will usually only approximate the observed range of the data, while
distancing itself noticeably beyond this range. This implies that predictions outside
the observed range of the data are usually not valid with the polynomial approach.
Indeed, a polynomial function is not necessarily bounded. Fourth, to maximize the
overall adjustment to the data a polynomial will usually overfit the observations in
center of the data and attribute large deviations to observations at the extremes.
Finally, interpreting polynomial coefficients in substantive terms is usually not
simple. One may estimate characteristics of polynomials, such as inflection points,
but rarely are these discussed in terms of theoretical interpretation.

Rather than transforming a predictor to then apply the polynomial strategy an
analyst may choose to transform the outcome variable. Here again voices from
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the statistical community were raised against this practice for several reasons
(Davidian & Giltinan 1995; Pinheiro & Bates 2000). First, this approach may once
more render difficult any parameter interpretation. Second, oftentimes data on the
same outcome collected in independent samples must be subjected to different
transformations to approximate linearity (e.g., different values of � in the Box-Cox
transformation). Third, in specific applications the outcome may not be a continuous
variable approximately normally distributed. A dichotomous (two-value) outcome,
for instance, is best described by a Bernoulli distribution of the value of interest. No
transformation will change such a distribution to become approximately normal.
Finally, and most importantly, nonlinearity may arise for meaningful empirical
or theoretical reasons. For instance, growth in various organisms is often well
described by logistic functions; survival functions with time-dependent hazard
rates may follow a Weibull distribution; compound interests follow exponential
functions. In such cases the appropriate nonlinear modeling procedure (rather than
a transformation to fit a linear model) holds the potential to estimate parameters that
will further the understanding of the phenomenon under investigation, whereas a
transformation of the outcome may obscure such understanding.

The Nonlinear Growth Curve Model

Conscious of the limitations of LMM in various applied settings, several statisticians
have first explored, then established what is now a well-recognized statistical model,
the nonlinear mixed-effects models (NLMMs). Dedicated books include, but are
not limited to, Davidian and Giltinan (1995), Vonesh and Chinchilli (1996), and
Pinheiro and Bates (2000).

Basically, LMMs have been extended to NLMMs, to include functions that are
nonlinear in their parameters. Analogously to LMMs, NLMMs are represented to
specify both intraindividual and interindividual variations. Intraindividual variation
is characterized by a nonlinear regression of the outcome on the predictors, while
the interindividual variability is represented through individual-specific regression
parameters that often incorporate fixed and random effects. We suppose again that
individuals i D 1; 2; : : : ;m have been observed on ni responses at time j D
1; 2; : : : ; ni, so the outcome is indicated yij. We denote xij the vector of predictors
and suppose a nonlinear function f .xij;ˇij/ that models the relationship between yij

and xij, where ˇij is a vector of parameters for individual i at time j. We suppose that
f is common to all individuals but that elements of ˇij may vary across individuals
(and across time).

Following these specifications we can assume the following intraindividual
model:

yij D f .xij;ˇij/C eijs (4)

where eij is again a random error, such that E(eijjˇij/ D 0.eij � N .0;Ri)).
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The interindividual model can be specified as follows:

ˇij D d.aij;ˇ; bi/; (5)

where d is a vector-valued function, aij is a covariate vector corresponding to
individual attributes for individual i at time j (which may be other individual
characteristics than xij), ˇ is a vector of fixed parameters (or fixed effects), and bi is a
vector of random effects associated with individual i. Normality is the most common
assumption for the distribution of the random effects (bi � N .0;D/; Davidian &
Giltinan 1995).

Equation (4) can be specified to obtain the LMM of Eq. (1). The more general
specification of the NLMM allows both fixed and random effects to be related to
potentially different sets of individual characteristics in a nonlinear fashion. This
gain in flexibility is somewhat similar to that in the non-hierarchical regression
models when the General Linear Model is expanded to the Generalized Linear
Model (McCullagh & Nelder 1989; Nelder & Wedderburn 1972).

The analogy between the SEM implementation via GCM and the LMM does not
generalize in a straightforward fashion to the case of the NLMM. Hence, technically
speaking, we cannot necessarily say that an NLMM is equivalent to a nonlinear
GCM (NGCM). While recent advances in GCM allow specifying models with
nonlinear fixed effects, the functional expression of random effects is required to
be linear. Models with nonlinear fixed and linear random effects are sometimes
referred to as models with additive random coefficients, or partially nonlinear;
in such a case, the NLMM is equivalent to the NGCM. These models can be
specified with SEM software as long as nonlinear constraints can be specified on
the estimation of the fixed parameters (for instance, where parameters � and 	 are
estimated under the nonlinear constraint that � D exp.	/; for a full example, see
Ghisletta & McArdle 2001). In opposition, models where both fixed and random
effects are nonlinear are said to be with multiplicative random coefficients and
are also referred to as fully nonlinear. These retain the advantages of the additive
random coefficients models and moreover allow specifying, hence testing for, indi-
vidual difference in potentially important (nonlinear) change components (Grimm,
McArdle, & Hamagami 2007). Because SEM assumes random effects to be linear
(i.e., additive), fully nonlinear models cannot be estimated with SEM software if
directly specified as such. Here, the NLMM is not truly equivalent to the NGCM.
Nonetheless, Browne and colleagues (Browne 1993; Browne & Du Toit 1991), in
their seminal work, delineate a methodology that allows approximating nonlinear,
monotonic, differentiable functions (e.g., Gompertz, exponential, logistic) in the
SEM framework. The function’s parameters are linearized via first-order Taylor
expansions, assuming the random effects are normally distributed and in linear
relations with possible covariates (for applications see for instance Blozis 2004;
Cudeck & Harring 2007; Ghisletta, Kennedy, Rodrigue, Lindenberger, & Raz 2010;
Grimm et al. 2007, 2011). This method, however, is limited to functions that can
be linearized, that is rewritten as the sum of each random effect multiplied by
the partial derivative with respect to each random effect of the underlying (target)



Nonlinear Growth Curve Models 53

function (Browne 1993; Browne & Du Toit 1991; Grimm et al. 2007). Not every
function f .xij;ˇij/ abides to these characteristics. Moreover, the approximation may
fail under some circumstances (Vandergrift, Curran, & Bauer 2002; von Oertzen
2010).

Available Software and Estimation Issues

The greater modeling flexibility of the NLMM comes with a cost in terms of
increased computational difficulties. As for the LMM, the marginal likelihood
function is obtained by integrating the joint density of the outcome and the random
effects with respect to the random effects. However, because in the (fully) NLMM
the random effects are allowed to enter the model nonlinearly, a closed-form
expression of the marginal likelihood, contrary to the LMM, does no longer exist.
Therefore, an approximate likelihood function needs to be employed (common
choices include a Laplacian approximation or adaptive Gaussian approximation
with multiple quadrature points). This results in computationally more intensive
algorithms and approximate inference results. As a consequence, acceptable solu-
tions (producing realistic predictions) may not always be obtained.

Dedicated software has been developed to estimate NLMM, e.g. PROC
NLMIXED in SAS (Wolfinger 1999) and the nlme and lme4 packages in the R
environment (Pinheiro et al. 2014). PROC NLMIXED in SAS is particularly simple
to specify and offers four estimation methods for the integral of the likelihood over
the random effects: adaptive Gauss-Hermite quadrature (default method; Pinheiro
& Bates 1995), the first-order method (Beal & Sheiner 1982), Hardy quadrature
(available only for a single random effect), and adaptive importance sampling
(Pinheiro & Bates 1995). In our experience, the default adaptive Gauss-Hermite
quadrature method works well but may be highly dependent on initial starting
values provided by the analyst. As an alternative, we find the first-order method of
Beal and Sheiner (1982) very useful. Functions that can be implemented as NGCM
and estimated via the Taylor expansion method of Browne (1993) can be estimated
with common SEM software that allows for nonlinear constraints. Some authors
find this strategy to produce more robust results and more easily attain convergence
(Grimm et al. 2011).

Modeling Strategy

Whichever estimation method is used, it is of utmost importance to first plot the
data. Individual longitudinal trajectories and the sample average curve ought to be
plotted, in the hope that they may guide the choice of a functional specification.
For instance, data showing a clear nonlinear increase and graphical evidence for
an upper asymptote may be well described by an exponential function. Second,
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the analyst needs to map the parameters of the chosen function to the plotted data.
For instance, the values of asymptotes can easily be guessed by eye-balling the
longitudinal plot. However, guessing the values of rates of growth usually requires
a deeper examination and some experience. To this end, a family of curves from
the same function, obtained by altering the function’s parameter values, can be
simulated and plotted, to then be confronted to the empirical plot of the data, in
the hope that a match emerges (e.g., Sit & Poulin-Costello 1994).

Another modeling step we find at times useful consists in fitting a series of
nonlinear regressions, separately for each participant’s time series. This can easily
be achieved with the nls function of the default stats package in R or with PROC
NLIN in SAS, both of which implement least-squares estimation of nonlinear
regression models. The nonlinear function parameters are thus estimated for each
participant and their distributions can be plotted. Although such distributions are
wider than expected based on the random effects of the NLMM (because of the
inferior statistical efficiency of the regression model; e.g., Pinheiro & Bates 2000),
they are centered on the unbiased estimates of the fixed effects of the NLMM.
Hence, good initial starting values for the fixed effects of the NLMM can be
obtained. Alternatively, it is possible to consider a set of different starting values,
each of which is used for a separate model estimation. The examination of the
various parameter estimates (also in terms of overall statistical adjustment, such
as the maximal likelihood) can be used to evaluate the dependency of the solution
on the starting values and eventually lead to select a given set. In sum, one should
by all means not underestimate the importance of the initial values in the parameter
estimation methods of NLMM or NGCM.

Another important aspect of fitting NLMMs and NGCMs concerns the modeling
of random effects. Analysts should first specify the fixed effects, as these are
typically more easily estimable with any estimation method (Pinheiro & Bates 2000;
Snijders & Bosker 2012). Then, one should think hard about which aspects of the
change function may vary across individuals, and for those additionally estimate
random effects. That is, one should resist the temptation to let every parameter
of the specified change function vary across individuals by estimating all possible
random effects. In fact, it is not uncommon for some random effects of the same
change function to correlate very highly. For instance, in a classical memory study,
where a list of nouns is repeatedly presented and asked to recall, one may find
that participants differ with respect to their initial level (initial asymptote), rate of
learning, and final performance (final asymptote). In this situation the variance of the
rate of learning parameter and that of the final asymptote may overlap greatly. This
redundant information would be operationalized as a high correlation between the
two random effects, a clear sign of model overparameterization. This could be due to
computation difficulties, such that more data would be needed to separately estimate
the two random effects, or to a substantive feature of the change process, owing to
the fact that individuals who learn many words could end up recalling many words
by the end of the experiment. In general, it is best to first test the fixed effects only,
then add random effects one at a time, to increasingly test their empirical relevance.
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Finally, we find it very useful to plot the expected trajectories for each individual.
Once a function is tested on the data, the parameter estimates need to be controlled
carefully, to see whether their value appears plausible. This can easily be done for
the fixed effects. It suffices to replace their estimated values in the original equation
of the function to obtain the average sample trajectory. However, the random effects
should also be checked. Contemporary software easily estimate individual values of
the random effects (e.g., empirical Bayes estimates are available in SAS NLMIXED,
conditional modes are available in nlme in R). These can be replaced in the
equation of the original function to obtain individual expected trajectories, which
should then be plotted for diagnostics (cf. Figs. 2 and 3 below).

Illustration

We illustrate some specifications of NGCM with an example from the psychological
literature. We reanalyze the data reported in Kennedy, Partridge, and Raz (2008),
which were themselves based on a previous study by Raz, Williamson, Gunning-
Dixon, Head, and Acker (2000). Both studies aimed at understanding how the
acquisition of new skills, in particular a perceptual-motor skill, relates to individual
age-related differences in cognitive functioning and in structures of the central
nervous system in healthy human adults. Participants performed the Pursuit Rotor
task (Durkin, Prescott, Furchtgott, Cantor, & Powell 1995), which consists in
keeping a wand with a 7-mm tip on a 2-cm light spot that rotates circularly at 40 rpm.
The outcome is the number of seconds (time-on-target) each participant manages in
achieving the task. To capture a large range of age-related differences, the m D 98

participants of the sample varied from 19 to 80 years of age.
A number of covariates of interest were also assessed. To simplify the illustration,

we consider only two covariates here. The first covariate is chronological age
(measured in years, and centered around the group average of 47.63 years). The
second is the score on a task of spatial abilities, called Spatial Relations, from the
Woodcock-Johnson Psycho-Educational Battery-Revised (Woodcock & Johnson
1989). Participants are presented with a whole shape as well as with a series of
six disjointed shapes, from which they are asked to choose a correct combination.
The complexity and degree of abstraction of the shapes increase according to
participants’ capacities. This task is quite difficult and relies not only on spatial
abilities, but also on working memory, the capacity to hold in memory pieces
of information while manipulating them. In fact, to successfully manage the task
participants must rotate and translate the shapes to then assemble them to form the
correct shape that corresponds to the whole shape presented. We considered the
usual score, that is the total number of correct responses.

In the original data set, four blocks of 20 trials, each trial lasting 15 s, were
administered. The trials were separated by 10-s pauses, and the blocks were
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distributed across 3 days (with blocks 1 and 2 on day 1, blocks 3 and 4 on
day 2 and 3, respectively). In the original publications the data were averaged
either by block (over 20 trials), or over all ni D 80 trials, thereby impeding a
trial-by-trial analysis. Ghisletta et al. (2010) reanalyzed the data with an NGCM
specifying a three-parameter exponential function (more detail in the subsection
below), relating performance at each trial to the covariates of interest. By doing so,
Ghisletta et al. (2010) were able to study the learning curve across all trials. The
authors implemented a multivariate analysis, in which a specific growth model was
estimated for each block and all growth parameters were allowed to correlate across
the blocks. They concluded that within each block participants quickly learned the
task and improved their time-on-target, until they reached an upper asymptote. The
initial performance level, learning rate, and final asymptotic level of performance
correlated strongly across blocks.

For simplicity, we only consider the 20 trials of the first block here. The observed
individual and average sample trajectories are plotted in Fig. 1. Clearly, we can see
that individuals start at relatively low values of time-on-target and then increase
rather quickly, to become stable relatively soon. This is particularly visible in the
sample average trajectory. Moreover, we see that there is high variability with
respect to both performance on trial 1 and maximal performance, and that this
variability appears to increase throughout the study; finally, we can guess that the
rate of learning also discriminates individuals.
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Fig. 1 Observed individual trajectories of time-on-target (in seconds—thin lines) and sample
average trajectory (in seconds—thick line) by trial number (from 1 to 20)
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Nonlinear Functions

We implement a number of nonlinear functions, each of which specifies parameters
that allow interpreting meaningfully the learning patterns observed in the data.
Clearly, learning rate is not well represented by a straight line. Thus, the linear GCM
of Eq. (2) likely does not represent well the data. Moreover, the data are naturally
bounded above and below by the duration of the task. Participants’ admissible time-
on-target scores range from 0 to 15 s. Naturally, then, functions used to describe
such data should contain both a lower and an upper asymptote. That is why the
quadratic GCM of Eq. (3), or other, higher-order polynomials, may not be well
suited for these data either. In the end, we choose a number of nonlinear functions
with parameters representing a lower and upper asymptote, or similarly initial and
final performance, and rate of growth that is not constant in time. To represent
the heterogeneity observed in the learning curves, the functions specify both fixed
and random effects in their characteristics. All functions have the form specified
in Eq. (4), where the only covariate xij is the trial number tij, going from 0 to 20.
Further, we always assume eij � N .0; �2e /.

Exponential

This function contains three parameters and is presented in Meredith and
Tisak (1990). McArdle, Ferrer-Caja, Hamagami, and Woodcock (2002) estimated
it as an NLMM while Ghisletta et al. (2010), based on the work of Browne (1993),
estimated it as an NGCM. The function is:

yij D ˇi � .ˇi � ˛i/ exp.�.tij � 1/	i/C eij: (6)

For individual i, ˛i represents the initial performance at time tij D 1 (first trial),
ˇi the final performance at tij D 20 (final asymptote, representing potential
performance), and 	i the rate of change (representing learning speed). We estimate
the random effects associated with all three growth components (˛i D ˛ C U1i,
U1i � N .0; �21 /; ˇi D ˇCU2i, U2i � N .0; �22 /; and 	i D 	CU3i, U3i � N .0; �23 /).

Logistic

This function also contains three parameters and is presented in Meredith and
Tisak (1990):

yij D ˛iˇi

˛i C .ˇi � ˛i/ exp.�.tij � 1/	i/
C eij: (7)
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The interpretation of the parameters is the same as in Eq. (6) and as above we
estimate the random effects of the growth components (˛i D ˛ C U1i, U1i �
N .0; �21 /; ˇi D ˇ C U2i, U2i � N .0; �22 /; and 	i D 	 C U3i, U3i � N .0; �23 /).

Gompertz

This function contains three parameters as well and is presented in Meredith and
Tisak (1990):

yij D ˇi exp.ln

�
˛i

ˇi

�
exp.�.tij � 1/	i//C eij: (8)

The interpretation of the parameters is the same as in Eq. (6) and as above we
estimate the random effects of the growth components (˛i D ˛ C U1i, U1i �
N .0; �21 /; ˇi D ˇ C U2i, U2i � N .0; �22 /; and 	i D 	 C U3i, U3i � N .0; �23 /).

Chapman-Richard

This function contains three parameters, is often used in forestry, and is presented
in Sit and Poulin-Costello (1994):

yij D ˇi.1 � exp.�	itij//
ıi C eij: (9)

It can also be found in the literature with an alternative parameterization where
ıi D 1

1�mi
and with an additional parameter that pre-multiplies the exponential term

(e.g., Fekedulegn, Mac Siurtain, & Colbert 1999). For individual i, ˇi represents
the final asymptotic performance, while 	i and ıi determine the shape. We estimate
the random effects associated with all three growth components (ˇi D ˇ C U2i,
U2i � N .0; �22 /; 	i D 	CU3i, U3i � N .0; �23 /; and ıi D ıCU4i, U4i � N .0; �24 /).

von Bertalanffy

This function also contains three parameters, is presented in Draper and Smith
(1998) and Fekedulegn et al. (1999), and was first used to model forest growth
(Yuancai, Marques, & Macedo 1997):

yij D .ˇ
1
ıi
i � exp.�	itij//

ıi C eij: (10)

This function is also presented with an alternative parameterization where ıi D
1

1�mi
and with an additional parameter that pre-multiplies the exponential term

(e.g., Fekedulegn et al. 1999). For individual i, ˇi represents the final asymptotic
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performance and 	i and ıi determine the shape of the trajectory. As for the Chapman-
Richard function, we estimate the random effects of all growth components (ˇi D
ˇ C U2i, U2i � N .0; �22 /; 	i D 	 C U3i, U3i � N .0; �23 /; and ıi D ı C U4i,
U4i � N .0; �24 /).

Schnute

This function contains four parameters and was developed by Schnute (1981) to
study the growth of fish populations.

yij D
�
.˛
	i
i C .ˇ

	i
i � ˛

	i
i //

1� exp.�ıi.tij � t1//

1� exp.�ıi.t2 � t1//

� 1
	i C eij: (11)

t1 and t2 are the first and last values, respectively, of tij in the data (hence t1 D 1

and t2 D 20 here). ˛i and ˇi correspond to Oy values at tij D t1 and tij D t2,
respectively (hence Oyi1 and Oyi20, respectively, here). 	i and ıi define the shape of
the curve. We estimate the random effects of all growth components (˛i D ˛C U1i,
U1i � N .0; �21 /; ˇi D ˇ C U2i, U2i � N .0; �22 /; 	i D 	 C U3i, U3i � N .0; �23 /;
and ıi D ı C U4i, U4i � N .0; �24 /).

Results

Overall Adjustment and Parameter Estimates

Table 1 contains the total number of parameters (i.e., associated with the fixed
effects and with the distributions of the random effects, as presented in each
function’s description), the -2 Log-Likelihood (-2LL), and the Bayesian Information
Criterion (BIC; Schwarz 1978) of each fitted nonlinear functions. We did not

Table 1 Total number of parameters (p; fixed and random effects), -2 Log-Likelihood (-2LL) and
Bayesian Information Criterion (BIC) values, and parameter estimates for each nonlinear function
(only fixed effects and variances of random effects are shown for each parameter of the functions
in Eqs. (6)–(11))

Function p -2LL BIC ˛ ˇ 	 ı �21 �22 �23 �24 �2e

Exponential 10 5752 5798 2.82 5.75 0.39 � 1.57 3.11 0.08 � 0.82

Logistic 10 5777 5823 2.99 5.73 0.53 � 1.57 3.07 0.10 � 0.83

Gompertz 10 5765 5810 2.91 5.74 0.46 � 1.57 3.09 0.09 � 0.83

Chapman-Richard 10 5738 5784 � 5.76 0.33 0.56 � 3.19 0.11 0.14 0.81

von Bertalanffy 10 5758 5804 � 5.74 0.42 2.08 � 3.10 0.09 0:16a 0.82

Schnute 15 5703 5772 2.62 5.75 4.24 0.23 1.40 3.27 35.44 0.26 0.79
a A non-significant parameter at the 5 % level
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encounter numerical/optimization difficulties for any of the functions fitted. From
a strict statistical data-adjustment perspective clearly the Schnute’s function is the
model that best describes the data. Its -2LL value is lowest, which might be expected
given the higher number of parameters, but so is also the BIC value. Thus, we may
be tempted to choose the Schnute function as the most adequate among those tested
here for these data. Nevertheless, it is well known that considering only information
criteria such as the BIC when selecting models can be a flawed strategy. In fact, a
model that fits well the data according to some statistical criterion may not offer for
clear interpretation of its parameter estimates. In some extreme cases, a perfectly
well-fitting model may indeed represent a highly inappropriate structure of the data
(Hayduk 2014).

Thus, we proceed to carefully examine all parameter estimates. In Table 1 we
also present for each function the estimated fixed effects, the variances of the
random effects (for simplicity we do not show the covariances), and the residual
variance. As can be seen, the Schnute function obtains a very large variance estimate
(�23 ) for a rate of change parameter (	 ). This warns us that, despite the superior
statistical adjustment of this model, its solution may not be interpretable. To check,
we plotted the individual estimated trajectories of this function in Fig. 2. Clearly,
such predictions are not representative of the data plotted in Fig. 1.

In contrast, Fig. 3 represents the expected individual trajectories of the Chapman-
Richard’s equation, the second best fitting function (based on -2LL and BIC) tested
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Fig. 2 Estimated individual trajectories of time-on-target (in seconds) by trial number (from 1 to
20) according to the Schnute’s function
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Fig. 3 Estimated individual trajectories of time-on-target (in seconds) by trial number (from 1 to
20) according to the Chapman-Richard’s function

here. These trajectories mirror well the previous observations about the empirical
curves. No apparent outlying trajectory emerges, and these trajectories appear
feasible descriptions of the empirical data (note that the remaining functions all
produced similar expected individual trajectories).

We also notice that, while the functions appear different, they share some
common similarities. For instance, all but the Chapman-Richard and the von
Bertalanffy explicitly define a lower asymptote of initial performance value, which
we consistently called ˛. The estimates of this parameter are quite similar across
the functions (ranging from 2.62 to 2.99; cf. Table 1) and there appears to be
some amount of heterogeneity therein (from 1.40 to 1.57). All functions explicitly
define an upper asymptote, or final performance level, which we consistently labeled
ˇ. This is also estimated with very high agreement across the functions (from
5.73 to 5.76). The sample appears to be more highly differentiated with respect
to ˇ (from 3.07 to 3.27) than to ˛. Rates of change (	 and ı) are more difficult
to compare, because they intervene differently in the equations. Nevertheless, all
functions estimated some degree of heterogeneity also with respect to the rate of
learning.
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Table 2 Percentage of
variance explained of each
random effect by age and
spatial abilities

Function U1i U2i U3i U4i

Exponential 18.53 20.71 4.26 �
Logistic 16.99 21.16 1.72 �
Gompertz 17.44 20.99 2.69 �
Chapman-Richard � 19.71 0.88 �11:65
von Bertalanffy � 20.74 �0:30 �23:17

Covariates’ Effects

Finally, we explore the effect of age and spatial abilities on learning characteristics
as implemented in the different functions. To do so we added two time-invariant
covariates, age and the spatial abilities score, to the equations considered before,
which so far only contained the trial number as predictor. We did not consider the
Schnute function, given the unsuccessful previous results. Table 2 shows the effect
size of these predictions, in terms of percent of total variance, explained by age and
spatial abilities, of the random effects associated with each growth component (U1i,
U2i, U3i, and U4i). For simplicity, we do not show the parameters associated with
each predictor, but instead summarize below the main findings.

With respect to final performance, across all functions about one fifth of
interindividual differences were explained by age and spatial abilities. In all cases
greater age affected negatively, and greater spatial abilities affected positively, final
performance. With respect to initial performance, it was likewise predicted to some
extent (about a sixth of the variance). However, spatial abilities represented the only
significant predictor of initial performance. Finally, with respect to rates of change
(	 and ı), the statistical tests associated with age and spatial abilities were shakier.
For the exponential, logistic, and Gompertz functions, older people increased more
than younger people, but the effect was quite weak (less than 5 % of predicted
variance). Spatial relations did not affect the rate of learning. For the Chapman-
Richard and the von Bertalanffy functions, the covariates’ effects on the rate of
change parameters yielded negative effect sizes, a likely indicator of an unstable
solution (Snijders & Bosker 2012).

Conclusions

In the illustration from the psychological literature, data from a learning experiment
on perceptual-motor skills were analyzed with six nonlinear functions that displayed
some similarities. Among them, the first three (exponential, logistic, and Gompertz)
were very similar and produced similarly stable results: an initial low level of
performance, followed by a rather steep learning rate, to lead to a quite high
final performance level. Moreover, the three phases were all characterized by
strong variability in the sample. Finally, age and spatial relations proved to be
significant predictors of final performance, while spatial relations also influenced
initial performance, and age affected the rate of learning. In the end, we are not
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preoccupied with choosing “the best model.” Rather, we realize that any statistical
model allows for alternative formulations that are statistically equivalent (hence
obtain same statistical adjustment), but may possibly lead to different substantive
conclusions. Here, we are comforted by the fact that three different models all
agree in their final conclusions. The remaining three functions (Chapman-Richard’s,
von Bertalanffy’s, and Schnute’s) stem from forestry, fishery, biology, and related
disciplines concerned with population growth. Their interpretation appears more
difficult in our application, given that their results were not always interpretable.
Nevertheless, they also indicated general nonlinear growth, with much heterogene-
ity therein, and at times revealed effect of age and spatial abilities.

NLMM and NGCM allow testing complex functions that present advantages over
simpler functions. First, the parameters are often interpretable with respect to the
underlying change process of the outcome. Second, such functions may provide a
finer picture of the change process in terms of its components. For instance, rather
than describing an overall linear change process, which presents only the concept of
rate of change, more complex functions may distinguish lower and upper asymptote,
rate of change, amount of change, and timing of change (Grimm et al. 2011). In
many applications these are fundamental aspects of the change process that should
not be merged into a sole and unique slope parameter, which would inevitably
confound different aspects of change. A precise account of the components of a
change process is required to test the effects of external covariates. Third, besides
providing superior description of change processes, nonlinear functions may also
allow for realistic extrapolations beyond the data, whereas simpler linear functions
usually lead to unrealistic predictions outside of the range of the data.

Clearly most existing applications of GCM and LMM in the social sciences
and humanities are linear, certainly also due to the greater software availability
for linear compared to nonlinear models. Nevertheless, interest in nonlinear models
for repeated-measures data is quickly increasing in many disciplines (e.g., Blozis,
Conger, & Harring 2007; Boker, Schreiber, Pompe, & Bertenthal 1998; Grimm et al.
2011; Hall & Clutter 2004; Jordan, Daniels, Clarke, & He 2005; McArdle et al.
2002; Peek, Russek-Cohen, Wait, & Forseth 2002). At the same time, progress is
being made in software development. We are confident that nonlinear models of
change, such as the NLMM and NGCM, will become more easily estimable in the
near future and will thereby increase in popularity in many disciplines, among which
also the social sciences.
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Stage-Sequential Growth Mixture Modeling
of Criminological Panel Data

Jost Reinecke, Maike Meyer, and Klaus Boers

Abstract The detection of distinctive developmental trajectories is of great impor-
tance in criminological research. The methodology of growth curve and finite
mixture modeling provides the opportunity to examine different developments
of offending. With latent growth curve models (LGM) (Meredith and Tisak,
Psychometrika 55:107–122, 1990) the structural equation methodology offers a
strategy to examine intra- and interindividual developmental processes of delinquent
behavior. There might, however, not be a single but a mixture of populations
underlying the growth curves which refers to unobserved heterogeneity in the
longitudinal data. Growth mixture models (GMM) introduced by Muthén and
Shedden (Biometrics 55:463–469, 1999) can consider unobserved heterogeneity
when estimating growth curves. GMM distinguish between continuous variables
which represent the growth curve model and categorical variables which refer to
subgroups that have a common development in the growth process. The models
are usually based on single-phase data which associate any event with a specific
period. Panel data, however, often contain several relevant phases. In this con-
text, stage-sequential growth mixture models with multiphase longitudinal data
become increasingly important. Kim and Kim (Structural Equation Modeling:
A Multidisciplinary Journal 19:293–319, 2012) investigated and discussed three
distinctive types of stage-sequential growth mixture models: traditional piecewise
GMM, discontinuous piecewise GMM, and sequential process GMM. These models
will be applied here to examine different stages of delinquent trajectories within
the time range of adolescence and young adulthood using data from the German
panel study Crime in the Modern City (CrimoC, Boers et al., Monatsschrift für
Kriminologie und Strafrechtsreform 3:183–202, 2014). Methodological and sub-
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stantive differences between single-phase and multi-phase models are discussed as
well as recommendations for future applications.

Introduction

Investigations regarding the development of delinquency during the life course are
currently of great importance in longitudinal criminological research. Over the past
20 years a variety of criminologists have argued that there are distinctive groups
of offenders which can be described by different delinquent trajectories (Loeber &
LeBlanc 1990; Moffitt 1993; Sampson & Laub 2003; Thornberry 2005).

A trajectory is a pathway or line of development over the life span such as worklife,
parenthood, and criminal behavior. Trajectories refer to long-term patterns of behavior and
are marked by a sequence of transitions. Transitions are marked by life events (e.g. first
job or first marriage) that are embedded in trajectories and evolve over shorter time spans.
(Sampson & Laub 1997, p. 142)

Major methodological developments in criminological longitudinal research are
influenced by the debate whether distinctive groups of criminal behavior can
be identified and in which way the development of a “criminal career” can be
incorporated in a statistical model. The debate is mainly enforced by Moffitt’s dual
taxonomy of offending behavior: The adolescent limited offenders exhibit antisocial
behavior only during adolescence while life-course-persistent offenders begin to
behave antisocially early in childhood and continue this behavior into adulthood
(Moffitt 1993). In further analyses of data from the “Dunedin Multidisciplinary
Health and Development Study” (Moffitt, Caspi, Rutter, & Silva 2011) four
antisocial behavior trajectory groups were identified among females and males: life-
course-persistent, adolescent-onset, childhood-limited, and low trajectory groups
(Odgers et al. 2008). Furthermore, Nagin and collaborates explored population
heterogeneity in behavioral trajectories using other longitudinal studies, like the
“Cambridge Study” (Farrington & West 1990), the “Philadelphia Study” (Tracy,
Wolfgang, & Figlio 1990), and the “Montreal Study” (Tremblay, Desmarais-
Gervais, Gagnon, & Charlebois 1987). Depending on the type of the dependent
variable, nature of the sample, and characteristics of the community, three to
five trajectories were detected which reflect different intensity and growth of
delinquency. These trajectories distinguish between non-offenders, a time-limited
delinquent behavior through adolescence and a more or less chronic group of
offenders (D’Unger, Land, McCall, & Nagin 1998; Nagin 1999; Nagin & Land
1993).

The reported findings suggest that there is a variety of heterogeneous trajectories
which differ in the age of entry and exit in delinquency, its intensity, its duration,
and its continuity (for an overview, see Piquero 2008). Furthermore the research on
delinquent trajectories has shown that most people commit delinquent acts rarely or
do not become delinquent at all. In most cases early intensive offenders desist from
crime. There are, however, trajectories which are marked by high delinquency rates
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or by increases in delinquency (Mariotti & Reinecke 2010; Moffitt 1993; Sampson
& Laub 2003; Thornberry 2005). Moreover, research has shown that transition
points are relevant for the analysis of delinquent trajectories (Sampson & Laub
1993).

Techniques of longitudinal statistical modeling are highly relevant and gained
considerable attention in the examination of delinquent trajectories. With latent
growth curve models (LGM) (Meredith & Tisak 1990), the structural equation
methodology offers a strategy to examine intra- and interindividual developmental
processes of delinquent behavior. It can, however, not be assumed that there is
always a single population underlying the growth curves. Therefore, observed
as well as unobserved heterogeneity has to be taken into account. Observed
heterogeneity can be considered by relevant exogenous variables (e.g. gender)
which are related to the growth curve variables explaining parts of their variances.
To capture unobserved heterogeneity, the latent growth curve model has to be
enlarged by a growth mixture model (Muthén & Shedden 1999) which contains the
continuous manifest and latent variables as well but in addition categorical variables.
The latter ones refer to particular subgroups reflecting different developmental
processes. Analyses with a growth mixture model usually assume single-phase data
which associate any event with a specific time period. However, longitudinal data
often contain transition points which separate different phases of the development
under study. An appropriate framework for multi-phase longitudinal data regarding
unobserved heterogeneity is the extension of the growth mixture models (GMM) to
stage-sequential growth mixture models (Kim & Kim 2012). These models can lead
to a better understanding of the developmental process over several phases.

The following section “Method and Models” discusses basic conceptions of
growth curve, growth mixture, and the multi-phase growth mixture models as well
as the respective methods of model estimation and model evaluation. Additional
attention is given to the distributional assumptions of the manifest time-variant
variable under study. In the case of count variables Poisson or negative binomial dis-
tributions (Hilbe 2011) can be considered which give a better model representation
compared to the assumption of a continuous distribution (Reinecke & Seddig 2011).

All models are applied to panel data from the German panel study Crime in the
Modern City (CrimoC).1 The data set contains 3938 adolescents and young adults
who participated at least twice in a row in the eight panel waves. Data, variables
and descriptive statistics are discussed in section “Data, Variables, and Descriptive
Statistics”.

Results are presented in section “Modeling Results”. The analysis starts with
single-phase growth mixture models considering up to eight classes and considers
various specifications of stage-sequential growth mixture models. Finally, in section
“Conclusion” models are compared and discussed with recommendations for further
analyses.

1Principal investigators of the panel study are Klaus Boers (University of Münster) and Jost
Reinecke (University of Bielefeld). Since 2002 the study is continuously funded by the German
Science Foundation (DFG). Further information can be found at www.crimoc.org.

www.crimoc.org
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Method and Models

Latent Growth Curve Models

LGM specified with structural equations have already been discussed in several
papers (McArdle 2009; McArdle & Epstein 1987; Meredith & Tisak 1990) and
books (Bollen & Curran 2006; Duncan, Duncan, Strycker, Li, & Alpert 2006;
Reinecke 2012). As is typical for all structural equation models, growth curve
models distinguish between a measurement and a structural model. Structural model
refers to the intraindividual development whereas the measurement model refers
to interindividual differences of those trends. For a growth curve model with two
factors, the measurement model can be formulated as follows:

yt D �1t
1 C �2t
2 C �t (1)

yt are the manifest variables at time t, which are related to the latent variables 
1 and

2. 
1 is the initial level factor or intercept factor while 
2 is the linear growth factor
or slope factor. �1t and �2t are the factor loadings on 
1 and 
2. �t is the measurement
error of yt. For each latent variable 
, a structural equation has to be formulated as
follows:


1 D ˛1 C �1 (2)


2 D ˛2 C �2 (3)

The latent variables 
1 and 
2 are described by their means (˛1 and ˛2) as well as
by their residuals (�1 and �2). �1 and �2 can be defined as deviations of the latent
variables from their mean values.2 Variances and covariances of the latent variables
are specified in the matrix ‰:

‰ D
�
 11

 21  22

�
(4)

Assuming linear growth, the factor loadings for 
1 have to be fixed to one and the
factor loadings for 
2 have to be restricted according to a linear development:
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2The structural equations can be extended by time-invariant latent variables which serve as
predictors of the intercept and slope (e.g. gender). Then, �1 and �2 are no longer deviations from
the mean values of the latent variables 
1 and 
2 (Reinecke 2012, p. 6).
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To model non-linear growth curves it is possible to extend the two-factor model
by additional latent variables, for instance a quadratic term. The measurement
and structural equations (1)–(3) of the two-factor model described above can be
extended as follows:

yt D �1t
1 C �2t
2 C �23t
3 C �t (6)


1 D ˛1 C �1


2 D ˛2 C �2

3 D ˛3 C �3

(7)

Another possibility to cope with nonlinearity is the so-called piecewise growth
curve model which is useful when transition points are assumed across the time
range (Bollen & Curran 2006). Such a model contains two or more latent variables.
Contrary to the linear growth model, those models can be used to analyze multiphase
data. Piecewise growth curve models are meaningful when transition points can
be found in the course of development (see, for instance, Raudenbush & Bryk
2002). Assuming one transition point, the first trajectory describes the development
between the intercept and the transition point. The second trajectory describes
development after the transition point. If six panel waves and a transition point
for the third panel wave are assumed, the following measurement model can be
formulated:
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(8)


1 is the intercept, 
2 is the linear slope for the first phase, and 
3 is the linear slope
for the second phase. Because of the transition point at the third panel wave, the
restricted values of factor loadings of 
1 are not changing for the subsequent waves.

Growth Mixture Models for Single-Phase Data

With GMM it is possible to control for unobserved heterogeneity in the data. If the
variances of the growth factors in a linear or piecewise growth curve model are not
different from zero, growth mixture modeling is not necessary. The GMM extends
Eqs. (1)–(3) by a categorical variable c with k D 1; 2; : : : ;K classes. Assuming
a two-factor growth mixture model, the following measurement and structural
equations can be formulated:

ytk D �1tk
1k C �2tk
2k C �tk (9)
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1k D ˛1k C �1k (10)


2k D ˛2k C �2k (11)

Means and variances of the latent variables are estimated for each class k
.˛1k; ˛2k;  11k;  22k/. The matrix ‰k contains the class-specific variances and
covariances:

‰k D
�
 11k

 21k  22k

�
(12)

The so-called latent class growth analysis (LCGA; Muthén 2004) is a submodel of
the GMM which gained great importance in criminological research under the name
group-based trajectory modeling (Nagin 2005). LCGA assumes that variances and
covariances of the growth factors are restricted to zero (‰k D 0). Consequently,
there are no residual terms in the structural equations of the latent variables 
1
and 
2 and therefore all class members are treated as homogenous regarding their
individual developments:


1k D ˛1k (13)


2k D ˛2k (14)

Previous analyses of delinquent trajectories with longitudinal data show that
specifications of the LCGA lead to quite reasonable substantive results (see, for
instance, Kreuter & Muthén 2008). From a methodological point of view Muthén
(2004, p. 350) suggests using LCGA as starting point for the analysis of trajectories,
because it can be explored how many different classes might be necessary to
estimate distinct developmental trends appropriately.

In most criminological studies the longitudinal response variable is a count
measure (e.g., the number of convictions). Therefore, the Poisson regression model
as a special case of the generalized linear model has to be used. Let yi be the number
of observed count occurrences, xi the vector of covariates, and i the expected
number of counts. The number of events in an interval of a given length is Poisson
distributed and the Poisson regression model can be formulated via a log link
function (Hilbe 2011, p. 31):

Pr.yijxi/ D exp.�i/
yi
i =yiŠ (15)

with i D exp.˛ C x
0

iˇ/. ˇ is the vector of regression coefficients. The conditional
mean function of the Poisson distribution is E.yijxi/ D i with its equidispersion
Var.yijxi/ D i. Small values of i indicate the rarity of the event and the skewness
of the distribution.
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If the assumption of equidispersed data does not hold, the negative binomial
regression model can be employed by introduction of latent heterogeneity in the
conditional mean of the Poisson model (Hilbe 2011, p. 185):

Pr.yijxi; �i/ D exp.˛ C x0
iˇ C �i/ D hii (16)

where hi D exp.�i/ is assumed to have a one parameter gamma distribution, G.�; �/
with a mean equal to 1 and variance � D 1=� . The negative binomial distribution
can be obtained by integrating hi out of the joint distribution. The conditional mean
function is still E.yijxi/ D i while overdispersion can be obtained from the latent
heterogeneity with the variance function Var.yijxi/ D 2i Œ1C .1=�/�.

Within the context of the CrimoC study previous analyses of GMM using
the assumption of a negative binomial distributed variable have shown that those
models have always better model fits compared to models with the assumption of
a continuous or Poisson distributed variables (Reinecke & Seddig 2011, p. 432).
Therefore the negative binomial distribution assumption will be used for the current
analyses.

Growth Mixture Models for Multi-Phase Data

The discussed mixture models always assume that every estimated trajectory relies
on longitudinal data covering a single phase of development. In case of long
repeated panel designs this assumption might not be appropriate. The larger the
time span of the longitudinal data, the higher is the chance that modeling of different
phases is necessary to estimate the trajectories of the particular latent classes. The
difference between single-phase and multi-phase data does not depend on specific
features of a panel design but on whether transitions points are likely between the
particular measurement occasions.

For homogenous populations piecewise growth curve models, as discussed
above, are able to consider transition points. In case of unobserved heterogeneity
the piecewise growth curve model can be extended to a so-called Traditional
Piecewise Growth Mixture Model (TPGMM, Kim & Kim 2012, p. 300). TPGMM
has multiple growth components and additionally one mixture component. The
growth components are the same as for piecewise growth models whereas the finite
mixture component is the same as for the GMM. The growth trajectories before and
after a transition point are connected at the transition point. Figure 1 illustrates the
model assumption: y1–y8 are the measures for eight panel waves, I is the intercept
and S1 as well as S2 are the particular slopes. The first and second growth trajectory
are connected at the transition point (e.g. t6). c represents the mixture component, X
is a time-invariant exogenous variable, U represents outcome variables. Both X and
U will not be considered in the applications (cf. section “Modeling Results”).

If a larger change or a discrepancy (e.g. intervention) is expected at the transition
point, the TPGMM might not be sufficient to model this effect. One possible
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Fig. 1 Traditional Piecewise Growth Mixture Model. Source: Kim and Kim (2012, p. 297)

extension of the TPGMM is the so-called Discontinuous Piecewise Growth Mixture
Model (DPGMM, Kim & Kim 2012, p. 301) in which an intercept is specified for
each phase. Figure 2 shows an example with eight panel waves and a transition point
between the fourth and fifth measurement: y1–y4 are the first-phase measures, y5–y8
are the second-phase measures, I1 is the first intercept and S1 is the first slope, I2
is the second intercept and S2 is the second slope. All other variables are the same
as in Fig. 1. In difference to the TPGMM the trajectories of the first and the second
phases are not directly connected at the transition point.

Introducing a second intercept changes the measurement part of the DPGMM
compared to the TPGMM while the structural part remains the same. The measure-
ment part of the model is given as follows:

2
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(17)


11 and 
12 are the intercepts for the first and the second phase whereas 
21
and 
22 are the particular slopes. Both the TPGMM and the DPGMM assume
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Fig. 2 Discontinuous Piecewise Growth Mixture Model

a common mixture component c for all phases. If in addition changes between
the classes due to the transition between the phases have to be considered, the
DPGMM can be extended to a so-called Sequential-Process Growth Mixture Model
(SPGMM, Kim & Kim 2012, p. 303). Transition points as well as changes between
latent class membership can be applied with the SPGMM. Figure 3 shows an
example with the two mixture components c1 and c2. The relationship between both
mixture components is specified via a transition probability matrix which contains
the estimates of the probability of latent class membership of the second phase,
conditional on latent class membership at the first phase. The number of intercepts
and slopes and the specifications of the measurement part of the model are equal to
the DPGMM.

Model Estimation and Model Evaluation

Mixture models are estimated by maximizing the log-likelihood function within
the admissible range of parameter values given classes and data. The program
Mplus employs the EM-algorithm for maximization (Dempster, Laird, & Rubin
1977; Muthén & Shedden 1999). Thereby, different sets of starting values are tested
for the calculation of the optimal function value and the best set is used for the
estimation of the parameters. For a given solution, each individual’s probability of
membership in each class is estimated. Individuals can be assigned to the classes by
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Fig. 3 Sequential-Process Growth Mixture Model

calculating the posterior probability that an individual i belongs to a given class k.
Each individual’s posterior probability estimate for each class is computed as a
function of the parameter estimates and the values of the observed data. The number
of classes has to be specified in each model variant.

Standard errors of estimates are asymptotically correct if the underlying mixture
model is the true model. �2-differences between the particular mixture model
variants, however, cannot be calculated because a k-class model is not nested within
a k C 1-class model. Therefore, the Bayesian Information Criterion (BIC, Schwarz
1978) is used for model comparisons. Furthermore, Mplus calculates a sample size
adjusted BIC which was found to give superior performance for model selection
(adj. BIC, Yang 1998). Models with the lowest BIC or adjusted BIC can be selected
for further substantial interpretations. But accepting or rejecting a model on the basis
of the BIC is more or less descriptive and does not imply any statistical test.

However, Lo, Mendell, and Rubin (2001) have developed a statistical test for
mixture models. The so-called Lo-Mendell-Rubin likelihood test (LMR-LRT) tests
a k-class model against a k � 1-class model. Thereby the relation of the likelihoods
of a k � 1-class model to the ones of a k-class model is calculated. If the p-value of
the test is small, the k-class model should be accepted (Reinecke 2012, p. 38). The
LMR-LRT can only be calculated for GMM and TPGMM.

In addition, the entropy of a particular mixture model can be used to decide about
the adequate number of classes. Entropy is a summary measure of classification
quality based on the estimated posterior probabilities that ranges from zero to one:
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Ek D 1 � †i†k.�OpiklnOpik/

n lnK
(18)

Opik is the estimated probability for each individual i to be in class k. The closer its
values are to one, the better the classification.

BIC, adjusted BIC, LMR-LRT, Entropy, and the substantive interpretability of
the classes should be considered for the decision process (Muthén & Muthén 2000).
In the context of multi-phase mixture models three additional aspects have to be
taken into account (Kim & Kim 2012, 305f): At first, the number of latent classes in
each phase should be kept as small as possible, second,for multiple latent classes
nearly empty patterns can be accepted (e.g., as outliers) and finally, redundant
classes should be avoided as well as classes which are misleadingly omitted. All in
all, it is advisable to make the decision about the number of latent classes not only
on the basis of one information source, but include various statistical and substantive
arguments (see also Kim 2014).

Data, Variables, and Descriptive Statistics

The data used for the current analyses are taken from the panel survey of Duisburg
which is part of the ongoing German panel study CrimoC. Duisburg is an industrial
city of about 500,000 inhabitants. It is located in the western part of the Ruhr area
in Germany. The sample was drawn from secondary schools in Duisburg. Eight
annual panel waves have been collected between 2002 and 2009, which covers
the period from early to late adolescence. The self-administered questionnaires
were completed in school classes as long as the students attended the particular
schools. After leaving school participants were usually contacted by mail. If
repeated contacts were unsuccessful personal contacts were realized to conduct the
interviews. Retention rates are between 84 and 92 % (Boers et al. 2014, p. 184).

The panel data contain individuals who participated twice in a row between 2002
and 2009 (nD3938). Table 1 gives descriptive information about each panel wave
(age, sex). In the first panel wave (2002) the sample’s average age is 13, in 2009 it
is about 20 years. The sex ratio in each panel wave is relatively balanced although
there are always more female than male participants. In 2002, for instance, 48.6 %
of the respondents are male and 51.4 % female. In the subsequent panel waves,
however, there are larger differences. In 2009 only 42.2 % of the respondents are
male. Therefore, females are slightly overrepresented in the data.

To measure deviant and delinquent behavior, about 15 different offenses are
obtained in the questionnaires of each panel wave. These offenses can be classified
into property offences (burglary, theft of cars, theft out of cars; fencing, theft
out of vending machines, theft of bicycles, shoplifting), violent offences (robbery,
purse snatching, assault with a weapon; assault), and criminal damage offences
(graffiti, scratching, other criminal damage). Concerning each of those offences,
the respondents were asked whether they ever committed it (lifetime prevalence)
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and whether they have committed them in the past year (annual prevalence). If
they committed the particular offence in the past year, they were also asked about
the frequency of their offending (annual incidence). The time-variant dependent
variable of the mixture models considers the annual incidence rates which is given
as the sum of the particular rates of the 15 offences.

Table 2 gives a descriptive overview of the distributions of prevalence and
incidence rates. The prevalence of the self-reported criminal behavior increases
in early adolescence between 2002 and 2003 and decreases later on. The peak is
reached in 2003 in which the adolescents were about 14 years old. In the year 2002
nearly 31 % of the respondents reported an offence. This rate increased to 40 % in
2003 and decreased continuously down to 7 % in 2009.

Incidence mean rates are based on the number of persons who reported at least
one offence in the prevalence measure. Some of the respondents gave an answer
to the annual prevalences but not to the annual incidences. Therefore the numbers
of persons are slightly different for each of the eight panel waves. The lower half
of Table 2 shows the means of the annual incidences of the offenders. The first
row of means are based on the number of valid answers in each panel wave. The
second row are the means estimated via the Full Information Maximum Likelihood
procedure (FIML, Enders 2010, p. 88) considering unit nonresponses in each panel

Table 1 Descriptive information about the sample

Year 2002 2003 2004 2005 2006 2007 2008 2009

n 2683 3094 3105 3140 2989 2577 2410 2299

Age 13 14 15 16 17 18 19 20

Sex Male 48:6 48:9 47:8 48:4 45:5 43:2 43:4 42:2

Female 51:4 51:1 52:2 51:6 54:5 56:9 56:6 57:8

Table 2 Annual prevalence and incidence rates

Year 2002 2003 2004 2005 2006 2007 2008 2009

Prevalence rates (percentages)

n 2683 3094 3105 3140 2989 2577 2410 2299

Property 18:5 24:3 21:7 17:4 12:9 8:3 5:0 4:6

Serious 2:9 4:3 4:2 3:7 2:1 0:9 0:7 0:3

Minor 17:9 23:3 21:0 16:6 12:3 7:8 4:7 4:5

Violence 13:9 19:2 15:0 13:2 9:6 5:4 4:1 2:6

Serious 3:8 6:2 4:8 4:3 2:5 1:1 0:8 0:5

Minor 12:8 16:7 13:3 11:8 8:8 5:1 3:6 2:2

Damage 16:9 23:3 18:9 13:8 9:5 5:4 3:0 1:6

All offences 30:6 39:1 35:1 28:6 22:4 14:3 9:6 7:3

Incidence rates (means)

n 2483 2692 2783 2838 2751 2464 2282 2205

Mean 2:78 4:83 5:28 4:26 3:32 1:74 1:70 0:77

n 3938 3938 3938 3938 3938 3938 3938 3938

Mean (FIML) 2:92 5:24 5:97 4:78 3:73 2:13 1:92 0:81

FIML Full Information Maximum Likelihood
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wave. The FIML estimated means are slightly higher compared to those based on
the complete cases in each panel wave which reflects a certain underreporting of the
incidence rates (see also Reinecke & Weins 2013). Nevertheless, both rows of means
reflect the typical development of adolescents’ delinquent behavior with the peaks
at age 15 (year 2004) and a continuous decline thereafter. FIML estimated means,
variances, and covariances are used for the GMM in section “Modeling Results”.

Modeling Results

With different slope specifications variants of the TPGMM (see Fig. 1) are firstly
evaluated. One specification assumes three phases with one turning point at the
second panel wave and another turning point at the sixth panel wave. The factor
loadings of the intercept and the three linear slopes are restricted as follows:

0
BBBBBBBBBBB@

1 0 0 0

1 1 0 0

1 1 0:5 0

1 1 1:5 0

1 1 2:5 0

1 1 3:5 0

1 1 3:5 20:25

1 1 3:5 30:25

1
CCCCCCCCCCCA

(19)

The first linear slope (second column in the matrix) specifies the first turning
point. Therefore subsequent factor loadings are restricted to the value of one.
The second linear slope (third column) specifies the continuous development of
delinquency up to the sixth panel wave with a difference value of one. Therefore
subsequent factor loadings are fixed to the value of 3.5. The third slope (fourth
column) reflects a faster development by doubling the value of 3.5 with additional
constants (3:52 C 8 D 20:25 and 3:52 C 10 D 30:25). These fixed values were
previously explored by different model specifications of the piecewise growth curve
model.

Alternatively, a more parsimonious specification assumes only two slopes and a
faster development of delinquency after the second wave. The factor loadings of the
intercept and the two linear slopes are restricted as follows:

0
BBBBBBBBBBB@

1 0 0

1 1 0

1 1 0:25

1 1 2:25

1 1 6:25

1 1 12:25

1 1 20:25

1 1 30:25

1
CCCCCCCCCCCA

(20)
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The restrictions of the factor loadings of the first slope (second column in the matrix)
are equal to the previous specification in Matrix (19). The second slope (third
column) specifies the continuous development of delinquency by adding the
constants 2, 4, 6, 8, and 10 to the value of 0.25. So, the factor loadings of the second
slope for the last two panel waves do not differ to the factor loadings from the third
slope in Matrix (19). In general, restrictions of the factor loadings influence the
form of the trajectory pieces, the direction of the development (increase or decrease
of delinquency) can only be observed from the sign of the particular slope mean
estimators (see vector ˛ in Eq. (7)).

TPGMM are calculated from two up to eight classes. Incidence rates are treated
as a negative binomial distributed count variable (cf. Eq. (16)). Intercept and slopes
are specified according to LCGA, i.e., all variances and covariances of the growth
curve variables are fixed to zero (cf. section “Growth Mixture Models for Single-
Phase Data”). Table 3 shows the particular fit information for the TPGMM with
three and two linear phases according to the specifications in Matrices (19) and (20).

All the BIC and adjusted BIC values of the models with two phases are lower than
the particular models with three phases. It clearly shows that the development of
delinquency can be modelled sufficiently well with two phases: one for the increase
and one for the decrease. Regarding the TPGMM with two phases the p-value of the
LMR-LRT shows no redundancy up to six classes.

Table 4 and Fig. 4 give an overview of the model. The largest class in this
model represents a group of adolescents who were nearly not involved in delinquent
behavior during the observed period (non-offenders, 49.9 %). The second largest
class is characterized by a slight increase in the early adolescence and a likewise

Table 3 Model fit information of the TPGMM with three and two phases

Class Parameter Ek BIC adj. BIC LMR-LRT p-Value

Three phases

2 17 0.699 46,116 46,062 2182 0.00

3 22 0.624 45,656 45,586 490 0.00

4 27 0.562 45,538 45,452 168 0.00

5 32 0.555 45,462 45,360 116 0.01

6 37 0.574 45,445 45,328 56 0.26

7 42 0.569 45,437 45,304 45 0.91

8 47 0.551 45,441 45,291 37 0.00

Two phases

2 15 0.699 46,098 46,050 2159 0.00

3 19 0.621 45,631 45,570 485 0.00

4 23 0.612 45,470 45,397 187 0.01

5 27 0.552 45,402 45,316 99 0.01

6 31 0.546 45,374 45,276 59 0.05

7 35 0.538 45,366 45,255 39 0.42

8 39 0.543 45,368 45,244 24 0.13
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Table 4 Means of the growth variables (TPGMM)

Class Variable Mean Standard error z-Value

Class 1 I �3.180 0.413 �7.698

Non�offenders S1 �0.833 0.542 �1.537

(n=1966, 49.9 %) S2 �0.055 0.027 �2.052

Class 2 I 1.253 0.435 2.878

Adolescence�limited S1 0.729 0.333 2.191

(n=662, 16.8 %) S2 �0.092 0.017 �5.292

Class 3 I 0.741 0.417 1.779

Low�level�decliners S1 0.067 0.343 0.196

(n=530, 13.5 %) S2 �1.545 0.531 �2.909

Class 4 I �1.331 0.454 �2.931

Low�rate�offenders S1 0.838 0.400 2.096

(n=300, 7.6 %) S2 �0.008 0.033 �0.245

Class 5 I 2.705 0.178 15.167

Persistent offenders S1 0.827 0.216 3.825

(n=270, 6.9 %) S2 �0.033 0.013 �2.555

Class 6 I 2.231 0.315 7.076

High�level�decliners S1 0.797 0.290 2.745

(n=210, 5.3 %) S2 �0.841 0.076 �11.090

I intercept, S1 first slope, S2 second slope
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Fig. 4 Traditional Piecewise Growth Mixture Model with six classes. Labels of the classes (from
the bottom to the top): non-offenders, low-rate-offenders, low-level-decliners, adolescence-limited-
offenders, high-level-decliners, persistent offenders
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slight decrease later on. Here, delinquency was limited to the period of adolescence
(adolescence-limited offenders, 16.8 %). The third largest group comprises adoles-
cents who committed crimes just in early adolescence (low-level-decliners, 13.5 %).
The following class is a group of adolescents who reported only a few crimes
during the observed period (low-rate-offenders, 7.6 %). Only a small proportion of
the adolescents can be classified as persistent offenders with a large incidence rate
(6.9 %). A likewise small proportion is characterized by a high crime rate in early
adolescence and a low crime rate later on (high-level-decliners, 5.3 %).

This type of growth trajectory, however, can distort real growth patterns in data,
when a more dynamic change or a discrepancy is expected at the transition point.

The TPGMM, however, “can distort real growth patterns in data, when a more
dynamic change or a discrepancy is expected at the transition point” (Kim & Kim
2012, p. 300). The DPGMM (see Fig. 2) contains intercepts for each phase. For
the substantive application a DPGMM would be assumed to have one intercept
and slope for the increase of delinquency as well as one intercept and slope for
the decrease of delinquency. With this model a larger discrepancy at the transition
is expected which means a sufficient discontinuity between the phases. However,
previous analyses with the CrimoC panel data did not support a discontinuity of the
developmental process and therefore the specification of a DPGMM was rejected.

As described in section “Growth Mixture Models for Multi-Phase Data” the
SPGMM extends the DPGMM by additional latent class variables assuming that
the number of classes can change between the phases. According to the results
of the DPGMM and in difference to Fig. 3 we do not assume two but only one
intercept for the phases. In addition, it is proposed that the number of classes will
decrease over time. Substantively this means that a larger unobserved heterogeneity
of the trajectories is expected in early adolescence compared to late adolescence.
With increasing age and increasing desistance from crime a smaller unobserved
heterogeneity is expected. Similar to the TPGMM, the models are tested with
three and two phases. According to the assumption of decreasing heterogeneity the
number of classes is always higher in the first phase compared to the subsequent
phases. Table 5 shows the model fit information for the calculated SPGMMs. Model
selection is limited to the BIC and adjusted BIC (LMR-LRT is not calculated in
Mplus when different class patterns are specified). Similar to the TPGMM, results
show that two phases are sufficient. The model with three classes in the first phase
and two classes in the second phase can be selected for further interpretations.

The combination of the first and the second phase leads to a six-class pattern with
different combinations of classes (see Table 6):

1. Class pattern 1 1: 12.3 % of the adolescents change from low-rate-offenders in
the early adolescence to non-offenders later on.

2. Class pattern 1 2: 4.1 % of the adolescents are characterized by a high and
increasing delinquency rate in early adolescence and a declining delinquency
rate later on.

3. Class pattern 2 1: Nearly half of the adolescents are characterized as non-
offenders in both phases.
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Table 5 Model fit information of the SPGMM with three and two phases

Class Parameter Ek BIC adj. BIC

Three phases

1. Phase 2. Phase 3. Phase

2 1 1 17 0.614 46,116 46,062

2 2 1 26 0.563 45,532 45,450

3 2 1 35 0.552 45,428 45,317

Two phases

2 1 – 15 0.699 46,098 46,050

2 2 – 19 0.621 45,631 45,570

3 1 – 22 0.614 45,477 45,407

3 2 – 29 0.538 45,365 45,272

Table 6 Number and proportion of persons in the class patterns (SPGMM)

Class Class pattern n %

1 1 1: low-rate-offenders ! non-offenders 484 12:3

2 1 2: high starters ! decliners 162 4:1

3 2 1: non-offenders 1888 47:9

4 2 2: early increasers ! decreasers 759 19:3

5 3 1: low-rate-offenders 415 10:5

6 3 2: high starters ! persisters 230 5:8

Latent variable Composition n %

C1 1: early starters/high starters (484 C 162) 646 16:4

(Phase 1) 2: non-offenders/early increasers (1888 C 759) 2647 67:2

3: low rate offenders/high starters (415 C 230) 645 16:4

C2 1: non-offenders/low-rate-offenders (1888 C 415) 2787 70:8

(Phase 2) 2: decliners/decreasers/persisters (162 C 759 C 230) 1151 29:2

4. Class pattern 2 2: 19.3 % of the adolescents show a slight increase in early
adolescence and a slight decrease later on.

5. Class pattern 3 1: 10.5 % of the adolescents are characterized as low-rate-
offenders in both phases.

6. Class pattern 3 2: 5.8 % of the adolescents show persistent delinquency on a high
level with a decreasing tendency in late adolescence.

The first phase is characterized by three classes. The first one comprises
adolescents who started to behave delinquently early in the adolescence and
partly on a high level (16.4 %). The second class encompasses non-offenders and
adolescents whose crime rate increases slightly on a low level (67.2 %). Finally, low
rate offenders and high starters can be found in the third class. The second phase
comprises two classes. The first of them encompasses non- and low-rate offenders,
the second one adolescents with decreasing delinquency (see Fig. 5).
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Fig. 5 Sequential-Process Growth Mixture Model. Labels of the classes (from the bottom to the
top): non-offenders, low-rate-offenders, low-rate-offenders ! non-offenders, early increasers !
decreasers, high-starters ! decliners, high-starters ! persisters

With the two latent class variables C1 and C2 the SPGMM is able to estimate
transition probabilities. With a probability of 66 % it is more likely for adolescents
to stay as or to become non- or low-rate-offenders during the life course than to still
act delinquent in late adolescence. Quite a few adolescents, however, commit crimes
in late adolescence as well.

One possibility to compare and validate the results of different mixture model
specifications is to look at the bivariate table with the particular proportions for the
latent classes based on their most likely latent class membership. The estimated
TPGMM contains six classes and one latent class variable, the estimated SPGMM
also contains six classes which can be differentiated into different class patterns.
Table 7 gives the result of the crosstabulation between the class distribution of the
TPGMM and the SPGMM. Most of the individuals in pattern 1 1 of the SPGMM
belong to the third class of the TPGMM (low-level decliners, 96.07 %), nearly all
individuals in pattern 1 2 of the SPGMM belong to the sixth class of the TPGMM
(high-level decliners, 99.38 %). Differences between these two patterns (SPGMM)
or classes (TPGMM) refer only to the level of delinquency, both patterns or classes
are characterized by processes of desistance.

Non-offenders in pattern 2 1 of the SPGMM are 100 % part of class 1 of
the TPGMM. Pattern 2 2 of the SPGMM is characterized by processes of early
increasing and later declining delinquency. Eighty-six percent of these individuals
belong to class 2 of the TPGMM (adolescent-limited offenders). The rest of pattern
2 2 is distributed across the other classes of the TPGMM. The lowest congruence to
class 4 of the TPGMM has pattern 3 1 of the SPGMM (low-rate offenders). Only
68 % of the individuals are in the particular cell of the cross-table. Nearly 17 %
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of the pattern belongs to the non-offender class 1 and about 10 % to the low-level
declining class 3 of the TPGMM. Similar to the class of non-offenders pattern 3 2
(persistent offenders) of the SPGMM are 100 % part of class 5 of the TPGMM.
In total, the crosstabulation of both class memberships confirms the stability of
the latent class distributions although the specifications of TPGMM and SPGMM
are different. Non-offenders and low-rate offenders have overlaps in their particular
developments and therefore their assignments can differ between the models. This
has been observed in previous applications of GMM with criminological panel data
(see, for example, Mariotti & Reinecke 2010; Piquero 2008; Reinecke & Seddig
2011).

Conclusion

This study has shown that with an increasing number of panel waves unobserved
heterogeneity of developmental processes results not only from a mix of these
developments but also from multiple phases. In difference to the TPGMM, the
SPGMM has separate mixture parts with a latent class variable in each phase.
Whereas the TPGMM has only one intercept over multiple phases, the DPGMM
and SPGMM specify separate intercepts as well as separate slopes. Kim and Kim
(2012) showed how growth and mixture models can be extended to more complex
and flexible stage-sequential growth mixture models within the structural equation
modeling framework. Their model applications contain continuous data related to
smoking behavior. In the present study the observed variable was treated as a count
variable with overdispersion. Therefore piecewise and stage-sequential growth
mixture models have been applied with the specification of a negative binomial
distributed variable. But all the analyses are limited to the LCGA specification
meaning that no variances and covariances were estimated for the growth curve
variables within classes.

With eight panel waves of self-reported delinquency obtained from the CrimoC
study (Boers et al., 2014) separate intercepts could not be detected and identified
while separate growth components reflect increase and decrease of delinquency
through the period of adolescence and young adulthood. If only one intercept is
required, the specification of the DPGMM collapses to the TPGMM. One possible
explanation is that the CrimoC study contains no experimental intervention and
therefore the different trajectory pieces do not reflect phases of discontinuity.

Starting with the single-phase TPGMM six distinct classes of delinquent devel-
opments could be identified: non-offenders who were nearly not involved in
delinquent behavior at all, adolescent-limited offenders with the typical develop-
ment of the age-crime curve, low-level-decliners who limited their delinquency in
early adolescence, low-rate-offenders who reported only a few crimes during the
panel study, persistent offenders with the largest incidence rate compared to the
other classes and high-level decliners with a high crime rate in early adolescence and
a declining tendency later on. A specification with six classes could also be verified
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with the multiple-phase SPGMM. Different models with two and three phases were
tested and compared. The first phase can be characterized by the development of
delinquency in early adolescence, the second phase by the development in late
adolescence. A possible third phase belongs to the period of young adulthood
which might be detected with further panel waves. The specification of the
different SPGMM variants assume always a higher number of classes in the first
phase compared to the second or third phase. Heterogeneity of the development
of delinquency is expected to be higher in the first panel waves and decreases
thereafter. On the average this assumption was confirmed. The number of offenses
decreases over time and the development of delinquency tends to be homogenized.
Two class patterns of the final SPGMM are expected to be stable across the phases:
the non-offenders and the low-rate offenders. One pattern shows the transition from
low-rate to non-offending, two patterns show the transition from high starters to
decliners or persisters and another pattern is characterized by the transition of
early increasing to later decreasing delinquency. Transition parameters between the
phases show that the probability to stay as or to become a non- or low-rate-offender
is much higher than to persist as a delinquent persons during the life course. The
crosstable of the most likely latent class memberships of the TPGMM and the
SPGMM reflects the stability of the classification and serve as a proof of quality
for the substantive interpretations.

Although the applications of the single and multi-phase mixture models is very
useful for the longitudinal criminological research technique in various fields, some
unresolved issues have to be mentioned. The complexity of the models requires
not only large sample sizes but also a large number of starting values. In the
initial stage, 500 random sets of starting values were generated and optimized
for each of the sets. The ending values of 20 optimizations with the highest log-
likelihoods were used as starting values in the final stage. With the assumption of a
negative binomial distribution stable results could only be obtained with the LCGA
specification. Evaluation of model fit is not the same for single-phase and multiple-
phase mixture models. The LMR-LRT is only available for models with one latent
class variable while the statistical evaluation of multiple-phase models is limited
to descriptive information criteria with preference to the adjusted BIC (Kim 2014).
In addition, the large number of zeros in the incidence rates can be accounted by
an inflation part of the particular mixture model (Reinecke & Seddig 2011). This
extension has to be studied in future applications of stage-sequential growth mixture
models.
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Developmental Pathways of Externalizing
Behavior from Preschool Age to Adolescence:
An Application of General Growth Mixture
Modeling

Mark Stemmler and Friedrich Lösel

Abstract This study applies a developmental and life-course perspective on the
data of the Erlangen-Nuremberg Development and Prevention Study (ENDPS;
Lösel, Stemmler, Jaursch, and Beelmann, Monatsschrift für Kriminologie und
Strafrechtsreform 92:289–308, 2009) to find interindividual differences in intraindi-
vidual change of externalizing problem behavior. Based on a sample of N D 541
boys and girls, general growth mixture modeling (GGMM; Nagin, Psychologi-
cal Methods 4:139–177, 1999; McArdle, The handbook of research methods in
developmental psychology. New York: Blackwell Publishers, 2005) was applied.
In a prospective longitudinal design measurements with multiple informants were
analyzed from preschool to adolescence. The results of the GGMM showed
five groups representing different developmental trajectories: (1) “high-chronics”
(2.4 %; n D 13), who had the highest scores of externalizing behavior at all times;
(2) “low-chronics” (58.8 %; n D 317) who were low on externalizing behavior
throughout the years; (3) “high-reducers” (7.9 %; n D 43) who started out high,
but reduced their externalizing behavior monotonically over time; (4) “late-starters-
medium” who increased externalizing problems at later age (8.7 %; n D 47); and
(5) “medium-reducers” whose problems decreased from an originally medium level
(22.4 %; n D 121). The results are in accordance with international studies on
developmental trajectories of offending and suggest that a perspective on a broad
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range of behavioral problems can be fruitful. The findings are discussed with regard
to other studies on latent group-based modeling, non-statistical taxonomies, and
practical applications.

Introduction

Prospective longitudinal studies enable the analysis of interindividual differences
in intraindividual change and are therefore the preferred research design in
developmental psychology (McCartney, Burchinal, & Bub 2006; Nesselroade &
Baltes 1979). This approach, also called developmental and life-course perspective,
acknowledges the basic assumption that human behavior and its connected social
context are changing over time. Due to progress in longitudinal studies and
statistical methodology (e.g., growth curve modeling) life-course research became
particularly important in the study of antisocial behavior and led to the field of
“developmental and life-course criminology” (e.g., Boers, Lösel, & Remschmidt
2009a; Farrington 2002).

Since the 1990s, statistical tools such as latent group-based modeling or general
growth mixture modeling (GGMM) have been successfully applied to longitudinal
datasets to describe the number and shape of violence, aggression and delinquency
trajectories (see Piquero, Farrington, & Blumstein 2007; Jennings & Reingle 2012).
By using GGMM or related tools it is possible to find different groups with
individual change curves leading to different developmental outcome in terms of
antisocial behavior or delinquency. In an early study Nagin and Tremblay (1999)
used the data of the Montréal Study to analyze trajectories of boys’ physical
aggression, oppositional behavior, and hyperactivity from ages 6 to 15. Four
developmental trajectories were identified for the three problem behaviors under
study. The group sizes varied depending on the particular behavior: a chronic
problem trajectory (4–6 %), a high-level near-desister trajectory (25–30 %), a
moderate-level desister trajectory (45–52 %), and a no problem trajectory (17–
25 %). D’Unger et al. (1998) analyzed the data of three renowned longitudinal
studies: the Cambridge Study in Delinquent Development (Farrington et al. 2009),
the Philadelphia Birth Cohort Study (Tracy et al. 1990) and the Racine Birth
Cohorts Study (Shannon 1988). The data were used to detect different trajectories
with regards to official police records. The British data suggested four different
trajectories: nonoffenders (64 %) with almost zero police contacts, one adolescence-
peaked trajectory (12.7 %), and two chronic trajectories, one on a low (9.9 %) and
the other on a high level (13.4 %). The data from Philadelphia came up with five
different groups: nonoffenders (60.8 %), adolescence-peaked trajectories (low rate)
(8.6 %), adolescence-peaked trajectories (high rate) (1.0 %), chronic offenders (low
rate) (21.3 %), and chronic offenders (high rate) (8.3 %). And the Racine data came
up with four or five classes depending on the birth cohort: nonoffenders (1942:
34.6 %; 1945: 35.4 %, 1955: 44.5 %), adolescence-peaked trajectories (1942:
20.1 %; 1945: 39.8 % (low-rate), 19.4 % (high rate); 1955: 2.2 % (early onset),



Developmental Pathways of Externalizing Behavior 93

15.4 % (late onset)), and chronic offenders (1942: 31.4 % (low rate), 8.8 % (high
rate); 5.1 % (late onset); 1945: 5.4 %; 1955: 30.1 % (low rate), 7.8 % (high rate)).

