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Abstract. Penalty function methods have been widely used for handling con-
straints, but it’s still a challenge about how to set the penalty parameter effec-
tively though many related methods have been proposed. In this paper, the pe-
nalty parameter is firstly analyzed systematically by introducing four rules. 
Based on this analysis, a new Dynamic Penalty Function (DyPF) is proposed by 
adjusting penalty parameter in three different situations during the evolution 
(i.e., the infeasible situation, the semi-feasible situation, and the feasible situa-
tion). The experiments are designed to verify the effectiveness of our newly 
proposed DyPF. The results show that DyPF presents a better overall perfor-
mance than other five dynamic or adaptive state-of-the-art methods in the 
community of constrained evolutionary optimization. 
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1 Introduction 

Constrained Optimization Problems (COPs) are very important and common in real-
world applications. The general COPs can be formulated as follows: 

Minimize  ( )f x


  

Subject to: ( ) 0, 1, ,jg x j l≤ =
   

( ) 0, 1, ,jh x j l m= = +
   

where 1( , , )nx x x=
   is the decision variable which is bounded by the decision space 

S . S is defined by the constraints: 

, 1i i iL x U i n≤ ≤ ≤ ≤                              (1) 
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Here, l is the number of inequality constraints and m-l is the number of equality 
constraints. 

The Evolutionary Algorithms (EAs), as the unconstrained search techniques and 
solution generating strategies, are not suitable enough to solve COPs without addi-
tional mechanisms to deal with the constraints. Consequently, many constrained op-
timization evolutionary algorithms (COEAs) are proposed [1]-[4]. 

Penalty function methods are the most widely used methods for handling con-
straints, in which some penalty parameters are adopted to balance the objective func-
tion values and constraint violation (i.e., to bias the search in the constrained search 
space [5]). It’s clear that the performance of these methods is mainly determined by 
their parameters and the methods can be classified based on the form of these parame-
ters.  

If the penalty parameters keep constant throughout the evolution process, this me-
thod is called static penalty function method. Alternatively, if the penalty parameters 
are related with the current generation number, it is called dynamic penalty function 
method. As many parameters are required in dynamic penalty function method, some 
adaptive penalty functions which gather information from the search process, or self-
adaptive approaches, which evolve both the penalty parameters and solutions, have 
also been proposed [6].  

Some other approaches based on careful comparison among feasible and infeasible 
solutions are also developed.  

For example, Deb [7] proposed a feasibility-based rule to pair-wise compare indi-
viduals: 

1) Any feasible solution is preferred to any infeasible solution. 
2) Among two feasible solutions, the one having better objective function value is 

preferred. 
3) Among two infeasible solutions, the one having smaller constraint violation is 

preferred. 
The stochastic ranking method (SR) proposed by Runarsson and Yao [8] is a very 

classical constraint handling technique, which tries to achieve a balance between ob-
jective function value and constraint violation stochastically. It compares pair-wise 
solutions using the following criteria: 1) if both individuals are feasible, the ranking 
of them is determined by the objective function value; else 2) the parameter Pf will 
determine the probability of ranking by objective function value or constraint viola-
tion. Deb’s feasibility-based rule can be seen as a special case of SR with Pf =0. The 
experimental results indicate that an overall better performance can be obtained when 
Pf =0.45. However, this paper didn’t provide the assurance that Pf =0.45 is an optimal 
value. 

And later, these two authors also pointed out that there should be some biases 
when solving single-objective optimization problems (SCOPs) [9]. 

Besides, some methods based on multi-objective optimization concepts are also 
presented. The main idea is to convert the single-objective constrained optimization 
problem into a bi-objective or multi-objective optimization problem taking the con-
straints as one or more objectives to be minimized.  
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After reviewing the three most frequently used constraint handling techniques, 
some approaches based on the “dynamic or adaptive” idea that are closely related 
with the work presented in this paper will be introduced in detail. 

