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Chapter 3
Modelling of Genotype by Environment 
Interaction and Prediction of Complex Traits 
across Multiple Environments as a Synthesis 
of Crop Growth Modelling, Genetics 
and Statistics

Daniela Bustos-Korts, Marcos Malosetti, Scott Chapman,  
and Fred van Eeuwijk

Abstract  Selection processes in plant breeding depend critically on the quality of 
phenotype predictions. The phenotype is classically predicted as a function of geno-
typic and environmental information. Models for phenotype prediction contain a 
mixture of statistical, genetic and physiological elements. In this chapter, we dis-
cuss prediction from linear mixed models (LMMs), with an emphasis on statistics, 
and prediction from crop growth models (CGMs), with an emphasis on physiology. 
Three modalities of prediction are distinguished: predictions for new genotypes 
under known environmental conditions, predictions for known genotypes under 
new environmental conditions, and predictions for new genotypes under new envi-
ronmental conditions.

For LMMs, the genotypic input information includes molecular marker varia-
tion, while the environmental input can consist of meteorological, soil and manage-
ment variables. However, integrated types of environmental characterizations 
obtained from CGMs can also serve as environmental covariable in LMMs. LMMs 
consist of a fixed part, corresponding to the mean for a particular genotype in a 
particular environment, and a random part defined by genotypic and environmental 
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variances and correlations. For prediction via the fixed part, genotypic and/or envi-
ronmental covariables are required as in classical regression. For predictions via the 
random part, correlations need to be estimated between observed and new geno-
types, between observed and new environments, or both. These correlations can be 
based on similarities calculated from genotypic and environmental covariables. A 
simple type of covariable assigns genotypes to sub-populations and environments to 
regions. Such groupings can improve phenotype prediction.

For a second type of phenotype prediction, we consider CGMs. CGMs predict a 
target phenotype as a non-linear function of underlying intermediate phenotypes. 
The intermediate phenotypes are outcomes of functions defined on genotype depen-
dent CGM parameters and classical environmental descriptors. While the interme-
diate phenotypes may still show some genotype by environment interaction, the 
genotype dependent CGM parameters should be consistent across environmental 
conditions. The CGM parameters are regressed on molecular marker information to 
allow phenotype prediction from molecular marker information and standard physi-
ologically relevant environmental information.

Both LMMs and CGMs require extensive characterization of genotypes and 
environments. High-throughput technologies for genotyping and phenotyping pro-
vide new opportunities for upscaling phenotype prediction and increasing the 
response to selection in the breeding process.

3.1  �Introduction

The target production area for most arable crops spans a range of environmental 
conditions. In the absence of diseases and pests (not considered in this review), local 
environmental conditions are a function of meteorological and soil variables on the 
one hand and management interventions on the other hand. These conditions will 
influence the phenotypic response of individual genotypes, and to some extent gen-
otypes will create their ‘own’ environment, e.g. depending on how they use soil 
water across the season. The functional form by which environmental inputs are 
translated into phenotypes is sometimes referred to as the reaction norm (Woltereck 
1909; Dobzhansky and Spassky 1963; Sarkar 1999; DeWitt and Scheiner 2004). 
Reaction norms depend both on environmental inputs and genetic factors. For a 
given (multi-locus) genotype, the reaction norm is the functional relationship 
between the phenotype and an environmental gradient, and is often linearised in 
some way. Modelling of the reaction norms for a set of genotypes is a central objec-
tive in many breeding and genetic studies. The prediction of the phenotypic response 
as a function of genetic and environmental factors is the basis for decisions that 
involve selection of superior genotypes for a defined environmental range (Hammer 
et al.2006; Chenu et al. 2011; Sadras et al. 2013).

Several important concepts in breeding and genetics have been defined in rela-
tion to the behaviour of reaction norms for a population of genotypes. Firstly, when 
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the reaction norms are non-constant, genotypes are said to show ‘plasticity’ 
(Bradshaw et  al. 1965; DeWitt and Scheiner 2004; Sadras and Lawson 2011). 
Secondly, when the reaction norms for different genotypes are not parallel, this 
indicates the existence of genotype by environment interaction (GEI) (Finlay and 
Wilkinson 1963; van Eeuwijk et al. 2005). An extreme form of GEI is cross-over 
interaction, where the ranking of the genotypes varies with the environmental con-
ditions (Baker 1988; Muir et al. 1992; Crossa et al. 2004). Another important con-
cept in the context of the comparison of reaction norms is adaptation (Wright 1931, 
1932; Finlay and Wilkinson 1963; Romagosa and Fox 1993; Cooper and Hammer 
1996; Cooper 1999; Romagosa et  al. 2013), i.e., some genotypes do better than 
other ones in a defined set of environmental conditions, the reaction norms of the 
adapted genotypes are then always above those of the less adapted. Finally, for a 
given genotype, ‘stability’ measures quantify the variation around the reaction norm 
(Lin and Binns 1988; Piepho 1998). So, while plasticity, GEI and adaptation refer 
to the expected response curve, which may be most simply thought of as the expec-
tation in a linear regression model, stability refers to the variation around this 
expected response at a defined set of environmental conditions (Slafer and Kernich 
1996; DeWitt and Scheiner 2004; van Eeuwijk et al. 2005; van Eeuwijk et al. 2010).

To select genotypes with superior average performance or a given degree of 
adaptation, predictions need to be made for the phenotype as a function of genotype 
and environment. These types of predictions occur at various stages in a breeding 
programme. In the early stages of breeding programmes, seed is limiting and large 
numbers of new genotypes produced as offspring from crosses between well-chosen 
parents are evaluated in one or a few trials, normally in small plots. For the earliest 
stages of a breeding programme, modelling of reaction norms is not possible and 
selection takes place on the mean performance. At intermediate stages, offspring 
populations are tested in a limited number of trials at various locations for one or a 
few years. In those cases when seed is still limiting, it is attractive to use partially 
replicated designs (Cullis et al. 2006; Smith et al. 2006) so that genotypes can be 
tested at a larger sample of environmental conditions. Selection can be done on the 
mean across trials, but there are also possibilities to select for adaptation. At the 
later stages, when there is sufficient seed for individual genotypes, a limited number 
of genotypes can be tested in a large number of trials, with again possibilities for 
selection on wide adaptation to a wide set of environments or narrow adaptation to 
a limited set of environments (Cooper et  al. 2014). Simultaneously, at this stage 
selection on stability is possible.

