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Abstract. Battery technology seems unable to keep up with the rapid
evolution of smartphones and their applications, which continuously
demand more and more energy. Modern smartphones, with their plethora
of application scenarios and usage habits, are setting new challenges and
constraints for malware detection software. Among these challenges, pre-
serving the battery life as much as possible is one of the most pressing.
From the end users’ perspective, a security solution, such as an antivirus
(AV), that significantly impacts the battery’s life is unacceptable. Thus,
the quality and degree of adoption of malware-detection products is also
influenced by their energy demands.

Motivated by the above rationale, we perform the first fine-grained
measurement that analyzes, at a low level, the energy efficiency of mod-
ern, commercial, popular AVs. We explore the relations between various
aspects of popular AVs, when handling malicious and benign applica-
tions, and the resulting energy consumption. Even though we focus on
energy consumption, we also explore other dimensions such as the dis-
crepancies between scanning modes, the impact of file size and scan dura-
tion. We then translate our findings into a set of design guidelines for
reducing the energy footprint of modern AVs for mobile devices.

1 Introduction

The popularity of mobile devices has also resulted in them being heavily targeted
by malware authors. Their built-in billing system, along with the plethora of
personal information and account credentials that can be found on such devices,
render them a highly profitable resource. According to practically every threat
report (e.g., [24]), the amount of malware against Android, the most popular
smartphone platform, is a real problem. The ample literature on the subject
also confirms the importance of defending smartphones from these threats.
The vast amount of malicious software has resulted in most antivirus (AV)
vendors releasing mobile versions of their software. Consequently, a wide range
of free and paid solutions is readily available. Interestingly, several of the most
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popular AV apps available on the Google Play Store are from new vendors [15].
Apart from the detection techniques and capabilities, the mobile nature of these
devices introduces an important performance requirement for security solutions;
energy consumption [12]. Understanding the energy consumption of a mobile secu-
rity app is a key area of interest for end users, as well as developers [19]. An extra
half hour of battery life really makes a big difference for the end user, and sets
a strong decision boundary on whether or not to install a security app. Previ-
ous work investigated the energy efficiency of mobile browsers [25], among the
most extensively used mobile apps, focusing on how the various components of
a site (e.g., HTML, JavaScript) affect battery usage. Other work [26] explored
whether battery usage can be leveraged as an early indicator of potential infection,
despite previous work [13] demonstrating that a smart malicious app can circum-
vent such indicators by carefully diluting energy-intensive tasks over long time
spans.

In this paper, we evaluate the energy efficiency of current AV tools on the
Android platform, and explore whether the energy consumption is correlated to
their detection quality. As the overall energy consumption of an AV is domi-
nated by scanning benign apps during everyday use, a complete evaluation of
the energy efficiency of AV engines mandates including benign apps as well. To
this end, we conduct accurate and manually validated experiments on a real
device, with a set of 250 malware samples and 250 goodware apps, on 6 of the
most popular AVs. We measure the energy consumption during various scanning
operations: (i) scanning the app upon installation, (ii) scanning the entire device,
and (iii) scanning the SD card. We go beyond quantifying energy efficiency; we
design and calculate metrics that quantify and “visualize” the relation between
energy consumption and detection outcome. We break the energy consumption
down to the energy consumed by each of the device’s components. Finally, we
provide a series of recommendations for designing the functionality and graphical
interface of AV apps so as to minimize unnecessary energy consumption.

Our findings show that when handling benign apps, all but one of the AVs
consume more energy than with malicious apps. One of the AVs consumes 8 times
more energy, rendering usage under normal conditions considerably expensive in
terms of energy. Our results also show that the most accurate AV is also efficient,
consuming 46-65 % less energy than half of the AVs we tested. In most cases, size
does matter, as larger apps will result in higher amounts of consumed energy.
The AVs that rely heavily on hash-based signature matching techniques are an
exception, and consume less energy for large apps compared to the others. The
drawback of such AVs, however, is that their signatures can be easily bypassed.
Furthermore, we find that design characteristics of the AV apps’ graphical inter-
faces can significantly impact the overall energy consumption. Overall, the main
contributions of this work are:

— We perform the first fine-grained, low-level study that quantifies the energy
consumption of AV software in Android, which reveals the inefficiency of exist-
ing solutions and the impact on battery life.
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— Our metrics and their visualization provide a detailed analysis of the energy
consumption behavior of various aspects of AV software.

— We derive insights from our measurements and translate them into guidelines
for the design of more energy-efficient security solutions.

2 Energy Measurements

The generation of energy-consumption traces that are accurate enough for our
study require a framework that is sufficiently precise and fine grained, which will
allow us to separate the consumption per application and per device component.

