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  Pref ace   

 The sequencing of genomes has been completed for an increasing number of crop 
species, and researchers have now succeeded in isolating and characterising many 
important genes and quantitative trait loci. High expectations from genomics, how-
ever, are waving back towards the recognition that crop physiology is also important 
for realistic improvement of crop productivity. Complex processes and networks 
along various hierarchical levels of crop growth can be thoroughly understood with 
the help of their mathematical description – modelling. The further practical applica-
tion of these understandings also requires the discovery of emerging properties and 
quantitative predictions. In order to better support design, engineering and breeding 
for new crops and cultivars for improving agricultural production under global warm-
ing and climate change, there is an increasing call for an interdisciplinary research 
approach, which combines modern genetics and genomics, traditional physiology and 
biochemistry and advanced bioinformatics and crop modelling. Recently we coined a 
term ‘crop systems biology’ to describe such an interdisciplinary approach. 

 Such an interdisciplinary research has been practised in various research groups 
across the globe. However, it does not seem to be fully covered in the format of 
book publications. We, therefore, initiated this book project on ‘crop systems biol-
ogy – narrowing the gaps between crop modelling and genetics’, in response to an 
invitation by Springer Science + Business Media. Nine chapters written by leading 
groups active in this fi eld are presented in the book, representing the state of the art 
in the realm of this research covering various traits in several crops. 

 Baldazzi et al. describe gene regulatory and metabolic networks, link these net-
works to crop models and show how to integrate different temporal and spatial scales 
within a single model, thus illustrating the perspectives for multi-scale modelling. 

 Xu and Buck-Sorlin describe a three-dimensional modelling approach called 
Functional-Structural Plant Modelling and link it to quantitative trait loci analysis in 
rice. They use this framework to analyse opportunities and pitfalls to advance breed-
ing for architectural traits. 

 Bustos et al. discuss prediction strategies for genotype-by-environment 
 interactions using statistical models, crop growth models and combinations of 
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model types. They illustrate how prediction accuracy can profi t from the large data 
sets available on environmental and genotypic variables by integrating physiologi-
cal and statistical knowledge. 

 Génard et al. show how knowledge generated by in silico profi ling can be used 
to unravel genotype × environment × management interactions and to construct plant 
ideotypes for particular conditions, using examples for fruit quality, sensitivity to 
diseases and root system architecture. 

 Luquet et al. describe a model that combines characteristics of functional- 
structural modelling approaches with classical crop growth models. They use this 
model to analyse the trade-off between early vigour and drought tolerance in rice 
and to design rice ideotypes that combine the two traits. 

 Sinclair et al. describe the steps of modelling-physiology-transcriptomics- 
genetic screening they followed in developing soybean cultivars with restricted 
transpiration. The yield increases obtained in experiments and in model simulations 
for years with limited rainfall prove that this trait is highly desirable. 

 Hammer et al. argue that crop ecophysiology and functional modelling can effec-
tively link processes at the molecular and organism levels. They provide a physio-
logical framework and examples, illustrating that their integrated functional 
modelling and molecular genetics approach holds promise for closing the genotype-
to- phenotype gap. 

 Boote et al. show opportunities and challenges of linking genetics to process- 
oriented crop modelling, with the objective of predicting fi eld performance of grain 
legumes as a function of genes. They also show how to link model input parameters 
with allelic effects of several known genes to predict growth and seed yield in the 
common bean. 

 Yin et al. describe the most active research line within crop systems biology over 
the last 15 years: quantitative trait loci-based crop modelling; they provide a com-
prehensive overview of recent experiences and future prospects within this fi eld. 

 In the last chapter, the editors outline how these research activities contribute to 
the development of crop systems biology within the context of crop improvement 
programmes. 

 The book is meant for those scientists and graduate students from the domains 
of, and interested in bridging, fundamental plant biology and applied crop science. 

 As presented in the book, crop systems biology is a dynamically evolving con-
cept and research realm. We appreciate receiving any response and feedback from 
readers. Please do not hesitate to contact us if you have suggestions or comments. 

 We thank the authors of individual chapters for their valuable contribution. We 
also thank Maryse Elliott, Melanie van Overbeek and Anja Smykowski of Springer 
Science + Business Media B.V. for inviting us to initiate this project and for their 
subsequent support in realising it.  

  Wageningen, The Netherlands     Xinyou     Yin    
 March 2015     Paul     C.     Struik      

Preface
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Chapter 1
Challenges in Integrating Genetic Control 
in Plant and Crop Models

Valentina Baldazzi, Nadia Bertin, Michel Génard, Hélène Gautier, 
Elsa Desnoues, and Bénédicte Quilot-Turion

Abstract Predicting genotype-to-phenotype relationships under contrasting envi-
ronments is a great challenge for plant biology and breeding. Classical crop models 
have been developed to predict crop yield or product quality under fluctuating envi-
ronments but they are usually calibrated for a single genotype, restricting the valid-
ity range of the model itself. To overcome this limitation, genetic control has to be 
integrated into crop models and genotype × environment interactions have to be 
made explicit.

The aim of this chapter is to provide an overview of a panel of approaches that 
have been developed to integrate genetic control in plant and crop models. The fun-
damentals of quantitative genetics of complex traits are first introduced, with spe-
cial attention to methods for quantitative trait loci (QTL) cartography and QTL 
genetic modelling. The integration of genetic control within ecophysiological mod-
els is then discussed. Several methods are reviewed, ranging from classical statisti-
cal approaches, relying on specific model parameters reflecting gene or QTL effects, 
to recent multi-scale models, explicitly integrating molecular networks. This chap-
ter proposes a review of a few techniques from systems biology that can be used to 
describe the behaviour of cellular networks, in a simplified way. Coupling different 
organizational scales is finally discussed and a few examples of multi-scale plant 
models are presented.
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1.1  Introduction

Predicting the behaviour of a given genotype under contrasting environments or 
predicting the phenotypes of contrasting genotypes under one environment is diffi-
cult for various reasons. First, small genome variations may have huge impacts on
the phenotype due to cascade effects on the processes involved in the observed 
traits. Second, strong genotype-by-environment (G×E) interactions occur for most
plant traits. During the last decades, many process-based models have been devel-
oped to predict crop yield or quality under fluctuating environments (Martre et al.
2011). These models usually describe the temporal variations of main processes 
involved in final traits as well as their interactions and responses to environmental 
variations or cultural practices. Yet, most of the processes involved in crop yield or 
quality depend also on the genetic makeup with high environment-by-genotype 
interactions (e.g., Kromdijk et al. 2014; Prudent et al. 2010). This implies that 
model parameters are usually specific for one genotype, restricting the validity 
range of the model itself. To overcome this limitation, several authors tried to take 
into account the genetic control in plant models. This implies to identify the model 
parameters which are genotype dependent and to quantify them depending on com-
binations of Quantitative Trait Loci (QTL) (QTL-based models), alleles or genes 
(gene-based models) involved in the process which is modelled. The complexity of 
the genetic control accounted for in models is usually the inverse of the complexity 
of the modelled system. Indeed integrating the effects of many genes is possible at 
the cell or organ level, more rarely at the plant level. However, methods developed
at the lower levels of organization may teach us how to proceed through higher 
levels. Plant complexity cannot be described in one big multi-scale model. Instead 
we should now focus on (i) tracing main hubs at the lower levels of organization; (ii) 
quantifying their effects at the higher levels of organization; (iii) refining the plant 
models to be able to link model parameters to physiological components. This will 
be a real challenge for the future due to the polygenic control of most of the vari-
ables and processes involved in crop yield and product quality and to the strong 
genotype-by-environment interactions. The success will rely on the advance in the 
understanding of the genetic control of the target traits and on our ability to pheno-
type large populations under contrasting environments at the process level.

The overall objective of this chapter is to provide an overview of the integration 
of genetic control in plant and crop models at different levels of organization, from 
gene networks, to cell, organ and plant.

The chapter is organized as follows: the fundamentals of quantitative genetics of 
complex traits are first introduced, with special attention to methods for QTL car-
tography and QTL genetic modelling. The integration of genetic control within eco-
physiological models is then discussed. Classical approaches are first introduced 
that rely on the specification of model parameters as a function of QTL or gene 
effects using simple empirical relations. The advantage of this approach resides in 
its flexibility and in the possibility to describe experimental data, even in absence of 
a clear understanding of the underlying biological mechanisms.

V. Baldazzi et al.
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The last part of the chapter is devoted to emerging multi-scale models, explicitly 
integrating the description of molecular processes with a broader view to plant 
physiology and development. In this perspective, Sect. 1.3 proposes a review of a 
few selected methods from systems biology that can be used to describe the behav-
iour of cellular network. Model simplification and coupling among different organi-
zational scales is the topic of Sect. 1.4.

1.2  Fundamentals in Quantitative Genetics

Here is a list of definitions that may help the reader to follow the subsequent
paragraphs.

Allele Functional form of a gene
Locus Particular site of a gene or DNA sequence on a chromosome
Homozygosity In case of diploid plants, both alleles have the same phenotypic effect
Heterozygosity Each allele at a gene has a different phenotypic effect
Additive allele effect (a) In a population, a is half of the difference between the trait value (Y) 

of the mean homozygous genotypes for one parental allele (mm) and 
for the other parental allele (MM):
a = (Ymm−YMM)/2

Dominance
effect

Accounts for the interaction between alleles at each locus. This term
is non null when heterozygotes (a A) are not exact midpoints of
homozygote parents. It is the deviation between the mean of 
heterozygotes and the half sum of the homozygotes

Epistasis The alleles at one locus change the phenotypic effects of genetic 
variation at another locus

Plasticity A single genotype gives rise to a diversity of phenotypes, depending
on specific environmental conditions or lifetime

Polygeny Many genes contribute to a particular phenotypic character
Pleiotropy Different phenotypic characters are affected by a single genetic 

variation
Transgressive
individuals

An individual has a phenotype more extreme than the phenotype
displayed by the two parents

1.2.1  Quantitative Traits Controlled by Numerous Genes

One of the fundamental ideas of quantitative genetics, as defined by Fisher in 1918,
is that the phenotypic value P of an individual is the sum of that individual’s geno-
typic value G plus its environmental value E: P=G+E. The genotypic value is the
combined effect of all the genetic effects, including nuclear and mitochondrial 
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genes, and interactions between the genes. The average phenotypic outcome may be 
affected by dominance and by how genes interact with genes at other loci.

In case of clones, the value G corresponds to the average value of all clones
whereas the environmental value E is inferred from the difference between the phe-
notype of the clone and G. However, G and E can also be estimated in case of other
types of related individuals. This is the common case where G values are different
between individuals and depend on their relations. To account for this, the genotypic 
value is decomposed as:

 G A D I= + +  

where A represents the contribution to the character from the effects of individual
alleles, D is the contribution from the interaction between these alleles, and I repre-
sents the contribution from interactions between different loci.

In summary, the genetic architecture of complex traits first implies the actions of 
genes in singular locus but also the inter-locus interactions and gene × environment 
interactions.

Quantitative genetics developed first from the analysis of characters with dis-
crete variations. The determinism of such characters often proved to be monogenic 
characterized by the wild phenotype and the mutant. In most cases, those pheno-
types were caused by a major alteration of a single gene. However those alterations
are quite rare since they are counter-selected because of their large phenotypic 
effect.

Indeed, many characters show continuous variations in the populations. Those 
characters are under polygenic control: many loci called QTL (Quantitative Trait 
Loci) are responsible for the observed variations. Their nature may not be different 
from the one of the loci responsible for discrete variations. Indeed the main differ-
ence lies in the moderate effects of each locus. Most of the traits of interest are
controlled by multiple interacting genes. So up to now the huge progress in gene 
discovery has only weakly aided genetic selection (Miflin 2000; Sinclair et al. 
2004). For instance, in tomato (Solanum lycopersicum L.) fruit, more than 100 
genes located in 16 regions of the genome, are associated with fruit composition, 
mainly sugar and acid contents (Causse et al. 2004; Bermudez et al. 2008). 
Consequently, QTL for a given trait usually explain only low proportions of the 
observed trait variations. Moreover, most of these QTL depend on the environment
(QTL×E) and on the genetic background (QTL×QTL) (Börner et al. 1993; Blanco 
et al. 2002; Chaïb et al. 2006; Causse et al. 2007; Dudley et al. 2007).

Current technological progresses and recent advances in genetic analyses may 
offer possibilities to estimate more and more precisely the individual effects of each 
locus detected, their location on the genome and their potential interactions with 
other loci. This information is precious to build a model that predicts the value of an 
individual with a given combination of alleles.

V. Baldazzi et al.
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1.2.2  Principles and Methods of QTL Cartography

Mapping QTL is based on the systematic search for associations between marker
loci and the quantitative traits (Kearsey 1998). The prerequisites for QTL mapping 
are:

 – create a segregating progeny. Best efficiency is reached in case of crosses 
between inbred lines.

 – for each individual of the progeny, get the genotype of a set of marker loci dis-
tributed along the genome, so as to build a genetic map of the progeny.

 – get the value of the studied trait for each individual of the progeny.
 – perform biometric methods to detect an association between the score of marker 

genotypes and the value of the measured trait and estimate the genetic parame-
ters of the detected QTL.

In the last decades, the tremendous advances in molecular genetics have greatly 
facilitated genetic analysis of quantitative traits. More recently, the use of markers
based on single nucleotide polymorphisms (SNPs) have rapidly increased in plant
genetics due to their abundance in the genomes and the possibility of high- 
throughput detection (Mammadov et al. 2012). It is now fairly routine to locate 
highly polymorphic marker loci that span the genome. Consequently, the major 
challenge is now the phenotypic analysis of the genetic variability (Houle et al.
2010), which requires simultaneous analyses of hundreds to thousands of plants. To 
face this difficulty, phenotypic platforms allowing fine environmental control (Tisné
et al. 2013; Granier et al. 2006) or field characterization (Andrade-Sanchez et al.
2013) are emerging.

The simplest method to detect QTL is to consider the molecular markers inde-
pendently. A difference in the mean trait value between different marker genotypes
is sought. However, if the marker and QTL are separated by some recombination
fractions, the strength of the marker–trait association decreases. Thus, a weak asso-
ciation can be generated by tight linkage to a QTL of small effect or loose linkage 
to a QTL of major effect. To further decipher these cases, different statistical 
approaches have been used that allow estimating QTL effects and their map 
positions.

The premise of identifying QTL is based on the likelihood ratio of the probabil-
ity of having an association between a marker and a QTL assuming genetic linkage, 
divided by the probability of having an association assuming no linkage. This ratio 
is called LOD (logarithm of the odds) score. A LOD score of 3 or greater is usually
considered as statistically significant evidence for linkage between a marker and a 
QTL. However, different methods are available to calculate a genome-wide signifi-
cance threshold, from permutation tests to Bayesian approaches.

A number of statistical methods have been developed for mapping QTL, from
marker by marker analysis (variance analysis, Student test) to multi-environment 
mapping. Based on maximum likelihood algorithms, Lander and Botstein (1989) 
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proposed what is now called interval mapping (IM) to scan the genome for evidence
of QTL. IM can also be performed by regression (Knapp et al. 1990; Haley and
Knott 1992). Subsequently, composite interval mapping (CIM) was developed. The
method described by Zeng (1993) is based on multiple regressions to isolate indi-
vidual QTL effects and genetic variation in other regions of the genome. The aim is 
to reduce the background “noise” that can affect QTL detection by incorporating 
into the model a set of markers significantly associated with the trait. These ‘cofac-
tors’ may be located anywhere in the genome. Jansen and Stam (1994) also pro-
posed ‘multiple QTL model’ (MQM), a method similar to CIM. Compared with IM,
both CIM and MQM can significantly improve mapping precision and the estima-
tion of QTL effects by the fact that more QTL are detected.

Advanced statistical methods, e.g., to perform multi-environment and/or multi-
trait QTL mapping, have emerged and have recently been reviewed by van Eeuwijk
et al. (2010). They state that the mixed model QTL methodology is suitable for 
many types of populations and allows predictive modelling of QTL by environment 
interactions.

In parallel, other statistical methods have been developed to detect QTL involved 
in response curves (‘functional mapping’). For example, Ma et al. (2002) combined 
logistic growth curves and QTL mapping within a mixture model approach. This 
method proved to be powerful and to produce accurate estimates of QTL effects and 
positions (Wu et al. 2002, 2003). Using a similar framework, Malosetti et al. (2006) 
proposed a non-linear extension of classical mixed models.

1.2.3  QTL Genetic Parameters

The biometric methods cited above not only detect QTL (map location) but also 
estimate a number of genetic parameters of these QTL. Among them, the QTL
effect is the difference of effect between alleles, usually referred to as the additive 
effect (a) or effect of a double substitution (2a). In addition to the magnitude, the 
sign of the effect is also of particular interest. Indeed, both favorable and unfavor-
able alleles sometimes come from the two parents. In addition, the QTL effect can 
also refer to the part of the phenotypic variation explained by each QTL or by all 
QTL controlling a trait. This part (R2) is quantified by the percentage of the differ-
ence between the residual sum of squares (RSS) of the reduced model and the full
model, divided by the full model RSS.

Based on the QTL analysis results, a quantitative genetic model can be defined 
that relates the genotypic value of an individual to the alleles at the loci that contrib-
ute to the variation in a population in terms of additive, dominance, and epistatic 
effects. For example, Podlich and Cooper (1998) developed a platform for quantita-
tive analysis of genetic models, QU-GENE. The definition of the genetic model
includes the following components:

1. Number of genes (loci).
 2. Intra-locus gene action (additive, dominance).

V. Baldazzi et al.
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 3. Inter-locus gene action (epistasis).
4. Pleiotropy.
5. Number of alleles.
6. Gene frequency (allele frequency).
7. Mutation.

 8. Ploidy.
 9. Linkage and chromosomal arrangements.
10. Genotype-by-environment interaction.

From this genetic model, the genotypic value of any individual genotype, carry-
ing any combination of alleles from this population, may be inferred. Reymond
et al. (2003) used a QTL model including additive and epistatic effects. Then they 
estimated for each individual the allelic probability at QTL positions, given the 
information at flanking markers, and finally used them in the QTL model.

1.3  Integration of Genetic Control in Crop Models

1.3.1  Levels of Integration

White and Hoogenboom (2003) reviewed the issues related to incorporating gene 
action into crop models. They proposed a classification of models based on the level 
of genetic details they included. Six levels were proposed that are still relevant:

1. Generic model with no reference to species
 2. Species-specific model with no reference to cultivars
3. Genetic differences represented by cultivar specific parameters
4. Genetic differences represented by gene actions modeled through their effects on

model parameters
5. Genetic differences represented by genotypes, with gene action explicitly simu-

lated based on knowledge of regulation of gene expression and effects of gene 
products

6. Genetic differences represented by genotypes, with the gene action simulated at
the level of interactions of regulators, gene products, and other metabolites.

Historically, ecophysiological and crop models were of Levels 1 and 2.
Progressively they have included genetic information and most current models are 
of Level 3. Level 4 is the one currently developed. It is especially largely used to
include information from quantitative genetics (outlined later in 1.2.2). Level 5 is 
still rarely encountered. It is restricted to the cases of model species for which the 
understanding of gene action in some particular physiological processes is advanced. 
In general, too few genes are known to feed gene-based models. However, this level
may also be tested with virtual genes (example of the phenology module in GeneGro
Version 2, Hoogenboom and White (2003)). Lastly, Level 6 corresponds to models 
simulating gene action based on interactions of regulators, gene-products, and other 
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metabolites. It has only been achieved in case of unicellular organisms (Tomita 
et al. 1999).

White and Hoogenboom (1996) and Yin et al. (2000a) were pioneers in the inte-
gration of gene action and QTL effects, respectively, in process-based models 
(models of Levels 4 and 5). These works were promising proofs of concept and
aroused keen interest in the scientific community. The principle used in these works 
is to define genotypes by a set of model parameter values. These values depend both 
on the allelic combination carried by the genotype and on the genetic model defined 
from genes or QTL controlling the parameters of the model. Then the model can 
simulate these different genotypes.

1.3.2  QTL-based Modelling

In the absence of information on specific genes or loci, QTL analyses can be per-
formed on model parameters. Indeed, these parameters often display quantitative 
and continuous variations in populations, in the same way as variables classically 
observed (e.g., plant height, yield, biomass). This approach was pioneered by Yin 
et al. (1999; 2000b), who recalculated the value of 10 genotypic parameters of the 
SYP-BL simulation model for barley crop growth. The major weakness of this 
approach was the inability of the original model to simulate observed variations. The 
authors suggested that the level of integration considered was not appropriate. They 
concluded that further physiological processes might be incorporated in the model 
to improve the performance of the coupling. Since, promising results have been 
obtained using physiological components of different traits, such as leaf elongation 
(Reymond et al. 2003), plant development (Yin et al. 2005; Messina et al. 2006), 
phenology (Nakagawa et al. 2005), early plant growth (Brunel et al. 2009), nitrogen 
adaptation (Laperche et al. 2006) and fruit quality (Quilot et al. 2005b). In each of 
these studies, QTL associated with the considered traits/processes were identified. 
Test of the model against independent conditions (new genotypes and new environ-
mental conditions) also gave promising results (e.g., Reymond et al. 2003).

The latter authors focused their work on the analysis of the genetic variability of 
leaf elongation rate on maize in response to temperature and soil water deficit 
(Reymond et al. 2003, 2004). In these studies, a simple static model based on 
response curves of leaf elongation rate to temperature, vapour pressure deficit and 
soil water potential was used. Thirteen maize lines grown under six contrasted envi-
ronments were used as material for validating the model, which accounted for 74 %
of the genetic and environmental variations of leaf elongation rate (Reymond
et al. 2004).

The QTL associated to the model parameters do not systematically co-localize 
with the QTL for the more integrated variables, thus highlighting the complexity of 
the system. For instance, no co-localization was found in maize between QTL for
final leaf length under water deficit and QTL for the parameters associated to leaf 
expansion response to water deficit (Reymond et al. 2004).
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However, co-localizations of QTL for different traits or parameters were observed
in other studies. For instance, co-localizations between QTL for leaf elongation and
anthesis-silking interval in maize suggest that these traits might be regulated by the 
same process (e.g., tissue elongation for either the leaves or the silks; Welcker et al. 
2007). Similarly, the study performed by Quilot et al. (2005b) on peach gave some 
insight in the processes that control quality traits. Ten genotypic parameters of the 
virtual peach fruit model which strongly affect fruit growth and sugar accumulation 
(Quilot et al. 2005a) were selected among the 40 parameters of the model, for a
QTL analysis (Quilot et al. 2005b). These genotypic parameters were substituted in 
the simulation model by the sum of QTL effects. The model was then able to account 
for a large part of the genetic and environmental variations in fruit size (observed 
and predicted values of fruit dry mass showed a correlation coefficient of 0.55). In 
this example, the QTL analysis of the genotypic parameters gave some insight in 
the processes that control quality traits, as they co-localized on the genetic map with 
QTL for fruit size and sugar content. This suggests putative physiological interpre-
tations of the functions of genes under these QTL. Moreover, such results can help
understand the processes involved, and thus assist the improvement of the process- 
based model. More details on the approach can be found in recent reviews (e.g.,
Hammer et al. 2006; Yin and Struik 2008; Messina et al. 2009; Bertin et al. 2010).

The number of parameters in most process-based models (from tens to hundreds) 
appears relatively low compared with the large number of genes of a plant (tens of 
thousands). Nevertheless, this simplification of the complexity of the genetic archi-
tecture shows potential anyway. Indeed, genes very often act in coordination, and it 
is the action of the gene group, instead of the action of each gene, that can be repre-
sented by model parameters. The set of interconnected processes controlled by such 
a group of genes was defined by Tardieu (2003) as “meta-mechanism”. The essen-
tial is to pick out the right level of organization at the cell, organ or plant level where 
the consequences of the switch explaining genetic variability in the mechanism and 
response curves to environmental factors can still be represented to explain the 
observed variations of the trait of interest.

1.3.3  Gene-based Modelling

When information on specific genes is available, a gene-based model can be 
attempted, directly relating genotypic parameters to the expression of a few key 
genes. One of the earliest works was carried out by White and Hoogenboom (1996) 
and Hoogenboom and White (2003) using the BEANGRO simulation model for
common bean (Phaseolus vulgaris L.). They assumed that seven genes controlled 
some of the genotypic parameters of the model and replaced them by linear func-
tions describing the effect of the genes. A simple theoretical genetic model was
considered with two alleles for each gene, one dominant and the other one recessive. 
The genotypes of 30 common bean cultivars were determined for these seven genes 
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and included in the model in place of the genotypic parameters. The new model (of 
class 5), GeneGro, simulated growth and development and could even simulate new
G×E interactions. This approach has been recently included into the soybean simu-
lation model CROPGRO-soybean to characterize the effect of six loci on growth
and development, using a set of isogenic lines (Messina et al. 2006).

When a trait is controlled by a low number of major genes, modelling of gene 
network can also be attempted. Such an approach has been successfully used to 
model flowering time (Welch et al. 2003; Welch et al. 2004) and cell cycle and 
expansion in leaves (Beemster et al. 2006) for Arabidopsis (Arabidopsis thaliana 
(L.) Heynh.). More recently, Coen and co-workers investigated the mechanisms by
which genes can control the emergence of complex shapes in Snapdragon flowers 
(Green et al. 2010) and Arabidopsis leaves (Kuchen et al. 2012). In their model, a 
set of experimentally-defined rules fixes the values of two key quantities, the direc-
tion of growth (the tissue polarity) and the local growth rates, as a function of the 
expression of a few genes, thus providing an implicit coupling between the cellular 
and the tissue levels. Petal tissue is described as a continuous sheet that grows and 
bends under the effect of a growth field, as specified by the tissue polarity and the 
local growth rates, according to elasticity theory (Kennaway et al. 2011). At the cel-
lular level, the interactions among genes are described by a gene regulatory network 
that captures the evolution of gene expression levels during organ development. 
A specificity of the present model is that developmental changes are taken into
account by explicitly modifying both the genetic control of the growth field and the 
regulatory interactions among genes, according to the experimental data.

Currently, the strongest limitation to develop gene-based models for complex 
traits is the lack of knowledge and characterization of specific genes or loci control-
ling these traits, including epistatic interactions and pleiotropic effects, to define the 
phenotypic fingerprint of cultivars for genotypic parameters. Moreover, detailed
studies to quantify the environmental effects on gene expression and gene action are 
also required.

1.4  Modelling Cellular Networks

This section aims to draw the attention to a panel of approaches, developed in the 
context of systems biology that can be used to analyze, simplify and model the 
behaviour of cellular networks. Several formalisms are available, in a perpetual 
trade-off between predictive power and information needed. Here we restrict to
those techniques that require a reduced amount of information as these approaches 
are more likely to be appropriate when dealing with large and under-characterized 
systems, like plants. For simplicity, we separate the analysis of gene regulatory
networks and metabolic networks as they historically evolved in distinct domains, 
and specific tools are available.
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1.4.1  Modelling and Analyzing Gene Regulatory Networks

1.4.1.1  Qualitative Models of Gene Regulatory Networks

A number of methods exist to model the dynamics of a gene regulatory network
with increasing accuracy, including discrete and continuous approaches, determin-
istic or stochastic (see de Jong (2002) and Schlitt and Brazma (2007) for a review). 
Here we focus on qualitative approaches (see Appendix 1) as handy methods to 
capture the logic of gene control without the need for precise parameter values, 
rarely available for most biological systems. The simplest formalism for gene regu-
lation is a Boolean model in which each gene is represented as binary switch that 
can be either on (value 1) or off (value 0). At any given time, the state of the network
is represented by the n-tuple of zeros and ones describing which gene is active or 
inactive. Transitions from one state to another are determined by gene mutual regu-
lation, expressed by means of logical rules. The dynamics of a logical network is 
thus represented by a sequence of states, describing all possible activation/inactiva-
tion pathways compatible with a given regulatory logic. Any trajectory naturally
leads to a steady state, i.e., an expression pattern that is maintained indefinitely by 
the system (it can be either a fixed point or a cycle). The existence of multiple steady 
states is often associated with the existence of distinct developmental outcomes.

The disadvantage of Boolean models resides in their high level of abstraction 
that makes it difficult to integrate (when available!) data on promoter activity and 
sequential gene regulation. Indeed, a same transcription factor can regulate the 
expression of several genes depending on its concentration. In this perspective, an 
extension to the Boolean formalism is the logical models, in which the simple 
binary nature of gene activation/inactivation is replaced by a variable that is able to 
assume p discrete values (0, 1, 2, …, p). In this way, a level-dependent action of 
each transcription factor can be included into the logical rules (see Fig. 1.1 for an 
example). Alternatively to logical models, piece-wise linear models offer a formal-
ism that is somehow closer to a continuous description, combining the qualitative 
approach with a time-continuous description of gene regulation (see Appendix 1 for 
more information). We refer to Snoussi (1989) and Wittmann et al. (2009) for a 
discussion on the relation between logical and piece-wise linear models. For both
types of models, software is available for the construction and analysis of a qualita-
tive model of gene regulatory networks (de Jong et al. 2003; Gonzalez et al. 2006).

Thanks to their simplicity, qualitative approaches, in combination with formal 
verification tools (Monteiro et al. 2007) can be used to test the coherence of experi-
mental data, possibly pointing out missing regulators or interactions between 
components.

In this perspective, a promising approach is the one proposed by Li et al. (2006) 
to investigate the functional basis of Abscisic Acid (ABA) signaling. Starting from
sparse literature data, including protein-protein interactions, knockout experiments 
and pharmacological tests, the authors developed an heuristic qualitative reasoning 
to (a) assemble a consistent signal transduction network of ABA-induced stomatal
closure and (b) build a (Boolean) dynamical model of the system. Interestingly, the 
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lack of quantitative information on process kinetics is circumvented by randomly 
sampling all possible updating orders (Chaves et al. 2006) and computing an aver-
age probability of stomatal closure over 10,000 initial conditions. The model is then 
used to predict essential components of the system, evaluating the effects of single 
and multiple node disruptions on the resulting responsiveness of stomatal closure. 
Notice that due to its qualitative nature, model predictions are valid independently
of the specific kinetic properties of the system. Nevertheless, future quantitative
data on biochemical mechanisms could be easily accounted for, by replacing the 
corresponding Boolean rule with a stochastic or continuous description, in the 
framework of hybrid modelling approach (Chaouiya 2007; Chaves et al. 2006).

1.4.2  Modelling and Analyzing Metabolic Networks

1.4.2.1  Steady-state Models of Metabolic Networks

The so-called Constraint-Based (CB) approaches use the stoichiometry and the 
thermodynamics of biochemical reactions as mathematical constraints to progres-
sively reduce the space of possible steady-state solutions of the metabolic system of 

Fig. 1.1 Example of qualitative modelling of a gene regulatory network using a Boolean, logical
and piece-wise linear formalism. (a): example of gene regulatory network. (b): Boolean equations 
and corresponding table of truth, for network in panel (a). Boolean operators OR, AND and NOT
are used to describe the logic of gene interactions. The steady states of the system are indicated 
with a star. (c): Graph representation of the network in A, where the edges are labelled to express 
the rank number of the interaction, and corresponding table of truth in the logical formalism. (d): 
Piece-wise linear equations corresponding to the network in panel A. kA, kB and kC are synthesis 
rates, γA, γB and γC are degradation rates and θA, θB, and θC are threshold concentrations for proteins 
A, B and C, respectively
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equations (see Appendix 2). In this framework, Metabolic Pathways Analysis aims
at describing all possible steady-state behaviours of the system, compatible with 
mass balance and thermodynamics as constraints (Papin et al. 2003; Schilling et al. 
2000; Schuster et al. 2000). The aim here is to provide a general characterization of 
network capabilities, pointing at specific designing features that may provide 
insights into the functional organization of the system (Rios-Estepa and Lange
2007; Stelling et al. 2002).

Among all possible behaviours predicted by pathway analysis, only few are actu-
ally realized by a given organism, depending on environmental conditions. The 
hypothesis behind this observation is that a selective-external pressure acts as an 
additional constraint that favors few specific flux distributions instead of others. 
Flux Balance Analysis (FBA) is a method developed by Palsson and collaborators
that aims to predict such reasonable (i.e., likely to be realized) flux distributions by 
assuming that they maximize a given objective function (Orth et al. 2010). Recently,
a number of improvements to FBA have been developed, with the aim of relaxing
the notion of optimality. The impact of alternative optimal states (i.e., alternative 
solutions that share the same optimal score) have been analyzed (Mahadevan and
Schilling 2003) as well as the existence of non-optimal solutions (Mahadevan and
Schilling 2003; Segrè et al. 2002), (i.e., solutions that score near the optimal value 
but not exactly). These solutions indeed may be more appropriate to describe the 
behaviour of genetically engineered organisms (e.g., a knockout mutation) or to 
compare with experimental data, for which optimal growth conditions are not 
guaranteed.

In plants, a number applications of pathways analysis and FBA are starting to
appear, as reviewed by Rios-Estepa and Lange (2007) and Sweetlove and Ratcliffe
(2011). In spite of these successes, two main problems currently limit the applica-
tion of CB methods to plants. The first is the presence of sub-cellular compartments 
that can modify the predicted flux distribution when not a priori included in the 
metabolic model. To date, assigning a reaction to a specific compartment is far from 
trivial. Experimental data are still scarce and information on metabolite transport
mechanisms between different organelles is often lacking, due to technical difficul-
ties (Allen et al. 2009). Further advancements in Nuclear Magnetic Resonance
spectroscopy and fluorescence methods however are meant to overcome these prob-
lems, contributing to the development of more realistic CB models. The second 
issue, proper to FBA, is more fundamental and regards the maximization of an
appropriate objective function in plants (Sweetlove and Ratcliffe 2011). Historically,
FBA have been developed for microbes for which good objectives functions may be
established (generally optimal biomass production) and whose rapid adaptive evo-
lution guarantees a near-optimal functioning, soon after a perturbation. In the case 
of plants, adaptation is generally too slow to guarantee optimality in a reasonable 
experimental time and the choice of maximal cost function can be called into ques-
tion. In this context, alternative methods using sub-optimal solution may be more 
appropriate. The method of minimization of metabolic adjustment (Segrè et al.
2002) in particular has been suggested as especially suitable as it allows to investi-
gate the effect of a perturbation starting by the knowledge of the initial flux distribu-
tion only. Experimentally determined flux distribution (via steady-state

1 Challenges in Integrating Genetic Control in Plant and Crop Models



14

isotope-labeling) may therefore be used, thus avoiding the problem of the objective 
function definition.

1.4.2.2  Dynamical Models of Metabolic Networks

Plants, more than other systems, are continuously subject to fluctuations of environ-
mental factors that can induce rapid rearrangement in metabolite levels or in meta-
bolic fluxes. In this situation, the steady-state assumption behind constraint-based 
methods can become a limit. Further insights into the dynamics of metabolism and
in the “what-if” scenarios can be obtained by building a kinetic model of the system, 
describing how metabolites concentrations change over the time due to the interac-
tions between other molecules. Traditionally, the dynamics of a metabolic system is 
described as a set of nonlinear ordinary differential equations (ODE system) assign-
ing to each reaction a rate law (e.g., Michaelis-Menten kinetics, as a classical
choice) which describes how its speed depends on the concentration of other mol-
ecules (metabolites, enzymes). The choice of the appropriate rate law and its com-
plete definition is extremely expensive and requires a good knowledge of all 
biochemical steps. For this reason, most available kinetic models describe only
small metabolic networks (a dozen of variables) where kinetic information and 
parameters values have been derived from literature data (Uys et al. 2007; Nägele
et al. 2010) or from dedicated experiments (Curien et al. 2009; Beauvoit et al. 2014).

For larger networks, such information is generally not available and approxi-
mated expressions for reaction rates have to be used.

A first strategy is based on the use of simplified kinetics that are valid near a
reference state, usually chosen to be the steady state of the system (Heijnen 2005; 
Stitt et al. 2010). Smallbone et al. (2007) propose a method based on Flux Balance
Analysis. The idea is to make fluxes vary according to a lin-log kinetics (Visser and
Heijnen 2003; Heijnen 2005) around their steady state value (as determined by 
FBA) and then predict the evolution of metabolic concentrations according to the
ODE system. The main advantage of this approach resides in the limited informa-
tion required; indeed, the model can be defined using the information contained in 
the stoichiometric matrix only, even in the absence of experimental data for kinetics 
parameters. Of course, limitations already discussed for FBA naturally apply to this
approach too, especially in what concerns the assumption of optimality for complex 
systems like plants.

A step further along the simplification of reaction rates, qualitative methods offer
a way to investigate essential dynamical properties of the network that are invariant 
for a range of reaction mechanisms and parameters values. Among all available
formalisms for qualitative modelling, Petri Nets (see Appendix 1) are particularly 
suitable for metabolism because their structure agrees well with the idea of conver-
sion embodied in biochemical reactions (Chaouiya 2007). In particular, Petri Nets
allow taking into account reaction stoichiometry and differences in reaction rates 
(“delay”), when this information is available.
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In the case of well-studied systems, Palsson and coworkers proposed an alterna-
tive approach for modelling large metabolic networks that relies on the increasing 
availability of high-throughput data (Jamshidi and Palsson 2008b, 2010). To this 
aim, a stoichiometric model of the network is combined to a mass action description 
of rate laws. Data on flux distribution, metabolites concentration and equilibrium 
constants are used to estimate kinetic parameters and simulate the dynamics of the 
system around a particular steady state, for which data are available. Regulatory
effects (enzymes binding, allosteric regulation) can also be taken into account by 
directly modelling the regulator-substrate binding reaction, once information on 
enzymes concentrations and binding rates are available. The advantages of this 
method reside in its scalability, as demonstrated by its application to the red-blood 
cell metabolism (Jamshidi and Palsson 2008b; Kauffman et al. 2002), and in the 
possibility of automatically refining the model, as long as new omics data are col-
lected. The need for a rich and reliable set of experimental data, however, currently 
limits its application to plants.

1.5  Integrating Cellular Networks into Plant Models

When biological information is available, a mechanistic description of cellular net-
works can be attempted and integrated into plant models, in the perspective of ‘crop 
systems biology’ (Yin and Struik 2010). Such integration is relevant in two ways. 
From an ecophysiological point of view, the integration of cellular and molecular
levels can help to refine plant models, shedding light onto the complex interplay 
between different spatial and temporal scales in the emerging system response. In 
particular, the presence of explicit molecular variables can help to identify those 
molecular mechanisms that may convey interesting agronomical properties to cur-
rent crops varieties. From the point of view of molecular biology, the existence of
an integrated model could offer a useful framework for interpreting omics data, in 
relation to environmental factors and agricultural practices.

The ambition of the so-called multi-scale models is to explicitly integrate mecha-
nisms that take place on different temporal or spatial scales, while keeping the com-
putational cost low (Baldazzi et al. 2012; Southern et al. 2008). Two main issues 
characterize these models: (1) the (simplified) description of processes on a com-
mon scale, and (2) the way different scales are connected, i.e., how the information 
is passed among organizational levels.

1.5.1  Model Simplification

In order to be coupled, models on a single scale must be reasonably simple to avoid 
computational problems but, at the same time, sufficiently complex to correctly 
represent the expected biological behaviour. The claim is that, for most 
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ecophysiological questions, there is no need for detailed modelling: at the scale of 
plant development and adaptation, only few molecular mechanisms and variables 
are likely to significantly affect the behaviour of the system, and need to be explic-
itly accounted for (Hammer et al. 2006; Génard et al. 2007). Here we review a few
of methods that can be used to analyze cellular networks and obtain a simplified 
representation of cellular functioning, in both variable number and mathematical 
expression.

1.5.1.1  Structural Analysis

As a preliminary step, the inspection of network topology by means of statistical
and graph analysis methods can provide useful insights into the regulatory architec-
ture of the system (see Barabási and Oltvai (2004) for a review), pointing at few 
nodes that “naturally” emerge as key variables of the system. The analysis of tran-
scriptional regulatory networks in unicellular systems (Barabási and Oltvai 2004; 
Ma et al. 2004a) but also eukaryotic systems (Carrera et al. 2009) for instance, has 
uncovered a typical hierarchical structure, with few genes (hubs) having a huge 
number of outgoing connections (i.e., regulating a large number of genes). These 
genes thus represent a sort of ‘master’ regulators of the network, able to control 
most biological functions (Martínez-Antonio and Collado-Vides 2003; Seshasayee 
et al. 2009) and their adaptation to environmental changes (Görke and Stülke 2008; 
Hengge-Aronis 1999).

Another important aspect of structural analysis is the search for functional mod-
ules, i.e., sub-networks able to work (almost) independently of the rest of the net-
work (Wagner et al. 2007). Several methods try to identify modules in an automated 
way (Wang et al. 2008). Most of them make use of connectivity properties (Ma et al.
2004b; Schuster et al. 2002; Tanay et al. 2004) whereas others combine topology 
and experimental data to increase their interpretability in terms of biological func-
tion (Mao et al. 2009; Sridharan et al. 2012). In plants modular organization has 
been recently highlighted in Arabidopsis (Mao et al. 2009): a hundred of modules 
have been identified and assigned to the main biological processes. Some of these 
modules are large (>1000 genes), like the one related to photosynthesis but smaller 
modules are also identified for specific processes, as the one related to starch metab-
olism that includes only 10 genes, thus providing a reasonable starting point for 
further characterization.

1.5.1.2  Time Scale Analysis

When integrating processes of different nature, an analysis of typical time-scales 
involved can prove extremely useful for model reduction.

Based on time-scale separation, the original model can be usually rewritten into 
(at least) two distinct subsystems, corresponding to slow processes and fast 
processes:
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where xs and xf are the slow and fast variables, respectively, and p are parameters.
If the time-scales of the processes differ by at least an order of magnitude a few 

approximations are likely to be possible. Variables that are changing on a time-scale 
much slower than the one of interest can simply be assumed constant, averaging out 
(small) variations in the time-window of interest (Radulescu et al. 2008). For vari-
ables that are evolving on a time-scale much faster than the reference time-scale, 
one commonly assumes the fast variables to be in a quasi-steady-state, i.e., instantly 
adapting to changes occurring on the reference time-scale. Mathematically speak-
ing, this means that the dimension of the model can be reduced by setting the time 
derivative of the fast system to zero (Heinrich and Schuster 1996), thus resulting in 
a simple set of algebraic equations.
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If a kinetic model of the system is available, the analysis of time-scales can be 
rigorously performed by means of modal analysis (Jamshidi and Palsson 2008a). 
The application of this method naturally leads to pooling of variables into groups of 
species that evolve in a coordinated fashion above a specific time-scale. This means 
that the model size can be effectively reduced by considering the dynamics of pools 
as representative of the dynamics of their constitutive species. Differences in the 
typical time-scales of metabolism (of the order of seconds) and gene expression 
(minutes to hours) have been recently exploited to investigate the coupling between 
metabolic and genetic networks in bacteria (Baldazzi et al. 2010; Covert et al. 2008; 
Shlomi et al. 2007).

1.5.1.3  Metabolic Control Analysis

When dealing with metabolic networks, the stoichiometry of the biochemical reac-
tions imposes a rigid constraint to the dynamics of the system: any change in a flux 
(or metabolite concentration) must be compensated by other changes in the net-
work, thus linking local kinetics properties to the global system behaviour.

Metabolic control analysis (MCA) is a strategy to analyse how the control of a
metabolic pathway is shared among the different reactions (Heinrich and Rapoport
1974; Kacser and Burns 1973). The degree of control of a reaction is quantified in 
terms of control coefficients, defined as the fractional change of the system property 
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(flux (ν) or metabolite concentration (x), at steady state) in response to a change in 
enzyme activity E.
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A zero control coefficient means that the system variable does not change when
enzyme activity is modified. A flux control coefficient of 1 means that the reaction
catalysed by the enzyme completely determines the flux value. In these conditions, 
no other reaction can affect the flux and the enzyme is said to be rate-limiting. In 
nature, rate limiting reactions are very rare. System control is generally shared 
among multiple steps and MCA allows ranking their importance, once the target
variable has been defined.

Within the context of model reduction, MCA can be used to identify those
enzymes that most affect a target process and that should therefore be retained in the 
model. Geigenberger et al. (2004), for instance, used MCA to investigate the bio-
synthetic pathway of starch in potato tubers, showing that starch accumulation is 
mostly controlled at the level of ATP transport between cytosol and amyloplast,
with a minor role for starch synthesis enzymes.

1.5.2  Coupling Among Scales

Once the description of processes on a common scale has been defined, models have 
to be connected together. The scaling up from cell to tissue or organs properties 
implies understanding the way cells communicate and coordinate together. Recent
studies have shown that cell-to-cell coupling may involve different but intertwined 
mechanisms that include biochemical signalling as well as physical processes, as in 
the case of relaxation of mechanical stresses (Howard et al. 2011). A full multi-scale
approach requires the identification of the predominant mechanisms and of those 
molecular variables that effectively act as “hubs”, connecting different organiza-
tional levels (Keurentjes et al. 2011).

This is the case of calcium ions in heart models, probably the most advanced 
example of multi-scale approach (Hunter and Borg 2003; Noble 2002). The calcium 
intracellular concentration indeed affects the kinetics of actin filaments, providing 
the desired link between cellular metabolism and local mechanical properties of the 
heart. At the cellular scale, a set of ODE equations describe the temporal change of
local concentration of ions (calcium and sodium mainly) due to the presence of ion 
channels, ion pumps and exchangers etc. The stretching of actin fibres, following 
Ca2+ binding, is modelled using a first-order kinetics and the fibre tension computed 
as a function of the intracellular calcium concentration. A diffusion equation, solved
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by means of a finite elements method, then describes the propagation of the mechan-
ical wave on the scale of the whole organ. Interestingly, the organ level can also 
exert a feedback to the cellular one. In the model by Hunter et al. (1998) mechanical 
perturbation of the heart can alter the release of calcium ions from specific regula-
tory proteins, thus affecting the intracellular Ca2+ concentration.

In plants, multi-scale approaches are often employed to investigate organ emer-
gence and morphogenesis, in both vegetative and non-vegetative organs (Band et al. 
2012a; Prusinkiewicz and Runions 2012). A multi-scale model has been recently
proposed to explain the dynamics of cell elongation, in Arabidopsis thaliana roots 
and its control by the hormone gibberellin (Band et al. 2012b). To this aim, root 
elongation zone is described as a single cell file along which gibberellin can diffuse. 
The movement of gibberellin hormone is described in details, both within and 
across the cells, as well as cell expansion along the elongation zone. At the subcel-
lular level, a complex signalling network links the concentration of gibberellin to 
the distribution of DELLA proteins, a known growth repressor. Following vacuole
expansion, gibberellin is rapidly diluted in the cell creating a significant concentra-
tion gradient of both hormone and DELLA proteins along the elongation zone. The
model predicts indeed a progressive accumulation of DELLA towards the end of the
elongation zone, thus explaining the observed reduction of cell elongation.

The above examples illustrate the potential of multi-scale modelling in 
 elucidating the emergence of complex phenotypes. Such examples however are still 
rare. Our knowledge of biological systems and plants in particular remains 
 limited and  further efforts are needed to understand the interplay among different 
organizational levels and identify potential hubs. At term, interactions with environ-
ment should also be taken into account in order to develop a full multi-scale eco-
physiological model.

1.6  Conclusions, Open Issues and Perspectives

Recent advancement in high-throughput methods has led many authors to hope for
the advent of crop systems biology, combining information from molecular biology 
and physiology with a broader look to plant development and growth, in relation to 
environmental factors and agricultural practices. This is a great challenge of integra-
tive biology that needs the collaborative work of many disciplines. The success of 
crop systems biology relies on the close collaboration of scientists from different 
fields (including biology and mathematics), with several iterative cycles between 
experiments and models.

From a modelling point of view this calls for the development of new methods to
account for gene control. Classical approaches by parameter specification have 
already proven their various interests. Among them we can highlight that integration
to crop models is direct and does not require rebuilding new specific models and 
that quantitative genetic control can easily be taken into account. The drawback of 
course is a low explicative power of the fine mechanisms; model predictions may be 
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valid only in well-defined experimental conditions, making this kind of model less 
amenable to exploratory in silico research. In parallel, approaches have been devel-
oped to model the behaviour of cellular networks. At this organization scale, knowl-
edge is more complete and specific genes or loci controlling the traits are better 
known and described. A panel of approaches are available, but in this chapter we
focused on gene regulatory networks and metabolic networks that could then be 
linked to crop models. The last part of the chapter was devoted to the integration of 
different temporal and spatial scales (cellular, tissue, organ) within a single model, 
in the perspective of multi-scale modelling.

Plant and crop ecophysiological models formalize traits as the result of geno-
typic and environmental effects and the relations among traits. In this sense they 
provide a platform of virtual profiling (i) for the integrative analyses of the impact 
of a combination of traits on whole plant and crop phenotype (e.g., Bertin et al. 
2010; Hammer et al. 2009) and (ii) for quantifying individual impact of traits, or in 
interaction with other traits in a trait network, within a range of agro-climatic condi-
tions. This opens the door towards new opportunities of virtual breeding of ideo-
types such as developing genotypes specifically adapted to a set of conditions of 
particular interest (e.g., non-optimal pedoclimatic scenarios, new cultivation tech-
niques, future climates). However, going back to experiments will be crucial to
assess simulations by experimental evidences (Andrivon et al. 2013).

Despite recent advances in knowledge and development of tools, several scien-
tific and technical challenges still need to be overcome. Considerable efforts are still 
needed to make the links between levels of organization and to integrate different 
types of information but we believe that this framework will soon become essential 
to further decipher plant complexity.

 Appendix 1: Qualitative Modelling

Qualitative approaches aim to characterize key properties of the dynamics of the 
system as the existence of steady states, limit cycles (oscillation) but also specific 
dynamical patterns, like for instance the subsequent activation of two network com-
ponents. Due to their qualitative nature, these approaches are generally non- 
deterministic: the result of a qualitative simulation is a state transition graph 
containing all possible dynamical pathways that are coherent with the initial model 
definition. In this perspective, model checking tools provide an useful complement, 
allowing the automated verification of dynamical properties of the system, regard-
less of the specific trajectory (Monteiro et al. 2007).

In the following we present the basics of three common qualitative models; the 
interested reader can find relevant references for more information.
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 Logical and Boolean Model

Variables (usually genes or signaling molecules) are represented as discrete entities 
that can assume a set of integer values (0 and 1 in the Boolean case, 0,1,2, … in logi-
cal models) describing which variable is present and, in the case of logical models, 
at which concentration (state of the system). The temporal evolution of the system, 
i.e. the transition between system states, is determined by the interactions among 
variables. A steady state is reached when the output state is equal to the input one.
A combination of logical functions (AND, OR, NOT) or, alternatively, a table of
truth can be used to define the interaction rules. In the case of logical models, the 
interaction between two variables can be submitted to an additional constraint on 
the concentration of the regulatory variables. So for instance, in the example in Fig.
1.1 gene C is activated by protein B if and only if the latter is present at high con-
centration (variable level 2). The dynamics of Boolean and logical models (but not 
their steady states) depends on the specific updating scheme employed. Two main 
kinds of update are possible, either synchronous or asynchronous. In the synchro-
nous scheme, all nodes are updated simultaneously according to their values at pre-
vious time, whereas in the asynchronous update a single node, selected at random, 
is changed at time, according to the current state of the network. For more informa-
tion on logical models and their application, see de Jong (2002), Fauré et al. (2006) 
and Morris et al. (2010).

 Piece-wise Linear (PL) Model

PL model, introduced by Glass and Kauffman (1973), lies in between ODE and
logical models (Davidich and Bornholdt 2008): a continuous step function describes 
the activation (inhibition) of a gene, whenever the concentration of a regulatory 
variable xj is above given threshold ϴj (Fig. 1.2).
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Threshold concentration thus defines a rectangular partition of the phase space, 
such that in every region not located on a threshold, the PL model reduces to a linear 
system of differential equations. Moreover, in every such region the derivatives
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(trends) of the concentration variables have a determinate sign, which is shown to 
be invariant for rather weak constraints (inequalities) on the parameter values. In a 
qualitative analysis, each of these regions corresponds to a qualitative state of the 
network, analogous to the n-tuple of zero and ones of Boolean models.