When a population of genotypes is evaluated in multiple trials, reaction norms 
can be fitted to help in describing the observed data efficiently and to allow some 
form of selection on properties of the reaction norm. To evaluate the predictive qual-
ity of reaction norm models, special cross validation (CV) schemes have been pro-
posed. In CV schemes, the data are subdivided in a training set, used to estimate 
model parameters, and a test set, used to assess prediction accuracy, which is the 
correlation between predicted and observed values  (Meuwissen et  al. 2001). For 
multiple environment data, various CV strategies have been proposed (Crossa et al. 
2010, 2014; Burgueño et al. 2012; Heslot et al. 2012, 2013; Zhao et al. 2012). For a 
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transparent description of CV strategies, it is useful to  introduce some notation. 
When genotypes were tested, evaluated or observed in at least one environment, we 
indicate this by the letter G. When this was not the case we use nG. For environ-
ments the same rule can be defined: E for observed environments, with at least one 
observed genotype, and nE for environments without observations (new environ-
ments). Specific combinations of genotype and environment can have been observed, 
GE, or not, nGE. Following this terminology, the set [G, E, GE] would indicate a 
genotype that was observed and an environment that was observed, while also the 
specific combination of genotype and environment was observed. The combination 
[G, E, nGE] indicates a genotype and environment that have been observed, but the 
specific combination of genotype and environment was not observed. This latter 
situation is typical for unbalanced genotype by environment data.

Figure 3.1 shows four scenarios that are relevant to prediction of phenotypes 
from genotypes and environments as well as to the calculation of accuracies and CV 
strategies. Scheme 1 pertains to situations in which both genotypes and environ-
ments were observed. Specific combinations of genotypes and environments may 

Fig. 3.1  Prediction scenarios, depending on whether genotypes were observed (G) or not observed 
(nG), and on whether environments were observed (E) or not observed (nE)
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be present, [G, E, GE] or absent [G, E, nGE]. Phenotype predictions for Scheme 1 
can be made by simple additive models. The Schemes 2, 3 and 4 are more interest-
ing and we will concentrate on those. Potential strategies for assessment of accuracy 
in genomic prediction are predictions for new genotypes in observed environments 
[nG, E, nGE] (Scheme 2, Fig. 3.1); predictions for observed genotypes in new envi-
ronments [G, nE, nGE] (Scheme 3, Fig. 3.1); and predictions for new genotypes in 
new environments [nG, nE, nGE] (Scheme 4, Fig. 3.1) (Utz et al. 2000; Calus and 
Veerkamp 2011; Burgueño et al. 2012; Schulz-Streeck et al. 2012; Guo et al. 2013; 
Crossa et al. 2014). Scheme 4 of CV obviously represents the strictest type of accu-
racy assessment. (For the notation, whenever nG or nE appears, necessarily nGE 
needs to appear as well, so for Schemes 2, 3 and 4, we can omit the specification 
nGE.)

To produce phenotype predictions for new genotypes (nG) from observed geno-
types (G), it is essential to use statistical models that allow us to connect the new 
genotypes to the observed genotypes. The connections between nG and G can be 
achieved by the inclusion of explicit genotypic covariables in the statistical model, 
and/or by borrowing information via the correlation structure among genotypes, 
defined by their genetic similarities. Analogously, for predicting new environments, 
there needs to be a connection between nE and E via explicit environmental covari-
ables and/or the correlation structure among environments. The latter correlation 
structure is an expression of environmental similarity as estimated from environ-
mental characterizations.

In this chapter, we introduce linear mixed models (LMMs) as our default class of 
statistical prediction models. LMMs can be described as consisting of two parts: (1) 
a fixed part, corresponding to the mean; and (2) a random part defined by variances 
and covariances. Predictions in LMMs can be obtained via the fixed and the random 
part, although the statistical mechanism for prediction in those two cases is differ-
ent. As an illustration, we provide an LMM for the phenotype of genotype i in 
environment j: y x z GE eij j i j i j ij ij= + + + +m a b (van Eeuwijk et al. 2010). The 
fixed part of this model is given by the expectation, or mean, for genotype i in envi-
ronment j: m m a bij j i j i jx z= + + . Here μj is a fixed intercept (mean) for environ-
ment j, xi is a genotypic covariable, for example a molecular marker, αj is an 
environment specific slope corresponding to xi. When xi is a molecular marker, αj is 
an environment specific quantitative trait locus (QTL) effect (Malosetti et al. 2004; 
Boer et al. 2007). For the environments, zj is an environmental covariable, for exam-
ple, a drought stress index, and βi is a corresponding genotype specific slope, for 
example a genotype-specific sensitivity to drought stress.

For prediction via the fixed part, we use genotypic and/or environmental covari-
ables as in classical regression (van Eeuwijk et al. 1996). Besides values for the 
covariable, xi and zj, prediction requires that we have estimates for the slopes, αj and 
βi. These can be obtained by fitting a model for the mean to training data, where we 
need to select suitable genotypic and/or environmental covariables. For prediction, 
we combine the estimated slopes in the training set with the values for genotypic 
and/or environmental covariables in the test set.
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The random part of the model is determined by the terms GEij  and eij , the first 
term representing the (residual) genotypic effect of genotype i in environment j, the 
second term containing experimental (block) and measurement errors. (Random 
terms in model formulations are underlined.) The random terms are assumed to 
have a Gaussian distribution, with expectation zero and proper variance-covariance 
structures. The important random term for prediction purposes is GEij . For this 
term, the correlations among genotypes on the one hand and the correlations among 
environments on the other hand determine the predictive properties of the 
LMM. Thus, for predictions via the random part of the LMM, correlations need to 
be estimated between observed and new genotypes (Scheme 2), observed and new 
environments (Scheme 3), or both (Scheme 4). Correlations among genotypes can 
be estimated from genotypic covariables, including molecular markers, and pedi-
gree data, or a combination of genotypic covariables and pedigree. Correlations 
among environments follow from environmental covariables. Although important, 
we will largely ignore the error term eij  in the remainder of this chapter. See Smith 
et al. (2001a) and Smith et al. (2005) for discussion on models for eij .