Software-Based Measurements. We reviewed, and tested when publicly
available, several options that have been used in previous research. PowerTu-
tor [29] works in user space and is designed to measure the cumulative energy
consumed by a device within a time window. Unfortunately, this is not suit-
able for fine-grained measurements, i.e.,for measuring the energy consumption
of each process or application individually. Any irregular, non-scheduled activity
(that cannot be prevented or predicted due to the asynchronous nature of the
Android runtime) may result in severely skewed readings. Moreover, the energy
consumption readings returned by PowerTutor also contain the energy it con-
sumes, which further skews results. Eprof [21] is an accurate fine-grained energy
profiler for Android apps with routine level granularity. It is able to analyze the
asynchronous energy state of an app, and model the tail-state energy character-
istics of the hardware components appropriately. Unfortunately, this software is
not publicly available. Yoon et al. proposed AppScope [28], which is designed
to accurately estimate the energy consumed by each device component (CPU,
display, wireless, GPS) per application and process, through monitoring of the
Android kernel at a microscopic level. By following an event-driven approach
that analyzes the traces of all system calls, along with any messages that pass
through the Binder (used for inter-process communication in Android), App-
Scope is able to provide fine-grained readings at the process level. Additionally,
AppScope is applicable to any Android device, without modification of system
software, since it is implemented using a dynamic module in the Linux kernel.
It has been calibrated for the power model of a specific device (HTC Google
Nexus One), resulting in very accurate readings for experiments conducted on
that device.

Hardware-Based Measurements. Many approaches have tried to perform
accurate energy measurements on mobile devices based on readings from external
hardware [8,9,11,23], e.g.,by using oscilloscopes and low current sensors. Even
though such approaches can provide accurate energy measurements for the total
power dissipation, none of them can provide fine-grained energy consumption
information at an application or process level granularity.

For the aforementioned reasons, we selected AppScope for our experiments.
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3 Experimental Setup and Datasets

Measurement Environment. AppScope best supports HTC Google Nexus
One, as it is calibrated based on the power model of this specific device. We pre-
pared our device by first unlocking the boot-loader through a standard rooting
procedure, and installing the AppScope kernel module. Moreover, we imple-
mented a custom component that parses the AppScope logs and extracts the
energy samples for a specific process or app. During our experiments, the device
had no SIM plugged in and WiFi was disabled (unless stated otherwise).

Measurement Unit. The power readings produced by AppScope every second
are in units of Watts. Since a Watt expresses energy per time unit (Joules per
second), we transform these samples to energy samples with E(t) = P -t, as the
goal of our experiments is to compute the total energy consumption of specific
apps. In the rest of the paper, we use the energy unit in milli-Joules (mJ) to
express the energy consumption of an app.

Measurements Automation. We automate our measurements through user
interface (UI) actions, using the MonkeyRunner [1] API to produce specific
actions (e.g., tapping on UI elements) on the device. We can perform actions
such as installing-uninstalling an APK, rebooting the device, starting-stopping
a scan. For this, we identify the main activity name of each AV and extract the
package name of each malware, from their bytecode representation, obtained
through reverse engineering using the apktool [3].

Antivirus Apps. We evaluate the 6 AVs listed in Table 1, which we obtained
from the Google Play Store, on August 1st 2013. Most of the AVs are in the
top ten list, with downloads ranging from 100K to 500M, and we denote their
relative popularity within our selected set; as an exact number is not provided,
but rather a range of downloads, two apps are tied for 1°¢ and two for 4"
place. The “Signature-based” column indicates whether the AV relies mainly on
easily evaded hash- or package-name-based signatures for detecting malware. We
provide more details on this aspect of the AVs in Sect. 4.2.

Even though some AVs offer in-the-cloud scanning (NQ and Sophos state
it explicitly), our goal is to explore the energy consumption of the actual

Table 1. List of AV products tested in our study. Rank refers to the respective rank
among the tested AVs based on their downloads in Google Play.

Product Rank | Downloads | Updated | Signature-based
AVG Antivirus Free (2.12.3) 100-500M | 05/03/13
Symantec Norton Mobile (3.5) 10-50M 25/06/13
Dr.Web (8.0) 50-100M | 27/02/13
Avast Mobile (2.0.4) 100-500M | 09/05/13
Sophos Mobile (2.5.1009) 100-500K |09/04/13
NQ Mobile (6.8.6) 10-50M 21/05/13

Ao = =
X N X | X | XN
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offline detection process. In addition, uploading times can significantly fluctuate
depending on network conditions, causing non-negligible deviations on the usage
and, thus, energy consumption of the wireless module. Last, we wanted to main-
tain the malware definitions stable for the duration of the experiments. Thus,
we disabled Internet access to avoid updates, and selected AVs that also work in
an offline mode. In Sect. 4.6 we provide preliminary insights on the influence of
WiFi connectivity as a concluding experiment. Given the complexity introduced
by this variable, our results pave the way for further research.

Malware Dataset. We select a set of 250 malware samples, collected from
the Contagio Mini Dump [4] and the Android Malware Genome Project [2].
Note that, as the size of a malware sample may influence the overall energy
consumption during the scanning process, we opt for a collection with a variety
of sizes, ranging from 12.9KB to 24.2 MB. The overall detection capability of
each AV is reported in Table 2.

Goodware Dataset. We collected a benign set consisting of 250 apps from
the Google Play Store. Specifically, we selected apps from the list of the most
popular in the Google Play Store. The size of the apps ranges from 92.1 KB to
40.2 MB. Again, Table 2 summarizes the overall detection outcome.

