
© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part II, LNCS 9141, pp. 261–272, 2015.
DOI: 10.1007/978-3-319-20472-7_28

A Dynamic Penalty Function
for Constrained Optimization

Chengyong Si1(), Jianqiang Shen1, Xuan Zou1, Yashuai Duo1,
Lei Wang2, and Qidi Wu2

1 Shanghai-Hamburg College, University of Shanghai
for Science and Technology, Shanghai 200093, China

sichengyong_sh@163.com
2 College of Electronics and Information Engineering, Tongji University,

Shanghai 201804, China
wanglei@tongji.edu.cn

Abstract. Penalty function methods have been widely used for handling con-
straints, but it’s still a challenge about how to set the penalty parameter effec-
tively though many related methods have been proposed. In this paper, the pe-
nalty parameter is firstly analyzed systematically by introducing four rules.
Based on this analysis, a new Dynamic Penalty Function (DyPF) is proposed by
adjusting penalty parameter in three different situations during the evolution
(i.e., the infeasible situation, the semi-feasible situation, and the feasible situa-
tion). The experiments are designed to verify the effectiveness of our newly
proposed DyPF. The results show that DyPF presents a better overall perfor-
mance than other five dynamic or adaptive state-of-the-art methods in the
community of constrained evolutionary optimization.

Keywords: Constrained optimization · Constraint handling techniques · Diffe-
rential evolution · Dynamic penalty function (DyPF) · Ranking methods

1 Introduction

Constrained Optimization Problems (COPs) are very important and common in real-
world applications. The general COPs can be formulated as follows:

Minimize ()f x


Subject to: () 0, 1, ,jg x j l≤ =
 

() 0, 1, ,jh x j l m= = +
 

where 1(, ,)nx x x=
  is the decision variable which is bounded by the decision space

S . S is defined by the constraints:

, 1i i iL x U i n≤ ≤ ≤ ≤ (1)

262 C. Si et al.

Here, l is the number of inequality constraints and m-l is the number of equality
constraints.

The Evolutionary Algorithms (EAs), as the unconstrained search techniques and
solution generating strategies, are not suitable enough to solve COPs without addi-
tional mechanisms to deal with the constraints. Consequently, many constrained op-
timization evolutionary algorithms (COEAs) are proposed [1]-[4].

Penalty function methods are the most widely used methods for handling con-
straints, in which some penalty parameters are adopted to balance the objective func-
tion values and constraint violation (i.e., to bias the search in the constrained search
space [5]). It’s clear that the performance of these methods is mainly determined by
their parameters and the methods can be classified based on the form of these parame-
ters.

If the penalty parameters keep constant throughout the evolution process, this me-
thod is called static penalty function method. Alternatively, if the penalty parameters
are related with the current generation number, it is called dynamic penalty function
method. As many parameters are required in dynamic penalty function method, some
adaptive penalty functions which gather information from the search process, or self-
adaptive approaches, which evolve both the penalty parameters and solutions, have
also been proposed [6].

Some other approaches based on careful comparison among feasible and infeasible
solutions are also developed.

For example, Deb [7] proposed a feasibility-based rule to pair-wise compare indi-
viduals:

1) Any feasible solution is preferred to any infeasible solution.
2) Among two feasible solutions, the one having better objective function value is

preferred.
3) Among two infeasible solutions, the one having smaller constraint violation is

preferred.
The stochastic ranking method (SR) proposed by Runarsson and Yao [8] is a very

classical constraint handling technique, which tries to achieve a balance between ob-
jective function value and constraint violation stochastically. It compares pair-wise
solutions using the following criteria: 1) if both individuals are feasible, the ranking
of them is determined by the objective function value; else 2) the parameter Pf will
determine the probability of ranking by objective function value or constraint viola-
tion. Deb’s feasibility-based rule can be seen as a special case of SR with Pf =0. The
experimental results indicate that an overall better performance can be obtained when
Pf =0.45. However, this paper didn’t provide the assurance that Pf =0.45 is an optimal
value.

And later, these two authors also pointed out that there should be some biases
when solving single-objective optimization problems (SCOPs) [9].