The realization of the predictive potential of LMMs depends on the selection of 
genotypic covariables and environmental covariables, for the fixed part as well as 
for the random part. Physiological knowledge on genotypes and environments can 
help in the choice of covariables for inclusion in LMMs. For example, knowledge 
on the structure and use of crop growth models (CGMs) can help in the dissection 
of complex traits (Chapman et  al. 2002b; Edmeades et  al. 2004; Reynolds et  al. 
2009a), thereby suggesting genotypic and environmental covariables for inclusion 
in predictive LMMs. A CGM can suggest writing a complex target trait as a function 
of a set of simpler component traits and a set of environmental input variables (Yin 
et al. 2003, 2004; Chenu et al. 2008; Hammer et al. 2010). These component traits 
are traditionally related to physiological parameters in CGMs (see Chaps. 4, 5, 6, 7, 
8, and 9 of this book). The CGM produces GEI as an emerging property of the inter-
action between the physiological parameters and the environmental information 
(Chapman et al. 2002a, 2008; Hammer et al. 2002, 2006, 2010). Interpreting the 
CGM as a function that transforms physiological parameters and environmental 
inputs into a complex trait, we can understand that when the CGM can be approxi-
mated by a linear function, the component traits may be entered as genotypic covari-
ables and the environmental inputs as environmental covariables in an LMM for the 
complex trait.

In Sect. 3.2, we will discuss how statistical LMM models can be used to predict 
phenotypic responses for new genotypes in observed environments (Scheme 2; [nG, 
E, nGE]), observed genotypes in unobserved (new) environments (Scheme 3; [G, 
nE, nGE]), or new genotypes in new environments (Scheme 4; [nG, nE, nGE]). In 
Sect. 3.3, we will discuss the use of CGMs to predict the performance of genotypes 
for environments in which they were not tested. Section 3.4 will discuss the contri-
bution of high throughput genotyping and phenotyping to models for phenotype 
prediction. Strategies to group genotypes and environments will also be discussed 
in this Section. We finish with some concluding remarks in Sect. 3.5.
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3.2  �Statistical Models to Predict Phenotypic Performance

Section 3.2.1 presents statistical models for predicting the phenotype of genotypes 
that were so far not tested in the environments for which we want to predict, although 
we do have information about these environments from phenotypic evaluations for 
other genotypes [nG, E, nGE], Scheme 2  in Fig.  3.1. The connection between 
observed genotypes (G) and not observed genotypes (nG) will come from explicit 
genotypic covariables and/or the genetic correlations among genotypes. Section 3.2.2 
describes statistical models for predicting phenotypes in environments that were not 
used to test genotypes, although we do have phenotypic information about these 
genotypes in other environments [G, nE, nGE], Scheme 3 in Fig. 3.1. The connec-
tion between observed environments (E) and unobserved environment (nE), will 
result from the inclusion of explicit environmental covariables and/or the correla-
tions among environments calculated on the basis of environmental characteriza-
tions. Section 3.2.3 discusses the most challenging prediction scenarios; predicting 
the phenotype of genotypes that were not tested so far, for environments that neither 
were tested [nG, nE, nGE], Scheme 4 in Fig. 3.1. Here, both explicit genotypic and 
environmental covariables are required for prediction.

3.2.1  �Statistical Models to Predict Performance of Unobserved 
Genotypes in Observed Environments [nG, E, nGE]

Quantitative traits are determined by many loci, with allelic effects varying in mag-
nitude. Specific genomic regions significantly associated with phenotypic variation 
may be identified as quantitative trait loci, or QTLs (see Chap. 1 of this book by 
Baldazzi et al.). Besides QTLs, or instead thereof, many other loci with small addi-
tive effects (polygenic effects) can contribute to phenotypic variation. None of these 
loci with small effects might by itself have an important phenotypic effect, but these 
loci together can still make a sizeable contribution to the phenotype. Model 3.1, 
includes loci with relatively large quantitative effects (QTLs) together with loci that 
have small effects.

	

y x G eij
t

j
q

Q

iq jq ij ij= + + +
=
åm a

1 	
(3.1)

In the multi-environment Model 3.1, yij
t  represents the target trait, t, (for example, 

yield) of genotype i in environment j, μj is a fixed intercept term for each environ-
ment, xiq is a genotypic covariable that represents DNA information of genotype i at 
QTL position q, and αjq is the additive effect of the fixed QTL q in environment j. 
Gij  represents the residual genetic effect (polygenic effects) for genotype i in envi-
ronment j. The matrix with elements Gij , Gij{ } , has a multivariate normal distribu-
tion with zero mean, 0, and, as we will see later, a highly structured variance-covariance 
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matrix Σ; G MVNij{ } ( )~ 0,SS . (For notational simplicity, we will omit the dimen-
sions of the various matrices.) Σ defines the genetic variances and covariance for 
any two pairs of observations, yij

t  and yi j
t
’ ’  and depends on the genetic and environ-

mental similarities of the two genotypes, i and i’, and the two environments j and j’. 
The term eij  stands for a non-genetic residual, e MVNij{ } ( )~ 0,R , with R often 
allowing for specific residual variances per environment.

A simplification of Model 3.1 omits the genetic residual, Gij , and is appropriate 
when QTLs account for all of the genetic variation:

	

y x eij
t

q

Q

iq jq ij= + +
=
åm a

1 	
(3.2)

When Model 3.2 fits the data well, the performance of the unobserved genotype i in 
environment j can be predicted as;

	

ˆ ˆ ˆy x
ij
t

j
q

Q

iq jq= +
=
åm a

1 	

Compared with single-environment QTL models, multi-environment QTL models 
like Model 3.1 or Model 3.2 are more powerful in picking up QTLs and generally 
explain a larger amount of the genetic variance (Piepho 2000; Piepho and Möhring 
2005; Mathews et al. 2008; Alimi et al. 2013). It has been shown that jointly consid-
ering multivariate phenotypes (i.e., the phenotype in multiple environments) allows 
a substantially greater separation between genotype classes than when considering 
univariate phenotypes (i.e., phenotype in a single environment) (Stephens 2013).

