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Abstract. Bandwidth-delay constrained least-cost multicast routing is
a typical NP-complete problem. Although some swarm-based intelligent
algorithms (e.g., genetic algorithm (GA)) are proposed to solve this prob-
lem, the shortcomings of local search affect the computational effec-
tiveness. Taking the ability of building a robust network of Physarum
network model (PN), a new hybrid algorithm, Physarum network-based
genetic algorithm (named as PNGA), is proposed in this paper. In
PNGA, an updating strategy based on PN is used for improving the
crossover operator of traditional GA, in which the same parts of par-
ent chromosomes are reserved and the new offspring by the Physarum
network model is generated. In order to estimate the effectiveness of
our proposed optimized strategy, some typical genetic algorithms and
the proposed PNGA are compared for solving multicast routing. The
experiments show that PNGA has more efficient than original GA. More
importantly, the PNGA is more robustness that is very important for
solving the multicast routing problem.

Keywords: Genetic algorithm - Physarum network model - Multicast
routing

1 Introduction

Multicasting is one type of services in MANETSs, which are very popular due
to the no-restricted mobility and feasible deployment. With the growing of dis-
tributed multimedia application, the efficient and effective support of QoS (i.e.,
Quality of Service) has became more and more crucial for MANETS. The key
issue in the design of network architectures of MANETS is how to manage the
resources efficiently in order to meet the requirements of QoS during each con-
nection. In general, to deliver the same data stream to different destinations
efficiently, a tree structure is used for multicasting. More importantly, some
constrains are often added to the entire tree for multicasting in order to meet
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the requirements of QoS. Thus, the object of multicast routing problem is to
compute a tree structure (named as the multicast tree) under the conditions of
the minimum communication resources and QoS requirements of a network [2],
which is a typical NP-complete problem [3].

In the field of artificial intelligence, the genetic algorithm is a powerful tool
for solving NP-complete problems. However, the shortcomings of local search
affect the computational effectiveness. Recently, more and more scientists focus
on the self-organization capability of a species of plasmodium, which is a ‘vegeta-
tive’ phase of Physarum. This plasmodium shows an amazing intelligence in the
process of building a robust protoplasmic network for connecting food sources
in order to deliver nutrients to all its body [4].

In this paper, we design an updated crossover operator, based on Physarum
Network (PN) [5], for overcoming the shortcomings of traditional GA. Using this
method, we incorporate PN into GAs for solving the multicast routing prob-
lem. Some experiments show that the hybrid algorithm has a stronger ability to
exploit the optimal solution effectively.

The organization of this paper is as follows. Section 2 introduces the formu-
lation and measurements of multicast routing problem. Section 3 formulates the
hybrid algorithm. Section 4 provides some experiments to estimate the effective-
ness of hybrid algorithm. Section 5 concludes this paper.

2 Problem Statement

In general, a QoS multicast routing problem involves in several constrains, such
as delay jitter, packet loss, bandwidth, and cost. In this study, we simplify QoS
constrains and present a feasible QoS multicast routing model. According to [1],
we focus on three most important factors: cost, bandwidth and delay. As the
cost is the most important metric for the effectiveness of a network, our research
focuses on the bandwidth-delay constrained least-cost multicast routing problem.

A network is usually represented as a graph G = (V,E), where V =
{v1,v2,...,v,} denotes a set of nodes representing routers or switches and
E = {ei; = (vi,vj)|vi,vj € V,i # j} denotes a set of edges representing physical
or logical connectivity between nodes. Let a node s € V' be the source and a set
DE C V — {s} be the set of multicast destinations. A multicast tree, denoted
as T'(s, DE), is a sub-graph of G connecting a node s to each node in DE. The
path from s to any destination node d € DE is denoted as pr(s,d). And the
object of multicast routing problem is to find a T'(s, DE) with a minimum cost,
which has a set of paths with acceptable bandwidth and delay from a node s to
each node in DE.