Besides, some methods based on multi-objective optimization concepts are also
presented. The main idea is to convert the single-objective constrained optimization
problem into a bi-objective or multi-objective optimization problem taking the con-
straints as one or more objectives to be minimized.

 A Dynamic Penalty Function for Constrained Optimization 263

After reviewing the three most frequently used constraint handling techniques,
some approaches based on the “dynamic or adaptive” idea that are closely related
with the work presented in this paper will be introduced in detail.

Wang et al. [10] proposed an adaptive tradeoff model (ATM) for constrained
evolutionary optimization. In this model, to obtain an appropriate tradeoff between
objective function and constraint violation, different tradeoff schemes during different
situations in a search process (i.e., infeasible situation, semi-feasible situation and
feasible situation) are designed. Based on this idea, an improved adaptive tradeoff
model was proposed, in which each constraint violation is first normalized [11], and
this model was combined with (μ+λ)-DE with the name (μ+λ)-CDE. To overcome the
drawback of dynamic settings for tolerance value δ, Jia et al. [12] presented an im-
proved version of (μ+λ)-CDE, named ICDE. Unlike (μ+λ)-CDE, in ICDE, the hierar-
chical non-dominated individual selection scheme is utilized in the infeasible situation
and the feasibility proportion of the population is used to convert the objective func-
tion of each individual in the semi-feasible situation.

Besides, some other adaptive approaches or frameworks were also introduced [13]-
[16]. As the solution’s property (i.e., infeasible or feasible) plays an important role in
solving COPs, some adaptive methods based on this were also presented.

Farmani and Wright [17] proposed a self-adaptive fitness formulation in which the
infeasibility measure is used to form a two-stage penalty to the infeasible solutions.
Venkatraman and Yen [18] presented a generic, two phase framework with the aim to
find a feasible solution in the first phase. Based on Yao’s stochastic ranking [8],
Zhang et al. [19] proposed a dynamic stochastic selection (DSS) within the frame-
work of multimember DE (DSS_MDE). Tessema et al. [20] introduced another adap-
tive penalty formulation which uses the number of feasible individuals to determine
the amount of penalty added to infeasible individuals (i.e., to guide the search process
toward finding more feasible individuals et al.).

Many of these methods mentioned above can get a relatively satisfying result, but
the parameters used in these approaches are mainly determined by the experiments.
The inner mechanism of Constraint Handling Techniques (e.g., the relationship of
different CHTs, when and why some CHTs are more efficient) is few studied.

Herein, to overcome this drawback, in this paper we first studied the penalty para-
meter systematically, and then proposed a new dynamic penalty function (DyPF)
based on the analysis.

The rest of this paper is organized as follows. Section 2 systematically analyzes the
penalty parameter. Based on this, Section 3 presents a detailed description of the pro-
posed DyPF. The experimental results and the comparison with some similar state-of-
the-art methods are given in Section 4. Finally, Section 5 concludes with a brief
summary of this paper and some future work.

2 Systematical Analysis of Penalty Parameters

The basic idea of the discussion is that by introducing four rules (i.e., A_1, A_2, B_1,
B_2), if the penalty parameter is consistent with some rule’s combination in certain

264 C. Si et al.

range, then we can conclude that the penalty parameter value in this range has no
effect on ranking the solutions [21].

As there are only two kinds of solutions in the evolutionary process (i.e., feasible
solutions and infeasible solutions), the ranking or the selection process is mainly be-
tween these two kinds of solutions, including feasible solutions versus feasible solu-
tions, feasible solutions versus infeasible solutions, and infeasible solutions versus
infeasible solutions. As there is no constraint violation for feasible solutions, only the
objective function values are used for the comparison between feasible solutions and
feasible solutions. As to the comparison involving infeasible solutions, the following
rules are introduced:

A_1: a feasible solution is superior to an infeasible solution.
A_2: a feasible solution is inferior to an infeasible solution.
B_1: two infeasible solutions will be ranked according to the constraint viola-

tion, and the one with less constraint violation will be preferred.
B_2: two infeasible solutions will be ranked according to the reciprocal of the

constraint violation, and the one with more constraint violation will be preferred.

Additional rule: among two infeasible solutions with the same constraint violation,
the one with less objective function value is preferred (for the minimization prob-
lems).