Device Setup. Based on our requirements and experimental parameters, we
use the following device setup for our experiments:

— Snapshots. We removed unnecessary, pre-installed apps (e.g., Youtube) and
created a backup of a clean state of the device (one with each AV installed),
containing AppScope components for determining the energy consumption.

— Revert. After each malware sample is installed and scanned, we revert to the
clean state and erase the SD card.

— Run. We repeat each test five times in a row, and calculate the average energy
consumed per device component (e.g., CPU, display) and time taken.

— Luminosity. We set the display luminosity to a fixed amount.

Measurement Methodology. Malware can infect the device internal storage
(e.g., via simple copy operation during installation) or the external SD card (e.g.,
via simple copy operation). The per-app isolation security model of Android is
such that an app—including AVs—can only read certain portions of the filesys-
tem, unless granted root privileges. Regardless of the permission, no AV can
possibly perform dynamic analysis of (malicious) apps at runtime, as Android
exposes no system-level auditing API at the app level. The SD card filesystem is
universally readable. As a result, AVs are designed to look for malware using a
combination of the following access modes. As explained in [15], the On Demand
mode scans the readable portions of the filesystem (internal or external), whereas
in Upon Installation mode, the AV scans any APK being installed. Based on the
these observations, we conduct two different experimental procedures, which we
automate via MonkeyRunner:

1. Device (Internal): We install each APK individually and scan the app
installed on the device’s internal storage through two methods:
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(a) On Demand. After installing an APK, we perform a full scan of the device.
(b) Upon Installation. After installing an APK, the AV automatically scans
the installed app (e.g., with a PACKAGE_ADDED broadcast receiver).
2. SD Card (External): Copying (via adb push) all the APKs to the SD card,
without installing them, and then scanning the entire SD card partition.

We extract the following data: (1) time taken to perform a scan, (2) energy
consumed by the specific process for each device’s component, and (3) whether
or not the AV identified the malware or goodware correctly.

4 Experimental Results

We explored, with specific experiments, the relation between energy consumption
and scan duration (Sect. 4.1), detection outcome (Sect. 4.2), on-demand or upon-
installation scan (Sect.4.3), app size (Sect.4.4), use of display (Sect.4.5), and,
preliminary, the usage of Internet connectivity (Sect.4.6).

4.1 Energy Consumption vs. Scan Duration

Once the scanning has completed, the AVs include a message in Android’s log-
ging system (which we fetch through logcat), enabling us to calculate the exact
duration of the scan. Table2 shows the aggregated results for each AV, and
reports the minimum and maximum scan duration for both goodware and mal-
ware. The scan duration coincides fairly accurately with the aggregate energy
consumption, with a few exceptions; Norton has a comparatively small duration
for the energy it consumes, while Dr. Web exhibits the opposite behavior with
a relatively small consumption and a long duration.

We present the duration statistics for the “On Demand” scan and not the
“Upon Installation”. Whenever an app—during installation—is flagged as a
threat, the AV produces feedback (i.e., a pop-up). This enables us to check at
which point the AV has finished scanning the app, and calculate the duration.
However, we can not extract the time for false negatives, because there is no
feedback. One could count the number of seconds for which AppScope returns
an energy consumption reading since the installation. This, however, only allows
readings at a granularity of seconds, which can introduce significant error in
these experiments. For example, if a scan lasts 3.1s, we would retrieve readings
for 4s from AppScope, and calculate a significantly skewed energy consumption
rate. As such, despite the “On Demand” scan lasting significantly longer than
the “Upon Installation”, it is useful for comparing the AVs in terms of time
performance.

4.2 Energy Consumption vs. Detection Outcome

Malware. We explored the relation between energy consumption and the detec-
tion outcome. Our experiments show that there is not a restricting correlation
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Table 2. Detection outcome for all scanning modes, and duration of the “On Demand”
scan (Sect.4.1). The “Correct” and “Error” columns refer to correct and erroneous
labelling by the AV for the apps being scanned. The “Energy Penalty” expresses the
percentage of energy wasted due to the AV misclassifying a malicious app as benign.

AV Detection rate [%)] Energy Penalty [%] | Scan duration [s]
Malware Goodware | Malware Malware Goodware
Device | SD | Device | SD Correct | (Error) | Correct | (Error)
Norton |98.8 |98.8 4.8 0.0 -+20.00 22-28 | (22-28)  23-31 | (23-28)
Avast 98.0 198.0/0.0 0.0 | 4+6.500 30-34 |(33-36)|23-38 |-
Sophos |97.2 97.2/0.0 0.0 | +1,023 18-38 | (18-24)|11-27 |-
Dr. Web |96.4 96.0|1.2 1.2 | +31.40 30-107 | (30-43) | 30-169 | (33-80)
NQ 95.2  195.6/0.0 0.0 | +49.00 26-50 | (23-53)|25-54 |-
AVG 94.8 72.0/0.0 0.0 | —73.90 9-13 (10-13) | 9-13 -

between the two, as can be seen in Fig. 1(a). For example, while AVG is the
most energy-efficient and also achieves the lowest detection rate, we find that
the most effective AV engine in terms of detecting malicious apps (Norton) is
also highly efficient in terms of energy consumption. Specifically, while achieving
a 98.8 % detection rate, it consumes 46.2 %—65 % less energy than three of the
other AVs. Thus, our findings show that security vendors have the potential to
create AVs that achieve high detection rates, while maintaining reasonable energy
consumption profiles. Sophos exhibits the highest consumption of all, consum-
ing 22.2% more energy than Avast that has the second highest consumption.
Compared to the remaining apps, Sophos consumes 53.8 % more than NQ, 185 %
more than Norton, 215 % more than Dr. Web, and over 326 % more than AVG
that is the most efficient.