Wang et al. [10] proposed an adaptive tradeoff model (ATM) for constrained  
evolutionary optimization. In this model, to obtain an appropriate tradeoff between 
objective function and constraint violation, different tradeoff schemes during different 
situations in a search process (i.e., infeasible situation, semi-feasible situation and 
feasible situation) are designed. Based on this idea, an improved adaptive tradeoff 
model was proposed, in which each constraint violation is first normalized [11], and 
this model was combined with (μ+λ)-DE with the name (μ+λ)-CDE. To overcome the 
drawback of dynamic settings for tolerance value δ, Jia et al. [12] presented an im-
proved version of (μ+λ)-CDE, named ICDE. Unlike (μ+λ)-CDE, in ICDE, the hierar-
chical non-dominated individual selection scheme is utilized in the infeasible situation 
and the feasibility proportion of the population is used to convert the objective func-
tion of each individual in the semi-feasible situation.  

Besides, some other adaptive approaches or frameworks were also introduced [13]-
[16]. As the solution’s property (i.e., infeasible or feasible) plays an important role in 
solving COPs, some adaptive methods based on this were also presented. 

Farmani and Wright [17] proposed a self-adaptive fitness formulation in which the 
infeasibility measure is used to form a two-stage penalty to the infeasible solutions. 
Venkatraman and Yen [18] presented a generic, two phase framework with the aim to 
find a feasible solution in the first phase. Based on Yao’s stochastic ranking [8], 
Zhang et al. [19] proposed a dynamic stochastic selection (DSS) within the frame-
work of multimember DE (DSS_MDE). Tessema et al. [20] introduced another adap-
tive penalty formulation which uses the number of feasible individuals to determine 
the amount of penalty added to infeasible individuals (i.e., to guide the search process 
toward finding more feasible individuals et al.). 

Many of these methods mentioned above can get a relatively satisfying result, but 
the parameters used in these approaches are mainly determined by the experiments. 
The inner mechanism of Constraint Handling Techniques (e.g., the relationship of 
different CHTs, when and why some CHTs are more efficient) is few studied.  

Herein, to overcome this drawback, in this paper we first studied the penalty para-
meter systematically, and then proposed a new dynamic penalty function (DyPF) 
based on the analysis.  

The rest of this paper is organized as follows. Section 2 systematically analyzes the 
penalty parameter. Based on this, Section 3 presents a detailed description of the pro-
posed DyPF. The experimental results and the comparison with some similar state-of-
the-art methods are given in Section 4. Finally, Section 5 concludes with a brief 
summary of this paper and some future work. 

2 Systematical Analysis of Penalty Parameters 

The basic idea of the discussion is that by introducing four rules (i.e., A_1, A_2, B_1, 
B_2), if the penalty parameter is consistent with some rule’s combination in certain 
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range, then we can conclude that the penalty parameter value in this range has no 
effect on ranking the solutions [21].  

As there are only two kinds of solutions in the evolutionary process (i.e., feasible 
solutions and infeasible solutions), the ranking or the selection process is mainly be-
tween these two kinds of solutions, including feasible solutions versus feasible solu-
tions, feasible solutions versus infeasible solutions, and infeasible solutions versus 
infeasible solutions. As there is no constraint violation for feasible solutions, only the 
objective function values are used for the comparison between feasible solutions and 
feasible solutions. As to the comparison involving infeasible solutions, the following 
rules are introduced: 

A_1: a feasible solution is superior to an infeasible solution. 
A_2: a feasible solution is inferior to an infeasible solution. 
B_1: two infeasible solutions will be ranked according to the constraint viola-

tion, and the one with less constraint violation will be preferred. 
B_2: two infeasible solutions will be ranked according to the reciprocal of the 

constraint violation, and the one with more constraint violation will be preferred. 

Additional rule: among two infeasible solutions with the same constraint violation, 
the one with less objective function value is preferred (for the minimization prob-
lems). 

It should be noted that here the characteristics of the rules (i.e., good or bad) are 
not considered as the judgment of a rule is closely related with the problem characte-
ristics (e.g., the location of the optimal solution, the topological properties of the con-
straints, etc.) and the solving goals (e.g., how to judge the solution’s performance if 
no feasible solutions are found, etc.). And here, the main concern is that the ranking 
result following some rules’ combination (A_1-B_1, A_1-B_2, A_2-B_1, A_2-B_2) 
is unique.  