PL models are often used to describe gene regulatory networks, based on the 
observation that gene expression rates are often a sigmoid function of the transcrip-
tion factor concentration. Step-functions are thus seen as an approximation of this 
sigmoidal behaviour. For more information on PL formalism and its application to
biological systems see Baldazzi et al. (2011) and de Jong et al. (2004).

 Petri Net Model

Petri nets contain two kinds of nodes: places and transitions. Places (graphically 
described as circle) represent the resources or variables of the system (e.g., metabo-
lites in a metabolic network) whereas transitions (rectangles) correspond to events 
(e.g., reactions) that can change the state of the variables. At any time, each place
contains a zero or positive number of tokens (small black dots): when the number of 
tokens is sufficient, the transition is enabled and the reaction can take place. The 
firing of an enabled transition results in the consumption of tokens in the input place 
and the creation of a given number of tokens in the output place, according to edge 
weight (Fig. 1.3). Due to their structure, Petri nets are usually employed to describe 
signalling and metabolic networks. Indeed, following a metabolic analogy, the num-
ber of tokens in a given place can be associated with metabolite concentrations 
whereas edge weights correspond to reaction stoichiometry. For a more complete
review we refer to Chaouiya (2007).
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Fig. 1.2 Piece-wise linear 
approximation of a 
sigmoid function into a 
step function 
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 Appendix 2: Constraint-based Models

 Metabolic Pathway Analysis

The idea is to study the solution space (flux vector v) of the following system at 
steady-state:

 

N v

v C

⋅ =
∈

0

 

where N is the stoichiometric matrix and C is the set of constraints. In the simplest 
version C are thermodynamics constraints, defining irreversible reactions (i.e., vi > 0 
for some flux i), but it can also include flux capacity constraints (i.e., v_min < vi < v_
max) or experimental data (measured flux values, i.e., vi = mi). In this framework, 
omics data can be used directly to reduce the search area (in blue in Fig. 1.4).

Within constraints C, any admissible flux distribution is represented as a non-
negative combination of a valid set of pathways that is (a) unique and (b) minimal, 
for each network topology. In particular each pathway is “non decomposable”, i.e., 
it consists of the minimum number of reactions needed to exist as a functional unit. 
Two alternative definitions of these pathways exist, elementary modes (Stelling 
et al. 2002) and extreme pathways (Schuster et al. 2000), that can provide slightly 
different information (see Papin et al. (2004) for a comparison between the two).
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Fig. 1.3 Firing of a Petri net. At time t, places A and B both contain one token (small black dot), 
enough to allow the reaction A+B– >2C to take place, as indicated by the edge weights (small 
numbers on the arrows). At time t +1, tokens in A and B have been consumed whereas two tokens
have been created in place C
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 Flux Balance Analysis and Related Techniques

Within the solution space defined by the Metabolic Pathway Analysis, Flux Balance
Analysis aims at identifying the most likely flux distribution as the ones that
 maximize a given objective Z, i.e.:
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0

| max
 

Several choices are possible regarding the objective function Z and the formula-
tion of an appropriate one is still subject of research, especially in the case of higher 
organisms (Schuetz et al. 2007). Among the most popular cost functions in literature
are the biomass or ATP productions, growth rate or the production of specific
metabolites.

Whatever the objective function, a common problem with FBA is the possible
existence of multiple optimal solutions, i.e. several flux distributions with same 
cost score. In this case the prediction is not unique, and some conclusions may 
change depending on the selected solution. However, alternative solutions may
have a biological meaning: biological systems show a high degree of redundancy 
that is often associated with a certain functional robustness. Mahadevan and
Schilling (2003) explicitly use the existence of multiple optima to investigate 
redundancies in the network and to derive a flux range in which the optimality is 
guaranteed. In the case of engineered organisms (e.g., mutants or knock-outs), 
MOMA technique predicts the expected flux distribution by assuming that it is the
closest to the wild type one (principle of minimal modification), irrespectively of 
its optimality (Segrè et al. 2002).
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Fig. 1.4 Schematic representation of Constraint-Based Analysis of metabolic network (inspired
by Orth et al. (2010)). In absence of constraints, the flux distribution of a metabolic network can 
be everywhere in the solution space. Stoichiometry, thermodynamics and limitations to fluxes 
capacity act as constraints that reduce the allowable space of solutions (blue surface). An optimiza-
tion principle allows selecting one optimal solution, at one edge of the solution space
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Chapter 2
Simulating Genotype-Phenotype Interaction 
Using Extended Functional-Structural Plant 
Models: Approaches, Applications 
and Potential Pitfalls

Lifeng Xu and Gerhard Buck-Sorlin

Abstract Modelling approaches have increasingly been used as a supplementary 
tool in understanding the build-up and diversity of crop phenotypes, and their rela-
tions with morphogenesis. Among these approaches, Functional-Structural Plant 
Models (FSPMs) have been developed to simulate complex interactions between 
plant architecture and physiological processes. In this chapter, we introduce an 
FSPM of rice that simulates growth and morphology of individual rice plants and of 
small stands from germination to seed maturity. This model covers selected eco-
physiological processes including photosynthesis and sink functions based on a 
common assimilate pool. We furthermore introduce here for the first time an exten-
sion of the rice FSPM with a module for genetics, which constitutes a genotype- 
phenotype model coupling quantitative genetic information of the phenotypic trait 
plant height with the morphogenetic rules leading to this composite trait. Lastly, a 
virtual breeding model is presented: this extended model enables the virtual repro-
duction of quantitative genetic information and the generation of a new simulated 
mapping population, in both its phenotypic and genotypic form. Finally, the current 
pitfalls and problems, and the potential uses of the virtual breeding model are 
discussed.
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2.1  Introduction and Overview: Using Morphogenetic 
Models in Cereal Breeding

Cereals, such as rice, maize and wheat, constitute the basic staple foods of human-
kind, and the demand for them is rising with the increase in the human population. 
Cereal breeding science needs to ensure yield stability and increase in productivity 
in order to meet this increasing demand: Ensuring the current level of supply with 
cereals requires a joint effort employing all the technical means presently available. 
However, in the face of climate change breeding efforts need to be doubled to create 
new adapted varieties. What is more, some socio-economic problems can probably 
not be resolved by an increase in cereal production: rising prices due to stock market 
speculation with food commodities; competing claims for the use of agricultural 
soils; unequal and unjust distribution of food; or food waste and excessive meat 
consumption.

Three major tasks for cereal breeding derived from this situation are: first and 
foremost to create disease-resistant cultivars; second, to increase crop efficiency in 
terms of product quantity per area as well as quality (nutritional and with respect to 
disease resistance); and third, to create cultivars that are adapted to abiotic stresses 
(salt, hydric, nutrient depletion, soil compaction,…) so that crop cultivation can be 
extended to less favourable soils and climates. It goes without saying that most 
often these named tasks cannot be tackled separately; therefore, it will be an over-
arching task of plant breeding to come up with cultivars that are disease-resistant, 
stress-resistant or stress-tolerant, and efficient in terms of yield.

The contribution of science to solving these problems can be manifold; amongst 
them is the unravelling of the processes that lead to complex traits such as yield. The 
interaction of genes (genotypes, genomes…), environmental factors (also in the 
form of stresses), and crop management with physiological processes at the organ, 
plant and crop canopy level and its integration over time from germination to matu-
rity determines yield quantity and quality. In strong contrast to animals who adapt 
to the environment largely by their behaviour, plants exhibit a strong phenotypic 
plasticity, i.e., when adapting to a certain environment they change their overall 
shape or architecture, due to the modularity of the plant and its ability to form new 
phytomers on a regular basis by growth and branching. As this plasticity also affects 
many agronomically important traits (e.g., culm stability and architecture influenc-
ing the infection of the plant with soil-borne fungal spores; or the classical example 
of introduction of semi-dwarf varieties leading to higher grain yields), it has to be 
considered in an explicit manner.

Genotype-phenotype models of crops in the form of spatially explicit models of 
morphogenetic development (commonly in a 3D form), based on the interaction of 
compartmentalized physiological processes, and coupled with quantitative genetic 
information, can be used to better understand these systems and ultimately to aid 
breeding of new crop varieties. Essential elements (objects, rules, and methods) for 
such a model comprise the description of the phenotype in terms of its constituent 
organ object types. Another type of elements comprises primary processes and 
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 processes likely to exhibit genetic variation and/or leading to yield traits. Next, the 
genotype with different degrees of complexity (e.g., arrays of numbers representing 
genes or “virtual chromosomes” of differing ploidy level or genetic regulatory net-
works) needs to be described. Finally, a description of processes representing breed-
ing, i.e. selection, recombination, mutation, reproduction, is necessary. Most 
importantly, such a model should provide the link between the genotype and the 
phenotype.

Among the objectives of such advanced genotype-phenotype models one could 
name the production of a large number of recombinations (or a synthetic genotype) 
and the subsequent testing of the performance of the virtual genotype under a given 
environment, which is impossible in real breeding; or testing the performance of a 
given cultivar under different climate conditions (climate change), which is difficult 
in real breeding. Resulting models should be in the form of multi-scaled and modu-
lar systems to facilitate the representation of basic genetic processes and their up- 
scaling to the relevant levels (organ and entire plant). Furthermore, a common 
ontology for these 3D genotype-phenotype models would have to be developed, and 
lastly existing data acquisition techniques for this class of models need to be 
improved. An ultimate objective would be the construction of architectural ideo-
types which represent optimal (with respect to the complex trait yield) ranges for 
individual traits. Such traits may include culm length, tillering intensity, culm leaf 
number, distribution of leaf blade bases on the culm, leaf blade angle, leaf blade and 
sheath colour, phyllochron (deviation from distichous arrangement), culm mechani-
cal properties (bending strength, rigidity), grain number per panicle, and panicle 
architecture (divergence of primary and secondary branches).

Plant models can be used to simulate the genetic characteristics of plants. 
Conventional crop growth models are now increasingly used in breeding programmes 
to assist in the design of new plant types (Yin et al. 1999; Hammer et al. 2006). 
Modelling approaches can be an intuitive and extensible tool to enhance our under-
standing of complex crop phenotypes, which will ultimately lead to new and improved 
crop cultivars. Efforts to simulate complex interactions between plant architecture 
and the physical and biological processes that drive plant development at several 
temporal and spatial scales have led to the emergence of functional- structural plant 
models (FSPMs). FSPMs are defined as models that couple a selection of physiologi-
cal processes that result in an explicit 3D plant structure, often supplied with a mutual 
feedback between physiology and structure (Buck-Sorlin 2013).

2.2  Functional-Structural Plant Models of Cereals

Understanding plant growth and morphology is of great importance to agronomy. 
Modelling efforts within the FSPM domain are mostly concerned with the acquisi-
tion, transport and use of matter and energy from sources to sinks through pathways 
dictated by plant architecture, such as light, carbon, water and soil minerals, and 
how these environmental parameters affect growth and morphology of the resulting 
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plants (Kitchen and Allaby 2013). FSPMs have been developed for a number of 
cereal crops, e.g., maize (Fournier and Andrieu 1999), wheat (Fournier et al. 2003), 
barley (Buck-Sorlin et al. 2008), and rice (Luquet et al. 2006; Xu et al. 2011), see 
also Fournier et al. (2007). Depending on the application domain, FSPMs integrate 
different physical and physiological processes and vary in the level of detail for the 
spatial representation of the plant. Models may consider different hierarchical 
scales: from individual organs or sets of organs to entire plants.

Application of the FSPM paradigm enables the creation of virtual plants that 
represent simulations of realistic morphological and physiological development 
over time. Chenu et al. (2007) simulated leaf development of Arabidopsis thaliana 
as a function of light input. Qu et al. (2012) used an approach based on metamer and 
root agents to simulate carbon and water acquisitions and expenses in orange trees. 
Drouet and Pagès (2007) proposed a model for maize during the vegetative period 
considering carbon and nitrogen dynamics. Clark and Bullock (2007) studied the 
influence of light competition on plant morphology in a generalized virtual plant.

The above-mentioned studies did not attempt to consider the link between popu-
lation genetics and individual plant development. Two studies illustrate the efforts 
to implement genotype-by-environment (G × E) interactions into FSPMs. Buck- 
Sorlin et al. (2005) developed an FSPM of barley using Relational Growth Grammars 
(Kniemeyer 2008), in which a graph representation of a genetic regulatory network 
was used to model the final steps of the biosynthesis of the bioactive form of gib-
berellic acid – which plays a role in internode extension of barley and other cere-
als – and its two precursor molecules. Graph topology was also used to represent 
two virtual chromosomes consisting of seven alleles each, together forming the vir-
tual genotype; genetic processes such as crossing-over and recombination were 
implemented as growth grammar rules editing and modifying the graph. This per-
mitted the simulation of sexual reproduction, on both the level of the genotype and 
the phenotype, the latter by mapping the net phenotype effects of each allele to 
specified morphogenetic rules. Luquet et al. (2012) proposed a rice FSPM with its 
growth rate being parameterized with different genotype effects.

2.2.1  A New Functional-Structural Plant Model for Rice

In this section we will describe the FSPM of rice, proposed by Xu et al. (2010). This 
FSPM simulates growth and morphology of the individual rice plant from germina-
tion to seed maturity, in combination with selected ecophysiological processes 
including photosynthesis and sink functions based on a common assimilate pool. 
The model produces a simple phenotype based on a set of morphogenetic rules 
describing an “average” development course and final morphology linking yield 
traits to selected physiological processes. This model has the capability to be 
extended with a genetic model (see later). Here, we will present some of the main 
functions of the rice FSPM. The model has several modules, i.e., a photosynthesis 
module as the source, a growth function and an assimilate partitioning module as 
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the sink, and a morphology module responsible for the extension of the organs and 
overall individuals.

In order to model source activity, the photosynthesis model LEAFC3 (Nikolov 
et al. 1995) was implemented in the XL language (Hemmerling et al. 2008); species- 
specific parameters for rice were extracted from the literature (Yin et al. 2004; Yin 
and van Laar 2005; Borjigidai et al. 2006). Input to the photosynthesis model was a 
weather file (three locations: two in Hangzhou, and one in Hainan, P.R. China) con-
taining daily values of mean temperature, global radiation, and relative humidity. To 
estimate local light interception and leaf photosynthesis, the ray-tracer-based radia-
tion model of GroIMP, a modelling platform designed for FSPM, was used 
(Hemmerling et al. 2008). A leaf blade is modelled as a collection of 25 parallelo-
gram objects of different size and orientation. Each leaf has a parameter to store 
intercepted PAR (Photosynthetically Active Radiation). A method which invokes 
the LEAFC3 model with input leaf area, temperature and PAR, was used to calcu-
late daily assimilate production per leaf. The output of all leaves was at each step 
added to a central assimilate pool.

The timing and growth duration of active sinks control the conversion of assimi-
lates to harvestable dry matter, i.e., grain yield. In the FSPM approach of Xu et al. 
(2010) the orchestration of sink activity is prescribed by growth and development 
rules and the overall biomass production is an emergent property of the integration 
of these rules applied over time to simulated structures. In addition, the rate of 
extension of each organ is described, based on a function for the determinate growth 
(Yin et al. 2003). This function describes the dynamics of extension and biomass 
accumulation of organs: the sink strength of a growing organ is first described by its 
potential growth rate, for which we chose the derivative of the sigmoid growth func-
tion proposed by Yin et al. (2003); then the potential growth rate and the realized 
growth rate at a certain time are calculated (see detailed description in Xu et al. 
2010). Once growth of an organ is realized with a rate inferior to or equal to the 
potential growth rate the central assimilate pool is updated accordingly. Finally, 
growth respiration is considered in the form of a conversion factor (g glucose g−1 
newly produced dry matter), which is proportional to the growth rate as described in 
Goudriaan and van Laar (1994). Likewise, maintenance respiration is computed as 
a fixed proportion (0.014 g glucose g−1 dry matter) of structural biomass. Both terms 
are subtracted from the central pool at each step.

To simulate vegetative and generative development, a set of growth, develop-
mental and branching rules are repetitively applied to a meristem module and all its 
ensuing organs, leading to the visible phenotype. The structural framework thus 
created is used to simulate and analyse the dynamics of assimilate flow as dictated 
by local (potential) growth rates and assimilate availability in the central pool. 
Developmental rate, i.e., the rate of formation of new organs per thermal time, is 
controlled by a parameter (plastochron): each newly formed organ has a state vari-
able p, which is initiated with a value representing the measured duration [d] of the 
plastochron; at each step p is reduced by one; when it becomes zero the formation 
of a new phytomer (leaf, internode and lateral tiller bud) is triggered. In addition, the 
formation of main stem and tiller phytomers is restricted to a maximum phytomer 
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rank and a maximum tillering order, based on measurements. A leaf is initiated with 
an initial length and diameter. The meristem is reinitiated at the tip of the shoot, and 
the rank increased by one; at the same time the plastochron is set to its initial value 
(as specified by a global variable). Other rules determine bending-up of the culm 
due to phototropism.

The potential extension and final dimension of organs (leaves, internodes, etc.…) 
depend upon their rank and age, while the actually achieved dimensions are also a 
function of sink competition and assimilate availability, as described above.

Leaf dimensions are determined, again using the sigmoid growth function from 
Yin et al. (2003), calculating dry matter increment as a function of time which is 
then converted into leaf area.

Once a temperature sum threshold is surpassed, the vegetative meristem is trans-
formed into a generative meristem, which is followed by the formation of grain 
primordia and grain filling (the latter again described by using the growth function 
of Yin et al. 2003). As long as the central assimilate pool is not exhausted, the gen-
erative meristem then recursively produces grains, thereby diminishing and usually 
quickly exhausting the assimilate pool.

The central assimilate pool functions as a buffer between sources and sinks. It is 
replenished by local leaf photosynthesis and diminished by organ growth and main-
tenance respiration. According to the simulation results by Xu et al. (2010), the 
dynamics of the central assimilate pool was characterised by three phases. At first, 
there was an initial decrease due to a strong sink demand by establishment growth 
accompanied by a lack of source activity due to the unfolding of seedling leaves. 
This was followed by a strong increase during the mid to late vegetative phase when 
full photosynthetic capacity is achieved. The final phase was characterized by a 
sharp drop during the grain filling stage when leaves senesce and sink demand by 
grains becomes dominant.

This model reproduced plant architecture and morphology of rice plants from the 
seedling stage to maturity. With the processes of leaf extension, internode elonga-
tion, and grain formation (constituting the sink model), the model already exhibits 
a reasonably faithful appearance at all growth stages, as shown in Fig. 2.1 for the 
rendered scene of simulated rice morphology with light distribution.

2.3  Coupling the Functional-Structural Plant Model of Rice 
with Quantitative Genetic Information

As outlined in the introduction the improvement of the genetic pool of rice with the 
objective to sustainably increase yields has long been the focus of breeders. In order 
to improve production efficiency as well as product quality, a deeper understanding 
of the way ecophysiological characteristics functionally contribute to yield, and 
how genes interact with changing environments to act upon physiological processes, 
is necessary. With respect to quantitative genetics, recent progress has enabled us to 
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dissect naturally occurring variations and has contributed to our understanding of 
the genetic control of morphological and physiological traits (Fukuoka et al. 2010). 
Mapping quantitative trait loci (QTL) for complex traits has become a routine tool 
in functional genetics and plant breeding research (see Chap. 1 of this book by 
Baldazzi et al.), and QTL analysis is providing a powerful strategic tool to associate 
genomic regions with their phenotypic effects in rice (Yamamoto et al. 2010).

Traditional breeding methods are labour-intensive and time consuming which 
renders the development of new advanced crop cultivars increasingly difficult 
(Fukuoka et al. 2010). Growth model-based approaches in combination with 
 quantitative genetics can assist in and accelerate traditional breeding (Lecoeur 
et al. 2011; Uptmoor et al. 2008). Coupling QTL and FSPM allows the spatially 
explicit modelling of phenotypes and their development, under observed conditions 
but also under environmental conditions that have not been experimentally tested or 
of new genotypes that only exist in silico (Reymond et al. 2004).

As a first major step towards this goal, Xu et al. (2011) linked our rice FSPM to 
a quantitative genetic model, thereby employing QTL information to refine model 
parameters and visualizing the dynamics of the entire phenotype as a result of 
underlying ecophysiological processes, including the trait for which genetic infor-
mation is available. This has laid the foundation for future use of the model to 
design ideotypes.

Fig. 2.1 Snapshot of the 
rendered scene of the 
simulated rice morphology 
at the post-flowering stage, 
using the Twilight renderer 
of GroIMP to show 
simulated light distribution
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Xu et al. (2011) combined the ecophysiological model of rice with QTL infor-
mation on internode extension, which has a direct influence on plant height (plant 
height being affected by the sum of the lengths of all internodes, erectness of culms, 
the length and insertion height of the flag leaf blade, and the erectness and size of 
the panicle). In the extended model yield traits were linked to selected physiological 
processes and detected QTLs with additive effects and epistatic effects (a gene 
enhancing or inhibiting the expression of another gene located at a different locus; 
see also Chap. 1 of this book by Baldazzi et al.). A follow-up study presented an 
example of a rice model that simulated genotypes superior for plant height (Xu et al. 
2012): the basic model represented QTLs as arrays of genotypic values and mor-
phogenesis as rules in relation to other physiological processes. Virtual breeding 
was conducted as the reproduction of QTLs from parental lines to a mapping popu-
lation. The rules that specified the genetic processes operating on genotypes as 
intrinsic properties of each individual determined the phenotype value, e.g., the 
plant height.

The link between the ecophysiological model and QTL information, and the pro-
cesses of sexual reproduction with genetic information were constructed via a 
genetic model, containing an interface responsible for data input (quantitative 
genetic data), methods that can be invoked to simulate the genetic processes (i.e., 
crossing-over, recombination, and haploid doubling), the interaction by the user 
(i.e., selection of individuals as parents for sexual reproduction), and determination 
of the phenotype coefficient.

The interface was designed as a dialog of the rice FSPM model with the output 
of QTLNetwork (a software for QTL mapping, Yang et al. 2008). QTL information, 
i.e., the number of QTLs detected, additional effects, epistasis effects, position 
information including flanking markers, mean value(s) of the trait(s) in question of 
the population, can be automatically extracted from the output files of QTLNetwork. 
Thus, the recombination rates of the loci and total additional phenotype coefficients 
can be used as model parameters, for the visual representation and for the processes 
involved in virtual breeding.

The parameters converted from the genetic data and exhibiting variation among 
individuals of a mapping population were then used in the simulation instead of 
standard/average model parameters, calculated as

 y G= +µ  (2.1)

where y is the phenotype coefficient that can be used as the parameter in the model, 
computed as the sum of the population mean (μ) and the total genetic effect (G). The 
latter consists of genetic main and interactive effects; genotype by environment 
interaction effect was not considered (Xu et al. 2010). The total genetic effect can 
then be written as

 

G n x a
j i

x x aai i i j ij= + = +∑ ∑ ∑i i
n n

1
 

(2.2)
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where n denotes the total number of QTLs detected; ai is the additive effect of the 
i-th QTL; aaij is the digenic epistatic effect of additive by additive interaction 
between i-th and j-th QTL; xi and xj refer to the genotypes of the two QTLs, 
respectively.

Generally speaking, y is a prediction of the observed phenotype (e.g., stem 
length, tiller number, grain number, grain weight, etc.), computed from the mixed 
linear model, for a given genotype and environment (Xu et al. 2011).

Take the trait plant height as an example: first, an algorithm implementing the 
derivative of the beta growth function was employed. Using this function, plant 
height was then calculated from the population mean value and predicted genetic 
effects were used to tune the growth curve of the entire stem. More specifically, the 
instant growth rates and final dimensions (final length, analogous to wmax, used in 
the derivative of the aforementioned sigmoid growth function) of each internode 
were used to reproduce the length dynamics of the stem. For simplicity, a fixed 
length distribution and internode number were assumed.

The mechanisms of sexual reproduction considering representations of a QTL 
genotype are based on the implementation of “biomorphs” (Kniemeyer et al. 2003) 
and the “virtual breeding” model BarleyBreeder (Buck-Sorlin et al. 2005, 2007). 
Here, we will discuss a number of rules in the rice FSPM, with which the sexual 
reproduction of individuals with marker genotypes and QTLs was implemented.

Consider the following rule:

Axiom == > Population Genotype [ch1:Chromo ch2:Chromo];

In this initiation rule (using the start word Axiom), each chromosome (Chromo) 
is declared separately as a branch (designated by opening and closing square brack-
ets “[” and “]”) of Genotype. In turn, Genotype contains a variable qtl, which is an 
array of the QTL genotype containing the value 1 or −1 (identified for Q or q, 
respectively, as the possible allele) in each locus.

QTLs are regions on a chromosome, characterized by a pair of (molecular) mark-
ers, which are statistically associated with a trait. This has been imitated in our 
model. Thus, the effects for each QTL is an array Genotype. QTL_Effect[i] from the 
node Genotype:

Genotype.setQTLeffect(ch1.qtl, ch2.qtl)

where the method setQTLeffect() is a method of Genotype which computes the phe-
notypic effect of a given QTL, ch1 and ch2 represent the two chromosomes (object 
Chromo), while ch1.qtl and ch2.qtl are two arrays indicating the QTL genotype.

A typical run of the model starts with two default individuals considered as par-
ents (P1, P2) of the doubled haploid (DH) population (Fig. 2.2). These parental 
individuals represent two instances of the same set of developmental rules yet linked 
to two different genotypes; at this stage the development of the parental individuals 
can be simulated to visualize their final morphological phenotypes. Initial variables 
(Table 2.1) are read from the external files (QTLNetwork output files). The QTLs 
are considered as markers, and added into the linkage map with the genetic distance 
information to form the original genotype specified in genotype initialization as 
Relational Growth Grammar (RGG) rules:
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Germ -GEN_EDGE-> gen:Genotype [ch1:Chromo ch2:Chromo]
::> {

ch1.setMarker(marker_genotype_input[id]);
ch2.setMarker(marker_genotype_input [id]);
ch1.getGenotype();
ch2.getGenotype();
gen.setQTLeffect(ch1.chromo_genotype, ch2. chromo_genotype);

}
Here, marker genotypes (marker_genotype_input[]) are initialized for the two 

chromosomes (Chromo, represented by ch1 and ch2). Then the QTL genotype 
(chromo_genotype) for each allele is extracted from the marker array using the 
function getGenotype(). In this way the QTL effect for an individual (identified by 
the integer id) can be calculated.

The reproduction process can take place interactively at any developmental 
stage. An F1 generation of virtual rice is then simulated after chromosome align-
ment, crossing-over and recombination have taken place, with the markers as well 
as QTLs having been reinitiated. The recombination rates between markers are 
 calculated using the position information with the Haldane map function (Haldane 
and Waddington 1931; Zeng 2000). The markers of the chosen allele are defined as 

Fig. 2.2 Simulated final morphology of the two parental lines (P1:‘IR64’ (left), and P2:‘Azucena’ 
(right)) of the DH population, as the initial two individuals of the rice model

Table 2.1 Predicted genetic effects (G) for P1, P2 on final plant height (in cm) of rice. GG General 
genetic effect: G1, G2, and G3 are the total genetic effects in three environments (spots), respectively. 
The mean value of plant height of the population (μ) is 104.11 cm

GG G1 G2 G3

P1 −25.27 −23.09 −27.19 −25.27
P2 18.00 15.81 19.92 18.00
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the input of the gametal allele using the function setGenotype(). The simplified 
RGG rules for chromosome crossing-over and chromosome recombination are:

c11.setGenotype(crossOver(c11.chromo_genotype, c12.chromo_ 
genotype));

where the markers on c11 (one of the chromosomes) are defined as the product of 
crossing-over between c11 and c12; the same applies to the other alleles. The func-
tion crossOver() simulates the crossing-over process, in which the rate of crossing- 
over of marker alleles is a function of the recombination frequency, the latter being 
calculated with the Haldane map function (Haldane and Waddington 1931; Zeng 
2000):

 
r e x= − −1

2
1 2( )

 
(2.3)

where x is the genetic distance between markers in a chromosome with the unit 
Morgan (M, 1 M = 100 centi-Morgan).

Using the RiceBreeder model, various populations can be simulated. The DH 
population is derived from the F1 generation after production of recombined hap-
loids and reduplication of alleles (as shown in Fig. 2.3). The simulated phenotype 
value as well as the marker genotype for each individual can be obtained after com-
pletion of growth. The simulated DH population can be then used as the mapping 
population in the QTL mapping process, aiming at the validation of the genetic 
model within the RiceBreeder.

2.4  RiceBreeder: A Tool for Visual Virtual Breeding

Virtual breeding denotes, essentially, a simplified imitation of real breeding. It 
should involve the following:

 – a population of virtual plant individuals;
 – model representation of a phenotype: i.e., 3D morphology, basic physiological 

processes, transport and environmental sensitivity in an FSPM, or physiological 
processes plus environmental factors in a crop model;

 – model representation of a genotype: sets of variables, i.e., genes and QTLs, with 
values representing alleles or a set of gene regulatory networks;

 – model provisions to link genotype with phenotype and to simulate breeding 
mechanisms (selection, recombination, mutation, reproduction, etc.).

Virtual breeding models can systematically produce a large number of recombi-
nant genotypes, and predict the performance of the virtual phenotype tested under a 
given environment. This is almost impossible in real breeding practice. Besides, 
virtual breeding models can also be used to test the performance of a given cultivar 

2 Simulating Genotype-Phenotype Interaction Using Extended Functional-Structural…



44

under different climate conditions. In contrast, in real breeding the climatic condi-
tions cannot be fully controlled and thus it will be difficult to get suitable results, not 
to mention the increased investment in effort, time, and labour necessary in real 
breeding practice.

Then which physiological processes should be modelled? To answer this ques-
tion, one should be clear about the basic physiological processes involved in pri-
mary production, the processes that exhibit genetic variability and/or lead to 
yield-related traits. These are the processes that need to be considered. Regarding 
the number of additional processes, a choice has to be made that balances the risk 
of over-parameterization with the risk of over-simplification. As a guide, processes 
should be added until model calibration becomes cumbersome or is no longer 
possible.

Fig. 2.3 Workflow of the genetic model within the rice FSPM after reading genetic data from the 
result files of QTL mapping. Taking one individual from the F1 generation as an example, the 
modules represent marker arrays, QTL genotype and the total genetic effect, respectively. The lat-
ter two will not be all zero if the alleles are homozygous

L. Xu and G. Buck-Sorlin
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Furthermore, genes or groups of genes indicated by a QTL do not directly con-
trol phenotypic traits but underlying processes that have control over the formation 
of those traits. The biomass quantity, and the quality of harvestable yield depend on 
organ morphology and plant architecture, i.e., on the structure of the entire crop 
plant which carries the harvestable parts. Furthermore, the build-up of this structure 
is influenced by the environment, leading to spatial heterogeneity of physiological 
processes that are exposed to different sets of microclimates according to the posi-
tion and exposition of the organ within the canopy. This is an aspect in favour of the 
use of a spatially explicit FSPM in combination with genotype information. Take 
the light microclimate in the cut-rose production system as an example (Buck- 
Sorlin et al. 2011): the amount of light intercepted not only depends on the intensity 
of the light source, but also on the temporal and spatial dynamics of the architecture 
of the very heterogeneous canopy, which is influenced by the constant harvest of 
flowering stems, and that in turn triggers basal bud break and the formation of new 
flowering shoots. These management factors thus have impact on assimilate pro-
duction, and together with the other processes, such as assimilate partitioning and 
organ extension, influence the quality and final amount of flowering stems that can 
be harvested.

As described in the last section, our FSPM of rice has been extended from the 
morphological model to a model integrated with QTL information as well as genetic 
reproduction processes, as the newly formed model RiceBreeder. The link between 
phenotype, presented as the simulated rice plant, and the QTL genotype was imple-
mented via a data interface between the rice FSPM and QTLNetwork. In the exam-
ple of plant height and grain yield of rice (Xu et al. 2011), the element that connects 
genetic information with the phenotype trait is the growth function of Yin et al. 
(2003). The derivative of the growth function determines the extension rate of each 
growth unit (organ, such as internode). Simulations were run with the parameters 
calculated from the input QTL data, thereby reproducing variation among 
individuals.

As the growth rates were controlled by the growth function (wmax calculated from 
the genotype and QTL effects) and its input parameters, some of which are geneti-
cally related, the growth curves of the same internode in the four individuals (two 
parental lines and two superior lines of the rice DH population) are distinct from 
each other: the positive superior line had the highest growth rate throughout the 
entire growth period of the internode, the negative superior genotype had the lowest, 
while the growth rates of the two parental lines were intermediate. The dynamics of 
the stem length for the four individuals simulated are accordingly different from 
each other (see the comparison of the dynamics of growth rates of one internode and 
stem length extension through all growth periods of the four individuals in Xu et al. 
2012).

Simulations of virtual reproduction comprise 390 ‘observations’ of simulated 
phenotype data from 130 lines in the DH population in three environments. Plant 
height of each line and the marker genotype were recorded after completion of 
growth. Using the simulated DH population for QTL mapping, with the phenotype 
value and marker genotype computed in the mapping software QTLNetwork 
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(Version 2.2), results were derived and compared with the initial settings (Table 
2.2). All the estimations of the main effect QTLs from the simulated DH population 
were quite close to the true value (bias not higher than 0.07), except for the estima-
tion of the last QTL, which was a false positive locus of the main additive effect. 
Three false positive estimations of an epistasis effect were detected, while the last 
estimation of the AA effect had a low bias, as well as one of the two position 
estimations.

The RiceBreeder model reproduces plant architecture, morphology and the 
QTLs for plant height of rice from germination to maturity. A view on the final 
morphology of the two parental lines with different homozygous genotypes from 
the mapping population is already shown in Fig. 2.2, while Fig. 2.4 shows the rep-
resentation of the five tallest and five shortest rice individuals from the simulated 
DH population at the final stage. The genetic values for those individuals were esti-
mated by the equations used in QTLNetwork (Version 2.2). Implementation of 
other morphological parameters and physiological processes was based on those 
methodologies described in the last section.

The use of the RiceBreeder as an educational tool is another interesting applica-
tion. This was in fact realized between 2012 and 2014 in the frame of a Master level 
course held for students of agronomical and horticultural engineering at the 
University of Angers (France) and the National School for Horticulture (Agrocampus 
Ouest). Students were given an introduction to FSPM, to the RiceBreeder model 
and the functioning of the QTLNetwork software. Then groups of three students 
were asked to use the RiceBreeder and the QTLNetwork software to conduct cycles 
of virtual breeding and QTL analysis over up to six generations according to self- 
defined selection criteria and to document their results. The somewhat surprising 

Table 2.2 Comparison of the QTL mapping results from the simulated DH population with the 
initial settings for parental lines in the beginning of the simulation (as the observed data, ‘Obs.’). 
QTL position, additive effects (A), as well as QTL × environment effects (AE) from the simulated 
population (Est.) and initial setting for the markers (Obs.) were compared, and bias of estimations 
(Bias) was calculated accordingly [i.e., Bias = (Est. – Obs)/Obs.]

QTL

Position A AE1 AE2 AE3

Est. 
(Bias) Obs.

Est. 
(Bias) Obs.

Est. 
(Bias) Obs.

Est. 
(Bias) Bias Est. Obs.

1 214.2 
(0.05)

204.6 −15.56 
(−0.04)

−16.28 0 0 0 0 0 0

2 158.8 
(0.05)

151.8 6.44 
(0.06)

6.07 0 0 0 0 0 0

3 315.2 
(0.06)

297.2 −5.43 
(−0.05)

−5.70 0 0 0 0 0 0

4 141.5 
(0.01)

140.8 −5.34 
(−0.07)

−5.72 2.06 
(0.06)

2.18 −1.85 
(−0.04)

−1.92 0 0

5 2 (−) – −0.22 
(−)

– 0 – 0 – 0 –

The single ‘–’ in QTL 5 indicates false positive estimation (there was no such QTL in the parental 
lines)
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outcome of this exercise was that the students adopted the model rather rapidly and 
enthusiastically and that they developed a great creativity with respect to the selec-
tion criteria, while staying perfectly aware of the limitations of the present approach 
(see a next section of this chapter). Two general selection strategies emerged: the 
first strategy consisted in choosing both parents with maximum or minimum values 
for a certain trait (e.g., the two tallest individuals of a population), whereas the sec-
ond strategy was to choose the two individuals with the lowest or highest value of 
the trait considered (e.g., the smallest and largest). Often, a certain trait was moni-
tored while a completely different trait was selected for. QTLs were found to crop 
up and disappear again from one generation to the next. Figure 2.5 illustrates some 
results.

2.5  Current Pitfalls and Problems

The complexity of such an FSPM is not trivial and would be the first potential pit-
fall/problem that modellers need to solve. More importantly, the development of an 
extensive simulation tool may not be without problems if inadequate care is put into 
the development process, or if there is ambiguity in its function, as this may make 
the tool difficult to communicate or reproduce (Kitchen and Allaby 2013).

In contrast to the real complexity of plant physiological processes, their genetic 
regulation is often oversimplified in the model. This leads to the second potential 
pitfall, the relatively inaccurate or over-simplified representation of some processes, 
especially those describing the functioning of genes and the formation of pheno-

Fig. 2.4 Simulated final morphology of ten lines (side view): five highest and five lowest lines 
selected from the simulated DH population (derived from ‘IR64’ × ‘Azucena’) with different QTL 
genotype for plant height
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typic traits. The number of measurements to establish parameters of morphogenesis 
and geometry is often too low, not least due to the rather large number of model 
parameters that have to be considered.

The next problem concerns what could be called “background noise” and is a 
direct consequence of the above-mentioned simplification. It implies that a vast 
number of genes in the genome, of physiological processes, and, to some extent, of 
environmental factors are not considered in any given model yet. In statistics this 
quantity is usually handled as an error term and can be partitioned into different 
errors, with respect to their origin (genetic, environment, G × E interaction), and 
most advanced QTL analysis software takes care of this. Likewise in the current 
model the error term is then introduced as a stochastic quantity added to the param-
eter value. However, even if this works fine from a statistical point of view, we 
should be aware that this does not explain the interaction of the background with the 
“foreground” (the processes and parameters that are considered in the model). As a 
consequence, a model which has been calibrated for one genetic background cannot 
simply be applied to another genetic background without proper recalibration.

Another issue is the optimal size of the simulated population. The threshold size 
of any mapping population, depending on the level of detail of the mapping objec-
tive, should not be less than 100 individuals, while populations used for fine- 
mapping of traits often exceed 1,000 individuals. Populations of this size cannot be 
handled for modelling if at the same time the explicit morphological phenotype is to 
be visualized. Our current version of the RiceBreeder handles populations consist-
ing of 60 individuals on a normal laptop computer with two cores without problems, 
and can visualize the simultaneous development of the entire population within 
about 15 min. However, the computational power needed for larger populations of 
simulated plants within FSPM studies quickly exceeds that of a laptop computer; 
therefore, these simulations would require high-performance computational 
facilities.

Finally, complex FSPMs of an entire mapping population require a lot of data, 
for both model calibration and validation, and often the traits needed as model 
parameters are difficult to establish. High-throughput phenotyping methods are cur-
rently being evaluated to automatically measure morphometric traits but they are 
too coarse and generally only suitable for phenotyping of plant level traits such as 
plant height or leaf area distribution. With current high-throughput phenotyping 

Fig. 2.5 Outcome of a virtual breeding exercise conducted by Master of Science students 
 agronomy. Simulated temporal dynamics of several traits for 60 individuals of a virtual mapping 
population. Upper panel: Trait ‘dry mass of grains’ (mg), in the second generation. Selection was 
carried out at day 150 (final step) by choosing individuals with a high grain dry mass. One QTL 
was found on chromosome 1 with a heritability of 20.7% (P = 0.006). Note that the selection was 
continued until generation 5, yet that the effect of the QTL disappeared afterwards. Middle panel: 
Trait ‘central carbon pool’, in the fifth generation. Selection was carried out at day 50 by choosing 
individuals with a low carbon pool. A QTL was found on chromosome 11 with a heritability of 
21.6% (P = 0.00427). Lower panel: Mean value (points) and standard deviation (bars) of the trait 
‘stem length’ over five simulated cycles of virtual breeding. Selection was carried out at day 150 
by choosing the two tallest individuals
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platforms, multiple linear regression models are conventionally used to generate 
traits that are difficult to measure, from topological or morphometric traits that are 
far easier to measure.

2.6  How Can Virtual Breeding Become a Useful Tool 
in the Near Future?

The potential use of virtual breeding as a tool should in our opinion mirror the three 
application domains of FSPM: use in education, use in scientific research, and 
visual decision support.

Regarding the first use it can be stated from experience that the visual explana-
tion, in an integrated (cross-domains) dynamic 3D model, of cereal development, its 
eco-physiology and genetics, greatly helps to kindle an initial interest in the student 
which can then be fomented by more specific exposure to subject-bound knowl-
edge. FSPM is an excellent tool to illustrate both phenotypic plasticity and the mor-
phological development of mutants. Accordingly, virtual breeding can be employed 
in the context of an FSPM population model to teach the genetic basis and practice 
of selection strategies in both an educational and time-saving manner.

As far as the use as a research tool is concerned, FSPM helps to integrate and 
visualize metadata, from data-mining of scientific articles and unpublished data 
across disciplines, and own measured data. Kniemeyer and Buck-Sorlin (unpub-
lished) coupled an abstract hormonal network (consisting of genes, transcription 
factors and hormones) from the literature (using parameter values from the enzyme 
databases Brenda and Expasy) with morphogenetic models of Arabidopsis and bar-
ley to simulate overexpression or loss-of-function mutants. Of course, such models 
cannot be numerically validated but can nevertheless serve to check for plausibility 
of a number of contrasting hypotheses as has also been confirmed (e.g., Luquet 
et al. 2006, 2007).

The use of virtual breeding in decision-support has not yet been achieved. In 
order to arrive at this point within the next 5–10 years, a number of measures need 
to be taken to improve the applicability and reliability of this approach:

 – the creation of virtual plants that are dynamic, visual, object-oriented, and flexi-
ble tools that can be linked to (meta-)databases,

 – the modelling of G × E × P interactions at lower levels using networks, where ‘P’ 
represents the physiological processes on which the genotype and the environ-
ment exert their effects,

 – the modelling of complex interaction networks among gene loci, along with a 
better handling of QTL data,

 – an improved description of physiological and morphogenetic processes, leading 
to truly multi-scaled modelling at organ and plant level, as well as interfaces to 
other decision-support tools,

 – and, the use of genetic algorithms in plant type design.
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Current developmental state of the RiceBreeder model, and possible extensions 
The current version of the RiceBreeder has been outlined in the previous sections. 
As with any extensive modelling project the wish list for future extensions becomes 
longer with time, and priorities have to be set in order to maintain model integrity 
and functionality. Amongst the more urgent things to be considered in future ver-
sions are:

 – the implementation of more physiological functions, especially with respect to 
growth hormones such as auxins, gibberellic acids and cytokinins, in the form of 
simple regulatory networks derived from the literature;

 – the explicit consideration of root architecture and soil composition. We have 
implemented a general, 3D root architecture and soil model, which we intend to 
parameterize for rice and then couple with the current rice FSPM.

 – the implementation of an automatic sensitivity analysis, by which the parameters 
and model modules necessary for a certain application are filtered out of the 
complete set of available modules, thereby streamlining the model. The approach 
by Cournède et al. (2013), which was especially developed for FSPM, will be 
used.

Finally, the existing software tools will be further extended with the help of 
information scientists and bioinformaticians. This concerns largely the software 
GroIMP, in which the following extensions are foreseen:

 – the implementation of a functionality for explicit up- and down-scaling,
 – an interface to validation tools (see above),
 – the extension of modelling techniques, i.e., the development of modular “bricks” 

to facilitate the representation of basic genetic processes and their up-scaling to 
the levels relevant for FSPM (organ and plant).

These above-mentioned extensions have to go along with the development of a 
general framework (or “ontology”) for 3D genotype-phenotype models, which does 
not yet exist, as well as improved data acquisition techniques for genotype- 
phenotype models. This concerns both high-throughput phenotyping techniques 
and statistical methods to reduce sample size.

In the future cereal breeders could use virtual plants to validate and monitor data 
from high-throughput phenotyping experiments and to show up knowledge gaps. 
Furthermore, the functionality of virtual plants (comprising basic physiological pro-
cess descriptions encapsulated in organ-level units and fully modularized) would 
allow testing the performance of an ideotype in silico.
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Chapter 3
Modelling of Genotype by Environment 
Interaction and Prediction of Complex Traits 
across Multiple Environments as a Synthesis 
of Crop Growth Modelling, Genetics 
and Statistics

Daniela Bustos-Korts, Marcos Malosetti, Scott Chapman,  
and Fred van Eeuwijk

Abstract Selection processes in plant breeding depend critically on the quality of 
phenotype predictions. The phenotype is classically predicted as a function of geno-
typic and environmental information. Models for phenotype prediction contain a 
mixture of statistical, genetic and physiological elements. In this chapter, we dis-
cuss prediction from linear mixed models (LMMs), with an emphasis on statistics, 
and prediction from crop growth models (CGMs), with an emphasis on physiology. 
Three modalities of prediction are distinguished: predictions for new genotypes 
under known environmental conditions, predictions for known genotypes under 
new environmental conditions, and predictions for new genotypes under new envi-
ronmental conditions.

For LMMs, the genotypic input information includes molecular marker varia-
tion, while the environmental input can consist of meteorological, soil and manage-
ment variables. However, integrated types of environmental characterizations 
obtained from CGMs can also serve as environmental covariable in LMMs. LMMs 
consist of a fixed part, corresponding to the mean for a particular genotype in a 
particular environment, and a random part defined by genotypic and environmental 
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variances and correlations. For prediction via the fixed part, genotypic and/or envi-
ronmental covariables are required as in classical regression. For predictions via the 
random part, correlations need to be estimated between observed and new geno-
types, between observed and new environments, or both. These correlations can be 
based on similarities calculated from genotypic and environmental covariables. A 
simple type of covariable assigns genotypes to sub-populations and environments to 
regions. Such groupings can improve phenotype prediction.

For a second type of phenotype prediction, we consider CGMs. CGMs predict a 
target phenotype as a non-linear function of underlying intermediate phenotypes. 
The intermediate phenotypes are outcomes of functions defined on genotype depen-
dent CGM parameters and classical environmental descriptors. While the interme-
diate phenotypes may still show some genotype by environment interaction, the 
genotype dependent CGM parameters should be consistent across environmental 
conditions. The CGM parameters are regressed on molecular marker information to 
allow phenotype prediction from molecular marker information and standard physi-
ologically relevant environmental information.

Both LMMs and CGMs require extensive characterization of genotypes and 
environments. High-throughput technologies for genotyping and phenotyping pro-
vide new opportunities for upscaling phenotype prediction and increasing the 
response to selection in the breeding process.

3.1  Introduction

The target production area for most arable crops spans a range of environmental 
conditions. In the absence of diseases and pests (not considered in this review), local 
environmental conditions are a function of meteorological and soil variables on the 
one hand and management interventions on the other hand. These conditions will 
influence the phenotypic response of individual genotypes, and to some extent gen-
otypes will create their ‘own’ environment, e.g. depending on how they use soil 
water across the season. The functional form by which environmental inputs are 
translated into phenotypes is sometimes referred to as the reaction norm (Woltereck 
1909; Dobzhansky and Spassky 1963; Sarkar 1999; DeWitt and Scheiner 2004). 
Reaction norms depend both on environmental inputs and genetic factors. For a 
given (multi-locus) genotype, the reaction norm is the functional relationship 
between the phenotype and an environmental gradient, and is often linearised in 
some way. Modelling of the reaction norms for a set of genotypes is a central objec-
tive in many breeding and genetic studies. The prediction of the phenotypic response 
as a function of genetic and environmental factors is the basis for decisions that 
involve selection of superior genotypes for a defined environmental range (Hammer 
et al.2006; Chenu et al. 2011; Sadras et al. 2013).

Several important concepts in breeding and genetics have been defined in rela-
tion to the behaviour of reaction norms for a population of genotypes. Firstly, when 
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the reaction norms are non-constant, genotypes are said to show ‘plasticity’ 
(Bradshaw et al. 1965; DeWitt and Scheiner 2004; Sadras and Lawson 2011). 
Secondly, when the reaction norms for different genotypes are not parallel, this 
indicates the existence of genotype by environment interaction (GEI) (Finlay and 
Wilkinson 1963; van Eeuwijk et al. 2005). An extreme form of GEI is cross-over 
interaction, where the ranking of the genotypes varies with the environmental con-
ditions (Baker 1988; Muir et al. 1992; Crossa et al. 2004). Another important con-
cept in the context of the comparison of reaction norms is adaptation (Wright 1931, 
1932; Finlay and Wilkinson 1963; Romagosa and Fox 1993; Cooper and Hammer 
1996; Cooper 1999; Romagosa et al. 2013), i.e., some genotypes do better than 
other ones in a defined set of environmental conditions, the reaction norms of the 
adapted genotypes are then always above those of the less adapted. Finally, for a 
given genotype, ‘stability’ measures quantify the variation around the reaction norm 
(Lin and Binns 1988; Piepho 1998). So, while plasticity, GEI and adaptation refer 
to the expected response curve, which may be most simply thought of as the expec-
tation in a linear regression model, stability refers to the variation around this 
expected response at a defined set of environmental conditions (Slafer and Kernich 
1996; DeWitt and Scheiner 2004; van Eeuwijk et al. 2005; van Eeuwijk et al. 2010).

To select genotypes with superior average performance or a given degree of 
adaptation, predictions need to be made for the phenotype as a function of genotype 
and environment. These types of predictions occur at various stages in a breeding 
programme. In the early stages of breeding programmes, seed is limiting and large 
numbers of new genotypes produced as offspring from crosses between well-chosen 
parents are evaluated in one or a few trials, normally in small plots. For the earliest 
stages of a breeding programme, modelling of reaction norms is not possible and 
selection takes place on the mean performance. At intermediate stages, offspring 
populations are tested in a limited number of trials at various locations for one or a 
few years. In those cases when seed is still limiting, it is attractive to use partially 
replicated designs (Cullis et al. 2006; Smith et al. 2006) so that genotypes can be 
tested at a larger sample of environmental conditions. Selection can be done on the 
mean across trials, but there are also possibilities to select for adaptation. At the 
later stages, when there is sufficient seed for individual genotypes, a limited number 
of genotypes can be tested in a large number of trials, with again possibilities for 
selection on wide adaptation to a wide set of environments or narrow adaptation to 
a limited set of environments (Cooper et al. 2014). Simultaneously, at this stage 
selection on stability is possible.

When a population of genotypes is evaluated in multiple trials, reaction norms 
can be fitted to help in describing the observed data efficiently and to allow some 
form of selection on properties of the reaction norm. To evaluate the predictive qual-
ity of reaction norm models, special cross validation (CV) schemes have been pro-
posed. In CV schemes, the data are subdivided in a training set, used to estimate 
model parameters, and a test set, used to assess prediction accuracy, which is the 
correlation between predicted and observed values (Meuwissen et al. 2001). For 
multiple environment data, various CV strategies have been proposed (Crossa et al. 
2010, 2014; Burgueño et al. 2012; Heslot et al. 2012, 2013; Zhao et al. 2012). For a 
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transparent description of CV strategies, it is useful to introduce some notation. 
When genotypes were tested, evaluated or observed in at least one environment, we 
indicate this by the letter G. When this was not the case we use nG. For environ-
ments the same rule can be defined: E for observed environments, with at least one 
observed genotype, and nE for environments without observations (new environ-
ments). Specific combinations of genotype and environment can have been observed, 
GE, or not, nGE. Following this terminology, the set [G, E, GE] would indicate a 
genotype that was observed and an environment that was observed, while also the 
specific combination of genotype and environment was observed. The combination 
[G, E, nGE] indicates a genotype and environment that have been observed, but the 
specific combination of genotype and environment was not observed. This latter 
situation is typical for unbalanced genotype by environment data.