The delay of a path from a node s to any destination node d in DE, denoted
as delay(pr(s,d)), is simply defined as the sum of delays in the pr(s,d), i.e.,
delay(pr (s, d)) = X cepy(s,a) delay(e). Meanwhile the bandwidth of a path from
a node s to any destination node d in DE, denoted as bandwidth(pr(s,d)), is
defined as the minimum of bandwidth along pr(s, d), i.e., bandwidth(pr(s,d)) =
min{bandwidth(e)|e € pr(s,d)}. And, according to existing studies in [6,7], we
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unify the cost of a multicast tree as the sum of costs in the tree, i.e., cost(T) =

> cost(e), for comparing effects of different GAs.
ecT
Let Ay be the upper limit of delay constraint and A, be the lower limit of

bandwidth constraint for each path. And the bandwidth-delay constrained least-
cost multicast routing problem is defined as (1). We want to minimize the cost
under the condition of satisfying bandwidth-delay constraints.

min cost(7T)
st. (1)
delay(pr(s,d)) < Ay forVde DE
{bandwidth(pT(s, d)) > A, forVde DE

3 Formulation of PNGA

This section introduces the basic idea of PNGA from two aspects: original PN
model and PNGAs. In detail, Sect. 3.1 presents the original PN model. And,
Sect. 3.2 shows how to improve GAs by PN.

3.1 Physarum Network Model

The Physarum network model is inspired by the maze-solving experiment [4].
Tero et al. capture the positive feedback mechanism of Physarum in foraging
and build the PN model [5]. In addition, The model, designed for solving maze
problem, can be used for building a multicast tree in our study. The details of
PM are described as follows.

In PM, Q;; represents the flux of pipeline, connecting nodes ¢ and j, and
D;; stands for the conductivity of the pipeline. Moreover a node s and a set
DE present the inlet and outlets of pipelines respectively. According to the
Kirchhoff’s law, the flux of input at node s is equal to the total flux of output
at DF and, at any other nodes, the sum of flowing into that node is equal to
the sum of flowing out of that node. This process can be denoted as (2) where
N stands for the cardinality of DE.

+1 forj==s
> Qij =14 5% forjeDE (2)
i 0 for others

In each iteration step, @;; and p; can be calculated according to Poiseuille’s
law based on (2) and (3), where L;; represents the length of pipeline contacting
nodes 7 and j, and p; represents the pressure of node 7. As the iteration going
on, the conductivities of pipelines adapt to the flux based on (4). Then, the
conductivities will feed back to the flux based on (3) at the next iteration step.

Qij = (Lij s )(pi —pj) (3)
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dD;;
dt] = |Qij| — Dy; (4)

After above processes, one iterative step is completed. This process will continue
loop iteration until the terminal condition is satisfied. In this study, the terminal
condition is |D';; — D'*1;;| < 107° for any i and j, where D'™;; stands for D;;
at iteration step t+ 1. After the loop iteration, critical pipelines will be reserved,
and others will disappear. Finally, we can obtain a Physarum spanning tree. The
description of PN model for a shortest path tree is shown in Alg. 1.

Algorithm 1. Physarum network model

Input: A graph NG, a source node s, a set of destination nodes DE.
Output: A shortest path tree connecting a source node s to each node in DE.
Step 1: Initializing with D;; = (0,1], Q;; =0, p; = 0.

Step 2: Computing @;; and p; based on (2) and (4).

Step 3: If Qi; < 0, then Q;; = 0.

Step 4: Updating D;; based on (4).

Step 5: If the terminal condition is not satisfied, then going to step 2.

Step 6: Outputting the shortest path tree.

3.2 PNGA

The GA is a powerful tool for solving PN-complete problems and a kind of search-
ing algorithm that employs the ideas of natural selection and the genetic operators
of crossover and mutation. Taking advantages of PN model and GAs, we propose
a universal strategy for crossover operator in GAs. The new crossover operator
is named as PNcrossover. And the novel hybrid algorithms with PNcrossover
(denoted as PNGAs) are used to solve the multicast routing problem. The main
ideal of PNcrossover is to reserve the same links between parent chromosomes and
to integrate the offspring through PN model based on the reserved links. Other
parts of PNGAs are same as the original ones. An example of crossover process is
shown in Fig. 1. The details of PNcrossover are described as follows.

Firstly, for applying PN model, we need a new graph, denoted as NG, with
the same topological structure as the network graph in the multicast routing
problem. Because GAs may generate some unadaptable chromosomes, which
do not satisfy with the constraints, there are two strategies to fit for different
GAs. For the GAs, which do not generate unadaptable chromosomes, such as
GAMRA [6], L;; in NG is set equal to the delay of e;;. For others, such as
EEGA [7], L;; in NG is set equal to the product of cost and delay of e;;.