Signature-Based Heuristics. As the type of heuristics employed by an AV can
impact certain aspects of its energy consumption, we run the following experi-
ment for identifying the AVs that rely heavily on signatures that detect specific
package names or hash values. We altered the package name (and thus the file
hash) of the malware samples using an automated process built on apktool,
and repeat the scans for all the AVs. Sophos failed to detect a single sample,
indicating that the effectiveness of its detection engine relies significantly on sig-
natures that can be trivially evaded, all the while exhibiting the highest energy
consumption out of all the AVs. AVG is also severely impacted, detecting only
30.2% of the malware samples. As can be seen in Table1 the remaining AVs
were not impacted, and achieved the same detection rate as before.

Note that there are several ways to evade signatures and, in general, to stress
test the obfuscation resilience of AVs, as demonstrated in previous work [22,30].
This specific point falls out of the scope of our paper, as our goal was to
explore the correlation, if any, between signatures sophistication and energy
consumption.
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Fig. 1. Aggregate energy consumption by CPU during the “Upon Installation” and
“On Demand” scan (Sect. 4.2).

Goodware. The majority of apps installed by users are benign. As such, a
significant aspect of the energy consumption of AVs is how they handle such
apps. When scanning an app, if one of the heuristics is triggered, the AV can flag
the app as malicious and save energy by not executing the remaining heuristics.
On the other hand, when scanning a benign app, no heuristics will be triggered
(unless there is a false positive), resulting in all of them being executed, which
will also result in a higher energy consumption.

Figure1(a) and (b) shows the results for the CPU energy consumption
for both app collections during the “Upon Installation” scanning. Our results
demonstrate that most AV engines exhibit this behavior, apart from AVG where
the energy consumption is approximately the same for malware and benign apps.
Dr. Web presents the largest increase, with 8 times more energy consumed when
scanning goodware. The higher average consumption for the 3 falsely detected
apps, compared to the other benign apps, is in part due to their large size which
affects the scanning process of Dr. Web as we discuss later on (we found that
when scanning apps of comparable size, benign ones tend to have a higher con-
sumption).

NQ, Sophos and Avast consume 64 %169 % more energy for goodware. Nor-
ton is the most efficient with a 12.9 % increase, which may be correlated to the
high false positive rate: in an effort to maintain a low energy consumption, they
may employ a more “superficial” heuristic that is prone to false positives.
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Table 3. Detection outcome and energy consumption of the seven malicious apps not
detected by Sophos (Sect. 4.2).

Energy Consumption (mJ)

Sample Size Sophos AVG NQ Avast Dr. Web Norton
thespyja 15.5 KB 9,748.3 102.4 612.9 202.1 314.3 111.9
vending.sectool.v1l 96.37 KB 9,676.1 196.4 543.2 580.8 87.9 254.8
androiddefender 1.5 MB 9,834.5 184.4 895.9 5684 384.7 211.3
carrierig.trial 1.69 MB 9,825.4 96.6 717.9 894.1 585.6 253.2
dropbox.android 3.03 MB 12,410.2 232.3 787.5 738.1 580.7 468.7
apps.DWBeta 4.28 MB 9,838.2 298.1 580.5 664.2 363.3 573.9

appgame7?.candystar 5.76 MB 9,942.3 99.2 2,182.5 1,540.4 779.4 520.7
not detected — detected

Application Whitelisting. We explore whether any of the AVs employ whitelist-
ing for popular apps (i.e., if really popular apps are matched against a simple
signature and are not scanned in depth). We select the 10 most popular apps
(e.g., Instagram, WhatsApp) and repeat the previous experiments. Results are
in line with our previous measurements for each AV, with the app sizes once
again affecting the energy consumption for certain AVs. There were no instances
of an app being processed in a significantly faster manner or consuming less
energy, indicating the lack of some form of whitelisting.

False Classification. We calculate the penalty, in terms of “wasted” energy
consumption, that occurs when the AV misclassifies a malicious app as benign.
As can be seen in Table2, AVG is the only AV engine to actually benefit in
terms of energy consumption when failing to detect a malicious app, with a
73.9% decrease in consumption. While consuming more energy is, obviously, a
negligible side-effect of a malicious app going undetected, in our case it serves
as a potential indicator of instances where an AV exhibits strange behavior.

Indeed, one can see that Sophos exhibits a strange behavior and has the
largest increase with 1023.8% compared to the malware samples that are
detected, and has a consumption 4-6 times larger than when scanning benign
apps. As shown in Table 3, all of the malware samples have a significant impact
on Sophos in terms of the amount of energy consumed when scanning them. We
also explore the effect of those seven malicious apps on the other AV engines.
Although 3 samples are not detected by any of the AVs, 2 of them were detected
by all but Sophos. None, however, present the same effect on all of the remaining
AVs. While some result in higher consumption than the average for the specific
AV, they do not present a consistent effect on all AVs. This indicates that this
is most likely caused by the internal implementation of Sophos, and not the
malware employing detection or analysis evasions technique.