Bushway et al. (2003) used self-reported data of the Rochester Youth Develop-
ment Study (RYDS; Thornberry 1997). Seven groups were identified: very low-level
offenders (38.6 %), low-level offenders (22.5 %), late starters (9.8 %), intermittent
offenders (8.6 %), bell-shaped desisters (8.5 %), slow uptake chronic offenders
(7.8 %), and high-level chronic offenders (4.2 %). Hoeve et al. (2008) analyzed self-
reported delinquency and conviction rates of youth who participated in the youngest
cohort of the Pittsburgh Youth Study (PYS; Loeber & Hay 1997). Development
was followed through age 20 and five different groups were found: non-delinquents
(27.2 %), minor persisting (27.6 %), moderate desisting (6.8 %), serious persisting
(24.2 %), and serious desisting (14.3 %). Bongers et al. (2004) studied problem
behavior in children and adolescents aged 4–18 years in the Netherlands and found
three types of parent-reported development of aggressive behavior: a near-zero
trajectory (71.0 %), a low decreaser trajectory (21.4 %), and a high decreaser
trajectory (7.7 %). The high-level trajectory showed the highest probability for
predicting adult DSM-IV disorders (Reef et al. 2011).

Although the vast majority of studies on developmental trajectories of antisocial
behavior has been carried out in the Anglo-American context, there is also research
on this topic in Germany: Reinecke (2006) analyzed the data from the panel study
Crime in the Modern City (CRIMOC; Boers, Seddig, & Reinecke 2009b) to identify
different classes of deviant and delinquent behavior (self-report). From nine data
waves starting at age 13, three classes evolved: Adolescents with almost no deviant
or delinquent activities (58.2 %), a medium proportion of adolescents with a low
increase of delinquency (33.3 %), and a small number with a larger growth starting
on a higher level (8.5 %).

Overall, these and other studies suggest that there are no consistent numbers
and types of developmental trajectories of delinquency, violence and crime. The
most common results support Moffitt’s (1993) theory-driven typology of an early
starting and relatively persistent development of antisocial behavior versus an
adolescence-limited pathway. In addition, nearly all studies show a large group
of youngsters who are low in antisocial behavior across all measurement points.
A recent systematic review of studies on developmental trajectories points in the
same direction (Jennings & Reingle, 2012). Depending on age, type of sample (e.g.,
high risk vs. normative), kind of problem behavior, mode of measurement, method
of analysis, geographical context and other issues the results varied between two
and seven trajectories, but three to five were most common. Jennings and Reingle
(2012) made a number of suggestions for further progress in this field research.
In addition to more research on the explanation of different pathways, the authors
suggest more studies on broader topics of developmental psychopathology, different
cultural contexts, and data from multiple informants.

The present study follows the latter proposals. We analyzed the data of the
Erlangen-Nuremberg Development and Prevention Study (ENDPS; Lösel et al.
2009, 2013) with regard to different trajectories for the broad category of exter-
nalizing problems. ENDPS is based on a normative sample and is a combined
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experimental and longitudinal study on child behavior covering a time period of
approximately ten years. Social behavior was rated in standardized reports from
multiple informants such as mothers, kindergarten educators, school teachers, and
the youngsters themselves. Therefore, the ENDPS can provide information on
prototypical developments of a broad range of problem behaviors in a European
context that may be relatively less biased by specific outcome measurements. As
this publication is embedded in a method-oriented volume, the following section
contains details of our statistical model and analysis.

Overview of Statistical Models

From a statistical point of view, one can treat latent growth curve modeling as
multi-level models with the repeatedly measured observed variables on the first level
and the latent variable on the second level (cf. McArdle 1988, 2005; Stemmler &
Petersen 2012). If the assumption does not hold, that the underlying modeling of the
growth over time is valid for a homogeneous population under investigation, growth
curve models with latent classes come into play, to explain the “unobserved hetero-
geneity” (Nagin 1999; Muthén & Shedden 1999). The mathematical generalizations
were described in a book on “finite mixture models” by McLachlan and Peel (2000).
Nagin (1999) was the first scholar to apply growth curve modeling for different
classes in the field of criminology. Nagin called his approach semi-parametric,
group-based modeling approach, whereas Muthén (2004) used the term latent class
growth modeling to underline the fact that in this model the random coefficient of
the growth curve was fixed to zero, indicating no within class variation. However,
this model is a special case of the general growth mixture models (GGMM) which
can be analyzed with MPLUS (Muthén & Muthén 2010) or the LAVAAN package
(Rosseel 2012) of the R statistical programing environment (R Core Team 2015).

The traditional growth curve model is based on the following equation (cf.
Reinecke 2006, 2012):

yt D �t1
1 C �t2
2 C �t (1)

In this formula yt are the observed variables measured at time t, which are
determined by the two latent variables 
i representing the level and slope of the
growth curve, and "t the residuals (see Fig. 1).

The coefficients of the level are usually fixed to the value 1.0, whereas the
coefficient of the slope may represent either linear growth (i.e., �12 D 1; �22 D
2 � � � �t1 D t) or any other combination, as long as the necessary coefficients are
fixed. The equations for the latent variables are


level D ˛1 C �1 (2a)
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Fig. 1 A general growth mixture model (GGMM), which is basically a growth curve model with
latent classes (ck). Note: ck are the different latent classes; 
i represents the latent variables for level
and slope; the yi are the observed variables for each measurement point; the �i are the residuals
or error terms; the �i are the coefficients for the latent variables and  i are the variance and
covariances of level and slope


slope D ˛2 C �2 (2b)

The above traditional growth curve can easily be extended to a conditional growth
curve model if an exogenous variable, functioning as a predictor is included in the
model. The extension is as follows:


m D ˛m C ��n C �m (3)

where the matrix � (m � n) contains the regression coefficients of the exogenous
variable � on the endogenous variables 
i. The variances and the covariance of the
latent variables can be found in the psi-matrix (see Reinecke 2006, 2012):

‰ D
�
 11
 21  22

�
(4)
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with  11 representing the variance of the level variable,  22 represents the variance
of the slope variable, and  21 indicates the covariance between the two latent
variables. If the growth model represents the different trajectories of different
subpopulations, the statistical parameters vary across classes (see Fig. 1). According
to Muthén (2004) such a general growth mixture model can be written as

y1k D �1tk
1k C �2tk
2k C �tk (5a)


1k D ˛1k C �1k (5b)


2k D ˛2k C �2k (5c)

The variances of the 
 variables are estimated separately for each class, as well as
their covariances. The parameters of GGMM can be estimated in MPLUS using
the EM algorithm to obtain maximum-likelihood (ML) estimators (Dempster et al.
1977; Muthén & Shedden 1999). At the end, individuals are assigned a particular
class based on their established posterior probabilities. This class membership may
be used for further statistical analysis validating the obtained results of the GGMM;
however there is controversy about this issue because class membership is based
on probabilities and a pretended fixed class membership may overlook possible
misclassifications due to error variance (Clarke & Muthen 2009).

There is no statistical test for the evaluation of the required number of necessary
classes (Reinecke 2006, 2012), but there are useful statistical parameters such as the
entropy measure Ek which varies between 0 and 1, with values close to 1 indicating a
reasonable classification. And there are the Bayesian Information Criterion (BIC) or
the adjusted BIC which are based on the maximum likelihood of the model. Of two
comparing models the one with the lowest BIC or adjusted BIC is preferred. Finally,
the Lo-Mendell-Rubin likelihood ratio test (LMR-LRT) compares the ratio of the
likelihoods of two competing models, that is the (k-1)-classes model with k-classes
model. The null hypothesis (H0) states that the (k-1) model should be preferred.
Therefore, significant or small p-values of the LMR-LRT are in support of the k-
classes model. Another statistical parameter is the BRT (i.e., bootstrapped likelihood
ratio test) which also compares the (k-1)-classes model with the k-classes model.
The larger the likelihood the better the BRT. However, all statistical parameters are
proxies that are used to select the best model, the final decision should also take
theoretical issues into account.

In case of missing data MPLUS uses the full information maximum likelihood
(FIML) estimator (Reinecke 2005). This estimator, which does not require Missing
Completely at Random (MCAR) but Missing at Random (MAR), is well established
in all currently available SEM programs. With a reasonably large sample size FIML
produces unbiased parameter estimates.

Based on the abovementioned review of the life-course criminological literature
we expected two groups with relatively stable levels of externalizing symptoms:
those who are chronically high and those who are chronically low, with the
latter group being larger. In addition, we envisioned groups with time-limited
externalizing behavior and/or a later start of problems.
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Method

Sample

The data were taken from the Erlangen-Nuremberg Prevention and Development
Study (ENDPS; Lösel, Stemmler, Beelmann, & Jaursch 2005; Lösel, Stemmler,
Jaursch, & Beelmann 2009; Lösel, Stemmler, & Bender 2013). The ENDPS is
a combined prospective longitudinal and experimental prevention study with a
multi-informant and multi-method approach. The original sample of the core study
consisted of 675 kindergarten children (336 boys, 339 girls) from 609 families. The
project is a longitudinal study that started at preschool age and is now containing
seven waves of data collection. The sample was nearly representative of young
families living in Erlangen and Nuremberg (Franconia). According to an index of
the socioeconomic status (SES; Geißler 1994) which included income, education,
profession, and housing conditions, 13.3 % of the families were lower class, 32.3 %
were lower middle class, 30.6 % middle class, 15.4 % upper middle class, and
3.0 % upper class. Approximately 86 % of the parents were married at Time 1. The
retention rates varied over time; in the most recent wave (nearly 10 years after the
first one) approximately 90 % of the original sample participated (Lösel & Stemmler
2012; Stemmler & Lösel 2012).

For the analyses below, the data was structured according to age so that
homogeneous age groups were assessed at the various measurement points. Data
were collected when the study child was at the ages of 4 or 5, 6 or 7, 8 or 9, 10–
12, and 13 or 14. Children were included if they had at least data on 3 out of the 5
measurement points. The data of the other two missing data points were imputed.
Overall, the longitudinal sample contained N D 541 children. The cross-sectional
sample sizes were as follows: n D 525 (4–5 years), n D 424 (6–7 years), n D 422
(8–9 years), n D 486 (10–12 years), and n D 377 (13–14 years).

Measures

The children’s social behavior in kindergarten and at school was assessed by
our German adaptations of the Social Behavior Questionnaire (SBQ; Tremblay
et al. 1987; Tremblay et al. 1992). The SBQ is available in multiple versions.
Here, kindergarten educators’, school teachers’, and mothers’ ratings were used
(Lösel, Beelmann, & Stemmler 2002). The content and format of the teacher’s
SBQ versions are identical and consist of 46 items. The mother’s version has
two additional items. The teacher’s version item “stealing things” is divided for
the mothers’ version into “stealing things at home” and “stealing things outside
home.” Each item is rated on a 3-point scale ranging from “0” D never/not true to
“2” D almost always/true most of the time. In the present study we only used items
on externalizing behavior problems. Our Externalizing Problems scale was formed
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of four primary scales: Physical Aggression, Destroying Things/Delinquency, Indi-
rect Aggression, and Hyperactivity/Attention Problems. The reliabilities for the
different informants were ’D .89 (preschool teachers/kindergarten educators),
’D .91 (school teachers), and ’D .74 (mothers).

To enhance the validity of measurement, at each wave the data from two
informants were combined (mean of z-scores), that is weighing the teachers’ and
mothers’ ratings equally. At preschool age we used the information from the
mothers and kindergarten educators and at elementary school age the mothers’ and
school teachers’ ratings. In secondary school we added the children’s self-reports
to the mothers’ SBQ data, again using the mean ratings of the two informants. To
assess externalizing behavior through the child’s self-report we used the German
version of the Strength and Difficulties Questionnaire (SDQ; Goodman 1999;
German adaptation: Hölling, Erhart, Ravens-Sieber, & Schlack 2007). The items
are answered on a 3-point scale ranging from “1” D does not apply to “3” D does
clearly apply. The Externalizing Scale consists of five items. The reliability in our
sample was rather low (’D .50), but similar to the results from a nationwide German
sample of the Robert-Koch Institute (Hölling et al. 2007). The mothers’ SBQ ratings
and the children’s SDQ ratings were combined by averaging z-scores.

Results

Linear and quadratic latent class growth analyses with an increasing number of
classes were tested. MPLUS, version 6, was used (Muthén & Muthén 2010). Models
with within-class variation as well as with no-within-class variations were analyzed.
Hundred random sets of starting values were generated in the initial stage and
ten optimizations were carried out. The OPTSEED option was applied to specify
the random seed that has been found to result in the highest log-likelihood in the
previous analyses (Muthén & Muthén 2010). The fit of different latent classes
ranging between one and six can be taken from Table 1. The statistical results
suggest a linear GGMM of five classes according to Nagin (1999) with no-within-
class variation. Here, a BIC D 4051.39 and an adj. BIC D 3991.02 were obtained.
The LMT-LRT suggested that compared to a k-1 D 4-class solution the five-class
solution should be preferred (LMR-LRT D 79.75, p D .08). The corresponding BRT
generated the smallest value (BRT D 83.97) of all solutions with a likelihood ratio
LRT D �2007.89. The smallest BIC and adj. BIC were found for the six-classes
model, but there were very small classes (n < 10) and the LMT-LRT and the BRT
revealed a lesser fit (Table 1).

The five classes represent different developmental trajectories from childhood to
adolescence. Figure 1 depicts the different developmental trends. Squares indicate
the “observed” means and triangles the estimated means. The upper dashed-dotted
lines are the “high-chronics” (2.4 %; n D 13), who are receiving the highest values in
externalizing behavior from childhood on up to adolescence. The opposite class are
the “low-chronics” (dashed lines; 58.8 %; n D 317) who are low on externalizing
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Table 1 Results of the general growth mixture models (GGMM) with different classes

Test 1 class 2 classes 3 classes 4 classes 5 classes 6 classes

BIC 5107.10 4353.58 4192.29 4116.48 4051.39 4021.67

Adjusted BIC 5084.88 4321.84 4151.02 4065.69 3991.02 3951.83
LMR-LRT – 733.54 171.11 89.93 79.75 129.16

p-value – 0.00 0.15 0.27 0.08 0.27
Likelihood – �2531.52 �2145.33 �2055.24 �2007.89 �2007.89

BRT – 772.39 180.18 94.69 83.97 132.58

p-value – 0.00 1.00 1.00 1.00 1.00
Class Sizes 541 (100) 435 (80.4) 375 (69.3) 346 (64.0) 317 (58.6) 315 (58.2)

N (%) 106 (19.6) 127 (23.5) 116 (21.4) 121 (22.4) 115 (21.2)

39 (7.2) 48 (8.9) 47 (8.7) 44 (8.1)

31 (5.7) 43 (7.9) 30 (5.5)

13 (2.4) 29 (5.3)

8 (1.5)

BIC Bayesian Information Criterion, LMR-LRT Lo-Mendell-Rubin likelihood ratio test,
N D 541, BRT Bootstrapped likelihood ratio test
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Fig. 2 Results of the general growth mixture model (GGMM) resulting in five developmental
trajectories. Note: The y-axis displays the values for “Externalizing Behavior,” and all values were
z-transformed. The x-axis shows the age of the juveniles at each measurement point. The squares
represent “observed” means and the triangles “estimated” means. The upper dashed-dotted lines
are the “high-chronics” (2.4 % of the sample), the dashed-dot-dotted lines are the “high-reducers”
(7.9 %), the dotted lines are the “medium-reducers” (22.4 %), the ascending black lines are the
“late-starters-medium” (8.7 %), and the dashed lines represent the “low-chronic” (58.6 %)

behavior throughout the years; including the majority of the sample. The dashed-
dot-dotted lines are the “high-reducers” (7.9 %; n D 43) who start out high in
childhood, but who reduce their externalizing behavior monotonically over time. By
adolescence they are passed by the “late-starters-medium” (ascending black lines;
8.7 %; n D 47). Finally, the dotted lines show the trends of the “medium-reducers”
(22.4 %; n D 121) who include about one-quarter of the sample. Their externalizing
is medium high in kindergarten but decreases linearly up to adolescence (Fig. 2).
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Discussion

Prospective longitudinal studies on problem behavior have a number of advantages
(Loeber & Farrington 1994): They allow the study of the natural history of the
development of problems such as onset, increase, decrease and termination. Based
on individual data they enable the study of trajectories or pathways. A pathway
is defined as “when a group of individuals experience a behavioral development
that is distinct from the behavioral development of another group of individuals”
(p. 890; Loeber & Farrington 1994). The identification of distinctive groups of
trajectories enables one to estimate the proportion of the population following each
trajectory group and to relate group membership probability to personal and social
characteristics. Valid distinctions of developmental pathways can guide policy, e.g.,
with regard to risk-based early prevention programs (Farrington & Welsh 2007;
Lösel et al. 2013). Loeber and Farrington (1994) also postulate that the best studies
should rely on multiple informants. This is in accordance with numerous findings
that showed rather low agreement between different informants from different social
contexts (e.g., Achenbach 2006; Lösel 2002).

This research meets the abovementioned criteria. We adopted a developmental
and life-course perspective by using the data of the Erlangen-Nuremberg Develop-
ment and Prevention Study (ENDPS). We applied general growth mixture modeling
(GGMM) to data from early childhood to adolescence, covering a 10-year period, on
externalizing behavior problems rated at each measurement point by two different
informants (kindergarten educators, mothers, school teachers, and self-report). The
results suggested a five-class solution representing five different developmental
trajectories.

Although our study contained data on a broad range of externalizing symptoms
and a community sample of boys and girls from Germany the results were
relatively similar to Anglo-American studies that used Nagin’s (1999) approach
on semiparametric group-based modeling. As mentioned in the introduction, most
studies showed between three and five classes depending on the type of outcome
measures and samples used (Jennings & Reingle 2012). The small group of “high-
chronics” and the largest group of “low-chronics” (no problems at all times) are
in accordance with the well-replicated trajectories of delinquency, aggression, and
violence (Jennings & Reingle 2012). The group of “high-reducers” confirms that
not all children who exhibit early antisocial behavior enter on a persistent pathway.
In contrast, various international studies have shown that a half or more recover
within a short period of time (e.g., Moffitt et al. 1996; Nagin & Tremblay 1999;
Werner & Smith 1992). Even in the presence of various risk factors abstaining or
early desistance from problem behavior seems to be more the rule than an exception
(Lösel & Bender 2003; Lösel & Farrington 2012). Our fourth trajectory of “late-
starters-medium” may indicate an early phase of the adolescent-limited pathway
that has been found in studies that covered the whole range of youth and young
adulthood (e.g., Moffitt et al. 2002). Further waves of the ENDPS may show whether
the increase of externalizing problems continues until late adolescence and then be
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followed by a decrease. The fifth trajectory we found in our study is insofar plausible
as it shows a moderate level of behavioral problems that decreased from early
childhood to youth. These “medium-reducers” show a similar trend as the “high-
reducers,” but are a larger group that decreases from a more normative lower level of
externalizing problems. Both pathways may indicate positive influences of cognitive
competences, self-control, and social skills that reduce physical aggression and
other antisocial behavior from early childhood onwards (e.g., Tremblay et al. 2004).

Overall, our findings fit well into the international criminological literature.
However, there seems to be a difference with regard to the size of the group with
intensive and persistent problem behavior. Whereas in criminological trajectory
studies often approximately 5 % of a cohort belonged to this category, in our study
only 2.4 % belonged to this group. This lower prevalence may have been partially
due to the comparatively young age when our sample was first assessed. In addition,
less serious problems of externalizing behavior in a “normal” community sample
may be more temporary and thus not lead to a larger group with high problem
stability. Taking together the “high-chronics” and the “high-reducers” the respective
proportion was about 10 %. This is within the range of point prevalence rates for
externalizing child behavior in Germany (e.g., Hölling et al. 2007).

One should also mention that our study contained both boys and girls. As
boys show more externalizing problems than girls the relatively small size of the
“high-chronics” group is plausible. Because we investigated a nearly representative
sample of the local area we included both sexes in the trajectory analysis. As boys
show more externalizing problems than girls (see Lösel & Stemmler 2012; Moffitt,
Caspi, Rutter, & Silva 2001; Moretti & Odgers 2002), mixed-gender studies on this
issue may contain problems. However, different prevalence rates do not necessarily
imply that there are different risk variables and developmental processes. Although
gender is a sound predictor of delinquency and offending (Ryder, Gordon, & Bulger
2009), most risk variables for boys and girls seem to be similar (see Moffitt et al.
2001; Silverthorne & Frick 1999). Boys simply show more risks for externalizing
problems and girls may also benefit from more protective factors and mechanisms
(e.g., Lösel & Bender 2003; Lösel, Stemmler, & Bender 2013; Werner & Smith
2001).

In sum, the results of our study are consistent with international research
that concentrated on more specific forms of antisocial behavior. Addressing a
broad range of externalizing problems bears the advantage of a relatively sensitive
detection of early needs for intervention and prevention. In the ENDPS we found
encouraging effect sizes in predictive validity with Odds Ratios of up to 10 (Wallner,
Lösel, Stemmler & Corrado, submitted). More detailed analyses on the prediction
of trajectories are in progress.

However, the present study underlines the methodological progress due to the
invention of GGMM. It allows the empirical and statistical driven search and
identification of different developmental pathways that overcomes more or less
arbitrary definitions of groups. For example, Moffitt (1993) defined boys as “life-
course persistent antisocial” if they had above average scores (by at least one
standard deviation) on a scale of antisocial behavior. Elevated scores by three raters
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(parents, teachers, and self) were required at each of seven biennial assessments
from age 3 to 15. However, for various reasons, the algorithm had to be changed
later to at least three elevated scores out of the 5 assessments from ages 5 to
11 years (Moffitt et al. 2002). In another high-quality study Elliott and Huizinga
(1980) defined youngsters as high delinquents if they had more than 12 crimes
per year, as exploratory delinquents if they had equal or less than five crimes per
year. Such a priori definitions always involve some kind of arbitrariness. In our
view, such group definitions are well justified as long as they are to some degree
theory driven. It is encouraging that such original groupings were supported by
advanced statistical analyses (Nagin, Farrington, & Moffitt 1995). Insofar, GGMM
has provided a tremendous progress in finding the most adequate number of groups
or pathways leaving behind scientific capriciousness.

However, in spite of the convergent validity of our results with studies from North
America one must acknowledge various limits. First, although the algorithm for the
selection of different trajectories is fully objective, the final solution still required
some subjective decisions (i.e., the exclusion of a pathway with very small group
size). Second, GGMM leads to pathways of relative and not absolute homogeneity
in development; that is, one must assume individual cases in each trajectory that
are rather similar to some cases in another pathway. Third, GGMM provides
a descriptive developmental grouping of a specific data set that requires cross
validation. Fourth, it needs to be emphasized that the labeling of the different groups
is data-driven and not based on theoretically or clinically relevant distinctions. For
example, the children on the “high-chronic” pathway in our community sample
may still differ in many characteristics from a persistent group of offenders in a
high-risk sample. This points to a general problem with GGMM. The question is
whether the identified latent classes are real existing subpopulations or just different
statistically generated groups with rather general labels made up by researchers.
Therefore, further investigation of differential predictors of various developmental
pathways is an important task for our own and other future research. If one is
not interested in finding discrete latent classes or if one does not assume the
existence of subpopulations one could use the so-called heterogeneous growth curve
modeling (HGM; Brandt & Klein in press). HGM models growth curves while
using covariates like gender or school type to explain the unobserved heterogeneity
in the slope variance. Further limits of the abovementioned GGMM are the use
of categorical variables or extremely non-normal data (for solutions see Bauer &
Curran 2004).
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A Generalization of Nagin’s Finite
Mixture Model

Jang Schiltz

Abstract We present a generalization of Nagin’s finite mixture model that allows
non-parallel trajectories for different values of covariates. We investigate some
mathematical properties of this model and illustrate its use by giving typical salary
curves for the employees in the private sector in Luxembourg between 1981 and
2006, as a function of their gender, as well as of Luxembourg’s gross domestic
product (GDP).

Introduction

Longitudinal data are the empirical basis of research on various subjects in sociol-
ogy, psychology, economics, criminology, and medicine and a host of statistical
techniques are available for analyzing them (see Singer & Willet 2003). The
common statistical aim of these various application fields is the modelization of
the evolution of an age or time based phenomenon (Nagin 2002). Hence, the study
of developmental trajectories is a central theme (Ferguson, Lynskey, & Horwood
1996; Jones, Nagin, & Roeder 2001; Moffitt 1993; Patterson, DeBaryshe, & Ramsey
1989; Sampson & Laub 2005). The objective of these approaches is to capture
information about interindividual differences in intraindividual change over time
(Nesselroade 1991). In the 1990s, the generalized mixed model assuming a normal
distribution of unobserved heterogeneity (Bryk & Raudenbush 1992), multilevel
modeling (Goldstein 1995), latent growth curves modeling (Muthén 1989; Willett &
Sayer 1994), and the nonparametric mixture model, based on a discrete distribution
of heterogeneity (Jones et al. 2001) have emerged. There has been a growing interest
in this approach to answer questions about atypical subpopulations (see Eggleston,
Laub, & Sampson 2004).

Growth mixture modeling, introduced by Muthén and Shedden (1999), is a very
suitable framework to handle the issue of unobserved heterogeneity. They can be
seen as an extension of the structural modeling approach with techniques of latent
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class analysis (Muthén 2001). The inferred membership of each individual to a
certain class is produced with the information of the estimated class probabilities
(Reinecke & Mariotti 2009). Extensive applications of different growth curve
models with structural equations are discussed by Duncan, Stryker, Li, and Alpert
(2006) and a general nonlinear multilevel structural equation mixture model, that
combines recent semiparametric nonlinear structural equation models with multi-
level structural equation mixture models for clustered and non-normally distributed
data is presented in Keleva and Brandt (2014). An overview of the different concepts
in mixture modeling, on the other hand, can be found in Young (2008).

Latent class growth analysis, also called nonparametric mixed model or semi-
parametric mixture model, is the simplest specification of a growth mixture model.
It allows no variation across individuals within classes. It was originally discussed
by Nagin and Land (1993), Nagin (1999), and Roeder, Lynch, and Nagin (1999) and
is actually specifically designed to detect the presence of distinct subgroups among
a set of trajectories and represents an interesting compromise between analysis
around a single mean trajectory and case studies (von Eye & Bergman 2003).
Compared to subjective classification methods, the nonparametric mixed model has
the advantage of providing a formal framework for testing the existence of distinct
groups of trajectories. This method does not assume a priori that there is necessarily
more than one group in the population. Rather, an adjustment index is used to
determine the number of sub-optimal groups. This is a significant advance over
other categorical methods which determine the number of groups only subjectively
(von Eye & Bergman 2003). Andruff, Carraro, Thompson, Gaudreau, and Louvet
(2009) conclude that latent class growth analysis serves as a steppingstone to growth
mixture modeling analyses in which the precise number and shape of each trajectory
must be known a priori in order for the researcher to impute the requisite start values
for the model to converge in software packages such as Mplus (Jung & Wickrama
2008).

While the conceptual aim of the analysis is to identify clusters of individuals
with similar trajectories, the model’s estimated parameters are not the result of a
cluster analysis but of maximum likelihood estimation (Nagin 2005). Moreover,
this method allows to evaluate the accuracy of the assignment of the individuals
to the different sub-groups and to consider the variation of this accuracy in
subsequent analyses (Dupéré, Lacourse, Vitaro, & Tremblay 2007). Nagin and
Odgers (2010) document numerous applications of group-based trajectory modeling
in criminology and clinical research. They state that the appeal of group-based
trajectory modeling for the future lies in the potential for the innovative application
of trajectory models on their own, in conjunction with other statistical methods or
embedded within creative study designs while carefully considering the perils and
pitfalls inherent in the use of any methodology.

The remainder of this article is structured as follows. In section “Nagin’s Finite
Mixture Model,” we present the basic version of Nagin’s finite mixture model, as
well as one of his generalizations, allowing to add covariates to the trajectories
and we show two drawbacks of the model. In section “Our Model,” we present a
generalization of the model that overcomes these drawbacks and we discuss model
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selection and group member probabilities for the new model. Section “Statistical
Properties” presents some basic statistical properties of the model. In section “A
Data Example,” finally, we highlight typical features of the new model by means of
a data example from economics.

Nagin’s Finite Mixture Model

Starting from a collection of individual trajectories, the aim of Nagin’s finite mixture
model is to divide the population into a number of homogenous sub-populations and
to estimate, at the same time, a typical trajectory for each sub-population (Nagin
2005).

More, precisely, consider a population of size N and a variable of interest Y. Let
Yi D yi1 ; yi2 ; : : : ; yiT be T measures of the variable Y, taken at times t1; : : : ; tT for
subject number i.

To estimate the parameters defining the shape of the trajectories, we need to fix
the number r of desired subgroups. Denote the probability of a given subject to
belong to group number j by �j. Then �j is also the size of group j and

P.Yi/ D
rX

jD1
�jP

j.Yi/; (1)

where Pj.Yi/ is the probability of Yi if subject i belongs to group j.
This model is called a finite mixture model, because we suppose that the

population is composed of a mixture of unobserved groups and Eq. (1) sums across
this finite number of discrete groups that compose the population.

If we suppose conditional independence for the sequential realizations of the
elements yit over the T periods of measurement for each group, we obtain

Pj.Yi/ D
NY

iD1
pj.yit/; (2)

where pj.yit/ is the probability distribution function of yit given membership in
group j.

Nagin specified his model for three different kinds of distributions (Nagin 2005).
For count data, P.Yi/ is specified as the Poisson distribution, for binary data it is
specified as the binary logit distribution, and for censored data it is specified as the
censored normal distribution.

In any case, the objective is to estimate a set of parameters ˝ D f�j; ˇ
j
0;

ˇ
j
1; : : : I j D 1; : : : ; rg which allow to maximize the probability of the measured

data. The particular form of ˝ is distribution specific, but the ˇ parameters always
perform the basic function of defining the shapes of the trajectories. In both



110 J. Schiltz

standard growth curve modeling and Nagin’s finite mixture model, the shapes of
the trajectories are described by a polynomial function of age or time (Nagin 2005).

In this paper, we suppose that the data follow a normal distribution (not
necessarily censored). Assume that for a subject in group j

yit D
sX

kD1
ˇ

j
ktk

it C "it; (3)

where s denotes the order of the polynomial describing the trajectories in group j
and "it is the disturbance assumed to be normally distributed with a zero mean and
a constant standard deviation � . If we denote the density of the standard centered
normal law by � and ˇjtit D Ps

kD1 ˇ
j
ktk

it, the likelihood of the data is given by

L D 1

�

NY
iD1

rX
jD1

�j

TY
tD1
�

�
yit � ˇjtit

�

�
: (4)

The disadvantage of the basic model is that the trajectories are static and do not
evolve in time. Thus, Nagin introduced several generalizations of his model in his
book (Nagin 2005). Among others, he introduced a model allowing to add covariates
to the trajectories. Let z1; : : : ; zM be M covariates potentially influencing Y.

We are then looking for trajectories

yit D
sX

kD0
ˇ

j
ktk

it C ˛
j
1z1 C : : :C ˛

j
MzM C "it; (5)

where "it is normally distributed with zero mean and a constant standard deviation � .
The covariates zm may depend or not upon time t.

But even this generalized model still has two major drawbacks.
First, the influence of the covariates in this model is unfortunately limited to the

intercept of the trajectory. This implies that for different values of the covariates,
the corresponding trajectories will always remain parallel by design, which does
not necessarily correspond to reality.

Secondly, in Nagin’s model, the standard deviation of the disturbance is the same
for all the groups. That too is quite restrictive. One can easily imagine situations in
which in some of the groups all individual are quite close to the mean trajectory of
their group, whereas in other groups there is a much larger dispersion.

Our Model

Definition

To address and overcome these two drawbacks, we propose the following general-
ization of Nagin’s model.
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Let x1 : : : xM and zi1 ; : : : ; ziT be covariates potentially influencing Y. Here the x
variables are covariates not depending on time like gender or cohort membership
in a multicohort longitudinal study and the z variable is a covariate depending
on time like being employed or unemployed. They can of course also designate
time-dependent covariates not depending on the subjects of the data set which still
influence the group trajectories, like gross domestic product (GDP) of a country in
case of an analysis of salary trajectories.

The trajectories in group j will then be written as

yit D
sX

kD0

 
ˇ

j
k C

MX
mD1

˛
j
kmxm C 	

j
kzit

!
tk
it C "it; (6)

where the disturbance "it is normally distributed with mean zero and a standard
deviation �j constant inside group j but different from one group to another. Since,
for each group, this model is just a classical fixed effects model for panel data
regression (see Woolridge 2002), it is well defined and we can get consistent
estimates for the model parameters.

Our model allows obviously to overcome the drawbacks of Nagin’s model. The
standard deviation of the uncertainty can vary across groups and the trajectories
depend in a nonlinear way on the covariates. In practice this dependence of all the
power coefficients of the polynomials may considerably extend the computation
time for the parameters, so it can be useful just to work with a first or second order
dependence instead of using the full model.

On the other hand, it is even possible to further generalize the model and consider
trajectories that are not polynomial. In economics, for instance, there is often the
need to consider exponential trajectories.

Let f j be a function describing the trajectory in group j and depending on
parameters ˇ0; : : : ; ˇs. Then the trajectories in group j can be written as

yit D f
�

tit; zit Iˇj
0; : : : ; ˇ

j
s; 	

j
0; ::; 	

j
s

�
C "it; (7)

where the disturbance "it is normally distributed with mean zero and a standard
deviation �j constant inside group j but different from one group to another. To avoid
too complicated notations, we have left aside here covariates not depending on time,
but these could also be included in the trajectories. The important fact is that as long
as the description of the trajectories remains deterministic, we can choose all kinds
of shapes we like. The econometrical properties just depend on the disturbance term
which remains unchanged.

Since our model is just a generalization of Nagin’s finite mixture model, a lot of
its main features and properties remain the same as in Nagin’s model.
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Model Selection

The problem of how many components to include in a finite mixture model is
among the most challenging in statistics (Nagin 2005). Bauer and Curran (2003)
even cautioned that the existence of multiple classes may simply be due to skewed
or otherwise non-normally distributed data. There have been a host of propositions
for a criterion for deciding the correct number of groups, but there is not really
a common acceptance of the best criteria. This is seen as a critical issue in
the application of mixture modeling, because classes are used for interpreting
results and making inferences (Nylund, Asparouhov, & Muthén 2007). One widely
recommended option is the Bayesian Information Criterion (Kass & Raftery 1995;
Nagin 2005; Raftery 1995; Schwarz 1978). If k denotes the number of parameters
in the model, BIC is calculated as

BIC D log.L/ � 0:5k log.N/: (8)

The bigger the BIC, the better the model.
Closely related to the BIC is Akaike information criteria (AIC) (Akaike 1974),

defined by

AIC D �2 log.L/C 2k: (9)

Here the optimal number of groups is the one minimizing AIC.
Recently, Nielsen et al. (2014) proposed the methodology of leave-one-out cross-

validation error (CVE). CVE is calculated as

CVE D 1

N

NX
iD1

1

T

TX
tD1

ˇ̌
ˇyit � OyŒ�i�

it

ˇ̌
ˇ ; (10)

where OyŒ�i�
it is the forecast for individual i if the model is estimated based on data for

all the other individuals except for himself. The decision rule is to take the number
of groups corresponding to the smallest CVE. This looks like a nice idea, but it is
not always computationally feasible for large data sets. Since instead of estimating
the model once, it necessitates to estimate the model N times!

Besides, it should not be forgotten that there does not always exist a “best”
number of groups. If the groups are seen as a statistical device for approximating
an unknown but continuous population distribution of trajectories, the question of
what constitutes an optimum number of groups is ill-posed (Nagin 2005).

There has been an extensive debate about the optimal number of groups in the
literature (Nagin & Tremblay 2005; Sampson & Laub 2005) with the conclusion that
analogous to determining the number of factors using explanatory factor analysis,
the researcher should ultimately use a combination of factors in addition to fit
indices, including his research question, parsimony, theoretical justification, and



A Generalization of Nagin’s Finite Mixture Model 113

interpretability (Jung & Wickrama 2008) and that often subject-specific judgment
is more important than statistical considerations to choose the number of groups
(Bloklad, Nagin, & Nieuwbeerta 2005; Eggleston et al. 2004).

Group Membership Probability

The posterior probability of individual i’s membership in group j P.j=Yi/ can easily
be computed with Bayes’s theorem.

P.j=Yi/ D P.Yi=j/ O�j
rX

jD1
P.Yi=j/ O�j

: (11)

Hence, bigger groups have on average larger probability estimates. Besides, to be
classified into a small group, an individual really needs to be strongly consistent
with it (Nagin 2005).

These probabilities can then be used to create balance on lagged outcomes and
other covariates established prior to t for the purpose of inferring the impact of
first-time treatment on the outcome of interest (see Haviland & Nagin 2005) and
deciding thus whether a therapeutic intervention (or a turning-point event) alters the
trajectories under study.

Statistical Properties

The model’s estimated parameters are the result of maximum likelihood estimation.
As such, they are consistent and asymptotically normally distributed (Cramér 1946;
Greene 1995; Theil 1971).

In our model, for a given group, the trajectories follow in fact a nonlinear regres-
sion model. As such, exact confidence interval procedures or exact hypothesis tests
for the parameters are generally not available (Graybill & Iyer 1994). There exist,
however, approximative solutions. The standard error can be approximated, for
instance, by a first-order Taylor series expansion (Greene 1995). This approximate
standard error (ASE) is usually quite precise if the sample size is sufficiently large.

Consider model (6), for which .2 C M/s regression parameters have to be
estimated. Then confidence intervals of level ˛ for the parameters ˇj

k are just

CI˛.ˇ
j
k/ D

h Ǒj
k � t1�˛=2IN�.2CM/sASE. Ǒ j

k/I Ǒj
k C t1�˛=2IN�.2CM/sASE. Ǒ j

k/
i
; (12)

where t1�˛In denotes as usual the 1 � ˛ quantile of the Student distribution with n
degrees of freedom.
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The confidence intervals for the ˛j
kl and 	 j

k are obtained in the same way.
The confidence intervals of level ˛ for the disturbance factor �j is given by

CI˛.�j/ D
2
4
vuut .N � .2C M/s � 1/ O�j

2

�21�˛=2IN�.2CM/s�1
I
vuut .N � .2C M/s � 1/ O�j

2

�2˛=2IN�.2CM/s�1

3
5 ; (13)

where �21�˛In denotes the 1�˛ quantile of the Chi-Square distribution with n degrees
of freedom.

A Data Example

For the following example, we use Luxembourg administrative data originating
from the General Inspectorate of Social Security, IGSS (Inspection générale de
la sécurité sociale). The data have previously been described and exploited with
Nagin’s basic model by Guigou, Lovat, and Schiltz (2010, 2012). The file contains
the salaries of all employees of the Luxembourg private sector who started their
work in Luxembourg between 1980 and 1990 at an age of less than 30 years.
This choice was made to eliminate people with a long carrier in another country
before moving to Luxembourg. The main variables are the net annual taxable salary,
measured in constant (2006 equivalent) euros, gender, age at first employment,
residentship and nationality, sector of activity, marital status, and the years of birth
of the children. The file consists of 1,303,010 salary lines corresponding to 85,049
employees. In Luxembourg, the maximum contribution ceiling on pension insurance
is five times the minimum wage, currently 7577 EUR (2006 equivalent euros) per
month. Wages in our data are thus also capped at that number.

We will not present here an exhaustive analysis of the whole dataset, but just two
illustrations of the possibilities of our generalized mixture model and its differences
from Nagin’s model. We concentrate on the first 20 years of the careers of the
employees who started working in Luxembourg in 1987. That gives us a sample of
1716 employees. We will first compute typical salary trajectories for them, taking
into account the gender of the employees and then typical salary trajectories as a
function of the GDP of the country.

Since we are in a somewhat special situation where we work with the complete
population and not just a sample, it may seem a bit strange to speak about parameter
significance and confidence intervals for this example. But first, this is just an
illustration of the possibilities and main features of our model, so it makes sense
to show what results we would get in a classical situation. And more importantly, in
case of a use of the results to predict the future salary evolution, we are dealing in
fact with just a subsample of the whole population. If we argue that for a reasonable
time horizon, the typical salary trajectories just depend on the covariates that we
included in our equations, then the complete set of people starting to work in
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2006 is just a part of the whole population of people starting to work in 2006 and
the subsequent years. Confidence intervals for the salary trajectories then indicate
prediction bounds.

First Illustration

Figure 1 shows a three group solution modeled by Nagin’s generalized model
representing the salary of employees in Luxembourg during the first 20 years of
their professional career. We see that for the low salary group women and men
are gaining exactly the same salary (with the consequence that there appears just
one salary trajectory for the two lower salary groups on the graph instead of two)
whereas in the middle and high salary groups, men earn more than women. Due to
the limitations of the model, the evolution of the salaries seems to be exactly the
same for men and women; their salary trajectories are strictly parallel.

Figure 2 shows the three group solution for the 20 first year of Luxembourg
employees calibrated with our model. We see a somewhat different and more
realistic pattern emerging. For the high salary group the income of men and women
remain more or less parallel, except for a short time interval around year five. This is
however no longer the case for the middle and low salary groups. Here, we observe
that the women in these groups have higher salaries than the men at the beginning
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Fig. 1 Salary evolution by gender, modelized by Nagin’s model



116 J. Schiltz

80
00

60
00

40
00

S
al

ar
y 

(E
ur

os
)

20
00

0

5

group 1M
group 1F
group 2M
group 2F
group 3M
group 3F

10

Time (Years)

15 20

Fig. 2 Salary evolution by gender, modelized by our model

of their career, but this is reversed somewhere in the middle and after 10 years for
the middle salary group and 15 years for the low salary group the income of the men
becomes higher than the one of the women.

We obtained this results by calibrating the model

Sit D .ˇ
j
0 C ˛

j
0xi/C .ˇ

j
1 C ˛

j
1xi/t C .ˇ

j
2 C ˛

j
2xi/t

2 C .ˇ
j
3 C ˛

j
3xi/t

3; (14)

where S denotes the salary and x the gender. Table 1 shows the values of the
parameters for a 3-group solution.

We observe that all parameters are significant, with the exception of ˇ3 for the
middle and higher salary group. Hence there really seems to be a nonlinear relation
between the salaries and the gender and a simple parallel shift is not enough to
explain what is going on.

The disturbance terms for the three groups are �1 D 33:11, �2 D 54:18 and
�3 D 78:85, respectively. The dispersion is thus higher in the groups with higher
salaries than in those with lower salaries. This makes sense, since in the low salary
group a lot of employees just earn the minimal wage. Hence, a lot of them have the
same salary.
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Table 1 Parameter estimates for model (14)

95 % confidence interval

Parameter Estimate Standard error Lower Upper

Results for group 1

ˇ0 1166:353 37:910 1085:987 1246:719

˛0 256:208 3:490 248:809 263:607

ˇ1 275:505 15:254 243:169 307:841

˛1 99:868 1:405 84:845 114:891

ˇ2 �19:076 1:666 �22:608 �15:543
˛2 11:826 0:153 11:501 12:151

ˇ3 0:484 0:052 0:372 0:594

˛3 0:325 0:005 0:315 0:335

Results for group 2

ˇ0 2397:209 76:051 2235:987 2558:430

˛0 �79:595 33:731 �151:103 �8:087
ˇ1 275:972 30:600 211:103 340:842

˛1 82:874 13:572 50:293 115:455

ˇ2 �10:238 3:343 �17:325 �3:151
˛2 �11:024 1:483 �15:047 �7:001
ˇ3 0:178 0:104 �0:044 0:400

˛3 0:287 0:047 0:150 0:424

Results for group 3

ˇ0 3289:495 90:003 3098:698 3480:119

˛0 �258:446 7:752 �292:977 �223:915
ˇ1 464:349 36:214 387:580 541:119

˛1 48:97 3:119 34:954 62:986

ˇ2 �17:111 3:956 �25:498 �8:724
˛2 �8:343 0:341 �14:398 �2:288
ˇ3 0:181 0:124 �0:082 0:444

˛3 0:279 0:011 0:273 0:285

Second Illustration

The second example illustrates the dependence of the trajectories on time-varying
covariates. We use the same data as before and analyze the influence of Luxem-
bourg’s GDP on the salary trajectories. GDP denotes here in fact Luxembourg’s
GDP of the previous year, since standard economical theory tells us that there is a
time lag of nearly a year for the influence of GDP on the salaries. We use the model

Sit D .ˇ
j
0 C 	

j
0zit/C .ˇ

j
1 C 	

j
1zit/t C .ˇ

j
2 C 	

j
2zit/t

2 C .ˇ
j
3 C 	

j
3zit/t

3; (15)

where S denotes the salary and zt is Luxembourg’s GDP in year t of the study.
The first question to settle is how many groups we want to use in our solution.
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Table 2 BIC of solutions for
various number of groups

Number of groups BIC Number of empty groups

3 �285193:1 0

4 �282444:2 0

5 �282197:7 0

6 �279710:3 0

7 �279415:1 1

8 �279238:3 2

9 �278162:3 2

10 �277312:7 2

11 �277335:1 3

12 �276637:7 3

We calibrate the model for solutions between 3 and 12 groups and compute the BIC
for each of them (see Table 2). Besides the BIC, we also indicate the number of
“empty groups” in the solution. The term “empty group” is used here for groups
of size smaller than 0.1 %. Since we are interested in typical salary trajectories,
we consider those empty groups as outliers and prefer solutions containing just
noticable groups, meaning groups with larger sizes.

We see that in this example the BIC is in fact an increasing function of the number
of groups, which is not astonishing since the salary trajectories form a continuum.
But we also observe, that up to 6 groups, the solutions contain no empty groups,
whereas from a 7 group solution onwards, there are empty groups in the solution.
In the 7 group solution, there is one such group, in the 8, 9, and 10 group solutions,
there are two and in the 11 and 12 group solutions, there are three.

We finally decide on a 6 group solution. Group sizes are quite balanced, the
different group sizes are indeed �1 D 15:9%, �2 D 16:6%, �3 D 21:2%, �4 D
14:4%, �5 D 14:9%, and �6 D 16:9%

Figure 3 shows the salary trajectories of the 6 groups (scale at the left side of
the y axis), as well as the GDP of Luxembourg (in black, scale on the right side
of the y axis) during the same time. Group one contains mainly the employees that
gain the legal minimum wage. Groups two and six represent employees with rather
flat careers. Their salary is more or less constant from year five on. They are just
distinguished by their starting salary. Groups three, four, and five, on the other hand,
represent more dynamical careers, again characterized mainly by the differences in
their starting salaries.

Tables 3 and 4 show the values of the parameters for a 3 group solution.
Significant parameters are given in bold. We recall that the beta parameters modelize
the evolution in time, independently of the GDP, whereas the gamma parameters
modelize the part of the salary varying with the GDP.

We observe that in most groups, there is no significant influence of the GDP. In
group three, we have an influence from GDP, as well as a combined influence from
GDP and time. In group six, we observe a combined influence from GDP and time.
In the four other groups, the salary trajectories are just a polynomial function of
time.
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Fig. 3 Typical salary trajectories for the 6 group solution and evolution of Luxembourg’s GDP
(dashed line)

The disturbance terms for the six groups are �1 D 21:29, �2 D 41:9, �3 D 40:02,
�4 D 58:81, �5 D 124, and �6 D 31:22, respectively. Again, we observe that the
minimal wage group exhibits the smallest variability, whereas the high salary groups
four and five also have the highest disturbance term.

Discussion

In this article, we presented Nagin’s finite mixture model and some of its gener-
alizations and showed some inherent shortcomings for some possible application.
We addressed these by proposing a new generalized finite mixture model. A key
characteristic is its ability to modelize nearly all kinds of trajectories and to add
covariates to the trajectories themselves in a nonlinear way.

We illustrated these possibilities through a data example about salary trajectories.
In the first part, we showed how to add a classical group membership predictor
variable to the trajectories and in the second part, we added a time series that does
not depend on the subjects of the analysis but influences the shape of the trajectories
in some of the groups.

When adding covariates to the trajectories in growth mixture modeling, an
important question is whether these covariates are predictors of group membership
or not. Nagin (2005) and Jones and Nagin (2007) present some statistical tests to
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Table 3 Parameter estimates for model (15)

95 % confidence interval

Parameter Estimate Standard error Lower Upper

Results for group 1

ˇ0 1038:164 225:623 546:958 1529:815

	0 �0:086 0:017 �0:462 0:291

ˇ1 265:204 35:930 186:927 343:423

	1 0:028 0:029 �0:035 0:091

ˇ2 �25:520 6:035 �38:670 �12:370
	2 �0:002 0:002 �0:006 0:002

ˇ3 0:914 0:024 0:395 1:432

	3 0:000025 0:000039 �0:000060 0:000197

Results for group 2

ˇ0 1558:955 44:380 590:638 2525:115

	0 0:244 0:340 �0:497 0:985

ˇ1 516:538 70:704 362:521 670:647

	1 �0:076 0:057 �0:070 0:047

ˇ2 �43:103 11:872 �68:974 �17:230
	2 0:006 0:003 �0:001 0:001

ˇ3 0:949 0:468 �0:071 1:969

	3 �0:000149 0:000076 �0:000315 0:000018

Results for group 3

ˇ0 731:828 423:905 �191:737 1655:324

�0 0:708 0:329 0:001 1:416

ˇ1 496:510 67:526 349:482 643:674

�1 �0:169 0:054 �0:286 �0:056
ˇ2 �20:551 11:342 �45:254 4:160

�2 0:012 0:003 0:005 0:019

ˇ3 0:253 0:447 �0:721 1:227

�3 �0:002542 0:000073 �0:000414 �0:000095

check this. In case a covariate is a predictor of group membership, it not only
influences the shape of the trajectories but also group membership itself, as well
as the composition of the different groups. If it is not, there is an alternative way to
see our model. It is then in fact equivalent to perform the clustering and compute the
number and composition of the groups with Nagin’s basic finite mixture model and
use standard regression models for each groups to get the trajectories as a function
of the covariate.
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Table 4 Parameter estimates for model (15)

95 % confidence interval

Parameter Estimate Standard error Lower Upper

Results for group 4

ˇ0 1933:257 622:902 575:626 3289:048

	0 0:503 0:477 �0:537 1:543

ˇ1 341:610 99:233 125:387 557:892

	1 �0:139 0:079 �0:213 0:003

ˇ2 13:051 16:673 �23:272 49:368

	2 0:009 0:005 �0:001 0:019

ˇ3 �0:993 0:657 �2:424 0:438

	3 �0:000152 0:000107 �0:000385 0:000082

Results for group 5

ˇ0 3662:004 1313:374 800:711 6523:683

	0 0:004 1:006 �2:188 2:196

ˇ1 357:604 209:216 �98:294 813:335

	1 0:065 0:168 �0:299 0:430

ˇ2 �2:738 35:134 �79:281 73:808

	2 �0:008 0:010 �0:030 0:014

ˇ3 �0:296 1:384 �3:312 2:721

	3 0:000256 0:000226 �0:000237 0:000749

Results for group 6

ˇ0 2278:347 330:711 1557:590 2998:241

	0 0:442 0:253 �0:110 0:994

ˇ1 495:228 52:683 380:412 610:014

�1 �0:099 0:042 �0:191 �0:007
ˇ2 �16:037 8:851 �35:314 3:274

	2 0:004 0:003 �0:001 0:010

ˇ3 �0:266 0:349 �1:026 0:494

	3 �0:000005 0:000057 �0:000129 0:000119

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 19, 716–723.

Andruff, H., Carraro, N., Thompson, A., Gaudreau, P., & Louvet, B. (2009). Latent class growth
modelling: A tutorial. Tutorials in Quantitative Methods for Psychology, 5(1), 11–24.

Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models:
Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338–363.

Bloklad, A. A., Nagin, D. S., & Nieuwbeerta, P. (2005). Life span offending trajectories of a Dutch
conviciton cohort. Criminology, 43, 919–954.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: Sage.
Cramér, H. (1946). Mathematical methods of statistics. Princeton, NJ: Princeton University Press.
Duncan, T. E., Stryker, L. A., Li, F., & Alpert, A. (2006). An introduction to latent variable growth

curve modeling: Concepts, issues and applications. Mahwah, NJ: Lawrence Erlbaum.



122 J. Schiltz

Dupéré, V., Lacourse, E., Vitaro, F., & Tremblay, R. E. (2007). Méthodes d’analyse du changement
fondées sur les trajectoires de développement individuel: modèles de régression mixtes
paramétriques et non paramétriques. Bulletin de Mḱethodologie Sociologique, 95, 26–57.
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Granger Causality: Linear Regression
and Logit Models

Alexander von Eye, Wolfgang Wiedermann, and Ingrid Koller

Abstract Granger causality models are very popular when it comes to making
decisions on which of a number of series of scores is on the dependent versus the
independent side. With this chapter, we pursue two goals. First, we specify Granger
causality models in terms of logit models and compare these with the routinely
applied linear regression models. The comparison shows that, in order to make
the models parallel, either model assumptions must be changed or model terms
must be removed from (or inserted into) the model specification. The second goal
involves extending Granger causality modeling. We propose conditioning terms on
measures within the observed series. By implication, these models require higher-
order interactions. In addition, model terms can be conditioned on covariates. Issues
concerning parameter interpretation are discussed. Data examples are given from the
fields of aggression development in adolescents and intimate partner violence.

Causality assumptions are central for all attempts to perform intervention or to
change behavior. Without such assumptions, these efforts would be pointless.
Causality is also a concept that has been discussed by scholars at least since
Aristotelian metaphysics. Most prominent are Hume’s tenets of regularity and
temporal priority. Regularity implies that antecedents exist that are necessary,
sufficient, or both for subsequent events. Temporal priority implies that antecedents
occur temporally prior to subsequent events. The classical, essentialist perspective
of causality posits that the antecedents be both necessary and sufficient to be consid-
ered causes of subsequent effects. In contrast, mechanistic concepts of causality also
consider contemporary causes, even causes that are located in the future (see, e.g.,
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Williamson, 2011). Similarly, in the discussion of causality in history, Foucault
(1966) considers concepts of contemporary effects. Cook and Campbell (1979) also
cast doubt on the inevitability element involved in the definition of causality by
temporal order, noting that this element may be inappropriate for the social sciences.
The authors marshal a probabilistic concept of causality that links antecedents and
consequences in a probabilistic fashion. In contrast, Sobel (1994, 1996) considers
probabilistic concepts of causality, in particular Suppes’ (1970) theory, not tenable.
In this chapter, we focus on statistical methods for the analysis of hypotheses that
are compatible with causality assumptions. For a discussion of causality from a
philosophical perspective, see Stegmüller (1983; see also Beebee, Hitchcock, &
Menzies, 2012; Lynd-Stevenson, 2007).

Statistical methods to estimate the probability of observed data under hypotheses
that are compatible with causal assumptions or theories have been developed for
experimental and nonexperimental research. These methods are graphical, consider
counterfactuals, use manifest or latent variables, are frequentist or Bayesian, and
require various sets of assumptions, some parametric, some concerning the nature
of data (see, e.g., Foster, 2012; Matsuada, 2012; Pearl, 2000, 2012). Among the
most frequently discussed and employed approaches to the empirical analysis of
causation are path models (e.g., mediation models; Baron & Kenny, 1986) and
Granger causation (Granger, 1969; cf. von Eye, Wiedermann, & Mun, 2013).
Granger causation is interesting from a developmental perspective. It allows
researchers to test hypotheses concerning the causal relations between two series
of observations which can develop simultaneously. By the same token, the concept
is also interesting because it uses, in its original form (Granger, 1969), only past
observations to predict the later observations (note that attempts have been made
to incorporate tests of hypotheses concerning observations that are located within
a series; see Sims, 1980; and models have been discussed that include putative
contemporary causes; see, e.g., von Eye et al., 2013).

Concepts of Granger causality were adopted first in econometric research (see,
e.g., the textbooks by Bourbonnais, 2011; Lütkepohl & Krätzig, 2004; Mignon,
2008). Recently, however, there have been developments of the methodology and
applications in behavioral sciences (see, e.g., Gates, Molenaar, Hillary, Ram, &
Rovine, 2010; Kalimeri et al., 2012; von Eye et al., 2013). Granger causality has
been discussed from statistical and philosophical perspectives. Points of critique
relate to the fact that the statistical approach to Granger causality is based on
the assumption that the process under study is stationary (for an overview, see
Liu & Badahori, 2012). This, as is well known, is rather unlikely, in particular in
developmental processes of growth and decline (see Molenaar & Campbell, 2009).
Another point of discussion concerns the symmetry that is inherent in regression
models (McArdle, 2012; von Eye & DeShon, 2012). Third, the temporal order of
causal events continues to be an issue. Standard Granger causality does not enable
researchers to test hypotheses on instant causes, because it is based on Humean
concepts of causality, according to which the cause precedes the effect in time.
Human anticipation of events, however, makes is very likely that contemporaneous
or future events can be causes of current action. Examples include the saving of
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resources for retirement, or the building up of defense against (possible) moves of
the other player in chess. In addition, the effects of unobserved confounders need to
be discussed in more detail, in the context of Granger causality.

Another topic that needs discussion concerns methods of analysis of categorical
variables. This is the topic we begin to address in the current chapter. Specifically,
we ask in this chapter whether logit models that can be used to test causal hypotheses
correspond with the linear regression models that are typically used.

The remainder of this chapter is structured as follows. We first describe the
regression models used in the original approach to Granger causality. We then
discuss logit models for the analysis of Granger causality-compatible hypotheses.
We then introduce the notion of higher-order interactions into the context of
methods for the analysis of Granger causality and propose new hypotheses in the
context of Granger causality. Empirical data examples are presented from research
on development of aggression in adolescence and on effects of intimate partner
violence.

Elements of Granger Causality

Granger causality methodology is used to test hypotheses about the causal relations
between two series of scores. The question asked is whether one of the two series
causes the other. If this is the case, this series is said to Granger-cause the other.
The methods used to test such hypotheses are mostly linear regression methods.
The regression models used are vector autoregressive models (VAR models; for
an overview, see Lütkepohl & Krätzig, 2004). In the present context, consider
a variable, Y, observed T times, with lag p. A VARp process for this series of
observations can be defined by

Yt D ˚0 C ˚1Yt�1 C � � � C ˚pYt�p C �t;

where t indicates the last observation, p indexes the sequence of observations, and
˚ contains the model parameters. Under standard GLM conditions, the T C first
observation can be estimated as

E ŒYTC1 j YT � D
T�pC1X

iD0
˚i;

where YT contains all observations of Y, including the one at Time T. Now, consider
two series of scores, Y1 and Y2. Heuristically, let Y2 be the putatively dependent
series, and Y1 the putatively independent series. It can be said that the series Y1

Granger-causes the series Y2 when Y1 makes a contribution to the prediction of the
last score in the series Y2 above and beyond the contribution that is made by past
observations of Y2 alone. Let Y1t and Y2t be the observations of Y1 and Y2, at Time t.
Then, the VARp process for the two variables Y1 and Y2 can be described by the
well-known equation
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where the a and the b are regression parameter estimates (the superscripts denote
the corresponding time series), and the " are random residuals, uncorrelated with
the predicted scores and the predictors. In the null hypothesis, it is posited that there
exists no causal relation between Y1 and Y2. There are four possible outcomes for
tests of this null hypothesis:

1. Y1t can be considered Granger-causing Y2t if the following null hypothesis is
rejected: H0: b11 D � � � D b1p D 0:

2. Y2t can be considered Granger-causing Y1t if the following null hypothesis is
rejected: H0: a21 D � � � D a2p D 0:

3. When both null hypotheses are rejected, one can consider processes of reciprocal
causation.

4. When none of these null hypotheses is rejected, one can consider independence
of the two series.

All this applies accordingly when more than two series are included in the causal
hypotheses. There are many options for testing these hypotheses. For example, when
standard regression models are estimated, F-tests are suitable, and when manifest
variable structural models are estimated, chi-square difference tests can be used. In
either case, two comparison models are estimated. In the first, the Y2t observation is
regressed onto its p past values. In the second, the past values of Y1t are also included
in the regression equation. These two models are nested and can be statistically
compared. In a manifest variable regression context, the first model is

Y2t D b01 C
T�pC1X

iD1
b2iY2i C �1;

and the second model is

Y2t D b02 C
T�pC1X

iD1
b2iY2i C

T�pC1X
iD1

b1iY1i C �2:

If the additional portion of variance of Y2t, which is accounted for by including Y1t

in the second model, amounts to a significant increase over the amount explained
by the first model, one calls the series Y2 Granger-caused by the series Y1.

Linear Regression and Logit Models for Granger Causality

In this section, we discuss logit models for Granger causality. Logit models
have been used before to test Granger causality-compatible hypotheses (see, e.g.,
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Christopoulos & Leon-Ledesma, 2008; Wang, 2011). Therefore, there is no need to
ask whether logit models can be used for this purpose. Instead, we pursue two goals.
First, we compare linear regression models with logit models in their application to
testing Granger causality-compatible hypotheses. The question we ask is whether
linear regression models and logit models can be specified such that they can be
used to test comparable hypotheses. Second, we present new models.

To simplify interpretation of the comparison models, we use, without loss of
generality, a particular selection of models; these are models in which the last
measure in a series is predicted instead of the entire series. The main reason for
doing this is that the number of parameters to be interpreted in this selection of
models is much smaller than in standard Granger causality models. To illustrate,
consider two series of p measures each. To predict one series from itself in a standard
Granger causality model, one needs 2(p � 1) parameters for the regression of each
measure on its predecessor (one intercept C one slope parameter each), 2(p � 2)
parameters for the regression of each measure on the measures two occasions before,

etc., or, in sum 2
Xp

iD1 .p � i/ parameters. The same number is needed to predict the
measures of the second series from themselves. The same numbers of parameters
again are needed to predict one series from the other and vice versa. In sum, for two
series of p measures each, one estimates, in a standard Granger causality model,

4
�
2
Xp

iD1 .p � i/
�

parameters.

In the present chapter, we only estimate the following parameters:

• 2 .2 .p � 1// parameters for regressing the measures of each series on their
immediate predecessors, and

• 2(p � 1) parameters for predicting the last measure in each series from all of their
predecessors in the respective other series.

In sum, we only estimate 6(p � 1) parameters instead of 4
�
2
Xp

iD1 .p � i/
�

, a

savings of 8
Xp

iD2 .p � i/ C 2 .p � 1/ parameters. This savings has the potential
of obtaining a more parsimonious model to explain observed variability and
simplifying interpretation considerably.

It is important to note that the models that we consider are still models of Granger
causality. von Eye and Wiedermann (2014) proposed a taxonomy of Granger
causality models. This taxonomy results from completely crossing the four binary
variables: (1) order of lag considered (coded as 1 D lag 1, 2 D lag >1) (O), (2)
type of contemporaneous effect considered (1 D correlation, 2 D regression) (T), (3)
direction of effect hypothesized (1 D yes, 2 D no) (D), and (4) segment of dependent
variable targeted (1 D entire series, 2 D segment of series) (S). The models that
we use for illustration are indexed as 1 2 1 2, where the indexes are in the order
of variables listed. These models include regressions of both series of measures
onto the respective other, contemporaneous relations are either fixed or estimated as
correlations, lags cover time-adjacent relations, and, most important for the present
examples, predict only a segment of the series of measures. In the present examples,
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only the last measure is predicted. We also consider models in which the lag is
greater than 1, that is, models of the type 2 1 2 2.

To address the above question concerning the Granger-caused relation between
two series of scores, we consider two series of scores of the variables X and Y. Let
both variables be dichotomous so that logistic regression models can meaningfully
be applied, and let both series consist of three observations, X1, X2, and X3, and Y1,
Y2, and Y3. In the first model that is estimated in the analysis of hypotheses that are
compatible with Granger causation, one regresses Y3 onto the past observations of
Y, Y1 and Y2. The corresponding linear regression model is

Y3 D ˇ0 C ˇ1Y1C ˇ2Y2:

To evaluate the contribution made by the past observations of X, one also includes
X2 and X3 in the second regression model,

Y3 D ˇ0 C ˇ1Y1C ˇ2Y2C ˇ3X1C ˇ4X2:

Now, one could be tempted to consider the following two logit models as parallel to
the linear regression models. Regressing Y3 onto its past observations yields

log

�
pY3D1

1 � pY3D1

�
D ˇ0 C ˇ1Y1C ˇ2Y2;

and regressing Y3 also onto X1 and X2 yields

log

�
pY3D1

1 � pY3D1

�
D ˇ0 C ˇ1Y1C ˇ2Y2C ˇ3X1C ˇ4X2:

Based on this formulation, the linear regression models and the logit models do look
parallel. In the following paragraphs, we examine these equations in more detail
and discuss whether the impression of parallel equations, that is, the impression of
equations that allow one to answer equivalent questions, can be defended.

To answer the question whether the equations of linear regression and logit
models given in the last paragraphs are equivalent, we look at the regression and
the logit models in more detail. These were the models for the six measures X1, X2,
and X3, and Y1, Y2, and Y3. The first model discussed for the analysis of hypotheses
that are compatible with Granger causation regresses Y3 onto the past observations
of Y, Y1 and Y2. The second model includes X1, X2, and X3, in addition. Using the
log-linear notation (see Agresti, 2013; von Eye & Bogat, 2005; von Eye, Mair, &
Bogat, 2005; von Eye & Mun, 2013), the first logit model can equivalently be recast
as follows. We use, for this model specification, the cross-classification of all six
variables. The model is
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log bm D �C �X1 C �X2 C �X3 C �Y1 C �Y2 C �Y3

C�Y3;Y1 C �Y3;Y2 C �Y1;Y2

C�X1;X2 C �X1;X3 C �X2;X3 C �X1;X2;X3:

In its first row, this equation contains the main effects of all variables in the model.
In its second row, the equation contains the effects needed for the regression of Y3
onto Y1 and Y2. The interaction between the two predictors, Y1 and Y2, is needed
because the model makes no assumption concerning the relations among predictors.
Therefore, these relations cannot simply be set to zero; they are estimated. In its
third row, this equation contains all possible interactions among the X observations.
Relations among X and Y observations are not part of this model, because we first
regress Y3 solely onto Y1 and Y2. These relations are needed in the second model,
in which Y3 is not regressed solely onto Y1 and Y2 but also onto X1 and X2. The
second model, therefore, is

log bm D �C �X1 C �X2 C �X3 C �Y1 C �Y2 C �Y3

C�Y3;Y1 C �Y3;Y2 C �Y1;Y2

C�X1;X2 C �X1;X3 C �X2;X3 C �X1;X2;X3

�Y3;X1 C �Y3;X2:

The first and the second log-linear models are nested. Therefore, they can be
compared by using, for example, the chi-square difference test.

The comparison of the present log-linear models with the present linear regres-
sion models reveals an important difference. In the linear regression models, the
interactions among the predictors are not included. In log-linear models, they are.
To illustrate, compare the first of the log-linear models in the present section with
the linear regression model for Y3 in the last section. The log-linear model does
contain the interaction between Y1 and Y2, but the linear regression model does not.
The logit model discussed in the last section is equivalent to the log-linear model
discussed here. Therefore, the difference to the linear regression model applies to
the logit model as well.

When models are specified to test hypotheses that are compatible with Granger
causation, researchers, therefore, make different assumptions for linear regression
and log-linear models. For the former, the assumption is made that terms not
included in the model do not exist, for example interactions among past observations
of the predicted variable. If these interactions exist—which is very likely for
repeated observations—and there are no corrections for these effects, parameter
estimates can be imprecise. Indeed, methods have been proposed to correct the
residual terms in linear regression Granger causality models (e.g., Engle & Granger,
1987; Granger, 1981; Granger & Newbold, 1974). For the log-linear (or logit)
model, this assumption is not required. The offending terms are part of the model,
and one reason for biased parameter estimates is thus eliminated.
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However, there may be additional reasons for bias in parameter estimation for
Granger causation. These reasons are discussed in the next section, in which we
propose extensions of the log-linear models for Granger causality.

Higher-Order Interactions in Models for Granger Causality

In this section, we propose extending the methodology for testing hypotheses that
are compatible with Granger causality for categorical variables by also considering
interactions higher than first order. Higher-order interactions can be considered
both for the Y observations and the X observations. Consider the series of four
observations Y1, Y2, Y3, and Y4, with Y4 being the predicted observation. In
standard logit modeling of Granger causality hypotheses, the first of the two models
to be estimated contains the interactions [Y1, Y4], [Y2, Y4], [Y3, Y4], or, in words,
the last Y observation is predicted from the past Y observations. In logit models, all
interactions among the past observations are part of the model as well. These are the
interactions [Y1, Y2], [Y1, Y3], [Y2, Y3], and [Y1, Y2, Y3]. Now, in the extended
approach, the prediction of Y4 from its past observations can be conditioned on Y
observations that are not part of a particular interaction. For example, the association
[Y1, Y4] can be conditioned on Y2, Y3, or both. This can result in the interactions
[Y1, Y2, Y4], and [Y1, Y3, Y4]. Similarly, the three-way interaction [Y2, Y3, Y4]
and the four-way interaction [Y1, Y2, Y3, Y4] can be considered for the first model.
Including the interaction of all four Y observations in the first model will not result
in a saturated model if the table under study is spanned by all X and Y observations.
However, the first model will be saturated in the X observations.

In a second example, let there be two X observations, X1 and X2, observed at the
same points in time as Y1 and Y2. Then, the first model will include the main effects
[X1] and [X2] as well as the interaction [X1, X2]. The second model will routinely
include the effect [Y2, X1]. That is, the last Y observation is predicted from the past
X observations. Here, we propose considering additional terms, specifically terms
that condition the prediction of the last Y observation from one of the X observations
on one or more of the other X observations. In the present example, there is only one
possible additional term, [Y2, X1, X2]. For a series of three or more X observations,
additional terms are conceivable, and terms with higher than three-way interactions.
Appendix 2 explains parameter interpretation in an example in which interactions
higher than first order are part of the models.

The interpretation of the two- and higher-order interactions can be based on the
magnitude of the estimated parameter, significance tests of the null hypothesis that
a parameter is zero, and the equation � D .X’X/�1X’ log bm (von Eye & Mun, 2013;
for an example and parameter interpretation, see Appendix 1, below). An additional
and often used option involves transforming the log-linear parameters into odds
ratios and then interpreting these (cf. Rudas, 1997; von Eye & Schuster, 2000).

Additional extensions can be considered. For example, the prediction of the last
Y observation from past Y observations can be conditioned on past X observations.
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Similarly, the prediction of the last Y observation from past X observations can
be conditioned on past Y observations. Covariates can be included in the models,
predictions can be conditioned on covariates, and additional series of scores can be
included in the set of causal hypotheses.

Data Examples

In this section, we present two data examples. In the first example, we illustrate
how a three-way interaction between observations from the putative causal series of
scores can be included in the model. In the second example, we again illustrate
the use of higher-order interaction terms that allow researchers to test specific
hypotheses that are compatible with Granger causality, and we discuss related log-
linear models.

Data example 1. For the first example, we use data collected by Finkelstein,
von Eye, and Preece (1994), on the development of aggressive behavior. Sixty-
seven adolescent girls and 47 boys responded to a questionnaire concerning
aggressive behavior, at three points in time, spaced in 2-year intervals. The
questionnaire addressed the four dimensions: Aggressive Impulse, Aggression-
Inhibitory Response, Verbal Aggression against Adults, and Physical Aggression
against Peers. In addition, physical pubertal development was assessed using Tanner
scores. In the following analyses, we use the variables physical aggression against
peers (P) and aggressive impulses (A). We use the repeated observations P83, and
P87, and A83, and A87, where the numbers indicate the years in which the data
were collected. When the data were collected, the respondents were, on average, 11,
and 15 years of age.

Substantively, we ask whether the developmental change in self-rated physical
aggression against peers is Granger-caused by developmental change in self-rated
aggressive impulses (cf. von Eye et al., 2013). To answer this question, we estimate
three logistic regression models. The first regresses P87 onto P83. The model is

log
�  

1 �  
�

D “0 C “1P83C –;

where   is the probability that P87 D 1, that is, that the P87 rating is below the
median. The second model is estimated to determine whether including the series
of two scores of aggressive impulses Granger-causes the series of scores of physical
aggression against peers. This model is

log
�  

1 �  

�
D “0 C “1P83C “2A83C “3A87C –;

where   is defined as in the first model. Note that, in this model, the contemporary
measure A87 is part of the model. This option has been considered in recent dis-
cussion of Granger causality (von Eye, & Wiedermann, 2014; von Eye et al., 2013,
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and is compatible with mechanistic concepts of causality; see, e.g., Williamson,
2011). If this model is significantly better than the first, development of aggressive
impulses can be considered Granger-causing development of physical aggression
against peers. In the third model, we include the [A83, A87] interaction. If this
interaction is significant, the effect of contemporary aggressive impulses depends
on the strength of aggressive impulses 4 years prior. The model is

log
�  

1 �  

�
D “0 C “1P83C “2A83C “3A87C “ .A83;A87/C –:

Table 1 displays the P83 � P87 � A83 � A87 cross-classification.
The overall model fit X2 for the first model is 11.76. For df D 1, this value sug-

gests that significant effects exist (p < 0.01). Specifically, we estimate �P83 D �1.55,
se D 0.48, z D �2.50, and p < 0.01. We conclude that P83 is predictive of P87. To
Granger-cause this development, the model that includes the putative causal series
of scores of aggressive impulses must significantly improve this first model. Table 2
displays the parameter estimates for the second logit model.