The introduction of penalty parameter enables us to transform a constrained opti-
mization problem (A) into an unconstrained one (A’) [8]. Here, we define the evalua-
tion function L as follows. 

For the given λ , δ >0, let  

( , , ) ( ) ( , )i i iL x f x G xλ δ λ δ= +
  

1, 2,...,i NP=                      (2) 

where ix


stands for the NP n-dimensional real-valued vectors of the population. λ is 

the penalty parameter and δ is the tolerance value for the equality constraints. f is 

the objective function and G is the penalty function with the form as follows. 

1

( , ) ( , )
m

i j i
j

G x G xδ δ
=

= 

1 1

max(0, ( )) max(0, ( ) )
l m

j i j i
j j l

g x h x δ
= = +

= + −  
      (3) 

As the effect of λ is mainly concerned, δ can be supposed as a constant. The for-

mula (2) can be transformed as  

( , ) ( ) ( )i i iL x f x G xλ λ= +
  

 1, 2,...,i NP=                       (4) 
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Given two population members, sx


and tx


, where s and t are randomly selected from 

[1, NP] and satisfying: s t≠ , the difference between their evaluation function values is: 

( , , ) ( , ) ( , )s t s tx x L x L xλ λ λΔ = −
   

  

[ ( ) ( )] [ ( ) ( )]s s t tf x G x f x G xλ λ= + − +
   

 

[ ( ) ( )] [ ( ) ( )]s t s tf x f x G x G xλ= − + −
   

                      (5) 

We define ( ) ( )st s tf f x f xΔ = −
 

, ( ) ( )st s tG G x G xΔ = −
 

, then formula (5) can be 

written as: 

( , , )s t st stx x f Gλ λΔ = Δ + ⋅ Δ
 

                       (6) 

Suppose the number of feasible and infeasible individuals in the population is p 
and q respectively, with 0 ,0 &p NP q NP p q NP≤ ≤ ≤ ≤ + = . 

1) Infeasible solution versus feasible solution  

Similarly, given two population members, sx


and tx


, where s and t are randomly 

selected from the p feasible solutions and q infeasible solutions, the formula (5) can 
be transformed as: 

( , , ) ( , ) ( , )s t s tx x L x L xλ λ λΔ = −
   

 

 ( ) [ ( ) ( )]s t tf x f x G xλ= − +
  

 

 [ ( ) ( )] ( )s t tf x f x G xλ= − −
  

                           (7) 

According to rule A_1, member sx


is better than member tx


. From formula (7), if

( )
st

t

f

G x
λ Δ

>  , then ( , , )s tx x λΔ
 

<0. In this case, rule A_1 and penalty function method 

have the same effect on ranking these two solutions.  

2) Infeasible solution versus infeasible solution  

According to rule B_1, two infeasible solutions will be ranked according to the 

constraint violation. So if ( , , )s tx x λΔ
 

and stGΔ have the same symbol (i.e., positive 

or negative), we can conclude that rule B_1 and penalty function method have the 

same effect on ranking these two individuals.  
There are three different cases in this situation:  

a) stGΔ >0: In this case, if st

st

f

G
λ Δ

> −
Δ

, ( , , )s t st stx x f Gλ λΔ = Δ + ⋅ Δ
 

>0.  

b) stGΔ <0: In this case, if st

st

f

G
λ Δ

> −
Δ

, ( , , )s t st stx x f Gλ λΔ = Δ + ⋅ Δ
 

<0.  

c) stGΔ =0: This is the case when the two individuals have the same constraint vi-

olation, and ( , , )s t stx x fλΔ = Δ
 

, which is not related with λ . In this case, the ranking 

will follow additional rule.  
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In general, when ranking two individuals (e.g., sx


and tx


), if , 0st
st

st

f
G

G
λ Δ

> − Δ ≠
Δ

 

(here, s and t are randomly selected from the q infeasible solutions), then rule B_1 and 
penalty function method have the same effect. 

Denote feaI and infI as the set of the index of p feasible solutions and q infeasible 

solutions respectively. 