Regarding the undetected samples, we found that dropbox.android and
thespyja remain undetected by several AV engines, as shown by popular online
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scanning services. Indeed, dropbox . android was detected by only one AV engine
(out of 52in VirusTotal, and 7in AndroTotal [15]), while thespyja was detected
by 11 (~21%) in VirusTotal and 2 (~28%) in AndroTotal, which are still
quite low. This could be attributed to AVs intentionally not labelling a sam-
ple as a threat after some time. However, in the case of the third sample
(androiddefender), VirusTotal and AndroTotal report detection by 61.5 and
85.7 % of the AVs respectively.

To gain a better understanding of the behavior of thespyja, which has a size
of merely 15.5 KB and is characterized as Spyware, we reverse engineer the app.
We first obtain the Java bytecode using apktool and then get the actual source
code (Java files) using dex2jar [5] and JD-GUI [6]. The source code is constituted
by only two Java files, one Android Activity file and a graphical layout file. By
inspecting the code of the activity file we found that the app’s logic is simplistic.
It opens a web view and transfers the user to a web page. Evidently any malicious
action occurs when the user visits the page. The app does not contain any other
functionality and only requires the INTERNET permission.

4.3 Upon Installation vs. on Demand Detection

Figure1(c) and (d) shows the average energy consumed by the CPU for each
AV when scanning the whole device “On Demand”. As expected, the “Upon
Installation” method consumes less energy than the “On Demand” method as
it only scans the app being installed and not the entire device. Sophos exhibits
the smallest increase for the “On Demand” consuming 4.5 times more energy for
malware and 2 times more for benign apps. Norton has the largest increase, with
a 20 times larger consumption for malware and 18 for goodware. The remaining
AVs have an increased energy consumption by 12-14 times for malware and
3—6 for benign apps. AVG and Sophos remain fairly consistent, with the energy
consumption being the same whether an app is malicious or benign, for both the
“On Demand” and “Upon Installation” scanning modes. This can be attributed
to our finding that both AVs rely heavily on hash-based signatures for detection.
Overall, the “On Demand” scan proves to be a very expensive activity in terms of
energy consumption, even when not taking into account the energy consumption
from the device’s display.

4.4 Size Does Matter

The app’s size may affect the energy consumption of the AV, depending on the
type of heuristics employed. One would expect larger apps to result in longer
scans and increased consumption. However, as our experiments show, that is
not always the case. Figure 2 plots the aggregate energy consumed by each AV,
and the size of the scanned app. Dr. Web clearly exhibits a strong correlation
between the two, and Avast mostly for benign apps. For the remaining AVs
size does not seem to be a dominating factor. The lack of correlation may be
attributed to fingerprinting techniques that create a compact signature without
processing the entire file, or may leverage some indexing technique to speed up
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Fig. 2. Size and aggregate energy consumption for “Upon Installation” scan (Sect. 4.4).

matching. Sophos presents no correlation at all, as there are three clusters of
consumption, which remain consistent regardless of app size. The three clusters
of consumption suggest three sets of heuristics and termination of the scan upon
detection by a set of heuristics.

To verify our analysis, we also calculate the Pearson’s correlation coefficient,
a value between [—1,1], between app size and energy consumption; 1 denotes
perfect linear correlation between two variables, 0 denotes no correlation and
—1 shows total negative correlation. Table 4 shows that for Dr. Web we have a
correlation value of over 0.7 for both benign and malicious apps verifying our
previous observations. Avast also demonstrates a strong correlation for benign
apps but not for malicious ones. Furthermore, Sophos presents almost no corre-
lation with 0.012 for benign apps and 0.098 for malware. Norton is the only AV
to exhibit a higher correlation for the malicious apps compared to the benign,
suggesting extensive heuristics that analyze the app, justifying its high detec-
tion rate. Interestingly, the two AVs with the lowest correlation between size and
consumption, namely AVG and Sophos, are also the two apps that rely heavily
on package name or hash-based signatures for detection.

To further explore the correlation, we plot the duration of the “On Demand”
scan for Dr. Web, correlated to the app’s size in Fig. 3. While it is evident that
the size has an impact on the scan’s duration, it is not the only factor. Whereas
in the case of malware the duration is fairly comparable for samples of a similar
size (apart from a few exceptions), things are more complicated for benign apps,
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Table 4. Correlation between energy consumption and size (Sect.4.4).

Antivirus | Pearson’s correlation coefficient
Goodware | Malware
AVG 0.402 0.349
NQ 0.420 0.085
Dr.Web | 0.793 0.721
Sophos 0.012 0.098
Avast 0.673 0.493
Norton 0.402 0.510
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Fig. 3. Duration of the scan vs. size of the app for Dr. Web (Sect.4.4).

with large fluctuations for almost identical sizes. In one case, an app with a 0.3 %
increase in size from the previous app, presents a 150 % increase in duration.
Thus, the scanning process can be greatly influenced by the internals of each
app and the type of code and system calls included.