It should be noted that here the characteristics of the rules (i.e., good or bad) are
not considered as the judgment of a rule is closely related with the problem characte-
ristics (e.g., the location of the optimal solution, the topological properties of the con-
straints, etc.) and the solving goals (e.g., how to judge the solution’s performance if
no feasible solutions are found, etc.). And here, the main concern is that the ranking
result following some rules’ combination (A_1-B_1, A_1-B_2, A_2-B_1, A_2-B_2)
is unique.

The introduction of penalty parameter enables us to transform a constrained opti-
mization problem (A) into an unconstrained one (A’) [8]. Here, we define the evalua-
tion function L as follows.

For the given λ , δ >0, let

(, ,) () (,)i i iL x f x G xλ δ λ δ= +
  

1, 2,...,i NP= (2)

where ix


stands for the NP n-dimensional real-valued vectors of the population. λ is

the penalty parameter and δ is the tolerance value for the equality constraints. f is

the objective function and G is the penalty function with the form as follows.

1

(,) (,)
m

i j i
j

G x G xδ δ
=

= 

1 1

max(0, ()) max(0, ())
l m

j i j i
j j l

g x h x δ
= = +

= + −  
 (3)

As the effect of λ is mainly concerned, δ can be supposed as a constant. The for-

mula (2) can be transformed as

(,) () ()i i iL x f x G xλ λ= +
  

 1, 2,...,i NP= (4)

 A Dynamic Penalty Function for Constrained Optimization 265

Given two population members, sx


and tx


, where s and t are randomly selected from

[1, NP] and satisfying: s t≠ , the difference between their evaluation function values is:

(, ,) (,) (,)s t s tx x L x L xλ λ λΔ = −
   

[() ()] [() ()]s s t tf x G x f x G xλ λ= + − +
   

[() ()] [() ()]s t s tf x f x G x G xλ= − + −
   

 (5)

We define () ()st s tf f x f xΔ = −
 

, () ()st s tG G x G xΔ = −
 

, then formula (5) can be

written as:

(, ,)s t st stx x f Gλ λΔ = Δ + ⋅ Δ
 

 (6)

Suppose the number of feasible and infeasible individuals in the population is p
and q respectively, with 0 ,0 &p NP q NP p q NP≤ ≤ ≤ ≤ + = .

1) Infeasible solution versus feasible solution

Similarly, given two population members, sx


and tx


, where s and t are randomly

selected from the p feasible solutions and q infeasible solutions, the formula (5) can
be transformed as:

(, ,) (,) (,)s t s tx x L x L xλ λ λΔ = −
   

 () [() ()]s t tf x f x G xλ= − +
  

 [() ()] ()s t tf x f x G xλ= − −
  

 (7)

According to rule A_1, member sx


is better than member tx


. From formula (7), if

()
st

t

f

G x
λ Δ

>  , then (, ,)s tx x λΔ
 

<0. In this case, rule A_1 and penalty function method

have the same effect on ranking these two solutions.

2) Infeasible solution versus infeasible solution

According to rule B_1, two infeasible solutions will be ranked according to the

constraint violation. So if (, ,)s tx x λΔ
 

and stGΔ have the same symbol (i.e., positive

or negative), we can conclude that rule B_1 and penalty function method have the

same effect on ranking these two individuals.
There are three different cases in this situation:

a) stGΔ >0: In this case, if st

st

f

G
λ Δ

> −
Δ

, (, ,)s t st stx x f Gλ λΔ = Δ + ⋅ Δ
 

>0.

b) stGΔ <0: In this case, if st

st

f

G
λ Δ

> −
Δ

, (, ,)s t st stx x f Gλ λΔ = Δ + ⋅ Δ
 

<0.

c) stGΔ =0: This is the case when the two individuals have the same constraint vi-

olation, and (, ,)s t stx x fλΔ = Δ
 

, which is not related with λ . In this case, the ranking

will follow additional rule.

266 C. Si et al.

In general, when ranking two individuals (e.g., sx


and tx


), if , 0st
st

st

f
G

G
λ Δ

> − Δ ≠
Δ

(here, s and t are randomly selected from the q infeasible solutions), then rule B_1 and
penalty function method have the same effect.

