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Abstract. Multi-objective particle swarm optimization algorithm based on 
comprehensive optimization strategies (MOPSO-COS) is proposed in this paper 
to deal with the problems of premature convergence and poor diversity. The ve-
locity updating mode is modified by incorporating the information of the global 
second best particle to promote information flowing among particles. In order 
to improve the convergence accuracy and diversity, some effective strategies, 
such as chaotic mutation, external archiving with dynamic grid method, selec-
tion strategy based on a temporary population and so on, are introduced into 
MOPSO-COS. Theoretical analysis of MOPSO-COS is carried out including 
convergence and time complexity. Performance tests are conducted with ZDT 
test functions. Simulation results show that MOPSO-COS can improve the con-
vergence accuracy and diversity of Pareto optimal solutions simultaneously, and 
particles can escape from local optimum point effectively. 

Keywords: MOPSO · Comprehensive optimization · The global second best 
particle · External archiving strategy · Chaotic mutation 

1 Introduction 

Particle swarm optimization (PSO) algorithm solves complex optimization problems 
by simulating foraging of birds, fish and other groups. PSO is widely applied because 
it’s simple, easy to realize and has less parameters. The velocity vi and position xi of i-
th particle in standard PSO are updated respectively according to Eq.1 and Eq.2. 

 ( ) ( ) ( )( ) ( )( )1 1 2 21  .i i i i gi iv t + = v t + c r p - x t + c r p - x tω  (1) 

 ( ) ( ) ( )1 1  .i i ix t + = v t+ +x t   (2) 

where [ ]1 2 ,  , ,  i i i idx x x x= …  represents a candidate solution, and d is the total di-

mensions; t is the current iteration times; pi, which is called personal best, is the pre-
vious best location of i-th particle; pgi, which is called global best, is the location of 
the particle with best fitness; ω  is inertia weight; c1 and c2 are acceleration constants 
which show the contributions of pi and pgi; r1 and r2 are independent random numbers 
within [0, 1]. According to Eq.1, each particle adjusts its velocity and track according 
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to the flying experience from itself and the whole group. Therefore they have the 
capacity to search for better position in the search space. 

Now it is common to solve multi-objective optimization problems by PSO algo-
rithm. Multi-objective particle swarm optimization (MOPSO) algorithm inherits the 
advantages of PSO, but it also has some shortcomings, such as premature, low con-
vergence accuracy and poor diversity. Therefore, MOPSO has been improved at dif-
ferent points in recent years, including population initialization [1], the setting of 
inertia weight [2] and acceleration constants [3], selection methods for the global best 
particle [4], modification of the position and velocity updating equation [5], and co-
evolution of multi-population [6]. 

The performance of modified MOPSO is better. But there are still some problems 
found by simulation and experiments. When the population falls into the area around 
local optimum point, it is difficult for non-convex and multimodal problems to get rid 
of it effectively. The diversity of non-dominated solutions needs to be further im-
proved. And the convergence and diversity indices are seriously fluctuant among 
different runs. To solve these problems, this paper proposes multi-objective particle 
swarm optimization algorithm based on comprehensive optimization strategies 
(MOPSO-COS). In MOPSO-COS, velocity updating equation is modified by intro-
ducing the global second best particle, and chaotic mutation、external archiving 
strategy based on dynamic grid method and so on are incorporated. All the strategies 
work simultaneously. Simulation is carried out with ZDT test functions. Results show 
that good performance can be obtained. 

2 MOPSO Based on Comprehensive Optimization Strategies 

Traditional velocity equation only involves personal best and global best. Information 
from other particles in the population hasn’t been utilized effectively. It results in low 
information sharing rate, poor diversity and slow convergence. To handle these prob-
lems, this paper changes velocity equation as Eq. 3. 