Another simplification of Model 3.1 occurs when we assume that there are no 
large discrete genetic effects in the form of QTLs that drive phenotypic differences, 
but that genetic effects are exclusively of a polygenic nature. A prediction model 
that generalizes the single environment genomic best linear unbiased prediction 
(G-BLUP) approach of (Meuwissen et al. 2001) to multi-environment prediction 
can be defined as:

	
y G eij
t

j ij ij= + +m
	

(3.3)

In Model 3.3, the distribution of the polygenic effects Gij  is G MVNij{ } ( )~ 0,SS . 
Since Σ is a function of the genetic and environment similarities, the larger the simi-
larity of unobserved genotypes with observed genotypes, and the larger the similar-
ity of observed environments with unobserved environments, the more information 
is available for phenotype prediction, and the higher is the prediction accuracy 
(Crossa et al. 2006; Albrecht et al. 2014). Analogous to the classical partitioning of 
genetic and environmental effects, the covariance matrix Σ can be partitioned into a 
‘genotypic’ variance-covariance matrix (ΣG), and an ‘environmental’ variance-
covariance matrix (ΣE), such that SS SS SS= ÄG E , i.e., the Kronecker product of the 
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genotypic variance-covariance matrix and the environmental variance-covariance 
matrix (West et al. 2006; Smith et al. 2005). It is important to realize that although 
ΣE is called an ‘environmental’ variance-covariance matrix, ΣE reflects genetic cor-
relations among environments, and so plays a role in forming predictions in the 
multi-environment context. Examples of commonly used models for these two 
covariance matrices are given below.

ΣG can be modelled as SS G = A , where A corresponds to the expected additive 
relationship matrix calculated from the coefficients of coancestry estimated from 
the pedigree, or to the realized additive relationship matrix estimated from molecu-
lar markers (Piepho et al. 2008). If the one step prediction with statistical models 
uses pedigree information, Gij  is commonly called “breeding value” (Falconer and 
Mackay 1996; Piepho et al. 2008). On the other hand, if the prediction uses molecu-
lar marker information, it is called “genomic estimated breeding value” (Burgueño 
et al. 2012; Piepho 2009).

In the multi-environment context, genotypic variances tend to change across 
environments with consequent changes in genotypic correlations for pairs of these 
environments. A flexible variance-covariance structure across environments ΣE, is 
required to achieve higher prediction accuracies. One flexible and parsimonious 
model for variances and covariances/correlations across environments is the factor 
analytic model (FA) (Table 3.1) (Smith et al. 2001a, 2005; Mathews et al. 2008).

The decision about when it is convenient to use Models 3.1, 3.2, or 3.3 depends 
on the genetic architecture of the target trait. If the trait is regulated by a few QTLs 

Table 3.1  Variance-covariance models for the environmental covariance (ΣE), ordered by 
increasing number of parameters. For simplicity, these examples assume three environments 
(m=3)

Name
Number of 
parameters Structure

Identity 1 s
s

s

2

2

2

0 0

0 0

0 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Compound symmetry 2 s j j j
j s j j
j j s j

2

2

2

+
+

+

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Factor analytic, order 1 2 m l y l l l l
l l l y l l
l l l l l y

1
2

1 1 2 1 3

2 1 2
2

2 2 3

3 1 3 2 3
2

3

+
+

+

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Unstructured m(m+1)/2 s s s
s s s
s s s

1
2

12 13

21 2
2

23

31 32 3
2

é

ë

ê
ê
ê

ù

û

ú
ú
ú
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with large effects, a QTL model (Model 3.2) might provide the largest prediction 
accuracy. On the other hand, traits like grain yield, which are regulated by many 
genes with small effects might not show any significant QTL that can be included in 
Model 3.2. In this case, Model 3.3, whose predictions we will call GE-BLUPs 
because they can account for GEI, should integrate the large number of small addi-
tive effects into a multi-environment prediction model. For the intermediate case 
when traits have a few QTLs with large effects, and many other loci with very small 
additive effects, Model 3.1 is adequate. Bernardo (2014) suggested that it is conve-
nient to consider QTLs (or genes) as fixed effects when they account for more than 
10 % of the genetic variance. The simulations made by Bernardo (2014) show that 
the most adequate model depends on the genetic architecture of the trait, i.e., on the 
number of QTLs and the magnitudes of the QTL effects.

3.2.2  �Statistical Models to Predict Performance of Observed 
Genotypes in New Environments

After genotypes have been phenotyped in some environments, it can be useful to 
predict their performance in other environments that were not used for evaluation. 
New environments could, for example, include future trials at known locations, 
which implies that none of the genotypes were observed in that environment yet [G, 
nE, nGE]. Thus, the correlation between observed environments and the predicted 
environments cannot be estimated from phenotypic data, or direct observations on 
the complex trait. In this case, we may use environmental covariables, like meteo-
rological, soil or management covariables, as predictors in models for the mean or 
define correlations between environments in models for the variance-covariance 
structure.

Models for the mean that can be used to predict phenotypes in unobserved envi-
ronments usually correspond to factorial regression models that incorporate envi-
ronmental covariables. These models explicitly estimate the sensitivity of the QTL 
to environmental covariables (Model 3.4) (Campbell et al. 2004; Boer et al. 2007; 
Laperche et al. 2007; Malosetti et al. 2013; Romagosa et al. 2013). Hence, model 
parameters can have biological interpretation.

	

y x z G eij j
q

Q

iq q q j ij ij= + +( )+ +
=
åm g d

1 	
(3.4)

In Model 3.4, the additive effects (αjq) of the fixed QTL q in environment j of Model 
3.1 are replaced by a regression formulation, g dq q jz+( ) , in which the effect of 
QTL q is a function of the environmental covariable zj, and so changes over environ-
ments. When the covariable zj is centered, the intercept term, γq, corresponds to the 
effect of the QTL in the average environment, while the slope δq corresponds to the 
sensitivity of the QTL q to the environmental covariable zj. Although Model 3.4 does 
not explicitly restrict the environmental covariables to a particular range, it should 
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be considered that crops respond differently to covariables in the environmental 
extremes (e.g., too cold or too warm). So, the sensitivity of the genotype to the envi-
ronmental covariables cannot be assumed constant outside the range of environ-
ments in which δq was estimated. A second issue that needs to be taken into account 
is that models like Model 3.4 do not make explicit in which phenological stage the 
environmental covariable is considered. Since the sensitivity of a crop to the envi-
ronment varies throughout the development, environmental covariables included in 
the prediction model need to coincide with the developmental timing used to esti-
mate the sensitivity.