4.5 Display vs. CPU Energy Consumption

The energy consumption of a display is not determined only by the choice of col-
ors. It is also heavily influenced by the amount of text, animations, and the gen-
eral design of the layout. We found that while some of the AVs we tested adopt a
darker design which consumes less energy [10], they consume more energy than
others that use white but follow a more minimalistic design. We were not able
to collect information about the energy consumption of the display for NQ, as
AppScope is not able to collect that information for the specific app, due to a
bug of the app.

Figure 4(a) shows the average energy consumption per second for the display.
Results exhibit a significant disparity between certain AVs. Specifically, Dr. Web
is the least efficient, consuming 25.4 % more energy than AVG that is the most
efficient. The app’s energy consumption behavior is completely different for the
CPU and display, as Dr. Web was the second most efficient for the CPU experi-
ments, while AVG was the second least effective. Figure 4(b) shows the aggregate
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Fig. 4. Average energy consumed per second during “On Demand” scan (Sect.4.5).

consumption of the CPU and display. The apps’ consumption is heavily domi-
nated by the display, with the CPU accounting for 11.9 %-33.3 % of the overall
consumption, leaving room for significant improvement. The aggregate energy
consumption during the “On Demand” scan by Dr. Web is 5 times larger than
AVG. This is due to both the scan duration being comparatively much longer,
as well as specific design aspects of the Dr. Web app that we describe in Sect. 5.
Note that during “Upon Installation” scans, the AV runs in the background,
and does not use the display. Consequently, the contribution of the AV to the
display energy consumption is dominated by the foreground app, not by the on-
screen notifications—visualized only in cases of detected malware. Thus, we mea-
sured the energy consumption for the “On Demand” scan only, which keeps the
AV’s view in the foreground, and provides a better baseline for comparison.

Impact on Battery Life. We calculate the effect of an “On Demand” scan
(CPU and display) on the battery life for each AV, i.e., what percentage of the
battery is consumed by a single scan. We calculate a lower bound based on the
value for the specific battery (the value will be higher for older batteries with
decreased duration). Dr Web presented the largest impact by consuming 0.19 %
of the total capacity of the battery, whereas AVG has the smallest impact with
0.05%. The remaining AVs consume 0.10-0.18 % of the battery’s energy.

4.6 Internet Connectivity (WiFi)

We conducted a preliminary experiment to investigate the impact of Internet
connectivity during the “Upon Installation” scans of the 250 malicious samples.
Even though such a study needs a large number of runs to eliminate any dis-
crepancies in the energy consumption readings due to unpredictable external
factors (e.g., network load, uploading times), our goal was to test whether the
detection rates were affected, and to provide an estimation of the consumption.
Our experiments reveal some interesting results.

Detection Rate. Given the availability of cloud-based scanning, we expected
much higher detection rates. However, that was not the case. Specifically, we
turned on the WiFi antenna, which triggered a signature update for Dr. Web,
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Fig. 5. Aggregate energy consumed by CPU, WiFi and display for malware detected
“Upon Installation” (Sect. 4.6).

Sophos, Norton and AVG (experiment conducted late May 2014). Even though
we recorded slight improvements in Sophos (+2.4 %) and Norton (+0.4 %), still
none of the AVs was able to reach 100% detection rate, verifying previous
results [18]. After this upgrade, we recorded no further increase, neither due
to subsequent upgrades, nor in-the-cloud scanners.

Energy Consumption. Figure5 shows the average consumption per compo-
nent for “Upon Installation” scans, calculated only for the malware samples for
which each AV used the network. The display’s energy consumption is from the
pop-up informing the users of the detected threat. Dr.Web uses the Android noti-
fication system and, thus, presents no consumption for the display. Our results
show that the energy consumption for the WiFi component is always smaller
than the other components. There is also significant deviation between the WiFi
energy consumption of each AV. Norton has the highest consumption, being
79 % higher than that of Sophos. As further motivated in Sect.6, these find-
ings support our initial decision of conducting our measurements offline, and to
postpone an in-depth exploration of WiFi connectivity for future research.

5 Efficiency Guidelines

Here we present a series of guidelines for designing more energy-efficient AVs,
based on the insights from our results. Most AVs adopt some of the techniques
we propose, indicating that efficient power consumption is an important and
relevant aspect of their design. All of them, however, could significantly improve
their power consumption behavior by following the guidelines we propose.

5.1 Detection Heuristics and Behavior

Our experimental findings negate concerns of a strong correlation between secu-
rity and efficiency. Norton had the highest detection rate, yet was quite efficient
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Table 5. Visual characteristics of each AV (sorted in descending order of consumption).

Antivirus | Colors Design | Text Animation
AVG White Minimal | Scarce X
Sophos | White Minimal | Scarce X
Avast Grey/Orange | Normal |Substantial | v/
Norton | Dark/Blue Normal | Substantial | v/
Dr. Web | Green/Orange | Heavy | Excessive |v

in terms of energy consumption. We suggest the adoption of the following opti-
mizations for further reducing the power consumption of the scanning process:

— Early termination: Norton and AVG consume essentially the same energy for
detected malware and undetected benign apps, suggesting that all the heuris-
tics are executed in both cases instead of stopping after a heuristic is triggered.
The remaining AVs present lower consumption for detected malware, indicat-
ing that this is a feasible technique. While running all the heuristics may in
principle help minimize false positives, our experiments demonstrated that 3
of the 4 AV apps that adopt an “early stop” strategy do not present any false
positives, while Norton has a 4.8 % false positive rate.