The overall model fit X2 for the second model is 24.63. For df D 3, this value
suggests that at least one significant effect exist (p < 0.01). P83 is still a significant
predictor of P87, and so is the contemporaneous measure of A87. Aggressive
impulses that were self-rated 4 years prior are not significant predictors. The
Nagelkerke R2 for the first model is 0.142; the Nagelkerke R2 for the second
model is 0.282, an increase by almost 100 %. The �LR-X2 for the comparison
of the two corresponding log-linear models is 16.29. For �df D 2, this difference
is significant (p < 0.01), and we conclude that the development of aggressive

Table 1 Cross-classification of P83, P87, A83, and A87

P83 P87 A83 A87 Frequency Cumulative frequency Percent Cumulative percent

1 1 1 1 24 24 21.053 21.053
1 1 1 2 5 29 4.386 25.439
1 1 2 1 10 39 8.772 34.211
1 1 2 2 9 48 7.895 42.105
1 2 1 1 1 49 0.877 42.982
1 2 1 2 4 53 3.509 46.491
1 2 2 1 1 54 0.877 47.368
1 2 2 2 1 55 0.877 48.246
2 1 1 1 9 64 7.895 56.140
2 1 1 2 3 67 2.632 58.772
2 1 2 1 12 79 10.526 69.298
2 1 2 2 11 90 9.649 78.947
2 2 1 1 4 94 3.509 82.456
2 2 1 2 3 97 2.632 85.088
2 2 2 1 2 99 1.754 86.842
2 2 2 2 15 114 13.158 100.000
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Table 2 Parameter estimates for logistic regression of P87 onto P83, A83, and A87

95 % Confidence interval
Parameter Estimate Standard error z p Lower Upper

Constant 5.342
A83 0.560 0.540 1.038 0.299 �0.497 1.618
A87 �1.769 0.525 �3.368 0.001 �2.799 �0.739
P83 �1.551 0.539 �2.880 0.004 �2.606 �0.495

Table 3 Parameter estimates for logistic regression of P87 onto P83, A83, and A87 and
the A83 � A87 interaction

95 % Confidence interval
Parameter Estimate Standard error z p Lower Upper

Constant 5.803 2.809 2.066 0.039 0.298 11.308
P83 �1.561 0.544 �2.871 0.004 �2.626 �0.495
A83 0.257 1.734 0.148 0.882 �3.142 3.655
A87 �2.060 1.673 �1.231 0.218 �5.338 1.219
A83 � A87 0.192 1.043 0.184 0.854 �1.853 2.237

impulses Granger-causes the development of physical aggression against peers in
adolescence. It should be noted, however, that this interpretation does not conform
with the classic notion of Granger causality. In this notion—it is based on the
Humean tradition of temporal order in causality—contemporaneous effects cannot
be considered causes. Therefore, this interpretation requires a different concept of
causality than the one propagated in the Humean tradition.

With the third model, we ask whether the contemporary element in the causal
relation between the two series of scores depends on the strength of aggressive
impulses 4 years prior. The third logit model, therefore, contains the A83 � A87
interaction. Table 3 displays the parameter estimates for this model.

The overall model fit LR-X2 for this model is 24.67. For df D 4, this value
suggests that significant effects exist (p < 0.01). P83 is still a significant predictor of
P87, but none of the parameters for aggressive impulses is significant. In addition,
the improvement of this model over the second is zero. The Nagelkerke R2 for the
third model is 0.282 as well. The improvement in model fit is nonsignificant. We,
therefore, retain the more parsimonious second model.

Data example 2. For the second example, we use data from a longitudinal
project on intimate partner violence (Bogat, Levendosky, DeJonghe, Davidson, &
von Eye, 2004). Two hundred and four women responded, in yearly intervals, to
questions concerning the frequency with which they suffered violence perpetrated
by intimate partners. In addition, they filled a questionnaire that was administered to
assess the degree to which they showed symptoms of post-traumatic stress disorder
(PTSD scale for battered women; Saunders, 1994). 62 % of the respondents were
Caucasian, 25 % African American, and 13 % other or mixed racial backgrounds.
At the beginning of the study, the women were, on average, 27 years old.
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For the following analyses, we use the information regarding violence and PTSD
assessed at the first and the second observation points. We ask whether initial
violence allows one to predict PTSD 1 and 2 years later. Violence was scored as
1 D did not experience violence and 2 D did experience violence. PTSD was scored
as 1 D symptoms below the clinical cut off and 2 D symptoms above the clinical cut
off. The questions concerning both violence and PTSD were formulated such that
they covered the period since the last interview, that is, the year before the interview.
In the following sections, we abbreviate violence at Time 1 with V1, violence at
Time 2 with V2, PTSD at Time 1 with P1, and PTSD at Time 2 with P2. Table 4
displays the V1 � V2 � P1 � P2 cross-classification.

For the analysis of the V1 � V2 � P1 � P2 cross-classification, we specify three
models. The first model regresses P2 onto P1. The model is, in log-linear notation,

log bm D �C �V1 C �V2 C �P1 C �P2 C �V2;V1 C �P1;P2:

The interaction between P1 and P2 is needed in this model because it represents
the auto-regression of P2 onto P1. The interaction between V1 and V2 is needed
because the model must be saturated in the variables that are not part of the
regression of P2 onto P1. The second model also regresses P2 onto V1, the past
observation of the second series of scores. The model is

log bm D �C �V1 C �V2 C �P1 C �P2 C �V2;V1 C �P1;P2 C �V1;P2:

Table 4 Cross-classification of V1, V2, P1, and P2

V1 V2 P1 P2 Frequency Cumulative frequency Percent Cumulative percent

1 1 1 1 82 82 40.196 40.196
1 1 1 2 7 89 3.431 43.627
1 1 2 1 47 136 23.039 66.667
1 1 2 2 13 149 6.373 73.039
1 2 1 1 3 152 1.471 74.510
1 2 1 2 3 155 1.471 75.980
1 2 2 1 0 155 0.000 75.980
1 2 2 2 11 166 5.392 81.373
2 1 1 1 0 166 0.000 81.373
2 1 1 2 0 166 0.000 81.373
2 1 2 1 12 178 5.882 87.255
2 1 2 2 7 185 3.431 90.686
2 2 1 1 0 185 0.000 90.686
2 2 1 2 0 185 0.000 90.686
2 2 2 1 2 187 0.980 91.667
2 2 2 2 17 204 8.333 100.000
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If the second model is significantly better than the first, one can say that the first
series of scores, P1 and P2, is Granger-caused by the second series, V1, and V2. In
the third model, we ask, in addition, whether changes in intimate partner violence
affect PTSD at Time 2. This question can be answered by including the three-way
interaction V1 � V2 � P2 in the model, or

log bm D �C �V1 C �V2 C �P1 C �P2 C �V2;V1 C �P1;P2 C �V1;P2 C �V1;V2;P2:

If this model is significantly better than the second, we will talk about higher-order
Granger causality. The second and the third model are hierarchically related to the
first model and to each other. Table 5 displays goodness-of-fit information and the
results of the chi-square difference tests.1

The first model serves as reference model. Hypotheses that are compatible with
the concept of Granger causality can be retained only if at least the second model
represents a significant improvement over the first model. The parameter of interest
in the first model is the association between P1 and P2. This parameter is significant
(z D 5.257; p < 0.01), thus supporting the hypothesis that P2 can be predicted from
P1. The second model is used to answer the question whether, over time, intimate
partner violence causes PTSD. This model is significantly better than the first model
(see Table 5). The parameter of interest in this model is the interaction between
V1 and P2. It is significant (z D 4.890; p < 0.01). We conclude that the series of
PTSD observations is Granger-caused by the series of intimate partner violence
observations.

With the third model, we ask whether the effect of V1 on P2 is conditional on V2.
In other words, we ask whether the effect of V1 on P2 depends on whether, at the
second observation point, the respondent was a victim of intimate partner violence
or not. The significant V1 � V2 � P2 interaction (z D 2.505; p D 0.017) allows us to
answer this question in the affirmative. We conclude that the effect of V1 on P2 is
moderated by V2 (von Eye & Schuster, 2000).

To interpret this three-way interaction, we first note that the odds of exhibiting
above clinical-level PTSD symptoms at the second observation point are higher
for respondents who were victims of intimate partner violence in the last trimester
of pregnancy (the first observation point). This relation remains unchanged for
respondents who were victims in the year before the second observation point as
well (1 year later). If, however, a respondent was not victim at the first observation
point but she was victim at the second observation point, she will exhibit such
symptoms as well. The odds ratio for this moderator effect is ™D 0.110 (se D 0.050;
z D 2.2; p D 0.035), and is, thus, significant.

1All of the models reported in this chapter were estimated with the log-linear and the logit modules
of SYSTAT, lem, and R. SYSTAT reported estimation issues with some of the models. Therefore,
we invoked the Delta option with �D 0.1. The results without Delta differ only minimally from
those presented here. For example, the overall goodness-of-fit LR-X2 for the first model in Table 5
is 109.39 without Delta and 110.51 with Delta.
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Interesting tidbit. In most software packages for logit models, the overall
goodness-of-fit test indicates whether there are significant predictor effects at
all. These tests do not indicate whether the model can be used to describe the
data in a cross-classification. Therefore, it can be the case that ill-fitting models
are retained. In the present example, none of the models fits (Table 5). With
increasing complexity, the models explain increasing portions of the variability.
They are, however, far from explaining the data well. To answer the question
how the data can be explained, we need a more complex model. Including the
two contemporary effects [V1, P1] and [V2, P2] in addition to the effects already
in the third model results in a well-fitting model. Its overall goodness-of-fit LR-
X2 is 3.062 (df D 5; p D 0.690). This model contains the elements needed for the
interpretation that the series of intimate partner violence Granger-causes the series
of PTSD symptoms. It is, however, enriched by effects not considered before. For
an alternative parameterization, see Appendix 3.

Discussion

In this chapter, we discuss logit modeling for the analysis of hypotheses that are
compatible with the notion of Granger causality. As is well known, logit models
for categorical variables and, in particular, models of logistic regression can be
specified that are parallel to the linear regression models used for metric variables.
Interestingly, when the models are recast in terms of equivalent log-linear models,
three issues become apparent. The first issue is that, although the parameters of
interest may be strong and significant, a model may not fit. In the application of
logistic regression, this issue is often ignored. In log-linear modeling, however,
parameter interpretation requires that a model describe the data well (Agresti, 2013;
von Eye & Mun, 2013). We, therefore, recommend using the more general log-linear
approach to logistic regression and interpreting causality parameters only when a
model can be retained.

The second issue is that the log-linear model approach allows one to enrich the
models that are specified to analyze hypotheses that are compatible with Granger
causality with additional terms. We propose considering higher-order interactions
even if the resulting models become nonhierarchical (see Mair & von Eye, 2007).
With these terms, interactions can be conditioned on observations from within the
series of comparison. In other words, differential paths of development can be taken
into account.

The third issue concerns the incorporation of once-observed variables as covari-
ates. Using covariates, causality hypotheses can be conditioned on strata of the
population. Most interestingly, causality hypotheses can be conditioned on treat-
ments. This way, hypotheses can be tested that posit that specific treatments are
effective but others are not. Hypotheses can also be investigated, according to which
treatments are effective in particular when they are administered before certain
junctures or to clients with particular profiles.
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A central point of the discussion in this chapter is the comparison of logit
models with linear regression models for Granger causality. This discussion has
shown that standard application is based on different sets of assumptions. In linear
regression models, terms not explicitly included in a model are considered non-
existing. In other words, the parameters that correspond to these terms are set to
zero. In contrast, logit models do contain terms that are not explicitly included
in the model specification. For example, interactions of every order among the
measures of the dependent series and among the measures of the independent series
are automatically part of the model. This can be made explicit by translating logit
models into corresponding log-linear models.

From this observation, we deduce two implications. First, to make linear
regression models and logit models equivalent in specification, the same terms must
be part of a model. This can be achieved either by including the interactions in
linear regression models that are automatically part of logit models or by removing
these terms from logit models. This can be achieved by estimating log-linear models
without these terms instead of routine logit models.

In this chapter, we do not intend to make a contribution to the general discussion
causality theory. However, we propose new models that can be interesting when
Granger causality hypotheses are considered, that is, hypotheses that relate series
of scores to one another. One important deviation from the original concepts of
Granger causality should be made explicit. In addition to past observations, we also
considered contemporary observations as possible causal agents (this was discussed
before by von Eye et al., 2013). This approach is compatible with mechanistic
concepts of causality, which also discuss contemporary causes, even causes that
are located in the future (Williamson, 2011).

Appendix 1: Design Matrix and Parameter Interpretation for
Granger Causality Models for the Y1 � Y2 � Y3 � X1 � X2
Cross-classification with Y3 as the Putative Dependent
Variable

In this appendix, we illustrate models that can be used to test hypotheses that
are compatible with the notion of Granger causality. We use the two series of
observations Y1, Y2, and Y3, and X1 and X2. Y3 is the last observation, and the
numbers indicate the temporal order of observations. For the sake of simplicity, let
all five variables be binary. The cross-classification of these five variables contains
32 cells and can be analyzed under the following two models. The first model
represents the hypothesis that Y3 can be predicted from Y1 and Y2. This is the
model
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log bm D �C �X1 C �X2 C �Y1 C �Y2 C �Y3

C�Y3;Y1 C �Y3;Y2 C �Y1;Y2

C�X1;X2:

In its first row, this model equation displays the intercept and the main effects of all
five variables. In the design matrix given in Table 6, the intercept is implied, and
the effect coding vectors for the main effects are given in the first five columns.
In its second row, the equation displays all pairwise interactions among the Y
observations. This row represents the prediction of Y3 from Y1 and Y2 that is the
key element of the first model that is estimated for the analysis of Granger causation.
A logistic regression model would include these interactions as well. In the design
matrix given in Table 6, the coding vectors for these effects appear in columns 6, 7,
and 8. In its last row, the equation displays the X1 � X2 interaction. This interaction
and the main effects of X1 and X2 are needed because the first model must not fail
just because these effects might exist. In the design matrix given in Table 6, the
vector for this effect appears in column 9.

These nine vectors are orthogonal. Therefore, the interpretation of each of them
via

� D .X’X/�1X’ logbm

is straightforward (cf. von Eye & Mun, 2013). To give an example, the interpretation
of the parameter for the Y1 � Y3 interaction is

�Y1;Y3 D 1

32
.log m11111 C log m11112 C : : :

� log m11211 � � � � C log m22221 C log m22222/ :

Alternative models are illustrated in Appendix 2.
The second model to be estimated includes X1 and X2 as additional predictors of

Y3. The model is

log bm D �C �X1 C �X2 C �Y1 C �Y2 C �Y3

C�Y3;Y1 C �Y3;Y2 C �Y1;Y2

C�X1;X2 C �X1;Y3 C �X2;Y3:

The new terms can be seen in the third row of this equation. The corresponding
coding vectors appear in columns 10 and 11 of the design matrix in Table 6.
Evidently, the two models are nested. The second model contains all terms of the
first, and two additional terms (the last two in the equation). Therefore, these models
can be compared using, for example, the chi-square difference test.
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Table 6 Design matrix for Granger causality modeling of the Y1 � Y2 � Y3 � X1 � X2 cross-
classification with Y3 as the putative dependent variable

Y1 Y2 Y3 X1 X2 Y1Y2 Y1Y3 Y2Y3 X1X2 X1Y3 X2Y3 Y1Y2Y3 X1X2Y3

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 �1 1 1 1 �1 1 �1 1 �1
1 1 1 �1 1 1 1 1 �1 �1 1 1 �1
1 1 1 �1 �1 1 1 1 1 �1 �1 1 1

1 1 �1 1 1 1 �1 �1 1 �1 �1 �1 �1
1 1 �1 1 �1 1 �1 �1 �1 �1 1 �1 1

1 1 �1 �1 1 1 �1 �1 �1 1 �1 �1 1

1 1 �1 �1 �1 1 �1 �1 1 1 1 �1 �1
1 �1 1 1 1 �1 1 �1 1 1 1 �1 1

1 �1 1 1 �1 �1 1 �1 �1 1 �1 �1 �1
1 �1 1 �1 1 �1 1 �1 �1 �1 1 �1 �1
1 �1 1 �1 �1 �1 1 �1 1 �1 �1 �1 1

1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 �1
1 �1 �1 1 �1 �1 �1 1 �1 �1 1 1 1

1 �1 �1 �1 1 �1 �1 1 �1 1 �1 1 1

1 �1 �1 �1 �1 �1 �1 1 1 1 1 1 �1
�1 1 1 1 1 �1 �1 1 1 1 1 �1 1

�1 1 1 1 �1 �1 �1 1 �1 1 �1 �1 �1
�1 1 1 �1 1 �1 �1 1 �1 �1 1 �1 �1
�1 1 1 �1 �1 �1 �1 1 1 �1 �1 �1 1

�1 1 �1 1 1 �1 1 �1 1 �1 �1 1 �1
�1 1 �1 1 �1 �1 1 �1 �1 �1 1 1 1

�1 1 �1 �1 1 �1 1 �1 �1 1 �1 1 1

�1 1 �1 �1 �1 �1 1 �1 1 1 1 1 �1
�1 �1 1 1 1 1 �1 �1 1 1 1 1 1

�1 �1 1 1 �1 1 �1 �1 �1 1 �1 1 �1
�1 �1 1 �1 1 1 �1 �1 �1 �1 1 1 �1
�1 �1 1 �1 �1 1 �1 �1 1 �1 �1 1 1

�1 �1 �1 1 1 1 1 1 1 �1 �1 �1 �1
�1 �1 �1 1 �1 1 1 1 �1 �1 1 �1 1

�1 �1 �1 �1 1 1 1 1 �1 1 �1 �1 1

�1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1

Appendix 2: Granger Causality Models and Parameter
Interpretation for the Y1 � Y2 � Y3 � X1 � X2
Cross-classification with Y3 as the Putative Dependent
Variable; Including Higher-Order Interactions

In this appendix, we resume the example from Appendix 1, extend the models for
Granger causality, and include interactions higher than first order. As in the example
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in Appendix 1, we consider the two series of observations Y1, Y2, and Y3, and X1
and X2, with Y3 being the last observation, and the numbers indicating the temporal
order of observations. For both models, we assume that the cross-classification
under study is spanned by all five variables. In the first model, we predict Y3
from past observations of Y. However, in contrast to the model in Appendix 1, we
hypothesize that, for the prediction of Y3, we need the three-way interaction [Y1,
Y2, Y3] in addition to the two-way interactions considered before. The first model
thus becomes

log bm D �C �X1 C �X2 C �Y1 C �Y2 C �Y3

C�Y3;Y1 C �Y3;Y2 C �Y1;Y2 C �Y1;Y2;Y3

C�X1;X2:

In this model, we propose that the interaction between Y1 and Y3 varies across the
categories of Y2. The design matrix given in Table 6 contains the vector that is
needed for this additional interaction in column 12. This vector is orthogonal to all
other vectors in the design matrix. Therefore, the corresponding parameter can be
interpreted as specified in the coding vector.

For the interpretation of this effect, the odds ratio approach can also be used.
We first consider the odds ratio for the [Y1, Y3] interaction. The odds ratio for this
effect is

�Y1;Y3 D m1:1::m2:2::

m1:2::m2:1::

;

with
m1:1:: D m11111 C m11112 C m11121 C m11122 C m12111 C m12112 C m12121 C m12122

etc. Conditioning this odds ratio on the categories of Y2 results in

�Y1;Y3jY2 D
m111::m212::

m112::m212::
m121::m222::

m122::m222::

;

with
m1:1:: D m11111 C m11112 C m11121 C m11122 etc.
For the second model, we now condition the [Y3, X2] interaction on X1. The

resulting model equation is

log bm D �C �X1 C �X2 C �Y1 C �Y2 C �Y3

C�Y3;Y1 C �Y3;Y2 C �Y1;Y2

C�X1;X2 C �X1;Y3 C �X2;Y3 C �X1;X2;Y3:

The coding vector for this effect appears in column 12 of the design matrix in
Table 6. This vector is also orthogonal to all other vectors in the design matrix. An
interpretation along the lines used for the interpretation of the effect that conditions
the [Y1, Y3] interaction on Y2 is, therefore, possible.
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Appendix 3: Conditional Probability Parameterization
of the Granger Causality Model for the Cross-classification
of V1, V2, P1, and P2 (Table 4)

The models discussed in the context of Table 4 can also be interpreted as path
models. Path models can be parameterized as conditional probability models
(Goodman, 1973; Vermunt, 1997; von Eye & Mun, 2013). In the present example,
the model would be j

 V1;V2;P1;P2 D  V1 P1V1 V2;V1 V1;V2;P1;

where the effects considered in the model are listed in the subscripts. Note that
these effects are considered hierarchical. Therefore, the models expressed as log-
linear models can be more flexible. In the present example, this path model comes
with LR-X2 D 3.65, which, for df D 2, suggests a well-fitting model (p D 0.16). The
Delta options were invoked again with�D 0.1. As the log-linear model, this model
describes the data well, but the parameters needed for an interpretation in the sense
of the series V1–V2 predicting the series P1–P2 fail to be significant. For example,
the z-score for the parameter that represents the connection between P1 and V1 is
0.027 (p D 0.98). The lem code used for this model appears below.

* Example 2: conditional probability parameterization

man 4

dim 2 2 2 2

lab A B C D

mod A

CjA
DjACB
BjA
add 0.1

dat [82 7 47 13 3 3 0 11

0 0 12 7 0 0 3 17]
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Decisions Concerning the Direction of Effects
in Linear Regression Models Using Fourth
Central Moments

Wolfgang Wiedermann

Abstract Direction dependence analysis is attracting growing attention in the
social sciences for its potential to help decide concerning the direction of effects
of linear regression models. Direction dependence analysis assumes that observed
data deviate from normality. Various tests have been proposed that can be applied
when observed variables are skewed. However, these tests cannot be used when data
are nonnormal and symmetric. The present chapter discusses direction dependence
approaches for symmetric nonnormal data based on the fourth central moment.
A new direction dependence approach based on regression residuals obtained
from competing linear regression models is proposed. Three significance tests
are described which can be used to test hypotheses compatible with direction
dependence when data are nonnormal and symmetric. Results of a Monte Carlo
simulation are reported which suggest that the significance tests perform well under
various data scenarios. An empirical example from research on intimate partner
violence is given to illustrate the application of the direction dependence tests.

Introduction

In 1905, Karl Pearson defined the fourth central moment (i.e., the kurtosis1) of a
distribution of a random variable to measure potential departures from normality and
coined the terms “platokurtic,” “mesokurtic,” and “leptokurtic” to indicate kurtosis
values smaller, equal, and larger than that of the normal distribution. Within the last
decades, the interpretation of the kurtosis has vividly been debated. Some authors

1In this article, we define the kurtosis of a random variate, X, as ˇ2 D E
h
.X��/

4
i

E
h
.X��/

2
i2 D �4

�4
and

Pearson’s adjusted excess kurtosis as ıX D �4.X/
�2.X/

2 D �4
�4

� 3 with �r(X) being the rth cumulant
of X.
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suggest that kurtosis is a measure of the peakedness of a distribution (e.g., Katz et al.,
2013; Lee, Lee & Lee, 2013), while others suggested that the kurtosis is correctly
interpreted as an indicator of tail heaviness (e.g., Ali 1974). The use of kurtosis as a
measure of bimodality has also been discussed (e.g., Darlington, 1970). Livesay
(2007) demonstrated that the kurtosis can also be used to detect outliers. Some
researchers called for the provisional agreement that kurtosis is related to both peak
and tails of a distribution (Ruppert, 1987; van Staden & Loots, 2009). Recently,
Westfall (2014) analyzed whether kurtosis values convey useful information about
the peakedness of a distribution and concluded that “ : : : kurtosis should never be
defined in terms of peakedness” (p. 194) and that “the relationship of peakedness
with kurtosis is now officially over” (p. 194). Similar conclusions were already
drawn by DeCarlo (1997, 1998).

Despite these interpretability issues, unambiguous consensus exists that the con-
cept of kurtosis, together with measures of skew (e.g., the third central moment), are
useful for determining whether a distribution deviates from the normal distribution.
Nonzero skewness and/or kurtosis values deviating from 3 (equivalently to excess
kurtosis values deviating from zero) suggest nonnormality. Note that the reverse
corollary, i.e., skewness and excess kurtosis of zero, does not necessarily imply that
data follow a normal distribution (van Staden & Loots, 2009). Thus, the line of
research using information conveyed by higher order moments typically focuses on
its potential to detect deviations from the normal distribution. Several significance
tests have been proposed to infer whether higher moments statistically suggest
deviations from the normal distribution (D’Agostino, 1970; Anscombe & Glynn,
1983, for an overview see Yap & Sim 2011). These tests are commonly applied
to test the distributional assumptions of various parametric methods for statistical
inference (Rochon & Kieser, 2011; Rochon, Gondan, & Kieser, 2012; Schucany &
Ng, 2006).

In recent years, a second line of research has developed, direction dependence
research, which analyzes whether indicators of higher moments can be used to
address a fundamental issue associated with correlational and regression analyses in
observational cross-sectional studies, i.e., the direction of observed effects (Bentler,
1983; Dodge & Rousson, 2000, 2001; Dodge & Yadegari, 2010; Muddapur, 2003;
Shimizu & Kano, 2008; Shimizu et al., 2011; Sungur, 2005; von Eye & DeShon,
2008, 2012, Wiedermann et al., 2013, 2015; Wiedermann & von Eye, 2015a;
Wiedermann & Hagmann, 2014). This line of research implicitly provokes a
“paradigmatic shift” in which nonnormality of observed variables is no longer
inevitable dismissed as a potential source of bias, but as a valuable source of
information that can be used to gain deeper insights into the directional structures of
variables. This proposition is based on distributional characteristics of nonnormal
variables in the linear regression context. For example, in the bivariate linear
regression setting, it is well known that second order moments (covariances, and
correlations) cannot be used to decide whether two variables, X and Y, are related
in the form X ! Y (i.e., X is the cause and Y is the outcome) or whether the reverse
flow of causality, Y ! X, (with Y being the cause and X being the outcome) is more
likely to reflect the true data generating process (see, e.g., von Eye & DeShon,
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2012). However, research on direction dependence revealed so-called asymmetric
properties of the Pearson correlation coefficient which can help researchers make
empirical statements about which of two competing regression models (X ! Y or
Y ! X) can be considered as a valid approximation of the true underlying model.
These asymmetric properties are related to higher than second moments.

The present chapter (1) introduces asymmetric facets of the Pearson correlation
coefficient which concern observed variables, (2) presents extensions of direction
dependence methods using regression residuals, (3) demonstrates that kurtosis
measures carry important information that can be used to arrive at conclusions
concerning directionality in bivariate linear regression models, and (4) proposes
significance tests to infer on the direction of effects. The performance of the
significance tests is demonstrated using Monte Carlo simulations. An empirical data
example is given for illustrative purposes.

Asymmetric Properties of the Pearson Correlation Coefficient

The Pearson correlation coefficient is commonly introduced in its symmetric form,
i.e., �XY D cov .X;Y/=.�X�Y / ; where cov(X, Y) denotes the covariance and �X and
�Y are the standard deviations of X and Y. Because the covariance does not depend
on variable order, we obtain �XY D �YX , which implies that, based on the Pearson
correlation coefficient, no statements concerning cause and effect can be made.
Similarly, in the bivariate linear regression case, the slope parameters obtained from
the two competing regression models X ! Y and Y ! X will be identical when
variables are standardized (e.g., von Eye & DeShon, 2012). Again, no decisions
concerning directionality can be made because the two models fit the data equally
well.

Direction dependence research investigates asymmetric facets of the Pearson
correlation which result from the additive definition of the linear regression model.
An outcome variable, Y, is assumed to emerge from the (additive) convolution of
a predictor variable, X, and an error term. The error term is commonly assumed
to be normally distributed, i.e., exhibiting zero skewness and zero excess kurtosis.
When the true predictor is nonnormally distributed, the true outcome variable will
be closer to the normal distribution due to the convolution of a non-normal variable
(the predictor) and a normal variable (the error term). Dodge and Rousson (2000,
2001) presented an algebraic proof for this proposition and showed that the (absolute
value of the) skewness of Y will always be smaller than the (absolute value of the)
skewness of X. von Eye and DeShon (2008) as well as Dodge and Yadegari (2010)
extended this relation to the fourth higher moment. Dodge and Yadegari (2010)
showed that the Pearson correlation can be written as

�4XY D ıY

ıX
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where ıY and ıX denotes the excess kurtosis of Y and X. Note that �4
XY cannot exceed

the interval [0, 1] from which follows that the excess kurtosis of Y will always be
smaller than the excess kurtosis of X provided that �XY ¤ 0 and ıX ¤ 0.

von Eye and DeShon (2012) as well as Pornprasertmanit and Little (2012)
discussed significance test to evaluate hypotheses which are compatible with
direction dependence.

The observed variable-based direction dependence approach discussed so far
exhibits two potential limitations. First, the approach is restricted to the bivariate
setting which seriously hampers practical application. Second, decisions concerning
directionality are made based on marginal properties of variables without estimating
the corresponding linear regression models. This may entice researchers to make
directional statements without asking whether the selected model is indeed capable
of validly describing the relation between the observed variables. As an alternative,
Wiedermann et al. (2013) and Wiedermann, Hagmann, and von Eye (2015)
discussed residual-based direction dependence approaches which (1) can easily be
extended to the multiple linear regression setting (see Wiedermann and von Eye,
2015b) and (2) base the decision concerning direction of effect on a synthesis of
characteristics of both linear regression models. The latter approach is currently
based solely on the third central moment. In the following section, we present an
extension of the residual-based direction dependence methodology to the fourth
central moment.

Direction Dependence Properties of Residuals

Wiedermann et al. (2013), von Eye and Wiedermann (2014), Wiedermann and
Hagmann (2014), as well as Wiedermann, Hagmann and von Eye (2015) have
discussed direction of dependence properties of regression residuals with respect
to the third central moment in the bivariate regression setting. The multiple linear
regression case is discussed by Wiedermann and von Eye (2015a). In the following
paragraphs, we aim at extending the approach to the case of the fourth central
moment, i.e., the excess kurtosis of the residuals of competing regression models.

In the bivariate data scenario, the following two regression models can be
estimated based on the variables X and Y:

Y D ˛Y C ˇYX C "Y (1)

and

X D ˛X C ˇXY C "X: (2)

The subscripts denote the corresponding response variables, ˛Y and ˛X are the
model intercepts, ˇY and ˇX are the ordinary least squares (OLS) regression
coefficients, and "Y and "X denote the OLS residuals. For the true model (i.e., the
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true data generating process), residuals are assumed to be normally distributed with
an expected value of zero and a variance �2

" , homoscedastic, serially independent,
and independent of the explanatory variable.

For the following discussion, let model (1) constitute the true model. Model
(2) corresponds to the mis-specified regression model. Further, without loss of
generality, we assume that the model intercepts are fixed at ˛Y D ˛X D 0. Inserting
Eq. (1) into Eq. (2) and considering that ˇXˇY equals the square of the Pearson
correlation coefficient (�2

XY), one obtains

"X D �
1 � �2XY

	
X � ˇX"Y : (3)

for the regression residuals of the mis-specified model. The true predictor, X, and the
true error term, "Y , are assumed to be stochastically independent. Thus, one obtains
for the fourth-order cumulants �4(�) (see, for example, Kendall & Stuart 1979):

�4 ."X/ D �
1 � �2XY

	4
�4.X/� ˇ4X�4 ."Y/ : (4)

Defining the excess kurtosis of "X and X in terms of higher order cumulants leads to

ı"X D �4 ."X/ =�
4
"X

(5)

and

ıX D �4.X/=�
4
X: (6)

Dividing Eq. (4) through the fourth power of the standard deviation of "X (i.e., �4"X
)

and making use of Eqs. (5) and (6), one arrives at the following equation for the
excess kurtosis of residuals of the mis-specified model:

ı"X D
 �
1 � �2XY

	
�X

�"X

!4
ıX �

�
ˇX
�"Y

�"X

�4
ı"Y : (7)

The standard deviations of "X and "Y can be written as �"X D
q
1 � �2XY�X and

�"Y D
q
1 � �2XY�Y . Thus, Eq. (7) simplifies to

ı"X D �
1 � �2XY

	2
ıX � �4XYı"Y : (8)

Finally, in OLS regression, the excess kurtosis of the true error term is expected to
be zero (i.e., ı"Y D 0) which leads to ı"X D �

1 � �2XY

	2
ıX. From this expression, one

can conclude that the excess kurtosis of the error term of the mis-specified model is,
in fact, a weighted version of the excess kurtosis of the true predictor. To be more
specific, we conclude that (1) the excess kurtosis of X and "X will always have the
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Fig. 1 Theoretical values of ı"X as a function of the correlation between X and Y and the excess
kurtosis of X

same sign; (2) the excess kurtosis of "X declines with the correlation between X and
Y (i.e., the weighting term in Eq. (8) basically reflects the portion of unexplained
variability of the bivariate relation), and, most importantly (3) the excess kurtosis of
"X increases with the excess kurtosis of X (see Fig. 1).

Considering the third conclusion (stated above) in tandem with the routinely
made assumption of normally distributed residuals of the correctly specified model,
i.e., ı"Y D 0, it follows that the comparison of ı"Y and ı"X can be used to derive
conclusions concerning the direction of effects. Assuming that observed variables
show an excess kurtosis greater than zero, one can conclude that Y is the response
variable and X the predictor when ı"X > ı"Y . Conversely, when ı"X < ı"Y then X is
more likely to be the response variable and Y is more likely to be on the predictor
side. In addition to this rather descriptive decision rule, standard errors of excess
kurtosis values have to be taken into account as well (von Eye & DeShon, 2012). In
the next section, we present three different approaches to statistical inference on the
equality of excess kurtosis values of regression residuals.
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Statistical Inference on the Equality of Excess Kurtosis
of Regression Residuals

This section discusses a combined Anscombe-Glynn normality test and two sig-
nificance tests based on the difference of excess kurtosis values for determining
the direction of effects in linear regression models. The combined normality test
consists of two one-sample tests where the null hypotheses H0 W ı"X D 0 and
H0 W ı"Y D 0 are evaluated separately.

Combined Anscombe-Glynn Test

Anscombe and Glynn (1983) suggested a transformation of the kurtosis estimate to
more closely approximate normality. Let

b2 D m4=.m2/
2 (9)

where

mk D
X�

X � X
	k
=n; (10)

where k is a positive natural number, and X is the sample mean. Anscombe and
Glynn’s transformation involves the following computations:

E .b2/ D 3 .n � 1/
n C 1

(11)

var .b2/ D 24n .n � 2/ .n � 3/

.n C 1/2 .n C 3/ .n C 5/
(12)

x D .b2 � E .b2// =
p
var .b2/ (13)

q
b0
2 D 6

�
n2 � 5n C 2

	

.n C 7/ .n C 9/

s
6 .n C 3/ .n C 5/

n .n � 2/ .n � 3/ (14)
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a D 6C 8p
b0
2

"
2p
b0
2

C
s�

1C 4

b0
2

� #
(15)

and

z .•/ D

0
BB@
�
1 � 2

9a

�
�

0
B@ 1 � 2

a

1C x
q

2
a�4

1
CA

1
3

1
CCA
,r

2

9a
; (16)

where z(•) approximately follows a standard normal distribution. The null hypothe-
sis of zero excess kurtosis (H0 W ı D 0) is rejected against the two-sided alternative,
H1 W ı ¤ 0, when j z .•/j exceeds the 1 � ˛=2 quantile of the standard normal
distribution.

Recall that normality of the error term is assumed for the true model. This
assumption, together with the theoretical result presented in Eq. (8), leads to the
following decision rule for directional statements concerning the observed effect:
When the null hypothesis H0 W ı"Y D 0 is retained and, at the same time, the
null hypothesis H0 W ı"X D 0 is rejected, model (1) is more likely to reflect
the true data generating process which implies that Y is the outcome and X is the
predictor. Conversely, when the H0 W ı"Y D 0 is rejected and H0 W ı"X D 0 is
retained, model (2) is more likely to reflect the data generating process. When both
null hypotheses are retained/rejected, no distinct decision is possible based on the
combined Anscombe-Glynn procedure.

Asymptotic Kurtosis Difference Test

The combined Anscombe-Glynn approach discussed above relies on separately
testing the distributional properties of both error terms. For reasons of ˛ protection,
a test based on the difference of excess kurtosis values may be worthwhile.
Wiedermann et al. (2015) proposed an asymptotic significance to evaluate the
differences in skewness estimates based on the D’Agostino skewness z-values. In
the following paragraphs, we extend the approach to the fourth central moment.
Here, the difference of Anscombe-Glynn z-values (Anscombe & Glynn, 1983) can
be used to make decisions upon the direction of effects. Let z .ı"X / and z .ı"Y / be the
Anscombe-Glynn z-values corresponding to the kurtosis of "X and "Y . In the normal
case,

zı D z .ı"X /� z .ı"Y /q
2 � 2�4"X"Y

; (17)
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approximates a standard normal distribution, and the null hypothesis of excess
kurtosis equality, H0 W ı"X D ı"Y , is rejected against the two-sided alternative (H1 W
ı"X ¤ ı"Y ) when jzıj exceeds the 1�˛=2 quantile of the standard normal distribution.
Details of deriving the test statistic in Eq. (17) are given in the Appendix. When, for
example, ıX > 0 and the null hypothesis H0 W ı"X D ı"Y is rejected against the
one-sided alternative H1 W ı"X > ı"Y , one can conclude that Y is the outcome and X
is the explanatory variable.

Bootstrap Difference Test

The zı - test in Eq. (17) makes use of the Anscombe-Glynn z-values and, thus, relies
on the assumption of normality of the true error term. The null hypothesis will be
rejected when either one or both residual terms deviate from normality. In other
words, normality for the true model is essential for best practice applications. This
assumption can be relaxed for the following bootstrap difference test.

Again, let ı"Y and ı"X be the excess kurtosis values of residuals from the models
X ! Y and Y ! X and let ıd D ı"X � ı"Y be the difference in excess kurtosis values.
When variables show excess kurtosis values larger than zero, we expect ıd > 0

when the true model states that X ! Y and ıd < 0 when the true model states that
Y ! X. A bootstrap p-value for testing the null hypothesis H0 W ı"X D ı"Y against the
one-sided alternative hypothesis H1 W ı"X > ı"Y is obtained via randomly sampling
pairs of residuals ("Y , "X) with replacement from the original regression residuals.
ı’d D ı’"X

� ı’"Y
, the difference in excess kurtosis values for each of m resamples,

leads to the bootstrap p-value:

p’
ı D m�1XI

�
ı’d < 0

�
(18)

and the null hypothesis is then rejected against the one-sided alternative H1 W ı"X >

ı"Y when p’
	 is smaller than the nominal significance level (e.g., 5 %). Note that in

deriving ı"X D �
1 � �2XY

	2
ıX we assume that the excess kurtosis of the true error

term is zero. However, no statement is made concerning symmetry of residuals
corresponding to the true model. According to the well-known skewness-kurtosis
inequality (Teuscher & Guiard, 1995), the skewness, thus, can vary from �p

2 top
2 when ı"Y D 0.

Performance of the Direction Dependence Tests

To illustrate the performance of the three proposed direction dependence tests,
a simulation study was performed using the R statistical environment (R Core
Team, 2014). Two simulation experiments were implemented. First, predictors
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were sampled from a standard normal distribution. Because the proposed direction
dependence methods rely on the assumption of nonzero excess kurtosis of observed
variables, this part of the simulation study was used to assess the Type I error
robustness of the tests. Second, to systematically evaluate the power performance
of the tests, predictors were sampled from a generalized error distribution (also
known as the exponential power distribution) with zero mean and unit vari-
ance (Evans, Hastings, & Peacock 2000). All samples were generated according

to the model Y D ˛Y C ˇYX C "Y , with ˇY D �XY=

q
1� �2XY , �XY D

0; 0:2; 0:4; 0:6; and 0:8, and ˛Y D 1. The error term, "Y , was randomly sampled
from the standard normal distribution. The excess kurtosis of X was set at ıX D
0; 0:5; 1; 2; 3; 4; 5; 6; 7; 8; and 9. Sample sizes were n D 50, 75, 100, 125, 150,
and 200. The simulation factors were fully crossed resulting in 11 (excess kurtosis
of X) � 5 (correlation) � 6 (sample size) D 330 experimental conditions. For each
condition, 5000 samples were generated and decisions concerning directionality
were made based on the results of the combined Anscombe-Glynn test, the
asymptotic kurtosis difference test, and the bootstrap difference test (applying 1000
resamples) following the decision rules described above. Decisions based on the
difference of excess kurtosis values were performed one sided. We used Bradley’s
(1978) liberal criterion to determine in the Type I error robustness, i.e., given a
nominal significance level of 0.05, a test is considered robust if the empirical Type
I error rates do not exceed the interval [0.025; 0.075].

Table 1 gives the empirical Type I error rates of the three tests as a function of the
sample size and the correlation of X and Y. The Type I error rates of the Anscombe-
Glynn test are given in terms of model selection, i.e., the Type I error rates reflect
the portion in which the null hypothesis H0 W ı"Y D 0 is retained and, at the same
time, the null hypothesis H0 W ı"X D 0 is rejected. Overall, all tests were able to
protect the nominal significance level across all experimental conditions. In other
words, we can conclude that, under the given condition of normality, selecting the
model X ! Y is solely based on chance, within the nominal significance level, as
expected.

Figure 2 gives the empirical power curves of the three direction dependence tests
as a function of �XY and ıX for sample sizes n D 50, 100, 150, and 200. In general,
power of tests increases with sample size due to increasing precision of parameter
estimation. Further, power increases with excess kurtosis of the predictor and
decreases with the correlation of X and Y. Both effects are in line with the theoretical
results given in Eq. (8). Except for highly correlated variables, the combined
Anscombe-Glynn test is more powerful than the tests based on the difference in
excess kurtosis values. This can be explained by the fact that the latter tests consider
sampling variability in both excess kurtosis values which decreases power. From
Fig. 2, we conclude that all three tests are well suited to make statements concerning
the direction of effects.
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Table 1 Empirical Type I error rates of the three direction dependence tests using a nominal
significance level of 5 %

Sample size Correlation Kurtosis difference Bootstrap difference Anscombe-Glynn

50 0 0.0468 0.0350 0.0528
50 0.2 0.0578 0.0412 0.0482
50 0.4 0.0528 0.0402 0.0534
50 0.6 0.0530 0.0384 0.0518
50 0.8 0.0560 0.0428 0.0460
75 0 0.0472 0.0424 0.0546
75 0.2 0.0510 0.0420 0.0498
75 0.4 0.0516 0.0492 0.0528
75 0.6 0.0546 0.0486 0.0492
75 0.8 0.0506 0.0416 0.0472
100 0 0.0526 0.0474 0.0548
100 0.2 0.0492 0.0500 0.0480
100 0.4 0.0542 0.0530 0.0534
100 0.6 0.0554 0.0534 0.0474
100 0.8 0.0604 0.0540 0.0420
125 0 0.0540 0.0530 0.0540
125 0.2 0.0518 0.0538 0.0484
125 0.4 0.0512 0.0582 0.0506
125 0.6 0.0536 0.0592 0.0474
125 0.8 0.0552 0.0622 0.0464
150 0 0.0550 0.0562 0.0560
150 0.2 0.0514 0.0532 0.0470
150 0.4 0.0550 0.0542 0.0574
150 0.6 0.0528 0.0568 0.0444
150 0.8 0.0542 0.0530 0.0476
175 0 0.0546 0.0554 0.0476
175 0.2 0.0624 0.0612 0.0558
175 0.4 0.0528 0.0542 0.0464
175 0.6 0.0544 0.0596 0.0508
175 0.8 0.0524 0.0556 0.0452
200 0 0.0518 0.0574 0.0496
200 0.2 0.0514 0.0548 0.0540
200 0.4 0.0496 0.0544 0.0506
200 0.6 0.0494 0.0576 0.0478
200 0.8 0.0516 0.0582 0.0452

Empirical Example: Relation Between Depression and PTSD

To illustrate the application of the proposed methodology, we use data from Bogat
et al. (2003, 2004) on psychosocial development of women who are victims of
intimate partner violence. von Eye and DeShon (2012) used the data to determine
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Fig. 2 Empirical power for the three direction dependence tests

the direction of effect of depression and post-traumatic stress disorder (PTSD) using
observed-variable direction dependence methods and found that PTSD is more
likely to be the cause of depression than vice versa. We reanalyze the relationship
between depression and PTSD using fourth central moments of residuals of
competing regression models. PTSD was measured using the PTSD scale for
Battered Women (Saunders, 1994) which consists of seventeen items rated on
an 8-point scale (higher scores indicate more pronounced PTSD symptomology;
range D 0–119). Depression was measured using Beck’s Depression Inventory
(Beck, Ward, Mendelson, Mock & Erbaugh, 1961) which consists of 21 items
(higher scores indicate more pronounced depression symptomology; range D 0–63).
For the present reanalysis, we used cross-sectional data of 152 women who ever
experienced domestic violence from the third wave of Bogat’s et al. (2003, 2004)
longitudinal study.



Decisions Concerning the Direction of Effects in Linear Regression Models. . . 161

We observed an average depression score of 8.22 (b�Depr D 6:06; excess kurtosis
bıDepr D 0:144), an average PTSD score of 6.45 (b�PTSD D 11:16;bıPTSD D 5:988)
and a Pearson correlation of b�Depr; PTSD D 0:327. Both variables significantly
deviate from normality according to the Shapiro-Wilk test (depression: W D 0.942,
p < .001; PTSD: W D 0.640, p < .001). Moving to the linear regression models,
we, first, regressed “Depression” on “PTSD” which constitutes the target model.
The following regression diagnostic procedures were applied: (1) the linearity
assumption was evaluated by including second and third order polynomials and
testing the significance of the model fit change, (2) homoscedasticity was evaluated
using the studentized Breusch-Pagan test (see Koenker, 1981), (3) the presence
of outliers was evaluated using Bonferroni corrected tests of largest studentized
residuals, and (4) potentially influential observations were searched using hat values
and Cook’s distances. For the target model, “PTSD ! Depression,” we observed
one conspicuous observation with a hat value larger than three times the average
hat values and a Cook’s distance of 0.402 (note that 97.5 % of the observations
had a Cook’s distance smaller than 0.06). We repeated the analysis after removing
this conspicuous observation. Based on n D 151 women, we obtained Depr D
6:910 C 0:215 � PTSD (t D 4.671, p < .001) for the target model and PTSD D
1:179 C 0:595 � Depr (with, by necessity, t D 4.671, p < .001) for the alternative
model. The linearity assumption was confirmed for both models, i.e., including
higher order terms led to a non-significant change in model fit. For the target model,
we obtained a nonsignificant Breusch-Pagan test (�2 D 0.880, df D 1, p D .348)
suggesting homoscedasticity. In contrast, the assumption of homoscedasticity was
rejected for the alternative model (�2 D 10.453, df D 1, p D .001). No outliers
were detected for the target model based on largest studentized residuals (largest
studentized residual: 3.488, Bonferroni adjusted p D .097). For the alternative
model, studentized residuals suggested one potential outlier with a studentized
residual of 4.213 (p D .007). Cook’s distances and hat values were rather low for
both models.

In the next step, we applied the proposed direction dependence tests to evaluate
whether the target model or the alternative model is more likely to reflect the true
causal flow. First, regression residuals were extracted from both models (see Fig. 3).
For the model residuals of the target model, we observed an excess kurtosis of
0.721 and the Anscombe-Glynn test suggested retaining the null hypothesis of zero
excess kurtosis (z D 1.741, p D .082). In contrast, for the residuals of the alternative
model we observed an excess kurtosis of 3.099 and the Anscombe-Glynn test
suggests rejecting the null hypothesis of zero excess kurtosis (z D 4.028, p < .001).
Next, we asked whether the procedures based on the differences in excess kurtosis
values reject the null hypotheses as well. The asymptotic kurtosis difference test
failed to reject the null hypothesis of zero kurtosis difference according to the
5 % criterion (z D 1.630, p D .052). However, the bootstrap difference test gave a
bootstrap p-value of 0.001 based on 5000 resamples and, thus, also rejected the
null hypothesis. Overall, we can conclude that the initially selected target model
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Fig. 3 Observed density of residuals from the two competing regression models

(“PTSD ! Depression”) is more likely to reflect the true data generating process
which is in line with results of von Eye and DeShon (2012).

Discussion

In the present chapter, we discussed using the fourth central moment to determine
the direction of effects in the bivariate linear regression setting, and we proposed
three significance procedures for statistical inference. Simulation results suggest
good Type I error and power properties under various data scenarios. Note that
comparing distributional characteristics of residuals obtained from competing
regression models relies on the commonly met assumption of normality of the
error term corresponding to the true model. In other words, the significance tests
make use of a well-known assumption which should routinely be evaluated in
practical applications. Normality is crucial in particular for the asymptotic kurtosis
difference test which is based on the Anscombe-Glynn z-values. Violations of the
assumptions can lead to distorted Type I error and power rates. However, the test
statistic may serve as a starting point for the development of more robust tests. In
contrast, for the bootstrap tests, the distributional assumption can be relaxed. Here,
however, the true error term must exhibit an excess kurtosis of zero. Future studies
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are needed to systematically quantify the robustness properties of the tests under
violated distributional assumptions.

Wiedermann and Hagmann (2014) discuss direction dependence methods for the
third central moment for nonnormal true error terms and show that ��3XY D 	"X=	"Y

with 	"X and 	"Y being the skewness of "X and "Y . In other words, when a priori
considerations exist that justify the assumption of nonnormal true error terms,
direction dependence methods can still be applied to test these hypotheses. From
these results, two important implications arise.

First, from Eq. (8) it becomes obvious that a similar statement can be made con-
cerning the fourth central moment, i.e., assuming a normally distributed predictor,
one obtains ��4XY D ı"X=ı"Y .

Second, the proposed direction dependence methods should not be confused
with causal search algorithms (see, e.g., Scheines et al., 1998; Spirtes, Glymour,
& Scheines 2000) which exhibit a stronger exploratory element, and are used
to generate new hypotheses. In contrast, we characterize direction dependence
tests as purely confirmatory in nature and assume that a valid regression model
exists that includes proper distributional assumptions concerning the corresponding
error term (the normality assumption may be sufficient in practice). Further,
direction dependence methodology requires that the regression model can be validly
interpreted. Thus, common regression diagnostics (e.g., Belsley, Kuh, & Welsch,
1980) are essential to avoid biased conclusions concerning the direction of effects.

Wiedermann and von Eye (2015b) proposed guidelines for confirmatory direc-
tion dependence analysis and showed that decision concerning the direction of
effects have to be based on a careful synthesis of properties of both, the tentative
model (e.g., X ! Y) and the alternative model (Y ! X). Important elements of
the guidelines include (1) distributional characteristics of regression residuals (the
proposed tests can be added to the already existing procedures for the systematic
comparison of higher moments of residuals), (2) independence of the predictor and
the error term (for further discussion see, e.g., Shimizu et al., 2011; Wiedermann &
von Eye, 2015b), and (3) distributional characteristics of observed variables (such
as the methodology proposed by von Eye and DeShon, 2012, and Pornprasertmanit
and Little, 2012).

The presented approach addresses directional hypotheses in the bivariate linear
regression setting. Extensions of direction dependency based on the third central
moment to the multiple linear regression setting are discussed in Wiedermann and
von Eye (2015a). Analogous extensions can be made for the fourth central moment.
Consider the case of one response variable, Y, and two explanatory variables, X and
Z, defining the true model Y D ˛Y C ˇYXX C ˇYZZ C "Y . Further, suppose that Z
is a priori known to be a predictor (e.g., due to logical order) which leads to the
competing regression model X D ˛X C ˇXYY C ˇXZZ C "X . When true predictors
are independent (which constitutes a common assumption in OLS regression), the
fourth central moment of "X can be written as
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ı"X D
0
@
�
1 � �2XYjZ

�
�X

�"X

1
A
4

ıX (19)

where �XYjZ denotes the partial correlation of X and Y controlling for Z (the
corresponding proof works in fashion analogous to the one presented in Wie-
dermann & von Eye, 2015a). From Eq. (19) it becomes evident that (when X
and Z are independent) neither the distributional characteristic of Z, nor the
correlation between Y and Z affect the excess kurtosis of "X . In addition, the excess
kurtosis increases with ıX which implies that comparing ı"Y (again assumed to
be zero) and ı"X may help researchers to test hypotheses of directionality in the
multivariate setting. Wiedermann and von Eye (2015a) showed that violations of
the independence assumptions of predictors (so-called multicollinearity) do not
affect the Type I error robustness of direction dependence tests using third central
moments. Additional simulation experiments are being planned for the future to
evaluate whether similar robustness properties hold for fourth central moments tests
as well.

Note that the presented results are, in fact, not restricted to strictly bivariate
applications. Multivariate data scenarios exist which can readily be analyzed using
the proposed tests. For example, consider the case of a mediation model in which
the predictor is randomized (e.g., intervention versus control group) and assumed to
influence a mediator which, in turn, influences the outcome. When the distributional
requirements of the tests hold (in this case nonnormality of the mediator), the
proposed procedures can be applied to infer on directionality of the mediator-
outcome path. For details concerning direction of effects in mediation analysis see
Wiedermann and von Eye (2015c).

Further, the direction dependence principle is, of course, not restricted to OLS
regression techniques and manifest variables. Concerning the former, direction
dependence methodology may also be a valuable companion for structural equation
modelling (SEM). Within SEM, an important distinction has to be made between
residuals regularly obtained from structural analyses and the residuals necessary to
perform direction dependence tests. Errors in SEM typically concern the variance-
covariance matrix of variables (and are, thus, available on an aggregated level) while
errors on the individual level are largely ignored. Direction dependence tests require
so-called individual case residuals (ICR; Bollen & Arminger, 1991; Raykov et al.,
2013; Raykov & Penev, 2014). Future studies are needed to analyze the perfor-
mance of ICR-based direction dependence tests under various model specifications.
Further, von Eye and Wiedermann (2014) demonstrate the application of observed
variable-based and residuals-based direction dependence approaches in the context
of latent variable models. Here, instead of manifest variables, component scores,
factor scores, or, more generally, latent variable scores can be used to analyze
direction dependence properties of variables.

The fact that nonnormality of observed data cannot solely be understood as a
source of bias for parametric statistical inference, but also as valuable information
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for testing structural relationships in variables has been pointed out by other authors
as well. For example, Bentler (1983) suggested that higher than second moments
can be used to solve the problem of model equivalence of structural equation
models. Mooijaart (1985) suggested the use of third higher moments to make
decisions concerning factor rotation in factor analysis for nonnormal variables.
Bentler’s (1983) proposition was also later adopted by, for example, Shimizu,
Hyvärinen, Hoyer, and Kano (2006) and Shimizu and Kano (2008) which led
to the development of linear non-Gaussian acyclic models (LiNGAM) and non-
normal structural equation models (nnSEM). LiNGAM and nnSEM constitute other
promising approaches to address directionality issues in cross-sectional studies.
In contrast to the proposed methodology, these models assume non-normal error
terms to test directional hypotheses. However, Shimizu and Kano (2008) note that
comparatively large sample sizes are needed for model estimation. Dodge and
Rousson’s (2001) as well as Sungur’s (2005) results concerning the properties of
higher moments in the linear regression setting further led to the development
of copula regression approaches for directional inference (Kim & Kim, 2013). In
contrast to Dodge and Rousson’s (2001) direction dependence approach, copula
regressions focus on the joint distribution of variables.

Finally, the proposed residual-based direction dependence methodology as well
as all other procedures (stated above) which are designed to make directional
statement have one implicit assumption in common, i.e., observed nonnormality
reflects an inherent characteristic of the variable of interest and does not result
for other reasons such as outliers, ceiling/floor effects, or mixtures of normally
distributed subpopulations (for a discussion see Bauer & Curran, 2003; Cudeck
& Henly, 2003; Muthén, 2003; Rindskopf, 2003). Several examples of phenomena
exist for which non-normality is likely to be an inherent characteristic. These include
latent periods of infectious diseases and survival times after cancer diagnosis (in
medicine), the concentration of elements in the earth crust and their radioactivity (in
geology), income (in economics), reaction times (in psychology), species abundance
(in ecology), lengths of spoken words and sentences (in linguistics), air pollution
measured using the Pollutant Standard Index (PIS, in environmental sciences),
and, more generally, various ability distributions (for an overview see Limpert,
Stahel, & Abbt 2001). However, even when nonnormality can be considered an
inherent property of the phenomena of interest, a priori theory is necessary to
make directional claims. Direction dependence analysis is not intended to replace
substantial considerations. Rather, it serves as an element in the systematic and
careful synthesis of conclusions from various types of studies (such as observational,
longitudinal prospective, and experimental studies; Cox, 2012).
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Appendix: Deriving the Test Statistic for the Asymptotic
Kurtosis Difference Test

In the following paragraphs, we first derive the test statistic of the kurtosis difference
test based on the observed variables X and Y. We then discuss its application based
on residuals from competing regression models.

Let z(ıX) and z(ıY ) be the standard normally distributed z-values of the variables
X and Y obtained from the Anscombe-Glynn transformation (Anscombe & Glynn,
1983). For independent samples,

zd D z .ıX/ � z .ıY/p
2

(A1)

follows a standard normal distribution as well. However, residuals obtained from
competing regression models will be correlated. For correlated samples, the variance
of differences in kurtosis values can be written as �2ıX�ıY

D �2ıX
C�2ıY

�2cov .ıX; ıY/,
where �2ıX

and �2ıY
denote the variances of ıX and ıY and cov(ıX, ıY ) is the covariance

of ıX and ıY . The variances of standard normally distributed quantities (such as
z(ıX) and z(ıY )) equal one and the correlation between fourth central moments of
two variables can be approximated by the fourth power of the correlation between
X and Y, �ıXıY D cov .ıX; ıY/ = .�ıX�ıY / � �4XY . For a more detailed discussion
of moments of moments and moments of product moment coefficients see, for
example, Pearson and Young (1918), Wishart (1928), Pepper (1929), and Rider
(1929). Thus, the variance of differences in excess kurtosis values can, in this special
case, be re-written as

�2ıX�ıY
D �2ıX

C �2ıY
� 2cov .ıX; ıY/

D �2ıX
C �2ıY

� 2�4XY

q
�2ıX
�2ıY

D 2 � 2�4XY (A2)

Inserting Eq. (A2) into Eq. (A1) results in

zd D z .ıX/� z .ıY/q
2 � 2�4XY

: (A3)

Finally, replacing X and Y by the residuals from competing regression models one
obtains

zı D z .ı"X / � z .ı"Y /q
2 � 2�4"X"Y

: (A4)
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Part III
Dyadic Data Modeling



Analyzing Dyadic Data with IRT Models

Rainer W. Alexandrowicz

Abstract Dyadic data frequently occur in social sciences and numerous techniques
have been developed for their analysis. The most prominent methods involve using
regression, path, and structural equation models. The present contribution extends
these approaches by considering Item Response Theory (IRT) Models. Two pivotal
dyadic data analysis models, the Actor-Partner Interdependence Model (APIM) and
the Common Fate Model (CFM), are built using the Multidimensional Random
Coefficients Multinomial Logit Model (MRCMLM). This approach combines the
advantages of dyadic data analysis with a model for discrete data, thus allowing for
categorical items while drawing inferences based on the estimated true scores on an
interval scale.

Aims of This Contribution

This contribution presents a new approach to dyadic data analysis. It is organized
as follows: After giving a short introduction to the basics of dyadic data (section
“Dyadic Data”) and the core principles of their statistical analysis (section “Model-
ing Dyadic Data”), the fundamentals of a new approach based on multidimensional
Item Response Models (mIRT; e.g. Reckase 2009) are worked out. This approach
combines the specific requirements of dyadic data analysis (i.e., taking into account
the dependencies within a dyad) with the advantages and flexibility of discrete
probability models for categorical data. The principles of mIRT will be introduced
in section “Item Response Models” and exemplified for two important dyadic data
models, including computational details, in section “Worked Examples”.
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Dyadic Data

Dyadic data originate from responses of individuals sharing a common context, like
partner or parent-child relationships. Apart from such natural (or voluntary) linkage,
a dyad can also be established by membership to a common context, like in an
experimental design, where two previously unacquainted individuals are assigned
to each other to work on a common task. We cannot assume the responses of
linked observations (e.g., parent and child) to be mutually independent. We have
to act on the assumption that systematic variation arises due to both, individual
and relational characteristics. Four kinds of nonindependence may be discerned:
compositional nonindependence (the dyad members are linked due to preexisting
common characteristics), partner effects (characteristics or behaviors of one partner
necessarily affects those of the other partner, e.g. when resources have to be shared),
mutual influence (due to some sort of feedback loop), and common fate (both dyad
members are affected by common circumstances, like sharing the household or
consanguinity, for example).

Another crucial distinction has to be made with regard to the identifiability of
the members of a dyad (pair) under consideration: While, for example, the roles of
parent and child allow for a clear distinction of individuals, monozygotic twins may
not be uniquely allocated unless auxiliary variables are taken into account (e.g., the
elder vs. the younger sibling). Hence, we have to differentiate between dyadic data
models for distinguishable and indistinguishable members.

Further, we have to consider whether information is gained at the individual or
at the dyad level: A dyad member’s gender is usually a descriptor of the individual
(except for studies deliberately focussing on same sex pairs, etc.), but the household
income of a couple is identical for both members and therefore constitutes a dyad
level variable. As a third category, we have to consider mixed variables, exhibiting
variation on both the individual and the dyad level, like the respondents’ age.

A comprehensive overview of dyadic data, models, analyses, and numerous
references to original sources can be found in Kenny, Kashy, and Cook (2006).

Modeling Dyadic Data

The term “model” refers in the context of dyadic data to a substantive perspective,
i.e. how measurements from dyad members are hypothesized to relate to each other,
and will not necessarily determine the statistical model to be used for parameter
estimation. It might, therefore, be helpful to differentiate between “dyadic models,”
focussing on substantive theory, and “statistical models.” This distinction is not
always clear-cut, because some dyadic models may correspond closely to a certain
statistical model.
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Several models for dyadic data have been proposed so far, two of which are
outlined in this section, as they are common in the literature, and they are further
pursued in the analyses presented here. These are the Actor-Partner Interdependence
Model (APIM) and the Common Fate Model (CFM).

The Actor-Partner Interdependence Model

Basically, the APIM (Kenny et al. 2006, ch. 7) constitutes a regression model
involving an independent variable X and a dependent variable Y, both available
for both members of a dyad (A and B). Hence, we deal with four variables (or
constructs, if more than one item is involved), XA, XB, YA, and YB. The regressions
of the Y-variables on the X-variables are separately modeled for each dyad member
(called actor effects in the dyadic context, aYX and a0

YX in Fig. 1, top). In addition,
each member’s X may affect the other member’s Y (called partner effects, pYX and
p0

YX). The magnitude of the partner effects relative to the actor effects expresses
the extent of interdependence of dyad members. Furthermore, the two independent
variables or constructs as well as the two dependent ones may exhibit a mutual
relation (rX and rY in Fig. 1, top).

If each of the four constructs involved (XA, XB, YA, and YB) is a single random
variable fulfilling certain scale and distributional assumptions, the coefficients
could be determined by means of Ordinary Least Squares (OLS) regression or
path analysis (a comprehensive instruction can be found in Kenny et al. (2006),
for example). However, such an approach ignores the measurement errors of the
observed variables and becomes increasingly cumbersome for dyadic models that
are more complex than those considered here.

The nesting of individuals within dyads constitutes a hierarchical data structure,
which facilitates the application of multilevel models (cf. Hox 2010; for their spe-
cific application to dyadic data, see Campbell & Kashy 2002 or Kenny et al. 2006,
ch. 4). Alternatively, the coefficients could be estimated by means of Structural
Equation Models (SEM; e.g., Bollen 1989). In particular the SEM-approach allows
for a sophisticated and flexible modeling of the hypothesized relationships and
provides a highly differentiated assessment of model fit.

The Common Fate Model

The CFM (Campbell 1958; Kenny et al. 2006, pp. 409–412) also considers the
relationship of two variables (X and Y) recorded for both members of a dyad (A and
B). But instead of looking for mutual dyad members’ influence (the partner effects
in the APIM), we focus on the correlation of X and Y, assuming that they constitute
a common background (“fate,” hence the naming) for the individual expressions
(XA, XB and YA, YB, respectively; cf. Fig. 1, bottom). As a special case, the CFM is
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Fig. 1 Top: The Actor-Partner Interdependence Model (APIM). Bottom: The Common Fate
Model (CFM). Notes: X: independent variable; Y: dependent variable; A, B: dyad members (e.g.,
actor/partner); aYX , a0

YX : actor effects; pYX , p0

YX : partner effects; rX , rY : correlation of independent
and dependent variables; rA, rB: correlation of X and Y for individuals A and B, respectively

particularly appropriate for designs, in which A and B express their assessment of
a third person. This may be the case, for example, when both parents rate X and
Y of their child, or a couple is asked to assess two characteristics X and Y of their
marriage counselor.

The core principle of a CFM is that both XA and XB are affected by a latent
variable X and, likewise, YA and YB can be traced back to a common latent variable
Y. The latent correlation of X and Y reflects the substantial question of interest on
the dyad-level. However, the two common fate constructs (X and Y) may not account
for the entire observed covariance of the manifest variables XA, XB, YA, and YB, as
individual characteristics could have an impact as well. Such individual level effects
are expressed by the correlation coefficients rA and rB as indicated at the bottom of
Fig. 1.

Because of the assumption of latent factors that underlie the manifest variables,
the SEM approach is the most suitable technique for CFMs. Besides, there are also
methods available not involving latent constructs, but based on simple regression
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analysis (for an introduction, see Kenny et al. 2006, pp. 409–412). However, these
should be considered outdated for the same reasons as in the APIM context.

Problem

SEM and Multi-Level Models prevail in current modeling approaches to dyadic
data analysis. Either of these models requires certain scale and distributional
prerequisites to be fulfilled—most prominently, in the standard case, interval scaled
variables and (multivariate) normal distribution. Such assumptions are frequently
made without hesitation. For example, Kenny et al. (2006) argue “Most scales
developed and used in social science research are assumed to be measured on an
interval scale” (p. 9), and “Throughout this book, we generally assume that outcome
variables are measured at the interval level.” (Kenny et al. 2006, p. 10).

In many cases, constructs are captured with scales comprising a reasonable
number of items to be endorsed through ordered categories or by responding in
a simple yes/no style. If such a set of items has undergone thorough statistical
analysis, a (possibly weighted) sum of scores might fulfill the aforementioned
scale assumptions—at the price of restricting the number of applicable instruments
to those having been scrutinized accordingly. Sometimes, a sum score is even
computed without bothering about properties of the involved items—dimensionality
and scale assumptions remain conjectures then.

Loeys and Molenberghs (2013) have proposed Generalized Linear Mixed Models
for dyadic data analysis with categorical data and Loeys, Cook, De Smet, Wietzker,
and Buysse (2014) used Generalized Estimating Equations. McMahon, Puget, and
Tortu (2006) have shown how to model binary data employing a Multi-Level
approach. Furthermore, Log-Linear Models may be applied as well (e.g., von Eye
& Mun 2013; see Kenny et al. 2006, pp. 131–135 for their specific application to
dyadic designs). Log-Linear Models also allow for testing interaction effects and
the assessment of model fit. However, we will take a slightly different approach to
categorical data here, using Item Response Theory (IRT; de Ayala 2009; van der
Linden & Hambleton 1997; Lord 1980).

Item Response Models

Before delving into the details of how dyadic data models may be expressed through
IRT models, a brief introduction to IRT reviews some basic characteristics. Gener-
ally, Item Response Models link manifest responses to latent response probabilities,
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expressed by model parameters, using a deliberately selected link function. Usually,
the manifest responses are categorical, hence we deal with discrete probability
models (an extension to quantitative responses has been developed by Müller 1987
but will not be further pursued here, as our intention is to model discrete data).

The Rasch Model and Some of Its Extensions

The most basic IRT model is the Rasch Model for dichotomous data (RM; Rasch
1960). It models the probability of a response xvi 2 f0; 1g of individual v (v D
1 : : : n) to item i (i D 1 : : : k) with two parameters, �v , quantifying the ability of
person v, and ıi, quantifying the difficulty of item i. The link function is the logistic
one. It yields the model equation

P.xvij�v; ıi/ D exvi.�v�ıi/

1C e�v�ıi
: (1)

Note that a “positive” manifest response xvi D 1 may represent the solution of an
item during an ability test or the endorsement of a statement during a personality
assessment. Hence the traditional term “ability” may also be understood as “prone-
ness” (in the sense of “disposedness”) to endorse a statement and “difficulty” as the
“severity” or “particularity” of that statement.

The trace lines (or Item Characteristic Curves, ICC) of function (1) for selected ıi

across an arbitrary range of �v are parallel, which constitutes a distinct feature of the
RM. The unweighted sum of scores xvi per row v and per column i are the sufficient
statistics for the person ability parameters �v and item difficulty parameters ıi,
respectively. Either parameter vector, � and ı, can be estimated independently
of the distribution of the other one, which caused Georg Rasch to develop his
infamous principle of Specific Objectivity (SO; Rasch 1961 1966, 1977). One
decisive advantage of SO is that it allows for a rigorous assessment of model fit
(for an overview, see Glas & Verhelst 1995, for example). If the model holds, all
items measure the same latent trait (unidimensionality assumption).

Numerous extensions have been developed. For ordered polytomous data, the
Eq. (1) is adopted to model the thresholds between adjacent categories while retain-
ing all advantageous features inherited from the RM. Applying various restrictions,
this yields the Partial Credit Model (PCM; Masters 1982; Wright & Stone 1979)
or the Rating Scale Model (RSM; Andrich 1978 1982; Wright and Masters 1982).
If, on the other hand, substantial considerations allow for decomposing the items
into a well-defined set of p basic (cognitive) operations or technical features, their
difficulty can be quantified by means of the Linear Logistic Test Model (LLTM;
Fischer 1973 1995). For that purpose, a k � p weight (or design) matrix A is set up
based on substantial theory, linking each item parameter ıi to a hypothesized set of
basic parameters �j (j D 1 : : : p; p � k), which represent cognitive operations or
technical features.
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Furthermore, additional item-specific parameters have been introduced (at the
expense of losing SO). These parameters relax the rather restrictive assumption of
parallel trace lines, which may be difficult to attain, especially when analyzing large
item pools. A discrimination parameter ˛i for each item (Birnbaum 1968) expresses
the slope of an item’s ICC at its inflection point along the �-scale. It serves, roughly
speaking, as a measure, of the degree to which the distinction (or “discrimination,”
hence the naming) between two individuals is clear-cut by this item. Thus, the trace
lines’ slopes are explicitly modelled rather than assumed parallel. In addition, an
item specific guessing parameter may be employed, quantifying the probability
of a positive response for arbitrary small values of the person ability parameters
(technically, it defines the lower asymptote of an item’s ICC; Birnbaum 1968).

A third line of development introduced a third kind of parameter for designs,
where individuals (represented by the person ability parameter �v) respond to items
(represented by the item difficulty parameters ıi), and their responses are evaluated
by raters. A rater’s (r) leniency may be quantified by means of a rater parameter  r

(for details, see Linacre 1989).
Another important extension, crucial for modeling dyadic data, is introduced in

the following section.

Multidimensional IRT Models

All IRT models sketched in section “The Rasch Model and Some of Its Extensions”
share the assumption of unidimensionality, i.e. one single common latent trait
being required for solving all items (or endorsing the respective statements) under
consideration. In contrast, a set of items may also depend on several distinct
latent traits, in fact in two ways: Either an item involves more than one trait
(e.g., a math item embedded in a very complex instruction might require a certain
amount of both language and math skills); such a case is referred to as within item
multidimensionality. Or, one subset of items goes together with a latent trait �1 and
a different subset of items with another latent trait �2; this case is called between
item multidimensionality. In our application, we will refer to the latter case. The
allocation of the i D 1 : : : k items to ` D 1 : : :m latent traits is specified in scoring
matrix B D .bi`), which is—as A before—set up based on theoretical reasoning
prior to parameter estimation. As a consequence, each individual’s ability profile
(i.e., his or her location on each latent trait) is expressed through an individual’s
ability vector �v D .�v`/ of length m.