For example, Boer et al. (2007) analysed grain yield and grain moisture for F5 
maize testcross progenies evaluated across 12 environments in the U.S. corn belt. 
Since QTLs did not have a constant effect across environments (QTL by environ-
ment interaction), QTL effects were modelled conditional on longitude and year, 
both consequences of temperature differences during critical stages of the develop-
ment. This factorial regression model allows prediction of yield and moisture at any 
location provided that temperatures during specific developmental stages are con-
tained within those of the observed environments.

A second example is shown by Malosetti et  al. (2004), who identified QTLs 
conferring differential sensitivity of grain yield to temperature during heading in a 
double haploid barley population. In a model like Model 3.4, the average daily tem-
perature range during heading was the most important environmental covariable 
explaining differential QTL expression, i.e., the QTL allele from the parental line 
Steptoe conferred an extra grain yield of 0.112 t ha−1 for each extra degree Celsius 
during heading. Hence, yield could be predicted for unobserved environments if the 
average temperature for such environments was available. In that sense, Model 3.4 
is closer to CGM than Model 3.1 because Model 3.4 explicitly represents environ-
ments on a continuous scale.

The second way to use environmental information for prediction is using envi-
ronmental covariables to estimate similarities (covariances) among environments, 
analogous to the way molecular markers are used to characterize similarity among 
genotypes. If environmental covariables are considered as an indicator of environ-
mental similarity, they can be used to estimate the environmental variance-
covariance matrix in Model 3.3. Hence, SS WWE = , where Ω is the variance-covariance 
matrix that accounts for the similarity in environmental conditions. The larger the 
covariance between observed and unobserved environments, the more information 
can be shared to make the predictions. The genotypic covariance ΣG can be mod-
elled as explained in Sect.  3.2.1 by imposing an additive relationship matrix to 
define SS G = A , where A can be estimated from the pedigree and/or from molecular 
markers.

Using multiple climatic variables to model the environmental covariance, as pro-
posed by Jarquín et al. (2013) shows promise as a tool to predict genotypic perfor-
mance in unobserved environments. However, many environmental covariables are 
correlated and not all need to be included in the model. Mechanistic CGMs such as 
APSIM have shown to be a good integrative tool to select subsets of variables that 
characterize environmental similarity (Chapman2008).
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3.2.3  �Statistical Models to Predict Performance of Unobserved 
Genotypes in New Environments

Section 3.2.1 presented models that used genotypic covariables to predict the phe-
notype on unobserved genotypes. Section  3.2.2 described how environmental 
covariables can be used in factorial regression models for prediction, and how to 
estimate the environmental covariance of a random term, necessary for prediction 
along the random part of an LMM. This Sect. 3.2.3 will combine both situations, 
aiming to predict the phenotype of genotypes that have not been tested yet for envi-
ronments that have not been used for evaluation.

When predicting unobserved genotypes in new environments, both genotypic 
and environmental covariables are needed. In factorial regression-type of models, 
prediction of unobserved genotypes is possible, provided that the additive effects of 
each QTL allele can be estimated from the tested genotypes. The phenotypes of 
unobserved genotypes can also be predicted in new environments, provided that the 
sensitivity of the QTL effects along an environmental gradient (e.g., temperature), 
can be estimated from observed environments. In the example of Malosetti et al. 
(2004) presented in Sect. 3.2.2, phenotype prediction is possible for any environ-
ment provided the temperature remains within the range used to estimate the QTL 
sensitivity to temperature.

In models that entirely rely on the use of the variance-covariance structures 
imposed on genotypes and environments, prediction of unobserved genotypes in 
new environments is possible via the reconstruction of the full covariance matrix Σ 
from its components, ΣG and ΣE. For the genotypic part, this runs via explicit pedi-
gree information or information from genotypic covariables (molecular markers), 
while for the environmental part correlations between environments can be esti-
mated from environmental characterization (temperature, precipitation, soil charac-
teristics, etc.). Note that while in Sect.  3.2.1, ΣG was calculated from genotypic 
covariables, and ΣE was estimated from the phenotypic data on the target trait, here 
both ΣG and ΣE are estimated from explicit covariables.

3.3  �Crop Growth Models to Predict Genotypic Performance

The algorithms in a CGM predict the target trait (e.g., grain yield) as a non-linear 
combination of underlying intermediate phenotypes (also commonly called “com-
ponents”, e.g., biomass), which are calculated indirectly from a set of inputs to the 
CGM that typically comprise environment (soil, weather, and nutrients) data and 
CGM parameters derived from prior experimentation. GEI in the target trait is then 
a consequence of the interactions between the intermediate phenotypes (Chapman 
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et al. 2003; Tardieu 2003; Tardieu et al. 2005; Chenu et al. 2009; Makumburage 
et al. 2013).

Considering the CGM in reverse, we can state that the value of the target trait is 
able to be ‘dissected’ into these intermediate phenotypes (See Chap. 7 of this book 
by Hammer et al.). Although these intermediate phenotypes are likely to show less 
GEI than the target trait, they still correspond to an integration of genotypic 
responses to environmental conditions (e.g., they may show GEI). Ideally, a com-
plete dissection of the target trait would comprise of a set of CGM input parameters 
that depend only on the genotype (for example, a genotypic sensitivity of develop-
ment rate to the air temperature), and environmental covariables (Model 3.4), i.e., 
CGM parameters that do not show GEI (Slafer 2003; Yin et al. 2003; Bertin et al. 
2010; Alam et al. 2014). The target trait for genotype i in environment j can be writ-
ten as a function of CGM parameters and environmental inputs as follows:

	
y f dt eij
t

i
P

j ij= +ò ( ; )y z
	

(3.5)

In Model 3.5, yij
t  represents the target trait for genotype i in environment j, which is 

modelled as a function of multiple CGM parameters, yi
P  (with P for parameter in 

the  superscript), and multiple environmental inputs, zj, integrated over time 
(Fig. 3.2). The function f (;) embodies the algorithms that transform CGM parame-
ters into intermediate phenotypes as well as the interactions between the intermedi-
ate phenotypes that lead to the target trait.