Figure 3.1 shows four scenarios that are relevant to prediction of phenotypes 
from genotypes and environments as well as to the calculation of accuracies and CV 
strategies. Scheme 1 pertains to situations in which both genotypes and environ-
ments were observed. Specific combinations of genotypes and environments may 

Fig. 3.1 Prediction scenarios, depending on whether genotypes were observed (G) or not observed 
(nG), and on whether environments were observed (E) or not observed (nE)
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be present, [G, E, GE] or absent [G, E, nGE]. Phenotype predictions for Scheme 1 
can be made by simple additive models. The Schemes 2, 3 and 4 are more interest-
ing and we will concentrate on those. Potential strategies for assessment of accuracy 
in genomic prediction are predictions for new genotypes in observed environments 
[nG, E, nGE] (Scheme 2, Fig. 3.1); predictions for observed genotypes in new envi-
ronments [G, nE, nGE] (Scheme 3, Fig. 3.1); and predictions for new genotypes in 
new environments [nG, nE, nGE] (Scheme 4, Fig. 3.1) (Utz et al. 2000; Calus and 
Veerkamp 2011; Burgueño et al. 2012; Schulz-Streeck et al. 2012; Guo et al. 2013; 
Crossa et al. 2014). Scheme 4 of CV obviously represents the strictest type of accu-
racy assessment. (For the notation, whenever nG or nE appears, necessarily nGE 
needs to appear as well, so for Schemes 2, 3 and 4, we can omit the specification 
nGE.)

To produce phenotype predictions for new genotypes (nG) from observed geno-
types (G), it is essential to use statistical models that allow us to connect the new 
genotypes to the observed genotypes. The connections between nG and G can be 
achieved by the inclusion of explicit genotypic covariables in the statistical model, 
and/or by borrowing information via the correlation structure among genotypes, 
defined by their genetic similarities. Analogously, for predicting new environments, 
there needs to be a connection between nE and E via explicit environmental covari-
ables and/or the correlation structure among environments. The latter correlation 
structure is an expression of environmental similarity as estimated from environ-
mental characterizations.

In this chapter, we introduce linear mixed models (LMMs) as our default class of 
statistical prediction models. LMMs can be described as consisting of two parts: (1) 
a fixed part, corresponding to the mean; and (2) a random part defined by variances 
and covariances. Predictions in LMMs can be obtained via the fixed and the random 
part, although the statistical mechanism for prediction in those two cases is differ-
ent. As an illustration, we provide an LMM for the phenotype of genotype i in 
environment j: y x z GE eij j i j i j ij ij= + + + +m a b (van Eeuwijk et al. 2010). The 
fixed part of this model is given by the expectation, or mean, for genotype i in envi-
ronment j: m m a bij j i j i jx z= + + . Here μj is a fixed intercept (mean) for environ-
ment j, xi is a genotypic covariable, for example a molecular marker, αj is an 
environment specific slope corresponding to xi. When xi is a molecular marker, αj is 
an environment specific quantitative trait locus (QTL) effect (Malosetti et al. 2004; 
Boer et al. 2007). For the environments, zj is an environmental covariable, for exam-
ple, a drought stress index, and βi is a corresponding genotype specific slope, for 
example a genotype-specific sensitivity to drought stress.

For prediction via the fixed part, we use genotypic and/or environmental covari-
ables as in classical regression (van Eeuwijk et al. 1996). Besides values for the 
covariable, xi and zj, prediction requires that we have estimates for the slopes, αj and 
βi. These can be obtained by fitting a model for the mean to training data, where we 
need to select suitable genotypic and/or environmental covariables. For prediction, 
we combine the estimated slopes in the training set with the values for genotypic 
and/or environmental covariables in the test set.
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The random part of the model is determined by the terms GEij  and eij , the first 
term representing the (residual) genotypic effect of genotype i in environment j, the 
second term containing experimental (block) and measurement errors. (Random 
terms in model formulations are underlined.) The random terms are assumed to 
have a Gaussian distribution, with expectation zero and proper variance-covariance 
structures. The important random term for prediction purposes is GEij . For this 
term, the correlations among genotypes on the one hand and the correlations among 
environments on the other hand determine the predictive properties of the 
LMM. Thus, for predictions via the random part of the LMM, correlations need to 
be estimated between observed and new genotypes (Scheme 2), observed and new 
environments (Scheme 3), or both (Scheme 4). Correlations among genotypes can 
be estimated from genotypic covariables, including molecular markers, and pedi-
gree data, or a combination of genotypic covariables and pedigree. Correlations 
among environments follow from environmental covariables. Although important, 
we will largely ignore the error term eij  in the remainder of this chapter. See Smith 
et al. (2001a) and Smith et al. (2005) for discussion on models for eij .

The realization of the predictive potential of LMMs depends on the selection of 
genotypic covariables and environmental covariables, for the fixed part as well as 
for the random part. Physiological knowledge on genotypes and environments can 
help in the choice of covariables for inclusion in LMMs. For example, knowledge 
on the structure and use of crop growth models (CGMs) can help in the dissection 
of complex traits (Chapman et al. 2002b; Edmeades et al. 2004; Reynolds et al. 
2009a), thereby suggesting genotypic and environmental covariables for inclusion 
in predictive LMMs. A CGM can suggest writing a complex target trait as a function 
of a set of simpler component traits and a set of environmental input variables (Yin 
et al. 2003, 2004; Chenu et al. 2008; Hammer et al. 2010). These component traits 
are traditionally related to physiological parameters in CGMs (see Chaps. 4, 5, 6, 7, 
8, and 9 of this book). The CGM produces GEI as an emerging property of the inter-
action between the physiological parameters and the environmental information 
(Chapman et al. 2002a, 2008; Hammer et al. 2002, 2006, 2010). Interpreting the 
CGM as a function that transforms physiological parameters and environmental 
inputs into a complex trait, we can understand that when the CGM can be approxi-
mated by a linear function, the component traits may be entered as genotypic covari-
ables and the environmental inputs as environmental covariables in an LMM for the 
complex trait.

In Sect. 3.2, we will discuss how statistical LMM models can be used to predict 
phenotypic responses for new genotypes in observed environments (Scheme 2; [nG, 
E, nGE]), observed genotypes in unobserved (new) environments (Scheme 3; [G, 
nE, nGE]), or new genotypes in new environments (Scheme 4; [nG, nE, nGE]). In 
Sect. 3.3, we will discuss the use of CGMs to predict the performance of genotypes 
for environments in which they were not tested. Section 3.4 will discuss the contri-
bution of high throughput genotyping and phenotyping to models for  phenotype 
prediction. Strategies to group genotypes and environments will also be discussed 
in this Section. We finish with some concluding remarks in Sect. 3.5.
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3.2  Statistical Models to Predict Phenotypic Performance

Section 3.2.1 presents statistical models for predicting the phenotype of genotypes 
that were so far not tested in the environments for which we want to predict, although 
we do have information about these environments from phenotypic evaluations for 
other genotypes [nG, E, nGE], Scheme 2 in Fig. 3.1. The connection between 
observed genotypes (G) and not observed genotypes (nG) will come from explicit 
genotypic covariables and/or the genetic correlations among genotypes. Section 3.2.2 
describes statistical models for predicting phenotypes in environments that were not 
used to test genotypes, although we do have phenotypic information about these 
genotypes in other environments [G, nE, nGE], Scheme 3 in Fig. 3.1. The connec-
tion between observed environments (E) and unobserved environment (nE), will 
result from the inclusion of explicit environmental covariables and/or the correla-
tions among environments calculated on the basis of environmental characteriza-
tions. Section 3.2.3 discusses the most challenging prediction scenarios; predicting 
the phenotype of genotypes that were not tested so far, for environments that neither 
were tested [nG, nE, nGE], Scheme 4 in Fig. 3.1. Here, both explicit genotypic and 
environmental covariables are required for prediction.

3.2.1  Statistical Models to Predict Performance of Unobserved 
Genotypes in Observed Environments [nG, E, nGE]

Quantitative traits are determined by many loci, with allelic effects varying in mag-
nitude. Specific genomic regions significantly associated with phenotypic variation 
may be identified as quantitative trait loci, or QTLs (see Chap. 1 of this book by 
Baldazzi et al.). Besides QTLs, or instead thereof, many other loci with small addi-
tive effects (polygenic effects) can contribute to phenotypic variation. None of these 
loci with small effects might by itself have an important phenotypic effect, but these 
loci together can still make a sizeable contribution to the phenotype. Model 3.1, 
includes loci with relatively large quantitative effects (QTLs) together with loci that 
have small effects.

 

y x G eij
t

j
q

Q

iq jq ij ij= + + +
=
åm a

1  
(3.1)

In the multi-environment Model 3.1, yij
t  represents the target trait, t, (for example, 

yield) of genotype i in environment j, μj is a fixed intercept term for each environ-
ment, xiq is a genotypic covariable that represents DNA information of genotype i at 
QTL position q, and αjq is the additive effect of the fixed QTL q in environment j. 
Gij  represents the residual genetic effect (polygenic effects) for genotype i in envi-
ronment j. The matrix with elements Gij , Gij{ } , has a multivariate normal distribu-
tion with zero mean, 0, and, as we will see later, a highly structured variance- covariance 
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matrix Σ; G MVNij{ } ( )~ 0,SS . (For notational simplicity, we will omit the dimen-
sions of the various matrices.) Σ defines the genetic variances and covariance for 
any two pairs of observations, yij

t  and yi j
t
’ ’  and depends on the genetic and environ-

mental similarities of the two genotypes, i and i’, and the two environments j and j’. 
The term eij  stands for a non-genetic residual, e MVNij{ } ( )~ 0,R , with R often 
allowing for specific residual variances per environment.

A simplification of Model 3.1 omits the genetic residual, Gij , and is appropriate 
when QTLs account for all of the genetic variation:

 

y x eij
t

q

Q

iq jq ij= + +
=
åm a

1  
(3.2)

When Model 3.2 fits the data well, the performance of the unobserved genotype i in 
environment j can be predicted as;

 

ˆ ˆ ˆy x
ij
t

j
q

Q

iq jq= +
=
åm a

1  

Compared with single-environment QTL models, multi-environment QTL models 
like Model 3.1 or Model 3.2 are more powerful in picking up QTLs and generally 
explain a larger amount of the genetic variance (Piepho 2000; Piepho and Möhring 
2005; Mathews et al. 2008; Alimi et al. 2013). It has been shown that jointly consid-
ering multivariate phenotypes (i.e., the phenotype in multiple environments) allows 
a substantially greater separation between genotype classes than when considering 
univariate phenotypes (i.e., phenotype in a single environment) (Stephens 2013).

Another simplification of Model 3.1 occurs when we assume that there are no 
large discrete genetic effects in the form of QTLs that drive phenotypic differences, 
but that genetic effects are exclusively of a polygenic nature. A prediction model 
that generalizes the single environment genomic best linear unbiased prediction 
(G-BLUP) approach of (Meuwissen et al. 2001) to multi-environment prediction 
can be defined as:

 
y G eij
t

j ij ij= + +m
 

(3.3)

In Model 3.3, the distribution of the polygenic effects Gij  is G MVNij{ } ( )~ 0,SS . 
Since Σ is a function of the genetic and environment similarities, the larger the simi-
larity of unobserved genotypes with observed genotypes, and the larger the similar-
ity of observed environments with unobserved environments, the more information 
is available for phenotype prediction, and the higher is the prediction accuracy 
(Crossa et al. 2006; Albrecht et al. 2014). Analogous to the classical partitioning of 
genetic and environmental effects, the covariance matrix Σ can be partitioned into a 
‘genotypic’ variance-covariance matrix (ΣG), and an ‘environmental’ variance- 
covariance matrix (ΣE), such that SS SS SS= ÄG E , i.e., the Kronecker product of the 
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genotypic variance-covariance matrix and the environmental variance-covariance 
matrix (West et al. 2006; Smith et al. 2005). It is important to realize that although 
ΣE is called an ‘environmental’ variance-covariance matrix, ΣE reflects genetic cor-
relations among environments, and so plays a role in forming predictions in the 
multi-environment context. Examples of commonly used models for these two 
covariance matrices are given below.

ΣG can be modelled as SS G = A , where A corresponds to the expected additive 
relationship matrix calculated from the coefficients of coancestry estimated from 
the pedigree, or to the realized additive relationship matrix estimated from molecu-
lar markers (Piepho et al. 2008). If the one step prediction with statistical models 
uses pedigree information, Gij  is commonly called “breeding value” (Falconer and 
Mackay 1996; Piepho et al. 2008). On the other hand, if the prediction uses molecu-
lar marker information, it is called “genomic estimated breeding value” (Burgueño 
et al. 2012; Piepho 2009).

In the multi-environment context, genotypic variances tend to change across 
environments with consequent changes in genotypic correlations for pairs of these 
environments. A flexible variance-covariance structure across environments ΣE, is 
required to achieve higher prediction accuracies. One flexible and parsimonious 
model for variances and covariances/correlations across environments is the factor 
analytic model (FA) (Table 3.1) (Smith et al. 2001a, 2005; Mathews et al. 2008).

The decision about when it is convenient to use Models 3.1, 3.2, or 3.3 depends 
on the genetic architecture of the target trait. If the trait is regulated by a few QTLs 

Table 3.1 Variance-covariance models for the environmental covariance (ΣE), ordered by 
increasing number of parameters. For simplicity, these examples assume three environments 
(m=3)

Name
Number of 
parameters Structure

Identity 1 s
s

s

2

2

2

0 0

0 0

0 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Compound symmetry 2 s j j j
j s j j
j j s j

2

2

2

+
+

+

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Factor analytic, order 1 2 m l y l l l l
l l l y l l
l l l l l y

1
2

1 1 2 1 3

2 1 2
2

2 2 3

3 1 3 2 3
2

3

+
+

+

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Unstructured m(m+1)/2 s s s
s s s
s s s

1
2

12 13

21 2
2

23

31 32 3
2

é

ë

ê
ê
ê

ù

û

ú
ú
ú
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with large effects, a QTL model (Model 3.2) might provide the largest prediction 
accuracy. On the other hand, traits like grain yield, which are regulated by many 
genes with small effects might not show any significant QTL that can be included in 
Model 3.2. In this case, Model 3.3, whose predictions we will call GE-BLUPs 
because they can account for GEI, should integrate the large number of small addi-
tive effects into a multi-environment prediction model. For the intermediate case 
when traits have a few QTLs with large effects, and many other loci with very small 
additive effects, Model 3.1 is adequate. Bernardo (2014) suggested that it is conve-
nient to consider QTLs (or genes) as fixed effects when they account for more than 
10 % of the genetic variance. The simulations made by Bernardo (2014) show that 
the most adequate model depends on the genetic architecture of the trait, i.e., on the 
number of QTLs and the magnitudes of the QTL effects.

3.2.2  Statistical Models to Predict Performance of Observed 
Genotypes in New Environments

After genotypes have been phenotyped in some environments, it can be useful to 
predict their performance in other environments that were not used for evaluation. 
New environments could, for example, include future trials at known locations, 
which implies that none of the genotypes were observed in that environment yet [G, 
nE, nGE]. Thus, the correlation between observed environments and the predicted 
environments cannot be estimated from phenotypic data, or direct observations on 
the complex trait. In this case, we may use environmental covariables, like meteo-
rological, soil or management covariables, as predictors in models for the mean or 
define correlations between environments in models for the variance-covariance 
structure.

Models for the mean that can be used to predict phenotypes in unobserved envi-
ronments usually correspond to factorial regression models that incorporate envi-
ronmental covariables. These models explicitly estimate the sensitivity of the QTL 
to environmental covariables (Model 3.4) (Campbell et al. 2004; Boer et al. 2007; 
Laperche et al. 2007; Malosetti et al. 2013; Romagosa et al. 2013). Hence, model 
parameters can have biological interpretation.

 

y x z G eij j
q

Q

iq q q j ij ij= + +( )+ +
=
åm g d

1  
(3.4)

In Model 3.4, the additive effects (αjq) of the fixed QTL q in environment j of Model 
3.1 are replaced by a regression formulation, g dq q jz+( ) , in which the effect of 
QTL q is a function of the environmental covariable zj, and so changes over environ-
ments. When the covariable zj is centered, the intercept term, γq, corresponds to the 
effect of the QTL in the average environment, while the slope δq corresponds to the 
sensitivity of the QTL q to the environmental covariable zj. Although Model 3.4 does 
not explicitly restrict the environmental covariables to a particular range, it should 
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be considered that crops respond differently to covariables in the environmental 
extremes (e.g., too cold or too warm). So, the sensitivity of the genotype to the envi-
ronmental covariables cannot be assumed constant outside the range of environ-
ments in which δq was estimated. A second issue that needs to be taken into account 
is that models like Model 3.4 do not make explicit in which phenological stage the 
environmental covariable is considered. Since the sensitivity of a crop to the envi-
ronment varies throughout the development, environmental covariables included in 
the prediction model need to coincide with the developmental timing used to esti-
mate the sensitivity.

For example, Boer et al. (2007) analysed grain yield and grain moisture for F5 
maize testcross progenies evaluated across 12 environments in the U.S. corn belt. 
Since QTLs did not have a constant effect across environments (QTL by environ-
ment interaction), QTL effects were modelled conditional on longitude and year, 
both consequences of temperature differences during critical stages of the develop-
ment. This factorial regression model allows prediction of yield and moisture at any 
location provided that temperatures during specific developmental stages are con-
tained within those of the observed environments.

A second example is shown by Malosetti et al. (2004), who identified QTLs 
conferring differential sensitivity of grain yield to temperature during heading in a 
double haploid barley population. In a model like Model 3.4, the average daily tem-
perature range during heading was the most important environmental covariable 
explaining differential QTL expression, i.e., the QTL allele from the parental line 
Steptoe conferred an extra grain yield of 0.112 t ha−1 for each extra degree Celsius 
during heading. Hence, yield could be predicted for unobserved environments if the 
average temperature for such environments was available. In that sense, Model 3.4 
is closer to CGM than Model 3.1 because Model 3.4 explicitly represents environ-
ments on a continuous scale.

The second way to use environmental information for prediction is using envi-
ronmental covariables to estimate similarities (covariances) among environments, 
analogous to the way molecular markers are used to characterize similarity among 
genotypes. If environmental covariables are considered as an indicator of environ-
mental similarity, they can be used to estimate the environmental variance- 
covariance matrix in Model 3.3. Hence, SS WWE = , where Ω is the variance-covariance 
matrix that accounts for the similarity in environmental conditions. The larger the 
covariance between observed and unobserved environments, the more information 
can be shared to make the predictions. The genotypic covariance ΣG can be mod-
elled as explained in Sect. 3.2.1 by imposing an additive relationship matrix to 
define SS G = A , where A can be estimated from the pedigree and/or from molecular 
markers.

Using multiple climatic variables to model the environmental covariance, as pro-
posed by Jarquín et al. (2013) shows promise as a tool to predict genotypic perfor-
mance in unobserved environments. However, many environmental covariables are 
correlated and not all need to be included in the model. Mechanistic CGMs such as 
APSIM have shown to be a good integrative tool to select subsets of variables that 
characterize environmental similarity (Chapman2008).
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3.2.3  Statistical Models to Predict Performance of Unobserved 
Genotypes in New Environments

Section 3.2.1 presented models that used genotypic covariables to predict the phe-
notype on unobserved genotypes. Section 3.2.2 described how environmental 
covariables can be used in factorial regression models for prediction, and how to 
estimate the environmental covariance of a random term, necessary for prediction 
along the random part of an LMM. This Sect. 3.2.3 will combine both situations, 
aiming to predict the phenotype of genotypes that have not been tested yet for envi-
ronments that have not been used for evaluation.

When predicting unobserved genotypes in new environments, both genotypic 
and environmental covariables are needed. In factorial regression-type of models, 
prediction of unobserved genotypes is possible, provided that the additive effects of 
each QTL allele can be estimated from the tested genotypes. The phenotypes of 
unobserved genotypes can also be predicted in new environments, provided that the 
sensitivity of the QTL effects along an environmental gradient (e.g., temperature), 
can be estimated from observed environments. In the example of Malosetti et al. 
(2004) presented in Sect. 3.2.2, phenotype prediction is possible for any environ-
ment provided the temperature remains within the range used to estimate the QTL 
sensitivity to temperature.

In models that entirely rely on the use of the variance-covariance structures 
imposed on genotypes and environments, prediction of unobserved genotypes in 
new environments is possible via the reconstruction of the full covariance matrix Σ 
from its components, ΣG and ΣE. For the genotypic part, this runs via explicit pedi-
gree information or information from genotypic covariables (molecular markers), 
while for the environmental part correlations between environments can be esti-
mated from environmental characterization (temperature, precipitation, soil charac-
teristics, etc.). Note that while in Sect. 3.2.1, ΣG was calculated from genotypic 
covariables, and ΣE was estimated from the phenotypic data on the target trait, here 
both ΣG and ΣE are estimated from explicit covariables.

3.3  Crop Growth Models to Predict Genotypic Performance

The algorithms in a CGM predict the target trait (e.g., grain yield) as a non-linear 
combination of underlying intermediate phenotypes (also commonly called “com-
ponents”, e.g., biomass), which are calculated indirectly from a set of inputs to the 
CGM that typically comprise environment (soil, weather, and nutrients) data and 
CGM parameters derived from prior experimentation. GEI in the target trait is then 
a consequence of the interactions between the intermediate phenotypes (Chapman 
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et al. 2003; Tardieu 2003; Tardieu et al. 2005; Chenu et al. 2009; Makumburage 
et al. 2013).

Considering the CGM in reverse, we can state that the value of the target trait is 
able to be ‘dissected’ into these intermediate phenotypes (See Chap. 7 of this book 
by Hammer et al.). Although these intermediate phenotypes are likely to show less 
GEI than the target trait, they still correspond to an integration of genotypic 
responses to environmental conditions (e.g., they may show GEI). Ideally, a com-
plete dissection of the target trait would comprise of a set of CGM input parameters 
that depend only on the genotype (for example, a genotypic sensitivity of develop-
ment rate to the air temperature), and environmental covariables (Model 3.4), i.e., 
CGM parameters that do not show GEI (Slafer 2003; Yin et al. 2003; Bertin et al. 
2010; Alam et al. 2014). The target trait for genotype i in environment j can be writ-
ten as a function of CGM parameters and environmental inputs as follows:

 
y f dt eij
t

i
P

j ij= +ò ( ; )y z
 

(3.5)

In Model 3.5, yij
t  represents the target trait for genotype i in environment j, which is 

modelled as a function of multiple CGM parameters, yi
P  (with P for parameter in 

the superscript), and multiple environmental inputs, zj, integrated over time 
(Fig. 3.2). The function f (;) embodies the algorithms that transform CGM parame-
ters into intermediate phenotypes as well as the interactions between the intermedi-
ate phenotypes that lead to the target trait.

A commonly-studied CGM is APSIM, which currently has modules for several 
crops, e.g., wheat, canola, sorghum (Keating et al. 2003; Holzworth et al. 2014). In 
the case of APSIM-Wheat, growth (biomass accumulation) and development (phe-
nological events, the functionality of plant structures or appearance of new struc-
tures) are calculated on a daily basis (Wang et al. 2002). The final phenotype (e.g., 
grain yield) is calculated as a function of a series of intermediate phenotypes. 
Examples of intermediate phenotypes are biomass, grain number and radiation 
interception on any given day or accumulated to a given day (Fig. 3.2). Intermediate 
phenotypes depend on CGM parameters that are genetically determined, and which 
modulate the phenotypic response to environmental covariables. Examples of CGM 
parameters are vernalization requirement and sensitivity to photoperiod, which are 
regulated by the VRN and the PPD alleles (Zheng et al. 2013).

CGM parameters, yi
P , for phenotyped genotypes can be directly observed, esti-

mated or calculated from the phenotypic measurements. However, given that CGM 
parameters depend on the genotype, they can also be predicted from genotypic 
covariables, i.e., molecular marker information. When we can identify the genetic 
basis of physiological parameters in terms of underlying QTLs, or, equivalently, 
when we can predict the physiological parameters from marker information, we can 
effectively predict the target trait from marker information and environmental inputs 
provided the intermediate traits and their interactions have been correctly identified 
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and implemented in the CGM. Hence, predicted CGM parameters enable to predict 
the phenotype of genotypes that have not been observed yet. The prediction for 
individual CGM parameters ( yi

P ) would look like Model 3.6:

 

y x G ei
P

q

Q

iq q i i= + + +
=
åm a

1  
(3.6)

Like Model 3.1, Model 3.6 can be modified to include (i) only the QTLs, in a QTL 
model (Model 3.7) or (ii) only the polygenic effects (Gi ) , in a genomic prediction 
model with the random effects Gi  being structured by a genetic relationship matrix 
(Model 3.8).

Fig. 3.2 Representation of the information flow in a CGM. The black box corresponds to CGM 
parameters that are dependent on the genotype, the white box represents environmental covariables 
and the grey box represents the intermediate phenotypes. Examples of different crops/traits/models 
are given for each category
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y x ei
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q

Q
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=
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1  
(3.7)

 
y G ei
P
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(3.8)

If more than one CGM parameter is to be predicted from molecular markers and/or 
pedigree information, Models 3.6, 3.7, and 3.8 could also be expanded to a multi- 
trait prediction model that takes into account possible correlations among the CGM 
parameters, in a model that is similar to the multi-environment Model 3.1. Modelling 
traits simultaneously allows to gain power for QTL detection and to detect QTLs 
with pleiotropic effects (Alimi et al. 2013; Stephens 2013).

Predictions for multiple CGM parameters, ŷ
i

P
, can be used as input in Model 3.5 

to calculate intermediate phenotypes, and produce the prediction for the target trait, 
m̂

ij

t
, in Model 3.9.
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t

i

P

jf dt= ò y z
 

(3.9)

In Model 3.9, the prediction accuracy of the target trait depends on the accuracy of 
the prediction of each of the components, and on the ability of the functions that 
transform CGM parameters into intermediate phenotypes to correctly describe the 
processes leading to the target trait.

CGMs with known/predicted genotypic parameters are a potentially useful tool 
to understand which traits can be advantageous in a given environment, and also to 
identify management practices that contribute to improved crop productivity (Yin 
et al. 2004; Hammer et al. 2006; Reynolds et al. 2009b; Harrison et al. 2014). In the 
context of adaptation to climate change, Zheng et al. (2012) modelled how phenol-
ogy of current wheat varieties would influence their adaptation to future environ-
ments, which are expected to show different CO2 and precipitation levels. In their 
second paper, Zheng et al. (2013) demonstrated that the flowering time of spring 
wheat genotypes can be modelled using the composition of their VRN1 and Ppd-D1 
alleles together with responses derived from a single experiment with four environ-
ments: +/− treatments for vernalisation and extended photoperiod. Allelic combina-
tions of loci Vrn-A1, Vrn-B1, Vrn-D1, and Ppd-D1 were used to predict 
APSIM-wheat parameters of a population of genotypes. From a single experiment 
(replicated in 2 years), they validated the model with more than 250 wheat geno-
types across the entire Australian wheat belt, and were able to simulate flowering 
time for any weather records in the wheat belt. These conclusions can be useful to 
guide breeders in the process of determining which alleles should be considered in 
the selection process.

Bogard et al. (2014) extended this approach further to model the drivers of flow-
ering time in winter wheat as functions of major genes as well as SNPs derived from
association mapping, i.e., allowing prediction of unknown genotypes (but with 
known genes and SNPs) in new environments. In both Zheng et al. (2013) and 
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Bogard et al. (2014), the predictions for heading date using the gene-based pre-
dicted parameters corresponded well with the observed dates to heading. Attributes 
that contributed to a successful phenotype prediction were (i) a well-defined CGM 
for heading date (Slafer and Rawson 1994), (ii) a well-defined set of environmental 
covariables with corresponding CGM parameters, and (iii) a genetic basis of the 
CGM parameters (Snape et al. 2001).

The same approach has also shown to be successful for other more complex and 
less heritable traits such as grain yield under drought. For example, Chenu et al. 
(2009) used APSIM to model the impact of QTLs controlling the intermediate traits 
leaf and silk elongation on maize grain yield. The intercept and slope of these inter-
mediate traits in response to meristem temperature, evaporative demand and soil 
water deficit were genotype-dependent (Reymond et al. 2003, 2004).

Unfortunately, the identification of CGM parameters is sometimes less straight-
forward for complex traits like grain yield. Yin et al. (2000) showed an example in 
barley with a successful estimation of QTL effects for the CGM parameters, but 
with a poor prediction of grain yield. The correlation between the observed CGM 
parameters, i.e. phenotype of CGM parameters, and the QTL predictions of the 
same parameters was high. However, the correlation between yield predictions of 
the CGM, whether phenotype based or QTL-prediction based, and observed yield 
was not high. The cause of the poor predictions did not reside in the fact that the 
CGM parameters were replaced by predicted parameters from the QTL model, but 
in the fact that the CGM was unable to predict yield from its component traits. 
Similar work has been recently reported by Gu et al. (2014) on grain yield of rice 
crop, using a new CGM, which gave more promising results. However, efforts to 
improve CGM for predicting complex traits like grain yield are still strongly needed.

The example from Yin et al. (2000) shows that although the integrated statistical 
and CGM modelling allows for a larger flexibility, it might result in more complex 
and fragile models, because the approach can break down at the level of the estima-
tion of the CGM parameters and at the level of the integration of these CGM param-
eters to calculate the intermediate phenotypes. However, even if the CGMs are not 
fully able to predict the target trait, it is valuable to develop models of intermediate 
traits as well as for yield per se. Breeders can still be interested to recombine lines 
with high levels of proven intermediate traits with the expectation that these should 
on average result in better yield when further crossing and selection is done, i.e., 
because the selection on intermediate traits should already have improved part of 
the physiological adaptation pathway (Cooper et al. 2014). If breeders select mainly 
on yield per se, then it may be less likely that selected genotypes will also have high 
radiation use efficiency (RUE) or transpiration efficiency (TE) or traits for which 
genetic variation was not expressed in the given selection environment.

The examples of Zheng et al. (2013), Bogard et al. (2014), and Chenu et al. 
(2009) show that CGMs are a tool to integrate complex information from the geno-
typic, organ, and crop level (see also examples reviewed in Chap. 9 of this book by 
Yin et al.). Dissection of a target trait into component traits at different levels of 
biological organisation allows phenotype prediction for the target trait in the face of 
genotype by environment and QTL by environment interactions for that same trait. 
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Hence, the combined approach of statistical QTL modelling and CGM is an 
 alternative to model complex GEI interactions (Yin et al. 2004).

3.4  Further Considerations

3.4.1  Classification of Environments

Sections 3.2.2 and 3.2.3 presented models to predict the performance of genotypes 
in new environments ([G, nE, nGE] or [nG, nE, nGE]). However, if there are repeat-
able patterns that allow to classify environments, these patterns might help to reduce 
the complexity of ΣE and thereby improve the accuracy of prediction.
One example of repeatable patterns that often justifies to group environments is

the presence of regions. Here, we understand ‘regions’ (or mega-environments) as a 
group of locations where genotypes perform consistently across years (Bull et al. 
1992; Gauch and Zobel 1997; Basford and Cooper1998; Yan et al. 2000). 
Environments inside the same region are expected to be more homogeneous in 
terms of genotypic ranking, i.e., less GEI inside the regions (e.g. Atlin et al. 2000; 
Burgueño et al. 2008). In dryland production areas, other groupings may relate to 
characteristics of the soil (shallow/deep, low/high water holding capacity) and the 
management of the crop (sowing date, row spacing arrangement, etc.). De la Vega 
and Chapman (2010) showed how multiple component traits related to yield for a 
complex set of mega-environments in Argentina.

If locations can be grouped into regions, it is generally convenient to breed for 
specific adaptation to those regions, instead of broad adaptation across regions 
(Atlin et al. 2000, 2011). In this case, predictions can be produced for the whole of 
a region, or for new environments within a region. Precision of yield estimates 
might still benefit from the information of neighbouring regions by means of the 
covariance structure in a mixed model (Piepho and Möhring 2005; Kleinknecht 
et al. 2013).

When phenotypes are not available for all the locations of interest, environmen-
tal covariables can also be used to classify environments, and reduce the complexity 
of ΣE. Classifying environments into regions on the basis of environmental similar-
ity, potentially allows to (i) predict new environments (as discussed in Sects. 3.2.2 
and 3.2.3), and also (ii) define the target population of environments, where a par-
ticular genotype is to be grown (Chapman et al. 2000a; Hammer et al. 2002; Chenu 
et al. 2011). CGMs are a powerful tool to identify relevant environmental factors 
(Chapman 2008; Messina et al. 2011), and the periods when the crop is most sensi-
tive to those factors (Chenu et al. 2013). For example, considering drought seasonal 
patterns could give a better indication of the environment types, instead of the total 
rainfall per year (Chapman et al. 2000a, b).

A further application of explicit environmental characterization is to weight 
environments based on their expected relevance for future years (Podlich et al. 
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1999). This means that environmental conditions that are more likely to occur 
receive more weight when doing the predictions, compared to less likely environ-
mental conditions.

3.4.2  Population Structure

Sections 3.2 and 3.3 discussed different models to predict phenotypes of unobserved 
genotypes using molecular marker information. In those sections, ΣG had the struc-
ture of the genomic relationship matrix, without explicitly specifying sub- 
populations. However, genetic relatedness between training and test sets largely 
influences prediction accuracy (Windhausen et al. 2012; Riedelsheimer et al. 2013). 
Hence, when there is strong population structure, it is necessary to define whether 
prediction will be done among or within populations. When predictions are limited 
to specific sub-populations, accuracy is commonly larger than when predicting 
across sub-populations, or when correcting for population structure (Daetwyler 
et al. 2012; Guo et al. 2014).

Methods to consider population structure in the model for genomic prediction 
can be based on the incorporation of the eigenvectors of the genotype by molecular 
marker data matrix (Patterson et al. 2006; Janss et al. 2012). Another option is to 
consider population structure in the design of the cross-validation scheme, for 
example by a stratified cross-validation design conditional on known population 
structure to ensure that each sub-population is equally represented in the training 
and validation sets (Albrecht et al. 2014; Guo et al. 2014).

3.4.3  Next Generation Sequencing

With the recent development of next generation sequencing technologies, genotyp-
ing costs have been largely reduced, allowing improving the genotypic characteriza-
tion of important crops as barley, wheat and potato (Poland et al. 2012b; Uitdewilligen 
et al. 2013). In sequence-based genotyping approaches, marker discovery and geno-
typing are completed at the same time, allowing for faster genotyping processes 
(Poland and Rife 2012). The shorter time needed is thanks to the combination of 
restriction enzymes, sequencing, imaging, and genome alignment and assembly 
methods (Metzker 2010; Elshire et al. 2011).

These technologies permit the genotyping of larger populations of plants with 
higher marker density and increased mapping resolution (Varshney et al. 2014). 
Larger marker density increases the chances of including causal loci that otherwise 
would not have been considered in models for phenotype prediction (Spindel et al. 
2013). More loci in the model means increased genomic prediction accuracy 
(Poland et al. 2012a). However, models for phenotype prediction have diminishing 
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returns on additional markers once the point of “marker saturation” has been 
reached, which depends on the genetic diversity of the population (Jannink et al. 
2010; Heffner et al. 2011; Poland et al. 2012a).

Other questions regarding larger numbers of markers that remain not fully 
answered are: (i) how imputation of missing genotype data or haplotype inferences 
may affect prediction accuracies when genotyping by sequencing is used (Crossa 
et al. 2013), (ii) how to reduce the computational time needed because of the large 
number of markers (Verbyla and Cullis 2012), and (iii) how to improve model diag-
nostics, distinguishing between loci with large effects, and loci with smaller effects 
(Bernardo 2014).

3.4.4  High-Throughput Phenotyping to Input to Models 
for Phenotype Prediction

Mixed models and CGM discussed in Sects. 3.2 and 3.3 are promising tools for 
phenotype prediction. However, these models require the phenotyping of multiple 
genotypes, traits and environments. With the reduction of genotyping costs, evaluat-
ing the populations phenotypically has become the limiting factor (Cobb et al. 2013).

High-throughput phenotyping platforms can either measure the target trait 
directly, or measure one or more traits that are correlated with the target trait. The 
use of CGMs allows estimation of hard-to-measure traits such as seasonal water 
use, given inputs of leaf area over time and canopy thermal characteristics, for 
example. Correlated traits measured by high-throughput phenotyping platforms can 
be used as inputs in models like Model 3.1. To do so, traits must: (i) have high 
genetic correlation with the target trait in the target environment, (ii) be less affected 
by environment (have a larger heritability) than the target trait, and (iii) provide an 
easy and reliable measurement, which is less expensive than the target trait itself 
(Bänziger 2000; Araus et al. 2008; Prasanna et al. 2013). When measuring corre-
lated traits, high-throughput phenotyping platforms could be particularly useful for 
obtaining detailed non-destructive measurements of plant characteristics that col-
lectively provide reliable estimates of trait phenotypes (Cabrera-Bosquet et al. 
2012; Prasanna et al. 2013; Cooper et al. 2014).

High-throughput phenotyping platforms are commonly used under two scenar-
ios: (i) precise phenotyping under controlled environments that aim at representing 
different levels of environmental quality, and (ii) phenotyping in environments that 
correspond to a sample of environments in the field. The main advantage of con-
trolled environments is that screening protocols can be more easily standardized, 
ensuring that plants are exposed to fairly reliable levels of stress. Hence, controlled 
environments offer the stability to search for attractive phenotypes or genotypes in 
a specific type of environment, e.g. drought stress (Cobb et al. 2013; Passioura 
2012).
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Growth under controlled conditions is usually different from that under field 
conditions. Hence, high-throughput phenotyping platforms in controlled environ-
ments might not lead to the identification of important yield-determining processes 
and promising genotypes in the field (Passioura 2012). This limits the application 
for phenotyping to specific stages of the crop (e.g., early vigour), or to traits that are 
correlated with the target trait (e.g., carbon isotope discrimination as an indicator of 
water use efficiency (Passioura 2012; Prasanna et al. 2013).

Popular high-throughput phenotyping techniques are those based on spectral 
technologies or remote sensing, such as near infrared spectroscopy (NIRS), or 
image analysis. These techniques are a powerful tool that can provide information 
about multiple traits from only one or few images, and can be applied in controlled 
conditions as well as in field trials.

One example of how phenotypes obtained by image analysis can be included in 
phenotype prediction is shown by van der Heijden et al. (2012). Here, QTLs for leaf 
area were identified from the 3D representation of the plant canopy reconstructed 
from stereo images. The QTLs for leaf area from the image analysis agreed with the 
QTLs detected when using manually measured leaf areas, showing the potential of 
stereo images to characterize phenotypically breeding populations.

Image analysis introduces potentially larger measurement errors than conven-
tional measurement techniques. For that reason, image information should be first 
carefully selected with the aid of statistical and physiological knowledge, in an 
automatized and standardized fashion, before incorporating it in the genetic analy-
sis (Eberius and Lima-Guerra 2009; Hartmann et al. 2011). Hence, models account-
ing separately for the measurement error and for the experimental (plot) error should 
be considered (Smith et al. 2001b).

3.5  Concluding Remarks

This chapter discussed several approaches that aim at predicting the phenotype in a 
multi-environment context. These approaches ranged from pure statistical models 
and pure CGMs, to a combination of both types of models. Special attention was 
given to different prediction scenarios; unobserved genotypes, new environments, 
and the combination of both. How prediction accuracy can profit from the large 
availability of environmental and genotypic information was also discussed, aiming 
at integrating physiological and statistical knowledge. Phenotypic and genomic data 
start to become abundant. The challenge for better phenotype prediction and more 
effective selection lies in more sophisticated procedures for selection of genotypic 
and environmental covariables in models for phenotype prediction, separating the 
signal from the noise.
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    Abstract     Process-based simulation models (PBSMs) combine, in various mathe-
matical frameworks, many biological functional hypotheses on responses of plant 
processes to environmental fl uctuations. Model simulated responses can be anal-
ysed in the context of adapting the current agricultural systems to the changing 
environment. From loads of simulations made with various cultural practices, these 
models allow the virtual profi ling of plants and a mere analysis of how processes 
interact when crops are perturbed by one or several changes. They allow also 
describing the development of plant traits as a consequence of environmental and 
genetic conditions. Such knowledge is required to decipher the genotype × environ-
ment × management (G × E × M) interactions so as to build genotypes adapted to 
particular conditions, i.e., plant ideotypes. Two PBSMs dealing with (1) fruit qual-
ity and sensitivity to diseases and (2) root system architecture, respectively, are 
shortly described in this chapter. These models have been used to analyse various 
fruit and root properties, to deconvolute G × E × M interactions and to identify eco-
physiological traits related to crop yield improvement, root foraging performance 
and fruit quality. PBSMs appear to be powerful tools to phenotype plants at the 
process level in a comprehensive and “costless” way.  
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4.1         Introduction 

 Plant production systems evolve regularly so as to cope with a growing worldwide 
demand of food production and important issues of quality, plant health, food safety 
and respect for the environment. Moreover, this  adaptation   must encompass the 
global  climate change   context. As a consequence, the most critical question for our 
future could be how to design the best possible combinations of genetic resources 
and environmental conditions (or cultural practices) able to achieve such 
objectives. 

 A prerequisite for performing such a design concerns the analysis of genotypic 
and environmental effects on plant physiological  traits   governing development and 
functioning and also on traits related to plant production, product quality, and plant 
health. Many plant scientists put the focus on  genotype   studies using profi ling tech-
nologies. These techniques probe many  genes  , transcripts, proteins or metabolites, 
at once. The profi ling technologies allow the analysis of system-wide responses 
(Hennig  2007 ; Kopka et al.  2004 ), which will undoubtedly help to understand ‘how 
things work’ at the cellular level. However, it is not always easy to interpret clearly 
the observed ‘ omic ’ changes in terms of plant functioning because gene functions 
may be known at the cellular level but they are rarely identifi ed in terms of plant 
responses while our knowledge of gene regulation in relation to the environment 
remains weak. In addition to these studies, one way to improve our understanding 
of plant responses is to use  process-based simulation models   (PBSMs). From the 
making of a load of simulation runs under various environmental conditions and/or 
cultural practices, it is possible to use these models to perform a  virtual profi ling   
(see below) and a mere analysis of how the plant system works, i.e. ,  how the numer-
ous processes interact when the plant is perturbed by one or several changes at the 
cellular level ( Génard   et al.  2010 ). Indeed, PBSMs offer a theory describing how the 
system components causally interact to produce a given outcome. From this view-
point, Peck ( 2004 ) regards simulation as  “ the creation of a possible world that is 
constructed  in silico  using computer programs to represent the processes under 
consideration”. 

 In line with this idea, some agronomists and geneticists have proposed a smart 
approach that consists of analysing variation in the development of plant  traits   via 
PBSMs as a consequence of environmental and genetic factors ( Hammer   et al.  2005 ; 
 Yin   et al.  2005 ). Such PBSMs allow to virtually analyse how plants react to chang-
ing environments, cultural practices and genetic variability. The main expectation of 
such an approach is to decipher  genotype   × environment ×  management   (G × E × M) 
interactions (Asseng et al.  2002 ;  Boote   et al.  2003 ;  Chapman   et al.  2003 ; de Dorlodot 
et al.  2007 ) to build genotypes adapted to particular conditions, e.g. ,  critical pedo-
climatic situation, innovative crop management, future climates (Hammer et al. 
 2002 ). Thus, in contrast with the strategy developed in the past, researchers do not 
seek any longer genotypes adapted to all conditions but particular ones. Indeed, 
specifi cally adapted genotypes perform relatively better than other ones under a set 

M. Génard et al.



85

of conditions of particular interest, or lead to better environment-friendly  production 
systems. Progress in this direction will clearly depend on the genetic information 
available on these related processes that will be injected in the PBSMs. This specifi c 
integration is the subject discussed in Chap.   1     of this book by  Baldazzi   et al. 

 New ‘ ideotypes  ’ are real or virtual plant cultivars expressing an ideal  phenotype   
adapted to target environments (Letort et al.  2008 ; Tardieu  2003 ). To design ideo-
types, PBSMs are viewed as essential tools. Indeed, within a target environment, 
they can simulate a large number of  virtual genotype  s, each one being characterized 
by a set of  genetic parameters  . The challenge is now to identify a few of these ‘ideo-
types’ among a myriad of simulated genotypes. The fi rst attempts were conducted 
using techniques such as trial and error methods (Haverkort and Grashoff  2004 ; 
Herndl et al.  2007 ) and were quickly confronted with the diffi culty and the hardness 
of the task. This is especially the case when multi-objectives are targeted. Indeed, 
the design of innovative cultivars is based on strong nonlinear antagonistic criteria 
with respect to infl uential constraints of production or environment. Resolving such 
problems is diffi cult using classical methods and it is known to be a matter of non-
linear  multi-objective optimisation  . Thanks to collaborations between biologists 
and mathematicians, effective methods have been proposed recently. They emerged 
from the fi eld of multi-objective optimisation algorithms, e.g. ,  genetic (Letort et al. 
 2008 ) and particle swarm (Qi et al.  2010 ) algorithms. 

 Two PBSMs dealing with (1) fruit quality and sensitivity to diseases and (2)  root 
system architecture  , respectively, will be shortly described in this chapter and used 
to analyse various fruit and root properties, sometimes including what Trewavas 
( 2003 ) called  memory  and  compensatory  effects. The strength of PBSMs for analys-
ing crop systems and for performing  virtual profi ling   will be illustrated. We will also 
show how the use of model-based  sensitivity analysis   serves the selection of genetic 
 traits   necessary to design  ideotypes  . Finally, an approach for designing ideotypes 
will be described using the “fruit quality and sensitivity to diseases”  PBSM  .  

4.2     What Are Process-Based Simulation Models 
for Fruit and Root Systems? 

 Process-based simulation models are collections of hypotheses and rules about the 
interrelationships linking processes to environmental variations and producing 
responses that can be analysed. The results are generally produced in the time 
domain and at an appropriate time step of the studied processes. They provide, 
therefore, a basis for the understanding of developmental, physiological and genetic 
phenomena, by dissecting  complex traits   into “elementary” processes. The classical 
notion of a single limiting factor is replaced by the idea of a sequence and/or net-
work of different limitations operating through the plant’s lifecycle. These intercon-
nections and feedback regulations among the system components generate 
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unexpected global system properties, called  emergent properties  , which do not 
appear when the subsystems are individually considered (Trewavas  2006 ). 
Genotype × Environment (G × E) interactions are emergent properties of the whole 
system in which several processes interact. However, these interactions can also 
operate at the process level. 

 PBSMs permit the quantifi cation of plant or organ responses to genetic, environ-
mental, and management factors within a mathematical framework in which param-
eters are  genotype  -specifi c, thus allowing dynamic simulations of biophysical and 
physiological processes. They have yet been successfully used to deconvolute G × E 
interactions and to identify ecophysiological  traits   in studies designed to improve 
crop yield ( Yin   et al.  2000 ), root foraging performance ( Pagès    2011 ), phenological 
development (Stewart et al.  2003 ; Welch et al.  2005 ), leaf elongation rate (Reymond 
et al.  2003 ) and fruit quality (Quilot et al.  2005 ). 

 Fruit quality  traits   have been seldom subjected to modelling, probably because 
they result from a poorly understood chain of processes encompassing only partly 
known steps of the complex underlying mechanisms ( Struik   et al.  2005 ). Conversely, 
 root system architecture   has been modelled for the last two decades (Dunbabin et al. 
 2013 ) but the models are generally too complex to give rise to ideotype conception 
( Pagès   et al.  2004 ). PBSMs focusing on fruit size and composition have been pro-
posed recently ( Génard   et al.  2007 ). They have proven their ability to produce  emer-
gent properties  , i.e. ,  to handle perturbations to any process and self-correct them as 
real plants do. The structure and some properties of these models will be presented 
hereafter. 

4.2.1     Virtual Fruit Model 

 The fi rst attempt towards integration and simulation of multiple quality  traits   has 
been made in the Virtual Peach  Fruit model   ( Lescourret    and   Génard  2005 ). This 
 PBSM   (Fig.  4.1a ) integrates many sub-models dealing with fruit growth and quality 
elaboration, and had its genesis in a model proposed by Lescourret and Génard 
( 2005 ) including three existing process-based sub-models describing dry mass, 
sugar and water accumulation in the fruit fl esh. Then, supplementary sub-models 
were added to describe skin conductance and microcracking (Gibert et al.  2005 ), 
respiration and citric acid accumulation (Lobit et al.  2003 ; Wu et al.  2007 ), and 
ethylene emission (Génard and Gouble  2005 ).

   For now, the Virtual Peach fruit model describes the carbon (C) balance of a 
fruit-bearing stem. The available daily pool of C assimilates builds up from leaf 
assimilation plus possible C mobilized from the reserves. Carbon is allocated 
according to organ demands and priority rules. The fruit fl esh is assumed to behave 
as one big cell. The carbon fl ow entering the fruit is partitioned into several com-
pounds: four sugars (sucrose, sorbitol, glucose and fructose), other fruit compounds 
globally considered and the respired CO 2 . Water fl ows into the fruit following the 
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differences of hydrostatic and osmotic pressures between the xylem or phloem and 
the fruit. Changes in the fruit volume are predicted by the Lockhart equation as a 
function of turgor pressure. Fruit transpiration is calculated from the overall skin 
conductance to water vapour, by adding the individual conductance of stomata, 
cuticle and cracks. Cracks are assumed to happen when the pulp expansion rate 
exceeds that of the cuticle. The rate of citrate metabolism is calculated as the  product 

  Fig. 4.1    Virtual fruit and  root system architecture   models. ( a ) Schematic representation of the 
relationships between sub-models as considered in the Virtual  Fruit model  . The sub-models simu-
late carbon balance of a fruit bearing stem, sugars and citric acid metabolism within the fruit, fruit 
water balance, skin conductance and microcracking, fruit respiration and ethylene metabolism. 
The inputs of the model are weather data, leaf and stem water potential, and the number of leafy 
shoots and fruits on the stem. The outputs ( underlined ) are fl esh and stone masses, sugar and acid 
contents, skin microcracking and emission of gases. ( b ) The root system architecture model com-
bines two main developmental processes (root elongation and branching) which are described by 
a number of rules with parameters. These processes are also affected by the assimilate supply 
(from the shoot system) and by the soil constraints       
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of a ‘synthesis potential’ by an ‘effi ciency level’, which depends on respiration 
intensity. The ethylene sub-model simulates its biosynthetic pathway as a function 
of ATP supply, O 2  and CO 2  tissue concentrations, and its regulation by 
1-aminocyclopropane- 1-carboxylic acid (ACC) synthase and ACC oxidase. The 
inputs of this  PBSM   are weather data (i.e. ,  global radiation,  temperature   and air 
relative humidity), leaf and stem water potential, and the number of leafy shoots and 
fruits on the stem. The parameters of the model have been estimated for the peach 
species in the framework of a large research programme undertaken over the last 10 
years. 

 The Virtual Peach  Fruit model   has allowed the simulation of complex behaviours 
of fruit growth and quality  traits   in response to environmental fl uctuations (Fig.  4.2 ). 
For example, compared with optimal water supply (W), the response to the alterna-
tion of periods of restriction and normal irrigation (S/W) shows a “ compensatory 
growth  ” phenomenon, observable after re-watering when fruits regain that bit of 
growth lost during the period of stress. The model simulations show also clearly that 
fruits facing continuous water stress (S) maintain their growth rate, while fruits 
becoming water-stressed after a period of normal watering (W/S) experience a 
sharp slowdown in growth. This implies that S fruits adapted to drought but W/S 
fruits did not. In the model, these growth patterns are related to sugar concentration 
changes, the sustained fruit growth being linked with high sugar concentrations 
under conditions of water defi cit. In real plants, Trewavas ( 2004 ) called this kind of 
 adaptation   a ‘ memory effect  ’. He reckons that compensatory growth is a corrective 
mechanism involving a feedback control to achieve a developmental goal (Trewavas 
 2003 ). We can hypothesize that the Virtual Peach fruit model mimics such a “sugar 
signal”-based mechanism, if we assume that the increase in sugar concentration 
during the stress period (as shown in Fig.  4.2 ) promotes growth after re-watering.