Now, combining such a person parameter decomposition with the item parameter
decomposition sensu LLTM, as introduced in section “Item Response Models”,
leads to the Multidimensional Random Coefficients Multinomial Logit Model
(MRCMLM; Adams, Wilson, & Wang 1997; Adams & Wu 2007). It follows the
logistic structure of Model (1), in which both parameters are replaced by a product
of a weight matrix (i.e., the scoring matrix B for person parameters and the design
matrix A for item parameters), and the respective item and person parameter vector.
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The model equation for an individual’s response vector xvi is

P.xvjA;B;�v; �i/ D exp


x0
v.B�v C A�i/

�
P

z2� exp


z0.B�v C A� i/

� ; (2)

where

xv : : : response vector of individual v

� : : : set of all possible response vectors

�v : : : vector of individuals0 parameters .ability profile/

�i : : : vector of items0 basic parameters

B : : : scoring matrix

A : : : design matrix:

Parameter estimation is usually accomplished with the Marginal Maximum Like-
lihood technique (cf. Baker & Kim 2004). This technique requires a distributional
assumption regarding the person parameters. It is common practice to choose the
normal, yielding for the unidimensional case

f .� j�; �2/ D 1p
2��2

e� 1
2

�
���
�

	2
: (3)

Moreover, the MRCMLM allows for defining a correlational structure among
the latent variables or regressing the latent variables onto each other and on a set of
background variables Y, e.g., income or educational information. The latter leads to
the so-called background model, which, in multivariate notation, shows as

� D Z0� C �; (4)

with � expressing the regression weights of � on Z and assuming � � N.0I �2� /.
Incorporating the background model (4) in the multivariate extension of (3) yields

f .�jZ;� ;†/ D .2�/� m
2 j†j� 1

2 e� 1
2
.���Z/0†�1.���Z/ (5)

with covariance matrix
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: (6)

This covariance matrix (more precisely, its estimates) will prove eminently useful
for the task of expressing dyadic models in terms of item response models. These
coefficients allow for expressing correlations among the latent constructs. Moreover,
we may also estimate directed relationships among the latent constructs, allowing
for a SEM-like modeling approach, yet on a solid Rasch foundation. The core
idea is to obtain the correct SSCP matrix of all exogenous (“independend”) and
endogenous (“dependent”) variables and to find the desired regression coefficients
by means of the Two-Stage Least Squares (TSLS) estimation approach (Gebhardt,
in prep; for a delightful description of the TSLS history see Stock & Trebbi,
2003).

Expressing Dyadic Data Models in Terms of Item
Response Models

This section outlines the central principle of how dyadic data models may be
formulated in terms of IRT Models. We will consider two important dyadic
models, the APIM and the CFM. In the graphical representations, boxes represent
manifest variables (which are, in our case, categorical) and ellipses represent latent
constructs. The core principles of all models to be introduced are to (1) assume a
separate latent trait for each of the “dyadic variables” (i.e., the XA, etc. in Fig. 1) and
(2) model the postulated dyadic relationships in the latent domain, thus requiring a
multidimensional model like the MRCMLM.

The APIM in Terms of an MRCMLM

Dyadic models as depicted in Fig. 1 assume relations among the X- and Y-measures
of the dyad members A and B. While regression or path analysis assumes these
constructs (i.e., XA, YA, XB, and YB) to be manifest, we may also model each of
them as a separate latent construct. Of course, this could be achieved with a SEM
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as well, but while the SEM (in its standard case) assumes the items’ responses
to lie on an interval scale, we want to model truly categorical responses (like
“agree”—“partially agree”—“disagree”) with a discrete probability model, such
as the MRCMLM. Further, standard SEM applications use a linear link function
of items and latent variables (although modifications for categorical variables have
been developed as well, cf. Muthén 1984).

Each dyad (i.e., the pair A and B) forms a unit of observation v (usually a
row in the data set). Hence the measures XA, YA, XB, and YB may be conceived
as four latent dimensions of the dyad v and comply to one �` of the MRCMLM as
expressed in Eq. (2). We thus assert four latent constructs �1 to �4, constituting the
four measures of interest (i.e., �1 D XA, and so on). Such a structure can be depicted
as shown in Fig. 2. The double-headed arrows are based on the latent covariances
[i.e., the elements of Matrix (6)] between the four constructs. Furthermore, the
MRCMLM also allows for estimating a regression model of the latent constructs
on the background variables [Eq. (4)] and on each other. The latter will be used to
model the directed relationships as postulated in the APIM (and depicted by single-
headed arrows in Fig. 1, top).

The CFM in Terms of an MRCMLM

Defining the CFM in terms of an MRCMLM is straightforward, as it already
involves two latent constructs, �X and �Y , representing the variables of interest
(cf. Fig. 3). The latent factor �X (representing X in Fig. 1, bottom) affects both
dyad members’ observed values, XA and XB, and, therefore, represents the common
background (fate) of A and B. The same applies to the other latent variable
of interest, �Y . The latent correlation r�X�Y is the central measure of interest. It

Fig. 2 The basic structure of an APIM expressed as an MRCMLM
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Fig. 3 The basic structure of a CFM expressed as an MRCMLM

expresses the association between �X (the latent representation of X) and �Y (the
latent representation of Y) after taking the relationship between the actors into
account. It is indicated with a double headed solid arrow in Fig. 3.

Not all covariation of X and Y variables may be explained by the dyad level
correlation r�X�Y , hence we further explore individual level correlations (termed rA

and rB, respectively, indicated with dotted double headed arrows in Fig. 1). The
calculation of these two coefficients requires additional reasoning. The latent factor
�X reflects the common self-perception regarding the trait under consideration.
Analoguously, the latent factor �Y reflects what is common in the other’s perception.
However, these two latent factors could miss certain aspects of one’s self- or other’s
perception. Such omitted information is collected in the residuals, which will be
used to determine the individual correlation coefficients rA and rB (see section “The
CFM Approach”).
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Worked Examples

The proposed modeling approach shall be demonstrated in a psychological study
focussing on selected personality traits of dyads of students and a parent. The
question was whether the assessment of the respective other is influenced by the
respective member’s self-assessment.

The Study Framework

The theoretical scope of the study allows for different questions to be addressed. We
will apply both the APIM and the CFM approaches with one data set, the design of
which is outlined below. The respective research questions will be explained in the
specific context of the model.

Instrument

The Gießen-Test (GT; Beckmann, Bräahler, & Richter 1990) is a self-assessment
consisting of the following six scales (German original terms in brackets):

• social resonance (soziale Resonanz),
• dominance (Dominanz),
• control (Kontrolle),
• prevailing mood (Grundstimmung),
• responsiveness (Durchlässigkeit), and
• social power (soziale Potenz).

The test consists of 40 bipolar items and respondents have to indicate their
preference on a 7-point scale of the form

I am rather .A/ 3 2 1 0 1 2 3 rather .B/

with (A) and (B) representing opposite characteristics of a person. According to the
manual, the construction of the GT involved exploratory factor analyses, resulting
in six items per scale. The GT is capable of dyadic assessment because it can be
employed for both self and partner assessment. For that purpose, three different
forms of the questionnaire are available. For the self-assessment, the questions are
formulated as

I think; I am rather patient 3 2 1 0 1 2 3 rather impatient:

The male/female partner assessment versions are worded
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I think; he=she is rather patient 3 2 1 0 1 2 3rather impatient:

That way, four different versions exist and partnership assessment becomes feasible.
Actor-self, Partner-self, Actor with respect to Partner, and Partner w.r.t Actor. Score
sheets allow for comparing the four profiles. Note that there is also a dedicated
partnership assessment version of the GT available, which uses only 5 out of the 6
scales. This version was not applied here, because it involves some indistinct scoring
constants, not necessary for the present analysis.

Sample

The data set used for the present study has been simulated in a way that it reflects
the characteristics of a smaller data set of psychology students. Hence, we will not
draw substantial conclusions from the results obtained here. The students (first and
third semester) were asked to fill out the questionnaire with respect to themselves
and to a parent (preferably the mother). A total of 600 pairs has been simulated.

Method

Parameter estimation of the MRCMLM has been performed with the ConQuest
3.0 software package (Adams, Wu, & Wilson 2012). To avoid estimation problems,
the responses were dichotomized at the midpoint of the response scale (left vs.
right direction). The online version of the instrument used in the present study
comprised only six response categories per item (leaving out the middle category),
thus fostering dichotomization.

The APIM Approach

Regarding the six personality traits of the GT, one could conceive of the following
situation: A student’s rating of the respective parent (�2) depends on the parent’s
status regarding that trait, reflected in their self ratings (�3). Therefore, we expect
a strong coefficient p0

YX (see Fig. 4). In addition, the student’s assessment might as
well be influenced by his or her own Selbstbild, i.e. the way he or she perceives
him- or herself with regard to the respective trait. For example, Sigmund Freud
has keyed the term Projektion (projection), which describes, simply put, one’s
proneness to perceive one’s own conflict-ridden, denied, or repressed emotions in
others rather than in oneself (cf. Freud 1976; for more recent approaches see, for
example, Baumeister, Dale, & Sommer 1998). Such a tendency would, if common,
show in the regression coefficient aYX , i.e. the actor effect in APIM terminology:
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Fig. 4 Theoretical vs. empirical item characteristic curve (example plot for item 24). The dashed
line represents the empirical ICC and the solid line the model derived ICC. Closeness of the two
curves indicates a good model fit

The lower the student’s self-rating, the higher his or her parent’s rating on that
scale, hence a substantial negative regression coefficient would arise. Analoguously,
such an effect might as well appear in the parent’s rating: His or her perception
of the student (�4) would primarily depend on the student’s trait, which should be
expressed in the student’s self-rating (�1), hence we expect a strong path pYX . But
the parent’s Selbstbild might also influence this assessment—for example, because
a parent might feel responsible for the offspring’s development. Hence, a non-zero
path a0

YX might appear as well. Finally, we have to consider that parents and children
are prone to be similar with respect to personality traits as measured by the GT,
reflected by the correlation r�1�3 and which has to be corrected for.

We might therefore expect two strong (in terms of APIM) partner effects (p
and p0) as well as possible (but presumably weaker) actor effects (a and a0),
reflecting the raters’ involvement, like Projektion, for example. Moreover, a non-
zero correlation of the two independent variables or the two dependent variables
might occur as well. For each of the six GT scales, a separate APIM was estimated.
For reasons of saving space, we will present only the results of the Social Resonance
subscale.
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Model Setup

The ConQuest 3.0 software accepts input via a command file. The ASCII-
data file was named gt_res.dat. It comprised 25 columns (one ID and six
items per subscale times four versions in the dyadic framework) with the responses
coded numerically (1 to 6); missing data were coded with 9. Listing 1 shows
the ConQuest command file for the APIM (a line by line explanation of these
commands is given in Table 1 in Appendix “APIM Commands”).

Listing 1 ConQuest Command Script for the APIM (Note that each command has to be
terminated with a semicolon)� �

1 datafile gt_res.dat;
2 format responses 1-24;
3 codes 0,1;
4 recode (1 2 3 4 5 6) (0 0 0 1 1 1);
5 score (0,1) (0,1) () () () !items (1-6);
6 score (0,1) () (0,1) () () !items (7-12);
7 score (0,1) () () (0,1) () !items (13-18);
8 score (0,1) () () () (0,1) !items (19-24);
9 model item;

10 estimate ! storage=RAM, nodes=5, stderr=quick;
11 show parameters!table=3;
12 show parameters!table=2;
13 show ! estimate=mle;
14

15 structural /Dimension_2 on Dimension_1 Dimension_3;
16 structural /Dimension_4 on Dimension_1 Dimension_3;

� �

These commands are stored in a file (named gt_res.cqc) and executed with
the Run > Run all command from the menu bar (GUI version) or via submit
gt_res.cqc; in the command line version.

Results

After submitting the command script to the program, a detailed output listing is
available. The portions of this output relevant for building the APIM and assessing
model fit will be described here.

Building the APIM from the Output One central part of the ConQuest output
concerning the APIM is given in Listing 2. This section is produced by the
structural commands in lines 15 and 16 of the command script.

In this output section we find the regression coefficients for the APIM, i.e.,
the single-headed arrows pYX , aYX , p0

YX , and a0
YX according to Fig. 1, top. These

coefficients can be found in the columns headed Gamma (lines 25–27 and 45–
47 in Listing 2). Another essential part of the APIM, the correlation of the two
independent variables, (rX in Fig. 1, top) can be found in the output section headed
CONDITIONAL COVARIANCE/CORRELATION MATRIX (Listing 3).
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Listing 2 Essential ConQuest Output for the APIM (Part 1a: Regression Coefficients)� �

1

2 STRUCTURAL MODEL
3 ==============================================================================
4

5 MODEL: dimension_2 on dimension_1 dimension_3
6

7 ENDOGENOUS VARIABLES:
8 dimension_2 (latent)
9

10 EXOGENOUS VARIABLES:
11 dimension_1 (observed)
12 dimension_3 (observed)
13

14

15 EQUATION 1
16 --------------------
17 EQ1 N= 600 df=597
18 EQ1 R Squared = 0.23744
19 EQ1 Multiple R = 0.48728
20

21 EQ1 Dependent Variable: dimension_2
22 EQ1 Independent Variable(s):
23 EQ1 Gamma Beta SE
24 ------------------------------------------------------------------------------
25 EQ1 exogenous Constant -0.80118 0.134
26 EQ1 exogenous dimension_1 -0.13523 0.051
27 EQ1 exogenous dimension_3 0.87219 0.064
28 ==============================================================================
29

30 STRUCTURAL MODEL
31 ==============================================================================
32

33 (...lines skipped...)
34

35 EQUATION 1
36 --------------------
37 EQ1 N= 600 df=597
38 EQ1 R Squared = 0.50025
39 EQ1 Multiple R = 0.70728
40

41 EQ1 Dependent Variable: dimension_4
42 EQ1 Independent Variable(s):
43 EQ1 Gamma Beta SE
44 ------------------------------------------------------------------------------
45 EQ1 exogenous Constant -0.54384 0.066
46 EQ1 exogenous dimension_1 0.36862 0.025
47 EQ1 exogenous dimension_3 0.49398 0.031
48 ==============================================================================

� �

Listing 3 Essential ConQuest Output for the APIM (Part 1b: Correlation Coefficients)� �

1 CONDITIONAL COVARIANCE/CORRELATION MATRIX
2

3 Dimension
4 ---------------------------------------------
5 Dimension 1 2 3 4
6

7 Dimension_1 0.053 0.332 0.808
8 Dimension_2 0.022 0.948 0.449
9 Dimension_3 0.235 0.478 0.685

10 Dimension_4 0.542 0.214 0.569
11 -----------------------------------------------------------

� �
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Fig. 5 The APIM approach of modeling other’s assessment taking the Selbstbild into account

In this cut-out we find the estimated covariances (upper triangular matrix) and
the correlations (lower triangular matrix) of the latent factors, i.e. the O�2�`�`0 and the
Or�`�`0 for each pair �` and �`0 . Hence, we may now draw the final diagram of the
APIM (Fig. 5).

Each parameter estimate is of course accompanied by its respective standard
error, facilitating the application of the Wald statistic. Listing 4 presents the example
output for the regression models of our example.

Listing 4 Essential ConQuest Output for the APIM (Part 1c: Regression Coefficients)� �

1 EQUATION 1
2 --------------------
3 EQ1 N= 600 df=597
4 EQ1 R Squared = 0.23744
5 EQ1 Multiple R = 0.48728
6

7 EQ1 Dependent Variable: dimension_2
8 EQ1 Independent Variable(s):
9 EQ1 Gamma Beta SE

10 ------------------------------------------------------------------------------
11 EQ1 exogenous Constant -0.80118 0.134
12 EQ1 exogenous dimension_1 -0.13523 0.051
13 EQ1 exogenous dimension_3 0.87219 0.064
14 ==============================================================================
15

16 EQUATION 2
17 --------------------
18 EQ2 N= 600 df=597
19 EQ2 R Squared = 0.50025
20 EQ2 Multiple R = 0.70728
21

22 EQ2 Dependent Variable: dimension_4
23 EQ2 Independent Variable(s):
24 EQ2 Gamma Beta SE
25 ------------------------------------------------------------------------------
26 EQ2 exogenous Constant -0.54384 0.066
27 EQ2 exogenous dimension_1 0.36862 0.025
28 EQ2 exogenous dimension_3 0.49398 0.031
29 ==============================================================================

� �

In order to obtain a test statistic for evaluating the null hypothesis that the
parameter is zero, we have to divide the estimate by its standard error, yielding
a standard normal variate. For example, to test the regression coefficient 	�2�1 for
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significance, we compute �0:135=0:051 D �2:647, the absolute value of which
is larger than the 95 % quantile of the standard normal. Hence the coefficient is
significantly different from zero (as are all coefficients of this model). However,
because the sample size of the present data set has been fixed arbitrarily to 600,
such a test is not informative in our case.

Interpretation We find two distinct partner effects (pYX D 0:463 and p0
YX D

0:833). These results suggest effects of the personality of the target person (reflected
in the students’ and parents’ self-description, �1 and �3) on the respective other’s
assessment. In contrast, the students’ actor effect is close to zero (aYX D 0:031),
hence there is no evidence for the assumption of Projektion (as regards students)
as has been hypothesized. However, the parents’ actor effect is comparably large
(aYX D 0:602), which might be taken as an indicator for parental feelings of
responsibility. The parameter r�2�4 D 0:2 shows that the ratings of the respective
other are nearly uncorrelated, when taking the actor and partner effects into
consideration.

Assessment of Model Fit As was noted above, the MRCMLM also allows for
a multifaceted assessment of model fit. First of all, ConQuest supports the
item mean square statistics Outfit (Unweighted Mean Square Statistic) and Infit
(Weighted Mean Square Statistic). Basically, these are measures of discrepancy
between observed and expected responses. Model fit is indicated by values close
to one for either statistic (for details see Wright & Stone 1979). Listing 8 in
Appendix “APIM Item Fit Indices” presents the model fit segment of the output.
Generally, item fit is not convincing in our case, as many of the indexes lie outside
the given confidence intervals (and, correspondingly, have t-values larger than 2).

Furthermore, the parameter estimates allow for expressing a reliability coefficient
comparable to the one from classical test theory (cf. ConQuest manual, Wu,
Adams, Wilson, & Haldane, 2007, p. 160). Listing 5 shows the original program
output regarding this “Andrich-Reliability.” It seems that all four latent constructs
have low reliability, possibly a consequence of data dichotomization. Due to the
artificial nature of the data, we will refrain from further interpretating this result.

Listing 5 Essential ConQuest Output for the APIM (Part 3: Scale Reliability)� �

1 RELIABILITY COEFFICIENTS
2 ------------------------
3

4 Dimension: (Dimension_1)
5 MLE Person separation RELIABILITY: 0.346
6 ------------------------
7

8 Dimension: (Dimension_2)
9 MLE Person separation RELIABILITY: 0.456

10 ------------------------
11

12 Dimension: (Dimension_3)
13 MLE Person separation RELIABILITY: 0.393
14 ------------------------
15

16 Dimension: (Dimension_4)
17 MLE Person separation RELIABILITY: 0.394
18 ------------------------

� �
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Fig. 6 The final APIM based on the MRCMLM

A measure of item fit is based on the comparison of observed and model derived
ICC. The program delivers one such plot per item, one of which is shown in Fig. 6.

The horizontal axis shows the latent trait (�) in the interval Œ�4;C4� (covering
the most frequently obtained values). The solid line is the expected probability of a
positive response to item i, i.e. P.Xvi D 1/ according to Eq. (2) for �v 2 Œ�4;C4�,
and the dotted line is the relative frequency of Xvi D 1 for all observed score groups
(also called the empirical ICC). The closeness of the two lines is an expression of
model fit.

The CFM Approach

We now discuss the correlation of the self-descriptions and the descriptions of
the respective other more generally. We could assume that the complex processes
within the family (here considering the dyad of two family members only) form the
common background for developing a personality (�1 and �3) on the one hand and
also establishing a common background for the perception of the family member
(�2 and �4), on the other hand. Of course, individual components not captured by
the correlation on the dyadic level may play an important role as well. These are
expressed by the correlation coefficients of the residuals as described in section “The
CFM in Terms of an MRCMLM”. The MRCMLM directly delivers an estimation of
the dyadic correlation coefficient with the (standardized) entries of the covariance
matrix (6), while the individual level correlation coefficients require a little bit of
craftsmanship.

Model Setup

The command script for the MRCMLM formulation of the CFM is similar to the
previous script. However, the assignment of items to latent factors differs as we now
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just use two latent factors for all self-description items on the one hand and the items
expressing the partners’ assessments, on the other hand (lines 5–8 in Listing 6).

Listing 6 ConQuest Command Script for the CFM� �

1 datafile gt_res.dat;
2 format responses 1-24;
3 codes 0,1;
4 recode (1 2 3 4 5 6) (0 0 0 1 1 1);
5 score (0,1) (0,1) () !items (1-6);
6 score (0,1) () (0,1) !items (7-12);
7 score (0,1) (0,1) () !items (13-18);
8 score (0,1) () (0,1) !items (19-24);
9 model item;

10 estimate ! storage=RAM, nodes=5, stderr=quick;
11 show parameters!table=3;
12 show parameters!table=2;
13 show ! estimate=mle;
14 show residuals ! estimates=wle >> resid.txt;

� �

In line 14 of Command Script 6 the residuals are written into a file named
resid.txt. These residuals are used to compute the individual level correlation
coefficients rA and rB. In the present example, students and parents have responded
to the same items. In order to take this mapping into account, we compute the
correlation coefficients of the associated residuals (i.e., item 1 of student/self with
item 1 of student ! parent, etc.). The items within one block (e.g., all items
regarding the self-rating of the student) are assumed to measure unidimensional.
As a consequence, the residuals of each block represent the individual information
not covered by the latent scales �X and �Y . We therefore compute the average
of the correlation coefficients (cf. Monin & Oppenheimer 2005) across items per
individual in order to obtain the desired coefficients rA and rB (cf. ellipses in Fig. 7;
for technical details see Appendix “Extracting the Individual Level Correlation
Coefficients”).

Results

The essential output providing the CFM coefficients is given in Listing 7, where
we find the estimated covariance (upper triangular matrix) and the correlation
coefficient (lower triangular matrix) of the latent factors, i.e. the O�2�`�`0 and the Or�`�`0
for each pair �` and �`0 . The bottom line contains the estimated variances of each
latent variable, O�2�` , with the corresponding standard errors in brackets.

In this output we find that Or�1�2 D 0:501, indicating a medium sized correlation
of the two latent constructs. Again, we may apply the Wald statistic to test whether
this coefficient differs significantly from zero.
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Fig. 7 Structure of the correlation matrix of the residuals

Listing 7 Essential ConQuest Output for the CFM (Part 1: Latent Correlation)� �

1 CONDITIONAL COVARIANCE/CORRELATION MATRIX
2

3 Dimension
4 ------------------------------------
5 Dimension 1 2
6

7 Dimension_1 0.489
8 Dimension_2 0.501
9 -------------------------------------------------------------

10 Variance 0.799 ( 0.046) 1.196 ( 0.069)
11 -------------------------------------------------------------
12 An asterisk next to a parameter estimate indicates that it is constrained
13 Values below the diagonal are correlations and values above are covariances
14 =============================================================

� �

Next, we have to extract the residual correlations within individuals (student and
parent, indicated by dashed double headed arrows in Fig. 7). For that purpose we
have to evaluate the residuals stored in the external file, as has been done in line 14
of Listing 6. The necessary steps are explained in Listing 9 in Appendix “Extracting
the Individual Level Correlation Coefficients”, resulting in r.Student/

XY D �0:017 and

r.Parent/
XY D �0:010.
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Interpretation Interestingly, we find for Social Resonance only a dyadic correla-
tion, while the two individual level correlation coefficients are in fact zero. From
this, we could conclude that the common factors reflecting familial bonds seem
to predominantly explain the agreement of self-description and other’s assessment.
Because of the nature of the data used for this analysis, we will again refrain from
an in-depth interpretation of this evidence.

Assessment of Model Fit Model fit may be assessed in the same way as in the
APIM. The item fit indices (Listing 10 in the Appendix) indicate that a few items
do not fit and thus require further investigation. The Scale Reliability Coefficient for
the self-rating latent scale was 0:401 and the value for the other’s rating was 0:512.
Both indicate slightly better fit than the scales constructed in the APIM. This could
be an effect of scale length, as each latent factor comprises 12 items in the CFM,
while there were only six items per scale in the APIM.

The ICC analysis would involve inspection of one plot per item, which is omitted
here. Over all, acceptable model fit seems within range.

Discussion

The present contribution has demonstrated how two models of dyadic data analysis,
the APIM and the CFM, can be cast in terms of a multidimensional Rasch Model,
the MRCMLM. These two approaches have been conducted, yet many more could
be conceived of. The common denominator is that the constructs of interest are not
measured directly but rather with a set of variables each. These manifest variables
are—as is often the case in social research—dichotomous or ordered categorical.
Using the MRCMLM, a discrete probability model, we estimate a latent factor for
each such construct. The relationships of these latent factors are then modeled in the
latent domain.

Of course, one could argue that the SEM approach is readily applicable to
ordinal or (ordered) categorical data as well by setting up an appropriate covariance
matrix, using tetra- or polychorical correlation coefficient estimates. This argument
definitely applies, but we must bear in mind that this extra step requires larger
samples than the standard product-moment correlation coefficient for interval scaled
variables (at least if standard maximum likelihood estimation is applied, which is
usually the case; cf. Choi, Peters, & Mueller 2010). Alternatively, one may regard
the category codings as valid quantifications of response categories assumed to be
evenly spaced, hence assuming to work with coarsely categorized interval scaled
variables in the sense of Bollen and Barb (1981). However, distributional issues
may still arise then. If so, a Weighted ML Estimation Method is available, involving
the estimation of the fourth moments. These require, for k items, the computation of
a covariance matrix consisting of .k4 C 2k3 C k2/=4 elements. Such a matrix would
require a large number of observations to attain estimates with sufficient precision.
Note that this argument also applies to data measured on an interval scale, when the
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distributional assumptions are unclear. Hence, we may apply SEM by all means to
(ordered) categorical data. However, the approach presented here treats such data in
a much more natural manner, as it deliberately models the way, a latent response
propensity � is transformed into a response probability P .xvij.�//. One advantage of
this approach is that departures from the postulated link function can be detected, as
has been exemplified in Fig. 6.

The MRCMLM applies the marginal maximum likelihood parameter estimation
method, which assumes the person parameters to follow a certain distribution,
usually the normal [cf. Eq. (5)]. Such an assumption may not necessarily hold (cf.
Blanca, Arnau, López-Montiel, Bono, & Bendayan 2013; Micceri 1989), which
might introduce an estimation bias. However, this assumption is a consequence of
the applied estimation method, not of the model itself. Rasch Models not including
a background structure as introduced in Eq. (4) support the conditional parameter
estimation technique (Andersen 1970 1980), even in the multidimensional case
(Andersen 1977). The CML estimation method conditions on the sufficient statistics
of the incidental (in the sense of Neyman & Scott 1948) parameters and thus makes
no distributional assumptions at all (for a comparison of MML and CML, see Adams
& Wu, 2007, pp. 68–69). Moreover, the CML approach facilitates a model test
(Andersen 1973), allowing for a rigid assessment of model fit.

When applying the APIM, researchers may be particularly interested in esti-
mating two ratio parameters k D p=a and k0 D p0=a0 with p/p0 representing
the respective partner effects and a/a0 representing the according actor effects (cf.
Fig. 4). The ratios k and k0 can be used to describe specific patterns in the APIM
(e.g., k D 1 refers to a couple pattern, k D �1 refers to a contrast pattern, and k D 0

refers to an actor-only pattern). Kenny and Ledermann (2010) proposed a phantom
variable approach to estimate k along with its standard error in the SEM context, thus
allowing for a significance test of k as well. A merely descriptive value of k may be
obtained with the estimated coefficients 	 from the standard MRCMLM output.

One valuable option has not been incorporated in the presented examples: Each
model could be enhanced with a background population model, thus controlling the
latent variables for background variables (like age or socio-economic information,
for example). Further extensions would consider non-distinguishable dyads or more
complex designs (like the One-with-Many Design, taking more than two individuals
into account).

While our examples have only dealt with dichotomous data, the full bandwith
of IRT models for polytomous categorical data is readily available. Furthermore,
one could drop the assumption of parallel trace lines and include a discrimination
parameter in the model equation, thus explicitly capturing differing item character-
istics within the items of a scale as well. Such extensions would allow for a wider
range of items to be used.

Altogether, the presented approach provides a powerful framework for the
complex requirements of dyadic data modeling, taking both scale and distributional
requirements into account.

Acknowledgements I am indebted to Paul Czech for his assistance during data acquisition of the
students’ sample.
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Technical Appendix

APIM Commands

Table 1 Description of ConQuest commands regarding the APIM

Line Command

1 Where to read the data

2 Which columns contain the item response data

3 Valid codes for estimation (entries other than those listed here are treated as missing
values)

4 Dichotomize codings: 1, 2, 3 = 0; 4, 5, 6 = 1

5 Matrix B: assign items 1–6 to first latent factor (A self)

6 Matrix B: assign items 7–12 to second latent factor (A w.r.t. B)

7 Matrix B: assign items 13–18 to third latent factor (B self)

8 Matrix B: assign items 19–24 to fourth latent factor (B w.r.t. A)

9 Estimate one item parameter (i.e. no thresholds required after dichotomization).
A PCM would require model item + item*step; and the RSM model
item + step;.

10 Estimation details

11–13 Output details

15–16 Regression coefficients as indicated by the APIM
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APIM Item Fit Indices

Listing 8 Item Fit Indices for the APIM� �

1 ----------------------------------------------------------------------------------
2 VARIABLES UNWEIGHTED FIT WEIGHTED FIT
3 ------------ ----------------------- -----------------------
4 item ESTIMATE ERROR^ MNSQ CI T MNSQ CI T
5 ----------------------------------------------------------------------------------
6 1 1 -1.452 0.083 1.23 ( 0.89, 1.11) 3.8 1.08 ( 0.79, 1.21) 0.8
7 2 2 0.688 0.070 0.83 ( 0.89, 1.11) -3.1 0.87 ( 0.92, 1.08) -3.1
8 3 3 0.137 0.072 1.08 ( 0.89, 1.11) 1.4 1.14 ( 0.90, 1.10) 2.6
9 4 4 0.147 0.072 1.23 ( 0.89, 1.11) 3.7 1.23 ( 0.90, 1.10) 4.1

10 5 5 -0.124 0.074 1.04 ( 0.89, 1.11) 0.7 1.08 ( 0.88, 1.12) 1.2
11 6 6 0.604* 0.167 0.81 ( 0.89, 1.11) -3.5 0.84 ( 0.91, 1.09) -3.7
12

13 7 7 5.097 0.112 4.68 ( 0.88, 1.12) 33.7 1.25 ( 0.63, 1.37) 1.3
14 8 8 -2.283 0.095 0.51 ( 0.88, 1.12)-10.2 0.75 ( 0.83, 1.17) -3.1
15 9 9 -0.872 0.086 1.19 ( 0.88, 1.12) 2.9 1.15 ( 0.88, 1.12) 2.2
16 10 10 -0.407 0.084 0.96 ( 0.88, 1.12) -0.7 0.97 ( 0.89, 1.11) -0.4
17 11 11 -0.243 0.084 1.05 ( 0.88, 1.12) 0.8 1.06 ( 0.89, 1.11) 1.1
18 12 12 -1.291* 0.208 0.72 ( 0.88, 1.12) -5.2 0.91 ( 0.87, 1.13) -1.4
19

20 13 13 -2.731 0.121 0.20 ( 0.87, 1.13)-18.4 0.70 ( 0.35, 1.65) -0.9
21 14 14 0.965 0.085 1.03 ( 0.87, 1.13) 0.4 1.03 ( 0.91, 1.09) 0.6
22 15 15 -0.776 0.103 0.53 ( 0.86, 1.14) -8.3 0.83 ( 0.76, 1.24) -1.4
23 16 16 1.097 0.084 0.96 ( 0.87, 1.13) -0.6 0.96 ( 0.91, 1.09) -1.0
24 17 17 1.189 0.084 1.18 ( 0.87, 1.13) 2.5 1.10 ( 0.91, 1.09) 2.1
25 18 18 0.257* 0.216 1.09 ( 0.87, 1.13) 1.4 1.05 ( 0.87, 1.13) 0.7
26

27 19 19 3.173 0.116 3.72 ( 0.87, 1.13) 24.2 1.25 ( 0.80, 1.20) 2.3
28 20 20 -0.171 0.096 1.03 ( 0.87, 1.13) 0.4 0.97 ( 0.89, 1.11) -0.5
29 21 21 -0.469 0.099 0.99 ( 0.87, 1.13) -0.1 1.02 ( 0.87, 1.13) 0.3
30 22 22 -0.484 0.099 0.84 ( 0.87, 1.13) -2.5 0.91 ( 0.87, 1.13) -1.5
31 23 23 -0.116 0.096 0.95 ( 0.87, 1.13) -0.7 1.00 ( 0.89, 1.11) 0.0
32 24 24 -1.934* 0.227 0.59 ( 0.87, 1.13) -7.0 0.86 ( 0.75, 1.25) -1.1
33 ----------------------------------------------------------------------------------
34 An asterisk next to a parameter estimate indicates that it is constrained
35 Separation Reliability = 0.997
36 Chi-square test of parameter equality = 5051.19, df = 20, Sig Level = 0.000
37 ^ Quick standard errors have been used
38 ==================================================================================

� �

item: Item number and label; as no label has been provided, the item number is
repeated.

ESTIMATE: Item parameter estimate; in the dichotomous case, this is the item
difficulty parameter [ıi according to Eq. (1)]. To identify a latent scale, one item
per latent dimension is fixed (indicated by an asterisk). By default, ConQuest
sets the sum of the item parameters per latent dimension to zero (e.g.: �1:452C
0:688 C 0:137 C 0:147 C .�0:124/ C 0:604 D 0). This could be overridden
with the command set constraint=cases, causing the mean of the latent
variable to be fixed at zero.

ERROR: Standard error of item difficulty parameter.
MNSQ: Outfit (UNWEIGHTED FIT) and Infit (WEIGHTED FIT) Index.
CI: The 95 % confidence interval for the expected value (i.e., 1) of Infit and

Outfit.
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T: The t-statistic for the null hypothesis that the Outfit and Infit Index is 1. Values
larger than 2 may be considered significant at the 95 % level (corresponds to
MNSQ outside the CI).

Extracting the Individual Level Correlation Coefficients

To obtain the individual level correlation coefficients, we use the residuals stored
in resid.txt. This file contains 600 lines and 25 columns. The first column
is a numerical dyad identifier, followed by four groups of six columns each,
comprising the residuals to the respective six items of student/self, student w.r.t
parent, parent/self and parent w.r.t student. Any multi-purpose statistics software
can be used to obtain the individual level correlation coefficients. We will resort to
the R software (R Core Team 2014) for it is freely available (open source) and easy
to use. The following script will perform the required steps:

Listing 9 R Script for Computing the CFM Individual Level Correlation Coefficients� �

1 d0 = read.table(file="resid.txt")
2 d0[d0==-99] = NA
3 colnames(d0) = c("id",paste("stud" ,1:6,sep="")
4 ,paste("studpar",1:6,sep="")
5 ,paste("par" ,1:6,sep="")
6 ,paste("parstud",1:6,sep=""))
7

8 r0 = cor(d0[,-1],use="pair")
9

10 ra = r0[1:6,7:12]
11 rb = r0[13:18,19:24]
12

13 r2z = function(r) 0.5 * log( (1+r)/(1-r) )
14 z2r = function(z) (exp(2*z)-1) / (exp(2*z)+1)
15

16 z2r( mean(r2z(ra)) )
17 z2r( mean(r2z(rb)) )

� �

The ten statements of Listing 9 perform the following operations:

• In line 1 of the script, we read the content of the file resid.txt and store it in
a data.frame named d0.

• Then (line 2) we transform the missing values (ConQuest codes them with -99
by default) to the R missing indicator NA.

• In lines 3–6, the columns obtain more informative variable names (the output file
contains no header, therefore, R uses the generic names V1 to V25 by default).
This step is merely cosmetic and may as well be omitted.

• Next (line 8), we compute the 25�25 correlation matrix of all residuals (omitting
the id variable stored in column 1). A schematic view of this matrix is given in
Fig. 8.



Analyzing Dyadic Data with IRT Models 199

Fig. 8 The final CFM

• In line 10, we cut out blocks of correlation coefficients of the residuals of the
students’ self-description items with the columns covering the residuals of the
students’ assessments of the respective parents (rows 1–6/columns 7–12; grey
shaded area termed rA in Fig. 8).

• Analoguously, in line 11, we cut out the correlation coefficients of the residuals
of the parents’ self-assessment items with the residuals of the items covering
the parents’ assessments of the respective students (rows 13–18/columns 19–24;
grey shaded area termed rB in Fig. 8).

• In lines 13 and 14 we prepare two functions, transforming a correlation coef-
ficient to a Fisher’s Z-value (r2z) and backtransforming the latter into a
correlation coefficient again (z2r). These functions could easily be enhanced
to detect invalid input and issue a corresponding message.

• Finally (lines 16 and 17), we apply the Z-transformation to the two matrix parts,
compute the mean and backtransform it to a valid correlation coefficient.

With these steps, we dispose of all required information to draw the complete
CFM, depicted in Fig. 7.
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CFM Item Fit Indices

Listing 10 Item Fit Indices for the CFM� �

1 ----------------------------------------------------------------------------------
2 VARIABLES UNWEIGHTED FIT WEIGHTED FIT
3 ------------ ----------------------- ------------------------
4 item ESTIMATE ERROR^ MNSQ CI T MNSQ CI T
5 ----------------------------------------------------------------------------------
6 1 1 -1.036 0.093 1.08 ( 0.89, 1.11) 1.3 1.02 ( 0.80, 1.20) 0.2
7 2 2 0.873 0.073 0.85 ( 0.89, 1.11) -2.7 0.89 ( 0.93, 1.07) -3.2
8 3 3 0.389 0.076 1.12 ( 0.89, 1.11) 2.1 1.10 ( 0.91, 1.09) 2.1
9 4 4 0.394 0.076 1.06 ( 0.89, 1.11) 1.0 1.08 ( 0.91, 1.09) 1.8

10 5 5 0.139 0.079 0.97 ( 0.89, 1.11) -0.5 0.99 ( 0.89, 1.11) -0.2
11 6 6 0.773 0.074 0.89 ( 0.89, 1.11) -2.0 0.90 ( 0.92, 1.08) -2.7
12 7 7 4.485 0.140 1.64 ( 0.88, 1.12) 9.0 1.19 ( 0.57, 1.43) 0.9
13 8 8 -1.587 0.103 0.63 ( 0.88, 1.12) -7.1 0.88 ( 0.84, 1.16) -1.5
14 9 9 -0.503 0.088 0.98 ( 0.88, 1.12) -0.3 1.03 ( 0.90, 1.10) 0.5
15 10 10 -0.148 0.085 0.90 ( 0.88, 1.12) -1.7 0.92 ( 0.91, 1.09) -1.9
16 11 11 -0.023 0.084 1.07 ( 0.88, 1.12) 1.1 1.08 ( 0.92, 1.08) 1.8
17 12 12 -0.823 0.091 0.70 ( 0.88, 1.12) -5.7 0.80 ( 0.89, 1.11) -3.7
18 13 13 -3.056 0.116 0.39 ( 0.87, 1.13)-11.8 0.86 ( 0.28, 1.72) -0.3
19 14 14 0.693 0.081 1.07 ( 0.87, 1.13) 1.0 1.04 ( 0.91, 1.09) 0.8
20 15 15 -0.968 0.099 0.74 ( 0.86, 1.14) -4.1 0.92 ( 0.76, 1.24) -0.6
21 16 16 0.830 0.081 1.11 ( 0.87, 1.13) 1.5 1.06 ( 0.92, 1.08) 1.4
22 17 17 0.924 0.080 1.07 ( 0.87, 1.13) 1.0 1.05 ( 0.92, 1.08) 1.3
23 18 18 0.046* 0.283 1.04 ( 0.87, 1.13) 0.5 1.05 ( 0.87, 1.13) 0.8
24 19 19 2.933 0.116 3.88 ( 0.87, 1.13) 25.2 1.36 ( 0.79, 1.21) 3.1
25 20 20 -0.423 0.095 0.95 ( 0.87, 1.13) -0.8 0.93 ( 0.90, 1.10) -1.4
26 21 21 -0.712 0.098 1.09 ( 0.87, 1.13) 1.3 1.08 ( 0.88, 1.12) 1.3
27 22 22 -0.727 0.098 1.02 ( 0.87, 1.13) 0.4 1.01 ( 0.88, 1.12) 0.2
28 23 23 -0.371 0.095 0.99 ( 0.87, 1.13) -0.1 1.00 ( 0.90, 1.10) 0.1
29 24 24 -2.100* 0.333 0.80 ( 0.87, 1.13) -3.2 0.99 ( 0.76, 1.24) -0.1
30 ----------------------------------------------------------------------------------
31 An asterisk next to a parameter estimate indicates that it is constrained
32 Separation Reliability = 0.996
33 Chi-square test of parameter equality = 3697.27, df = 22, Sig Level = 0.000
34 ^ Quick standard errors have been used
35 =================================================================================

� �

For an explanation of the column headings see Appendix “APIM Item Fit
Indices”.
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Longitudinal Analysis of Dyads Using Latent
Variable Models: Current Practices
and Constraints

Heather M. Foran and Sören Kliem

Abstract Interdependencies between dyads have long been recognized and taken
into account in the analysis of partnership and marital data. However, most of the
research that has examined dyadic influences is based on cross-sectional data or
basic longitudinal models. When more complex longitudinal models are examined,
several limitations and barriers arise. In this chapter, some of the practical issues
with dyadic analyses of multi-time point samples will be discussed. In particular,
we discuss (1) applications of latent growth curve mixture modeling trajectories of
intimate partner relationship adjustment and (2) latent difference score modeling
associations between relationship adjustment and depressive symptoms over time.
A 4-year longitudinal sample of 237 families assessed over six time points will be
used to illustrate these practical issues.

Why Are Intimate Relationships Important to Study?

Intimate relationships are among the most important contributors to well-being and
life satisfaction. Although there are a number of important relationships, those
with an intimate adult partner appear to play a particularly important role in
psychological, physical, and economic well-being (e.g., Fincham & Beach 2010).
Individuals in a satisfying intimate relationship or marriage experience better
psychological health, economic security, and decreased risk for physical illnesses
(Beach & Whisman 2013). Moreover, ending an intimate relationship through
separation or divorce is one of the biggest risk factors for major depression and
suicidality (e.g., Amato 2010; Sbarra, Law, & Portley 2011).

Accordingly, understanding what factors contribute to relationship satisfaction
and long-term relationship success has been an area of research interest for many
decades. This chapter focuses on longitudinal research concerning intimate couples

H.M. Foran (�)
Ulm University, Ulm, Germany
e-mail: heather.foran@uni-ulm.de

S. Kliem
Criminological Research Institute of Lower Saxony, Hanover, Germany

© Springer International Publishing Switzerland 2015
M. Stemmler et al. (eds.), Dependent Data in Social Sciences Research, Springer
Proceedings in Mathematics & Statistics 145, DOI 10.1007/978-3-319-20585-4_9

203

mailto:heather.foran@uni-ulm.de


204 H.M. Foran and S. Kliem

and methodological approaches to these analyses (i.e., other dyads are not discussed,
friendship pairs, parent–child dyads, or triads). Also not included in this chapter are
daily diary studies as this represents a related yet distinct subset of longitudinal
research with couples (e.g., Ferrer & Nesselroade 2003; Ferrer & Widaman 2008).
In particular, this chapter focuses on longitudinal studies with multiple time points
(i.e., in which it is possible to examine change over time) using a structural equation
modeling framework.

History of Couple Longitudinal Research:
Two Interdependencies

Repeated Measures

Prior to the mid-1990s, there were many studies examining couple processes but
very few longitudinal studies of change. Typically, studies only measured relation-
ship adjustment at one time point and measured other variables at a second time
point. There was little use of repeated measures in research and very few samples
of couples were followed over longer periods. In the seminal review of Karney
and Bradbury (1995a), many of these methodological issues were highlighted. The
authors reviewed 115 studies representing 68 separate samples in which marital
processes were examined with two or more time points dating back as far as 1946.
Of the 115 studies reviewed, 70 % used either zero-order correlations, t-tests, or
analysis of variance (ANOVA). One-third of these studies examined the bivariate
correlation between time 1 and a later time point and ignored any time point data in-
between, if it was assessed. Another third of the studies (n D 37) used residualized
change regression models in which a time-2-dependent (Y) variable was predicted
by a time-1-independent (X) variable controlling for the time-1 Y variable. t-tests
were used in 16 studies and 28 studies used ANOVAs (not repeated measures
ANOVA). Of the 115 published studies, only 15 studies had longitudinal data in
which at least three time points were assessed. However, none of these studies used
growth curve analyses and frequently the same variable was not assessed at each
time point.

Growth curve analyses were introduced to the couple research area with key
papers in the 1990s (Barnett, Marshall, Raudenbush, & Brennan 1993; Karney &
Bradbury 1995b; Raudenbush, Brennan, & Barnett 1995). Although these tech-
niques were developed much earlier (e.g., Rogosa, Brandt, & Zimowski, 1982), they
were not widely used by applied researchers until software programs that supported
their use were introduced (Bryk, Raudenbush, & Congdon 1996; Raudenbush, Bryk,
& Congdon 2000, HLM software) paralleling movement in the broader psychology
field of longitudinal psychological research in which longitudinal change processes
were given more in-depth consideration (see Collins & Sayer 2001; Little, Schnabel,
& Baumert 2000).
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Although growth curve modeling was possible with either structural equation
modeling approaches or multi-level modeling approaches, much of the work in
the couples field has been done from a multi-level modeling approach. This is
likely due to the influence of applied methodology research papers in the couple
field that described the multi-level modeling approach (via HLM software) (Karney
& Bradbury 1995b) and early papers demonstrating this approach with couples
(e.g., Barnett et al. 1993). Further, sample sizes tended to be small, and multi-level
modeling could be used with small sample sizes (e.g., Maas & Hox 2005), whereas
recommendations for structural equation modeling required larger sample sizes.
Hence, applications using a MLM approach, particularly with HLM software, have
dominated the analysis of dyads. We return to this issue in the next section where
we will further discuss differences between MLM and SEM approaches, but before
doing so, we introduce the second type of independence relevant for longitudinal
dyadic analyses.

Nesting Within Couples

Around the same time as independence due to repeated measures, the issue of
interdependence between members of a dyad began to be recognized as an important
methodological problem for couple research. Kenny and colleagues introduced this
issue to the broader couple research field with several papers and a commonly cited
book (“Dyadic Data Analysis”; Kenny 1995; Kenny, Kashy, & Cook 2006; see
also Atkins 2005). Analysis of dyads overcame some of the limitations related to
analyzing members of a couple separately including a loss of degrees of freedom,
biased standard errors (F- and t-tests), and incorrect p-values (vulnerability to both
Type 1 and Type 2 errors) which can lead to biased estimates of the relationships in
terms of correlations and regression weights, for example.

Several models were introduced as ways to handle dyadic analysis (actor partner
independence model (APIM); Kenny & Cook 1999), mutual influence model
(Kenny 1996), and the common fate model (Kenny & La Voie 1984). Of these,
the APIM has been the most widely used in couple research (Ledermann & Kenny
2012). This is a model in which both actor effects and partner effects can be tested
simultaneously and this has been applied in the couple research area to heterosexual
couples in which they are considered “distinguishable dyads” due to gender. Other
approaches were introduced and can be applied to analysis with homosexual couples
(called “indistinguishable dyads”).

Notably, much of the work using the APIM approach has been cross-sectional
or across two time points. For example, Cook and Kenny (2005) applied the APIM
model to a two-time point model of attachment. The APIM model can be applied
through use of either multi-level models or structural equation modeling approaches
in which the interdependencies between husband and wife scores can be modeled.

The mutual influence model differs from the APIM model in that it assumes that
there is bidirectional causation in the outcome variable such that each member of
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the couple directly influences the other member (Y1 $ Y2). To test this model in
an SEM framework, one assumes that there are no partner effects (paths between
partner 1 X and partner 2 Y variables) and that there are bidirectional paths between
partner 1 and partner 2 Y1 and Y2 outcome variables. Kenny and colleagues
describe this model as most plausible in the situation in which independent variables
X1 and X2 are individual difference variables and outcome variables Y1 and Y2
are couple variables. In other words, X1 and X2 should show little within-partner
correlations (e.g., a personality trait) whereas Y1 and Y2 should show a high within-
partner correlation (e.g., relationship satisfaction). This model could be used for
longitudinal data analysis as well, but has seldom been tested in couples research.
We suspect there are several reasons why this model is often not used: it is less
known, it is analytically more complex compared to the APIM model, and it is less
applicable theoretically (i.e., partner effects occur often).

The common fate model is another alternative to dyadic analysis, but, similar to
the mutual influence model, it is rarely used for couple longitudinal analysis. In this
model, one or more latent factors are included and are indicated by each member’s
scores on some measured variable. There are various versions of the common fate
model which vary in the number of latent variables and how the individual unique
effects and dyadic effects are modeled (see Griffin & Gonzalez 1995; Kenny et al.
2006). The common fate model assumes that some common unmeasured factor
explains both partner’s scores on a measured variable and that unaccounted variance
reflects each member’s “uniqueness” or individual effects. This model has high
applicability for understanding dyadic constructs but is rarely used in either cross-
sectional or longitudinal models (see Ledermann & Kenny 2012). An advantage
of the common fate model for longitudinal analysis is that it can result in a less
complex longitudinal model compared to modeling growth curves of each partners
as is the case in the APIM model.

MLM Versus SEM

Although the focus of the current article is on applications of the SEM approach
to longitudinal dyadic analysis, we briefly note some of the differences between
the MLM and SEM approaches (see also Kashy & Donnellan 2008). As mentioned
above, the MLM approach to dyadic longitudinal analysis has been more extensively
used and reviewed (see Atkins 2005; Karney & Bradbury 1995b; Raudenbush et al.
1995). It should be noted that longitudinal data analysis estimation via MLM can
yield the same results as SEM growth modeling across a wide range of models
if certain constraints are imposed (e.g., Bauer 2003; Curran 2003; Wu, Selig, &
Little 2012). Regarding couple research data, the SEM and MLM approaches were
compared using cross-sectional data with a sample of N D 348 couples (Wendorf
2002). Wendorf (2002) illustrated that one can obtain identical results with the MLM
and SEM approaches to dyadic analyses with cross-sectional data if the SEM model
is simplified to a MLM format (i.e., assumes no measurement error in the predictors
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or covariates and constrains the error variances to be equal across all measurement
points). However, as far as we are aware, there have been no direct comparisons with
longitudinal dyadic data, although there are comparisons of longitudinal non-dyadic
data (Chou, Bentler, & Pentz 1998; MacCallum, Kim, Malarkey, & Kiecolt-Glaser
1997).

Although SEM can be used to match the MLM modeling, there are several
extensions that SEM affords (see Wendorf 2002). For example, SEM provides more
flexibility in modeling choices, especially for analyzing types of relationship that
cannot be modeled using MLM (Hox & Stoel 2005; Hoyle & Gottfredson 2015; Wu
et al. 2012). With MLM one can only model one dependent variable (e.g., husbands’
depressive symptoms) whereas with SEM one can model multiple (correlated)
dependent variables (e.g., both husbands’ and wives’ depressive symptoms) and
possible interrelationships simultaneously and account for their residual covariance.
In other words, MLM models cannot address how trajectories of one variable relate
to another over time (Kouros & Cummings 2011). In addition, MLM assumes
no measurement error in predictors (exogenous variables in SEM terminology),
whereas SEM allows measurement error to be modeled.

Using MLM software, on the other hand, has several other benefits such as:
(a) including additional levels of nesting (e.g., individuals nested in groups), (b)
including time-varying (with random effects) or time-invariant covariates to the
model, and (c) handling non-continuous dependent variables is straightforward
(Hox & Stoel 2005; Wu et al. 2012). Furthermore, MLM can handle designs with a
large number of unequal intervals between assessment points (Mehta & West 2000).

Dearth of Longitudinal Dyadic Peer-Reviewed Method Papers

In addition, methodological articles in which the latent variable approach was
applied to couple longitudinal research have been scarce and this may also partially
explain the less frequent use in longitudinal couple research. There were some
early applications in which growth curve modeling of couples was conducted with
structural equation modeling (Kurdek 2005). Kurdek (2005) modeled both husband
and wife growth curves simultaneously over four time points representing 4 years.
The authors predicted the intercepts and slopes of the husband and wife growth
curves using time-1 latent variables. In total, the authors tested four separate models
with different time-1 latent variables (psychological distress, marital satisfaction,
attributions, or social support). The authors modeled the error covariances between
adjacent time points and between spouses at each time point. In addition, the authors
tested gender differences by comparing model fit (4¦2) between constrained
models in which intercept and slope effects were equal across gender versus freely
estimated.

In methodological journals, dyadic analysis is rarely addressed. In Structural
Equation Modeling: A Multidisciplinary Journal through 2013, only five papers
were found that addressed dyadic analysis and only two of these discussed
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longitudinal data (Newsom 2002; Peugh, DiLillo, & Panuzio 2013). One paper was
on state-space modeling of dyadic daily data (Song & Ferrer 2009), one compared
SEM and HLM with cross-sectional data (Wendorf 2002), and one discussed APIM
mediation with cross-sectional data (Ledermann, Macho, & Kenny 2011).

In Psychological Methods, only one paper has been published about analysis of
distinguishable dyads (Loeys & Molenberghs 2013). In this paper, the authors apply
the APIM model to cross-sectional data using a categorical outcome. Similarly, in
Multivariate Behavioral Research, there are no papers that have been published that
address longitudinal dyadic analysis (although there are several papers that address
momentary data or daily diary data; Ferrer, Steele, & Hsieh 2012; Song & Ferrer
2012; Steele & Ferrer 2011). Thus, there is a need for more methodological papers
which focus particularly on longitudinal dyadic analyses from a latent variable
framework.

Practical Examples of Two Couple Research Questions

To illustrate contemporary issues that arise in longitudinal analysis of couples from
a SEM framework, we narrow our discussion to two common research questions in
the couple field. First, we address the basic question of how relationship adjustment
changes over time using latent growth mixture modeling (LGMM). Next, we
examine the association between relationship adjustment with depressive symptoms
using a recent extension of latent difference score (LDS) modeling (Grimm, An,
& McArdle 2012). Although there are many other approaches in a latent variable
framework that could be applied (e.g., traditional parallel process growth curve
models), we have selected these two approaches to illustrate the importance of
attending to one’s match with the theoretical models of change.

Example 1: How Does Relationship Adjustment
Change Over Time?

Early research into the longitudinal course of relationship satisfaction consis-
tently reported declines in satisfaction over time (e.g., Karney & Bradbury 1997;
Kurdek 1998). These findings were based on analyses of means and did not
take into account different trajectories that may exist for subgroups. Recently, we
analyzed the trajectories of relationship satisfaction in two samples of parents of
young children using LGMM to determine whether different trajectories may exist.
LGMM was used to identify latent trajectory groups of relationship adjustment.
This approach allows one to identify subpopulation trajectories rather than assuming
population homogeneity in trajectories. Furthermore, this approach allows for
within-class variability and more flexibility in modeling patterns within classes
that is limited with other types of person-centered approaches (e.g., traditional
latent class analysis, taxometric analysis). Consistent across both the German
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and American prospective samples (N D 242 and 453 families, respectively), two
distinct longitudinal latent classes were detected (see Foran, Hahlweg, Kliem, &
O’Leary 2013; Foran, O’Leary, & Slep 2013). Approximately 90 % of men and
women could be classified as showing high relationship satisfaction and a stable or
increasing trajectory. The remaining 10 % were initially more distressed and tended
to show a decline in relationship satisfaction over time.

Independently, another group of researchers in the United States found similar
results using mixture modeling techniques among newlywed samples (N D 251
couples), although the distressed groups were larger among newlyweds (Lavner,
Bradbury, & Karney 2012). Taken together, there is growing evidence in contrast
to the earlier research which only examined means and suggests that relationship
satisfaction is relatively stable for the majority of couples and that only a small
subgroup experiences significant decline in satisfaction over time.

Although the LGMM approach has proven fruitful in application to understand-
ing relationship adjustment trajectories, there have been certain practical limitations
in the application of this approach to dyadic data (e.g., small sample sizes may
limit the number of reliable classes that can be detected). This approach provides
an elegant approach to dealing with longitudinal interdependencies (via growth
curve modeling), but the best approach to dyadic interdependencies is selected
based on the theoretical conceptualization of relationship adjustment. To date,
researchers who have examined relationship satisfaction in the context of a latent
mixture growth curve model have either averaged couple relationship satisfaction
or modeled each partner’s scores separately.

The rationale for selection of a dyadic or individual model requires careful
consideration. Averaging men’s and women’s scores across relationship satisfaction
often simplifies the model but causes loss of an important source of variance.
The dyadic model (dual growth mixture model, DGMM) takes into account the
shared variance between partners in determining the latent classes. An advantage
of the DGMM approach is that when one partner’s data are missing, this could be
estimated based on the other partner’s responses, resulting in reduction of lost data.
However, this may not be the best match to the research question. In the case of
trajectories of relationship adjustment, one may be interested in men’s or women’s
individual variance or in modeling who is more distressed in the relationship. This
depends on the conceptualization of relationship adjustment. Clinically, it only takes
one partner who reports relationship distress to indicate a problem and one partner
who wants to end the relationship. This would suggest that modeling the worse score
may yield relevant trajectory information.

We illustrate these differences empirically using a sample of N D 242 couples,
followed over 4 years, in which we have previously examined latent class growth
curves separately for men and women (Foran, Hahlweg et al. 2013). Specifically, we
apply LGMM to five models: (1a) men only and (1b) women only models (described
previously in Foran, Hahlweg et al. 2013) and three new models (2) DGMM, (3)
average scores of relationship satisfaction, and (4) worse score. The model structure
for the single growth curve models (models 1a, 1b, 3, and 4) is shown in Fig. 1. This
model is similar to a traditional latent growth curve model (i.e., includes continuous
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latent intercept and slope variables); a latent categorical variable is labeled with
“c” in the model and is used to represent the latent trajectory classes (see Duncan,
Duncan, Strycker, Okut, & Li 2002, for more details). In addition, a covariate is
included in the model. The DGMM structure (model 2) is illustrated in Fig. 2. This
is similar to Fig. 1 but includes growth curves for both men and women (rather than
only 1 growth curve as in models 1a, 1b, 3, and 4). The residual variances of men’s
and women’s relationship adjustment within each time point are free to covary as
shown in Fig. 2.

Participants and Procedure

Participants were recruited from daycare centers in Braunschweig, Germany (see
Heinrichs, Bertram, Kuschel, & Hahlweg 2005 for more detail on the recruitment
process) to participate in a randomized control trial of a universal primary parenting
prevention program (the Triple-P positive parenting program; see Sanders 2012
for more detail). Briefly, 17 kindergartens were selected to recruit a sample
representative of a range of socioeconomic statuses using the social index of
their living area via the objective Kita Social Index. Parents, fluent in German,
were eligible to participate if they had a child 2½–6 years old attending daycare.

Fig. 1 Latent growth curve mixture model (LGMM) of relationship adjustment
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Fig. 2 Dual growth mixture model or relationship adjustment for men and women

The population response rate was 31 % (N D 280) of those invited to participate
(Heinrichs et al. 2005), similar to other international prevention trials (Sanders
2012). Only parents who were in a committed relationship or married were eligible
for the current study (N D 242). Although both partners were invited to participate,
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more female partners agreed to participate (N D 242 women) than male partners
(N D 205 men). Thus, N D 205 couples participated and n D 37 women without
their partners. Due to missing data on the relationship satisfaction measure, the
analytical sample consisted of n D 237 women and n D 205 men.

Participants were assessed six times over the course of the 4-year study (time 1,
post-intervention (approximately 6 months following the initial assessment), and
four additional times every 12 months after the time-1 assessment). Participant
retention was excellent across all follow-ups (follow-up 1 D 99.2 %; follow-up
2 D 98.2 %; follow-up 3 D 96.3 %; follow-up 4 D 95 %). To account for the
small amount of missing data across time, full information maximum likelihood
estimation was used for all analyses. This study was approved by the university IRB
board and informed consent was provided.

The mean age of the sample was 38.7 (6.0) years for men and 35.4 (4.7)
years for women. The target child was 4.5 years old on average (SD D 0.98). The
majority of the sample was married (88 %) and reported middle income (53 %,
1500–3000 Euros per month after taxes); 34 % reported income greater than 3000
Euros per month and 11 % of the sample reported income of less than 1500
Euros per month. Employment characteristics were as follows: full-time salaried
position or self-employed 84.8 % men, 15.7 % women; part-time or paid by the
hour D 7.4 % men, 46.3 % women; stay-at-home parent D 0.5 % men, 30.6 %
women; unemployed D 3.2 % men, 2.9 % women; other D 4.2 % men, 4.5 %
women.

In Germany, there are three levels of secondary education (high, middle, and
low). Over half of the men and women (57 % and 58 %, respectively) had completed
the high level (typically indicative of individuals who attend college); 20 % of the
men and 33 % of the women completed the middle level (typically indicative of
individuals who obtain some specialized training other than a bachelor’s degree)
and 14 % of the men and 10 % of the women reported the low level (typically
indicative of individuals who do not complete high school). The number of children
living in the household was M D 2.1 (SD D .86) on average.

Measures

Relationship Adjustment. The 7-item Abbreviated Dyadic Adjustment Scale
(Sharpley & Rogers 1984) was used to assess relationship adjustment (3 items
assessing topics of disagreements between partners, 3 items assessing frequency
of positive exchanges, and 1 item assessing overall happiness). Items are scored
on a Likert scale from 0 to 5, with higher scores indicating more relationship
adjustment (’D .82). Means and standard deviations of relationship adjustment for
men, women, averaged across gender, and based on the worse score are presented
in Table 1.
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Analytical Strategy: Example 1

LGMM with Mplus 7 (Muthén & Muthén 2012) was used to examine the trajectories
of relationship adjustment. To consider whether participation in the parenting
program may have impacted relationship adjustment trajectory, we examined
treatment group (n D 133 prevention group; n D 109 control group) as a predictor in
all analyses. Prior to examining latent growth mixture trajectories for relationship
adjustment, the unconditional model of growth (i.e., one class solution) was
reviewed to provide an overall picture of average growth for this sample and
overall model fit. Fit was evaluated based on chi-square values, Comparative Fit
Index (CFI > .90), Tucker Lewis Index (TLI > .90), Root-mean square error of
approximation (RMSEA < .06), and Standardized Root Mean Square Residuals
(SRMR < .06).

Next, LGMM was used to detect subgroup trajectories of relationship adjust-
ment. This approach allows for individual variability within classes; derived classes
were free to differ on latent intercept and slope growth factors. Similar to previous
studies, Akaike information criterion (AIC) and Bayesian information criterion
(BIC) with lower values representing a better model fit were used to determine the
number of classes that best fit the data. In addition, only class solutions that had an
adequate amount of cases per class (>20) were retained.

Results: Example 1

To examine trajectories of relationship adjustment, we first examined change in
mean scores over time. Intercept factor loadings were fixed at 1; slope factor
loadings were 0 at the initial assessment, at .5 at post, and 1, 2, 3, 4 chrono-
logically at each year follow-up. The model was a good fit for men (N D 205,
¦2(20) D 21.74, p D .35, RMSEA D .02, CFI D 1.00, TLI D 1.0, SRMR D .04), for
women (N D 237, ¦2(20) D 38.92, p D .01, RMSEA D .06, CFI D .98, TLI D .97,
SRMR D .03), and in the dual growth curve model (N D 237, ¦2(66) D 99.97,
p D .00, RMSEA D .06, CFI D .98, TLI D .98, SRMR D .04). Consistent across
models, the slope was not significant for men (bs D .10–.13, p > .05) but was
significant for women, such that their relationship adjustment increased over time
(bs D .50–.51, p < .05). There was significant variance in both the intercept and slope
factors for men and women, indicating there were individual differences in initial
levels and rates of growth. In all models, intervention assignment was a covariate of
intercepts and slopes. It did not significantly predict intercepts or men’s slope but
predicted slope for women such that those who received the parenting intervention
showed less declines in relationship adjustment over time (e.g., Model women
alone: slope b D �.39, se D .15, t D �2.58, p D .01).
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Table 1 Descriptive statistics

Relationship adjustment

Average
score
relationship
adjustment

Worse score
relationship
adjustment Depressive symptoms

Men Women Men Women
M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

T1 23.30 (4.97) 22.85 (5.11) 23.08 (4.73) 21.91 (5.01) 4.89 (5.53) 5.36 (5.71)
T2 23.21 (4.63) 23.46 (4.91) 23.35 (4.38) 22.20 (4.68) 4.55 (5.02) 5.14 (6.25)
T3 23.58 (4.72) 23.34 (5.13) 23.37 (4.78) 22.71 (5.01) 4.57 (5.36) 4.46 (5.87)
T4 23.56 (5.14) 22.95 (5.13) 23.18 (4.87) 22.50 (5.26) 4.18 (5.42) 4.34 (6.10)
T5 23.77 (5.23) 23.13 (5.14) 23.34 (5.14) 22.55 (5.69) 3.73 (4.40) 4.44 (5.88)
T6 23.23 (5.60) 22.99 (5.50) 23.00 (5.48) 22.22 (6.02) 4.32 (5.27) 4.34 (6.20)

N D 205 men. N D 237 women

Latent Growth Mixture Modeling

Next, LGMM was used to test the different approaches for grouping the relationship
adjustment in comparison with the men only and women only models (see Figs. 1
and 2). Intervention assignment was included in all models as a covariate (see Figs. 1
and 2, “covariate”). Consistent with Foran and colleagues (2013), the two class
solution was the best fit for all models tested based on our criteria (lowest AIC and
BIC; more than 20 cases per class), and thus, only results from the two class model
will be presented. The results of these models are presented in Table 2. See also
Figs. 1 and 2 for the graphical representation of the models. Class 1 represented
satisfied couples whose relationship adjustment remained high over time (labeled
“non-distressed”). For all models, the slope was positive but it was only statistically
significant for the women only model (1b), the DGMM (2), and in the worse score
model (4). This represented between 87 and 93 % of participants across models
(Model 1a: 89 %; Model 1b: 90 %; Model 2: 87 %; Model 3: 93 %; Model 4: 89 %).
The second class represented couples with more relationship distress and a tendency
to decline over time. Slopes for men and women in the distressed group were
statistically significant in the men only, women only, and worse score models; they
were not statistically significant in the DGMM or averaged models. This represented
between 7 and 13 % of couples across models.

Overlap in classification of distressed couples. To further understand the differ-
ences across models, the correlations among the distressed class latent probabilities
for each model are presented in Table 3. Although there was a high degree of overlap
across models, the DGMM and men’s models showed only a correlation of .33. The
DGMM and women’s models showed the highest correlation (r D .89), suggesting
that the DGMM approach is more reflective of women’s relationship adjustment
than men’s (and this was not explained by differences in missing data for men).

In addition, we examined the overlap between classes by seeing which models
had higher false positives or false negatives. False positives were defined as a case
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Table 3 Correlations between latent class probabilities in the distressed groups

Women N D 24 DGMM N D 31 Average N D 17 Worse N D 25

Men .41 .33 .71 .68
Women – .89 .83 .83
DGMM – .68 .75
Average – .82

being present in one model but not in any other models. There were n D 45 cases
which were classified as distressed in any model. False positives were only detected
for the DGMM (26 %) and men only model (27 %). To understand this false-
positive rate for the DGMM, we compared the cases in which they were classified
as distressed in the DGMM to all other cases classified as distressed. There should
be no statistically significant differences among these distressed groups. However,
the false positives in the DGMM were significantly higher on men’s relationship
adjustment than those classified as distressed across other groups, suggesting that
they were indeed false positives (or at least not representative of men’s relationship
adjustment).

To explore the false-negative rate, we examined the detection of the n D 31 cases
which were classified as distressed across two or more models. The false-negative
rate (cases which were present in other models but rejected in that particular model)
was highest for the men only model (54 %), followed by the average score model
(45 %), dual score model (26 %), the women only model (23 %), and the worse
score model (19 %).

Example 1: Discussion

Our goal in example 1 was to highlight the utility of the LGMM approach for
differentiating distressed and non-distressed couples over time and highlight some
of the different approaches for handling dyadic information. Although results
were similar across one gender only, averaged score, DGMM, and worse score
approaches, they were not identical. The DGMM model for example appeared to be
more reflective of women’s relationship adjustment (and this was not explained by
missing data of men). In contrast, the worse score was more consistent in classifying
“distressed” couples with the men and women only models. These differences
highlight the importance of careful selection of dyadic model and consideration
of what best maps the researchers construct and theory. If one takes the perspective
that one distressed partner is sufficient to cause the relationship to be “distressed,”
then a worse score model may be a good option. This approach also corresponds to
clinical models of relationship distress in which the DSM-5 diagnosis of an intimate
partner relationship problem is defined based on one partner’s clinical cut-off score
on relationship adjustment measures (Foran, Whisman, & Beach 2015).
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An interesting follow-up to this study is to determine whether the different
ways of modeling the relationship adjustment and their respective latent classes
differentially predict outcomes such as divorce. Some previous work has suggested
that women are often the “emotional barometer” of relationships, which could lead
to their report holding more weight (Gottman 1990); this could be evaluated further
to determine which approach yields the most predictive validity.

In sum, LGMM is a methodology that fits well with theories of relationship
adjustment, but more research on differences in handling the relationship adjustment
scores is needed. Although this approach is useful for examining one variable such
as relationship adjustment, there are constraints in integrating these types of models
in multiple variable growth curve models. One approach is to use the latent class
assignments or latent class probabilities to predict other outcomes, however some
caution against using the probability information in such a way and concerns have
also been expressed about the replicability of latent classes across studies (e.g.,
Bauer & Curran 2003; Nagin & Tremblay 2005).

An interesting integration that has rarely been used to-date and has not at all been
used with dyadic data is combining LGMM with latent difference score modeling
(LDS; also known as latent change score modeling; McArdle 2001; McArdle &
Hamagami 2001). LDS modeling allows one to simultaneously examine change
processes of two or more variables over time. In the next section, we apply LDS
modeling to examine relationship adjustment and depressive symptoms over time.
We then return to this issue of integration of the approaches illustrated in examples
1 and 2 at the end of the chapter.

Example 2: How Do Relationship Adjustment and Depressive
Symptoms Relate Over Time?

Understanding the link between relationship adjustment and depressive symptoms
(or depressive disorders) has been an active research question in the couples litera-
ture. Among women who had never experienced a depressive episode and who had
a negative relationship event, 38 % developed a major depressive episode within the
next 4 weeks after the event (Christian-Herman, O’Leary, & Avery-Leaf 2001) and
this rate is significantly higher than incidence rates of approximately 2 % reported
in epidemiological studies. Additional support for the role of relationship problems
in depression onset comes from intervention studies that have demonstrated that
treating relationship problem leads to reductions in depressive symptoms (see Beach
2001; Cohen, O’Leary, & Foran 2010), relationship distress moderates individual
psychotherapy/psychopharmacological depression treatment outcome (Denton et al.
2010), and relationship distress predicts depression relapse (Hooley & Teasdale
1989).

In 2001, Whisman conducted a review of the association both cross-sectionally
and longitudinally. Although there were numerous cross-sectional studies estab-
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lishing the link, there was little longitudinal research at the time of the review.
Of the six studies reviewed that examined the link between marital distress and
depressive symptoms, three studies used residualized change analyses (regressions),
two studies used structural equation modeling, and one study used HLM analyses.
Although beyond the scope of this chapter, there were other studies which examined
diagnostic depression (e.g., Gotlib, Lewinsohm, & Seeley 1998) and marital distress
and depression in the context of treatment (e.g., Hooley & Teasdale 1989).

Another meta-analysis examined the link between relationship functioning
and well-being broadly defined (Proulx, Helms, & Buehler 2007). Twenty-seven
multiple time point studies were included in the meta-analysis. Unfortunately,
the number of studies which specifically examined relationship adjustment and
depressive symptoms was not reported, nor was the study sample sizes, number of
time points, whether the analysis was dyadic or involved modeling each spouse data
separately, or the type of statistical approach used for the analyses. Interestingly, the
authors did find that longitudinal studies more recently found smaller effect sizes
for well-being and relationship functioning compared to earlier studies. Although
we can only speculate, this could be related to the different methods used in earlier
studies compared to more recent studies.

Some of the best methodological work on trajectories of marital distress and
depressive symptoms has been done by Karney, Bradbury and colleagues at UCLA.
The authors collected two newlywed samples and followed them over 4 years with
assessments at eight time points, using MLM (via HLM software) to examine
marital trajectories. Attrition was much lower than typical in other studies (7 %;
N D 60 initial sample; N D 54 analytical sample, see Karney & Bradbury 1997;
21 % study 2 N D 172, Davila, Karney, Hall, & Bradbury 2003). The authors found
evidence that depressive symptoms and relationship distress covary over time (e.g.,
Davila, Bradbury, Cohan, & Tochluk, 1997; Davila et al. 2003; Karney 2001).

More recently, Kouros, Papp, and Cummings (2008) analyzed the association
between depressive symptoms and relationship distress using three different meth-
ods with the same sample in three separate publications. The sample included
N D 296 parents of 8–18-year olds followed over three time points (2 years). In
the first paper (Kouros et al. 2008), the authors used multivariate HLM analyses
to examine the reciprocal associations between depressive symptoms and marital
distress. Results replicated the earlier findings of Davila et al. (2003) in which
bidirectional within-person associations were also found with HLM analyses in a
4-year newlywed sample of 164 couples.

