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Abstract. In this paper, we propose a two-layered classification approach to 
effectively recognize the physical activities while the smartphone is placed at 
any four common positions on the body. Then we implement a Life Record app 
on smartphone that automatically classifies physical activities and records them 
as the personal life logs. For assisting users in comprehending their daily 
activities, the system also provides the visualization interface that shows the 
brief descriptions of their life logs. 

We demonstrate that the system possesses less limitation to monitor daily 
activities that the users are not restricted to carry their smartphones in specific 
positions. Another major benefit of our system is to provide a complete overview 
of personal activities, which enhances the self-awareness of physical activity in 
our daily life through an intuitive visualization interface. Furthermore, analysis of 
life logs can also be applied in specific services or recommendation applications 
in the future. 
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1 Introduction 

Physical inactivity is one of the most important modifiable risk factors, and it causes 
unhealthy life habits such that most people spend their leisure time involved in seden-
tary pursuits. Due to this lack of physical activity, more and more people have  
become overweight (body mass index ≥25 kg/m2) and even have become obese (body 
mass index ≥30 kg/m2). Globally, in 2005, it was estimated that over 1 billion  
people were overweight, including 805 million women, and that over 300 million 
people were obese. By 2015, it has been estimated that over 1.5 billion people will be 
overweight [1]. Overweight and obesity, moreover, will cause increasing risk for 
various chronic diseases, such as diabetes, cardiovascular diseases, hypertension and 
cancer. 
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Several commercially available devices, such as Fitbit One [2] and Fitbit Flex [3], 
Bodymedia [4], and Jawbone UP [5], have embedded these wearable sensors to  
provide daily activity monitoring, to compute caloric expenditure, and even trace 
sleeping status during the night. Although these can provide daily activity monitoring 
or specific exercise training, they need to be worn in a specific body position and are 
not popular for the general public.  

In addition to hardware, smartphones also provide a developmental platform on 
which developers can easily design applications. Several studies [6-9] have proposed 
human activity recognition systems based on smartphones to facilitate long-term daily 
activity monitoring. 

In this research, we use Android smartphones to collect daily activity data, so this 
system is applicable to individuals who own Android smartphones. Users can observe 
activity habits through their life logs from the visualizations on the smartphone  
application. 

2 Related Work 

Human Activity Recognition research mostly uses observation of human actions to 
obtain an understanding of types of activities that they perform within a specific time 
interval. Typical activities under consideration vary from mechanical process such as 
activities of daily living (ADL) to socio-spatial processes like meetings. To recognize 
the activities that occur in daily living, wearable sensors have been used to acquire the 
signals from different body positions intended to detect movements. Accelerometers 
have been the most commonly used device to recognize human activity during high 
performance in physical activity recognition (PAR) research. So far, almost all studies 
of PAR differ according to the type and number of activities identified and by the 
location, type and number of accelerometers used. 

Wu et al. [40] proposed a system called SensCare, which was a semi-automatic 
lifelog summarization system for elderly care. SensCare fuses heterogeneous  
sensor information and automatically segments and recognizes user’s daily activities 
in a hierarchical way. It combines unsupervised activity segmentation and activity 
recognition to segment an activity with the specific time period related to its occur-
rence. GPS data is fused with the activity segmentation to predict high-level daily 
activities. 

Other studies referenced in [9-13] were all aimed at providing ubiquitous recogni-
tion systems used in long-term health care monitoring. In short-term supervised  
monitoring situations, large numbers of body-fixed sensors can be used to allow the 
collection of greater quantities of information, leading to very accurate assessments of 
movement; however, in long-term, unsupervised monitoring environments, subject 
compliance is essential if the system is to be used [14]. 

Human life models are useful in a variety of applications, such as the detection of 
abnormal behavior. They can also be used to analyze correlations between the regu-
larity of workers’ behavior and their levels of stress [15]. 
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