   These responses are not accounted for by any of the Virtual Fruit sub-models 
taken separately, but they result from feedback regulations, which emerge from the 
entire Virtual  Fruit model  . This illustrates the usefulness of  PBSM   to analyse com-
plex responses of quality  traits   to environmental variations.  

  Fig. 4.2    Time course of fruit fresh mass and sweetness (correlated to sugar concentration) simu-
lated by the Virtual Peach  Fruit model   under four scenarios of water conditions (W = normal water 
condition, W/S = normal then stressed water condition, S/W = stressed then normal water condi-
tion, S = water stress). The  arrow  indicates the time when the water condition changed       
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4.2.2     Root System Architecture Model 

  Pagès    (201 1) presented the main aspects of a model of  root system architecture   
(RSA) to link elementary developmental processes (and associated  traits  ) at the 
individual root level to complex (or integrated) traits describing foraging perfor-
mance at the whole root system level. This model was then calibrated and evaluated 
on a panel of different species belonging to various plant families (Pagès et al. 
 2014 ). It is a discrete model simulating the 3D RSA with a 1-day time step. The 
dynamic virtual root system is represented as a set of small segments with different 
attributes (location, diameter, age, connection). Basically, the model includes three 
types of interacting processes: ( i ) a number of  morphogenetic rules   defi ne the elon-
gation and branching of individual roots; ( ii ) the overall demand of roots for growth 
is compared with the biomass allocation to the root system within the whole plant 
and can be reduced in the case of limitation; ( iii ) each root meristem (located in the 
soil space) experiences local conditions, which can reduce its potential elongation 
and branching (e.g. ,  strong soil or fresh temperatures). 

 Regarding the  morphogenetic rules   governing the RSA dynamics, it is noticeable 
that the size of the root meristems plays a central role. Potential elongation rates of 
individual roots are linearly linked to their tip diameter, the slope of this relationship 
being assumed to be a genetic parameter. For each species, the elongating-roots’ tip 
diameter ranges between the minimal and maximal values that are both specifi ed as 
 genetic parameters  . The branching process defi nes both the longitudinal spacing of 
successive lateral roots on their mother, and the tip diameter distribution among 
lateral roots. On average, their diameter is linearly linked to that of their mother root 
and it is supposed to be variable, the coeffi cient of variation being also a genetic 
parameter. 

 This very simple model (ArchiSimple) benefi ted from a long-term experience on 
RSA modelling ( Pagès   and Ariès  1988 ), which facilitated the necessary simplifi ca-
tion (Fig.  4.1b ). However, it was designed to include ecophysiological concepts 
such as sink strength (through the meristem size), possible carbon source limita-
tions and the effects of some soil characteristics to modulate root elongation (e.g. ,  
soil strength or soil  temperature  ). These processes are known to exhibit strong 
genetic variations (de Dorlodot et al.  2007 ). 

 From the virtual RSA, it was possible to estimate a foraging performance ( Pagès   
 2011 ), considering that root systems take up soil nutrients located around the roots, 
within a given rhizosphere volume characterised by its distance to the roots. This 
distance refl ects in fact the type of nutrient that is targeted. For non-mobile ions 
(e.g. ,  phosphate) this distance is only a few millimetres whereas for mobile ions 
(e.g. ,  nitrate) or water it attains several centimetres. It is worth noticing that an inte-
grated trait such as the colonised root volume can be calculated on virtual 3D root 
systems, but it is actually impossible to assess on real root systems. 

 Thus, in this case, the model, that can be used to design root  ideotypes  , includes 
in fact an RSA model explicitly connected to the soil and the shoot system and a 
very simplifi ed uptake model representing the mere limiting soil resources (water 
and/or nutrients).   
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4.3     Virtual Profi ling on Roots and Fruits 

 Our purpose is to show how PBSMs can be used to perform  virtual profi ling   to 
 phenotype   plants in terms of ecophysiological processes. The following examples 
describe two possible, but not unique, approaches. On the root systems, our profi l-
ing proceeded from the analysis of a few parameters studied on a large virtual root 
population while on fruits, it came from the study of a large set of variables on two 
contrasted genotypes. 

4.3.1     Roots 

 Using the ArchiSimple model, a large number of root systems were simulated and 
used to explore the relationships between their overall performance and their ele-
mentary developmental  traits  . 

 For this purpose, each parameter was given random values in its plausible inter-
val, defi ned from the literature. The experimental design conformed to a paving, as 
suggested by Saltelli et al. ( 2008 ). Root foraging effi ciency was defi ned as the ratio 
of the total rhizospheric volume to a theoretical volume without any root overlap, 
i.e., with no redundant soil exploration. From this  in silico experimentation   several 
main results were obtained, which illustrates the interest of such approaches. The 
overall foraging effi ciency was highly dependent on the overall size of the root sys-
tem, because the rhizosphere of different roots tended to overlap more and more 
during root system development and extension (Fig.  4.3 ). As expected, this overlap 
was dependent on the rhizosphere size (distance). The approach allowed quantify-
ing this important phenomenon, which is usually neglected, even though root sys-
tems are particular objects in which roots are aggregated in space, mainly because 
they are connected as a branching system. The effi ciency varied considerably from 
one root system to another, even for a same total root length, and the variations were 
highly dependent on some parameters. Favourable ranges were defi ned for particu-
lar parameters, such as the inter-branch distance. Moreover, the overall tip-diameter 
range allowed by the virtual  phenotype   (called heterorhizy) was shown favouring 
effi ciency. Interestingly, the genetic parameter modulating the variation among lat-
eral root diameters had also a large impact on the overall effi ciency. When a sub- 
population of effi cient root systems was selected (elite population), it was shown 
that some parameter associations were excluded and conversely other associations 
between parameter values were favoured. Thus, correlations between parameters 
enabled to quantify the  trade-offs   in the elite population.

   Thus overall, the use of such a  PBSM   confi rmed its value to decipher these very 
 complex relationships   and allowed to bridge two scales: one on which developmen-
tal processes can be studied, and the other on which agronomic performances can 
be evaluated.  
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4.3.2     Fruit 

 The ‘Virtual Fruit’ model has been used to simulate wild type and mutant plants 
over a period of 70 days for fruit growth. To simulate the mutation in the model, we 
decreased by 70 % the value of the unique parameter that modulates the fruit sugar 
uptake. We used the model to calculate the daily value of 39 variables related to 

  Fig. 4.3    Relationship between foraging effi ciency (quantifying the rhizosphere overlap between 
different roots) and size of the root system (redrawn from  Pagès    (201 1)). Effi ciency varies between 
0 (full overlap) and 1 (no overlap). The considered rhizosphere radius was 3 mm (D1), 10 mm (D2) 
or 30 mm (D3). Each point represents a root system simulated by the model of Pagès ( 2011 ) on 
which the total length and the rhizosphere characteristics have been calculated. The  lines  represent 
the trends, calculated with the “loess” function in the R software       

 

4 Process-Based Simulation Models Are Essential Tools for Virtual Profi ling…



92

various processes (Table  4.1 ). The considered functional variables were in most 
cases rates such as photosynthetic rate (g CO 2  m −2  d −1 ) or relative rates such as daily 
variation of sucrose content (d −1 ). Some physical characteristics such as turgor pres-
sure or conductance were also considered since they are proportional to relative 
growth rate or fl uxes.

   By analogy with some current presentation of ‘omic’ results, we produced a heat 
map of the 39 variables (Fig.  4.4 ), which appears as a virtual profi le fi ngerprint sum-
marizing the processes impacted by fruit ageing. The wild-type  genotype   showed 
very contrasted temporal variation patterns according to the variables. Indeed, the 
relative variation of ATP, glucose and fructose suffered large temporal fl uctuation 
mainly due to changes in the climatic environment. Other variables such as fruit 
turgor pressure showed slow oscillations during fruit development. Most of the vari-
ables followed a temporal gradient with three distinct periods. Early in the season 
there was a high production of citric acid in the fruit. During the mid-season we 
detected high activities of stone growth and sucrose accumulation (SU). In the late 
period of fruit maturation, ethylene production increased.

   For the mutant plants, the general pattern was similar to that observed for the 
wild-type  genotype  . The same variables were involved in three main growth periods 
and oscillatory behaviours were also simulated (Fig.  4.4 ). During the fi rst period, 
the variables involved remained almost quantitatively unchanged. By contrast, 
changes appeared in the two last periods since the mutation triggered a large effect 
in several leaf and fruit variables (photosynthesis, growth, respiration and metabo-
lism) and delayed the fruit developmental rate. All variables involved in the mid- 
season period had lower intensities compared with the wild-type genotype. 
Similarly, most variables involved in the fruit maturation period showed lower 
activities, except enzymes involved in the sucrose and sorbitol metabolisms (Eso 
and Esu), which maintained similar activities. The fl esh osmotic potential (Os) was 
the unique oscillatory variable showing higher values in the mutant. 

 At the end, the mutation involved in the fruit sugar uptake had a strong effect in 
most fruit processes and on the plant source activity throughout fruit growth. The 
single mutation perturbed the whole system and impacted fruit quality, decreasing 
fruit mass and skin cracking and lowering ethylene emission (Fig.  4.5 ). Similar 
results were also obtained with a change in fruit load, which impacted also most of 
the plant and fruit processes ( Génard   et al.  2010 ).

   Such a  virtual profi ling   approach could lead to new ways of exploring  in silico  
the impact of mutations or naturally occurring genetic variations. A thrilling chal-
lenge for the future will be to connect virtual and ‘omic’ profi lings. Two main 
approaches are possible, one being empirical and the other mechanistic. A means to 
facilitate virtual and ‘omic’ profi ling connection is to perform ‘omic’ and virtual 
profi ling on the same subjects and to use data-mining technologies such as the bidi-
rectional orthogonal projection to latent structures (O2-PLS) method recently pro-
posed by Bylesjö et al. ( 2007 ) to search for links between them. To go further, the 
mechanistic integration of information generated by ‘omics’ technologies into 
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 models could provide a global view of how plants operate. So far, upscaling attempts 
from gene to cell have been successfully undertaken (Tomita et al.  1999 ), but further 
upscaling towards the organ or the plant levels has not yet been performed ( Baldazzi   
et al.  2012 ). A possible avenue would be to embed mechanistic  metabolic models   
into PBSMs such as the Virtual  Fruit model  . For instance it could be possible to 
substitute its current simplifi ed sugar model with a more detailed one, such as the 
sugar metabolism model developed by Uys et al. ( 2007 ) for sugarcane. The Virtual 
Fruit model would thus produce inputs for the metabolic model, which could in 
return simulate the production of metabolites along the metabolic pathways. By 
comparing simulations with real metabolic profi les obtained through metabolomic 
studies, it would be possible to test the benefi t of inserting such metabolic model 
within the Virtual Fruit model.   
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  Fig. 4.4    Heat map surface of model variables during the fruit developmental period of the wild 
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4.4     Ideotype Design 

4.4.1     Sensitivity Analysis, a Key-Step 
Before Designing Ideotypes 

 Sensitivity analysis (SA) is a statistical technique allowing to assess the impact of 
changing some input parameters on the model outputs (Blower and Dowlatabadi 
 1994 ). Saltelli et al. ( 2008 ) suggested conducting SA on the model (i) to test its 
accuracy, (ii) to prioritize the parameters before their estimation, (iii) to simplify the 
model and reduce its parameter number, and (iv) to identify the interactions between 
parameters. For example, ranking model parameters arises from sensitivity indices 
refl ecting the main effect of each parameter and their interactions. Parameters hav-
ing small or no effect on model outputs can thus be set to fi xed values, leading to 
model simplifi cation. 

 We can distinguish local SA methods from global ones. The former evaluate the 
impact of a very small variation around a given input value, while the latter study 
the output variability when that of the input covers the whole possible domain 
(Jacques  2011 ). Many SA methods have been used in the literature. These methods 
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  Fig. 4.5    Comparison of wild-type ( thick dashed lines ) and mutant ( thin lines ) simulation outputs 
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have different bases, including elementary effects (Morris or  one-step-at-a-time  
method), regression and correlation coeffi cients, variance decomposition (Sobol, 
FAST). Software and packages implementing these methods are largely accessible, 
for instance the  R sensitivity package.  1  SA techniques are very useful to study the 
behaviour of complex numerical models such as ecophysiological models described 
in this chapter. Therefore, SA techniques were among the earliest tools used for the 
model-based design of  ideotypes   (Habekotté  1997 ). Indeed, SA methods coupled 
with process-driven biophysical models may help answering some ‘ what if ’ ques-
tions before engaging in experiments (Fischer  1996 ). A SA of ecophysiological 
models under contrasted climatic conditions and/or agricultural practices allows 
identifying the most important parameters that mainly affect outputs of interest (i.e. ,  
targeted  traits  ). For example,  Quilot-Turion   et al.  (201 2) performed an SA on the 
‘Virtual Fruit’ model to identify the main parameters affecting fruit fresh mass, 
sweetness and crack density. The  ‘elementary effects’  screening method (Morris 
 1991 ; Saltelli et al.  1999 ) was used for this purpose. This method computes two 
sensitivity measures: the mean and the standard deviation of the distribution of the 
elementary effects associated with a given parameter. They respectively assess the 
overall infl uence of a given parameter on the output and on the interactions of a 
parameter with another one. In the study of Quilot-Turion et al. ( 2012 ), the sensitiv-
ity of each output variable to each parameter was quantifi ed by considering a 10 % 
variation interval around each parameter reference value. For the ‘Virtual Fruit’ 
model, from about 60 parameters submitted to the SA, only few parameters had 
signifi cant impact on the model outputs. We will show in the next section how these 
six  genetic parameters   can be combined to create interesting ideotypes. 

  Pagès   et al.  (201 2) used a global SA on the  root system architecture   to link devel-
opmental parameters with the shape of the vertical root length distribution, which is 
often used to characterize the root system in crop models. This analysis allowed 
creating a meta-model that enabled model inversion to facilitate the estimation of 
developmental parameters from vertical root length density profi les (Pagès et al. 
 2012 ).  

4.4.2     Multi-objective Optimisation Algorithms 
to Design Ideoypes 

 Designing environment-friendly production systems that produce safe food of good 
quality is an important challenge for the future. Indeed, such a production system 
may sustain the economic viability of farms. Today, one of the promising ways to 
tackle this issue is to identify the best combinations of genetic resources and 
cultural practices adapted to target environments. The idea here is to take advantage 
of the strong  genotype   × environment ×  management   (G × E × M) interactions in 

1   http://cran.r-project.org/web/packages/sensitivity/index.html 
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order to design plant  ideotypes   that meet these objectives. Such an approach relies 
on two main pillars: the potentialities offered by integrating genetic information 
into process- based models and the merger of breeders and agronomists ( Messina   
et al.  2009 ). Therefore, model-based design of ideotypes aims at fi nding the most 
suitable combinations of  genetic parameters  , genotype fi ngerprints and cultural 
practices adapted to target environments (Letort et al.  2008 ; Tardieu  2003 ). 

 It should be clearly stressed here that  model-based ideotype design   involves 
many confl icting criteria subject to hard constraints and therefore, it shows a num-
ber of diffi culties. Firstly, there is no explicit mathematical relationship linking the 
decision variables ( genetic parameters   and management practices) to the models’ 
outputs (criteria and constraints). Secondly, these relationships are probably nonlin-
ear as suggested by the results of simulation techniques. Thirdly, it is impossible to 
test all the candidate combinations due to their huge number. Fourthly, the fi tness 
landscapes to be explored are usually complex and have many local optima ( Messina   
et al.  2009 ). Therefore, model-based ideotype-design triggers a very diffi cult opti-
misation problem. In order to proceed, we need effi cient optimisation algorithms 
able to tackle these diffi culties that resist classical optimisation and simulation 
methods. In a large number of domains, nature-inspired optimisation algorithms 
(e.g. ,   genetic algorithm  s, ant colonies, particle swarm optimisation algorithms) 
appear effi cient to solve diffi cult optimisation problems. These algorithms allow 
exploring highly dimensional solution spaces in a reasonable computation time. 
In addition, they do not require any derivative information, and can address the 
complex  multi-objective optimisation   problems (e.g. ,  very large search spaces, 
uncertainty, noise, disjoint Pareto curves). As a result, the use of nature-inspired 
algorithms has recently expanded in the domain of model-based  ideotype design   
(He et al.  2012 ; Kadrani et al.  2012 ; Letort et al.  2008 ; Qi et al.  2010 ;  Quilot-Turion   
et al.  2012 ) and optimisation of management scenarios (Grechi et al.  2012 ). These 
methods provide a set of diversifi ed solutions to decision-makers and let them have 
the fi nal choice of the best-suited trade-off between criteria. 

 We will illustrate now the use of nature-inspired  multi-objective optimisation   
algorithms to design  ideotypes  . Our illustration concerns the peach fruit susceptibil-
ity to a pathogenic fungus ( Monilinia  spp.), responsible of the peach brown rot. This 
infection is largely occurring through fruit-wounds and it is proven that cuticular 
cracks play a major role for fungal infection (Gibert et al.  2009 ). Cuticular crack 
density has been shown to rise with fruit growth rate, which in its turn varies with 
management practices such as irrigation regimes and fruit thinning (Gibert et al. 
 2010 ). The cracks represent large opportunities for fungal infection and contribute 
also to fruit water losses by transpiration, infl uencing thereby fruit growth and qual-
ity build-up.  Monilinia  spp. causes in France a rising problem mainly due to the 
current reduction of fungicide usage in orchards for ecological, economic and 
human-health reasons. This short description illustrates clearly the confl icting 
objectives of the peach growers since the production of big fruits, which are gener-
ally the sweetest in taste, leads inevitably to elevated  Monilinia  attacks. In this case, 
growers should be interested to fi nd an adequate trade-off between quality and fruit 
health performances. It is needless to say that this trade-off depends also on the 
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environmental conditions. Thus, overall we must search for the best possible exploi-
tation of G × E × M interactions, seeking  specifi c adaptation   of some genotypes to 
target population of environments (TPE) ( Cooper   and Byth  1996 ). The idea is to 
cluster crop environments according to their limiting factors and the frequency of 
their occurrence. Within a class of TPE, a given  genotype   may have an expected and 
stable behaviour. Thus, the optimisation step must be performed in various TPE dif-
fering by cultural practices and/or climate profi les so that different ideotypes can 
emerge. Therefore, the defi nition of relevant target environments in which the limit-
ing factors are well identifi ed, represents a major step to focus the subsequent  ideo-
type design  . 

 As an attempt to sort out this problem, we used the “Virtual Fruit” model to 
design peach  ideotypes   with large fruit mass, good sweetness, and low density of 
skin cracks, i.e., low sensitivity to brown rot. 

 As mentioned before, the SA performed on the model identifi ed the main param-
eters affecting some important outputs of the Virtual  Fruit model  , i.e. ,  fruit mass, 
sweetness, crack density. From this SA, we selected six parameters affecting the 
processes of vegetative activity, i.e., fruit growth, sugar metabolism, stone-pulp par-
tition, transpiration and water fl uxes. These parameters are considered to be 
 genotype  - dependent  and mostly independent of the environment. Consequently, 
each genotype may be considered hereafter as a set of six  genetic parameters  . We 
ran the model under two contrasted modalities of irrigation regimes and thinning 
intensities in order to analyse the impact of cultural practices on the optimised solu-
tions. Irrigation and thinning practices are particularly relevant in the peach system 
due to their ecological impact and labour requirement. Moreover, both have large 
effects on fruit yield, quality and cuticular cracking. The optimised solutions 
emerged from the coupling of the model with different nature-inspired  multi- 
objective optimisation   algorithms (for details, see Kadrani et al.  2012 ,  2013 ; Ould- 
Sidi et al.  2012 ;  Quilot-Turion   et al.  2012 ). All algorithms provided a large diversity 
of solutions, among which it was possible to choose the best-suited trade-off 
between criteria according to a particular objective. Our results confi rmed that the 
solution domain was strongly constrained by the fruit mass and the microcrack 
characteristics and that there was a strong antagonism between the criteria consid-
ered (Fig.  4.6 ). For example, we identifi ed solutions matching current breeding 
schemes where fruit mass is the sole rated criterion. However, we also identifi ed 
some interesting optimised solutions representing a breakthrough in the current 
schemes, which could be considered in the future as they do favour organoleptic 
quality and environment-friendly practices. The global impact of crop load appeared 
high on fruit mass and crack density and moderate on sweetness. Irrigation regime 
displayed a small impact on the three criteria in case of low crop load but gave rise 
to contrasting phenotypes in case of high crop load. We found that whatever the 
scenario,  ideotypes   with lower fruit mass exhibited greater sweetness and had lower 
crack density on their skin. According to the ‘Virtual Fruit’ model, we may predict 
that it is not possible to get a set of six genetic parameters leading to ideotypes of 
very high fruit mass and sweetness but low sensitivity to brown rot. The fi gure 
reveals that commercial standards picking out cultivars with big fruits promote high 
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sensitivity to brown rot and low fruit sweetness. According to our simulations an 
interesting compromise would be to breed for cultivars with lower fruit mass, 
obtained for example by decreasing the hydraulic conductance of tissues (one of the 
six parameters tested) in order to get sweet fruits with low sensitivity to brown rot. 
This would be an acceptable trade-off favouring organoleptic quality and environ-
mentally friendly practices.

   The results of these pioneer studies illustrate the value of the  multi-objective 
optimisation   approach. The next important step will be applying this approach to a 
prospective search of  ideotypes   adapted to future climates or to seek opportunities 
for crop expansions into new areas. This is particularly relevant in the case of peren-
nial crops that are settled in an orchard for decades. Historical data or outputs from 
climate models could be used as inputs in the Virtual  Fruit model  . The output simu-
lations could thus help identify the main  traits   of  genotype    adaptation   to changing 
climates for the future. 

 However, an important initial step is needed before using this approach to such a 
prospect. Indeed, a main weakness of the methodology is the current lack of quan-
titative relationships between  genes   and model parameters. In fact, this approach 

  Fig. 4.6    Virtual Fruit outputs for the set of fi nal solutions for four environmental scenarios (two 
levels of crop load and two water regimes). The optimization was done using the NSGA-II (Non- 
dominated Sorting Genetic Algorithm II) algorithm, which explores complex search spaces in a 
reasonable computation time. More details can be found in  Quilot-Turion   et al.  (201 2). Cuticular 
crack density is plotted against fruit mass and sweetness. The highlighted solutions (green ovals) 
identify the actual  breeding strategies   versus putative alternative strategies devising a compromise 
between the three targeted  traits         
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simply provides a picture of the optimised space of solutions from the viewpoint of 
the system functioning under the constraint of biophysical limiting factors. Presently 
the suggested solutions represent ideal genotypes that breeders may not be able to 
create. In order to produce more realistic genotypes, genetic constraints (such as 
pleiotropic and epistatic effects, and G × E interactions; see Chap.   1     of this book by 
 Baldazzi   et al.) must be integrated into the optimisation scheme.   

4.5     Conclusion 

 To breed for cultivars that can adapt to changing climates to sustain or to increase 
yield and product quality, we need a better understanding of the complex interac-
tions among the numerous factors that drive resource acquisition, distribution and 
storage in response to environmental stimuli. Moreover, there is an urgent need to 
identify and track key  genes   involved in plant adaption to stress-prone environ-
ments. The PBSMs described in this chapter have proven very effi cient for unravel-
ling plant complexity and  plasticity   in response to environmental stimuli or genetic 
perturbations. In addition, we have illustrated how PBSMs can be used as powerful 
tools for  phenotyping   plants at the process level in a comprehensive and “costless” 
way. As a consequence, these models should also be regarded as  high-throughput 
phenotyping   platforms that may complement the more expensive genetic, proteomic 
or metabolomic platforms. Indeed our assessment of the Virtual  Fruit model   and the 
 root system architecture   model shows clearly that PBSMs may help us to disentan-
gle the links between genotypes (i.e. a set of parameters) and phenotypes. On the 
one hand, we can identify optimized sets of  genetic parameters   to achieve a target 
 phenotype  . On the other hand, models help us understand how a given phenotype 
may emerge from a specifi c  genotype  . Over the last decade,  near-isogenic lines  , 
mutants, transgenic and mapping populations have been developed for several  traits   
related to fruits quality. Such materials give scientists the opportunity to evaluate the 
hypotheses introduced in the models and to highlight important regulation loops. 

 Nevertheless, we are still far from the rise of new cultivars based on model- 
designed  ideotypes  . One main reason is the gap between model parameters and 
 genes   or physiological functions. To progress in this fi eld, more work is expected in 
order to fi ll the gap between genetic information concerning the  traits   and processes 
included in models. Moreover, PBSMs must be refi ned by more mechanistic details 
able to enlarge their ability to simulate the complexity of plant and organ function-
ing. Adding genetic and genomic information on gene actions and interactions into 
PBSMs will help modellers to unravel and strengthen physiological assumptions 
and equations in their models. It will also help to reduce some uncertainty about the 
genetic knowledge caused by environment interactions. In our opinion, it is not 
essential to understand fully a trait genetics and physiology to model it at an opera-
tional level. Nevertheless, modellers are seeking adequate data sets desperately, 
offering time series and accurate description and characterisation of cultural condi-
tions and genotypes, so as to parameterise and evaluate their PBSMs. In this 

4 Process-Based Simulation Models Are Essential Tools for Virtual Profi ling…

http://dx.doi.org/10.1007/978-3-319-20562-5_1


102

 prospect, it would be advisable to establish a large database including  phenotype   
data  measured at plant, organ and process levels and cross this information with 
molecular and genetic databases.     
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Chapter 5
Heuristic Exploration of Theoretical Margins 
for Improving Adaptation of Rice through 
Crop-Model Assisted Phenotyping

Delphine Luquet, Camila Rebolledo, Lauriane Rouan, Jean- 
Christophe Soulie, and Michael Dingkuhn

Abstract Crop modeling in support of breeders’ decisions on selection criteria can 
benefit from the new global focus on phenomics because it provides new informa-
tion on existing genetic diversity for useful traits. This study attempted an in silico 
prediction of margins for genetic improvements of early vigor (biomass produced 
during vegetative growth) and drought resistance combined, based on virtual recom-
bination of several traits (here syn. model parameters) within ranges of trait varia-
tion observed in a panel of diverse rice genotypes. The Ecomeristem model was 
parameterized by multi-parameter optimization procedures applied to observed 
datasets for 136 rice genotypes. The traits within the observed ranges were then 
recombined in silico to generate a virtual population of 9000 individuals. Simulations 
of real and virtual phenotypes under three water treatments, using finite water 
resources during stress cycles, indicated strong and similar trade-offs between con-
stitutive vigor and drought resistance in both real and virtual, recombinant popula-
tions. A substantial margin for potential genetic improvement of vigor with 
unchanged drought resistance was predicted, drawing chiefly from structural growth 
and development traits that would increase internal demand for assimilates (larger 
and thicker leaves, increased leaf appearance rates). Increased vigor would not nec-
essarily require greater photosynthetic potential per se. However, improved drought 
resistance with unchanged constitutive vigor would require greater water economy 
(increased photosynthetic potential and limited water use, therefore higher transpi-
ration efficiency) and greater tolerance of leaf extension and gas exchange  
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rates to drought, while tillering ability should be limited in favor of larger and 
thicker leaves. These results carry significant uncertainty because they predict vir-
tual genotypes and their phenotypes, based on simple assumptions in the model 
(namely on gas exchange) and in genetics (free, additive trait combinability). But
the approach is innovative and may eventually help developing ideotypes drawing 
from information of existing diversity and integrative modeling of phenotypes.

5.1  Introduction

5.1.1  Integrative Modeling of the Genetic and Environmental 
Control of Complex Traits

The challenge of using integrative modeling to unravel the genetic and environmen-
tal control of complex traits, such as crop biomass production, is debated since 
about two decades (Dingkuhn et al. 2005; Hammer et al. 2004, 2005; Yin et al. 
2004). These authors proposed that whole plant functioning is the pivotal biological 
scale to understand the effect of key genes, gene networks and related biological 
processes on the diversity and plasticity of phenotypes and thus of crop perfor-
mance. Its analysis through integrative approaches is needed to be useful for pre- 
breeding research and breeding, as crop ideotypes are also described at the 
whole-plant and plant population scales (Araus et al. 2002; Chapman et al. 2003).

Systems biology can integrate information and knowledge at organizational scales 
from molecular to plant or even crop level (Baldazzi et al. 2013; Keurentjes et al. 2011; 
Yin and Struik 2010). The complexity of plant systems biology requires integrative 
modeling that situates the component processes in a dynamic web of feedbacks and 
trade-offs, involving many interacting entities (Baldazzi et al. 2013; also see Chap. 1 of 
this book by Baldazzi et al.). Efforts made in this sense explored the genetic and envi-
ronmental control of phenotypes using heuristics (Dingkuhn et al. 2005; Hammer et al. 
2002). They require high-throughput methodologies both for the physical phenotyping 
process and the subsequent model application (Luquet et al. 2012b; Quilot-Turion 
et al. 2012). However, while heuristics using integrative modeling has been discussed 
extensively and modeling approaches have specifically been developed for complex 
systems (Cooper et al. 2002, 2014; Quesnel et al. 2009), their practical use for genetic 
analysis of complex traits is not trivial (Dingkuhn et al. 2005; Hammer et al. 2010; Xu 
et al. 2011). Pioneering work using fitted model parameters as phenotypic traits for 
genetic QTL (Quantitative Trait Locus) studies were so far mainly reported for single-
process models or models focused on a specific plant organ, such as a leaf expansion 
model for maize (Reymond et al. 2004), peach fruit quality (Quilot et al. 2005), or 
specific leaf area (SLA) of barley (Yin et al. 1999). In the case of the maize leaf expan-
sion model, the phenomics and heuristics were conducted at the single-process and 
single-organ scale, and only a posteriori scaled up to the crop level (Chenu et al. 2009). 
A variant of this approach was performed on rice (Gu et al. 2014) and barley  
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(Yin et al. 2000), whereby certain crop traits were phenotyped for a mapping popula-
tion and the QTL effects directly used to substitute the corresponding crop parameter 
effects in the complex crop model. In both approaches, the complex crop model was 
used as a tool to predict phenotypes of recombinant genotypes, but it was not used as a 
phenotyping tool per se.

In theory, the same complex crop model can be used to assist the phenotyping 
(by fitting parameters for traits that are difficult to measure directly), for QTL analy-
ses on the basis of these parameters, and for predicting recombinant phenotypes. 
The feasibility and added value of this approach remains to be demonstrated.

5.1.2  Mechanisms of Early Vigor and Their Interaction 
with Drought

When grown under rainfed conditions, the rice crop intermittently encounters 
drought periods, with potentially severe impact on grain yield (Babu et al. 2001; 
Jongdee et al. 2006; Kamoshita et al. 2004). The variability of tropical rainy seasons 
is expected to be aggravated by global warming. Drought events during reproduc-
tive development directly affect fertile panicle and spikelet number and grain filling, 
but early drought events are also of concern (Kamoshita et al. 2004). At early stages, 
the rice seedlings are fragile and drought may impede the production of leaf area 
and structural biomass needed to support sufficient tiller, panicle and grain numbers 
(Richards and Lukacs 2001). Early biomass and leaf area generation, called early 
vigor, is also needed to colonize space, acquire resources, and compete with weeds 
(Namuco et al. 2009).

For these reasons, early vigor is important both from an ecological (survival) and
agronomic (performance) point of view. But early vigor also accelerates resource
use including the soil water reserve and thereby increases the probability of drought 
occurrence during later growth periods. Early vigor and water use are thus intrinsi-
cally linked and cause trade-offs with drought avoidance, but the extent of these 
trade-offs may depend on the environment, cultural practices and the specific trait 
combinations expressed in a genotype. In the present study, we are particularly 
interested in the latter.

Both early vigor and drought resistance (composed of tolerance and avoidance 
traits) are complex traits. Vigor in the absence of drought involves not only processes 
of light capture and carbon (C) acquisition (sources), but also developmental pro-
cesses of organ deployment (constituting sinks), and thus involves source-sink regu-
lation. To what extent a vegetative plant can be source or sink limited is an ongoing 
debate (Dingkuhn et al. 2007), particularly in the presence of drought (Pallas et al. 
2013; Pantin et al. 2011). Sink limitation can be of ecological advantage, by conserv-
ing a finite external resource, storing internal reserves and limiting plant exposure to 
stress (but rendering the crop more vulnerable to weed competition). Source limited 
growth in the absence of stress may be considered a more aggressive strategy but 
increases exposure if stress occurs. Source limited growth under drought can be 
directly caused by stress effects on gas exchange or secondarily by leaf 
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 senescence. Organogenetic (developmental) sinks tend to be down- regulated under 
stress and their survival, in terms of meristem integrity, is vital (Tisne et al. 2010). 
Therefore, sink maintenance under stress may sometimes be of agronomic advan-
tage but is risky in drought prone ecologies.

It was suggested that up to a moderate drought level plants are frequently sink 
limited, showing a positive nonstructural carbohydrate (NSC) balance (Luquet 
et al. 2008; Pantin et al. 2011), but under more severe stress, plants become C source 
limited. Accordingly, growth maintenance under drought is a subtle trade-off 
between C source and sink regulation and depends both on the drought type and the 
species (Pallas et al. 2013).

In rice, early vigor and its interaction with drought show substantial genetic 
diversity (Rebolledo et al. 2012a, b, 2013). A phenotypic study of a large panel of 
diverse accessions revealed a negative correlation between early vigor (both in 
terms of biomass accumulation and organogenetic development rate) and leaf starch 
content. Plants having low vigor and high starch concentrations were interpreted as 
being sink limited. High vigor, where it was observed, could be related to organ 
number (deployment rate of leaves and tillers) or organ size, whereby organ size and 
number were negatively correlated across genotypes. In general, early vigor was 
negatively correlated with drought tolerance, which was defined as the capacity of 
seedlings to maintain biomass accumulation under a given soil water deficit. 
Therefore, the negative trade-off between constitutive vigor and drought tolerance 
was not a result of earlier water reserve depletion by the vigorous types, but of other 
processes. It thus appears that selecting for vigor may incur loss of drought toler-
ance, and vice versa.

5.1.3  Modeling Early Vigor and Drought Interactions

While at the organ level the switch from a metabolic to hydraulic control of growth 
during drought development was experimentally demonstrated (Pantin et al. 2011), 
an integrative analysis of such processes at the whole-plant scale remains difficult 
(Luquet et al. 2008). Regulation of C source-sink and water relationships varies
with genotype. Several modeling schools emerged to address this question. Tardieu 
et al. (2011) described two approaches commonly used in plant growth models: (i) 
plant growth under water deficit is driven by integrative plant variables such as plant 
carbon status (Yan et al. 2004), or (ii) parallel mechanisms affect plant expansive 
growth (hormonal and hydraulic signals) and biomass accumulation (stomatal con-
ductance, photosynthesis). The latter approach was implemented in many crop 
models (Brisson et al. 2003; Hammer et al. 2010). A novel generation of models 
(Pallas et al. 2013) considers combined effects of water status and sink/source rela-
tions on organ deployment and expansion. For grasses, this concept is implemented
in Ecomeristem (Luquet et al. 2006), a model that simulates plant morphogenesis 
and phenotypic plasticity as modulated by assimilate status (as a whole-plant ratio 
of aggregate supply to aggregate demand) and water status (as a function of fraction 
of transpirable soil water in the root zone, FTSW). Water status thereby affects
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both assimilation rate (affecting source) and organ expansion (affecting sink), and 
the resulting source/sink ratio feeds back on deployment of new organs and their 
potential size, based on a dynamic representation of plant topology at organ level. 
The originality of the model resides in the assumption of a single pool of C assimi-
late that many entities (organs) compete for, the resulting level of competition then 
feeding back on new growth commitments in terms of organ deployment and poten-
tial size. Transient source/sink imbalances are buffered by a reserve pool within a 
day, and compensated by organ initiation or senescence. Recently, Ecomeristem
was used to phenotype a genetically diverse rice panel (136 accessions) for early 
vigor under abundant water supply (Luquet et al. 2012b) and under drought (Luquet 
et al. 2012a). Parameter multi-fitting was performed for several environments by 
optimization procedures using a genetic algorithm. The model was able to repro-
duce and predict key trait combinations observed within the population, such as a 
close association of early vigor with organogenetic development rate (inverse of 
phyllochron), a negative association of vigor with the size of transient NSC pools, 
and strong trade-offs between constitutive vigor and drought tolerance (Rebolledo
et al. 2012b, 2013).

Genotypic model parameter values can be regarded as traits and used to study
their genetic control by way of genome-wide association studies (GWAS). This 
work is not presented here. However, the calibrated model can also be used to pre-
dict phenotypes in response to variation in environment. This approach can be taken 
one step further by simulating virtual genotypes that differ from the observed ones 
in the values or combinations of values for specific traits (Chenu et al. 2009; Yin 
et al. 1999). Ultimately, the approach potentially enables predicting improved ideo-
types, and if strong associations of model parameters with genomic regions are 
found via GWAS, molecular markers can be developed for the marker-assisted 
breeding for such ideotypes.

The present study aimed to (i) simulate with Ecomeristem the performance of a 
rice population of 136 genotypes (for which the model was previously trained, 
Luquet et al. 2012a, b) under three environmental conditions (well-watered and two 
drought levels); and (ii) compare it with the performance of a virtual population of 
“recombinant” genotypes, generated by randomly combining parameter values 
within the ranges met in the original population. On this basis, we try to explore 
potential margins for improving early vigor, improving drought tolerance and limit-
ing trade-offs between vigor and tolerance.

5.2  Materials and Methods

5.2.1  Ecomeristem Model

The Ecomeristem model simulates plant vegetative morphogenesis of rice, sorghum 
and sugarcane. The model was described in previous studies on rice plants under 
non-stress (Luquet et al. 2006) and drought conditions (Luquet et al. 2012a; Pallas 
et al. 2013). Regarding the rice model for the vegetative phase (before internode
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elongation), phytomer initiation rate is scheduled by a potential plastochron (Plasto, 
genotypic parameter). It is equal to the phyllochron, i.e., the duration (in °Cd) of the 
expansion phase of a leaf from its tip appearance until the next leaf-tip appearance 
(a relationship specific to rice) (Nemoto et al. 1995). Once initiated, an organ n is 
pre-dimensioned. Its potential final size is computed as the final length of leaf (n-1) 
incremented by a genotypic parameter (MGR: Meristem Growth Rate). MGR quan-
tifies the ability of the vegetative meristem to produce successive leaves with an 
increasing size. An allometric coefficient is used to translate leaf length into width 
(Luquet et al. 2006). Once pre-dimensioned, a leaf expands at a Leaf Expansion 
Rate (LER, cm2.°Cd−1) equal to the ratio between potential final leaf length and 
expansion duration.

The root compartment is only simulated in terms of biomass, i.e., as a bulk com-
partment with a daily growth demand computed proportionally to that of the shoot 
and depending on plant phenology. The sum of daily potential leaf and root growth 
constitutes plant demand for carbohydrates (C). C supply is computed daily at crop 
level (scaled to plant level by dividing by planting density) using the commonly 
used big-leaf approach based on a light extinction rate (Kdf) and a light conversion 
efficiency (epsib, g MJ−1). The daily ratio between plant C supply and demand con-
stitutes a state variable named Ic, an index of plant internal competition for C, which 
modulates many processes simulated by the model. Both leaf dimensioning (at ini-
tiation time) and LER are down-regulated if Ic is inferior to 1. Tillering is also regu-
lated by Ic, depending on a genotypic threshold parameter Ict (Ic threshold above 
which tillering occurs). A genotype with low Ict tillers more easily than one with 
high Ict. A particularity of Ecomeristem is also the modeling of a whole-plant C 
storage compartment governed by Ic: C reserves are fed into it if Ic>1 and mobilized 
if Ic<1. In the latter case, if C supply falls short of demand even after reserve mobi-
lization, the senescence of the oldest leaf on the plant is accelerated.

Areal leaf expansion is translated into structural dry weight demand using a leaf 
rank dependent value of SLA (specific leaf area, surface area/structural dw) com-
puted by a logarithmic equation attenuated by a slope parameter, SLAp. As men-
tioned above, Ecomeristem uses the state variable FTSW do drive plant functioning
under drought (Luquet et al. 2012a). FTSW impacts directly on leaf expansion and
transpiration rates according to a bilinear broken-stick equation dependent on thresh-
old parameters (ThresLER and ThresTransp). Transpiration reduction rate impacts 
on potential C assimilation through Cstr, ratio between actual and potential plant leaf 
transpiration, according to a power parameter (epsibsens, cf. equation in Table 5.1).

5.2.2  Model Calibration on Rice Diversity Panel

A rice diversity panel of 136 individuals was studied in a greenhouse experiment 
regarding traits related to early vigor and its drought regulation (IRRI, Philippines
2013). This panel contained mainly tropical japonica but also other groups (19 
indica, 5 temperate japonica, 2 aromatic and 2 Aus). Early vigor was considered as 
the capacity to accumulate shoot biomass rapidly. Drought tolerance was 
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considered as the maintenance of green-shoot dry weight (GSDW) accumulation
under drought. For the latter purpose, a drought treatment was compared with a
control (well-watered) one. Each genotype in each treatment was represented by three 
potted plants (replicates). This experiment was extensively described by Rebolledo
et al. (2013). The drought treatment was created by stopping irrigation for each 
accession individually at the appearance of leaf 6 on the main stem. Pots (1-liter 
pots, size chosen to avoid any genotypic difference in terms of soil exploration by 
roots) were watered at field capacity till that time and then kept dry-down until a 
severe level of stress was reached (FTSW of 0.2). Water stress was quantified by the
Fraction of Transpirable Soil Water (FTSW) that was measured gravimetrically, as
well as plant leaf transpiration rate. Measured traits were in both treatments, the last 
expanded leaf size and rank on the main stem, tillering, leaf senescence rate, at least 
three times during the experiment. These phenotypic data, together with corre-
sponding meteorological data (daily photosynthetically active radiation, air tem-
perature at the base of plants and evaporative demand) were used to calibrate 
Ecomeristem for each accession in the studied panel. Parameter estimation was per-
formed using the genetic algorithm method Rgenoud (Sekhon and Mebane 2011). 
For each accession and each replicate (3) in the panel, 9 genotypic parameters were
estimated: 6 morphogenetic and 3 drought response parameters (see Table 5.1). 
These parameters were addressed because they control traits known to vary across 
genetic materials in the panel (Rebolledo et al. 2012a, b, 2013) and because they 

Table 5.1 Definition, unit and ranges of values of Ecomeristem model parameters: bold values: 
ranges used for model calibration for each of the three replicates of each of the 136 accessions 
present in the rice diversity panel; other range: interval of values eventually explored by the 
diversity panel (considering average of three replicates per genotype). P values indicate the 
significance for a replicate effect on parameter value

Parameters Identification

Range used for
calibration vs. range 
found in the rice 
panel

epsib Light conversion efficiency (g.MJ−1) 3–6 vs. 3.53–5.92 
(p < 0.05)

Ict Ic threshold enabling tillering 0.5–3 vs. 0.65–1.99
Kcpot Potential leaf transpiration 7–14 vs. 7–13.62 

(p < 0.05)
MGR Meristem growth rate (cm) 3–5 vs. 3.76–5
Plasto Plastochron (°Cd) 40–80 vs. 

42.56–68.99
epsibsens Power parameter to reduce epsib proportionally to 

water stress level as such: epsib*Cstrepsibsens (where 
Cstr is defined by Cstr = actual/potential leaf 
transpiration rate)

0.5–1.5 vs. 0.5–1.5

SLAp Parameter controling specific leaf area variation with 
leaf rank

20–80 vs. 25.38–80

thresLER Threshold FTSW for leaf expansion rate reduction 0–1 vs. 0.14–1
thresTransp Threshold FTSW for leaf transpiration rate reduction 0.4–1 vs. 0.4–0.89 

(p < 0.05)
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were confirmed to impact simulated shoot biomass accumulation (evaluated through 
model sensitivity analysis in Luquet et al. 2012a). Other parameters were fixed at a 
value specific to rice already used in previous studies (Luquet et al. 2012a). Data 
used for fitting the model and estimating parameter values were those measured at 
stress onset and at the end of the stress period: GSDW, tiller number, total leaf num-
ber on the plant, green and total leaf number on the main stem, length and width of 
the last ligulated leaf on the main stem, and FTSW. Parameter values obtained for
each replicate of a given genotype were then averaged, which was made possible 
due to the absent or small replicate effects observed (cf. Table 5.1).

5.2.3  Simulation Experiments

Simulations were conducted to compare performance of genotypes grown under 
well-watered and two drought conditions (Fig. 5.1), based on meteorological data 
registered in the greenhouse (Rebolledo et al. 2013). The well-watered condition 
(WW) was simulated by forcing soil moisture constantly at field capacity. The two 
drought simulations were differentiated as follows:

 – 12d short, rapid dry-down (RDD) driven by the observed potential evapotranspi-
ration (PET), resulting in a severe drought situation (32d simulations).

 – 20d slow dry-down (SDD) driven by 60 % of observed PET, resulting in a mod-
erate drought situation (40d simulations).

days after germination
0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

PAR (mmol.m-2.s-1)
air temperature (°C)
ETP (mm)

Fig. 5.1 Environmental conditions used for plant green shoot dry weight (GSDW) simulations
with Ecomeristem presented in next figures (Data from greenhouse experiment presented by 
Rebolledo et al. (2013)). PAR photosynthetically active radiation, ETP evaporative demand. 
Simulations were performed from germination till 32 or 40 d after germination. For the moderate
stress (40d simulation) the slow dry-down was simulated taking 40 % of actual ETP value pre-
sented in this Figure. For short severe dry-down, the real ETP value was used. For well-watered
conditions, the soil is considered permanently at field capacity
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For each simulation scenario, the behavior of each accession of the diversity
panel was predicted. An additional set of simulations was conducted for the same 
scenarios using a panel of 9000 virtual genotypes (sensitivity analysis). The virtual 
genotypes represented combinations of parameter values within the ranges of 
observed on the real panel (Table 5.1). The parameter combinations for the virtual 
panel were generated with the FAST method (Saltelli et al. 1999).

5.2.4  Statistical Analyses

XLSTAT software was used for statistical analyses of simulated output variables 
and model parameters. Cluster analysis was performed with XLSTAT on pheno-
types simulated for the genotypes on the diversity panel and for the phenotypes of 
the virtual panel generated by FAST. For this purpose, 32d and 40d simulations
were considered separately. Cluster analysis was performed on the following simu-
lation results: (i) final GSDW simulated under well watered (representing constitu-
tive early vigor), and (ii) the reduction rate of final GSDW under each drought
condition relative to WW (computed as [(100*GSDWww-GSDWd)/GSDWww],
hereafter called GSDWred% or drought sensitivity). For the cluster analyses, simu-
lation results obtained for the real panel and the virtual panel were combineds in a 
single data set (9136 individuals). A k-mean approach was first used to define 900 
centroid genotypes (i.e., average of all genotypes in each of the 900 clusters gener-
ated by the k-mean approach) among the 9136 genotypes studied. Hierarchical 
ascendant classification (HAC) was then performed to cluster the 900 centroids in 9 
classes, each class including potentially virtual or real accessions. Accordingly, nine 
classes each were created for early vigor (GSDW under WW), drought sensitivity
(GSDWred%) under moderate drought (SDD, 40d simulations), and drought sensi-
tivity under severe drought (RDD, 32d simulations). In each case, Principal
Component Analysis (PCA) was performed to position clusters according to the 
parameter values of their respective genotypes.

5.3  Results

5.3.1  Predicted Shoot Dry Matter under Different Water 
Regimes

Two rice populations were studied, one real (diversity panel, 136 accessions) and 
one virtual (9000 “recombinants” of crop parameter values within the observed 
ranges, Table 5.1). For each real or virtual genotype, three phenotypes were gener-
ated corresponding to the three treatments. In the following we compare the six 
resulting populations of phenotypes, in terms of simulated GSDW at the end of the
differential hydrological treatments.
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A previous study (Luquet et al. 2012b; Rebolledo et al. 2012a) described a posi-
tive correlation between GSDW and organogenetic development rate (DR, or phyl-
lochron−1; [°Cd−1]) for real and virtual populations under WW treatment. This
relationship was explored here for WW, RDD and SDD environments (Fig. 5.2). In 
all environments, simulated phenotypes of the real population represented a subset 
of the larger virtual population. The positive correlation between GSDW and DR
was strong under WW for both real and virtual populations (r = 0.72 and 0.83, 
respectively; p < 0.01). Under drought, this correlation largely disappeared and was 
only visible as a trend among the genotypes having low DR (low-vigor types). For
the real population, GSDW completely leveled off at DR>0.017 °Cd−1, correspond-
ing to a phyllochron smaller than 59 °Cd, or 4.5d under the experimental conditions. 
These results indicate that differences in vigor (final GSDW under WW) were
mostly not conserved under drought (RDD and SDD), but there was on average no
penalty for high-vigor types in terms of absolute GSDW under drought.

Irrespective of the environments, GSDW predicted for a large part of the virtual
population was greater than that for the real genotypes. This suggests that theoreti-
cally, within the model assumptions, a margin for better GSDW conservation under
drought may exist.

The correlation between GSDW of drought treated vs. WW plants was positive.
For both real and virtual populations, predicted GSDW of drought treated plants
was either similar or inferior to that of WW (Fig. 5.3). For low-vigor types (low
GSDW under WW), many genotypes showed no GSDW reduction under drought,
whereas for high-vigor types there was generally a strong reduction of GSDW
under drought, for both real and virtual genotypes. The virtual population, how-
ever, included a large proportion of cases that produced much greater GSDW than
any of the real genotypes, regardless of treatment. Consequently, the virtual and 
real populations showed overall the same pattern of trade-offs between vigor and 
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Fig. 5.2 Relationship between development rate (DR, °Cd−1) and green-shoot dry weight (GDSW)
accumulation simulated under three water conditions: (a) well-watered (WW), 32d simulation; (b) 
rapid severe 12d dry-down (RDD) ending at 32 days after germination; (c) slow moderate 20d dry- 
down (SDD) ending at 40 days after germination. Black points: 136 real genotypes constituting the 
diversity panel described in Table 5.1. Grey points: 9000 virtual genotypes generated within ranges 
of explored parameter values as described in Table 5.1
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drought response, but the virtual population covered a much greater range of vigor 
(GSDW under WW).

5.3.2  Evaluation of Vigor and Drought Response by Cluster 
of Response Type

In order to facilitate the comparison among vigor and drought response types within 
the populations, the latter were divided into clusters having similar behavior. 
Clustering was based on two variables: (i) GSDW simulated under well-watered
conditions that we will consider as the expression of early vigor, and (ii) the relative 
reduction of GSDW under drought as compared with WW, considered as being a
measure of drought sensitivity.

For the RDD treatment, the nine clusters and their centroids were linearly lined
up along a function resembling an inverse hyperbola or a logarithmic function (Fig.
5.4a). The two most vigorous clusters C8 and C9 did not contain real existing geno-
types, whereas all other clusters did. The centroids of the three clusters having the 
poorest vigor and smallest drought sensitivity (C2, C4 and C6) were located within 
the range of values observed for real genotypes. The centroids for the other clusters 
were outside the domain observed for real genotypes and represented virtual geno-
types having smaller drought sensitivity than similarly vigorous real genotypes. The 
nonlinear regression across the population of genotypes between GSDW and
drought sensitivity can be expressed as (Eq. 5.1), showing a clear positive correla-
tion between early vigor and drought sensitivity under such a drought type:

GSDW (g per plant)

WW
0 2 4 6 8 10

R
D

D

0.0

0.5

1.0

1.5

2.0

2.5

3.0

WW
0 5 10 15 20 25

S
D
D

0

1

2

3

4

5

6

7

virtual genotypes
japonica

a b

Fig. 5.3 Relationship between green-shoot dry weight (GSDW) simulated under well-watered
WW and two drought treatments: (a) rapid severe 12d dry-down (RDD) ending at 32 days after
germination; (b) slow moderate 20d dry-down (SDD) ending at 40 days after germination for the 
real and virtual panels. The 1:1 line represents genotypes performing equally well under both 
conditions
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y x r= + ( ) =( )17 8 29 0 822. ln .