In a second reanalysis of these data, Kouros and Cummings (2010) examined
dual growth curves of depressive symptoms for husbands and wives. The authors
applied LDS models to look at dynamic coupling between spouses’ depressive
symptoms over the three time points (McArdle & Hamagami 2001). The authors
then tested whether the growth curves of depressive symptoms were different for
low or high maritally satisfied couples by conducting multi-group analyses. The
martially distressed group included n D 118 couples and the martially satisfied
group included n D 178 couples based on whether either partner reported scores
below or above 100 on the Marital Adjustment Scale and the first time point,



Longitudinal Analysis of Dyads Using Latent Variable Models : : : 219

respectively. The authors found that husbands’ depressive symptoms were linked
with changes in wives’ depressive symptoms for the martially distressed group but
not for the martially satisfied group.

In the third paper with this sample, Kouros and Cummings (2011) again applied
LDS to understand depressive symptoms association with marital distress. This
study differed from the 2010 study in that the two modeled growth curves were
marital distress and depressive symptoms (rather than two growth curves for
depressive symptoms of each partner). Thus, analyses in this last study were
conducted separately by gender. To consider, cross-partner effects, the authors ran
two additional models in which wives’ marital satisfaction and husbands’ depressive
symptoms and husbands’ marital satisfaction and wives’ depressive symptoms were
examined controlling for average scores on each variable for each spouse. Results
suggested that women’s marital satisfaction level predicted their depressive symp-
toms level, rather than depressive symptom change over time (Kouros & Cummings
2011). For men, marital satisfaction level predicted change in depressive symptoms.

Based on the current state of the literature, there are several relevant future direc-
tions. As noted, by Kouros and Cummings (2011), “methodological approaches
based on HLM were limited in testing theoretical notions of how depressive
symptoms and marital satisfaction simultaneously change and simultaneously
predict change in each other over time.” There is need for new longitudinal studies
which take advantage of advances in latent growth curve modeling to test change
processes. As far as we are aware, the Kouros & Cummings 2011 is the only paper
that has used LDS modeling to address this research question.

A recent extension of LDS modeling in which previous latent changes in one
variable predict subsequent latent changes in another variable (Grimm et al. 2012;
see Fig. 3) has yet to be used and this approach may map more closely with theory
than other approaches used. This extension differs from traditional LDS modeling in
that previous change instead of previous level is used to predict future change in the
other variable. The extension of Grimm et al. (2012) is shown in Fig. 3. The main
changes from the traditional bivariate latent change score model are the additional
paths between previous latent change and subsequent latent change (indicated by ¥
in Fig. 3) and the additional paths from previous latent change of X to subsequent
latent change of Y (the coupling parameter Ÿ in Fig. 3).

There are many well developed theories of how relationship adjustment and
depressive symptoms influence each other (see Beach 2001), but often there is a gap
between the theory and the methodology used to test it and timing is not explicitly
clarified. Based on the marital model of depression (Beach, Sandeen, & O’Leary
1990), one would expect that when relationship adjustment declines this leads to a
simultaneous increase in depressive symptoms. This would be shown by levels of
relationship adjustment and depressive symptoms covarying within time and slopes
covarying across time. Thus, to detect change effects, shorter time periods (such
as days or weeks) rather than months or years would be needed (e.g., Whitton,
Stanley, Markman, & Baucom 2008). The most appropriate time frame to detect the
theorized associations is often not given enough consideration in the literature.
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Fig. 3 “Changes to Changes” bivariate latent change score model extension (Grimm et al. 2012).
See Grimm et al., 2012 for the full diagram with residual variances, covariances and paths from
slopes to latent changes in y and x

In contrast, the effect of depressive symptoms on relationship adjustment change
may be more delayed. The depressive behaviors of one partner over a period
time may not result in immediate declines in relationship adjustment, but rather
later declines in relationship adjustment. Depressive behaviors of one partner can
be aversive to other partner, especially when attempts to improve the depressed
partners’ mood are ineffective over time. This type of association would be detected
with LDS models of previous change in depressive symptoms predicting subsequent
change in relationship adjustment. Notably, daily relationship satisfaction may
change in response to daily changes in mood, but relationship adjustment (a broader
construct evaluating the relationship overall) would be less susceptible to daily
changes in mood or brief increases in depressive symptoms.

Thus, different time frames would be needed to test the bidirectional associations
between relationship adjustment and depressive symptoms. Although it is beyond
the scope of this chapter to fully test these differences, we would like to present
an example of how longer term associations (over 4 years) between relationship
adjustment and depressive symptoms can be tested with LDS modeling and how
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this approach helps differentiate types of change processes that can be tested. We
have chosen to briefly illustrate this new extension of LDS modeling since it matches
particularly well with theory and to encourage researchers in this area to consider
these approaches in their future work.

Method: Example 2

The same sample as in example 1 is used for the analyses of example 2. Measures
included relationship adjustment (described above in example 1) and a measure of
depressive symptoms. Depressive symptoms were assessed with the widely used
14-item depression subscale of the Depression Anxiety Stress Scale (Lovibond &
Lovibond 1993) scored from never D 1 to very often D 4 (’s D .93 for men and
women). Means and standard deviations for relationship adjustment and depressive
symptoms are presented in Table 1.

Analytical Strategy: Example 2

Univariate LDS models have been reviewed in many places previously (see Grimm
et al. 2012; McArdle 2009), and thus, we present only the results from the second
step of our analyses, the bivariate LDS models. Eight bivariate LDS models were
tested (see Grimm et al. 2012, for specific details on these models as well as sample
syntax for setting these models up in Mplus). The first four models imply testing
the traditional LDS models (Model 1: no coupling, Model 2: level of relationship
adjustment to latent change in subsequent depressive symptoms, Model 3: level of
depressive symptoms to subsequent latent change in relationship adjustment, and
Model 4: bidirectional coupling model with paths in both directions). The next four
models test the “changes to changes” components. This includes an additional LDS
variable for each growth curve that indicates the change from time t � 2 to t � 1. The
“no coupling” model (Model 5) yields a regression coefficient for each growth curve
that describes the effect of previous change in that variable on subsequent changes
(e.g., previous change in depressive symptoms predicting subsequent change in
depressive symptoms). The next two models test the unidirectional coupling param-
eters in which in one model (Model 6) previous change in relationship adjustment
predicts subsequent change in depressive symptoms and in the next model (Model 7)
previous change in depressive symptoms predicts subsequent change in relationship
adjustment. The final model (Model 8) is the full model in which both directions
of change on changes are included. Note that Model 8 is similar to the Grimm
et al. (2012) model shown in Fig. 3 but we had also included covariates in our
models (intervention assignment, initial scores of spouses’ relationship adjustment
and depressive symptoms).
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Model fit was compared using AIC, BIC, and sample size adjusted BIC with
lower values indicating better model fit. In addition, given that all the bivariate LDS
models were nested, model fit can also be compared using the difference in �2log-
likelihood related to change in parameters. Full information maximum likelihood
(FIML) estimation with robust standard errors was used to account for missing data
and adjust for non-normality in the data.

Similar to Kouros and Cummings (2011), we choose to analyze men’s and
women’s parallel growth curves for relationship adjustment and depressive symp-
toms separately. Time-1 levels of partner’s relationship adjustment and depressive
symptoms were included as covariates. Although there are some applications in
which four process growth curves have begun to be used (Hoppman, Gerstorf, &
Hibbert 2011), our sample size was not adequate for such analyses, an issue we
return to more fully in the discussion, as this represents one of the constraints in
modeling dyadic data with repeated measures.

Results: Example 2

Results of the bivariate LDS models for women indicated that levels of relationship
adjustment and depressive symptoms did not predict change in the other variable;
this is consistent with earlier analyses with these data in which latent class of
relationship distress or initial levels of relationship distress did not predict slope
of depressive symptoms for women (Foran, Hahlweg et al. 2013). Thus, we focus
on only results for men in the following section.

Results of the bivariate LDS models for men are provided in Table 4. Of the eight
models tested, the bidirectional coupling changes on changes model was the best fit
in terms of the lowest AIC, BIC, and adjusted BIC values (Model 8). A Satorra–
Bentler scale chi-square difference tests indicated that this model fit significantly
better than all other models except that the difference between model 7 and 8 was
not statistically significant (Satorra–Bentler scale: 4¦2 D 1.49, p D .23). Thus, for
parsimony, model 7 was the selected model. Further, the additional path of change in
relationship adjustment to change in depressive symptoms that differentiated models
7 and 8 was not statistically significant.

Model 7 parameter estimates are presented in Table 5. Higher previous levels
of depressive symptoms (parameter “), lower previous levels of relationship adjust-
ment (coupling parameter ”), and more previous decreases in depressive symptoms
(parameter ¥) lead to more subsequent decreases in depressive symptoms. Changes
in relationship adjustment were accounted for by previous changes in relationship
adjustment (parameter ¥) as well as previous changes in depressive symptoms
(coupling parameter Ÿ). In other words, of most interest, the results show that previ-
ous changes in depressive symptoms predicted subsequent changes in relationship
adjustment such that if depressive symptoms increased, then subsequent relationship
adjustment would decrease, consistent with theoretical expectations.
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Table 5 Bivariate LDS score Model 7 parameters for men’s relationship adjustment and
depressive symptoms

Change relationship adjustment Change in depressive symptoms
Parameter estimate (SE) Parameter estimate (SE)

Mean intercept 8.33 (1.59)*** 6.60 (2.17)**
Mean slope �7.14 (5.36) �.70 (1.21)
“ level to change
(within same
variable)

.02 (.01) �.25 (.12)*

” coupling
parameter
(across variables)

1.17 (.65) .27 (.10)**

¥ change on
change (within
same variable)

�.65 (.24)** 1.74 (.63)**

Ÿ change on
change coupling
parameter
(across variables)

�3.34 (1.26)** �

Unstandardized coefficient

General Discussion

The results of example 2 highlight the utility of this extension LDS modeling
for understanding change processes of relationship adjustment and depressive
symptoms, particularly for men. Including the additional parameters in which
previous changes in depressive symptoms were modeled to predict subsequent
changes in relationship adjustment allowed us to test our theoretical expectation
of time-lagged effects of depressive symptom change on relationship adjustment
change. We did not find support for time-lagged effects for women. Women may
be more reactive to bidirectional changes in relationship adjustment and depressive
symptoms and shorter lags may be needed to see these effects.

This represents an extension of LDS modeling to test theoretical change pro-
cesses. The most important consideration is that the approach selected is a match
with the purported change processes being tested. At least in the couple research
field, and we expect in many other fields, this particular consideration does not
receive enough attention. An important related issue is timing of measurement in
relation to change. Many longitudinal designs select equal interval time frames
that may not provide the appropriate window to a change process. In our example
of depressive symptoms and relationship adjustment, shorter time frames may be
needed to fully capture some of the purported effects of changes in relationship
adjustment and satisfaction on mood symptoms (e.g., Whitton et al. 2008), and this
may help explain some of the discrepant findings across studies for men and women.

Across examples 1 and 2, various constraints in handling the dyadic nature of
the data were encountered. In example 1, we illustrated how results may vary
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depending on the way that the dyadic data are aggregated in a growth mixture model.
In example 2, the focus was on illustrating a two-growth process model, which
did not allow us to model partners’ growths simultaneously. Partner scores were
incorporated into the model (similar to a basic APIM model), but dual processes
for men and women were not explored in the same model. One alternative is to test
a four-growth process LDS model. As far as we are aware, there has only been a
limited number of applications of a four-variable model for traditional latent growth
models (see Hoppman et al. 2011) and little work in the context of LDS (Gerstorf,
Hoppmann, Kadlec, & McArdle 2009). Constraints of application in longitudinal
dyadic studies include the sample size needed and difficulties in the interpretation
of a four-growth curve LDS model.

Many other future options for better integration of methods exist in longitudinal
analysis of couples. LGMM could be combined with LDS modeling within the
same model, but there are few applications that integrate these two approaches. The
simplest way to integrate these two would be to proceed in two steps in which the
latent classes for the variable of interest were derived and then could be integrated as
subsequent predictors of the second step in which LDS modeling is used to identify
change relations of two other variables. However, one would have to show that the
derived latent classes provided more information than would be the case were the
full growth model included in the model, and this may not be the case in many
situations. Thus, in many cases it may be better to use the LGMM or exploratory
growth curve analyses to describe development processes as a separate approach
(e.g., Grimm, Steele, Ram, & Nesselroade 2013). Bivariate LDS then provide a
good fit for testing theorized interrelations between variables over time.

In sum, new longitudinal models proposed over the last two decades offer a
robust set of tools for dyadic analyses. However, constraints in terms of longitudinal
sample sizes, numbers of growth curves that can easily be tested simultaneously,
model complexity, and timing of assessments remain. In addition, although methods
for accounting for dyadic independence exist and have been widely applied in the
couple field, modeling barriers as well as theoretical controversies on whether to
consider a variable dyadic or individual still need more in-depth consideration.
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Can Psychometric Measurement Models Inform
Behavior Genetic Models? A Bayesian Model
Comparison Approach

Ting Wang, Phillip K. Wood, and Andrew C. Heath

As methodologists have increasingly noted, the role of psychometrics in oper-
ationalizing a construct is often overlooked when evaluating research claims
(Borsboom 2006). In a related vein, others have noted that psychological research
appears to move away from assessment and interpretation of a single a priori
statistical model to a more nuanced comparison of models which assess the trade-off
between a model’s parsimony and complexity in explaining behavior (e.g., Rodgers
2010). The genetic factor model is one such statistical model often used to estimate
the relative contributions of genetic and environmental components of observed
behavior in genetically informative designs (Heath, Neale, Hewitt, Eaves, & Fulker
1989; Martin & Eaves 1977; Neale & Cardon 1992). Mathematically, the genetic
factor model decomposes observed phenotypic variability into additive genetic (A),
common (C), and unique (E) environmental components and is, for that reason,
often referred to as the ACE model.

Recently, Franić et al. (2013) discussed how the genetic factor model can be used
in the service of psychometrics by informing researchers about the different patterns
of dimensionality and factor structure associated with genetic and environmental
components of the ACE model. They note that adjudication of dimensionality
is obviously not possible based on phenotypic factor analysis which does not
take into account the genetically informative nature of the data. In their paper,
Franić et al. propose conducting a Cholesky decomposition for the genetic and
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environmental components of the ACE model and decide on dimensionality of each
of the environmental and genetic components of the model. They then rotate this
solution to a more substantively meaningful form using Promax rotation.

Absent a strong a priori rationale for the factor structure of the environmental
and genetic components of the ACE model, this approach appears reasonable and
reflects the general practice of behavior genetic models which involve several
items (e.g., Heath, Eaves, & Martin 1989; Heath, Jardin, Eaves, & Martin 1989),
repeated measurements across successive occasions (e.g., Chang, Lichtenstein,
Asherson, & Larsson 2013; Roberson-Nay et al. 2013), and multivariate studies
of simultaneously measured variables in which some rationally defined order or
priority exists across the manifest variables (e.g., Ludeke, Johnson, & Bouchard
2013). It is well appreciated that such Cholesky decompositions are not unique and
that models consisting of other triangular orderings, models with common factors
and residual subfactors, or autoregressive factors may fit such data equally well
(Loehlin 1996). Rotation of initial Cholesky factorization to more conceptually
meaningful form such as simple structure is also a reasonable procedure (e.g., Carey
& DiLalla 1994).

Although the strategy outlined by Franić et al. is quite promising, the present
paper proposes four reasons why a more fine-grained Bayesian psychometric
approach may prove useful. First, for reasons discussed below, multifactor ACE
models sometimes encounter empirical under-identification problems. Second, in
some research contexts (such as, for example, the genetic analysis of body mass
index data considered below where a variety of ages are considered but for which
any one individual is assessed at multiple, but not all, measurement occasions),
Cholesky factorization across all measurement occasions is not mathematically
possible. Third, rotation of the identified solution to simple structure and the
original Cholesky decomposition may obscure the psychometric measurement
model underlying the construct of interest. Finally, there is reason to believe that
Bayesian estimation may be preferable to ML or eigenvalue decomposition. This is
particularly the case when sample sizes are small (Boomsma 1982; Chou, Bentler, &
Satorra 1991; Hoogland & Boomsma 1998; Hu, Bentler, & Kano 1992; Lee & Song
2004). Additionally, Carey, Goldsmith, Tellegen, and Gottesman (1978) speculate
that discrepant estimates of genetic and environmental effects in personality and
psychiatric traits may be due to over-extraction of factors or to factors which
describe weak effects which limit the generalizability of exploratory factor loadings
in the ACE model. Again, these concerns are not meant to criticize the general
approach outlined by Franić et al., but instead to highlight that refining the set of can-
didate psychometric measurement models provide researchers with models which
may not be immediately obvious in some situations or estimable in other contexts.
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Empirical Under-Identification

The issue of empirical under-identification is not unique to the estimation of genetic
models and can occur when researchers attempt to fit a factor model which is more
complex than the true model which generated the data, when small sample sizes
are examined, and when the factor loadings of the model describe weak or non-
existent effects (Kenny, Kashy, & Bolger 1998; Kenny & Milan 2013). Within
genetic factor models, the problem of empirical under-identification manifests itself
in convergence failures or improper solutions (such as negative variance estimates
or estimation correlations which exceed one; see e.g., Phillips & Matheny 1997).
Rietveld, Posthuma, Dolan, and Boomsma (2003) discuss the identification issue as
it bears on the statistical power of a given genetic model, noting that a given behavior
genetic model is mathematically identified if and only if the null space of the Jaco-
bian is zero (i.e., has full column rank). This is, however, only a necessary but not
sufficient condition for a specific model within the context of a particular data set.

As Kenny and Milan (2013) note, researchers who encounter empirical under-
identification problems usually make post-hoc changes to the model such as
redacting individual parameters thought superfluous or adding indicator variables
to improve the resolution of the factor structure or instrumental variables which
help resolve erroneously specified directions of causality in the model. Researchers
using genetic models often constrain parameters of the model to equality or set
other parameters to zero (Henderson 1982). Other strategies have included reducing
the number of factors considered due to the presumed lack of statistical power
associated with the sample (e.g., Martin, Scourfield, & McGuffin 2002). Rietveld
et al. (2003) have noted that this state of affairs can be somewhat confusing
given that at times researchers have claimed particular genetic models are over-
parameterized and not identified while others have investigated the model and found
this not to be the case.

Measurement Models

That notions of strictly parallel, tau-equivalent, and congeneric measurement
models can be expressed as structural equation models has been noted since
Lord, Novick, and Birnbaum’s (1968) classical test theory text. In the case
of measurement equivalence across a set of manifest variables, strictly parallel
measurement requires that both error variances and factor loadings are identical
for all variables. Tau equivalence, by contrast, assumes only that the loadings
are identical and congeneric measurement permits the factor loadings and error
variances across items to be different. Mathematically identified exploratory factor
models correspond to a congeneric measurement model, while the tau equivalent
model constitutes a more parsimonious model because the loadings across manifest
variables are constrained to equality.
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In other cases, however, a behavioral or genetic component may be poorly
represented by a single congeneric factor, requiring more complex measurement
alternatives. Although in many situations multiple oblique or orthogonal factors
may be appropriate, measurement models which are intermediary between the one-
and two-factor models may be appropriate in other situations. The random intercept
model (Maydeu-Olivares & Coffman 2006) is one such model, consisting of both
a freely estimated factor and an orthogonal general random intercept factor. The
interpretational status of the random intercept factor depends on the particular con-
structs under investigation: Maydeu-Olivares and Coffman, for example, interpreted
the random intercept factor they found in questionnaire data as a general response
bias method factor and interpreted the remaining congeneric factor as the construct
of interest. When the manifest variables under consideration consist of repeated
measurements of the same variable, the factor pattern of the random intercept factor
model corresponds to those which would be observed under the free basis growth
curve model of Meredith and Tisak (1990). The random intercept factor model
differs from the free basis model only in that the random intercept model estimates
separate intercepts for each manifest variable and assumes that the latent variables
of interest have a zero mean, while the growth curve model assumes that such
intercepts are constrained to zero and mean levels of the manifest variables are
explained by estimated latent variable means. Taken together, the tau equivalent,
congeneric, and random intercept factor models constitute a more fine-grained set
of measurement models which are simpler (in the case of the tau-equivalent model)
or intermediate models between the dimensions considered under traditional factor
analytic models. It is hoped that such a process will result in a “right-sizing” of the
statistical model which will result in models which are easier to fit and may well be
more generalizable across replications.

Specifically, we speculate that the standard single-factor model may be an
over-complex measurement model when effects are relatively week. Specifically,
estimation of the distinct individual loadings of the common factor model assumes a
congeneric measurement model for a particular genetic or environmental component
while the tau-equivalent measurement model which constrains loadings to be equal
across variables may be more appropriate. Mathematical derivations (Davis-Stober
2011) also support the idea that predictor weights in the general linear model fail to
replicate across samples because of just such over-complexity. This effect is found
to be especially true when the sample size is small (N < 150) and the effect size of
interest is moderate or small (R2 is smaller than 0.6). Since the measurement model
of factor analysis is a type of regression as well (although admittedly one in which
the predictor variable for all observed variables is missing), it seems reasonable that
similar difficulties in generalizability would be found. Although the sample sizes
for behavior genetic studies are frequently quite large, in some contexts (such as the
assessment of multiple cohorts of twins measured prospectively), the sample sizes
associated with the data in some contexts may be rather small and comparable to
the values considered by Davis-Stober. Because phenotypical behavior is frequently
thought to entail expression of multiple genes, with each gene exhibiting only a
small unique effect (Joseph & Ratner 2013; Turkheimer 2000), the effect sizes of
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interest may well fall into the “moderate to small” criterion considered by Davis-
Stober. In any event, exploration of genetic and environmental components under
a tau equivalent model may provide a useful parsimonious comparison to the
estimates from the congeneric factor model.

Robustness to Small Sample Size and/or Small
Experimental Effects

Finally, as reviewed above, there is some reason to believe that exploration
of more parsimonious measurement models using Bayesian estimation may be
preferable to congeneric ML estimates when the effect of interest is small or when
measurement is based on relatively few observations. If, for example, the additive
genetic components of a model consist of a random intercept factor model, but the
remaining environmental components are congeneric factor models, a researcher
who fits a random intercept or congeneric factor model to all components will
likely find that the resulting model is not empirically identified under maximum
likelihood (ML) estimation. Even assuming congeneric measurement across all
components, this predicament would also occur under triangular factorization if
some components consist of multiple factors while others are well-represented by
single factors. As another example, assuming a tau equivalent factor model may
be appropriately parsimonious when summarizing effects which appear to be small
across all manifest variables. As described below, we propose that Bayesian models
which compare measurement models for the individual components of the genetic
factor model may inform researchers of the relative explanatory power of different
measurement models across genetic and environmental components (Lee 2007;
Lindley 1977).

We will now present the formal definitions of the three measurement models
we wish to consider in the genetic factor model, the tau equivalent, congeneric
(i.e., standard factor), and random intercept factor models. We will then describe
how such measurement models can be estimated and compared using a Bayesian
conjugate approach. This approach will then be illustrated using simulated and real-
world data.

Psychometric Models: Tau-Equivalent and Congeneric
Factor Models

The standard factor model for N individuals measured across k variables in which j
latent variables are assessed can be represented in matrix notation as follows (using
Sörbom’s 1974 notation but with the small adaptation that models are presented so
that rows of observed scores correspond to individuals and columns correspond to
variables):
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Y D ˛ C 
ƒC "

The matrix Y contains N rows of individuals, and k variables (which can consist
of repeated measurements of a single variable or different manifest variables at a
single occasion). ’ represents an N by k column scalar matrix of intercepts. ˜ is
an N by j matrix of values on the latent variable(s) of the model, and ƒ is a j by k
matrix of factor loadings. " is an N by k matrix of errors under the assumption that
each column of " is i.i.d. across the N rows. When only one factor is present, the
variance/covariance matrix is constrained to unity to mathematically identify the
model. Identification of multiple orthogonal factors via triangular decomposition
was discussed above. The variance/covariance matrix associated with the matrix of
errors of predictions, ", is usually referred to as ‰ and is most often specified as
a diagonal, freely estimated matrix. When all possible factor loadings are freely
estimated the resulting measurement model is referred to as a congeneric factor
model and is the standard measurement model used in the ACE model.

As noted above, the tau-equivalent factor model (Lord et al. 1968, pp. 47–50)
assumes that factor loadings in œ are equal. Mathematically, this model is equivalent
to the random intercept component employed in some hierarchical linear models,
except that in these models, the variance of the factor is assumed to be freely
estimated and the factor loadings in ƒ are fixed to 1.

Complex Alternative Models: Random Intercept Model

In the random intercept model (RI) (Maydeu-Olivares & Coffman 2006), two
orthogonal factors are estimated, with one factor consisting of freely estimated
parameters as in the single-factor congeneric model, and the remaining factor’s
loadings constrained to equality (or equivalently, to unity with a freely estimated
factor variance). As noted earlier, in terms of the number of estimated parameters,
the RI model is more complex than the single-factor congeneric model (by
estimating a single loading across all manifest variables on the second factor),
but more parsimonious than the orthogonal two-factor model (which has k-2 more
degrees of freedom than the RI model due to the k-1 freely estimated loadings on
the second factor). The RI model also differs from the usual multifactor orthogonal
models (such as Cholesky or other triangular decomposition) in that each manifest
variable is assumed to load on both factors.

Specifically, using the factor model notation defined above each row vector of
ƒ can now be written as ƒ0, ƒ1, ƒ2, : : : , ƒk. ƒ0 represents the random intercept
factor and allƒ0 are constrained to 1 with the variance associated with the intercept
factor freely estimated or, equivalently, with all ƒ0 constrained to equality and the
intercept variance constrained to unity. ƒ1 through ƒk are defined as before for
the multifactor congeneric measurement model. For those more accustomed to path
diagram representations, Fig. 1 shows the random intercept model for the case of
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Fig. 1 RI model path diagram

five time measurements. In this Figure œ1–œ5 indicate loadings in ƒ1. The random
intercept’s loadings are represented by the œRI which are fixed to equality over
the measurement occasions. Given that the ACE model frequently assumes unit
variances, we chose this strategy to identify the random intercept factor.

The interpretational status of the random intercept factor depends on the
particular research situation. As Maydeu-Olivares and Coffman (2006) note, one
source of such variability in cross-sectional data may be due to response format,
such as systematic negative (or positive) wording of items or a general method
factor associated with response. In their analysis of optimistic orientation, Maydeu-
Olivares and Coffman found that the random intercept factor resulted in better
fit to the data than the traditional one-factor model and was also a parsimonious
alternative to a two-factor simple structure model. They interpreted the random
intercept factor as a general endorsement or acquiescence factor or, more generally,
as a method factor associated with the Likert assessment format. Within the context
of longitudinal data, however, the RI model is identical in structure to the free
basis growth curve model (Meredith & Tisak 1990) except that, in the growth
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curve model, mean level information in the manifest variables is used to estimate
factor means for both factors while in the random intercept model, factor means
are assumed to be zero and individual manifest variable intercepts are estimated.
As such, the RI model could represent such a growth process, but the statistical
model relies only on the variance/covariance matrix for the identification of such
change patterns. As such, when a single group of monozygous and dizygous twins
is analyzed (as for the female twin data considered below), the random intercept
factor model loadings are identical to those associated with the reference group
considered in Dolan, Molenaar, and Boomsma’s (1989 1992) multigroup structured
means genetic factor model. An explication of an approach to the structuring of
mean effects models for genetic data involves a survey of several articles by Dolan
and colleagues as well as consideration of additional psychometric models and is
the object of a companion article.

Genetic Factor Model in Factor Analysis Notation

As described in Heath et al. (Heath, Eaves & Martin 1989; Heath, Jardin et al. 1989;
Heath, Neale et al. 1989), the genetic factor model for twin data is an extension of
the factor model described above, except that ˜ is an n*6 matrix, with distinct ˜A,
˜C, and ˜E representing the additive genetic, common environmental and unique
environmental components for each member of the twin pairs under consideration.
Variances across all latent variables are fixed to unity and three additional constraints
are placed across the three factors associated with on the ACE structural model:
For monozygotic twins, the correlation between genetic components across twins is
fixed to 1; for dizygotic twins, this correlation is fixed to 0.5. Finally, the correlation
between common factors across both twins is constrained to 1.

Random Intercept Factor Model Applied to ACE Model

One general model for assessment of the psychometric properties of the ACE model
occurs when all the three components of the ACE model are modeled as random
intercept factors. We therefore differentiate six factors for the resulting genetic
model in which we subscript intercept factors to indicate their status as random
intercept factors. Accordingly, the terms A, AIntercept, C, CIntercept, E, and EIntercept

denote the congeneric and tau-equivalent components of the genetic factor model
for the additive genetic, common environmental, and unique environmental effects
respectively. Matrices of the resulting genetic factor model consist of the observed
scores of Y as an n by 2k matrix for k measurement occasions. The column scalar
matrix of ’ has dimensions n by 2k matrix, ˜ is an n by 12 matrix of factor values,
and œ is a patterned 12 by 2k matrix of factor loadings. This random intercept genetic
factor model is the same as the traditional genetic factor model except that each
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Fig. 2 Proposed model path diagram

genetic and environmental component is represented by two, rather than one latent
variable due to the addition of a random intercept model. Model constraints for
this model are identical to those for the genetic factor model described above, with
the A, AIntercept, C, CIntercept, E, and EIntercept components assumed uncorrelated. The
proposed full model path diagram is shown in Fig. 2.

Bayesian Estimation

Basic Principles and Concepts of Bayesian SEM

As noted above, different measurement models may be appropriate across the
genetic and environmental components of the model. Some components may be
modeled best as tau equivalent, for example, while the congeneric or random
intercept factor models may be most appropriate for other components. If this is
the case, researchers attempting to estimate the full RI measurement model for
all components are “over-factoring” the data (Rindskopf 1984; Sato 1987) and
are likely to find that the model is empirically under-identified due to the non-
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uniqueness of the solution space (Savalei & Kolenikov 2008). Such estimation
difficulties are not present, however, in Bayesian approaches and parameters which
are zero or very close to zero are simply estimated as any other parameters in the
model (e.g., Lee 2007). The methodological benefit of this approach, however, is
that prior distributions may exclude improper values by definition. (For example,
variances estimated in the Bayesian approach using the inverse Gamma distribution
can never take negative values, thereby preventing one type of improper solution.)
In addition, because the matrix of parameter estimates does not need to be inverted,
locally degenerate solutions are not encountered during the process of estimation
(Shi & Lee 1998). This permits researchers to compare the relative fit of models
with different measurement models across components.

Several excellent treatments of Bayesian inference and use of the Gibbs Sampler
are available in both systematic (Gelman, Carlin, Stern, Dunson, & Vehtari 2013)
and didactic presentations. For Winbugs applications of the Gibbs Sampler, Eaves
et al. (2005) present a Bayesian genetic IRT analysis of questionnaire items
and Zhang, Hamagami, Wang, Nesselroade, and Grimm (2007) present Winbugs
specifications of growth models. Muthén (2010) presents a similar discussion of
example analyses and technical aspects using Mplus. In the interests of space, we
will not repeat these presentations, but will limit our discussion to those topics
which deal with the basic logic of Bayesian SEM and those technical aspects of
estimation which proved most important to the estimation of the random intercept
genetic factor model.

Bayes’ Theorem

Let M be an arbitrary structural equation model consisting of both parameter
specifications of the model with a vector of unknown parameters � . For brevity of
presentation, we will take M to represent both the structural equations representing
the model as well as any (possibly informative) prior beliefs of the researcher
about these parameters expressed via an appropriate probability distribution. Let
Y again be the observed data defined as in Equation 1 above. Based on a well-
known identity in probability (Gelman et al. 2013), the posterior probability density
function associated with � given the observed data and structural model may be
defined as:

p h� jY;Mi D p .Y j�;M / p .�/

p(� jY, M) represents the posterior density function of the researcher’s beliefs about
the parameters of the model. p(Yj� , M) can be regarded as the likelihood function.
The posterior density function incorporates the sample information and the prior
density function p(�) (Lee & Song 2004).
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Gibbs Sampler

The joint analytic form of the posterior distribution poses difficulties to a formal
evaluation of the density (Lee 1980). As a result, data augmentation procedures
involving Markov Chain Monte Carlo (MCMC) methods such as the Gibbs Sampler
are used to obtain the posterior distribution of p(� jY). Such techniques involve a
successive iterative approach to generating estimates of the posterior distributions
of the parameters and also provide some indication of the reasonableness of the
distributional assumptions of the model. Let ˜ be the set of latent variables in the
model. The rationale is that adding latent variables ˜ could turn the conditional
distribution p(� jY, 
) and p(
jY, �) into simpler form. Given a sample f� (t), 
(t)g
draws from p(� , 
jY), an iteration

�.tC1/p
�
�
ˇ̌
Y; 
.t/

	


.tC1/p
�


ˇ̌
ˇY; � .tC1/

�

samples a new state
˚
�.tC1/; 
.tC1/

�
. In the end, we could get enough samples in

the chain and observe the posterior distribution of � (Geman & Geman 1984). At
convergence, different chains generated with different starting values are merged
together (after discarding a number of iterations during the beginning phases of
each, which are treated as burn-in iterations). If successive observations are highly
positively correlated (as was frequently found in several of the genetic factor models
we considered) values are taken only from successive intervals (such as every 20th
iteration), a process known as “thinning” (Gelman et al. 2013).

Data from the MCMC iterations used in estimation can also be plotted as a
diagnostic of whether the parameter of interest appears to take the form assumed by
the distributions chosen by the researcher to represent beliefs about the parameter,
a method known as Posterior Predictive Checking (PPC, Gelman et al. 2013). As
described below, in the data sets considered in this paper, PPC of the estimated
posterior distributions alerted us to the fact that the Gibbs Sampler was prone
to produce multi-modal posterior distributions symmetric about zero for random
intercept factor loadings, particularly if the size of the effect was modest. We discuss
this issue and solutions below.

Model Fit

In addition to providing posterior distributions about the parameters of interest, the
Bayesian approach also permits the researcher to evaluate the fit of the structural
model based on its likelihood. Although several approaches to assessing model
fit can be taken (Gelman et al. 2013; Lee 2007) we will discuss three here. The
BIC (Schwarz 1978) is popular within structural modeling because it penalizes
models for their complexity (expressed as the number of parameters in the model).
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The Deviance Information Criterion (DIC, Spiegelhalter, Best, Carlin, & van der
Linde 2002) is a Bayesian generalization of information criteria such as the AIC
and BIC which penalizes models based on the effective number of parameters in
the model. For both the DIC and BIC, smaller values are considered better-fitting.
Posterior predictive checking of the likelihood of the model as a whole also permits
the researcher to estimate the Posterior Predictive p-value, an estimate based on
the PPC of the likelihood ratio chi-square statistic for the model (Meng 1994).
This represents a rough estimate of the probability that the data could have been
generated under the candidate model. The proposed model may be considered as
plausible if the PP p-value estimate is not far from 0.5 (acceptable range 0.3–0.7).
Meng (1994) notes that the PP p-value is not suitable for comparing different models
but is a reliable index of stand-alone model fit.

Model Comparison: Bayes Factors

In addition to providing stand-alone measures of model fit, it is also possible
to assess the relative fit of candidate structural models for the data. In addition
to simply comparing the incremental fit, the Bayesian approach also permits the
researcher to assess the relative informative power associated with increases in
model complexity. Most generally, this comparison is made using the Bayes factor,
which we now introduce in some greater detail given the need to understand its basic
logic and the fact that its estimation is the object of ongoing study. From the Bayes
theorem comparing the odds ratio associated with the comparison of a base model,
M0 with a more complex model, M1, we can obtain:

p .M1 jY /
p .M0 jY / D p .Y jM1 / p .M1/

p .Y jM0 / p .M0/

which permits us to define the Bayes factor as

B10 D p .Y jM1 /

p .Y jM0 /

Thus we see that posterior odds D Bayes factor*prior odds (Lee 2007). Larger Bayes
factors mean stronger evidence for M1 relative to M0. phYj M1i, phYj M0i is obtained
by integrating phYj � , M1i, phYj � , M0i over the parameter space, respectively. It is,
however, often difficult to obtain Bayes factor analytically using a path sampling
approach (Gelman & Meng 1998) and, for that reason, another easy and quick way
to calculate Bayes factor is by using BIC (Muthén & Asparouhov 2011):

BF D p .M1/

p .M0/
D exp .�0:5BICM1 /

exp .�0:5BICM0 /
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Although there is some dispute about the validity of calculating Bayes factor by
using BIC (Gelman et al. 2013), in the simulation study presented below, we found
that this criterion worked well in practice. Generally speaking, Bayes factors less
than 3 represent minimal support for the alternative model, values between 3 and
20 positive support for the alternative model, values between 20 and 150 strong
support, and values larger than 150 decisive support.

Simulated Data Example

We will now illustrate our general approach of fitting a general random intercept
genetic factor model and assessing the relative fit of more parsimonious measure-
ment models for the genetic and environmental components using simulated data
(generated from SAS). We generated simulated twin data for 1000 hypothetical twin
pairs using the following factor loadings: Across all variables, AIntercept, CIntercept,
and EIntercept D 0.4, 0.4, and 0.3, respectively. A factor loadings were zero. C factor
loadings were chosen as 0.4, �0.4, 0.3, �0.3 and 0.2 across the five variables. E
factor loadings were chosen as �0.3, �0.3, 0.3, 0.3, and 0.3.

To demonstrate the ability of the procedure to correctly arrive at a more parsi-
monious model and to highlight the empirical under-identification issues associated
with more parsimonious models under ML estimation, we chose to simulate data
in which an intercept model was appropriate for the additive genetic component,
but for which RI models were appropriate for the shared and unique environmental
components. 1000 replication data sets were generated to investigate the sampling
behavior of the approach using SAS. Models were estimated using Mplus (Muthén
and Muthén 1998–2010). The Gibbs Sampler iteration number was set at 5000
to allow a generous amount of iterations for the MCMC chains in the Bayesian
analyses. By default, the first half of these iterations was used as a burned-in phase.
Initial inspection of the MCMC chains revealed marked auto-correlation across
iterations of the Gibbs Sampler, and so a thinning value of 50 was chosen for the
analyses which appeared to remedy the auto-correlation problem (Albert & Chib
1993). All 1000 replications met the convergence criteria by Bayesian estimation
(PSR close to 1 for each parameter) (Muthén & Asparouhov 2011). The PP-p value
associated with the general RI model had a mean of 0.53, standard deviation 0.25
across replications, indicating good fit. In addition, the genetic slope factor loadings
are all non-significant. Under ML estimation, however, all 1000 samples failed to
converge which we take as evidence that they were not empirically identified. When
the correct model is fit to the data, however, ML models did converge. There was
little difference between the Bayesian and ML estimates under the correct model,
with bias estimates not exceeding 2 % across the estimated loadings (See Table S1
in supplemental materials accompanying the manuscript.)
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Table 1 Percentages of replications with Bayes factors > 20 favoring column
model over row model across 1000 simulated samples

Model Two-factor model RI model ACE model True model

Two-factor model NA 91.6 % 47.4 % 99.8 %
RI model 7.70 % NA 10.4 % 99.4 %
ACE model 52.0 % 89.3 % NA 96.3 %
True model 0.20 % 0.60 % 3.50 % NA

Table 2 Summary of
parameter bias in traditional
ACE genetic factor model

Bayesian estimation ML estimation
Parameter Bias Mean (S.D.) Bias Mean (S.D.)

A loadings 45.8 % (0.106) 45.5 % (0.110)
C loadings �39.7 % (0.071) �39.1 % (0.073)
E loadings �27.7 % (0.379) �27.7 % (0.377)

Model Comparison

Table 1 presents proportions of model comparisons across replications in the
simulated data which exceed criteria for strong support in comparisons of the true
model, the traditional ACE model, and a freely estimated two-factor solution across
all genetic and environmental components. As can be seen from the fifth column
of the table, the true model is preferred over the competing two-factor, random
intercept, and traditional ACE models in 96.3–99.8 % of the cases. The two-factor
model is preferred over the traditional ACE model in only 52 % of the cases, and the
random intercept model is preferred over the traditional ACE model in 89.3 % of
the cases. This high latter percentage is unsurprising, given that the random intercept
model differs from the true model only in that the A factor is redacted from the RI
model to produce the true model. Taken together, model comparisons based on the
simulated data reveal that Bayesian estimation appears able to correctly identify
the correct model and, even when the model under consideration is slightly over-
complex, the factorial complexity of the genetic and environmental components in
these data is detected.

Genetic Factor Model

When these data were analyzed with the (mis-specified) traditional genetic factor
model in which all three components are assumed to have a congeneric measure-
ment model (i.e., have only A, C, and E factors), all 1000 replication yielded a
zero PP-p value, indicating poor model fit. The bias summary associated with the
ACE model is presented in Table 2. Results suggest that, for the simulated data
considered here, failure to correctly include intercept components for the common
unique environmental effects introduces substantial bias in the estimated additive
effects of the model.
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Two-Factor Model

As noted above, the RI measurement model is a two-factor model, but one with
considerably more parsimony than the traditional two-factor congeneric model. The
question therefore remains as to whether the Bayes factor can also correctly reward
the greater parsimony of the RI model relative to the more complex traditional two-
factor model. When the traditional two-factor model is estimated from the data,
the PP-p value has mean of 0.50, with standard deviation 0.23, indicating the high
degree of model fit found for the (true) RI model. To secure a mathematically
identified solution for the two-factor model, the first loading associated with each of
the A2, C2, and E2 factors was set to zero. Bias estimates for the two-factor model
are of necessity quite pronounced, given that the Cholesky form of the two-factor
model represents an affine rotation of the true structure of the data. If calculated as
a percent bias relative to the true model, bias estimates of the two-factor Cholesky
model averaged 37.2 %, with bias across the particular types of loading ranging
from 12.5 to 97.5 % (See Table S2 in the supplemental materials accompanying the
manuscript.)

Alternatively, if the approach outlined by Franić et al. (2013) is followed, the
correct dimensionality of the genetic and environmental components is identified
as a two-factor solution. However, the structure of the random intercept model is
not correctly specified due to the fact that the resulting decomposition is triangular
in nature. Even if the two-dimensional factor structure is rotated via an affine
transformation to a form most closely resembling the true factor structure, two of
the recovered loadings still deviate by approximately .05 due to sampling variability.
Since it is difficult to judge empirically in real-world applications whether such
variation represents sampling variability or a true multifactor structure in which
factor loadings of one factor are unequal to each other, we believe it reasonable to
directly compare the two-factor and random intercept models as outlined here.

Other Alternative Models: Bayesian Estimation

In addition to these selected model comparisons, we also compared the true
model with all other combinations of the three possible measurement models (tau,
congeneric, and random intercept) for each component of the genetic factor model.
Model fit indices for the models are shown in Table 3 as well as the Bayes factor
comparing the true model to each candidate. Although it would be possible to
compare all of these candidate models using Bayes factors, the evaluation of such
a matrix of pairwise comparisons would be both tedious and liable to substantial
experiment-wise error given the number of contrasts. If, however, researchers com-
pare the relative fit of the random intercept model to models which redact intercept
or factor models from the genetic model, a relatively proscribed set of model
comparisons results. Well-fitting parsimonious models can then be compared to the
random intercept model in an attempt to identify a more parsimonious model. As can
be seen in Table 3, when Bayes factors are calculated relative to the random intercept
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Table 3 Candidate models’ PP-p value and percent of Bayes factors strongly preferring the
RI and true models

BF Perc. BF Perc.
Over 20 Over 20

Model PP-p value (S.D.) BIC (S.D.) (RI) (%) (True) (%)

RI model 0.53 (0.25) 49,327.21 (234.73) NA 99.4
True model 0.52 (0.26) 49,249.37 (215.04) 0.06 NA
RI without AIntercept model 0.52 (0.25) 49,279.5 (215.83) 4.00 99.3
RI without CIntercept model 0.07 (0.11) 51,798.18 (2371.75) 95.3 99.8
RI without EIntercept model 0.00 (0.00) 49,892.57 (712.31) 96.0 99.3
ACEEIntercept model 0.07 (0.11) 50,167.56 (1492.76) 79.6 100
ACCInterceptE model 0.00 (0.00) 49,515.99 (220.87) 92.8 100
AAInterceptCE model 0.00 (0.00) 50,304.43 (1602.06) 96.3 100

model, only the true model and the random intercept model without the AIntercept

factor were not significantly worse fitting than the RI model, as shown in the fourth
column. When the true model is considered as a base model, the evidence strongly
supporting the true model is found between 99.3 and 100 % of the replications.

Summary Remarks for Simulation Study

Under ML estimation, estimating an over-complex RI measurement model for
all three components results in empirical under-identification. When the random
intercept is present for the genetic component but the data are analyzed using
the traditional ACE model, estimates of heritability of the genetic component are
over-estimated under both ML and Bayesian estimation. When the true model is
known, however, ML and Bayesian parameter estimates appeared similar. Because
of the empirical under-identification problems in ML estimation, comparison of
candidate measurement models was only possible under the Bayesian approach. For
these data, the correct model was identified using the Bayes factor. Significantly,
the random intercept measurement model was also found to be a parsimonious
alternative to the traditional two-factor model.

Care must be taken in conducting Bayesian analyses, however. Even with the
simulated data under consideration, large thinning values were necessary to reduce
autocorrelation across iterations of the Gibbs Sampler and bimodality was observed
in some of the PPC plots which indicated possibly misleading estimates and
confidence intervals for the Bayesian approach. Once identified, however, these
bimodality issues were successfully addressed. In the next section, the general RI
genetic factor model and its more parsimonious alternatives are considered in an
empirical data example. In addition to the didactic value of a real-world example,
use of a real-world example also permits exploration of the effects of the non-
normality and unmodeled causal effects on model fit, comparison, and parameter
estimation.
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Empirical Study

The genetic and environmental effects on body mass index (BMI) have been
investigated across several studies. Allison et al. (1996), in a study of Japanese,
Finnish, and American twins, reported that additive genetic effects appeared more
pronounced at early ages, that the genetic effects did not appear due to shared
environmental effects during this time, and that heritability coefficients ranged
between .5 and .7 for the data sets considered. Elks et al. (2012), in a review of 88
estimates of the heritability of BMI across twin studies, found heritability estimates
ranging from .47 to .90. It is worth noting that most of these estimates (61) were
based on AE models (i.e., a model with no common environmental effects), while
15 were based on the traditional ACE model. (The remainder were based on direct
comparisons of within and between twin correlations or the non-additive genetic
model.) Estimates of the genetic heritability of BMI using the ACE model were
generally .12 higher than estimates from the AE model. Readers are referred to
Elkes et al. for a discussion of the genome-wide association studies investigating
the loci associated with BMI.

The BMI data we wish to analyze are taken from the Missouri Adolescent Female
Twin Study (MOAFTS), a genetic-epidemiological, prospective twin-family study
of alcohol use in young females. (For full details, including response rates, see
Waldron, Bucholz, Lynskey, Madden, & Heath 2013.) Using a cohort sequential
design, twins were aged 13, 15, 17, and 19 when first enrolled in the study. In
analyses presented here, we exclude African-American twins, because of small
numbers but significant mean differences in BMI distribution. A total of 3416
Missouri female adolescent twins (85 % participation rate, approximately 55 % MZ
and 45 % DZ) were interviewed from 1995 to 2012 with a telephone version of the
Child Semi-Structured Assessment for the Genetics of Alcoholism. In this study, we
only concentrated on the body mass index (BMI) variable. Observations from twin
pairs with at least five measurement occasions were selected for this longitudinal
analysis. Descriptive statistics by age groups are listed in Table 4. Since all observed
variables are positively skewed, even after fitting the model, we transformed the
data by taking the log of the original data. The following analyses were based on
the transformed data.

Bayesian Model Comparison

As in the simulation study, two-factor, RI, and simpler alternatives were considered
for the BMI data. Table 5 presents the Bayes factor (relative to the final model),
PP-p value, and DIC for each reduced model as well as the two-factor model.
A model consisting of a RI model for the additive genetic effect, a tau equivalent
model for the unique environmental effect, and no common environmental effect
was chosen as the final model based on its Bayes factor relative to the RI model
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Table 4 Descriptive statistics of body mass index by age group

N Twin 1 Twin 2
Age Twin pairs Mean S.D. Skewness Mean S.D. Skewness

13 58 19.9 2.684 0.82 20.26 3.244 1.323
14 71 20.75 3.109 1.061 20.1 3.019 1.465
15 150 21.1 3.222 1.542 21 3.188 1.819
16 110 21.05 3.04 1.437 21.16 3.419 1.842
17 188 21.74 3.113 1.222 21.58 3.731 2.199
18 160 21.97 3.359 1.156 22 3.646 1.434
19 89 23.09 4.443 1.81 22.7 3.523 1.351
20 117 23.07 4.334 1.458 22.53 3.653 1.315
21 31 23.28 4.925 1.763 23.22 5.379 2.387
22 80 23.6 4.833 2.298 23.38 4.736 1.793
23 86 24.84 5.068 1.059 24.23 4.587 1.372
24 68 23.89 4.782 1.221 23.83 4.705 0.997
25 65 24.95 5.538 1.777 24.84 5.35 1.437
>25 113 26.54 5.804 1.125 25.88 6.08 1.152

(1.84*1019). Although such a choice of models may seem somewhat unusual, it is
a choice consonant with other research on BMI during young adulthood; Elks et al.
(2012) report 26 studies of BMI spanning both young and older samples compared
to nine studies reporting the traditional ACE model. Although such a contrast does
not ensure correctness via democratic vote, it does speak to the fact that a decision
to redact the common environmental component is not without precedent.

ML Model Comparison

The model comparison results using ML estimation were similar to their Bayesian
counterparts and are shown in Table S3 in the supplemental materials for the
manuscript. Model fit index such as RMSEA and CFI were very similar across
the different models. Moreover, chi-square test cannot be used to compare all
models given that they are not nested models. However, based on examination
of the BIC values, the AAInterceptCInterceptEEIntercept model demonstrated the best
fit (BIC D �5335.9), with the AAInterceptCInterceptEIntercept model showing a value
only slightly larger than this (BIC D �5304.5). The model chosen under Bayesian
estimation, AAInterceptEIntercept (BIC D 5165.7) was larger than these other two
models but still lower than the other models considered. On examination of the

It should be noted that when all Bayesian models which included a common environmental effect
failed to find environmental effects greater than zero, regardless of whether a tau equivalent,
congeneric or random intercept model was used to model the component.
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Table 5 PP-p and BIC values for candidate models and Bayes factor of body mass index
data

Model PP-p BIC Bayes factor
Bayes factor vs.
AAIntercept,EIntercept

AAIntercept,EIntercept 0.291 �5157.05 1.84E C 19 1
Two-factor 0.401 �4729.84 3.14E�74 1.71E�93
RI full model 0.301 �5068.33 1.00E C 00 5.43E�20
A,C,CIntercept,E,EIntercept 0.309 �5075.19 3.09E C 01 1.67E�18
A,AIntercept,C,E,EIntercept 0.317 �4864.42 5.27E�45 2.86E�64
A,AIntercept,C,CIntercept,E 0.333 �4840.35 3.12E�50 1.70E�69
A,AIntercept,CIntercept,EIntercept 0.299 �4918.28 2.61E�33 1.42E�52
A,C,CIntercept,E 0.289 �5055.06 1.31E�03 7.13E�23
A,AIntercept,C,E 0.293 �4910.09 4.34E�35 2.36E�54
A, C, E (Genetic Factor Model) 0.285 �5042.8 2.85E�06 1.55E�25
AIntercept,C,CIntercept,E,EIntercept 0.289 �5130.3 2.85E C 13 1.55E�06
A,AIntercept, CIntercept,E,EIntercept 0.323 �5131.53 5.28E C 13 2.87E�06
A,AIntercept,C,CIntercept, EIntercept 0.285 �5067.28 5.90E�01 3.21E�20
AIntercept, CIntercept,E,EIntercept 0.133 �5130.5 3.16E C 13 1.72E�06
AIntercept,C,CIntercept, EIntercept 0.275 �5136.93 7.87E C 14 4.28E�05
AInterceptCInterceptEIntercept 0.122 �5000.67 2.03E�15 1.10E�34
AE 0.124 �4963.992 2.03E�15 1.19E�42

ML estimates, the CIntercept and E factor loadings were, although significant, modest
in magnitude (all œ’s < .05). Because of the advantages of the Bayesian estimation
approach to model comparison and because the additional factors, if present,
appeared to represent modest effects, we chose to report ML and Bayesian estimates
for this model.

Parameter Estimation

Bayesian parameter estimates based on the final model are shown in Table 6.
(Corresponding ML parameter estimates for this model were almost identical in
value.) Consistent with Allison et al.’s (1996) finding, the genetic intercept appears
to explain more variability than the genetic factor in early years, especially from
ages 13 through 18. During later years (from ages 21 through 26 and later), the
genetic factor appears to explain roughly the same proportion of variability as
the intercept. The pattern of loadings for the genetic factor appears to be roughly
nonlinear and suggests systematic differences in the genetic component associated
with BMI during the adolescent, young adult, and adult years.

Also consistent with the majority of the twin studies reviewed by Elks et al.
(2012), common environmental effect was either not statistically significant (based
on Bayesian estimates). Given that dropping CI gave a similar model fit index
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Table 6 Bayesian parameter estimates for body mass index data

Age œa Std. Dev.a pjH0 D 0 Intercept Std. Dev. pjH0 D 0

A
13 �3.40 1.70 0.023 3.00 0.01 0.00
14 �0.30 1.10 0.408 3.02 0.01 0.00
15 1.60 1.00 0.063 3.04 0.01 0.00
16 0.50 1.00 0.285 3.05 0.01 0.00
17 1.80 1.00 0.034 3.07 0.01 0.00
18 3.40 1.00 0 3.08 0.01 0.00
19 5.50 1.30 0 3.11 0.01 0.00
20 5.10 1.10 0 3.12 0.01 0.00
21 8.70 1.80 0 3.14 0.01 0.00
22 8.10 1.20 0 3.14 0.01 0.00
23 10.20 1.30 0 3.17 0.01 0.00
24 9.40 1.50 0 3.18 0.01 0.00
25 9.90 1.40 0 3.18 0.01 0.00
>26 13.00 1.40 0 3.22 0.01 0.00

Aintercept

All Ages 12.90 0.50 0
Eintercept

All Ages 4.10 0.30 0
aValues in columns multiplied by 100 for ease of presentation

(PP-p value is 0.293) and the Bayes factor is 2.81 favoring the model without CI, we
conclude that dropping the CI factor from the model seems reasonable and we note
that inclusion of the effect does not seem to affect other parameters and explains at
most a minimal amount of variability.

The proportion of variability explained by genetic and environmental effects by
age is shown in Table 7. For these data, heritability estimates for the final model
(shown in the column labeled “Additive” under the Heading “Final Model”) ranged
from 0.72 to 0.82 with an average of 0.77 across years, which compares favorably
with the 0.75 median estimate from Elks et al.’s (2012) meta-analysis. In contrast
to the heritability estimates based on the traditional ACE model and models used in
Elks et al.’s study, heritability does not appear to be more pronounced in younger
ages than in older ages. Heritability estimates from the traditional ACE model
(shown in the same column under the heading “ACE”) for these data are somewhat
lower (mean D .68, range 0.49–0.82 across years) and appear to be slightly lower
for twins older than 21. The difference in average heritability between the final and
traditional ACE model of .09 is similar to the 0.12 increase noted by Elks et al.
when models are fit which do not include an environmental effect. It is also worth
noting that statistically significant common environmental effects using the single-
factor ACE model were only found for ages 21 through 25 and, even for these, the
proportion of variability in BMI explained was on average 7 %. The discrepancy
between the final model and the traditional one-factor ACE model does not appear
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to be due entirely, however, to the estimation of a common environmental effect,
because when a two-factor ACE model is estimated from these data, the average
heritability across ages is 0.59, and none of the factor loadings associated with the
common environmental effects is statistically significant.

A comparison of unique environmental effects of the final model with the one-
and two-factor traditional ACE models reveal that the average unique environmental
effect was slightly smaller for the final model (0.06) than for either the one- or two-
factor ACE models (.09 and .12, respectively).

Summary Remarks of Empirical Study

Taken together, estimates from the final model under Bayesian estimation produce
estimates of heritability consonant with the Elks et al. (2012) review and replicate
the conclusion made by many researchers that common environmental effects in
BMI appear to be negligible. The pattern of differential common environmental
effects found under a one-factor ACE model is not replicated by either the random
intercept model selected as most reasonable or by a freely estimated two-factor
model. Although, as Visscher, Gordon, and Neale (2008) note, small sample studies
may be underpowered to detect a statistically significant common environmental
effect, the existence of such differential effects were not found using the Bayesian
model comparison procedure outlined here and, even if thought to exist, their
magnitude appears to be confined to older ages and to be minimal in comparison
to the magnitude of heritability coefficients during these ages. For these data, the
proposed model comparison approach appears to yield a model which is both
parsimonious and reasonably similar to the larger literature on the magnitude of
environmental and genetic effects.

Discussion

The measurement model which researchers choose to operationalize environmental
and genetic components of behavior genetic models has important implications for
the estimation and interpretations of such models. When psychometric alternatives
to the traditional factor model such as the tau equivalent and random intercept
models are considered, substantially different estimates of the relative salience of
genetic and environmental contributions are obtained. Comparison of candidate
measurement models seems warranted given that the psychometric complexity of
the true model is largely unknown to the researcher prior to analysis and, even if it
were, such exploration can inform the researcher about possible alternate estimates
for genetic and environmental components that a reasonable skeptic might raise.
Consideration of overly complex genetic models, however, is often prevented in
maximum likelihood estimation because such models are not empirically identified,
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which leaves open the question of whether complex alternatives were simply not
numerically obtained given the software or whether they are empirically unidentified
due to being over-complex. Such model estimation was, however, possible under
Bayesian estimation and estimated parameters for the final model appeared largely
similar to corresponding estimates from ML estimation for both the simulated and
real-world data.

Given that traditional behavior genetic models often involve the assessment of
only different numbers of freely estimated latent variables, this paper seeks to
highlight the fact that a greater number of models are possible, given parsimonious
patterning of the factor loadings involved. The extension of such models to convey
mean effects makes it possible for the researcher to specify the patterning of such
variance components as growth curve models. As noted above, a great variety of
models are possible under the model comparison procedure described above, which
may prompt some researchers to wonder how best to limit the specification and
search of models to a more tractable number in practice. In the fortunate cases where
the researcher is in the position of having some knowledge concerning the functional
form of growth over time, it would be possible to specify nonlinear constraints on
the estimated factor loadings so that the underlying estimated curve corresponds
to a parametric growth model such as the logistic or Gompertz curve (Grimm &
Ram 2009). Increasingly, however, it appears that the patterns of growth observed
over time in empirical data do not follow such tidy mathematical specifications,
leading some to adopt the nonparametric growth curve as a reference curve for
characterizing the form of growth over time. For example, Ram and Grimm (2009),
in a study of longitudinal finite mixture models, advocate for initial specification
of a free curve growth model as a model of functional change over time which can
then serve as a reference form for the identification of finite mixtures. In general,
however, adoption of such a “nonparametric” growth curve model raises questions
concerning the interpretability of the identified curves.

It is quite possible that one reason for the failure of identified patterns of growth
over time to follow a parametric form is due to the fact that Alessandri, Caprara,
and Tisak (2012) point out that the presence of a single, but nonparametric pattern
of loadings for growth data may indicate the presence of several, rather than one
source of stability of time which may include environmental effects, age-related
effects or turning points. Given that the genetic and environmental effects identified
through behavior genetic models are genetically multi-determined, it is probably
more reasonable to expect that identified effects should probably exhibit such
composite patterns over the lifespan.

As such, it is important to recall that the proposed model comparison approach
to fitting genetic and environmental effects is no panacea and that behavior genetic
growth curve models, as with any latent variable model, are subject to the “naming
problem” in that the latent variables identified may not represent the constructs
initially intended. Although it is possible to attempt a remedy of this by modeling
one of the factors of the model according to some agreed upon parametric form
and to identify “residual factors” which would model additional covariation due to
the extraneous effects, the fact that there is at least in the context of much behavior
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genetic models, little agreement as to the functional form of growth over time makes
such an approach untenable. In the end analysis, probably the best remedy for this
ambiguity lies in the identification of such possible confounding effects and data
collection strategies designed to provide a less ambiguous portrait of change over
time.

Model Support

Rather than basing model comparisons in terms of probability statements common
under the frequentist approach, the Bayesian approach permitted adjudication
between candidate models based on a quantification of the relative support for a
particular model relative to other candidate measurement models. Operationally,
measurement models which include random intercept components permit the
researcher to consider the model of tau equivalence as a parsimonious alter-
native to the single-factor model usually considered in genetic factor models.
The possibility that the manifest variables of the study constitute equivalently
scaled measures would seem an attractive one to researchers, especially if the
manifest variables in the model constitute longitudinal assessments. More generally,
inclusion of a random intercept model makes more fine-grained comparisons of
models intermediary between those usually considered by researchers which are
based on factor dimensionality. For example, in both simulated and real-world
data, factor models with random intercept components were estimated and selected
which were more complex than the single-factor model but yet more parsimonious
than the freely estimated two-factor model. The question of whether the random
intercept model or multi-factor measurement model better describe the data also
has important implications for the investigation of multigroup invariance. Equality
constraints have sometimes been used across Cholesky factors to test for invariance
across groups (e.g., Loehlin & Martin 2013). Different hypotheses about equality
constraints of factor loadings and component variability are implied under the RI
model, however, suggesting that different conclusions about partial invariance may
be made under the RI and Cholesky factor models.

Model Support Varies as a Function of Study Design

When such comparisons are considered across studies in an area, such model
comparisons provide statements of what measurement models seem reasonable
based on characteristics of the study. When the statistical power of the data is
low (i.e., when effect size is small or small sample sizes are analyzed), researchers
are more likely to find the tau equivalent measurement and its associated standard
error are a parsimonious summary. In the body mass data, such intercept factors
seemed sufficient to explain variability due to common and unique environmental
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effects. Congeneric measurement models, by contrast, provide information that
markedly different effect sizes across manifest variables have been found. Similarly,
multivariate studies of relatively few manifest variables are similarly less likely
than studies with several manifest variables to recover random intercept models
or multiple factors due to the lower power associated with smaller samples of the
multivariate space. Accordingly, the ability to identify method variability, response
set, or a complex measurement model such as that underlying a growth process
varies as a function of study design.

Limitations

Although use of Bayesian estimation for genetic modeling has promise, it is
not without its difficulties. The bimodality of estimated factor loadings across
MCMC replications was one difficulty most often encountered when estimated
factor loadings were modest and successive MCMC iterations varied between small
positive and equally well-fitting small negative values. This problem is equivalent
to the reflection problem in factor analysis in general (i.e., that a factor model with
loadings multiplied by �1 fits the data as well as the original factor loadings). In
Bayesian analysis, researchers can detect the resulting bimodal posterior distribution
using different starting values across chains. If the estimated loading is not far
away from zero, the convergence criteria or K–S test are unlikely to detect such
bimodality. Such bimodality can, however, be remedied by constraining one or
more such marginal loadings to be positive across those parameters which appear
to exhibit bimodality (Congdon & Congdon 2003). Although such a remedy is
appropriate in many situations (Erosheva & Curtis 2013), it should be noted that
it is not a universal solution and requires further research (Chan & Jeliazkov 2009).

Future Directions

Use of the model comparison approach outlined here can be readily extended to
a greater variety of genetic models for twin and family data. Although the models
considered here assumed that the manifest variables were continuously measured
variables, extensions of the models presented here to genetic factor models using
categorical data (Cho, Wood, & Heath 2009) would appear straightforward, subject
to additional identification requirements of the latent response variable approach
required for categorical data. Developments in both behavior genetic modeling and
Bayesian statistics have also extended structural models using generalized linear
mixed models, enabling researchers to specify random effects for variables with
other known distributions such as Poisson or other exponential link functions (e.g.,
Bolker et al. 2009). Additionally, given that multilevel behavior genetic models
have also been proposed for genetic data (e.g., Guo & Wang 2002), modeling
a random intercept term within a factor model provides the researcher with the
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ability to assess the relative fit of such models within a factor analytic framework,
with the added benefit that the multilevel models can be modeled as special cases
of the general genetic models considered here, as they result when factor loadings
are constrained to fixed values. Finally, as mentioned above, the random intercept
model can also be extended to the case of estimation of growth curve models,
although the psychometric measurement alternatives are slightly more complex in
those situations.

Conclusion

The exploration of more fine-grained model comparisons motivated by psycho-
metric models for the environmental and genetic components of behavior genetic
models appears promising when Bayesian estimation is considered. Bayesian mod-
els appear less susceptible to problems of empirical under-identification frequently
encountered under ML estimation. The tau equivalent and random intercept models
in particular appear to be two parsimonious alternatives to the factor components
usually considered under a Cholesky decomposition or other exploratory factor
approaches. Although care must be taken to assure that estimation difficulties
related to multi-modality and serial correlation in the MCMC estimation procedure
are identified and remedied, use of the Bayes factor appears to be a promising
means for assessing the relative support of candidate psychometric behavior genetic
models.

Electronic supplementary material

Below is the link to the electronic supplementary material.Mplus Program for
Fitting Bayesian One-Factor ACE model (DOCX 21 kb)Mplus Program for Fitting
Final Bayesian Random Intercept Model for Simulated Data (DOCX 25 kb)
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Item Response Models for Dependent
Data: Quasi-exact Tests for the Investigation
of Some Preconditions for Measuring Change

Ingrid Koller, Wolfgang Wiedermann, and Judith Glück

Abstract The Rasch model has several advantages for the psychometric investiga-
tion of item quality (e.g., specific objectivity). One approach to testing model fit uses
quasi-exact tests which are well suited to test the validity of the Rasch model when
sample sizes are rather small. Application of these tests is not restricted to Rasch
modeling. In this chapter, we show that these tests can be used to test preconditions
for measuring change such as measurement invariance, unidimensionality, and local
independence across time points. For example, if items are unidimensional across
time points (i.e., all items measure the same latent construct across time) and
groups (e.g., control and training groups), it follows that there are no significant
interindividual differences within groups and over time. All individuals in a group
change in the same direction. On the other hand, significant results across time but
not within groups suggest group differences in change, such as training effects. In
this chapter, we first give an introduction to quasi-exact tests. Then, we demonstrate
the applicability of three test statistics for the investigation of preconditions
for measuring change using empirical power analysis and an empirical example
concerning spatial ability.

Introduction

The Rasch model (Rasch 1960; see also Fischer & Molenaar 1995) is commonly
applied for the psychometric investigation of items. If a data set conforms to
the Rasch model, several positive mathematical properties hold for the data (e.g.,
Fischer & Molenaar 1995; Koller & Hatzinger 2013): (a) Unidimensionality: all
items of a test measure the same latent construct. (b) Local independence: holding
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ability constant, an item’s probability of being solved does not depend on other
items. (c) Parallel and strictly increasing item characteristic curves (ICCs): the
probability to solve an item strictly increases with person ability, which results
in non-overlapping ICCs with the same discrimination for all items. (d) Specific
objectivity: it is irrelevant which items are used to compare two individuals, and
it is irrelevant which individual is used to compare two items. (e) Measurement
invariance (an important aspect of specific objectivity): subgroups of individuals
show the same conditional probabilities of solving items. Testing the assumption
of measurement invariance across levels of external variables (e.g., gender) is
commonly known as the investigation of differential item functioning (DIF; e.g.,
Holland & Wainer 1993). (f) If the Rasch model holds for a data set, an individual’s
raw score contains all information necessary to characterize that individual’s ability,
and at the same time, the number of individuals who have solved an item (i.e., the
sum score) contains all information necessary to determine that item’s difficulty.
This last property is known as the property of sufficient statistics and constitutes the
central part of the quasi-exact tests described in this chapter.

The mathematical properties of the Rasch model are important not only for
scaling items but also for investigating preconditions for measuring change (e.g.,
Ponocny 2002) or other cases of dependent data. In this chapter, we focus on
preconditions for item response models designed to measure change (see, e.g.,
Fischer 1974 1989 1995a 1995b; Fischer & Ponocny-Seliger 1998; Formann &
Spiel 1989; Glück & Spiel 1997 2007), namely (1) unidimensionality of items
across time points, (2) unidimensionality of change, and (3) response independence
within items over time. In the following section, we review statistical tests that are
commonly used to test these preconditions.

Unidimensionality Between Time Points (The Person Side)

An important question in the analysis of change is whether change occurs for all
individuals in the same direction or whether it is necessary to model individual
change over time. If individuals change in different directions within groups, but
only group differences are modeled, change parameters can be biased. In other
words, if the correlation of scores or latent abilities between time points is lower
than expected under the Rasch model, the assumption of unidimensionality across
time points is violated. There exist different approaches to the investigation of
unidimensionality across time points. For example, the mixed Rasch model (e.g.,
Rost 1990) can be used to detect latent classes within which the Rasch model
holds across time points (e.g., Glück & Spiel 1997). Another option is to check
unidimensionality on the level of subscales using the Martin-Löf test (e.g., Glück
& Spiel 1997; see Eq. (3) below), or to apply the recently proposed likelihood
ratio test by Gittler and Fischer (2011). Alternative modeling approaches to address
these unidimensionality issues include multidimensional item response models
(Adams, Wilson, & Wang 1997) or log-linear representations of these models (e.g.,
Meiser 1996).
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Unidimensionality of Change (The Item Side)

Unidimensionality of change on the item side is another important precondition for
drawing valid conclusions about change over time. If this precondition is fulfilled,
all items of a test show the same magnitude, and direction of change. Thus, it is
irrelevant which items are used to assess change, a property known as specific
objectivity of change. Again, violations of this assumption can lead to distorted
results, e.g., suggesting no change even though the latent construct of interest
changes across time. Because the two preconditions of unidimensionality between
time points and unidimensionality of change are not independent of each other, it
is also possible to investigate the assumption of unidimensionality of change using
the Martin-Löf test or multidimensional item response models, as well as testing the
respective model (a single change parameter for all items) against a maximum model
that estimates a change parameter for each item separately (see, e.g., Fischer 1976;
Glück & Spiel 1997 2007), or using various model tests to assess measurement
invariance (Cho, Athay, & Preacher 2013).

Response Independence Between Time Points

The third precondition is response independence across time, which means local
independence of items. When the same items are used across time points, the
probability of items becoming response dependent increases, for example due to
practice effects. Violations of this precondition lead to inflated correlations of
the same item across time points. Whether this kind of violation is considered
or ignored in the analysis of change is the decision of the researcher. In any
case, if violations of response independence are present, researchers should pay
attention to the magnitude of the correlations within items over time because highly
correlated items impede the assessment of change effects (non-change-sensitive
item). A straightforward approach to solve this problem is to use different (but
unidimensional) items at each time point (e.g., Embretson 1991).

Again, the Martin-Löf test and multidimensional item response models can be
used to determine whether the precondition of response independence is fulfilled.
It is also possible to investigate response independence using methods assessing
measurement invariance. For example, Andersen’s (1973) likelihood ratio test
can be used to evaluate the assumption of locally independent items by splitting
the data according to an item of interest (for details see Formann 1981; Koller,
Alexandrowicz, & Hatzinger 2012).

As discussed above, several methods for the investigation of preconditions have
been proposed; a comprehensive overview is given by Fischer and Molenaar (1995).
However, all of these methods have the serious drawback that large numbers of
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participants and/or items are required (e.g., Fischer 1981; Gittler & Fischer, 2011;
Fischer & Molenaar 1995; Glück & Spiel 1997; Ponocny 2001). Another option for
the examination of model fit is provided by quasi-exact tests (e.g., Koller, Maier, &
Hatzinger 2005; Koller & Hatzinger 2013; Ponocny 2001) which can assess fit of
the Rasch model even when a sample is small. These goodness of fit tests are based
on the assumption of sufficient statistics and can also be used for the investigation
of the three preconditions described above.

The aim of this chapter is to give an overview of quasi-exact tests and to illustrate
that these tests can be used to determine whether the three preconditions for valid
conclusions concerning change are met. In addition, empirical power analyses and
an empirical example are given.

Quasi-exact Tests

Quasi-exact tests for the Rasch model (Koller et al. 2012; Koller & Hatzinger 2013;
Ponocny 2001) can be considered a generalization of Fisher’s exact test. The idea
is based on the mathematical property of sufficient statistics, which implies that all
possible matrices with the same margins will have the same parameter estimates.
With this property, an exact test can be algorithmically described as follows (a more
detailed description is given in Koller & Hatzinger 2013): (1) Consider an observed
r � c matrix A0 (r D rows, c D columns). (2) All possible matrices with the same
margins as A0 have to be generated, that is, A1, : : : , As, : : : , AS. (3) A test statistic
T0 is calculated for A0 and for all the generated matrices, that is, T1, : : : , Ts, : : : ,
TS. (4) The p-value of the model test is defined as the relative frequency of the T’s
which show the same or a more extreme value compared to T0.