Suppose  

inf inf
inf

inf inf

| , (1),..., ( );...

(1),..., ( ) & ( ) ( )

ij
ij ij

ij

f
i I I q

GS

j I I q G i G j

λ λ
Δ 

= − = Δ=  
 = ≠  inf inf

| , (1),..., ( );
( )

(1),..., ( )

ij
ij ij fea fea

jsem

f
i I I p

G xS

j I I q

λ λ
Δ 

= = =  
 = 

  

The set of λ can be described as { }inf , semS S S= . As to infS , we define
max
inf max( )ijλ λ= , min

inf min( )ijλ λ= , where inf inf(1),..., ( )i I I q= ; inf inf(1),..., ( )j I I q=

. Likewise, for semS , we define max max( )sem ijλ λ= , min min( )sem ijλ λ= , where

(1),..., ( )fea feai I I p= ; inf inf(1),..., ( )j I I q= . Then the largest value of λ in S is

max max
max infmax( , )semλ λ λ= .  

There are some different cases in this situation: 

a) maxλ λ> : In this case, the ranking results is the same as rule A_1-B_1. 

b) max
maxsemλ λ λ< ≤ : In this case, the results ranked by penalty function method can 

satisfy rule A_1, but the comparison among infeasible solutions may not satisfy B_1 

or B_2. 

c) min max
sem semλ λ λ≤ ≤ : In this case, the ranking will not satisfy A_1 or A_2 fully. 

d) min
semλ λ< : the ranking result can satisfy A_2 (i.e., infeasible solutions are better 

than feasible solutions). 

Similarly, following rule B (B_1 and B_2), 

e) max
inf maxλ λ λ< ≤ : In this case, the results ranked by penalty function method can 

satisfy rule B_1. 

f) min max
inf infλ λ λ≤ ≤ : In this case, the ranking will not satisfy B_1 or B_2 fully. 

g) min
infλ λ< : the ranking result can satisfy B_2 (i.e., infeasible solutions are ranked 

according to the reciprocal of the constraint violation). 

h) minλ λ< : the ranking result can satisfy A_2-B_2 (i.e., all infeasible solutions are 

better than feasible solutions, and the infeasible solutions are ranked according to the 
reciprocal of the constraint violation). 

The general results are illustrated in Fig.1, which can provide a limit but effective 
basis for analyzing and designing adaptive penalty function methods. 
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maxλminλ max
infλmin

infλ max
semλmin

semλ λ
 

Fig. 1. The corresponding rule for penalty parameter λ  

3 A Dynamic Penalty Function 

3.1 Basic Idea 

As mentioned in Section 2, a too large or too small penalty parameter value will have 
no influence on ranking the population, and the effect of penalty parameter is highly 
related with the solutions in the current generation. Based on this, a new DyPF consi-
dering the infeasible and semi-feasible situations is proposed. 

If the solutions are experiencing the infeasible situation, as one of the main aims is to 
quickly find a feasible solution, the solutions will be ranked according to the degree of 
constraint violation, which is consistent with the rule B_1. This strategy is equivalent to 
the penalty function method when maxλ λ> . And here, λ is set as follows:  

max min

min( )ij

f f

G
λ −=

Δ
                                  (8) 

where 1,2, , ; 1,2, ,i NP j NP= =   . Here, f is the objective function value, G is 

the constraint violation and ( ) ( ) & ( ) ( )ijG G i G j G i G jΔ = − ≠ .  

Similarly, if the solutions are experiencing the semi-feasible situation, as there are 
both feasible and infeasible solutions in the population, apart from considering the 
comparison between feasible and infeasible solutions, the proportion of feasible solu-
tions should also be taken into account when setting the penalty parameters. And 
consequently a parameter fr is introduced.  λ is set as follows: 

max max
inf

max min

(1 ) max{ , };

(1 ) ;

f

sem

f sem f sem

if r

else

r r

end

μ

λ α λ λ

λ λ λ

<

= + ⋅

= − ⋅ + ⋅

                      (9) 

Here, μ is a threshold, determining using Deb’s feasibility-based rule or penalty 

function method, which can be fixed or a rand number. α is a positive number, and 

here it’s set as 0.01. The value of max
infλ , min

semλ , max
semλ are set as Section 2.  