— Whitelisting': whitelists can be used to avoid scanning known benign apps.
The AV will have a list of signatures for popular benign apps. If the user
installs an app contained in the list, the AV simply has to match it to the
signature and can avoid all the intensive, energy consuming heuristics that
analyze the app in depth. The list should be updated periodically to include
the latest versions of apps, and add new and popular apps that are released.
Such a mechanism does not affect the detection accuracy of the AV. Even if
a malware author releases a sample that exhibits a dual behavior, as demon-
strated in [27], if the sample has been previously detected by the vendor it
will not be whitelisted but detected as a threat. If the sample has not been
previously detected, the whitelisting does not change the outcome, as it would
have not been labelled as a threat regardless of the whitelisting. Furthermore,
the whitelisting should only be employed for very popular apps, rendering the
scenario of a whitelisted malware sample unlikely.

— Background tasks: Run “On Demand” scans in the background to minimize
the rendering of visual components, as is done for the “Upon Installation”
scans, which leverage the notification system when necessary.

5.2 Visual Design

While not pertinent to the security aspect of our study, we also provide a series
of guidelines regarding the design of the apps, for reasons of completeness.

1 Not to be confused with application whitelisting (e.g., [7]), where only known appli-
cations are allowed to be executed on the system.
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Our results revealed that the energy consumption of an AV is largely affected by
the display. Minimizing the energy consumption of the display will significantly
reduce the app’s consumption and minimize the impact on the battery’s life.
Table 5 provides details of the visual design of each AV, which directly affect
the energy consumption. Most of the design elements of the apps we tested could
easily be changed towards minimizing the consumption. Even though appearance
is an important aspect of apps, which can affect their popularity, AVs present
a “special” case, because their success is based on their functionality (i.e., good
detection accuracy, low CPU load and energy consumption), rather than their
look and feel. This, of course, is more constraining for other categories, such as
websites [25], as they have to be visually appealing and entice users. On the
other hand, the popularity of AVs is primarily affected by their ability to detect
malware, regardless of their visual design. This could be further supported by the
fact that AVG, which is one of the two most popular AV apps, is also the most
energy-efficient one. Nonetheless, even though AVG follows the most “clean”
visual design, it also relies heavily on bright colors, significantly draining more
energy than dark ones. Overall, taking into account the current hype about
“green” or “sustainable” designs, following our guidelines and advertising its
power efficiency, may further boost the popularity of an AV app.
We propose the following guidelines in terms of visual design:

— Colors: Maximize the dark areas (e.g., backgrounds). In OLED displays black
pixels are produced by turning them off, which greatly reduces consumption.

— Text: Reduce text to bare essential (e.g., result of analysis).

— Design: Follow minimalistic and clear designs. Animations and “heavy”
designs unnecessarily increase energy consumption.

Note that the default theme for system apps (e.g., system settings) in vanilla
Android is dark and minimalistic. Indeed, development guidelines encourage the
adoption of built-in widgets, which ensure a memory-efficient, fast and sleek UL

6 Limitations and Future Work

Multiple Devices. All experiments have been conducted on a specific smart-
phone model, as AppScope’s power consumption model has been calibrated for
this specific device. Building models for AppScope and calibrating them for other
devices is out of the scope of this work. While the power consumption of these
AVs might present differences on other devices (e.g., devices with larger displays),
their inherent behavior will remain the same across devices. Furthermore, our
study is comparative, and all measurements are completed on the same model.
Thus, the insights we derive are not bound to the specific device, and our design
guidelines will improve energy consumption regardless of the device.

WiFi. Apart form the preliminary WiFi experiment, our study has been con-
ducted with the WiFi connectivity disabled. Several reasons guided that choice,
with the inability to maintain all aspects of the experiments constant for the
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entirety of their duration being the most significant. Fluctuations of upload-
ing times and differences in network loads can significantly alter the duration
and, thus, energy consumption of the experiments. Furthermore, the apps may
“silently” update certain aspects of their functionality or signature database.
As the experiments are conducted on a real device and not within a simulator,
reverting the device to a clean state after every sample installation significantly
increases the duration of each experiment. Taking into account the number of
apps explored, and the multiple iterations per sample, it is possible that before
a set of experiments has completed, the AV engines might have updated, thus
creating different “testing environments” within a single experiment. As such,
we plan to explore methods to enable us to include WiFi connectivity, while
maintaining a constant testing environment across all experiments.

7 Related Work

Battery-Based Malware Detection. Hoffmann et al. [13], proposed the idea
that every action performed drains a specific amount of energy from the battery.
As such, they performed tests to check whether they could analyze the behavior
of benign and malware applications in terms of energy consumption. They used
PowerTutor to conduct their experiments. First they conducted tests on different
components (CPU, Display, 3G, WiFi) on a clean device and compared the
results with experiments on 2 malware samples. According to their results, they
could not identify the malicious activity from the energy traces due to the high
“noise” ratio. All the experiments, were conducted on two different Android
devices.