Denote feaI and infI as the set of the index of p feasible solutions and q infeasible

solutions respectively.

Suppose

inf inf
inf

inf inf

| , (1),..., ();...

(1),..., () & () ()

ij
ij ij

ij

f
i I I q

GS

j I I q G i G j

λ λ
Δ 

= − = Δ=  
 = ≠  inf inf

| , (1),..., ();
()

(1),..., ()

ij
ij ij fea fea

jsem

f
i I I p

G xS

j I I q

λ λ
Δ 

= = =  
 = 



The set of λ can be described as { }inf , semS S S= . As to infS , we define
max
inf max()ijλ λ= , min

inf min()ijλ λ= , where inf inf(1),..., ()i I I q= ; inf inf(1),..., ()j I I q=

. Likewise, for semS , we define max max()sem ijλ λ= , min min()sem ijλ λ= , where

(1),..., ()fea feai I I p= ; inf inf(1),..., ()j I I q= . Then the largest value of λ in S is

max max
max infmax(,)semλ λ λ= .

There are some different cases in this situation:

a) maxλ λ> : In this case, the ranking results is the same as rule A_1-B_1.

b) max
maxsemλ λ λ< ≤ : In this case, the results ranked by penalty function method can

satisfy rule A_1, but the comparison among infeasible solutions may not satisfy B_1

or B_2.

c) min max
sem semλ λ λ≤ ≤ : In this case, the ranking will not satisfy A_1 or A_2 fully.

d) min
semλ λ< : the ranking result can satisfy A_2 (i.e., infeasible solutions are better

than feasible solutions).

Similarly, following rule B (B_1 and B_2),

e) max
inf maxλ λ λ< ≤ : In this case, the results ranked by penalty function method can

satisfy rule B_1.

f) min max
inf infλ λ λ≤ ≤ : In this case, the ranking will not satisfy B_1 or B_2 fully.

g) min
infλ λ< : the ranking result can satisfy B_2 (i.e., infeasible solutions are ranked

according to the reciprocal of the constraint violation).

h) minλ λ< : the ranking result can satisfy A_2-B_2 (i.e., all infeasible solutions are

better than feasible solutions, and the infeasible solutions are ranked according to the
reciprocal of the constraint violation).

The general results are illustrated in Fig.1, which can provide a limit but effective
basis for analyzing and designing adaptive penalty function methods.

 A Dynamic Penalty Function for Constrained Optimization 267

maxλminλ max
infλmin

infλ max
semλmin

semλ λ

Fig. 1. The corresponding rule for penalty parameter λ

3 A Dynamic Penalty Function

3.1 Basic Idea

As mentioned in Section 2, a too large or too small penalty parameter value will have
no influence on ranking the population, and the effect of penalty parameter is highly
related with the solutions in the current generation. Based on this, a new DyPF consi-
dering the infeasible and semi-feasible situations is proposed.

If the solutions are experiencing the infeasible situation, as one of the main aims is to
quickly find a feasible solution, the solutions will be ranked according to the degree of
constraint violation, which is consistent with the rule B_1. This strategy is equivalent to
the penalty function method when maxλ λ> . And here, λ is set as follows:

max min

min()ij

f f

G
λ −=

Δ
 (8)

where 1,2, , ; 1,2, ,i NP j NP= =  . Here, f is the objective function value, G is

the constraint violation and () () & () ()ijG G i G j G i G jΔ = − ≠ .

Similarly, if the solutions are experiencing the semi-feasible situation, as there are
both feasible and infeasible solutions in the population, apart from considering the
comparison between feasible and infeasible solutions, the proportion of feasible solu-
tions should also be taken into account when setting the penalty parameters. And
consequently a parameter fr is introduced. λ is set as follows:

max max
inf

max min

(1) max{ , };

(1) ;

f

sem

f sem f sem

if r

else

r r

end

μ

λ α λ λ

λ λ λ

<

= + ⋅

= − ⋅ + ⋅

 (9)

Here, μ is a threshold, determining using Deb’s feasibility-based rule or penalty

function method, which can be fixed or a rand number. α is a positive number, and

here it’s set as 0.01. The value of max
infλ , min

semλ , max
semλ are set as Section 2.