 
(5.1)

It is important to note that both virtual and real populations, and in particular the 
real population, occupied a remarkably narrow band on the drought sensitivity vs. 
vigor scatter plot (Fig. 5.4a). The trade-off between vigor and drought sensitivity (in 
terms of relative reduction in GSDW) was thus an inherent system property, or
emergent feature from the simulations. The centroids of the clusters of virtual geno-
types thereby showed a slightly smaller trade-off than did the real population.

For the SDD treatment, observations were similar as for RDD, but there was
greater variation in drought sensitivity at given levels of vigor (Fig. 5.4b). This was 
true for both real and virtual populations, possibly indicating that there is inherently 
a greater margin for drought-vigor trade-offs when the stress progresses slowly 
(SDD) than when it is rapid and intense (RDD). However, the logarithmic correla-
tions for drought sensitivity vs. vigor were similar (Eq. 5.2):

 
y x r= - + ( ) =( )5 7 29 7 0 82. . ln .

 
(5.2)

For SDD, six out of nine cluster centroids fell into regions occupied by real geno-
types, and only centroids of high-vigor clusters C1, C8 and C9 fell into regions 
where only virtual genotypes were present.

5.3.3  Principal Component Analysis for Model Parameter 
Values, Vigor and Drought Sensitivity

Analysis of principal components explaining variation of genotypic model param-
eters, GSDW under WW (syn. vigor) and relative reduction of GSDW under drought
(syn. drought sensitivity), conducted for the combined real and virtual populations, 
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Fig. 5.4 Relationship between GSDW under well-watered conditions (WW) and its reduction rate
by (a) a rapid dry-down event (RDD, 32d simulation ending by a 12d dry-down) and (b) by a 
longer and slow dry-down event (SDD, 40d simulation ending by a 20d dry-down). Clusters are 
distinguished by symbol color. Large white circles are the centroids for each cluster. Small white 
symbols represent the observed population
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gave very similar patterns for RDD and SDD treatments (Fig. 5.5). On the PCA 
diagrams, model parameters (red) and clusters (blue) were depicted with different 
colors for distinction.

Vigor and drought sensitivity were closely associated with each other at the posi-
tive extreme of axis 1, confirming the strong trade-offs between vigor and drought 
effects. The model parameter plasto, which sets the potential duration of the phyl-
lochron, was situated at the opposite, negative extreme of axis 1. Phyllochron is the 
reciprocal of organogenetic vigor, or development rate DR. Consequently, high DR
(or low phyllochron) was associated with both vigor and drought sensitivity.

Strongly impacting parameters were also MGR (positively affecting organ size) 
and Kcpot (setting potential canopy transpiration) but their effect was opposite to 
each other and located mainly on axis 2, with little bearing on vigor and drought 
sensitivity. Among the lesser impacting parameters, Ict (negatively related to tiller-
ing ability) had an effect opposed to vigor. Thus, tillering ability contributed posi-
tively to vigor and drought sensitivity. SLAp, a parameter controlling the reduction 
rate of Specific Leaf Area (SLA) with increasing leaf position on the plant (the 
higher SLAp, the stronger SLA decrease from one position to the next), also 
impacted little on vigor and drought sensitivity. Its effect on both variables was null 
under RDD (Fig. 5.5a) and slightly positive for the milder SDD treatment (Fig.
5.5b). In general the impact of drought response parameters (epsibsens, threstransp, 
thresLER) was smaller compared with that of constitutive morphogenetic and 
 physiological parameters. These three parameters participated in axis 2, meaning 
that they had little effect on vigor and drought sensitivity. Parameters thresLER and 
epsibsens were positively associated with MGR (conferring large leaves). Parameter 
thresTransp was negatively correlated with them.
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Fig. 5.5 Principal component analysis based on Ecomeristem model genotypic parameters (see 
Table 5.1 for their definition) and simulated green-shoot dry weight (GSDW g per plant) and its
reduction rate under drought (GSDWred%); (a) for a rapid dry-down (RDD, 32d simulation end-
ing by a 12d dry-down) and (b) for a longer and slower dry-down (SDD, 40d simulation ending by 
a 20d dry-down). Clusters (C-#) are represented by blue lines and markers
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Tables 5.2 and 5.3 exemplify changes in genotypic model parameter values (con-
sidered as traits) that would improve (as compared with real genotypes, and within 
the range of observed parameter values), (i) vigor at a given level of drought sensi-
tivity, or (ii) drought sensitivity under a given level of constitutive vigor. The virtual 
population included phenotypes having much greater biomass under WW (constitu-
tive vigor) than observed genotypes (Fig. 5.2a). Tables 5.2 and 5.3 suggest that for 
improved vigor (i.e., a shift to right from best existing genotypes in C1 to the cen-
troids of C7 in Table 5.2 and C8 in Table 5.3) would involve traits such as greater 
leaf size (MGR increase) and smaller SLA, which translates into thicker leaves 
(SLAp increase). A slight increase of development rate (or shorter phyllochron) 
would also increase vigor, particularly for the longer simulation experiment (Table 
5.3: −10 % for plasto). Surprisingly, no increase in tillering ability (decrease in 
parameter Ict) or light conversion efficiency (increase in parameter epsib) was sug-
gested by the model to increase vigor.

Under drought conditions, the virtual population also included many cases of 
greater biomass than the best observed genotypes (Fig. 5.2b, c). According to Table 
5.2, (RDD: rapid dry-down), a reduction of drought sensitivity by 23 % at a given
level of vigor resulted from a lower drought sensitivity of both C assimilation 
(epsibsens, −11 %) and leaf expansion rate (thresLER, −31 %). This was associated 
with a strong reduction of tillering ability (Ict, +77 %), a 26 % increase in light 
conversion efficiency (epsib) and a reduction of potential canopy transpiration rate 
(Kcpot, −19 %). The more drought resistant plants would also have thicker leaves 
(SLAp, +16 %) but no change in potential leaf size (MGR) and number per culm 
(plasto).

Under a slower and milder dry-down (SDD, Table 5.3), a reduction of 26 % of 
drought sensitivity (downward-shift from existing genotypes in C1 toward the cen-
troid of C9) involved a reduction in drought sensitivity of leaf extension rate (thre-
sLER −49 %) and of light conversion efficiency (epsibsens −35 %), and a reduction 
in drought sensitivity of transpiration rate (thresTransp, −28 %). The more drought 
resistant plants would have slightly smaller tillering ability (Ict, +14 %) and lower 
potential leaf transpiration rate (Kcpot, −14 %). They would also have greater 
potential leaf size (MGR +35 %) and thicker leaves (SLAp +30 %).

5.4  Discussion

5.4.1  Critical Appreciation of the Conceptual Approach

The present study aimed at a plant model-based exploration of the trade-offs 
between drought sensitivity and vigor in terms of biomass production during vege-
tative growth. On this basis, an estimation of theoretical margins for increasing 
drought resistance or improving vigor, while reducing trade-offs, was attempted. 
Crop parameter values were thereby limited to vary within the ranges estimated 
for an observed diversity panel of rice, based on parameter optimization procedures. 
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By allowing parameter values (traits) to freely recombine within those limits,
a larger virtual population was generated. The growth-environment conditions were 
characterized by a finite soil volume and water reserve to which the plants had full 
access and would deplete it as a function of simulated canopy transpiration and soil 
evaporation rate.

An integrative plant growth model, Ecomeristem, was used that recently demon-
strated its suitability to simulate the diversity of rice seedling phenotypes under both 
well-watered (Luquet et al. 2012b) and drought conditions (Luquet et al. 2012a). 
Ecomeristem is a functional-structural plant model (FSPM) type (for more details 
of FSPM, see Chap. 2 by Xu and Buck-Sorlin in this book). The model simulates
plant topology and morphogenetic processes and their phenotypic plasticity, in 
response to light and water resources. Resource availability results in plant internal
nutritional status (supply/demand ratio of C or water) that regulates C source-sink 
regulation and morphogenesis depending on genotypic sensitivity. Genotypic model
parameter values in Ecomeristem are generally process-based traits. They are there-
fore not static morphological traits but response traits that cannot be measured 
directly but are fitted to observed plant behavior by parameter optimization.

The challenge in this study was (i) to capture with model parameters existing 
genetic diversity; (ii) to explore potential genetic gain that can be possibly drawn 
from new combinations of traits, particularly with respect to the previously observed 
negative linkage between early vigor and drought tolerance within the existing 
genetic diversity (Rebolledo et al. 2012a, 2013); and (iii) to create ideotype con-
cepts from phenomics resources as a potential strategic support for breeding (Bertin
et al. 2010; Dingkuhn et al. 2007; Hammer et al. 2010).

The probable limitations to the validity of thus obtained information hinge on the 
accuracy of the model assumptions, the accuracy of the parameterization, and the 
hypothesis of free combinability of model parameter values within the observed 
ranges. These are all uncertain in our analysis. Although Ecomeristem has been 
validated and has proven its skill to capture phenotypic diversity in rice, particularly 
with respect to early vigor and drought response traits (Luquet et al. 2012a), none 
of the abovementioned uncertainties can be discounted in our context, because it 
carries model predictions into virtual genotypes. This study should therefore not be 
seen as predictive in an operational sense for breeding, but as a conceptual explora-
tion of a largely new kind of crop model application.

Among the few precursor studies to our approach is the up-scaling of empirical, 
QTL-driven plant parameters for leaf extension rates under drought to the crop level 
using the crop model APSIM for maize (Chenu et al. 2009). That study, however, 
“implanted” the results of a reductionist, single-process study into the integrated 
crop-environment context (APSIM). However, the possible genetic linkages and 
pleiotropic effects were not taken into account, as the phenotypic and genetic stud-
ies were solely made on leaf elongation. In the present study a holistic approach was 
used, aiming at estimating in one procedure the values of genotypic parameters 
known to be most influential for water use, growth, architecture and development 
(Luquet et al. 2012a, b). Each parameter combination is thus supposed to represent 
and capture a genotype expressing its traits in interaction with other traits and with 
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the environment. The degree of uncertainty in such predictions may in fact be simi-
lar to that in the approach used by Chenu et al. (2009), but the present approach was 
able to integrate information on the genetic diversity observed for a much larger 
number of traits, including many traits constituting ideotypes.

5.4.2  Experimental Design versus Type of Drought Resistance 
and Vigor

The study focused on two drought treatments that were both progressive (dry-down 
using a finite water reserve) but differed in the rapidity of soil water depletion. In 
both cases, drought avoidance through deep root systems (Courtois et al. 2000) 
could not be expressed by the plants, and adaptations were thus related only to traits 
affecting plant water demand (in turn affected by leaf area growth), light intercep-
tion and photosynthetic conversion, transpiration efficiency, and the control of vari-
ous gas exchange and growth variables by soil water status (FTSW). The finite
water resource in this scenario thereby generated an intrinsic trade-off between vigor 
and drought resistance. Since plant performance was evaluated based on biomass, 
the stress setup favored plants that are efficient water users and respond insensi-
tively to water deficit within non-lethal ranges. The latter implies high levels of 
physiological tolerance. Under well-watered conditions, the biomass-based evalua-
tion criterion favored radiation-use efficient (source) or rapidly developing and 
expanding (sink) plants, depending on whether growth was source or sink limited 
(Dingkuhn et al. 2007).

5.4.3  Theoretical Scope for Improving Vigor

Under WW conditions, the in silico exploration of phenotypes within the range of 
parameter values observed in the diversity panel indicated a theoretical margin for 
significant increases in biomass accumulation during vegetative growth (Fig. 5.2a; 
Tables 5.2 and 5.3). Traits that would contribute to this, according to the simula-
tions, are largely on the assimilate demand side, such as larger leaves (MGR 
increase) and thicker leaves (SLAp increase) while maintaining at least the same 
developmental vigor (organogenetic vigor in terms of leaf number and tillering). In 
fact, Rebolledo et al. (2012a) already observed in the same diversity panel a nega-
tive linkage between leaf size and number, and growth appeared to be limited in 
many accessions by sink dynamics. Sink limitation was associated with accumula-
tion of non-structural carbohydrates in the vegetative plant. This would suggest that 
there is still room to improve rice early vigor based on carbon sink rather than 
source related traits (Gibson et al. 2011; Ter Steege et al. 2005). Greater early vigor
would thus not necessarily require greater photosynthetic potential. Although a 
priori surprising, sub-maximal biomass growth of a grain crop such as rice could be 
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a result of breeding and selection focused on grain yield and harvest index (Peng 
and Khush 2003). Early, excessive biomass accumulation might in fact be detrimen-
tal to harvest index in a high-yielding cereal (Dingkuhn et al. 1991).

5.4.4  Theoretical Scope for Improving Drought Resistance

Under drought conditions, the in silico exploration of phenotypes within the range 
of observed parameter values did indicate a theoretical scope for improvement of 
biomass growth (Fig. 5.2b, c). However, contrary to the case of vigor under non- 
limited water conditions, the adaptations for greater drought resistance were more 
physiological and less developmental (in the sense of organo- or morphogenetic 
processes). According to the results, a plant type being vigorous (in terms of bio-
mass) under finite water resources would call for a combination of high radiation 
conversion efficiency and limited transpiration (resulting in high transpiration effi-
ciency), and comparatively insensitive response of gas exchange rates to FTSW
(necessarily associated with tissue level tolerance). Although model parameters 
were strictly used within the range of observed variation, there must be doubt 
regarding their independence from each other, and therefore their free combinabil-
ity. Although evidence exists for genetic variation in transpiration efficiency 
(Rebolledo et al. 2013) and tissue-level drought tolerance in rice (Lilley et al. 1996; 
Robin et al. 2003), large gains in water economy can probably be expected only in 
partial or full implementation of C4-type metabolic traits, as currently being engi-
neered by the C4-Rice consortium (von Caemmerer et al. 2012). A reliable explora-
tion of the scope for improving such traits would require a model that is more 
mechanistic than Ecomeristem regarding the coupling of water- and carbon-use 
processes, and supported by phenotypic evidence for the diversity of the underlying 
physiological traits.

5.4.5  Perspectives for Crop Modeling Support to Breeders 
and Geneticists

Due to increasing knowledge on the genetic and environmental control of mecha-
nisms underlying phenotype construction and behavior, theoretically, biological 
mechanistic modeling can in the future provide predictions of the phenotype to 
assist in the design and realization of crop genotypes. Limiting factors are not only 
lack of specific data and understanding of some key processes, but also appropriate 
tools that capture the complexity of the plant-environment system, namely the web 
of component interactions that give rise to emergent, new system properties at 
higher order (Baldazzi et al. 2013; Keurentjes et al. 2011). Ecomeristem is a model 
that attempts this with respect to phenotypic plasticity while being sufficiently 
sparsely parameterized to enable high-throughput fitting to phenotypic data on large 
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panels (Luquet et al. 2012a, b). The globally increasing efforts in phenotyping have 
become a resource not only for molecular genetic studies, which is their driving 
purpose, but also for predictive modeling of phenotypes and the characterization of 
their diversity. In the present study we benefitted from rice phenomics data that was 
generated for both gene discovery and modeling purposes. The GRiSP Global Rice
Phenotyping Network initiated in 2011 (www.grisp.irri.org) will further increase 
the availability of data resources for such purposes.

The present study was conducted in conjunction with other researches not 
reported here, including the genotyping of the rice panel (genotyping by sequenc-
ing, GBS; McCouch et al. 2012) and genome-wide association studies (Courtois 
et al. 2013) for both directly observed traits and traits (model parameters) heuristi-
cally extracted from the data using Ecomeristem. It will thus be possible to imple-
ment known gene/allele effects in the plant model. At the same time, discovery of 
major genomic associations (QTLs) with model parameters will be a means to vali-
date the biological relevance of the parameters, or conversely, identify those model 
parameters that have no significant biological basis in terms of genetic control (also 
see discussions in Chap. 9 by Yin et al.).

5.5  Conclusions

We attempted an in silico prediction of margins for genetic improvement of rice 
using a plant model specialized on morpho-physiological trait-trait interactions, 
Ecomeristem. The target was combined early vigor and drought resistance, based on 
virtual recombination of several traits (here syn. model parameters) within ranges of 
trait variation observed on a real panel of diverse rice genotypes.

Simulations of phenotypes under three water treatments indicated strong and 
similar trade-offs between constitutive vigor and drought resistance in both real and 
virtual populations. A substantial margin for potential genetic improvement of vigor 
with unchanged drought resistance was predicted, drawing chiefly from structural 
growth and development traits that would increase internal demand for assimilates 
(larger and thicker leaves, increased leaf appearance rates). Increased vigor would 
thereby not necessarily require greater photosynthetic potential per se. Conversely, 
improved drought resistance with unchanged constitutive vigor would require 
greater water economy (increased photosynthetic potential and limited water use, 
therefore greater transpiration efficiency) and greater tolerance of leaf extension 
and gas exchange processes to drought, while tillering ability should be limited in 
favor of larger and thicker leaves.

Although the results are physiologically plausible, the extrapolation involved in 
the study carries major uncertainties, namely with respect to (1) simplifications in the 
model, e.g. gas exchange and carbon assimilation processes; (2) the accuracy of 
model assumptions such as feedbacks of C source/sink ratios on growth and develop-
ment; (3) errors in parameterization through error absorption among parameters dur-
ing multi-fitting; and (4) the assumption of free combinability and additive expression 
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of traits. This study should therefore be seen as exploratory and in part conceptual. 
Upon further improvement, the methodologies may give rise to powerful tools for 
breeding support, particularly if genome-wide association studies can provide QTL 
effects that can drive phenotype predictions. Research on this is ongoing.
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    Chapter 6   
 Limited-Transpiration Trait for Increased 
Yield for Water-Limited Soybean: 
From Model to Phenotype to Genotype 
to Cultivars       

       Thomas     R.     Sinclair     ,     Jyostna     M.     Devi    , and     Thomas     E.     Carter     Jr.   

    Abstract      Soybean ( Glycine max  (L.) Merr.)   is the most widely grown grain legume 
in the world due to its many uses in feed, food, and industrial products. However, 
soybean yield is particularly sensitive to soil water defi cits, and seemingly, opportu-
nities exist to increase yield by improving specifi c plant traits. One trait that has 
proven to be especially useful is the limited-transpiration trait in which water loss 
by the plants is constrained by the plant under high atmospheric vapor pressure 
 defi cit conditions. This chapter reviews the integrated studies at several levels and 
disciplines to identify the trait, develop some physiological and genetic understand-
ing of the trait, apply classical breeding approaches to develop germplasm  expressing 
the trait, and a simulation analysis across the USA to identify where, how often, and 
how much the trait in soybean will benefi t farmers. The research on the limited- 
transpiration trait has now led to higher yielding commercial germplasm for water- 
defi cit environments based on expression of the limited-transpiration trait. As often 
suggested but rarely put into practice, a multi-level, multi-faceted approach was 
applied in the study of the limited-transpiration trait to generate scientifi c under-
standing that was applied in crop breeding to generate higher yielding genotypes.  

6.1         Introduction 

 Soybean ( Glycine max  (L.) Merr.) is grown globally to the greatest extent by far 
among grain legumes, with a total annual production of about 250 million tons 
( Sinclair   and Vadez  2012 ). The high protein and oil contents of its seeds cause it to 
have many uses. Its protein is used to feed both livestock and humans, and its oil is 
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used in cooking. In addition,  soybean   oil has many industrial uses. Of course, a 
 critical advantage of soybean is that it can express high rates of symbiotic nitrogen 
fi xation alleviating the need for nitrogen fertilizer. Expanding consumption of meat 
and high prices of fossil fuel will result in continued increases in global production 
of soybean. 

 The increase in demand for  soybean   will likely require production in areas with 
uncertain rainfall patterns. Even now soybean is often subjected to suffi cient soil 
drying that yields are constrained (Purcell and Specht  2004 ). One reason that soy-
bean yield is especially sensitive to soil drying is the sensitivity of its symbiotic 
nitrogen fi xation to even modest decreases in soil water content ( Sinclair   and Vadez 
 2012 ). Recently, we have given considerable attention to  traits   that result in early- 
season  soil water conservation   so that more water is available to complete seed fi ll 
under drought conditions, which occur more commonly late in the growing season. 
A specifi c trait that is especially promising in soybean is one in which transpiration 
rate is limited under high midday  vapor pressure defi cit  . Partial restriction of tran-
spiration rate under high vapor pressure defi cit limits the rate of soil water use, 
allowing the crop to conserve water for sustaining physiological activity if late- 
season drought develops. 

 The objective of this chapter is to review the advances in developing the  limited- 
transpiration     trait in  soybean  . The approach to this trait generally followed the top- 
down approach leading to development of cultivars expressing the desired trait as 
originally proposed by  Sinclair   et al. ( 2004 ). In this approach, the sequence of steps 
undertaken include (1) initial exploration of the trait using a simulation model, (2) 
discovery of genotypic variation for the trait, (3) physiological studies on the nature 
of the trait, (4) genetic screen for the trait, and (5) development and assessment of 
cultivars with desired  traits  . Each of these steps is explored as essential components 
in progress in understanding the cropping system leading to yield increase.  

6.2     Initial Model Exploration of Limited Transpiration Trait 

 The study of the  limited-transpiration   trait can be traced to a brainstorming session 
among Tom  Sinclair  , Graeme  Hammer   and Eric van  Oosterom   on one spring after-
noon in 2004 under a tree at the University of Queensland in Brisbane, Australia. 
Dr. Sinclair was at the University of Queensland for two months with the rather 
ambiguous plan to "think" about plant  traits   that might improve crop yields under 
drought conditions. We ended up focusing on the idea that restricting transpiration 
under high atmospheric  vapor pressure defi cit   (VPD) offered the possibility for 
 conservation of soil water for use late in the growing season to support seed fi ll. We 
hypothesized that decreased transpiration rate under high VPD would have the 
 double benefi t of increasing transpiration water use effi ciency, and conserving soil 
water for use later in the growing season. 

 We then undertook an initial assessment of the putative benefi t of the  limited- 
transpiration     trait by simulating the development and growth of  sorghum ( Sorghum 
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bicolor  L.)   at four locations in Australia for which 115 years of weather had been 
assembled ( Sinclair   et al.  2005 ). The analysis was done using a comparatively sim-
ple, mechanistic sorghum/maize model (Sinclair et al.  1997 ; Sinclair and Muchow 
 2001 ). In this model, the increase in leaf area development is simulated daily as a 
function of  temperature   and constrained when soil water reaches low levels. The 
leaf area is used to calculate the daily growth of the crop by multiplying intercepted 
solar radiation by the radiation use effi ciency. Radiation use effi ciency was held 
constant except when it was decreased as soil water content reached low levels. 
Transpiration was calculated as a function of the crop growth, which was shown by 
Tanner and Sinclair ( 1983 ) to be an obligatory relationship with an essentially con-
stant coeffi cient for each crop species. Seed growth was simulated as a linear 
increase in  harvest index   during seed fi ll. 

 The  limited-transpiration   trait was simulated by adapting the model from daily 
time step calculations to hourly time steps. Models to extrapolate daily minimum 
and maximum  temperature  , and solar radiation were used to obtain hourly estimates 
from daily weather input. Hourly values of  vapor pressure defi cit   were calculated 
from the estimates of hourly temperature and the minimum daily temperature. The 
limited-transpiration trait was imposed by simply setting a maximum hourly tran-
spiration rate. Whenever the initsial calculation of transpiration exceeded this limit, 
the transpiration rate was set equal to the limit. Also, in these cases hourly carbon 
accumulation was decreased to correspond to the decrease in transpiration rate. As 
a consequence, during the midday period the transpiration rate could be constant as 
illustrated in Fig.  6.1 .
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  Fig. 6.1    Plot through the daily cycle of the transpiration rate of two  limited-transpiration   
 phenotypes (maximum transpiration rates of 0.4 or 0.6 mm h −1 ) in which there is a constant tran-
spiration rate once a maximum rate is reached ( Sinclair   et al.  2005 ). The limited-transpiration 
water loss pattern contrasts with the standard  phenotype   ( solid line ) in which there is no limitation 
on transpiration rate at high  vapor pressure defi cit  . The vapor pressure defi cit through the daily 
cycle is included as a reference       
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   The results of the simulations for sorghum at the four locations in Australia were 
consistent. The mean yield increase over all seasons was in the range of 5 %. 
However more importantly, in growing seasons when yield was less than 450–500 
g m −2  there was a yield increase in almost all growing seasons as a result of the 
transpiration-limited trait. The yield increase in these low-yielding seasons was 
generally around 10 %. In growing seasons above this threshold yield, yields were 
decreased due to the trait, but the decreases were generally quite small. Yield 
increases were simulated in about 75 % or more over all growing seasons. On bal-
ance, it was concluded that sorghum farmers in Australia would welcome the 
 limited- transpiration     trait since it resulted in yield increases in the economically 
threatening seasons of low yield, even if a small yield decrease was the price of this 
trait in the seasons of highest yield.  

6.3     Studies of Limited-Transpiration Phenotype 

 Having shown in the sorghum model assessment that the  limited-transpiration   trait 
resulted in yield benefi ts in dry seasons, the next question was whether the idea also 
applies to  soybean   and if so, whether there is the possible expression of the trait in 
existing soybean germplasm. An experiment was done by one of the authors (TEC) 
that greatly narrowed the number of candidate genotypes that might express the 
limited-transpiration trait. A nursery of soybean genotypes was subjected to soil 
drying once full canopy had developed. During the drying cycle the onset of wilting 
for each  genotype   was observed. Two lines in particular were found to have delayed 
wilting with respect to all other lines: PI 416937 and PI 471938. Genotype PI 
416937 was initially explored for several physiological  traits   for drought conditions 
but no specifi c trait was clearly identifi ed to account for the delayed wilting (Sloane 
et al.  1990 ; Hudak and Patterson  1995 ). 

 Subsequently, the two ‘ slow-wilting  ’ lines were investigated for the  limited- 
transpiration     trait (Fletcher et al.  2007 ). Genotype PI 416937 was found to express 
the desired limited-transpiration trait while PI 471938 did not (Fig.  6.2 ). In PI 
416937, there was essentially a constant transpiration rate (Fig.  6.2c ) at VPD greater 
than 2.1 kPa, which was an expression of the limited-transpiration trait explored in 
the sorghum model. Therefore, subsequent studies focused on PI 416937 in under-
standing the limited-transpiration trait. This  genotype   is a plant introduction from 
Japan with unknown parentage (Pantalone et al.  1999 ;  Carter   et al.  2003 ).

   The hypothesis that was explored was that hydraulic conductance in the plants of 
PI 416937 was insuffi cient to allow water loss from leaves to be replenished under 
high VPD conditions. Three approaches were studied to determine if the hydraulic 
conductance in the leaves of PI 416937 was less than expressed in other genotypes 
( Sinclair   et al.  2008 ). While all approaches indicated a low  leaf hydraulic 
 conductance   in the leaves of PI 416937, the results for the temporal kinetics of rehy-
dration of leaves were particularly interesting. The results showed that there were 
two distinct water compartments in  soybean   leaves, and both were much more 
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slowly refi lled in PI 416937 than in other genotypes. Of particular interest for the 
 limited- transpiration     trait, was the implication that hydraulic conductance between 
the xylem and the guard cells was low in PI 416937. A low hydraulic conductance 
in the leaves is likely to result in limited water fl ow to maintain turgor in guard cells 
for maximum pore opening. 

 Since no obvious unique features were observed in the leaf anatomy of PI 
416937, the hypothesis was explored that the limited hydraulic conductance of PI 
416937 may result from a unique population of  aquaporins  , i.e., water-transporting 
proteins in cell membranes. The population of aquaporins in PI 416937 was hypoth-
esized to have lower capacity to transport water in the pathway from the xylem to 
guard cells. Sadok and  Sinclair   ( 2010a ) subjected PI 416937 and a  genotype   with-
out the  limited-transpiration   trait to two aquaporin inhibitors: mercury and silver. 
Transpiration of leaves of the two genotypes decreased equally when treated with 
mercury. However, when treated with silver ions the transpiration rate decreased 
substantially in the non-limited transpiration genotype while the transpiration rate 
of PI 416937 decreased only a small amount. Additionally, the comparative insen-
sitivity of PI 416937 for decreasing transpiration rate to treatment with silver in 
comparison with many other  soybean   genotypes was documented by Sadok and 
Sinclair ( 2010b ) (Fig.  6.3 ).
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  Fig. 6.2    Plot of transpiration rate for various  vapor pressure defi cit  s (VPD) of four  soybean   
 genotypes (Fletcher et al.  2007 ). Panel ( c ) presents the results for PI 416937 in which the transpira-
tion rate was limited at a VPD threshold of 2.13 kPa. This result contrasts with other genotypes in 
which transpiration increased linearly over the whole range of tested VPD       
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   Sadok and  Sinclair   ( 2010b ) hypothesized one explanation for the insensitivity of 
transpiration rate in PI 416937 to treatment with silver may be that it has fewer, or 
maybe none, of the  aquaporins   present in other genotypes that caused them to have 
decreased transpiration when treated with silver. The absence of the hypothesized 
silver-sensitive population of aquaporins in PI 416937 is consistent with the 
 observation that the  leaf hydraulic conductance   of this  genotype   is less than that of 
other genotypes. That is, without the  silver-sensitive aquaporins   PI 416937 has 
restricted capacity for water movement to the guard cells resulting in limited 
 transpiration rate under high VPD.  

6.4     Studies of Limited-Transpiration Genotype 

 The possibility of sorting out the genetic expression of the  limited-transpiration   trait 
was explored in a  recombinant inbred line   s    (RILs)     population derived from the 
 mating of PI 416937 and the cultivar Benning. While Benning also expressed a 
transpiration breakpoint in its response to increasing VPD (result not shown), the 
limitation on transpiration rate at high VPD was much less than in PI 416937. Sadok 

  Fig. 6.3    Decrease in transpiration rate (DTR, expressed as percentage) of leaves of 12  soybean   
genotypes in response to the feeding with silver ion (Sadok and  Sinclair    2010b ). Line PI 416937 
and two of its progeny lines (BP-160 and BP-59) were virtually insensitive to the silver treatment. 
These three lines were also found to express a breakpoint (BP) indicative of the  limited- transpiration     
trait. The remaining lines had decreased transpiration rate with silver and these lines either 
expressed a BP or did not express a BP (i.e., a linear response to increasing  vapor pressure 
defi cit  )       

 

T.R. Sinclair et al.



135

and  Sinclair   ( 2009 ) found in a comparison of 22 RIL lines from the mating of PI 
416937 × Benning that nine expressed the limited-transpiration trait at high VPD 
while thirteen did not. The breakpoint in the transpiration rate occurred at lower 
VPD (1.1–1.9 kPa) than for either parent. 

 A challenge in examining genotypic expression of the  limited-transpiration   trait 
is the limited capacity to measure directly the response of plants to a range of 
VPD. The possibility of using a screen based on transpiration response to silver 
treatment was explored since many genotypes (40+) could be tested in one day. 
Sadok and  Sinclair   ( 2010b ) measured the response of fi ve  RILs   to treatment with 
silver. The two RILs, which expressed the breakpoint in transpiration rate with 
increasing VPD, were also found to be insensitive to treatment with silver. The two 
RILs not expressing the breakpoint in transpiration with increasing VPD were quite 
sensitive to the silver treatment. However, one RIL that expressed a breakpoint was 
also sensitive to silver, indicating some ambiguity in interpreting the silver results. 

 Regardless of the specifi c mode of action of silver ions, the tests of Sadok and 
 Sinclair   ( 2010b ) indicated that silver might be used as a rough screen of genotypes 
as a surrogate for direct measurements of the  limited-transpiration   trait. Therefore, 
a survey of the RIL population derived from PI 416937 × Benning was done for 
transpiration response to silver treatment of leaves (Carpentieri-Pipolo et al.  2012 ). 
A wide range in response was observed in the initial screen of 147  RILs  . Forty-eight 
lines were selected from the extremes of the initial screen for retest for silver 
response and  quantitative trait loci   (QTL)    analysis. Ultimately, four major  QTLs   
were identifi ed as being associated with the segregation of RILs for their silver 
response. The phenotypic variation explained by each of these QTLs was greater 
than 16 % and the total variation explained by the four QTLs was 87.5 %. Two of 
the loci appeared to be associated with PI 416937 and two with Benning. 

 A complementary approach to the identifi cation of  genes   involved in the  limited- 
transpiration     trait is transcriptomics. Analysis of the expression patterns under high 
and low VPD reveals not just the genes induced by the high VPD but also the genes 
whose transcription is inhibited. Identifi cation of several stress specifi c genes could 
help understand the physiological networks involved in stress responses. 

 Illumina Hiseq sequencing was performed on leaf tissues of three  soybean   
 genotypes: PI 416937, PI 471938, and Hutcheson, which is fast wilting with a linear 
increase in transpiration rate with increasing VPD. Differential expression was 
tested between exposure of plants to low VPD and high VPD under which the 
 limited- transpiration     trait would be expressed. Of the 49,408 annotated  genes  , only 
one gene differentially expressed in Hutcheson between exposure of low and high 
VPD and 22 in PI 471938. In contrast, PI 416937 differentially expressed 944 genes 
between exposure to low and high VPD conditions ( Devi   et al.  2015a ). 

 With an objective to display differentially expressed  genes   onto pathways and to 
obtain an overview of genes affected in response to high VPD in PI 416937, the 
MapMan tool was used on the 944 genes in PI 416937 for which differential expres-
sion values were available. A total of 425 transcripts had up-regulated expression 
variation with log 2 fold changes from 2 to 9 and 519 with signifi cant down- 
regulated expression with log 2 fold of −2 to −10. The overview map of Mapman 
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showed differentially expressed genes assigned into 28 classes of a total of 36 func-
tional classes, referred as BINs (Thimm et al.  2004 ; Usadel et al.  2009 ). Of these 
classes, the majority of the genes were classifi ed as unknown or not assigned, while 
the remaining were identifi ed as belonging to known metabolic pathways (Fig.  6.4 ). 
This allowed exploration of gene categories that are activated during high VPD 
conditions and may have been involved in the processes associated with the  limited- 
transpiration     trait.

   Based on the assigned  genes   to different BINs, an attempt was made to under-
stand differentially expressed genes of key metabolic reactions that often modulate 
normal cellular functioning under the high VPD conditions. As a result, cell, cell 
wall and development, RNA, lipid metabolism, secondary metabolism, stress- 
related genes, protein, signaling and transport categories were analyzed in detail. 

6.4.1     Cell, Cell Wall and Development 

 Changes in the magnitudes of cell and cell wall transcripts have been identifi ed to 
play crucial roles in cellular metabolism. The  genes   related to cell metabolism (17) 
are mostly involved in the process of cell organization and are down regulated. 

  Fig. 6.4    Number of gene transcripts up or down regulated under high  vapor pressure defi cit   condi-
tions in  soybean    phenotype   exhibiting limited transpiration trait. Annotated  genes   are categorized 
in to 28 functional classes (BINs) using MapMan       
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Genes coding cell wall (74) had decreased transcript abundance and the majority of 
those belong to cell wall degradation and modifi cation (39) and some cell wall pro-
teins are abundant in both up- and down-regulated categories. Some of the genes 
related to development mostly late embryogenesis abundant (LEA) proteins and 
storage proteins were found in both the up- and down-regulated categories.  

6.4.2     Secondary, Hormone and Lipid Metabolism 

 Flavonoids and isofl avonoids are known to play a signifi cant role in plant defense 
responses to pathogens (Dixon and Steele  1999 ; Uppalapati et al.  2009 ). Several 
 genes   related to secondary metabolism such as phenylpropanoids, fl avanoids and 
simple phenols which are mostly over expressed were observed in response to high 
VPD. Several genes involved in phenylpropanoid metabolism, such as phenyl 
ammonia lyase, coumarate:CoA ligase, lignin biosynthesis, were observed in the 
study. All the aforementioned genes are in both over expressed and suppressed lists 
but commonly appeared in induction. Hormonal genes which are differentially over 
expressed are ethylene and jasmonate metabolism related genes. All abscisic acid, 
gibberellin, auxin and brassino-steroid related genes are repressed, that included 
some jasmonate metabolism related genes too. It is already well known that these 
hormones, especially ABA, are involved in stomatal regulation ( Wang   and Irving 
 2011 ). Lipid metabolism related genes include lipid degradation, sphingolipids, 
fatty acids (FA) synthesis and FA elongation and phospholipid synthesis which can 
be found both in expressed and inhibited category. FA may be an important deter-
minant of responses of photosynthesis and  stomatal conductance   to environmental 
stresses such as high VPD (Poulson and Edwards  2002 ).  

6.4.3     RNA Regulation of Transcription 

 Expression of limited transpiration responsive  genes   under high VPD environment 
was shown to be regulated by many transcription factors. Many genes (79) assigned 
to RNA regulation were identifi ed. Genes coding for the zinc-fi nger family protein, 
MYB domain containing family, WRKY, ethylene response factor, bZIP were 
 identifi ed (Tran et al.  2004 ; Mochida et al.  2010 ). A high number of genes belong-
ing to WRKY transcription factor and MYB domain category were found and they 
up- regulated under high VPD. Transcripts related to the basic helix-loop family 
were mostly decreased and the remaining transcripts like bZIP, zinc fi nger, and 
auxin/IAA were up and down regulated.  
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6.4.4     Protein, Signaling and Transport 

 Protein and signaling related  genes   were both induced and suppressed in high VPD 
samples. Protein genes are mostly involved in either post translational changes or 
degradation. Signaling genes include receptor kinases, leucine rich repeats and 
those involved in nutrient physiology. There were especially large numbers of the 
receptor kinases which are involved in improving plant performance under drought 
and also defense mechanism (Marshall et al.  2012 ). Several transport related 
 transcripts are regulated under high VPD conditions and it was found that in PI 
416937 most of the transcripts are induced (22). 

 Upregulated transcripts include nitrate, amino acids, ABC transporters, anion, 
cation, oligopeptides and phosphates. However, the majority of the differentially 
down-regulated transporters are major intrinsic proteins i.e., water channel proteins 
which probably could be the reason for the limited transpiration in PI 416937 under 
high VPD environments. In an aquaporin study in PI 416937 by  Devi   et al. ( 2015b ), 
plasma membrane intrinsic proteins (PIP), especially PIP 2 were down regulated. 
PIPs and TIPs (Tonoplast Intrinsic Proteins) are said to play major roles in water 
transport (Maurel et al.  2008 ) and are responsive to different environmental condi-
tions including VPD.  

6.4.5     Stress Genes 

 Molecular responses to stress factors such as heat shock, anaerobiosis, plant patho-
gens, oxygen free radicals, heavy metals, water stress and chilling in plants have 
been assessed in various plant species (Matters and Scandalios  1986 ). Sixteen 
down-regulated and 22 up-regulated  genes   with biotic and abiotic stress-related 
annotations were grouped in to stress genes. Most of the biotic stress genes that are 
pathogen resistance responsive proteins were found to be more induced than 
 suppressed, while abiotic stress showed an inverse pattern. The induced genes in the 
abiotic stress group include heat, drought and salt majorly involving heat shock 
proteins and dehydration responsive elements. The genes involved in the stress 
group are conserved and evidenced in earlier stress response studies of  soybean   (Le 
et al. 2012; Cal et al.  2013 ). 

 A clear trend in expression of all transcription factors together was not observed. 
However, overall, the differential regulation of many transcription factors under 
high VPD is similar to that seen with dehydration in  soybean   (Le et al. 2012).   

6.5     Application of Limited-Transpiration Trait 

 While the initial simulations of the  limited-transpiration   trait with sorghum pro-
vided encouragement to study the trait, the value of the trait in developing cultivars 
for drought-tolerant lines and the possible benefi t in  soybean   production needed to 
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be assessed. Two lines of evidence were developed in evaluating the practical  benefi t 
of the limited-transpiration trait. The fi rst evidence involved the development of 
breeding lines that have superior performance under water-limited conditions. 
The breeding effort based on PI 416937 was initiated even before the results of the 
physiological studies were available. The second evidence was obtained for a 
detailed modeling of soybean production across the various environments of the 
USA to determine the amount and  probability of yield increase   that might be 
expected from the limited-transpiration trait. 

6.5.1     Breeding Progress 

 Deliberate efforts to mitigate the impact of drought on  soybean   via breeding are 
relatively recent even though the problem has long been recognized by farmers and 
scientists ( Carter    1989 ; Carter et al.  1999 ; Orf et al.  2004 ; Chen  2013 ). Until 
recently, the prevailing view among breeders was that yield data collected from 
drought stricken environments had little or no value because genetic repeatability or 
 heritability   of seed yield in these environments was thought to be (and often was) 
lower than in high-yielding irrigated counterparts. This view is exemplifi ed by the 
practice of discarding yield trials from USDA regional testing (starting in the 1940s) 
whenever the average yield of the experiment was 170 g m −2  (25 bu/ac) or less. 
Minimum-stress environments were viewed as allowing expression of yield and 
greater separation of genotypic means. Sneller and Dombeck ( 1997 ) and Specht 
et al. ( 1986 ) offered arguments that generally supported this view. While they found 
some evidence for  drought tolerance   in the applied breeding pools in Arkansas and 
Nebraska, heritability and genetic variance for seed yield were generally greater in 
high-yielding irrigated environments. 

 A paradigm shift began with the discovery of the delayed wilting  phenotype   of 
PI 416937 (USDA  2012a ) and PI 471938 (USDA  2012b ) in the 1980s and 1990s 
(Sloane et al.  1990 ;  Carter   et al.  1999 ). Although genetic variation for seed yield 
was still regarded as greatest in high-yielding environments, the prospect of making 
agronomic yield improvements in drought-stressed environments gained substantial 
currency. Funding from the United Soybean Board (a non-profi t farmer organiza-
tion), starting in the mid 1990s, plus the identifi cation of drought-prone fi eld sites 
which had suffi cient uniformity to support fi eld breeding, set the stage for public 
breeders in Nebraska, Minnesota, North Carolina, Arkansas, and Georgia to begin 
the process of developing drought-tolerant cultivars. 

 One important fi eld site identifi ed for this work was North Carolina State 
University’s Sandhills Research Station with deep uniform sandy soils and low 
water holding capacity. The station has moderate drought during August pod fi lling 
in 2 of 4 years, and extreme August drought in 1 of 4 years, on average. The USDA 
 soybean   breeding program in North Carolina began its drought breeding project in 
1989 by hybridizing PI 416937 from Japan (identifi ed in 1983 at a drought prone 
fi eld site at Clinton, NC) with adapted USDA breeding line N77-144, known to be 
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an elite performer in high-yielding environments. F4-derived lines were evaluated 
under drought at the Sandhills station in replicated trials over 2 years, and eventu-
ally cultivar N7001 was released in 2003 from this effort ( Carter   et al.  2003 ). N7001 
has good yielding ability and excellent overall yield  stability   and was the fi rst USA 
cultivar that had in its pedigree as much as 50 % exotic pedigree since the 1950s. 
The USDA program has evaluated approximately 5000 yield plots annually at 
Sandhills research station since 1992. Several additional breeding lines have been 
developed, tested regionally, and shown to have high yield under drought ( Devi   
et al.  2014 ). Some of these lines are being made available through Materials Transfer 
Agreements to major commercial seed companies and others for use as parental 
stock in their breeding programs. As such, this program is a major source of new 
genetic materials for the soybean industry and as genetic resources for physiologi-
cal investigations into mechanisms of  drought tolerance  . 

 Using the cultivar N7001 as a parent, new cultivars N7002, N8001, and Woodruff 
were developed which are now among the top-yielding public cultivars in maturity 
groups VII and VIII ( Carter   et al.  2007 ,  2008 ). Both N7002 and N8001 have been 
high-yielding ‘check’ or control cultivars in USDA regional trials, in their  respective 
maturity groups, for the past several years. A new breeding line, N05-7432, was 
developed more recently from the mating of N7002 (a derivative of PI 416937) with 
N98-7265 (a derivative of slow wilting PI 471938). This new breeding line is a top 
yielder in maturity group VIII (Gillen and Shelton  2012 ), surpassing check cultivar 
N8001 by 7 % ( p <  0.05) averaged over more than 45 year-location combinations, 
which is quite large by breeding standards. The yield advantage of N05-7432 is 
quite stable, numerically out yielding N8001 in eight of the ten locations used in the 
multi-year testing trials. Further, expression of the  limited-transpiration   trait by 
N05-7432 has been documented ( Devi   et al.  2014 ). It also happens that N05-7432 
is very tolerant to soil manganese defi ciency (Masson  2014 ). 

 Line PI 416937 is perhaps the only exotic plant introduction being used as 
 parental stock in USA at present which has the  limited-transpiration   trait. The full 
impact of this specifi c trait on improved agronomic drought response in its many 
progeny has not been ascertained as yet. Certainly, the ability of PI 416937 to 
 conserve soil water to a greater extent than other  soybean   genotypes has been 
 demonstrated in fi eld experiments (King et al.  2009 ; Ries et al.  2012 ). 

 Parallel research in conjunction with fi eld breeding has identifi ed  QTLs   from PI 
416937 for  slow-wilting   aquaporin response, prolifi c rooting, and aluminum 
 tolerance in recent years, and all  traits   appear multi-genic in nature (Abdel-Haleem 
et al.  2011 ,  2012 ,  2013 ; Carpentieri-Pipolo et al.  2012 ). Current  QTL   research 
involves fi ne mapping of genetic markers for developing of factorial combinations 
of these QTL through breeding, so that their relation to the limited transpiration trait 
can be ascertained. In conjunction, the QTLs are being adapted to marker assisted 
selection in order to facilitate and enhance current fi eld breeding programs aimed at 
improved  drought tolerance  .  
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6.5.2     Model Assessment of Benefi t in the USA 

 Having investigated the physiology of the  limited-transpiration   trait and shown that 
the trait can be genetically transferred in a breeding program, key questions remain 
about where and by how much can  soybean   yield be expected to be impacted as a 
result of the trait. Considering the breadth of geographical area and environments in 
which soybean is grown in the USA, such an assessment can only be done by using 
simulations done over the range of locations and weather conditions likely to be 
experienced by soybean. Such an assessment using a mechanistic model has been 
done for soybean production in the USA ( Sinclair   et al.  2010 ). 

 The  soybean    model   used in this study was originally presented by  Sinclair   ( 1986 ) 
and has been shown to be robust in several studies (Muchow and Sinclair  1986 ; 
Sinclair et al.  1987 ,  1992 ,  2007 ; Salado-Navarro and Sinclair  2009 ). The structure 
of the model is virtually the same as the sorghum model discussed earlier. The 
major modifi cation was the simulation of nitrogen accumulation by the crop that 
refl ected the high sensitivity of nitrogen fi xation to soil drying. Loss of nitrogen 
fi xation activity to soil drying caused an inhibition on leaf area development and 
ultimately less nitrogen in the plants to support seed growth. Again, the model was 
modifi ed to run on an hourly basis to allow the  limited-transpiration   trait to be 
expressed in simulation during daytime hours under high VPD. In these simula-
tions, the VPD breakpoint was assumed to occur at 2.0 kPa. 

 A key feature of the  soybean   simulations was the use of the GIS data base assem-
bled by Pioneer DuPont (Loffl er et al.  2005 ). In this data base, the areas in the US 
in which soybean is grown was segmented into 2655 blocks of 30 km × 30 km. In 
each block, 50 years of weather were developed to give daily minimum and maxi-
mum  temperature  , and precipitation. Solar radiation on each day was synthesized 
from temperature using the function developed by Bristow and Campbell ( 1984 ). In 
addition to weather information, the data base for each block included sowing date, 
maturity group, and available soil water storage. 

 Each set of simulations required the model to be run for each of the 50 years in 
each of the blocks for a total of more than 130,000 runs. The initial simulations were 
for a ‘standard’  soybean   with a linearly increasing transpiration rate with increasing 
VPD. The  limited-transpiration   rate was simulated by imposing a VPD breakpoint 
at 2 kPa, above which there was no further increase in transpiration rate. For each 
year in each geographical block, the difference between the yield with the limited- 
transpiration trait and the standard soybean was calculated. A  probability of yield 
increase   was calculated for each block based on the fraction of years in which the yield 
increased as a result of the limited-transpiration trait. The results of the  soybean 
simulations assessing the probability of yield increase as a result of the limited- 
transpiration trait are shown in Fig.  6.5a . The probability of yield increase was 80 % 
or greater in virtually all areas of the USA. The only places where there was not a 
high probability of yield increase were on the coasts in the southeast, the very 
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 northern blocks, and a few scattered blocks in Iowa and Minnesota. Overall, the 
probability results show the limited-transpiration trait to be benefi cial in nearly all 
the soybean production areas in the USA.

   In addition to calculating the  probability of yield increase  , within each block the 
yield difference of each growing season was ranked from lowest to highest. This 
ranking gave the distribution yield from which specifi c percentile rankings could be 
compared. In Fig.  6.5b–d  are shown the yield difference for each block for the 75 % 
(wet years), median, and 25 % (dry years) percentile, respectively. In the 25 % 
 percentile, or drier years, the model predicted increases of about 90 g m −2  (dry grain 
weight) in many locations especially in the southern areas. The southeast, mid- 
south, and Kansas showed the greatest benefi t of the  limited-transpiration   trait. The 
remainder of the country had yield increases in the 25 % percentile years in the 
range of 30–90 g m −2 . 
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  Fig. 6.5    Simulation results of  soybean   grain yield with  limited-transpiration   trait for 50 years in 
30 × 30 km blocks across the USA ( Sinclair   et al.  2010 ). Panel ( a ) presents the  probability of yield 
increase   over the standard soybean in each block. Panels ( b ), ( c ), and ( d ) present the 75 % (wet), 
medium, and 25 % (dry) percentile yield increase (in g m −2 ) over the standard soybean within each 
block       
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 The benefi t of the  limited-transpiration   trait was also positive in most areas in the 
USA in the median year. In these years the yield benefi t was simulated to be in the 
range of roughly 20–70 g m −2 . Even in the 75 % percentile year, the limited- 
transpiration trait was simulated to be benefi cial although the yield increase tended 
to be in the range of 0–25 g m −2 . The largest benefi t in the 75 % percentile year was 
in the North Carolina & Virginia, the Mississippi Delta region, and a belt from 
southern Indiana to Kansas. While not shown in these maps, the yield decrease 
simulated in the wettest years was small.   

6.6     Conclusions 

 This study of the  limited-transpiration   trait in  soybean   illustrates the benefi t of a 
systematic approach involving approaches and disciplines of study. Simulation 
studies were done initially to assess the potential value of the trait. Potential 
 germplasm sources for the trait were evaluated in fi eld screens and candidate lines 
were subjected to detailed studies of transpiration response across various levels of 
VPD. Physiological investigations of the trait led to hypotheses for investigation of 
the limited-transpiration trait and its potential physiological explanation. Finally, 
breeding has progressed to the release of soybean lines that express the limited- 
transpiration and have increased grain yields under dry conditions. Another series 
of simulations were done specifi cally for the production areas for soybean in the 
USA. These simulations indicated where, how often, and how much the trait in 
soybean will benefi t farmers. The results of the studies on the limited-transpiration 
trait were advanced due to a comprehensive research program that involved investi-
gations in several disciplines, under fi eld and controlled conditions, and at several 
levels of sophistication. As often suggested but rarely put into practice, a multi-level 
approach in the study of the limited-transpiration trait involving a multi-faceted 
research effort resulted in progress in scientifi c understanding leading to benefi t for 
farmers.     
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    Chapter 7   
 Molecular Breeding for Complex Adaptive 
Traits: How Integrating Crop Ecophysiology 
and Modelling Can Enhance Effi ciency       

       Graeme     Hammer     ,     Charlie     Messina    ,     Erik     van     Oosterom    ,     Scott     Chapman    , 
    Vijaya     Singh    ,     Andrew     Borrell    ,     David     Jordan    , and     Mark     Cooper   

    Abstract     Progress in crop improvement is limited by the ability to identify favour-
able combinations of genotypes (G) and management practices (M) in relevant tar-
get environments (E) given the resources available to search among the myriad of 
possible combinations. To underpin yield advance we require prediction of pheno-
type based on genotype. In plant breeding, traditional phenotypic selection methods 
have involved measuring phenotypic performance of large segregating populations 
in multi-environment trials and applying rigorous statistical procedures based on 
quantitative genetic theory to identify superior individuals. Recent developments in 
the ability to inexpensively and densely map/sequence genomes have facilitated a 
shift from the level of the individual (genotype) to the level of the genomic region. 
Molecular breeding strategies using genome wide prediction and genomic selection 
approaches have developed rapidly. However, their applicability to complex traits 
remains constrained by gene-gene and gene-environment interactions, which restrict 
the predictive power of associations of genomic regions with phenotypic responses. 
Here it is argued that crop ecophysiology and functional whole plant modelling can 
provide an effective link between molecular and organism scales and enhance 
molecular breeding by adding value to genetic prediction approaches. A  physiological 
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framework that facilitates dissection and modelling of complex traits can inform 
phenotyping methods for marker/gene detection and underpin prediction of likely 
phenotypic consequences of trait and genetic variation in target environments. This 
approach holds considerable promise for more effectively linking genotype to phe-
notype for complex adaptive traits. Specifi c examples focused on drought adapta-
tion are presented to highlight the concepts.  