From (9), it can be observed that the chance for an infeasible solution to survive in-
to next generation is changing according to the proportion of feasible solutions in last 
generation. When fr μ< , the ranking will be based on Deb’s feasibility-based rule; 
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when fr μ≥ , the ranking will be determined by fr , min
semλ , max

semλ , and 

min max
sem semλ λ λ< < . In this situation, when fr is relatively small, the ranking will main-

ly rely on the constraint violation to select more feasible solutions, as the value of λ
is near max

semλ ; when fr is relatively large, the ranking will mainly rely on the objective 

function value (e.g., the feasible solutions are not necessarily superior than the infeas-
ible solutions), and in this case, the chance for infeasible solutions to survive into the 
next generation will increase.  

3.2 Realization 

The framework of DyPF is illustrated in Algorithm 1.  

Algorithm 1: Framework of DyPF 

Input: NP: the size of population at each generation 
      Max_FES: maximum number of function evaluations 
Output: bestx


: the best solution in the final population 

Step 1 Initialization  
      Step 1.1 t=0; 
      Step 1.2 Generate an initial population 0 1,0 ,0{ , , }NPP x x=   randomly.  

Step 1.3 Evaluate the objective function values ,0( )if x


and the degree of 
constraint violations ,0( )iG x


. 

Step 1.4 FES=NP. 
Step 2 Dynamic penalty function model  
      Step 2.1 Update tP using DE model to create offspring. These NP offspring 

form the offspring population tQ . 
      Step 2.2 Evaluate ,( )i tf x


and ,( )i tG x


 ( 1, ,i NP=  ).  

Step 2.3 Compute the feasibility percent fr of the combined population tH  
(i.e., t t tH P Q=  ).  

Step 2.4 Determinate the current situation of tH  according to fr .  
Step 2.5 Calculate the value of λ according to different situations.  

      Step 2.6 Compute the fitness function value with λ in Step 2.5.  
Step 2.7 Rank the population through the value of fitness function and select 

the best NP individuals to constitute the next population 1tP+ . 
Step 2.8 FES=FES+NP. 

Step 3 Set t=t+1. 
Step 4 Stopping Criterion: If FES≥ Max_FES , stop and output the best solution bestx


, 

otherwise go to Step2 

_________________________________________________________________ 
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4 Experimental Study 

4.1 Experimental Settings  

This experiment is to verify the effectiveness of proposed DyPF. The details of these 
benchmark functions are reported in [23]. The evolutionary algorithm used in this 
paper is DE/rand/1/bin [22], and the boundary constraint is reset as [7].The parame-
ters in DE are set as follows: the population size (NP) is set to 100; the scaling factor 
(F) is randomly chosen between 0.5 and 0.6, and the crossover control parameter (Cr) 
is randomly chosen between 0.9 and 0.95.  

4.2 Experimental Results 

25 independent runs were performed for each test function using 5×105 FES at maxi-
mum, as suggested by Liang et al. [23]. Additionally, the tolerance value δ for the 
equality constraints was set to 0.0001.  

1) The impact of parameter μ : In this part, the impact of μ  on the results gener-

ated by DyPF is evaluated. Six different values of  μ  are adopted, i.e., μ =0.1, 0.2, 

0.3, 0.4, 0.5 and rand. For page limited, the detailed results are not listed here. The 
best overall performance can be obtained when 0.5μ = . 

2) Comparison with some “dynamic” approaches in constrained evolutionary op-
timization: In this part, we compare DyPF with five other state-of-the-art approaches 
using the concept of “dynamic” or “adaptive”: SR [8]; SMES [5]; ATMES [10]; 
TPGA [18] and SaFF [17]. The experimental results of these five approaches are di-
rectly taken from the references and the comparative results are presented in Table 1. 