Merlo et al. [17] contradicted the conclusions drawn in [13], arguing that it is
possible to identify malicious activity by monitoring the energy consumption of
a device. To show the correctness of their proposal, they analyzed two different
approaches to the problem. First, with a high level approach similar to [13],
they attempted to measure the energy consumption based on hardware resources
usage counters. They found that this approach provides inaccurate results, not
capable of identifying a crafted network attack. Then, with a low level approach
based on energy measurements at the battery level, they found the produced
results reliable for identifying the aforementioned attack. However, this approach
induces a high level OS intrusiveness that considerably limits its portability.

Additionally, Truong et al. [26] recently found that the in-the-wild malware
is not sophisticated enough, or simply does not bother, to hide the extra energy
consumption. To this end, they used MIT’s Carat infrastructure to conduct a
large-scale infection-rate measurement on 55,000 real devices.

In an older study, Hahnsang et al. [14], developed a framework for detecting
energy-greedy anomalies based on power measurements, performed on a device
running Windows Mobile OS. Their framework consists of two basic compo-
nents: a power monitor that collects power samples of a candidate application
and a data analyzer that generates power signatures from those samples. The
detection is performed through comparing the generated signatures with a pre-
defined database. The framework was evaluated on custom worms and proven
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to successfully detect samples sharing common behavior with known malware
variants, as well as applications exhibiting unknown energy-greedy anomalies.
Previous studies [16,20] have focused on the detection of battery exhaustion
attacks on mobile devices. In [16], Marting et al., presented a list of methods that
an attacker can use to drain the battery of a device, along with a power-secure
architecture to thwart those attacks. In [20], Nash et al., proposed an IDS for
battery exhaustion attacks based on power consumption estimations as derived
from several parameters of the system, such as CPU load and disk accesses.

Security vs. Energy Efficiency. Bickford et al. [8] studied the potential trade-
offs between security monitoring and energy consumption for a specific class of
malware detectors: rootkit detectors. They propose a framework to asses security
versus energy tradeoffs along two axes, attack surface and malware scanning fre-
quency. Their results demonstrate that protection against code-driven attacks is
relatively cheap, while protection against all data-driven attacks is prohibitively
expensive. Their study was performed on a mobile device running a version
of Linux, and was limited for a specific class of malware (rootkits) which cur-
rently does not constitute a threat for mobile devices. In contrast, our study
was performed on a mobile device running the Android OS and we use popular
commercial AVs and real malware samples which pose a significant threat.

Android AV Evaluation. Rastogi et al. in [22], performed an evaluation, in
the most popular AVs, regarding malware evasion techniques. They developed
DroidChameleon a framework which transforms malware from different malware
families by changing the package name, renaming the files and the identifiers,
reordering code etc. They tested the new transformed malware samples in ten
AV products. Results indicate that all the tested AV products are susceptible
to common evasion techniques. In a similar work [30], Zhen et al.present an
automated and extensible platform, called ADAM, which evaluates the detection
of Android anti-malware tools through different static transformation techniques.
applied on a number of malicious apps. They tested their repackaged malware
samples on a popular analysis service and found that the detection rates dropped
compared to the original samples.

8 Conclusion

Battery technology seems unable to keep up with the rapid evolution of smart-
phones and their applications, which demand more and more energy. The popu-
larity of external power banks and slim batteries camouflaged as covers are a sign
that smartphone users do need extra power for their devices. In a similar vein,
the rise of applications that promise to make the battery draining slower (e.g.,
by killing processes) show that users are concerned about this aspect. Security is
generally a cost, and in the case of mobile AVs; the risk is that users may decide
to uninstall an AV because it drains too much battery. In other words, the less
energy an AV consumes, the more usable it is.

Research efforts such as the one presented in this paper are preparatory for
building design methodologies and tools that enable application vendors and
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developers to balance the trade off existing between security effectiveness, user
experience and speed. We derived our design guidelines from thorough measure-
ments obtained on a real-world device running the most popular mobile operat-
ing system and, thus, we believe they offer an accurate reference for practitioners
and future researchers.

In particular, our measurements show that there are significant deviations
of CPU energy consumption among different AV products. Interestingly, the
energy consumed by the CPU due to the AV is 3—4 times lower when compared
to other hardware components, which are energy greedy. This means that there
is room for increasing the detection accuracy, for example by running more
energy greedy algorithms. Indeed, we found that no correlation exists between
the detection accuracy and energy consumption of AV applications on mobile
devices. Moreover, in most AV products a pattern can be seen: the bigger the
size of an application, the higher the energy consumption required for scanning
it, but that depends on the AV and the specific scanning technique. Clearly,
energy efficiency and complex detection algorithms can coexist only if the Ul
designers are cautious and create Ul components that minimize the illumination
of the pixels. Indeed, the display is the most energy greedy component.

Based on our findings, we argue that security vendors are not bound by
an “Efficiency vs Accuracy” trade off, and can produce antivirus apps that are
effective while maintaining modest energy consumption profiles.
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