  Keywords     Genotype-to-phenotype   •   Phenotypic prediction   •   Trait physiology   • 
  QTL   •   Functional genomics   •   Crop improvement  

7.1         Introduction 

 Progress in  crop improvement   is limited by the ability to identify favourable combi-
nations of genotypes (G) and management practices (M) in the relevant target envi-
ronments (E) given the resources available to search among the myriad of possible 
combinations. Phenotypic performance of the array of possible combinations forms 
what can be viewed as an  adaptation   or fi tness landscape ( Cooper   and  Hammer   
 1996 ). Crop improvement then becomes a search strategy on that complex G × M × E 
landscape. However, currently we have diffi culty reliably predicting (and navigat-
ing to) the desired destination on the adaptation landscape. We require prediction of 
 phenotype   based on  genotype   to underpin yield advance. In plant breeding, tradi-
tional empirical methods have involved measuring phenotypic performance of large 
 segregating population  s in multi-environment trials and applying rigorous statistical 
procedures based on quantitative genetic theory to identify superior individuals. 
This traditional phenotypic selection approach has been, and remains, successful for 
a number of crops, but cost per unit yield gain has risen substantially, interactions 
with management are not integrated, and  genotype-by-environment    interactions   
confound selection. 

 With recent progress in molecular technologies for genome sequencing and 
 functional genomics  , it had been widely expected that a gene-by-gene engineering 
approach would enable enhanced effi ciency in  crop improvement  . Indeed, there 
have been successes in developing plants that better resist pests or tolerate herbi-
cides. Those cases involved single-gene transformations where plant  phenotypic 
response   scaled directly from the level of molecular action. This could be described 
as a short ‘ phenotypic distance  ’ (Fig.  7.1 ). However, little of this promise has been 
realised for key  complex traits   where relationships among components and their 
 genetic control  s involve quantitative multi-gene interactions. Integrating gene 
effects across scales of biological organisation in such situations is not straightfor-
ward. Complexities associated with gene interactions, mediated via transcriptional 
and post-transcriptional regulation, or distributed control of fl uxes in plant meta-
bolic pathways are major impediments to scaling from  gene network   to  phenotype  , 
so that  phenotypic prediction   based on a gene-by-gene approach remains elusive 
( Hammer   et al.  2006 ; Benfey and Mitchell-Olds  2008 ).
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  Fig. 7.1    ( a ) Approaches to  G-to-P prediction  , their association with levels of biological organisa-
tion, and the concepts of (b) ‘short’ and (c) ‘long’  phenotypic distance   for  traits   that do, or do not, 
scale readily from molecular to whole organism scale. ( b ) Short phenotypic distance where traits 
scale directly from molecular to organism scale and there is a likely greater role for genetic predic-
tion and  gene network    models  . ( c ) Long phenotypic distance where traits do not scale readily from 
molecular to whole organism level and there is likely a greater role for ecophysiology and crop 
models       
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   Developments in molecular genetic technologies have nonetheless allowed the 
focus of practical  crop improvement   to shift from the level of the individual ( geno-
type  ) to the level of genomic region (e.g.,  quantitative trait locus   –    QTL    ) ( Hammer   
and  Jordan    2007 ). The ability to inexpensively and densely map genomes has facil-
itated development of  molecular breeding   strategies ( Cooper   et al.  2005 ,  2009 ). 
However, their applicability to  complex traits   remains constrained by context- 
dependent gene effects attributed to gene-gene and gene-environment interactions, 
which restrict predictive power of associations of  genes  /genomic regions with  phe-
notypic response  s. There is a long ‘ phenotypic distance  ’ due to the extent of the 
biological integration required from the causal polymorphisms at genome scale to 
the  phenotype   of interest (e.g.,  Sinclair   et al.  2004 ) (Fig.  7.1 ). Despite this limita-
tion, Cooper et al. ( 2005 ) found that even though many of the context-dependent 
effects of genetic variation on phenotypic variation can reduce the rate of genetic 
progress from breeding, it is possible to design molecular  breeding strategies   for 
complex  traits   that on average will outperform phenotypic selection. Continuing 
advances in genotyping and crop genomics (Heffner et al.  2009 ; Morrell et al. 
 2012 ; Morris et al.  2012 ) have now facilitated association mapping approaches 
that assess correlation of phenotype with genotype in populations or panels of 
unrelated individuals. Such genome wide association studies rely on advanced sta-
tistical procedures to identify associations between a phenotype and a genomic 
marker profi le. Genomic selection involves the use of  phenotypic prediction   equa-
tions based on profi les of marker data from a training set of genotypes, which have 
been phenotyped. The predictions are then applied across breeding materials that 
are genotyped extensively but not phenotyped. This offers considerable potential 
for more rapid genetic gain in breeding. However, for complex traits, the proce-
dure still suffers from context-dependent effects and the ‘phenotypic distance’ 
problem (Fig.  7.1 ). Association mapping and genomic selection rely on the  stabil-
ity   of the relationship between a phenotype and the set of genomic markers found 
in the training set, which is strongly dependent on the relevance of the genotypes 
and environments sampled. 

 Here we consider concepts associated with  genotype  -to-phenotype (G-to-P) 
 modelling   and how whole plant/crop ecophysiology and functional whole plant 
modelling can provide an effective link between molecular and organism scales to 
enhance effi ciency of  molecular breeding   and  crop improvement  . There are two 
main avenues highlighted. Firstly, we describe how to enhance  phenotyping    strate-
gies   by using ecophysiological insight derived from dynamic crop growth and 
development modelling. This involves dissecting  complex traits   to more robust tar-
gets by reducing ‘ phenotypic distance  ’ and context dependencies. Secondly, we 
show how to use  crop growth and development models   for  trait evaluation   and  phe-
notypic prediction  . This requires robust dynamic crop growth and development 
models that can predict consequences of context-dependent genotype and environ-
ment effects in target production regions.  
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7.2     Genotype-to-Phenotype (G-to-P) Modelling 

 There is a range of approaches for G-to-P modelling for  complex traits   that can be 
somewhat simplistically represented in relation to broad levels of biological organ-
isation (Fig.  7.1 ). Gene network models that account for gene expression dynamics 
and metabolic pathway interactions have potential to account for gene context 
dependencies but require advanced knowledge of network structure and dynamics 
(see Chap.   1     of this book by  Baldazzi   et al.). Model species (e.g.,  Arabidopsis ) pro-
vide opportunities to capture such knowledge. However, the issue of scaling from 
network to whole plant  phenotypic response   remains, unless direct associations 
exist, as for example with transition to fl owering where the network is well charac-
terised and scaling is direct (van  Oosterom   et al.  2006 ; Salazar et al.  2009 ; Dong 
et al.  2012 ). Network models involving enzyme kinetics have also been developed 
for exploring aspects of starch synthesis as a means to focus efforts aimed at manip-
ulating starch structure and functionality (Wu et al.  2013 ). 

 Functional whole plant models have potential to account for environment context 
dependencies as they attempt to encapsulate dynamic plant-environment interac-
tions based on physiological understanding (Tardieu  2003 ; Reymond et al.  2003 ; 
Chenu et al.  2008 ;  Yin   and  Struik    2008 ;  Hammer   et al.  2005 ,  2010 ). It is plausible 
to link the vector of coeffi cients defi ning the plant characteristics to genomic 
regions, but the issue of scaling from coeffi cient to gene level remains problematic. 
There are some examples where the ‘metaprocesses’ of ecophysiology, such as the 
ubiquitous canopy radiation use effi ciency (RUE) ( Sinclair   and Muchow  1998 ), 
have been dissected to their physiological or metabolic underpinning processes, 
fi rstly via canopy photosynthesis models that are driven by photosynthesis-light 
response curves and canopy structure (Hammer and Wright  1994 ; de Pury and 
Farquhar  1997 ), and more recently by direct linkage of those models to biochemical 
pathway models for photosynthesis ( Gu   et al.  2014 ). Hence, as knowledge advances, 
there are opportunities for  gene network   and metabolic pathway models to interface 
with crop ecophysiological models and advance dynamic modelling capability to 
account for genetic and environmental context dependencies in  G-to-P prediction  .  

7.3     Whole Plant Ecophysiology and Modelling 

 Plant/crop models have been used extensively to facilitate decision making by crop 
managers, and to aid in education, but  Hammer   et al. ( 2002 ) suggested that greater 
explanatory power was required for their effective application in understanding and 
advancing the genetic regulation of plant performance and plant improvement. This 
is now even more prescient in the genomics era. Agronomic models contain a mix 
of descriptive and explanatory approaches that suffi ce for their application in deci-
sion/discussion support for crop management. Adequate prediction of resource use, 
crop growth and yield can be obtained with algorithms that describe aspects of crop 
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growth, such as plant leaf area, as a function of thermal time or plant leaf size dis-
tribution. The coeffi cients of these algorithms can be mapped to genomic regions, 
but this is unlikely to diminish any context dependencies, i.e., the coeffi cients will 
retain the context dependencies of the phenotypic variable they describe. 

 A physiological framework that facilitates further dissection and modelling of 
 traits   provides an avenue to overcome this problem. By enhancing the explanatory 
power of the modelling approach while not introducing undue complexity, it is pos-
sible to have phenotypic attributes as  emergent properties   of the model dynamics. 
This approach holds considerable promise for effective linking of  genotype   to  phe-
notype   and hence, molecular biology/genetics with  crop improvement  . Recent 
developments within the  APSIM   modelling  platform   ( Hammer   et al.  2010 ) have 
focused on structuring a generic cereal template to better accommodate the hierar-
chy of physiological determinants of crop growth and development needed for this 
more explanatory approach to plant modelling. They detail a case of the stay-green 
phenotype in sorghum (i.e., extended retention of green leaf area during grain fi ll-
ing), which was generated as an  emergent consequence   of canopy nitrogen (N) 
dynamics associated with genetic differences in dwarfi ng. Taller genotypes grew 
more and required more N for structural stem tissue, leaving less available for 
leaves, which was more rapidly diminished by translocation to grain during grain- 
fi lling (Fig.  7.2 ). Hence, stay-green was generated as an emergent consequence in 
the shorter genotypes in response to genetic differences in  plant height  .

   Robust explanatory plant models have the potential to underpin  G-to-P predic-
tion   by linking their coeffi cients with the genomic regions known to be associated 
with  complex traits  . However, to be effective, the linkage to model coeffi cients must 
reduce (or remove) the environmental and genetic context dependencies related to 
the  phenotypic trait  (s) that they generate. For example, the seasonal pattern of leaf 
area development is critical to resource (e.g., light, water) capture, and hence to 
crop growth and timing of stress. Studies at organ level (Reymond et al.  2003 ; 
Tardieu et al.  2005 ) on leaf expansion rate (LER) in maize have found that stable 
 QTLs   could be identifi ed for responses of LER to  temperature  , vapour pressure 
defi cit and plant water status, whereas QTLs for leaf area were dependent on the 
growing environment. Hence, by moving to the level of LER, environment context 
dependencies were removed. Some of the genomic regions associated with LER 
were also associated with silk extension and grain set in maize (Welcker et al.  2007 ). 
By enhancing the  APSIM   cereal template to operate at this level and incorporate 
genomic associations on LER and grain set, Chenu et al. ( 2009 ) were able to quan-
tify impact at the crop yield level of the QTLs involved for a range of drought and 
climate scenarios.  

7.4     Enhancing Breeding Effi ciency 

 As indicated earlier, there are two main avenues by which crop ecophysiology and 
modelling can enhance  breeding effi ciency  . The fi rst involves use of ecophysiologi-
cal insight from dynamic models to enhance  phenotyping    strategies   by dissecting 
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 complex traits   to more robust targets that help to deal with  phenotypic distance  . The 
second involves using  crop growth and development models   for  trait evaluation   and 
 phenotypic prediction   in target production regions to help prioritise effort and assess 
 breeding strategies  . We consider an example of each. 

  Fig. 7.2    Simulation of stay-green  phenotype   in sorghum as an  emergent consequence   of nitrogen 
(N) dynamics associated with differences in dwarfi ng  genes   via effects on structural N requirement 
for stem. Panels show organ biomass, organ N, and canopy leaf area index (LAI) simulated 
throughout the crop cycle for hybrids differing in height. The emergent delayed onset of senes-
cence (i.e., ‘stay-green’) of the short hybrid is indicated on the panel giving the dynamics of can-
opy LAI. After  Hammer   et al. ( 2010 )       
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7.4.1     Phenotyping for Drought Adaptation: Water Capture 
by Root Systems 

 The dynamics of  water capture by root systems   through the  crop life cycle   is critical 
to  drought adaptation   in water-limited environments. Slight changes in availability 
of soil moisture reserves associated with  root system architecture  , and in the timing 
of that availability, can have major consequences on yield in  terminal drought   envi-
ronments, as suggested in wheat (Manschadi et al.  2006 : Kirkegaard et al.  2007 ). In 
studies on sorghum in large rhizotrons, nodal root angle in young sorghum plants 
was shown to infl uence vertical and horizontal root distribution of mature plants in 
the soil profi le and, hence, their ability to extract soil water ( Singh   et al.  2012 ). 
Types with narrower root angle tended to explore the soil profi le more effectively at 
depth. These results suggested that genetic variation in nodal root angle of young 
sorghum plants could be a useful selection criterion for specifi c drought  adaptation  . 
Singh et al. ( 2010 ) had discovered this variation in nodal root angle when conduct-
ing studies on the morphological and architectural development of sorghum root 
systems in a small number of genotypes. They noted that due to the relatively late 
timing of appearance of nodal roots in sorghum, screening for genetic variation in 
the trait would require a small chamber system to grow plants until at least six 
leaves had fully expanded. They subsequently developed and implemented such a 
 phenotyping   system (Fig.  7.3 ) (Singh et al.  2011 ) and identifi ed signifi cant geno-
typic variation in the fl ush angle of nodal roots for a diverse set of sorghum 
genotypes.

   Pursuing genetic variation in this trait by  phenotyping   mapping populations 
using this system, Mace et al. ( 2012 ) identifi ed four  QTLs   for  nodal root angle in 
sorghum   that explained 58.2 % of the phenotypic variance and were validated 
across a range of diverse inbred lines. Three of the four nodal root angle QTLs 
showed homology to previously identifi ed root angle QTLs in rice and maize, 
whereas all four QTLs co-located with previously identifi ed QTLs for the  drought 
adaptation   trait stay-green in sorghum. Simulation studies based on possible differ-
ences in root architecture and their estimated effect on extent of  water capture by 
root systems   suggested signifi cant yield advantage (up to 15 %) in low-yielding 
situations in a key sorghum production environment in NE Australia (Fig.  7.4 ). A 
putative association between nodal root angle QTLs and grain yield, which was 
consistent with the simulation studies, was identifi ed through single marker analy-
sis on fi eld testing data from a subset of the mapping population grown in hybrid 
combination with three different tester lines. The identifi cation of nodal root angle 
QTLs presents new opportunities for improving drought  adaptation   mechanisms 
via  molecular breeding   to manipulate a trait for which selection has previously been 
very diffi cult.
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7.4.2        Phenotypic Prediction: Evaluating G × M × E Effects 
on Drought Adaptation 

 The timing of water availability through the  crop life cycle   is critical to  drought 
adaptation   in water-limited environments. The key principle involved is maximising 
the amount of water captured by the plant as transpiration (i.e., productive water 
use), while optimising its distribution pre- and post-anthesis. Appropriate plant trait 
and management system combinations for specifi c situations can be designed using 
this principle ( Hammer    2006 ; Hammer et al.  2014 ). Reduced plant population and 
skip-row planting systems are common agronomic practices implemented with the 
intent of avoiding water limitation at anthesis and increasing the proportion of water 
use during the reproductive phase (Lyon et al.  2003 ; Whish et al.  2005 ). Genotypes 
expressing reduced early growth (Ray et al.  1997 ), early maturity (Ravi Kumar et al. 
 2009 ), or reduced tillering (van  Oosterom   et al.  2011 ; Alam et al.  2014a ,  b ;  Borrell   
et al.  2014a ,  b ) can all provide a path towards  soil water conservation   and yield 
increase under drought stress (also see Chap.   5     of this book by  Luquet   et al.). 

  Fig. 7.3    Sorghum root angle  phenotyping   system. Individual plants were grown in specially 
designed root observation chambers until the sixth leaf had fully expanded. Each chamber con-
sisted of two 50 cm high and 45 cm wide perspex sheets with the 3 mm gap fi lled with a dark, fi ne 
sandy soil so roots were clearly visible. Two genotypes divergent in angle of the fi rst fl ush of nodal 
roots are shown. For mapping studies, chambers were stacked into tubs, covered below the plant to 
exclude light, and watered with a complete hydroponic solution daily. After  Singh   et al. ( 2011 )       
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  Hammer   et al. ( 2014 ) reported a study that simulated the complex phenotypic 
 adaptation   landscape for combinations of these G and M factors for sorghum in the 
mostly water-limited production environments of north-eastern Australia, where 
sorghum is commonly grown as a row crop. Attributes for M employed in the simu-
lations included three types of row confi guration (solid 1 m rows; single skip row; 
double skip row; Whish et al.  2005 ) and four levels of plant density (3.5, 5.0, 6.5, 
8.0 plants m −2 ) while G attributes included nine levels of maturity (Ravi Kumar 
et al.  2009 ; Mace et al.  2013 ), and nine levels of tillering (Kim et al.  2010 ; Alam 
et al.  2014a ,  b ). Levels of maturity were introduced by varying the time to fl oral 
initiation within the range −30 to +30 °Cd relative to the standard hybrid (with value 
160 °Cd) using steps of 7.5 °Cd to generate the nine types. In addition to the effect 
on crop duration, this generates a change in total leaf number and hence modifi es 
the pattern of leaf area development through the  crop life cycle   (Hammer et al. 
 1993 ). The range employed generates difference from the standard hybrid (17 
leaves) within the range −1.5 to +1.5 total leaf number (Ravi Kumar et al.  2009 ). 
Levels of tillering were introduced by adding to, or subtracting from, the fertile til-
ler numbers assigned to the standard hybrid, within the range −2 to +2 tillers using 
steps of 0.5 fertile tillers to generate the nine types. For the lowest tillering type, this 
generates a plant that is uniculm in nearly all situations. Fertile tiller number affects 
maximum potential plant leaf area and hence the pattern of leaf area development 
through the crop life cycle (Hammer et al.  1993 ). 

 Components of the simulated  yield adaptation landscapes   can be viewed using 
heat maps of yield across a number of variables. Figure  7.5  presents yield levels for 

  Fig. 7.4    Simulated yield of narrow root angle sorghum  genotype   relative to simulated yield of a 
standard type versus the yield of the standard type (kg ha −1 ) for a 100-year simulation at 
Goondiwindi, NE Australia, assuming conventional agronomy. Each point represents 1 year of the 
simulation. The narrow root angle type had the same rooting depth but was assumed to access up 
to 15 mm extra soil water below 1 m soil depth if it was available in the soil profi le       

 

G. Hammer et al.



157

two consecutive years at one key location (Emerald) illustrating grain yield land-
scapes associated with variation in tillering, maturity, row confi guration, and plant-
ing density. In 2005 (Fig.  7.5a ), which was lower-yielding, the highest yield occurred 
with a low tillering, late maturing type, grown at low population in a single skip row 
confi guration. In contrast, in 2006, with the same sowing date and soil conditions 
(Fig.  7.5b ), yields were greater, with the maximum yield occurring with a high til-
lering, relatively early maturing type, grown at high population in a solid row con-
fi guration. This contrast demonstrates the instability in the  adaptation   landscape 
with different combinations of G × M being favoured depending on E, and high-
lights the diffi culty in seeking broad adaptation in such variable production environ-
ments.  Hammer   et al. ( 2014 ) used the simulated phenotypic landscape to evaluate 
the extent of the potential advantage of a breeding strategy pursuing  specifi c adapta-
tion   versus one pursuing broad adaptation across all environments. While signifi -
cant advantages to specifi c adaptation were identifi ed, this would introduce more 
cost and complexity to breeding.

   Other recent simulation studies have also suggested that a limited maximum 
transpiration rate may contribute to early season water conservation, and as a con-
sequence to improved yield under drought ( Sinclair   et al.  2005 ,  2010 ). The conse-
quence of a maximum rate of transpiration is that around midday, when vapour 
pressure defi cit (VPD) is high, plants would not lose water at an unrestricted rate 
(see Chap.   6     of this book by Sinclair et al.). This limitation would be manifested in 
decreased  stomatal conductance   during periods of high VPD. This behaviour would 
generate increased  transpiration effi ciency   (TE, biomass accumulated per unit water 
transpired) for the crop because of decreased gas exchange during periods of high 
demand for crop water use. Experimental studies have identifi ed a limited maxi-
mum transpiration trait in a range of species by quantifying responses to VPD 
(Fletcher et al.  2007 ; Sadok and Sinclair  2009a ,  b ; Kholova et al.  2010 ; Jyostna 
 Devi   et al.  2010 ; Gholipoor et al.  2010 ,  2013 ; Yang et al.  2012 ; Choudhary and 
Sinclair  2014 ; Choudhary et al.  2014 ).   

7.5     Implications 

 These examples demonstrate two of the main ways that whole plant ecophysiology 
and modelling can enhance  molecular breeding   via improved G-to-P understanding 
and prediction:

•    Physiological dissection of  complex traits   in a dynamic framework – Experimental 
studies in controlled genetic backgrounds provide the means to determine and 
quantify the functional biology underpinning phenotypic differences, and thus 
inform high throughput  phenotyping  . Dynamic process concepts in crop models 
provide the analytical context to frame that understanding. Attributes can then be 
linked to genomic regions ( QTLs  ) in a way that reduces context dependency and 
 phenotypic distance   and generates coeffi cients for dynamic crop models that 
quantify ecophysiological implications of genetic regulation.  
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  Fig. 7.5    Simulated phenotypic landscapes of sorghum grain yield (t/ha) at Emerald (NE Australia) 
in ( a ) 2005 and ( b ) 2006 for genotypes varying in tillering (positive values for high tillering types) 
and maturity (high thermal time requirement values for late maturing types – see text) and crop 
management varying in row confi guration (double skip, single skip, and solid 1 m rows) and den-
sity (3.5–8 plants m −2 ). After  Hammer   et al. ( 2014 )       
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•   Predicting consequences of genetic variation – Crop models with  trait physiol-
ogy   and/or genetics embedded in their coeffi cient structure can be implemented 
in a predictive context to estimate by simulation the likely relevance of genetic 
variation for specifi c environments and management systems (i.e., G × M × E). 
This simulated phenotypic value has the potential to provide a basis for estimat-
ing trait value and weighting genomic regions in  molecular breeding   in a manner 
that is more robust than empirical  genomic prediction   approaches.    

 In both of these example cases, incorporating explanatory sub-models based on 
physiological insight into the quantitative crop model provided a basis to link 
changes at genomic regions directly to their emergent phenotypic consequences at 
the crop level via intermediary  traits   in a way that reduced context dependencies and 
 phenotypic distance  . Such an approach provides a pathway to effective applications 
in  molecular breeding   ( Cooper   et al.  2014a ,  b ). Further, the  functional whole plant 
models   can be used to explore  breeding strategies   by generating the  adaptation   land-
scape of possible G × M × E combinations on which breeding system simulation 
tools can map the trajectories resulting from specifi c breeding approaches (Cooper 
et al.  2002 ;  Chapman   et al.  2003 ;  Hammer   et al.  2005 ;  Messina   et al.  2009 ,  2011 ). 
In this way, whole plant physiology and modelling can provide an effective link 
between molecular knowledge, genotyping capacity, and the practice of  crop 
improvement  .     
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    Chapter 8   
 Crop Modeling Approaches for Predicting 
Phenotype of Grain Legumes with Linkage 
to Genetic Information       

       Kenneth     J.     Boote     ,     C.     Eduardo     Vallejos    ,     James     W.     Jones    , 
and     Melanie     J.     Correll   

    Abstract     In this chapter we introduce concepts on how mechanistic crop simula-
tion models can be linked with genetic information to predict phenotype in different 
environments. There has been rapid advancement of genotyping along with contin-
ued improvement of mechanistic simulation models that predict dynamic daily 
(or faster) growth processes of crops in response to varying weather, soils, and man-
agement conditions. Crop models have genotype-specifi c-parameters (GSPs) that 
describe performance of different cultivars; nevertheless, those GSPs are empirical 
mathematical parameters that are estimated directly from fi eld phenotyping data. 
There is great opportunity to link the modeled GSPs with genes (or QTLs) obtained 
from genotyping, so that phenotypic performance can be directly predicted from 
genotype. The largest challenge is the phenotyping needed to characterize the phe-
notypes that result from gene expression in different environments. Examples are 
given of phenotyping in a recombinant common bean study. Additional mechanisms 
and different GSPs may be needed in the crop models to achieve this goal. Since 
crop models are already programmed to account for weather, soils, and manage-
ment effects, they are effi cient tools in which hypothetical alleles of genes can be 
evaluated for multiple environments. Model simulations illustrate examples of gen-
otype-by-environment (G × E) interactions, where a given allele (gene) for a trait 
may have either positive or negative effects on yield, depending on weather and 
management conditions. Examples of linkage of GSPs to genes are given for 
 common bean, along with phenotypic outcomes of growth patterns observed to be 
very responsive to presence or absence of alleles of genes.  
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8.1         Introduction 

 The processes at the core of  mechanistic crop simulation models   are generic at the 
level of describing photosynthesis, respiration, translocation, and partitioning 
( Boote   et al.  1998 ). However, the attempt to mimic the growth and development of 
a given crop species or a particular  genotype   using these mechanistic models soon 
reveals the necessity of having genetic-specifi c information in them (Boote et al. 
 2001 ). Models that include this information have the ability to establish the environ-
mental dependencies ( temperature  , photoperiod, water availability, etc.) of the vari-
ous genetically-determined processes that shape the  phenotype   of the crop. The 
genetic information is what allows the model to simulate the unique growth and 
developmental patterns of each genotype under specifi c environments. Present crop 
models have a basic set of parameters and relationships that make the model specifi c 
to a given crop, and they additionally have genotype-specifi c parameters ( GSPs  ) 
ranging from few to dozens that allow simulation of cultivar variation. With the 
continued advancements of tools in molecular genetics, a logical advancement in 
the use of crop simulation models is to predict or mimic the phenotype of a cultivar 
based on its genotype through next generation sequencing at the gene level or 
through  quantitative trait loci   ( QTLs  )   , which can be identifi ed directly, or through 
linked genetic markers. 

 In this paper, we review the literature, address specifi c questions, and give exam-
ples of approaches for linking  genotype   to  phenotype   with  mechanistic crop simula-
tion models  . The questions to be addressed include:

    1.    Can increasing levels of genetic detail and variability be incorporated into the 
present crop simulation models to better represent the dynamic interactions 
among all the components of the biological system, in response to different envi-
ronmental factors?   

   2.    How can the new genetic analysis tools help to link the  genotype   to the dynamic 
 phenotype   under different environments?   

   3.    Are there approaches that can integrate the power of genetics with the dynamic 
simulation of crops provided by computer simulation models?    

8.2       Are the Crop Models Ready? 

 To begin addressing the fi rst question, we should consider whether a model takes 
into account all the components of the system it is attempting to simulate, and the 
dynamic interactions of these components. More specifi cally, does the model have 
suffi cient mechanistic detail to simulate the expression of a genetic trait; this level 
of detail and mechanism may be lacking in relatively simple models, as models 
need to be more than just a summary description of processes, but rather the  pheno-
type   should be an emergent outcome of the genetic variation in processes as affected 
by environment (Parent and Tardieu  2014 ). For instance, genetic information has 
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been included in modeling through the simulation of genetic marker effects on leaf 
area expansion (Reymond et al.  2004 ; Chenu et al.  2009 ). Similar efforts are the 
inclusion, in models, of  genes   known to regulate the cultivar life cycle, such as those 
that control fl owering, determinacy, and maturity (White and Hoogenboom  1996 ; 
Hoogenboom et al.  1997 ; Hoogenboom and White  2003 ; Hoogenboom et al.  2004 ; 
 Messina   et al.  2006 ). Along these lines, the most advanced  gene-based model   is the 
 Arabidopsis thaliana  photothermal fl owering model, which takes into account the 
pattern of expression of several fl owering genes as they respond to the changing 
photothermal environment (Wilczek et al.  2009 ). These examples clearly illustrate 
the need for incorporating genetic information into crop models in the future. The 
foci on only leaf area expansion and life cycle progress, while a good starting point, 
are only a small part of the whole integrated simulation of growth and yield. We 
concur with  Yin   and  Struik   ( 2010 ) that present simulation models will need to 
include additional mechanisms to address specifi c genetic  traits   and responses with 
more accurate outcomes.  Hammer   et al. ( 2010 ) proposed that enhancing models for 
their ability to predict phenotype from  genotype   would require algorithms that rep-
resent the underlying processes controlled by the genotype, and that simulation of 
model dynamics under varying environments should lead to  emergent properties   of 
the phenotypes (see examples discussed in Chap.   7     of this book by Hammer et al.). 
Likewise, Chenu et al. ( 2009 ) described genetic traits (for models) as those that are 
‘environmentally-independent’. Finally, the modular/sub-modular structure of pres-
ent day crop simulation models gives them the fl exibility to link well with genetic 
markers and to incorporate, at any given time, new components without altering the 
core of the program code ( Jones   et al.  2001 ,  2003 ).  

8.3     Is Genetics Advanced Enough? Relationship 
of Phenotype to Genotype 

8.3.1     From Genes to DNA 

 Gregor Mendel ( 1866 ) fi rst used the  phenotype   to develop the concept of the  geno-
type  , and provided the conceptual framework to connect these properties of all 
living organisms. However, it was Johannsen ( 1911 ) who coined these terms and 
provided a full description of their meaning. The advent of molecular biology with 
the associated development of DNA technology has made it possible to realize the 
genotype concept into a DNA sequence. For instance, most of the  genes   used by 
Mendel to deduce laws of inheritance have now been characterized at the molecu-
lar level (Lester et al.  1997 ; Martin et al.  1997 ). These developments give us the 
opportunity to identify the genotype of an organism, via a DNA detection method, 
and use this information to deduce its phenotype. For instance, Mendel’s dwarf pea 
phenotype is caused by mutation that involves a single nucleotide polymorphism 
( SNP  ) in a gene that synthesizes an active form of gibberellic acid, a growth 

8 Crop Modeling Approaches for Predicting Phenotype of Grain Legumes…

http://dx.doi.org/10.1007/978-3-319-20562-5_7


166

hormone (Martin et al.  1997 ). Thus, current DNA technology makes it possible to 
test for that particular SNP and allows us to use the genotype to predict the pheno-
type of a pea seedling. However, most phenotypes of interest to agricultural pro-
duction are very complex because they are governed by many genes, each leading 
to unique spatio-temporal patterns of expression and environmental responses 
(Benfey and Mitchell-Olds  2008 ).  

8.3.2     Genes and  QTLs   

 Genes contribute to a quantitative trait which can then be defi ned as a  quantitative 
trait locus   ( QTL  ). Karl Sax ( 1923 ) was the fi rst to report linkage between a gene 
controlling seed color, a true Mendelian trait, and a gene affecting seed size in the 
common bean. Since that time, the development of  molecular markers   has facili-
tated the identifi cation and mapping of  QTLs   (Lander and Botstein  1989 ). This 
approach is based on the construction of molecular marker linkage maps. These 
maps were originally constructed with DNA restriction fragment length polymor-
phism, a tedious and cumbersome technology (Schlötterer  2004 ), but the technol-
ogy has evolved allowing the construction of relatively dense linkage maps with 
minimal lab work (Elshire et al.  2011 ). Although it might be considered overkill, 
some groups have found it practical to sequence the genomes of an entire segregat-
ing progeny ( Xu   et al.  2013 ). The basic approach of  QTL mapping   is to query the 
entire genome to determine whether there are signifi cant associations between 
markers mapped to a specifi c location and the quantitative  phenotypic trait   of inter-
est ( plant height  , leaf area, weight per seed, etc.). Very sophisticated statistical 
approaches have been devised for this endeavor (Lander and Botstein  1989 ; Zeng 
 1993 ,  1994 ; Kao et al.  1999 ). Of these approaches, multiple interval mapping 
(MIM) is perhaps one of the most powerful QTL analytical tools. This is because it 
can simultaneously fi t multiple QTLs allowing for a better estimation of parameters, 
distinguishing tightly linked QTLs from QTLs with  pleiotropic effects  , detecting 
epistatic interactions (Zeng  1994 ; Kao et al.  1999 ). The QTL mapping approaches 
listed above are powerful tools for the analysis of static end-point phenotypes, but 
are limited in their ability to capture and translate to the dynamic aspects of  pheno-
type   development. These limitations, however, have been partially overcome by the 
development of  functional mapping   (FM), which integrates mathematical functions 
of growth and development into a mixed model FM that has the capability of detect-
ing QTLs that control growth and developmental trajectories (Ma et al.  2002 ; Wu 
and Lin  2006 ; Li and Wu  2010 ). The inclusion of the time dimension in FM makes 
this QTL mapping approach somewhat analogous to the dynamic approach used by 
crop simulation models, although crop models attempt to link genetics directly to 
crop processes and their sensitivities to daily or hourly environment, rather than 
using a mathematical time-dependent function.  
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8.3.3     Analyzing G × E with Statistical Tools 

 One of the major foci of attention of plant breeding programs is the proper assess-
ment of  genotype  -by- environment   (G × E)  interactions  . Their present tools so far, 
have primarily been statistical models. Zhao et al. ( 2004 ) showed the use of FM to 
characterize environmental interactions of individual  QTLs   controlling develop-
mental trajectories. Given the observation that different genotypes have different 
abilities to respond to the environment,  Wang   et al. ( 2013 ) have provided a statisti-
cal framework to connect QTLs to the plastic behavior exhibited by phenotypes in 
different environments.  Malosetti   et al. ( 2013 ) presented a comprehensive analysis 
of this topic encompassing a range from simple  fi xed effect models to mixed-effect 
models where the genotype and error are considered as random effects , and also the 
use of  factorial regression   as a means to describe and explain G × E interactions 
(also see Chap.   3     of this book by  Bustos   et al.). In summary, genetic analysis tools 
can provide the means to ex-post dissect  complex traits     , as well as the means to 
capture the effect of  genes   during growth and development, and the interactions of 
these genes with the surrounding environment.  But can they give a dynamic   pheno-
type    for a new environment?  We propose that crop models, with their built-in sensi-
tivity to environment (weather, management, soils, etc.), with inclusion of genetic 
information, can predict dynamic phenotypes in new target environments, whereas 
the statistical models are limited to those prior environments included in the statisti-
cal analyses. 

 Despite the sophistication of the different statistical approaches used in the 
genetic analysis of  complex traits   and their interactions with the environment, they 
are limited in their ability to simulate the  phenotypic plasticity      of a  genotype   under 
the continuously changing environment experienced by a crop grown in the fi eld. 
This is where linkage to process-oriented dynamic crop simulation models can be 
used to advantage. Advances in both crop simulation approaches and modern 
genetic analysis of complex  traits   strongly suggest the potential synergism of com-
bining these two approaches to link the genotype to the  phenotype  . The challenge is 
to fi nd a suitable procedure to incorporate genotypic information into crop simula-
tion models, thus using the model’s built-in responsiveness to environment, and 
leading to correct emergent outputs (dynamic phenotypes). 

 While the task of fi nding  genes   or the  QTLs   for individual  traits   has become 
easier and faster, the second challenge remains whether one can use these statistical 
methods to predict the  phenotype   resulting from given QTLs for plants grown in 
many different environments. Knowing that a gene results in a particular biochemi-
cal product or plant morphology does not mean that the integrated outcome from a 
specifi c phenotype is clearly understood. This is where connection to crop  simulation 
models can be helpful, because given ‘traits’ such as more rapid rooting, faster leaf 
elongation, earlier fl owering, less stomatal sensitivity to water stress, etc., can give 
different crop growth and yield outcomes depending on the fi eld environment (G × E 
interaction). This challenge, e.g., the need to understand what causes G × E interac-
tion, is addressed in this chapter. Another challenge to linking genes to crop models 
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is the lack of suffi cient fi eld  phenotyping   (White et al.  2012 ). Simple phenotyping 
of seedling plants in a chamber or glasshouse is inadequate to represent mature 
plants in stressful fi eld environments. New technologies are being proposed for phe-
notyping (Furbank and Tester  2011 ), but we feel that connection of genes (QTLs) to 
performance in fi eld environments remains the most important aspect for predicting 
future performance in new target fi eld environments.   

8.4     Present Crop Models Are Responsive to Weather, Soils, 
and Management Effects 

 Over the last 30 years, crop models have been coded and parameterized to respond 
to time-varying weather variables, soil characteristics, and crop cultural manage-
ment, with a primary goal of using the models as tools for crop management in the 
fi eld under time- and space-varying conditions. In this respect, crop models are rela-
tively ready to account for environmental and management effects although contin-
ued model improvements are needed. An advantage of crop models is that they are 
dynamic and predict daily growth processes in response to daily environmental con-
ditions of irradiance,  temperature  ,  daylength  , water stress, nitrogen (N) supply, etc., 
and this can be used to understand G × E interactions when model  traits   are coupled 
to genetics. Crop life cycle progression is captured with sensitivity of rate of leaf 
node appearance and reproductive progression to temperature and daylength, which 
are parameterized by cardinal base and optimum temperatures, critical daylength, 
and daylength sensitivity. Cardinal temperature sensitivities of phenology are gen-
erally considered to be species traits (although some researchers have suggested 
cultivar differences in cardinal temperatures). In either case, the amount of thermal 
unit accumulation as well as critical daylength and daylength sensitivity are consid-
ered cultivar traits. Characterizing life cycle timing of fl owering, onset of reproduc-
tive growth, duration and termination of reproductive growth are important for yield 
performance and fi tting cultivars to a given growth environment. Photosynthetic 
response to solar irradiance is linked to light interception by the canopy foliage 
along with quantum effi ciency and light-saturated leaf assimilation rate, which also 
have dependence on temperature, CO 2 , leaf N, and irradiance history. Actual dry 
matter accumulation depends on growth conversion effi ciencies and maintenance 
respiration coeffi cients, of which the latter are temperature-dependent. Rate of leaf 
node appearance, leaf area expansion, height increase, root depth progression, addi-
tion of reproductive sites, and growth of individual grains, each have temperature 
dependency curves characterized by a base temperature, optimum temperature, and 
upper failure temperature. The crop models also carry a type of internal crop calen-
dar or ‘controller’ by which the modeled crop controls the shifts and priorities of 
assimilate partitioning among root, leaf, stem, and reproductive tissues. In addition, 
the plant N-balance is regulated by the target (critical) N concentrations for growth 
of different organs along with the rate of N mobilization to reproductive organs. 
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These control algorithms are dependent on temperature, water, and soil N availabil-
ity. Genetic variation will certainly infl uence most of these crop processes. The 
reason for highlighting crop responsiveness to environment, soils, and management, 
is to illustrate that crop models, when coupled to genetic traits, are ready-made tools 
to understand G × E interactions without the need to pre-suppose direct G × E  genes  . 
We will later illustrate examples where certain genetic traits may be positive for 
crop yield in one environment but negative in another environment. In other words, 
the G × E interaction is an  emergent property   of a single gene action (or multiple 
ones). This is a re-affi rmation of the need to dig deeper to fi nd the underlying pro-
cesses infl uencing the phenotypic outcomes.  

8.5     Genes, Processes, and Emergent Outcomes 
in Crop Models 

 One of the important issues with genotyping to  phenotyping  , is the defi nition of the 
action of the gene and what is the corresponding ‘ phenotype  ’. We quote from Chenu 
et al. ( 2009 ) who stated that “Using such ‘environmentally stable’  QTLs   to model leaf 
elongation rate avoids complex  QTL  -environment interactions that are commonly 
observed for directly measured  traits   such as leaf length.”  Yin   and  Struik   ( 2010 ) also 
distinguished between simple and complex phenotypic outcomes in their modeling. 
For example, by their defi nition, an integrated outcome such as yield, nutrient use 
effi ciency, height, or total biomass would clearly be a ‘complex’ phenotype. It should 
be obvious that the phenotypic outcomes, such as leaf length or leaf width or seed size 
or height or fi nal yield, are integrated cumulative outcomes of many processes occur-
ring in fl uctuating environments over time, so one must consider the gene (QTL) 
effects to be at the process level, not at the outcome/product level. While there are 
alleles with direct visible outcomes (fl ower color, dwarfi sm), most  genes   affecting 
quantitative outcomes cannot be directly equated to outcome ‘traits’. This is an impor-
tant issue where the emergent quantitative phenotype is determined by many genes 
beyond the ones being studied and the ‘gene actions’ are infl uenced differentially by 
environment or give different benefi ts depending on environment. For example, 
Chenu et al. ( 2009 ) used equations for potential leaf elongation rate sensitivity to 
 temperature   (coeffi cients for cardinal base temperature and slope), and additionally 
included sensitivity to water defi cit and  vapor pressure defi cit   (VPD). 

 There are probably also additional environmental and nutritional factors such as 
solar irradiance level, N and carbohydrate supply that may also infl uence leaf 
 expansion rate. We should be looking for how the individual  genes   code for highly 
specifi c processes (affected by enzymes, structures, etc.) and how those processes 
respond to those environments that lead to different  emergent outcomes   in different 
environments. If there is a G × E interaction, we believe it means we need to dig 
further to better understand the environmental effects relative to the action of that 
allele to understand why a given allele gives outcomes that differ from one environ-
ment to another.  
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8.6     Early Efforts to Link Genetics to Crop Models 

 Crop models have been used for decades to evaluate the physiological processes and 
genetic  traits   important to yield ( Boote   and Tollenaar  1994 ; Duncan et al.  1978 ; 
Elwell et al.  1987 ; Landivar et al.  1983a ,  b ), but the early efforts did not have any 
substantial linkage to  genes   or genetic markers. Early crop modelers ( Jones   and 
Kiniry  1986 ; Wilkerson et al.  1983 ) used the term ‘ genetic coeffi cients  ’ for maize 
and  soybean    model  s, but those coeffi cients were relatively few (5–15) and were 
generic inventions of the crop modelers. In fact, some early crop models ignored the 
concept of crop cultivar variation. This has changed with the advent of new genetic 
technologies to locate the genes, and nicely coincides with the continued develop-
ment of improved crop models. As a result, a number of crop modeling groups are 
attempting to link to genes and markers, with the promise of optimizing genetic 
improvement in yield for multiple managements and environments. These dynamic 
 process-oriented crop models   are already coded for response to management and 
environment, and have the potential to incorporate genotypic information of genetic 
loci known to control multiple processes and thus predict phenotypic outcomes of 
growth and yield under different environments (Boote et al.  2001 ; White and 
Hoogenboom  2003 ;  Chapman   et al.  2003 ;  Cooper   et al.  2002 ). 

 The early efforts focused on linking models to  genes   that infl uenced the more 
predictable and easily understood  crop life cycle   and growth habit  traits   (White and 
Hoogenboom  1996 ; Hoogenboom et al.  1997 ,  2004 ; Hoogenboom and White  2003 ; 
 Messina   et al.  2006 ). These authors attempted to link alleles (presence or absence) 
via linear regression to the existing  genotype   specifi c parameters ( GSPs  ) being used 
by the present crop modelers. One of the earliest attempts was that of White and 
Hoogenboom ( 1996 ) in which they linked seven genes affecting life cycle, growth 
habit, and seed size of common bean ( Phaseolus vulgaris  L.) to the GSPs of the 
 GeneGro model  , an early version of the  dry bean   model in the Decision Support 
System for Agrotechnology Transfer (DSSAT) software. The GeneGro model accu-
rately predicted life cycle stages, but poorly explained yield variations across sites 
(Hoogenboom et al.  1997 ), which is not surprising given that yield is the outcome 
of many other genes and traits and because environmental site effects are usually 
more important than genetic differences (Mavromatis et al.  2002 ). Messina et al. 
( 2006 ) followed the same approach in which they linked E-loci genes to the cultivar 
specifi c parameters of  soybean  , again with linear regression and alleles entered as 
present (1) or absent (0). The E-loci genes are basically a complex of six photoperiod- 
sensing genes that affect  daylength  -induced delay (timing) of soybean reproductive 
stages (Cober and Voldeng  2001 ). Taking this one step further, Messina et al. ( 2006 ) 
tested the approach against independent data on maturity date and yield measured 
over 5 years and 8 sites in the Illinois soybean variety trial. They used SSR (simple 
sequence repeats) markers to genotype cultivars in the trials to determine the E-loci 
and then used the gene-based coeffi cients to predict life cycle, growth, and yield of 
those cultivars. Their approach was successful, as the  gene-based model  , with only 
 E loci   information, was able to account for 75 % of variation for time to crop matu-
rity and 54 % of variation in yield.  
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8.7     Connecting Genes in Process-Oriented Crop Models 

 Crop models are coded and parameterized to have responses to the environment built 
into the models and can be used to integrate over many processes to simulate bio-
mass and yield accumulation over time. Chenu et al. ( 2009 ) placed the leaf expansion 
process sensitivities into a modifi ed  APSIM   crop simulation model to evaluate inte-
grated leaf area index (LAI), growth, and yield responses to drought environments. 
They connected 11  QTL   markers with three ‘coeffi cients’ ( temperature  - sensitivity , 
VPD-sensitivity, and water-potential sensitivity) affecting leaf elongation rate (LER) 
and one coeffi cient affecting ASI (Anthesis-Silking- Interval, in days) of maize. The 
ASI effect was mimicked in the model as an effect on grain number set where toler-
ance (lower ASI) requires a lower threshold for assimilate supply on grain number 
set. They generated a hypothetical recombinant population and identifi ed QTL com-
binations among 11  QTLs   that were advantageous or disadvantageous to yield under 
multiple environments with different drought patterns. The effect of a given allele 
was coded similar to the way  Messina   et al. ( 2006 ) did it in which there is an additive 
effect of the allele invoked by presence (1) or absence (0). The net effect is the com-
putation of the  GSPs   (in their case, a, b, and c effects on LER) as a function of the 
QTLs, so the crop model can proceed to simulate. The APSIM model, like other crop 
simulation models, generates different crop phenotypes as  emergent outcomes   under 
different management and weather conditions, because the model is coded to respond 
dynamically to environment and management ( Hammer   et al.  2010 ). The hourly leaf 
extension rate linked to the QTLs was incorporated in the APSIM model and gave 
rise to additional sensitivity of LAI to environmental factors (Chenu et al.  2009 ). 
Their work is a good beginning, but is only scratching the surface with a few QTLs 
and  genes   (maybe less than 5 % of the real action at the whole plant level of yield 
formation). In fact, an important aspect to note is that those few QTLs (genes) were 
placed into a model that already had many other additional ‘background’ genetics 
that were thus fi xed for a medium-maturity maize hybrid. These features allowed the 
modelers to evaluate the individual and combined effects of those QTL markers 
(genes). They could just as easily put those same genes into a short-season or a long-
season maize background. 

 Chenu et al. ( 2009 ) described pleiotropic effect on ASI-related  traits  , stating that 
the  QTLs   for ASI-related traits were co-located with four QTLs for leaf elongation 
(Vargas et al.  2006 ; Welcker et al.  2007 ). There are two possibilities: the  genes   may 
truly be ‘linked’ as being very close on a strand of DNA, or that a single gene results 
in both outcome traits somehow. A way to visualize the latter case, is that  these are 
the same gene or genes, but they give two ‘outcomes’ , possibly because better root- 
water extraction, water-conservation, tolerance to high VPD (regardless of how that 
action may occur) will give better water-relations and that, in turn, affects leaf elon-
gation as well as the ASI outcome. The  genetic linkage   possibility should be sorted 
out by genetic dissection of the  QTL   regions to attempt to separate the underlying 
genes for these traits. Linkage or  pleiotropic effects   were both positive and negative 
in association. As used by Chenu et al. ( 2009 ), co-localization ( potentially the same 
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gene)  meant that the hypothesized individual benefi ts could not be hypothesized, 
but had to be considered as linked and not separable. In our view,  these are the same 
genes , and of course could not be simulated as separate effects. One of the important 
points, however, for crop modelers is to use caution to avoid simulating the two 
effects as separable, and to ensure linkage and full balance accounting of processes 
of water, N, and assimilate balance. In effect, leaf elongation and ASI are likely 
linked by water environment (plant water or turgor potential) as an infl uencing 
driver, rather than other separate drivers. 

 Simulated  traits   (greater leaf elongation or higher  specifi c leaf area   or later fl ow-
ering) will increase LAI and thus act to enhance yield under well-irrigated environ-
ments, but the three traits give a similar emergent outcome (increased LAI) thus 
acting to reduce yield under reproductive terminal water defi cit conditions (maize, 
Chenu et al.  2009 ;  chickpea  ,  Boote   et al.  2013 ). In these three G × E cases, the com-
mon thread is the LAI effect on extent of depletion of soil water relative to use of 
the soil water for subsequent reproductive growth. But, the  same  alleles of the gene 
or  genes   acted to give a different outcome depending on environment! An allele 
may act to increase leaf area, but the integrated outcome can be positive, neutral, or 
negative, depending on soil water, weather, and management, which are conditions 
that the crop model accounts for. A gene cannot be equated directly to an emergent 
outcome without considering the environment. Chenu et al. ( 2009 ) reported consid-
erable G × E interaction resulting from combinations of the  QTL   markers for maize 
in rainfed environments. These examples demonstrate the need for serious caution 
in use of outcome traits as the observed  phenotype  , and the need to focus on QTL 
effects on ‘processes’. Parent and Tardieu ( 2014 ) compared mechanisms and simu-
lation approaches of a number of current crop models, and concluded that processes 
need to be simulated at a low enough process-level whereby processes own their 
own  temperature   and environmental dependencies, such that outcomes are truly 
 emergent properties  . Nevertheless, how far should we ‘drill down’ to the underlying 
causal processes?  Hammer   et al. ( 2010 ) urged caution and a parsimonious approach 
in this regard. 

 The ASI effect in maize was much more important than the effect of potential 
leaf elongation for yield (Chenu et al.  2009 ). The  co-location of QTLs      for potential 
leaf elongation and ASI suggests to us that ASI per se is actually not an 
environmentally- stable trait, but may have other primary contributing causes. This 
is because a shorter ASI may be the improved water relations outcome of many 
other aspects such as greater water extraction, slower water use, slower leaf area 
expansion (to deplete less water) which in themselves may depend on more in-depth 
processes (as the leaf expansion already does). 

 The outcomes from dynamic crop simulation models can result in more complex 
G × E interaction effects than a purely statistical analysis of a given fi xed dataset, in 
part because the crop models consider the biophysical limitations and feedbacks 
created by limiting resources such as water, light, time ( temperature  ), etc., and 
because models can be used for many more multiple hypothetical or real environ-
ments. As Chenu et al. ( 2009 ) explained it, crop models provide the missing com-
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ponent to allow complex G × E outcomes, and to assist in targeting genetic 
improvement for particular environments.  