A commonly-studied CGM is APSIM, which currently has modules for several 
crops, e.g., wheat, canola, sorghum (Keating et al. 2003; Holzworth et al. 2014). In 
the case of APSIM-Wheat, growth (biomass accumulation) and development (phe-
nological events, the functionality of plant structures or appearance of new struc-
tures) are calculated on a daily basis (Wang et al. 2002). The final phenotype (e.g., 
grain yield) is calculated as a function of a series of intermediate phenotypes. 
Examples of intermediate phenotypes are biomass, grain number and radiation 
interception on any given day or accumulated to a given day (Fig. 3.2). Intermediate 
phenotypes depend on CGM parameters that are genetically determined, and which 
modulate the phenotypic response to environmental covariables. Examples of CGM 
parameters are vernalization requirement and sensitivity to photoperiod, which are 
regulated by the VRN and the PPD alleles (Zheng et al. 2013).

CGM parameters, yi
P , for phenotyped genotypes can be directly observed, esti-

mated or calculated from the phenotypic measurements. However, given that CGM 
parameters depend on the genotype, they can also be predicted from genotypic 
covariables, i.e., molecular marker information. When we can identify the genetic 
basis of physiological parameters in terms of underlying QTLs, or, equivalently, 
when we can predict the physiological parameters from marker information, we can 
effectively predict the target trait from marker information and environmental inputs 
provided the intermediate traits and their interactions have been correctly identified 
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and implemented in the CGM. Hence, predicted CGM parameters enable to predict 
the phenotype of genotypes that have not been observed yet. The prediction for 
individual CGM parameters ( yi

P ) would look like Model 3.6:

	

y x G ei
P

q

Q

iq q i i= + + +
=
åm a

1 	
(3.6)

Like Model 3.1, Model 3.6 can be modified to include (i) only the QTLs, in a QTL 
model (Model 3.7) or (ii) only the polygenic effects (Gi ) , in a genomic prediction 
model with the random effects Gi  being structured by a genetic relationship matrix 
(Model 3.8).

Fig. 3.2  Representation of the information flow in a CGM. The black box corresponds to CGM 
parameters that are dependent on the genotype, the white box represents environmental covariables 
and the grey box represents the intermediate phenotypes. Examples of different crops/traits/models 
are given for each category
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y x ei
P

q

Q

iq q i= + +
=
åm a

1 	
(3.7)

	
y G ei
P

i i= + +m
	

(3.8)

If more than one CGM parameter is to be predicted from molecular markers and/or 
pedigree information, Models 3.6, 3.7, and 3.8 could also be expanded to a multi-
trait prediction model that takes into account possible correlations among the CGM 
parameters, in a model that is similar to the multi-environment Model 3.1. Modelling 
traits simultaneously allows to gain power for QTL detection and to detect QTLs 
with pleiotropic effects (Alimi et al. 2013; Stephens 2013).

Predictions for multiple CGM parameters, ŷ
i

P
, can be used as input in Model 3.5 

to calculate intermediate phenotypes, and produce the prediction for the target trait, 
m̂

ij

t
, in Model 3.9.

	
ˆ ˆ( ; )m
ij

t

i

P

jf dt= ò y z
	

(3.9)

In Model 3.9, the prediction accuracy of the target trait depends on the accuracy of 
the prediction of each of the components, and on the ability of the functions that 
transform CGM parameters into intermediate phenotypes to correctly describe the 
processes leading to the target trait.

CGMs with known/predicted genotypic parameters are a potentially useful tool 
to understand which traits can be advantageous in a given environment, and also to 
identify management practices that contribute to improved crop productivity (Yin 
et al. 2004; Hammer et al. 2006; Reynolds et al. 2009b; Harrison et al. 2014). In the 
context of adaptation to climate change, Zheng et al. (2012) modelled how phenol-
ogy of current wheat varieties would influence their adaptation to future environ-
ments, which are expected to show different CO2 and precipitation levels. In their 
second paper, Zheng et al. (2013) demonstrated that the flowering time of spring 
wheat genotypes can be modelled using the composition of their VRN1 and Ppd-D1 
alleles together with responses derived from a single experiment with four environ-
ments: +/− treatments for vernalisation and extended photoperiod. Allelic combina-
tions of loci Vrn-A1, Vrn-B1, Vrn-D1, and Ppd-D1 were used to predict 
APSIM-wheat parameters of a population of genotypes. From a single experiment 
(replicated in 2 years), they validated the model with more than 250 wheat geno-
types across the entire Australian wheat belt, and were able to simulate flowering 
time for any weather records in the wheat belt. These conclusions can be useful to 
guide breeders in the process of determining which alleles should be considered in 
the selection process.

Bogard et al. (2014) extended this approach further to model the drivers of flow-
ering time in winter wheat as functions of major genes as well as SNPs derived from
association mapping, i.e., allowing prediction of unknown genotypes (but with 
known genes and SNPs) in new environments. In both Zheng et  al. (2013) and 
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Bogard et  al. (2014), the predictions for heading date using the gene-based pre-
dicted parameters corresponded well with the observed dates to heading. Attributes 
that contributed to a successful phenotype prediction were (i) a well-defined CGM 
for heading date (Slafer and Rawson 1994), (ii) a well-defined set of environmental 
covariables with corresponding CGM parameters, and (iii) a genetic basis of the 
CGM parameters (Snape et al. 2001).

The same approach has also shown to be successful for other more complex and 
less heritable traits such as grain yield under drought. For example, Chenu et al. 
(2009) used APSIM to model the impact of QTLs controlling the intermediate traits 
leaf and silk elongation on maize grain yield. The intercept and slope of these inter-
mediate traits in response to meristem temperature, evaporative demand and soil 
water deficit were genotype-dependent (Reymond et al. 2003, 2004).