To statistically compare the performance of different approaches, t-test results (h 
values) are presented in Table 1. Numerical values -1, 0, 1 represent that DyPF is 
inferior to, equal to and superior to other approaches respectively. It should be noted 
that the h values is determined considering the overall results, but for page limited, we 
just list the best value in Table 1.  

For all the performance metrics, DyPF performs better than the other five ap-
proaches in g02, g05, g07, g09, and g10 as shown in Table 1. 

All these six approaches have the same or similar performance in g08 and g12. As 
for g01 and g11, all approaches except TPGA can always reach the optimal value.  

It should be pointed out that DyPF performs not so well on g03 and g13, though 
the other five approaches also can’t obtain a satisfying result.  

Besides, from the t-test results, it can be seen that DyPF is superior to, equal to 
and worse than other methods in 37, 21 and 7 cases, respectively out of the 65 cases. 
The worse cases are mainly from g03. Therefore, the overall performance of DyPF is 
highly competitive with the other five “dynamic” approaches, especially when consi-
dering that DyPF is simple and easy to realize. 
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Table 1. Comparison of DyPF with “Dynamic” approaches  

Fun. & 
Optimal 
value 

 SR [8] SMES [5] 
ATMES 
[10] 

TPGA [18] SaFF [17] DyPF 

G01 
-15.0000 

best -15.000 -15.000 -15.000 -14.9999 -15.0000 -15.0000 

h 0 0 0 1 0  

G02 
-0.803619 

best -0.803515 -0.803601 -0.803388 -0.803190 -0.802970 -0.803619 

h 1 1 1 1 1  

G03 
-1.0005 

best -1.000 -1.000 -1.000 -1.00009 -1.00000 -0.7412 

h -1 -1 -1 -1 -1  

G04 
30665.5387 

best 30665.539 30665.539 30665.539 30665.5312 -30665.50 30665.5387 

h 0 0 0 1 1  

G05 
5126.4967 

best 5126.497 5126.599 5126.498 5126.5096 5126.9890 5126.4967 

h 1 1 1 1 1  

G06 
-6961.8139 

best -6961.814 -6961.814 -6961.814 -6961.1785 -6961.800 -6961.8139 

h 1 1 0 1 1  

G07 
24.3062 

best 24.307 24.327 24.306 24.410977 24.48 24.3062 

h 1 1 0 1 1  

G08 
0.09582504 

best -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0.09582504 

h 0 0 0 0 0  

G09 
680.630057 

best 680.630 680.632 680.630 680.762228 680.64 680.630057 

h 1 1 1 1 1  

G10 
7049.2480 

best 7054.316 7051.903 7052.253 7060.55288 7061.34 7049.2480 

h 1 1 1 1 1  

G11 
0.7499 

best 0.750 0.75 0.75 0.7490 0.7500 0.7499 

h 0 0 0 1 0  

G12 
-1.0000 

best -1.000000 -1.000 -1.000 NA -1 -1.0000 

h 0 0 1 1 0  

G13 
0.05394151 

best 0.053957 0.053986 0.053950 NA NA 0.05562855 

h -1 0 -1 1 1  

5 Conclusion 

In this paper, a new Dynamic Penalty Function (DyPF) has been proposed for con-
strained evolutionary optimization, which is based on the systematical analysis of 
penalty parameter. Thus this enables DyPF to take advantage of different strategies by 
adjusting penalty parameters at different situations. To verify the effectiveness of the 
newly proposed DyPF, an experiment is carried out which is based on the 21 bench-
mark functions collected in the IEEE CEC2006 special session on constraint real-
parameter optimization.  

The results show that DyPF has a high effectiveness and is very competitive com-
paring with other five dynamic or adaptive state-of-the-art methods referred to in this 
paper in view of simplicity of DyPF. Nevertheless, DyPF can not find a successful 
solution in g13, which is due to the simplicity of the model. 
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DE and other evolutionary algorithms have shown a good performance on uncon-
strained problems, which means they are good at generating satisfying solutions. Thus 
key point in solving constraint problems is how to select or rank the solutions, espe-
cially how to keep the balance between objective function and constraint violations, 
which is also related with the problem’s topological properties. Therefore, this will be 
our future work.mn. 
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