Due to computational limitations, computing all possible matrices with given
margins is not always practical. Several authors have addressed this problem by
simulating matrices. For example, Verhelst (2008) introduced a Markov Chain
Monte Carlo simulation algorithm which is implemented in the package RaschSam-
pler (Verhelst, Hatzinger, & Mair 2007) for the open-source software R (R Core
Team 2014). A general description of the simulation algorithm is given by Koller
and Hatzinger (2013), and the detailed theoretical background is given in Verhelst
(2008) and Verhelst et al. (2007).

Several authors have developed various quasi-exact tests for the mathematical
properties mentioned above (e.g., Koller et al. 2012; Koller & Hatzinger 2013;
Ponocny 1996 2001; Verhelst et al. 2007). Many of these tests are implemented
in the R package eRm (Mair, Hatzinger, & Maier 2014). In this chapter, we focus
on three test statistics. Note that other preconditions can also be investigated with
quasi-exact tests. Examples are given in Ponocny (2002).
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Unidimensionality Between Time Points: The Statistic Tmd

To investigate the “person side” of unidimensionality, Koller and Hatzinger (2013;
see also Koller et al., 2012) proposed the test statistic Tmd. To calculate this statistic,
the set of items .i D 1; : : : ; k/ is divided into two subsets that represent time point
1 (t1) and time point 2 (t2). If the assumption of unidimensionality holds for the
observed data, the two raw scores rv

(t1) and rv
(t2) are expected to be positively

associated. Low correlations between time points indicate multidimensionality
issues between time points. The test statistic can be written as

Tmd .A/ D Cor
�
r.t1/v ; r.t2/v

	
where

�
r.t:/v
	 D

X
i2t

xvt:: (1)

The model test statistic is given in Eq. (2) and is defined as the relative frequency of
Ts (1, : : : , s, : : : , nsim), where nsim is the number of simulated matrices which has
the same correlation as T0 or a smaller correlation (the number is denoted with d D 1,
: : : , s, : : : , nsim). If more than two time points are involved, each combination must
be investigated separately, i.e., for three points in time, t1 vs. t2, t1 vs. t3, and t2 vs. t3.

p D 1

nsim

Xnsim

sD1ds where ds D

1; if Ts .As/ � T0 .A0/

0; else
(2)

A nonsignificant result suggests that the assumption of unidimensionality across
time points holds. Thus, there is either no change or homogeneous change for
all individuals. Hypotheses about different types of unidimensionality can be
investigated this way as well. When the null hypothesis of unidimensionality is
rejected, further analyses are required to test whether there is multidimensionality
on the person side (across time points) or whether one or more items change in
a specific way (see section “Unidimensionality of Change”). In the first case, the
assessment of multidimensionality on the person side, subgroup comparisons (e.g.,
control vs. experimental group) can be performed. When the correlation between
raw scores is lower than expected for the aggregate of the data set, but nonsignificant
results are observed within groups, then unidimensionality holds within but not
across the groups, which suggests group-specific change. However, if the results
are significant within groups, this may result from person-specific changes or item-
specific changes. In these cases, models for the assessment of group-specific change
and models which assume unidimensionality across time points cannot be used for
the assessment of change.

It is also possible to investigate the precondition of unidimensionality on the item
level using the test statistics T1m or T2m. Details can be found in Koller et al. (2012)
and Koller and Hatzinger (2013).

In the following section, simulation results on the type-I error and power
performance of the proposed test statistic Tmd are reported.
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Empirical Power Analysis

Multidimensional data were simulated using the multidimensional random coef-
ficient multinomial logit model (MRCMLM; Adams et al. 1997) implemented in
the function sim.xdim() in eRm. Simulations were carried out with sample sizes
n D 30, 50, 200, and 500 and three test lengths k D 10 (5 items at t1 C 5 items at t2),
k D 20 (10 items at t1 C 10 items at t2), k D 40 (20 items at t1 C 20 items at t2). Item
parameters at each time point (i.e., each dimension) were drawn from a uniform
distribution with a mean of zero and a range of [�2, 2], and person parameters from
a bivariate standard normal distribution also with a range of [�2, 2]. The latent
correlations between the two time points were �(™t1, ™t2) D 0, 0.3, 0.5, and 0.8. For
each of the 48 combinations (4 sample sizes � 3 test lengths � 4 correlations D 48),
1000 simulations were carried out.

To examine type-I error rates (’D 5 %), data sets were generated so that all
item parameters were the same at both time points. Thus, for the second time point
the weights were fixed at zero (D1 D 1, D2 D 0). In this scenario the assumption of
unidimensionality holds. Thus, the null hypothesis of the test statistic in Eq. (2) is
expected to be rejected according to the nominal significance level of 5 %.

In the case of multidimensionality two different models of multidimensionality
were defined following Adams et al. (1997):

1. All items at t2 are influenced by an additional dimension, implying multidimen-
sionality within time point 2 (see Fig. 1, left panel). Different weights were used
so that the effect of the second dimension on the items at t2 increases whereas the
effect of the first dimension decreases in decrements of 0.2 (D1 D 0.8, D2 D 0.2;
D1 D 0.6, D2 D 0.4; D1 D 0.4, D2 D 0.6; D1 D 0.2, D2 D 0.8).

Fig. 1 Within-time point multidimensionality (right panel) and between-time point multidimen-
sionality (left panel) according to Adams et al. (1997)
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Fig. 2 Results for the test length k D 5 C 5 D 10; solid lines represent the Tmd and the dashed lines
represent the MLT. The x-axis gives the weights of the second dimension and the y-axis gives the
probability of detecting a model violation (empirical power). The dotted line indicates the nominal
significance level of 5 %

2. The items at t2 measure another dimension, implying multidimensionality across
time points (see Fig. 1 right panel; D1 D 0, D2 D 1).

In addition, we compared the performance of the quasi-exact test with that of the
Martin-Löf test (MLT; as described in Fischer & Molenaar 1995). The MLT is a
popular likelihood ratio test of the unidimensionality assumption (see, e.g., Verhelst
2001). As in Tmd, the data set is split into two subgroups of items (or, as in the
current case, two time points). Then the item parameters for the overall sample and
for both subsamples are estimated and compared. The MLT can be written as

MLT .A/ D 2ln

0
@
Y

w

Y
u

� nfwug

n

	nfwug

Y
r

�
nr
n

	nr
� L.1/c � L.2/c

L.0/c

1
A ; (3)

where w D 1, : : : , k1 is the raw score for the first subset of items, u D 1, : : : , k2 is
the raw score for the second subset of items, r D 1, : : : , k is the raw score for the
overall data matrix (i.e., r D w C u), nr, nw, and nu are the frequencies of the raw
scores r, w, and u, n is the number of observations, L(0)

c is the conditional likelihood
for the item parameters estimated for the overall data matrix, and L(1)

c and L(2)
c are
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Fig. 3 Results for the test length k D 10 C 10 D 20; solid lines represent the Tmd and the dashed
lines represent the MLT. The x-axis gives the weights of the second dimension and the y-axis
gives the probability of detecting a model violation (empirical power). The dotted line indicates
the nominal significance level of 5 %

the conditional likelihoods for the item parameters estimated for the two subsets.
The MLT statistic is asymptotically distributed as �2 with k1 C k2 � 1 degrees of
freedom.

Results are given in Figs. 2, 3, and 4. The solid lines represent the results for
Tmd and the dashed lines represent the results for MLT. On the x-axis, the weights
of the second dimension are displayed, e.g., a value of 0.8 means that the second
dimension has a weight of 0.8 and the first dimension of 0.2.

Overall, the Tmd was able to protect the nominal significance level of 5 % in all
scenarios. The MLT showed deflated type-I error rates. In the shortest test-length
scenario (k D 5 C 5 D 10), the type-I error rates for the MLT increase with sample
size and were around 5 % at n D 200. This result is in line with results given in
Futschek (2014), Verguts and DeBoeck (2001), and Verhelst (2001).

The cases of D2 > 0 depict the empirical power of the test. In general, the power
of both test statistics increased with sample size and decreased with the magnitude
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Fig. 4 Results for the test length k D 20 C 20 D 40; solid lines represent the Tmd and the dashed
lines represent the MLT. The x-axis gives the weights of the second dimension and the y-axis
gives the probability of detecting a model violation (empirical power). The dotted line indicates
the nominal significance level of 5 %

of correlation between the latent traits. In addition, however, there were several
differences in performance. First, the power of Tmd increased with test length,
whereas the power of the MLT decreased with test length. This can be explained
as follows. For constant sample size, longer tests provide more information for
generating permutation matrices in the Tmd approach, but increase the magnitude of
estimation errors in the MLT. Second, the Tmd detected within multidimensionality
(range 0.2–0.8) and between multidimensionality (1.0) even in small samples. In
addition, the Tmd detected multidimensionality in large samples and longer tests
even if the latent traits were highly correlated. In sum, Tmd outperformed the MLT
regardless of sample size.

Unidimensionality of Change: The Statistic T4

To test item-specific change or measurement invariance, the statistic T4 (Ponocny
2001; see also, Koller & Hatzinger 2013) can be used. This statistic can be used
to evaluate whether one or more items are easier or more difficult in a predefined
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group of individuals (or, when measuring change, at ti) than in another group (or at
tj). The test statistic can be written as

T4 .A/ D
X

v2Gg
xvi; (4)

where the xvi of an item in the predefined group of individuals (g D 1, : : : , G) are
summed up over all points in time. When an item within the predefined group of
individuals is more difficult than expected under the Rasch model (i.e., the number
of correct responses is smaller than expected), the model test is given in Eq. (2). To
test the assumption that an item is easier than expected, the model test is

p D 1

nsim

Xnsim

sD1ds where ds D

1; if Ts .As/ 	 T0 .A0/
0; else

(5)

According to Cho et al. (2013), four different violations of measurement invariance
across time are of interest: (1) The item parameters differ across person groups (see
above). (2) The item parameters differ across time points. (3) The item parameters
differ across person groups within a time point. (4) The item parameters differ across
time points within a person group. These four potential violations can be analyzed
using T4 by rearranging the data matrix, for example, using the same individuals at
t2 as “virtual” individuals at t1 and using the time point as splitting variable. Further
tests are discussed in Koller and Hatzinger (2013), Koller et al. (2012), and Ponocny
(2001).

An empirical power analysis for T4 (Koller, Maier, & Hatzinger 2015) showed
that the type-I error rates of T4 were far below the nominal level of 5 %. Thus,
the test tends to be rather conservative, which may lead to increased type-II error
rates. Severe model violations can still be detected with samples of sizes n D 50 or
n D 100, and n D 200 seems sufficient to detect weaker violations regardless of the
shape of the ability distribution.

Response Independence Between Time Points: The Statistic T2

The statistic T2 (Ponocny 2001; see also, Koller & Hatzinger 2013) is well suited to
test the assumption of response independence between items. T2 tests for increased
dispersion of raw scores for a set of items. The test statistic can be written as

T2 .A/ D Var
�
r.I/v
	

with
�
r.I/v
	 D

X
i2I

xvi: (6)

Var(r(I)
v ) is the variance of a subscale I with a minimum of at least two items,

which can also mean the same item at t1 and t2. According to the variance addition
theorem, the variance of a scale that consists of two subscales t1 and t2 is defined
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Table 1 Results of the empirical power analysis for T2

N 30 50

Items RM r D .47 r D .71 r D .86 RM r D .47 r D .71 r D .86

k D 5 .025 .335 .811 .936 .026 .562 .966 .988
k D 10 .013 .372 .860 .965 .025 .655 .974 .995
k D 20 .020 .390 .872 .965 .029 .649 .968 .996
k D 40 .016 .398 .879 .976 .032 .632 .978 .996
N 200 500

RM r D .47 r D .71 r D .86 RM r D .47 r D .71 r D .86

k D 5 .025 .980 1.00 1.00 .042 .999 1.00 1.00
k D 10 .035 .994 .999 1.00 .043 .999 1.00 1.00
k D 20 .042 .986 .999 1.00 .032 .999 1.00 1.00
k D 40 .034 .993 1.00 1.00 .030 .999 1.00 1.00

Note. The column RM (Rasch model) shows the empirical error rates (e.g.,
.025 is 2.5 %) and the columns r show the average between-item correlations

as Var
�

r.t1/v

�
C Var

�
r.t2/v

�
C 2 � Cov

�
r.t1;t2/v

	
and is expected to increase with the

covariance of t1 and t2. The model test, given in Eq. (5), tests whether the items are
more highly correlated than assumed under the Rasch model.

As for the previously described statistics, the following section describes the
results of a simulation study on the type-I error rates and empirical power perfor-
mance.

Empirical Power Analysis

Violations of the assumption of response independence of two items were simulated
as by Marais and Andrich (2008; cf. Andrich & Kreiner 2010). Simulations with
1000 samples each were performed for each combination of sample sizes n D 30, 50,
200, and 500 and test lengths k D 5, 10, 20, and 40. Item and person parameters were
drawn from a standard normal distribution with a range of [�2, 2]. For each sample,
two moderately difficult items showed violations of the response independence
assumption, namely for k D 5: (i D 2, i D 3), k D 10: (i D 5, i D 6), k D 20: (i D 10,
i D 11), and k D 40: (i D 20, i D 21). Four different weights were used to simulate
different magnitudes of violations (d D 0, 1, 2, and 3). A weight of zero represents
the case of no violation, i.e., the type-I error scenarios. Cases of d > 0 correspond to
average manifest correlations between items of r1 D :474, r2 D :710; r3 D :855:

Simulation results are displayed in Table 1. In general, the empirical error rates of
T2 (column RM) increased with sample size. The rejection rates were generally far
below the nominal level of 5 %. In other words, T2 tends to be rather conservative,
which results in increased type-II error rates. However, small departures from the
response independence assumption can be detected even in very small samples. In
addition, power increases with sample size and magnitude of violations.
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In sum, the power analyses suggest that quasi-exact tests are well suited for small
samples. Next, an illustration is given of these tests for the assessment of the three
preconditions concerning measurement of change using data from a spatial ability
training study.

An Empirical Example: A Spatial Ability Training Study

The data set was collected in the project “Educating Spatial Ability with Augmented
Reality” (Kaufmann, Steinbügl, Dünser, & Glück 2005). The study compared the
effects of a spatial ability training intervention in an augmented reality (AR)-
based three-dimensional setting to a two-dimensional intervention and a no-training
control condition. Training effects were measured by a battery of paper-pencil
spatial ability tests including the Mental Cutting Test (MCT, CEEB College
Entrance Examination Board 1939). Each item of the MCT consists of a perspective
drawing of a solid figure that is cut by a plane. Participants are asked to imagine the
shape of the cross section and select the correct solution out of five alternatives. The
original test consists of 25 items, but, in the current study, a 15-items short version
was used.

The sample consisted of 317 high school students, 213 of whom completed
both pretest and posttest (51.6 % males; age: M D 17.0, SD D 1.1, min D 14.4,
max D 20.5). As no differences between the three-dimensional and the two-
dimensional training were found, we focus on comparing the control group (CG;
n D 123) to the training group (TG; n D 90) that participated in six weekly training
sessions. TG participants were trained either with a computer-aided design software
presented two dimensionally on the computer screen or three dimensionally using
Augmented Reality (e.g., Kaufmann 2004 2006; Kaufmann & Schmalstieg, 2003).
In the following analyses, we use the data from this study to illustrate the usefulness
of quasi-exact tests to test preconditions for measuring change.

General results of the training study are reported by Dünser (2005) and Kauf-
mann et al. (2005); specific results for the MCT can be found in Koller (2010),
where quasi-exact tests were used to investigate whether the Rasch model fits the
items of the MCT. The Rasch model held at the first and second time point for
eight of the 15 items. These items were used here to test the three preconditions for
measuring change.

Additionally, it is not possible to apply quasi-exact tests to data including
missing values. However, a systematic analysis of the performance of missing value
imputation algorithms in the context of quasi-exact tests is clearly beyond the scope
of the present chapter. Thus, only the data from 183 individuals who had no missing
values across the eight items were used for the analyses. The sample consisted of 81
females and 102 males; 79 of the participants were in the training group.
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Results

First, the assumption of unidimensionality across time points was assessed using
Tmd. Analyses were performed separately for the two groups CG and TG. Results
suggest that the assumption of unidimensionality holds across time for both
groups (pCG D .789; pTG D .998). For example, pCG D .789 means that 78.9 %
of the simulated matrices showed the same or a more extreme violation of the
unidimensionality assumption. In addition, we analyzed whether the data were
sufficiently unidimensional across time for females and males. Again, these results
were not significant (pmale D .972; pfemale D .977). Thus, the test measures the same
latent dimension across time points.

Even a high correlation between raw scores over time still allows for changes in
the difficulty of individual items; for example, one item might have become easier
while another became more difficult from t1 to t2. Thus, second, the assumption of
measurement invariance over time was assessed by splitting the data set according
to time point in general and per group and analyzing whether the items at t2 were
significantly easier than expected under the Rasch model (one test for each item). In
this analysis, a low p-value for an item suggests that the item was indeed easier at
t2 than at t1. On the other hand, a very high p-value, for example .90, would imply
that 90 % of the simulated matrices showed the same or a lower number of correct
answers on the item (i.e., a higher item difficulty) than in the observed matrix. In
such cases, we additionally used the statistic T4 to assess whether the item was more
difficult at t2 than assumed under the Rasch model.

The results, given in Table 2, suggest that the first item was easier than expected
under the Rasch model in the whole sample and three of the four subgroup analyses.
Thus, this item was significantly easier at t2 than at t1 for females, for males, and
for the training group. For the control group the result was nonsignificant, which
suggests that the effect was largely due to the training. On the other hand, item 7
was more difficult at t2 than at t1 in the total sample, though not clearly in any of

Table 2 Results concerning measurement invariance across time points

Items/groups Overall Females Males Control group Training group

1 .003 .054 .014 .141 .008
2 .796 .703 .797 .175 .981 (.035)
3 .856 .462 .953 (.090) .894 .711
4 .706 .452 .865 .899 .444
5 .149 .115 .430 .031 .725
6 .451 .575 .438 .455 .555
7 .963 (.051) .943 (.113) .915 (.140) .964 (.089) .884
8 .667 .967 (.066) .192 .891 .395

Note. The table shows the p-values for the hypothesis that the item was easier than
expected at t2. If an item had a p-value above .90, we tested whether the item is more
difficult than expected at t2. These results are given in parentheses
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Table 3 Results for the
investigation of the
assumption of response
independency

p-value I1 I2 I3 I4 I5 I6 I7 I8

Overall .001 .004 .668 .043 .246 .170 .001 .005
CG .017 .061 .518 .062 .220 .253 .020 .225
TG .001 .019 .749 .192 .355 .439 .070 .007
Females .001 .113 .272 .144 .996 .254 .235 .016
Males .009 .006 .924 .181 .045 .331 .001 .051

the subgroups. This suggests that training and practice effects did not affected the
difficulty of this item. This may imply that this item measures other performance
components than the others. These violations of measurement invariance should be
considered in the analysis of change and modeling of change effects (e.g., specific
change parameters for item groups).

Third, the assumption of response independence over time was investigated for
each item separately. The same splitting variables were used as before (i.e., CG vs.
TG, females vs. males). As explained earlier, the test statistic T2, given in Eq. (5),
tests whether item responses at t1 and t2 are more highly correlated than assumed
under the Rasch model. The results in Table 3 suggest several significant response
dependencies, most consistently, for items 1, 2, 7, and 8. This type of dependency
is typical when the same items were presented at consecutive points in time, and
the time interval between two assessments is short. Together with the significant
results of the previous analysis, the present results suggest that most participants
who solved Item 1 or Item 7 at t1 also solved these items at t2, but of those few
participants whose response did change, the majority moved from not solving to
solving for Item 1 and from solving to not solving for Item 7. Interestingly, the
items in the middle of the test (items 3, 4, 5, and 6) showed no significant response
dependencies. It may be very interesting to assess the change parameters for both
groups of items separately and to compare the results.

In sum, the analyses showed that, on the level of correlations between the raw
scores, the assumption of unidimensionality holds for the data set. However, when
individual items were inspected, the analyses showed violations of the assumptions
of measurement invariance and response independence for some items. These
results suggest concrete alternatives for the modeling of change in mental rotation
test performance. Although the requirements of classical Rasch-family models for
measuring change are not fulfilled, other models can be used to model the changes
in this data set. For example, researchers may model several change parameters
for the items showing violations of measurement invariance and only one change
parameter for the middle group of items. Several item response models are available
for measuring change in this way, for example, explanatory item response models
(e.g., Cho et al. 2013; Stevenson, Hickendorff, Resing, Heiser, & DeBoeck 2013) or
multidimensional Rasch models (e.g., Koller, Carstensen, Wiedermann, & vonEye
2014; Wang, Wilson, & Adams 1998).
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Conclusion

In this chapter, we hope to have shown that (1) quasi-exact tests are very well suited
to evaluate Rasch model conformity even in small samples, that (2) they can also be
used to test important preconditions of item response theory models for measuring
change, and (3) yield additional information for model selection.

The empirical power results presented here suggest good performances of all
proposed tests. For example, Tmd is an excellent statistic for the investigation of
between-time point and within-time point multidimensionality in small as well as
larger samples. Another advantage of Tmd is the possibility to detect group-specific
multidimensionality, even when latent traits are highly correlated. In the simulation,
Tmd outperformed the MLT in all cases.

Of course, further studies are needed to systematically evaluate the behavior
of these test statistics under various conditions (see also Koller et al., 2014).
For example, future studies should evaluate the behavior of the tests in cases of
varying item discrimination and/or multiple model violations. In addition, item
position effects which violate one of the underlying mathematical properties of the
Rasch model should be investigated in more detail. Furthermore, for Tmd, further
simulation scenarios are needed in which not all items show violations of the
unidimensionality assumption, and in which more than two dimensions influence
the probability of solving an item.

The current permutation algorithm does not allow missing values. Thus,
researchers have to decide a priori whether cases with missing values are removed
from the data set or whether missing value imputation methods are carried out prior
to the psychometric analysis. First promising results of applying quasi-exact tests
to dichotomous data including missing values and trichotomous items are given in
Verhelst and Gruber (2013).
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Measuring Competencies across the Lifespan -
Challenges of Linking Test Scores

Steffi Pohl, Kerstin Haberkorn, and Claus H. Carstensen

Abstract The National Educational Panel Study (NEPS) aims at investigating
the development of competencies across the whole lifespan. Competencies are
assessed via tests and competence scores are estimated based on models of Item
Response Theory (IRT). IRT allows a comparison of test scores—and, thus, the
investigation of change across time and differences between cohorts—even when
the respective competence is measured with different items. As in NEPS for most
of the competencies retest effects are assumed, linking is done via additional
link studies in which the tests for two age groups are administered to a separate
sample of participants. However, in order to be able to link the test results of two
different measurement occasions, certain assumptions, such as, that the measures are
invariant across samples and that the tests measure the same construct, need to hold.
These are challenging assumptions regarding the linking of competencies across the
whole lifespan. Before linking reading tests in NEPS for different age cohorts in
secondary school as well as in adulthood, we, thus, investigated unidimensionality
of the items for different cohorts as well as measurement invariance across samples.
Our results show that the tests for different age groups do measure a unidimensional
construct within the same sample. However, measurement invariance of the same
test across different samples does not hold for all age groups. Thus, the same
test exhibits a different measurement model in different samples. Based on our
results, linking may well be justified within secondary school, while linking test
scores in secondary school with those in adult age is threatened by differences
in the measurement model. Possible reasons for these results are discussed and
implications for the design of longitudinal studies as well as for possible analyses
strategies are drawn.
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Large-scale assessments generally aim at drawing inferences about individuals’
knowledge, competencies, and skills (Popham 2000). Thus, international large-scale
assessments such as the Program for International Student Assessment (PISA; e.g.,
OECD 2013), the Third International Mathematics and Science Study (TIMSS;
e.g., Mullis, Martin, Foy, & Arora 2012), or the Progress in International Reading
Literacy Study (PIRLS; e.g., Mullis, Martin, Foy, & Drucker 2012) aim at accu-
rately measuring competencies, such as reading comprehension or mathematical
literacy, of participants. As most of these studies have a cross-sequential design,
with a new sample being drawn at every cycle, an investigation of competence
development and factors influencing this development is limited. This is different
in longitudinal studies, such as the National Educational Panel Study (NEPS, see
Blossfeld, von Maurice, & Schneider 2011), where due to the repeated measurement
of competencies, competence development may be investigated. Specifically, the
NEPS is the only study so far considering competence development across the
whole lifespan, from newborns to adults. It does, thus, provide a rich data pool for
the investigation of competence development. In order to investigate competence
development, competence scores need to be linked across test administrations and
test forms. While linking has so far been performed in studies across smaller age
ranges, it has not been investigated whether assumptions necessary for linking
test scores hold in studies across such a long age span as in NEPS. In this study,
we investigated whether it is possible to link test scores for reading competence
across the lifespan. In the following sections, we discuss the necessity of linking,
describe different link designs, delineate the assumptions of linking, and discuss
their plausibility in longitudinal studies. We then present the National Educational
Panel Study and derive specific research questions.

Linking of Test Scores

Necessity of Linking Test Scores

It is often not feasible to administer the same test to the participants across time
or age, but tests need to be adapted in difficulty and content to the respective age
group. Thus, a direct comparison of competence scores from different tests is not
possible, since differences in competence values across different tests represent
both, differences in competence and difference in test items. In longitudinal studies,
it is a major aim to investigate competence development over time or to compare the
competencies of different age cohorts. In order to be able to compare competence
scores across time or cohorts from different tests assessing the same dimension, the
test scores need to be linked.
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As described by von Davier, Carstensen, and von Davier (2008) and Kolen
and Brennan (2004) linking means to establish a common scale for different
measurement instruments that are intended to measure the same construct. Vertical
linking allows for placing the competence scores of different test forms for different
age groups on the same scale, thus allowing for a comparison of these test scores.
IRT provides means to develop vertical scales encompassing different test versions.
In order to obtain a common scale, certain test designs and analyses methods are
necessary.

Link Designs

For linking of test scores, some common information or overlap between different
test administrations (say grades) to be linked is needed. This can be achieved by
various linking designs (for an overview see, e.g., Kolen & Brennan 2004; Reckase
2009, or von Davier et al. 2008). Overlap can be achieved by collecting common
observations in (a) a common-person design, (b) a common-item design, or (c)
a scaling-test design. In a common-person design, a sample of subjects takes the
two test forms to be linked. Because of the single group completing both tests,
differences in the scores on these tests can be attributed to differences in the test
forms. In a common-item design, two samples of different populations take two tests
and the link is established by a set of common items within both tests (anchor items).
This design is also called the nonequivalent group anchor test (NEAT) design (e.g.,
Reckase 2009; von Davier et al. 2008). Assuming invariance of item functioning
(i.e., no item drift), the common items may be used as anchors for establishing
a common scale between the test versions. In vertical linking, the common-item
design with overlapping items is often used across adjacent grades. The scaling-
test design can be seen as a special form of the common-item design. Whereas
in the common-item design, anchor items are usually administered across adjacent
grades, in a scaling-test design, a common test, appropriate to all levels of ability,
is implemented in each grade in addition to grade-specific items. Consequently, all
students of a study deal with the same test and additionally answer items specifically
constructed for their age group. There are different challenges associated with each
of these designs which have to be considered (Kolen & Brennan 2004). For instance,
in the common-item or scaling-test design, one has to assume that there are no
retest effects. Otherwise, item drift might occur and the measurement model would
change. There is no such threat in the common-person design; instead this design
requires drawing an additional sample, which is less economic, and the challenge
arises from an adequate sampling strategy. Note that it is also possible to combine
the different designs to build more complex data collection designs (see also Dorans,
Pommerich, & Holland 2007; von Davier, Holland, & Thayer 2004).
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Coherence of Measurement

Assumptions for Linking

In order to establish a link between test forms that allows one to depict change across
time or cohorts, certain assumptions need to be fulfilled (e.g., Camilli, Yamamoto,
& Wang 1993; Doran & Cohen 2005; Hoover 1984; Linn 1993; Mislevy 1992;
Tong & Kolen 2007): the construct to be measured needs to be the same across
(a) samples and (b) tests. This implies that (a) measurement invariance of the same
items in different samples holds and that (b) the items of two different tests form
a unidimensional construct. Violations of these assumptions may lead to errors in
linking (Monseur & Berezner 2007; Monseur, Sibberns, & Hastedt 2008). As a
consequence, change scores do not only represent competence development but also
changes in the test instrument and inferences on competence development or cohort
differences will be biased.

Plausibility of Assumptions in Empirical Studies

Some researchers have stated that the assumption of measuring the same construct
are hardly met in applications (e.g., Martineau 2006; Reckase & Martineau 2004;
Wang & Jiao 2009). For instance, Wu (2010) reported that “In general, the further
the grades are apart the less reliable the vertical scaling across grades is found to be”
(p. 23). We draw on studies assessing competencies that incorporated longitudinal
or multi-cohort designs for collecting evidence on whether and how coherent
measurement of competencies may be obtained. We first reviewed studies that
Kristen, Römmer, Müller, and Kalter (2005) found in a systematic stocktaking of the
most important longitudinal studies on educational pathways in selected countries in
Europe and North America. Kristen et al. identified a number of longitudinal large-
scale studies in education. These usually considered competence assessment across
some part of the lifespan. Only a few of them included competence assessment in
their design and for those who did hardly any information on vertical scaling and on
tests of assumptions of linking was available. For those that did assess competencies,
results on the coherence of measurement were ambivalent. Additionally to the
studies reviewed in Kristen et al., we collected information on measurement
coherence from small-scale studies or multi-cohort studies.

Evidence Supporting Coherence of Measurement

There are some studies that did find evidence for the coherence of measurement.
One of them is the National Education Longitudinal Study of 1988 (NELS: 88;
Rock, Pollack, Owings, & Hafner 1991), a very prominent longitudinal study on
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competencies in the USA. In this study, students were followed in intervals of
2 years from eighth grade to 24–25 years. For the three waves of data collection
in school in 8th, 10th, and 12th grade, students’ reading, math, social studies, and
science competencies were assessed (Rock, Pollack, & Quinn 1995). In order to
link the test forms of the competence tests across age, a common-item design was
used. Half of the items (in reading) to three-quarters of the items (in math) from
one measurement occasion were also used in the following assessment. The authors
reported that measurement invariance was found across measurement occasions.

Another longitudinal study for which a coherent measurement was supported is
the Early Childhood Longitudinal Study (ECLS; Pollack, Atkins-Burnett, Najarian,
& Rock 2005) in the USA. It consists of a birth cohort (ECLS-B), with measure-
ments starting with 9-month-old children which are followed up to first grade, and
two kindergarten cohorts (ECLS-K and ECLS-K: 2011), one ranging from fourth to
eighth grade and the second following children from kindergarten till fifth grade. In
the kindergarten cohorts reading, math, and scientific competencies were assessed
and linking was performed using a common-item design. Analyzing differential
functioning of the items in the ECLS-K study across time, Pollack and colleagues
(2005) found measurement invariance of the common items across measurement
occasions. Thus, in this study measurement invariance across the wide span from
kindergarten to secondary school could be assured.

Besides these large-scale studies, there is some evidence on the coherence of
competence measures across age from other studies. Wang and Jiao (2009), for
example, investigated the equivalence of the factorial structure of the Stanford
Reading Comprehension Test (Stanford Achievement Test Series, Tenth Edition,
2004) across eight samples in grades 3–10. They found that on subtest level
the measurement models were invariant across grades. While Wang and Jiao
investigated measurement invariance only on subtest level, in a longitudinal study,
Wang, Jiao, and Zahng (2013) investigated measurement invariance of the Measures
of Academic Progress (MAP) for mathematic and reading competence on item level.
The authors found that measurement invariance could be assured across fifth to
seventh grade.

Evidence Questioning Coherence of Measurement

However, there is also evidence that the competence assessed changes across time
or cohorts. This is the case in the BiKS-3-10 study on Educational Processes, Com-
petence Development, and Selection Decisions at Preschool and Elementary School
Age (von Maurice et al. 2007), a longitudinal study on competence development
and educational progress from kindergarten to primary school. Linking between
testing waves was done via a common-item design. Robitzsch, Dörfler, Pfost, and
Artelt (2011) investigated measurement invariance of the common items in reading
competence tests from three measurement occasions in Grade 3 and Grade 4. The
authors found considerable item drift across measurement occasions, threatening
the interpretation of change scores as indicators of competence development.
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Also some cross-sectional large-scale studies, specifically the National Assess-
ment of Educational Progress (NAEP) and a German study evaluating the National
Educational Standards (NES), found evidence for measurement non-invariance
across age. The NAEP, the largest representative educational assessment in the USA,
explores achievement of students in various domains, among others mathematics
and reading, every 2 years in Grades 4, 8, and 12 (Jones & Olkin 2004). After
the first waves of assessments, measurement invariance of anchor items across
grades was checked and threats to measurement invariance were reported on a
significant number of mathematics and history items (Haertel 1991; McClellan,
Donoghue, Gladkova, & Xu 2005), whereas the reading test functioned rather
well across grade levels. Altogether, Haertel questioned the usefulness of cross-age
scales for the NAEP regarding the costs in terms of constraints on the framework.
He even concluded that comparing students separated by 4–8 years is “largely
meaningless” (p. 14). As a consequence in the following assessments cross-age
comparisons were discouraged (Thissen 2012). Threats to measurement invariance
were also found in the evaluation of the German National Educational Standards
(NES; Klieme et al. 2003; Rupp & Vock 2007) by the Institute for Educational
Progress. In the domain of language assessment, Böhme and Robitzsch (2009)
analyzed reading tests which were administered in pilot and calibration studies
facilitating a cross-sectional setting in Grade 3 and 4 of elementary school. For
evaluating the item parameter drift, the authors evaluated the variance of differential
item functioning (DIF) between the two grades. DIF occurs when items function
differently for different groups, that is, when estimated item difficulties differ
between subgroups after controlling for overall group differences on the latent
trait. Based on the classification scheme of Penfield and Algina (2006), the results
indicated a medium DIF variance indicating that some items considerably favored
third or fourth graders.

In addition to the above-mentioned large-scale studies, we also reviewed small
longitudinal studies. As such in a study on science competence development,
Carstensen, Lankes, and Steffensky (2012) found that measurement invariance was
not warranted for common science items across three measurement occasions in
fifth- to sixth-year-old children. In an U.S. American study, Tong and Kolen (2007)
investigated the performance of various vertical linking methods in simulation
studies as well as in empirical data. The analyses of the empirical data were based on
the assessments of the Iowa Tests of Basic Skills (ITBS; Hoover, Dunbar, & Frisbie
2003) in the four different domains vocabulary, mathematics, language, and reading
covering Grade 3 through Grade 8 via a scaling- and an anchor-test design. Tong
and Kolen found that the scaling designs in the empirical studies produced scales
with dissimilar properties, especially for tests that tended to be less homogeneous
in content across grades and for tests that included testlet-based items such as the
reading test.



Measuring Competencies across the Lifespan - Challenges of Linking Test Scores 287

Summary of Previous Findings on Coherence of Measurement

The results from previous longitudinal or multi-cohort studies show that the
assumption of measuring the same latent variable across different age groups is not
a trivial one. Indeed, results from some studies such as NELS or ECLS-B confirmed
measurement invariance across age, but other studies such as NAEP or BiKS report
challenges in creating a common scale. Even in studies with a short age span such as
in the NES study or the study by Carstensen et al. (2012), measurement invariance
is not always fully warranted. The issue of coherence of measurement is even more
prevalent in the NEPS covering such a broad age span.

The National Educational Panel Study: Competence
Development Across the Lifespan

The German National Educational Panel Study (NEPS, see Blossfeld et al. 2011) is
a current longitudinal study on competence development in Germany. A particular
strength of the NEPS is that it considers competence development and educational
pathways across the whole lifespan. NEPS incorporates a multi-cohort sequence
design (see Fig. 1) that incorporates around 60,000 target persons in six different
starting cohorts (newborns, children in kindergarten, students in fifth grade, students
in ninth grade, university students, and adults). In order to provide information on
educational processes already at an early stage of the study, the six starting cohorts
simultaneously started in 20101 at different important educational stages and are fol-
lowed concurrently in their development over time. By regarding different cohorts
that overlap at some point in the design, it is possible to investigate educational
processes across the whole lifespan without following the same participants across
their whole life.2 Competencies as well as a variety of data on conditions for and
consequences of individual educational careers are assessed. Information is gained
from the target persons as well as their parents, teachers, or other educators. For
many cohorts, different competence domains are repeatedly measured every 2 years,
allowing researchers to explore the evolvement of these competencies. Based on the
data a wide range of research questions regarding the development of competencies
as well as the interaction between competence development and context factors with
respect to individual educational careers may be investigated (see, e.g., Blossfeld
et al. 2011).

1Newborns started 2012 and the adult sample was pursued from the former ALWA study.
2This is possible if measurement invariance for the instruments for comparisons between cohorts
can be assumed. One may also investigate and account for cohort effects with this design.
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Fig. 1 The multi-cohort sequence design of the NEPS (©LIfBi)

Competence Assessment in the NEPS

The framework for assessing competencies in the NEPS employs a number of
different domains (Artelt, Weinert, & Carstensen 2013). These include, among
others, reading competence (Gehrer, Zimmermann, Artelt, & Weinert 2013), math-
ematical competence (Neumann et al. 2013), scientific literacy (Hahn et al. 2013),
and information and communication technologies (ICT) literacy (Senkbeil, Ihme,
& Wittwer 2013). The NEPS aims at assessing these domain-specific competencies
coherently across the lifespan in order to appropriately describe the competencies’
developmental progress over time. Therefore, competence models have been spec-
ified comprising a consistent structure of each domain across ages and cohorts
(Weinert et al. 2011). In order to facilitate a coherent competence assessment,
the same conceptual framework has been applied for the tests of different age
groups. For reading competence, for instance, the same cognitive processes and
text types are used in the tests across different age groups. According to the
competence models, new tests are developed and evaluated in pilot studies with
the most appropriate items being used in the final main study tests in the NEPS.
The newly developed test instruments require the participants to respond to tasks
with different response formats. The responses to these tasks are scaled using
models of Item Response Theory. In the NEPS, reading, mathematical, scientific,
and ICT competence are scaled using the Rasch (Rasch 1960) or the Partial Credit



Measuring Competencies across the Lifespan - Challenges of Linking Test Scores 289

Model (Masters 1982) (for the scaling model in the NEPS see Pohl & Carstensen
2012). Here, we focus on the measurement of reading competence from Grade 5 to
adulthood.

Linking in the NEPS

Linking in the NEPS includes linking of test scores within cohorts over measure-
ment occasions as well as across cohorts. Linking test scores within cohorts is
obviously needed to enable the analysis of change over time within each cohort of
the NEPS. For example, a question might be how reading competence of students
develops between fifth grade (in 2010) and ninth grade (in 2014). However, with
the multi-cohort-sequence design of the NEPS, comparisons between cohorts are
also intended. As an example, a question might focus on how much ninth graders in
2010 differ in their reading competence from fifth graders, at the same measurement
occasion.

In the NEPS different linking strategies are employed. Since retest effects are
expected for reading and science items, neither a common-item nor a scaling-
test design are applicable as the same items would need to be presented twice to
the participants. Instead, common person designs were employed to obtain linking
information. In the NEPS, link samples are additionally drawn randomly from the
older of the two age groups, that is, students in the link sample typically take the
on-grade and below-grade test. In the domain of mathematical competence retest
effects are not expected and both common-item designs as well as common-person
designs are implemented (Pohl & Carstensen 2013).

Coherence of Measurement in NEPS

Coherence of measurement is a special challenge in the NEPS as the NEPS, in
contrast to many other educational studies, follows the development of persons
across the whole lifespan. In constructing the test instruments, a great deal of effort
was put on a coherent assessment of competencies over the lifespan (see, e.g.,
Gehrer et al. 2013; Neumann et al. 2013, or Hahn et al. 2013). For (almost) all age
groups the same conceptual framework, the same cognitive demands, as well as the
same item formats were used for test construction. However, while the assumption
of comparable test scores seems to be very plausible for cohorts that are similar
in age and in educational or institutional setting, such as linking Grade 5 to Grade
7 students, it is still questionable across very different cohorts, such as Grade 9
students and adults. Adults differ from Grade 9 students not only in age (with a
rather large age gap between both samples) but also in institutional settings (Grade
9 students being in school and used to tests and adults mainly being in labor market).
This poses a challenge on the comparability of test results across time and cohorts.
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Possible threats to the assumptions of linking (Camilli et al. 1993; Hoover 1984;
Tong & Kolen 2007) were addressed in the NEPS. In the NEPS fixed item position
within a test and rotation of test position within a testlet were used to control for
position effects. The possible mismatch of item difficulty to person ability was
evaluated in pilot studies within test development and was assured for the main
samples. Note that they do, however, not necessarily need to hold for link samples.
From the construction point of view, in the NEPS effort is invested to assure
coherent measurement of the same latent variable across age groups. Whether this
proves successful needs to be tested empirically.

Research Questions

The NEPS is the first study that aims to measure competencies across the whole
lifespan. So far, there has been no empirical evidence whether and how coherent
measurement may be obtained across such a wide age range. The aim of the
present study was to investigate whether the construction of coherent instruments
for the measurement of competencies across the lifespan is possible and as
such was successful in the NEPS. Here, we focused on reading competence and
investigated whether it is possible to measure reading competence coherently from
fifth grade to adulthood. Specifically, we asked whether the assumption holds
that the measured reading competence is the same for different age cohorts and
measurement occasions. Methodologically phrased, we investigated whether the
assumptions for vertical scaling are met, that is: (1) Is competence measurement
on reading invariant across studies and age groups? and (2) Is reading competence
in NEPS unidimensional across tests for different age groups? Additionally, we
explored item and test characteristics related to the coherence of measurement.
Only if a competence measurement is coherent and an adequate link between
measurements can be established, we may investigate development and change of
the competencies (which is one of the main aims in longitudinal studies) as well as
compare competencies across different cohorts (on which the multi-cohort sequence
design relies).

Method

Sample and Design

Sample

In the present study we analyzed data from four main studies (in Grade 5, Grade
7, Grade 9, and on Adults) and three corresponding link studies of the NEPS.
The three link studies are designed to link the measurements of the main studies
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between Grade 5 and Grade 7 (G5–G7), between Grade 7 and Grade 9 (G7–G9),
and between Grade 9 and Adults (G9–AD). Thus, the studies considered in this
paper allow for linking reading competence measures from Grade 5 to adults. The
main study in Grade 5, Grade 9, and on Adults took place in the first assessment
wave of the NEPS (starting in 2010). The participants in these studies comprised
different starting cohorts. The second competence assessment of the fifth graders of
2010 took place in 2012 in Grade 7. As the main studies of Grade 5 and Grade 7
comprised the same starting cohort, most of the students in Grade 5 also participated
in the assessment in Grade 7. The link studies were administered parallel to the last
of the main studies that are to be linked. Thus, the link study G9–AD took place
in the first wave of the NEPS in 2010, while the link studies G5–G7 and G7–G9
were carried out in 2012 (when the main study in G7 took place). The participants
in the link studies were always drawn from the older of the two populations, e.g., for
linking Grade 9 students to adults, the link study was performed on an adult sample.

The main studies had sample sizes between 5000 (in Grade 5 and Adults) up to
about 14,000 (in Grade 9) participants, whereas the link samples were considerably
smaller with 500–600 participants (see Table 1). In all main studies, the participants
constituted representative samples of German inhabitants at different ages (Aßmann
et al. 2011). For the link study G9–AD, adults were representatively drawn from the
16 German federal states, while the link studies G5–G7 and G7–G9 were conducted
in only four federal states: Lower Saxony, Bremen, North Rhine-Westphalia, and
Saxony. Although no representative sample of the whole country could be drawn
for two of the link studies, representative samples were drawn from the four federal
states and we did not expect large differences in populations. However, it is to note
that participants in the main studies agreed to take part in a longitudinal study, while
participants in the link study were only recruited for one assessment. This may result
in different participation processes and, thus, in different populations.

Looking at demographic characteristics (Table 1), the link studies and the
respective main studies seem to be rather similar. Comparing the main study in
G7 with the link study G5–G7, a relatively equal distribution of male and female
students and similar percentages of school type and migration background were
found when missing values were not taken into account. The average age in the link
study G5–G7 was almost identical to that in the main study G7. Based on the design,
students in the main study G5 were about 2 years younger than in the corresponding
link study G5–G7. They were, however, similar in many of the other demographic
characteristics.

The link study G7–G9 and the corresponding main studies in G7 and G9 featured
similar properties regarding gender and migration background. However, the link
study G7–G9 and the main study G9 slightly differed in age, with the participants
in the main study being on average about half a year older. Participants in the
different studies also differed in school type. There were more students in the highest
academic track in the main study in G7 than in the link study; the lowest number of
students in the highest academic track was found in the main study in G9. Thus, the
link study G7–G9 and the respective main study in G9 may have been drawn from
different populations.
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Table 1 Description of the samples in main and link studies

Main study Link study Main study Link study Main study Link study Main study

G5 G5–G7 G7 G7–G9 G9 G9–AD Adults

N 5193 608 6186 534 13,897 502 5335

Gender
(rel. freq.)

Male 51.6 % 48.6 % 51.7 % 51.1 % 50.2 % 43.5 % 49.9 %

Female 48.4 % 51.4 % 48.3 % 48.9 % 49.8 % 56.5 % 50.1 %

Age

Mean 10.9 12.9 13.0 15.3 15.7 45.2 47.6

(SD) (0.5) (0.6) (0.5) (0.7) (0.6) (12.7) (10.9)

Migration
background
(rel. freq.)

No 68.0 % 69.7 % 66.6 % 71.5 % 70.5 % 83.7 % 80.3 %

Yes 25.1 % 26.0 % 22.0 % 23.2 % 25.0 % 15.5 % 14.6 %

No
information

6.9 % 4.3 % 11.3 % 5.2 % 4.5 % 0.8 % 5.2 %

School
type/degree
(rel. freq.)

Lower
school type

54.3 % 56.0 % 53.0 % 59.1 % 65.0 % 66.0 % 54.6 %

High
school type

45.4 % 44.0 % 47.0 % 40.9 % 35.0 % 34.0 % 45.4 %

Migration background either the person itself or one of its parents is born in a foreign country; School
type/degree refers to the school type in the school cohort samples and to the school degree in the Adults’
samples; high school type: at least grammar school/A-level degree, lower school type: other school types/a
lower school degree

Adults in the main study and the corresponding link study G9–AD had a similar
age distribution and a similar percentage of persons with migration background.
Slight differences occurred on the variables gender and school degree. These
differences possibly reflect differences in participation between the two studies.
The Grade 9 students in the main study and adults in the link sample G9–AD
were by design drawn from different populations and they differed in some of
the background variables. Note that in the school cohorts the dichotomous variable
school type/degree refers to the school type participants attend at the moment. For
the school cohorts the variable differentiates between students attending grammar
school (German: Gymnasium) and students with a lower school type. Since (most of
the) participants in the Adult sample did not attend school any more, the respective
variable refers to the highest school degree achieved so far, distinguishing between
an A-level degree (German: Abitur) and a lower school degree. In the current study,
the Grade 9 sample and the link study sample differed in the distribution of school
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type/degree, and additionally in the variables gender, and migration background.
Moreover, as expected by design, the link study sample was substantially older than
students in Grade 9.

In summary, while the link study G5–G7 shows similar demographic properties
as the corresponding main studies G5 and G7, there are some differences in the
samples between the link study G7–G9 and the corresponding main studies as well
as the link study G9–AD and its corresponding main studies.

Design

A common-person link design was used to link the reading competence scores of
different age groups. We describe the design exemplary for linking the Grade 9
test to the adult reading test. The link sample was always drawn from the older
population of the two main studies to be linked. Thus, the link study G9–AD was
conducted on adults. In the main studies, one test constructed for this age group was
administered, while the link sample completed the tests of the two adjacent years.
Regarding the link between Grade 9 and Adults, the ninth graders and the adults in
the main studies received only the Grade 9 test or the Adults test, respectively. In
the link study, both tests were administered to the participants. The two tests in the
link studies were given in randomized order to balance position effects. The same
link design was applied for linking competence scores of Grade 5 students to Grade
7 students and of Grade 7 students to Grade 9 students.

Whereas in the first testing wave (here main studies in Grade 5, Grade 9, and
Adults), reading competence was measured using a single test form for all students,
in later waves (here Grade 7) longitudinal multi-stage testing using information
from the previous testing wave for routing to test forms of different difficulty was
applied in order to enhance test targeting, motivation, and measurement precision
(see Pohl 2014). Thus, the test in Grade 7 consisted of two test forms that differ
in mean difficulty. 61.9 % of the students in Grade 7 took part in the previous
competence testing wave in Grade 5, so competence scores from the previous
wave were available for these students. Additionally, 2357 (38.1 %) new students
were recruited in Grade 7 to enlarge the sample size. Students with an ability
estimate in Grade 5 below the median were assigned to an easy test form in Grade
7 (N D 1771), students with an ability estimate equal or greater than the median
were assigned to the difficult test form (N D 2058) (see Fig. 2). Students with no
available competence score from Grade 5 (N D 2357) were assigned to the difficult
test form, since pilot studies had shown that the difficult test form targets a wider
ability range than the easy test form. Altogether, 1771 students in the main study in
Grade 7 took the easy test form, and 4415 subjects took the difficult test form. The
assignment to the test forms was different in the corresponding link studies (G5–G7
and G7–G9). As these were cross-sectional samples, no preliminary information
about the student’s competencies was available and the two test forms of the G7
reading competence test were administered randomly to the participants of the
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Fig. 2 Allocation of the Grade 7 test forms to the examinees in the main study and the link studies

link studies. Note that the different assignment of test forms results in different
population characteristics between the main study and the link studies, conditional
on the test form.

Measures and Procedures

In the NEPS, reading competence tests were developed that aim at measuring
reading competence coherently across the lifespan (Weinert et al. 2011)—using the
same conceptual framework across age (Gehrer et al. 2013). The NEPS framework
on reading competence embodies different text functions and different cognitive
requirements. Tests across all ages consist of five texts each with a different text
function: (1) information texts, (2) commenting or argumenting texts, (3) literary
texts, (4) instruction texts, and (5) advertising texts. The specific questions focusing
on the texts’ content can be classified into three types of items according to their
cognitive requirement: (a) finding information in texts, (b) drawing text-related
conclusions, and (c) reflecting and assessing. The three types of items are not
intended to primarily differ in difficulty, but qualitatively (Gehrer et al. 2013).
Most of the items are multiple-choice (MC) items with one option out of four
being correct. Furthermore, complex multiple choice (CMC) items and matching
(MA) items are included in the tests. CMC items consist of several subtasks with
two response options, MA items include a number of responses which have to
be matched to a given set of statements. Subtasks of CMC and MA items were
aggregated to one polytomous variable per item and given (partial) credit scores
(see Haberkorn, Pohl, Carstensen, & Wiegand 2015; Pohl & Carstensen 2012).

As described above, in Grade 7 two test forms were administered which differed
in difficulty, and students were assigned to either the difficult or the easy test form.
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Each test form comprised five texts, and the two test forms had three out of five texts
(plus the respective items) in common which enabled a link between the test forms.
The three common texts were presented on the same positions in both test forms.

In the main and link studies the reading competence test was administered with
other competence tests and questionnaire items assessing further information of the
examinees. The reading test featured a paper-and-pencil format and participants had
30 min to complete the test. While the test was presented to the students in Grade
5, 7, and 9 in a group setting at school with a group size of up to 25 subjects, the
adults took the test individually at their homes.

Analyses

We scaled the data within the framework of Item Response Theory (IRT). As
described above, the reading test included simple MC, complex MC, and matching
items. The complex MC and the matching items consisted of a set of subtasks that
were aggregated to a polytomous variable in the final scaling model in the NEPS.
In accordance with the scaling procedure for competence data in the NEPS (Pohl &
Carstensen 2012 2013), we used the Partial Credit model (Masters 1982) for scaling
the data. The models were fitted to the data using ConQuest (Wu, Adams, Wilson, &
Haldane 2007). Missing responses were ignored in the estimation of the parameters
(see Pohl, Gräfe, & Rose 2014).

We evaluated both assumptions of measurement invariance. First, we investigated
the dimensionality of the tests. For this, we used the link samples, which took
the reading tests of two adjacent age groups, and specified (a) a two-dimensional
model—each test form of a specific age group forming one dimension and (b) a
unidimensional model across both tests. For the Grade 7 test, both test forms were
included in the analyses and the information of test form assignment was included
in the model. The dimensionality of the test was assessed by comparison of the AIC
and BIC of the two models and by evaluating the latent correlation between the
dimensions of the two test forms (estimated in the two-dimensional model). If the
model comparison supports a unidimensional model and the correlation between
the test forms is close to one, the assumption that the tests of adjacent age groups
measuring the same construct within one population is supported.

Second, we investigated whether the tests measure the same construct in the dif-
ferent studies. For this purpose, we applied a multi-facet Rasch model and evaluated
differential item functioning (DIF) by comparing estimated item difficulties between
main study and link study. Note that for the tests, where main study and link study
are drawn from the same population, the test of DIF is mainly a test for equivalence
of the samples drawn. DIF of items that were administered to different populations
in the main study and the link study is mainly a test of measurement coherence
across age groups and settings. For the Grade 7 test, DIF was investigated separately
for the easy and the difficult test form. Although the participants in the main study
G7 and the link study attend the same grade, differences in populations are present,
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as the assignment to the different test forms differed between main study and link
study. The populations may especially differ in person abilities and as a consequence
possibly also in test taking strategies.

In subsequent analyses we investigated whether there is a relationship between
DIF and test as well as item characteristics as possible explanations for measure-
ment variance. We specifically considered the competence domain assessed, item
difficulty, text functions, cognitive requirements, and response format.

Results

Dimensionality

Using the link studies we investigated whether the reading tests of adjacent years do
measure a unidimensional construct. The results showed that in all three studies the
fit indices supported a two-dimensional over a unidimensional model (see Table 2).
It is, however, to note that the differences in AIC and BIC were rather small
compared to sample size and test length, so that statistical inferences will not be
without ambiguity (Alexandrowicz 2008). The latent correlations between the test
forms of two adjacent age groups were very high (see Table 2), indicating that within
the same sample, the different tests measure the same construct.

Measurement Invariance

In the following the results on measurement invariance are presented by reporting
the DIF between main study and link study for each of the three links. Afterwards,
the relationships of item and test characteristics with DIF are described.

Table 2 Fit indices of the uni- and the multidimensional models in the link
studies

Link study Model AIC BIC Latent correlation

G5–G7 Unidimensional 32,782.13 33,267.25

Two-dimensional 32,756.85 33,250.79 0.93
G7–G9 Unidimensional 27,013.45 27,462.89

Two-dimensional 26,993.14 27,451.14 0.95
G9–AD Unidimensional 25,257.80 25,586.85

Two-dimensional 25,241.78 25,579.26 0.95
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Linking Grade 5 to Grade 7

The absolute differences in the estimated item parameters of the Grade 5 test in
the main study of Grade 5 and the link study G5–G7 are presented at the top
of Fig. 3. Note that the test was administered to Grade 5 students in the main
study and to Grade 7 students in the link study and, thus, allows one to describe
differences in item functioning across age groups. As can be seen in the Figure,
the differences in item difficulties between the two studies were negligible, ranging
from �0.794 to 0.504 logits. For only one item DIF exceeded 0.6 logits. Overall,
the measurement model of the Grade 5 test in the main study on Grade 5 students
seems to be similar to that in the link study on Grade 7 students. In Fig. 3 also DIF
for the items of the easy and the difficult Grade 7 test is shown. Although the main
study and link study were both sampled from the population of Grade 7 students,
the assignment to test forms differed between main study and link study. In the
main study the assignment was based on ability estimates from the previous testing
waves, resulting in subgroups with rather homogenous ability scores and a good
test targeting.3 In contrast, random assignment was performed in the link study,
resulting in heterogeneous subgroups and a test targeting that was less tailored to
the ability level of the subgroups. As in the main study of Grade 7 the students
newly recruited in Grade 7 all received the difficult test (regardless of their ability),
the competence distribution for the students receiving the difficult test should be
more similar between main study and link study than for the easy test form. This
is also reflected in the results of measurement invariance of the test forms across
samples (Fig. 3). DIF was smaller for the difficult test form than for the easy test
form. DIF values ranged from �0.606 to 0.480 logits in the difficult test form and
from �0.664 to 0.750 logits in the easy test form. Only one item in the difficult test
form and four items in the easy test form showed DIF greater than 0.6.

Linking Grade 7 to Grade 9

The results on measurement invariance linking the tests in Grade 7 to the test in
Grade 9 are presented in Fig. 4. There was no considerable DIF for the items of
the Grade 9 test. For all items absolute differences in estimated item difficulty were
less than 0.5. As for the Grade 9 test, the samples of the main study and the link
study were both drawn from the population of ninth graders, these results support
the comparability of the samples.

Considering the link across different age groups, there was noticeable DIF for
both test forms in Grade 7 across samples. DIF values ranged from �0.846 to 0.792
logits in the easy test form and from �0.746 to 0.914 in the difficult test form. There
was also a non-negligible amount of items with rather large DIF, especially in the

3Test targeting is good, when the item difficulties of the test items well fit to the ability levels of
the specific target group. A good test targeting enhances reliability of the ability measurement.
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Fig. 3 DIF of items linking Grade 5 to Grade 7

easy test form. For seven items in the easy and five items in the difficult test form
DIF exceeded 0.6. The results indicate that the two test forms function differently
in the different populations.

Linking Grade 9 to Adults

Figure 5 shows the differences in estimated item difficulties for linking the Grade 9
test to the adult test. For the adult test, estimated item difficulties were very similar
across the main study and the link study, indicating similarity of both samples. No
DIF value exceeded an absolute value of 0.4 logits (range from �0.300 to 0.392
logits). This was different for the Grade 9 test, where main sample and link sample
were drawn from different populations. DIF values were large, ranging from �1.298
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Fig. 4 DIF of items linking Grade 7 to Grade 9

to 1.394 logits. Nine items exhibited absolute DIF values greater than 0.6 logits with
four of them even exceeding differences of 1 logit. Thus, as a considerable number
of items showed large DIF indicating great differences in the measurement of ninth
graders (in the main study) and adults (in the link study). The same test seems to
assess a different construct in the different populations. Note that here the main
study and link study differ not only by a large age difference (ninth graders aged 16
to adults of age 21–78), but also in educational and occupational setting (school vs.
mainly work), test setting (group testing in Grade 9 vs. individual testing at home
for Adults), and most probably also in competence level. These differences between
the populations seem to challenge the coherence of measurement.
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Fig. 5 DIF of items linking Grade 9 to Adults

Subsequent Analyses

In subsequent analyses, we investigated the impact of item and test charac-
teristics on the amount of DIF. Regarding item characteristics, we investigated
whether DIF is related to item difficulty, text functions, cognitive requirements,
and response format. We found no considerable relationship between DIF and
text functions, cognitive requirements, or response format. Concerning text func-
tions, the mean absolute DIF across all items and studies ranged from 0.24 (SD
across studies [SDacross] being 0.08 and average SD within studies [SDwithin]
being 0.18) for literary texts to 0.32 (SDacross D 0.18, SDwithin D 0.23) for
commenting texts. Regarding cognitive requirements, mean absolute DIF val-
ues across all items and studies were 0.33 (SDacross D 0.13, SDwithin D 0.26)
for finding information in the text, 0.23 (SDacross D 0.10, SDwithin D 0.19) for
drawing text-related conclusions, and 0.28 (SDacross D 0.11, SDwithin D 0.20) for
reflecting and assessing. Complex MC items were affected with slightly lower
absolute DIF values (M D 0.23, SDacross D 0.08, SDwithin D 0.20), than MA items
(M D 0.28, SDacross D 0.13, SDwithin D 0.19) and simple MC items (M D 0.29,
SDacross D 0.13, SDwithin D 0.22). The impact of the different text functions,
cognitive requirements, and response formats was moderate and very similar for
the different studies.

There was a strong relationship of DIF with item difficulty. Table 3 shows the
correlation of item difficulty with both, absolute DIF value and DIF value. Note that
DIF was calculated as the differences in estimated item difficulty in the link study
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Table 3 Correlation of the
value (DIF) and the absolute
value (DIFabs) of differential
item functioning and item
difficulty (ˇ) across studies
and tests

Link Test cor(ˇ,DIFabs) cor(ˇ,DIF)

G5–G7 G5 0:27 �0:26
G7 easy 0:31 0:23

G7 difficult �0:48 �0:21
G7–G9 G7 easy �0:33 0:30

G7 difficult 0:25 0:05

G9 �0:27 �0:25
G9–AD G9 �0:03 �0:60

AD �0:00 �0:26

minus the estimated item difficulty in the main study. Thus, positive DIF values
indicate that an item is easier in the main study than in the link study and negative
values that the item is easier in the link study than in the main study. The correlation
of item difficulty with absolute DIF indicates for which items DIF occurs; when
positive, DIF tends to occur in difficult items; when negative, DIF tends to occur in
easy items; and when zero, it tends to occur in both easy and difficult items. The
sign of the correlation of item difficulty with DIF indicates in which direction DIF
occurs. Positive values indicate that easy items are easier in the link study than in the
main study and difficult items are more difficult in the link study than in the main
study. The results for the various studies (see Table 3) suggest a very heterogeneous
picture with different correlation patterns for different studies. We had no theory
on that and investigated the patterns exploratorily as possible explanations for DIF.
We focus on the studies with large DIF, that is, the G7 easy and hard tests in the
G7–G9 link and the G9 test in the G9–AD link. For the easy G7 test form in the link
G7–G9, DIF mainly occurred for easy items (cor(ˇ, DIFabs) D �0.33) with items
being more difficult in the main study (on seventh graders) than in the link study (on
ninth graders) (cor(ˇ, DIF) D 0.30). For difficult items, DIF hardly occurred (cor(ˇ,
DIFabs) D �0.33). This is different for the respective difficult test form of the same
study. For the G7 difficult test form, DIF mainly occurred for difficult items (cor(ˇ,
DIFabs) D 0.25). There was no relationship of item difficulty and the direction of
DIF (cor(ˇ, DIF) D 0.05). Another pattern was found for the G9 test linking the
G9 test to the adult test. Here DIF occurred for easy and for difficult items (cor(ˇ,
DIFabs) D �0.03) with the easy items being more difficult in the link study (with
an adult sample) and the difficult items being more difficult in the main study (with
a sample of ninth graders) (cor(ˇ,DIF) D �0.60). As the size and direction of DIF
for different item difficulties varied a lot across studies, it is difficult to find an
explanation. The results on measurement invariance for the Grade 7 easy test linking
G7–G9 seem to be affected by test targeting, with DIF occurring mainly for items
with a low targeting (i.e., that are either too difficult or too easy for the respective
sample). In fact, the Grade 7 easy test that was completed by ninth graders in the
link study, yielded considerable ceiling effects for some items. About eight out of 29
items had a probability to be solved above 95 %. When these items were excluded
from the DIF analyses, the relative amount of DIF could be reduced. This is not
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necessarily true in the other studies, as in most studies (e.g., studies in Grade 9 and
on Adults) item difficulty is rather low, but DIF occurs on items of all difficulties.
Thus, although there does not seem to be a clear pattern, there are indications that
measurement variance is related to item difficulty and test targeting.

On test level, we evaluated whether similar results of measurement invariance
can be found for assessing other competencies. This facilitates the drawing of
conclusions concerning the extent to which the results depend on the specific
test or are rather population specific. The main and link studies linking the
Grade 9 test to the adult test were also used to link mathematical competence.
For mathematical competence, we found similar results on dimensionality and
measurement invariance as for reading competence. There was hardly any DIF on
the adult test, which was administered to the same population in the main study and
the link study; there was, however, large DIF for items of the Grade 9 test (also
see Pohl & Carstensen 2013). Similar coherence across competence domains was
found in the school cohorts, such as for linking ICT literacy from Grade 6 to Grade
9. In the Grade 9 ICT test that was administered to ninth graders in the main and the
link study almost no DIF occurred (analogous to the results of reading competence
linking Grade 7 to Grade 9). In contrast, some DIF was present in the Grade 6 test
that was administered to sixth graders in the main study and to ninth graders in the
link study with four out of 30 items exceeding DIF values of 0.6 logits (there was
also DIF present in the respective analyses comparing measurement models between
Grade 7 and Grade 9 on reading). In summary, different competencies that were
assessed in the NEPS such as reading, mathematical competence, or ICT literacy
showed similar patterns of measurement (in)variance across specific age spans.

Discussion

In the present study, we investigated whether it is possible to coherently measure
reading competence across the lifespan within the NEPS. We specifically asked
whether the reading tests for different cohorts measure the same construct and
whether each reading test measures the same construct across different samples. The
results on dimensionality showed that within the same population tests for different
age groups did measure the same construct. Thus, the tests were well constructed
to assess the same construct coherently across the test forms. However, when the
same test was administered to samples drawn from very different populations, the
measurement models differed between samples, that is, measurement invariance did
not fully hold. The more different the populations were, the larger DIF was found.
Differences in populations are indicated by differences in age (e.g., linking Grade 5
and Grade 7), differences in educational and occupations settings (e.g., students in
school and adults at work), differences in test settings (e.g., group testing in school,
individual testing at home), and differences in competence levels (e.g., differences
in the assignment to test forms in Grade 7). Only for linking Grade 5 to Grade 7,
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which were similar in educational setting and test setting, an adequate amount of
measurement invariance could be assured. On test level, item difficulty and test
targeting seem to play a role for results on measurement invariance.

The differences in item functioning for different populations may to some extent
occur due to differences in test-taking behavior. This can, for example, be evaluated
by missing values. While samples from similar populations in our study showed
rather similar missing item patterns, samples from different populations differed
in their missing item patterns. Adults in the main study and in the link study, for
example, showed a very similar missing pattern on the amount of omitted and not
reached items as well as non-valid responses. Students in Grade 9 and adults differed
immensely in their missingness patterns. The adult sample reached fewer items,
omitted more items, and produced more invalid responses than Grade 9 students. We
also found greater correlations between the number of omissions and item difficulty
for the student populations (correlations ranging from 0.23 to 0.55) than for adults
(cor D 0.12). The greater age and competence level, the higher these correlations
were in school. This may indicate that students in school, especially the older they
are and the more competence they gained, apply a different test-taking strategy than
adults. This is also corroborated by the finding that the number of omissions of
adults is greater with lower competence levels (correlation of reading competence
and number of omissions being �.26), while it is hardly related in the students’
samples (correlations ranging from �.07 for Grade 9 students to �.12 for Grade
5 students). Especially older and more competent students seem to use some test-
taking strategy omitting difficult items. This fits well in the research on testwiseness
(e.g., Diamond & Evans 1972; Gibb 1964; Millman, Bishop, & Ebel 1965) and test
motivation (e.g., Wise & DeMars 2005 2006), which also reports on omission of
items and quitting on the test (e.g., Schmitt, Chan, Sacco, McFarland, & Jennings
1999; Zerpa, Hachey, van Barnfield, & Simon 2011). Investigating differences in
test-taking behavior may help explain the results on differences in measurement
invariance across different populations in further research.

There are some implications for large-scale studies that can be drawn from
our results. As our results show, although within the same sample, adjacent test
forms may assess a unidimensional construct, the measurement model may differ
for different populations. This is especially the case when differences between
populations increase. Thus, for planning a longitudinal study that requires linking
of test forms, the differences in the populations to be linked should be kept to
a minimum. This means that linking should be performed across smaller age
ranges. In NEPS, linking between Grade 9 and Adults did not prove successful,
but possibly linking Grade 9 students to Grade 12 students and students in the
school cohort to younger adults might facilitate appropriate linking. Similarities in
linked samples also include similarities in test settings. Mode effect studies may
help assessing the effect of individual vs. group testing and, thus, accounting for it.
This is done in NEPS in other age cohorts (Kröhne & Martens 2011). As it might
be that DIF between different populations occurs due to differences in test-taking
strategies, a more thorough instruction on how to take the test may help prevent from
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measurement variation. This issue can be approached in an even more sophisticated
way, by computerized testing, where more control over item skipping and response
time is possible.

In our study we focused on the prerequisites for linking. These results are very
relevant for the NEPS, since they are the basis for choosing the actual linking models
within the age cohorts and, if possible, across age cohorts as well. One of the
outcomes of the NEPS will be an empirical answer to the question, whether and
for which domains it is possible to construct a common scale across the lifespan.
As far as the results presented here indicate, it will be feasible to construct common
scales within some age limits.

In order to establish a common scale, one has to make assumptions about item
drift. If one assumes that observed item drift is not due to any systematic reason
like a shift in constructs, a link may be based on items that did not show DIF,
assuming partial measurement invariance. One has to rely on the assumption that
the items chosen for linking are not confounded by item drift. This, however, cannot
be empirically tested. This assumption may be more plausible for the tests in the
school cohorts, that is, linking Grade 5 to Grade 7 and Grade 7 to Grade 9. As the
DIF on the Grade 9 test linking G9–AD is very large and the populations differ a
lot, it may be less plausible here. Further link studies, e.g., linking G9–G12, G12
to university students or tertiary students to younger adults may and will give more
evidence to investigate whether linking across age cohorts will be possible.

After having evaluated the plausibility of different linking assumptions, the
question is how to link different test forms. From research we know that different
decisions in the scaling process typically lead to somewhat different vertical scales
(Camilli et al. 1993; Loyd & Hoover 1980; Williams, Pommerich, & Thissen 1998;
Yen 1986). No consensus exists in the literature as to which set of procedures
produces the vertical scale that most adequately captures the nature of development
(Kolen & Brennan 2004). It rather seems that the optimal linking model depends
on the degree of violation of the assumptions made in a linking model given its
particular design and sample sizes. In any way, within the NEPS different linking
analyses, preferably linking with restrictions on item difficulty on an item level
and as an alternative, linking with restrictions on item difficulty on the test level,
will be explored to quantify the impact on the linking results. One of the crucial
questions will be to decide which items are considered “undrifted” and thus will
contribute to the link and which items are considered to show item drift and will
be excluded from establishing the link. Consequently, a thorough evaluation of the
linking model applied to a particular study is needed. In order to quantify the degree
of linkability, linking errors will be computed and compared. A possible solution for
linking approaches for the NEPS might be to distinguish strict linking from linking
of tests that might be considered as connected in a less stringent way. A strict link
requires most items to be invariant over time resulting in small linking errors only,
whereas connected tests may allow item drifts to occur more frequently and the
link error might thus be larger. From a substantive NEPS point of view, to have
connected test forms across different age cohorts may have the potential for relevant
cohort comparisons in the NEPS, whereas following the competence development
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of students longitudinally over subsequent years will require a strict link assuming
measurement invariance and small linking errors. The investigation of which linking
models are appropriate in NEPS falls in the scope of further research.

Acknowledgement This research used data from the National Educational Panel Study (NEPS).
From 2008 to 2013, NEPS data were collected as part of the Framework Programme for
the Promotion of Empirical Educational Research funded by the German Federal Ministry of
Education and Research (BMBF). As of 2014, the NEPS survey is carried out by the Leibniz
Institute for Educational Trajectories (LIfBi) at the University of Bamberg in cooperation with a
nationwide network.

This research is based on the dedicated work of professors and research assistants within
the NEPS. We especially thank Karin Gehrer, Stefan Zimmermann, Cordula Artelt, and Sabine
Weinert for developing the tests on reading competence, that are the basis of our research, and
Maike Krannich, Michael Wenzler, Theresa Rohm, and Odin Jost for their valuable assistance in
analyzing the data. Our thanks also go to the staff of the NEPS administration of surveys and to
the methods group.

References

Alexandrowicz, R. (2008). Wieviel ist “ein bisserl”? Ein neuer zugang zum BIC im rahmen von
Latent-Class-Analysen [How much is “a bit”? A new approach to the BIC within the framework
of Latent Class Analyses]. In J. Reinecke & C. Tarnai (Eds.), Klassifikationsanalysen in theorie
und anwendung (pp. 141–165). Münster: Waxmann.

Artelt, C., Weinert, S., & Carstensen, C. H. (2013). Assessing competencies across the lifespan
within the German National Educational Panel Study (NEPS) – Editorial. Journal for Educa-
tional Research Online, 5, 5–14.

Aßmann, C., Steinhauer, H. W., Kiesl, H., Koch, S., Schönberger, B., Müller-Kuller, A., et al.
(2011). Sampling designs of the National Educational Panel Study: Challenges and solutions.
Zeitschrift für Erziehungswissenschaft, 14, 51–65.

Blossfeld, H.-P., von Maurice, J., & Schneider, T. (2011). The National Educational Panel Study:
Need, main features, and research potential. Zeitschrift für Erziehungswissenschaft, 14, 5–17.

Böhme, K., & Robitzsch, A. (2009). Methodische aspekte der erfassung der lesekompetenz
[Methodological aspects of reading assessment]. In D. Granzer, O. Köller, A. Bremerich-Vos,
M. van den Heuvel-Panhuizen, K. Reiss, & G. Walther (Eds.), Bildungsstandards Deutsch und
mathematik. Leistungsmessung in der grundschule (pp. 250–289). Weinheim: Beltz.