And then, PNcrossover selects the same links of parent chromosomes and
reserves them in the offspring chromosomes. Since these same links may be in
some separated sub-trees, PN model is used to transform these sub-trees into
a multicast tree. In order to reserve the same links in PN model, the length of
reserved links is set equal to zero in NG. Substituting the graph NG, source
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.source . Destination  (cost,delay) .source . Destination  (cost,delay)

(a) Parent chromosome A (b) Parent chromosome B

. source . Destination « « « Build by PN~ (cost,delay)

(¢) A new offspring generated by parent chromosomes A and B through PNcrossover

Fig. 1. An example of crossover operation

and destinations into PN model, a complete multicast tree will be constructed.
Alg. 2 describes detailed steps of crossover operator in PNGAs.

4 Simulation Experiments

4.1 Datasets

In order to estimate the effectiveness of PNcrossover scheme, we integrate
PNcrossover into two different GAs [6,7] and implement them on two datasets.
The first (denoted as D1) is a random graph with 20 nodes, which is constructed
based on [6]. In D1, costs and delays of links are uniformly distributed between
0.3 and 1. The second (denoted as D2) is shown in Fig. 1, with A, equaling to
24 [7]. All experiments are under the same environment, i.e., all parameters of
PNGAs are same as these of original GAs. And all results in our experiments
are averaged over 50 times.

4.2 Experiments Analysis

Figure 2 shows the minimum (Smin), average (Sqverage) and variance (Svariance)
of the results calculated by PN-GAMRA and original GAMRA [6]. Although
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Algorithm 2. PNcrossover

Input: A network graph G, a source node s, a set of destination nodes DE, parent

chromosomes Ty, and Ty.

Output:An Offspring chromosome 7.

Step 1: Creating a graph NG with the same topological structure as the network
graph G in the multicast routing problem.

Step 2: If the original crossover operator do not generate unadaptable chromosomes,
then let L;; equal to the delay of e;;.
else let L;; in NG equal to the product of cost and delay of e;;.

Step 3: Let the length of same links between T, and T} equal to zero.

Step 4: Substituting the NG, s and DF nodes into PN model.

Step 5: Outputting a new multicast tree, Tc, based on PN model.

these two GAs can find approximate optimal solutions, Smin and Saverage Of
PN-GAMRA are less than that of original GAMRA. That means PN-GAMRA
has a stronger ability to exploit the optimal solution. Moreover, Syarianee 0of PN-
GAMRA is less than that of GAMRA, which shows that the PN-GAMRA is
more robust than its original algorithm.

1.0
GAMRA

[ ]PN-GAMRA L0.8
i‘g 254 F0.6 ¢
= =
< =
Loa ~

0.2

04 0.0

Smin Saverage Svariance

Fig. 2. Comparing results of PN-GAMRA and GAMRA on D1

As EEGA [7] may generate unadaptable solutions in the evolution, we com-
pare the costs and delays of solutions. In order to further verify the accuracy
and robustness of PNGA, Fig. 3 plots the convergent process of averages and
variances with the increment of iterative steps. As shown in Fig. 3, average and
variance of PN-EEGA decrease more obviously than that of EEGA. In detail, in
the earlier iteration, there are slight difference between averages of PN-EEGA
and EEGA. With the iterative steps going on, the average of PN-EEGA are less
than that of EEGA obviously. PN-EEGA exhibits a better accuracy. Further-
more, the variance of PN-EEGA is also less than that of EEGA, which shows
that PN-EEGA has more stronger robust. Moreover, Figure 4(a) and Fig. 4(b)
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Fig. 4. Comparing results of EEGA and PN-EEGA on D2

plot Smin, Saverage and Svariance 0f PN-EEGA are less than that of EEGA in
both costs and delays. These results show that the PNcrossover scheme can
strengthen the searching ability for finding the optimal solution and improve
the robustness of original GA.
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5 Conclusion

Inspired by Physarum polycephalum forming optimized network in foraging
food sources, a new Physarum Network based genetic algorithm was proposed
to solve multicast routing NP-hard problem. In the proposed PNGA, a new
crossover operator was introduced, which can improve the effectiveness of GA.
This was verified through experiments on two datasets. As PNGAs need more
time on calculating the PN model, more improvements will be implemented to
reduce the computational cost in future.
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