8.8     Genotype Specifi c Parameters in the CROPGRO Model 

 The  CSM-CROPGRO model   uses one common FORTRAN source code to simulate 
many different crops including legumes ( Boote   et al.  1998 ,  2002 ; Hoogenboom 
et al.  2012 ) and non-legumes such as tomato (Boote et al.  2012 ). The CSM- 
CROPGRO crops are simulated within the DSSAT software environment which 
facilitates input/output and various applications ( Jones   et al.  2003 ; Hoogenboom 
et al.  2012 ). For each crop (species), CROPGRO has a read-in species fi le that con-
tains the specifi c parameterization, initialization, cardinal  temperature   relation-
ships, etc. that cause the model to be specifi c for a given crop such as  soybean  , 
different from faba bean or common bean. This allows the FORTRAN code to be 
generic and to service many different crops. The species parameterization fi le is 
generally considered stable and fi xed, and is modifi ed only by the model 
developers. 

 In addition, the  CSM-CROPGRO model   has a cultivar fi le and an ecotype fi le for 
each crop, which allows users opportunity to mimic different cultivars. The cultivar 
fi le has 18  GSPs   as listed in Table  8.1 . Examples of GSPs in the model include criti-
cal short  daylength  , daylength-sensitivity slope, photothermal days from emergence 
to fl owering, fl owering to fi rst pod, fl owering to fi rst seed, fi rst seed to physiological 
maturity, light-saturated leaf assimilation (LFMAX), potential  specifi c leaf area   
(SLAVR), fl owering to end of leaf area expansion (FL-LF), seeds per pod, seed fi ll-
ing duration (SFDUR), pod adding duration (PODUR), seed protein concentration, 
and seed oil concentration. There are 16 additional GSPs in the ecotype fi le, but they 
vary infrequently and are used primarily to mimic major classes of cultivars such as 
determinate versus indeterminate. Useful GSPs in the ecotype fi le include determi-
nacy (photothermal days from fl owering to end of main stem node appearance, 
FL-VS), and rate of leaf appearance (TRIFOL). We anticipate the need to make 
additional code changes, modifying and adding cultivar, ecotype, and species 
 coeffi cients as the need is demonstrated. Some species  traits   such as rate of root 
depth increase, root profi le shape, N uptake per unit root, or cardinal temperatures 
for various processes could be moved from the species fi le into the ecotype or culti-
var fi le. As evidence of cultivar variation for a trait becomes clear, the model’s fi le 
of cultivar traits will grow. The challenge is to link these and future ‘model’ GSPs 
to real  genes   (or  QTL   markers). Table  8.1  illustrates large variation among  dry bean  , 
 soybean  , and  peanut   for the cultivar-specifi c-parameters. Dry bean, for example, 
has a shorter life cycle as seen in its shorter SD-PM and SFDUR parameters. Peanut, 
on the other hand, is insensitive to daylength, longer cycle (longer SD-PM and 
SFDUR), indeterminate (large FL-VS, large FL-LF, lower XFRT, and larger 
PODUR), and more productive (higher LFMAX), compared with bean and soy-
bean. Cultivars within a species would tend to vary somewhat less than this 
example.
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    Table 8.1    Defi nitions of  genotype   specifi c parameters (GSP) for the CROPGRO model with 
default values for  dry bean   (cv. Calima),  soybean   (cv. MG 5 Hutcheson), and  peanut   (cv. Georgia 
Green). Two examples are given for ecotype parameters (TRIFOL, FL-VS)   

 GSP name  Genotype specifi c parameter defi nition 
 Dry 
bean  Soybean  Peanut 

 Calima 
 MG 5 
Hutch. 

 Georgia 
Green 

 CSDL  Critical short  daylength   below which 
reproductive development progresses rapidly 
with no daylength effect (h) 

 12.17  12.58  11.84 

 PPSEN  Slope of the relative response of development 
to photoperiod with time (1/h) 

 0.000  0.311  0.000 

 EM-FL  Time from emergence to fi rst fl ower 
appearance (ptd a ) 

 24.8  22.0  21.2 

 FL-SH  Time from fi rst fl ower to fi rst pod (ptd a )  3.0  8.0  9.2 
 FL-SD  Time from fi rst fl ower to fi rst seed (ptd a )  12.0  15.5  18.8 
 SD-PM  Time from fi rst seed to physiological maturity 

(ptd a ) 
 18.4  35.0  77.3 

 FL-VS  Time from fi rst fl ower to last leaf on main 
axis – from ecotype fi le (ptd a ) 

 0.0  9.0  68.0 

 FL-LF  Time from fi rst fl ower to end of leaf 
expansion (ptd a ) 

 10.0  18.0  85.0 

 TRIFOL  Rate of node appearance at opt. temp (node 
td −1 ) – in ecotype fi le 

 0.35  0.32  0.35 

 LFMAX  Maximum leaf photosynthetic rate at 30 °C, 
350 ppm CO 2 , and high light (mg CO 2  m 2  s −1 ) 

 0.98  1.05  1.45 

 SLAVR  Specifi c leaf area of cultivar under standard 
growth conditions (cm 2  g −1 ) 

 305.0  400.0  270.0 

 SIZLF  Maximum size of full leaf (compound leaf) 
(cm 2 ) 

 133.0  230.0  18.0 

 XFRT  Maximum fraction of daily growth partitioned 
to seed + shell 

 1.00  1.00  0.95 

 WTPSD  Genetic potential weight per seed (g)  0.68  0.18  0.69 
 SFDUR  Seed fi lling duration for pod cohort (ptd a )  15.0  23.0  42.0 
 SDPDV  Seeds per pod at standard growth conditions 

(# pod −1 ) 
 3.50  2.05  1.65 

 PODUR  Duration of pod addition (ptd a )  11.0  10.0  28.0 
 THRSH  Threshing percentage, maximum % of seed to 

seed + shell 
 85.0  78.0  80.0 

 SDPRO  Potential seed protein (fraction)  0.235  0.40  0.27 
 SDLIP  Potential seed lipid (fraction)  0.030  0.20  0.51 

   a ptd, photothermal days account for thermal and photoperiod effects. One photothermal day occurs 
per calendar day, if  temperature   is optimum and if  daylength   is shorter than the critical short day-
length (for short day plants)  
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8.9        Modeling Genotype by Environment by Management 
(G × E × M) Effects 

 Crop model simulations have shown that G × E × M interactions can be an outcome 
when the same genetic trait (result of  genes   controlling a process) gives an advan-
tage in one environment but a disadvantage in a second environment ( Boote    2011 ; 
Boote et al.  2003 ;  Hammer   et al.  2004 ; Hammer and Vanderlip  1989 ;  Sinclair   and 
Muchow  2001 ; Sinclair et al.  2000 ;  Yin   et al.  2000 ). In other words, an allele may 
have different effects on yield in different environments. This is strongly illustrated 
in Table  8.2  for simulation of genetic  traits   of  chickpea   when grown either under 
fully irrigated conditions or under water-limited  terminal drought   (Boote et al. 
 2013 ). Chickpea in India is typically sown at the end of the monsoon and depends 
on residual soil water on high-clay soils. Sensitivity tests of  GSPs   in Table  8.2  show 
that target environment, in this case irrigation management, was important, because 
the responses to given GSPs were frequently opposite and large for contrasting soil 
water availability, e.g., when specifi c leaf weight (SLW) was increased, simulated 
yield was about 11 % lower in irrigated but 18 % higher under water-limitation. 
Increased SLW had a negative effect on yield under irrigation because it reduced 
LAI and light interception. But the same higher SLW trait was benefi cial under 
rainfed conditions because it reduced LAI, light interception, and transpiration (thus 
conserving water for subsequent grain yield later in the life cycle). Later fl owering 

     Table 8.2    Grain yield response to variation in  GSPs  , simulated for 22 years for Annigeri  chickpea   
grown under either rainfed or irrigated conditions at Patancheru, India. Sown on day 302 on a very 
fi ne montmorillonitic clay soil, starting at fi eld capacity. Simulated with the CSM-CROPGRO 
chickpea model as developed by  Singh   and Virmani ( 1996 ) and modifi ed by Singh et al. ( 2014b ) 
(Table used with permission from  Boote   et al. ( 2013 ))   

 Rainfed  Irrigated 

 Cultivar coeffi cient modifi ed 
 Mean yield 
(kg/ha) 

 Percent 
change (%) 

 Mean yield 
(kg/ha) 

 Percent 
change (%) 

 Standard simulation (Annigeri)  773  2614 
  Rooting/SLW/LFMAX   traits     
 +10 %, rate of root depth 
progression 

 791  2.3  2614  0.0 

 +10 % leaf photosynthesis 
(LFMAX) 

 783  1.3  2961  13.3 

 +10 % specifi c leaf weight (SLW)  916   18.5   2328   −10.9  
  Life cycle   traits     
 10 % longer from emergence to 
anthesis 

 669   −13.5   3016   15.4  

 10 % longer seed-fi ll (First seed to 
maturity) 

 787  1.8  2893  10.7 

  Seed size/partitioning  
 10 % larger potential seed size  746   −3.5   2709   3.6  
 10 % faster pod addition  774  0.2  2717  3.9 
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(which increases LAI) was very benefi cial (15.4 % increase) under irrigation, but 
was negative (13.5 % decrease) under the terminal drought. The common factor was 
the amount of LAI produced and amount of soil water extracted (or left) before seed 
growth began.

   These simulated outcomes are strongly supported by lysimeter experiments on 
 chickpea   (Anbazhagan et al.  2015 ) in which yield enhancement under  terminal 
drought   was related to transgenic genotypes that had earlier onset of fl owering/
podset and conserved water extraction during the vegetative phase, but increased 
use during the reproductive phase, thus leading to enhanced  harvest index   and yield. 
The transgene, rd29A: DREB1A (Dehydration Responsive Element Binding factor 
gene), clearly reduced water extraction rate during the vegetative phase (under ade-
quate or defi cit water), possibly via undocumented effect to reduce  stomatal con-
ductance  . The authors did not report LAI, SLW, or leaf conductance, but biomass 
accumulation was frequently less for the transgenics, consistent with lower conduc-
tance and lower early water use. Table  8.2  shows that increasing photosynthesis 
(LFMAX) was unimportant (1.3 % increase) under rainfed conditions (also gener-
ally agreeing with Anbazhagan et al.  2015 ), but gave a large (13.3 %) increase under 
irrigated production. Faster root depth progression had minor impact only under 
rainfed conditions, resulting in 2.3 % yield increase, but the simulated soil was 
much deeper than the lysimeter study. Increased seed size and faster pod addition 
were benefi cial under irrigation, but not under terminal drought. These simulated 
genetic  traits   showed differential responses depending on water environment ( Singh   
and Virmani  1996 ) and as also shown in other studies (Singh et al.  2012 ). 

 Model  sensitivity analysis   of genetic  traits   has been used to design improved 
 ideotypes   of  peanut   for target environments in Thailand (Suriharn et al.  2011 ), of 
peanut for regions in India under  climate change   scenarios ( Singh   et al.  2012 ), and 
of  chickpea   for regions in Asia and Africa (Singh et al.  2014b ). Singh et al. ( 2012 ) 
found that the benefi t of varying SLW was positive or negative for peanut depending 
on location because rainfall and soil water were site-dependent, similar to the chick-
pea example above. Singh et al. ( 2013a ) found that a 2 °C higher  temperature   
 tolerance of reproductive processes (fl ower fertilization, pod-addition, and parti-
tioning) gave greater benefi t to peanut yield in warm locations and under future 
warmer climate, but no benefi t in cooler conditions. Similarly, the value of heat 
tolerance or  drought tolerance   traits (deeper rooting) in chickpea depended consid-
erably on the temperature and rainfall/soil conditions of the targeted environments 
(Singh et al.  2014b ).  Boote   et al. (2011) reported that traits of determinacy, higher 
SLW, and earlier pod addition were of minimal value for  soybean   under ambient 
CO 2 , because those traits resulted in smaller LAI and less light interception. But 
those same traits had greater benefi t under elevated CO 2 , because CO 2  stimulation 
of vegetative growth enhances the LAI and light interception while allowing the 
other attendant benefi ts of those traits for higher leaf photosynthesis and longer 
grain-fi ll. Genotype-by- environment  (site) interactions for peanut pod yield were 
simulated with the CROPGRO — Peanut model by Putto et al. ( 2013 ). Cross-over 
and non-cross-over G × E effects on peanut yield were found to be associated with 
combinations of fi ve  GSPs  : seed-fi lling duration (SD-PM & SFDUR), determinacy 
of pod addition (PODUR and XFRT), and photosynthesis (LFMAX).  
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8.10     Using Crop Models to Evaluate Benefi ts of Single 
Genes/Traits and in Combination 

 Crop models have the ability to modify single processes, one trait at a time in a fi xed 
background, to assess the effect on growth and fi nal yield. In addition, they can simu-
late the degree of  additivity of traits   or cancelling effect of the  traits   ( Boote   et al.  2003 ; 
 Hammer   et al.  1996 ;  Singh   et al.  2012 ). The models can test the genetic traits in crops 
grown in different simulated environments, to determine those environments in which 
the traits have positive or negative effects. Traits when placed in combinations may act 
in an additive way, giving individual main effects, or they may potentially interact in 
a positive or negative manner depending on climate and management. Our fi rst con-
clusion is that we fi nd the benefi cial traits tend to combine in an additive way at least 
for  soybean  ,  peanut  ,  chickpea  , sorghum, and maize modeling (Boote et al.  2001 , 
 2003 ; Boote  2011 ; Singh et al.  2012 ). Singh et al. ( 2012 ) found that individual traits 
when placed into combinations of three to fi ve traits together gave  additive effects   to 
improve peanut yield by 12–23 %, and the additivity of traits was as large or larger 
(15–29 %) under future  climate change   compared with the baseline climate. This 
gives some optimism that genetic improvement can contribute to  adaptation   to climate 
change. Boote et al. ( 2003 ) found that individual traits when placed in combinations 
for soybean were mostly additive with 15 % yield improvement easily achieved with 
only three example traits whether under baseline or elevated CO 2 .  

8.11     Phenotyping: Needed to Make the Connection to Genes 

 As mentioned previously, it is becoming easier, faster, and cheaper to fi nd the  genes   
and  QTL   markers as the molecular technologies advance. The larger problem from 
the aim of predicting performance is the need to collect  phenotype   data of perfor-
mance observed in single and multiple environments, which can then be connected 
to genes. The challenge of predicting the phenotype from a given  genotype   is that 
phenotype results from the expression of the genotype as modifi ed by the environ-
ment at any level of organization of an individual. Thus, a single genotype may have 
multiple phenotypes, depending on environment. Furthermore,  phenotyping   in a 
single environment is very limiting, as plant phenotype in one environment may not 
duplicate that in other environments. This brings up the questions of “What does 
phenotype mean?” and “What is a phenotype?”. 

8.11.1     What Is a Phenotype? 

 Phenotype includes characteristics of a plant that can readily be observed visually 
such as architectural structure, leaf number, leaf size, plant size, rooting depth, 
fl ower color, seed size, etc. But  phenotype   can also be extended to measurable 
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quantities such as plant mass, grain yield, grain protein, grain oil, leaf N concentra-
tion, etc. which may not be easily visible. Phenotype could also include measure-
able physiological and biochemical quantities and qualities such as photosynthesis 
or stomatal function or presence of a given enzyme or biochemical compound. 
While all these are relevant examples, one may want to distinguish between pheno-
types that relate to fi nal yield performance compared with intermediate botanical, 
chemical, or physiological characterization. Very often, the botanical, chemical and 
physiological  traits   are not well connected to fi nal yield performance. We conclude 
that  phenotyping   can be highly diverse and the advice of plant breeders is needed to 
identify the phenotype resulting from genetics. 

 Because advanced genetic marker technology is rapid and allows for genotyping 
massive numbers of lines, there is intense interest and need for rapid and nearly 
automated  phenotyping   of large numbers of plants (Benfey and Mitchell-Olds 
 2008 ). This can be aimed at all the types of plant measurements summarized above, 
whether they are biochemical, enzymatic, visible, structural, or mass quantities. 
Measurement environments can range from laboratories to greenhouses to fi elds. 
There are a number of automated greenhouse methodologies in use by well-funded 
industrial and research laboratories, but our preference is for the phenotyping to be 
done under fi eld environments because fi eld plants are not well represented by mea-
surements on individual spaced plants on automated carousels growing under lim-
ited light and artifi cial media in greenhouses as described by Arvidsson et al. ( 2011 ). 
White et al. ( 2012 ) described approaches for rapid phenotyping with various types 
of sensors in fi eld environments, where sensors were transported over the fi eld 
 canopies by various means including tractors, cranes, drones, and satellites that 
have very accurate geospatial positioning. For example,  plant height   can be sensed 
directly, while LAI can be estimated by the Normalized Difference Vegetation Index 
(NDVI). By combining measurements of plant height, NDVI, and foliage  tempera-
ture  , White et al. ( 2012 ) suggested that canopy transpiration could be inferred. Data 
on these measurements taken over time throughout the full  crop life cycle   can be 
used in conjunction with dynamic crop models in an ‘inverse modeling’ approach to 
solve for genetic growth attributes. Measurements taken over time have the added 
advantage of allowing the ‘inverse’ characterization of abiotic and even biotic 
stresses on plants that occur over time in the fi eld. We concur with Campos et al. 
( 2004 ) that genetic differences in  drought tolerance   should only be assessed in fi eld 
environments because pots, chambers, and greenhouses are unrealistic representa-
tions of fi eld level hydrodynamics.  

8.11.2     Example of Phenotyping of  Dry Bean Recombinants  
in a Field-Oriented Project 

 In a common bean project, we phenotyped up to 200  recombinant inbred line   s   
(RILs)    of common bean for many growth and development  traits   that were mea-
sured under fi eld conditions, with relatively minimal emphasis on fi nal yield 
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(Clavijo-Michelangeli et al.  2013 ; Clavijo-Michelangeli  2014 ). The RI family was 
generated from a cross between Calima and Jamapa, cultivars belonging to Andean 
and Meso-American gene pools, respectively. The  RILs   were in the F11:14 genera-
tion cross ( Vallejos   et al.  2000 ), thus allowing us to assume that the RILs were 
homozygous. The RILs were grown in fi ve environments with contrasting tempera-
tures and photoperiod (Citra, Florida; Palmira, Colombia; Popayan, Colombia; 
Puerto Rico; and North Dakota). 

 The  phenotypic trait  s we measured in this study were selected to represent  traits   
typically measured in growth analyses studies as well as the type of outputs pro-
duced by mechanistic simulation models such as CSM-CROPGRO which we used 
in this study. The measured traits are listed in Tables  8.3  and  8.4  for non-destructive 
and destructive sampling, respectively. The traits consisted of  phenological ‘time-
 to’ events   (time to anthesis, to fi rst pod, to fi rst seed, etc.) along with many other 
traits measured over time, such as node number, leaf area, height, width, leaf size, 
plant mass, leaf mass, stem mass, pod mass, seed mass, seed size (Clavijo- 
Michelangeli  2014 ). The intent is to use inverse modeling to solve for  GSPs   from 
this data.

   Table 8.3    Non-destructive time-to-event  traits   measured on bean recombinants at fi ve sites   

 Name  Description  Frequency (days) 

 VE  Day of emergence (TD) a   Every 2 
 V1  Day of appearance of fi rst unfolded true leaf (TD)  Every 2–3 
 R1  Day of fi rst fl ower anthesis (PTD) b   Every 2–3 
 R3  Day of fi rst pod (>2.0 cm) observed (PTD)  Every 2–3 
 LLMS  Day that last leaf expanding on main stem is observed 

(PTD) 
 Every 2–3 

 LLP  Day of last leaf expanding on plant (main stem or 
branches) (PTD) 

 Every 2–3 

 R5  Day of fi rst fully-elongated ‘rigid’ pod, beginning seed 
(PTD) 

 Every 3 after R1 

 R7  Day when plant has at least one yellow-brown pod (R7) 
(PTD) 

 Every 2–3, after R5 

 LPA  Time from fi rst pod added (R3) until last 2-cm pod is 
added (LPA) (PTD) 

 Every 2–3, after R5 

 R7-R8  Days from R7 to harvest maturity (R8) (PTD)  Every 2–3, after R5 
 PI  Plastochron index at three time points before R1 (TD)  3 times, at 5-d 

intervals 
 WTPSD  Average weight per seed (WTPSD)  At maturity 
 CNPYH  Canopy height  Weekly 
 CNPYW  Canopy width  Weekly 

   a Thermal days 
  b Photothermal days  
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   Table 8.4    Destructive traits measured on bean recombinants at fi ve sites   

 Name  Description 
 Frequency (calendar 
days) 

  Main stem  
 LA1-5  Leaf area of successive individual leaves on nodes 

1–5 of main stem 
 Weekly 

 LAMS  Leaf area of leaves on main stem (other leaves)  Weekly 
 DW1-5  Dry weight of fi rst fi ve leaves on main stem  Weekly 
 LWMS  Dry weight of leaves on main stem (other leaves)  Weekly 
 NODEM#  Number of nodes on main stem 
 LGTHMS  Total length of main stem 
 MSDW  Dry weight of main stem  Weekly 
 PDWMS  Dry weight of petioles on main stem 
 PMS#  Number of pods on main stem 
  Branches  
 BR#  Number of branches on main stem 
 LABS  Leaf area of leaves on branches 
 LWBS  Dry weight of leaves on branches 
 PDWBS  Dry weight of petioles on branches 
 NODEB#  Node number on branches 
 BLGT  Total length of branch stems 
 BDW  Dry weight of branch stems  Weekly 
 PB#  Number of pods on branches 
  Overall    Weekly, also at fi nal harvest  
 SHWGT  Shell dry weight  Weekly 
 SDWGT  Seed dry weight  Weekly 
 SDPDV  Observed # of seeds per pod, (10 pod sample)  Weekly, after R3 and at 

R8 
 Shelling %  Ratio of (seed weight/(seed weight + shell weight))  Weekly, after R3, and at 

R8 
  Final    Final only  
 WTPSD  Final average weight per seed  At fi nal harvest (R8) 
 SPPRO  Fraction protein in seeds (g(protein)/g(seed))  At fi nal harvest (R8) 
 SDLIP  Fraction oil in seeds (g(oil)/g(seed))  At fi nal harvest (R8) 

8.11.3          Inverse Modeling  Tools for Optimizing Genetic 
Parameters from Phenotyping Data 

 One of the goals of our common bean project is to estimate  GSPs   for each RIL, 
using the CSM-CROPGRO-Bean model in conjunction with an optimizer program. 
The GSPs are then to be linked to  QTL   markers with various  genetic algorithm  s as 
described later. The parameter estimation program (Alderman  2013 ) is a hybrid 
algorithm incorporating a Gibbs-sampler (Casella and George  1992 ) within a ver-
sion of the Metropolis-Hastings algorithm (Chib and Greenberg  1995 ). Essentially, 
the algorithm generates vectors of candidate parameter values and evaluates them 
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with a log-likelihood equation. With each iteration of the optimization, candidate 
values for parameters are generated using a normal random walk routine. With these 
candidate values the CROPGRO model is simulated, and then the log-likelihood for 
the new values of parameters are calculated. We learned by experience that a  staged 
sequential optimization   approach (Table  8.5 ) is much better for the optimization 
process than simultaneously throwing all the GSPs against all of the measured crop 
variables. In the staged-sequential approach, we solved appropriate sets of GSPs 
(parameter groups), likely to infl uence a set of given crop model outputs which were 
matched to target crop variables. The process was continued for 1000s of iterations 
for each parameter group, where the number of iterations depends on number of 
GSPs and number of target crop variables ( phenotypic trait   s  ) infl uenced by the 
GSPs. One reason for the general linear fl ow of the staged-sequential approach in 
Table  8.5  is life cycle progression (where one stage must occur before we predict 
the next one). Another reason is that some GSPs are uniquely connected to a limited 
number of more stable crop target observations and those are thus solved fi rst (seeds 
per pod, seed size, potential seed-to-pod ratio). Likewise, the early vegetative 
growth GSPs are optimized before the productivity-related GSPs such as 
LFMAX. There may be some iteration as well, because large change in LFMAX 
can cause variation in LAI which also affects canopy assimilation. Use of combina-
tions of several GSPs against multiple targets can be used to accomplish the same 
goal, but require knowledge and experience in which GSPs to group against targets. 
We have used this approach in an automated process for each given  genotype  . 
Results of optimized GSPs obtained show promise and give good differential phe-
notypic outcomes of growth dynamics for different genotypes (but results are not 
available for this paper).

8.12         Linking Genes to  GSPs   in CROPGRO Legume Models 

8.12.1     Example of Gene-Linked Model 
for  CROPGRO-Soybean   

 The  CROPGRO-Soybean   model was linked to  E loci   and  QTL   markers by  Messina   
et al. ( 2006 ), and then used to predict life cycle and grain yield in Illinois state vari-
ety trials. Phenotypic data was collected in fi eld experiments in Florida during two 
seasons on near isogenic lines for genotypes that had previously been characterized 
for six E loci. Then an optimization approach was used with that data to solve for 
the  GSPs   of life-cycle duration for CROPGRO-Soybean. Then the obtained values 
of the GSPs were related, with multiple linear regression, as linear functions of the 
E loci, where 0 indicated recessive and 1 indicated dominance nature of a given loci. 
The  allelic information   at loci E1, E2, E3, E4, E5, and E7, respectively, were used. 
An additional variable NLOCI was also created to represent the number (sum) of 
dominant alleles at the E loci (sum ranges from 0 to 6, none dominant to all domi-
nant), because Stewart et al. ( 2003 ) showed a linear relationship between 
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    Table 8.5    Sequence of  optimization of GSPs      with the CROPGRO-bean model for genotypes of 
common bean ( Phaseolus vulgaris ) Jamapa × Calima recombinant inbred population grown at fi ve 
sites   

 Crop model  Target fi eld measurements 

 Sequence  GSP name  Description 

 1  PL-EM   a PT-time between planting and 
emergence 

 Emergence 

 2  EM-V1  PT-time required from emergence to 
fi rst true leaf 

 V1 

 3  EM-FL  PT-time from emergence to fl ower 
appearance 

 R1 

 PPSEN  Slope of rel. response to 
photoperiod, using all sites 

 4  RWDTH  Canopy width (m)  Canopy height 
 5  RHGHT  Canopy height (m)  Canopy width 
 6  FL-SH  PT-time from fi rst fl ower to fi rst pod  R3 
 7  FL-SD  PT-time from fi rst fl ower (R1) to 

fi rst seed (R5) 
 R5 (full size pod) 

 8  SD-PM  PT-time from fi rst seed (R5) to 
physiol. maturity (R7) 

 R5-R7 

 9  R7-R8  PT-time from physiol. (R7) to 
harvest maturity (R8) 

 R7 & 95 % mature pods 

 10  SLPF  Soil fertility factor, calibrated for 
each site  across all genotypes  

 Slope of above-ground 
biomass at each site 

 11  TRIFL  Rate of appearance of leaves on 
main stem (MS) 

 Node number 

 12  FL-VS  PT-time from fi rst fl ower to last leaf 
on main stem 

 Node #, last node on main 
stem 

 13  SDPDV  Number of seeds per pod  Seeds per pod at fi nal harvest 
 14  WTPSD  Potential seed size (weight)  Average seed weight at fi nal 

harvest 
 15  THRSH  Percentage seed in pod (%)  Shelling % at maturity 
 16  SLAVR  Specifi c leaf area (cm 2  g −1 )  Specifi c leaf area over time 
 17  SIZLF  Leaf area of fi fth fully expanded leaf 

(cm 2 ) 
 LAI over time, through 
expansion of fi fth MS leaf 

 18 b   LFMAX  Light-saturated leaf photosynthesis 
rate (mg CO 2  m −2  s −1 ) 

 Crop mass & pod mass over 
time 

 19  FL-LF  PT-time from fi rst fl ower to end of 
leaf expansion on plant 

 Last leaf expansion on plant, 
or peak LAI 

 20  PODUR  PT-time required to reach fi nal pod 
load 

 Time between addition of fi rst 
and last pod 

 21 c   FL-SD  PT-time from fi rst fl ower (R1) to 
fi rst seed (R5) 

 Onset rapid pod & seed 

 22 c   SD-PM  PT-time from fi rst seed (R5) to 
physiol. maturity (R7) 

 R7& 95 % mature pods 

   a PT represents photo-thermal time 
  b May iterate on LFMAX & SIZLF if LAI not predicted well after step 18 
  c If step 21 results in shift in life cycle (FL-SD), then SD-PM is re-solved  
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photoperiod sensitivity and the number of dominant alleles at E loci. One could 
view this almost as multiple doses of the same genetic region. Viewed in this way, 
the critical short  daylength   (CSDL, in hours) is determined by E3, E5, and the sum 
of dominant loci (NLOCI). The photoperiod sensitivity slope (PPSEN) is deter-
mined by E1 and NLOCI. Even though the equation for CSDL explicitly lists E3 
and E5, and that for PPSEN lists E1, the presence of dominant alleles at the other 
loci not in the equation act via the NLOCI variable. The photothermal time from 
emergence to fl owering (EM-FL) is determined by E1 and E3.

  CSDL NLOCI E E NLOCI E    14 33 0 44 0 27 3 0 48 5 0 18 5. . . . .    

  PPSEN NLOCI E E NLOCI   0 11 0 063 0 58 1 0 13 1. . . .    

  EMFL E E  20 77 2 1 1 1 8 3. . .    

  Other  GSPs  , such as photothermal time from V1 to end of juvenile (V1-JU), 
beginning fl ower to beginning seed (FL-SD), time from beginning fl ower to end of 
main stem (FL-VS), and time from beginning seed to beginning maturity (SD-PM) 
were similarly expressed as a function of these  genes  . The GSPs, parameterized in 
year 1 from the genes, successfully predicted fl owering, onset of pod addition, last 
leaf formed on the main stem, and beginning maturity of lines grown in a second 
season. The most important test was done against independent data on phenology 
and yield of  soybean   cultivars grown in the Illinois state variety trial conducted at 8 
sites over 5 years. A set of genotypes in that trial were genotyped with SSR markers 
to determine their respective  E loci  , and those E loci were used to compute the 
GSPs. The  gene-based model  , with only E loci information, was able to account for 
75 % of the variation in date of maturity and 54 % of the yield variation. This indi-
cates that life cycle is relatively easier to predict, and secondly that life cycle is an 
important contributor to yield potential of soybean. Mavromatis et al. ( 2002 ) also 
confi rmed that solved GSP affecting soybean life cycle are more repeatable across 
environments than are GSPs affecting yield.  

8.12.2     Example of Gene-Linked Model for CROPGRO- 
Common Bean 

 An example of common bean  GSPs   from  genes   defi ned in the CSM- GeneGro model   
(Hoogenboom et al.  2004 ) is illustrated here. Hoogenboom et al. ( 2004 ) worked 
with seven genes: Ppd (long  daylength   delay), Hr (enhances effect of Ppd, requires 
Ppd to be present), Fin (indeterminate), Fd (early fl owering and maturity), Ssz1 
(seed size), Ssz2 (seed size), and Ssz3 (seed size). The GSPs were described (simi-
lar to  Messina   et al.  2006 ) as a function of these genes.
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  PPSEN Ppd Hr Ppd Hr   0 004 0 0154 0 036 0 0104. . . .    

  EMFL Fin Fd  26 77 4 886 5 88. . .    

  FLSH Ssz Ssz Ssz   4 63 0 972 1 0 98 2 1 8 3. . . .    

  FLSD Ssz Ssz  10 61 2 028 2 2 1 3. . .    

  SDPM Ssz Hr  21 027 0 11 1 4 13. . .    

  FLVS Fin Ssz Fin Ssz   7 00 4 76 2 75 2 1 02 2. . . .    

  FLLF Fd Ssz  18 0 3 8 6 9 2. . .    

  SLAVR Ssz Ssz Ssz   322 41 1 38 2 25 3 3.    

  WTPSD Ssz Ssz  0 22 0 21 1 0 07 2. . .    

  SDPDVR Fin Ssz Ssz   5 14 0 2 1 9 1 0 24 3. . . .    

Other  GSPs   not shown were also a function of the  genes  . With these genes and the 
CROPGRO-Dry Bean model, we illustrate different modeled growth dynamics for 
several of the cultivars that differ in presence or absence of the dominant allele for 
those genes (where fi rst-letter capitalization indicates the dominant allele). Cultivars 
Porrillo Sintetico (mostly Meso-American) is Ppd, hr, Fin, fd, ssz1, ssz2, and Ssz3, 
while cultivar Manitou is Ppd, hr, fi n, Ssz1, Ssz2, Ssz3. Cultivar Bayo Madero is 
Ppd, Hr, Fin, Ssz1, Ssz2, Ssz3. By changing ‘Fin’ to ‘fi n’, we created a Calima-like 
cultivar with Ppd, hr, fi n, Ssz1, Ssz2, Ssz3. The emergent behavior of the genes are 
illustrated in Figs.  8.1 ,  8.2 , and  8.3 , and also compared to observed growth data of 
Porrillo Sintetico and Jatu Rong (Calima-like) cultivars measured at Palmira in 
1990 by Sexton et al. ( 1994 ). Figure  8.1a  illustrates how genes for time to fl ower as 
well as  determinancy   affect main stem node number. The Calima-like cultivar is the 
only one with fi n, whereas the other three gene-based cultivars have dominant allele 
Fin, along with different photo-thermal times to fl ower. Figure  8.1b  shows the GSP- 
based model simulation against data collected on Porrillo Sintetico and Jatu Rong 
at Palmira by Sexton et al. ( 1994 ). The simulated Calima-like gene-based cultivar 
closely matches the data on node number on main stem for the Jatu Rong cultivar 
and the simulated gene-based Porrillo Sintetico fi ts well with the observed data on 
Porrillo Sintetico. The gene-based cultivars had considerable variation in pattern of 
LAI (Fig.  8.2a ), reaching a peak sooner for the Calima-like (fi n) with early fl ower-
ing (Fd), followed by the cultivars with Fin but relatively mid-cycle fl owering, and 
later peak with highest LAI for gene-based Porrillo Sintetico. Comparison with real 
data for Jatu Rong and Porrillo Sintetico at Palmira (Fig.  8.2b ), illustrates close 
predictions of LAI patterns for the gene-based Calima-like and Porrillo Sintetico. 
Lastly, there are different total  seed growth patterns   for the four gene-based culti-
vars (Fig.  8.3a ), with earliest onset and lowest yield associated with the Calima-like 
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  Fig. 8.1    ( a ) Node number on main stem as affected by  genes   in four gene-based  dry bean   cultivars 
at Palmira, ( b ) Node number on main stem as affected by genes in two gene-based dry bean culti-
vars compared to data for Jatu Rong (Calima-like) and Porrillo Sintetico at Palmira       

cultivar, followed by later onset and higher seed yield for the other gene-based cul-
tivars. Comparison with observed data on seed mass over time for Jatu Rong and 
Porrillo Sintetico at Palmira (Fig.  8.3b ) shows good and comparable predictions of 
seed growth patterns for the gene-based Calima-like and Porrillo-Sintetico culti-
vars. The point of these comparisons is to illustrate the resulting widely varying 
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  Fig. 8.2    ( a ) Leaf area index as affected by  genes   in four gene-based  dry bean   cultivars at Palmira, 
( b ) Leaf area index as affected by genes in two gene-based dry bean cultivars compared to data for 
Jatu Rong (Calima-like) and Porrillo Sintetico at Palmira       
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Palmira, ( b ) Seed growth pattern as affected by genes in two gene-based dry bean cultivars com-
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growth patterns attributed to genes that control life cycle progression and other 
aspects of  dry bean   growth.

8.13           Conclusions 

 There appears to be considerable potential for linking genetics to mechanistic 
 process- oriented crop models  , with the goal of predicting fi eld phenotypic perfor-
mance as a function of  genes  . However, there remain a number of issues to fully 
take advantage of the considerable potential that this approach provides. Present 
crop models will need to be re-designed such that the processes in the models can 
be better linked to genetics. Current  GSPs   need to be re-considered and additional 
ones added. The proposed  linkage of model GSPs to genes   will work via the 
approaches used by several modelers. Present statistical analyses of genes and G × E 
interactions are good tools to discover important genes and the G × E interactions, 
but once highlighted, we propose a follow-up fruitful linkage of those genes to 
GSPs in crop models to more effectively predict phenotypes in multiple new envi-
ronments, taking advantage of the built-in environmental sensitivities of the crop 
models. We hypothesize that many cases of  genotype   by environment  interaction   
are often the case of one gene (or the same complex of genes), that gives a perfor-
mance advantage in one environment but a negative response in another environ-
ment. The proposed approach of linking genes to crop models should lead to 
improved characterization of variations among cultivars in response to both envi-
ronment and to  genetic control   of those responses to environment. 

 Our group at the University of Florida recently conducted a workshop in 2015 
bringing together plant breeders and crop modelers to discuss  QTL    mapping  ,  phe-
notyping  ,  optimization of GSPs   from collected  phenotype   data, followed by linking 
of  GSPs   in crop models to the  genes   (  www.conference.ifas.ufl .edu/MergingCMG    ). 
The goal was cross training and interdisciplinary learning, including exercises with 
real data, because we feel the disciplines have diverged so much that geneticists are 
not well connected with the fi eld phenotyping, and crop modelers are not connected 
with the geneticists.     
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    Chapter 9   
 Modelling QTL-Trait-Crop Relationships: 
Past Experiences and Future Prospects       

       Xinyou     Yin     ,     Paul     C.     Struik    ,     Junfei     Gu    , and     Huaqi     Wang   

    Abstract     Ecophysiological crop models have long been used to understand crop 
responses to environmental factors and to crop management practices, by integrat-
ing quantitative functional relationships for various physiological processes. In 
view of the potential added value of robust crop modelling to classical quantitative 
genetics, model-input parameters are increasingly considered to represent ‘genetic 
coeffi cients’, which are environment-independent and amenable to selection. 
Likewise, modern molecular genetics can enhance applications of ecophysiological 
modelling in breeding design by elucidating the genetic basis of model-input param-
eters. A number of case studies, in which the effects of quantitative trait loci (QTL) 
have been incorporated into existing ecophysiological models to replace model- 
input parameters, have shown promise of using these QTL-based models in 
 analysing genotype-phenotype relationships of more complex crop traits. In this 
chapter, we will review recent research achievements and express our opinions on 
perspectives for QTL-based modelling of genotype-by-environment interactions 
and even  epistasis on complex traits at crop level.  

9.1         Introduction 

 A major challenge in fi eld- and greenhouse-crop production today is breeding for 
genotypes and realizing their potential in given (often stressful) environments 
to produce suffi cient high-quality products while maintaining the sustainability 
of  production systems and resource use. This goal can be achieved via creating 
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phenotypes of  complex traits   at the level of the crop – the community of mutually 
interacting plants, usually of the same species. A thorough insight into  gene-trait-
crop relationships   is therefore crucial. Currently, there is an increasing recognition 
amongst geneticists and breeders (e.g., Tuberosa and Salvi  2006 ; Dwivedi et al. 
 2007 ; Langridge and Fleury  2011 ;  Messina   et al.  2011 ) and physiologists (e.g., 
Chenu et al.  2009 ; Zhu et al.  2011 ) of immediate need for physiological and 
 computational tools to assist breeders in more effectively analysing, interpreting, 
translating, and integrating the outputs from high-throughput genomics research, 
and to help resolving  genotype  -by- environment    interactions   (G × E) effi ciently and 
selecting the best technology interventions and associated breeding systems for 
their  target trait  s and target environments. 

 Actually, decades ago, process-based physiological models of crop growth have 
already been suggested to be useful tools in supporting breeding (e.g., Loomis et al. 
 1979 ; Spitters and Schapendonk  1990 ). These models quantify causality between 
relevant physiological processes and responses of these processes to environmental 
variables, and, therefore, allow predictions of crop yields not restricted to the 
 environments in which the model parameters have been derived. Crop models 
require environmental inputs (i.e., weather variables and management options) and 
physiological inputs. The latter inputs are used as model parameters for character-
izing genotypic differences. These  genotype  -specifi c parameters, acronymised as 
GSP by  Boote   et al. (see Chap.   8     of this book), are also referred to as ‘   genetic 
 coeffi cients    ’ (White and Hoogenboom  1996 ; Mavromatis et al.  2001 ) or ‘ model-
input traits  ’ ( Yin   et al.  2000a ), implying that  model-input parameters   might be 
(at least partly) under  genetic control  . As model parameters can refl ect certain 
genetic characteristics,  crop modelling   has long been considered a useful computa-
tional tool to assist breeding (Loomis et al.  1979 ; Spitters and Schapendonk  1990 ; 
Boote et al.  2001 ). Shorter et al. ( 1991 ) already proposed collaborative efforts 
between breeders, physiologists and modellers, using models as a framework to 
integrate physiology with breeding. 

 Given the common experience that crop models based on physiologically sound 
mechanisms can quantify and integrate responses of crop yield to both genetic and 
environmental factors, crop physiologists, breeders and modellers have explored the 
potential of using crop models in various aspects of breeding. These activities 
include: (1) identifying main yield-determining  traits  , both under poor and  conducive 
environments for crop growth (Semenov and Halford  2009 ;  Yin   et al.  2000b ; 
Heuvelink et al.  2007 ), (2) defi ning optimum selection environments in order to 
maximize selection progress (Aggarwal et al.  1997 ), (3) optimizing single trait 
 values ( Boote   and Tollenaar  1994 ; Setter et al.  1995 ; Yin et al.  1997 ), (4) designing 
 ideotypes   in which  trade-offs   between confl icting crop traits are properly evaluated 
(Spitters and Schapendonk  1990 ; Penning de Vries  1991 ;  Dingkuhn   et al.  1993 ; 
Kropff et al.  1995 ; Haverkort and Kooman  1997 ), and (5) assisting multi-location 
testing (Dua et al.  1990 ) and explaining G × E (Mavromatis et al.  2001 ; van  Eeuwijk   
et al.  2005 ;  Bertin   et al.  2010 ). Some of these explorative activities were  summarised 
by Boote et al. ( 2001 ). 
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 However, crop physiology has not contributed much to breeding (Jackson et al. 
 1996 ). All the above-mentioned studies, based on model simulations, are to give 
suggestions that breeders may use. Stam ( 1998 ) and Koornneef and Stam ( 2001 ), 
from a geneticist’s and breeder’s point of view, expressed their concerns about this 
model-based approach that ignores the inheritance of the  model-input traits  . For 
example, for designing  ideotypes   by modelling, it is assumed, either tacitly or 
explicitly, that these  traits   can be combined at will in a single  genotype  . Such an 
assumption ignores the possible existence of constraints, feedback mechanisms and 
correlations among the traits. Constraints might be imposed simply by the fact that 
little genetic variation exists in the genetic material available for selection. Thus, 
models may not identify those traits for which gain via breeding may be easiest 
(Jackson et al.  1996 ). Correlations between the traits, due either to a tight linkage 
between  genes   or to a single gene that affects multiple traits ( pleiotropy  ), may 
 seriously hamper the realization of an ideotype (for example, an early-maturing 
potato cultivar with high resistance against late blight; Visker et al.  2003 ;  Struik   
 2010 ). Knowledge of the genetic basis of phenotypic variation, even described in 
terms of model-input traits, is crucial for a successful breeding programme (Stam 
 1998 ). Therefore, understanding the inheritance of the model parameters within the 
framework is required (Stam  1998 ). To assist the development of effi cient  breeding 
strategies  ,  crop modelling   requires quantitative understanding of the inheritance of 
the  model-input parameters  . 

 Largely to that end, there have been a growing number of studies that combine 
 crop modelling   with modern genetic approaches. In this chapter, we review recent 
research experiences on elucidating the  QTL  -trait-crop  relationships   by integrating 
crop systems modelling and genetic  QTL mapping  . Other roles of crop modelling 
in genetics and breeding will also be explored. Future prospects in this research line 
are discussed in the context of assisting  crop improvement   programmes.  

9.2     Complementarity of Crop Modelling 
and Genetic Mapping 

 In genetics, complex crop  traits   can be unravelled into the effects of individual 
 QTL   –  quantitative trait loci   (Paterson et al.  1988 ), commonly using the materials of 
a  segregating population   derived from a  bi-parental cross  . A common result of QTL 
analysis of complex crop traits is that QTL expression is usually conditional on the 
environment and this greatly impedes the application of QTL-mapping information 
for manipulating  complex traits   (Stratton  1998 ). 

 Crop models can potentially be of help in this respect to better address  genotype  - 
phenotype   relationships  , provided that  model-input parameters   can be easily 
 measured ( Yin   et al.  2004 ) and vary little with environmental conditions (Reymond 
et al.  2003 ; Tardieu  2003 ). Model-input parameters (or ‘ genetic coeffi cients  ’) refl ect 
effects of genetic origin in the way that one set of parameters represents one 
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 genotype (Tardieu  2003 ). Hence, the models manifest that the crop  phenotype   is 
achieved through nonlinear interactive and ontogenetic responses of component 
processes to multiple environmental factors. Such an approach has added value to 
classical genetics, since geneticists often ignore or overlook competition, density, 
nutrient supply, morphology, physiology and  plasticity  , lumping such matters 
vaguely under the ‘G × E’ term or introducing simple response functions in their 
statistical models (e.g., van  Eeuwijk   et al.  2005 ). 

 To enhance applications of ecophysiological modelling in genetic analysis and 
breeding, understanding the genetic basis of  model-input parameters   is essential. 
 Yin   et al. ( 1999a ,  b ) fi rst showed that the  QTL   approach can be applied to model- 
input parameters to elucidate their inheritance. Such attempts have resulted in an 
integrated approach of so-called ‘QTL-based ecophysiological modelling’ (Fig. 
 9.1 ), which links  crop modelling   with genetics, focusing on the G × E problem and 
 genotype  -phenotype  relationships  . The  QTL-based models   can be used to predict 
performance of any genotype in any environment.

   This approach of  QTL  -based  modelling   was fi rst illustrated to predict a very 
complex trait – the grain yield of barley ( Hordeum vulgare ) by  Yin   et al. ( 1999a ,  b , 
 2000a ). The same approach for QTL-based modelling analyses was applied to crop 
 traits   such as leaf elongation rate in maize (Reymond et al.  2003 ) and fl owering time 
in barley (Yin et al.  2005 ), rice (Nakagawa et al.  2005 ) and  Brassica oleracea  
(Uptmoor et al.  2008 ,  2012 ), fruit quality in peach (Quilot et al.  2004 ,  2005 ) and 
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  Fig. 9.1    Illustration of  QTL  ( quantitative trait loci  )-based  crop modelling   to predict complex 
  phenotypes  . Values of  model-input traits   were estimated from the effects of their identifi ed  QTL   to 
replace the original values of the  traits  . QTL-based trait values  ŷ  j  were calculated using a simplest 
genetic model, in which m̂  is the estimated intercept,  g  ij  is the genetic (additive effect) predictor of 
the  i -th QTL  genotype   for the  j -th individual of the mapping population,  â  i  is the estimated  additive 
effect of the  i -th QTL on the trait ( i  = 1, 2, …,  n ). This fi gure predominantly illustrates the 
structure of a typical crop model using the Forrester’s symbols. In such a crop growth model, cli-
matic factors (e.g., radiation,  temperature  , …), soil conditions, and crop parameters are inputs, and 
model simulation gives output of  complex traits   such as crop yield       

 

X. Yin et al.



197

tomato ( Bertin   et al.  2010 ; Prudent et al.  2011 ), maize kernel number (Amelong 
et al.  2015 ), and Arabidopsis stomatal conductance (Reuning et al.  2015 ), all 
 relatively simple traits with well-defi ned infl uences of some dominant environmen-
tal factors (such as vapour pressure defi cit, soil moisture content,  temperature   and 
photoperiod). In the domain of morphological traits, the phenotypic effects of QTL 
for culm length, grain number, and grain size have been simulated using morpho-
logically explicit models in barley ( Buck-Sorlin    2002 ) and in rice ( Xu   et al.  2011 ; 
see Chap.   2     of this book by Xu and Buck-Sorlin). These studies on relatively simple 
developmental, morphology-related or growth traits demonstrate that the approach 
can unravel G × E, and highlight the potential to analyse more  complex traits   
 manifested through season-long growth dynamics (see  Gu   et al.  2014b ). 

 In short,  genetic mapping   dissects a quantitative trait into various genetic 
 factors –  QTL   (Paterson et al.  1988 ), but it can only predict the trait  phenotype   in 
independent new environmental conditions to a limited extent (Stratton  1998 ). 
Ecophysiological modelling can reveal how G × E comes about (Tardieu  2003 ), but 
it does not consider the genetic basis of model parameters that describe genotypic 
differences. Combining ecophysiological modelling and genetic mapping can dis-
sect  complex traits   into  component trait  s, integrate effects of QTL of the component 
 traits   over time and space at the whole-crop level, and predict yield performance of 
various genetic make-ups under different environmental conditions.  

9.3     Roles of Modelling in Assisting Genetic Analysis 
and Breeding 

 There is  in silico  evidence that this combined modelling and genetic approach can 
facilitate translating the  QTL    mapping   into more effi cient  marker-assisted breeding   
strategies ( Hammer   et al.  2006 ). To this end, more accurate crop models would 
facilitate the improvement of effi ciencies of combined model- and marker-assisted 
breeding. In this section we summarise, in abroad sense, the applications of model-
ling in support of genetic analysis and breeding programme. 

9.3.1     Models Can Support Phenotyping for the  QTL   Mapping 

 A pre-requisite of the proper use of phenotypic data for quantitative genetic analysis 
is that the phenotypic data of the different genotypes should be collected under the 
same environmental conditions and at the same plant developmental stage. On the 
other hand, quantitative genetic analysis requires screening of a large population to 
realize the required genetic resolution based on high power of the analyses. 
Complicated statistical analyses and experimental designs were often used to 
remove environmental errors, for example, caused by heterogeneity in the 
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experimental fi eld. But for highly sensitive  traits   (such as photosynthesis), microcli-
mate fl uctuations could also obscure the genetic effects existing in the population. 
Ecophysiological models based on solid physiological knowledge could be useful 
tools to standardize the measurements ( Gu   et al.  2012a ). Using model-based stan-
dardization, several  QTL   related to photosynthesis were found under fl uctuating 
fi eld conditions, and were confi rmed in independent greenhouse environments. 
Ecophysiological models can thus play a role in improving the quality of data on 
traits that are sensitive to environmental changes. 

 Another example was reported by  Yin   et al. ( 1999a ), who mapped  specifi c leaf 
area   (SLA) in a barley  recombinant inbred line   s   population. After adjusting SLA 
values measured at the same chronological time to values at the same physiological 
age, the effect on SLA from the  denso  gene was no longer signifi cant. The effect of 
the  denso  gene detected at the same chronological time was therefore the conse-
quence of its direct effect on fl owering time. An ecophysiological model can thus 
indeed assist  QTL   analysis by removing either environmental noise or indirect 
effects from other  traits  . 

 Breeders often have a crude method of  phenotyping  . Modelling can help to 
upgrade their phenotyping activities. Khan ( 2012 ) used several expressions to 
describe phasic development curves of canopy cover dynamics in potato. Not only 
the overall area under the curve but also individual model parameters were found to 
vary among individuals of a mapping population, and the parameters most related 
to the area under the curve were identifi ed, providing the trait components select-
able for improving canopy light interception and biomass yield.  