 1 1 2 2 3 3( 1) ( ) ( ( )) ( ( )) (sec ( )) .i i i i gi i gi iv t + = v t + c r p - x t + c r p - x t + c r p - x tω   (3) 

where secpgi is the position of the global second best particle, whose fitness is only 
worse than pgi’s. c3 is a coefficient like c1 and c2. r3 is a random number within [0,1]. 
Therefore, the whole population will move towards the personal best particle, the 
global best particle and the global second best particle at the same time. Compared 
with Eq.1, Eq.3 can promote information sharing among particles in theory, enhance 
information flowing within the population, and avoid the population gathering exces-
sively at the global best point.  

To escape from local optimum point effectively and break highly aggregated state, 
this paper introduces chaotic mutation [7]. If the population has a highly aggregation, 
even overlap, in the target space, the evolution is marked as stagnation once. When 
the evolution stagnates K times consecutively, the algorithm relying on current strate-
gies is deemed to fail to escape from local optimum point, and chaotic mutation starts 
to work. Aggregation index, a, is introduced to quantize the aggregation degree of the 
population, and it can be expressed as Eq. 4. The closer a is to 1, the more seriously 
the population gathered and the worse the diversity is. 
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where jbestf is the best value of the j-th (j = 1,2, ..., M) objective function, and 

jmeanf is the mean value; M is the total number of objective functions.  

To make the Pareto optimal solutions distribute more uniformly in target space, ex-
ternal archiving strategy [8] is adopted to store non-dominated particles gained in 
each calculation. When external archive overflows, dynamic grid method [9] is em-
ployed to maintain archive. In addition，selection strategy based on a temporary 
population [10] is adopted to choose particles in the next population. In order to en-
hance the ability of global search and improve convergence speed, random mutation 
works when the flight speed of the population is less than the threshold value [10].  

3 Theoretical Analysis of MOPSO-COS Algorithm  

3.1 Convergence Analysis of MOPSO-COS Algorithm 

Compared with Eq. 1, Eq.3 has a new part including the global second best particle. 
How is the convergence of MOPSO-COS? How will the parameters be set? These 
problems will be discussed below. vi and xi are independent on each dimension.  For 
simplicity, the following analysis is based on one-dimensional space and all the ran-
dom values are ignored.  

 1 2 3

( 2) ( 1) ( 2)

( 1) ( ( 1) ( )) ( ( 1)) ( ( 1)) (sec ( 1)) .i gi gi

x t x t v t

x t x t x t c p x t c p x t c p x tω
+ = + + +

= + + + − + − + + − + + − +
  

(5) 

 1 2 3( 2) ( 1) ( 1) ( ) sec  .i gi gix t c x t x t c p c p c pω ω+ + − − + + = + +
  

(6) 

Supposing that 1 2 3c c c c+ + = , Eq. 6 is available. Ignoring the change of pi, pgi and 

secpgi, Eq. 6 is a non-homogeneous second-order differential equation with constant 
coefficients. The characteristic equation is expressed as Eq. 7. 

 
2 ( 1) 0 .s c sω ω+ − − + =  (7) 

Let 2( 1) 4c ω ωΔ = − − − , so the solution of Eq.6 is 1 2(t) t tx As Bts C= + + , which can 

be divided into the following three cases: 1) 0Δ = , 1 2 0.5( 1)s s c ω= = − − − ; 2) 0Δ > , 

1 0.5((c 1) )s ω= − − − + Δ ; 2 0.5((c 1) )s ω= − − − − Δ ; 3) 0Δ < , 1 0.5((c 1)s ω= − − −

; 2 0.5((c 1) )s iω= − − − − −Δ .Where A, B and C are uncertain coefficients 

determined by x (0) and v (0).  
If MOPSO-COS converges, when t → ∞ , x(t) is finite, namely, 1 1 s < and 2 1s < . 

Considering three cases comprehensively, feasible domain of parameters in  
MOPSO-COS algorithm can be described as: 0c > 、 1 1ω− < <  and 2 2 0cω − + > . 

)i+ −Δ
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The parameter values have significant influence on the performance of MOPSO-COS. 
The convergence analysis provides reference for the setting of some parameters.  