From (9), it can be observed that the chance for an infeasible solution to survive in-
to next generation is changing according to the proportion of feasible solutions in last
generation. When fr μ< , the ranking will be based on Deb’s feasibility-based rule;

268 C. Si et al.

when fr μ≥ , the ranking will be determined by fr , min
semλ , max

semλ , and

min max
sem semλ λ λ< < . In this situation, when fr is relatively small, the ranking will main-

ly rely on the constraint violation to select more feasible solutions, as the value of λ
is near max

semλ ; when fr is relatively large, the ranking will mainly rely on the objective

function value (e.g., the feasible solutions are not necessarily superior than the infeas-
ible solutions), and in this case, the chance for infeasible solutions to survive into the
next generation will increase.

3.2 Realization

The framework of DyPF is illustrated in Algorithm 1.

Algorithm 1: Framework of DyPF

Input: NP: the size of population at each generation
 Max_FES: maximum number of function evaluations
Output: bestx


: the best solution in the final population

Step 1 Initialization
 Step 1.1 t=0;
 Step 1.2 Generate an initial population 0 1,0 ,0{ , , }NPP x x=   randomly.

Step 1.3 Evaluate the objective function values ,0()if x


and the degree of
constraint violations ,0()iG x


.

Step 1.4 FES=NP.
Step 2 Dynamic penalty function model
 Step 2.1 Update tP using DE model to create offspring. These NP offspring

form the offspring population tQ .
 Step 2.2 Evaluate ,()i tf x


and ,()i tG x


 (1, ,i NP= ).

Step 2.3 Compute the feasibility percent fr of the combined population tH
(i.e., t t tH P Q= ).

Step 2.4 Determinate the current situation of tH according to fr .
Step 2.5 Calculate the value of λ according to different situations.

 Step 2.6 Compute the fitness function value with λ in Step 2.5.
Step 2.7 Rank the population through the value of fitness function and select

the best NP individuals to constitute the next population 1tP+ .
Step 2.8 FES=FES+NP.

Step 3 Set t=t+1.
Step 4 Stopping Criterion: If FES≥ Max_FES , stop and output the best solution bestx


,

otherwise go to Step2

 A Dynamic Penalty Function for Constrained Optimization 269

4 Experimental Study

4.1 Experimental Settings

This experiment is to verify the effectiveness of proposed DyPF. The details of these
benchmark functions are reported in [23]. The evolutionary algorithm used in this
paper is DE/rand/1/bin [22], and the boundary constraint is reset as [7].The parame-
ters in DE are set as follows: the population size (NP) is set to 100; the scaling factor
(F) is randomly chosen between 0.5 and 0.6, and the crossover control parameter (Cr)
is randomly chosen between 0.9 and 0.95.

4.2 Experimental Results

25 independent runs were performed for each test function using 5×105 FES at maxi-
mum, as suggested by Liang et al. [23]. Additionally, the tolerance value δ for the
equality constraints was set to 0.0001.

1) The impact of parameter μ : In this part, the impact of μ on the results gener-

ated by DyPF is evaluated. Six different values of μ are adopted, i.e., μ =0.1, 0.2,

0.3, 0.4, 0.5 and rand. For page limited, the detailed results are not listed here. The
best overall performance can be obtained when 0.5μ = .

2) Comparison with some “dynamic” approaches in constrained evolutionary op-
timization: In this part, we compare DyPF with five other state-of-the-art approaches
using the concept of “dynamic” or “adaptive”: SR [8]; SMES [5]; ATMES [10];
TPGA [18] and SaFF [17]. The experimental results of these five approaches are di-
rectly taken from the references and the comparative results are presented in Table 1.

To statistically compare the performance of different approaches, t-test results (h
values) are presented in Table 1. Numerical values -1, 0, 1 represent that DyPF is
inferior to, equal to and superior to other approaches respectively. It should be noted
that the h values is determined considering the overall results, but for page limited, we
just list the best value in Table 1.

For all the performance metrics, DyPF performs better than the other five ap-
proaches in g02, g05, g07, g09, and g10 as shown in Table 1.

All these six approaches have the same or similar performance in g08 and g12. As
for g01 and g11, all approaches except TPGA can always reach the optimal value.