Camilli, G., Yamamoto, K., & Wang, M. (1993). Scale shrinkage in vertical equating. Applied
Psychological Measurement, 17, 379–388.

Carstensen, C. H., Lankes, E. M., & Steffensky, M. (2012). Modellierung von längsschnittlichen
daten am beispiel einer quasi-experimentellen studie zur erfassung von naturwissenschaftlichen
kompetenzen im kindergartenalter [Modeling of longitudinal data illustrated on a quasi-
experimental study of the assessment of scientific competencies in preschool children]. In
W. Kempf & R. Langeheine (Eds.), Item-response-modelle in der sozialwissenschaftlichen
forschung (pp. 109–126). Berlin: Regener.

Diamond, J. J., & Evans, W. J. (1972). An investigation of the cognitive correlates of testwiseness.
Journal of Educational Measurement, 9, 145–150.

Doran, H. C., & Cohen, J. (2005). The confounding effect of linking bias on gains estimated from
value-added models. In R. W. Lissitz (Ed.), Value-added models in education: Theory and
applications (pp. 80–104). Maple Grove, MN: JAM Press.

Dorans, N. J., Pommerich, M., & Holland, P. (Eds.). (2007). Linking and aligning scores and
scales. New York, NY: Springer.



306 S. Pohl et al.

Gehrer, K., Zimmermann, S., Artelt, C., & Weinert, S. (2013). NEPS framework for assessing
reading competence and results from an adult pilot study. Journal for Educational Research
Online, 5, 50–79.

Gibb, B. G. (1964). Testwiseness as secondary cue response (Doctoral dissertation). Stanford
University, Ann Arbor, Michigan: University Microfilms, 1964. No. 64-7643.

Haberkorn, K., Pohl, S., Carstensen, C., & Wiegand, E. (in press). Scoring of complex multiple
choice items in NEPS competence tests. In H. -P. Blossfeld, J. von Maurice, M. Bayer, & J.
Skopek (Eds.), Methodological issues in longitudinal surveys. Springer.

Haertel, E. (1991). Report on TRP analyses of issues concerning within-age versus across-age
scales for the National Assessment of Educational Progress. Washington, DC: National Center
for Education Statistics.

Hahn, I., Schöps, K., Rönnebeck, S., Martensen, M., Hansen, S., Saß, S., et al. (2013). Assessing
science literacy over the lifespan – A description of the NEPS science framework and the test
development. Journal for Educational Research Online, 5, 110–138.

Hoover, H. D. (1984). The most appropriate scores for measuring educational development in the
elementary schools: GE’s. Educational Measurement: Issues and Practice, 3, 8–14.

Hoover, H. D., Dunbar, S. B., & Frisbie, D. A. (2003). The Iowa Tests: Guide to research and
development. Chicago, IL: Riverside Publishing.

Jones, L. V., & Olkin, I. (Eds.). (2004). The Nation’s Report Card: Evolution and perspectives.
Bloomington, IN: Phi Delta Kappa Educational Foundation.

Klieme, E., Avenarius, H., Blum, W., Döbrich, P., Gruber, H., Prenzel, M., et al. (Eds.). (2003).
The development of National Educational Standards. An expertise (Vol. 1). Berlin: BMBF.

Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking: Methods and practices.
New York, NY: Springer.

Kristen, C., Römmer, A., Müller, W., & Kalter, F. (2005). Longitudinal studies for education
reports – European and North American examples, Report commissioned by the Federal
Ministry of Education and Research. Bonn, Berlin: Federal Ministry of Education and Research
(BMBF).

Kröhne, U., & Martens, T. (2011). Computer-based competence tests in the national educational
panel study: The challenge of mode effects. Zeitschrift für Erziehungswissenschaft, 14,
169–186.

Linn, R. (1993). Linking results of distinct assessments. Applied Measurement in Education, 6,
83–102.

Loyd, B. H., & Hoover, H. D. (1980). Vertical equating using the Rasch model. Journal of
Educational Measurement, 17, 179–193.

Martineau, J. (2006). Distorting value-added: The use of longitudinal, vertically scaled student
achievement data for growth-based, value-added accountability. Journal of Educational and
Psychological Statistics, 31, 35–62.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.
McClellan, C. A., Donoghue, J. R., Gladkova, L., & Xu, X. (2005). Cross-grade scales in NAEP:

Research and real-life experience. Presentation at the conference Longitudinal Modeling
of Student Achievement, Maryland Assessment Research Center for Education Success,
University of Maryland, College Park, MD.

Millman, J., Bishop, D. H., & Ebel, R. (1965). An analysis of test wiseness. Educational and
Psychological Measurement, 25, 707–726.

Mislevy, R. J. (1992). Linking educational assessments: Concepts, issues, methods, and prospects.
Princeton, NJ: ETS Policy Information Center.

Monseur, C., & Berezner, A. (2007). The computation of equating errors in international surveys
in education. Journal of Applied Measurement, 8, 323–335.

Monseur, C., Sibberns, H., & Hastedt, D. (2008). Linking errors in trend estimation for interna-
tional surveys in education. In M. von Davier & D. Hastedt (Eds.), Issues and methodologies
in large-scale assessments (pp. 113–122). Hamburg: IEA-ETS Research Institute.

Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in
mathematics. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.



Measuring Competencies across the Lifespan - Challenges of Linking Test Scores 307

Neumann, I., Duchhardt, C., Ehmke, T., Grüßing, M., Heinze, A., & Knopp, E. (2013). Modeling
and assessing mathematical competence over the lifespan. Journal for Educational Research
Online, 5, 80–109.

OECD. (2013). PISA 2012 Assessment and analytical framework: Mathematics, reading, science,
problem solving, and financial literacy. Paris: OECD Publishing.

Penfield, R. D., & Algina, J. (2006). A generalized DIF effect variance estimator for measuring
unsigned differential test functioning in mixed format tests. Journal of Educational Measure-
ment, 43, 295–312.

Pohl, S. (2014). Longitudinal multi-stage testing. Journal of Educational Measurement, 50,
447–468.

Pohl, S., & Carstensen, C. H. (2012). NEPS Technical Report: Scaling the data of the competence
tests (NEPS Working Paper No. 14). Bamberg, Germany: University of Bamberg, National
Educational Panel Study.

Pohl, S., & Carstensen, C. H. (2013). Scaling the competence tests in the National Educational
Panel Study—Many questions, some answers, and further challenges. Journal of Educational
Research Online, 5, 189–216.

Pohl, S., Gräfe, L., & Rose, N. (2014). Dealing with omitted and not reached items in compe-
tence tests-Evaluating different approaches accounting for missing responses in IRT models.
Educational and Psychological Measurement, 74, 423–452.

Pollack, J. M., Atkins-Burnett, S., Najarian, M., & Rock, D. A. (2005). Early Childhood
Longitudinal Study, Kindergarten class of 1998–99 (ECLS–K), Psychometric report for the
fifth grade. Washington, DC: National Center for Education Statistics. U.S. Department of
Education.

Popham, W. J. (2000). Educational measurement. Boston, MA: Allyn and Bacon.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen:

Nielsen & Lydiche.
Reckase, M. D. (2009). Multidimensional item response theory. New York, NY: Springer.
Reckase, M. D., & Martineau, J. A. (2004). Growth as a multidimensional process. Paper presented

at the Annual Meeting of the Society for Multivariate Experimental Psychology, Naples, FL.
Robitzsch, A., Dörfler, T., Pfost, M., & Artelt, C. (2011). Die Bedeutung der Itemauswahl und der

Modellwahl für die längsschnittliche Erfassung von Kompetenzen: Lesekompetenzentwicklung
in der Primarstufe [Relevance of item selection and model selection for assessing the develop-
ment of competencies: The development of reading competence in primary school students].
Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 43, 213–227.

Rock, D. A., Pollack, J. M., Owings, J., & Hafner, A. (1991). Psychometric report for the NELS: 88
base year test battery. Washington, DC: U.S. Department of Education, Office of Educational
Research and Improvement.

Rock, D. A., Pollack, J. M., & Quinn, P. (1995). Psychometric report of the NELS: 88 base
year through second follow-up. Washington, DC: U.S. Department of Education, Office of
Educational Research and Improvement.

Rupp, A. A., & Vock, M. (2007). National educational standards in Germany: Methodological
challenges for developing and calibrating standards-based tests. In D. Waddington, P. Nentwig,
& S. Schanze (Eds.), Making it comparable: Standards in science education (pp. 173–198).
Münster: Waxmann.

Schmitt, N., Chan, D., Sacco, J. M., McFarland, L. A., & Jennings, D. (1999). Correlates of person
fit and effect of person fit on test validity. Applied Psychological Measurement, 23, 41–54.

Senkbeil, M., Ihme, J. M., & Wittwer, J. (2013). The test of Technological and Information Literacy
(TILT) in the National Educational Panel Study: Development, empirical testing, and evidence
for validity. Journal for Educational Research Online, 5, 139–161.

Thissen, D. (2012). Validity issues involved in cross-grade statements about NAEP results.
Washington, DC: American Institutes for Research, NAEP Validity Studies Panel.

Tong, Y., & Kolen, M. (2007). Comparisons of methodologies and results in vertical scaling for
educational achievement tests. Applied Measurement in Education, 20, 227–253.



308 S. Pohl et al.

von Davier, A. A., Carstensen, C. H., & von Davier, M. (2008). Linking competencies in horizontal,
vertical and longitudinal settings and measuring growth. In J. Hartig, E. Klieme, & D. Leutner
(Eds.), Assessment of competencies in educational contexts (pp. 121–149). New York, NY:
Hogrefe & Huber.

von Davier, A. A., Holland, P. W., & Thayer, D. T. (2004). The kernel method of test equating.
New York, NY: Springer.

von Maurice, J., Artelt, C., Blossfeld, H. -P., Faust, G., Rossbach, H. -G., & Weinert, S. (2007).
Bildungsprozesse, kompetenzentwicklung und formation von selektionsentscheidungen im
vor- und grundschulalter: Überblick über die erhebungen in den längsschnitten BiKS-3-
8 und BiKS-8-12 in den ersten beiden projektjahren [Educational processes, competence
development and formation of selection decisions in preschool and primary school age: An
overview of the first two years of data collection in the longitudinal studies BiKS-3-8 and
BiKS-8-12]. Bamberg: Otto-Friedrich-Universität.

Wang, S., & Jiao, H. (2009). Construct equivalence across grades in a vertical scale for a K-12
large-scale reading assessment. Educational and Psychological Measurement, 69, 760–777.

Wang, S., Jiao, H., & Zahng, L. (2013). Validation of longitudinal achievement constructs of
vertically scaled computerized adaptive tests: A multiple-indicator, latent-growth modeling
approach. International Journal of Quantitative Research in Education, 1, 383–407.

Weinert, S., Artelt, C., Prenzel, M., Senkbeil, M., Ehmke, T., & Carstensen, C. H. (2011).
Development of competencies across the life span. Zeitschrift für Erziehungswissenschaft, 14,
67–86.

Williams, V. S. L., Pommerich, M., & Thissen, D. (1998). A comparison of developmental scales
based on Thurstone methods and item response theory. Journal of Educational Measurement,
35, 93–107.

Wise, S. L., & DeMars, C. E. (2005). Low examinee effort in low-stakes assessment: Problems and
potential solutions. Educational Assessment, 10, 1–17.

Wise, S. L., & DeMars, C. E. (2006). An application of item response time: The effort moderated
model. Journal of Educational Measurement, 43, 19–38.

Wu, M. (2010). Measurement, sampling, and equating errors in large-scale assessments. Educa-
tional Measurement: Issues and Practice, 29, 15–27.

Wu, M., Adams, R. J., Wilson, M., & Haldane, S. (2007). Conquest 2.0 [Computer Software].
Camberwell, VIC: ACER Press.

Yen, W. M. (1986). The choice of scale for educational measurement: An IRT perspective. Journal
of Educational Measurement, 23, 299–325.

Zerpa, C., Hachey, K., van Barnfield, C., & Simon, M. (2011). Modeling student motivation and
students’ ability estimates from a large-scale assessment of mathematics. Sage Open, 1, 1–9.



Mixed Rasch Models for Analyzing the Stability
of Response Styles Across Time: An Illustration
with the Beck Depression Inventory (BDI-II)

Ferdinand Keller and Ingrid Koller

Abstract Questionnaires for clinical studies are often evaluated in cross-sectional
settings and on the basis of classical test theory. Some of them, like the BDI-II which
is one of the most widely used self-report instruments for assessing depression
severity, are considered to have very good psychometric properties. However, these
properties are rarely evaluated in longitudinal designs, and even less with models of
item response theory (IRT). In addition, analyses of self-report questionnaires with
IRT models provided evidence of two major response styles: the tendency to prefer
extreme response categories, and the tendency to prefer the middle categories. Rasch
models, in particular their extension to the so-called mixed Rasch model, are well
suited to address these questions. They allow one to determine latent classes with
different response styles and to analyze qualitative aspects of change such as the
consistency of response styles across time. In this chapter first, an introduction to
response styles and an overview of the mixed Rasch model, especially in the context
of measuring change, are given and second, a practical example is elaborated using
a sample of in-patients from a psychosomatic clinic that were assessed with the
BDI-II at the beginning and at the end of in-patient treatment. The presence of two
response styles is confirmed for the admission data, whereas for the discharge data
the Rasch model seems sufficient. A combined analysis of both time points reveals
three classes, one of which is a low symptom class and the other two reflect, again,
the two response styles; these two classes remain quite stable over time.
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Measurement of Change in Clinical Psychology
and Response Styles

Measurement of change in clinical psychology and psychiatry is of major impor-
tance for the evaluation of treatment approaches that are suited best for patient
groups (i.e., comparing different types of psychotherapy and/or psychopharmaco-
logical treatment) as well as for monitoring improvement on an individual level
(e.g., is there clinically significant progress across the treatment sessions, or is it
indicated to modify the treatment approach?).

Unlike in achievement research (e.g., measurement of educational trajectories)
where sophisticated statistical models are applied to assess the psychometric prop-
erties of items and to investigate change across time, treatment evaluation studies in
the clinical realm mostly rely on a few, well-established outcome instruments that
have high clinical face validity but whose psychometric properties in designs with
repeated measurement are nonetheless rarely tested. Although this facilitates the
comparison of study results, the measurement properties in longitudinal designs are
largely unknown, except the test-retest-reliability based on the classical test theory
approach.

A further threat for reliability and validity of self-report measures using Likert-
type response scales are response styles which denote the tendency of an individual
to respond to items irrespective of content. Plieninger and Meiser (2014) and Wetzel,
Carstensen, and Böhnke (2013) give an overview on research regarding different
types, in particular the extreme response style (ERS), i.e., the tendency to prefer
the extreme response categories, and midpoint responding (MRS), i.e., the tendency
to choose the middle categories (other response styles are, e.g., acquiescence and
its opposite, disacquiescence). The authors conclude that past research suggested
that response styles may be conceptualized as trait-like constructs that are stable
across content domains and time. However, Weijters, Geuens, and Schillewaert
(2010) question the results of previous studies on stability over time because of
several methodological problems that arise with longitudinal designs, in particular
possible memory effects and the usage of the same items which makes it impossible
to distinguish between common variance due to response style and due to content.

In this chapter, we focus on the assessment of depression with a self-report
instrument, the Beck Depression Inventory in its revised version (BDI-II; Beck,
Steer, & Brown 1996; German version: Hautzinger, Keller, & Kühner 2006). The
BDI-II is one of the most widely used self-report instruments to assess severity of
depression in treatment studies as well as in psychodiagnostics. The psychometric
properties are considered to be very good and extensive factor analytic studies have
been done on cross-sectional samples (e.g., Brouwer, Meijer, & Zevalkink 2013a;
Bühler, Keller, & Läge 2014; Ward 2006).

The BDI-II is used to address the presence of ERS and MRS in a clinical context.
Moreover, the stability or change of these (potential) response styles across two time
points (admission and discharge in a psychosomatic hospital) and the impact on the
measurement of depression severity are examined. To our knowledge, neither issue
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has been addressed before in the literature. Furthermore, the assessment of stability
is confounded by the clinical intervention (treatment of the patients during their
hospital stay) and thus more complicated than in studies where relatively stable
traits (personality or achievement) are analyzed. Relations to basic variables which
are available for this sample (gender, age, as well as diagnostic subgroups) will
be assessed, too. Our method of choice is the mixed Rasch model (MRM; Rost
1990; Rost & von Davier 1995) which is an item response theory model (IRT)
that is well suited to identify subgroups of patients that differ in response style,
and offers the possibility to assess qualitative change across time (e.g., Glück &
Spiel 1997). In the next sections the MRM and its application in the context of
assessing different response styles and measuring change are described. After that
the empirical example with the BDI-II is elaborated using the MRM approach.

The Mixed Rasch Model

The MRM is a generalization of the Rasch model (RM; Rasch 1960) to a discrete
mixture distribution model which makes it possible to extract latent classes of
individuals within which the RM holds. Between the extracted classes the RM
has not to fit the data and, therefore the order of item difficulty and the range of
item difficulties are allowed to vary. Thus, different response scale category usage
can exist and therefore RM properties, e.g., measurement invariance, are not given
between latent classes (e.g., Baghaei & Carstensen 2013; Embretson 2010; Meiser,
Hein-Eggers, Rompe, & Rudinger 1995; Rost, Carstensen, & von Davier 1999;
Rost & von Davier 1995). In summary, the MRM combines the unidimensional
Rasch model with latent class analysis (LCA; e.g., Meiser et al. 1995; Meiser
2010; Rost 1991). But contrary to LCA, where within classes no person ability
variation is assumed, MRM allows the quantification within classes, which means
that individuals can differ in ability (e.g., Rost 2004; Spiel & Glück 2008).

In addition to the MRM for two-categorical items, extensions for items with
polytomous response formats exist, for example, the mixed partial credit model
(PCM) and the mixed rating scale model (RSM; e.g., Von Davier & Rost 1995).
Because the applied example in this chapter is based on a polytomous response
format the equation for the mixed PCM and one restriction, the mixed RSM, are
shown. The restriction to the MRM is straightforward and is explained in Rost and
von Davier (1995).

The mixed PCM defines the probability for a person v D 1, : : : , n to pass the
threshold l D 1, : : : , m (with s D 0, : : : , m categories) of an item i D 1, : : : , k given
the person ability � v in class c D 1, : : : , C and the item difficulty ˇilc with

P
�

xvilc D l
ˇ̌
ˇ�vc; ˇilc

�
D

CX
cD1
�c

exp .l�vc � ˇilc/Xm

sD0 exp .s�vc � ˇisc/
;
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where �c is the probability to belonging in latent class c (class size parameter) and

the item difficulty “ilc D
Xm

lD1£ilc, with the normalization
Xk

iD1
Xm

lD1£ilc D 0;

and ˇi0c D 0 within all classes (see also, Rost 1991 or Wetzel et al. 2013).
Furthermore, the mixed RSM results from the restriction �ilc D ˇic C �sc where
the same distances between thresholds are assumed for all items within all classes.

MRM fit will be tested in two ways. First, to test whether the estimated model
fits the data, it has to be compared with the saturated model (i.e., the model with
the maximum of estimable parameters) by a likelihood ratio test or Pearson chi-
square test (see, e.g., Spiel & Glück 2008). Second, the estimated models (e.g.,
two-class and three-class solution) have to be compared using information criteria,
such as, the Akaike information criterion (AIC; Akaike 1974), Bayesian Information
Criterion (BIC; Schwarz 1978), or Consistent Akaike Information Criterion (CAIC;
Bozdogan 1987). Based on the literature (Baghaei & Carstensen 2013; Wetzel et al.
2013) and simulation studies for the evaluation of performance of information
criteria (Preinerstorfer & Formann 2012) BIC and CAIC should be preferred. A
qualitative goodness of fit check is the comparison of the average membership
probability of different individuals. If it is possible to assign individuals with high
probability to one class, the MRM describes the data or response patterns well (see,
Spiel & Glück 2008).

Assessment of Response Styles with the MRM

Several studies exist where the MRM was applied to various types of data for the
detection of response styles in achievement tests (e.g., Baghaei & Carstensen 2013;
Spiel & Glück 2008) and in personality questionnaires (e.g., Eid & Zickar 2010;
Gollwitzer, Eid, & Jürgensen 2005; Rost et al. 1999; Rost, Carstensen, & von Davier
1997). All studies showed the suitability of the MRM for the identification and
better understanding of different response styles. For example, Wetzel et al. (2013)
analyzed several PISA 2006 attitude scales and the subscales of the NEO-PI-R with
mixed PCM and further combined the respective latent response classes by means
of a second order latent class analysis (c.f. Keller & Kempf 1997). The authors
found that for 77 % of the participants a response style (ERS or MRS) occurred
consistently across traits.

Furthermore, Wetzel et al. (2013) state that testing the consistency of response
styles with the MRM requires that participants only differ in their response style but
not in the trait that is being assessed or other factors that might influence the choice
of a response category. Thus, the authors recommend estimating a constrained PCM
where item locations are fixed to be equal across classes.
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Assessment of Response Styles Across Time

In addition to the assessment of response styles in general, it can be of interest
to determine whether class membership and, therefore, response style change over
time. It is also possible to investigate this kind of question with MRMs (Glück &
Spiel 1997 2010; Spiel & Glück 1998). With this exploratory approach it is possible
to assess qualitative change across time. Research questions could be whether the
class membership is constant over time or whether changes in membership are
constant over time (e.g., those associated with class one at time point one change
primarily to class two at time point two). For applications of the MRM in the case of
dependent data, see, e.g., Glück and Spiel (1997 2010), Meiser et al. (1995), Meiser,
Stern, and Langeheine (1998), and Rost (2004).

Technically, the data matrix has to be rearranged before analysis depending on
research question. Two examples can be seen in Fig. 1 (see Rost 2004). Further
possibilities for longitudinal data are conceivable (see, e.g., Meiser et al. 1998), but
not of interest for our study and thus not discussed in this chapter.

If the data matrix is rearranged as shown in the left panel of Fig. 1 (long-format),
one gets twice (or t times) as many participants, and change can be analyzed in
one step (e.g., Glück & Spiel 1997). Thus, each time point can be seen as an
independent subgroup of individuals. The individuals starting from t2 are called
virtual individuals. With this approach the item parameters are estimated in one step

t = 1

t = 2

Items
1 2 3 … … … k

1
.
.
. 
.
Nt1

1
.
. 
.
.
Nt2

t = 1 t = 2

1
.
.
. 
.
Nt1

Items
1 2  … … …  kt1 1 2  … … …  kt2

Fig. 1 Two possible ways to rearrange the data matrices for MRM in longitudinal studies. Left
panel (long format): Data matrix with virtual persons at t2. With this rearranging twice (or t) as
many persons are available for analysis of dependent data. The MRM analysis can be performed
in one step for all time points but the instrument must contain the same items across time. Right
panel (wide format): Data matrix with virtual items at t2. The MRM analysis can be performed
also in one step
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and it can be seen whether the individuals are staying within or moving between
classes. However, there is one restriction, that is, the tests must contain the same
items at all time points. In addition it must be taken into account that the assumption
of local independence on the person side is violated.

It is also possible to rearrange the data as shown in the right panel in Fig. 1 (wide-
format), and to analyze the time points as one long test. Again, in this approach the
item parameters are estimated in one step, but, in addition, classes of participants
are identified whose items at, e.g., t2 reflect different magnitudes of change and
different types of change (see, Glück & Spiel 1997). This approach, however, hides
one major drawback. Due to the prolonged test, the sample size must be increased
for a sufficiently accurate estimation of item parameters.

In the previous sections, the application of the MRM when assessing response
styles and the procedure for the investigation of qualitative change in dependent
data were described. In the next section we show the assessment of response styles
using the MRM in a clinical context. First, the sample, the BDI-II and the procedure
are described and second the results are given and discussed.

Assessment of Response Styles with the BDI-II

Sample

The sample consisted of in-patients from a clinic for psychosomatic disorders
(N D 1164); they completed the BDI-II at admission within the routine diagnostic
procedure and also at discharge. The mean age in the sample was 45.2 years
(SD D 10.8; range: 19–72) and 64.7 % of the patients were female. The mean BDI-II
total score at admission was 21.4 (SD D 10.6) and at discharge 9.1 (SD D 8.1). Eight
hundred and two patients (68.9 %) were diagnosed with a primary affective disorder
(ICD-10: chapter F3) as their main diagnosis; when taking F3 as a comorbid
diagnosis, 1001 patients (86.0 %) fulfill the criteria of a depression. The most
frequent comorbid disorder was substance-related disorders (ICD-10: F1; n D 254
(21.8 %)), and within a range of 15–19 % were somatoform disorders, anxiety-
related disorders and post-traumatic stress disorder (PTSD), eating disorders, and
personality disorders (see Table 3).

Description of the BDI-II

The BDI-II consists of 21 items that assess a wide range of depressive symptoms
(e.g., sadness, suicidal thoughts and wishes, concentration difficulty, or loss of
energy). Each item has four categories numbered from 0 to 3 that are formulated
in a symptom-specific way (e.g., item 9 “suicidal thoughts and wishes” has the four
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response options: 0 D “I don’t have any thoughts of killing myself,” 1 D “I have
thoughts of killing myself, but I would not carry them out”, 2 D “I would like to kill
myself,” and 3 D “I would kill myself if I had the chance”). The total score of these
items reflect the severity of depression. In 1996, a minor revision of the BDI was
carried out to meet the criteria of the DSM-IV (American Psychiatric Association
1994) and resulted in the BDI-II (Beck et al. 1996). Symptom scores from 14 to 19
indicate a mild depression, 20 to 28 a moderate, and above 28 a severe depression
(Beck et al. 1996).

Procedure

The software program WINMIRA v1.45 (Von Davier 2001) was used to estimate
the MRMs. We restricted ourselves for this data example to the mixed PCM, since it
has been found in several samples that the fit of the RSM was worse than the fit
of the PCM (Keller 2012), which supports the theoretical assumption that the
BDI-II with its symptom- and category-specific text requires no restrictions on the
category thresholds. The number of latent classes was successively increased from
the PCM (1-RM) up to a PCM with three latent classes (3-RM) and parsimony of
the models was evaluated using BIC and CAIC, as described above. Participants are
then assigned to their most probable class and frequency tables are used to explore
relations between time points and to the demographic variables. To compare the
identified latent classes and to test the fit of the PCM, MRM analyses are performed,
first, for the two time points separately, and then for the virtual sample (long-
format, see Fig. 1, left panel) as suggested by Glück and Spiel (1997) and Rost
(2004). Additionally, to test the model fit of the final solution (critical ’D 5 %), 500
re-simulations were carried out and the Pearson X2 test-statistic was calculated (see
Langeheine, van de Pol, & Pannekoek 1996); according to the recommendation in
the WINMIRA output, only the p-value of the empirical probability distribution is
reported.

An MRM analysis of the virtual items (wide-format, see Fig. 1, right panel)
in one step was omitted, since it runs into several problems: (a) the number of
estimated parameters gets in misbalance with our sample size (e.g., for two latent
classes almost 500 parameters have to be estimated); (b) the dimensionality of item
parameters could be tested, in particular the interesting question whether the items
at t1 and the items at t2 are homogeneous, but the result would be valid only for this
special split of items (t1 vs. t2). There is no analogue to the MRM for determining
person heterogeneity (where two or more groups (latent classes) are built to achieve
maximum person heterogeneity between classes) for the detection of maximum item
heterogeneity (Rost 2004).

Following Wetzel et al. (2013), a constrained PCM is also estimated where the
item locations are fixed to be equal across classes. The constrained PCM delivers
homogeneous latent classes which only differ in the distribution of the threshold
parameters (Wetzel et al. 2013) that is in response style. Consequently, the authors
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compare the unconstrained PCM with the constrained PCM and use only those
subscales for which the constrained PCM (i.e., ensuring trait homogeneity between
the latent classes) shows a better fit in BIC and CAIC than the unconstrained PCM.

Results

Mixed PCM Estimated Separately for the Two Time Points

The likelihood, number of parameters, and the information criteria for the PCM and
the two-class and the three-class solution are displayed in Table 1. For the admission
data, there is a clear minimum in BIC and CAIC for the solution with two latent
classes (Modelfit2Class: empirical p D .046). The first class consists of 64.3 % of the
individuals, and the thresholds (see Fig. 2) suggest that this class prefers to use the
middle categories. The estimated thresholds for the second class (35.7 %) are closer
together; that is, it is more difficult for them to “leave” category zero and also not
very difficult to endorse the highest category: they prefer the extreme categories.
Item 9 (suicidal thoughts) has a high threshold in both classes, because acute
suicidality is an exclusion criteria in a psychosomatic clinic and thus, the frequencies

Table 1 Model fit for the PCM at admission, at discharge (both estimated separately), and
for the virtual sample (long format)

Partial credit
models Log-Lik.

# of
parameters BIC CAIC Reliability Class sizes (%)

Admission

1-RM �26,227.83 125 53,338.1 53,463.1 .91 100
2-RM �25,640.07 249 53,038.0 53,287.0 .91/.92 64/36
3-RM �25,344.08 373 53,321.4 53,694.4 .89/.92/.90 43/32/25
2-RM constr. �25,803.55 228 53,216.7 53,444.7 .90/.90 61/39
Discharge

1-RM �17,714.72 125 36,311.9 36,436.9 .84 100
2-RM �17,261.26 249 36,280.4 36,529.4 .73/.87 63/37
2-RM constr. �17,335.96 228 36,281.5 36,509.5 .75/.87 64/36
Long format

1-RM �45,483.88 125 91,936.9 92,061.9 .90 100
2-RM �44,153.86 249 90,238.2 90,487.2 .90/.78 54/46
3-RM �43,496.61 373 89,885.0 90,258.0 .77/.90/.91 41/38/21
4-RMa

3-RM constr. �44,015.01 331 90,596.2 90,927.2 .90/.72/.89 41/33/26

Note. constr. D constrained, i.e., item locations set equal across classes
aSeveral attempts to estimate a four-class solution resulted always in non-convergent solutions
and the fourth class consists of almost no person (class sizes <0.1 %); the other classes remain
the same
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Fig. 2 Threshold parameters and item locations for the unconstrained PCM with two latent classes
for the admission data (upper part: class 1 (MRS), lower part: class 2 (ERS))

for the category 3 are low. The average class membership probabilities indicate good
separation in assignment of the individuals to the classes (.935 for class 1 and .907
for class 2).

For the discharge data, the BIC still favours a two-class solution (Modelfit2Class:
empirical p D .032), while the CAIC suggests a solution with only one class
(Modelfit1Class: empirical p D .008). Since the BIC is usually used as a decision
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criterion and also the model-fit statistics favour the 2-RM solution, we selected
the PCM with two classes. The class sizes are quite similar (63.2 and 36.7 %)
compared to the admission data and also the patterns of the thresholds, indicating
a class with tendency to the middle categories (class 1) and a class with tendency
to the extreme categories (class 2), although the range of the thresholds increased.
Concerning average class membership probabilities, the values are even better than
those of the admission data (.944 for class 1 and .924 for class 2).

The constrained PCMs reveal differential results: for the admission data, the fit of
the constrained PCM with two latent classes is worse than the unconstrained 2-RM,
indicating additional heterogeneity; for the discharge data, the constrained and the
unconstrained PCM with two latent classes are similar in model fit, especially in the
BIC, indicating no additional heterogeneity.

The mean BDI-II scores at t1 are different for the two classes (t D �5.00,
df D 623.5, p < .001; Cohen’s d D 0.32), with class 1 (MRS) having a mean score
of 20.2 (SD D 9.0) and class 2 (ERS) having 23.7 (SD D 12.8). At discharge, the
difference is larger (t D �23.7, df D 526.6, p < .001; Cohen’s d D 1.57). Class 1
(MRS) has a low mean value of 5.3 (SD D 4.2), whereas the ERS class has a mean
value of 16.0 (SD D 8.7).

Mixed PCM Estimated for the Virtual Sample

To assess possible qualitative change of response styles across the two time points
we applied the MRM on the long format of data. The lower part of Table 1 contains
also the indices for the PCM when applied to the virtual sample (long-format,
left panel of Fig. 1). Both information criteria, BIC and CAIC, favor a three-class
solution (Modelfit3Class: p D 0.03). Inspection of the threshold parameters indicates
that the largest class has many unordered thresholds; this class has also a mean raw
score of 6.7 (SD D 5.7). The other two classes can be interpreted as before: class 2
seems to have a tendency to the middle categories (MRS), and class 3 prefers the
extreme values (ERS). The mean class membership probability is sufficient to good
with .939, .905, and .892, respectively.

Stability of Class Membership in the Virtual Sample

The members of class 1 show high stability, most of them (93.9 %) stay in the class
1 (see, Table 2). This class, however, is characterized by many unordered thresholds,
and inspection of the mean BDI-II scores for this class revealed a low mean value
(6.7) suggesting that the higher categories of the BDI-II items are rarely endorsed.
Separating the mean BDI-II values for admission and discharge, this class has a
mean sum score of 8.7 (SD D 6.1) at admission and of 4.8 (SD D 3.5) at discharge;
that is, this class contains patients with low depression values at admission and even
lower ones at discharge.
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Table 2 Cross-classification from t1 to t2 in the long-format MRM with three latent classes

Class assignment at discharge (t2)
Class assignment at admission (t1) Class 1 Class 2 Class 3 Total

Class 1 124 (93.9 %) 7 (5.3 %) 1 (0.8 %) 132 (100 %)
Class 2 510 (72.8 %) 148 (21.1 %) 43 (6.1 %) 701 (100 %)
Class 3 207 (62.5 %) 43 (13.0 %) 81 (24.5 %) 331 (100 %)
Total 841 (72.3 %) 198 (17.0 %) 125 (10.7 %) 1164 (100 %)

Note. Class assignments are given as frequencies and percentages

The majority of patients who are in the response style classes 2 or 3 at admission
also move to class 1 at discharge (72.8 or 62.5 %). Obviously, class 1 consists of
the much improved patients, but improvement is also remarkable in the other two
classes: class 2 has a mean sum score of 21.0 (SD D 8.6) at admission and of 8.4
(SD D 7.3) at discharge; the values for class 3 are 27.3 (SD D 11.1) at admission and
12.4 (SD D 9.6) at discharge. Aside from that trend into the low symptom class 1,
there is a clear preference to stay in class 2 or in class 3 and not to switch to the
respective other response style class. The odds ratio for these four cells (“22,” “23,”
“32,” “33”) is 6.48 (95 %-CI: 3.92–10.7).

Associations Between Latent Classes and Gender and Age

The cross-classification of gender and the assigned three classes for the long-format
gives no significant association, neither at t1 (�2 D 0.88, df D 2, n.s.) nor at t2
(�2 D 1.93, df D 2, n.s.). The same is true for the separate analysis of t1 (�2 D 2.53,
df D 1, n.s.); there is an association for t2 (�2 D 5.24, df D 1, p D .022) with female
patients being underrepresented in class 1 (MRS; 62.3 % vs. 69.0 % in class 2
(ERS)), but effect size is low (˚ D .067).

Concerning age, there are significant mean differences between the three classes
assigned by the long-format analysis (F(2,1161)D 14.0, p < .001; eta2 D .024; mean
values are 43.9, 46.6 and 43.0 years for the three classes). For the separate analysis
of t1, there is a significant difference in age as well (t D 5.44, df D 1162, p < .001;
Cohen’s d D .34). Class 1 (MRS) is slightly older with a mean value of 46.5 years
(SD D 10.4) than the ERS class which has a mean value of 42.9 years (SD D 11.0).

Associations to Diagnostic Subgroups

The proportion of MRS and ERS at admission is not evenly distributed across
diagnostic subgroups (see Table 3). There is preponderance for ERS in individuals
with personality disorders, eating disorders, PTSD, and substance-related disorders.
Patients with depression are the only group which are overrepresented in the MRS
class. The remaining diagnostic subgroups (anxiety, somatoform disorders) are
about uniformly distributed.
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Table 3 Distribution of response style classes for diagnostic subgroups at admission

95 % CI
Diagnosis
(ICD chapter)

Total frequency
and percentage

Percentage in
class 1 (MRS) and
class 2 (ERS) Odds ratio Lower Upper

F1 (substance-related
disorders)

N D 254 (21.8 %) 18.9 % 27.3 % 1.62 1.22 2.15

F3 (depression) N D 1001 (86.0 %) 87.9 % 82.5 % 0.65 0.47 0.91
F4 (anxiety) N D 226 (19.4 %) 18.9 % 20.4 % 1.11 0.82 1.50
F4 (PTSD) N D 218 (18.7 %) 15.7 % 24.4 % 1.73 1.28 2.34
F4 (somatoform
disorders)

N D 177 (15.2 %) 16.0 % 13.8 % 0.84 0.60 1.19

F5 (eating disorders) N D 212 (18.2 %) 15.0 % 24.1 % 1.80 1.33 2.43
F6 (personality
disorders)

N D 211 (18.1 %) 12.7 % 28.3 % 2.73 2.01 3.69

Discussion

The current study examined the existence and the stability of the MRS and the ERS
response styles with an IRT based approach. For this purpose the mixed PCM was
used which combines the Rasch model with latent class analysis. Usually this model
is used for the assessment of latent classes in which the Rasch model holds for the
data. There are also studies in which the model is used for the assessment of different
response styles. There are also applications testing the consistency across several
traits and in longitudinal studies, but not for the assessment of response styles across
time. Furthermore, our study is more complex than a simple longitudinal study, since
we examined response styles in the clinical context in which mentally ill individuals
received clinical intervention between the measurement points. For this purpose we
used the BDI-II, a questionnaire to assess the severity of depression. For the decision
on the number of latent classes, a bootstrap analysis of model fit showed always low
fit values and was not very helpful; thus, this decision was based on information
criteria.

The application of the mixed PCM shows interesting results for the BDI-II.
The main results can be summarized as follows: For the separate analysis of the
admission data (t1), a distinction into two latent classes could be found. The classes
could be interpreted as MRS and ERS. Thus, the response styles ERS and MRS
that have repeatedly been found in personality and achievement tests could also be
replicated with a self-report questionnaire in depression research. The constrained
model fitted worse than the unconstrained model; that is, there might be some
additional heterogeneity between classes beyond the response style alone (although
the differences in mean BDI-II sum score are small).

For the discharge data (t2), the separation into two latent classes indicating
MRS and ERS was questionable. Furthermore, the response style classes seem
to be highly confounded with depression severity when comparing the mean sum
scores of the two classes. The comparison of the fit of the constrained and the
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unconstrained mixed PCM with two classes, however, shows minimal differences;
that is, homogeneity can be assumed. In sum, it might be concluded that the model
with two classes is probably not necessary and the PCM holds for the discharge
data, supporting the finding of Keller (2012) where the PCM showed the best fit in
the sample of healthy individuals.

The analysis with the long-format data yields three classes, where one class
contains the patients with low depression values and the other two can, again,
be described as MRS and ERS. The low symptom class 1 is the largest class at
discharge because most of them stay within this class and the major part of the
patients in the initial classes 2 and 3 move to the class 1. Within the classes 2 and 3,
there is a pronounced stability to stay, i.e., to remain in the same response style.
Although additional heterogeneity has to be assumed (the constrained PCM fits
worse than the unconstrained PCM with three latent classes), we may take this as a
confirmation of the stability of the ERS and MRS response styles over time, as has
been found before by Weijters et al. (2010) with a quite different methodological
approach (the authors used a second order factor model in which they specified
time-invariant and time-specific response style factors based on a coding scheme
for weighting the item categories).

There are no significant relations between response style classes and gender
except for the separate analysis at discharge, but effect size is low and we may
conclude that gender is not related to response style to a relevant degree. However,
the small effect would be in line with Weijters et al. (2010) who found that female
respondents showed significantly higher levels of ERS. In contrast, Khorramdel and
von Davier (2014) found no significant gender differences with regard to ERS and
MRS, but their sample of students was relatively homogeneous in age and education.

The difference in age between response style classes was significant, but small
in effect size and seems therefore also to be negligible. The uneven distribution in
several diagnostic subgroups is an interesting result, but due to the lack of previous
findings in the literature, interpretations derived only from clinical impressions may
be currently too speculative before replication of these differences.

The emergence of response styles at admission and in the combined sample
(long format) has implications for clinical treatment as well as for the evaluation of
treatment. For treatment assignment based on the admission BDI-II score, consider
a patient with a sum score of 20 which is a commonly used inclusion criterion for
depression treatment studies (and may be used also in assigning treatment modules
in a psychiatric/psychosomatic clinic). The corresponding person parameter in the
PCM would be �0.78; with the additional knowledge of the response style of an
individual as provided by the mixed Rasch model, the individual in the ERS class
would receive a person parameter of �0.97, while the individual assigned to the
MRS class would receive a value of �0.69. For a sum score of 14 (D cutoff for mild
depression), the difference would be even larger: �1.69 for the ERS class and �1.13
for the MRS class.

In extension to this cross-sectional differential assignment of patients, one is
usually interested in whether a patient has significantly improved during the stay
in a clinic/from a treatment approach. One of the most popular approaches is the
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Reliable Change Index (RCI—Jacobson & Truax 1991) that is based on classical test
theory. Brouwer, Meijer, and Zevalkink (2013b) compare the RCI with an IRT-based
change index. For a majority of cases the IRT-based statistic resulted in a similar
conclusion as compared to the use of the RCI, but for some patients within the
range of lower or higher change scores, IRT provided a more accurate tool (Brouwer
et al. 2013b). The addition of response style information may further improve the
classification into improved vs. unchanged patients (or deteriorated patients).

Currently, however, our MRM results are explorative and need to be replicated
in other samples. Furthermore, other IRT-related methodological possibilities for
the assessment of response styles could be examined. Multi-process IRT models
have been developed and applied to decompose observed rating data into multiple
response processes (Khorramdel & von Davier 2014; Plieninger & Meiser 2014).
Wetzel et al. (2013) suggest conceiving response styles as their own dimension in a
multidimensional model (e.g., the multidimensional random coefficient multinomial
logit model by Adams, Wilson, & Wang 1997). For the purpose of measuring
change, e.g., the evaluation of improvement of an individual during therapy, these
multidimensional models seem a promising way to answer such research questions
in longitudinal designs, and will be assessed in further studies.
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Studying Behavioral Change: Growth Analysis
via Multidimensional Scaling Model

Cody Ding

Abstract In recent years, statistical methods for latent growth modeling have been
commonly used in educational and psychological research. The purpose of this
chapter is to illustrate growth modeling of change in pattern using multidimensional
scaling (MDS) in the context of growth mixture modeling (GMM). We discuss
how MDS growth pattern analysis may differ with respect to modeling changes
in level, as commonly done with GMM, given that they have similarities in terms of
model estimation, latent group identification, classification of individuals, and the
interpretation of growth trajectory. We discuss the MDS growth pattern analysis in
particular since it is less known. Using two simulated data sets as well as actual data
from the Early Childhood Longitudinal Study of the Kindergarten Class of 1998–99
(ECLS-K) study, we demonstrate differences in growth pattern vs. level. It is our
goal to provide researchers with a better idea of what MDS growth pattern analysis
can accomplish, which may provide them with the knowledge to appropriately
utilize this type of analysis in their own research.

Studying change processes has been an area of interest in education and the
behavioral sciences for a long time. Researchers and practitioners in the behavioral
sciences are concerned with questions about how individuals change over time
(Willett & Sayer, 1994; Williamson, Appelbaum, & Epanchin, 1991). In recent
years the number of models utilized to address questions of this kind has increased
substantially (e.g., Collins & Horn, 1991; Aber & McArdle, 1991). Given the
importance of studying change, the purpose of this chapter is to illustrate and discuss
how growth patterns are modeled via multidimensional scaling (MDS) growth
analysis in the framework of commonly used growth mixture modeling (GMM). We
first briefly discuss GMM since this method is well known among researchers. Then
MDS analysis of growth is discussed in the same context. The example data are
used to illustrate the MDS approach so that developmental researchers can employ
the relevant method in their own research.
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Growth Mixture Modeling

One particular kind of latent growth curve modeling1 receiving more attention in
recent years is GMM, the analysis of which can be conducted using a structural
equation modeling approach (e.g., Boscardin, Muthén, Francis, & Baker 2008;
Hallquist & Lenzenweger 2012; Muthen 1989 2001; Nagin 1999). It is beyond
the scope of this chapter to introduce the details of GMM. Those unfamiliar with
GMM may wish to consult Jung and Wickrama (2008) or Ram and Grimm (2009)
for a good introduction. Suffice it to say here, GMM is an extension of single-
population latent growth models, combining latent class analysis and latent growth
curve modeling into one coherent modeling system. It is particularly useful when
the subpopulation is unobserved or unknown a priori and is designed to identify
and describe qualitatively distinct classes of cases with respect to change in level,
allowing different growth parameters across the classes. As such, it can be employed
to test the hypotheses of (a) whether there are different growth trajectories actually
present in the population and (b) if they exist, whether the trajectories are defined
by different initial growth status (i.e., initial level) as well as later growth rates in
level. Ram and Grimm (2009) specify GMM model as follows:

yit D † Œ ic .f0icœ0ct C f1icœ1ct C eict/� (1)

where yit is an individual’s score y at time t. f0ic and f1ic are latent growth
factors that represent intercept (i.e., initial score) and slope (i.e., growth shape)
of latent class c to which individual i belongs. œ0ct and œ1ct are factor loadings
corresponding to the two growth factors. eict is a time-specific residual.  ic is the
probability that individual i belongs to latent class c, with 0 � ic � 1, and† ic D 1.
Estimated posterior probabilities for each individual’s class membership are derived
as  ic D p(kic D 1jyi), with the latent class membership indicators, kic, being 1 if
individual i belongs to class c, and 0 otherwise. The objective of GMM is (1) to
represent across-class differences in the initial score and the growth shape, (2) to
determine the means of growth factors, and (3) to establish variance and covariance
of the growth factors.

As indicated by Jung and Wickrama (2008), there are three main areas of GMM
that attract much of the current debates: (1) identification of latent classes, (2) which
model fit index to use, and (3) the problem of convergence. The first two issues are
not unique to GMM since many other modeling methods encounter the same issues.
In this regard, good research should focus on questions that prompt the development
of theories and hypotheses. We need to judge the models by whether they conform
to our theories. The third issue is more challenging since the computational load of
GMM estimation is very heavy and mathematically modeling a sample distribution

1As indicated by Ram and Grimm (2009), latent growth modeling is a generic term that include
various similar growth modeling approaches, such as latent trajectory analysis, latent curve
modeling, mixed effects models of change, and multilevel models of change.
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that consists of a mixture of many different kinds of sub-distributions is extremely
difficult (Jung & Wickrama 2008). As a result, some models are less stable or
difficult to estimate. Therefore, Wang and Bodner (2007) recommend using GMM
in a confirmatory manner, although the model may undergo many modifications.

Growth Mixture Modeling via MDS

Different from GMM using a SEM approach, multidimensional scaling growth
pattern analysis is an exploratory and data visualization method that focuses on
modeling change in pattern only, with level being removed. This is the chief
difference between the two approaches. That is, a key distinction between GMM
and MDS is that MDS does not accommodate level differences, while GMM can be
used with a random intercept factor within-class to account for level differences with
differences in shape being accommodated through class level differences. Although
MDS analysis has the same objective as GMM, its methodological foundation is a
geometric or spatial representation of relationships among repeated measures. Using
MDS for identifying growth trajectories in latent pattern has been discussed in a
series of papers by Ding, Davison, and colleagues (Davison et al. 1995; Davison,
Gasser, & Ding 1996; Davison, Kuang, & Kim 1999; Ding 2005 2007a 2007b;
Ding, Davison, & Petersen 2005). Briefly, a dimension from MDS-GM represents
changes in pattern when the variable under study is repeated across time. In other
words, in MDS models, each dimension k represents a growth curve, or an exemplar
of a particular arrangement of scores of different time points, called a prototypical
growth pattern or latent growth profile. This growth curve is quantified by a set of
scale value estimates xkt from the Euclidean distance model in MDS analysis. In a
sense, this set of scale value estimates can be considered a set of polynomial contrast
coefficients, which can be used for hypothesis testing in a subsequent analysis.

Technically, the MDS growth pattern model can be represented as

yit D ci C
X

k
wikxkt C ©it (2)

where yit is the observed score for individual i at time t. xkt is a scale value, as
described previously. ci is a level parameter or initial score for person i if the average
scale value is centered on the first time of measurement. "it is an error term for
person i at time t. wik represents the individual’s profile match index that quantifies
the degree to which an individual manifests the identified growth profile. First,
MDS analysis involves estimating scale values from a distance matrix computed
for every pair of time points, ti and tiC1. The distance data for time points ti and tiC1

is the difference between the scores yi at times ti and tiC1 for person i. The distance
measure, dtt0 , can be computed from observed responses at time pairs across all
individuals:
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Fig. 1 Distance as representation of growth rates for different time intervals

xkt ! dtt’ D
rX

i

�
yit � yit’

	2
(3)

For each dimension, a plot of the scale values along the vertical axis against the
time points along the horizontal axis shows the pattern of growth. Without loss of
generality of the solution, the scale values along the dimension are centered in such
a way that the mean scale value is equal to zero or some value that has substantive
interpretation. Figure 1 illustrates the concept of distance as a representation of
growth rates, as indicated by the scale values. In Fig. 1, a set of six time points
is plotted along one dimension.2 The differences between scale values of adjacent
time points indicates the change (i.e., slope) for a given time interval. As can be
seen in the figure, little or no growth occurs from time 1 to time 2 (slope1 D 0.05),
but a large change is observed from time 3 to time 4 (slope3 D �2.27). It should be
noted that although the interval must be the same for each individual, time intervals
do not need to be equally spaced because growth rate is the slope for each particular
interval. If the time unit between time 1 and time 2 is 3 months but the time unit
between time 3 and time 4 is 1 year, then slope1 indicates growth for the 3 months
and slope2 is the growth for 1 year.

2In MDS, dimensions are defined as a set of m directed axes that are orthogonal to each other in a
geometric space. In the applied context, dimensions may be viewed as underlying representations
of how the points may form certain groupings, which would meaningfully explain the data.
This concept is similar to latent classes or factors in mixture modeling. Distance is defined as
distribution of points along k dimension among pairs of objects (e.g., time points) in a plane that
shows changes.
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Based on the information provided by wik in Eq. (2), individuals are then
classified into each growth dimension by using posteriori profile probability (Ding
2007b). For each individual i, the probability of profile membership in profile k can
be calculated as follows:

pi.kjwik/ D pi.wikjk/�iX
pi.wikjk/�

i

(4)

where pi(kjwik) is the estimated probability of observed individual i belonging
to profile k, given the individual’s profile match index wik in Eq. (2), and  i

is the estimated proportion of profile variance among the total variance in the
observed profiles for a given individual. The quantity pi(wikjk) is the probability
of observing wik for a given profile k. In a sense, the probability pi(kjwik) can be
viewed as an approximation of the posterior probability of profile membership. The
posteriori profile probability is calculated after estimation of the growth pattern.
The resulting profile type can then be used in subsequent analyses. For example, we
could investigate the relationships between growth profile type and covariates under
inquiry.

To adapt the model for studying growth or change, the origin of the scale values
needs to be “centered” appropriately. Because Euclidean distances are invariant
with respect to choice of an origin, in MDS analyses based on distance models,
the fit of the model to the distance data is invariant with respect to a translation
of origin. Therefore, once an initial MDS solution is obtained, the zero point on
each dimension can be reset in one of several ways, depending on the desired
interpretation of the level parameter. The particular way of “centering” the origin
of scale values along each dimension determines whether the model is a growth
model or a change model.

If growth along the time dimension is to be studied, the MDS growth profile
model can be created by centering the dimension zero point in a way that is
meaningful for growth curve analysis. Given the importance of initial level in the
literature on growth, the zero point can be set to correspond with the scale value at
the first time period (i.e., xk(1) D 0 for all k), then scale values will indicate growth
rates for different time intervals. The intercept, ci, becomes the expected score under
the model for person i at the initial time t D 1. That is, in Eq. (2), if xk(1) D 0 for every
k, then the model predicted data point at time 1 for person i, yi(1)

0 D ci C†k wik xk(1)

reduces to yi(1)
0 D ci, and the intercept corresponds to initial level.3

On the other hand, if the data involve change, the abovementioned method
of centering would be inappropriate since a change pattern does not follow a

3The issue of setting the origin for each dimension in the PAMS model corresponds to the
“centering” issue in multiple regression. That is, just as the interpretation of the intercept
parameter in multiple regression changes depending on how the predictor variables are centered,
the interpretation of the intercept parameter in latent growth curve models changes depending on
placement of the zero point along each growth dimension.
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monotonic (at least implicitly) trajectory as does a growth curve, especially when
change patterns are multidimensional. To adapt the model for this type of data, the
zero point of scale values on each dimension is set equal to the mean scale value
along that dimension; that is, 0 D (1/T)†txk(t) for all k. If the zero point on each
dimension is so defined, then scale values will indicate change patterns over time,
and the intercept, ci, becomes the average score of person i over the several time
periods; that is, ci D (1/T)†tyi(t). In the example below, adolescent mood change
data will be used to illustrate MDS change profile analysis.

MDS growth pattern analysis to modeling growth mixture, as we described
above, has three main aspects that differ from commonly discussed GMM. First,
the estimation of growth pattern or profile, as indicated by scale values, and the
number of growth classes (i.e., growth profile type), as indicated by the number of
dimensions, are different. For GMM, latent class analysis model is first used for
classification of individuals and a latent class indicator variable is computed. The
growth model is then estimated using this information (e.g., Asparouhov & Muthén
2012; Vermunt 2010). MDS growth pattern analysis takes the reverse approach,
first identifying the typical growth patterns or profiles and then determining how
much each individual resembles a given growth pattern or profile. However both
approaches can be subject to classification error.

One practical implication of this difference is that the model building process for
MDS growth pattern analysis is easier to implement as one only needs to specify
a set of 1 to k dimensional solutions and choose a k dimensional solution that best
approximates the data. The measure for model selection is Stress value (Kruskal
1964) or R2, an index of the proportion of variance in observed growth profiles
accounted for by the model. There is no need to specify a series of models with
respect to growth trajectory and number of classes, as recommended by Muthén
and Muthén (2001) and Ram and Grimm (2009) for GMM analysis.

Second, and more importantly, MDS growth pattern analysis typically models
change in patterns rather than in levels that mirror the observed trajectories. This
is because the growth profiles of MDS solutions have a mean of zero and are
represented as deviations about the growth profile’s mean of zero. Positive growth
profile scale values signify scores above the growth profile’s mean; negative scale
values signify scores below the growth profile’s mean. Thus, the MDS solutions
display the patterning of scores in a prototypical growth profile but do not display
elevation or level information (Davison et al. 1996). In most GMM analysis, growth
trajectory is typically represented by a regression model, either linear or nonlinear,
which indicates the change in level. This is a key difference between the two
approaches as discussed previously. One implication of this distinction is that
MDS and GMM analysis may result in a different number of growth classes/types.
Specifically, when change in pattern displays the same information as the level,
two approaches reach the similar findings. But if there are fewer changes in pattern
than in level, then MDS growth pattern analysis may results in a fewer growth
classes/types than those from GMM analysis.

Two examples are used to illustrate the above point. In the first example, we
simulate a dataset of two latent classes that have one growth pattern but with
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Fig. 2 An example of observed growth trajectories of 50 individuals randomly selected from the
first simulated data with two latent classes but one growth pattern

differences in growth levels. That is, with one overall growth pattern (an increased
trend), the individuals in each latent class may differ in level with respect to the
growth trend, with some individuals having a higher growth level and some having
a lower growth level. Figure 2 shows observed growth trajectories of 50 individuals
randomly selected from this first simulated dataset. Figure 3 shows the estimated
latent trajectory from MDS growth pattern analysis and Fig. 4 shows the estimated
latent trajectories from GMM analysis. As can be seen from Fig. 3, the growth
trajectory from MDS growth pattern analysis reflects the observed overall patterns
with differences in mean or level removed. Thus, one growth profile is estimated to
represent the prototypical growth pattern in the observed trends. On the other hand,
the growth trajectories in Fig. 4 from GMM analysis indicate two growth classes,
which can be expressed as

class 1 W byit D 1:24C 1:68time C 0:74time2

class 2 W byit D 1:10C 1:67time C 0:03time2

These two classes mainly differ with respect to mean level, although class 1 seems
to have a faster growth acceleration.

In the second example, we simulate a dataset that has two latent classes, each
with its own growth pattern—one is linear and another is quadratic. Accordingly, the
grow trajectory differs not only in terms of level but also in terms of growth pattern.
Figure 5 shows observed growth trajectories of 50 individuals randomly selected
from this second simulated dataset. Figure 6 shows the estimated latent trajectory
from MDS growth pattern analysis. Figure 7 shows the estimated latent trajectories
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Fig. 3 Estimated growth pattern from MDS growth analysis based on the first simulated data

Fig. 4 Estimated mean growth trajectory of GMM analysis based on the first simulated data

from GMM analysis. As can be seen from Fig. 6, two MDS growth patterns reflect
the observed growth patterns with differences in mean removed. That is, two growth
profiles are estimated to indicate the prototypical growth patterns in the observed
trends. Similarly, the growth trajectories in Fig. 7 from GMM analysis also indicate
two growth classes, which can be expressed as

class 1 W byit D 0:96C 0:56time C 0:48time2

class 2 W byit D 2:29C 3:69time � 1:28time2
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Fig. 5 Observed growth trajectories of 50 individuals randomly selected from the second simu-
lated data with two classes, each with its own growth pattern (one is linear and another is quadratic)
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Fig. 6 Estimated growth pattern from MDS growth analysis based on the second simulated data

Thus, the key point is that both analytic approaches are correct in depicting the
growth trends, but in a different way. One practical implication of this difference
is that the growth trajectory from these two analytic approaches may manifest a
different pattern as can be seen here, depending on the degree to which the observed
patterns coincide with the level.
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Fig. 7 Estimated mean growth trajectory of GMM analysis based on the second simulated data

Third, GMM and MDS differ with respect to distributional assumption, missing
data, and incorporation of sampling weights. GMM requires assumption of normal
distribution and can incorporate sampling weights and missing data in the estimation
of growth patterns. The MDS approach does not require distributional assumption,
nor does it incorporate sampling weights and missing data into the estimation of
growth patterns. The practical implication of this difference is that we need to use
either list-wise deletion for handling missing values or missing value estimation
and imputation in MDS growth pattern analysis. Sampling weights may not have
any effects on estimation of scale values.

In the following sections, using empirical data of mathematic achievement for
children in the US we demonstrate the growth modeling of growth pattern using
MDS analysis.

MDS Analysis of Math Growth

In this section, we examined mathematic achievement among children from the
Early Childhood Longitudinal Study, Kindergarten Class of 1998–99 (ECLS-K)
study, which was following a nationally representative cohort of children from
kindergarten and into the later grades (Denton, West, & Walston 2003; Princiotta,
Flanagan, & Germino Hausken 2006). Details of the discussion of ECLS-K can be
found in the references provided.

The present illustration examined two research issues. First, were there any dis-
tinct growth patterns of mathematic achievement across four waves of assessments?
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Past work suggests that student reading performance tended to vary as a function of
latent groups identified in the data (Ding & Navarro 2004; Friedman 1989). Second,
would children with low parental educational level to be more likely than other
children to belong to the group(s) that maintained the most negative mathematic
achievement across time? This outcome would be consistent with findings that
children with a low initial level of mathematic skills remained at the low level of
mathematic skills (Ding & Davison 2005).

Data source. For this chapter, we analyzed the mathematic achievement of 9549
children with the complete data across the four waves of the ECLS-K data which
were collected when they were in kindergarten (fall-1998 and spring-1999), during
first grade (fall-2000 and spring-2001), during third grade (spring-2002), and during
fifth grade (spring-2004). Among these children, 49 % were males and 51 % were
females; 63 % were White, 12 % were Black, 13 % were Hispanic, 9 % were Asian,
and 3 % were multi-race. Only 6 % of children had IEPs. Parents’ education level
included 21 % high school, 35 % some college, 25 % college, 11 % master, and 7 %
doctoral degree.

Measure. The measures used for this illustration included a mathematic assess-
ment, which contains items that assess basic skills such as counting, shapes,
addition, fractions, area, and volume. Scale scores derived from item response
theory (IRT) were used for the growth analysis. The score ranged from 7.89 to
150.94. Gender and parental educational level of children were used as covariates.
For parental educational level, the score was coded from 1 (high school) to 4
(professional).

Analysis. We analyzed the data with MDS growth analysis. In order to make
some comparison, we also analyzed the same data with GMM using SEM approach.
The MDS growth pattern analysis was performed using SAS (SAS Institute Inc
2011) according to procedures described previously. The GMM analysis was
performed using Mplus 7.0 (Muthen & Muthen 1998–2007). In both analyses, we
used a two-stage approach to see if a two-stage GMM model could have increased
the similarity of its solution to the MDS growth pattern analysis. Thus, we first
performed a one- to three-class mixture model without any covariate. As suggested
by Muthén and Muthén (2001), deciding on the number of trajectory classes was
based on (1) an inspection of the Bayesian Information Criterion (BIC) and (2) the
posterior probability of being assigned to a particular class, as well as the utility
of the number of classes with respect to substantive considerations such as whether
classes have fairly large numbers of assigned cases. We then followed the analysis
by adding covariates to the selected growth mixture model.

Results. Table 1 shows the mean and standard deviation of IRT math scores
across four data points. Figure 8 shows an increased growth pattern over time based
on 150 children randomly selected from the sample. The MDS growth analysis
was performed with models from one to three dimensions being fit to the data. An
optimal number of dimension was determined using the Stress value and R2. The
Stress value for one-dimensional solution was 0.001 and R2 was 1.00, suggesting
that the model of one growth pattern fit the data well. The subsequent two- to four-
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dimensional solution did not improve the model in any substantive way. Thus one
growth pattern seemed to well approximate the data.

Table 2 shows the growth scale value of the MDS growth analysis. Figure 9
depicts one growth profile corresponding to the one-dimensional solution. As
shown in Fig. 9, the growth pattern profile revealed an overall increased pattern
of achievement over time. Table 3 shows the growth rate in terms of percentage for
each time interval. The growth pattern indicated a pretty steady rate, identifying an
overall linear trend with a slower growth rate from Grade 3 to Grade 5.

The correlation between initial score and the growth rate was 0.23 (p < .05). We
performed the multiple regression analyses using gender and parental education
level as predictors and the growth profile as dependent variable using the SAS
surveyreg procedure, which allowed us to adjust the sample size using the sampling
weight. The results of the analyses indicated that the growth profile was statistically
significantly related to gender (b D �1.30, p < .001) and parental education level
(b D 1.63, p < .001). It seemed that female children had a lower growth rate than
did male children, and an increase in parental education level was related to
the increased growth rate or helped to reduce the negative growth rate in math
achievement.

Table 1 Mean and standard
deviation of IRT mathematic
scores across four waves of
assessment

M (SD)

Kindergarten 23:57.9:01/

Grade 1 58:87.16:66/

Grade 3 93:35.21:21/

Grade 5 114:67.21:06/

Note. Number in parenthesis is
standard deviation

Fig. 8 Observed mathematic growth trajectories of 150 children randomly selected from the
sample
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Table 2 Growth scale values
of one growth pattern
corresponding to the
one-dimensional solution

Dim1

Kindergarten �1:42
Grade 1 0:40

Grade 3 0:61

Grade 5 1:21
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Fig. 9 MDS growth pattern of mathematic achievement

Table 3 Difference in
growth scale value and
percentage of change over
time

Difference in scale values

T2 � T1D 1.02
T3 � T2D 1.01
T4 � T3D 0.60
% of change

T2 � T1D 0.39
T3 � T2D 0.38
T4 � T3D 0.23
Overall average 0.33

Note. T1 D Kindergarten;
T2 D Grade 1; T3 D Grade
3; T4 D Grade 5

In order to see how the results from MDS growth pattern analysis differ from
that of commonly used GMM analysis, we conducted the GMM analysis using the
same data. Given the MDS finding of a linear growth pattern, we conducted a linear
GMM analysis without any covariates. The sampling weight was incorporated into
the analysis. The BIC values for these solutions were 276,671.74 and 273,683.12,
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respectively, suggesting the two-class solution. In addition to the BIC, the posterior
probabilities of classification based on the two-class solution showed good classifi-
cation (.44 and .56 for classes 1 and 2, respectively). The Entropy value was .50 and
.61 for one-class solution and two-class solution, respectively. Thus, it seemed that
the two-class solution approximated the data better than one-class solution and was
used for further analysis.

Next we performed a two-class linear growth model analysis, adding gender and
parent education level as covariates. The sampling weight was also incorporated
into the analysis. Figure 10 shows the estimated growth trajectory, which can be
expressed as

class 1 W byit D 13:84C 16:10 time

class 2 W byit D 23:26C 18:98time

Class 1 had a lower initial score and a significant linear growth rate (p < .01),
indicating an initial low developing group. On the other hand, Class 2 had a higher
initial score and a significant linear growth rate (p < .01), suggesting an initial high
developing group. But both groups had a similar growth rate over time.

For the initial low developing group, the correlation between the initial score
and the linear rate was 0.44 (p < .01), suggesting that children’s initial score
was related to the growth rate. In addition, gender and parental education were
significantly related to linear growth rate. Females had a slower growth rate than
males (b D �0.08, p < .001). The higher parental education level, the growth rate
was faster (b D 0.12, p < .001). For the initial high developing group, the correlation
between the initial score and linear rate was .39 (p < .001), suggesting that children

Fig. 10 Estimated mean growth trajectory of mathematic achievement
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with a higher initial score had higher growth rate. Females also seemed to have a
slower growth rate than males (b D �0.17, p < .001). The parental education level
was also positively related to the growth rate (b D 0.26, p < .001).

Discussion

The purpose of this chapter was to illustrate MDS modeling of change in pattern,
which may differ from change in level using GMM approach. Since the method of
MDS growth pattern analysis is less well known, we discussed some major aspects
of such an approach as well as some of its differences from GMM. Given that
the GMM approach is more common in modeling growth, the significance of the
chapter is that it discusses the MDS-based approach in the context of growth mixture
modeling, showing that the MDS model can be a viable method for growth analysis
that has been exclusively belonging to the realm of SEM technique. Researchers and
practitioners should be aware of the utilities of MDS in modeling growth.

Two simulated datasets were used to illustrate MDS growth pattern analysis in
the context of GMM. In addition, we conducted MDS growth mixture modeling
using IRT scores of mathematic achievement among a group of kindergarteners
from kindergarten to fifth grade. GMM analysis was also performed using the same
data in order to demonstrate the differences in the results. Based on the results of
these analyses, the following points were worth noting. First, the growth pattern
from MDS analysis reflected the observed growth trends in the data with differences
in level removed. When the observed growth mean trajectories did not significantly
differ from patterns, as shown in Figs. 3 and 4, MDS growth pattern analysis seems
to capture that pattern as a prototypical pattern in the data regardless of any mean
differences in these trajectories. In contrast, GMM analysis captures the mean-level
differences in growth trajectory resulting in two growth classes. However, when
growth patterns significantly differ from the growth mean trajectories, MDS growth
pattern analysis reflects these different growth patterns resulting in two growth
profiles. This is similar to those from GMM analysis as shown in Figs. 6 and 7. Thus,
the MDS approach is modeling the patterning of scores without level information
of growth trajectories. With the same goal of identifying latent growth trajectories,
these two approaches focus on different aspects of growth trajectory.

Second, the focus of the MDS analysis on pattern rather than level may account
for differences in number of growth classes/types. Since class membership is
assigned after the growth pattern is identified, there was only one growth class from
MDS analysis. In contrast, GMM analysis takes the reverse approach. The number
of latent classes is estimated first and then the growth trajectory is estimated with
respect to each class, resulting in two growth classes.

Third, one may naturally ask which approach is better or best reflects the reality?
The response can be considered from two angles. First, since GMM approach and
MDS analysis are modeling different aspects of trajectory, we should focus on
what information is more important or relevant to know. Second, as Cudeck and



342 C. Ding

Henly (2003) said, a realistic perspective of data modeling is that there are no true
models to discover, and searching for the true number of latent classes is “pointless
because there is no true number to find” (p. 381). Thus, “the issue of model
misspecification is irrelevant in practical terms. The purpose of a mathematical
model is to summarize data, to formalize the dynamics of a behavioral process, and
to make predictions. All of this is scientifically valuable and can be accomplished
with a carefully developed model, even though the model is false” (p. 378). In this
regard, MDS analysis provides another perspective in understanding the nature of
the change.

Given the previous discussion, one needs to realize that in selecting a growth
modeling method, one should consider the desired information to be obtained from
such an analysis. We hope that this illustration of MDS latent growth modeling
approach can facilitate researchers in better understanding how MDS analysis can
shed light on the growth trajectory of individual behaviors in relation to a GMM
approach. Besides the pedagogical value of the chapter, we also hope that it can
pique the interest of the readers to employ MDS growth analysis in their research.
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A Nonparametric Approach to Modeling
Cross-Section Dependence in Panel Data: Smart
Regions in Germany

Harry Haupt and Joachim Schnurbus

Abstract In addition to intuitively plausible dependence structures in the time
series dimension, in many applications it is reasonable to assume that there
are contagion, spill-over, and repercussion effects among cross-sectional units.
Modeling those structures in the systematic part of a panel regression requires both
information on the underlying sources that drive the dependence and their respective
range. The range allows one to define a neighborhood for each unit, a crucial
concept for common methods in spatial statistics and econometrics. Furthermore,
specification of a parametric regression function requires knowledge of the specific
functional form of the spatial associations. However, lacking information on the
sources usually leads to accepting misspecification and to including spatial error
component or factor structures. As recent research reveals, the consequences
of misspecification in both strategies are troubling in many cases. This paper
proposes a data-driven nonparametric method for determining neighborhood as a
first step. Second step nonparametric panel regressions have several benefits: (i)
they allow one to test for misclassification of cross-sectional units to a wrong
neighborhood in the first step; (ii) estimation is accomplished using data beyond
the respective neighborhood, thus imposing less structure than parametric methods;
(iii) neighborhood/location effects can be directly estimated in analogy to spatial
statistics; (iv) no assumptions on functional form are required. The proposed method
is illustrated with an empirical analysis of spatio-temporal patterns of high-skilled
employees across German regions.

Introduction to Cross-Section Dependence

In economics and statistics the concept of cross-section dependence is often
closely linked to problems of spatial associations—meaning dependence and/or
heterogeneity—structures. This link is established by a plethora of economic
applications where it is reasonable to assume that there are contagion, spill-over,
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and repercussion effects among cross-sectional units representing different locations
(e.g., sites, cities, regions, countries, etc.). A prominent example is the statistical
modeling of prices in urban housing markets, as housing markets are generically
spatial, house price functions are generically nonlinear (due to lumpy provision of
characteristics at location i) and have non-constant higher moments, both driven
by associations between unit i and units i0 resident in the neighborhood Ni (see
Haupt & Ng 2014). Further examples and discussions on statistical modeling of
spatial association can be found among others in the textbooks of Anselin (1988),
Bivand, Pebesma, and Gómez-Rubio (2013), Cressie (1993), Gaetan and Guyon
(2010), LeSage and Pace (2009), Pace and LeSage (2010), and Ripley (1981).

Clearly, cross-sectional dependencies may exist on a more general, not exclu-
sively spatial level. A prominent example are peer group effects influencing
individual behavior of and social interactions between group members when we
study cliques or crowds. Analogous considerations can be applied, for instance, to
clusters or segments in entrepreneurial studies. Hence, in the following sections,
concepts such as area, neighborhood, sites, position, are to be understood in a wider
sense and may or may not refer to a spatial context.

Let us consider a set of neighborhoods N 
 R
k. In a spatial context we

usually have k D 2 and consider spatial processes Yn indexed on a spatial set
N , i.e., n D .longitude; latitude/ 2 N . Referring to the peer group example, k
may be quite large, representing the many characteristics influencing a persons’s
behavior. The k-dimensional space spanned by those characteristics is the analog
to the two-dimensional space spanned by longitude and latitude. Depending on
the application N may be continuous or discrete or mixed continuous-discrete,
and the (vector valued) random process Y D fYn; n 2 N g is observed at m
neighborhoods fn1; : : : ; nmg � N , where these neighborhoods may be random
(e.g., point data sampled on m random cliques or geographical locations, where
m � N), or fixed (e.g., network data sampled on m fixed jurisdictions of a region or
country, where typically m << N). In the following we consider a cross-sectional
unit i, located in neighborhood ni.1 Each neighborhood ni is defined by a distance
between i and every i0 2 ni. The distance between the cross-sectional units i and
i0 characterizes the dependence between the processes Yni and Yni0

. As emphasized
above, such a distance may, for example, refer to geographical, social, or economical
dimensions. Intuitively, as the distance increases (beyond a certain point) we expect
the dependence to decrease (or independence).