3.2 Time Complexity Analysis of MOPSO-COS Algorithm 

Time complexity is an important index that weighs the performance of modified algo-
rithm. The strategies used most frequently and holding higher degree of time com-
plexity are external archiving strategy and selection strategy based on a temporary 
population. According to the research in [11], time complexity of selection strategy 

based on a temporary population can be expressed as:
2

( log( ))
N

i N

Mi i
=

Ο  , where N is the 

population size. Set archive size to Ne. There are some assumptions for the worst 
case: 1) the current archive is full; 2) all the N particles in the current population are 
non-dominated, further when they’re added into archive, there are no new dominated 
particles nor overlap in the target space. Hence dynamic grid method needs to remove 
N particles. By calculation, time complexity for removing the first particle is

2(( ) )N + NeΟ , and that for removing the second particle is 2(( 1) )N + NeΟ − …and by 

this analogy, that for removing the N-th particle is 2((Ne 1) )Ο + . So the total time 

complexity for archive updating with the worst case is ( )
1

2

0

N

i

N Ne i
−

=

 Ο + −  
 . 

According to the relationship of time complexity, the total time complexity for 

MOPSO-COS is ( )
1

2

0

N

i

N Ne i
−

=

 Ο + −  
 . Therefore, MOPSO-COS increases operation 

time. However, the efficiency of MOPSO-COS is still high. When N is bigger，fast 
convergence is available .  

4 Performance Tests of MOPSO-COS Algorithm  

Performance tests are based on ZDT test functions. Generation distance (GD) [4] and 
diversity index ( Δ ) [12] are used to evaluate the convergence accuracy and distribu-
tion properties of Pareto solutions. The smaller GD is, the higher convergence accura-
cy is. The smaller Δ  is, the more evenly Pareto optimal solutions distribute. 

Comparisons will be made between MOPSO-COS and some other similar typical 
algorithms, such as SPEA2, NSGA2 and MOPSO [13], to evaluate the performance 
of MOPSO-COS more objectively and comprehensively. For all the algorithms, set  
N=100，Ne=100, Gmax=250 (maximum iteration times). Only for MOPSO-COS, set  

1 1= +(1- ) rω ω ω × , 1ω =0.5, c1=0.7(2.5-2t/Gmax), c2=0.5+2t/Gmax, c3=0.3(2.5-2t/Gmax), 

T=3，m=5，h=20, where r is a random number. The value of ω  in MOPSO is set the 
same as MOPSO-COS, while c1=2.5-2t/Gmax， c2=0.5+2t/Gmax. The probabilities of 
crossover and mutation in NSGA2 are respectively set pc=0.9 and pm=0.1. 
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Table 1. Comparison of Convergence Index-GD 