Unfortunately, the identification of CGM parameters is sometimes less straight-
forward for complex traits like grain yield. Yin et al. (2000) showed an example in 
barley with a successful estimation of QTL effects for the CGM parameters, but 
with a poor prediction of grain yield. The correlation between the observed CGM 
parameters, i.e. phenotype of CGM parameters, and the QTL predictions of the 
same parameters was high. However, the correlation between yield predictions of 
the CGM, whether phenotype based or QTL-prediction based, and observed yield 
was not high. The cause of the poor predictions did not reside in the fact that the 
CGM parameters were replaced by predicted parameters from the QTL model, but 
in the fact that the CGM was unable to predict yield from its component traits. 
Similar work has been recently reported by Gu et al. (2014) on grain yield of rice 
crop, using a new CGM, which gave more promising results. However, efforts to 
improve CGM for predicting complex traits like grain yield are still strongly needed.

The example from Yin et al. (2000) shows that although the integrated statistical 
and CGM modelling allows for a larger flexibility, it might result in more complex 
and fragile models, because the approach can break down at the level of the estima-
tion of the CGM parameters and at the level of the integration of these CGM param-
eters to calculate the intermediate phenotypes. However, even if the CGMs are not 
fully able to predict the target trait, it is valuable to develop models of intermediate 
traits as well as for yield per se. Breeders can still be interested to recombine lines 
with high levels of proven intermediate traits with the expectation that these should 
on average result in better yield when further crossing and selection is done, i.e., 
because the selection on intermediate traits should already have improved part of 
the physiological adaptation pathway (Cooper et al. 2014). If breeders select mainly 
on yield per se, then it may be less likely that selected genotypes will also have high 
radiation use efficiency (RUE) or transpiration efficiency (TE) or traits for which 
genetic variation was not expressed in the given selection environment.

The examples of Zheng et  al. (2013), Bogard et  al. (2014), and Chenu et  al. 
(2009) show that CGMs are a tool to integrate complex information from the geno-
typic, organ, and crop level (see also examples reviewed in Chap. 9 of this book by 
Yin et al.). Dissection of a target trait into component traits at different levels of 
biological organisation allows phenotype prediction for the target trait in the face of 
genotype by environment and QTL by environment interactions for that same trait. 
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Hence, the combined approach of statistical QTL modelling and CGM is an 
alternative to model complex GEI interactions (Yin et al. 2004).

3.4  �Further Considerations

3.4.1  �Classification of Environments

Sections 3.2.2 and 3.2.3 presented models to predict the performance of genotypes 
in new environments ([G, nE, nGE] or [nG, nE, nGE]). However, if there are repeat-
able patterns that allow to classify environments, these patterns might help to reduce 
the complexity of ΣE and thereby improve the accuracy of prediction.

One example of repeatable patterns that often justifies to group environments is
the presence of regions. Here, we understand ‘regions’ (or mega-environments) as a 
group of locations where genotypes perform consistently across years (Bull et al. 
1992; Gauch and Zobel 1997; Basford and Cooper1998; Yan et  al. 2000). 
Environments inside the same region are expected to be more homogeneous in 
terms of genotypic ranking, i.e., less GEI inside the regions (e.g. Atlin et al. 2000; 
Burgueño et al. 2008). In dryland production areas, other groupings may relate to 
characteristics of the soil (shallow/deep, low/high water holding capacity) and the 
management of the crop (sowing date, row spacing arrangement, etc.). De la Vega 
and Chapman (2010) showed how multiple component traits related to yield for a 
complex set of mega-environments in Argentina.

If locations can be grouped into regions, it is generally convenient to breed for 
specific adaptation to those regions, instead of broad adaptation across regions 
(Atlin et al. 2000, 2011). In this case, predictions can be produced for the whole of 
a region, or for new environments within a region. Precision of yield estimates 
might still benefit from the information of neighbouring regions by means of the 
covariance structure in a mixed model (Piepho and Möhring 2005; Kleinknecht 
et al. 2013).

When phenotypes are not available for all the locations of interest, environmen-
tal covariables can also be used to classify environments, and reduce the complexity 
of ΣE. Classifying environments into regions on the basis of environmental similar-
ity, potentially allows to (i) predict new environments (as discussed in Sects. 3.2.2 
and 3.2.3), and also (ii) define the target population of environments, where a par-
ticular genotype is to be grown (Chapman et al. 2000a; Hammer et al. 2002; Chenu 
et al. 2011). CGMs are a powerful tool to identify relevant environmental factors 
(Chapman 2008; Messina et al. 2011), and the periods when the crop is most sensi-
tive to those factors (Chenu et al. 2013). For example, considering drought seasonal 
patterns could give a better indication of the environment types, instead of the total 
rainfall per year (Chapman et al. 2000a, b).

A further application of explicit environmental characterization is to weight 
environments based on their expected relevance for future years (Podlich et  al. 

3  Modelling of GxE Interaction and Prediction of Complex Traits…

http://dx.doi.org/10.1007/978-3-319-20562-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-20562-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-20562-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-20562-5_2#Sec4


72

1999). This means that environmental conditions that are more likely to occur 
receive more weight when doing the predictions, compared to less likely environ-
mental conditions.

3.4.2  �Population Structure

Sections 3.2 and 3.3 discussed different models to predict phenotypes of unobserved 
genotypes using molecular marker information. In those sections, ΣG had the struc-
ture of the genomic relationship matrix, without explicitly specifying sub-
populations. However, genetic relatedness between training and test sets largely 
influences prediction accuracy (Windhausen et al. 2012; Riedelsheimer et al. 2013). 
Hence, when there is strong population structure, it is necessary to define whether 
prediction will be done among or within populations. When predictions are limited 
to specific sub-populations, accuracy is commonly larger than when predicting 
across sub-populations, or when correcting for population structure (Daetwyler 
et al. 2012; Guo et al. 2014).