More formally, dependence between cross-sectional units i and i0 is present
whenever first or higher moments of the process Yni depend on Yni0

, i0 2 ni, where
ni denotes the neighborhood containing cross-sectional unit i. In the following

1In the context of panel (or longitudinal data) a cross-sectional unit i at time point t is indexed by
it. We consider a (vector valued) random process Y D fYnit gn2N . For the sake of simplicity,
the following considerations refer to a given time period t, as we will not discuss forms of
cross-section dependence varying in the time dimension. However, the proposed non-parametric
approach allows for such cases, for example spatio-temporal processes by simultaneous smoothing
over n D .longitude; latitude; time/.
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discussion we allow for stationary and non-stationary processes in the time dimen-
sion. In the cross-section dimension (Conley 1999) discusses weak conditions for
stationarity and regularity of such processes:

Strict stationarity is present, if the joint distribution of Yn for any collection of
neighborhoods .n1; : : : ; nk/ is invariant to location shifts such as .n1 C h; : : : ;
nk C h/ for all h 2 N . If the mean E.Yn/ is constant for all n and the covariance
Cov.Yni ;Yni0

/ is invariant for all ni; ni0 , that is a function of i � i0 only (w.r.t.
to the respective notion of neighborhood), the process is weakly stationary. If we
assume that only the distance ji�i0j matters, irrespective of direction, we consider
the case of isotropic dependence. The counterpart is anisotropic dependence.
The most important regularity conditions are assumptions on the nature of
cross-sectional dependence. A prominent manifestation of such concepts is m-
dependence: For ji � i0j < m we assume dependence, for ji � i0j 	 m
independence. Most econometric applications are based on such a concept, where
it seems natural to make an a priori assumption about m. Alternatives include
concepts of asymptotic independence for ji � i0j ! 1. Examples are mixing
concepts, requiring only weak a priori assumptions on the mixing coefficients,
while allowing for inference based on well-established results from asymptotic
theory.

In general, neighborhoods can be seen as (usually non-disjoint) subsets of an area
A 
 R

k. The identification of neighborhoods within an area usually follows one of
two approaches:

(i) Subject matter a priori knowledge motivates assumptions on whether a cross-
sectional unit belongs to one or more neighborhoods within a given area. For
example defining neighbors by sharing borders, by belonging to a specific
economic sector or a clique, or by fixing the set of subjects under investigation
in an experiment. All examples require that neighborhoods do not form a disjoint
partition of an area. Statistical modeling in this case usually either includes all
cross-sectional units in one common model (area and neighborhood coincide) or
allows for different sets of parameters across neighborhoods containing subsets
of cross-sectional units. The latter, less restrictive approach allows to test for
common parameters across neighborhoods.

(ii) Data-driven approaches are used, when a priori assumptions as stated above
either cannot be motivated or have a history of not fitting the data in the
applications at hand. Several methods exist for the clustering of cross-sectional
units using suitable indicator variables. The identification of the latter, however,
has a considerable impact on number and nature of neighborhoods and again
requires subject matter knowledge.
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Approach (i) is dominant in the fields of spatial econometrics and in many
applications in spatial statistics.2 Interestingly earlier work such as Conley (1999)
call the neighborhood matrix with elements wij—reflecting whether units i and j
share a neighborhood (or not)—“part of the data.” Such strong beliefs in being able
to pre-specify the complete neighborhood structure for all i are prone to generate
data with misclassified cross-sectional units, and, as a consequence, have been
replaced by a literature (see, for example, Kelejian & Prucha 2010) dealing with
misspecification issues of neighborhood matrices. A problem of clustering methods
in approach (ii) is that clusters in general form disjoint neighborhoods n1; : : : ; nm

and as such a partition of the area A. This can be overcome by allowing some
fuzziness in the outcome, for instance by using misclassification probabilities in
model-based clustering (see Fraley & Raftery 1998; Handcock, Raftery, & Tantrum
2007).

Avoiding some of the problems of approaches (i) and (ii), an alternative two-step
approach is proposed in this paper. The approach does neither rely on any parametric
assumptions about the joint distribution of the underlying random processes nor on
assumptions about both the neighborhood composition and (within-and-between)
association structure. As such both steps are fully non-parametric in nature.
In the first step neighborhoods are identified using a non-parametric approach
allowing for data-driven quantity and composition of neighborhoods. A second-step
non-parametric smoothing method allows one to estimate within- and between-
neighborhood effects. A remedy of the problem that the resulting neighborhoods
again are partitions can be seen in a typical property of nonparametric estimation
method in step two: all cross-sectional units i D 1; : : : ;N are used for estimation at
any local position Y D y0, hence adjacent neighborhoods are allowed to affect each
other in a data-driven fashion.

The remainder of the paper is organized as follows: section “Regressions Under
Cross-Section Dependence” introduces a general panel data regression framework,
discusses some recent contributions to cross-section dependence in panels and
proposes a simple but flexible non-parametric modeling framework. Section “Smart
Regions in Germany” illustrates the proposed method using panel data on German
regions.

Regressions Under Cross-Section Dependence

To start, let .�;F ;P/ be a complete probability space and let fYng, n 2 N , be
an F -measurable scalar random sequence. We consider regression models derived
from the identity Yn D E.Yn/CYn �E.Yn/ where the difference of the last two terms

on the right-hand-side defines the centered error process fUng by Un
defD Yn � E.Yn/

2The respective goals in those two strands of literature may differ significantly as suggested by the
respective discussions of theory and applications in Kauermann, Haupt, and Kaufmann (2012).
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and the mean E.Yn/ is modeled as g.Zn/, where Zn is a vector of explanatory
variables and g.:/ is a fixed function. As we will not make any parametric
assumptions about Un we only consider semi- and nonparametric regression models,
where for the former case g.:/ depends on a finite number of parameters collected in
a vector �0. In particular in the spirit of Andrews (2005), we consider static models
but allow for common (economical, sociological, psychological, technological,
etc.) shocks across the cross-section dimension (i.e., individuals, cliques, networks,
households, firms, industries, regions, etc.): In each time period t the regressors Zn,
the error Un, and thus the response Yn may be affected by common shocks �t that
are captured by sigma-field Ct D �.�t/, where Ct � F .

In the following sections we employ a classical longitudinal regression frame-
work for response Yit with cross-section index i and time index t, regression function
g.Zit/, and additive error components Uit: For 1 � i � N, 1 � t � T let

Yit D g.Zit/C Uit; (1)

and (time series as well as) cross-section associations (dependence, heterogeneity)
may exist: (first or higher) moments of the response Yit may depend on Yi0t, i0 2 Ni.
In a general setting, the covariates may include contemporary and past values of
exogenous variables, Xit;Xit�1;Xit�2; : : :, and Yi0 t, for all i0 2 Ni. All examples
discussed in the following refer to sampling from fixed neighborhoods, such as
jurisdictions.

Written in the usual compact notation, the equations in (1) can be written as
Y D g.Z/C U. In a spatial context, g.Z/may be a simple function of longitude and
latitude, for example linear in parameters �0, i.e., g.Z/ D Z0�0. For a sampling
scheme based on fixed coordinates as in the example studied in section “Smart
Regions in Germany”, Z is a non-random vector and Var.Y/ D Var.U/ D †, where
the latter is a non-scalar covariance matrix due to potential spatial associations.
Many texts in econometrics then discuss the ordinary least squares (OLS) estimator
O� of �0 and its alleged property to be unbiased though it neglects the true structure
of the covariance matrix. As Spanos (1986) convincingly argues this belief is ill-
founded, the respective regression is misspecified as it does not reflect the spatial
associations in the systematic part of the regression, and hence the OLS estimator is
biased and inconsistent (except for some very specific special cases).

The insights of Spanos (1986) on static versus dynamic regression modeling in
the time-series context suggest the following on more general grounds: Whenever
cross-sectional (and time-series) dependence is present in model (1), an encompass-
ing model must be in the form of a (nonlinear) stochastic difference equation

Yit D h.Yi0t;Xit;Xit�1;Xit�2; : : : ;Uit;Uit�1;Uit�2; : : : ;Ui0 t;Ui0t�1;Ui0t�2; : : :/;

where both the homogeneous and the inhomogeneous parts must allow for potential
cross-sectional association structures. As a consequence, any approach neglecting
such structures, misspecifying h.:/ or the covariance structure is prone to be biased
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and inconsistent and suffers from unreliable estimates of precision, and as such from
non-interpretability of (economically, psychologically, sociologically, etc.) relevant
model parameters or effects.

The next section discusses some existing approaches to identifying the (poten-
tially interrelated) sources of associations between i and i0, i0 2 Ni. For example,

Quality proximity: (construction, political, etc.) era, (urban, cultural, etc.) devel-
opment history,
Locational proximity: spatial distribution of (dis)-amenities,
Physical proximity (to jobs, virtual/real friends),
Sociological proximity (“keeping up with the Joneses”).

Note that appropriate models should allow for “direct” effects, but also for
the possibility that the mentioned proximities induce “indirect” (multiplicator or
repercussion) effects. From a statistical point of view this leads to questions beyond
economic, psychologic, sociologic, etc. motivation: How to restrict association
structures—i.e., define Ni, how to specify the regression function, its arguments
and the error component?

Existing Approaches to Modeling Cross-Section Dependence

In the previous section we made the strong point that association structures should
enter in the (correctly specified) systematic part of the regression. Besides modern
methods of data-driven approaches to model the regression function, however, a
prominent assumption in models such as (1) establishes a richer error structure. One
example is to consider a two-way-error components structure

Uit D �t C 
i C Vit; (2)

where �t and 
i are unknown, smooth functions depending only on time index t
and cross-section index i, respectively, and Vit is an idiosyncratic error-component.
The spatial econometrics and statistics literature usually deals with modeling spatial
associations via the functions g and 
.

The literature basically can be grouped into two streams:

Spatial approach: A huge number of works across different disciplines try to
implement (predominantly spatial) association structures in the systematic (and
error) component under various degrees of structural assumptions. A common
theme of this literature is that the true nature of all cross-section associations
in (1) and (2) has to be specified a priori. A recent review of Kauermann
et al. (2012) contrasts and applies those assumptions, model philosophies,
specification strategies, and corresponding modeling goals and interpretations
for the strands of spatial econometrics and spatial statistics.
Interestingly, though specific guidelines from theory and previous empirical
analyses are lacking or non-existent, assumptions are strong, quite unnaturally,
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about “neighborhood” composition of Ni for all i, as basically one parameter
remains to be estimated. As has been stressed by Kauermann et al. (2012),
spatial econometrics tries to estimate the “strength” of the relationship between
yit and yi0t, i0 2 Ni. For example, estimation of (and subsequent inference on) the
parameter �0 in the spatial autoregressive (SAR) model

Y D �0WY C Z0�0 C U; (3)

where row .it/ of the equation system Y D �0WY is given by Yit D
�0
P

i02Ni
wii0 Yi0t, a so-called spatial lag structure. In contrast, though relying

on the same assumptions about the neighborhood structure given by the matrix
W D .wii0/, spatial statistical models include spatial random effects Si in order
to be able to visualize and predict the spatial patterns represented. The literature
knows many, basically linear variants and extensions of the SAR model: for
example, spatial ARMA or Durbin models, nesting the SAR and assuming a
spatial lag assumption and parameter �0 for the Uit. Then, instead of (1) and (2)
we consider (3) together with

U D �0WU C �C 
C V (4)

and, as detailed in Elhorst (2010), interest lies in the statistical (and only lately
economical) significance of �0 and �0, and model selection via restrictions on
these parameters.
Latent factor approach: Another strand of literature avoids any assumptions on
cross-sectional associations in the systematic part and focusses on modeling (2),
assumed to be due to misspecification of the systematic part of the regression.
Model assumptions, applications and instructive surveys can be found in Conley
(1999), Conley and Topa (2002), and Sarafidis and Wansbeek (2012).
Starting point is the model

Yit D Z0
it�0 C 
i C Uit; (5)

where, for some t and some i ¤ j, we may have

Cov.Uit;Ujt/ ¤ 0; (6)

due to model misspecification of Eq. (5). In the so-called factor structure
approach it is assumed that

Uit D �0
i t C Vit;

with latent factors  t and loadings �i, and, again Vit is an idiosyncratic error-
component. As the number of pairs .ij/ with property (6) increases with the
number of cross-sectional units N, the recent literature in this field analyzes
statistics for N ! 1.
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On the positive side the latter approaches seems to be more realistic, as the former
suffers from the well-known impossibility of finding the data generating process. On
the negative side, extending the error structure of misspecified models seems a bit
like medicating the dead. It is fair to say, though, that our excessively brief treatment
is little more than a tunnel vision and the interested reader is referred to the beautiful
survey of Sarafidis and Wansbeek (2012).

A Relative Similarity Approach to Modeling Cross-Section
Dependence

Recently Kuersteiner and Prucha (2013) studied panel data-based approaches with
a dynamic factor structure such as Phillips and Sul (2007, 2009), but extended
those ideas by allowing for cross-sectional interactions in both systematic and error
components of linear (in parameters) panel data regression models. As mentioned
above our approach makes use of the idea of Andrews (2005) and Phillips and Sul
(2007, 2009) that cross-section dependence is due to common shocks, leading to
similar time trajectories of neighborhoods (clubs, cliques, etc.) over time, and hence
is denoted as relative similarity approach. It differs from Kuersteiner and Prucha
(2013), on the one hand, by not allowing for interactions in the error components,
while, on the other hand, avoiding any parametric assumptions in the systematic
component.

The relative similarity approach: The approach basically consists of two
nonparametric steps. Step one is basically the approach of Phillips and Sul (2007,
2009) for panel data-driven identification of disjunct neighborhoods, step two is
a fully nonparametric regression analysis.
The approach does not rely on a priori assumptions on the number (such as
in confirmatory clustering) and covariance structure (such as in model-based
clustering) of neighborhoods. Each neighborhood contains cross-sectional units
with similar trajectories over time. The algorithm of Phillips and Sul (2007, 2009)
relates these trajectories to each other. It is based on a sequence of one-sided
t-tests of the null hypothesis ı1 	 0 in the auxiliary time series regression

Y�
t D ı0 C ı1 log.t/C �t;

with response Y�
t D log

�Pn�

i�D1.Hi�0 � 1/2=Pn�

i�D1.Hi�t � 1/2
�

�2 log .log.t//,

based on the relative transition path Hi�t (over n� observations) derived from
a selection variable z, i.e., Hi�t D Zi�t=Zi�t. The null ı1 	 0 implies similar
relative transition paths (of the considered cross-sectional units) and hence a
joint convergence behavior w.r.t. the selection variable z. The algorithm proceeds
until every observation is either part of a convergence club (with homogeneous
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convergence behavior within the club) or of a remainder group, denoted as
divergence group. In essence step one allows to generate a categorical variable

i, indicating to which neighborhood cross-sectional unit i belongs.
In the second step, we estimate a nonlinear, fully nonparametric regression model

Yit D g.Z�
it /C Uit; (7)

where Z�
it D .Zit; 
i/, by simultaneous smoothing over all dimensions of

the arguments of the regression function g.:/, de facto allowing any form of
nonlinearities involving the covariates in Z and 
. We apply the nonparametric
mixed kernel regression approach of Li and Racine (compare Li & Racine 2004,
2007; Racine & Li 2004). For the sake of illustration consider the minimization
calculus for a local linear mixed kernel regression at covariate position Z�

0 , for
the simple case of a single continuous covariate Zit and discrete covariate 
i,
respectively,

min
Q̨.Z�

0 /;
Q̌.Z�

0 /

nX
iD1

TX
tD1

�
Yit � Q̨ .Z�

0 / � Q̌.Z�
0 / � .Zit � Z0/

�2 � K.Z�
0 ;Z

�
it ; b/: (8)

The estimated mean regression effect at covariate position Z�
0 is denoted

by Ǫ .Z�
0 / while the corresponding estimated first partial derivative w.r.t. the

continuous covariate Zit is denoted by Ǒ.Z�
0 /. All observations are weighted by

the generalized product kernel function K.Z�
0 ;Z

�
it ; b/, the product of the weight

functions (i.e., kernels) of the covariates: Continuous covariates Z are weighted
by a second order Gaussian kernel

kZ.Z0;Zit; bZ/ D 1

bZ
�

�
Zit � Z0

bZ

�
; (9)

where �.:/ is the standard normal density and the smoothing parameter bZ 2
�0;1Œ. Unordered categorical covariates 
 are weighted by

k
.
0; 
it; b
/ D

1 for 
it D 
0;

b
 for 
it ¤ 
0;
(10)

with smoothing parameter b
 2 Œ0; 1� (see Li & Racine 2004). The interpretation
of parameter b is detailed in the empirical analysis in section “Misspecification
of Parametric Functional Form”. In a mixed covariate context, data-driven
estimation of b is required prior to the kernel regression estimation. We estimate
b by least-squares cross-validation (see Li & Racine 2007, Chap. 4).
The flexibility of approach (7) has the following merits: First, any form of
relevant moderator effect is considered in a data-driven way. Second, it alleviates
the problem of misspecification as it enables local approximations of omitted
relevant variables. Third, for the local smoothing estimation inside a given
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Table 1 Summary statistics of the continuous variables

Variable Minimum 1. Quartile 2. Quartile 3. Quartile Maximum Mean Std.-Dev.

grschool �0.208 0.136 0.219 0.289 0.801 0.205 0.149

school0 0.019 0.038 0.054 0.080 0.222 0.063 0.033

log.school0/ �3.940 �3.258 �2.915 �2.526 �1.504 �2.886 0.482

neighborhood, not only information of the other club members are used, but
of all observations. Fourth, the degree of smoothing in each dimension allows
to empirically assess the statistical significance of all covariates, including the
neighborhood structure.

Smart Regions in Germany

High-skilled employees3 (HSE) are the basis for developing new technologies and
economic growth. The basis of our empirical analyses is the share of HSE in a
region, the larger the former, the smarter the latter. From an economic point of view
region-specific shares of highly educated employees can be used as a proxy for high-
skilled labor. Lumpy provision of high-skilled labor across German regions may
slow-down growth and increase already existing gaps in innovation and productivity.
It is thus of obvious interest to study the spatial distribution and spatio-temporal
diffusion of high-skilled labor and develop statistical methods to study existence
and patterns of eventually occurring convergence and divergence processes.

The dependent variable in our model is the growth rate

grschooli
defD log.schooli;2005/ � log.schooli;1996/;

where schooli;t represents the share of HSE in region i (i D 1; : : : ; 439) (as a
place-of-work) and year t (t D 1996; : : : ; 2005). Adapting the approach of Barro
and Sala-i Martin (1992) our analysis is based on the unconditional ˇ-convergence,

where the key explanatory variable is school0i
defD schooli;1996, the share of

HSE in region i in the year 1996. Descriptive details of these variables are displayed
in Table 1.

Figure 1 provides a first impression of the spatial distribution of the key variables
grschool and school0. Both maps reveal obvious patterns due to the former
separation of Germany into Federal Republic of Germany and German Democratic
Republic, hereafter denoted as west and east. To reflect this structural information,
the binary variable west—which is equal to one for west regions and zero

3Employees liable for social security insurance, who have at least 11 years of schooling and a
degree.
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Fig. 1 Spatial maps for grschool and school0. (a) grschool. (b) school0

for east regions—is included in the subsequent analyses. Note that we primarily
consider west as a political variable, although it is of obvious economic and, as
a consequence, spatial—due to spill-over effects—relevance, too. Interestingly, the
share of HSE in east regions in 1996 seems to be somewhat higher on average
compared to the majority of west regions. In sharp contrast the growth-rate (between
1996 and 2005) is higher on average for most of the west regions, whereas some of
the east regions even experienced negative growth-rates. This phenomenon, often
denoted as the post-reunion brain-drain, is obviously still in progress many years
after the official reunion in 1990.

Our baseline model4 allows for west-east-specific convergence parameters,

grschooli D ˛1westi C ˛2.1 � westi/C ˇ1 log.school0i/westi

C ˇ2 log.school0i/.1� westi/C "i; (11)

4Note that the estimation of Eq. (11) is based on cross-section data, where only information in the
initial and final time period is employed. The a priori selection of t D 0 and t D T, respectively,
may have a crucial impact on the outcome. We will not discuss such sources of non-robustness in
this study.
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Table 2 Regression output for Eq. (11)

Estimate Std. error t value Pr(> jtj)
west 0.08816 0.04038 2.183 0.0296

1-west �0.19617 0.08016 �2.447 0.0148

west:log(school0) �0.05825 0.01318 �4.421 0.0000

(1-west):log(school0) �0.09214 0.03233 �2.850 0.0046

PR2 D 0:504, AIC D �725:31, SIC D �704:90

and ˇ-convergence of west regions is assumed to be present if ˇ1 < 0 (an analogous
interpretation for east regions applies to ˇ2).

OLS estimation results for the baseline convergence regression (11) are displayed
in Table 2. As Ǒ

2 < Ǒ
1 skill concentration differences across the regions seem to

decrease as regions with a lower concentration of HSE (usually west) increase their
concentration faster than regions with a higher concentration (usually east). Thus,
the results may be interpreted as slightly suggestive in favor of converging shares
of HSE over all administrative regions. We will not stress these preliminary results
further, as the baseline model obviously suffers from lack of economic content and
consequently various sources of misspecification (indicated by a battery of tests).
For this reason we also do not report adjusted standard errors here. Given this
disclaimer, the convergence coefficient is significantly negative for both parts of
Germany and the fit, measured as squared correlation of observed and fitted response
values (PR2), is moderate at about 50 %.

Following the main contributions of among others Barro and Sala-i Martin
(1992), Barro, Sala-i Martin, Blanchard, and Hall (1991), and Mankiw, Romer,
and Weil (1992), a plethora of works appear addressing several strands of criticism
confronting the baseline Solow model (see, e.g., Haupt & Petring 2011 for a recent
survey). In the following exposition we pick up two main points of criticism.5

Equation (11) can be written compactly as Yi D X0
i� C "i. However, as

motivated in the following sections, it is safe to assume that the true conditional
expectation of Yi given all relevant explanatory variables is equal to g.Xi;Wi/,
where g is an unknown, smooth function and W contains unobservable explanatory
variables. Then the correctly specified model is given by Yi D g.Xi;Wi/ C �i,
where f�ig is an error process. When estimating the misspecified model (11), the
error is quite complex as it equals "i D g.Xi;Wi/ � X0

i� C �i. The points of
criticism we will consider here reflect two potential sources of the specification
error �i D g.Xi;Wi/ � X0

i� . First, neglected heterogeneity due to incorrectly
assuming global convergence, while there may coexist clubs with homogeneous
convergence behavior and/or a group of divergent regions. Second, misspecification
due to neglected nonlinearities in the regression function. Empirical evidence on
both issues is analyzed for the HSE in German regions.

5For the sake of brevity we will not discuss issues of neglected heterogeneity induced by spatial
association due to spill-over and repercussion effects between German regions here.
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Heterogeneity Due to Convergence Clubs and/or Divergence
(Group)

One of the main points of criticism confronting the classical convergence regres-
sion (11) is that there are several forms of neglected heterogeneity causing invalid
estimation results (e.g., Alfò, Trovato, & Waldmann 2008; Canarella & Pollard
2004; Ertur & Koch 2007; Haupt & Petring 2011; Mansanjala & Papageorgiou
2004).

In two seminal contributions Phillips and Sul (2007, 2009) build on the ideas
of Durlauf and Quah (1999) and suggest that heterogeneity may occur due to
individual effects and different technology levels. Considering these effects they
propose a dynamic factor model based on the time trajectory fschooli;tgtD0;:::;T of
each region i. Their convergence concept—which we label as “club convergence”
hereafter—is based on the idea that convergence is assumed if all regions have the
(approximately) same share of HSE in the final period T. Hence club convergence
is based on panel data in contrast to ˇ-convergence, the latter only relying on cross-
sections for the initial and final periods 0 and T.

If there is no evidence (from a so-called log t regression test) in favor of global
convergence,6 Phillips and Sul (2007, 2009) introduce a clustering algorithm for
identifying convergence clubs empirically. The idea of convergence clubs is that
there are groups of countries with common convergence behavior. The algorithm
proposes a classification of convergence clubs, while it is not possible to analyze
convergence behavior on a club-level in the sense of Barro et al. (1991), Barro
and Sala-i Martin (1992), and Mankiw et al. (1992). Applying an augmented form
(see Haupt & Meier 2011) of the clubbing algorithm of Phillips and Sul (2007,
2009) to German regions yields a discrete covariate clubi with 11 categories,
i.e., 10 convergence clubs and a divergence group. Starting point for the clubbing
algorithm is the log.school/ order (descending) of the last period (T D 2005).
For the sake of brevity, the algorithm is skipped, but Fig. 2 shows boxplots of the
corresponding log.schoolT/-distribution for each club/group, while Fig. 3 shows the
relative transition paths. In accordance with the work of Phillips and Sul (2007,
2009), the latter underline the meaning of club convergence.

We augment the classical ˇ-convergence regression of Eq. (11) by m dummy
variables clubi;j representing the convergence clubs (divergence group), and
estimate

grschooli D ˛0westi C ˛1 log.school0i/ � westi

C
mX

jD1
ˇjclubi;j C

mX
jD1

	j log.school0i/ � clubi;j C "i: (12)

6In the present case of high-skilled employees in German regions the corresponding log t regression
reveals no evidence in favor of global convergence on any reasonable significance level.
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Fig. 2 Boxplots of log.schoolT/ for ten convergence clubs (C) and one divergence group (G)

Table 3 Occupation frequency for the category combinations of the
discrete covariates

club 1 2 3 4 5 6 7 8 9 10 11 Total

East 1 5 6 18 52 24 6 0 0 0 0 112

West 3 14 18 41 87 86 48 13 11 3 3 327

Total 4 19 24 59 139 110 54 13 11 3 3 439

Table 3 contains the occupation frequencies of all club categories for both
German regions. The clubs 1 and 10 as well as the divergence group are poorly
occupied each having a total of less than five observations. For clubs 8, 9, and 10,
as well as for divergence group 11 there are no observations for the east regions
of Germany. In section “Misspecification of Parametric Functional Form” we will
address potential issues of sparsely populated cells. The results for OLS estimation
of Eq. (12) are displayed in Table 4. The estimated convergence coefficients are
significantly negative for club 1–9, indicating ˇ-convergence for each of these
clubs. We do not find differences in the convergence behavior between west and
east regions, as the coefficient of the interaction between westi;j and school0i

is not significantly different from 0. The PR2 is approximately 90 % and also the
Akaike (AIC) and Schwarz information criteria (SIC) suggest a clear superiority in
comparison with the baseline model (11).

The next natural question to ask is whether the latter model is also capable of
capturing potential spatial patterns in the data. Table 5 contains the AIC and SIC
for the baseline models of Eqs. (11) and (12) as well as the corresponding common
spatial competitors. The model of Eq. (11) is clearly outperformed by a spatial error
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Fig. 3 Relative transition paths from time period 0 to T for convergence clubs and divergence
group

model (in terms of AIC by every spatial competitor). Model (12) that is augmented
by the club information performs best (i.e., better than every corresponding spatial
competitor) in terms of SIC and is only slightly outperformed in terms of AIC by a
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Table 4 Regression output for Eq. (12)

Estimate Std. error t value Pr(> jtj)
Club 1 �0.6634 0.2349 �2.82 0.0050

Club 2 �0.8543 0.0867 �9.86 0.0000

Club 3 �1.0384 0.0876 �11.86 0.0000

Club 4 �0.9782 0.0685 �14.28 0.0000

Club 5 �1.2090 0.0593 �20.39 0.0000

Club 6 �1.2928 0.0760 �17.01 0.0000

Club 7 �1.3670 0.1082 �12.63 0.0000

Club 8 �1.6421 0.3127 �5.25 0.0000

Club 9 �1.7918 0.4597 �3.90 0.0001

Club 10 �0.9817 1.5052 �0.65 0.5146

Group 11 �0.9182 1.3978 �0.66 0.5116

West 0.0525 0.0483 1.09 0.2772

Club 1:log(school0) �0.4763 0.1379 �3.46 0.0006

Club 2:log(school0) �0.5105 0.0417 �12.23 0.0000

Club 3:log(school0) �0.5439 0.0377 �14.43 0.0000

Club 4:log(school0) �0.4658 0.0279 �16.71 0.0000

Club 5:log(school0) �0.4973 0.0231 �21.53 0.0000

Club 6:log(school0) �0.4730 0.0273 �17.32 0.0000

Club 7:log(school0) �0.4629 0.0354 �13.08 0.0000

Club 8:log(school0) �0.5194 0.0890 �5.84 0.0000

Club 9:log(school0) �0.5462 0.1274 �4.29 0.0000

Club 10:log(school0) �0.2972 0.3975 �0.75 0.4551

Group11:log(school0) �0.2923 0.3647 �0.80 0.4234

West:log(school0) 0.0071 0.0188 0.38 0.7063

PR2 D 0:896, AIC D �1373:89, SIC D �1270:78
Table 5 AIC and SIC for
baseline, spatial error, spatial
lag, and spatial Durbin model
with and without convergence
clubs

Models without convergence clubs

Eq. (11) Spatial error Spatial lag Spatial Durbin

AIC �725.31 �734.54 �729.10 �735.36

SIC �704.90 �710.04 �704.55 �698.60

Models including convergence clubs

Eq. (12) Spatial error Spatial lag Spatial Durbin

AIC �1373.89 �1372.01 �1374.70 �1370.73

SIC �1270.78 �1265.81 �1268.51 �1170.59

spatial lag model. Table 6 reflects these findings as on a 5 % significance level, the
null hypothesis of no (necessary) spatial association in model (11) is rejected w.r.t.
all alternative hypotheses, while the equivalent tests for the model with additional
club information do not yield a rejection of the null. We interpret this in a way that
the inclusion of the club information sufficiently captures the spatial associations of
the data such that no additional spatial effect has to be included.
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Table 6 Results of LM-tests for spatial dependencies in the resid-
uals of Eqs. (11) and (12)

Test results for Eq. (11)

Statistic df p.value

LM-test for spatial error 10.87 1.00 0.00

LM-test for spatial lag 4.30 1.00 0.04

LM-test for spatial error and spatial lag 17.50 2.00 0.00

Test results for Eq. (12)

Statistic df p.value

LM-test for spatial error 0.00 1.00 0.98

LM-test for spatial lag 3.20 1.00 0.07

LM-test for spatial error and spatial lag 4.26 2.00 0.12

Misspecification of Parametric Functional Form

Several authors identify neglected nonlinearities as a source of invalidity of classical
convergence analysis (e.g., Haupt & Petring 2011; Henderson 2010; Kalaitzidakis,
Mamuneas, Savvides, & Stengos 2001; Liu & Stengos 1999; Maasoumi, Li, &
Racine 2007; Quah 1993, 1997). Following the proposal of Haupt and Meier (2011)
we address this issue by employing a fully nonparametric approach. Keeping the
notation of the previous sections, the sample counterpart of the nonparametric
convergence regression model (7) is given by

grschooli D f .log.school0i/;clubi;westi/C "i; (13)

allowing for nonlinearities and interactions among all covariates within the regres-
sion function f .�/. In the previous section the club membership is shown to
sufficiently reflect the spatial association. Hence we include this information also
as unordered discrete covariate club in the nonparametric regression. For the
present problem we have a mix of continuous and discrete covariates. We apply
the nonparametric mixed kernel regression approach of Li and Racine (compare
Li & Racine 2004, 2007; Racine & Li 2004). Unsurprisingly Haupt and Petring
(2011) find superior in-sample but also out-of-sample performance of this approach
(compared to parametric regression function specifications) in the context of growth
regressions for the original data of Mankiw et al. (1992).

The corresponding minimization calculus for a local linear mixed kernel regres-
sion is

min
Q̨.z�

0 /;
Q̌.z�

0 /

nX
iD1

�
grschooli � Q̨ .z�

0 /� Q̌.z�
0 /

� .log.school0i/� log.school00//
�2 � K.z�

0 ; z
�
i ; b/; (14)
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where the vector z�
i D .log.school0i/;clubi;westi/ contains the covariate

values of cross-sectional unit i. Analogously, z�
0 refers to the covariate position

.log.school00/;club0;west0/0 for local estimation of the regression function.
The estimated local mean regression effect at this position is denoted by Ǫ .z�

0 /

while the corresponding estimated local first partial derivative w.r.t. log.school0/
is denoted by Ǒ.z�

0 /. Observations are weighted by the generalized product kernel
function K.z�

0 ; z
�
i ; b/, the product of the weight functions (i.e., kernels) of the three

covariates. In a kernel estimation context the smoothing parameters are denoted as
bandwidths:

Small bandwidth values for bschool0 defined in (9) lead to reasonable weights
only for observations i where j log.school0i/ � log.school00/j is small,
i.e., the number of HSE (school0i) is close to school00. In contrast, large
bandwidths yield almost equal weights for all observations, thus indicating an
approximately linear relationship between log.school0/ and grschool.
The bandwidths for the discrete kernel defined in (10) take values in Œ0; 1�,
where a value of 0 means that the regression function is separately estimated
for the observations of different covariate categories, i.e., the so-called frequency
approach (see Li & Racine 2007, Chap. 3). For a bandwidth of 1 we obtain equal
weights for the observations of all categories of the underlying covariate, which
is thus irrelevant.

Table 7 displays the estimated bandwidth values for the covariates. The estimated
bandwidth of the continuous covariate is about half as large as the standard deviation
of log.school0/ (which is 0.4816). Thus the model allows for a considerable
degree of nonlinearity w.r.t. this covariate while indicating that neglected nonlinear-
ity may indeed be a problem for the present data. The estimated bandwidths of the
discrete covariates are low. The bandwidth value of 0.1717 for the covariate west
indicates some smoothing of the underlying categorical information, meaning that
the observations of East-Germany are also used for estimating the West-German
regression relationship and vice versa, where the weight of about six (�1=0:1717)
observations of the “wrong” category offsets one observation of the corresponding
“correct” category. Hence, we see that the nonparametric specification can at least
partially deal with poorly occupied category combinations. A bandwidth value for
the club variable close to 0 indicates that the convergence clubs are well chosen.
An estimated bandwidth of 1:5 �10�15 is extremely close to 0. Hence the probability
of club-misclassification also seems to be negligible.

The nonparametric mixed kernel regression approach allows for an explicit
test for parametric misspecification proposed by Hsiao, Li, and Racine (2007).

Table 7 Estimated
bandwidths (using LSCV) for
nonparametric mixed-kernel
regression

Covariate Kernel function bk 2 Obk

log.school0/ of Eq. (9) �0;1Œ 0.2867

club of Eq. (10) Œ0; 1� �0
west of Eq. (10) Œ0; 1� 0.1717
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Table 8 p-values for test of
Hsiao et al. (2007) for
misspecification of
parametric functional form

Spec.nbootstrap iid Wild

Eq. (11) �0 �0
Eq. (12) 0.0476 0.1579

The p-values from applying the test are displayed in Table 8. Hsiao et al. (2007)
suggest bootstrapping to obtain the null distribution of the test and Haupt, Schnur-
bus, & Tschernig (2010) show that the test can be quite sensitive w.r.t. the
nonparametric configuration (including the bootstrap-type). Hence, we consider
iid- as well as wild-bootstrapping to determine the distribution of the test under
the null. The correct specification of Eq. (11) is clearly rejected for both bootstrap
configurations, while the parametric specification including the club information is
only rejected at a 5 %-level by the iid-bootstrap, indicating only minor nonlinearities
in the residuals of this parametric specification. The PR2 of the nonparametric
estimation is 0.9015 and thus slightly higher than that of the OLS estimation
of Eq. (12).

The estimated partial effects w.r.t. log.school0/ for the nonparametric mixed
kernel approach are obtained as Ǒ.z�

0 /, compare Eq. (14). In principle these partial
effects can be evaluated for a grid covering the range of log.school0/-values for
each of the 22 category combinations of the discrete covariates (or more generally
for any z�

0 ). However, since the data is sampled from a lattice structure, we only
compute partial effects for the given 439 observed covariate value combinations,
compare Fig. 4. The vertical lines indicate the estimation uncertainty and correspond
to pointwise asymptotic confidence intervals. For means of comparison we add
the estimated partial effects from OLS estimation of Eq. (12), compare Table 4. A
clear difference between parametric and nonparametric estimation is only visible
for the clubs 1–6, the partial effects for the other clubs (and divergence group)
seem to be reasonably estimated by the parametric specification of Table 4. For
the clubs 2–6, the nonparametrically estimated partial effects are not constant, thus
hinting at a nonlinear relationship between the underlying variables w.r.t. some of
the clubs. Our finding that the estimated partial effects are not constant for some
of the clubs corresponds to a moderate amount of nonlinearity in the relationship
between log.school0/ and grschool This weak or only local nonlinearity is in
line with the results of the test of Hsiao et al. (2007) for Eq. (12), i.e., Eq. (12) seems
only to suffer from minor misspecification issues (in terms of neglected additional
spatial association).

Discussion

In our empirical exercise we investigate three potential sources of misspecification
in convergence regressions: Omitted heterogeneity due to convergence clubs, due to
spatial associations between neighboring regions, and due to potential nonlinearities
in convergence behavior. As a first step to allow for heterogeneities induced by
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Fig. 4 Plots of log.school0/ (abscissa) and the estimated partial effects (w.r.t. log.school0/,
ordinate) for the nonparametric regression model (points) of Eq. (13) and the parametric model
(horizontal dashed lines) of Eq. (12)
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non-global convergence processes we identify convergence (and divergence) clubs
from a dynamic factor model using panel data. In the second step further potential
heterogeneities in the extended model are assumed to be generated by spatial
associations between regions in a cross-section model. As an encompassing step we
test for parametric misspecification of the extended model and check the validity of
the club structure generated from panel data to capture heterogeneity of convergence
processes in a cross-section model. The employed nonparametric estimation method
allows to investigate potential club-specific nonlinearities.

The proposed modeling framework is applied to analyze the growth convergence
of HSE in German regions. Model selection results suggest that there is no clear
empirical evidence in favor of including further spatial model components. The
residual heterogeneity in classical models can be captured quite well by controlling
for the club structure identified in the first step of our analysis. If, however,
the club information is neglected, model selection criteria and tests suggest the
existence of spatial association in the model. Tests for parametric misspecification
and visual inspection of estimated partial effects reveal some but no clear evidence
for nonlinearities. We stress that our findings do not suggest that there are no spatial
externalities, spill-overs, or repercussion effects. However, it is possible to identify
convergence (and divergence) club-level functionals that seem to be capable of
controlling for parts of these effects—for the present data set, though equivalent
results can be obtained for Penn World Table income data used by Ertur and Koch
(2007)—while following a different economic motivation and implication.

On more general grounds the proposed method is applicable to regression
problems with cross-section associations in panel data contexts covering one or
more cross-sectional dimension. The first step of the method allows for data-driven
identification of disjunct neighborhoods without any a priori assumptions on their
number, size, or composition, nor on within and between covariance structures.
The second step exploits the first-step information on neighborhoods and does
not rely on parametric assumptions on a general nesting model, while it allows to
estimate, test, and interpret all relevant effects in the usual fashion and beyond. In
addition, the undesired concept of disjunct neighborhoods from the first step does
not matter because of the fully multiplicative nature of nonparametric smoothing
regression: Neighborhood-specific effects are estimated using information from
the neighbors, but also from all other cross-sectional units, weighted in a data-
driven fashion, respectively. The interplay of these properties renders the method a
suitable candidate for addressing the problem that cross-section associations are not
a nuisance but a relevant part of both the model and the story the data tries to tell us.
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MANOVA Versus Mixed Models: Comparing
Approaches to Modeling Within-Subject
Dependence

Christof Schuster and Dirk Lubbe

Abstract For inferential purposes such as hypothesis testing or confidence interval
calculations, analysis of repeated measures data needs to account for within-
subject dependence of observations. Multivariate analysis of variance (MANOVA)
is a suitable traditional technique for this purpose. It assumes an unconstrained
within-subject covariance matrix and balanced data. However, the so-called mixed-
model approach is a viable alternative to analyzing this type of data, because its
underlying statistical assumptions are equivalent to the MANOVA model. While
MANOVA is the classical approach, the mixed-model methodology, although by
now implemented in all major statistical software packages, still is a relatively recent
statistical development. The equivalence of both approaches to analyzing repeated
measures data has frequently been noted in the literature. Nevertheless, in terms of
test-statistics both approaches differ. While in large samples the test-statistics are
essentially equivalent, their small sample behavior is not well known. In this article,
we investigate by computer simulation the performance of several test-statistics
calculated either from the MANOVA or the mixed-model approach for testing the
interaction hypothesis with balanced data.

Introduction

An important aspect of experimental design is the control of variation in the
dependent variable that is unrelated to the treatment. Among the causes resulting
in this type of variation are (1) measurement error and (2) systematic influences.
Examples of systematic influences are covariates and individual differences in
repeated measures designs.

A well-known technique to eliminate or at least reduce this type of systematic
variation is the so-called blocking of observations. A block of observations is made
up of observations that are as similar as possible with respect to characteristics
that are suspected to influence the outcome. If the observations of each block are
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randomly assigned to treatment, the treatment comparisons within each block are
free of between block characteristics, thereby reducing between block variation
from the treatment comparison. As a result, treatment comparisons are typically
more powerful.

A standard example of blocking comes from agricultural research, where it is
known that fertility of soil may vary considerably within fields. If a field is divided
into several plots, then blocks usually comprise plots close to each other. In this way,
natural fertility differences in soil can be controlled, inasmuch as they are removed
from comparisons of treatments randomly assigned to the plots within each block.

Although the idea of blocking is also popular in the social sciences, its applica-
tion often requires additional effort. If, for instance, naturally occurring intelligence
differences in a sample of individuals are suspected to cause additional variation
in the dependent variable of a learning experiment, then blocking of individuals
with respect to intelligence would require pre-trial intelligence assessment. Because
block size typically is fixed and equal to the number of treatments (randomized
complete block design), two appointments per individual have to be arranged: one
for pre-trial testing and one for treatment administration.

In an analysis of covariance no such pre-trial assessment of individuals is
necessary because information about individual differences, e.g. intelligence, can be
accounted for as a covariate at the data analysis stage. Therefore, in social sciences
analysis of covariance is more popular than blocking to control for systematic
dependent variable variation.

Nevertheless, there is one setting in which blocking in social science research
is natural and does not require additional effort. If individuals can be repeatedly
observed, then individuals can be considered as blocks. As a result, within-subject
treatment comparisons are free of between-subject variation.

If the treatments are randomly assignment to subjects, then the statistical model
for a randomized complete block design applies to the repeated measures design.
Let Yjm denote the response of the mth individual (block) to the jth treatment, then
the model is

Yjm D �C ˇj C �m C ujm;

where � denotes the grand mean, ˇj, j D 1; : : : ; p is the treatment effect, �m,
m D 1; : : : ;N is the random block effect, and ujm is a random residual. Standard
assumptions are: (1) �m � N.0; �2�/, (2) ujm � N.0; �2/, and (3) independence of
random terms. Because the hypotheses of contrasts pertaining to the ˇ-effects are
comparisons within the repeated observations, they are referred to as within-subject
hypotheses.

Intuition suggests that within-subject observations are more similar than
between-subject observations and the above model reflects this. If the repeated
measures from the mth individual are collected in a vector ym D .Y1m; : : : ;Ypm/

0,
then the covariance matrix of the within-subject association is Var.ym/ D †.
Assuming p D 4, the model for the randomized complete block design implies the
covariance pattern
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often referred to as “compound symmetry.” Compound symmetry is a simple
structure in which only two parameters, �2 and �2� , account for the association
of the within-subject responses. Specifically, compound symmetry implies equal
variances and equal covariances among within-subject observations. In addition,
the covariance is necessarily non-negative.

Furthermore, if the individual vectors are collected in one overall Np � 1

vector y, where N is the sample size, then the covariance matrix of all observations,
Var.y/, has block-diagonal form. Thus, if the model for the randomized complete
block design applies, the covariance matrix of all observations requires only two
parameters. In this case, standard ANOVA procedures can be used to test for
treatment differences.

In practice assuming compound symmetry can be justified if treatment assign-
ment is random within individuals. However, without random assignment, such a
simple covariance structure is questionable. In particular, if “time” is considered
as the within-subject treatment, that is, the dependent variable is simply observed
repeatedly after fixed time intervals, observations closer together in time are
expected to be more strongly associated than observations further apart. This is often
the case in social science studies in which subjects are repeatedly observed at fixed
time points. In such research studies, subjects typically belong to one of several
groups and comparisons between them are typically referred to as between-subjects
hypotheses.

In the following sections, we first give an applied example using artificial data of
a so-called split-plot design. We then explain three approaches that can be used to
analyze this type of data. Specifically, we discuss (1) the univariate analysis, (2) the
MANOVA analysis, and (3) the mixed-model approach. We then focus in particular
on comparing the test-statistics from MANOVA and mixed-model approaches by
computer simulation.

Example

A typical research setting of a repeated measures design is given by a two-way
layout in which several groups of individuals are repeatedly observed over time.
Thus, there is a between-subject treatment and a within-subject treatment. The
between-subject treatment pertains to the groups and the within-subject treatment
is time. This design often is referred to as a split-plot experiment, where there are
whole-plot experimental units, belonging to one of several groups, and split-plot
experimental units, corresponding to repeated observations of the within-subject
factor.
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Table 1 Artificial data set of
repeatedly observed
achievement scores of
children belonging to one of
three groups

Age group

Group Child 1 2 3 4

1 1 48 50 50 47

2 47 50 53 47

3 47 48 47 47

4 47 49 54 60

5 52 49 49 52

2 6 55 57 60 63

7 58 56 55 58

8 48 50 53 58

9 52 52 52 58

10 51 52 57 54

3 11 53 64 61 62

12 50 57 57 68

13 55 61 61 63

14 51 63 68 70

15 48 53 54 61

In this design, the hypotheses refer to the presence of (1) group differences, (2)
change over time, and (3) interaction (do the groups change differentially over time).
In fact, in such a design, the most important research focus often is the interaction
hypothesis.

Assume we have five children in each of three groups whose cognitive perfor-
mance Y is measured and reported in a T-norm metric (mean of 50 and a standard
deviation of 10) at four times. The data set analyzed below is given in Table 1.

The response profiles of the three groups are given in the left panel of Fig. 1. The
profile of the first group shows almost no change over time while the second and
third groups show considerable development. If the hypothesis of no interaction
is true, then the response profiles over time are truly parallel as shown in the
right panel. Thus the interaction hypothesis concerns the question of whether the
deviations of the actual profiles from parallel profiles can be explained by sampling
variation. If so, the interaction hypothesis will not be rejected and although there
may be development over time as well as group differences, the different programs
appear to be equally effective.

Approaches to Analyzing Repeated Measures

There are three well-known approaches to analyzing repeated measures data of the
main-effects and interaction hypotheses. Let �ij denote the mean outcome of the ith
group, i D 1; : : : ; g, observed at time j, j D 1; : : : ; p. In terms of these means, the
three hypotheses are:



MANOVA Versus Mixed Models 373

l
l

l l

1 2 3 4

45
50

55
60

65
70

time

co
gn

iti
ve

 p
er

fo
rm

an
ce

l

groups:
1
2
3

l

l

l

l

1 2 3 4

45
50

55
60

65
70

time

co
gn

iti
ve

 p
er

fo
rm

an
ce

l

groups:
1
2
3

Fig. 1 Mean response profiles of three groups. Left panel profiles are produced using cell means.
Right panel profiles are based on fitted cell means assuming the interaction null hypothesis to be
true

Interaction W �ij � �i;jC1 � �iC1;j C �iC1;jC1 D 0;

Group main-effect W �i� D �iC1�;

Time main-effect W ��j D ��jC1;

where i D 1; : : : ; g � 1 and j D 1; : : : ; p � 1.
In the univariate analysis the hypotheses can be tested in the familiar analysis of

variance framework, in which a total sum of squares is decomposed into components
pertaining to the main-effects and interaction. Although the assumptions of a split-
plot analysis are restrictive and are questionable for a repeated measures design,
these difficulties can be overcome by a so-called epsilon correction of the numerator
and denominator degrees of freedom of the F-tests for testing the time main-effect
and the interaction hypotheses.

The second approach to analyzing repeated measures data is to test the three
hypotheses in a MANOVA framework. This approach makes no restrictive
assumptions about the within-subject covariance structure Var.ym/D†. While the
computational complexity of both the univariate and the MANOVA approaches
is relatively low, MANOVA is conceptually more complex. For instance, the
MANOVA approach as implemented in statistical software packages reports four
closely related test-statistics. Specifically, these are (1) the Hotelling-Lawley trace,
(2) Pillai’s trace, (3) Wilks’ lambda, and (4) Roy’s greatest root. Although these
statistics often yield similar conclusions, this is not necessarily the case. The exact
distributions of these statistics are known only in special cases.

The third approach to testing the above hypotheses uses mixed models. This
approach has become widely available since it has been included in the statistical
software package SAS around 1990. This approach is more general and flexible than
the other two approaches because it allows for patterned within-subject covariance
matrices and does not require balanced data. More specifically, the times at which
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observations are made can vary between individuals and the number of observations
can differ across individuals as well. While SAS PROC MIXED offers a variety of
estimation methods, the likelihood-based approaches (ML and REML) appear to be
the preferred methodology. For discussions of the advantages of the mixed-model
methodology see, for instance, Wolfinger and Chang (1995).

Univariate Analysis

The univariate analysis of the data example is based on the model

Yijm D �C �i C ˇj C .�ˇ/ij C �im C uijm;

where �i and ˇj are group and time main-effects and .�ˇ/ij denotes the interaction,
j D 1; : : : ; p, i D 1; : : : ; g, and m D 1; : : : ; ni. In addition, the model assumptions
about the between- and within-subject errors are: (1) �im � N.0; �2�/, (2) uijm �
N.0; �2/, and (3) independence of random terms (Schuster & von Eye 2001; Winer,
Brown, & Michels 1991). In this model the covariance structure of the repeated
observations is compound symmetry, which is unrealistic if the within-subject
treatment is time as in the example above.

It is well known that univariate analyses, justified under compound symmetry,
are also valid under more general covariance structures, specifically, the so-called
H-pattern. Huynh and Feldt (1970) have shown that this condition is necessary
and sufficient for the hypothesis tests of the univariate analysis to yield valid
results. Morrison (1976, p. 215) gives the H-pattern for the design considered in
the data example. However, if the covariance structure is not of the type H-pattern,
then the actual type I error rate of within-subject tests may change. Usually, it
becomes too large resulting in too many true null hypothesis rejections. If the type
H-pattern is violated, Geisser and Greenhouse (1958) and Huynh and Feldt (1976)
give �-corrections with which the numerator and denominator degrees of freedom
of the univariate F-Tests are adjusted downward. As a result, the size of the F-test
will not exceed its nominal level.

Although we focus in this article on the comparison between MANOVA and
the mixed-model approach, the analysis of the interaction hypothesis of the data
example will be reported briefly.

Testing the Interaction Hypothesis

The interaction hypothesis test of the data example yields F D 3:819244 based on 6
numerator and 36 denominator degrees of freedom. However, the test for sphericity
rejects the hypothesis that the within-subject covariance pattern is of the H-type.
Thus, the degrees of freedom should be corrected using either the epsilon proposed
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by Greenhouse-Geisser or Huynh-Feldt, which for the data example are 0:6606 and
0:9226, respectively.

Correction of the numerator and denominator degrees of freedom yields the
p-values 0:0157 for the Greenhouse-Geisser correction and 0:0062 for the Huynh-
Feldt correction. If the nominal significance level had been set to ˛ D 0:01,
the two corrections would yield different conclusions. Specifically, whereas the
Greenhouse-Geisser correction would retain the null hypothesis of no interaction,
the Huynh-Feldt correction would reject it. The different conclusions accord
with the general observation that the Greenhouse-Geisser correction tends to be
conservative, i.e. produces p-values that tend to be too large.

MANOVA Analysis

The multivariate analysis considers the observations of one individual as a .p � 1/
observation vector. Because each individual belongs to one group, the data in Table 1
show five observation vectors in each group. Thus, the model for the data is a one-
factor MANOVA model. If the model is parameterized in terms of the cell means,
the equation for the mth observation in the ith group is:

y0
im D �0

i C u0
im:�

yi1m : : : yipm

	 D �
�i1 : : : �ip

	 C �
ui1m : : : uipm

	 (1)

In terms of the distributional assumptions, the model requires that uim follows
a multivariate normal distribution with expected value of zero and covariance
matrix †, which is required to be symmetric and positive definite but is otherwise
unspecified. Since the residual vectors uim are assumed to be independent across
individuals, the covariance matrix of all observations collected in a vector y is
block diagonal. Based on the model equation of the one-way MANOVA the null
hypothesis is:

H0 W �1 D � � � D �g: (2)

This hypothesis claims that the mean vectors for all groups are identical. In this
case, the four means of �i account for the total of twelve means (four means in each
of three groups). In terms of the cell means, this hypothesis can be expressed as the
following collection of contrast statements

�ij � �iC1;j D 0

for i D 1; : : : ; g � 1 and j D 1; : : : ; p. If these statements are all true, then the
interaction hypothesis and the group main-effect hypothesis are true jointly.
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Thus, hypothesis (2) is not particularly interesting because it confounds the
interaction hypothesis (differential change over time between the groups) with the
between-subjects hypothesis.

The hypothesis of primary interest concerns the interaction between group and
time. In other words, it addresses the question of whether the groups change
differently across time. In terms of the cell means, this hypothesis has already been
given above. To find test statistics for the interaction hypothesis in the MANOVA
framework, the corresponding collection of contrast statements is expressed in terms
of the so-called general linear hypothesis, which is

H0 W CBM D 0;

where C and M are known .g � 1/ � g and p � .p � 1/ matrices with ranks .g � 1/

and .p � 1/, respectively, and B is the g � p matrix of cell means. The columns of M
correspond to within-group mean comparisons at different observation times while
the rows of C correspond to between-group mean comparisons. To simultaneously
test all .g � 1/.p � 1/ D 2.3/ D 6 interaction contrasts, as is the case in the data
example, one uses (e.g., Khattree & Naik 1999, p. 180 or Mardia, Kent, & Bibby
1979, p. 348)

C B M

�
1 �1 0

0 1 �1
� 0
@
�11 �12 �13 �14
�21 �22 �23 �24

�31 �32 �33 �34

1
A

0
BB@

1 0 0

�1 1 0

0 �1 1

0 0 �1

1
CCA
:

To see how these C and M matrices achieve testing the interaction contrasts, we
calculate the first element of the matrix CBM, denoted as ŒCBM�11. Using c0

1, the
first row of C, and m1, the first column of M, yields

ŒCBM�11 D c0
1Bm1 D �11 � �12 � �21 C �22:

The resulting collection of these interaction contrasts, when tested simultaneously,
is equivalent to the interaction hypothesis given above.

To obtain test statistics, the MANOVA model is written as a multivariate
regression model. Having parameterized the models in terms of the g group means
�1; : : : ;�g, Eq. (1) can be generalized in the following way:

Y D XB C U;

where Y and U are N � p matrices of the dependent variables and residuals,
respectively, X is the N � g design matrix, and N D P

ni denotes the total number
of subjects. If we define the ni � 1 vector 1 D .1; : : : ; 1/0, then the design matrix of
the example is simply
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X D
0
@

1 0 0

0 1 0

0 0 1

1
A :

One then calculates the so-called hypothesis and error matrices:

H D .C OBM/0ŒC.X0X/�1C0��1.C OBM/

E D .YM/0ŒI � X.X0X/�1X0�.YM/

Although there are several multivariate statistics for testing the general linear
hypothesis, we report Wilks’ lambda only because it corresponds to the likelihood-
ratio test of the fixed effects. Lambda is defined in terms of the above matrices as

ƒ D jEj
jE C Hj ;

and follows under the null hypothesis a Wilks’ lambda distribution with parameters
p � 1, N � g, and g � 1, where N D P

ni (Mardia et al., 1979, p. 163).
In some cases a transformation of ƒ follows an exact F-distribution. Otherwise

a chi-square approximation due to Bartlett and an F-approximation due to Rao is
available (see Rao 1973, p. 555). Statistical packages typically report the F-statistic
only, which follows either exactly or approximately an F-distribution.

Testing the Interaction Hypothesis

From the error and hypothesis matrices for testing the interaction hypothesis one
obtains Wilks’ Lambda as ƒ D 0:14718. This value can be converted to the
likelihood-ratio, Bartlett’s chi-square statistic, or Rao’s F-statistic. The formulas for
the likelihood-ratio and Bartlett chi-square statistics, based on df D 6, are

�2 log ƒN=2 D �2 log 0:1471815=2 D 28:74;

and (for p D 3, q D 2, and t D 14 in Rao’s notation)

�.t � .p C q C 1/=2/ log ƒ D �.14 � .3C 2C 1/=2/ log 0:14718 D 21:08

respectively. It is well known that the Bartlett chi-square statistic provides a better
approximation to the likelihood-ratio statistic. Thus, the likelihood-ratio chi-square
is seen to be too large. Usually statistical software packages report Rao’s F-statistic,
which is generally considered an even better approximation when compared to the
Bartlett chi-square statistic. Rao’s statistic yields F D 5:356. For the data example
this F-value has 6 numerator and 20 denominator degrees of freedom and follows
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Table 2 Test-statistics for
evaluating the interaction
hypothesis

LR-�2 Barlett-�2 Rao-F

Value 28:74 21:08 5:356

df 6 6 6 and 20

p-Value 0:000068 0:0018 0:0019

The distribution of the Rao-F-statistic is
exact for the data example

an exact F distribution. From the p-values of the Bartlett and Rao statistics given in
Table 2, it can be seen that both statistics yield similar conclusions.

This example illustrates that in the MANOVA framework based on ML esti-
mation, there exist test-statistics (Rao’s F or Bartlett’s chi-square) that closely
approximate the nominal sampling distributions. The uncorrected likelihood-ratio
test, however, yields values that tend to be too large resulting in too many true null
hypothesis rejections.

Linear Mixed-Model Analysis

Linear mixed models is a well-established powerful and flexible methodology that
is available today in virtually all general purpose statistical packages (e.g., SAS,
SPSS, R). A linear mixed model specifies a linear function in fixed parameters and
random effects for the mean of the dependent variable. Specifically,

ym D Xmˇ C Zm�m C um;

where Xm and Zm are known matrices and �m is a vector containing the random
effects of the mth subject having zero mean and covariance matrix G, and um is a
vector of random residuals having zero mean and covariance matrix R. In addition,
�m and um are assumed to be independent. The covariance matrix Var.ym/ D †

implied by this model is

† D ZmGZ0
m C R:

Three cases can be distinguished depending on how the covariance of the within-
subject observations † is modelled:

1. The covariation can be modelled in terms of the matrix R only. One possibility
is to let this matrix be arbitrary, as is assumed throughout this article. In this
case, linear mixed models can also be used to analyze multivariate models,
which typically assume an unconstrained within-subject covariance matrix. If
R is unconstrained, a G matrix is not needed. Alternatively, a particular pre-
specified pattern for R can be used. Software packages (e.g., SAS, SPSS)
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typically offer a wide selection of such patterned matrices. Because, for arbitrary
R, the number of covariance parameters increases quickly with the number of
repeated observations, an arbitrary R will be most useful in cases where the
number of repeated observations is relatively small.

2. In social sciences linear mixed models have become very popular because
random effects and random coefficient models, also known as hierarchical linear
models (Bryk & Raudenbush 1992), are special cases of this methodology. In
these models, uncorrelated and homoscedastic residuals are typically assumed.
This implies R D �2I and the within-subject covariation results from the
random-effects covariance matrix G. In random-coefficient models the within-
subject observations are modelled as a linear function of random intercept
and slope parameters. This leads to a parsimonious description of the within-
subject observations because G contains only two variance and one covariance
parameter.

3. If a patterned matrix for R is selected, it is also possible to allow random effects
so that both G and R contribute to the covariation between repeated observations.
Singer (1998) gives examples of this approach.

Likelihood Estimation

If the within-subject observations of a balanced design are assumed to follow a
multivariate normal distribution with arbitrary † D R, then the likelihood-function
on which estimation of model parameters is based is

L D .2�/�Np=2 j†j�N=2 exp

"
�1
2

NX
mD1

.ym � Xmˇ/0†�1.ym � Xmˇ/

#
; (3)

where ym is the p �1 within-subject observations vector, Xm is a p � q design matrix
of rank q, ˇ is a q � 1 fixed-effects parameter vector, and † is the p � p covariance
matrix of the within-subject observations.

If the covariance matrix † is completely known or known only up to a scalar
multiple, e.g. † D �2I, then the distribution of the maximum-likelihood estimate
of ˇ is known exactly (McCulloch, Searle, & Neuhaus, 2008, Sect. 6.3) and the
maximum-likelihood estimates of the fixed-effects parameters are

Ǒ D
 

NX
mD1

X0
m†�1Xm

!�1  NX
mD1

X0
m†�1ym

!
: (4)

As a result, hypothesis testing with respect to the fixed-effects parameters does not
depend on a large sample size. However, if † is not known, it needs to be estimated
from the data.
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Two popular approaches to estimating the covariance parameters are maximum-
likelihood (ML) and restricted maximum-likelihood (REML) estimation. In
maximum-likelihood estimation (3) is maximized with respect to all unknown
parameters, both fixed-effects parameters and covariance parameters. In REML
estimation, the N � 1 vector y is transformed to a set of q new variables Z D Ky,
where K is any .N � q/ � N matrix of full-row rank satisfying KX D 0. The
likelihood-function of the transformed variables Z is commonly referred to as
restricted likelihood or marginal likelihood. For expressions of this likelihood
function, see Kenward and Roger (1997) or Schluchter and Elashoff (1990).
For estimating the covariance parameters, REML estimation is often preferred
(McCulloch et al. 2008, Sect. 6.10).

Regardless of whether the covariance parameters are estimated with ML or
REML, the fixed-effects parameters are estimated from (4), where † is replaced by
its estimate O†. The large sample covariance matrix of the fixed-effects parameters
is then given by

A D
 

NX
mD1

X0
m

O†�1
Xm

!�1
:

In small samples, however, A is a biased estimate of the fixed-effects variability.
One reason for this bias is that the sampling variance of the covariance parameters
contained in O† is not accounted for. As a result, A underestimates (in a matrix sense)
the variability of the fixed-effects parameter estimates (Kenward & Roger, 1997).

Testing hypothesis about the fixed effects parameters can be expressed as

H0 W Cˇ D 0;

where C is an ` � q matrix of rank `. This hypothesis can be evaluated using either
the likelihood-ratio statistic or the Wald test statistic, which is

W D Ǒ 0
C0.CAC0/�1C Ǒ : (5)

In large samples, both the likelihood-ratio and the Wald statistics follow a chi-
square distribution with ` degrees of freedom. In small samples, however, their
exact distributions are unknown. Exceptions occur for balanced data (Schluchter &
Elashoff, 1990). For instance, when the covariance parameters are estimated by ML,
the likelihood-ratio test is equivalent to the Wilks’ Lambda statistic for which an
approximation to the F-distribution due to Rao is exact in certain special cases (Rao
1973, p. 555). According to Roger and Kenward (1993) the multivariate F-test based
on Wilks’ Lambda as implemented in PROC GLM has a better approximation to the
actual distribution of the test statistic than that given for the F-tests as implemented
in PROC MIXED. However, Kenward and Roger (1997) have developed a Wald-
type test statistic that yields an improved approximation to an F distribution in small
samples, when the covariance parameters are estimated by REML.
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This statistic is developed from the expression F D W=`, which in large
samples follows an F-distribution with ` numerator degrees of freedom and infinite
denominator degrees of freedom. In small samples, Kenward and Roger suggest
two modifications of F that yield a test-statistic following approximately an F-
distribution. First, F is scaled by a factor �. Thus, the test-statistic is F� D �F,
where � is typically smaller than 1:0. Second, the denominator degrees of freedom
m have to be estimated. The approach is similar to Satterthwaite (1946), where � and
m are obtained by equating first and second moments of F� to the first two moments
of the F distribution with ` numerator and m denominator degrees of freedom
(McCulloch et al. 2008, p. 168). The resulting formulas for � and m are given
in Kenward and Roger’s equations (7) and (8). However, these formulas are not
suitable for hand calculation. The Kenward-Roger test-statistic is available in SAS
PROC MIXED but not in SPSS MIXED. PROC MIXED reports the denominator
degrees of freedom m, but not the scale factor �.

Testing the Interaction Hypothesis

First, we analyze the interaction hypothesis of the data example using the likelihood-
ratio test when parameter estimation is based on ML. Note that the likelihood-ratio
statistic is not available with REML estimation. Specifically, the model is fit
with and without the interaction. This yields the following log-likelihood values:
�2 log L D 277:62751129with interaction and �2 log L D 306:36936631without
interaction. Thus, the likelihood-ratio statistic based on df D 6 is LR � ¦2 D
306:36936631� 277:62751129 D 28:74. This is exactly the value obtained above
from Wilks’ lambda given in Table 2 (Wright 1998).

While the likelihood-ratio statistic is not available when parameter estimation
is based on REML, the Wald chi-square statistic can be calculated with both ML
and REML estimation. Testing the interaction hypothesis yields the results given in
Table 3.

Comparing the Wald chi-square values of Table 3 with the chi-square values of
Table 2, it can be seen that the Wald chi-square values are even larger than the
likelihood-ratio statistic, which was seen to be too large, when Bartlett’s chi-square
statistic is used as the criterion for comparison. Note that the F values in Table 3
should not be directly compared to Rao’s F in Table 2 because they are based on
different denominator degrees of freedom.

This example illustrates two points: First, the likelihood-ratio statistic is often
preferable to Wald chi-square when the sample size is small. Second, while the

Table 3 Wald-type
chi-square statistics of the
data example using ML and
REML estimation

Estimation ` m Wald F p

ML 6 12 78:72 13:12 0:0001

REML 6 12 62:98 10:50 0:0004

The F values are obtained as W=`
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REML test is somewhat better (closer to the Bartlett chi-square) than the ML test,
there is definitely a need for a small-sample correction of the REML test-statistic,
such as the one suggested by Kenward and Roger (1997).

The Kenward and Roger small sample correction, which is based on REML
estimation, yields F D 8:39 based on ` D 6 and m D 12:018510 with a p-value of
0:0010. Note that the correction has scaled the REML F value of 10:50, see Table 3,
down to 8:39 and adjusted the denominator degrees of freedom slightly. As a result,
the p-value is increased and, thus, approaches the p-values of the Bartlett chi-square
and the Rao F-statistic.

Simulation Study

As the data example has illustrated, the MANOVA approach has excellent
small-sample approximations of the Wilks’ Lambda test-statistics. However, the
MANOVA approach is generally only applicable if the data come from a balanced
design. If the design is unbalanced, mixed models can be used to analyze the
data without the need to eliminate subjects with missing values. Nevertheless, the
balanced case provides a basis on which the mixed-model test statistics can be
evaluated and compared to the MANOVA approach. Because not all statistical
software packages have implemented small-sample corrections in their mixed-
model procedures, it is of interest to examine how the uncorrected Wald statistic
compares to the corrected Wald statistic and the MANOVA statistics.

To investigate the small-sample behavior of the various test statistics we consider
the test for interaction only and compare the following three test-statistics: (1) the
Rao F-approximation to Wilks’ Lambda, (2) the scaled Wald-type F-statistic of
Kenward and Roger (1997) assuming REML estimation, and (3) the default Wald-
type F-statistic as implemented in SAS PROC MIXED or SPSS MIXED using
REML estimation. All simulations are based on a multivariate covariance structure,
that is, the within-subject covariance matrix is unconstrained.

The default Wald-type test, case (3) above, is particularly important because
the options available for selecting a particular statistic are limited across statistical
packages. For instance, SPSS does not offer options for small sample corrections.
The default test for the interaction in SAS PROC MIXED and SPSS MIXED divides
the Wald chi-square in (5) by the interaction degrees of freedom, which for the
balanced design are ` D .g � 1/.p � 1/ and then treats this value as approximately
F-distributed with ` numerator and m D N�g denominator degrees of freedom. The
denominator degrees of freedom correspond to the denominator degrees of freedom
for the group main-effect in a balanced design, which is commonly referred to as the
between-subjects effect. Therefore, we use the label BE in Table 4 below to label
the default Wald-type F-statistic.

Multivariate normally distributed data were simulated using the following three
compound symmetric covariance structures:
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Table 4 Size of interactions hypothesis F-tests across 10,000 replications having
nominal size of ˛ D 0:05

Number Group Test Within-subject correlation
of groups size statistic ` m 0.2 0.5 0.8

g D 3 n D 5 KR 6 12:018510 0.0469 0.0506 0.0520

BE 6 12 0.0879 0.0886 0.0944

WI 6 20 0.0463 0.0497 0.0524

g D 3 n D 10 KR 6 31:943571 0.0477 0.0509 0.0524

BE 6 27 0.0613 0.0655 0.0670

WI 6 50 0.0468 0.0507 0.0531

g D 5 n D 5 KR 12 26:746232 0.0477 0.0471 0.0472

BE 12 20 0.0666 0.0672 0.0667

WI 12 47:915 0.0493 0.0499 0.0503

g D 5 n D 10 KR 12 70:334982 0.0473 0.0510 0.0473

BE 12 45 0.0531 0.0572 0.0521

WI 12 114:06 0.0470 0.0507 0.0479

KR denotes Wald-type F-Test using the Kenward-Roger test-statistic; BE denotes
Wald-type F-Test using denominator degrees of freedom of between-subjects test;
WI denotes MANOVA F-Test of Wilks’ Lambda

†1 D

0
BB@

5:0 1:0 1:0 1:0

1:0 5:0 1:0 1:0

1:0 1:0 5:0 1:0

1:0 1:0 1:0 5:0

1
CCA ; †2 D

0
BB@

5:0 2:5 2:5 2:5

2:5 5:0 2:5 2:5

2:5 2:5 5:0 2:5

2:5 2:5 2:5 5:0

1
CCA ; †3 D

0
BB@

5:0 4:0 4:0 4:0

4:0 5:0 4:0 4:0

4:0 4:0 5:0 4:0

4:0 4:0 4:0 5:0

1
CCA :

The within-subject correlations are 0:2, 0:5, and 0:8. The means in all simulations
were set to zero, so that the null-hypotheses for all effects were true.

Similar to the above data example we assumed a balanced design having three
between-subject groups with five observations in each group and four within-subject
observations. Thus the total sample size N of each replication was 15. In each
replication we calculate the actual size of the tests for interaction for which the
significance level was set to ˛ D 0:05. To broaden the scope of the simulations,
we factorially combined an increased sample size per group, 10 instead of 5
observations with five instead of three groups. The results of all four simulation
studies are contained in Table 4.

The results of the simulation confirm that Rao’s F-approximation to the Wilks’
Lambda statistics available from a MANOVA analysis is very close to the nominal
level of ˛ D 0:05 under all simulation conditions. The same is true for the Kenward-
Roger small sample correction of the Wald test statistic. Therefore, a mixed-model
analysis with small-sample correction or a MANOVA analysis yields virtually
identical results in the balanced case. Of course, if the data are unbalanced, the
mixed-model analysis with small-sample correction should be used.
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If a statistical software package does not provide a small-sample correction
when analyzing a mixed model assuming a multivariate covariance structure, which
corresponds to the BE-test statistic in Table 4, then the test-statistic tends to
reject true interaction null hypotheses too frequently if the denominator degrees
of freedom, m, are small. More specifically, with m D 12 the actual type I error rate
is close to 0:10, roughly double the nominal level of 0:05. As m increases, the actual
type I error rate is closer to the nominal level, see BE-tests for m D 20, m D 27,
and m D 45.

Discussion

We have examined various test statistics available from the MANOVA and mixed-
model approaches for testing the hypothesis of no interaction in a repeated
measures design, with one between-subject and one within-subject factor assuming
an unconstrained within-subject covariance matrix. We restricted attention to the
interaction hypothesis to reduce the complexity of the presentation. In addition, the
interaction hypothesis, do groups change differentially over time, is often the most
interesting research question. With unbalanced designs, a mixed-model analysis is
definitely preferable, because likelihood-based mixed-model estimation does not
rely on balanced data. However, if balanced data are available, the distribution of
Wilks’ Lambda obtained from a MANOVA analysis can be closely approximated
even in small samples using either Bartlett’s chi-square or Rao’s F statistic.
While mixed-model theory is based on large samples, it is well known that both
the likelihood-ratio test statistic and the Wald test statistics of fixed effects are
typically too large, leading to too many true null hypotheses rejections. While SAS
PROC MIXED has implemented a small-sample correction developed by Kenward
and Roger (1997), it is not clear whether the MANOVA approach or the small-
sample corrected Wald-type statistic of the mixed-model approach is preferable with
balanced data.

Our limited simulation study suggests that for a multivariate covariance structure,
the REML estimation together with the Kenward-Roger small-sample correction
yields a test statistic which performs very well and gives virtually identical results
as well-known MANOVA approximations to the Wilks’ lambda statistic. However,
if such a small-sample corrections are not offered by the software used to fit the
mixed model assuming an unstructured covariance matrix (e.g., SPSS MIXED),
then the MANOVA approach is preferable with small samples.
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