  SPEA2 NSGA2 MOPSO MOPSO-COS 

ZDT1 
meanG 6.2205e- 2.9997e- 1.6537e-4 2.1638e-4 

varGD 1.3218e-
8

3.1154e-
9

2.1596e-
10

2.7426e-9 

ZDT2 
meanG
D

2.3288e-
4

2.2078e-
3

3.1045e-2 1.0597e-4 

varGD 2.1089e-
7

7.6374e-
8

8.8444e-3 3.0936e-11 

ZDT3 
meanG 2.6240e-

4
6.2196e-

4
1.5469e-1 6.1302e-4 

varGD 7.0359e-
9

3.3547e-
8

4.1214e-2 2.8784e-9 

ZDT4 
meanG 8.8982e-

3
0.12657 3.1461e-4 6.5150e-4 

varGD 4.5395e-
5

1.0551e-
2

8.2928e-
10

7.7298e-10 

ZDT6 
meanG
D

3.3990e-
2

0.57436 2.7691e-2 7.2604e-3 

varGD 4.7913e-
4

6.4193e-
2

2.2267e-3 2.8939e-4 

Table 2. Comparison of Diversity Index- Δ  

  SPEA2 NSGA2 MOPSO MOPSO-COS 

ZDT1 
mean Δ  0.69577 0.38010 0.52879 0.43395 

var Δ  1.2828e-2 1.0412e-3 6.9777e-4 1.3164e-3 

ZDT2 
mean Δ  0.81973 0.48544 0.90792 0.44556 

var Δ  1.9481e-2 8.2685e-3 1.3987e-2 1.3223e-3 

ZDT3 
mean Δ  0.91386 0.75506 0.72845 0.68625 

var Δ  1.3084e-2 5.9355e-2 2.9714e-2 1.4590e-3 

ZDT4 
mean Δ  0.80941 0.69995 0.49158 0.37226 

var Δ  3.0119e-2 2.8908e-2 2.7190e-3 6.3067e-4 

ZDT6 
mean Δ  0.77787 1.0299 1.1245 0.85959 

var Δ  2.3101e-3 2.7091e-2 8.1845e-2 3.7125e-3 

 
Optimization for each algorithm is done 50 times independently. The results are 

shown in Table 1 and 2, where mean represents the mean value and var represents the 
variance. Fig. 1 shows the difference between optimal front obtained from MOPSO-
COS and the true Pareto front. In fact, it is difficult for many improved MOPSO algo-
rithms to escape from local optimal point effectively, particularly for non-convex 
function ZDT2. Besides, many MOPSO algorithms are difficult to converge to the 
true Pareto front for ZDT6 because ZDT6 is multimodal function. It is easy to find in 
Table 1 that convergence of MOPSO-COS is obvious improved for ZDT2 and ZDT6, 
and variance of GD is smaller than other algorithms. According to Table 2, diversity 
of MOPSO-COS is best, except that it is worse only than NSGA2 for ZDT1 and 
worse than SPEA2 for ZDT6. Combing Table 1, Table 2 and Fig.1, it can be drawn 
that MOPSO-COS is able to converge to the true Pareto front with high accuracy for 
ZDT test functions. The optimal front of MOPSO-COS distributes uniformly and 
diversity is good. Although its performance is not the best at certain test function, 
order of magnitude is similar. Therefore the improved MOPSO-COS is effective. 
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(a) ZDT2                                                             (b) ZDT3 

     
(c) ZDT4                                                            (d) ZDT6 

Fig. 1. Pareto Front of MOPSO-COS for ZDT Test Functions 

Fig. 2 shows the difference between MOPSO-COS and MOPSO for ZDT2 when 
the population gets rid of local optimal point. Results for 20 times selected randomly 
are adopted for comparison. In Fig. 2, the number ‘0’ indicates that final Pareto op-
timal solutions converge to the true front and distribute uniformly; ‘1’ indicates that 
the population fails to get out of the local optimal point, and particles overlap at the 
local extremum finally; ‘2’ indicates that the population aggregates seriously, so the 
diversity is poor. Through experiments and observation, it is obvious that MOPSO 
can hardly escape from local optimal point for ZDT2. Even if MOPSO can, aggrega-
tion degree of the population is high at last, and solutions on the Pareto front distri-
bute extremely unevenly. On the contrary, MOPSO-COS is able to avoid seriously 
aggregating and it has a larger probability to escape from the local optimal point. 

 

 
Fig. 2. Comparison between MOPSO-COS and MOPSO When Escaping from Local Optimum  
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5 Conclusions  

This paper presents a multi-objective particle swarm optimization algorithm based on 
comprehensive optimization strategies. The concept of the global second best particle 
is proposed and further velocity updating equation is modified, which has improved 
the utilization of population information and convergence speed. Premature conver-
gence and serious aggregation are avoided by chaotic mutation. External archive 
strategy, which maintains the archive by dynamic gird method, has increased the di-
versity of Pareto optimal solutions. However, the analysis of time complexity shows 
that MOPSO-COS requires a little more time to search for the optimal solutions. Re-
sults of simulation based on ZDT test functions show that, compared with several 
other algorithms, MOPSO-COS is able to improve the convergence accuracy and 
diversity and escape from local optimum point effectively.  
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