9.3.2     Models Can Dissect Complex Traits into Physiological 
Components 

 Physiological modelling can dissect  complex traits   (e.g., photosynthesis or yield) 
into physiological  component trait  s.  Gu   et al. ( 2012b ) used a photosynthesis model 
to dissect photosynthesis into: (1)  stomatal conductance   g s , (2)  mesophyll conduc-
tance   g m , and (3) electron transport capacity  J  max  and Rubisco carboxylation  capacity 
 V  cmax . Using the crop growth model  GECROS  , yield was connected to, and dissected 
into seven physiological input parameters (Gu et al.  2014b ). By dissecting complex 
 traits   into physiologically meaningful component traits, it is possible to assess 
genetic variation for each component trait and evaluate its relative importance by 
sensitive analyses or regression analyses. For example, genetic variation in 
 light-saturated photosynthesis and  transpiration effi ciency   was found to be mainly 
associated with variation in  g  s  and  g  m  (Gu et al.  2012b ). The physiological input trait 
‘total crop nitrogen uptake at maturity’ was found to have the most signifi cant effect 
on yield (Gu et al.  2014b ). Similarly, Prudent et al. ( 2011 ) combining an 
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ecophysiological modelling and  QTL   analysis, identifi ed key elementary processes 
and genetic factors underlying tomato fruit sugar concentration. All these results 
show that the physiological model could be helpful to decide on priority targets for 
breeding, although possible impact remains to be validated through actual breeding 
and fi eld testing.  

9.3.3     Models Can Integrate and Project Single Organ Level 
Genetic Variation to Crop Level 

 Modelling not only can dissect  complex traits   into physiological relevant compo-
nents, but can also integrate effects of  QTL   of the  component trait  s over time and 
space, and predict complex  traits   at the whole-crop level of various genetic make- 
ups under different environmental conditions ( Yin   and  Struik    2010 ). This could be 
useful to evaluate the effect of changes in a single trait or single trait-related  QTL   
on a crop, while keeping other traits constant to avoid the confounding effects from 
other physiological processes, which is not plausible in a ‘real’ experiment. For 
example, as stated earlier, improving photosynthesis is generally thought crucial for 
improving plant production, but often no correlation or even negative correlations 
between photosynthesis and plant production were observed (Evans and Dunstone 
 1970 ; Teng et al.  2004 ; Zhao et al.  2008 ; Jahn et al.  2011 ;  Gu   et al.  2014b ). The 
reason for this discrepancy could be that plants differed genetically in many respects 
other than photosynthesis. Hence, Gu et al. ( 2014a ) used the crop model  GECROS  , 
and found that the natural genetic variation in leaf photosynthesis within our experi-
mental mapping population would result in equivalent differences in production 
when scaled up to crop level. The ability of integration and upscaling can also help 
evaluate impacts of QTL for a specifi c organ-level trait at crop level in a different 
environment. Using the CROPGRO- soybean    model  ,  Messina   et al. ( 2006 ) estimated 
the effects of QTL markers from a set of  near-isogenic lines   and satisfactorily 
 predicted the variation of yield across fi ve years and eight sites among an indepen-
dent set of soybean cultivars. Chenu et al. ( 2009 ), using the crop model  APSIM  -
Maize, evaluated a QTL accelerating leaf elongation on maize yield. This QTL 
could cause a yield increase in an environment with water defi cit before fl owering, 
but reduced yield under  terminal drought   stress. This information could be used in 
breeding for specifi c environments or for facing the challenges caused by  climate 
change  . Most importantly, the feature of integration could allow for designing 
  ideotypes   of various genetic make-ups underlying physiological processes. Based 
on the genetic variation and resulting QTL for each physiological component in 
photosynthesis, it was shown that the ideotype for leaf-level photosynthesis and 
 transpiration effi ciency   (TE) could potentially be improved by 17.0 % and 25.1 %, 
respectively (Gu et al.  2012b ).  
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9.3.4     Ecophysiological Model May Help to Resolve Genetic 
Complexities 

 A simple genetic model can be assumed for  QTL   analysis of the  component trait  s, 
but more sophisticated  genetic control   (G × E, and  epistasis  , i.e., the interaction 
between  genes  ) on the complex trait per se can be manifested when QTL-based 
parameter values are fed-back to the ecophysiological model. As discussed earlier, 
use of ecophysiological models to predict and interpret G × E has been widely 
 recognised and exemplifi ed (Reymond et al.  2003 ;  Yin   et al.  2005 ;  Messina   et al. 
 2006 ; see Chaps.   3    ,   4    ,   5    ,   6    ,   7    , and   8     of this book). The use of the models to interpret 
epistasis is less recognised. Epistasis is often found for phenotypes that are 
achieved through interactive and interrelated metabolic and ontogenetic pathways 
(Lee  1995 ). It might be reduced or even disappear if input  traits   of a model that 
accounts for interrelations among relevant processes are subjected to analysis. 
Such possibility agrees with the awareness of geneticists that epistasis can often be 
removed by a physiologically based scaling of trait values (Kearsey and Pooni 
 1996 ). For  example, crop yield is analysed in agronomy as the product of several 
yield component traits; independent  QTL   on various yield components must 
exhibit an epistatic effect on yield (Yin et al.  2002 ).  Chapman   et al. ( 2003 ) used the 
crop model  APSIM   to  generate a state space of  genotype   performance based on 15 
genes controlling 4 traits and then search this space for selection. They showed 
complex epistatic and G × E effects were generated for yield even though gene 
action at the trait level had been defi ned as simple  additive effects  . Similarly, White 
and Hoogenboom ( 1996 ), Messina et al. ( 2006 ), and White et al. ( 2008 ) used sim-
ple linear additive models to regress  model-input parameters   against several known 
gene loci across cultivars or genotypes, implicitly modelling the epistatic effects of 
these genes on the aggregated traits such as yield or days to fl owering. It should be 
acknowledged that use of crop models to resolve epistasis in real experimental 
populations may be a more diffi cult task than to resolve G × E, and for the required 
accuracy crop models should evolve into  crop systems biology   models (see 
Chap.   1     of this book by  Baldazzi   et al.).  

9.3.5      QTL  -Based Modelling Can Quantify Constraints 
in Breeding 

 Model simulation could inspire breeders. However, Stam ( 1998 ) and Koornneef and 
Stam ( 2001 ), from a geneticist’s perspective, expressed their concerns that the igno-
rance of the inheritance of the  model-input parameters   is a major constraint for 
breeders to adopt the results of model-based approaches. Often in  ideotype design   
by modelling, modellers implicitly assumed that plant  traits   can be combined at will 
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into a single  genotype  . As stated earlier, such an unrealistic practice ignores the 
 possible existence of constraints, feedback mechanisms and correlations among 
traits. By integrating  crop modelling   with genetics –  QTL  -based  modelling  , it is 
possible to evaluate constraints in breeding either due to limited genetic variation or 
to correlations.  Gu   et al. ( 2012b ) showed  trade-offs   between improving photosyn-
thesis and TE either due to tight linkage or to  pleiotropic effects   of  QTL   related to 
 g  m  and  g  s . If the linkage between  g  m  and  g  s , or  co-location of QTL   of  g  m  and  g  s  could 
be broken, the  virtual ideotype   could have both improved photosynthesis and 
TE. The quantitative importance of breaking this linkage could be used together 
with insights of geneticists about chances of success in guiding decisions in breeding 
programmes, thus strengthening the scientifi c basis for designing breeding activities.  

9.3.6      QTL  -Based Modelling Can Assist Marker-Assisted 
Selection 

 Marker-assisted selection (MAS), combined with conventional breeding approaches, 
has been used to effectively integrate major  genes   or  QTL   with large effect into 
widely grown varieties (Jena and Mackill  2008 ). The use of cost-effective DNA 
markers and a MAS strategy will provide opportunities for breeders to develop 
high-yielding, stress-tolerant, and better quality rice cultivars. For example, pyra-
miding different resistance genes using MAS provided opportunities to breeders to 
develop broad-spectrum resistance against diseases and insects (Huang et al.  1997 ). 
An example of the latter approach is the insertion of cassettes of up to four resis-
tance genes from wild potato species into existing cultivars using cisgenesis tech-
niques to make these existing cultivars resistant to late blight (Haverkort et al.  2009 ). 
By stacking several resistance genes, the resistance cannot be broken easily by the 
causal agent  Phytophthora infestans , certainly not when this approach is combined 
with a well-designed resistance management strategy (Haverkort et al.  2009 ). 

  Gu   et al. ( 2014b ) also showed that the existing  GECROS   model can be a useful 
tool to enhance  marker-assisted breeding   through a  model-based ideotype design  . 
Using the principles for  QTL  -based  modelling   as defi ned earlier ( Yin   et al.  2000a , 
 2004 ,  2005 ), marker-based  crop modelling   was performed to rank the markers 
 identifi ed for various yield-determining physiological  traits   that are input parame-
ters of GECROS (Table  9.1 ). It was found that the relative importance of markers 
differed markedly between well-watered and drought-stressed environments (the 
correlation coeffi cient in the rank between the two environments was 0.09;  P  > 0.10). 
Such an analysis detected markers that breeders can prioritize in their MAS 
 programmes for specifi c environments. Gu et al. ( 2014b ) showed that compared 
with identifi cation of markers through multiple regression for yield per se, the 
model-based approach identifi ed additional  QTL   and could be complementary to 
the analysis of yield per se.
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9.4         Past Experiences in Integrating Ecophysiological 
Modelling and Genetic Mapping 

 The main purpose of practising  QTL  -based ecophysiological modelling on the basis 
of using a mapping population is to predict genotypic impact on phenotypes, in 
contrast to conventional  crop modelling   which usually aims to predict the impact of 
environmental variables on crop productivity. The following contains summaries of 
current experiences. 

   Table 9.1    Percentage of the phenotypic variation in yield among rice introgression lines (ILs) ( R  2 ) 
accounted for by different sets of simulations using the marker-based version of the  GECROS   
model, when markers were fi xed one at a time to calculate different sets of marker-based parameter 
inputs for GECROS. Marker positions are denoted as ‘Chr_cM’, that is, Chromosome_centiMorgan, 
as identifi ed during  QTL  -analysis (Based on  Gu   et al. ( 2014b ))   

 Fixed marker  Well-watered  Drought-stressed 

 Chr_cM  Name   R  2  (%)  Rank   R  2  (%)  Rank 

 1_9.5  RM8068  51.6  11  42.6  13 
 1_25.4  RM8145  53.9  18  41.4  10 
 1_98.1  RM306  51.6  11  39.5  6 
 1_124.8  RM1152  50.9  9  44.6  18 
 2_92.5  RM475 a   46.2  3  37.7  5 
 2_110.9  RM1367  51.7  14  45.5  19 
 2_139.3  RM8030 a   34.2  1  40.9  9 
 3_79.1  RM251  47.9  5  46.2  20 
 3_108.4  RM338 b   52.6  17  29.8  1 
 4_25.5  RM518  59.4  20  44.1  17 
 4_123.8  RM2799  51.8  16  40.2  7 
 5_20.6  RM7302 b   51.6  11  33.2  2 
 7_43.5  RM432  50.7  8  36.9  4 
 7_47  RM11  51.7  14  43.8  16 
 7_81.05  RM3753  49.4  7  41.9  11 
 8_83.7  RM284 a   45.7  2  42.6  13 
 9_0.8  RM5799  48.3  6  42.6  13 
 9_64.4  RM410 a, b   47.3  4  35.9  3 
 10_87.1  RM294A  51.1  10  40.5  8 
 12_61.6  RM1261  53.9  19  42.1  12 
 Baseline simulation  51.6  42.6 

  The baseline simulation gives the  R  2  values for the simulation, in which no marker was fi xed, i.e., 
IL-specifi c allelic values (−1 or 1) were used for all markers in calculating marker-based inputs; 
for other sets of simulations, markers were fi xed one at a time, in which all ILs were assumed to 
carry an identical allele (i.e., 0) at the locus of the considered marker in calculating marker-based 
inputs 
  a These markers were also identifi ed for yield per se under well-watered conditions 
  b These markers were also identifi ed for yield per se under drought-stressed conditions  
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9.4.1     Models Generally Perform Better in Simulating 
Phenotypic Differences Caused by Environmental 
Variation than by Genotypic Differences 

 This may not be surprising given that when individuals of mapping population are 
phenotyped in multiple environments, it is common that variance due to environmen-
tal differences is much more signifi cant than the variance due to genotypic  differences 
( Yin   et al.  2000a ,  b ;  Gu   et al.  2012b ; Khan et al.  2014 ). Crop models generally per-
form well in assessing the impact of signifi cant environmental variation due to changes 
in climatic variables and nutrient availabilities, as most existing crop models were 
built to predict the impact of environmental variables on crop productivity. It is a 
 challenge to predict the impact of a subtle change in  traits   among relatively similar 
lines within a breeding population. Therefore, model’s suitability in analysing 
  genotype  -to-phenotype  relationships   in an experimental population needs critical 
examinations (Parent and Tardieu  2014 ). The following two aspects deserve particular 
attentions. First, better modelling of the fi nal spikelet or seed number of cereals under 
stress conditions is needed as stress sensitivity of this sink- size trait often shows larger 
genetic variability than that of the source-activity traits. Second, the genetic difference 
in response to soil environments is currently subject to huge uncertainty, due partly to 
the lack of suffi cient site-specifi c information about the soil and partly to uncertainties 
in modelling root growth and soil processes (Gu et al.  2014b ; Khan et al.  2014 ). There 
is an obvious need for robust algorithms for rooting density and depth for resource 
capture from the soil and their genotypic variabilities.  

9.4.2     Some Model-Input Parameters Do Not Contribute 
to the Model in Explaining Differences 
among the Genotypes 

 The importance of model parameters in contributing to explaining yield differences 
among individuals of mapping population can be evaluated by fi xing them once at a 
time at their average value ( Yin   et al.  2000b ; Khan et al.  2014 ). It is expected that 
the model explained percentage of yield differences will drop if the parameter fi xed 
is important for yield determination. Counter-intuitively, fi xing some parameters, 
which seem to be physiologically important, even increased the explained percent-
age of phenotypic variation. Identifi ed examples for such parameters are:  specifi c 
leaf area   (SLA), leaf nitrogen content, post-fl owering duration for barley (Yin et al. 
 2000b ), vegetative growth period and maximum  plant height   for potato (Khan et al. 
 2014 ). Similarly, when introducing genetic variation of individual biochemical 
parameters of leaf-photosynthesis into the photosynthesis sub-model of  GECROS  , 
the variation of yield accounted for by GECROS decreased signifi cantly for both 
well-watered and drought-stressed conditions ( Gu   et al.  2014b ). Such model based 
 sensitivity analysis   suggests whether or not the model has incorporated right 
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parameters in explaining yield differences among genotypes in a population. The 
reasons for the unimportance of those seemingly important parameters in terms of 
yield physiology in explaining genetic differences among genotypes remain to be 
elucidated.  

9.4.3     Some Model-Input Parameters Are Hard to Measure 
for the Whole Population, and  Heritability  Estimates ( h  2 ) 
of Model-Input Parameters Are Generally Lower 
than Those of Classical Plant Traits 

 Some  model-input parameters   are used in crop models in a tabular form, e.g., 
 coeffi cients for assimilate partitioning among growing organs in Wageningen 
SUCROS- family models. Determining values of these coeffi cients require frequent 
destructive samplings during growing season, which can be implemented in classical 
agronomic experiments but are practically infeasible for individual lines of a map-
ping population. These types of parameters certainly do not allow high throughput 
measurements, and many of them need many steps to measure. Measurement noise 
accumulates over steps; some parameters require curve-fi tting method to estimate, 
which again involves some fi tting uncertainty/noise (also see Chap.   5     by  Luquet   
et al.). So, the  h  2  for measured phenotypic data of these parameters is often lower 
than for  traits   relating to classical agronomic, plant size, and architecture traits. This 
is in analogy to the result of Jahn et al. ( 2011 ) that physiological traits such as 
  stomatal conductance   (which involve various steps of measurements and calcula-
tions) had a lower  h  2  than the classical agronomic and morphological traits. As a 
consequence, the percentage of phenotypic variation explained ( r  2 ) by  QTL   identi-
fi ed for model parameters is often lower than the  r  2  of QTL for classical plant traits 
if measured in the same experiments ( Yin   et al.  1999b ;  Gu   et al.  2014b ).  

9.4.4     The Percentage of Phenotypic Variation of a Complex 
Trait Accounted for by the  QTL  -Based Model Is 
Comparable with, or Slightly Lower Than, That Obtained 
from the Original Parameter Values 

  QTL  -based model parameters values derived from QTL-statistics can partly remove 
the noise of phenotypic values of  model-input parameters  . On the other hand,  QTL   
identifi ed by mapping analysis account for only part of genetic variance of param-
eters. So, a common feature of these studies is that predictability of  QTL-based 
models   is nearly comparable with that of the model using original parameter values 
(see Fig.  9.2  for an example), as the gain from removing random noise in original 
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parameters by QTL-statistics is roughly cancelled out by the loss due to the fact that 
the identifi ed QTL cannot explain 100 % of the genetic variance of the parameter 
values (e.g.,  Yin   et al.  2000a ,  2005 ; Reymond et al.  2003 ;  Gu   et al.  2014b ). However, 
QTL-based models can predict the performance of genotypes that were not pheno-
typed for model-input parameters (Fig.  9.2c ) as long as marker data at or near QTL 
are available for these genotypes.

  Fig. 9.2    Comparison between observed maize leaf elongation rates LER and those fi tted by a 
simple ecophysiological model for LER ( A ), simulated by the model using  QTL  -based model input 
parameters ( B ), and QTL-based model predicted LER for those  recombinant inbred line   s    RILs   that 
were not included for QTL analysis ( C ) (Redrawn from Reymond et al.  2003 )       

 

9 Modelling QTL-Trait-Crop Relationships: Past Experiences and Future Prospects



206

9.4.5        Despite the Outnumbering of  QTL   for Model-Input 
Parameters Relative to Those for the Complex Trait per 
Se, the Percentage of Phenotypic Variation of a Complex 
Trait Accounted for by Its QTL of Model- Input 
Parameters Is Lower than That Obtained 
from Complex-Trait QTL 

 Current  QTL   statistics can hardly fi nd more than eight  QTL   for a quantitative trait 
to avoid false positives in QTL analysis (Kearsey and Farquhar  1998 ), although this 
may greatly depend on the population size. Therefore, rather than looking for QTL 
for a complex trait itself, determining QTL for underlying  component trait  s might 
give more information. Indeed, using crop models to dissect a complex trait into its 
individual components will help to identify more QTL than analysing the complex 
trait per se ( Gu   et al.  2014b ; Amelong et al.  2015 ). However, the percentage of 
 phenotypic variation of a complex trait accounted for by its QTL of  model-input 
parameters   is lower than that obtained from complex-trait QTL (Prudent et al.  2011 ; 
 Yin   et al.  2000a ; Gu et al.  2014b ). Low predictability of the models could be the 
reason for that. However, even when yield is dissected into yield components using 
a simple arithmetic formula (typically: yield is equal to the product of yield compo-
nent  traits  ) and the formula perfectly predicts yield variation, the percentage of 
phenotypic variation of yield accounted for by QTL of its component traits is lower 
than that obtained from complex-trait QTL (Yin et al.  2002 ; Fig.  9.3 ). This suggests 
that  phenotyping   of model-input parameters and yield component traits may involve 
more random noise.

9.4.6        Number of  QTL   Identifi ed for Model-Input Parameters 
Based on a Bi-parental Population Is Limited; Most 
Model-Input Parameters Are Often Affected by 
the Pleiotropic Effect of 1–2 Major  QTL   

 Dominance of a major  QTL   is a common phenomenon, presumably due to the 
 contrast between the parents intentionally chosen in making the bi-parental  mapping 
population. Typically, one parent represents a modern cultivar that is currently 
widely cultivated whereas the other is an old traditional  genotype   that was probably 
cultivated before the  Green Revolution  . This means that one or two major  genes   are 
segregating in the population. Very often major genes not only affect major morpho-
logical characteristics and yield level, but also have  pleiotropic effects   on multiple 
phenological and physiological  traits   including  model-input parameters  . This has 
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been shown by, for example, the  denso  gene in barley ( Yin   et al.  1999a ,  b ),  rht  genes 
in wheat (Baenziger et al.  2004 ; Laperche et al.  2006 ; White  2006 ), the maturity- 
class gene on chromosome V in potato (Khan  2012 ), and the RM410 locus on chro-
mosome 9 in rice ( Gu   et al.  2012a ). Of these, the  denso  gene in barley is particularly 
pleiotropic and its dominant effect is ubiquitous, not only on  plant height  , yield and 
yield components (Yin et al.  1999b ), but also for fl owering parameters (Yin et al. 
 2005 ) and traits like SLA (Yin et al.  1999a ) and nitrogen use effi ciency (Kindu et al. 
 2014 ).  

  Fig. 9.3    Comparison between observed values of grain yield and those predicted from  quantita-
tive trait loci   (QTL)    identifi ed for yield itself, and between observed values of grain yield and those 
predicted from  QTL   identifi ed for its three  component trait  s: spikes per m 2 , number of kernels per 
spike and 1000-kernel weight (Redrawn from  Yin   et al.  2002 )       
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9.4.7     Medium-Size Population Is the Best Option That 
Combines Feasibility and Robustness in Integrated 
Ecophysiological Modelling and Genetic Mapping 
Studies 

 From a statistical point of view, the larger is the population, the more robust is  QTL   
 mapping   (Vales et al.  2005 ). Going for a large population size is generally not 
 feasible because most individual input parameters in existing crop models do not 
allow  high-throughput phenotyping  . Because of the cost and/or time needed, 
researchers often went for selective  phenotyping  , and some were even pushed to 
 phenotype   only 46 individuals as a subset of a population to identify  QTL   for 
 model-input parameters   (Uptmoor et al.  2012 ), thereby, greatly sacrifi cing the sta-
tistical power of QTL detection. In that sense, crop models should be improved in a 
way that most parameters would be measurable in phenotyping facilities ( Yin   et al. 
 2004 ; Parent and Tardieu  2014 ). Before such a model becomes available, a 
medium-size population consisting of ca 100 individuals as a comprise of pheno-
typing feasibility and QTL-detection robustness, may be the best option, if model 
input-parameters can be measured with the currently available methods. If model 
input-parameters are hard to measure, it is better to use an  introgression line   (IL) 
population other than populations like  recombinant inbred line   s   (RILs)   , doubled-
haploid lines (DHs), as ILs differ in a lower number of loci. For example, leaf 
 photosynthesis is commonly measured by gas exchange that does not allow high-
throughput phenotyping. In a study where the entire light- and CO 2 -response curves 
needed to be phenotyped via gas exchange,  Gu   et al. ( 2012b ) chose 13 ILs (including 
parents) and did succeed to localize the genomic regions for seven parameters of a 
biochemical photosynthesis model.   

9.5     Future Prospects 

9.5.1     Understanding  Physiological Basis of   QTL
     and Genetic Variation 

 From a physiologists’ point of view, a logic step following the mapping of genetic 
basis (i.e.,  QTL   analysis) of a physiological trait is to elucidate the deeper-level 
physiological basis of the detected  QTL   underlying its genetic variation. Few stud-
ies have investigated the  physiological basis of QTL   underlying genetic variation of 
quantitative  traits  . The physiological basis of QTL may best be elucidated with 
physiological models that dissect  complex traits   into individual  component trait  s. 
This was recently reported for leaf photosynthesis. QTL for light saturated leaf 
photosynthesis ( A  max ) and other related traits were fi rst identifi ed using an  introgres-
sion line   population ( Gu   et al.  2012a ). To elucidate the physiological basis of these 
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QTL, combined gas exchange and chlorophyll fl uorescence data were collected for 
entire CO 2  and light response curves of leaf photosynthesis ( A ), with which bio-
chemical and physiological parameters of a combined conductance-biochemical 
photosynthesis model were estimated. Because measuring entire response curves is 
time consuming and does not allow high throughput, 13 lines (including the two 
parents) were carefully selected as representatives of the population, based on the 
QTL for leaf photosynthesis reported by Gu et al. ( 2012a ). The curves were assessed 
at two stages (fl owering and grain fi lling) for plants grown under moderate drought 
and well-watered conditions (Gu et al.  2012b ). Using these curves, photosynthesis 
was then quantitatively dissected into three different physiologically relevant 
 component traits: (1)  stomatal conductance   ( g  s ), (2)  mesophyll conductance   ( g  m ), 
and (3) biochemical effi ciency and capacity. Although the effects of development 
stage and water supply on photosynthesis were predominant, signifi cant genetic 
variation in the three mentioned component traits was found. Genomic regions of 
the variation of these biochemical parameters of photosynthesis were localised 
(Fig.  9.4 ). Genetic variation in  A  max  and TE ( transpiration effi ciency  ) was mainly 
caused by variation in  g  s  and  g  m , which suggests more efforts should be focused on 
 g  s  and  g  m  in breeding programmes for improving photosynthesis and TE. Gu et al. 
( 2012b ) showed that relationships between these photosynthetic parameters and 
leaf nitrogen or dry matter per unit area, which were previously found across 
 environmental treatments, were also valid for variation across genotypes. Therefore, 
they speculated that variation in photosynthesis due to environmental conditions 
and the variation in photosynthesis due to genetic variation within the same environ-
ment may share common physiological mechanisms.

    Gu   et al. ( 2012b ) next used the model to evaluate the potential of utilizing the 
genetic variation in these components for improving photosynthesis ( A ) and  transpi-
ration effi ciency   (TE). Based on the genetic variation of physiological components 
underlying  A  and TE,  ideotypes   were designed by combining alleles positively 
infl uencing different components of photosynthesis. Model calculations showed 
that these ideotypes can potentially improve photosynthesis and TE signifi cantly, 
compared with the best  genotype   of the 13 lines investigated. It was shown that if 
the tight link between  g  m  and  g  s  could be broken, both photosynthesis and TE could 
be improved simultaneously, despite the common negative correlation between  A  
and TE (e.g., Condon et al.  2004 ). This result would be especially interesting for 
breeding for semi-arid environments. 

 The importance of  mesophyll conductance   in improving leaf photosynthesis has 
also been identifi ed for materials of other genetic backgrounds in rice (Adachi et al. 
 2013 ). Adachi et al. ( 2014 ) further indicated that high leaf nitrogen content and high 
hydraulic conductivity are two additional physiological mechanisms contributing to 
high leaf photosynthesis of their  near-isogenic lines   (NILs), which differ from the 
recipient parent in only one or two introgression regions of previously mapped  QTL   
and therefore best suit for elucidation of physiological basis for individual 
QTL. Similar results have been found for the genetic variation in leaf photosynthe-
sis across cultivars in rice (Taylaran et al.  2011 ; Lauteri et al.  2014 ) and wheat 
(Jahan et al.  2014 ). 
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 For more  complex traits   rather than leaf photosynthesis,  Gu   et al. ( 2014b ) used 
the crop model  GECROS   to dissect yield into seven phenological, morphological 
and physiological parameters. It was found that nitrogen uptake, grain nitrogen 
 concentration and pre- and post-fl owering durations are important, whereas leaf 
photosynthesis was surprisingly not important, in explaining yield differences 
among the individual lines within a genetic population. Using rice NILs that  harbour 
one or two spikelet-number  QTL  , Ohsumi et al. ( 2011 ) found that the NILs having 
increased spikelet number per panicle did not greatly increase grain yield because 
of compensation between different yield components. They also showed that the 
slight yield advantage of the NILs harbouring double QTL relative to other geno-
types was associated with higher translocation of carbohydrates from reserves to 
panicle. These indicate a pleiotropic effect of the spikelet-number QTL on other 
physiological  traits  . 

 We call for more studies on elucidating  physiological basis of QTL   and pleiotro-
pic effect of the  QTL   on other physiological  traits  /processes. Such information will 
facilitate to improve existing crop models that better capture physiological  processes 
and parameters related to genetic variation of crop yield.  

9.5.2     Broadening Genetic Background of the Mapping 
Population 

 While the proposed  QTL  -based  modelling   approach could potentially deal with 
G × E, it cannot solve all limiting factors, especially not the non-transferability of 
information obtained from one cross to another. The non-transferability can be 
largely due to the possibility that a QTL detected in one cross does simply not 
 segregate in a second cross because the parents of the second cross carry identical 
alleles at that QTL – the lack of  allelic diversity   within a mapping population. A 
gene ‘important’ for physiologists or modellers might be useless for geneticists or 
breeders because if the gene is physiologically crucial, its variation will have been 
strongly reduced over generations of breeding (Prioul et al.  1997 ); so QTL will 
hardly be detected at such a gene locus. In this context, the approach as practised for 
a  bi-parental cross   should be extended in future although such extended studies with 
a broader genetic background can be most feasibly applied to simple  traits   that can 
be scored by  high-throughput phenotyping  . 

9.5.2.1     Use of Multiple Mapping Population 

 With the crop model  GECROS  ,  Gu   et al. ( 2014b ) used the marker-based parameter 
values derived from a population of 94  introgression line  s to simulate yield varia-
tion among 251  recombinant inbred line   s   of the same parents in rice. More directly 
working with multiple populations, Welcker et al. ( 2011 ) have compared the genetic 
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architectures of the sensitivities of maize ( Zea mays ) leaf elongation rate with 
 evaporative demand and soil water defi cit as quantifi ed in a simple ecophysiological 
model. The former was measured via the response to leaf-to-air vapour pressure 
defi cit in well-watered plants, the latter via the response to soil water potential in 
the absence of evaporative demand. Genetic analyses of each sensitivity were per-
formed over 21 independent experiments with (1) three mapping populations, with 
temperate or tropical materials, (2) one population resulting from the introgression 
of a tropical drought-tolerant line in a temperate line, and (3) two introgression 
libraries genetically independent from mapping populations. A very large genetic 
variability was observed for both sensitivities. Some lines maintained leaf elonga-
tion at very high evaporative demand or water defi cit, while others stopped elongation 
in mild conditions. A complex architecture arose from analyses of mapping 
 populations, with 19 major  meta-QTL   involving strong effects and/or more than one 
mapping population. A total of 68 % of those  QTL   affected sensitivities to both 
evaporative demand and soil water defi cit. In introgressed lines, 73 % of the tested 
genomic regions affected both sensitivities. They demonstrated that hydraulic 
 processes, which drive the response to evaporative demand, also have a large 
contribution to the genetic variability of plant growth under water defi cit in a wide 
range of genetic material comprising of multiple populations. 

 On the genetic side, geneticists are trying to improve  QTL    mapping   resolution 
with several generations of intercrossing when establishing the RIL population, e.g. 
advanced intercross  RILs  . Meanwhile  allelic diversity   within a mapping population 
can be increased by intercrossing multiple genetically diverse genotypes before 
establishing the RILs, e.g.,  MAGIC   – the Multi-parent Advanced Generation Inter- 
Cross (Huang et al.  2011 ).  

9.5.2.2     Genome-Wide Association Study 

 Virk et al. ( 1996 ) empirically showed that quantitative variation of many agronomic 
 traits   in the rice germplasm is associated with allelic variation of DNA markers, 
indicating that marker-trait associations not only may be present in  segregating 
population  s, but can also be manifest across a germplasm collection of a crop spe-
cies. Later studies more systematically demonstrated that the bi-parental analysis 
could also be extended by using  genome-wide association study   ( GWAS )    based on 
the linkage disequilibrium mapping, in which association between genotypes and 
phenotypes is scrutinized over a large germplasm collection (e.g., Remington et al. 
 2001 ). This development in association genetics may enhance opportunities for 
gene-based physiological modelling, especially with development of genome-wide 
surveys of variation using  high-throughput genotyping   tools (such as  SNP   –  single- 
nucleotide polymorphism  ) across crop germplasm collections (McNally et al.  2009 ; 
Huang et al.  2010 ; Jahn et al.  2011 ). This development in association genetics may 
enhance opportunities for gene-based  crop modelling  . So-called  gene-based model   ling   
has empirically been practised by White and Hoogenboom ( 1996 ),  Messina   et al. ( 2006 ), 
White et al. ( 2008 ), Zheng et al. ( 2013 ), and Bogard et al. ( 2014 ), who predicted 
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fl owering and yield traits of crop cultivars via regressing input parameters against 
binary values of a few relevant candidate  genes   or markers (also see Chap.   8     of this 
book by  Boote   et al.). The SNP-based  GWAS   can detect many genes and unravel 
their functions, thereby enabling  model-input parameters   to be potentially related to 
many genes. Research on GWAS-based crop modelling is now in the pipeline. 
However, such an analysis requires considerable attention to  population structure   
and size to satisfy its required statistical power (Hamblin et al.  2011 ).    

9.6     Concluding Remarks 

 Crop physiology research, traditionally working typically on several distinctive 
genotypes, has not contributed much to breeding so far. Furthermore, there has been 
an imbalance in gaining insight and data as geneticists and physiologists seemed to 
do the things separately. However, the evidence reviewed in this chapter suggests 
that there is now an opportunity to do a better job because we have more knowledge 
about  QTL   (or gene)-function relationships and we have better analytical tools such 
as QTL (or gene)-based models, dealing with relationships in a genetic population. 
An integrated  QTL-based modelling   also provides a common platform for physi-
ologists and geneticists of working all in a synchronous and balanced way, thereby 
being much more effective in terms of resource use and synergy between approaches. 
Growing studies on  functional genomics   and molecular biology will increasingly 
enable the elucidation of the molecular genetic basis of agronomically and physio-
logically relevant  traits   for  crop improvement  . In the meantime, high-throughput 
facilities to  phenotype   a large population for various crop traits, sometimes with 
high-resolution, are increasingly becoming available. Future crop models should 
face this unprecedented opportunity. On one hand,  model-input parameters   should 
be designed either to be close to those traits breeders, geneticists and biologists 
commonly score or to be easily measured by modern  high-throughput phenotyping   
facilities, as the optimisation procedure that current crop models often rely on to 
estimates their parameters (see Chap.   5     of this book by  Luquet   et al.) may involve 
another round of uncertainty. On the other hand, model structure and algorithms 
have to be upgraded, which has been stressed in various preceding chapters of this 
book and will be further elaborated in the next chapter.     
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    Chapter 10   
 Crop Systems Biology: 
Where Are We and Where to Go?       

       Xinyou     Yin      and     Paul     C.     Struik   

    Abstract     The preceding chapters outline approaches in systems biology, genetic 
mapping and crop modelling, and have shown whether and how these approaches 
could potentially be integrated to form an effective ‘crop systems biology’ approach 
in support of crop improvement. To fulfi l the great expectations from the integrated 
modelling, crop models should be improved based on understandings at lower orga-
nizational levels, in the meanwhile ensuring that model-input parameters can be 
easily phenotyped. The ‘ crop systems biology ’ approach is believed ultimately to 
realize the expected roles of modelling in narrowing genotype-phenotype gaps and 
predicting the phenotype from genomic data. Such an approach could be an impor-
tant tool to solve some imminent food-, feed-, and energy-related, ‘real-world’ 
problems.  

10.1         Why Crop Systems Biology? 

 Ecophysiological  crop modelling   has gradually become a research method and dis-
cipline since the fi rst plant modelling paper was published by de Wit ( 1959 ). For 
understanding of a system, models appear good tools for heuristics, for example, to 
make explicit the importance of properties of system elements in the context of the 
whole system. For applications, the modelling approach has been predominantly 
devoted to higher aggregation levels (e.g., optimising agronomic management 
actions, assessing the impact of  climate change   on agroecosystems, designing sus-
taining cropping and farming systems, analysing global yield gaps, etc.). Modelling 
applications at lower aggregation levels such as designing crop  ideotypes   and culti-
vars based on analysing  genotype  -phenotype  relationships   have progressed slowly 
(Jackson et al.  1996 ; Boote et al.  2013 ),    although use of models as a tool to design 
crop ideotypes has long been recognised (see review of Loomis et al.  1979 ). 
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However, applications for higher and lower aggregation levels cannot be separated 
absolutely. For example, there have been calls for more mechanistic models to esti-
mate the impact of global CO 2  fertilisation ( Yin    2013 ; Sun et al.  2014 ). Also, breed-
ing for better crops is essential to improve global food security in the face of climate 
change. To better address the issue at the higher aggregation levels, developing 
modelling approaches to study genotype- phenotype   relationships becomes increas-
ingly important (Chenu et al.  2009 ). This latter issue has been addressed interna-
tionally either in conference sessions (e.g., Weiss  2003 ; Cooper and Hammer  2005 )    
   or in special symposia or workshops (e.g., Spiertz et al.  2007 ). 

 Despite the great effort that has been made, current crop models are mostly 
crude, in terms of their ability of treating  gene-trait-crop relationships  . Systems 
simulation modelling has long been suggested as a powerful tool to understand crop 
yield formation and to support  crop improvement   (Loomis et al.  1979 ). Expectations 
for modelling in support of modern breeding are high (Dwivedi et al.  2007 ). 
However, according to Lawlor ( 2002 ), the lack of truly ‘mechanistic’ crop simula-
tion models (which make use of biochemical information) is a major constraint to 
advance the understanding of crop yield  traits  . Boote et al. ( 2013 )    also emphasised 
the needs for more mechanisms in crop models when used for characterising 
 genotype  - phenotype   relationships  . Such a need has been underlined in several chap-
ters of this book. 

 The modelling studies at the crop level using some knowledge of fundamental 
plant biology (e.g., biochemistry) are currently sporadic, modelling results pub-
lished so far to analyse yield  traits   are inconsistent, and some models are based on 
untested hypotheses. We, therefore, have proposed a more systematic modelling 
approach – ‘ crop systems biology  ’ (Yin and Struik  2007 ,  2008 ,  2010 ),       to analyse 
 complex traits   at the crop level, not only with the aim of establishing close links 
with understanding at the gene or genome level, but also in terms of its comprehen-
sive reliance on the whole-metabolism biochemistry and physiology. Therefore, the 
proposed crop  systems biology   is a crop-level approach to modelling complex crop 
traits relevant to global food production and energy supply, via establishing the 
links between ‘omics’-level information, underlying biochemical understanding, 
and physiological component processes. Crop systems biology, as a research realm, 
has both fundamental and applied features. For fundamental aspects, crop systems 
biology models should provide biological interpretation of those phenomena such 
as  genotype  -by- environment   (G × E)  interactions  ,  epistasis  , and  pleiotropy   that 
prove recalcitrant in genetics. In terms of applications, the goal of crop systems 
biology is to become a robust tool in support of  crop improvement   programmes (Yin 
and Struik  2008 ).  

10.2     Roadmap to Crop Systems Biology; Where Are We? 

 Development of  crop systems biology   models certainly depends on what trait a 
researcher wants to target. Although other  traits   have also been modelled (e.g., 
Martre et al.  2003 ), crop yield is a complex trait that most existing crop simulation 
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models have attempted to predict. It may not be surprising that simulation of yield 
formation should be a fi rst major focus trait in crop  systems biology  . In addition, if 
crop yield can be modelled accurately, underlying mechanisms for traits related to 
 resource use effi ciencies   (such as water use effi ciency or nitrogen use effi ciency) 
can be analysed accordingly. 

 This book collected papers from several leading groups, where some initial ideas 
to develop  crop systems biology   models have been explored or examples to apply 
such models in analysing topical crop physiological and breeding questions typi-
cally for manipulating crop yield or related  traits   were described. As introductory 
material, Chap.   1     by  Baldazzi   et al. provides some fundamentals of  quantitative 
genetics   (particularly mapping of  quantitative trait loci    QTL  ), approaches in  sys-
tems biology   for modelling cellular, gene regulatory and metabolic networks, and 
challenges in integrating these networks into plant or crop models. Chapter   2     by  Xu   
and  Buck-Sorlin   describes a new, morphologically explicit modelling approach 
called  FSPM   ( Functional-Structural Plant Model  ling) and its potential applications 
in breeding. Some crop modellers argue that detailed morphological properties have 
also been captured in classical crop models. Nevertheless, probably because FSPM 
can create virtual plants visualised in dynamic 3-D pictures, there has been a high 
level of enthusiasm for applying this FSPM approach, from students to professors, 
in various aspects of research and education in plant and crop science. Xu and 
Buck-Sorlin describe how FSPM was linked with QTL analysis, which would assist 
to breed for various plant traits (morphological and architectural traits in particular). 
Both systems biology and  crop modelling   rely on bioinformatics and biometrics or 
statistics in analysing and interpreting either measured or simulated data. Chapter   3     
by  Bustos   et al. provides statistical approaches ( linear mixed models   as the default 
model class) in the context of G × E interactions. While quantitative genetics devel-
oped from statistical approaches is fundamental for guiding classical breeding, the 
 factorial regression   as discussed in Chap.   3     is a statistical approach closest to the 
concept of crop growth modelling in capturing the response of physiological and 
agronomic traits in response to environmental variables. As discussed by Bustos 
et al., statistical models and  crop growth models   complement each other. For exam-
ple, the factorial regression cannot generate tempo-spatial profi les of the trait under 
study and its associated components. In contrast, crop model simulated responses 
can be analysed in the context of adapting the crop to the changing environment, 
allowing the  virtual profi ling   of plants and analysis of how processes interact when 
crops are perturbed by one or several changes. Chapter   4     by  Génard   et al. showed 
how this knowledge generated through  in silico  profi ling can be used to decipher 
G × E interactions so as to build genotypes adapted to particular conditions, 
i.e., plant  ideotypes  . Similar line of reasoning is continued in Chap.   5    , where  Luquet   
et al. attempted an   in silico  prediction   of margins for genetic improvement of rice 
using  Ecomeristem  , a model that seems to lie in between FSPM and classical crop 
models. The target was to analyse the trade-off between  early vigour   and  drought 
tolerance  , and to design rice ideotypes that combine the two traits. One of the traits 
associated with drought response is the restricted transpiration. In Chap.   6    ,  Sinclair   
et al. described the steps of modelling-physiology-transcriptomics-genetic screen-
ing they followed in developing  soybean   cultivars with the desired trait that restricts 
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transpiration. Also based on this restricted transpiration and other examples, 
 Hammer   al. argued in Chap.   7     that crop ecophysiology and functional modelling 
can provide an effective link between molecular and organism scales and can 
enhance  molecular breeding   by adding value to genetic prediction approaches. A 
physiological framework that facilitates dissection and modelling of  complex traits   
can inform  phenotyping   methods for marker/gene detection and underpin predic-
tion of likely phenotypic consequences of trait and genetic variation in target envi-
ronments. This is further consolidated in Chap.   8     by  Boote   et al., who showed 
model-based approaches revealing that manipulating trait values is benefi cial in one 
environment but not in another environment. They also showed how to link model 
input parameters with allelic effects of several known  genes   to establish  gene-based 
model   ling   of growth and seed yield in common bean, based on the framework of 
White and Hoogenboom ( 1996 ). Perhaps, few  model-input parameters   are con-
trolled only by  pleiotropic effects   of a few well characterised major genes; a more 
likely scenario is that like other quantitative traits, each model-input parameter has 
own specifi c  polygenes   underlying its phenotypic variation. This is a basis of the 
most active line in this research realm over the last 15 years, i.e.,  QTL-based crop 
modelling  , and experiences and future prospects are comprehensively reviewed in 
Chap.   9     by  Yin   et al. 

 How far do these states-of-the-art described in the preceding chapters of this 
book reach the high expectations for  crop systems biology  ? In our judgement, these 
are just in the juvenile phase of the fi rst of the two-step roadmap that Yin and Struik 
( 2007 )       proposed for crop  systems biology  , i.e., the prototype stage and the advanced 
stage. For the fi rst, a widely used framework or concepts in many existing crop 
simulation models including processes such as photosynthesis, respiration and 
assimilate partitioning can still be used. At the level of these processes, there are 
rich physiological and biochemical data and therefore the understandings are of the 
highest confi dence. For this fi rst step,  crop systems biology  models may not be nec-
essarily more complex than existing crop simulation models in structure, nor is their 
additional input requirement. The latter is important, and  model-input parameters   
should include those close to the  traits   breeders score for selection. We should also 
seek opportunities to derive model-input parameters in parallel with the develop-
ment of  high-throughput phenotyping   (White et al.  2012 ; Parent and Tardieu  2014 ). 
However, model algorithms for individual processes are supposed to be more mech-
anistic than those used in existing crop models. In many cases, a summary form of 
a detailed biochemical model – e.g., the photosynthesis model of Farquhar et al. 
( 1980 ) coupled to CO 2  diffusion algorithms (Yin and Struik  2009 ) – can be incorpo-
rated as a sub-model, and this has been incorporated into the crop model  GECROS   
(Yin  2013 ;  Gu   et al.  201 4). In other cases, direct results or stoichiometries from 
biochemical studies (e.g., examination of the biochemical pathways for production 
of proteins, carbohydrates and lipids from glucose by Penning de Vries et al.  1974 ) 
can be utilized. A prototype of crop systems biology models needs to be made from 
this fi rst step, in which physiological and biochemical information at the process 
level is assembled and then scaled up to the crop level in a way similar to temporal 
and spatial integrations as practised in conventional crop simulation models. In 
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 relation to  crop improvement  , a key element of the fi rst step would be to identify the 
parts of mechanisms that are conservative in energy and water transfer, and in car-
bon and nitrogen metabolisms, and the parts of mechanisms that show genetic varia-
tion and are potentially amenable to selection. In case of grain yield, the prototype 
models should allow identifi cation and quantitative assessment of specifi c parts of 
processes, which could be altered to achieve improvement of yield potential. The 
parts showing genetic variation can be identifi ed by genetic analysis. For example, 
in Chap.   7    ,  Hammer   et al. indicated that the crop model  APSIM   has been recently 
upgraded to structure a generic cereal template for more explanatory approaches to 
modelling the hierarchy of physiological determinants of crop growth and develop-
ment. They showcased the stay-green  phenotype   in sorghum, which was generated 
as an  emergent consequence   of canopy nitrogen dynamics associated with genetic 
differences in dwarfi ng. Taller genotypes required more nitrogen for structural stem 
tissue, leaving less available for leaves, which was more rapidly diminished by 
translocation to grain during grain-fi lling. Hence, “stay-green” was generated as an 
emergent consequence in the shorter genotypes in response to genetic differences in 
 plant height  .  

10.3     Roadmap to Crop Systems Biology; Where to Go? 

 Perhaps in parallel with the fi rst step,  crop systems biology   modelling could move 
to the second step as progresses at the ‘omics’-level understanding are being made, 
towards reaching down to lower organizational levels. For this, it is necessary to 
map the organization levels and the communication systems between these levels 
for the different key processes (Struik et al.  2007 ). Modelling for reaching down to 
the lower levels is most likely to be done in a manner of one-process-at-a-time; and 
in this respect, a  modular design   of the model is important to ensure that changes of 
a sub-model will not affect other parts of the model. Welch et al. ( 2003 ) have already 
developed a  neural network   model of  Arabidopsis  fl owering time control, based on 
studies on qualitative, genetic characterization of major fl owering time  genes   in this 
model plant species. Wilczek et al. ( 2009 ) continued the work, using the concept of 
dynamic simulation as commonly used in  crop modelling  , by linking individual 
model coeffi cients to the activities of specifi c genes and their regulators involved in 
the transitions to fl owering in  Arabidopsis thaliana . Similar modelling studies could 
be performed for phenology of crop species (see an example for maize, Dong et al. 
 2012 , and for wheat, Brown et al.  2013 ). Further, existing modelling of metabo-
lisms, such as the Benson-Calvin cycle of photosynthesis and the photorespiratory 
cycle (cf. Giersch  2000 ) and nitrogen assimilation in relation to the activity of key 
enzymes (e.g., nitrate reductase and glutamine synthetase), could also be added. 
With the rapid development of  functional genomics   in the wake of high-throughput 
technologies, combined studies of physiological components with gene expression 
profi les should illustrate the function of genes, biochemical pathways and cellular 
processes that are affected in a coordinated manner (Stitt and Fernie  2003 ). Such 
studies should lay the groundwork for elucidating regulatory networks and causal 
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linkages among gene products, biochemistry and whole-plant physiology. Summary 
models for a particular metabolism or process are expected to increasingly become 
available. Sometimes, models capable of assessing the impact of altered biochemi-
cal pathways are not necessarily too much more complex than existing models. For 
example, von Caemmerer ( 2013 ) showed that the models that can simulate the pho-
torespiratory bypass and the bicarbonate pumps (both have been explored as targets 
to reduce the CO 2  compensation point in C 3  photosynthesis) are only slightly more 
complex than the standard photosynthesis model of Farquhar et al. ( 1980 ). Such 
summary models can potentially be embedded into crop  systems biology   models. 

 Clearly, different temporal, spatial and structural scales are required for different 
components, pathways, and processes of the model; and this has been showcased in 
the recent  multiscale model   of Chew et al. ( 2014 ) for  Arabidopsis  that integrates 
gene dynamics, carbon partitioning, organ architecture, and development response 
to endogenous and environmental signals. Chapter   1     of this book by  Baldazzi   et al. 
discussed the challenges in the multiscale modelling by combining information 
from molecular biology and genetics with crop models in relation to environmental 
factors and agricultural practices. Ultimately,  crop systems biology   may develop 
into a highly computer-intensive discipline. Such coupled models should inform 
how and where those recalcitrant genetic phenomena (G × E interactions,  epistasis   
and  pleiotropy  ) come about. They should also allow identifi cation of specifi c parts 
of metabolic pathways and processes, which could be altered via genetic engineer-
ing to achieve improvement of crop yield potential (Zhu et al.  2011 ). These specifi c 
parts should be amenable to the analysis by the ‘omics’ approach in terms of the 
expressions of specifi c  genes  , proteins or enzyme activities. For example, gene 
expression of  aquaporins  , the putative proteins involved in regulation of water and 
CO 2  diffusion inside leaves (see also Chap.   6     of this book by  Sinclair et al.)   have 
been found to explain most of the variation of stomatal and  mesophyll conductance   
during water stress and recovery in olive (Perez-Martin et al.  2014 ). In short, these 
models should ultimately enable  in silico  assessment of crop response to genetic fi ne-
tuning under defi ned environmental scenarios, thereby being powerful tools in sup-
porting breeding or genetic engineering for complex crop  traits  . Again, the parsimony 
rule, especially in terms of the number of required parameters, also applies to models 
for navigating biological complexity across scales (Hammer et al.  2006 ),    as estimating 
many parameters in any model is a daunting task (see also Chap.   8     by  Boote   et al.), 
even when using advanced bioinformatics or data mining tools (Martin et al.  2015 ). 
After all, model sophistication should not be achieved at the cost of  model heuristics  .  

10.4     Crop Systems Biology Needs Cross-Discipline Efforts 
in Concert 

 Manipulation of a relatively small number of  genes   (notably, dwarfi ng and 
photoperiod- insensitivity genes in many crops) had resulted in the fi rst ‘ Green 
Revolution  ’. For the next ‘Green Revolution’ to happen, we have to deal with many 
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genes so that they work in concert. Advances in genetics and genomics, when inte-
grated via  systems biology   approaches, can offer unprecedented opportunities to 
examine crop genetic variation and utilize this variability for breeding purposes in 
different target environments. However, alterations made at the genome level, 
although substantial, could have little effect on the crop-level phenotypes (Sinclair 
et al.  2004 ;    Yin and Struik  2008 )      . Systems biology should not be the privilege of 
only those working on molecular, sub-cellular or cellular levels. To allow genomics 
and systems biology to have signifi cant impact, the information from fundamental 
plant biology should reach up to the crop level, and ‘ crop systems biology  ’ should 
be established to deal with complex ‘gene-trait-crop’ relationships and to enhancing 
the prediction of the  phenotype   from genomic information. Recent work of Chew 
et al. ( 2014 ) has shown the promise of such a multiscale approach, based on under-
standings for the model species  Arabidopsis . For that to happen for crop species, it 
is necessary to have the long-term, multi-disciplinary efforts to build the links 
between geneticists, systems biologists, breeders and crop ecophysiologists towards 
the next ‘Green Revolution’ to solve some imminent food-, feed-, and energy- 
related, ‘real-world’ problems. By then, the chain as envisaged in Chap.   6     by Sinclair 
et al., i.e., ‘from model to phenotype to  genotype   to cultivar’, can become a reality 
more than ever. However, at this moment, as expressed in Chap.   8     by  Boote   et al., 
“the disciplines have diverged so much that geneticists are not well connected with 
the fi eld  phenotyping  , and crop modellers are not connected with the geneticists”. 

 We hope that the publication of this book on  crop systems biology   promotes 
cross fertilization between disciplines and can catalyse some joint efforts from the 
science community to correct that divergence.     
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