Methods to consider population structure in the model for genomic prediction 
can be based on the incorporation of the eigenvectors of the genotype by molecular 
marker data matrix (Patterson et al. 2006; Janss et al. 2012). Another option is to 
consider population structure in the design of the cross-validation scheme, for 
example by a stratified cross-validation design conditional on known population 
structure to ensure that each sub-population is equally represented in the training 
and validation sets (Albrecht et al. 2014; Guo et al. 2014).

3.4.3  �Next Generation Sequencing

With the recent development of next generation sequencing technologies, genotyp-
ing costs have been largely reduced, allowing improving the genotypic characteriza-
tion of important crops as barley, wheat and potato (Poland et al. 2012b; Uitdewilligen 
et al. 2013). In sequence-based genotyping approaches, marker discovery and geno-
typing are completed at the same time, allowing for faster genotyping processes 
(Poland and Rife 2012). The shorter time needed is thanks to the combination of 
restriction enzymes, sequencing, imaging, and genome alignment and assembly 
methods (Metzker 2010; Elshire et al. 2011).

These technologies permit the genotyping of larger populations of plants with 
higher marker density and increased mapping resolution (Varshney et  al. 2014). 
Larger marker density increases the chances of including causal loci that otherwise 
would not have been considered in models for phenotype prediction (Spindel et al. 
2013). More loci in the model means increased genomic prediction accuracy 
(Poland et al. 2012a). However, models for phenotype prediction have diminishing 
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returns on additional markers once the point of “marker saturation” has been 
reached, which depends on the genetic diversity of the population (Jannink et al. 
2010; Heffner et al. 2011; Poland et al. 2012a).

Other questions regarding larger numbers of markers that remain not fully 
answered are: (i) how imputation of missing genotype data or haplotype inferences 
may affect prediction accuracies when genotyping by sequencing is used (Crossa 
et al. 2013), (ii) how to reduce the computational time needed because of the large 
number of markers (Verbyla and Cullis 2012), and (iii) how to improve model diag-
nostics, distinguishing between loci with large effects, and loci with smaller effects 
(Bernardo 2014).

3.4.4  �High-Throughput Phenotyping to Input to Models 
for Phenotype Prediction

Mixed models and CGM discussed in Sects. 3.2 and 3.3 are promising tools for 
phenotype prediction. However, these models require the phenotyping of multiple 
genotypes, traits and environments. With the reduction of genotyping costs, evaluat-
ing the populations phenotypically has become the limiting factor (Cobb et al. 2013).

High-throughput phenotyping platforms can either measure the target trait 
directly, or measure one or more traits that are correlated with the target trait. The 
use of CGMs allows estimation of hard-to-measure traits such as seasonal water 
use, given inputs of leaf area over time and canopy thermal characteristics, for 
example. Correlated traits measured by high-throughput phenotyping platforms can 
be used as inputs in models like Model 3.1. To do so, traits must: (i) have high 
genetic correlation with the target trait in the target environment, (ii) be less affected 
by environment (have a larger heritability) than the target trait, and (iii) provide an 
easy and reliable measurement, which is less expensive than the target trait itself 
(Bänziger 2000; Araus et al. 2008; Prasanna et al. 2013). When measuring corre-
lated traits, high-throughput phenotyping platforms could be particularly useful for 
obtaining detailed non-destructive measurements of plant characteristics that col-
lectively provide reliable estimates of trait phenotypes (Cabrera-Bosquet et  al. 
2012; Prasanna et al. 2013; Cooper et al. 2014).

High-throughput phenotyping platforms are commonly used under two scenar-
ios: (i) precise phenotyping under controlled environments that aim at representing 
different levels of environmental quality, and (ii) phenotyping in environments that 
correspond to a sample of environments in the field. The main advantage of con-
trolled environments is that screening protocols can be more easily standardized, 
ensuring that plants are exposed to fairly reliable levels of stress. Hence, controlled 
environments offer the stability to search for attractive phenotypes or genotypes in 
a specific type of environment, e.g. drought stress (Cobb et  al. 2013; Passioura 
2012).
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Growth under controlled conditions is usually different from that under field 
conditions. Hence, high-throughput phenotyping platforms in controlled environ-
ments might not lead to the identification of important yield-determining processes 
and promising genotypes in the field (Passioura 2012). This limits the application 
for phenotyping to specific stages of the crop (e.g., early vigour), or to traits that are 
correlated with the target trait (e.g., carbon isotope discrimination as an indicator of 
water use efficiency (Passioura 2012; Prasanna et al. 2013).

Popular high-throughput phenotyping techniques are those based on spectral 
technologies or remote sensing,  such as near infrared spectroscopy (NIRS), or 
image analysis. These techniques are a powerful tool that can provide information 
about multiple traits from only one or few images, and can be applied in controlled 
conditions as well as in field trials.

One example of how phenotypes obtained by image analysis can be included in 
phenotype prediction is shown by van der Heijden et al. (2012). Here, QTLs for leaf 
area were identified from the 3D representation of the plant canopy reconstructed 
from stereo images. The QTLs for leaf area from the image analysis agreed with the 
QTLs detected when using manually measured leaf areas, showing the potential of 
stereo images to characterize phenotypically breeding populations.

Image analysis introduces potentially larger measurement errors than conven-
tional measurement techniques. For that reason, image information should be first 
carefully selected with the aid of statistical and physiological knowledge, in an 
automatized and standardized fashion, before incorporating it in the genetic analy-
sis (Eberius and Lima-Guerra 2009; Hartmann et al. 2011). Hence, models account-
ing separately for the measurement error and for the experimental (plot) error should 
be considered (Smith et al. 2001b).

3.5  �Concluding Remarks

This chapter discussed several approaches that aim at predicting the phenotype in a 
multi-environment context. These approaches ranged from pure statistical models 
and pure CGMs, to a combination of both types of models. Special attention was 
given to different prediction scenarios; unobserved genotypes, new environments, 
and the combination of both. How prediction accuracy can profit from the large 
availability of environmental and genotypic information was also discussed, aiming 
at integrating physiological and statistical knowledge. Phenotypic and genomic data 
start to become abundant. The challenge for better phenotype prediction and more 
effective selection lies in more sophisticated procedures for selection of genotypic 
and environmental covariables in models for phenotype prediction, separating the 
signal from the noise.
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