It should be pointed out that DyPF performs not so well on g03 and g13, though
the other five approaches also can’t obtain a satisfying result.

Besides, from the t-test results, it can be seen that DyPF is superior to, equal to
and worse than other methods in 37, 21 and 7 cases, respectively out of the 65 cases.
The worse cases are mainly from g03. Therefore, the overall performance of DyPF is
highly competitive with the other five “dynamic” approaches, especially when consi-
dering that DyPF is simple and easy to realize.

270 C. Si et al.

Table 1. Comparison of DyPF with “Dynamic” approaches

Fun. &
Optimal
value

 SR [8] SMES [5]
ATMES
[10]

TPGA [18] SaFF [17] DyPF

G01
-15.0000

best -15.000 -15.000 -15.000 -14.9999 -15.0000 -15.0000

h 0 0 0 1 0

G02
-0.803619

best -0.803515 -0.803601 -0.803388 -0.803190 -0.802970 -0.803619

h 1 1 1 1 1

G03
-1.0005

best -1.000 -1.000 -1.000 -1.00009 -1.00000 -0.7412

h -1 -1 -1 -1 -1

G04
30665.5387

best 30665.539 30665.539 30665.539 30665.5312 -30665.50 30665.5387

h 0 0 0 1 1

G05
5126.4967

best 5126.497 5126.599 5126.498 5126.5096 5126.9890 5126.4967

h 1 1 1 1 1

G06
-6961.8139

best -6961.814 -6961.814 -6961.814 -6961.1785 -6961.800 -6961.8139

h 1 1 0 1 1

G07
24.3062

best 24.307 24.327 24.306 24.410977 24.48 24.3062

h 1 1 0 1 1

G08
0.09582504

best -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0.09582504

h 0 0 0 0 0

G09
680.630057

best 680.630 680.632 680.630 680.762228 680.64 680.630057

h 1 1 1 1 1

G10
7049.2480

best 7054.316 7051.903 7052.253 7060.55288 7061.34 7049.2480

h 1 1 1 1 1

G11
0.7499

best 0.750 0.75 0.75 0.7490 0.7500 0.7499

h 0 0 0 1 0

G12
-1.0000

best -1.000000 -1.000 -1.000 NA -1 -1.0000

h 0 0 1 1 0

G13
0.05394151

best 0.053957 0.053986 0.053950 NA NA 0.05562855

h -1 0 -1 1 1

5 Conclusion

In this paper, a new Dynamic Penalty Function (DyPF) has been proposed for con-
strained evolutionary optimization, which is based on the systematical analysis of
penalty parameter. Thus this enables DyPF to take advantage of different strategies by
adjusting penalty parameters at different situations. To verify the effectiveness of the
newly proposed DyPF, an experiment is carried out which is based on the 21 bench-
mark functions collected in the IEEE CEC2006 special session on constraint real-
parameter optimization.

The results show that DyPF has a high effectiveness and is very competitive com-
paring with other five dynamic or adaptive state-of-the-art methods referred to in this
paper in view of simplicity of DyPF. Nevertheless, DyPF can not find a successful
solution in g13, which is due to the simplicity of the model.

 A Dynamic Penalty Function for Constrained Optimization 271

DE and other evolutionary algorithms have shown a good performance on uncon-
strained problems, which means they are good at generating satisfying solutions. Thus
key point in solving constraint problems is how to select or rank the solutions, espe-
cially how to keep the balance between objective function and constraint violations,
which is also related with the problem’s topological properties. Therefore, this will be
our future work.mn.

Acknowledgments. This work was supported in part by the National Natural Science Founda-
tion of China under Grants 71371142, 61174183. Chengyong Si would like to thank Prof. Dr.
Robert Weigel for his great help in the life and research work, as this work is partially done
when he was with the Institute for Electronics Engineering, University of Erlangen-Nuernberg
in Germany as a joint doctor, and he is grateful to Dr. Y. Wang for the valuable suggestions.
The authors also gratefully acknowledge Dr. T. Lan, Dr. J. Hu, and Dr. G. Gao for improving
the presentation of this paper.

References

1. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithm for constrained parameter opti-
mization problems. Evol. Comput. 4(1), 1–32 (1996)

2. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: A survey of the state of the art. Comput. Methods Appl. Mech.
Eng. 191(11/12), 1245–1287 (2002)

3. Cai, Z., Wang, Y.: A multiobjective optimization-based evolutionary algorithm for con-
strained optimization. IEEE Trans. Evol. Comput. 10(6), 658–675 (2006)

4. Wang, Y., Cai, Z.: A dynamic hybrid framework for constrained evolutionary optimiza-
tion. IEEE Trans. Syst. Man Cybern. B Cybern. 42(1), 203–217 (2012)

5. Mezura-Montes, E., Coello Coello, C.A.: A simple multimembered evolution strategy to
solve constrained optimization problems. IEEE Trans. Evol. Comput. 9(1), 1–17 (2005)

6. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algo-
rithms. IEEE Trans. Evol. Comput. 2(2), 124–141 (1999)

7. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods
Appl. Mech. Eng. 186(2–4), 311–338 (2000)

8. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization.
IEEE Trans. Evol. Comput. 4(3), 284–294 (2000)

9. Runarsson, T.P., Yao, X.: Search bias in constrained evolutionary optimization. IEEE
Trans. Syst. Man Cybern. C Appl. Rev. 35(2), 233–243 (2005)

10. Wang, Y., Cai, Z., Zhou, Y., Zeng, W.: An adaptive tradeoff model for constrained evolu-
tionary optimization. IEEE Trans. Evol. Comput. 12(1), 80–92 (2008)

11. Wang, Y., Cai, Z.: Constrained evolutionary optimization by means of (μ+λ)-differential
evolution and improved adaptive trade-off model. Evol. Comput. 19(2), 249–285 (2011)

12. Jia, G., Wang, Y., Cai, Z., Jin, Y.: An improved (μ+λ)-constrained differential evolution
for constrained optimization. Inform. Sci. 222, 302–322 (2013)

13. Zhan, Z., Zhang, J., Li, Y., Chung, H.S.: Adaptive particle swarm optimization. IEEE
Trans. Syst. Man Cybern. B Cybern. 39(6), 1362–1381 (2009)

272 C. Si et al.

14. Gong, W., Cai, Z., Ling, C.X., Li, H.: Enhanced differential evolution with adaptive strat-
egies for numerical optimization. IEEE Trans. Syst. Man Cybern. B Cybern. 41(2), 397–
413 (2011)

15. Minhazul, I.S., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evo-
lution algorithm with novel mutation and crossover strategies for global numerical optimi-
zation. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012)

16. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-
trajectory search for large scale optimization. Soft Comput. 15(11), 2175–2185 (2011)

17. Farmani, R., Wright, J.A.: Self-adaptive fitness formulation for constrained optimization.
IEEE Trans. Evol. Comput. 7(5), 445–455 (2003)

18. Venkatraman, S., Yen, G.G.: A generic framework for constrained optimization using ge-
netic algorithms. IEEE Trans. Evol. Comput. 9(4), 424–435 (2005)

19. Zhang, M., Luo, W., Wang, X.: Differential evolution with dynamic stochasitc selection
for constrained optimization. Inform. Sci. 178(15), 3043–3074 (2008)

20. Tessema, B., Yen, G.G.: An adaptive penalty formulation for constrained evolutionary op-
timization. IEEE Trans. Syst., Man, Cybern. A Syst. Hum. 39(3), 565–578 (2009)

21. Si, C., Lan, T., Hu, J., Wang, L., Wu, Q.: Penalty parameter of the penalty function me-
thod. Control Decis. 29(9), 1707–1710 (2014)

22. Das, S., Suganthan, P.N.: Differential evolution: A Survey of the state-of-the-art. IEEE
Trans. Evol. Comput. 15(1), 4–31 (2011)

23. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello Coel-
lo, C.A., Deb, K.: Problem definitions and evaluation criteria for the CEC 2006. Technical
report, Special Session on Constrained Real-Parameter Optimization (2006)

	A Dynamic Penalty Function for Constrained Optimization
	1 Introduction
	2 Systematical Analysis of Penalty Parameters
	3 A Dynamic Penalty Function
	3.1 Basic Idea
	3.2 Realization

	4 Experimental Study
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion
	References

